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Background

Addition of oxaliplatin to adjuvant 5-FU has significantly improved the disease-free survival and served as the first line adjuvant chemotherapy in advanced colorectal cancer (CRC) patients. However, a fraction of patients remains refractory to oxaliplatin-based treatment. It is urgent to establish a preclinical platform to predict the responsiveness toward oxaliplatin in CRC patients as well as to improve the efficacy in the resistant patients.



Methods

A living biobank of organoid lines were established from advanced CRC patients. Oxaliplatin sensitivity was assessed in patient-derived tumor organoids (PDOs) in vitro and in PDO-xenografted tumors in mice. Based on in vitro oxaliplatin IC50 values, PDOs were classified into either oxaliplatin-resistant (OR) or oxaliplatin-sensitive (OS) PDOs. The outcomes of patients undergone oxaliplatin-based treatment was followed. RNA-sequencing and bioinformatics tools were performed for molecular profiling of OR and OS PDOs. Oxaliplatin response signatures were submitted to Connectivity Map algorithm to identify perturbagens that may antagonize oxaliplatin resistance.



Results

Oxaliplatin sensitivity in PDOs was shown to correlate to oxaliplatin-mediated inhibition on PDO xenograft tumors in mice, and parallelled clinical outcomes of CRC patients who received FOLFOX treatment. Molecular profiling of transcriptomes revealed oxaliplatin-resistant and -sensitive PDOs as two separate entities, each being characterized with distinct hallmarks and gene sets. Using Leave-One-Out Cross Validation algorithm and Logistic Regression model, 18 gene signatures were identified as predictive biomarkers for oxaliplatin response. Candidate drugs identified by oxaliplatin response signature-based strategies, including inhibitors targeting c-ABL and Notch pathway, DNA/RNA synthesis inhibitors, and HDAC inhibitors, were demonstrated to potently and effectively increase oxaliplatin sensitivity in the resistant PDOs.



Conclusions

PDOs are useful in informing decision-making on oxaliplatin-based chemotherapy and in designing personalized chemotherapy in CRC patients.





Keywords: patient-derived organoids (PDOs), oxaliplatin sensitivity assessment, colorectal cancer, connectivity map, personalized chemotherapy
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Background

Colorectal cancer (CRC) is highly prevalent and accounts for ~500,000 deaths/year (1, 2). Although the advances in diagnosis and treatment modalities have led to reduced incidence and mortality, 50% of stage III and 95% of stage IV colorectal cancer patients succumb to this disease (American Cancer Society, 2011). Adding DNA-crosslinking agent oxaliplatin to antimetabolite drug 5fluorouracil (5FU), such as FOLFOX (leucovorin calcium (folinic acid), fluorouracil, and oxaliplatin) or CAPOX (capecitabine (Xeloda) and oxaliplatin), has yielded greater response rates and longer survival than with 5- FU alone in patients with high risk-stage II, stage III and metastatic CRC (3). However, response rates of oxaliplatin-based regimens only reach 40% - 45% (4). In addition, oxaliplatin-induced neuropathy has also prevented a subset of patients from receiving a complete course of oxaliplatin-based chemotherapy. Currently cancer treatment decisions are made based on clinical and pathologic staging and on molecular data. However, this method of prognosis does not predict drug response in individual patients. There is an urgent need to establish an in vitro model to predict patients’ response toward standard-of-care chemotherapy in advanced CRC, and to decide alternative treatment strategy for the resistant patients.

Recently, Sato et al. have established a novel in vitro 3D Intestinal Stem Culture (ISC) model by understanding the niche factor requirement for stem cell maintenance in vivo (5). This approach enables the growing of single ISCs to cyst-like with outward budding structure resembling intestinal epithelial crypt-villus organization, referred to as organoids. PDOs closely mimic the original primary tumor architecture and biology (6), and may overcome the limitations of traditional cell culture cancer models for in vitro drug assessment. As a support, a number of publications have demonstrated the feasibility of utilizing PDOs as a platform for prediction of patients’ response to therapy (7–13). Since oxaliplatin-based regimens serve as the first-line adjuvant therapies for CRC patients, in this study, we demonstrate the establishment of a living biobank of CRC patient-derived organoids and the usefulness of them as a predictive platform for the response of CRC patients to oxaliplatin-based chemotherapy. Predictive gene expression biomarkers are a promising and practical means for precision treatment. Taking drug response signature-based approaches, we have further identified compounds of great potential to increase oxaliplatin sensitivity in the resistant patients. Our findings demonstrate that PDOs may serve as an in vitro model to improve the precision and effectiveness of chemotherapy in advanced CRC patients.



Materials and Methods


Sample Collection,Organoid Preparation and Application

Fresh tissues and paraffin-embedded wax blocks were consecutively derived from patients who underwent surgical resection of CRC at Taipei Veterans General Hospital, Taiwan from February 13, 2017 to October 13, 2018. All studies were approved by the Institutional Review Board of Taipei Veterans General Hospital, Taiwan as well as the Institutional Review Board of Academia Sinica, Taiwan. Written consent forms were obtained from all the patients. In two patients, non-tumorous tissues were not obtained. Paired primary tumor tissues from the colon along with liver metastases were obtained from 3 patients. The average size of the tumor samples used to prepare PDO is 4-5 mm in diameter. Non-tumorous tissue was minced, digested with collagenase and dispase, and processed as described (14). The crypts were collected, embedded in matrigel, and cultured in Basal culture medium supplemented with 50% Wnt conditioned medium, 20% R-Spondin conditioned medium, 10% Noggin conditioned medium, 1x B27, 1.25 mM n-Acetyl Cysteine, 10 mM Nicotinamide, 50 ng/ml human EGF, 10 nM Gastrin, 500 nM A83-01, 3 M SB202190, 10 nM Prostaglandin E2, and 100 mg/ml Primocin (In vivogen). Tumor tissue was minced, digested with Liberase, and processed as described previously (15). Tumor organoids were cultured in the same medium described above except without Wnt. Similarly, organoids were prepared from metastatic tumors from liver site in the same medium without Wnt, and adjacent non-tumorous liver tissues in media supplemented with 100 ng/ml FGF10 (Peprotech), 25 ng/ml HGF (Peprotech) and 10 μM Forskolin (Tocris) (16). In general, we established the organoids from the fresh tumor samples as passage 0. The organoids were passaged once in 6 days using TrypLE Express (Thermo Fisher Scientific) in 1:3 to 1:5 dilution based on cell density. After initial passages, the organoids (at passages 3 and 4) were frozen in a standard cell freezing media containing 10% dimethyl sulfoxide (DMSO) and stored at -80°C for 2 to 3 days and then shifted to liquid nitrogen tank for long term storage as organoid bio-bank.

In brief, we have established a bio-bank of 151 CRC-PDOs from 148 CRC patients, including 3 patients with matching liver metastatic tissues. The utilization of PDOs in this study is summarized. PDOs derived from advanced stages (III and IV) (n = 42) were subjected to in vitro drug sensitivity assay against oxaliplatin and divided into oxaliplatin-sensitive (OS) and -resistant (OR) groups. Four OR and 4 OS PDOs were used in xenograft tumor model study in mice for in vivo validation of the in vitro drug response. In addition, the drug responses in 17 PDOs derived from stage III (n = 12) and stage IV (n = 5) patients were further compared to the clinical outcomes of these patients after FOLFOX adjuvant therapy. To establish personalized medicine, 8 OS and 8 OR PDOs were subjected to RNA sequencing to build up molecular portraits of transcriptomes, followed by gene signature-based selection of candidate drugs.



Immunofluorescence Analysis and Viability Assessment of Organoids

Whole mount immunofluorescence staining of organoids was performed as described earlier (17). Organoids were washed in ice-cold wash buffer (DMEM/F12 with 10% FBS), and the matrigel domes disrupted. Organoids were pelleted down and fixed with 4% paraformaldehyde in PBS for 30 min, and permeabilized with 0.5% Triton X-100 in PBS for 15 min. Organoids were washed in immunofluorescence (IF) wash buffer (0.1% BSA, 0.2% Triton X-100, 0.05% Tween 20), incubated with blocking buffer (1% BSA in IF wash buffer) for 1 h, and incubated with primary antibody rabbit anti-EpCAM (AbCam), rabbit anti-Mucin 2 (Santa Cruz), mouse anti-CK20 (Santa Cruz), or mouse anti-Chr-A (Santa Cruz) in blocking buffer for 2 h, followed by incubation with secondary antibody anti-mouse Alexafluor Texas Red (Invitrogen) or anti-rabbit or mouse Alexaflour 488 (Invitrogen) in blocking buffer for 1 h. After mounting in SlowFade anti-fade with DAPI (ThermoFisher), organoids were observed and micro graphed using Carl Zeiss LSM510 laser scanning microscope imaging system with Zen analysis software (Zeiss). Pathological sections of formalin-fixed paraffin-embedded patient tissue, xenografts and organoids were processed, imaged and analysed in the Histopathology unit at Institute of Biomedical Sciences, Academia Sinica. For organoids histology, whole organoids were pelleted down and fixed as described above. Then organoids were suspended in 2% low melting agarose, followed by dehydration, paraffin embedding, sectioning and Hematoxylin Eosin (H&E) staining.



In Vitro Drug Sensitivity Assessment

Drug sensitivity assay was performed in organoids as described with modifications (14). Organoid cultures were gently disrupted into single cell suspension with TrypLE Express, and 3000 cells were seeded in 7 μl per well of matrigel diluted with equal volume of medium in 96-well plates in four replicates and cultured in organoid growth medium for 24 h. The cultures are incubated with oxaliplatin at various concentrations (0.03, 0.1, 0.3, 1, 3, 10, 30, and 100 μM) for 96 h, and subjected to CellTiter-Glo (Promega) cell viability assay. The slope of the dose-response curve was calculated. IC50 (half maximal inhibitory concentration) values are calculated with the four-parameter nonlinear logistic equation. Emax values were calculated as the percentage of inhibition at the maximum included concentration (100 μM). Based on IC50 values, PDOs were classified into four response categories, and the OR group includes the categories of non -responders and minor responders, and OS group include moderate and strong responders.



RNA Sequencing

Total RNA was extracted from 8 OR and 8 OS PDO lines, using RNeasy Plus Mini Kit (QIAGEN). RNA-sequencing libraries were constructed using TruSeq Stranded mRNA Library Prep Kit (Illumina). The purified libraries were amplified by 10 cycles of PCR, and the resulted library profile was 250-500 bp, peaking at ~300 bps. Paired-end 2 x 101-nt sequencing was conducted on the Illumina HiSeq 2500 System (NGS High Throughput Genomics Core Facility at BRACS, Academia Sinica). The short-reads in FAST-Q format, ~85 M reads per sample, were processed by a computational pipeline as described (18). Briefly, the short reads were aligned and mapped to the Homo sapiens (human) genome assembly GRCh38 (hg38) using HISAT2. The aligned transcripts were assembled using StringTie by annotated GENCODE version 29. Gene expression levels were converted to counts by a python script (prepDE.py) provided by StringTie team. RNA-seq datasets consisted of 60,714 gene tags (25,213 Ensembl gene ids and 35,501 StringTie MSTRG ids) and 225,295 transcript tags (206,696 Ensembl transcript ids and 18,599 StringTie MSTRG ids), respectively, from 16 CRC PDOs. Fragments per kilobase of transcript per million mapped reads (FPKM) expression values from individual organoids were obtained. For comparison of differentially expressed genes (DEGs) and tags (DETs) between different groups, gene expression levels were further normalized by DESeq method and analyzed using Bioconductor package DESeq2.



Molecular Profiling Using Bioinformatics Tools

The classification of the 16 PDOs was visualized by principal component analysis (PCA) (R package: ropls) and unsupervised hierarchical clustering analysis (Morpheus; Metric: One minus spearman rank correlation and Linkage method: average; https://software.broadinstitute.org/morpheus) using the DETs (fold change ≥ 2 and adjusted p-value < 0.05) as the identifier input. Analysis of the hallmarks and KEGG pathway enriched in the OR and OS PDOs were conducted by Gene Set Enrichment Analysis (GSEA). False discovery rate (FDR) q value < 0.05 was considered significant.

Leave-One-Out Cross Validation (LOOCV) was conducted to select oxaliplatin response gene predictors (19). Machine learning methods, such as Random Forest, K-Nearest Neighbors, Naïve Bayesian, Decision Trees, Neural Networks, Support Vector Machines, and Logistic Regression (LR), were applied to validate the prediction power of the sets of DEGs and DETs identified by LOOCV.

Connectivity MAP (C-MAP) online tool (https://www.broadinstitute.org/cmap/) was conducted to predict inhibitors targeting oxaliplatin resistant signatures (20, 21). Perturbagens ranked with the most high average negative enrichment scores and least variations were selected for further evaluation in combination therapy.



Xenograft Studies

In vivo oxaliplatin response was assessed using PDO-based xenograft tumor model. All experimental protocols were approved by the Institutional Animal Care and Utilization Committee (IACUC) at Academia Sinica, Taiwan. Single cell suspension was prepared from each PDO, and 1×106 cells were mixed with organoid growth medium/matrigel (1:1) in a total volume of 100 uL and injected subcutaneously to the right flank of NSG (NOD scid gamma) mice (8-9 weeks, 23-28 g). Tumors were allowed to grow to 80 ± 100 mm3 in size and randomly assigned into the control (2.5% DMSO/PBS) and treatment (oxaliplatin at 2 mg/kg in 2.5% DMSO/PBS) groups with 5 mice per group. Treatment was given by intra-peritoneal injection for 10 times at 3-day intervals. Tumor size and body weight were measured. TGI (Tumor Growth Inhibition) was determined at the end point of treatment period for each xenograft by the following formula: %TGI = {[1 – (Tt/T0)/(Ct/C0)]/[1 – (C0/Ct)]} x 100, in which Tt and T0 were median tumor volumes of treated animal at time t and time 0, and Ct and C0 median tumor volumes of control group at time t and time 0, respectively (22). Median %TGI was calculated and reported for each group. Significant anti-tumor activity was defined as achievement of a median %TGI of at least 50%. Repeated two-way ANOVA was used to define the statistical difference between the groups using Graph Pad Prism 9.



Statistical Analysis

Statistical analysis was performed in GraphPad Prism 9 (GraphPad Software, San Diego, CA). IC50 for in vitro drug assay was determined by non-linear regression log(inhibitor) vs response variable slope (four parameters). To calculate p-value in Supplementary Figure 2, Mann-Whitney test (un-paired two tailed) was used to compare the difference in IC50, Emax, and AUC between the groups of minor/non-responders and moderate/responders. To calculate p-value in Figure 3A, we used Repeated Measure two-way ANOVA with the Geisser-Green house Correction and Bonferroni multiple comparison test. For all required studies, experimental mean was calculated and error was presented by standard deviation of the mean. For Supplementary Figure S3, significant difference of relapse-free survival depending on the PDO resistance or sensitivity to oxaliplatin was determined using Gehan-Breslow-Wilcoxon test. P<0.05 was considered as significant.




Results


Establishment of a Biobank of CRC Patient-Derived Organoids

Tumorous and non-tumorous tissues, plus liver metastases (n=3), were collected from 148 CRC patients, for organoid preparation. These CRC patients, categorized based on TNM staging, included 3 cases of stage 0, 24 of stage I, 42 of stage II, 57 of stage III, and 22 of stage IV, corresponding to 2%, 16.2%, 28.4%, 38.5% and 14.9%, respectively, of total samples collected. Supplementary Table S1 lists the description of samples collected, and the 3 pairs of primary and metastatic tumor samples are indicated. The success rate of establishing organoid cultures was 93% (136 of 146) and 76% (115 of 151) for the non-tumorous and tumorous tissues, respectively (Figure 1A), which was comparable to previous reports (9, 23, 24). The unsuccessful cases included the initial attempts for optimization of culture conditions and those with tissues full of necrotic lesions or contaminated with pathogens. Among the established patient-derived tumor organoids (PDOs), 3 quarters of them, spanning stage 0 (n = 1), stage I (n = 13), stage II (n = 26), stage III (n = 30), and stage IV (n = 17), were characterized with good growing condition, and can be expanded for continuous passages (passage number > 10). Wnt3A was required for culturing organoids derived from non-tumorous tissues, but not for most, if not all, of the tumor-derived organoids. Non-tumor organoids can only be cultured and maintained under normoxic condition, whereas tumor organoids were able to proliferate under both normoxic and hypoxic conditions. We routinely cultured tumor organoids under normoxia in the absence of Wnt3A. Immunofluorescence staining was performed to show the viability of the organoids (Figure 1B). Almost all the cells in both non-tumor and tumor organoids were stained positively by the live-cell-permeable green fluorescent dye Calcein-AM. The organoids were stained positive for the epithelial cell adhesion molecule (EpCAM). The non-tumor organoids were readily stained for mucin 2, cytokeratin-20 and chromagranin A, demonstrating the presence of differentiated cell types of intestinal epithelial lineage, whereas most of the tumor organoids were stained weakly or negative for the differentiation markers (Figure 1C). CRC-derived organoids cultured under in vitro or in vivo xenograft condition retained architectural features resembling the tumor tissues from which they were derived (Supplementary Figure S1). Well and moderately differentiated tumors gave rise to cyst-like organoids with clear lumen formation, whereas the organoids derived from poorly differentiated tumors were characterized with highly compact structures (Figure 1D). Sequencing analyses revealed that PDOs preserved most of the mutational status of the driver genes in the primary tumors (Figure 1E). We noted that there were mutations either gained or lost in a small number of PDO lines during the in vitro culturing process.




Figure 1 | Establishment of a biobank of CRC patient-derived organoids. (A) Bar graph summarizes the preparation of organoid lines from the non-tumorous and tumorous tissues of 148 colorectal cancer patients. (B) The viability of organoids was assessed by immunofluorescence staining using LIVE/DEAD cell staining Kit. Confocal images of the live cells stained by Calcein-AM (in green), dead cells by EtBr (in red), and nuclei by DAPI (in blue), were shown. Scale bar, 50 m. (C) Confocal microscopy of the expression of EpCAM as epithelial marker, mucin 2 for Goblet cells, cytokeratin (CK) 20 for enterocytes, and chromagrannin (CgA) for neuroendocrine cells. (D) Histopathological features of primary tumors and PDOs. Representatives of bright-field images and H&E staining of tumor-derived organoids, and H&E staining of well to moderately differentiated (T88, T87 & T38) and poorly differentiated (T113, T90 & T117) tumors were shown. (E) Overview of mutational status in the driver genes in CRC primary/metastatic tumors and corresponding PDOs. The percentage of concordance between PDOs and original tumors in each driver gene is shown at the bottom.





Assessment of Oxaliplatin Response in Advanced CRC PDOs

Adjuvant 5-FU in combination with oxaliplatin serves as the first-line chemotherapy for patients of advanced CRC (25, 26). With the aim to address whether PDO lines can serve as a preclinical model to guide therapeutic decisions for advanced CRC patients, we performed drug sensitivity assessment of advanced CRC PDOs towards oxaliplatin. Forty-two of the 47 advanced CRC PDOs were successfully recovered from frozen stocks without showing any decline in growth rate, and subjected to the treatment of increasing concentrations of oxaliplatin. The dose response curve of individual PDOs was constructed (Figure 2A). The IC50 ranged from 1.37 to 100 μM, varying in 2 orders of magnitude in individual PDOs, and Emax ranged from 45 to 93%. An inverse correlation was established between the potency and efficacy of oxaliplatin in the 42 PDOs (Figure 2B). The wide range of differences in the potency and efficacy of oxaliplatin emphasizes the need for personalized medicine. According to IC50, the PDOs were grouped into four categories (Figure 2C), strong responders (log10IC50 0.14 – 0.57), moderate responders (log10IC50 0.57 – 0.98), minor responders (log10IC50 0.98 – 1.24), and non-responders (log10IC50 1.24 – 2.00), as previously described6. Strong and moderate responders were defined as oxaliplatin-sensitive (OS) group whereas minor and non-responders were defined as oxaliplatin-resistant (OR) PDOs. Individual dose response curves of oxaliplatin-sensitive and -resistant PDOs are presented in Supplementary Figure S2A. Quantification of responses to oxaliplatin by calculating the IC50, Emax and the area under the dose response curve (AUCDRC) showed a significant difference between the resistant (non-responders/minor responders) and sensitive (moderate/strong responders) groups (Supplementary Figure S2B). Supplementary Table S2 summarizes the clinical data of the 42 advanced CRC PDOs, along with their in vitro oxaliplatin response.




Figure 2 | Pattern of oxaliplatin response in 42 CRC-derived organoid models. (A) Fitted dose response curves for oxaliplatin. Each curve represents the mean and standard deviation of four replicates per condition. (B) Linear regression curve between potency (IC50) and efficacy (Emax) of 42 PDOs treated with oxaliplatin (p <0.0001). (C) Box plot using log10IC50 to define drug response of 42 CRC-PDOs into the categories of strong responders, moderate responders, minor responders, and non-responders towards oxaliplatin treatment.





In Vivo Validation of Oxaliplatin Response

We next examined whether the oxaliplatin sensitivity determined in PDOs in vitro can be validated in vivo. As shown in Figure 3A, oxaliplatin-resistant (OR) and -sensitive (OS) PDOs were subjected to xenograft tumor model in NSG mice, followed by oxaliplatin treatment. Oxaliplatin-mediated tumor growth inhibition (TGI) was calculated as described (22). As shown, oxaliplatin treatment yielded significant inhibition (%TGI > 50%) in all of the 4 OS PDO xenografts. To the contrast, none of the OR PDO xenografts responded well to oxaliplatin-mediated inhibition. These results demonstrate a good concordance between the oxaliplatin sensitivity in PDOs and drug response in PDO xenograft tumors in vivo.




Figure 3 | In vivo validation of oxaliplatin response. (A) Oxaliplatin sensitivity in PDO xenograft tumor model. Suspensions of OR (T33, T50, T78m, and T113) and OS (T52m, T88, T90, and T117) PDOs were subcutaneously transplanted into NSG mice, and treated by intraperitoneal injection with vehicle (2.5% DMSO) or oxaliplatin (2 mg/kg) in 5 mice each group for 10 injections. Tumor volume was monitored. Oxaliplatin-mediated inhibition on tumor growth was calculated. The p-value was obtained by using Repeated Measure two-way ANOVA with the Geisser-Green house Correction and Bonferroni multiple comparison test. P < 0.01 was considered as significant. (B) Oxaliplatin sensitivity test in PDOs predicts FOLFOX treatment outcomes in CRC patients. Patients’ ID, TNM stage, and the course and outcome of FOLFOX adjuvant therapy are listed. CRC patients with no-recurrence are considered as responding to FOLFOX treatment whereas patients with lung or liver metastasis recurrence as non-responding to FOLFOX. Concordance between oxaliplatin response in PDOs and patients is shown as yes, whereas discordance as no.



Next, we analyzed the clinical outcomes of CRC patients who had received oxaliplatin-based therapy. Among the 42 advanced CRC PDOs, 17 were derived from patients (12 of stage III and 5 of stage IV) who underwent FOLFOX adjuvant therapy. Supplementary Table S3 describes the details of the patient cohort from whom these 17 PDOs were obtained. According to oxaliplatin sensitivity assessed in vitro, the 17 PDOs were 4 non-responders, 4 minor responders, 5 moderate responders, and 4 strong responders to oxaliplatin. Notably, the patients who developed lung or liver metastasis after adjuvant therapy belonged to 3 of the 4 non-responders, 2 of the 4 minor responders, 1 of the 5 moderate responders, and 1 of the 4 strong responders (Figure 3B), demonstrating that FOLFOX treatment response in advanced CRC patients followed the trend of oxaliplatin sensitivity determined in PDOs (P = 0.047, using single tailed Cochran-Armitage trend test). Further, Kaplan Meier relapse-free curve of CRC patients depending on PDO resistance or sensitivity to oxaliplatin showed a significant difference (P = 0.047, using Gehan-Breslow-Wilcoxon test) (Supplementary Figure S3). To summarize clinical validity of PDO-based drug screen results for predicting treatment response, we found 70% sensitivity, 71.4% specificity, 77.8% positive predivtive value, and 62.5% negative predictive value in predicting response to oxaliplatin-based regimen (Fisher’s exact test p = 0.15).



Molecular Portraits of Oxaliplatin Response in Advanced CRC PDOs

To investigate the molecular mechanisms modulating oxaliplatin response, we analyzed the expression profiles of 8 OS and 8 OR PDOs. RNA sequencing was performed. The short reads in Fast-Q format were processed through the pipeline of HISAT2, StringTie and DESeq2 algorithms, and 2555 differentially expressed transcripts (DETs, adjusted p < 0.05 and fold change ≥ 2) were obtained. By principal component analysis and unsupervised hierarchical clustering analysis (Figures 4A, B), these DETs yielded a clear separation between the OS and OR PDOs. Morpheus Marker selection method (https://software.broadinstitute.org/morpheus) was applied, using a permutation test with 1,000 replications, and transcripts correlated to the OR and OS phenotypes were also identified. Supplementary Figure S4 shows the heatmap of top 25 up- and 25 down-regulated transcripts associated with the OR phenotype in the form of hierarchical clustering (Spearman’s correlation), demonstrating again that OS and OR PDOs exhibited distinct expression profiles.




Figure 4 | Molecular portraits of oxaliplatin response in advanced CRC PDOs. (A) Principal component analysis, using the 2555 DETs as input, assesses the variance of the 16 PDOs. The OS and OR PDOs are depicted in red and blue, respectively. (B) Hierarchical clustering analyses performed using DETs between OS and OR PDOs. In hierarchical clustering, column represents sample and row represents transcript. Expression values (FPKM) were depicted from high (in red) to low (in blue). (C) Hallmarks and KEGG pathways (FDR q-value < 0.01) enriched in OR and OS PDOs based on GSEA algorithm. Hallmarks and pathways with positive normalized enrichment score (NES) indicate positive correlation with OR phenotype, and negative NES value with OS phenotype.



By Gene Set Enrichment Analysis (GSEA) (www.broad.mit.edu/gsea), hallmarks of mitotic spindle, G2/M checkpoint, UV response and TGF-β signaling were identified to be tightly associated with OR phenotype, whereas oxidative phosphorylation hallmark associated with OS phenotype (Figure 4C). To validate our findings, we further queried RNA-sequencing data of human CRC (459 of COAD and 170 of READ) database in The Cancer Genome Atlas (TCGA) program. Among the patients who received oxaliplatin-based chemotherapies with clinical outcomes recorded, 33 were evaluable for having RNA-Seq data (Figure 5A). According to treatment response, 23 patients were considered to be resistant to the treatment for developed stable disease (SD) or progressive disease (PD), whereas 10 exhibited complete response (CR) or partial response (PR) as responding or sensitive to the treatment. By GSEA analysis, the pathways and gene sets associated with CRC patients resistant and sensitive to oxaliplatin-based treatments were shown to be similar to those enriched in the OR and OS PDOs (Figures 5B, C and Supplementary Figure S5).




Figure 5 | Common pathways and gene sets are associated with oxaliplatin responses in CRC PDOs and patients. (A) Stratification of patients in TCGA-CRC dataset. (B) Hallmarks and pathways associated with OR and OS PDOs as well as with CRC patients (n = 24 for COAD and n = 9 for READ) responding and non-responding to FOLFOX treatment. NES, normalized enrichment score. NOM p-val, nominal p value. FDR q-val, false discovery rate q-value. (C) Venn-diagrams showing the gene sets shared between CRC-PDOs and TCGA-CRC patients in the hallmarks enriched in OR and OS phenotypes. Numbers of genes were depicted. *, means - CRC patients were treated with oxaliplation in combination with other drugs. So we labelled it as multiple drugs used.





Identification of Oxaliplatin Response Predictor Signatures

To identify oxaliplatin response predictor signatures, Leave-One-Out Cross Validation (LOOCV) algorithm was performed to compare the expression profiles of 8 OR vs. 8 OS PDOs (Figure 6A). Sixteen new expression datasets were created by alternatively leaving out the RNA-Sequencing dataset of one PDO. Comparative analysis was performed in each dataset, and the top 100 DEGs and DETs between the OR and OS PDOs were identified. Among the 16 sets of top 100 DEGs and DETs, 36 DEGs and 33 DETs were found commonly present in all the 16 sets of genes and transcripts. Several machine learning programs were applied to evaluate the accuracy of using the sets of 36 DEGs and 33 DETs as predictors for oxaliplatin response. As shown, the set of 36 DEGs or 33 DETs gave a perfect or near perfect value of 1 as prediction accuracy to serve as drug response predictor signatures. We further exercised to test whether any single gene in these DEGs and DETs can serve as a drug response predictor. Using Logistic Regression (LR) model, we identified 18 models using one single gene and 20 models using one single transcript that reached the score of 1 to predict oxaliplatin response in the PDOs (Figure 6B). The identity of the 18 oxaliplatin response predictor signatures and their expression status in OR and OS were shown (Figures 6C, D). These predictor signatures also fell within the most significantly differentially expressed genes identified by GSEA (Supplementary Table S4).




Figure 6 | Oxaliplatin response predictor genes identified by Leave-One-Out Cross Validation (LOOCV) algorithm. (A) Workflow of identification of oxaliplatin response signatures using LOOCV algorithm to compare genes and transcripts differentially expressed between OR and OS PDOs. (B) Machine learning algorithms to evaluate the accuracy of predictor response genes and transcripts with their scores. (C) Oxaliplatin response predictor genes identified by LOOCV algorithm, along with their mean expression values in the OR and OS PDOs and log2[fold change] with adjusted P < 0.005. (D) Heat map of oxaliplatin response predictor genes identified by LOOCV algorithm.





Gene Signature-Based Approaches to Identify Candidate Drugs to Sensitize Oxaliplatin Response

By GSEA, hallmarks of mitotic spindle and G2/M checkpoint were identified to be tightly associated with the OR phenotype. Supplementary Table S5 lists the gene sets associated with these two hallmarks that were enriched in the OR phenotype, and a cohort of genes were commonly enriched in these two hallmarks, including c-ABL and NOTCH2. We hypothesized that inhibition of these two hallmarks may attenuate oxaliplatin resistance. Small molecules of c-ABL inhibitor imatinib and DAPT which targets NOTCH pathway by inhibiting γ- secretase were chosen to be tested.

In a second approach, we submitted the top 150 up-regulated and 150 down-regulated genes associated with OR phenotype by GSEA to the Connectivity Map (CMAP) (20), a genomics-based drug discovery framework, and identified 24 perturbagens with enrichment scores of ≤ -95, implicating that they may target OR signatures. Similarly, the 15 predictor genes derived from LOOCV that were up-regulated in the OR PDOs were also subjected to C-MAP analysis, and 128 compounds with enrichment scores ≤ -95 were identified. Eighteen compounds were found commonly shared in these two groups of perturbagens, including HDAC inhibitors, DNA damaging agents, DNA/RNA synthesis inhibitor, and inhibitors for druggable targets, such as CDK inhibitor and HGFR inhibitor (Figure 7A). Six compounds with relatively high negative enrichment scores, including irinotecan, mitomycin-c, HDAC inhibitors vorinostat, scriptaid, and trichostatin A (TSA), and mycophenolate-mofetil (MPM), a selective inhibitor of inosine monophosphate dehydrogenase that may inhibit DNA/RNA synthesis, were chosen to be tested for their activity to increase oxaliplatin sensitivity. Cytotoxicity of these compounds in PDOs was assessed, and a minimum effective dose, between IC10 – IC40, was chosen for each compound in combination therapy with oxaliplatin. Dose response curve for oxaliplatin alone and in combination with individual compounds was constructed, and relative IC50 of oxaliplatin resulted from the combination therapy and the Emax achieved in OR PDOs were shown in Figure 7B. In comparison to oxaliplatin monotherapy, most of the combination therapies significantly increased the potency and efficacy of oxaliplatin, as evidenced by the decrease of relative IC50 by 1 to 2 orders of magnitude (top panel), and the increase of Emax by 10 - 20% (bottom panel). Since these candidate drugs were selected based on their potential to target OR phenotype, as expected, favorable outcomes were not expected when treating the OS PDOs (Supplementary Figure S6). Notably, a much worse effect was observed when applying the combination therapies to the OS PDOs, as evidenced by the dramatically increased IC50 and decreased Emax. Supplementary Table S6 summarizes the IC50 values of individual compounds and in combination with oxaliplatin. These data further emphasize the importance of gene signature-based approach for personalized therapy. Most importantly, these data strongly support the usefulness of PDOs as a platform for the development of gene-based therapies.




Figure 7 | Drug response signature-based combination chemotherapy. (A) Connectivity-MAP analysis identifies potential therapeutic drugs targeting OR signatures in PDO’s. Enrichment scores from searches using gene sets identified by GSEA and LOOCV/LR models are shown. (B) Response to oxaliplatin-based combination therapy in OR PDOs. Bar graphs show the IC50 and Emax of each PDO towards oxaliplatin alone or in combination with imatinib, DAPT, irinotecan, mitomycin-C, mycophenolate mofetil, vorinostat, trichostatin-A, or Scriptaid at designated dosage. IC50 is shown in relation to the IC50 of oxaliplatin alone. For MMC and scriptaid, IC10 was used for PDOs which were particularly sensitive to the drugs, and IC30 or IC40 were used for the PDOs less sensitive to the drugs.






Discussion

Systemic chemotherapy remains as the cornerstone in the management of CRC patients. There is an urgent need to establish a pre-clinical model that can predict patients’ response toward chemotherapy. In this study, we established a biobank of CRC PDOs with the aim to assess the usefulness of PDOs in predicting the response of advanced CRC patients towards oxaliplatin-based chemotherapy. Paired non-tumorous and tumorous tissues were recruited from 148 colorectal cancer patients for establishing organoid lines, and the success rate was 93% and 76%, respectively. The patient-derived CRC organoid cultures recapitulated pathological and molecular features of the tumors from which they were derived, suggesting PDOs as a useful platform for drug testing, drug discovery and disease modeling. Dose response curve for oxaliplatin was constructed and oxaliplatin sensitivity assessed in 42 advanced CRC-PDOs. The oxaliplatin response assessed in PDO lines was further validated in vivo. We showed that oxaliplatin-mediated inhibition on tumor growth in PDO xenograft tumor model in mice correlated to the oxaliplatin sensitivity assessed in PDOs. Furthermore, the outcomes of CRC patients undergone FOLFOX treatment were shown followed the trend of oxaliplatin sensitivity assessed in PDOs. These results demonstrate that PDOs may serve as a platform to predict patients’ response to oxaliplatin treatment, and thus providing information to advise clinical decision-making for adjuvant therapy. Most importantly, PDO test allows to identify the subset of advanced CRC patients who may not benefit from FOLFOX treatment, and thus prevents them from unnecessary and ineffective treatment.

With the aim to increase oxaliplatin treatment response in the resistant patients, we painted molecular portraits of OR and OS phenotypes. RNA sequencing was performed and bioinformatics analysis (PCA and hierarchical clustering) revealed a clear separation between the OR and OS PDOs, suggesting that oxaliplatin responsiveness is undermined by specific molecular mechanisms. In support, GSEA showed that OR phenotype was associated with the hallmarks of mitotic spindle, G2/M and others, whereas OS phenotype was associated with hallmark of oxidative phosphorylation. These findings were in lines with previous reports that oxaliplatin killed cells by inducing ribosome biogenesis stress (18) and knockdown of genes involved in mitotic spindle and G2/M checkpoint, such as BRCA2, efficiently sensitized cancer cells to oxaliplatin treatment (27). We further confirmed our findings by analyzing the dataset of human colorectal adenocarcinoma patients in TCGA database and demonstrating that similar hallmarks and gene sets were also identified in colorectal adenocarcinoma patients who were resistant and sensitive to oxaliplatin-based chemotherapy, respectively. Taken together, these results highlighted the potential pathways that may dominate oxaliplatin responsiveness, and would assist to develop strategies that may overcome oxaliplatin resistance in CRC patients.

Under the notion that OR and OS phenotypes were each characterized with distinct hallmarks and gene sets, we further identified 18 biomarker signatures that are predictive of oxaliplatin responsiveness using LOOCV algorithm followed by Logistic Regression model. Next, utilizing PDOs as an in vitro model, we took gene-based approach to develop personalized chemotherapy. In order to suppress OR phenotype, we submitted the OR phenotype-associated gene signatures to CMAP algorithm, and identified perturbagens with the most negative enrichment scores, including DNA damaging agents, DNA/RNA synthesis inhibitor, HDAC inhibitors, tyrosine kinase inhibitors, and etc. Several of them have already been in clinical use like topoisomerase inhibitor irinotecan (28), mitomycin C (29), and HDAC inhibitor vorinostat (30, 31), and in clinical trials like mycophenolic-acid (dehydrogenase inhibitor) (32), or have been shown to have anti-tumor activity in vitro and in vivo like HDAC inhibitors trichostain-A (33, 34) and scriptaid (35–37). Interestingly, HDAC inhibitors have also been shown to exhibit additive or synergistic activity with oxaliplatin to sensitize cell lines derived from CRC (38) and other types of cancer (39). Six of the perturbagens, including irinotecan, mitomycin C, MPM, vorinostat, TSA, and scriptaid were chosen to be combined with oxaliplatin and tested for their effectiveness in increasing oxaliplatin sensitivity. In addition, inhibitors to c-ABL and γ-secretase were also chosen for targeting the core components of mitotic spindle and G2/M pathways, the major pathways associated with oxaliplatin-resistant phenotype. NOTCH-ABL axis has been implicated in colorectal cancer metastasis (40). Our data showed that these 6 perturbagens plus c-ABL inhibitor and γ-secretase inhibitor can significantly increase the potency and efficacy of oxaliplatin upon treating the OR PDOs, including the PDO derived from liver metastasis, suggesting the feasibility of gene signature-based therapeutic strategy. These candidate drugs were chosen based on their potential to antagonize OR phenotype, as expected, they failed to facilitate but rather impeded oxaliplatin-mediated cytotoxicity in the OS PDOs, emphasizing the importance of personalized medicine.

In this study, oxaliplatin sensitivity was assessed in 42 advanced CRC PDOs, including 3 matching sets from the primary tumors and their liver metastases. Increased drug resistance was observed in the metastatic tumor-derived organoids as compared to the primary tumor-derived organoids (T78p vs T78m and T111p vs T111m) (Table S2), consistent to the notion that accumulated genetic alterations drive disease progression. The remaining set (T52p and T52m) displayed similar oxaliplatin sensitivity, however, different drug responses towards combination therapies implicated that they harbored different genetic alterations (Supplementary Figure S6). Nevertheless, we demonstrated that gene-based formulation of combination therapy yielded improved therapeutic efficacy in both the PDOs derived from primary as well as metastatic tumors (data on T78m were shown). In this study, although the success rate of establishing PDOs was high, about 25% of CRC-PDOs displayed sub-optimal growth condition and drug sensitivity test cannot be properly assessed. In addition, we also suffered 10% loss of the organoid lines through freezing and thawing process. Improved culture conditions are necessary, so PDO-informed drug assessment can be universally applied to most if not all of the patients.

Several studies have demonstrated the potential usage of PDOs in guiding patients’ treatment (8–12), including a prospective study reported by Ooft et al., which demonstrated that PDO test predicted response of more than 80% of metastatic CRC patients treated with 5-FU-irinotecan but not 5-FU-oxaliplatin combination therapy (10). In our study, we evaluated the usefulness of oxaliplatin response in advanced CRC PDOs (n = 17) in predicting clinical outcome of patients receiving FOLFOX adjuvant therapy. Among the 9 patients with their PDOs being sensitive to oxaliplatin, 7 remained no recurrence, giving a 78% prediction rate. As to the other 8 patients whose PDOs displaying resistant phenotype, as minor or non-responders to oxaliplatin, 5 developed recurrent or progressive disease after FOLFOX treatment, giving a 63% prediction rate. Thus, oxaliplatin sensitivity test in PDOs yielded a 70.6% (12 out of 17) accuracy in predicting patients’ clinical outcome towards FOLFOX adjuvant therapy, demonstrating the usefulness of PDO as an in vitro model to assist clinical decision-making on first-line adjuvant chemotherapy for advanced CRC patients. The discrepancy on PDO test to predict oxaliplatin sensitivity between the study of Ooft et al. and ours may lie in the difference in patients’ groups and other factors. Since both studies were based on patients of a small number, a clinical study including larger case number is underway to further evaluate whether PDOs can predict the response toward oxaliplatin-based treatment in advanced stage CRC patients.



Conclusion

This study shows that oxaliplatin sensitivity assessed in advanced CRC patient-derived organoids was correlated to patients’ response to FOLFOX treatment, and drugs identified by gene signature-based approach significantly improved oxaliplatin sensitivity for personalized treatment, suggesting PDOs as a useful platform to inform clinical decision-making on adjuvant chemotherapy and in designing personalized chemotherapy.
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Supplementary Figure 1 | H&E staining of primary tumors, tumor-derived organoids, and PDO xenografts in NGS mice. Scale bars: tumor tissues, 100 μm; tumor organoids, 50 μm; PDO xenograft, 100 μm.

Supplementary Figure 2 | (A) Fitted dose response curves for oxaliplatin-resistant and -sensitive PDOs. Each curve represents the mean and standard deviation of four replicates per condition. (B) Quantification of oxaliplatin response using IC50, Emax and AUC between the sensitive (strong/moderate responders) and the resistant (minor/non-responders) PDOs. Comparison was made using a two-tailed Mann-Whitney test (p < 0.0001). Dots represent individual PDOs, horizontal bars represent the mean, and error bars indicate SD.

Supplementary Figure 3 | Kaplan Meier relapse-free curve of CRC patients depending on PDO resistance or sensitivity to oxaliplatin. Comparison was made using Gehan-Breslow-Wilcoxon test (p = 0.047). This plot is based upon Fig.3B, where recurrence is given as value 1 and non-recurrence as 0.

Supplementary Figure 4 | Heatmap of top 25 up- and 25 down-regulated transcripts associated with the OR phenotype in the form of Hierarchical clustering (Spearman’s correlation) by Morpheus Marker selection method (Input: 2555 differential expressed transcripts; 1000 permutations).

Supplementary Figure 5 | Complete list of significant hallmarks and pathways that are upregulated in oxaliplatin-resistant and -sensitive TCGA CRC patients and CRC-PDOs.

Supplementary Figure 6 | Response to oxaliplatin-based combination therapy in OS PDOs. Bar graphs show the IC50 and Emax of each PDO towards oxaliplatin alone or in combination with imatinib, DAPT, irinotecan, mitomycin-C, mycophenolate mofetil, vorinostat, trichostatin-A, or Scriptaid at designated dosage. IC50 is shown in relation to the IC50 of oxaliplatin alone.

Supplementary Table 1 | Clinical data of 148 CRC patients with tissues resected for organoid preparation. Paired tissues collected from the primary and metastatic lesions of the same patients are shaded in grey.

Supplementary Table 2 | Clinical data of 42 advanced CRC PDOs and their in
vitro oxaliplatin response.

Supplementary Table 3 | Clinical data of 17 CRC patients with PDOs analyzed
for in vitro oxaliplatin response and with clinical follow-up data after FOLFOX
treatment.

Supplementary Table 4 | Drug response signatures identified by LOOCV &
GSEA.

Supplementary Table 5 | List of genes in the G2/M and mitotic spindle hallmarks
that are associated with the OR PDOs. The ones in shade are commonly identified
in the two hallmarks.

Supplementary Table 6 | IC50 values of individual compounds and in combination with oxaliplatin (Oxali) in both oxaliplatin-resistnat and -seinsitve PDOs.
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Numerous studies have shown that long noncoding RNAs (lncRNAs) play a critical role in the malignant progression of cancer. However, the potential involvement of lncRNAs in colon adenocarcinoma (COAD) remains unexplored. In this study, the expression of lncRNA SNHG7 in colon cancer tissues and its correlation with clinical characteristics were analyzed based on data from The Cancer Genome Atlas (TCGA) database. SNHG7 was found to be highly expressed in 17 types of cancer, including COAD. Next, TCGA data were further investigated to identify differentially expressed genes, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed. In addition, the relationship between SNHG7 expression and clinical features were analyzed. SNHG7 expression was found to be a potentially valuable indicator for COAD diagnosis and prognosis. Finally, gene set enrichment analysis showed that SNHG7 may affect lupus erythematosus and reactome cellular senescence, possibly influencing the prognosis of patients with COAD. Altogether, these results suggest that SNHG7 may be associated with the occurrence and development of COAD, having potential diagnostic and prognostic value.
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Introduction

Colon adenocarcinoma (COAD) is the second most lethal malignancy worldwide, which is currently treated surgically and/or using chemotherapy and radiotherapy (1). Although the overall survival (OS) rate has improved, invasion and metastasis remain the main death cause among patients with COAD (2). Extensive studies have shown that tumor biomarkers are highly sensitive and specific for diagnosing and monitoring tumors (3). Therefore, there is a critical need to identify new diagnostic or prognostic biomarkers and develop novel therapeutic strategies for COAD.

Long noncoding RNAs (lncRNAs) are a class of noncoding RNA transcripts that are over 200 nucleotides in length. The dysregulation of lncRNAs is closely related to various major diseases, including cancer (4). Many studies have shown that cancer- associated lncRNAs are involved in the regulation of tumor proliferation, invasion, and metastasis; thus, are considered to be a class of potential candidate biomarkers for cancer diagnosis and therapy (5). For example, the lncRNA HOTAIR is an oncogene that is upregulated in breast cancer tissues and is closely related to poor prognosis and tumor metastasis (6). MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) is a lncRNA that was originally found to be abundantly expressed in metastatic carcinoma cells and to be significantly upregulated in various types of cancer, such as breast cancer (7) and non-small cell lung cancer (8), being suggested as a prognostic biomarker and potential therapeutic target for metastatic cancers (9). H19 is an estrogen-regulated lncRNA transcript whose aberrant expression is closely associated with cell proliferation and migration in a variety of cancers, such as gastric, gallbladder, and pancreatic cancers (10). Although lncRNAs have been broadly recognized to play important regulatory roles in human cancers, few have been demonstrated to function in COAD, and most of their mechanisms are largely unknown.

Small nucleolar RNA host genes (SNHGs) are newly recognized lncRNAs that have oncogenic roles in various cancers (11). Members of the SNHG family have been shown to regulate cellular proliferation, apoptosis, invasion, and migration in multiple cancers (12). LncRNA SNHG7 is closely related to the occurrence, development, and carcinogenesis potential of numerous cancers, including lung, gastric and cervical cancer, as well as renal cell carcinoma and hepatocellular carcinoma (13–15). Nevertheless, few reports have explored the impact of SNHG7 on COAD. This study aimed to investigate the relationship between the expression of SNHG7 and the prognosis of COAD using bioinformatics tools.



Materials and Methods


Data Collection

RNA sequencing data from 521 COAD samples and associated clinical information were obtained from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/). Another RNA sequencing data of 698 COAD samples and clinical information were also included for validation. RNA sequencing data were converted from fragments per kilobyte per million (FPKM) to the transcripts per million reads (TPM) format, and compared according to the corresponding clinicopathological information. As all data collected was publicly available, informed consent and ethical approval were not necessary to obtain.



Clinical Significance and Correlation of SNHG7 Expression in COAD Patients

To clarify the association between SNHG7 expression and clinical features of COAD, Wilcoxon signed-rank test and logistic regression were performed. The detailed clinicopathological characteristics of the patients with COAD are listed in Table 1.


Table 1 | The relationships between SNHG7 expression and clinicopathological features in COAD patients.



To assess the predictive potential of SNHG7 for COAD diagnosis, SNHG7 expression in COAD and normal tissues was compared using receiver operating characteristic (ROC) analysis. COAD and corresponding normal tissue data were obtained from the TCGA database. The analysis was performed using the R package “pROC” (version1.17.0.1), and the visualization was achieved using “ggplot2” (version 3.3.3).

Kaplan–Meier analysis, and univariate and multivariate Cox regression analyses were used for prognosis analysis. Nomograms were created using the R packages “rms” (version 6.2-0) and “survival” (version 3.2-10). R (v3.6.3; R Foundation for Statistical Computing, Vienna, Austria) was used to conduct all statistical studies, with p-values below 0.05 deemed significant.



Screening of Differentially Expressed Genes (DEGs), and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Analyses

COAD gene expression data in the HTSeq-TPM format were obtained from TCGA for analysis. SNHG7 coexpressed genes were screened using Pearson correlation coefficients (|r| > 0.4 and p < 0.001). To explore the possible biological functions and signaling pathways affected by SNHG7, the R package “cluster Profiler” was used to perform GO and KEGG analyses of coexpressed genes, with p < 0.05 deemed statistically significant. GO analysis included biological processes (BP), cell composition (CC), and molecular function (MF).



Gene Set Enrichment Analysis (GSEA)

GSEA is a computational method used to determine whether an a priori defined gene set exhibits statistically significant and consistent differences between two biological states (16). In the present study, we elucidated the survival differences between groups with high and low SNHG7 expression using GSEA. Gene set permutations were performed 1,000 times for each analysis. The expression of SNHG7 was used as the phenotypic label. The nominal p-value and normalized enrichment score (NES) were used to identify the pathways enriched for each phenotype.




Results


Expression Profiles of SNHG7 in Pan-Cancer Datasets

Based on TCGA data analysis, we found that SNHG7 was upregulated in 17 of the 33 cancer types investigated, including cholangiocarcinoma (CHOL), prostate adenocarcinoma (PRAD), and thyroid carcinoma (THCA) (Figure 1A). Further analysis showed that SNHG7 expression was much higher in patients with COAD than that in normal tissues (p < 0.001, Figure 1B). These findings indicate that SNHG7 may play a significant regulatory role in the progression of COAD.




Figure 1 | Expression level of SNHG7 in different tumors and in COAD. (A) The comparison of SNHG7 expression between normal and tumor tissue in different types of cancers based on TCGA database. (B) SNHG7 expression is significantly higher in COAD (n = 480) than normal tissue (n = 41). ns, P ≥ 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.





Clinical Correlation Analyses

Clinical information, including sex, age, race, T stage, N stage, residual tumor, perineural invasion, lymphatic invasion, OS, and disease-specific survival (DSS) (Table 1), for 521 COAD patients was obtained from TCGA database. SNHG7 expression was not only significantly correlated with race (p < 0.05) and residual tumor (p < 0.05), but was also closely correlated with OS (p < 0.05) and DSS (p < 0.01). No correlation was observed between SNHG7 expression and the other clinicopathological characteristics.



Diagnostic Value of SNHG7 in COAD Patients

ROC curves were used to evaluate the potential of SNHG7 expression to identify patients with COAD. SNHG7 expression had high sensitivity and specificity for COAD diagnosis, with an area under the curve (AUC) of 0.912 (95% confidence interval [CI], 0.878–0.947) (Figure 2A). Further analysis showed that SNHG7 expression could diagnose T and N stages, with AUC values of 0.913 (95% CI: 0.878–0.947) and 0.921 (95% CI: 0.887–0.955), respectively (Figures 2B, C). Taken together, these results suggested that SNHG7 expression could represent a valuable tool to diagnosis COAD.




Figure 2 |  The diagnostic value of SNHG7 in COAD patients. (A) ROC curve of SNHG7 in diagnosing of COAD patients. (B) ROC curve of SNHG7 in T staging of COAD patients. (C) ROC curve of SNHG7 in M staging of COAD patients and 0.921 (95% CI: 0.887-0.955), respectively (Figure 2B&C).





Relationship Between SNHG7 Expression and Prognosis of COAD Patients

Kaplan–Meier analysis was used to confirm whether SNHG7 expression could be used for the prediction of clinical outcomes among patient with COAD. Overall, high SNHG7 expression was associated to shorter OS (hazard ratio [HR]: 1.85, p = 0.002) and DSS (HR: 2.35, p = 0.001) in COAD patients (Figures 3A, B). To determine whether SNHG7 expression had a predictive value for clinical outcomes, we also performed univariate and multivariate Cox regression analyses. As shown in Table 2, SNHG7 expression (HR: 1.847, 95% CI: 1.244–2.741, p = 0.002) was an independent risk factor for OS. Age, T stage, pathological stage, lymphatic invasion, and carcinoembryonic antigen (CEA) level also showed prognostic advantages for clinical outcomes. In addition, the N stage showed prognostic advantages in both univariate (HR: 4.051, 95% CI: 2.593–6.329, p < 0.001) and multivariate (HR: 6.048, 95% CI: 1.006–36.361, p = 0.049) Cox regression analyses. Furthermore, SNHG7 expression, T stage, N stage, pathological stage, perineural invasion, lymphatic invasion, and CEA level were all independent risk factors for DSS (Table 3). N stage (HR: 2.933, 95% CI: 0.218–39.407, p = 0.021) was an independent risk factor for DSS.




Figure 3 | Relationship between SNHG7 expression and survival rate in COAD analyzed by Kaplan–Meier (A, B). Construction and validation of nomograms based on SNHG7 expression (C, D). (A) The relationship between overall survival and SNHG7 expression. (B) The relationship between disease-specific survival and SNHG7 expression. (C) Nomograms constructed to establish SNHG7 expression-based risk scoring models for 1-, 3-, and 5-year overall survival. (D) Nomograms constructed to establish SNHG7 expression-based risk scoring models for 1-, 3-, and 5-year disease-specific survival.




Table 2 | Univariate and multivariate Cox proportional hazards analysis of SNHG7 expression and OS (overall survival) for patients with COAD in the validation cohort.




Table 3 | Univariate and multivariate Cox proportional hazards analysis of SNHG7 expression and DSS (Disease Specific Survival) for patients with COAD in the validation cohort.



Based on the significant prognostic factors identified in the Cox regression analysis, prognostic nomograms were designed. Age, pathological stage, perineural or lymphatic invasion, and SNHG7 expression were included in the nomogram to predict OS (C-index = 0.836) (Figure 3C) and DSS (C-index = 0.875) (Figure 3D). These results indicated that SNHG7 expression was not only significantly upregulated in COAD but also had prognostic value, suggesting that SNHG7 has important regulatory functions in this type of cancer.



Coexpressed Genes of SNHG7 and Functional Annotation of SNHG7-Associated DEGs in COAD

To screen for coexpressed genes of SNHG7, Pearson correlation coefficients were set as |r| > 0.4 and p < 0.001. The top 20 positively and negatively correlated coexpressed genes of SNHG7 are displayed in the form of a heatmap (Figure 4).




Figure 4 | The top 20 genes with positive and negative co-expression of SNHG7 in TCGA database according to Heatmap in COAD. ***P<0.001.



Next, we performed GO and KEGG analysis of SNHG7- associated DEGs in COAD. GO analysis demonstrated that genes of GO-BP terms were significantly enriched in viral gene expression, viral transcription, establishment of protein localization to the endoplasmic reticulum (ER), and protein targeting to the ER. For GO-CC terms, the genes were mainly located in the cytosolic part, ribosome, ribosomal subunit, and the cytosolic ribosome. In GO-MF analysis, genes were enriched in the structural constituent of ribosomes, 5′–3′ RNA polymerase activity, DNA-directed 5′– 3′ RNA polymerase activity, and RNA polymerase II activity (Table 4; Figure 5A). As shown in Figure 5B; Table 5, KEGG pathway analysis indicated that the top pathways were mainly associated with Huntington’s disease, ribosome, amyotrophic lateral sclerosis, spliceosome, and RNA polymerases.


Table 4 | GO analysis of SNHG7 co-expression genes.






Figure 5 | GO and KEGG pathway analyses of DEGs in COAD. (A) Biological process (BF), cell components (CC), and molecular function (MF) enrichment analyses of DEGs. (B) KEGG pathway analysis of DEGs.




Table 5 | KEGG analysis of SNHG7 co-expression genes.





GSEA of SNHG7

To further clarify biological functions of SNHG7 in COAD, GSEA enrichment analysis was performed on the high and low expression datasets of SNHG7. Significant differences (false discovery rate < 0.25, adjusted p < 0.05) were observed in the enrichment of the MSigDB Collection (c2.cp.v7.2.symbols.gmt). The most markedly enriched signaling pathways were screened based on their NES (Figures 6A, B). The results illustrated that lupus erythematosus (NES = −1.628, adjusted p = 0.048) and reactome cellular senescence (NES = −1.413, adjusted p = 0.048) were mainly enriched in the highly expressed SNHG7 phenotype.




Figure 6 | Enrichment plots from GSEA analysis. GSEA analysis showed that Lupus erythematosus (A) and Reactome cellular senescence (B) were differentially enriched between high- and low-SNHG7 expression groups.





Validation of Differential Expression, Prognostic and Diagnostic Value of SNHG7 in Other Independent Cohorts of COAD

To validate the prognostic robustness and clinical reproducibility of SNHG7, an independent cohort available at TCGA database, comprising 698 samples, was also analyzed. As shown in Figure 7A,  SNHG7 expression was significantly upregulated in the tumor group as compared with normal tissues (p < 0.001). Similarly, ROC curve analysis also indicated that SNHG7 had a very high diagnostic value in COAD (AUC = 0.911, 95% CI: 0.879−0.943) (Figure 7B). Analysis of the OS (Figure 7C; HR: 1.55, p = 0.014) and DSS (Figure 7D; HR: 2.04, p = 0.002) of these patients further suggested that high SNHG7 expression was correlated with poor prognosis in COAD. These results were consistent with the conclusions of SNHG7 in cohort of 521 samples, indicating that the diagnostic and prognostic value of SNHG7 in COAD is credible and reproducible.




Figure 7 | Validation of differential expression, prognostic and diagnostic value of SNHG7 in COAD (n=698) (A) SNHG7 expression is significantly higher in COAD (n = 647) than normal tissue (n = 51). ***P < 0.001. (B) ROC curve of SNHG7 in diagnosing of COAD patients. (C) The relationship between overall survival and SNHG7 expression. (D) The relationship between disease-specific survival and SNHG7 expression.






Discussion

Currently, the 5-year survival rate of early COAD exceeds 70−90%; nonetheless, the curative effect for advanced COAD is still not ideal, which is mainly due to its high recurrence and metastasis rate (17, 18). Therefore, the development of biomarkers aiding early differential diagnosis and predicting COAD progression is of major importance both for research and therapeutic evolution (19). It has been established that lncRNAs may be potential diagnostic and/or prognostic markers for clinical applications. In particular, many lncRNA biomarkers were reported for colorectal cancer (20, 21).

SNHG7, which is a member of the SNHG family, is differentially expressed in various malignant tumors (13–15). Noteworthy, recent studies revealed that SNHG7 has a regulatory role in colorectal cancer. For example, SNHG7 is an oncogenic biomarker in COAD, and it interacts with miR-193b (22) and positively regulates GALNT1 levels through sponging miR-216b in colorectal cancer (23). Moreover, SNHG7 and FAIM2 are upregulated in colorectal cancer tissues compared with normal adjacent tissues (24). However, the possible clinical significance and prognostic/diagnostic value of SNHG7

in COAD remain unclear. Therefore, the development of new and effective biomarkers for the prognosis and early diagnosis of COAD would be beneficial to enhance the treatment and prognosis of patients.

To gain a comprehensive understanding of the role of SNHG7 in COAD, we first identified the differential expression of SNHG7 using publicly available pan-cancer data. We confirmed that SNHG7 is differentially expressed in multiple tumors; in particular SNHG7 expression was significantly upregulated in COAD compared with other tumors. These findings suggest that SNHG7 differential expression may be tissue- specific and it may have an important regulatory role in COAD.

To further test our hypothesis, we analyzed the clinical relationship of SNHG7 in COAD by univariate and multivariate Cox regression analyses. We discovered a strong associated between SNHG7 expression and race, residual tumor, OS, and DSS of COAD patients, with SNHG7 expression appearing to be higher in patients with certain characteristics, such as specific race and with residual tumor. Moreover, we demonstrated that high SNHG7 expression was associated with significantly shorter OS and DSS in COAD patients, but was also an independent risk factor for OS and DSS.

Histopathological characteristics have been implicated as prognostic predictors, such as tumor stages, perineural invasion, and lymphatic invasion (25). Our results also confirmed that these three prognostic predictors were closely related to poor prognosis for OS and DSS in COAD patient with high SNHG7 expression. Noteworthily, in line with our SNHG7-based predicted outcome, univariate Cox regression analysis showed that high CEA levels, which are an independent prognostic factor and can be used for

TNM staging of COAD, reflected poor prognosis in COAD (26). Hence, the remarkable predictive ability of SNHG7 expression suggests its potential as a prognostic biomarker of poor survival in COAD.

In addition, we explored the potential functions and underlying mechanisms of action of SNHG7 in COAD. GO and KEGG analyses revealed that both ribosome and RNA polymerase were closely related to SNHG7 based on the functional annotation of SNHG7-related DEGs. These results also indicated that SNHG7 expression is closely associated with COAD.

The accuracy of a diagnostic tool is based on the area under the ROC curve; the closer the area under the ROC curve is to 1, the better the diagnostic potential of the tool (27). Our results consistently revealed that high SNHG7 expression led to advanced COAD, indicating that SNHG7 expression had high sensitivity and specificity for COAD diagnosis. Assessment of an independent COAD cohort further confirmed the differential expression of SNHG7, and its diagnostic and prognostic value in COAD, indicating that SNHG7 is reliable and reproducible as a prognostic and diagnostic biomarker of COAD.



Conclusions

In conclusion, this study demonstrated that COAD is associated with high SNHG7 expression and that SNHG7 is a reliable biomarker for the diagnosis and prognosis of COAD. Hence, these findings may represent new foundations for the development of enhanced diagnostic and prognostic strategies for COAD.
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Background

Early detection of synchronous colorectal peritoneal metastases (CPMs) is difficult due to the absence of typical symptoms and the low accuracy of imaging examinations. Increasing the knowledge of the risk factors for synchronous CPM may be essential for early diagnosis and improving their management. This study aimed to identify the risk factors for synchronous CPM.



Method

The study was registered at PROSPERO (CRD42020198548). The PubMed, Embase and Cochrane Library databases were searched for studies comparing the clinicopathological and molecular features between patients with or without synchronous CPM. The pooled data were assessed by a random-effects model.



Results

Twenty-five studies were included. A synchronous CPM was positively associated with female sex (OR 1.299; 1.118 to 1.509; P = 0.001), PROK1/PROKR2-positivity (OR 2.244; 1.031 to 4.884; P = 0.042), right-sided colon cancer (OR 2.468; 2.050 to 2.970; P < 0.001), poorly differentiated grade (OR 2.560; 1.537 to 4.265; P < 0.001), BRAF mutation (OR 2.586; 1.674 to 3.994; P < 0.001), mucinous adenocarcinoma (OR 3.565; 2.095 to 6.064; P < 0.001), signet-ring cell carcinoma (OR 4.480; 1.836 to 10.933; P = 0.001), N1-2 (OR 5.665; 3.628 to 8.848; P < 0.001), T4 (OR 12.331; 7.734 to 19.660; P < 0.001) and elevated serum CA19-9 (OR 12.868; 5.196 to 31.867; P < 0.001).



Conclusions

These evidence-based risk factors are indicators that could predict the presence of synchronous CPMs and can improve their management.



Systematic Review Registration

www.crd.york.ac.uk/prospero, identifier: CRD42020198548.





Keywords: colorectal cancer, synchronous peritoneal metastases, risk factors, gene, meta-analysis



Introduction

Despite the recent improvements in cancer research, colorectal cancer (CRC) has the second highest mortality in both men and women worldwide (1). An important reason for the limited survival in CRC patients is the presence of distant metastasis. In particular, peritoneal metastases (PM) have been shown to be associated with a substantially shorter survival than metastases at other sites (p < 0.001) (2–4). This special type of CRC metastatic disease deserves more attention.

The early detection of synchronous colorectal peritoneal metastasis (CPM) is currently difficult due to the absence of typical symptoms and the low accuracy of noninvasive imaging examinations for nodules smaller than 5 mm (5–7). In fact, a considerable proportion of the cases of synchronous CPM are unexpectedly detected during primary surgery (8). Consequently, if that is the case, the extent of disease can only be evaluated during surgery, and the treatment strategies are often selected at this time, which may cause a suboptimal treatment approach. Many hospitals still lack equipment for hyperthermic intraperitoneal chemotherapy (HIPEC). In addition, the concept and surgical proficiency of cytoreduction surgery may vary among different surgeons (9). These considerations may be unfavourable to the therapeutic strategies for CPMs that are diagnosed during surgery. An improved knowledge of the risk factors for synchronous CPM would increase the level of suspicion of CPMs in patients with no suggestive signs or symptoms and thus could allow physicians to treat these patients more adequately, such as with a more aggressive preoperative examination, with a proactive laparoscopic exploration, or by referring them to specialized centres.

Some studies have been previously conducted in order to identify the risk factors associated with synchronous CPM, but they have had heterogeneous outcomes, such as the location of the primary tumour (2, 10) and MSI-H (11–13). Furthermore, as tumour genotyping has become a standard practice for metastatic colorectal cancer, clinicians now believe that the oncogene mutation status is increasingly clinically relevant, as it may be associated not only with the response to biologic therapies but also with the site-specific metastatic spreading pattern and outcome (14). However, to date, no individualized study that has analysed the molecular features for synchronous CPM has been performed.

Therefore, a comprehensive understanding of the clinicopathological and molecular characteristics of CPM may be necessary for early diagnosis and may help to improve the management of patients who are at high risk of synchronous CPM. A systematic review and meta-analysis of all studies comparing sex, tumour invasion depth, lymph node metastasis, differentiation, location of primary tumour, histological results, and the serum levels of CA19-9, PROK1/PROKR2, BRAF, KRAS, NRAS, PIK3CA and MSI-H/dMMR between synchronous pmCRC and nonpmCRC patients was undertaken.



Materials and Methods

This systematic review and meta-analysis adhered to the recommendations of the Preferred Reporting Items of Systematic Reviews and Meta-analysis (PRISMA) statement (15). The PRISMA checklist is available in Supplementary Appendix 1.


Study Registration

This study was registered at PROSPERO (International Prospective Register of Systematic Reviews, www.crd.york.ac.uk/prospero). Number CRD42020198548.



Eligibility Criteria

Referring to the international consensus on colorectal liver metastases (16), synchronous CPM could be defined as peritoneal metastases detected at or before diagnosis or at the time of surgery for the primary CRC.

Comparative studies of primary colorectal tumours (with or without synchronous PM data reported about their clinicopathological and molecular characteristics) were eligible for inclusion. The included studies met the recognized diagnostic criteria as follows: primary colorectal tumours; the primary tumour’s pathological diagnosis was confirmed; and the patient’s synchronous PM was confirmed by an imaging diagnosis before surgery, an intraoperative exploration or by a histopathological examination.

The exclusion criteria were as follows: (1) case reports, review articles and animal studies; (2) non-English publications; (3) studies that were not related to CRC or PM; (4) metachronous PM; (5) no analysis of the risk factors; (6) no comparator group; (7) no relevant data, including articles published only in abstract form as well as studies without complete data or an inability to construct a 2×2 contingency table from the present data; (8) mixed primary tumours; (9) a nonstandardized histological type; and (10) synchronous CPM was not clearly or correctly defined.



Data Sources and Search Strategy

We selected relevant studies by searching PubMed, Embase and the Cochrane CENTRAL Register of Controlled Trials. The following combined terms were used in the search: (peritoneal metastasis OR peritoneal metastases OR peritoneal carcinomatosis) AND (colorectal OR colon OR rectal). The latest search was implemented on July 14, 2020, and there was not limit to the earliest date of publication.



Selection Process

Two independent authors (Y Zhang and X Qin) checked the title and abstract of each study, and the studies that satisfied the potential eligibility were obtained for further full-text assessment. Disagreements were resolved by discussion with the senior authors (Huaiming Wang or Hui Wang) until a consensus was achieved.



Data Extraction

By using standardized forms, two authors (Y Zhang and X Qin) independently extracted the data from each eligible study. The authors resolved any disagreements by discussion with the senior authors (Huaiming Wang or Hui Wang). The following data were extracted from each eligible study: author, year of publication, country where the study was conducted, setting of the centre, type of study, enrolment interval, number of primary CRC patients with or without synchronous PM and the clinicopathological and molecular characteristics. In addition, the Newcastle–Ottawa Scale score (N-O score) was also calculated and extracted for all of the eligible studies.



Statistical Analysis

We used Comprehensive Meta-Analysis (version 2.0) and Stata (version 12.0) for all statistical analyses. All of the pooled outcomes were determined using a random effects model (DerSimonian–Laird method). In the pooled analyses of the associations between the clinicopathological-molecular characteristics and synchronous PM, the effect sizes were calculated as the odds ratios (ORs) with 95% confidence intervals (CIs). The χ2-based Cochran Q test was used to assess heterogeneity among the studies, in which P < 0.1 indicates the presence of heterogeneity (17). We also performed I² inconsistency testing to assess the extent of the heterogeneity among studies, with values greater than 50% regarded as a moderate-to-high heterogeneity (18). For significant heterogeneity, a sensitivity analysis or a subgroup analysis was performed to find the potential source of the heterogeneity. The sensitivity analysis was performed by omitting each study sequentially in order to test the influence of each individual study on the pooled result. The evidence for a publication bias was evaluated by the visual inspection of the funnel plot for symmetry (an asymmetric plot suggested possible publication bias) and was quantified by means of the Begg’s test, with a P value < 0.05 regarded as a significant publication bias (19).

The qualities of the included studies were assessed using the Newcastle–Ottawa Scale (20), in which a score ≥ 6 indicates a high-quality study. The qualities of the studies were evaluated by examining 3 categories: patient selection, comparability of the 2 study groups, and the assessment of exposure (maximum score 9), as shown in the Newcastle–Ottawa Scale.




Results


Search and Selection Results

The initial search yielded a total of 9470 studies. After removal of duplicates, a total of 7659 studies were screened by analysing their titles and abstracts, and 7435 studies were removed because they met one or more of the exclusion criteria. The remaining 224 studies were then assessed for eligibility by full-text examination, and a further 199 were excluded due to ineligibility. The reasons for exclusion were recorded. Finally, 25 studies were included in the final analysis (Figure 1) (2, 10–13, 21–40).




Figure 1 | Flow diagram showing the search and selection of studies.





Study Characteristics

Among the 25 included studies, 7 had a multicentre setting, and 18 had a single centre design. Five of the included studies were prospectively performed; the remaining twenty were retrospective. All included studies were considered high quality (N-O score ≥ 6). Complete characteristics of the included studies are available in Table 1.


Table 1 | Characteristics of the included studies.





Factors not Included in the Quantitative Synthesis

Six clinicopathological and molecular factors could not be included in the quantitative synthesis because they had only a single study in their subgroup, or their methodology did not permit for the pooling of the data. The six factors were serum CEA (21), serum CA125 (29), connective tissue growth factor (CTGF) (37), discoidindomain receptor 2 (DDR2) (27), vimentin (VIM)  (39), and TP53 (25). We included these factors in Table 1 for completeness, but they were not included in the final quantitative synthesis through the meta-analysis.

Finally, 21 studies on 13 factors were included in the quantitative synthesis through the meta-analysis: 7 studies on sex, 4 studies on the tumour invasion depth, 3 studies on lymph node metastasis, 5 studies on the differentiation, 6 studies on the primary tumour site, 7 studies on the histological findings, 2 studies on serum CA19-9, 2 studies on PROK1/PROKR2, 9 studies on BRAF, 6 studies on KRAS, 2 studies on NRAS, 2 studies on PIK3CA and 4 studies on the MSI-H/dMMR status.



Gender

Seven studies (2, 10, 12, 13, 21, 30, 38) that included 160679 patients (30366 synchronous pmCRC, 130313 nonpmCRC) and that evaluated the patients’ sex were included in the meta-analysis. The pooled analysis indicated that females were positively associated with synchronous PM compared to males (OR 1.299; 95% CI, 1.118 to 1.509; P = 0.001) (Figure 2A). There was significant heterogeneity (Cochran Q, P < 0.001; I² = 76.9%). To explore the possible sources of the heterogeneity, a sensitivity analysis was performed by omitting each study sequentially to test the influence of each individual study on the pooled result. When one study was omitted (12), there was no significant heterogeneity (Cochran Q, P = 0.099; I² = 46.0%), with no noticeable influence on the pooled OR confidence interval (OR 1.233; 95% CI, 1.051 to 1.445; P = 0.010). It is noteworthy that the proportion of females in the PM group was > 50% in that one study, but in the others, the proportions were < 50%.




Figure 2 | Forest plot for females, T4, N1-2 and poorly differentiated grade. Favours A, non-pmCRC. Favours B, synchronous pmCRC. (A) female. (B) T4. (C) N1-2. (D) poorly differentiated grade.





Tumour Invasion Depth

Four studies (10, 21, 22, 38) that included data from 19432 patients (809 synchronous pmCRC, 18623 nonpmCRC) regarding the tumour invasion depth were included in the meta-analysis. The pooled analysis indicated that T4 was positively associated with synchronous PM compared with T1-3 (OR 12.331; 95% CI, 7.734 to 19.660; P < 0.001) (Figure 2B). There was significant heterogeneity (Cochran Q, P = 0.009; I² = 74.2%). When one study was omitted (38), there was no significant heterogeneity (Cochran Q, P = 0.593; I² = 0%), with no noticeable influence on the pooled result (OR 16.028; 95% CI, 11.439 to 22.457; P < 0.001).



Lymph Node Metastasis

Three studies (10, 22, 38) that included data from 16097 patients (702 synchronous pmCRC, 15395 nonpmCRC) and that compared lymph node metastasis were included in the meta-analysis. The pooled analysis indicated that N1-2 was positively associated with synchronous PM compared with N0 (OR 5.665; 95% CI, 3.628 to 8.848; P < 0.001) (Figure 2C). There was significant heterogeneity (Cochran Q, P = 0.068; I² = 62.7%). The heterogeneity disappeared if the study was omitted (Cochran Q, P = 0.765; I² = 0%) (22), with no noticeable influence on the pooled result (OR 4.558; 95% CI, 3.755 to 5.533; P < 0.001).



Differentiation

Five studies (10, 12, 21, 38, 40) that included data on 108360 patients (21986 synchronous pmCRC, 86374 nonpmCRC) and that compared the differentiation, were included in the meta-analysis. The pooled analysis indicated that a poorly differentiated grade was positively associated with synchronous PM compared with a well/moderately differentiated grade (OR 2.560; 95% CI, 1.537 to 4.265; P < 0.001) (Figure 2D). There was significant heterogeneity (Cochran Q, P < 0.001; I² = 94.5%). The heterogeneity disappeared when one of the studies was omitted (Cochran Q, P = 0.636; I² = 0%) (12), with no noticeable influence on the pooled result (OR 3.352; 95% CI, 2.875 to 3.909; P < 0.001).



Location of the Primary Tumour

Six studies (2, 10, 13, 21, 22, 38) regarding colon cancer were included in the meta-analysis. The PM status of right and left colon cancer patients were listed as follows, respectively: Right colon (720 synchronous pmCRC, 6158 nonpmCRC) and left colon cancer (568 synchronous pmCRC, 7822 nonpmCRC). Quantitative synthesis showed that synchronous PM was positively associated with right colon cancer (OR 2.468; 95% CI, 2.050 to 2.970; P < 0.001) (Figure 3A). There was no significant heterogeneity (Cochran Q, P = 0.119; I² = 42.9%). Besides, synchronous PM was not associated with left colon cancer (OR 1.000; 95% CI, 0.761 to 1.314; P = 0.998) (Figure 3B). There was significant heterogeneity (Cochran Q, P = 0.004; I² = 71.4%). When one study was omitted through the sensitivity analysis (10), the heterogeneity was less significant (Cochran Q, P = 0.049; I² = 58.0%), with no noticeable influence on the pooled result.




Figure 3 | Forest plot for the right colon, left colon and rectum locations. Favours A, non-pmCRC. Favours B, synchronous pmCRC. (A) right colon. (B) left colon. (C) rectum.



Five studies (2, 13, 21, 22, 38) that included data on 23278 patients (1519 synchronous pmCRC, 21759 nonpmCRC) and that evaluated rectal cancer, were included in the meta-analysis. The pooled analysis indicated that rectal cancer was negatively associated with synchronous PM compared with colon cancer (OR 0.323; 95% CI, 0.284 to 0.368; P < 0.001) (Figure 3C). No significant heterogeneity existed (Cochran Q, P = 0.969; I² = 0%).



Histology

Six studies (22, 23, 33, 35, 38, 40), which included data on 24252 patients (1600 synchronous pmCRC, 22652 nonpmCRC) regarding nonmucinous adenocarcinoma (NMC), were included in the meta-analysis. Synchronous PM was negatively associated with NMC (OR 0.319; 95% CI, 0.237 to 0.429; P < 0.001) (Figure 4A). There was significant heterogeneity (Cochran Q, P = 0.005; I² = 70.4%). The heterogeneity disappeared if one of the studies was omitted (Cochran Q, P = 0.106; I² = 47.5%) (33), with no noticeable influence on the pooled OR and confidence interval (OR 0.353; 95% CI, 0.285 to 0.437; P < 0.001).




Figure 4 | Forest plot for nonmucinous adenocarcinoma (NMC), mucinous adenocarcinoma (MC) and signet-ring cell carcinoma (SRCC). Favours A, non-pmCRC. Favours B, synchronous pmCRC. (A) NMC. (B) MC. (C) SRCC.



Seven studies (12, 22, 23, 33, 35, 38, 40), which included data on 154377 patients (29448 synchronous pmCRC, 124929 nonpmCRC) regarding mucinous adenocarcinoma (MC), were included in the meta-analysis. Synchronous PM was positively associated with MC (OR 3.565; 95% CI, 2.095 to 6.064; P < 0.001) (Figure 4B). There was significant heterogeneity (Cochran Q, P < 0.001; I² = 97.1%). To explore the possible sources of the heterogeneity, a subgroup analysis was performed. According to the rate of PM, two of the studies were divided into subgroup one, and there was no significant heterogeneity (Cochran Q, P = 0.228; I² = 31.2%) (12, 33), with no noticeable influence on the pooled result (OR 7.518; 95% CI, 4.952 to 11.412; P < 0.001). The other studies were divided into subgroup two that also had no significant heterogeneity (Cochran Q, P = 0.174; I² = 37.0%) (22, 23, 35, 38, 40), with no noticeable influence on the pooled result (OR 2.645; 95% CI, 2.169 to 3.226; P < 0.001).

Three studies (22, 23, 35), which included data on 5741 patients (673 synchronous pmCRC, 5068 nonpmCRC) regarding signet-ring cell carcinoma (SRCC), were included in the meta-analysis. Synchronous PM was positively associated with SRCC (OR 4.480; 95% CI, 1.836 to 10.933; P = 0.001) (Figure 4C). There was significant heterogeneity (Cochran Q, P = 0.036; I² = 69.7%). When one study was omitted (22), there was no significant heterogeneity (Cochran Q, P = 0.656; I² = 0%) and no noticeable influence on the pooled result (OR 2.986; 95% CI, 1.741 to 5.123; P < 0.001). It is noteworthy that the omitted study had a much higher OR value.



Serum CA19-9

Levels of up to 37.0 µ/ml were taken as the upper cut-off values for the Serum CA19-9 reference ranges. Two studies (21, 36), which included data on 728 patients (24 synchronous pmCRC, 704 nonpmCRC) regarding serum CA19-9, were included in the meta-analysis. Synchronous PM was positively associated with elevated serum CA19-9 (OR 12.868; 95% CI, 5.196 to 31.867; P < 0.001) (Figure 5A). No significant heterogeneity existed (Cochran Q, P = 0.710; I² = 0%).




Figure 5 | Forest plot for serum CA19-9, PROK1/PROKR2 and BRAF. Favours A, non-pmCRC. Favours B, synchronous pmCRC. (A) serum CA19-9. (B) PROK1/PROKR2. (C) BRAF.





PROK1/PROKR2

Two studies (31, 34), which included data on 944 patients (29 synchronous pmCRC, 915 nonpmCRC) regarding PROK1/PROKR2, were included in the meta-analysis. Synchronous PM was positively associated with PROK1/PROKR2 positivity (OR 2.244; 95% CI, 1.031 to 4.884; P = 0.042) (Figure 5B). There was no significant heterogeneity (Cochran Q, P = 0.344; I² = 0%).



BRAF Status

Nine studies (2, 11, 13, 24–26, 28, 30, 32) that included data on 4979 patients (704 synchronous pmCRC, 4275 nonpmCRC) regarding the patients’ BRAF statuses, were included in the meta-analysis. Synchronous PM was positively associated with BRAF mutations (OR 2.586; 95% CI, 1.674 to 3.994; P < 0.001) (Figure 5C). There was significant heterogeneity (Cochran Q, P = 0.019; I² = 56.3%). When one study was omitted (25), there was no significant heterogeneity (Cochran Q, P = 0.073; I² = 45.9%) and no noticeable influence on the pooled result (OR 2.305; 95% CI, 1.569 to 3.385; P < 0.001). It is clear that the study had a smaller sample size.



KRAS Status

Six studies (2, 11–13, 25, 30), which included data on 134197 patients (28362 synchronous pmCRC, 105835 nonpmCRC) regarding the KRAS status, were included in the meta-analysis. Synchronous PM was not associated with KRAS mutations (OR 0.972; 95% CI, 0.576 to 1.638; P = 0.914) (Figure 6A). There was significant heterogeneity (Cochran Q, P < 0.001; I² = 92.4%). The heterogeneity disappeared if one of the studies was omitted (Cochran Q, P = 0.774; I² = 0%) [12], with no noticeable influence on the pooled result (OR 1.202; 95% CI, 0.994 to 1.453; P = 0.057). It was found that the rate of KRAS mutations in the synchronous PM group was much lower in the omitted study.




Figure 6 | Forest plot for KRAS, NRAS, PIK3CA and MSI-H/dMMR. Favours A, non-pmCRC. Favours B, synchronous pmCRC. (A) KRAS. (B), NRAS. (C) PIK3CA. (D), MSI-H/dMMR.





NRAS Status

Two studies (11, 25), which included data on 731 patients (43 synchronous pmCRC, 688 nonpmCRC) regarding the patients’ NRAS status, were included in the meta-analysis. Synchronous PM was not associated with NRAS mutations (OR 1.140; 95% CI, 0.133 to 9.748; P = 0.905) (Figure 6B). No significant heterogeneity existed (Cochran Q, P = 0.373; I² = 0%).



PIK3CA Status

Two studies (11, 30), which included data on 897 patients (93 synchronous pmCRC, 804 nonpmCRC) regarding the PIK3CA status, were included for eligibility in the meta-analysis. Synchronous CPM was not associated with PIK3CA mutations (OR 0.667; 95% CI, 0.289 to 1.540; P = 0.343) (Figure 6C). There was no significant heterogeneity (Cochran Q, P = 0.415; I² = 0%).



MSI-H/dMMR Status

Four studies (11–13, 28), which included data on 131015 patients (27922 synchronous pmCRC, 103093 nonpmCRC) regarding their MSI-H/dMMR status, were included in the meta-analysis. Synchronous CPM was not associated with MSI-H/dMMR (OR 1.087; 95% CI, 0.351 to 3.367; P = 0.885) (Figure 6D). There was significant heterogeneity (Cochran Q, P = 0.097; I² = 52.5%). When one study was omitted (13), there was no significant heterogeneity (Cochran Q, P = 0.153; I² = 46.6%), with no noticeable influence on the pooled result (OR 1.481; 95% CI, 0.536 to 4.087; P = 0.449).



Publication Bias

No significant publication bias was found according to the visual inspection of the funnel plot and Begg’s test (Supplementary Figures S1–S6).




Discussion

This study has provided an extensive analysis for the association between synchronous CPM and its clinicopathological-molecular features. We found that synchronous CPM was positively associated with female sex, PROK1/PROKR2 positivity, a right-sided colon cancer location, a poorly differentiated grade, BRAF mutations, mucinous adenocarcinoma, signet-ring cell carcinoma, N1-2, T4 and an elevated serum CA19-9 (ascendingly sequenced by value of the odds ratios). However, synchronous CPM was not associated with KRAS, NRAS, or PIK3CA mutations or MSI-H/dMMR.

Some studies have previously defined the degree of risk of developing colorectal peritoneal carcinomatosis (41, 42). A high risk of synchronous CPM should modify the management strategy for this special type of metastatic disease, and the following suggestions are given (9, 41). First, in the CRC patients who are at high risk of developing synchronous PM, a more aggressive preoperative examination, such as including PET-CT and diffusion-weighted MRI in the preoperative examination, is suggested to confirm whether there is synchronous PM. Then, if PM is suspected on the preoperative imaging, we propose performing a laparoscopic exploration of the abdominal cavity to assess the extent of the disease and to obtain histological confirmation. Eventually, if synchronous PM is diagnosed, surgeons are expected to describe the extent of the disease and to determine whether aggressive treatment, including complete CRS plus HIPEC, should be given to the patients.

Based on the hypothesis that phenotype and the subsequent clinical behaviour of CPM are driven by underlying biological mechanisms, studies that investigate disease biology will contribute to more precise identification of the suitable patients and for the guidance of therapy. This is one of the critical future research targets in CPM research. The potential mechanisms of the risk factors that are positively associated with synchronous CPM are discussed below. Due to a longer asymptomatic period, right-sided colon tumours are usually larger in diameter when they are diagnosed than left-sided colon tumours are. Larger neoplasms infiltrate the surface of the serosa over a larger area, which may lead to increased abscission of cancer cells into the peritoneal cavity. In addition, typical genetic differences between right-sided and left-sided colon tumours have been found, such as the BRAF status, and these genotypes may bring about a phenotype with a different probability of being associated with synchronous CPM (43). Several studies have shown that the mucinous histologic type has a poor prognostic impact, including a higher tendency for the development of peritoneal carcinomatosis and a lower response to oxaliplatin and irinotecan-based chemotherapy (44–46). A more advanced T stage is positively associated with the presence of peritoneal carcinomatosis, and the potential mechanism could be that peritoneal carcinomatosis is caused by serosal infiltration of the malignant tumour and subsequent abscission of cancer cells into the peritoneal cavity (47). Regarding peritoneal tumour spread, CA19-9 was shown to interact with E- and P-selectins that are expressed on human mesothelial and endothelial cells in the peritoneum (21, 48). Prokineticin1 (PROK1) is a known ligand of prokineticin receptor 2 (PROKR2) and transduces important molecular signals to induce physiological changes. The PROK1 protein has been identified as a vascular endothelial growth factor. Increased PROK1 expression is associated with angiogenesis involving haematogenous metastasis (31, 34). Several studies have analysed the association between PM and BRAF mutations. CRCs with BRAF mutations more frequently demonstrate adverse histologic features, such as lymphatic invasion, an increased mean number of lymph node metastases, perineural invasion, and a high amount of tumour budding (14, 49). In addition to direct invasion and haematogenous spread, peritoneal carcinomatosis can occur by lymphatic dissemination, which supports N1-2 being a risk factor (47, 50, 51).

There are some limitations in this study. First, non-English studies were excluded causing a language bias. Second, the risk associated with T4a vs. T4b stage was not analysed because there are no such detailed data. Finally, the number of included studies regarding CA19-9, PROK1/PROKR2, NRAS and PIK3CA was small, which may have limited its statistical power. We look forwards to conducting further studies.



Conclusions

To our knowledge, this is the first meta-analysis to reveal the clinicopathological and molecular features of synchronous CPM. These evidence-based risk factors are conducive to strengthening the patient management and selecting the optimal therapeutic strategy.
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Background

Colorectal cancer (CRC) is a heterogeneous disease, and current classification systems are insufficient for stratifying patients with different risks. This study aims to develop a generalized, individualized prognostic consensus molecular subtype (CMS)-transcription factors (TFs)-based signature that can predict the prognosis of CRC.



Methods

We obtained differentially expressed TF signature and target genes between the CMS4 and other CMS subtypes of CRC from The Cancer Genome Atlas (TCGA) database. A multi-dimensional network inference integrative analysis was conducted to identify the master genes and establish a CMS4-TFs-based signature. For validation, an in-house clinical cohort (n = 351) and another independent public CRC cohort (n = 565) were applied. Gene set enrichment analysis (GSEA) and prediction of immune cell infiltration were performed to interpret the biological significance of the model.



Results

A CMS4-TFs-based signature termed TF-9 that includes nine TF master genes was developed. Patients in the TF-9 high-risk group have significantly worse survival, regardless of clinical characteristics. The TF-9 achieved the highest mean C-index (0.65) compared to all other signatures reported (0.51 to 0.57). Immune infiltration revealed that the microenvironment in the high-risk group was highly immune suppressed, as evidenced by the overexpression of TIM3, CD39, and CD40, suggesting that high-risk patients may not directly benefit from the immune checkpoint inhibitors.



Conclusions

The TF-9 signature allows a more precise categorization of patients with relevant clinical and biological implications, which may be a valuable tool for improving the tailoring of therapeutic interventions in CRC patients.
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Introduction

Colorectal cancer (CRC) is the third most prevalent malignancy worldwide and the second leading cause of cancer-related mortality (1). Even though surgical techniques and perioperative chemotherapy regimens have been vastly improved, the prognosis for patients with CRC remains dismal. The current American Joint Committee on Cancer (AJCC) Tumor, Nodal Involvement, Metastasis (TNM) Staging System (the Eighth Edition) has demonstrated useful but insufficient prediction for prognosis and estimation for different subsets of CRC patients. TNM staging can only describe the anatomical characteristics of the tumor, and it is difficult to reflect the tumor’s inherent heterogeneity and metastatic potential. CRC is a heterogeneous disease with significant differences in survival even among patients with similar clinical characteristics and treatment regimens, indicating that the current classification systems and clinical features are insufficient to stratify patients with different risks effectively. Increasing evidence suggests that the development and application of effective molecular biomarkers could facilitate the prognostic assessment and identification of potential cancer patients at high-risk (2–4). With the advancement of sequencing technology and the availability of large-scale public cohorts with gene expression data, a more generalized biological background-based prognostic signature can be identified.

Cancer initiation and progression have been associated with transcription factors (TFs) (5, 6). TFs are proteins that bind to DNA-regulatory sequences (enhancers and silencers), which could potentially regulate gene expression and protein synthesis. In other words, the function of TFs is to activate or inhibit the transcription of specific genes, thus being the primary determinant of the gene function at a given time.

Recently, the consensus molecular subtypes (CMSs) groups were considered the most reliable classification system available for CRC (7). This classification system divides CRC into four subtypes with distinguishing characteristics. CMS4 is the mesenchymal type characterized by the prominent activation of transforming growth factor-β, stromal invasion, and angiogenesis (7). Notably, among the four CMSs, CMS4 has the lowest survival rate. Previous studies on breast cancer have demonstrated that subtype-specific prognostic signatures can significantly improve risk stratification, which may lead to more precise treatment for patients (3). Consequently, present studies are more focusing on the most invasive CMS4 subtype and conducting network inference by integrating the differentially expressed TF signature and target genes between the CMS4 and other CMS subtypes.

This study analyzed the genomic data of more than 1000 CRC patients from three cohorts. Through multi-dimensional network analysis, we identified the dominant TF signature that regulates the most aggressive CRC subtype, CMS4. TF-9, a nine-gene signature, was developed and validated in two additional validation cohorts. According to our study, TF-9 is identified as a potential risk stratification classifier and may serve as a predictor of the response to chemotherapy and immune checkpoint immunotherapy.



Materials and Methods


Public Data Source

A total of 1537 CRC patients from three independent cohorts were included in the current study. We obtained 351 CRC samples from our in-house database and 1186 samples from two publicly available datasets. The TCGA dataset (n = 621) (8) was set as the training cohort. GSE39582 (n = 565) (9) and the in-house cohort (n = 351) were used as validation cohorts. TCGA datasets were downloaded by the “TCGAbiolinks” package (version 2.18.0) (10). The normalized expression profiling and corresponding clinical data of GSE39582 were collected from the Gene Expression Omnibus (GEO) by using the “GEOquery” package (version 2.56.0) (11). The clinical characteristics of the patients included in the current study are summarized in Supplementary Table S1.



In-House Clinical Cohort

The in-house cohort is one of the colorectal cancer subprojects of the International Cancer Genome Consortium-Accelerate Research in Genomic Oncology (ICGC-ARGO) project (https://www.icgc-argo.org/). The normalized RNA expression matrix and clinical data for this cohort were obtained from our center. This study was approved by the Medical Ethics Committee of the Sixth Affiliated Hospital of Sun Yat-sen University.



Integrated Network Analysis

The procedure is depicted schematically in Supplementary Figure S1. In brief, 1589 transcription factor (TF) signature genes were retrieved from Lambert’s (5). Univariate Cox was applied to identify TF genes linked to overall survival (OS). The TF genes measured across all datasets were evaluated. By integrating the differentially expressed molecular modalities and TF genes within the CMS4 subtype, we inferred the relationship between TF signals and potential target genes. The limma package (version 3.42.2) (12) in R was utilized to analyze the differential expression of TF genes and potential target genes between the CMS4 and other CMSs. Differentially expressed TF genes were identified when log2FC > 0.5 and adjusted P < 0.05. Target genes were identified as differentially expressed when log2FC > 1.25 and adjusted P < 0.05. Using the TCGA cohort as training data, the RTN package (version 2.10.0) (13) was used to conduct network inference analysis. More specifically, the network analysis incorporates three steps: firstly, compute mutual information between a TF gene and all potential targets, removing non-significant associations by permutation analysis; secondly, remove unstable interactions by bootstrapping; and finally, apply the ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks) (14) algorithm to reduce redundant indirect regulations. Master regulator analysis (MRA) was performed to examine the overrepresentation of the CMS4 signature in the regulation of each TF gene by hypergeometric testing.



Development and Evaluation of the TF Signature for CRC

After the hypergeometric tests resulted for all TF genes, adjusted p-values were calculated using the Benjamini-Hochberg procedure. Nine TF genes were identified as master regulatory factors and were significantly upregulated in CMS4. The TF-9 prognostic signature was developed using the multivariable Cox regression model in the TCGA cohort with these nine signature genes. The risk score formula was constructed based on a linear combination of the expression levels weighted with the regression coefficients: TF-9 = (-0.1582×MEIS3) + (0.131×SNAI1) + (0.0253×KLF17) + (0.0841×BARX1) + (-0.031×ZNF532) + (0.3504×HEYL) + (0.0872×FOXL2) + (-0.0267×LHX6) + (0.0789×MEIS2). Risk scores were calculated for all patients in the TCGA cohort and the two validation cohorts. Based on the median score of each cohort, patients were divided into high-risk and low-risk subgroups. The prognostic relevance of TF-9 was further evaluated using Kaplan-Meier survival analysis on two independent validation datasets.



Gene Set Enrichment Analysis (GSEA) and Immune Cell Infiltration Prediction by CIBERSORT

GSEA was performed using the HTSanalyzeR package (version 2.3.5) (15). Gene sets data were downloaded from the Molecular Signatures Database (MSigDB, https://www.gsea-msigdb.org/gsea/msigdb/) (16). To evaluate the immunobiological difference between the high-risk and low-risk groups, CIBERSORT was used to characterize 22 types of immune cells’ abundance for each sample. Specifically, standardized gene expression series were uploaded to the CIBERSORT portal (http://cibersort.stanford.edu/) with 1,000 permutations.



Survival Analysis

Using the Kaplan-Meier method, the OS and recurrence-free survival (RFS) rates were calculated for all three cohorts. The log-rank test was utilized to compare the survival curves of the patients in the high- and low-risk groups.



Comparison With Existing Classifiers

We calculated the signature scores of Lee’s (17), Ren’s (18), and Ye’s (19) by re-building multivariable Cox proportional-hazards models using the TCGA and ICGC-ARGO datasets with the published classifier genes, respectively. We calculated the concordance index (C-index) and the robust hazard ratio (D-index) for the three previous classifiers and TF-9 using TCGA and ICGC-ARGO cohorts by the survcomp package (version 1.42.0) (20).



Statistical Analysis

Statistical analyses were performed with the R program (version 3.6.1, R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/). A Univariate COX proportional hazards model was used to investigate the prognostic value of the selected TF signature. Univariate and multivariate Cox regression analyses were done to identify the independent prognostic effect of TF-9. The Student’s t-test was applied to assess the nine TF signature genes and risk score distribution in different conditions. The Pearson correlation was performed to reveal correlations between the TF-9 scores with epithelial-mesenchymal transition (EMT) signature genes. The receiver-operating characteristic (ROC) analysis was performed to evaluate the specificity and sensitivity of TF-9 in identifying the CMS4 subtype. The Kaplan-Meier method was used to analyze survival. The Benjamini–Hochberg procedure was applied to control the false discovery rate (FDR). Unless otherwise specified, a two-sided P-value < 0.05 was considered statistically significant.




Results


Multi-Dimensional Network Inference Integrative Analysis Identified Nine TF Genes as Key Regulators in the CMS4 Subtype

Previously, the CMS4 subtype of CRC was characterized by the poorest survival rate among the four CMSs (21–23). Our results are consistent with it. The CMS4 subtype presented the worst outcomes compared to other CMSs in TCGA (Supplementary Figure S2). By focusing on the CMS4 subtype, we investigate the regulatory role of TFs in CRC by multi-dimensional network inference integrative analysis. A total of 1537 cases from three independent datasets were enrolled in our analysis (Supplementary Table S1). And 1589 transcription factor-related genes (TF genes) were downloaded from Lambert’s study (5). After univariate Cox analysis, 116 TF genes were identified to be correlated with CRC OS. Based on the TCGA cohort, we performed a differential analysis of TF genes and potential target genes between the CMS4 subtype and other CMSs. As a result, 62 TF genes (log2 FC > 0.5, BH-adjusted P < 0.05) and 1693 target genes (log2 FC > 1.25, BH-adjusted P < 0.05) were identified as differentially expressed genes in CMS4 of CRC (Figure 1A).




Figure 1 | Network inference identified nine transcription factors gene as key regulators of CMS4 subtype in colorectal cancer. (A) Volcano plot of the differentially expressed genes in the CMS4 vs. other CMS subtype and highlighting the nine candidate transcription factors genes. (B) All these nine transcription factor genes can regulate EMT genes. (C) Integrated network showing the relationships between the expression profile of nine transcription factor genes and target genes. (D) Heatmap of the expression of nine candidate transcription factors-related genes in CMS4 and other CMSs. (E) Correlation analysis demonstrated a positive correlation between the TF-9 signature risk score and EMT score (correlation coefficient = 0.62, P < 0.001). (F) TF-9 can distinguish CMS4 from other CMS subtypes of colorectal cancer, with AUC values of 0.83.



With the expression profiles of these preferential TFs and their target genes, an intricate regulatory network was developed by calculating the mutual information between a TF signature and its potential targets. Nine TF-related genes (MEIS3, SNAI1, KLF17, BARX1, ZNF532, HEYL, FOXL2, LHX6, MEIS2) were identified as core regulators for the CMS4 subtype (Figures 1A–C, Supplementary Table S3) by master regulator analysis (MRA). MRA demonstrated that all nine of these TF genes were EMT genes (Figure 1B). Compared with other CMS subtypes, these nine candidate TF genes were significantly upregulated in the CMS4 subtype (Figure 1D, Supplementary Figure S3). According to the microsatellite instability (MSI) status, HEYL and SNAI1 were downregulated in MSI patients, FOXL2 was upregulated, and the other six genes were not significantly different (Supplementary Figure S4).



Development of the TF-9 Signature

The risk model termed TF-9 was constructed with the coefficients generated from the multivariable Cox proportional-hazards model. After extracting coefficients from the results, we calculated risk scores with coefficient-weighted expression levels of these nine TFs: risk score = (-0.1582×MEIS3) + (0.131×SNAI1) + (0.0253×KLF17) + (0.0841×BARX1) + (-0.031×ZNF532) + (0.3504×HEYL) + (0.0872×FOXL2) + (-0.0267×LHX6) + (0.0789×MEIS2). As CMS4 tumors exhibited high overexpression of genes associated with EMT (7), correlation analysis was performed between the TF-9 risk score and EMT score for further investigation. Unsurprisingly, the TF-9 risk score exhibited a substantial positive correlation with the EMT score (correlation coefficient = 0.62, P < 0.001, Figure 1E), indicating that the EMT may be regulated by these nine genes. These results suggest that these nine genes were the master genes that regulated the CMS4 subtype, and the TF-9 was highly related to EMT. Because the calculation of CMS classification relies on the sequencing information of tumors, its clinical translation and application are hampered. Additionally, since these nine TF genes are the master genes that regulate the CMS4 subtype, we wondered whether TF-9 could be a tool for identifying CMS4. Therefore, the ROC curve was performed to examine the performance of TF-9 as a biomarker for identifying CMS4. The result shows that the diagnostic performance of TF-9 for distinguishing CMS4 was satisfactory, with an AUC value of 0.83 in the TCGA cohort (Figure 1F). The same performance was achieved in two independent validation cohorts, with AUC values of 0.86 for GSE39582 and 0.89 for ICGC-ARGO (Supplementary Figure S5).



TF-9 Can Predict the Outcome of CRC Patients

A univariate analysis was performed to evaluate the prognostic potential of these nine TF genes. As shown in Figure 2, the expression of these nine TF genes was implicated as independent prognostic factors in CRC in both the TCGA and ICGC-ARGO cohorts. To further investigate the prognostic value of the TF-9 signature, the risk score of TF-9 was calculated for patients in the TCGA and ICGC-ARGO cohorts. As a result, the TF-9 showed prognostic efficiency with an obvious higher HR in the TCGA (HR = 2.7, P < 0.001) and ICGC-ARGO (HR = 6.3, P < 0.001) cohorts (Figure 2). Then, all patients were divided into TF-9 low- and high-risk groups by the median risk value within each cohort (Supplementary Table S4). Survival analysis revealed that CRC patients with TF-9 high-risk showed significantly worse OS than patients in the low-risk group in the training cohort (Figure 3A; HR = 1.7, P = 1.46×10-2). Moreover, the high-risk group showed significantly reduced OS compared with the low-risk group in two validation cohorts (Figures 3B,C). A more significant survival diversity was observed between the high- and low-risk groups in the pooled validation datasets (Figure 3D). Since tumor recurrence plays a vital role in the poor prognosis of CRC, we also performed survival analyses focusing on RFS. As demonstrated in Figures 3E–H, the risk score of TF-9 was also negatively correlated with RFS. In addition, the TF-9 remains effective at discriminating survival after adjusting to clinical factors associated with prognosis, including gender, TNM stage, MSI status (MSI vs. MSS), and primary tumor location (left- vs. right-sided, Figure 4). Even when stratified by mutation of RAS or APC, TF-9 can still stratify patients into low- and high-risk groups with significant prognosis value (Supplementary Figure S6). Unsurprisingly, both univariate and multivariate Cox analyses identified the TF-9 signature as an independent prognostic factor for CRC (Supplementary Table S2).




Figure 2 | The TF-9 signature is implicated as an independent prognostic factor in CRC. (A) Both the TF-9 signature and all nine candidate transcription factors show prognostic value in the TCGA cohort, while the TF-9 with a more significant HR (HR = 2.7, 95%CI:1.8-4.0, P < 0.001). (B) Both the TF-9 signature and all nine candidate transcription factors show prognostic value in the ICGC-ARGO cohort, while the TF-9 with a more significant HR (HR = 6.9, 95%CI: 3.8-13.0, P < 0.001).






Figure 3 | Prognostic value of the TF-9 for colorectal cancer. (A) Kaplan–Meier survival analysis showed that the high-risk group had worse overall survival than the low-risk group in the training cohort (TCGA). (B, C) In the two independent validation cohorts and (D) the pooled cohorts, the high-risk group also showed a significantly poor prognosis for overall survival. (E–H) The training cohort, the two independent validation cohorts, and the pooled validation cohort demonstrated that the high-risk group showed a significantly poor prognosis for recurrence-free survival. P-values were calculated by log-rank tests. “OS” refers to overall survival; “RFS” refers to recurrence-free survival.






Figure 4 | The prognostic value of the TF-9 in colorectal cancer is stratified by clinical characteristics. Even stratified by (A) gender, (B) stage (I&II vs. III &IV), (C) T stage (T1&T2 vs. T3 &T4), (D) N stage (N0 vs. N1&N2), (E) MSI status (MSI vs. MSS) and (F) primary tumor location (right-sided vs. left-sided), TF-9 can still stratify patients into low- and high- risk groups with significant prognosis value.





TF-9 Shows Its Superiority in Prognostic Prediction Compared With Existing Models

To compare the prognostic value of the TF-9 gene signature with existing prognostic classifiers, the C-index and D-index were calculated with survival data from the TCGA and ICGC-ARGO cohorts. The C-index was significantly higher in TF-9 than in the existing Lee, Ren, and Ye prognostic systems (Meta C-index, TF-9 vs. Lee: 0.65 vs. 0.57, P < 0.01; TF-9 vs. Ren: 0.65 vs. 0.51, P < 0.01; TF-9 vs. Ye: 0.65 vs. 0.54, P < 0.01; Figure 5A). Similar to the C-index, the D-index of TF-9 was also significantly higher in TF-9 than in Ren, Lee, and Ye’s prognostic systems (Meta D-index, TF-9 vs. Lee: 2.51 vs. 1.33, P < 0.01; TF-9 vs. Ren: 2.51 vs. 1.08, P < 0.01; TF-9 vs. Ye: 2.51 vs. 1.26, P < 0.01; Figure 5B). The above results showed the potential and robustness of TF-9 as a prognostic prediction platform.




Figure 5 | Forest plot reporting of C-index and D-index of various prognostic signatures among the different cohorts. (A) The concordance indices (C-index) for TCGA and ICGC-ARGO cohorts. Our model achieved the highest C-index compared to the three reported models (0.65 vs. 0.51-0.57). (B) The robust hazard ratio (D-index) for TCGA and ICGC-ARGO cohorts. Our model achieves the highest D-index compared to the three reported models (2.51 vs. 1.08-0.33).





Functional Analysis Reveals the Characteristic Pathway of CMS4

GSEA was performed to screen the differently enriched pathways between the high- and low-risk groups according to the TF-9 signature. As a result, 131 gene sets (P < 0.01) were upregulated, and 39 gene sets (P < 0.01) were downregulated in the high-risk group (Supplementary Table S5). GSEA revealed that these nine TF genes are mainly related to hallmark gene sets of EMT, hypoxia, angiogenesis (Figure 6), and KRAS signaling up (Supplementary Figure S7). Moreover, TF-9 high-risk groups are enriched in KEGG pathways closely associated with clinical treatment effects such as platinum drug resistance, focal adhesion, TGF-beta signaling pathway (Figure 6), and Wnt signaling pathway (Supplementary Figure S7). The functional analysis indicates that drugs targeting the oncogenic pathway may have different efficacy in the high- and low-risk groups. The TF-9 may help to stratify CRC patients to explore new target regimens.




Figure 6 | The enriched pathways are associated with the TF-9 signature. GSEA revealed that these nine transcription factor genes are mainly related to hallmark gene sets of EMT, hypoxia, angiogenesis, Platinum drug resistance, focal adhesion, and the TGF-beta signaling pathway.





Genomic Omics Reveal the Immune-Suppressed Status in the TF-9 High-Risk Group

The landscape of CRC infiltrating immune cells has not been fully elucidated. We investigated immune infiltration of TF-9 high-risk and low-risk groups in 22 subpopulations of immune cells using the CIBERSORT algorithm. Of note, the high-risk group was associated with decreased densities of plasma cells and CD4 memory-activated T cells. Low-risk patients tended to be infiltrated with fewer M2 and M0 macrophages, while no significant difference was found within other immune cell types (Figure 7A). Together, it revealed the immune-suppressed status in the high-risk group. To explore the potential mechanism of immune suppression, the expression of various immune checkpoints was calculated in each group. Surprisingly, in three independent cohorts, upregulated TIM3, CD39, and CD40 were observed in the high-risk group (Figure 7B).




Figure 7 | Immune cell infiltration analysis of high-risk and low-risk groups. (A) The infiltration of 22 types of immune cells’ abundance for high- and low-risk groups. The high-risk group was associated with decreased densities of plasma cells and CD4 memory-activated T cells. And low-risk patients tended to be infiltrated with fewer M2 and M0 macrophages, while no significant difference was found within other immune cell types. (B) TIM3, CD39, and CD40 were upregulated in the high-risk group. ***P < 0.001






Discussion

We found nine TF genes as the key regulators affecting the progression of the CMS4 subtype in CRC. MEIS2 and MEIS3 are members of the MEIS family. Some studies identified the MEIS family as oncogenes, while others recognized them as tumor suppressor genes (24–26). It was reported that MEIS2 promotes cell migration and invasion in CRC (27). And MEIS3 can modify the sensitivity to cetuximab via c-Met and Akt (28). Overexpression of SNAI1 sustains stemness maintenance and promotes invasion in numerous cancers, including CRC (29, 30). KLF17 was considered a favorable prognosis biomarker since it suppresses EMT and metastasis (31, 32). BARX1 was hypermethylated in some patients with CRC (33), and its expression was a predictor of relapse-free survival for gastrointestinal stromal tumors (34). ZNF532 has been linked to the prognosis of pancreatic ductal adenocarcinoma (35). HEYL modulates the metastasis forming capacity of CRC (36). FOXL2 regulates a range of target genes related to genomic integrity and cell pathways, including cell cycle progression, proliferation, and apoptosis (37, 38). Previous studies have shown that LHX6 can play a tumor inhibitory role by inhibiting the downstream genes related to cell proliferation, cell migration, and metastasis (39).

On the basis of these nine genes, we developed a CRC prognostic model termed TF-9. TF-9 shows strong robustness in prognostic risk stratification, regardless of whether it is applied to public data or in-house cohorts. Patients in the high-risk group had a lower survival rate, regardless of OS or RFS, and this is irrespective of clinical characteristics such as gender, stage, MSI status, and primary tumor location. Meanwhile, the C index and D index demonstrated that TF-9 is superior to existing prognostic models. We anticipate that TF-9 will considerably contribute to the stratification of patients with CRC as a robust prognostic prediction model. It is worth mentioning that the TF-9 signature may reliably identify CMS4 based just on the expression of nine TF genes without the need for comprehensive sequencing information. This is of great significance for decreasing the cost of CMS classification in clinical practice.

Moreover, through bioinformatics analysis and functional annotation of these nine TF genes, we believe that TF-9 is also helpful in explaining the biological behavior of high-risk CRC and predicting drug sensitivity. It’s well known that the CMS4 is characterized as a mesenchymal phenotype with hallmark features including EMT, angiogenesis, integrin upregulation, and stromal infiltration (40). Consistent with it, all these nine TF genes are significantly upregulated in CMS4 and are positively correlated with EMT. Moreover, the dysregulated genes of high-risk patients stratified by TF-9 risk score were found to be enriched in tumor-related signaling pathways such as EMT, angiogenesis, hypoxia, TGF-beta signaling, and platinum drug resistance pathways. These results once again confirm the mesenchymal phenotype of the CMS4 subtype and suggest that there may be different chemotherapy sensitivities between the high- and low-risk groups. GSEA revealed that the high-risk group was significantly enriched in the platinum drug resistance pathway. It is inferred that CRC patients in the low-risk group may be more sensitive to chemotherapy regimens based on platinum drugs. The FIRE3 (AIO KRK-0306) trial demonstrated that CMS4 possibly benefits more from anti-EGFR than anti-VEGF therapy. Within the RAS wild-type patients, OS observed in CMS4 favored FOLFIRI cetuximab over FOLFIRI bevacizumab (41). Combined with the results of our study, CMS4 can also be subdivided into two diverse risk subgroups. Inferring from the differential enrichment of EMT and angiogenesis pathways in the two risk groups, the efficacy of the two groups on anti-EGFR therapy may be completely different. Perhaps the high-risk group can benefit from anti-VEGF treatment, while the low-risk group will benefit more from anti-EGFR treatment. It is exciting and needs to be explored in further clinical trials.

Except for cytotoxic chemotherapy and targeted therapy, immune checkpoint inhibitors (ICIs) targeting programmed cell death protein 1 (PD-1) or PD-1 ligand (PD-L1) have emerged as promising treatment strategies in CRC that lead to durable antitumor activities and improved survival (42, 43). However, not all CRCs have ICIs indications. Our analysis of the patients’ immune infiltration revealed that the microenvironment in the high-risk group presented highly immunosuppressed characterized by TIM3, CD39, and CD40 overexpression, which indicated the patients in the high-risk group might not benefit from traditional ICIs such as anti-PD1 therapies directly. Nevertheless, these three immunosuppressive molecules may suggest new therapeutic targets or regimens for patients in the high-risk group.

TIM3 is a negative immune checkpoint and makes a crucial contribution to tumor-induced immune suppression. Accumulating evidence shows that high levels of TIM3 expression correlate with T cell exhaustion and inferior clinical outcomes of cancers (44–46). TIM3 expression in patients’ lymphocytes has been implicated in resistance to immune checkpoint blockade, representing a potential novel target for cancer immunotherapy (47). High levels of CD39 have been associated with advanced grade or poor disease outcomes in multiple malignancies (48–50). Existing studies have shown inhibition of CD39 activity can restore the sensitivity of autophagy-deficient tumors to immunogenic chemotherapy (51). It has been reported that combining anti-PD1/PDL1 with CD39 inhibition results in a synergistic effect. When anti-PD1 therapy was combined with CD39 enzymatic inhibition, it demonstrated significant tumor growth inhibition in mice with tumors refractory to immunotherapy (52). In other words, anti-PD1 treatment combined with CD39 inhibition may sensitize the TF-9 high-risk CRC tumor to immune checkpoint blockade. CD40 is a cell-surface member of the TNF (tumor necrosis factor) receptor superfamily. Upon activation, CD40 can turn tumors from the immune “cold” state to the immune “hot” ones (53), sensitizing them to checkpoint inhibition. In short, these three immunosuppressive molecules mentioned above may all become new targets for immunotherapy in TF-9 high-risk patients, which needs to be further investigated.

We have perceived several limitations in this study. Firstly, although this study included an in-house cohort and independent external validations, it was difficult to avoid missing information when data were retrospectively collected in publicly available databases. Secondly, it is difficult to perform original quality control on public datasets. Thirdly, although we showed the enriched pathway and complex immune microenvironment between high- and low-risk groups, we lack the experiments to confirm this finding in vivo and in vitro. Therefore, the findings of this study need to be further verified by a well-designed, prospective, multi-center study.



Conclusions

The TF genes are associated with the prognosis of CRC patients and can identify the CMS4 subtype from other CMSs. The TF-9 signature allows a more precise categorization of patients with relevant clinical and biological implications, which may be valuable tools to improve tailored therapeutic interventions in CRC patients.
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Background

Hepatocellular carcinoma (HCC) has the highest cancer-related mortality rate. This study aims to create a nomogram to predict the cancer-specific survival (CSS) in patients with advanced hepatocellular carcinoma.



Methods

Patients diagnosed with advanced HCC (AJCC stage III and IV) during 1975 to 2018 were obtained from the Surveillance, Epidemiology, and End Results (SEER) database. Qualified patents were randomized into training cohort and validation cohort at a ratio of 7:3. The results of univariate and multivariate Cox regression analyses were used to construct the nomogram. Consistency index (C-index), area under the time-dependent receiver operating characteristic (ROC) curve [time-dependent area under the curve (AUC)], and calibration plots were used to identify and calibrate the nomogram. The net reclassification index (NRI), integrated discrimination improvement (IDI), and C-index, and decision curve analysis DCA were adopted to compare the nomogram’s clinical utility with the AJCC criteria.



Results

The 3,103 patients with advanced hepatocellular carcinoma were selected (the training cohort: 2,175 patients and the validation cohort: 928 patients). The C-index in both training cohort and validation cohort were greater than 0.7. The AUC for ROC in the training cohort was 0.781, 0.771, and 0.791 at 1, 2, and 3 years CSS, respectively. Calibration plots showed good consistency between actual observations and the 1-, 2-, and 3-year CSS predicted by the nomogram. The 1-, 2-, and 3-year NRI were 0.77, 0.46, and 0.48, respectively. The 1-, 2-, and 3-year IDI values were 0.16, 0.15, and 0.12 (P < 0.001), respectively. DCA curves in both the training and validation cohorts demonstrated that the nomogram showed better predicted 1-, 2-, and 3-year CSS probabilities than AJCC criteria.



Conclusions

This study established a practical nomogram for predicting CSS in patients with advanced HCC and a risk stratification system that provided an applicable tool for clinical management.





Keywords: advanced hepatocellular carcinoma, nomogram, cancer-specific survival, risk stratification, AJCC (TNM) staging system



Introduction

Hepatocellular carcinoma (HCC) is the most common cause of cancer-related death and its incidence rate is increasing (1, 2). According to statistics, HCC accounts for 70–80% of the total burdens of liver disease (3, 4). Although diagnostic techniques for HCC have improved, only 20–35% of patients are diagnosed at an early stage (5), which meant approximately 80% of patients are detected at advanced stage (6). Extensive research results have reported that 5-year survival rate for patients with early-stage HCC can exceed 60% after treatment with tumor resection or liver transplantation (7, 8). Unfortunately, patients with advanced HCC (AJCC Stage III and IV) have been lost the opportunity of surgery, and the 5-year survival rate is only 10% after chemotherapy, radiotherapy, or other local treatment (9, 10). The low rate of early diagnosis and poor prognosis in advanced stage highlight the role of personalized treatment for patients with advanced HCC.

The prognostic models for early-stage HCC have been constructed and validated in several studies (11, 12). However, there is no predictive model for patients with advanced HCC. In the recent years, clinical models based on nomogram have been applied widely for survival prediction of oncology patients due to its advantages of intuitiveness and simplicity (13–15). Such new models can not only effectively promote personalized medicine, but also facilitate clinicians to utilize them for prognosis prediction. In this study, the purpose was to establish a nomogram with new risk stratification system for predicting the prognosis for patients with advanced HCC based on Surveillance, Epidemiology, and End Results (SEER) database.



Methods


Material

Patients enrolled in this study were extracted from the SEER18 registry database (1975–2018) by SEER*Stat 8.3.9.2 software for clinical-related data (including baseline demographics, tumor characteristics, therapeutic method, stage at diagnosis, survival status, and survival time) for patients diagnosed with HCC (AJCC Stage III and IV). The SEER database was publicly available and the private data of all patients have been eliminated from the SEER database. Therefore, informed consent and institutional review board approval were not required. The authorization account number for this study was 18419-Nov2020.



Variables

Fifteen variables were included in our study (age, gender, race, tumor size, tumor number, AJCC stage, bone metastasis, lymph node metastasis, lung metastasis, treatment, radiation therapy, chemotherapy, marital status, survival months, and survival status). In addition, we adopted the 7th edition AJCC TNM stage system. The inclusion criteria were as follows: (1) diagnosed as advanced HCC; (2) primary tumor location was in the liver; (3) known cause of death; (4) complete treatment information. And the exclusion criteria were as follows: (1) early stage HCC or metastatic liver cancer or other cancers; (2) incomplete information of treatment; (3) death caused by other cancers; and (4) unknown cause of death. The swipe selection process is shown in the flow chart (Figure 1).




Figure 1 | Flow diagram of the advanced hepatocellular carcinoma patients with training and validation cohorts.





Construction and Validation of the Nomogram Model

All patients were randomly divided into two groups at a ratio of 7:3. The training cohort was applied to create the nomogram and the validation cohort was performed for validation. Significant factors (P < 0.05), obtaining from univariate and multivariate Cox regression, were performed to construct the nomogram. The consistency index (C-index) and the time-dependent area under the curve (AUC) were calculated by bootstrapping to evaluate discriminative ability. The values of C-index and AUC ranged from 0.5 to 1.0 and were generally divided to low precision (0.5–0.7), moderate precision (0.71–0.90), and high precision (>0.9). The 1-, 2-, and 3-year calibration plots were plotted (1,000 self-help weight samples) to compare the predicted cancer-specific survival (CSS) with that observed in our study, and the 45-degree line was presented as the ideal prediction. DCAs were drawn to estimate the clinical practicality of the nomogram. New risk stratification, which divided patients into low-, middle-, and high-risk groups, was established by X-Tile software basing on the best cutoff value of risk score. Kaplan–Meier curves and log-rank tests were performed to compare the differences of CSS among patients in different risk stratification groups. The C-index, net reclassification index (NRI), integrated discrimination improvement (IDI), and decision curve analysis (DCA) were adopted to evaluate the improvement in predictive capability and effectiveness of the new model.



Statistical Analysis

SEER*Stat software (version 8.3.9.2) was applied to extract the data and the best cutoff value for the total score were select by X-Tile (version 3.6.1). All data analyses were performed using R software version 4.1.2 (http://www.r-project.org/). The R packages “regplot”, “mstate”, “survival”, “cmprsk”, “hmisc”, “timeROC”, “foreign”, “nricens”, “rmda”, and “DCA” were used to develop and validate the nomogram. All P values resulted from the use of two-sided statistical testing. It was statistically significant when P value was less than 0.05.




Results


Patient Demographic and Clinical Characteristics

The 3,103 patients were qualified with advanced HCC (AJCC Stage III and IV) and randomized into training cohort (2,175) and validation cohort (928). The median follow-up and the interquartile range (IQR) for the whole population, the training cohort and the validation cohort were 4 months and 1–12 months, respectively. The demographic and clinical characteristics of patients with advanced HCC were presented in Table 1. The 1,385 patients enrolled in the study received chemotherapy and 482 patients were treated with radiotherapy. In summary, there was no statistical difference between the training cohort and validation cohort in demographic and clinical characteristics (P > 0.05). 


Table 1 | Demographics and clinical characteristics of advanced HCC at diagnosis.





Univariate and Multivariate Cox Regression Analysis

The outcome of univariate Cox regression analysis of the training cohort revealed that age, gender, race, tumor size, tumor number, AJCC stage, bone metastasis, lymph node metastasis, lung metastasis, treatment, radiotherapy, chemotherapy, and marital status were prognostic factors for patients with advanced HCC (P < 0.05). Age, AJCC stage, lymph node status, tumor number, bone metastasis, lung metastasis, surgery, radiotherapy, chemotherapy, and marital status were independent prognostic factors for patients with advanced HCC (P < 0.05) identified in multivariate Cox regression analysis and were included in construction of the nomogram (Table 2).


Table 2 | The results of univariate and multivariate Cox regression analyses on variables for the prediction of CSS of advanced hepatocellular carcinoma patients.





Development and Validation of Nomogram

Finally, ten variables (age, AJCC stage, lymph node metastasis, number of tumors, bone metastases, lung metastases, treatment, radiotherapy, chemotherapy, and marriage) were selected to construct the nomogram for predicting the 1-, 2-, and 3-year CSS in patients with advanced HCC (Figure 2). To predict the CSS for patients with advanced HCC, the score in each row of variables was found and the total score of all variables were calculated. Then located the corresponding score in the total score of the row and the 1-, 2-, and 3-year probability of CSS could be inferred by drawing a straight line on the last three rows.




Figure 2 | A nomogram for advanced hepatocellular carcinoma patients. *P < 0.05; **P < 0.01; ***P < 0.001.



The C-indexes for the training and validation cohorts were 0.734 (95% CI: 0.726–0.743) and 0.732 (95% CI: 0.726–0.744), respectively. The receiver operating characteristic (ROC) curves, calibration curves, and DCA curves were shown in Figures 3–5. The analysis of the ROC curve indicated the outstanding predictive performance of the nomogram (1-, 2-, and 3-year AUC for the training cohort were 0.781, 0.771, and 0.779; and 1-, 2-, and 3-year AUC for the validation cohort were 0.812, 0.816, and 0.818). In addition, the nomogram-related DCA curves at 1, 2, and 3 years in both the training and validation cohorts revealed outstanding promising clinical application and good positive net benefit. The calibration curves all displayed a high consistency between the predicted CSS rates at 1, 2, and 3 years and the observed results.




Figure 3 | ROC of the nomogram for 1-, 2-, and 3-year prediction. (A) Training cohorts based on the nomogram. (B) Validation cohorts based on the nomogram.






Figure 4 | Calibration plots of 1-year, 2-year, and 3-year CSS for advanced hepatocellular carcinoma patients. (A, C, E) Calibration plots of 1-year, 2-year, and 3-year CSS in the training cohort. (B, D, F) Calibration plots of 1-year, 2-year, and 3-year CSS in the validation cohort.






Figure 5 | Decision curve analysis of CSS-associated nomogram and AJCC criteria. (A, C, E) DCA curves of 1-year, 2-year, and 3-year CSS in the training cohort. (B, D, F) DCA curves of 1-year, 2-year, and 3-year CSS in the validation cohort.



A comparison of the applied values of the nomogram and AJCC criteria with C-index, NRI, and IDI was performed. In the training cohort, the nomogram-related C-index was higher than that of the AJCC criteria (Figure 6). The 1-, 2-, and 3-year NRI were 0.77 (95% CI = 0.65–0.86), 0.46 (95% CI = 0.0.37–0.58), and 0.48 (95% CI = 0.35–0.61), respectively. The IDI values at 1, 2, and 3 years were 0.16 (95% CI 0.13–0.18, P < 0.001), 0.15 (95% CI 0.12–0.17, P < 0.001), and 0.12 (95% CI 0.09–0.16, P < 0.001; Table 3). The above results were strong enough to argue that the nomogram had a superior value of application and improved predictive capability than the AJCC stage system. In addition, the clinical benefits of columnar maps were evaluated, which was compared with those of the AJCC criteria. DCA curves in both the training and validation cohorts demonstrated that the nomogram showed better prediction for the 1-, 2-, and 3-year CSS probabilities because it produced a greater net benefit compared to the AJCC criteria and with both the treat-all-patients scheme and the treat-none scheme.




Figure 6 | C-index analysis. (A) The nomogram related C-index. (B) AJCC staging criteria related C-index.




Table 3 | NRI and IDI of the nomogram and AJCC staging criteria alone in CSS prediction for advanced hepatocellular carcinoma.





New Risk Stratification

Finally, risk stratification was performed by calculated with the nomogram. Patients with advanced HCC were divided into three risk groups low risk (total points < 638), middle risk (638 ≤ total points < 677) and high risk (total points ≥ 677; Figure 7). Kaplan–Meier curves exhibited a significant discriminatory in the three risk groups. In contrast, the AJCC criteria has shown limited ability to identify low-risk and high-risk patients in both the training cohort and validation cohort (Figure 8).




Figure 7 | Cutoff point for risk stratifications selected using X-tile.






Figure 8 | Kaplan–Meier CSS curves of patients with advanced hepatocellular carcinoma based on different criteria. (A, B) Kaplan–Meier CSS curves of training and validation cohorts based on the new risk stratification system. (C, D) Kaplan–Meier CSS curves of training and validation cohorts based on AJCC staging criteria.






Discussion

The prognosis of advanced HCC is extremely frustrating. Simultaneously, clinical prognostic models based on large cohorts are not available. Therefore, we established and validated a nomogram for predicting the prognosis of patients with advanced HCC by analyzing the data of patients obtained from the SEER database. Results of validations indicated that the nomogram had excellent predictive and discriminatory ability. Based on the nomogram, we developed a new risk stratification system for patients with advanced HCC by calculating the total score of patients (using X-tile software to select the cutoff value of the best grouping). This system divided all patients into low-, middle-, and high-risk groups. Compared with the AJCC criteria, this risk stratification has an outstanding ability to distinguish different risk groups. In addition, the system not only accurately predicts the prognosis of patients with advanced HCC, but also functions as a tool for individualized management and treatment. The significant characteristic of this study is that a new risk stratification system for patients with advanced hepatocellular carcinoma was built by applying multiple statistical methods. Based on this, the advantages and disadvantages of the new risk stratification system and AJCC staging system was explored, which were not mentioned in any other articles.

By univariate and multivariate Cox regression analysis, 10 variables (including age, AJCC stage, lymph node metastases, number of tumors, bone metastases, lung metastases, treatment, radiotherapy, chemotherapy, and marriage), which significantly affected CSS in patients with advanced HCC, and included in the nomogram. By measuring the range of scores of the incorporated variables on the nomogram score scale, treatments, lymph node metastases, chemotherapy, and radiotherapy were identified highly significant variables affecting the prognosis of patients with advanced HCC. Patients with early stage HCC did not have significant symptoms, and the majority of patients have developed advanced HCC when they were diagnosed (16). Systemic therapy was universally regarded as limited in its efficacy for patients with advanced HCC compared to other cancers (17). It was not until 2007 that sorafenib became the first drug proven to improve survival in advanced HCC. Results from several large randomized controlled trials have confirmed that compared to placebo, sorafenib prolonged the median survival time of patients with advanced HCC (18, 19), which was consistent with our findings. Recently, Llovet et al. (7) demonstrated that sorafenib combined with immunotherapy was superior to single agent efficacy, and the new findings were expected to improve the treatment paradigm for patients with advanced HCC (20–22). Local therapy was a bridge between liver transplantation and hepatectomy and was also the primary treatment modality for advanced HCC. Hanje et al. (23) reported 4-year survival rate was 92% for patients treated with liver transplantation after reaching Milan criteria at the descending stage. Salem et al. (24) reported an objective remission rate of 42% in patients treated locally. Although studies have confirmed the potential value of radiotherapy in specific patients with HCC (25, 26), especially in patients with early stage who were unable to be treated with transplantation or resection. However, the efficacy of radiotherapy in the treatment of advanced HCC remained controversial (27). Patients with advanced HCC were less likely to be tested for lymph node metastasis because of the inability to undergo surgery. Therefore, the prognostic effects of lymph node metastasis on patients with advanced HCC remained to be determined.

Tumor staging based on AJCC criteria was the predominant option for predicting prognosis in patients with advanced HCC. However, the effects of age, treatment, marital status, and other variables on patient prognosis were not considered in the traditional AJCC-based criteria (28, 29). We synthesized multiple variables affecting CSS in patients with advanced HCC (including demographic and clinicopathologic characteristics) into a nomogram. In addition, patients were divided into low-, middle-, and high-risk groups based on their total scores. On this basis, the power of the nomogram and the traditional AJCC-based criteria were compared, which other articles have not explored. The results of NRI, IDI, and C-index indicated that the nomogram had improved predictive power over tumor staging based on AJCC criteria alone. In addition, DCA demonstrated the clinical benefit and utility of our nomograms in predicting CSS over conventional staging systems. Remarkably, Kaplan–Meier analysis displayed significantly distinct CSS among the three risk groups, with considerably discriminatory power than the conventional staging system. In particular, the nomogram had a higher ability to distinguish between high-risk and low-risk groups than the traditional staging system, which can assist clinicians in individualizing the treatment and management.

Although the nomogram demonstrates outstanding utility, this study still has certain limitations. For example, the SEER database did not collected hematological indicators of patients, which therefore were not included in the screening. In addition, this study assessed these variables despite internal validation; our model lacks a multicenter clinical sample to perform external validation so as to provide more convincing evidence.



Conclusion

In conclusion, the nomogram exhibits powerful predictive performance, superior clinical benefit, and accurate predictive efficacy compared to the AJCC staging system. It can be applied to predict CSS in patients with advanced hepatocellular carcinoma.
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Background

The two common methylenetetrahydrofolate reductase (MTHFR) polymorphisms 677G>A and 1298A>C may have been affecting 5-FU toxicity in cancer patients for decades. Drug efficacy has also been shown by previous studies to be affected. In this study, we investigated the effects of these polymorphisms on 5-FU hematological toxicity and treatment efficacy, to provide enhanced pharmacological treatment for cancer patients.



Methods

This is a retrospective study involving 52 Thai colorectal cancer patients who were treated with 5-FU based therapy, using TaqMAN real-time PCR to genotype the MTHFR polymorphisms (677G>A and 1298A>C). The toxicity and response rate were assessed using standardized measures.



Results

Neutropenia was significantly more likely to be experienced (P=0.049, OR=7.286, 95% CI=0.697-76.181) by patients with the MTHFR 677G>A polymorphism, in the same way as leukopenia (P =0.036, OR=3.333, 95%CI=2.183-5.090) and thrombocytopenia (P<0.001, OR=3.917, 95%CI=2.404-6.382). The MTHFR 1298A>C polymorphism had no statistical association with hematological toxicity in 5-FU treatment. The response rate to 5-FU was not significantly affected by these two polymorphisms.



Conclusion

The MTHFR polymorphism 677G>A is a significant risk factor for developing leukopenia, neutropenia and thrombocytopenia as toxic effects of 5-FU therapy in cancer patients. Therefore, patients receiving 5-FU-based therapy should be aware of their polymorphisms as one risk factor for experiencing severe toxicity.





Keywords: 5-fluorouracil, colorectal cancer, MTHFR polymorphisms, toxicity, efficacy



Introduction

Data from GLOBOCAN 2018 reveals that colorectal cancer is the third most deadly and fourth most commonly diagnosed cancer in the world (1). When restricted to Thailand, a 2021 study shows that colorectal cancer is also the third most common cancer, contributing to 11% of the total national cancer burden (2).

The cell-cycle specific anti-metabolite 5-fluorouracil (5-FU) is one of the most commonly used drug regimens for the treatment of many cancers including colorectal cancer. It is a pyrimidine analog which acts to interfere with DNA synthesis. However, 69% of patients undergoing 5-FU therapy for colon cancer experience neutropenia (3). Therefore, for certain patients, this serious toxicity is the main limitation to its use, as increased susceptibility to infections can occur which is potentially life-threatening. The enzyme methylenetetrahydrofolate reductase (MTHFR) plays a key role in the metabolism of 5-FU. Fluorouracil is irreversibly reduced by MTHFR enzyme to the compound 5-methyltetrahydrofolate (5-MTHF), which is later used in DNA methylation through the conversion of homocysteine to methionine (4). This step normally involves the conversion of dUMP to dTMP by thymidylate synthase. As a result, DNA synthesis is directly disrupted, leading to cell damage and apoptosis. A decrease in MTHFR has been linked to an increase in 5,10-MTHF the substrate for MTHFR and thus an increase in 5-FU toxicity (5).

Genetics play an important role in individual differences among patients that have shown different levels of pharmacological toxicity. The MTHFR gene is located on chromosome 1p36.22 and is prone to polymorphisms. The two most common polymorphisms studied are G677A (alanine to valine) and A1298C (glutamine to alanine). Several studies have shown the effects of these two polymorphisms of the MTHFR gene in reduced enzymatic activity in the metabolism of 5-FU (6, 7). For the G677A polymorphism, homozygous TT individuals have 30% of expected enzyme activity, whilst heterozygous CT individuals have 65% of such activity, in comparison to the most common genotype CC (8).

The G677A single nucleotide polymorphism (SNP-rs1801133) of the MTHFR gene is most commonly linked with hematologic toxicity, and this correlation has been shown in the Chinese population (p = 0.005) (9). A previous study found that the 677 GG genotype is associated with toxicity (odds ratio = 1.83, P = 0.01) (10). On the other hand, another study concluded that the G677A genotype did not significantly affect the cytotoxic activity of 5-FU (11). As for the 1298A>C genotype, a study found it was linked to toxicity (4).

The variant 1298 A>C (rs1801131) has been demonstrated to increase 5-FU efficacy in patients with colorectal cancer, by increasing progression-free survival (PFS - time from operation to death or censorship), whereas 677 G>A showed no correlation (6, 11). However, in another study, the MTHFR G677A mutation was shown to increase chemosensitivity to 5-FU in colon and breast cancer (7). Another study showed a specific association of a good clinical response to FOLFOX therapy (leucovorin, fluorouracil, and oxaliplatin) with the two MTHFR polymorphisms 677G>A and 1298A>C (p=0.040) (12).

Hence, the results from previous studies are currently inconclusive and controversy still exists over whether these two SNPs of the MTHFR gene really lead to increased hematological toxicity and treatment efficacy (13, 14). Additionally, few studies have reported the use of 5-FU in Thai colorectal cancer patients.

The aim of this study was to investigate the effects of the specific SNPs of MTHFR polymorphism on the association with hematological toxicity as an adverse drug reaction of 5-FU in Thai colorectal cancer patients, along with the efficacy of the drug.



Methods


Eligible patients

A total of 108 colorectal cancer patients were recruited between October 2020 and October 2021 from the Division of Oncology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Thailand. The clinical eligibility criteria to recruit patients were as follow: histologically or cytologically confirmed to be diagnosed with colorectal cancer, having not received fluorouracil before (first or second cycles of treatment), aged at least 18 years, Eastern Cooperative Oncology Group (ECOG) performance status 0-2, life expectancy > 3 months, neutrophil count ≥ 1.5 × 109/L, platelet count ≥ 8 × 1010/L, serum creatinine ≤ 1.25, upper limit normal (ULN), total bilirubin ≤ 1.25 ULN, and alanine aminotransferase and aspartate aminotransferase ≤ 2.5 ULN. Fifty-two patients who had been treated with 5-FU-based-chemotherapy were analyzed for toxicity assessment. The flow chart for patient screening is shown in Figure 1. Patients who were excluded from the study had one or more of the following characteristics: liver or kidney disease, pregnancy, or did not consent to the study.




Figure 1 | Flow chart for patient screening. A total of 108 metastatic colorectal cancer patients were genotyped for generic polymorphisms and 56 patients who did not treated with 5-flourouracil-based chemotherapy were excluded. Of the 52 patients treated with 5-flourouracil-based chemotherapy were included in this analysis.



This study was approved by the Ethics Review Committee on Human Research of the Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand (MURA2020/1613) and was conducted in accordance with the Declaration of Helsinki. The study procedure was clearly explained to the patients before the study and written consent forms were issued accordingly.



Genotyping analysis

Peripheral blood was collected in ethylenediaminetetraacetic acid (EDTA) tubes. Firstly, the MagNA pure compact system (Roche, Manheim, Germany) was used to purify the DNA in the blood samples. Following this, nanodrop microvolume technology (Thermo Fisher Scientific, DE, USA) was used to check the purity of the DNA, relying on the surface tension qualities of the sample liquified into a column using a 260/280 ratio. A score of 1.80-2.00 was considered to represent of good purity. The methylenetetrahydrofolate reductase (MTHFR) polymorphisms were examined by TaqMAN real-time PCR, which involved amplifying and detecting targeted polymorphisms quantitatively. The two SNPs studied were 677G>A (C_1202883_20) and 1298A>C (C_850486_20).



Drug administration

As for the drug administration the most common drug or drug combination received was 5-fluorouracil + leucovorin (5-FU at 425 mg/m2/day, 5 days + leucovolin 30 mg), which 22 patients (42.3%) received. Another set of 20 patients received FOLFOX (intravenous oxaliplatin 85 mg/m2 on day 1 and a 2-hour infusion of leucovorin 200 mg/m2 followed by bolus 5-FU 400 mg/m2 and a 22-hour continuous infusion of 5-FU 600 mg/m2 for two consecutive days with treatment repeated every two weeks) (38.5%) while the following drugs were received by less than 10% of patients: modified FOLFOX (intravenous oxaliplatin 85 mg/m2 on day 1 and a 2-hour infusion of leucovorin 200 mg/m2 followed by bolus 5-FU 400 mg/m2 and a 22-hour continuous infusion of 5-FU 1200 mg/m2 for two consecutive days with this treatment repeated every two weeks) and FOLFOX + Avastin (Avastin 5–10 mg/kg intravenous infusion once every 2 weeks; intravenous oxaliplatin 85 mg/m2 on day 1 and a 2-hour infusion of leucovorin 200 mg/m2 followed by bolus 5-FU 400 mg/m2 and a 22-hour continuous infusion of 5-FU 600 mg/m2 for two consecutive days with this treatment repeated every two weeks) which 7 patients (13.5%) and 3 patients (5.8%) received, respectively.



Outcome

Toxicity was assessed according to National Cancer Institute Common Toxicity Criteria for Adverse Events version 5.0 (CTCAE). Grades 1-4 were considered to be toxic. Grades 3–4 were considered severely toxic. The specific toxicity this study focused on was hematological toxicity.

The efficacy or response rate of cancer after drug administration was measured in accordance with the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.0, which comprises the following ratings: complete response (CR), partial response (PR), stable disease (SD) and progressive disease (PD).



Statistical analysis

Descriptive statistics were used to describe the clinical characteristics of the subjects. Data are reported as medians (interquartile range, IQR). Associations among the genetic polymorphisms (alleles and genotypes), adverse events (toxicity), response rates, and clinical characteristics (age and risk group) were evaluated with the χ2 test, or Fisher’s exact test. The odds ratio (OR) and 95% confidence interval (CI) were calculated from the contingency table. All statistics were calculated using SPSS software version 22 (Chicago, IL, USA), and the statistical significance was set at p < 0.05.




Result


Allele and genotype frequency

A total of 108 colorectal cancer patients receiving 5-fluorouracil based therapy were genotyped for two SNPs: MTHFR 677G>A and MTHFR 1298A>C. The genotype and allele frequencies are shown in Table 1. The prevalence of MTHFR 677G>A polymorphism is 0.17. Most of the patients (75/108; 69.4%) had the homozygous wild type (GG), while 26.9% (29/108) had the heterozygous variant (GA) and 3.7% (4/108) had the homozygous variant. As for the MTHFR 1298A>C polymorphism, the prevalence of the allele was 0.27. Most patients (55/108; 50.9%) had the homozygous wild type (AA), while 43.5% (47/108) had the heterozygous variant (AC) and 5.6% (6/108) had the homozygous variant (CC).


Table 1 | Allele and genotype frequencies of 108 Thai metastatic colorectal cancer patients.





Patient characteristics

The clinical characteristics of the colorectal cancer patients are summarized in Table 2. Of those 108, 52 colorectal cancer patients who were treated with 5-FU-based-chemotherapy were included in the study. A total of 31 were male, 21 were female and the mean age of the sample was 60 years (range 47-73). The majority (69.2%) had an ECOG performance status of 0. The most common site of disease was the rectum (50%). The liver was the most common site of metastasis (47.7%). There were no statistically significant differences between clinical characteristics and hematological toxicity including neutropenia, leucopenia, thrombocytopenia, and anemia (data not shown).


Table 2 | Patient characteristics. (N=52).





Correlation of MTHFR 677G>A and 1298A>C polymorphisms with hematological toxicity in 5-FU treatment

The clinical association is summarized in Table 3. As for the first cycle of treatment, the MTHFR 677G>A polymorphism was statistically associated (P=0.036, OR=3.333, 95%CI = 2.183-5.090) with grade 3-4 leukopenia. For the second cycle, the MTHFR 677G>A polymorphism was statistically associated (P =0.049, OR=7.286, 95% CI=0.697-76.181) with grade 3-4 neutropenia. The MTHFR 677G>A polymorphism was significantly statistically associated with grade 1-4 thrombocytopenia (P <0.001, OR=3.917, 95%CI=2.404-6.382).


Table 3 | Different grades of toxicities in first and second cycles (N=52) caused by 5-FU-based chemotherapy in the patients with different genotypes of MTHFR polymorphism.



Simultaneously, the MTHFR 677G>A polymorphism had no statistical significance in 5-FU treatment in conjunction with the first and second cycles for all grades of anemia toxicity, the first cycle of grade 1-4 leukopenia, the second cycle for all grades of leukopenia, the first cycle of all grades of neutropenia, or second cycle grade 1-4 neutropenia. For all grades of thrombocytopenia, the first cycle of treatment had no significant association and the second cycle had no association for severe toxicity.

The MTHFR 1298A>C polymorphism had no statistical association with either the first or second cycles of 5-FU treatment, or with any grade or types of hematological toxicity. Anemia as an effect of hematological toxicity caused by 5-FU treatment was not statistically associated with the two polymorphisms (MTHFR 677G>A and MTHFR 1298A>C) in either first or second cycles. There were no statistically significant differences between the combined MTHFR polymorphisms and hematological toxicities in the first or second cycles.



Response rate

There was no statistical significance in the response rate of patients with MTHFR 677G>A and MTHFR 1298A>C polymorphisms. This clinical data is summarized in Table 4. There were no statistically significant differences between response rate and clinical characteristics in the first or second cycles.


Table 4 | Response rate of Thai colorectal cancer patients (N=52) in 5-FU based therapy.






Discussion

To our knowledge, there is not yet another study on the association of MTHFR 677G>A and MTHFR 1298A>C polymorphisms with 5-FU treatment in Thai colorectal cancer patients. Our findings suggest that the MTHFR 677G>A polymorphism is a high-risk factor that contributes to hematologic toxicity associated with 5-FU-based therapy in both first and second cycles of treatment.

The prevalence of MTHFR 677A allele frequencies in the Chinese population found in other studies was much higher than that in this study, being 0.56 compared to 0.17, respectively (15). However, similar allele frequencies were found for MTHFR 1298C in a minority group of the Chinese population, with 0.26 compared to the 0.27 in this study (16). In comparison to other ethnic groups such as the Caucasian population, both allele frequencies 677A and 1298C for the polymorphisms were higher than those found in this study, with 0.33 and 0.38 respectively (17). Similarly, a study investigating the female Turkish population found both allele frequencies 677A and 1298C to be higher (0.26 and 0.37 respectively) than values found in the Thai population (18).

This present study found that having the MTHFR 677A allele increases the risk of severe neutropenia sevenfold as a symptom of hematological toxicity in the second cycle of 5-FU treatment (95% CI =0.697-76.181). This finding is in accordance with another study investigating the Chinese population which found that the 677A allele was closely associated with severe neutropenia (p=0.043) (19). Similarly, a study on Bangladeshi patients found that the 677A allele could predict grade 3 or 4 neutropenia as a result of 5-FU toxicity (9). A meta-analysis consisting mostly of Asians and Europeans also found that gastric cancer patients with the GG or GA genotype tended to experience less severe hematological toxicity than those with the AA genotype[(GG+GA)/TT OR=0.66, 95% CI: 0.48-0.91] (20). These findings are opposed to several studies that found that the 677A allele was not associated with hematological toxicity (11). As a matter of fact, one study actually found the 677GG genotype to be related to toxicity(odds ratio = 1.83, CI = 1.13-2.96, P = 0.01) (10).

In this study, leukopenia is three times (P=0.036, OR=3.333, 95%CI = 2.183-5.090) more likely for patients with the MTHFR 677G>A polymorphism as a result of toxicity caused by receiving 5-FU. In contrast, Matthias Schwab et al. found no significant association between the MTHFR 677G>A polymorphism and all grades of leukopenia (21).

One interesting finding is that patients with the MTHFR 677G>A polymorphism have around four times (P<0.001, OR=3.917, 95%CI=0.697-76.181) the risk of experiencing thrombocytopenia as a side effect of 5-FU therapy. From Ahmad, F, et al., and Franchini, M., et al., reported that MTHFR 677C/T was associated with an increased prothrombotic risk factor (22, 23). This result is in alignment with V. Adamo et al. who reported that one third of patients with the homozygous variant genotype (MTHFR 677 AA) faced grade 3 thrombocytopenia after the first cycle of treatment (24).

The MTHFR 1298A>C polymorphism was discovered to be not statistically associated with any hematological toxicity in this study. Previous studies have reported similar findings, as researchers also did not find any statistical significance correlated with the 1298C allele and 5-FU toxicity (10). This finding is further in agreement with another study on Indian patients, which also did not find any significant association between the 1298C allele and 5-FU toxicity (25). However, another study on the French population reported that 1298CC genotype was associated with toxicity(p = 0.0018), in the opposite manner to the current study (4). Furthermore, V. Adamo et al. found that one third of patients with homozygous wild genotype (MTHFR 1298 AA) experienced grade 3 granulocytopenia and grade 3 thrombocytopenia (24).

As for the response rate, although this study did find better response rates, patients with responders was low number 13.5% (7/52). Therefore, the difference regarding the association with MTHFR 677A and MTHFR 1298C alleles was not statistically significant.

Previous studies have reported similar results regarding drug response (10, 20). However, other studies have also reported the association of both alleles with a good clinical response (12). Some studies found the MTHFR 677A allele increased chemosensitivity in 5-FU response in colon and breast cancer patients (7). Reduced enzyme activity has also been associated with MTHFR 1298C polymorphism (7). In the same way, a study on Bangladeshi patients also found the MTHFR polymorphism to be associated with a good clinical 5-FU response (9). Another study found 5-FU sensitivity to be related to the MTHFR 1298C allele, with the 1298CC genotype being the most sensitive (11).

The main limitations to this study are the sample size and it being a retrospective study. The sample was small and was only drawn from one hospital in Bangkok, Thailand. Moreover, other non-hematological toxicities such as diarrhea were not considered in this study. Other genes, such as DPYD and TYMS polymorphisms that can affect toxicity were not studied. Further prospective studies with larger sample sizes need to be carried out to further validate these findings.



Conclusion

In conclusion, the MTHFR 677G>A polymorphism was statistically associated with grade 3-4 hematologic toxicity in both the first and second cycles of treatment of Thai colorectal cancer patients who received 5-FU-based therapy, whereas the MTHFR 1298A>C polymorphism had no significant association. The response to 5-FU treatment was not statistically associated with these two single nucleotide polymorphisms. These findings imply that the MTHFR 677G>A polymorphism may predict 5-FU toxicity. Therefore, patients receiving 5-FU-based therapy should be aware of their polymorphisms as risk factor for experiencing severe toxicity.
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Background

Hepatocellular carcinoma (HCC) is a primary malignancy of the liver with high prevalence worldwide and poor prognosis. It has been verified that elongation of very-long-chain fatty acids gene family (ELOVLs), a group of genes that responsible for elongation of saturated and polyunsaturated fatty acids, participate in the pathogenesis and development of multiplex disease including cancers. However, the functions and prognosis of ELOVLs in HCC are still indistinguishable.



Methods

First, we searched the mRNA expression and survival data of ELOVLs in patients with HCC via the data of The Cancer Genome Atlas (TCGA). The prognosis value of ELOVLs on HCC was assessed by Kaplan–Meier plotter and Cox regression analysis. reverse transcription quantitative- polymerase chain reaction (RT-qPCR), Western blot (WB), and immunohistochemistry were applied to assess the specific mRNA and protein expression of ELOVLs in HCC clinical specimens of our cohort. Then, the functional enrichment of ELOVL1 especially the pathways relating to the immune was conducted utilizing the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) analysis. Additionally, TIMER, CIBERSOR, and tumor immune dysfunction and exclusion (TIDE) were employed to evaluate the relationship between ELOVL1 and immune responses. Last, the correlation of ELOVL1 with genome heterogeneity [microsatellite instability (MSI), tumor mutational burden (TMB), mutant-allele tumor heterogeneity (MATH), homologous recombination deficiency (HRD), purity, ploidy, loss of heterozygosity (LOH), and neoantigens] and mutational landscape were also evaluated basing on the date in TCGA.



Results

Significant expression alteration was observed in ELOVLs family at the pan-cancer level. In liver cancer, ELOVL1 and ELOVL3 were strongly associated with poor prognosis of HCC by survival analysis and differential expression analysis. Immunohistochemistry microarray, WB, and RT-qPCR confirmed that ELOVL1 but not ELOVL3 played an important role in HCC. Mechanistically, functional network analysis revealed that ELOVL1 might be involved in the immune response. ELOVL1 could affect immune cell infiltration and immune checkpoint markers such as PD-1 and CTLA4 in HCC. Meanwhile, high expression of ELOVL1 would be insensitive to immunotherapy. Correlation analysis of immunotherapy markers showed that ELOVL1 has been associated with MSI, TMB, and oncogene mutations such as TP53.



Conclusion

ELOVLs play distinct prognostic value in HCC. ELOVL1 could predict the poor prognosis and might be a potential indicator of immunotherapy efficacy in HCC patients.





Keywords: hepatocellular carcinoma, ELOVLs, ELOVL1, prognosis, immunotherapy



Introduction

Liver cancer is one of the most common cancers in the world and has a rising incidence worldwide. Hepatocellular carcinoma (HCC), accounting for almost 90% cases of all liver cancers, causes great global healthy problem (1, 2). Nowadays, the main treatments of HCC include surgical resection, chemotherapy, radiotherapy, and targeted therapy (3). Over the past decade, immunotherapy offers great promises in the treatment of a variety of malignancies including HCC (4). Preclinical and clinical investigations have revealed that various immunotherapies might extend current options for needed HCC treatment (5). However, the 5-year survival rate of HCC is still low for most patients fall to gain the optimal treatment due to no obvious clinical manifestations at an early stage (6). Thence, it is urgent to explore the specific molecular mechanisms underlying the pathogenesis of HCC and find diagnostic or prognostic biomarkers of HCC.

There are seven ELOVL enzymes (ELOVL1–7) in the ELOVLs family in mammals, which are mainly involved in catalyzing the extended cycle of the very-long-chain fatty acids (VLCFA) (7). ELOVLs have been verified to participate in the pathogenesis and development of diverse kinds of cancer. Although ELOVL1 was not upregulated in breast cancer comparing to paired normal breast, the gene silencing results demonstrated that ELOVL1 was essential for the growth of breast cancer cells (8). Additionally, study showed that the upregulated ELOVL1 promoted the accumulation of VLCFA in colorectal cancer tissues (9). ELOVL 2, a gene that is most highly closed to age prediction when appearing epigenetic alterations, contributes to aging by regulating lipid metabolism (10). Moreover, a previous study shows that ELOVL2 could attenuate tamoxifen resistance in breast cancer (11). ELOVL3 is responsible for the elongation of fatty acid in brown adipocytes and shows physiological roles in maintaining ocular homeostasis (12, 13). Mutations of dominant ELOVL4 are leading to the macular dystrophy of young mice, and ELOVL4 knockout mice would die soon after birth for the lack of skin barrier (14). The upregulation of ELOVL5 in mesenchymal-type gastric cancer cells causes to the sensitive to ferroptosis (15). Studies in liver-specific ELOVL6 knockout (LKO) mice have revealed that ELOVL6 decides hepatic insulin sensitivity and the length of ceramide acyl chain (16). ELOVL7 is confirmed to take part in the growth of prostate cancer (17). All these implied that abnormal ELOVLs family played an important role in disease by regulating lipid metabolism. However, the multiple expression landscape and pathological mechanisms of ELOVLs family had not been well investigated in HCC.

In the present study, we analyzed the expression and function of ELOVLs in HCC via bioinformatics and clinical tissues. The results identified the distinct expression patterns and prognostic values of ELOVLs family in HCC. Meanwhile, ELOVL1 showed correlation with immune envision and negative immune checkpoints PD-1 and CTLA-4. Furthermore, the high expression of ELOVL1 showed insensitive to immunotherapy and was related to microsatellite instability (MSI) and tumor mutational burden (TMB). Our work may offer novel comprehension on ELOVLs involved in HCC and uncover their underlying value in HCC treatment.



Materials and methods


Data Acquisition

The mRNA transcriptional data of HCC and normal liver tissues were obtained from The Cancer Genome Atlas (TCGA) (http://gdc.cancer.gov) datasets. All raw data were further analyzed after being standardized by log2 transformation. The R (version 4.0.3) and GraphPad Prism (version 7.0) software were utilized for analysis. We chose |log2 fold change (FC)|≥1 and adjusted p-value <0.05 as statistically significant genes.



Patients and Clinical Database

A total of 113 HCC patients who underwent curative surgery in Eastern Hepatobiliary Surgery Hospital affiliated to Second Military Medical University from 2008 to 2014 were enrolled in this study. They were followed up postoperatively until December 2020. Patients confirmed of HCC by histopathological diagnosis and without adjuvant anticancer treatment such as radiotherapy and chemotherapy before surgery were chosen in the study. The clinicopathological data of selected patients were gained from the patient’s hospitalization records. The studies have obtained ethics approval by medical ethics committees of Tongji Hospital and Eastern Hepatobiliary Surgery Hospital, and all the patients involved in the study signed an informed consent form.



Reverse-Transcription Quantitative PCR (qPCR)

Total RNA in liver of HCC patients and paired adjacent normal tissues was extracted by TRIzol reagent (Sigma-Aldrich, USA) under the instruction of the manufacturer’s protocol. The cDNAs were synthesized using a Prime Script TM RT kit (Takara, Japan) in reverse transcription reactions and the results were normalized to endogenous glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression. The primer sequences of ELOVL1 are the following: FORWARD (5′-3′) TTATTCTCCGAAAGAAAGACGGG, REVERSE (5′-3′) TTATTCTCCGAAAGAAAGACGGG. The primer sequences of ELOVL3 are the following: FORWARD (5′-3′) CTGTTCCAGCCCTATAACTTCG, REVERSE (5′-3′) GAATGAGGTTGCCCAATACTCC. The primer sequences of GAPDH are the following: FORWARD (5′-3′) AATGGGCAGCCGTTAGGAAA, REVERSE (5′-3′) GCGCCCAATACGA CCAAATC.



Western Blot

Total protein was extracted with RIPA lysis buffer (Beyotime, China) mixed with a protease inhibitor (Beyotime, China) and centrifuged at 14,000g for 15 min at 4°C. Supernatant were quantified by the BCA Protein Assay Kit (Beyotime, China). Equal amounts of protein were separated, transferred onto polyvinylidene difluoride membranes, then blocked with 5% bovine serum albumin for 2 h at room temperature and incubated with primary antibodies against ELOVL1 (diluted 1:1,000, TA0670, Abmart, China) and GAPDH (diluted 1:25,000, 60004-1, Proteintech). The membrane was further reacted with horseradish peroxidase–conjugated secondary antibody (diluted 1:5,000, Beyotime, China) for 1 h at room temperature. The band intensity was analyzed by the ChemiDoc XRS systems (Bio-Rad Laboratories, United States) and Image J software.



Immunohistochemistry

The tissue microarray was constructed using the paraffin-embedded tissue of the 113 patients. Tumor sections were incubated with primary anti-ELOVL1 (diluted 1:200, TA0670, Abmart, China) antibody in fridge overnight at 4°C. Then, the tissues were incubated with the secondary antibody (1:1,000 dilution, Thermo Fisher Scientific, A-10042, Massachusetts, USA) at 37°C for 1 h, and then covered by 3,3-diaminobenzidine (ZLI-9032, Zhongshan Biotech, China). Subsequently, all tissues were reviewed using the light microscope (Olympus 600 auto-biochemical analyzer, Japan). The positive cells score negative: 0%–5%; low: 6%–25%; medium: 26%–50%; high: >50%.



Screening of ELOVL1 Expression and Functional Enrichment in HCC

To determine the differentially expressed gene (DEG) pattern between HCC patients with high and low ELOVL1expression, HCC patients in TCGA database were divided into high and low groups in line with the median ELOVL1 expression value. DEGs were determined by using the Limma package with the absolute value of logFC (logFoldchange) ≥1 and p-value ≤0.05. The functions of these identified DEGs were explored by hallmark gene sets, i.e., Gene Ontology (GO) gene sets and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Gene set enrichment analysis (GSEA) was also analyzed using “clusterProfiler” package in R. The results were visualized using cluster Profiler and ggplot2 R packages (threshold: P < 0.05).



Correlations Between ELOVL1 and Immune Environment

CIBERSOR was applied to explore the expression of ELOVL1 and relationship with the abundance of 22 tumor-infiltrating immune cells (TILCs) including CD8+ T cells, CD4+ T cells, B cells, neutrophils, macrophages, and dendritic cell by gene expression profiling in 44 cancer types from 10,180 samples (18). In addition, the TIMER database (https://cistrome.shinyapps.io/timer/) was also applied to inspect the correction between ELOVL1 and the abundance of TILCs through the “gene” module (19). The mRNA level of ELOVL1 and relationship with 60 immune checkpoints (24 inhibitory and 36 stimulatory) was identified by TISIDB database (http://cis.hku.hk/TISIDB/index.php) (20). The tumor immune dysfunction and exclusion (TIDE) was conducted to explore the correlation of ELOVL1 with TIDE scores and to predict the response possibility between ELOVL1-low and ELOVL1-high group to immune checkpoint inhibitor (21). Additionally, we analyzed the relationships of ELOVL1 expression with several clinical cohorts received immunotherapy through the TIDE website.



Associations Between ELOVL1 Expression and Genome Heterogeneity (MSI, TMB, MATH, HRD, Purity, Ploidy, LOH, and Neoantigens) and Mutational Landscape

To identify the regulations of ELOVL1 expression and HCC, we first integrated ELOVL1 gene expression in TCGA pan-cancer (PanCAN, n = 10,535, g = 60,499). Second, as described in previous articles, TMB, MSI, homologous recombination deficiency (HRD), and neoantigen were used to evaluate the relationship between ELOVL1 and tumor mutation and treatment sensitivity (22). For TMB, we focused on the relationship between high expression of ELOVL1 and TMB. Last, mutant-allele tumor heterogeneity (MATH), purity, ploidy, and loss of heterozygosity (LOH) were used to inspect the association between ELOVL1 and tumor heterogeneity, as described in previous articles (23).



Statistical Analysis

Survival curves were generated from the data in TCGA. The correlations between ELOVL1 expression and clinicopathological features were evaluated by Chi-square test evaluation. Kaplan–Meier survival curves were constructed using R (version 4.0.3). P < 0.05 was thought about statistically significant in the current study.




Results


Transcriptional Levels of ELOVLs Family in Patients With Cancer

At pan-cancer level, TCGA and GTEx database were utilized to explore the expression of ELOVLs between tumor and normal tissues. The results showed that the mRNA level of ELOVLs in most tumor tissues including HCC was higher than that in normal tissues (Figures 1A–G). Compared with normal tissues, ELOVL1, ELOVL2, ELOVL3, ELOVL5, and ELOVL7 were significantly increased in HCC (left subgroups, Figures 2A–G). In addition, ELOVL1, ELOVL2, ELOVL3, ELOVL4, and ELOVL5 were significantly overexpressed in the paired comparison between HCC and adjacent tissue (right subgroups, Figures 2A–G, Figure 2H). These data suggested that the ELOVLs family might play an important role in HCC.




Figure 1 | The mRNA expression of ELOVLs family in pan-cancer level. (A–G) ELOVLs family in various cancers was detected by TCGA database. *P < 0.05, **P< 0.01, and ***P < 0.001.






Figure 2 | The mRNA expression of ELOVLs in HCC in the TCGA database. (A–G) ELOVLs were increased in HCC than the normal adjacent liver tissues except the ELOVL6. The left subfigures were the relative expression of the ELOVLs between the HCC and normal liver tissues from TCGA, and the right subfigures were the pairwise boxplot of the ELOVLs expression between the paired normal and HCC liver tissues in TCGA dataset. (H) The volcano plots of the expression of ELOVLs in HCC. *P < 0.05 and ***P < 0.001. NS, Not Significant.





Increased mRNA Expression of ELOVL1 and ELOVL3 Predict Poor Prognosis in HCC

Furthermore, univariate Cox regression (Figure 3A) and multivariate Cox regression (Figure 3B) analyses were used to analyze the role of ELOVLs family on the survival outcomes of HCC. Among the ELOVLs family, only ELVOL1 and ELOVL3 might have an impact on the survival of liver cancer patients. Consistent with this, the high expression of both ELVOL1 and ELOVL3 would reduce the overall survival (OS) (Figures 3C, E) and disease-free survival (DFS) (Figures 3D, F) of patients with HCC. These results suggested that ELVOL1 and ELOVL3 in the ELOVLs family were strongly associated with HCC and have the potential to predict the prognosis of patients with HCC.




Figure 3 | The prognostic value of ELOVLs family in HCC. (A) Univariate Cox regression analysis of ELOVLs in patients with HCC in TCGA database shows ELOVL1, -3, and -4 relating to the prognosis of HCC. (B) Multivariate Cox regression analysis of ELOVLs in patients with HCC in TCGA database shows ELOVL1 and ELOVL3 relating to the prognosis of HCC. (C–F) Overall survival (OS) and disease-free survival (DFS) of low- and high-expression groups of ELOVL1 and ELOVL3 in Kaplan–Meier Plotter.





Overexpressed ELOVL1 in Liver Tissues From Patients With HCC Compared With Adjacent Normal Liver Tissues in 113 HCC Liver Tissues

To validate the results of the bioinformatics analysis in the ELOVLs family, we collected human samples of liver cancer and adjacent tissues. The results of RT-qPCR showed that the mRNA expression of ELOVL1, but not ELOVL3, was higher in HCC patients than of paired adjacent normal liver tissues (Figures 4A, B). Consistent with this, Western blot results showed that the protein expression of ELOVL1 was higher in HCC patients than of paired adjacent normal liver tissues (Figures 4C, D).




Figure 4 | The mRNA and protein expression of ELOVL1 in HCC tissues and the adjacent tissues. (A, B) Comparing the adjacent tissues, the relative mRNA expression of ELOVL1 was increased and ELOVL3 was not changed in HCC tissues. (C, D) Protein expression of ELOVL1in HCC tissues comparing to adjacent tissues. *P < 0.05. NS, Not Significant.



Furthermore, the immunohistochemical chip of 113 liver cancer samples showed 68 cases of them displayed high expression of ELOVL1 levels and 45 cases displayed low ELOVL1 expression levels (Figures 5A). Combined with bioinformatics analysis and human samples validation, these data indicated that ELOVL1 was significantly upregulated in HCC tissues compared with adjacent normal liver tissues, which suggested that ELOVL1 might play an important role in HCC.




Figure 5 | The immunohistochemical staining of ELOVL1 expression and Cox analysis of ELOVL1. (A) The immunohistochemical staining of ELOVL1 expression in HCC and normal adjacent liver tissues. (B, C) Univariate and multivariate Cox regression analysis of ELOVL1 and clinicopathologic variables of patients with HCC from TCGA database.





Association of ELOVL1 Expression With Clinicopathologic Characteristics and Prognosis of HCC Based on TCGA

Based on the expression profile of ELOVL1, we used transcriptome data from TCGA database to reclassify HCC patients into high-expressed ELOVL1 and low-expressed ELOVL1 groups. Then, logistic regression model was constructed to explore the relationship of ELOVL1 and clinicopathological characteristics in HCC patients. The results showed that ELOVL1was strongly associated with the tumor grade and tumor T stage of HCC patients (Table 1). Then, Cox proportional hazard models were constructed to explore the effects of ELOVL1 on patient survival times. The univariate Cox analysis showed that tumor stage (HR = 1.144, p < 0.001), T stage (HR = 1.219, p < 0.001), metastasis (HR = 1.273, p =0.010), N (regional lymph node) (HR = 1.232, p =0.024), and ELOVL1 expression (HR = 1.266, p < 0.001) were independent factors for OS of HCC patients (Figure 5B). Multivariate Cox regression analysis showed that ELOVL1 expression was confirmed to be a statistically significant predictor of OS in HCC patients (HR = 1.011, p < 0.001; Figure 5C). Highly expressed ELOVL1 in HCC patients would increase the survival risk and reduce the survival probability. In addition, T stage (HR = 1.199, p < 0.001) and metastasis (HR = 1.309, p =0.032) were also confirmed as an independent risk factor for OS.


Table 1 | Correlation between ELOVL1 expression and clinicopathological characteristics of HCC patients in TCGA.



In conclusion, in terms of clinical applications, ELOVL1 was closely related to tumor grade and tumor T stage and might predict the prognosis of HCC patients.



Functional Enrichment of ELOVL1

To identify how ELOVL1 participated in the tumorigenesis of HCC, we applied hallmark, GO, and GSEA analysis to explore the signaling pathways that involved in HCC. The hallmark enrichment analysis implied that ELOVL1 was involved in the E2F targets, G2M_checkpiont, mototic spindle, myc targets, MTORC1 signaling, DNA repair, unfolded DNA repair, and protein section. The GSEA study showed that ELOVL1 participated antigen processing and presentation (ES = 0.8987, NP = 0.0048), pathways in cancer (ES = 0.6627, NP=0.0124), leukocyte transendothelial migration (ES = 0.7697, NP = 0.0136), NOD-like receptor signaling pathway (ES = 0.8072, NP = 0.0187), and Toll-like receptor signaling pathway (ES = 0.7631, NP = 0.0260) (Supplementary Figure 1). Most of these pathways were related to inflammation and immune response, which is closely correlated with the tumorigenesis of HCC. Therefore, we further evaluated the relationship between ELOVL1 and the immune-related pathways. The results showed that ELOVL1 participated the antigen processing and presentation and innate immune response (Figure 6A). Besides, ELOVL1 also participated in major histocompatibility complex protein binding and adaptive immune response (Figures 6B–D). The results implied that ELOVL1 be involved in the tumorigenesis of HCC through immune microenvironment.




Figure 6 | Associations between ELOVL1 and immune-related pathways. (A) Immune-related over-representation analysis. (B) Gene set enrichment analysis based on immune-related KEGG database; (C) Immune-related biological processes. (D) Immune-related molecular functions.





Associations Between ELOVL1 and the Immune Microenvironment in HCC

Based on the results of functional enrichment, we analyzed the immune components between high expression ELOVL1 and low expression ELOVL1 groups, which included immune cell infiltration and immune checkpoints. The results showed the mRNA expression of ELOVL1 was closely related to the immune cell infiltration, including CD8+ T cells, CD4+ T cells, neutrophils, macrophages, and dendritic cells through both the CIBERSOR and TIMER (Figures 7A–C and Supplementary Figure 2). In terms of immune checkpoints, the heat maps illustrated that ELOVL1 were closely connected with immune checkpoint. ELOVL1 was positively correlated with PD-1 (PDCD1), CTLA4, LAG3, endothelial growth factors (VEGFs), and so on, which are the common immune checkpoints in the HCC tumor-immune microenvironment (TIME) (Figure 7D).




Figure 7 | Correlation of ELOVL1 expression with immune cell infiltration and immune checkpoints in HCC. (A) Correlation of ELOVL1 expression with immune cell infiltration in HCC (TIMER). (B, C) Correlation of ELOVL1 expression with immune cell infiltration in HCC (CIBERSOR). (D) Expression of ELOVL1 and immunological checkpoints. *P < 0.05.



Next, we performed the TIDE analysis of the effect of ELOVL1 on immunotherapy. These results showed that ELOVL1 had an obvious positive correlation with the TIDE score (Figures 8A, B). Specifically, patients with elevated ELOVL1 levels were more likely to show no response to immunotherapy according to the results from the TIDE analysis, whereas patients with low ELOVL1 level may be more sensitive to immunotherapy treatment (Figure 8C–D). All these results implied that ELOVL1 might participate in HCC via immune evasion and might predict the efficacy of immunotherapy.




Figure 8 | Relationship between ELOVL1 and response to immunotherapy. (A) The associations between ELOVL1 expression and TIDE score. (B) High ELOVL1 was positively correlated with high TIDE score. (C, D) High ELOVL1 group had a higher proportion of tumor immune dysfunction and rejection. (E) Relationship between ELOVL1 and MSI. (F) Relationship between ELOVL1 and TMB. (G) Relationship between ELOVL1 and neoantigen. (H) Relationship between ELOVL1 and HRD. ***P < 0.001.



.



Correlations Between ELOVL 1 Expression and Immune Biomarkers in HCC

Studies have shown that indicators of genome heterogeneity might be the biomarker of immunotherapy, so we analyzed the correlations between ELOVL 1 and genome heterogeneity such as MSI, TMB, and neoantigen in HCC (24–26). As shown in Figures 8E–H, ELOVL1 is positively related to MSI and HRD (R = 0.298967888875077, P = 1.71923786304186e-8) in eight cancers including HCC (R = 0.104455471439159, P = 0.0455298564418963). Meanwhile, ELOVL1 is negatively related to TMB (R = −0.12, P = 0.047). However, ELOVL1 was not connected with neoantigen. MSI and TMB are the most studied tumor immunotherapy markers in cancers including HCC. In the correlation between ELOVL1 and MSI, TMB illustrated that ELOVL1 might be the biomarker of the efficacy of immunotherapy, which is consistent with the former results. As for the tumor heterogeneity, ELOVL1 was positively related to MATH (R = 0.15, P = 0.020), tumor ploidy (R = 0.12, P = 0.029), and LOH (R = 0.38, P = 0.001) in HCC. Additionally, ELOVL1 was negatively related to tumor purity (R = −0.11, P = 0.035) in HCC (Supplementary Figure 3). A few studies implied that oncogenic pathways driven by genetic mutations were also related to immune microenvironment, which, in turn, could impact response to immunotherapies in several types of cancer including HCC (27, 28). Thus, the mutation database was used to analysis the associations between ELOVL1 and mutational landscape in HCC. As shown in Supplementary Figure 4, ELOVL1 was related to ADRA1D, POTEH, GRIN1, NLRP12, SHANK1, MYH7, ZFPM2, FAM47A, TSC2, RB1, CSMD1, CTN, NB1, and TP53, which were common mutations in HCC. The relationship of MSI, TMB, and mutational landscape indicated that ELVOL1 had the potential to predict the efficacy of immunotherapy of HCC.




Discussion

HCC is an aggressive disease with poor survival outcomes for patients with advanced/metastatic condition just receiving standard treatments (6). Hepatic immune system relating tumor microenvironment exhibits great impact on preventing progressing and treatment resistance of HCC (29, 30). Immunotherapy has the capacity to avoid immune tolerance mechanisms and strengthen antitumor ability comparing with standard treatments (4, 31, 32). The recommendation of immunotherapy strategies including immune checkpoint inhibitors, whether as single agents or combining approved local and systemic treatments, has notably altered the therapeutic outcome of HCC in recent years (33). The combination of the immune checkpoint inhibition of programmed death-ligand 1 (PD-L1) atezolizumab and the VEGF neutralizing antibody bevacizumab has become a first-line therapy for patients with advanced HCC (34). However, some patients show no respond to currently available immunotherapy (5, 35). Therefore, it is urgent to find biomarkers to assess the efficacy of immunotherapy and guide the precise clinical treatment of patients with HCC. ELOVLs have been identified basing on their substrate specificity and protein motif sequences (36). Although a few of studies have threw some light on the relationships between ELOVLs and lipid metabolism in non-alcoholic fatty liver disease (NAFLD) and cancers, the impact of ELOVLs in HCC still remains unclear. Aiming to reveal the underlying functions and distinct prognosis value of ELOVLs in HCC, we explored the public data set via bioinformatics analysis to offer novel insights for future research in the present study.

In the present study, we found that ELOVLs were upregulated in HCC except ELOVL6 and ELOVL7 via data from TCGA. The univariate and multivariate Cox regression analyses revealed that high ELOVL1 and ELOVL3 could be independent factors for OS and DFS in HCC especially in the first 5 years. The upregulated expression of ELOVL1 and ELOVL3 predicted poor prognosis in HCC. However, the verification via the liver tissues of patients with HCC in our cohort showed that only ELOVL1 was upregulated. In addition, high ELOVL1 expression was remarkably associated with advanced TNM stage and tumor grade. These outcomes suggest that ELOVL1 could be a potential biomarker in diagnosis and prognosis of HCC patients. The functional network revealed that the signaling pathway involved in ELOVL1 was related to inflammation and immune response. As a typical inflammation-linked tumorigenesis, immune evasion is one of the features occurring during the initiation and evolution of HCC (37). The immune evasion of HCC was mediated by different mechanisms such as fostering an immunosuppressive microenvironment or mediating cytotoxic cell dysfunction (38). CD8+ T lymphocytes are the primary cytotoxic tumor-infiltrating lymphocyte subset in HCC, and the immune checkpoints PD-1, CTLA-4, and LAG-3 are negative regulators of CTL function (39, 40). In the present study, the immune cell infiltration analysis illustrated that ELOVL1 was related to most kinds of immune cells related to immune envision. Specially, the results of relationship with CD8+ T cells are different by CIBERSOR and TIMER, which is a algorithmic statistical problem and needs further verification in clinical specimens and in vitro cells (19). The positive correlations between ELOVL1 and inhibitory immune checkpoints and high TIDE score analysis indicated that ELOVL1 might participate in the immune evasion of HCC. Furthermore, the high level of ELOVL1 was more likely to show no response to immunotherapy and association with MSI and TMB implied that ELOVL1 could predict the efficacy of immunotherapy. At the same time, high expression of ELOVL1 was related to the mutation of TP53 (p53), which played dual role in immune regulation and might be applied to optimize immune checkpoint inhibitor therapy for cancer treatment (41). All these revealed that ELOVL1 might play a pivotal role in immunosuppression in HCC development and could be a potentially novel biomarker to predict the efficacy of immunotherapy against HCC.

As an indispensable component of immunotherapy, the TIME has gradually acquired accumulative attention, and the analysis of TIME will contribute to the improvement of immunotherapy responsiveness (42). Some researchers revealed that the TIME could be taken as a main prognostic indicator, which could also enhance the potential of precision treatments (43). Although immunotherapy achieved great advances in HCC treatment, precise markers for patients to benefit from anti-PD1 or anti-CTLA4 therapy were still absent. Recent work had thrown some light on this issue. Dai et al. used 11 differentially expressed immune-related genes in 361 HCC patients to construct immune-related gene-based prognostic index, which can predict the survival of HCC patients and the response of immunotherapy (44). The study of Zou et al. illustrated that CDK1, CCNB1, and CCNB2 are potential prognostic biomarkers of HCC. CDK1, CCNB1, and CCNB2 may potentially be able to predict the response to immunotherapy, and combining immunotherapy with inhibitors of these genes may improve the curative effect (45). Moreover, a study constructed a score based on alpha-fetoprotein and C-reactive protein to predict disease control rate and OS in immune checkpoints inhibitors (ICI)-treated patients with HCC (46). In the present study, we found that ELOVLs acted as a dismal prognosis marker and ELOVL1 might be a potential biomarker of immunotherapy efficacy of patients with HCC. The expression and functions of ELOVLs especially ELOVL1 could be investigated in more retrospective clinical design and even the prospective clinical cohorts. The expression of ELOVL1 could benefit patients for immunotherapy and support decision-making in daily clinical practice. In addition, we would focus on how ELOVL1 influences the efficacy of ICIs in HCC treatment in our further work.

There are still a few limitations in the present study. First, the clinical data were limited and retrospective, and the specific expression and function of ELOVLs in HCC should be verified in prospective design. In addition, ELOVL6 was inconsistent with the results of other researchers.They found that ELOVL6 enhanced oncogenic activity in liver cancer and indicated poor prognosis in patients with HCC, whereas the results of ours showed no significance (47). The relationship between ELOVL6 and HCC in the present study was in silico and needs further verification. We need enough clinical data to correct our results in future studies.



Conclusion

In conclusion, ELOVLs play distinct prognostic value in HCC and ELOVL1 serves as a dismal prognosis biomarker in HCC patients. In addition, ELOVL1 participates in the development and progression of HCC mainly via pathway-related immune response. Moreover, ELOVL1 was associated with immune cell infiltration, immune checkpoints, and response to immunotherapy. It is likely to be a novel therapeutic target in combination with immunotherapy and potential target to predict the efficacy of immunotherapy of HCC.
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Transmembrane protein 100 (TMEM100) is involved in embryonic cardiovascular system development. However, the biological role of TMEM100 in human cancers, particularly colorectal cancer (CRC), is unclear. In this study, tissue microarrays were stained using immunohistochemistry methods to evaluate the association between TMEM100 levels and clinic-pathological features for CRC. Kaplan–Meier and log-rank tests revealed that decreased levels of TMEM100 correlated with shorter overall survival. Cox regression revealed that reduced levels of TMEM100 was an independent prognostic factor for detrimental survival in CRC. A lentiviral vector was used to overexpress TMEM100 in HCT116 cells, and small interfering RNA was used to knockdown TMEM100 in SW480 cells. The CCK-8 assay, colony formation analysis, cell cycle analysis, cell migration assay, mouse xenograft model and mouse lung metastasis model showed that TMEM100 suppressed CRC cell proliferation and migration in vitro and in vivo. IHC scores of TMEM100 and HIF-1α were significantly negatively correlated. A half-time determination analysis in which cells were treated with cycloheximide revealed that TMEM100 shortened the HIF-1α half-life. Further immunoprecipitation experimental results showed that TMEM100 promoted the ubiquitination of HIF-1α, which caused HIF-1α degradation via the 26S proteasome pathway. Angiogenesis assay and migration assay results revealed that TMEM100 suppressed the migration and angiogenesis induction capacities of HCT116 cells, but this inhibitory effect was abolished when HIF-1α degradation was blocked by MG132 treatment. These results indicated that TMEM100 inhibited the migration and the angiogenesis induction capacities of CRC cells by enhancing HIF-1α degradation via ubiquitination/proteasome pathway.
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Introduction

The mortality of colorectal cancer (CRC) is third highest among all tumors, causing a significant financial burden to society (1, 2). According to a global statistical survey, in 2018, more than 1.8 million new CRC diagnoses were recorded, which accounts for approximately 10% of the overall number of new cancer cases worldwide (2). Approximately 30% of CRC patients have progressed to advanced or accompanying distant organ metastasis when diagnosed with CRC, and approximately 86% of patients with advanced cancer die within 5 years of diagnosis. Considering the above situation, improvement of diagnostic approaches and development of novel treatment strategies for CRC patients are extremely urgent matters.

During the development of the embryo, transmembrane protein 100 (TMEM100) is expressed in arterial endothelial cells. Targeted dysregulation of TMEM100 causes embryonic lethality with severe vascular formation abnormalities (3, 4). TMEM100 is involved in the development of embryonic cardiovascular system which includes endothelial cell migration, proliferation, neovascular reorganization, stabilization of endothelial cells and establishment of vascular architecture (3). This suggests that TMEM100 is most likely to be involved in processes such as malignant tumor metastasis and the induction of microangiogenesis. TMEM100 exhibited a clear inhibition of metastasis and proliferation in lung cancer, prostate cancer (PC), hepatocellular carcinoma (HCC) and gastric cancer (GC), and is correlated with the prognostic outcomes of above malignancies (5–11). In lung adenocarcinoma, miR-421 could be sponged by circ_0000567 and directly target TMEM100 mRNA, then regulated the migration and invasion (5). And Histone deacetylase 6 (HDAC6) acted as a metastasis supporter induced the Wnt/β-catenin signaling pathway by suppressing TMEM100 expression in non-small cell lung cancer (NSCLC) (6). In PC, GATA binding protein 5-mediated transcriptional activation of TMEM100 suppresses cell proliferation, migration and epithelial-to-mesenchymal transition (7). Elevated TMEM100 level inhibits pulmonary metastasis of GC cells and enhances xenograft tumor sensitivity to 5-FU therapy (9). A study at the cellular level revealed that TMEM100 modulates TGF-β signaling pathway to inhibit CRC progression (12). However, the significance of TMEM100 expression in CRC tissues remains unclear.

Hypoxia-inducible factor-1α (HIF-1α), a key protein in cellular response to the hypoxia, has clear tumorigenesis effects (13–15). Angiogenesis induced by the HIF-1α/VEGF pathway is pivotal for tumor migration and invasion in CRC (16, 17). In consideration of the role of TMEM100 on angiogenesis, endothelial cell migration and proliferation during embryonic development, we speculate that TMEM100 was potentially associated with HIF-1α in CRC. However, the relationship among TMEM100, HIF-1α and CRC has never been reported.



Materials and Methods


Clinical Samples and Tissue Microarray (TMA)

Twenty-three primary paired CRC samples containing adjacent tissues from the Second Affiliated Hospital of Xi’an Jiaotong University (Xi’an, China) were subjected to western blotting as well as RT–qPCR. Prior to sample collection, each patient signed an informed consent form. Permission for this study was obtained from the Clinical Research Ethics Committee of the Second Affiliated Hospital of Xi’an Jiaotong University (#2019022).

The TMAs (HColA180Su15, HCol-Ade180CS-01) with 164 adjacent and 186 CRC tissues were procured from Shanghai Outdo Biotech (China). The CRC tissues on the TMAs correspond to the clinicopathological parameters (age, gender, tumor diameter, tumor location, tumor invasion, lymph node metastasis, organ metastasis and AJCC stage) of the CRC patients. And 101 CRC tissues correspond to the follow-up information of CRC patients. Operative period was from January 2009 to October 2009, while the follow-up time was July 2015. Follow-up intervals were 6.7 to 7.2 years.



Cell Lines and Culture

HT29, CaCo2, HCT116, SW480, DLD1 and HUVEC cell lines were acquired from the American Type Culture Collection (ATCC). NCM460 and HCoEpic normal human colon cell lines and Lovo cell line were acquired from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China). PCR tests did not reveal any mycoplasma contamination. DLD1 and Lovo cells were grown in RPMI 1640 medium, and other cells were grown in high-glucose DMEM with 100 mL/L fetal bovine serum (FBS, Gemini, USA) in a humidified 5% CO2 incubator at 37°C. To induce hypoxia, cells were cultured with 1% O2, 94% N2 and 5% CO2 (vol/vol) at 37°C.



Lentiviral Infections and Generation of a Stable Cell Line

HCT116 cells were infected with the lentiviral vectors for TMEM100 overexpression or negative control lentiviral vectors (Shanghai Genechem Co., Ltd.). The efficiency of infection was determined by western blotting. Then, we used a medium with 2 μg/mL puromycin to establish stable overexpressing (LV-TMEM100) or negative control (LV-vector) HCT116 cell lines.



SiRNA Transfection

SW480 cells were transfected with TMEM100 specific siRNAs (GenePharma, Shanghai, China). The siRNA sequences were: si-TMEM100-1: 5`-CAGACUUUAUGUUCAUAGUUCUUCCUC-3`; si-TMEM100-2: 5`-CUUCCACAACUACAUAGGGUAUUGUUU-3`; the negative control sequence (si-NC) was UUC 5`-UCCGAACGUGUCACGUTT-3`. The lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA) was supplemented to enable transfection, as instructed by the manufacturer. siRNAs were transfected for 6 h at a final concentration of 50 nM.



Immunohistochemistry (IHC) and Evaluation of Immunostaining Intensity

Paraffin-embedded sections and the TMAs were dewaxed with dimethylbenzene and gradient alcohol (100%, 95%, 85% and 75%). The antigen retrieval was done by microwaving sections in 0.01 M sodium citrate, pH 6.0. Then, incubation of slides was done for 20 min in the presence of 3% hydrogen peroxide after which they were incubated in the presence of goat serum at room temperature (RT) for 30 min. Then, overnight incubation of slides was done in the presence of primary antibodies (anti-TMEM100 (GeneTex, GTX83507); anti-Ki-67 (Servicebio, GB111499); anti-HIF-1α (Servicebio, GB13031-1); anti-CD34 (Servicebio, GB13013)) at 4°C followed by supplementation with biotinylated anti-IgG and incubation at 25°C for 1 h. After incubation for 30 min with streptomycin-HRP, sections were DAB-stained, counterstained with hematoxylin, washed with water, dehydrated by an alcohol gradient (80%, 90% and 100%) and dimethylbenzene. Lastly, neutral balsam and coverslips were used to seal the slides.

For the immunostaining intensity evaluation of TMAs, two pathologists that were not aware of clinicopathological features as well as patient outcomes independently scored the tissue microarrays. Immunoreactivity was grouped into 5 grades (% score) based on stained cells % as: 0, no staining; 1, 1-25%; 2, 26-50%; 3, 51-75%; and 4, >75%. Staining intensities were assigned into 4 grades (intensity score) as follows: 0, negative; 1, weak; 2, moderate; and 3, strong. Then, a final overall histological score was calculated by multiplication of the two values (18). An overall score of 0–12 was calculated and graded as low (score ≤ 5) or high (score>5) in order to estimate the relationship between the expression of TMEM100 and the clinicopathological parameters of CRC patients.

For the immunostaining intensity evaluation of murine subcutaneous tumors’ tissues, Image-Pro Plus 6.0 software (Media Cybernetics, Maryland United States) was used to calculate the ratio of the positively stained area to the area of the field of view, and the integral optical density from the five fields was taken.



Hematoxylin-Eosin (HE) Staining

Paraffin-embedded sections were dewaxed with xylene, dehydrated with gradient ethanol, stained with Harris’s hematoxylin for 5 min, differentiated with 0.1% hydrochloric acid alcohol, stained with 1% eosin for 2 min, dehydrated by gradient ethanol, cleared in xylene, mounted with neutral gum, and observed and photographed under a microscope.



Western Blotting

Total proteins from cultured cells and clinical patient samples were extracted by the RIPA buffer (Beyotime, China) containing a protease suppressor cocktail (1:100, Bimake). For the western blotting assay, protein separation was achieved using 10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) after which they were transferred to polyvinylidene difluoride membranes. Membranes were blocked with Tris-buffered saline supplemented with 0.1 mL/L Tween 20 (TBST) and fresh prepared 100 g/L non-fat milk for 2 h at 25°C, followed by incubation at 4°C overnight in the presence of various primary antibodies (anti-TMEM100 (GeneTex, GTX83507); anti-CDK2 (Abcam, ab32147); anti-Cyclin D1 (Abcam, ab40754); anti-PCNA (Abcam, ab92552); anti-Bcl-2 (Abcam, ab182858); anti-caspase3 (Abcam, ab32351); anti-cleaved caspase3 (Abcam, ab32042); anti-PARP1 (Abcam, ab191217); anti-cleaved PARP1 (Abcam, ab32064); anti-E-cadherin (Abcam, ab40772); anti-Vimentin (Abcam, ab8978); anti-HIF-1α (Abcam, ab1) and anti-β-actin (Fdbio science, AP0060)). Then, they were washed using a TBST buffer followed by 1 h of incubation in the presence of goat anti-rabbit IgG-HRP antibodies (1:10000, Zhuangzhi, EK020) and goat anti-mouse IgG-HRP antibody (1:10000, Fdbio science, FDR007) at 25°C. Visualization of immunoreactivity was done using an ECL substrate (Bio–Rad, Hercules, CA) on the Gene Gnome XRQ System. ImageJ (National Institute of Health, MD) was used for densitometric assessments.



Immunoprecipitation (IP) Assay

HCT116 cells were infected with LV-TMEM100 or LV-vector lentiviruses, and then cultured for 48 h under hypoxic conditions. Then total proteins from cultured cells were extracted by the RIPA buffer (Beyotime, China) containing a protease suppressor cocktail (1:100, Bimake). For the IP assay, first, anti-HIF-1α was mixed with Protein A/G PLUS-agarose (RuiSike Science & Technology Co., Ltd, China) at 4°C for 12 h. Then, antibody- agarose complex was incubated with the protein samples for 12 h at 4°C. After washing using a washing buffer, the antibody-agarose-protein complex was obtained and mixed with SDS-PAGE sample loading buffer (Beyotime, China). Then the mixture was heated in a Dry thermostat (Beyotime, China) at 95°C for 10 min. The protein solutions were further evaluated by the western blotting assay.



Real-Time Quantitative PCR (RT–qPCR) Assay

The TRIzol reagent (Invitrogen, USA) was used for total RNA extraction, as denoted by the manufacturer. Then, the Transcript First-Strand cDNA Synthesis Kit (Roche, Denmark) was used to reverse-transcribe 2 µg of total RNA to cDNA. RT–qPCR was done using a FastStart Universal SYBR Green Master Mix (Roche, Denmark) on a 7500 Fast Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). Relative levels of target genes were evaluated by the 2-△△Ct approach, with normalization to β-actin. Primer sequences for this assay were: β-actin (forward 5’-GGCACCACACCTTCTACAATGAGC-3’, reverse 5’-GATAGCACAGCCTGGATAGCAACG-3’), TMEM100 (forward 5’-GGAGAAGAGCCCCAAGAGTG -3’, reverse 5’- TGCAGCGGTAGCAGGAGA-3’), HIF-1α (forward: 5’-AGCTTCTGTTATGAGGCTCACC-3’, reverse: 5’-TGACTTGATGTTCATCGTCCTC-3’).



Cell Viability Analysis

Cell viabilities were assessed by the Cell Counting Kit-8 (CCK-8, 7sea Pharmatech Co., Ltd). Cells were seeded in each well of a 96-well plate in 200 μL of medium (5 × 103 cells/well) and then the CCK-8 reagent (10 μL) dissolved in 90 μL of serum-free medium was added to each well 24 h, 48 h, 72 h, and 96 h after plating. After the addition of the CCK-8 solution, cell incubation was done at 37°C for 30 min. Absorbance was measured at 450 nm.



Colony Formation Assay

Cells were cultured into 6-well plates (1×103 cells/well) followed by incubation for 14 days at 37°C. Then, they were fixed in paraformaldehyde (4%) followed by crystal violet staining. Colony counts were done visually.



Cell Migration Assay

Cell migration assay was assessed by using a Transwell chamber with a pore size of 8 μm (Corning, USA). A total of 8×104 cells were seeded into the upper chamber in 200 µL of serum-free DMEM. Then, 600 µL of DMEM with 200 mL/L FBS was added to the lower chamber. After incubation at 37°C with 50 mL/L CO2 for 24 h, the cells that had migrated through the membrane were fixed in 40 mL/L paraformaldehyde and stained with crystal violet, while the cells in the upper chamber were carefully removed using a cotton swab. After drying, the cells that had migrated were counted with a microscope at 100× magnification in 5 random fields.



Cell Invasion Assay

Cell invasion assay was assessed by using a Transwell chamber with a pore size of 8 μm (Corning, USA). For cell invasion assay, the upper chambers were covered with Matrigel (60 μL, 200 mg/mL, BD Biosciences, San Diego, CA, USA), and concreted for 4 h in the incubator. The next steps were same as the cell migration assay.



Flow Cytometry

For cell cycle assessment, 2×105 cells in each group were grown in 6-well plates in serum-free media for 36 h to maintain the same cell cycle. Then the media was replaced by high-glucose DMEM with 100 mL/L fetal bovine serum to culture cells for another 24 h. Adherent cells were digested into a centrifuge tube and washed gently to remove trypsin. Then 70% ice ethanol was added to fix the cells overnight at 4 °C. The next day, fixed cells were washed and resuspended in 500 μL PI/RNase Staining Buffer (BD Biosciences, Franklin Lakes, NJ, USA). After 15 min of incubation in the dark at 25°C, flow cytometry (BD Biosciences, Franklin Lakes, NJ, USA) was performed to assess cell cycle phases.

For cell apoptosis analysis, a PE Annexin V/7-amino-actinomycin Detection (7-AAD) Kit (BD Biosciences) was used according to the manufacturer’s instructions. To determine the apoptosis fraction, cells without PE Annexin V or 7-AAD staining were recognized as negative control. And cells staining with only PE Annexin V were in early apoptosis stage. Cells staining with PE Annexin V and 7-AAD were in late apoptosis stage.



Enzyme-Linked Immunosorbent Assay (ELISA)

The amount of cell-secreted VEGF proteins in the medium were evaluated by a VEGF ELISA kit, as instructed by the manufacturer (#KE00085, Proteintech, CA, USA).



In Vitro Tube Formation Assay

This assay consisted of three groups: the control group (LV-vector group), the TMEM100 overexpression group (LV-TMEM100 group), and the TMEM100 overexpression with MG132 treatment group (LV-TMEM100 + MG132 group). HCT116 cells (20×104) infected with LV-vector virus were inoculated in 6-well cell culture plates in the LV-vector group. HCT116 cells (20×104) infected with LV-TMEM100 virus were inoculated into 6-well cell culture plates in the LV-TMEM100 group and the “LV-TMEM100+MG132” group. For the “LV-TMEM100 + MG132” group, MG132 was supplemented to the medium and cultured for 42 h before media collecting. The final MG132 concentration was 1 μM. All cells were grown in hypoxic environments for a total of 48 h. Then the media in the indicated groups were collected. Then HUVECs (1×104 cells/well) were inoculated in 48-well cell culture plates precoated with polymerized Matrigel (BD Biosciences, San Diego, CA, USA) followed by incubation at 37°C for 4 h in conditioned media derived from the indicated cells under normoxic conditions. Changes in cellular morphology were microscopically observed. Total tube lengths in five random view-fields/well were determined by ImageJ software, and the mean value obtained. This assay was performed in triplicate.



Mouse Models

The in vivo experiment was permitted by the Animal Care Committee of Xi’an Jiao Tong University (NO.XJTULAC2019-988). Athymic nude male mice (BALB/c, 4 weeks old) were acclimatized to laboratory conditions (12 h/12 h dark/light, 23°C, 50% humidity, and ad libitum provision of water and food) for 2 weeks before experimentation. The animals were maintained in specific pathogen-free environments. They were age-matched, randomized into groups (n=5/group), and randomly kept in various squirrel cages.

For xenograft tumor models, every mouse was subcutaneously administred with 7×106 indicated cells into the left groin. The long diameter (R) and short diameter (r) of subcutaneous tumor were measured every five days using a vernier caliper. The tumor volume was calculated following the equation: Volume = (R×r2)/2. After 3 weeks, the mice were euthanized by an overdose of barbiturate (intravenous injection, 150 mg/kg pentobarbital sodium) to collect tissues. For lung metastasis models, the tail vein of each mouse was injected with 8×106 of the indicated cells. After one month, mice were euthanized by an overdose of barbiturate to collect tissues. Murine tissues fixed in 10% formaldehyde were cleared in xylene, dehydrated with gradient ethanol, embedded in paraffin, and serially sectioned at 5 μm for HE staining and IHC. The numbers and sizes of metastatic tumors in the lungs from mice were evaluated by two pathologists who were blinded to mice grouping information. After which lung tissues were subjected to HE staining.



Statistical Analysis

GraphPad Prism 8.0.1 (La Jolla, CA, USA) and SPSS 22.0 (United States) were used for data analyses. The hazard ratio and its 95% confidence interval were calculated by Cox proportional hazards regression. One-way ANOVA, chi-square test, or Fisher’s exact tests were used to assess the associations between TMEM100 levels and clinic-pathological features. The t test or the one-way ANOVA were used for analysis of continuous data. Kaplan–Meier and log-rank tests were used to estimate the overall survival rates by GraphPad Prism 8.0.1. Randomization and blinding were done in all assays. Data are shown as mean ± SD, p<0.05 denoted significance.




Results


TMEM100 Is Suppressed in Human CRC Tissues, and Was Established to be an Independent Prognostic Factor Indicating Detrimental Prognosis in CRC

Compared to normal tissues (8.7%), mRNA levels of TMEM100 were downregulated in 21 out of 23 (91.3%) human CRC tissues (Figure 1A). In six pairs of CRC tissues, TMEM100 protein levels were markedly suppressed in CRC tissues, relative to normal adjacent tissues (Figure 1B). In comparison with that in normal colon epithelial cell line (NCM460), TMEM100 protein levels were downregulated in all 6 CRC cell lines (HT-29, HCT116, Lovo, SW480, CaCo2, and DLD1) (Figure 1C). Then, we further evaluated TMEM100 expression in 186 CRC and 164 adjacent tissues in tissues microarrays using IHC, and revealed that TMEM100 was dramatically suppressed in CRC tissues relative to adjacent tissues (Figure 1D). These findings imply that downregulation of TMEM100 plays a role in the pathogenesis of CRC.




Figure 1 | TMEM100 is downregulated in CRC tissues and reduced TMEM100 expression indicated detrimental prognosis. (A) Relative mRNA expression level of TMEM100 in 23 CRC tissues and paired adjacent tissues was evaluated by RT-qPCR. Two-sided t-test. (B) Western blotting analysis of TMEM100 in 6 paired adjacent tissues and CRC tissues. β-actin was used as a reference control. Two-sided paired t-test. (C) Western blotting analysis of TMEM100 level in six human CRC cell lines and two human normal intestinal epithelial cell lines (***p < 0.001 vs NCM460). β-actin was used as a reference control. Two-sided t-test. (D) Representative images of IHC staining of TMEM100 in 186 CRC tissues and 164 adjacent tissues in the tissue microarray. Scale bar = 50 μm. Two-sided t-test. (E, F, G) Overall survival was defined as the interval between the date of surgery and the date of death or last follow-up. The CRC patients (n=101) with lower TMEM100 level indicated detrimental prognosis (E). The CRC patients (n=101) with positive regional lymph node metastasis indicated detrimental prognosis (F). The CRC patients (n=101) with both lower TMEM100 level and positive regional lymph node metastasis indicated worse prognosis (G). Data are presented as the mean ± SD. **p<0.01, *** p<0.001.



The TMEM100 protein level was tested in 186 CRC tissues and 164 adjacent tissues in the tissue microarray using IHC. The higher and lower expression levels of TMEM100 were evaluated semiquantitatively by the staining intensity (high score: 6-12; low score: 1-5). Futher statistical analysis results showed the lower TMEM100 protein levels were associated with age, tumor diameter, tumor invasion, lymph node metastasis and metastasis (Table 1). The Kaplan–Meier survival analyses revealed that lower relative TMEM100 protein levels in CRC patients correlated with worse overall survival compared with higher TMEM100 expression in CRC patients (Figure 1E). And the CRC patients with low TMEM100 level and positive regional lymph node metastasis indicates detrimental prognosis (Figures 1F, G). The univariate and multivariate Cox regression results indicated that lower TMEM100 protein levels is an independent risk factor for a detrimental prognostic outcomes in CRC patients (Tables 2, 3).


Table 1 | The association of TMEM100 expression with the clinicopathological characteristics of 186 CRC patients.




Table 2 | Prognostic factors in 101 CRC patients by univariate Cox proportional hazards model analysis.




Table 3 | Prognostic factors in 101 CRC patients by multivariate Cox proportional hazards model analysis*.





TMEM100 Inhibits Proliferation by Arresting G1/S Transition Phase of Cell Cycle and Promotes Apoptosis in CRC

Malignant proliferation is one of the distinct features of CRC, and we investigated whether TMEM100 impedes CRC cell growth. In this study, HCT116 cells in the TMEM100 overexpression group exhibited a lower proliferation rate than those in the control group, whereas downregulating TMEM100 in SW480 cells led to increased cell proliferation rates (Figure 2A). In the colony formation assays, HCT116 cells in the TMEM100 overexpression group had a diminished ability for colony formation, relative to the control group (Figure 2B). The downregulation of TMEM100 enhanced the colony formation capacity of SW480 cells, relative to the control group (Figure 2B). In the xenograft mouse models, tumors formed by the TMEM100-overexpressing HCT116 cells were found to be slow-growing and distinctly smaller than those formed by the control cells (Figures 2C, D, E). The IHC staining revealed that the percentage of Ki67 positive cells of subcutaneous xenograft tumors were significantly lower in the TMEM100 overexpression group, relative to control group (Figure 2F). These findings imply that upregulation of TMEM100 inhibits CRC cell proliferations.




Figure 2 | TMEM100 inhibits proliferation of CRC cells in vitro and in vivo. (A) CCK-8 assays were used to detect the impact of TMEM100 on the proliferation rate of CRC cells. Two-sided t-test. Red asterisks represent si-NC vs. si-TMEM100-1. Blue asterisks represent si-NC vs. si-TMEM100-2. (B) Colony formation assay was used to detect the impact of TMEM100 on the colony formation capacity of CRC cells. Two-sided t-test. (C) General observation of subcutaneous tumors in nude mice (n = 5/group) were displayed. (D) The weight of subcutaneous tumors in nude mice (n = 5/group) was analyzed. Two-sided t-test. (E) The growth curve of the subcutaneous tumors (n=5/group). Two-sided t-test. (F) The representative pictures of the subcutaneous tumors stained by HE and the Ki67 expression stained by IHC (n=5/group). Scale bar = 100 μm. Two-sided t-test. All data are presented as the mean ± SD. *p<0.05, **p<0.01, *** p<0.001.



We sought to identify the pathomechanisms through which TMEM100 inhibits CRC cell proliferation. A cell cycle analysis was conducted to determine if upregulation of TMEM100 induces the suppression of CRC cell growth by arresting a specific phase of the cell cycle. Flow cytometry revealed that HCT116 cells in the TMEM100 overexpression group exhibited a markedly low abundance of cells in S phase, relative to the control group, and the percentage of cells in G1 phase was markedly high (Figure 3A). Downregulating TMEM100 in SW480 cells enhanced the abundance of cells in S phase (Figure 3A). Thus, upregulation of TMEM100 seemed to inhibit G1/S transition during cell cycle progression. To further clarify how TMEM100 suppresses G1/S phase transition, key regulators related to G1 phase were evaluated at protein levels. It was found that upregulation of TMEM100 markedly reduced the levels of cyclin D1, CDK2 as well as PCNA proteins in HCT116 cells; however, downregulation of TMEM100 evidently increased the level of these three proteins in SW480 cells (Figure 3C).




Figure 3 | TMEM100 arresting cell cycle and potentiating apoptosis of CRC cells. (A) The representative pictures of the distribution of different cell cycle phases in indicated cells by flow cytometry. The percentage of cells in different phase of cell cycle was analyzed. Two-sided t-test. (B) The representative pictures of the percentage of cells undergoing apoptosis by flow cytometry in indicated cells. Two-sided t-test. (C) Western blotting analysis of TMEM100, CycilnD1, CDK2, PCNA, PARP1, cleaved-PARP1, Bcl-2, caspase3 and cleaved-caspase3 expression in indicated cells. β-actin was used as a reference control. Two-sided t-test. Data are presented as the mean ± SD. *p<0.05, **p<0.01, *** p<0.001.



Meanwhile, the results of flow cytometry analysis showed that the percentage of apoptotic cells was dramatically increased in TMEM100 overexpressing HCT116 cells, but reduced in TMEM100 downregulated SW480 cells compared with control cells (Figure 3B). Cleaved-PARP1 and cleaved-caspase3 are the protein markers of apoptosis process, and Bcl-2 is a distinguished anti-apoptotic protein. The results of western blotting exhibited the protein level of PARP1, cleaved-PARP1, caspase3, cleaved-caspase3 and Bcl-2 (Figure 3C), which indicated that cell apoptosis was promoted by TMEM100 in CRC cells. These findings imply that TMEM100 inhibits cell proliferation via the arrest of G1/S phase transitions and induces apoptosis in CRC.



TMEM100 Inhibits the Migratory Ability of CRC Cells

Enhanced migration is another feature of CRC. Cell migration assay revealed that migrated and invasive HCT116 cells were markedly low in TMEM100 overexpression group, relative to control group (Figures 4A, B). For SW480 cells, the numbers of migrated and invasive cells were significantly high in si-TMEM100 groups, relative to si-NC groups (Figures 4A, B). Vimentin and E-cadherin are epithelial to mesenchymal transition (EMT) biomarkers, and western blotting analysis revealed that E-cadherin levels in HCT116 cells were elevated and Vimentin levels were low in TMEM100 overexpression group, compared to control group (Figure 4C). Consistently, E-cadherin as well as vimentin levels exhibited opposite patterns when TMEM100 was downregulated in SW480 cells (Figure 4C). Then, we evaluated the in vivo effects of TMEM100 on migratory capacities of CRC cells by injecting mice tail veins with HCT116 cells infected with LV-vector or LV-TMEM100 lentivirus. Histology showed that the abundance of metastatic tumors in lungs of TMEM100 overexpression group were low, relative to control group (Figure 4D). These findings imply that TMEM100 suppresses metastasis of CRC cells by regulating EMT.




Figure 4 | TMEM100 restrains the migration and invasion capacities of CRC cells. (A, B) Transwell assays were performed to evaluate the capacities of migration and invasion in indicated cells. Scale bar = 100 μm. Two-sided t-test. (C) Western blotting analysis of E-cadherin and Vimentin expression in indicated cells. β-actin was used as a reference control. Two-sided t-test. (D) The representative pictures of the metastatic neoplasm in the lung of the mice metastasis model (n=5/group). The section which presents the largest number of CRC cells colonized foci was selected, and the yellow arrow represents the foci of which diameter was a minimum of 1.5 μm. Bar in the left picture represents 5 μm, and bar in the right picture represents 1.43 μm. Two-sided t-test. Data are presented as the mean ± SD. *p<0.05, **p<0.01, ***p<0.001.





TMEM100 Is Negatively Associated With HIF-1α Protein Levels in CRC Tissues

We presented the potential association of TMEM100 with HIF-1α in the introduction. The excessive accumulation of HIF-1α further exerts its cancer-promoting effect under hypoxia. HIF-1α accumulation can be induced when cells were cultured under 1% O2 condition for 12 h in vitro (13, 19). To establish the significance of TMEM100 in CRC, we evaluated HIF-1α levels in a tissue microarray with the same catalog number as that used to evaluate TMEM100 levels via IHC. TMEM100 protein levels were negatively associated with HIF-1α levels (Figures 5A, B). The mRNA levels of HIF-1α showed no changes when TMEM100 was overexpressed (Figure 5C). However, HIF-1α protein levels were markedly low under normoxic and hypoxic environments in the TMEM100 overexpression group, relative to the control group (Figure 5D). Vascular endothelial growth factor (VEGF) is among the HIF-1α target genes, and VEGF secreted by cells binds to its receptor and induces the generation of new blood microvessels. Overexpressions of TMEM100 markedly reduced VEGF release in HCT116 cells under normoxic and hypoxic conditions (Figure 5E). We then examined the influence of TMEM100 on HIF-1α protein content and microvascular density in subcutaneous xenograft tumors. The detection of endothelial cell markers on microvessels is one of the recognized methods to evaluate tumor angiogenesis. For example, CD34 has been used to evaluate angiogenesis in many malignancies. The IHC staining revealed that HIF-1α protein levels of subcutaneous xenograft tumors were significantly lower, and the microvascular density marked by CD34 was drastically suppressed in the TMEM100 overexpression group, relative to control group (Figure 5F). Therefore, we confirmed that the overexpression of TMEM100 led to a reduction in HIF-1α content and microvascular density.




Figure 5 | TMEM100 overexpression leads to a reduction in HIF-1α content and microvascular density in CRC. (A) Representative images of IHC staining of TMEM100 and HIF-1α in CRC tissues. Scale bar = 100 μm. (B) The correlation between TMEM100 and HIF-1α expression in CRC specimens was analyzed, and the linear correlation coefficient and statistical significance were indicated. (C) HCT116 cells were infected with LV-vector or LV-TMEM100 lentiviruses. The relative mRNA expression of HIF-1α was detected by RT-qPCR in indicated cell under normoxic and hypoxic conditions. ANOVA. (D) TMEM100 and HIF-1α expression in indicated cell was detected by western blotting. β-Actin was used as a reference control. Two-sided t-test. (E) The extracellular concentration of VEGF released by indicated cells was detected by ELISA. ANOVA. (F) The representative pictures of the HIF-1α and CD34 expression of subcutaneous tumors (n=5/group) stained by IHC. Two-sided t-test. (G) Control or TMEM100 overexpression cells were incubated with cycloheximide (CHX, 50 μg/mL) for the indicated time. The cell lysates were then analyzed by western blotting. The dot lines indicated the half-life of the HIF-1α. β-actin was used as a reference control. Two-sided t-test. Data are presented as the mean ± SD. *p<0.05, **p<0.01, ***p<0.001. NS, no significance.





TMEM100 Inhibits the Migration and the Angiogenesis Induction Capacities of CRC Cells by Enhancing HIF-1α Degradation via Ubiquitination/Proteasome Pathway

Given that TMEM100 had no influence on the mRNA level of HIF-1α during normoxia and hypoxia, which indicated that TMEM100 had no effect on HIF-1α transcription, we assessed whether TMEM100 impacts HIF-1α degradation. Cycloheximide (CHX), a common reagent used to inhibit protein synthesis, blocks the elongation phase of eukaryotic translation. To further reveal whether TMEM100 regulated HIF-1α stability, we treated CRC cells with CHX to prevent protein synthesis. Overexpressed TMEM100 shortened the half-life of HIF-1α from 61 min to 40 min, which hinted that TMEM100 might be involved in HIF-1α degradation processes (Figure 5G). The ubiquitin–proteasome degradation system is the major pathway of HIF-1α degradation. HIF-1α was immunoprecipitated from cells, and the abundance of HIF-1α-linked ubiquitin evaluated by immunoblotting with an anti-ubiquitin antibody. The amounts of HIF-1α-conjugated ubiquitin from TMEM100-overexpressing cells were markedly low, compared with control cells during hypoxia (Figure 6A). We further tested whether TMEM100 inhibits HIF-1α degradation via the proteasome. TMEM100-overexpressing HCT116 cells were treated with MG132, an inhibitor of proteasome, under hypoxia. The results showed that overexpressing TMEM100 significantly decreased HIF-1α levels. However, in the presence of MG132, TMEM100 overexpression did not suppress HIF-1α levels, implying that TMEM100 inhibits HIF-1α accumulation in a proteasome-dependent manner (Figure 6B). Thus, TMEM100 promotes HIF-1α degradation via the ubiquitination–proteasome pathway in CRC cells.




Figure 6 | TMEM100 inhibits the migration and angiogenesis induction capacities of CRC cells by promoting the degradation of HIF-1α via ubiquitination/proteasome pathway. (A) HCT116 cells were infected with LV-TMEM100 or LV-vector lentiviruses, and then cultured for 48 h under hypoxic conditions. Cell extracts were immunoprecipitated (IP) using anti-HIF-1α antibody and blotted with anti-ubiquitin antibody. HIF-1α was used as a reference control. Two-sided t-test. (B) All cells were grown in hypoxic environments for a total of 48 h. For cells in “LV-TMEM100 + MG132” group, MG132 (1 μM) was supplemented to the medium. The cell lysates were then analyzed by western blotting. β-actin was used as a reference control. Two-sided t-test. (C) Transwell assays were performed to evaluate the migration capacities of cells in indicated groups under hypoxic conditions. Scale bar = 100 μm. Two-sided t-test. (D) The in vitro tube formation assays were performed to evaluate the angiogenesis induction capacity of HCT116 cells in indicated groups. Two-sided t-test. (E) The schematic representation of TMEM100 promoting HIF-1α degradation via ubiquitination/proteasome pathway. HRE means hypoxia-response element. Data are presented as the mean ± SD. *p<0.05, **p<0.01, ***p<0.001. NS, no significance.



We next verified the relationship of TMEM100, HIF-1α, angiogenesis and migration in CRC. HCT116 cells were grown in hypoxic conditions, and the TMEM100 overexpression group showed fewer migrating cells than the control group (Figure 6C). Then cells were treated with MG132 to block the ubiquitin/proteasome degradation of HIF-1α. Cells in the “TMEM100+MG132” group showed significant more migrating cells than those in the TMEM100 overexpression group, but considerable migrating cells relative to the control group (Figure 6C). In vitro tube formation assay revealed that cells in TMEM100 overexpression group showed weaker angiogenesis induction capacity, relative to the control group (Figure 6D). Cells in the “TMEM100+MG132” group showed significantly enhanced angiogenesis induction capacity compared with the TMEM100 overexpression group (Figure 6D). Thus, overexpressed TMEM100 suppressed the migration as well as angiogenesis induction capacity of CRC cells, but these effects were reversed by blocking the ubiquitin/proteasome degradation pathway process using MG132, which hinted that TMEM100 inhibited the migration and the angiogenesis induction capacities of CRC cells by impacting HIF-1α degradation via the ubiquitination/proteasome pathway (Figure 6E).




Discussion

CRC has a relatively diverse genetic background and pathological characteristics. The currently recognized CRC pathogenesis mainly involves the chromosomal instability, microsatellite instability and serrated pathways (20). These pathways ultimately lead to the imbalance of proliferation and apoptosis and the gain of invasion and migration properties in cancer cells (21–23). APC is mutated in most CRC, and HIF-1α directly suppresses the APC promoter by occupying a specific site, causing decreased mRNA and protein levels of APC (15). Meanwhile APC reduces HIF-1α mRNA in a β-catenin l-dependent manner, implying that HIF-1α downregulates APC further improves tumor cell survival under hypoxia (24). And the functional loss of APC caused by APC mutation facilitates cancer cell survival by inducing HIF-1α expresses. The effect of TMEM100 in inhibiting HIF-1α accumulation interfered above vicious circle, and impeded the progression of CRC ultimately. CRC cells are commonly characterized by uncontrolled proliferation, invasion, and metastasis (25). Increased proliferation caused by oncogenic mutations is mediated by genetic as well as epigenetic alterations in the apoptotic pathway, ultimately leading to uncontrolled tumor growth, as reflected in shortened cell mitotic time in terms of the cell cycle. TMEM100, in contrast, caused CRC cell cycle arrest. The main effect caused by rapid proliferation of tumor tissues can affect intestinal peristalsis, digestion and absorption, and even cause intestinal obstruction. Moreover, due to the loss of body nutrients caused by the rapid growth of tumor tissues, patients often show cachexia in the later stage of CRC. Invading or metastatic cancer cells grow in other tissues or organs, such as common liver and lung metastases, which more seriously prevent other tissues or organs from exercising their normal function. Metastatic cancer also brings even more severe challenges to the treatment of cancer. At the molecular biology level, migration and invasion are other prominent features of cancer cells including CRC, and EMT leads to a tendency towards metastasis and invasion (26, 27). However, TMEM100 inhibited the EMT process of HCC, lung cancer, PC and CRC.

Tumor proliferation and invasion are closely related to angiogenesis in cancer tissues. With the rapid proliferation of cancer cells, unfavorable factors such as low oxygen, low pH, and metabolite accumulation inside the tumor tissue cause cancer cells to actively induce the formation of neovascularization, and cancer cells that break through the neovascular basement membrane can be transferred to other tissues or organs via the bloodstream (28). Newly formed blood vessels are more conducive to the metastasis of cancer cells, as the neovascular base membrane is thinner and easier to penetrate, thus allowing cancer cells to enter the blood circulation and spread to other tissues, while relatively mature vascular wall cancer cells are difficult to penetrate. It has been established that a higher density of blood vessels in tumors increases the possibility of vascular infiltration in cancer cells and favors cancer cell spread and distant metastasis (29).

Angiogenesis is induced by HIF-1α through the activation of target genes, including VEGF in CRC. Under insufficient oxygen supply conditions, HIF-1 activates the expressions of VEGF genes involved in migration and colonization of vascular endothelial cells (30). Activation of VEGF allows for the continuity of neovascularization in CRC tissue with the host vasculature (31). We established that TMEM100 was inversely associated with protein levels of HIF-1α in CRC tissues, further indicating that TMEM100 promotes the ubiquitin/proteasome degradation pathway of HIF-1α and reduces the VEGF release, a downstream gene of HIF-1α, which subsequently inhibits CRC cell migration and induced angiogenesis. CRC cells achieve survival in different hypoxic states through the VEGF/KDR/HIF-1α autocrine circuit (32). The reduction in HIF-1α content and VEGF release in CRC cells caused by TMEM100 disrupted this circuit and decreased the microvessel density. Microvessel density has been shown to be an important factor in patient prognosis in a variety of malignancies including CRC (28, 33). TMEM100 reduced the microvessel density in the subcutaneous graft tumors.

Molecular targeted drugs are newly emerging therapeutics for CRC (34), and one of the antitumor effects of cetuximab is inhibition of the PI3K pathway which in turn downregulates HIF-1α synthesis and activity (35). In emerging molecular treatment regimens, the use of biological agents including VEGF inhibitors and EGFR inhibitors is gradually showing strong therapeutic effects. Therefore, the inhibition of HIF-1α accumulation and VEGF release by TMEM100 suggests that TMEM100 is a potential treatment target for CRC. A study revealed that TMEM100 modulates TGF-β signaling pathway in CRC. Our proposal that TMEM100 participates in the CRC angiogenesis process by affecting the degradation of HIF-1α is a completely new research direction.

In addition, TMEM100 is an important downstream gene of the BMP9/BMP10 signaling pathway during the establishment of primitive cardiovascular system. In oncology, BMP signal acts as a tumor suppressor in intestinal adenoma formation, and the inhibition of BMPs promotes EMT (36). Knockdown of BMP receptors in epithelial or stromal cells leads to excessive proliferation of intestinal epithelial cells and the formation of precancerous polyps (36, 37). And TMEM100 also showed the function of inhibiting the migration and EMT process in CRC. The relationship between BMPs and TMEM100 in CRC is intriguing.
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Purpose

To characterize the entire profile of m6A modifications and differential expression patterns for circRNAs in colorectal cancer (CRC).



Methods

First, High-throughput MeRIP-sequencing and RNA-sequencing was used to determine the difference in m6A methylome and expression of circRNA between CRC tissues and tumor-adjacent normal control (NC) tissues. Then, GO and KEGG analysis detected pathways involved in differentially methylated and differentially expressed circRNAs (DEGs). The correlations between m6A status and expression level were calculated using a Pearson correlation analysis. Next, the networks of circRNA-miRNA-mRNA were visualized using the Target Scan and miRanda software. Finally, We describe the relationship of distance between the m6A peak and internal ribosome entry site (IRES) and protein coding potential of circRNAs.



Results

A total of 4340 m6A peaks of circRNAs in CRC tissue and 3216 m6A peaks of circRNAs in NC tissues were detected. A total of 2561 m6A circRNAs in CRC tissues and 2129 m6A circRNAs in NC tissues were detected. Pathway analysis detected that differentially methylated and expressed circRNAs were closely related to cancer. The conjoint analysis of MeRIP-seq and RNA-seq data discovered 30 circRNAs with differentially m6A methylated and synchronously differential expression. RT-qPCR showned circRNAs (has_circ_0032821, has_circ_0019079, has_circ_0093688) were upregulated and circRNAs (hsa_circ_0026782, hsa_circ_0108457) were downregulated in CRC. In the ceRNA network, the 10 hyper-up circRNAs were shown to be associated with 19 miRNAs and regulate 16 mRNAs, 14 hypo-down circRNAs were associated with 30 miRNAs and regulated 27 mRNAs. There was no significant correlation between the level of m6A and the expression of circRNAs. The distance between the m6A peak and IRES was not significantly related to the protein coding potential of circRNAs.



Conclusion

Our study found that there were significant differences in the m6A methylation patterns of circRNAs between CRC and NC tissues. M6A methylation may affect circRNA-miRNA-mRNA co-expression in CRC and further affect the regulation of cancer-related target genes.
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Introduction

The latest epidemiological data in 2020 show that colorectal cancer (CRC) is the third most common cancer in the world, with more than 1.93 million new cases, accounting for 9.7% of the world’s newly diagnosed cancers (1). Treatment of CRC includes surgery, radiation therapy, and chemotherapy (2). However, approximately one-quarter of patients have developed liver metastases at the time of first diagnosis, and patients with advanced CRC have a poor 5-year survival and quality of life (3, 4). This highlights the need for a better understanding of the underlying pathogenic mechanisms that promote the development of CRC to identify and treat CRC in the early stage.

N6-Methyladenosine (m6A), methylated adenosine at the N6 position, is the most abundant internal modification of RNAs in eukaryotes (5, 6). Methylation is a reversible epigenetic modification that affects the fate of modified RNAs (7). Methylation involes in RNAs behaviors regulation, such as pre-mRNA splicing, polyadenylation, regulation of RNA stability and long noncoding RNAs biological functions (8–10). In recent years, the function of methylation has been extensively studied in the progression of various cancers, including leukemia, glioma, breast cancer and liver cancer (11–14). M6A modification plays a double role in human carcinogenesis and suppression. Methyltransferases acting as “writers” and demethylases acting as an “erasers” are important for maintaining balanced Methylation. M6A reader proteins specifically recognize m6A transcripts and further regulate gene expression and tumor development (15).

Circular RNAs (circRNAs) characterized by a covalently closed loop produced via back-splicing are a novel class of non-coding RNAs. The connection between the 5’cap and the 3’end make them more stable and not susceptible to degradation (16, 17). CircRNAs can accumulate at high levels in cells and can also be detected in the sera and exosomes (18). Therefore, circRNAs may be a viable candidate as tumor biomarkers. In the past, circRNAs were considered a byproduct but recent evidence suggest that they play a key role in various biological functions, such as acting as microRNA sponges (19, 20), transcriptional regulators (21–23), and translational intermediates (24–26). Multiple studies have shown that circRNAs disorders are involved in cancer progression and tumor chemotherapy resistance (19–23, 27, 28).

M6A modifications are also widespread in both circRNAs and mRNAs. M6A modifications are also widely present in circular RNAs and may affect tumorigenesis and development through various mechanisms. Current research shows that activation of YAP1 by N6-Methyladenosine-Modified circCPSF6 Drives Malignancy in Hepatocellular Carcinoma (29). CircMETTL3, upregulated in an m6A-dependent manner, promotes breast cancer progression. However, the mechanism of cicRna methylation involved in CRC is still in the preliminary exploratory stage (30). Here, we attempted to characterize the patterns of m6A modification in circRNAs from CRC tissues and tumor-adjacent normal control tissues (NC). At the same time, we analyze the relationship between m6A modification and the expression and encoding potential of circRNAs in CRC. We expect that this study can lay a foundation for exploring the oncogenic mechanism of CRC.



Materials & methods


Tissue samples

Five colorectal cancer specimens and adjacent normal tissue were obtained at the Chengdu Medical College from March 2017 to June 2018. None of these patients received radiation or chemotherapy before the specimens were collected. The collected specimens were frozen sectioned and stained with hemAtoxylin-eosin to confirm that the collected specimens were CRC tissues and corresponding normal tissues adjacent to the cancer. This study has been approved by the Ethics Committee of the First Affiliated Hospital of Chengdu Medical College. The clinicopathological data of 5 patients with CRC are the same as the article (doi: 10.3389/fcell.2021.760912) published by our team in Front Cell Dev Biol.



Extraction of total RNA

RNA was extracted using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. RNA concentration was determined using a NanoDrop ND-1000 spectrometer (Thermo, Waltham, MA, USA), and RNA integrity was evaluated by denaturing gel electrophoresis.



MeRIP-seq & RNA-seq

High-throughput RNA sequencing was performed by Cloud-Seq Biotech (Shanghai, China). M6A RNA immunoprecipitation was performed using the GenSeqTM m6A -MeRIP Kit (GenSeq, Beijing, China) according to the manufacturer’s instructions. The input samples without immunoprecipitation and the m6A IP samples were used as templates for the NEBNext® Ultra II Directional RNA Library Prep Kit (New England Biolabs, Inc., USA). These libraries were controlled for quality and quantified using the BioAnalyzer 2100 system (Agilent Technologies, Inc., Palo Alto, CA, USA). Then, library sequencing was performed on an Illumina HiSeq instrument with 150bp paired end reads.



Data analysis

After 3’ adaptor-trimming and the removal of any low-quality reads by the cutadapt software (v1.9.3), the clean reads were aligned to the reference genome using STAR software (v2.5.1b), and the circRNAs were detected and identified using DCC software (v0.4.4). The data were normalized with edgeR(v3.16.5) software and differentially expressed circRNAs with statistical significant expression changes (p ≤ 0.05 and fold change≥2) were identified. MACS (v1.4.2) software was used to identify methylated sites on the RNAs (m6A peaks) and differentially methylated sites were identified using diffReps software (v1.55.3) (P ≤ 0.05 and fold change≥2). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed by DAVID database.



Validation of circRNAs expression by RT-qPCR

Total RNA was extracted from 8 pairs of CRC and NC tissues using Tatal RNA Extration KIT (Solarbio, Beijing, China) according to the manufacturer’s instructions. The concentration and purity of the RNA was determined using Nanodrop 2000 microspectrophotometer (Thermo Scientific, New York, USA). The reversing transcription was performed according to the PrimeScript RT reagent kit with gDNA Eraser (Takara Biotechnology Co., Ltd, Beijing, China). Real-time quantitative PCR (RT-qPCR) was performed using TB Green™ Premix Ex Taq™ II (Takara Biotechnology Co., Ltd, Beijing, China). All RT-qPCR analyses were conducted in triplicate and the average value was calculated. The expression values of genes were normalized GAPDH and then 2−ΔΔCt transformed for the gene expression.



M6A correlation, ceRNA network, and coding potential prediction

The differences in the m6A fold enrichment for the total circRNAs populations between the CRC and NC groups were used to create a correlation map linking M6A status and expression level. We selected 10 hypermethylated circRNAs with upregulated expression and 14 hypo-methylated circRNAs with downregulated expression to establish the circRNA-miRNA-mRNA network. The regulatory relationships between the circRNA-miRNA-mRNA were visualized using the Target Scan (v8.0) and miRanda (v3.3a) software (31). Then, The correlations between m6A status and expression level in each of the groups were calculated using a Pearson correlation analysis. we used LGC software to predict the coding potential of circular RNA (32).




Results


General characteristics of circRNA m6A modification patterns in CRC and NC tissues

A total of 4340 m6A peaks of circRNAs in CRC tissue and 3216 m6A peaks of circRNAs in NC tissues were detected. A total of 2561 m6A circRNAs in CRC tissues and 2129 m6A circRNAs in NC tissues were detected. There were 2638 overlapping m6A peaks of circRNAs and 1886 overlapping m6A circRNAs between the two groups. Compared to NC tissues, CRC tissues had 1702 unique m6A peaks of circRNAs and 765 m6A circRNAs. These results showed that there was a significant difference in the overall m6A modification pattern between CRC and NC tissues (Figures 1A, B).




Figure 1 | General characteristics of circRNA m6A modification patterns. (A) Venn diagram of the number of m6A peaks of circRNAs in CRC and NC groups; (B) Venn diagram of the number of m6A circRNAs in CRC and NC groups; (C) The distribution of the types of total circRNAs, m6A circRNAs and non-m6A circRNAs in CRC group; (D) The distribution of the types of total circRNAs, m6A circRNAs and non-m6A circRNAs in NC group; (E) Distribution of the number of circRNAs (y axis) plotted against the number of m6A peaks in each circRNA (x axis) for CRC and NC group.



CircRNAs can be classified into various types based on the type of sequences they contain. Therefore, we analyzed the distribution of the types of circRNAs represented in the total circRNAs, m6A circRNAs and non-m6A circRNAs groups from both the CRC and NC tissues. This analysis revealed that exonic circRNAs account for 80% of the total circRNAs, 77% of the m6A circRNAs, and 84% of the non-m6A circRNAs in CRC tissues (Figure 1C). Similarly, exonic circRNAs accounted for the highest proportion of transcripts in all three groups from NC tissues at approximately 80% (Figure 1D). This indicated that the exonic circRNAs were the most prevalent version of these circular RNAs, which was consistent with previous studies. In addition, it was found that most circRNAs had the unique m6A modified peak both CRC and NC tissues. A relatively small number of m6A modified genes contain two or more peaks (Figure 1E).

The majority of the total circRNAs from both CRC and NC groups contained two or three exons. The most common of the m6A circRNAs group and the non-m6A circRNAs group are circular RNA transcripts containing two exons (Figures 2A, B). The exon length analysis showed that circRNAs containing more than 6 exons were the longest with an average length of more than 1000bp, followed by single exon circRNAs (Figure 2C). In addition, the exon length of the m6A circRNAs was significantly longer than non-m6A circRNAs (Figure 2D).




Figure 2 | Distribution patterns for the exons in the circRNAs. (A) Percentage (y-axis) of exon number (x-axis) of circRNA (left), m6A -circRNA and non-m6A circRNA (right) in CRC group; (B) Percentage (y-axis) of exon number (x-axis) of circRNA (left), m6A -circRNA and non-m6A circRNA (right) in NC group; (C) The distribution of exon lengths (y axis) for each of the input circRNAs (left), m6A circRNAs (middle), and non-m6A circRNAs (right) were plotted against the number of exons (x axis) each circRNA spans. For all box plots, the lower edge of the box represents the first quartile and the upper edge represents the third quartile. The horizontal line inside the box represents the median and the whiskers identify the farthest data points within a 1.5 x interquartile range (IQR); (D) Comparison of exon size (nt) between m6A circRNAs and non-m6A circRNAs.





Distribution of differentially methylated m6A circRNAs

There were 336 differential m6A peaks of circRNAs and 247 differential m6A circRNAs were found in CRC relative to the NC group. Meanwhile, There were 130 hyper-methylated circRNAs and 117 hypo-methylated circRNAs were found in CRC (Figure 3A). The top 10 circRNAs of m6A hypermethylated and hypomethylated with the highest fold-change values are shown in Table 1. The hyper-methylated circRNAs were predominantly located on chromosomes 6, 7 and 10, while the hypo-methylated circRNAs were predominantly located on chromosomes 1, 2, and 12 (Figure 3B). Moreover, The length of hyper-methylated and hypo-methylated m6A circRNAs is mainly enriched in ≤10000 bp (Figure 3C).




Figure 3 | General characteristics of differentially methylated m6A circRNAs in CRC. (A) The number of differentially m6A peaks and differentially m6A circRNAs in CRC; (B) The chromosome origins for genes of these differentially methylated circRNAs; (C) The length of the differentially methylated circRNAs; (D) Schematic representation of the exons included in the hsa-circ-0019079 (circKIF20B) and has-circ-0108457 (circSETBP1) circularized transcripts.




Table 1 | The top 10 circRNAs of m6A hypermethylated or hypomethylated.



We confirmed the back-splicing of hsa_circ_0019079 of hyper-methylated circRNAs and has_circ_0108457 of hypo-methylated circRNAs using CIRI software. Has_circ_0019079 was located on chromosome 10 and spliced by 6 exons from KIF20B. Has_circ_0108457 was located on chromosome 18 and spliced by a single exon from SETBP1 (Figure 3D). Interestingly, both KIF20B and SETBP1 were involved in the development of CRC (33, 34).



Differentially m6A modification circRNAs are involved in important biological pathways

GO and KEGG pathway analyses were performed to evaluate the biological significance of differentially m6A circRNAs. GO analysis shows that hyper-methylated circRNAs were mainly concentrated in cellular macromolecule metabolic processes, nuclear part and nucleic acid binding (Figure 4A). While hypo-methylated circRNAs were mainly enriched in myofibril assembly, contractile fiber and Ras guanyl-nucleotide exchange factor activity (Figure 4B). KEGG pathway analysis revealed that the hyper-methylated circRNAs were mainly involved in DNA replication, RNA transport, ribosome biogenesis in eukaryotes, and protein processing in the endoplasmic reticulum (Figure 4C). The hypo-methylated circRNAs were enriched in pathways of cancers, cGMP-PKG, and tight junction signaling pathways (Figure 4D).




Figure 4 | Pathway analysis of differentially m6A circRNAs. (A) GO analysis of hyper-methylated m6A circRNAs; (B) GO analysis of hypo-methylated m6A circRNAs; (C) KEGG analysis of hyper-methylated m6A circRNAs; (D) KEGG analysis of hypo-methylated m6A circRNAs.





Differentially expressed circRNA profiles in CRC

RNA-seq was used to detect differentially expressed circRNAs (fold-change ≥2 and p-value <0.05) in CRC and NC tissues, which showed that there was a significant difference in the expression of circRNAs (Figure 5A). The volcano plot shows that 877 circRNAs were differentially expressed, including 522 downregulated and 355 upregulated circRNAs in CRC (Figure 5B). The top 10 upregulated and downregulated genes are listed in Table 2.




Figure 5 | Differentially expressed circRNAs in CRC. (A, B) A heatmap hierarchical clustering and Volcano plot were used to visulize the differentially expressed circRNAs in each of the groups; (C) The RT-qPCR was used to detect the expression of 5 circRNAs in CRC and NC tissues; (D) GO enrichment analysis for Upregulated and Downregulated circRNAs; (E) KEGG pathway analysis for Upregulated and Downregulated circRNAs.




Table 2 | The top 10 upregulated or downregulated circRNAs.



Among these differentially expressed circRNAs, we used RT-qPCR to detect the expression of 5 circRNAs in 8 pairs of CRC and NC tissues. The results of RT-qPCR showed the same expression trend with the RNA-Seq results. Compared with NC tissue, CircRNAs (has-circ-0032821, has-circ-0019079, has-circ-0093688) were upregulated, while circRNAs (hsa_circ_0026782, hsa_circ_0108457) were downregulated in CRC (Figure 5C).

GO analysis revealed that the upregulated circRNAs were involved in the nucleic acid metabolic process, intracellular part and nucleotide binding. The downregulated circRNAs were involved in cytoskeleton organization, intracellular part and nucleotide binding (Figure 5D). KEGG pathway analysis showed that the upregulated circRNAs were closely related to base excision repair, ribosome biogenesis in eukaryotes, and protein processing in the endoplasmic reticulum, while the downregulated circRNAs were closely related to cGMP-PKG signaling pathway and adherens junctions (Figure 5E).



Association between m6A methylation and circRNA expression

Methylation sequencing data showed that the m6A peaks in the circRNAs from CRC tissues was more than that of the NC tissues. Here, we analyzed the methylation correlation between the two groups. The results showed that the m6A level of circRNAs in the CRC was positively correlated with the m6A level of circRNAs in the NC group (Spearman’ s rho = 0.63, p <0.05) (Figure 6A).




Figure 6 | Association between m6A methylation and circRNAs expression. (A) Scatter plot showing the linear correlation between circRNAs expression and m6A methylation in CRC and NC group; (B) Venn diagram showing the relationship between m6A modifications and the expression of circRNAs; (C) Scatter plot of the correlation between m6A levels and circRNAs expression in CRC group; (D) Scatter plot of the correlation between m6A levels and circRNAs expression in NC group; (E) Cumulative distribution of circRNAs expression for m6A circRNAs (red) and non-m6A circRNAs (blue).



Combining the results of the methylation sequencing and RNA sequencing, we identified 130 hypermethylated circRNAs, 10 of which were upregulated and 5 were downregulated. A total of 117 circRNAs were hypomethylated, 14 of which were downregulated and one was upregulated (Figure 6B). Interestingly, the methylation level of one of the circRNAs had both up-regulated and down-regulated m6A sites. To analyze the correlation between circRNA methylation and expression levels, we constructed a correlation graph using the fold enrichment of circRNA m6A methylation and expression values described by FPKM. The results indicate that there was a statistically significant positive correlation between methylation and expression of circRNAs in CRC and NC samples (Figures 6C, D).

To further analyze the m6A effects on circRNAs expression, we divided all of the circRNAs into m6A and non- m6A circRNAs groups. We then calculated the log two-fold change values for these circRNAs and generated a cumulative curve. There was no significant difference between m6A and non-m6A circRNAs (Figure 6E).



Co-expression network of circRNA-miRNA-mRNA in CRC

CircRNAs are generally considered as sponges for miRNAs to fine-tune the miRNA-mRNA regulatory network. We selected 10 hyper-up circRNAs and 14 hypo-down circRNAs to establish the circRNA-miRNA-mRNA network. The 10 hyper-up and 14 hypo-down circRNAs are listed in Table 3 and Table 4. In the ceRNA network, the 10 hyper-up circRNAs were shown to be associated with 19 miRNAs and regulate 16 mRNAs (Figure 7A). Similarly, 14 hypo-down circRNAs were associated with 30 miRNAs and regulated 27 mRNAs (Figure 7B). In addition, there was a positive correlation between circRNA and mRNA expression. when the expression of the circRNA was upregulated the expression of the target mRNA was upregulated (Figure 7). In these mRNAs, we found that 40 were associated with tumors and 28 of these were specifically associated with CRC through the GEPIA database. This suggests that m6A may regulate CRC related genes through the circRNA-miRNA-mRNA co-expression network (35–39).


Table 3 | The 10 hypermethylated and upregulated genes.




Table 4 | The 14 hypomethylated and downregulated genes.






Figure 7 | The circRNA-miRNA-mRNA networks in CRC. (A) CeRNA analysis for hyper-methylated upregulated circRNAs; (B) CeRNA analysis for hypo-methylated downregulated circRNAs.





Relationship between circRNAs with coding potential and methylation

Previously, it was thought that circRNAs could not encode any functional products, but recent studies have shown that circRNAs also possess some coding potential with a handful even encoding putative proteins (24–26). In this study, we analyzed the protein-coding potential of circRNAs using LGC software (32). The results showed that 850 of the 7990 (10.64%) circRNAs have a certain protein coding potential. In the 2894 m6A circRNAs, 575 had protein-coding potential, accounting for 19.87%. In the 224 differentially methylated circRNAs, 101 have protein-coding potential, accounting for 45.09%. Of the 30 circRNAs exhibiting both differential methylation and expression, nine were shown to have protein-coding potential, accounting for 30.00% (Figure 8A). Compared with the total circRNA, there are significantly more circRNAs with protein coding potential in the m6A group. As a result, m6A may increase the coding potential of circRNAs.




Figure 8 | CircRNAs with coding potential predominantly exhibit N6-adenosine methylation. (A) The percentages of circRNAs with protein-coding potential in total circRNAs, m6A circRNAs, differentially m6A circRNAs, and differentially m6A& differentially expressed circRNAs were compared; The distance between the methylation peak and the ORFs for each of the circRNAs was calculated and then the mean (B) or median (C) value of their coding potential scores were used to stratify the circRNAs into low and high probability groups which were then used to create the density function diagram.



CircRNAs can be translated with an internal ribosome entry site (IRES) (40, 41). And m6A can act as an IRES to drive circRNAs translation in a cap-independent manner with even a single m6A site being sufficient to initiate translation (42). Some non-coding RNAs are reported to have coding potential from 5′ open reading frames (ORFs) (43). This suggests that the ORFs commonly found in circRNAs may be translated by internal m6A sites. Therefore, we evaluated whether the distance between the m6A peak and ORFs could act as a deciding factor for their translation. Based on the mean or median value of their coding potential score, the circRNAs were divided into low and high groups and the density function diagram was drawn (Figures 8B, C). The results showed that the distance of high coding potential score was farther from IRES.




Discussion

In this study, we managed to profile circRNAs that were differentially methylated and expressed in CRC and NC tissues. These results showed that there was a significant difference in m6A methylation and expression of circRNAs between the CRC and NC tissues. There are several reported circRNAs arising from the exonic regions that contribute to cancer progression in CRC (44, 45). Our study revealed that exonic circRNAs account for 80% of the total circRNAs, 77% of the m6A circRNAs, and 84% of the non-m6A circRNAs in CRC tissues. The m6A methylation levels in the CRC group were significantly higher than NC group. There was a significant positive correlation between methylation and expression levels. In addition, m6A modification can affect the expression of circRNAs altering their fine-tuning of the miRNA-mRNA regulatory axis, and thus affecting the expression of tumor-related target mRNAs. We found that methylation affected the coding potential of the circRNAs but this effect was not related to the distance between the m6A peak and ORFs.

CircRNAs occur in the nucleus, and most circRNAs containing introns are confined to the nucleus but most of the exon circRNAs are localized to the cytoplasm (16). The m6A binding protein YTHDC1 regulates the export of methylated mRNA and can also regulate the transfer of m6A circRNAs from the nucleus to the cytoplasm (46). M6A modified circNSUN2 is exported to the cytoplasm by YTHDC1 and functions to improve the stability of HMGA2 mRNA and promote liver metastasis in CRC (44). Our results show that the methylation level of circRNAs in CRC tissues is significantly increased and that this methylation is mainly concentrated in circRNAs composed of long exons. some circRNAs arising from the exonic regions contribute to the development and progression of this cancer (44, 45). The exon circRNAs with methylation may be worthy of further study in colorectal cancer.

Circ_0032821 was significantly upregulated in human GC tumors and cells. its’ expression induced cell proliferation, EMT, migration, invasion and autophagy inhibition in human GC cells through activating MEK1/ERK1/2 signaling pathway (46). Circ_0032821 was also highly expressed in OXA-resistant GC cells and contributes to oxaliplatin (OXA) resistance of gastric cancer cells by regulating SOX9 via miR-515-5p (47). Hsa_circ_0026782 (circITGA7) and its linear host gene ITGA7 are both significantly downregulated in CRC tissues and cell lines. These decreased expression levels correlated with CRC progression. They play a suppressor in CRC. CircITGA7 inhibits the proliferation and metastasis of CRC cells by suppressing the Ras signalling pathway and promoting the transcription of ITGA7 (22). In another study found that circITGA7 sponges miR-3187-3p to upregulate ASXL1, suppressing colorectal cancer proliferation (48). ITGA7 also plays an important tumorigenic function and acts as a suppress gene in breast cancer (49). In this study, we found that circ_0032821 were upregulated and hsa_circ_0026782 were downregulated in CRC. The expression trend of those circRNAs is consistent. In addition, We verified that hsa_circ_0019079 (circKIF20B) were upregulated and has_circ_0108457 (circSETBP1) were downregulated in CRC tissues. There is no research on hsa-circ-0019079 and has-circ-0108457. However, both of KIF20B and SETBP1 are involved in the development of CRC (33, 34). Their role in colorectal cancer is worthy of further study.

By cross analyzing the m6A-Seq and RNA-seq data, we identified 30 circRNAs with differential methylation and expression. 33.3% (10/30) of the host genes (KIF20B, BRCA1, NAV1, SIPA1L2, FMN2, MMP28, SETBP1, EIF4E3, MICU3, and RUNX1T1) were associated with CRC. The expressions of NAV1, SIPA1L2, FMN2, MMP28, SETBP1, EIF4E3, MICU3, and RUNX1T1 have shown to be decreased in CRC samples and reduced expression levels of SIPA1L2, MMP28, and EIF4E3 are associated with lower overall survival rates in CRC patients. KIF20B is upregulated in CRC promoting the migration and invasion of CRC (33). BRCA1 is associated with CRC and breast cancer (50, 51). MMP28 is involved in the occurrence and metastasis of gastric cancer and CRC (36, 52). Therefore, those circRNAs with differential methylation and expression patterns deserve further study, which may help to clarify the molecular function underlying the occurrence and development of CRC.

When we established a circRNA-miRNA-mRNA network by integrating matched circRNAs, miRNAs, and mRNAs expression profiles we were able to demonstrate a positive correlation between the expression of circRNAs and mRNA. We found that 30 differentially methylated circRNAs were associated with 40 tumor-related mRNAs and 28 of these were associated with CRC. For example, circRNAs hsa_circ_0106593 and hsa_circ_000292 serve as sponges for hsa-miR-5000-5p and hsa-miR-6842-3p, respectively, regulating the expression of the target gene AJUBA. AJUBA promotes the growth of CRC by inhibiting apoptosis (30). circRNA hsa_circ_008487 binds to hsa-miR-608 and hsa-miR-6812-5p, which bind to CCL21, which further inhibits the migration and invasion of CRC cells (31). circRNAs hsa_circ_0019079 and chr1:35558995-35578782+ positively regulate the expression of SLC31A1, hsa_circ_0114420, and chr12:10572963-10588009- which can positively regulate the expression of MMP28. The expression of ZFPM2 decreases with decreasing hsa_circ_0112394 expression and SLC31A1, MMP28, and ZFPM2 are associated with the occurrence, progression, and prognosis of CRC (35, 36, 39). M6A is a post-transcriptional modification which regulates circRNAs expression. We speculate that m6A could be involved in the occurrence and development of CRC by affecting the circRNA-miRNA-mRNA co-expression networks. This may provide a theory for the mechanism underlying circRNA activity in CRC. Furthermore, regulating m6A modifications may be a future strategy for the treatment of CRC.

CircRNAs are defined as non-coding RNAs. however, it has recently been shown that some circRNAs actually encode proteins, and that these proteins are involved in the occurrence, development and drug resistance of many tumors (22–24). The 5’ and 3’ untranslated regions (UTRs) are essential elements for canonical cap-dependent translation in eukaryotic cells. Due to the lack of the 5 ‘cap and 3’ end, the translation of circRNA can only be initiated in a cap-independent manner. IRES- and m6A- mediated cap-independent translation initiation are accepted as important mechanisms for circRNA translation (40–42). IRESs are sequences located in the 5’ UTR of mRNAs that directly recruit ribosomes to initiate translation (53). M6A in the 5’ UTR can directly bind to eukaryotic initiation factor 3 (eIF3) prompting translation (54). M6A driven translation is an alternative mechanism often employed under stress conditions (55). Interfering with the m6A modification level in RNAs can influence translation efficiency (42, 56) and a single m6A site is sufficient to initiate circRNA translation via eIF4G2 and m6A reader YTHDF3 (42). In this study, we predicted the protein-coding potential of all the circRNAs and found that methylation increases the coding potential of circRNA transcripts. There were significantly more circRNAs with protein-coding potential in the m6A circRNA group and the proportion (45.09%) of potentially coding transcripts was highest in the differentially methylated circRNAs. This may be because these short RNA elements containing m6A sites have IRES-like activity initiating the translation of the circRNAs (42). We further analyzed if the distance between the methylation site and ORFs may predict greater protein coding potential. However, further analysis of the density function diagram indicated that methylation affected the coding potential of the circRNAs, but this effect was not related to the distance between the methylation peak and the ORFs.

Our study found that there were significant differences in the m6A methylation patterns of circRNAs between CRC and NC tissues and that the level of m6A methylation could affect the expression level and increase the coding potential of circRNAs. Bioinformatic analyses showed that the host genes of differentially methylated circRNAs were associated with tumor development-related pathways. In addition, we showed that m6A methylation may affect circRNA-miRNA-mRNA co-expression in CRC and further affect the regulation of cancer-related target genes. However, the differentially methylated circRNAs contribute to the occurrence and development of CRC needs further study. In our follow-up research, I will target the circRNAs selected in this experiment, such as hsa_circ_0093688, hsa_circ_0019079, hsa_circ_0108457, hsa_circ_0043136. Methyltransferase METTL3/METTL14, demethylase FTO/ALKBH5, methylation reader YTHDF/IGF2BP2 will be used to verify the methylation expression level of circRNAs, and functional exploration will be carried out based on KEGG and GO results. The network map of circRNA-miRNA-mRNA was used to find the regulated target genes for mechanism research.



Conclusions

This study found that there were significant differences in the m6A methylation patterns of circRNAs between CRC and NC tissues. M6A methylation may affect circRNA-miRNA-mRNA co-expression in CRC and further affect the regulation of cancer-related target genes.
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Characterization of the genomic landscape of biliary tract cancer (BTC) may lead to applying genotype-matched therapy for patients with this disease. Evidence that comprehensive cancer genomic profiling (CGP) guides genotype-matched therapy to improve clinical outcomes is building. However, the significance of CGP in patients with BTC remains unclarified in clinical practice. Therefore, the purposes of this study were to assess the utility of CGP and identify associations between clinical outcomes and genomic alterations in patients with BTC. In this prospective analysis, detection rates for actionable genomic alterations and access rates for genotype-matched therapy were analyzed in 72 patients with advanced BTC who had undergone commercial CGP. Cox regression analyses assessed relationships between overall survival and genomic alterations detected with CGP. The most common genomic alterations detected were TP53 (41, 56.9%), followed by CDKN2A/B (24, 33.3%/20, 27.8%), and KRAS (20, 27.8%). Actionable genomic alterations were identified in 58.3% (42/72) of patients. Detection rates for FGFR2 fusions, IDH1 mutations, and BRAF V600E were low in this cohort. Eight (11.1%) patients received genotype-matched therapy. For patients with intrahepatic cholangiocarcinoma (ICC), CDKN2A/B loss was associated with shorter overall survival. These real-world data demonstrate that CGP can identify therapeutic options in patients with advanced BTC. CDKN2A/B loss was identified as a poor prognostic factor in patients with ICC. Thus, this study provides a rationale for considering CGP in planning therapeutic strategies for advanced BTC.




Keywords: biliary tract cancer, CDKN2A/B loss, comprehensive cancer genomic profiling, genotype-matched therapy, prognosis



Introduction

Biliary tract cancer (BTC) comprises a group of intra/extrahepatic cholangiocarcinomas (ICC/ECC) and carcinomas of the gallbladder and ampulla. The prognosis of patients with BTC remains dismal, with a 5-year survival rate of less than 15% (1). An early detection system and curable chemotherapies have not yet been established for BTC and are the main reasons for the poor prognosis. Standard primary treatment for patients with unresectable and/or metastatic BTC is chemotherapy with a combination of gemcitabine and cisplatin (2). Most recently, a phase 2 study revealed that gemcitabine and cisplatin plus durvalumab, an immune checkpoint inhibitor (ICI), was effective for patients with BTC as first-line chemotherapy; efficacy is under investigation in a phase 3 study (3). Additionally, a folinic acid, fluorouracil, and oxaliplatin (FOLFOX) regimen is now recommended for second-line chemotherapy, although the improvement in overall survival (OS) has been weak (4). During the development of regimens with conventional chemotherapeutics, including ICIs, two novel targeted therapeutic agents: pemigatinib, an inhibitor of fibroblast growth factor receptors 1, 2 and 3; and ivosidenib, an inhibitor of isocitrate dehydrogenase 1 variant; have been approved for advanced BTC by the US Food and Drug Administration (5, 6). Additionally, due to recent advances in tumor-agnostic therapies, ICIs and neurotrophic receptor tyrosine kinase (NTRK) inhibitors can be administered to patients with tumors that show microsatellite instability (MSI)-high or tumor mutational burden (TMB)-high, and a NTRK fusion gene, respectively (7–10). Moreover, promising results of human epidermal growth factor receptor-2–targeted therapies for Erb-B2 receptor tyrosine kinase 2 (ERBB2) amplified BTC and a combination of BRAF plus MEK inhibitors for ICC harboring serine/threonine protein kinase B-Raf (BRAF) V600E have emerged (11, 12). Thus, several targeted therapies guided by genomic alterations have been applied for patients with BTC. Recently, it was demonstrated that comprehensive cancer genomic profiling (CGP) has benefits in detecting potential targets for genotype-matched therapy in patients with BTC (13, 14). However, the significance of CGP, covered by public health insurance, in patients with advanced BTC remains unclarified in clinical practice.

The aim of this study was to assess the utility of CGP in patients with BTC and to seek prognostic genomic alterations detected by CGP.



Material and methods


Study design and patients

This study is a prospective multicenter observational study of CGP in patients with advanced BTC. All relevant institutional ethics review boards approved this study (312–64), which was performed according to the provisions of the Declaration of Helsinki. Written consent was obtained from all patients. Seventy-two patients with advanced BTC underwent CGP, paid for by public health insurance, using FoundationOne® CDx genome profiling (F1CDx; Chugai Pharmaceutical, Tokyo, Japan), FoundationOne® Liquid CDx genome profiling (F1LCDx; Chugai Pharmaceutical), and an OncoGuide™ NCC Oncopanel System (NCC Oncopanel, Sysmex Corporation, Kobe, Japan). Patients were recruited between August 2019 and January 2022. Clinical data, including OS and demographic information, were collected from medical records and patient interviews.



Genomic analysis

According to Naito et al. (15), genomic alterations were classified into seven tiers (A to F, and R) of evidence-level classifications. As we previously described (16), actionable genomic alterations were defined as alterations at or above evidence level D. In brief, we can offer genotype-matched therapy for patients with actionable genomic alterations based on the consensus of the molecular tumor board.



Responses of genotype-matched therapy

The OS rate was defined using Response Evaluation Criteria in Solid Tumors version 1.1 as assessed by the investigators.



Statistical analysis

The OS was calculated from the date of a diagnosis as unresectable cancer and initiation of chemotherapy until death. Clinical and genomic variables were evaluated for an association with OS using univariable Cox proportional hazards regression analyses, which obtained hazard ratios (HR) and 95% confidence intervals (CI) with EZR version 1.55 (Saitama Medical Center, Jichi Medical University, Saitama, Japan). Kaplan–Meier analyses of survival and corresponding log-rank tests were performed based on genomic alterations with Prism version 9.1.1 (GraphPad Software, San Diego, CA, USA). Bonferroni correction was used for multiple comparisons. P values were two-sided, and considered statistically significant when less than 0.05.



Evaluation of presumed germline pathogenic variants

According to the recommendations of the Agency for Medical Research and Development Kosugi group (17), certified genetic counselors and clinical genetics assessed presumed germline pathogenic variants (PGPVs). Subsequently, whether PGPVs should be disclosed or not was decided by a molecular tumor board.




Results


Patient characteristics and samples for CGP

Of 90 patients with advanced BTC who visited our rooms to undergo CGP for cancer genomics, 79 (87.8%) patients were nominated for profiling. Eleven (12.2%) patients were ineligible for this test because of their performance status and seven (7/79, 8.9%) patients were unsuccessful because of insufficient specimen. Finally, seventy-two (72/90, 80%) patients from five hospitals who completed commercial CGP were recruited for this study (Figure 1). The median age of patients in this study was 70 years. With regard to the anatomical location of the tumor, ICC was the most common (26/72, 36.1%), followed by ECC (22/72, 30.6%), gallbladder carcinoma (21/72, 29.2%), and ampullary carcinoma (3/72, 4.2%). All patients were diagnosed with unresectable and advanced stage cancer, and had undergone chemotherapy such as cisplatin plus gemcitabine (Table 1A). F1CDx, F1LCDx, and an NCC Oncopanel were employed for 66 (91.7%), five (6.9%), and one (1.4%) patient, respectively. Regarding F1CDx and the NCC Oncopanel, formalin-fixed paraffin-embedded tumor samples were collected from archived specimens. The most samples (47/72, 65.3%) used for CGP were surgical specimens (Table 1B). Notably, appropriate tumor samples obtained by endoscopic ultrasound guided fine needle aspiration and a cell block prepared from ascites were also feasible for CGP. Interestingly, non-surgical specimens were collected within around three months prior to CGP.




Figure 1 | Flow chart of this study. CGP, comprehensive cancer genomic profiling; EUS-FNA, endoscopic ultrasound-guided fine needle aspiration.




Table 1 | Patients’ characteristics and samples for genomic profiling.





Genomic landscape

In our cohort, all patients were identified as having genomic alterations. The most common genomic alterations were for tumor protein p53 (TP53; 41, 56.9%), cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B; 24, 33.3%/20, 27.8%), and Kirsten rat sarcoma virus (KRAS; 20, 27.8%; Figure 2A). We analyzed genomic features between each cancer type (Figure 2B). In contrast to previous reports (18, 19), we could not identify distinct patterns of genomic alterations corresponding to the four subtypes. As shown in Figure 3 and Table 2, 42 of 72 patients (58.3%) had tumors that harbored actionable genomic alterations, and 14 of 42 patients (33.3%) had multiple actionable genomic alterations. Unexpectedly, the detection rates of fibroblast growth factor receptor 2 (FGFR2) gene fusions, isocitrate dehydrogenase 1 (IDH1) mutations, and BRAF V600E were lower than those previously reported, especially in ICC (5, 6, 12, 20), leading to a lower access rate to genotype-matched therapy. Regarding the TMB (Figures 2, 3, Table 2), TMB-high was detected in six patients, and TMB scores were not significantly different between the four groups (Figure 4).




Figure 2 | Profiles of genomic alterations. (A) All patients. (B) Profiles of each cancer type. Ca, carcinoma; ECC, extrahepatic cholangiocarcinoma; GB, gallbladder; ICC, intrahepatic cholangiocarcinoma; Mb, megabase pairs; Muts, mutations; TMB, tumor mutational burden.






Figure 3 | OncoPrint representation of actionable genomic alterations. ATM, ataxia-telangiectasia mutated; BRAF, serine/threonine protein kinase B-Raf; BRCA2, breast cancer gene 2; Ca, carcinoma; CDKN2A, cyclin-dependent kinase inhibitor 2A; ECC, extrahepatic cholangiocarcinoma; ERBB2, Erb-B2 receptor tyrosine kinase 2; FGFR2, fibroblast growth factor receptor 2; GB, gallbladder; ICC, intrahepatic cholangiocarcinoma; IDH1, isocitrate dehydrogenase 1; KRAS, Kirsten rat sarcoma virus; MDM2, mouse double minute 2 homolog; MSI, microsatellite instability; PD-L1/-L2, programmed death ligand 1/2; TMB, tumor mutational burden; TSC1, TSC complex subunit 1.




Table 2 | A list of actionable genomic alterations.






Figure 4 | Tumor mutational burden. Ca, carcinoma; ECC, extrahepatic cholangiocarcinoma; GB, gallbladder; ICC intrahepatic cholangiocarcinoma; TMB, tumor mutational burden.





Efficacy of genotyped-matched therapy

Based on the advice of the molecular tumor board, of the 42 (58.3%) patients with actionable genomic alterations, eight (11.1%) patients underwent genotype-matched therapy in second or later lines prior to December 2021 (Table 3). Two patients with gallbladder carcinoma harboring TMB-high or MSI-high were treated with an ICI covered by public health insurance; the responses were stable and progressive disease, respectively. As expected, patients with ICC harboring an FGFR2 fusion gene achieved a partial response with pemigatinib treatment, which was covered by public health insurance. Five patients harboring a programmed death ligand 1/2 (PD-L1/-L2) amplification, TMB-high, breast cancer gene 2 (BRCA2) mutation or ERBB2 amplification were treated with each investigational drug. We cannot disclose individual responses for patient confidentiality reasons.


Table 3 | Summary of genotype-matched therapy.





Relationship between genomic alterations or clinical features and prognosis

To explore prognostic factors derived from CGP results, we analyzed the relationship between genomic alterations identified by CGP or clinical features and OS using Cox regression analysis. We focused on the top seven most altered genes: TP53, CDKN2A/B, KRAS, SMAD family member 4 (SMAD4), methylthioadenosine phosphorylase (MTAP), and mouse double minute 2 homolog (MDM2). These genomic alterations were not statistically associated with OS in all patients (Table 4A). Of note, CDKN2A/B loss predicted worse OS in a univariate model for the ICC cohort only (Table 4B). Namely, CDKN2A/B loss was a strong predictor of a poor prognosis (HR, 11.55; 95% CI, 2.04–65.29) in patients with ICC. Kaplan–Meier analysis clearly denoted that CDKN2A/B loss was significantly associated with shorter OS (median OS 11.6 months vs. 49.2 months, P < 0.001) in patients with ICC (Figure 5A), but not in all patients (Figure 5B). No significant difference in OS was noted in other cohorts that consisted of ECC, gallbladder, and ampullary carcinoma in patients harboring CDKN2A/B (Figure 6).


Table 4 | Univariate analyses of clinical and genomic features with overall survival.






Figure 5 | Effect of CDKN2A/B loss on overall survival. (A) Patients with ICC. (B) All patients. CI, confidence interval; ICC, intrahepatic cholangiocarcinoma. P values were obtained by log-rank test.






Figure 6 | Effect of alterations on CDKN2A/B loss in patients with non-intrahepatic cholangiocarcinoma. CDKN2A/B, cyclin-dependent kinase inhibitor 2A/B; CI, confidence interval. P values were obtained by log-rank test.



Regarding the association between clinical features and OS, gallbladder carcinoma was found to be a poor prognostic factor compared to ICC (Table 4A). According to a Bonferroni correction, no difference was observed between the OS of patients with gallbladder carcinoma and of those with ICC. However, the OS of patients with gallbladder carcinoma was significantly shorter than those of patients with ECC (Figure 7). Alterations of TP53 and KRAS, which were the most altered genes, did not have prognostic impacts in patients with gallbladder carcinoma.




Figure 7 | Overall survival by cancer type. Ca, carcinoma; CI, confidence interval; ECC, extrahepatic cholangiocarcinoma; GB, gallbladder; ICC, intrahepatic cholangiocarcinoma. P values were obtained by log-rank test.*Statistically significant for multiple comparisons; P < 0.0167.





PGPVs

Presumed germline pathogenic variants were identified in 16 patients (16/72, 22.2%). Samples from six patients, in whom PGPVs were identified in BRCA2 (n=2), SMAD4 (n=2), TP53 (n=1), or phosphatase and tensin homolog (PTEN; n=1), underwent confirmatory single-site germline sequencing. All variants were shown to be somatic.




Discussion

The genomic profiles of BTC in Japanese have been previously described (18). However, for FGFR2 fusions, IDH1 mutations, and BRAF V600E and ERBB2 amplifications, the genomic alterations that directly lead to genotype-matched therapies and their detection rates using CGP covered by public health insurance are unknown in clinical practice. As shown in Figures 2, 3, our results imply that incidences of such genomic alterations might be relatively low in Japan compared to those of other countries (19, 21). Several reports support the notion that mutational profiles may vary by ancestry (22, 23). Specifically, Maruki et al. reported that the frequency of FGFR2 rearrangement found using fluorescent in situ hybridization was 7.4% in patients with advanced/recurrent ICC, which was inconsistent with our finding (20). To confirm the current results, nationwide observational studies are warranted.

More recently, a retrospective study demonstrated that using genotype-matched therapy on patients harboring actionable genomic alterations was associated with improved OS compared to treating with conventional chemotherapies for patients without actionable genomic alterations in BTC, particularly ICC (24). Additionally, genotype-matched therapies categorized according to the European Society for Medical Oncology Scale for Clinical Actionability of Molecular Targets (ESCAT) I–II can achieve good clinical outcomes compared to those categorized with respect to ESCAT III–IV; progression-free survival and OS were superior to the results of the ABC-06 study, which established FOLFOX as a second line after gemcitabine and cisplatin in patients with BTC (4). Therefore, genotype-matched therapies can contribute to improving outcomes in patients with advanced BTC.

In the current study, we found that CDKN2A/B loss was a poor prognostic factor in patients with advanced ICC. Remarkably, a previous large-scale study clarified that CDKN2A deletion was related to a worse prognosis in patients with unresectable ICC (21). Moreover, surgical intervention did not show a benefit over chemotherapy in patients with ICC harboring a CDKN2A deletion. Accordingly, genomic profiling that includes CGP before initial treatment is likely to be useful in deciding treatment strategies for patients with ICC. In addition to being a prognostic factor, CDKN2A, but not CDKN2B, alterations were defined as actionable genomic alterations (Table 2). This is because palbociclib, a CDK4/6 inhibitor, showed an anti-tumor effect in patients with non-small cell lung cancer and CDKN2A alterations (25). To date, the usefulness of CDK4/6 inhibitors for patients with BTC remains undetermined. Prospective studies to define the effectiveness of CDK4/6 inhibitors for patients with BTC harboring a CDKN2A alteration are therefore warranted.

In terms of the relationship between clinical variables and prognosis, gallbladder carcinoma has a negative impact on OS in univariate and Bonferroni correction analyses compared to ICC and ECC, respectively (Table 4, Figure 7). Typically, the prognosis for patients with gallbladder carcinoma is better than for ICC and ECC (26). The recruited patients in this study did not reflect a general population with BTC because CGP was approved only for patients with advanced cancer who failed to respond to standard therapies. Additionally, recruited patients with gallbladder carcinoma had more advanced status compared to those of patients with ICC, ECC and ampullary carcinoma, which was one of reasons why they had a poor prognosis. Therefore, this finding should be carefully interpreted.

A prospective, multi-center study in the United States revealed that the prevalence of germline pathogenic variants was 15.7% in ICC, 17% in ECC, and 33% in ampullary carcinoma (27). Therefore, the authors recommended germline testing for all patients with BTC. However, patients in this cohort were not found to have germline pathogenic variants. The discrepancy between American and Japanese studies may be related to ethnicity. The necessity of germline testing in Japanese patients with BTC should be further evaluated.

Several limitations may restrict the explanations put forward for findings of the current study. For example, the small number of patients recruited from a limited number of hospitals may have introduced selection bias. As a result, we did not carry out multivariate analyses to identify CDKN2A/B loss as an independent prognostic factor because our sample size was not suitable for the analysis. Of note, patients with rapid-growing cancer and/or extremely advanced cancer were excluded from CGP indications, leading to limitations of this study. Although no definitive conclusion can be drawn from our study, these results can be applied in daily clinical practice to treat patients with advanced BTC in order to manage this formidable cancer.

In conclusion, our study demonstrated that CGP has benefits in decision-making on therapeutic strategies and the prediction of clinical outcomes for patients with advanced BTC. Although the Japanese health insurance system does not allow CGP before initial treatment, performing CGP in an earlier phase of therapy may improve clinical outcomes. Further efforts are needed to delineate our results and combat this aggressive malignancy.
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Background

Colon cancer (CC) is among the top three diseases with the highest morbidity and mortality rates worldwide. Its increasing incidence imposes a major global health burden. Immune checkpoint inhibitors, such as anti-PD-1 and anti-PD-L1, can be used for the treatment of CC; however, most patients with CC are resistant to immunotherapy. Therefore, identification of biomarkers that can predict immunotherapy sensitivity is necessary for selecting patients with CC who are eligible for immunotherapy.



Methods

Differentially expressed genes associated with the high infiltration of CD8+ T cells were identified in CC and para-cancerous samples via bioinformatic analysis. Kaplan–Meier survival analysis revealed that MS4A1 and TNFRSF17 were associated with the overall survival of patients with CC. Cellular experiments were performed for verification, and the protein expression of target genes was determined via immunohistochemical staining of CC and the adjacent healthy tissues. The proliferation, migration and invasion abilities of CC cells with high expression of target genes were determined via in vitro experiments.



Results

Differential gene expression, weighted gene co-expression and survival analyses revealed that patients with CC with high expression of MS4A1 and TNFRSF17 had longer overall survival. The expression of these two genes was lower in CC tissues than in healthy colon tissues and was remarkably associated with the infiltration of various immune cells, including CD8+ T cells, in the tumour microenvironment (TME) of CC. Patients with CC with high expression of MS4A1 and TNFRSF17 were more sensitive to immunotherapy. Quantitative reverse transcription-polymerase chain reaction, western blotting and immunohistochemical staining validated the differential expression of MS4A1 and TNFRSF17. In addition, Cell Counting Kit-8, wound healing and transwell assays revealed that the proliferation, migration and invasion abilities of CC cells were weakened after overexpression of MS4A1 and TNFRSF17.



Conclusions

The core genes MS4A1 and TNFRSF17 can be used as markers to predict the sensitivity of patients with CC to immunotherapy and have potential applications in gene therapy to inhibit CC progression.
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Introduction

Colon cancer (CC) is one of the most prevalent malignant tumours worldwide and among the top three diseases with the highest mortality and morbidity rates (1). The pathogenesis of CC is complex, dynamic and unclear and can be attributed to the increase in income, changes in dietary structure and elevation in the number of patients with obesity and elderly people. In addition, genetic, mental and social factors play a role in its pathogenesis (2–4). At present, surgery, radiotherapy and chemotherapy are the standard treatment methods. However, due to the large trauma and easy recurrence of surgery, targeted therapy is becoming more and more popular. In addition, effective biomarkers and new intervention targets, which have clinical significance, are considered for the treatment of CC. Studies have shown that immune-related factors play a role in the occurrence and development of cancer. In addition to their function in clearance of lesions and inhibition of tumour occurrence, human immune cells play a role in immune cell formation in tumour tissues, therapeutic resistance, tumour invasion and other tumour-associated processes (5). For patients with stage I–III CC, T-cell infiltration has a greater prognostic value than TNM staging, and high CD8+ cell infiltration is a good prognostic marker for CC (6). During the anti-cancer immune response, CD8+ T cells play an important role in inducing tumour cell death by recognising tumour antigens. Immune checkpoint inhibitor (ICI)-based immunotherapy relies on the ability of CD8+ T cells to induce anti-tumour immune effects in CC, with tumour immune escape being manifested after the inhibition of CD8+ T cell activation (7, 8). The membrane-spanning 4-domains subfamily A 1 (MS4A1) and tumour necrosis factor receptor superfamily member 17 (TNFRSF17) genes are associated with immune infiltration and involved in the occurrence and development of several diseases, including CC(9-10).

MS4A1 (also called CD20) belongs to the membrane-spanning 4A gene family. It is a surface molecule found on B lymphocytes, which participates in the development and differentiation of B cells into plasma cells. CD20 is expressed throughout different B-cell developmental stages but is downregulated after B cells are differentiated into plasma cells. Therefore, MS4A1 serves as a marker for germinal centre-derived, naive and memory B cells (9). Although the role of MS4A1 in cancer remains unclear, bioinformatic studies have revealed the prognostic role of MS4A1 in various cancers and its correlation with immune cell infiltration. For example, MS4A1 can serve as an independent biomarker for predicting the prognosis of breast cancer, and its elevated expression is associated with a good prognosis (10). In gastric cancer, MS4A1 expression is upregulated, leading to a poor prognosis (11). Additionally, MS4A1 has been used to construct a prognostic model of lung cancer (12, 13). There have also been some studies on MS4A1in CC, Han et al. reported five potential gene biomarkers for predicting CC, including MS4A1, which was found to be downregulated (14). Most patients with CC are resistant to ICI immunotherapy; however, the underlying mechanisms remain unclear. Moreover, the decreased expression of MS4A1 in CC can be related to this resistance. Mudd Jr reported that MS4A1 expression was positively correlated with the survival of patients with CC. Additionally, CD20 expression was higher in anti-PD-1 antibody-bound T cells than in unbound T cells, suggesting that the CD8+CD20+ cytotoxic T lymphocyte (CTL) subset was the target of PD-L1-dependent immunosuppression in the human CC microenvironment. The loss of the CD8+CD20+ CTL subset in TME facilitates immune evasion of CC cells and their resistance to anti-PD-1 immunotherapy (15).

TNFRSF17(Tumour Necrosis Factor receptor superfamily member 17), also known as CD269 and B cell maturation antigen (BCMA), was first discovered in the early 1990s. It is a ubiquitously expressed plasmalemma antigen and a major target for T-cell therapy in multiple myeloma (16). The members of the TNFRSF superfamily participate in the immune response of the host, regulating cell proliferation, survival, differentiation and apoptosis. Stimulated by its ligands, TNFRSF17 activates mitogen-activated protein kinases and stimulates anti-apoptotic proteins, including Bcl-2 and Bcl-XL23, which generate signals that promote cell survival and proliferation (17). Although a study on breast cancer reported that NFRSF17 can act as a co-receptor of ALDH1A1, KLF4 and NANOG, mediating their tumour-promoting effects in breast cancer (18). However, the biological role of TNFRSF17 in other cancers remains unclear include CC. Chae et al. reported that TNFRSF17, found in resting and activated CD19+ cells, is a candidate gene responsible for the pathogenesis of inflammatory bowel disease. Additionally, the single nucleotide polymorphisms of TNFRSF17 can be associated with the tumour stage of CC (19). TNFRSF17 may also play an essential role in the pathogenesis of CC by influencing the immune response.

Human CC is among the rare human cancers that are resistant to ICI immunotherapy (20, 21). At present, non-responsiveness to ICI immunotherapy is a major challenge in human CC therapy (22–24). The expression of PD-L1 in TME correlates with the presence of CTLs, suggesting that defective CTL function in the CC microenvironment can be attributed to the non-responsiveness of CC to ICI immunotherapy. In this study, the genomic data of CC and healthy colon tissues were analysed via bioinformatic analysis, and two differential target genes closely related to immunity, MS4A1 and TNFRSF17, were identified. Although previous studies have reported that these genes are differentially expressed in CC and healthy colon tissues, their potential to predict the prognosis of CC remains unexplored. To the best of our knowledge, this study is the first to use bioinformatic analysis to screen these two genes as core genes associated with the high infiltration of CD8+ T cells in CC. Additionally, in vitro experiments were conducted to examine the effects of MS4A1 and TNFRSF17 on cancer proliferation, migration, invasion and other phenotypes. This study aimed to identify promising biomarkers for the prognosis of CC and the evaluation of immune checkpoint blockade efficacy, thereby identifying potential therapeutic targets for CC.



Materials and methods


Ethics statement

The study was approved by the Ethics Committee of The First Hospital Affiliated of Harbin University of Medicine (Heilongjiang, China) and performed in accordance with the principles of the Declaration of Helsinki.



Public data source

The flow chart of this experiment is shown in Figure 1. The RNA sequencing data (FPKM format) and clinical data of 455 CC samples and 41 healthy colon samples were retrieved from The Cancer Genome Atlas (TCGA) database (http://portal.gdc.cancer.gov/projects). The mRNA microarray data of 566 CC samples and 19 healthy colon samples were extracted from the GSE39582 dataset in the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).




Figure 1 | Flow Diagram of Experiment.





Differential analysis

Differential mRNA expression of CC and healthy colon tissues in TCGA cohort was analysed using the ‘Limma’ package in the R software (version 4.0.2). Significantly differentially expressed genes were identified based on the fold change (FC) of ≥2 and corrected P-values (FDR) of ≤0.05. Differentially expressed genes in the GSE39582 dataset were analysed similarly.



Weighted gene co-expression analysis

Co-expression networks were constructed using the ‘WGCNA’ package in R. CC samples in TCGA and GEO datasets were clustered to determine the presence of remarkable outliers. Subsequently, a co-expression network was developed using the automatic network construction function, and the soft threshold was computed using the pick Soft Threshold function. The co-expression similarity was derived according to the soft threshold, and the adjacency was calculated thereafter. Subsequently, the modules were examined using hierarchical clustering and dynamic tree-cut functions. Finally, gene significance and module membership were determined to correlate modules with the proportion of CD8+ T cells. Module genes with the strongest correlation were used for further analysis.



Prognostic analysis

Overall survival (OS) and progression-free survival (PFS) were used to characterise the prognosis of patients with CC. Patients were divided into high- and low- expression groups based on the median gene expression. Kaplan–Meier survival analysis, log-rank test and the landmark were performed to examine differences in the survival of patients with CC between the two groups. A P-value of <0.05 was considered significant.



Functional enrichment analysis

Gene ontology (GO) enrichment analysis is used for annotating functional genes, thereby analysing the molecular functions (MFs), associated biological pathways (BPs) and cellular components (CCs) of the target gene. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis is used for identifying the molecular functions and associated signalling pathways of the target gene. In this study, the ‘ClusterProfiler’ package in R was used to perform GO and KEGG enrichment analyses to better comprehend the biological function of target genes (P-values of <0.05 indicated significant enrichment). Gene set enrichment analysis (GSEA) based on KEGG analysis was performed using the GSEA software (version 4.1.0), with P-values of <0.05 and FDR of <0.25 indicating significant enrichment.



Tumour stemness score

Malta et al. constructed the OCLR algorithm to calculate the RNA stemness scores of tumour samples in TCGA database based on the mRNA expression profile (mRNA expression-based stemness index [mRNAsi]) (25). Data regarding mRNAsi in TCGA-CC dataset were extracted from their study.



Immune infiltration

The ESTIMATE algorithm is used for calculating not only immune but also stromal scores in TME based on mRNA expression. The immune and stromal scores reflect the total content of infiltrating immune cells and stroma in TME, respectively (26). In this study, the ‘ESTIMATE’ package in R was used to evaluate the immune and stromal scores of each sample in TCGA dataset. The ssGSEA algorithm, which can be used to calculate the infiltration scores of 24 types of immune cells and the immune status scores in TME based on mRNA expression, was used to evaluate the abundance of 24 types of immune cells and the immune status scores of CC samples in TCGA dataset. TISIDB (http://cis.hku.hk/TISIDB), which is an online database integrating various data resources of tumour immunology (27), was used to examine the relationship between target genes and various immune subtypes.



Sensitivity to drug therapy

The TIDE algorithm is used to examine the sensitivity of patients to immunotherapy based on the mRNA expression of tumour samples (28). In this study, the algorithm was used to examine the sensitivity of patients with CC to immunotherapy in TCGA dataset. The higher the TIDE score, the worse the efficacy of immunotherapy and the shorter the survival time after receiving immunotherapy. The relationship between the expression of MS4A1 and TNFRSF17 and sensitivity to chemotherapeutic drugs was determined using the Gene Set Cancer Analysis (GSCA) database.



GeneMANIA database

The GeneMANIA database (http://genemania.org/) was used to construct a protein–protein interaction (PPI) network, and the functions of proteins in the network were annotated.



Immunohistochemical analysis

Immunohistochemical (IHC) staining was performed to verify the differential expression of target immune-related genes in cancer and adjacent tissues. Clinical samples were obtained from archived tissues of 5 patients with confirmed CC, who received surgical treatment in the First Affiliated Hospital of Harbin Medical University, and five adjacent healthy colon tissue samples. Malignant and paired adjacent tissues were embedded in paraffin, preparing two sets (5 versus 5) of 3-mm paraffin sections. Initially, these sections were deparaffinised and rehydrated before antigen retrieval. After blocking (Albumin Bovine, BioFroxx 4240, China) both CC and peri-lesional tissues were incubated with MS4A1 (Kit-0001, MXB, China) and TNFRSF17 (A01014-1, 1:50, BOSTER, China) primary antibodies overnight at 4°C. The following day, the sections were incubated with horseradish peroxidase-conjugated secondary antibody (IgG; PV-9000, ZSBIO, China) for 20 min at room temperature and washed thrice with phosphate-buffered solution. Each section was subsequently stained with 3,3′-diaminobenzidine and counterstained with haematoxylin. Membrane staining for MS4A1 and TNFRSF17 were considered as positive results at IHC. For each case, three 400-fold high-power fields were randomly observed for each index, and Mean Optical Density (MOD) value was calculated by Image Pro Plus (IPP) software.



Cell culture and cell culture reagents

Human FHC cells (Fuheng Bio, China) were used as control cells, whereas SW480 and HCT116 cells (iCell Bioscience Inc, China) were used as experimental cells. FHC, SW480 and HCT116 cell lines were cultivated at 37°C in humidified conditions with 5% CO2 in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco, USA) supplemented with 10% foetal bovine serum (FBS) (Gibco, USA), 100-U/mL penicillin and 100-μg/mL streptomycin (Gibco, USA).



Transfection and grouping

After the cells reached 90% confluence, they were transfected with pCMV3-MS4A1 (Sino Biological, China), pCMV3-TNFRSF17 (Sino Biological, China) or pCMV3-untagged (Sino Biological, China) using Lipofectamine 2000 (Invitrogen, Thermo Fisher Scientific, USA). The two overexpression plasmids and empty plasmid were extracted using the endotoxin removal kit. After transfection, the cells were divided into the following six groups: 1) HCT116 + pCMV3-untagged, 2) HCT116 + pCMV3-MS4A1, 3) HCT116 + pCMV3-TNFRSF17, 4) SW480 + pCMV3-untagged, 5) SW480 + pCMV3-MS4A1 and 6) SW480 + pCMV3-TNFRSF17.



RNA extraction and quantitative reverse transcription polymerase chain reaction

The three groups of cells (FHC, SW480 and HCT116) were not treated before transfection. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to examine the RNA expression of MS4A1 in the HCT116 + pCMV3-untagged, HCT116 + pCMV3-MS4A1, SW480 + pCMV3-untagged, and SW480 + pCMV3-MS4A1 groups and the RNA expression of TNFRSF17 in the HCT116 + pCMV3-untagged, HCT116 + pCMV3-TNFRSF17, SW480 + pCMV3-untagged and SW480 + pCMV3-TNFRSF17 groups. GAPDH was used as an internal reference. Total RNA was extracted using the TRIzol reagent (Invitrogen, Thermo Fisher Scientific, USA) according to the manufacturer’s instructions. Briefly, 1 mL of TRIzol was added to a cell pellet (containing approximately 1x107 cells), mixed and incubated at room temperature for 5 min. Subsequently, 0.2 mL of chloroform was added to the solution, vortexed for 15 sec and incubated for 3 min. To extract the supernatant, the cell lysate was subjected to centrifugation at 12,000 rpm and 4˚C for 10 min. The isolated supernatant was mixed with 0.5 mL of cold isopropanol and incubated on ice for 20–30 min. For RNA isolation, the solution was subjected to centrifugation at 12,000 rpm and 4˚C for 10 min. Subsequently, the supernatant was discarded, and the pellet was washed thrice with 1 ml of 75% ethanol. The RNA/ethanol mixture was subjected to centrifugation at 7,500 rpm for 5 min, and the supernatant was discarded. RNA was air−dried and dissolved in double-distilled water (ddH2O). The total volume of the qRT-PCR reaction mixture was 25 μL, and the mixture had the following components: 2 μL of RNA (template), 12.5 μL of SYBR® PrimeScript Master Mix (2x, TOYOBO, China), 0.5 μL of forward primer (20 μM), 0.5 μL of reverse primer (20 μM) and 11.5 μL of ddH2O. GAPDH was used as an internal control. The qRT−PCR conditions were set as follows: 45˚C, 15 min; 95˚C, 5 min; 95˚C, 20 sec; 60˚C, 20 sec; 72˚C, 30 sec; 40 cycles. The following primers were used: human MS4A1 forward, TGATGCTGATCTTTGCCTTCTTCC; human MS4A1 reverse, TCGTCTCTGTTTCTTCTTCTTCCTC; human TNFRSF17 forward, CCATTCTTGTCACCACGAAAACG; human TNFRSF17 reverse, CTCTATCTCCGTAGCACTCAAAGC; human GAPDH forward, ACAACAGCCTCAAGATCATCAGC; human GAPDH reverse, GCCATCACGCCACAGTTTCC. The RNA expression levels were normalised to those of U6, and data were evaluated using the 2-ΔΔCq method.



Western blotting

Western blotting (WB) was performed to examine the protein expression of MS4A1 in the HCT116 + pCMV3-untagged, HCT116 + pCMV3-MS4A1, SW480 + pCMV3-untagged and SW480 + pCMV3-MS4A1 groups (GAPDH was used as an internal reference). After 48 h of transfection, cells in the four groups were lysed. Subsequently, WB was performed to examine the protein expression of TNFRSF17 in the HCT116 + pCMV3-untagged, HCT116 + pCMV3-TNFRSF17, SW480 + pCMV3-untagged and SW480 + pCMV3-TNFRSF17 groups (GAPDH was used as an internal reference). Total protein was extracted and evaluated using WB following the standard procedure. Briefly, proteins were separated on 10% sodium dodecyl sulfate–polyacrylamide gels and transferred onto a nitrocellulose (NC) membrane. The NC membrane was incubated with a monoclonal primary antibody and blocked with tris-buffered saline with Tween (TBST) with 5% skimmed milk for 2 h and incubated overnight at 4˚C. The antibodies used were anti-TNFRSF17 (1:1000, Immunoway biotechnology, USA), anti-MS4A1 (1:1000, Immunoway biotechnology, USA) and anti-GAPDH (1:1000, Abcam, UK). Subsequently, the membrane was incubated with a secondary antibody at room temperature for 1.5 h and immersed in an enhanced chemiluminescence reagent for 1–3 min. Particular protein bands were visualised in the dark. Protein expression was evaluated via grey−value analysis using the ImagePro (version 5.0) software, and the relative expression level was evaluated as the ratio of target-to-reference protein expression.



Cell proliferation assay using Cell Counting Kit−8

Cell proliferation was analysed using Cell Counting Kit−8 (Solarbio, China) according to the manufacturer’s instructions. Briefly, cells transfected with pCMV3-MS4A1, pCMV3-TNFRSF17 or the empty plasmid were seeded in 96−well culture plates (1,000 cells/well). The culture plates were incubated in a 5% CO2 incubator at 37°C for 0 h, 24 h, 48 h and 72 h. Subsequently, 10 uL of CCK−8 was added to cells, and absorbance was measured at 450 nm using a microplate reader. The experiment was performed in triplicate.



Wound healing assay

All wells in a 24-well plate were coated with 0.1% gelatin solution (gelatin in deionised water) and incubated at 37°C for 5 h to prepare samples for wound healing assay. The coating solution was removed, and cells in the 6 groups were seeded in the plate at a density of 5000 cells/cm2 and incubated at 37°C (5% CO2) until a confluent cell monolayer was formed in every well. The medium was replaced with DMEM on the following day, and the cells were incubated with 30-μM mitomycin C for 72 h. Thereafter, a scratch was made in the cell monolayer with the tip of a pipette, and a cell-free region was obtained by removing detached cells from the cell monolayer.



Transwell assay

Approximately 60 µL of diluted matrigel (1:8, BD, USA) was added to the upper transwell chamber, and the plate was incubated for 4–5 h. After the gel had solidified, the residual liquid was aspirated, and 100 µL of serum-free DMEM was added. The chamber was incubated and hydrated for 20 min. To prepare a cell suspension, cells were digested and resuspended in serum-free DMEM and quantified using a haemocytometer. The upper chamber was inoculated with 1×104 cells, whereas the lower chamber was inoculated with DMEM containing 10% FBS, and the plate was incubated in a 5% CO2 incubator at 37°C. After 24 h, the medium in the well plate was aspirated, and the cells were fixed with 4% paraformaldehyde for 15 min. After 20 min of crystal violet staining, the residual crystal violet solution was washed several times with PBS, and a microscope was used to capture images of the cells.



Statistical analyses

The independent samples t-test, Kruskal–Wallis test, one-way analysis of variance, Mann–Whitney test and Wilcoxon signed-rank test were used to examine differences in continuous variables between groups. The chi-square or Fisher’s test was used to analyse categorical variables. Survival analysis was performed using the Kaplan–Meier method, log-rank test and landmark. Correlation analysis was performed using Pearson’s (normal distribution) and Spearman’s (abnormal distribution) correlation tests. To ensure accuracy, all experiments were performed in triplicate. A P-value of <0.05 denoted significant differences (*, <0.05; **, <0.01; ***, <0.001; ns, >0.05).




Results


Differential analysis

Differences in mRNA expression between CC and healthy colon samples in TCGA and GEO databases were analysed. A total of 3,841 differentially expressed mRNAs were identified from CC samples in TCGA dataset; of which, 1,208 and 2,273 were upregulated and downregulated, respectively, in CC. A total of 1,460 differentially expressed mRNAs were identified from CC samples in the GSE39582 dataset; of which, 665 and 795 were upregulated and downregulated, respectively, in CC. Heat maps are shown in Supplementary Figures 1A, B, and volcano plots are shown in Supplementary Figures 1C, D.



Weighted gene co-expression analysis

CD8+ T cells play a substantial role in anti-cancer immunity, and high infiltration of CD8+ T cells can often effectively kill tumour cells. Therefore, genes associated with the high infiltration of CD8+ T cells were identified. A total of 7 gene co-expression modules were identified based on CC samples in TCGA dataset (Supplementary Figure 2A), and 14 gene co-expression modules were identified based on CC samples in the GEO dataset (Supplementary Figure 2B). The brown modules of both TCGA and GEO datasets were significantly positively correlated with high infiltration of CD8+ T cells (Supplementary Figures 2C, D) (TCGA: correlation coefficient, 0.46, P < 0.05; GEO: correlation coefficient, 0.57, P < 0.05). The brown module of TCGA data and GEO data contained 2956 genes and 445 genes, respectively, which are significantly linked to the high infiltration of CD8+T cells. To screen out genes that were linked to both the occurrence as well as the progression of CC and the high infiltration of CD8+T cells. The 42 genes, which were intersected by the four data sets in the flow chart, both dysregulated in CC and associated with CD8+T cell infiltration in the TCGA and GEO cohorts (Figure 1 and Supplementary Figure 2E).



Functional enrichment analysis

To examine the biological role of the 42 candidate genes, GO and KEGG enrichment analyses were performed. GO enrichment analysis revealed that the 42 candidate genes were mainly associated with BPs, including immune response and antiviral immunity (Figure 2A), especially the formation of the extracellular matrix (Figure 2B) and chemokine and cytokine activity and binding (Figure 2C). KEGG functional enrichment analysis revealed that the genes were mainly involved in the NF-KB signalling pathway, cytokine–cytokine receptor interaction, toll-like receptor signalling pathway, chemokine signalling pathway, tumour necrosis factor signalling pathway and other signalling pathways (Figure 2D).




Figure 2 | Functional enrichment analysis. (A) Gene ontology (GO) enrichment analysis of biological processes. (B) GO enrichment analysis of cellular components. (C) GO enrichment analysis of molecular functions. (D) KEGG functional enrichment analysis.





MS4A1 and TNFRSF17 are associated with the prognosis of CC and stemness scores

Survival analysis of the 42 candidate genes was performed. Patient samples with insufficient survival data in TCGA dataset were removed, and 454 samples were eventually included in analysis. Survival analysis showed that among the 42 genes, only MS4A1 and TNFRSF17 were associated with OS in CC. The expression of both genes was low in CC (Supplementary Figures 1A–D), and OS and PFS were shorter in patients with low expression of the two genes than in patients with high expression of the two genes (Figures 3A–F), suggesting that these two genes can act as tumour suppressor genes, and their expression was suppressed in CC. The stemness score is an indicator of tumour malignancy, and the higher the stemness score, the more aggressive the tumour (25). Patients with CC with high MS4A1 and TNFRSF17 expression had lower stemness scores (Figures 3G, H), which further indicates that MS4A1 and TNFRSF17 can act as tumour suppressor genes.




Figure 3 | Survival analysis and stemness scores. (A) Overall survival (OS) analysis of the high- and low-MS4A1-expression groups. (B) OS analysis of the high- and low-TNFRSF17-expression groups. (C) Landmark analysis results (D) Proportional risk assumption results (E) Progression-free survival (PFS) analysis of the high- and low-MS4A1-expression groups. (F) PFS survival analysis of the high- and low-TNFRSF17-expression groups. (G) Stemness scores of the high- and low-MS4A1-expression groups. (H) Stemness scores of the high- and low-TNFRSF17-expression groups. ****,<0.0001.





Expression of MS4A1 and TNFRSF is lower in CC and related to clinical features

The expression of MS4A1 and TNFRSF17 was lower at the transcriptional level in CC samples than in healthy colon tissues in TCGA dataset (Figure 4A). qRT-PCR analysis of different cell lines revealed consistent results (Figure 4B). Immunohistochemical analysis showed that MS4A1 and TNFRSF17 positive cells were leukocytes, and were mainly located in the cells within the lymphocyte structure. At higher magnification, the protein expression of MS4A1 and TNFRSF17 was lower in CC than in adjacent peri-lesional normal tissues (Figure 4C). The MOD of MS4A1 and TNFRSF17 showed that the expression of MS4A1 and TNFRSF17 in the cell membrane of colon cancer was significantly lower than that of adjacent tissues (P<0.001, Figure 4D). Similarly, WB of the cell lines provided consistent results (Figures 4E, F). Furthermore, the relationship between the clinical information of patients with CC in TCGA cohort and the expression of MS4A1 and TNFRSF17 was analysed. The results showed that patients with CC with high MS4A1 expression had early T- and pathological-stage CC and a more frequent history of colon polyps (Table 1). Patients with CC having a high expression of TNFRSF17 showed some differences in the M stage of CC and history of colon polyps. When TNFRSF17 expression was high, The proportion of distant metastasis was lower, but the proportion of history of colon polyps was higher (Table 2).




Figure 4 | Expression of MS4A1 and TNFRSF is lower in colon cancer (CC) and related to clinical features. (A) Expression of MS4A1 and TNFRSF17 at the transcription level was lower in colon cancer (CC) tissues than in healthy colon tissues. (B) qRT-PCR showed that the mRNA expression of MS4A1 and TNFRSF17 was higher in FHC cells than in SW480 and HCT116 cells. (C) Matched pairs of CC tissues and adjacent non-neoplastic colon tissues were stained with MS4A1- and TNFRSF17-specific antibodies for immunohistochemical analysis. Representative images of tissues and tumour-infiltrating cells are shown (scale bar = 20 μm). (D) The MOD of MS4A1 and TNFRSF17 is obtained by analysing the photo optical density with IPP software. (E, F) Western blotting revealed that the protein expression of MS4A1 and TNFRSF17 was higher in FHC cells than in SW480 and HCT116 cells. **,<0.01; ***,<0.001.




Table 1 | Analysis of correlation between expression of MS4A1 and clinical.




Table 2 | Analysis of correlation between expression of TNFRSF17 and clinical.





MS4A1 and TNFRSF17 are associated with immune infiltration

Previous studies have reported that MS4A1 and TNFRSF17 are closely related to the immune response of CC. Therefore, the relationship between the TME of CC and the expression of MS4A1 and TNFRSF17 was systematically analysed. The expression of MS4A1 (P < 0.05, R > 0.3) and TNFRSF17 (P < 0.05, R > 0.3) was positively correlated with immune scores and immune cell infiltration in the TME of CC (Figures 5A–D). In addition, the expression of MS4A1 and TNFRSF17 was positively correlated with immune cell infiltration and matrix components in the TME of CC. The immune scores can only reflect the total amount of immune cells infiltrated in TME but not the immune status of TME. Therefore, the ssGSEA algorithm was used to evaluate the correlation between the expression of MS4A1 and TNFRSF17 and the infiltration of 24 types of immune cells in the TME of CC. The results revealed that MS4A1 expression was positively correlated with the infiltration of B cells, central memory T cells, T cells, T follicular helper cells, dendritic cells, mast cells, cytotoxic cells, T helper cells, Th1 cells, activated dendritic cells, macrophages, immature dendritic cells, regulatory T cells, eosinophils, gammadelta T cells, effector memory T cells, cytotoxic T cells, neutrophils, CD56dim natural killer cells, plasmacytoid dendritic cells, Th2 cells and natural killer cells but negatively correlated with the infiltration of CD56bright natural killer cells (P < 0.05, Figure 5E). TNFRSF17 expression was positively correlated with the infiltration of B cells, T cells, T follicular helper cells, dendritic cells, mast cells, cytotoxic cells, T helper cells, Th1 cells, activated dendritic cells, central memory T cells, macrophages, immature dendritic cells, regulatory T cells, eosinophils, gammadelta T cells, effector memory T cells, cytotoxic T cells, neutrophils, natural killer cells CD 56dim cells, plasmacytoid dendritic cells and Th2 cells (P < 0.05, Figure 5F). Furthermore, the immune status was compared between the two expression groups of MS4A1 and TNFRSF17. Immune checkpoint scores, cytolytic toxicity and various immune response scores were higher in TME in the high-MS4A1-expression group than in the low-MS4A1-expression group (P < 0.05, Figure 5G). Similar results were obtained for TNFRSF17 (Figure 5H). Therefore, the infiltration of various types of immune cells in TME increases owing to the high expression of MS4A1 and TNFRSF17 in CC, and the immune response is more active.




Figure 5 | Relationship between the target genes and immune infiltration. (A) Correlation between MS4A1 expression and immune scores. (B) Correlation between MS4A1 expression and stromal scores. (C) Correlation between TNFRSF17 expression and immune scores. (D) Correlation between TNFRSF17 expression and stromal scores. (E) Relationship between MS4A1 expression and immune cell infiltration in TME. (F) Correlation between TNFRSF17 expression and immune cell infiltration in TME. (G) Comparison of the immune status between the high- and low-MS4A1-expression groups. (H) Comparison of the immune status between the high- and low-TNFRSF17-expression groups. *,<0.05; **,<0.01; ***,<0.001; ns,>0.05.





MS4A1 and TNFRSF17 are associated with CC drug sensitivity

Recently, immunotherapy has made great progress in cancer treatment. Some ICIs, such as anti-PD-1 and anti-PD-L1, have been validated for use in the treatment of cancer. However, most patients with CC lack sensitivity to immunotherapy (16). Therefore, identification of biomarkers for predicting sensitivity to immunotherapy is crucial for the selection of patients with CC who are eligible for immunotherapy. In this study, differences in common immune checkpoints between the two expression groups of MS4A1 and TNFRSF17 were analysed. The results revealed that the expression of PD-L1 (CD274), CTLA4, HAVCR2, LAG3, PD1 (PDCD1), PDCD1LG2, TIGIT and other immune checkpoints was higher in the high-MS4A1-expression and high-TNFRSF17-expression groups than in the low-MS4A1-expression and low-TNFRSF17-expression groups (P < 0.05, Figures 6A, B). These results suggest that patients with CC with high expression of MS4A1 and TNFRSF17 can benefit from ICI immunotherapy. To further examine the association between the expression of MS4A1 and TNFRSF17 and sensitivity to immunotherapy, differences in TIDE scores between the two expression groups of MS4A1 and TNFRSF17 were analysed. The TIDE score is used to examine the response of patients to immunotherapy. The lower the score, the higher the sensitivity to immunotherapy. In the high-MS4A1-expression group, the TIDE scores of patients with CC were lower, whereas the proportion of patients who responded to immunotherapy was higher (P < 0.05, Figures 6C, D). Similar results were observed in the high-TNFRSF17-expression group (P < 0.05, Figures 6E, F). These results indicate that patients with CC with high MS4A1 and TNFRSF17 expression are more sensitive to immunotherapy. Furthermore, the relationship between the expression of MS4A1 and TNFRSF17 and chemotherapeutic drug sensitivity was examined. Figure 6G shows the drugs for which chemosensitivity was remarkably associated with the expression of MS4A1 and TNFRSF17. In addition to being insensitive to 17-AAG, patients with high expression of MS4A1 and TNFRSF17 showed high sensitivity to other chemotherapeutic drugs.




Figure 6 | MS4A1 and TNFRSF17 are associated with CC drug sensitivity. (A) Differences in the expression of common immune checkpoints between the high- and low-MS4A1-expression groups. (B) Differences in the expression of common immune checkpoints between the high- and low-TNFRSF17-expression groups. (C) Differences in TIDE scores between the high- and low-MS4A1-expression groups. (D) Differences in response rates predicted based on TIDE scores between the high- and low-MS4A1-expression groups. (E) Differences in TIDE scores between the high- and low-TNFRSF17-expression groups. (F) Differences in response rates predicted based on TIDE scores between the high- and low-TNFRSF17-expression groups. (G) Correlation between drug sensitivity and gene expression. *, <0.05; ***, <0.001.





PPI and functional enrichment analysis of MS4A1 and TNFRSF17

According to the established PPI network, the proteins interacting with MS4A1 and TNFRSF17 were TNFSF13, POU2F2, TNFSF13B, TRAF5, TRAF1, CR2, CD53, TRAF3, POU2AF1, GPR18, CD22, CD40, CD79B, CD27, TCL1A, JCHAIN, IRF8, OTULINL, CD72 and IRAG2. The main functions of these proteins are B-cell activation, lymphocyte proliferation, response to tumour necrosis factor, leukocyte proliferation, positive regulation of stress-activated MAPK cascade and lymphocyte differentiation (Supplementary Figure 3A). Additionally, GSEA showed that MS4A1 and TNFRSF17 were mainly related to the chemokine signalling pathway, cytokine receptor interaction, T cell receptor signalling pathway, natural killer cell-mediated cytotoxicity and B cell receptor signalling pathway (Supplementary Figures 3B, C).



Construction and identification of overexpressing cell lines

After transfection, the overexpressed CC cell lines were identified, and the transfection efficiency of MS4A1 and TNFRSF17 overexpression plasmids in SW480 and HCT116 cells was analysed via qRT-PCR and WB, respectively. Compared with the negative control group, SW480 and HCT116 cells transfected with MS4A1 and TNFRSF17 overexpression plasmids had increased expression of both genes at the RNA level (P < 0.05, Figures 7A, B). Subsequently, protein expression was analysed via WB. After the MS4A1 and TNFRSF17 overexpression plasmids were transfected into SW480 and HCT116 cells, the expression of both genes was increased at the protein level as well (P < 0.01, Figures 7C, D). These results indicated that cell lines with MS4A1 and TNFRSF17 overexpression were successfully established, and subsequent functional experiments were performed using them.




Figure 7 | Expression changes after transfection of MS4A1 and TNFRSF17. (A, B) Compared with the empty negative control group, both MS4A1 and TNFRSF17 gene overexpression plasmids transfected into SW480 and HCT116 cells, the RNA levels detected by QPCR were overexpressed (C, D) Compared with the empty negative control group, both MS4A1 and TNFRSF17 gene overexpression plasmids were transfected into SW480 and HCT116 cells, and the protein levels detected by WB had overexpression effects. *,<0.05; **,<0.01; ***,<0.001.





MS4A1 and TNFRSF17 inhibited CC progression in vitro

To examine the effects of MS4A1 and TNFRSF17 on the proliferation, invasion and migration abilities of CC cells, CCK8, transwell invasion and wound healing assays were performed with cell lines overexpressing MS4A1 and TNFRSF17 and negative control groups. CCK8 assay confirmed that the proliferation of CC cells was lower in cells transfected with pCMV3-MS4A1 and pCMV3-TNFRSF17 than in control cells (P < 0.05, Figure 8A). Transwell invasion assay revealed that the invasive capability of CC cells was substantially lower in the pCMV3-MS4A and pCMV3-TNFRSF17 groups than in the control group (P < 0.01, Figure 8B). Wound healing assay revealed that the migration ability of CC cells transfected with pCMV3-MS4A1 and pCMV3-TNFRSF17 was significantly lower than that of control cells 24 h and 48 h after wound formation (P < 0.01, Figures 9A, B).




Figure 8 | CCK8 and Transwell experiments. (A) The proliferation ability of SW480 cells and HCT116 cells transfected with pCMV3-MS4A1 and pCMV3-TNFRSF17 was significantly reduced. (B) The invasive ability of SW480 cells and HCT116 cellstransfected with pCMV3-MS4A1 and pCMV3-TNFRSF17 was significantly reduced. *,<0.05; **,<0.01; ***,<0.001.






Figure 9 | Cell scratch experiment. (A) The migration ability of SW480 cells transfected with pCMV3-MS4A1 and pCMV3-TNFRSF17 was significantly weakened. (B) The migration ability of HCT116 cells was significantly reduced after pCMV3-MS4A1 and pCMV3-TNFRSF17 were transfected. *,<0.05.






Discussion

CC causes more than 500,000 deaths annually and seriously threatens human health (29). Owing to the absence of evident symptoms in the early stage, patients with CC are often diagnosed at the middle and late stages of the disease (30). Therefore, early diagnosis of CC, accurate prediction of the prognosis of patients with CC and in-depth understanding of the underlying molecular mechanisms are of great clinical significance. CD8+ T cells serve as the major effector cells of anti-cancer immunity, and their high infiltration in TME can often inhibit the onset and progression of cancer. Therefore, high infiltration of CD8+ T cells can be used as an indicator to predict the prognosis of CC (31, 32), and elucidating its crucial role in the TME of CC is clinically significant for preventing the development of CC.

In this study, two genes, MS4A1 and TNFRSF17, which are associated with the high infiltration of CD8+ T cells, were screened via systematic bioinformatic methods, and their prognostic roles and biological functions in CC were investigated. Although MS4A1 is a primary biomarker of B cells, several studies have reported that it can also be expressed on T cells (33, 34). We found that MS4A1 was down-regulated in CC, of which low expression predicted the poor prognosis of CC, which indicates that MS4A1 may be a potential biomarker for predicting cancer progression. After further study, it was noticed that MS4A1 was related to lower cancer stem cell score, and our study revealed for the first time that MS4A1 may be a potential tumour suppressor gene in CC. Therefore, the specific role of MS4A1 was further explored in CC. When the expression of MS4A1 was interfered in CC cells, it was found that MS4A1 overexpression substantially inhibited the proliferation and invasion of CC cells. As far as we know, this study is the first in vitro experiment to show that MS4A1, as a tumour suppressor gene, can inhibit the progression of CC. However, the potential mechanism of CD8 + T cells participating in MS4A1-mediated tumour inhibitory effect remains to be further studied. In view of the fact that the correlation between TNFRSF17 and the high infiltration of CD8 + T cells in TME of CC was found through biological information analysis, the influence of TNFRSF17 on CC cells was further detected. When TNFRSF17 was overexpressed, the proliferation and migration of CC cells were decreased, which indicates that TNFRSF17 plays a role as a tumour suppressor gene in the process of CC disease. Previous literature had reported the prognostic role of TNFRSF17 in various cancers, including colon cancer, gastric cancer, lung cancer and ovarian cancer (35–38). In this study, CC patients with high expression of TNFRSF17 had better survival results, which was consistent with previous studies (35). These findings provide immune-related prognostic biomarkers for CC, and effective targets for clinical treatment of cancer.

Cancer immunotherapy has dramatically changed the paradigm of cancer treatment and has demonstrated its importance in the treatment of particular malignancies. Tumour immunotherapy includes cancer vaccines, cellular immunotherapy and ICIs (39). The emergence of immunotherapy has opened up new perspectives for the treatment of lung cancer. In patients with local non-small-cell lung cancer (NSCLC) (stage I - III), immunotherapy can help reduce the postoperative recurrence rate or improve the current clinical outcomes in the treatment of unresectable tumours (40). Tumour microenvironment includes tumour-killing cells such as CD8 + T cells, M1 macrophages and NK cells, carcinogenic immune cells and tumour-related macrophages. Immunosuppression induced by tumour microenvironment is still an important obstacle to limit the efficacy of immunotherapy in the treatment of NSCLC (41). It has been shown in the literature that ICI-CT combined therapy significantly improves the response and survival rate of NSCLC patients compared with chemotherapy (CT) alone. However, in squamous cell histology, PD-L1 expression was less than 50%. Among female NSCLC patients with liver metastasis and non-smoking history, there is low or no benefit. Therefore, the discovery of biomarkers may be beneficial to determine the most suitable candidate for the best ICI-CT combination (42). However, only a few patients with CC are sensitive to immunotherapy, with the majority of patients being unresponsive to it (43). Therefore, it is crucial to identify immune infiltration-related biomarkers to predict the responsiveness of patients with CC to immunotherapy. The TIDE algorithm allows accurate evaluation of the responsiveness of patients with cancer to immunotherapy. However, evaluation of TIDE scores requires an accurate assessment of the immune cell content in TME, which requires the assessment of the expression of many genes (28). In this study, TIDE scores were higher in patients with high MS4A1 and TNFRSF17 expression. In addition, the proportion of patients who were predicted to be more sensitive to immunotherapy was higher, which demonstrated the potential of MS4A1 and TNFRSF17 in predicting sensitivity to immunotherapy. Furthermore, high expression of immune checkpoints promotes the functionality of ICIs (43). In this study, patients with CC with high expression of MS4A1 and TNFRSF17 had high expression of immune checkpoints, which may have increased the sensitivity to immunotherapy. There are some limitations in this paper. Firstly, there may be a more complex regulatory mechanism between the gene expression of MS4A1 and TNFRSF17 reported in this study and CD8+T cell infiltration and immunotherapy. Secondly, due to the limitation of laboratory conditions, this study was only verified by in vitro experiments. Our follow-up team plans to focus on exploring the upstream regulation mechanism, downstream pathway of these two target genes and their in-depth relationship with immunity, and verify them through in vivo experiments.



Conclusion

MS4A1 and TNFRSF17 are associated with high infiltration of CD8+ T cells in CC. Both genes are significantly downregulated in CC, and the prognosis of patients with CC with low expression of MS4A1 and TNFRSF17 is worse. Because MS4A1 and TNFRSF17 are substantially associated with immune cell infiltration in the TME of CC, they can serve as biomarkers for predicting the sensitivity of patients with CC to immunotherapy. In addition, these genes have therapeutic potential for the inhibition of CC progression.
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Supplementary Figure 1 | Differential gene expression analysis (A, B) Heat maps demonstrating differentially expressed mRNAs in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. The colour ranging from green to red indicates mRNA expression ranging from low to high, respectively. (C, D) Volcano plots demonstrating differentially expressed mRNAs in TCGA and GEO datasets. Green represents low mRNA expression in colon cancer (CC) samples, and red represents high mRNA expression in CC samples.

Supplementary Figure 2 | Weighted gene co-expression analysis (A) Gene co-expression module of TCGA dataset. (B) Gene co-expression module of the Gene Expression Omnibus (GEO) dataset. (C) Correlation between TCGA gene modules and high and low CD8+ T-cell infiltration. (D) Correlation between the GEO gene modules and high and low CD8+ T-cell infiltration. (E) Intersection of differentially expressed genes from the brown modules of both datasets.

Supplementary Figure 3 | PPI and the functional enrichment analysis of MS4A1 and TNFRSF17 (A) PPI network showed proteins interacting with MS4A1 and TNFRSF17 (B, C) GSEA analysis of MS4A1 and TNFRSF17
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It was estimated that 70% of patients with colorectal cancer were found to have viable exfoliated malignant cells in adjacent intestinal lumen. Exfoliated malignant cells had been reported to implant on raw surfaces, such as polypectomy site, anal fissure, anal fistula, hemorrhoidectomy wound, and anastomotic suture line. Tumors at anastomosis could be classified into four groups: local recurrence, local manifestation of widespread metastasis, metachronous carcinogenesis, and implantation metastasis. However, all of the previous studies only reported the phenomena of implantation metastasis at anastomosis. No study had proved the origin of anastomotic metastasis by genomic analysis. In this study, a 43-year-old woman presented with persistent hematochezia was diagnosed as having severe mixed hemorrhoids. She was treated by procedure for prolapse and hemorrhoids (PPH), without receiving preoperative colonoscopy. Two months later, she was found to have sigmoid colon cancer by colonoscopy due to continuous hematochezia and received radical sigmoidectomy. Postoperative histological examination confirmed the lesion to be a moderately differentiated adenocarcinoma (pT3N1M0). Six months later, she presented with hematochezia again and colonoscopy revealed two tumors at the rectal anastomosis of PPH. Both tumors were confirmed to be moderately differentiated adenocarcinoma without lymph node and distant metastasis and were finally removed by transanal endoscopic microsurgery (TEM). Pathological examination, whole exome sequencing (WES), and Lineage Inference for Cancer Heterogeneity and Evolution (LICHeE) analysis demonstrated that the two tumors at the rectal anastomosis were probably implantation metastases arising from the previous sigmoid colon cancer. This is the first study to prove implantation metastasis from colon cancer to a distal anastomosis by WES and LICHeE analysis. Therefore, it is recommended to rule out colorectal cancer in proximal large bowel before performing surgery with a rectal anastomosis, such as PPH and anterior resection. For patients with a suspected implanted tumor, WES and LICHeE could be used to differentiate implantation metastasis from metachronous carcinogenesis.
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Introduction

Colorectal cancer (CRC) is one of the most common malignancies worldwide. CRC can be spread by direct extension, lymphatic and blood vasculature, and intra-abdominal/transperitoneal spread (1). Implantation metastasis of exfoliated cancer cells on the impaired mucosa of distal bowel had been reported to be another rare way of metastasis. It was estimated that 70% of patients with CRC were found to have viable, exfoliated malignant cells in the proximal and distal lumen adjacent to the tumor (2, 3). Exfoliated malignant cells were reported to implant on raw surfaces, such as polypectomy site (4–6), endoscopic biopsy site (7), wound of anal fissure (8), track of anal fistula (9–11), hemorrhoidectomy scar (1, 12, 13), perianal skin (14, 15), and hook insertion site of Lone Star retractors (16). Implanted metastasis had also been reported in colorectal stapled suture line (17), and it may lead to anastomotic recurrence (18–20). Several studies had reported cases of anastomotic recurrence in patients with CRC treated by stapled anastomosis (21–24). For tumors at anastomosis, they could be classified into four groups: local recurrence, local manifestation of widespread metastasis, metachronous carcinogenesis, and implantation metastasis (25). Possible causes of anastomotic recurrence included positive resection margin, inadequate lymph node dissection, implantation of exfoliated cancer cells (26), germline mutation of susceptibility gene of CRC, and altered biological features of the suture line (25). Anastomotic proliferative instability caused by suture materials (e.g., staples) had been reported to promote the engraftment of exfoliated tumor cells (27, 28). The differential diagnosis of anastomotic tumor is very important, since the treatment plan and prognosis vary greatly (25). However, all of the previous studies only reported the phenomena of implantation metastasis. No study yet provided strong evidence to clarify the origin of metastasis from the molecular point. In theory, genomic analysis and comparative study of the original and anastomotic tumor could help us demonstrate true implantation metastasis (5, 22). This study aims to differentiate implantation metastasis from metachronous carcinogenesis with whole exome sequencing (WES) and Lineage Inference for Cancer Heterogeneity and Evolution (LICHeE) analysis.



Case presentation

A 43-year-old woman presented with persistent hematochezia. She did not have special history of medical, psychosocial and hereditary disease, relevant past interventions, and family history of cancer. No obvious mass was palpated on digital rectal examination. Preoperative colonoscopy was recommended but refused by the patient. She was diagnosed as having severe mixed hemorrhoids and treated by procedure for prolapse and hemorrhoids (PPH) on 7 July 2018 at a local hospital. Unfortunately, hematochezia continued after PPH, and the patient visited our hospital approximately 2 months after PPH. Colonoscopy (1 September 2018) revealed an ulcerative mass in the sigmoid colon (approximately 20 cm from the anal verge), which was confirmed to be adenocarcinoma on biopsy-based pathological examination. The rectal anastomosis performed during PPH had healed well, and no obvious abnormality was identified at the site of rectal anastomosis under colonoscopy. The patient underwent radical sigmoidectomy on 9 September 2018. Postoperative histological examination confirmed the lesion to be a moderately differentiated adenocarcinoma (pT3N1M0). She underwent 6 cycles of adjuvant chemotherapy (CAPEOX: oxaliplatin 130 mg/m2 IV day 1, capecitabine 10,00 mg/m2 twice daily PO for 14 days, repeat every 3 weeks) from 9 October 2018 to 23 February 2019. Furthermore, she was followed up regularly at our hospital. Six months after radical excision, she presented with hematochezia again. Flexible colonoscopy (9 March 2019) revealed two tumors at the rectal anastomosis of PPH (Figure 1); the sigmoid anastomosis and remaining colorectal mucosa appeared to have normal results. Both tumors at the site of rectal anastomosis were confirmed to be moderately differentiated adenocarcinoma on biopsy-based pathological examination. Lymph node involvement and distant metastasis were excluded by chest CT scan and liver and pelvic contrast MRI. After a careful and thorough discussion between the surgeons and patient, the last two cycles of the planned 8 cycles of chemotherapy were canceled to deal with the latest emerging rectal tumors. The two rectal tumors were removed by transanal endoscopic microsurgery (TEM) on 11 April 2019. Follow-up colonoscopy was performed at 1, 3, and 8 months and 2 years after TEM (Figures 1G–I). The patient was last followed up on 26 April 2022 by telephone interview, and she had remained disease-free (without local recurrence or distant metastasis) for 3 years after TEM. The timeline of important events, treatment, and follow up is shown in Figure 2.




Figure 1 | Flexible colonoscopy revealed the two tumors at the rectal anastomosis site of PPH. One tumor was indicated by a red circle, and the other tumor was indicated by a blue circle. (A–C): bright light image; (D–F): narrow band image; follow-up colonoscopy performed at 1 month (G), 3 months (H), and 8 months (I) after TEM.






Figure 2 | The timeline of important events, treatment, and follow up.



To explore whether these two rectal tumors (R1 and R2 tumor) were implantation metastases originating from the sigmoid colon carcinoma (S tumor), peripheral blood of the patient and formalin-fixed paraffin-embedded specimens of the three tumors were obtained and analyzed by WES. LICHeE analysis is a well-accepted combinatorial algorithm designed to reconstruct multi-sample cell lineage trees and infer the subclonal composition of the given samples based on variant allele frequencies of single-nucleotide variants (29–31). Therefore, LICHeE analysis was used to assess the diversity using single-nucleotide variants obtained from the three tumor tissues (Figure 3A) and showed that the R1 and R2 tumors were probably implantation metastases arising from the S tumor (Figure 3B).




Figure 3 | LICHeE analysis was used to assess the diversity using single-nucleotide variants in the three tumor tissues. (A) Each circle indicates a clone. The arrow indicates evolutionary direction. The number in the circle indicates the number of variants. GL indicates germline mutations, representing healthy tissues. Colors in squares indicate compositions of clones. Samples sharing common clones in the early stage indicate the presence of metastasis. (B) Color bar on the left: each color bar represents a clone, and the length of the color bar represents the number of variants. Color line on the right: the root (red) represents healthy tissues, and the end represents tumor tissues. Tissue with common variants indicates the presence of metastasis.





Discussion

Implantation metastasis of CRC to a distal anastomosis suture line is a rare situation, which has not yet been proved in the published literature by genomic analysis. To the best of our knowledge, this is the first study to prove the implantation metastasis of CRC to rectal anastomosis by comprehensive analysis, including pathological examination, WES, and LICHeE analysis. Differential diagnosis between implantation metastasis and metachronous carcinogenesis is very important, since treatment plan and prognosis vary greatly. In this case, the mucosa between the rectal anastomosis and sigmoid anastomosis was normal under colonoscopy; postoperative pathological examination showed that the sigmoid colon cancer and the two tumors at rectal anastomosis have similar histology; all of them were moderately differentiated adenocarcinoma. In addition, lymph node and distant metastasis were excluded. These above clinicopathological features indicated that the two anastomotic tumors probably originated from the sigmoid colon cancer. However, all of this evidence is only supportive, not conclusive. The best available method to prove the relationship between two tumors is WES and comparative study with LICHeE analysis, but it is time-consuming and very expensive. For these reasons, none of the published case reports of implantation metastasis had been proved by WES and LICHeE analysis.

It has been demonstrated that viable exfoliated cancer cells presented within the bowel lumen both proximal and distal to the CRC mass (12). Operation manipulation, and the transportation of intestinal content over an ulcerative tumor, may promote cancer cell shedding from the primary tumor and entering the bowel cavity (32). Intact mucosa is highly resistant to tumor cell implantation, and the exfoliated tumor cells cannot implant on normal colorectal mucosa. Instead, they can only implant on open wounds or ulcerated areas (8, 33). Many studies had noticed viable cancer cells in colonic irrigation solution and stapler, and staplers can promote the implantation and growth of viable cancer cells (19). Exfoliated cells may proliferate along the anastomotic site, leading to an implanted tumor. There are two possibilities about the timing of implantation metastasis in this case. First, the implantation metastasis at the anastomosis site may have already occurred shortly after PPH, before sigmoidectomy. The sigmoid colon cancer in this case is an ulcerative mass. Tumor cells may shed from the ulcerative mass, disperse into the lumen, and eventually lead to implantation metastasis at rectal anastomosis. At the time of sigmoidectomy (2 months after PPH), the lesions of implantation metastasis were probably too small to be observed at the well-healed rectal anastomosis under colonoscopy, and they grew larger gradually thereafter. Second, the implantation metastasis may occur at or after sigmoidectomy. Tumor mobilization during sigmoidectomy may cause exfoliation of cancer cells. The rectal anastomoses have probably healed at 2 months after PPH, but the inflammatory response at the anastomosis may also promote cancer cell growth and lead to implantation metastasis at the anastomosis (11).

Due to the rarity of implantation metastasis at the rectal anastomosis, there is no well-established operation. Several operative procedures had been reported in the literature, including local excision, abdominoperineal resection, and anterior resection with anorectal anastomosis (19). In this case, the two anastomotic tumors were proved to be local lesions without lymph node or distant metastasis, so the TEM was selected. At 2 years after TEM, no local recurrence and metastasis were identified, which means that implantation metastases have been cured by TEM. Therefore, TEM and careful monitoring may be adequate for some patients with implantation metastasis at the rectal anastomosis. In order to reduce the incidence of implantation metastasis, the following measures should be considered to control intraluminal dissemination of cancer cells: ligatures of the lumen proximal and distal to the tumor prior to mobilization; thorough irrigation of the bowel lumen with povidone iodine; and washing of the intestinal cavity of distal large bowel with chlorhexidine-cetrimide before cutting the intestine (3, 12, 19, 32). In addition, it should be cautious to perform hemorrhoidectomy or endoscopic excision of colorectal polyps before the removal of CRC, due to the potential increased risk of implantation metastasis to the fresh polypectomy site.



Conclusion

This is the first study to prove the implantation metastasis of CRC to rectal anastomosis by WES and LICHeE analysis. This case highlights the catastrophic consequence of tumor implantation to a distal rectal anastomosis after radical excision of colon cancer. Therefore, it is recommended to rule out CRC in proximal large bowel before performing surgery with a rectal anastomosis, such as PPH for hemorrhoids and anterior resection for rectal cancer. Once the diagnosis of CRC is confirmed, hemorrhoidectomy (especially PPH) should not be performed until the removal of CRC. Similarly, for patients with a confirmed diagnosis of CRC, a complete colonoscopy is still required to rule out another synchronous CRC in the proximal colon. If the colonoscope cannot pass through the lumen of the tumor site, a careful intraoperative exploration of the unchecked proximal colon is suggested to rule out a second tumor. Otherwise, the exfoliated malignant cells of the proximal tumor may implant at distal anastomosis. For patients with a suspected implanted tumor, WES and LICHeE could be used to differentiate implantation metastasis from metachronous carcinogenesis. Furthermore, TEM could be a reasonable and curative operation for rectal implanted tumor limited within the intestine wall.
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Background

Systemic inflammation and water composition are important factors affecting cancer prognosis. This study aimed to explore the association between the neutrophil-to-lymphocyte ratio (NLR) and intracellular water/total body water (ICW/TBW) ratio and overall survival (OS) in colorectal cancer (CRC).



Methods

This multicenter, prospective cohort included 628 patients with CRC between June 2012 and December 2019. The association between the covariates and OS was assessed using a Cox proportional hazards model and restricted cubic spline models. Concordance index (C-index), which integrated discriminant improvement (IDI) index and continuous net reclassification index, (cNRI) was used to compare the predictive ability of the markers.



Results

The optimal cutoff values for the NLR and ICW/TBW ratio were 2.42 and 0.61, respectively. The NLR was negatively associated with OS, while the ICW/TBW ratio was positively correlated with OS. NLR ≥2.42 and ICW/TBW ratio <0.61 were both independent poor prognostic factors (hazard ratio [HR]: 2.04, 95% confidence interval [CI]: 1.44–2.88 and HR: 1.45, 95% CI: 1.04–2.02, respectively). Subsequently, we combined the two factors to construct an inflammation-water score (IWS). Patients with IWS (2, ≥1) had worse OS (HR: 2.86 and 95% CI: 1.77–4.63; HR: 1.74 and 95% CI 1.17–2.57, respectively) than those without one. Compared to its component factors, IWS score showed better predictive ability for C-index, IDI index, and cNRI.



Conclusion

A high NLR and a low ICW/TBW ratio were independent risk factors for poor prognosis in patients with CRC. The combination of the two factors can provide a better prognostic prediction effect.





Keywords: intracellular water/total body water ratio, neutrophil-to-lymphocyte ratio, colorectal cancer, inflammation-water score, inflammation



Introduction

Colorectal cancer (CRC) is the third most common cancer worldwide. Despite progress in screening and treatment, the incidence, prevalence, and mortality rates of CRC remain high. Approximately 1.9 million new cases of CRC and 935,000 related deaths were reported in 2020 wherein approximately one in ten cancer cases and deaths are due to CRC (1). Therefore, investigating appropriate markers to assess the prognosis of patients with CRC is necessary to achieve precise individualized treatments.

Systemic inflammation is one of the important factors affecting the occurrence and development of cancer. Systemic inflammation promotes cancer progression across all stages. First, inflammatory factors can directly promote tumor growth. In addition, it can affect the inflammatory tumor microenvironment and further affect tumor growth by promoting angiogenesis and inhibiting adaptive immune responses (2–4), among other mechanisms. As one of the most representative indicators of cancer-related inflammation, the prognostic value of neutrophil-to-lymphocyte ratio (NLR) has been demonstrated in various cancers, including colorectal (5–7), oropharyngeal (8), prostate (9) cancers.

In recent years, body water composition has also been reported as a useful predictor of cancer prognosis. Amano et al. (10) found that a high intracellular water (ICW) content was associated with a poor prognosis in patients with cancer-related edema (10). Hirashima and Noda et al. (11) reported that a high extracellular water (ECW)/total body water (TBW) ratio was associated with frailty and poor treatment tolerance in patients with lung cancer (11, 12). Due to the high water content of the human skeletal muscle, ICW is closely related to muscle mass. Cancer-related muscle loss and inflammation may lead to a decreased ICW and an intracellular-to-extracellular fluid transfer. According to Amano et al.’s (10) study, patients with advanced cancer with and without edema have a lower ICW than healthy controls while ECW evaluated. Further, Park et al. (13) found that in patients with sepsis, the ECW/TBW ratio of non-survival increased with the decrease of the ICW/TBW ratio. As such, an intracellular-to-extracellular fluid transfer may take place in patients with a disease burden. Therefore, the fluid balance of the patients may be better evaluated using the ICW/TBW ratio. However, there is no report on the effects of the ICW/TBW ratio on cancer prognosis.

These two indicators are easy to obtain in the clinical environment and have a good predictive effect on cancer prognosis. The combination of the two may provide further reference for prognostic evaluation, curative effect evaluation, and treatment guidance for patients with cancer. To our knowledge, no studies have examined the association of systemic inflammation markers and water composition to prognosis in patients with CRC. Therefore, the purpose of this study was to investigate the relationship between NLR and ICW/TBW ratio and OS in patients with CRC.



Methods and methods


Study population

The patients in this study were from the Nutritional Status and Clinical Outcomes Survey of Common Cancers in China project (registration number: ChiCTR1800020329). The detailed design and recruitment and exclusion criteria of the Nutritional Status and Clinical Outcomes Survey of Common Cancers in China project have been reported in the previous literature (14). Briefly, this cohort recruited cancer patients over 18 years of age in more than forty centers across China, between June 2012 and December 31, 2019, with the primary objective of exploring the relationship between nutritional status and clinical outcomes. In this article, we screened patients with pathologically diagnosed colorectal cancer and mainly explored the relationship between ICW/TBW, NLR and survival outcomes. The primary outcome of this study was patient overall survival. The exclusion criteria comprised the absence of the following data: water composition, neutrophil count, lymphocyte count, age, and tumor-node-metastasis (TNM) stage (Figure S1). This study was approved by the institutional review committees of all the participating agencies. All the participants provided written informed consent.



Data collection

The clinicopathological data collected from the patients’ electronic medical records were as follows: demographic characteristics (age, sex, and BMI), lifestyle (smoking and alcohol history), TNM stage, and treatments (surgery, chemotherapy, and radiotherapy). Water components, including ICW and TBW, were measured through direct segmental multi-frequency bioelectrical impedance analysis (InBody S10 Body Water Analyzer; InBody). The Inbody S10 requires subjects to perform the test in a fasted, resting state to ensure redistribution of water in the body. This instrument is connected to the limbs through a plurality of contact electrodes, and sends out a weak current to detect the electrical impedance of the human body to obtain relevant data such as phase angle, FFM, FM, ICW and TBW (13, 15). Serological testing included neutrophil, lymphocyte counts, total protein, albumin and globulin, which were collected 10 hours after fasting (before treatments). Baseline data including ICW, TBW, FFM (fat free mass), FM (fat mass) and serological testing were obtained within 48 hours of admission. All measurements were standardized to explain the measurement errors between laboratories. TNM stage was defined according to the 8th American Joint Committee on Cancer TNM classification system. The neutrophil count was divided by the lymphocyte count to calculate the NLR. The ICW was divided by the TBW to calculate the ICW/TBW ratio.



Statistical analyses

The continuous variables of skewness distribution are presented as medians (quartile range) and were analyzed using the Kruskal–Wallis test. The categorical variables are presented as frequency (percentage) and were analyzed using the Pearson χ2 test. Restricted cubic splines were established to evaluate the nonlinear relationship between the NLR and ICW/TBW ratio and the OS. The cutoff value of the NLR and ICW/TBW ratio were calculated using a standardized log-rank statistic (survminer R package). A linear model was used to evaluate the correlation between the NLR and ICW/TBW ratio. The inflammation-water score (IWS) was established based on the NLR and ICW/TBW ratio. A Kaplan–Meier curve was used to draw survival curves, and a log-rank analysis was used for testing. After adjusting for confounding factors, univariate and multivariate Cox proportional risk models were used to assess the independent prognostic predictors of CRC. The concordance index (C-index), integrated discrimination improvement (IDI) index, and continuous net reclassification index (cNRI) were used to compare the predictive abilities of the NLR, ICW/TBW ratio, and IWS. The predictive abilities of the ICW/TBW, FFM, and FM were compared using time-dependent area under the curve (AUC) analysis. Statistical significance was set at P <0.05, and R software (version 4.1.2) was used for data analysis.




Result


Baseline characteristics of population

Of this study of 628 subjects, 376 (59.9%) were male and the median age was 60 years. Of these, 36 (5.7%) patients were in TMN stage I, 133 (21.2%) in TMN stage II, 257 (40.9%) in TMN stage III, and 202 (32.2%) in TMN stage IV. The median follow-up in this study was 22.33 months and a total of 171 (27.3%) people died during the follow-up period (Table 1).


Table 1 | Baseline characteristics of patients with colorectal cancer stratified by NLR and ICW/TBW ratio.





Association between the NLR and survival

The cutoff value of the NLR was 2.42. According to this value, 289 (46.02%) and 339 (53.98%) patients were classified into the high and low NLR groups, respectively. A high NLR was significantly associated with males, advanced ages, high neutrophil counts, low lymphocyte counts, and high all-cause mortalities (Table 1). The restricted cubic spline models showed that the NLR had an inverted L-shaped relationship with the OS of patients with CRC (Figure 1A). Compared with that of NLR <2.42, the hazard ratio (HR) (95% confidence interval [CI]) of the all-cause mortality in patients with NLR ≥2.42 was 2.00 (1.42–2.81) (Table S2). Upon dividing the NLR into quartiles, both Q3 and Q4 were found to be positively correlated with poor OS (P for the trend = 0.001). The HR (95% CI) of the all-cause mortality for Q4 was 1.83 (1.14–2.94). The Kaplan–Meier curve showed that the mortality of the high NLR group was higher than that of the low NLR group (Figure 2A). The results of a stratified analysis showed that a high NLR was consistently associated with an increased risk of mortality in almost all the subgroups of patients with CRC (Figure S5A).




Figure 1 | Association of the NLR and ICW/TBW ratio to all-cause mortality in patients with colorectal cancer. (A)- NLR, neutrophil-lymphocyte ratio; (B)- ICW/TBW ratio, intracellular water/total body water ratio. Model a: Crude model, Model b: Adjusted for age, sex, BMI, and TNM stage, Model c: Adjusted for age, sex, BMI, TNM stage, smoking, drinking, surgery, and chemoradiotherapy.






Figure 2 | Kaplan–Meier curve of the NLR and ICW/TBW ratio, and inflammation-water score in patients with colorectal cancer. (A)- NLR, neutrophil-lymphocyte ratio; (B)- ICW/TBW ratio, intracellular water/total body water ratio; (C)- IWS, inflammation-water ratio.





Association between the ICW/TBW ratio and survival

In Figure S2, we found that the predicted viability of ICW/TBW was higher than that of FM and FFM, so in this study, we chose ICW/TBW for further analysis. The cutoff value of the ICW/TBW ratio was 0.61. According to this value, 260 (41.40%) and 368 (58.60%) patients were classified into the low and high ICW/TBW ratio groups, respectively. A low ICW/TBW ratio was significantly associated with females, advanced ages, low BMIs, no history of alcohol consumption, low ICWs, low TBWs, and high all-cause mortalities (Table 1). Generally, a negative correlation was observed between the ICW/TBW ratio and mortality (Figure 1B). After adjusting for all the confounding factors, we found that compared with that of the ICW/TBW ratio ≥0.61, the HR (95% CI) of the all-cause mortality in patients with ICW/TBW ratio <0.61 was 1.40 (1.01–1.95) (Table S3). Upon dividing the ICW/TBW ratio into quartiles, both Q1 and Q2 were positively correlated with worse prognosis (P for the trend = 0.048). The Kaplan–Meier curve showed that the prognosis of the low ICW/TBW ratio group was worse than that of the high ICW/TBW ratio group (Figure 2B). The results of the stratified analysis also showed that a low ICW/TBW ratio was associated with an increased risk of death in almost all the subgroups of patients with CRC (Figure S5B).



Association between the NLR and ICW/TBW ratio

We further explored the linear association between NLR and ICW/TBW ratio, and the results showed that there was no significant correlation between the two (Figure S3). In addition, a high NLR (≥2.42) and low ICW/TBW ratio (<0.61) were independent predictors of poor survival in CRC (model c- HR: 2.04 and 95% CI 1.44–2.88; HR: 1.45 and 95% CI: 1.04–2.02, respectively; the NLR and ICW/TBW ratio were mutually adjusted) (Table 2).


Table 2 | Cox regression analysis of ICW/TBW and NLR associated with overall survival.





Association between the IWS and survival

The IWS was established based on the cutoff values of the NLR and ICW/TBW ratio: 0 point for NLR <2.42 and ICW/TBW ratio ≥0.61, 1 point for NLR ≥2.42 or ICW/TBW ratio <0.61, and 2 points for NLR ≥2.42 and ICW/TBW ratio <0.61 (Table 3). The Kaplan–Meier curve of the total population showed that patients with an IWS of 0 had the best survival, and patients with an IWS of 2 had the worst survival (P <0.001, Figure 2). Based on different TNM stages, there was a significant difference between the IWS and OS in all stages. The multivariate Cox regression model showed an association between the two (Table 4). In model c, compared with that of an IWS of 0, the HRs (95% CI) of the all-cause mortality in patients with an IWS of 1 and 2 were 1.49 (0.98–2.24) and 2.86 (1.77–4.63), respectively, and the HR (95% CI) of the all-cause mortality in patients with an IWS of ≥1 was 1.74 (1.17–2.57). The variate subgroups showed that patients with a high IWS (≥1) had a significantly higher all-cause mortality than those with a low IWS (=0) (Figure 3). The similar trends observed in females, patients aged ≥65 years, low BMIs, early TNM stages (I/II), history of drinking, surgery, and chemoradiotherapy had no statistical significance (P>0.05).


Table 3 | Inflammation-water score.




Table 4 | Cox regression analysis of Inflammation-water score associated with overall survival.






Figure 3 | Association between the inflammation-water score and hazard risk of overall survival in various subgroups IWS: inflammation-water score (low IWS = 0 and high IWS ≥1) Adjusted for age, sex, BMI, TNM stage, smoking, drinking, surgery, and chemoradiotherapy.





Comparison of the predictive abilities of NLR, ICW/TBW ratio, and IWS

The predictive abilities of the NLR (<2.42 and ≥2.42), ICW/TBW ratio (<0.61 and ≥0.61), and IWS were compared in Table S3. In the C-index model, the predictive ability of the IWS (C-statistic: 0.621) was higher than that of the NLR (C-statistic: 0.584) and ICW/TBW ratio (C-statistic: 0.582). In the cNRI and IDI index models, the predictive ability of the NLR was significantly lower than that of the IWS (difference: −0.291 and 95% CI: −0.418~−0.129; difference: −0.056 and 95% CI: −0.099~−0.011, respectively). The predictive ability of the ICW/TBW ratio was significantly lower than that of the IWS (difference −0.195, 95% CI −0.336~−0.024) in the cNRI model.



Association between the ICW/TBW ratio and nutrients and muscle

We found that patients with lower ICW/TBW also had lower total protein, albumin, serum creatinine, and albumin/globulin ratio compared with patients with higher ICW/TBW (Figure S6). As shown in Figure S7, we found that patients with low ICW/TBW also had low FFM and KPS.




Discussion

To the best of our knowledge, this study was the first to investigate the association between systemic inflammatory markers and water components and OS in CRC. In this study, we found that a high NLR and a low ICW/TBW ratio were independent prognostic indicators of poor survival (NLR and ICW/TBW ratio were mutually adjusted), and the NLR had no linear correlation with the ICW/TBW ratio. Meanwhile, we constructed an IWS based on the ICW/TBW ratio and NLR. The IWS had a better predictive ability than the NLR and ICW/TBW ratio. Compared to patients with an IWS of 0, those with an IWS of ≥1 had a poorer OS in CRC. In the stratified analysis, we found that the IWS more suitable as a prognostic indicator in advanced cancer (TNM stages III and IV), which has a greater burden of cancer-associated inflammation and excessive nutrient consumption, leading to an increased inflammatory marker (NLR) and a decreased nutrient-related marker (ICW/TBW ratio).

The negative association between NLR and OS in patients with cancer has been widely recognized as a reliable indicator of systemic inflammation (16, 17), especially in patients with advanced cancer, which is in agreement with previous studies (17–19). The mechanism underlying the association between a high NLR and poor prognosis in patients with cancer is unclear; a potential mechanism may be the relation of a high NLR to increased neutrophils and decreased lymphocytes. Chronic inflammation can promote the dedifferentiation and proliferation of tumor cells, promoting tumor progression (2, 20). Many studies have shown that neutrophils can directly or indirectly promote tumor cell growth and metastasis by regulating the tumor microenvironment. In addition, an increased serum neutrophil concentration has a negative effect on the cytotoxicity of natural killer cells and lymphocytes, thereby inhibiting the antitumor immune response (21, 22). In tumors, inflammatory infiltration composed of lymphocytes act as an immunosurveillance mechanism, inducing the production of anti-tumor-associated cytokines, such as IFN-γ, and inhibiting tumor proliferation (23).

Previous studies have shown that intracellular dehydration may occur in patients with cancer without edema (10), critically ill patients (13), and hemodialysis patients (24). Intracellular dehydration is typically related to an increased extracellular osmotic pressure. In cancer-related cell damage and extracellular hyperosmosis, intracellular fluid flows out of the cell. Intracellular dehydration may cause decreased various synthesis reactions in cells, hinder protein synthesis, affect protein structure and function, and eventually lead to the destruction of cell structure and function (25). Therefore, a decreased nutrient synthesis caused by a decreased ICW/TBW ratio may leave the patients in a state of malnutrition. Furthermore, preliminary studies have shown that intracellular dehydration may lead to decreased muscle quantity accompanied by decreased muscle strength and impaired function (26). In older adults, muscle strength seems to be related to muscle quality rather than quantity (25). Muscle strength is the primary determinant of muscle function. Cell atrophy and damage caused by the transfer of water components will lead not only to a decline in skeletal muscle quality and function but also poor quality of life, which have significant adverse consequences for survival and prognosis. These may explain why the all-cause mortality of CRC significantly increased with a decrease in the ICW/TBW ratio in our study.

Water composition is an indicator of skeletal muscle quality; the relationship between the skeletal muscle and inflammation has been widely discussed. Controlling inflammation is one of the body’s protective mechanisms; however, inflammation in cancer is not self-limited, so damage repair procedures are constantly activated, leading to chronic inflammation (27); a long-term inflammatory state induces chronic cell damage, further aggravating cell dehydration. The phenotypic imbalance of macrophages observed in chronic inflammation is associated with the impaired function of major cells needed for skeletal muscle regeneration, which results in the abnormal accumulation of profibrotic factors and delayed activation of satellite cells, hindering the repair and regeneration of skeletal muscles (28). Additionally, chronic inflammation can lead to a sustained decrease in skeletal muscle sensitivity, which is continuously reduced by inadequate nutrient acquisition in cancer. Since the water content of the skeletal muscle is relatively high, loss of the skeletal muscle mass leads to decreased ICW. Impaired nutrient synthesis due to intracellular dehydration can lead to inadequate nutrient acquisition in the skeletal muscle. Cancer-related cell impairment and inflammation lead to the transfer of the intracellular fluid to the extracellular surface, and the decrease in the TBW may not be as evident as that of the ICW. Therefore, a decreased ICW/TBW ratio may indicate a decline in skeletal muscle mass and function in patients with cancer. Inflammation can also directly reduce skeletal muscle mass and hinder muscle repair and nutrition uptake. Therefore, the combination of inflammation and water composition can better reflect the extent of skeletal muscle injury, which is conducive to the evaluation of systemic inflammation and nutritional status of the patients as well. Assuming that the low ICW/TBW ratio in this study represented a reduced skeletal muscle mass, the result is consistent with that of a previous study (29) stating that the risk of death in patients with CRC doubles when inflammation is combined with muscle loss, and the combination of the two has a better prognostic stratification effect than a single indicator.

Our study has some limitations. First, the small sample size may lead to biased statistical analysis. Second, the difference in muscle mass between BIA and CT scans could not be compared due to the lack of CT scan muscle mass. Finally, this study was unable to elucidate the mechanistic network between inflammation, water composition, and poor OS in CRC patients. More research is needed to explain the mechanisms by which inflammation and cellular dehydration reduce survival to provide information to guide treatment decisions.

A high NLR and a low ICW/TBW ratio were independent risk factors for poor prognosis in patients with CRC. The combination of the two can provide a better prognostic prediction effect.
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In locally advanced rectal cancer (LARC), an improved ability to predict prognosis before and after treatment is needed for individualized treatment. We aimed to utilize pre- and post-treatment clinical predictors and baseline magnetic resonance imaging (MRI) radiomic features for establishing prognostic models to predict progression-free survival (PFS) in patients with LARC. Patients with LARC diagnosed between March 2014 and May 2016 were included in this retrospective study. A radiomic signature based on extracted MRI features and clinical prognostic models based on clinical features were constructed in the training cohort to predict 3-year PFS. C-indices were used to evaluate the predictive accuracies of the radiomic signature, clinical prognostic models, and integrated prognostic model (iPostM). In total, 166 consecutive patients were included (110 vs. 56 for training vs. validation). Eleven radiomic features were filtered out to construct the radiomic signature, which was significantly related to PFS. The MRI feature-derived radiomic signature exhibited better prognostic performance than the clinical prognostic models (P = 0.007 vs. 0.077). Then, we proposed an iPostM that combined the radiomic signature with tumor regression grade. The iPostM achieved the highest C-indices in the training and validation cohorts (0.942 and 0.752, respectively), outperforming other models in predicting PFS (all P < 0.05). Decision curve analysis and survival curves of the validation cohort verified that iPostM demonstrated the best performance and facilitated risk stratification. Therefore, iPostM provided the most reliable prognostic prediction for PFS in patients with LARC.




Keywords: magnetic resonance imaging, radiomics, prognostic models, locally advanced rectal cancer, clinical predictors



Introduction

More than 100,000 cases of rectal cancer are diagnosed worldwide annually, and approximately 70% are locally advanced rectal cancer (LARC) (1). The standard treatment for LARC is neoadjuvant chemoradiotherapy (nCRT) followed by surgery (2, 3). Adjuvant chemotherapy is recommended for all patients with stage II/III rectal cancer after neoadjuvant radiochemotherapy and surgery (4). However, the effect of postoperative chemotherapy on survival remains controversial (5, 6). Therefore, pre- and post-treatment prediction models are needed to help determine treatment strategies and identify patients who may benefit from postoperative adjuvant chemotherapy.

LARC prognosis is based on the tumor–node–metastasis (TNM) staging system. Recently, nomograms were proposed to improve LARC prognosis prediction (7–10), using indexes such as age, carcinoembryonic antigen (CEA), carbohydrate antigen 19–9 (CA19-9), pathological tumor stage (ypT), pathological nodal stage (ypN), and tumor regression grade (TRG). However, contradictory results have been obtained with these models. For example, in one study, TRG was more efficient than ypTN stage in predicting the outcome (11), whereas in another study, ypTN stage contributed more (10), indicating that these nomograms are not robust enough for clinical application.

Radiomics, a tool that reveals underlying tumor heterogeneity using medical images (12, 13), serves as a strong prognostic predictor for malignancies (14). In rectal cancer, radiomics based on magnetic resonance imaging (MRI) is highly efficient in evaluating the tumor response to nCRT (14, 15) and can help identify non-responders (16) and pathologic complete responders (17–20). Prediction models based on radiomic features have added predictive ability in combined models, enhancing the accuracy by up to 74% (sensitivity 58%, specificity 77%) (18). Combined models based on radiomics and clinical data can independently predict overall survival (21), disease-free survival (22–24), and progression-free survival (PFS) (15) in LARC. However, pretreatment radiomics only reflects the cancer characteristics before surgery. Considering effective treatments may revise radiomics features, a study innovatively used delta radiomics based on 4 features to predict distant metastasis (DM) in LARC, obtaining a test set balanced accuracy, sensitivity and specificity of 78.5%, 71.4% and 85.7%, respectively (25). However, other prognostic clinical and histological indicators, including TRG, associated with the efficacy of nCRT on long term survival, which is important for determining the follow-up treatment after surgery, have not been considered in the radiomic prediction model. Thus, whether the combined model with radiomics and postoperative TRG data has an improved predictive ability for risk classification remains to be determined.

Here, we investigated the abilities of prognostic models based on radiomics, pre- and post-treatment clinical factors, and combination of radiomics and pre- and post-treatment clinical factors for predicting 3-year early PFS in LARC. Furthermore, we explored the internal correlations and differences among the models to determine the effect of combining different types of markers.



Methods


Patient selection

A total of 166 patients with LARC, based on pathological examination between March 2014 to August 2016, were enrolled (Supplementary Figure S1). The inclusion criteria were: (1) age ≥ 18 years; (2) newly diagnosed with LARC (staged on MRI as cT2–4 and/or N+) without distant metastasis and other malignancies; (3) treatment with preoperative nCRT; (4) high resolution pelvic MRI examination before nCRT; and (5) availability of complete electronic medical records and imaging data. Patients who did not complete nCRT were excluded. Considering only using radiomics feautures from pretreatment, pelvic MRI after treatment was not mandatory. Basic clinical information (sex, age, weight, height, BMI, clinical T stage, and clinical N stage) and laboratory indicators (routine blood tests, liver and renal function tests, blood glucose monitoring, C-reactive protein, serum lipid level, CEA, and CA19-9 levels) were collected before nCRT. This study was approved by the institutional ethics committee of our hospital. As this study was retrospective, the requirement for informed consent was exempted.



Treatment and follow-up

The preoperative treatment regimen included intensity-modulated radiation therapy (IMRT) and concurrent chemotherapy. IMRT doses of 50 Gy for gross tumor volume (primary tumors and enlarged LNs) and 45 Gy for clinical target volume were divided into 25 fractions. Two different chemotherapy regimens were used. Of the 166 patients, 91 received oxaliplatin (OXA) and capecitabine (CAPOX) for 3 weeks; 130 mg/m² OXA was intravenously administered on the first day, and 1,000 mg/m² capecitabine (CAP) was orally administered twice a day for the first two weeks. The remaining 75 patients received oral administration of 1,000 mg/m² CAP twice a day for the first 14 days. Radical rectal resection was performed 6–8 weeks after the completion of nCRT. After surgery, ypT stage, ypN stage, and TRG were evaluated.

The PFS, calculated at the endpoint, was defined as the interval from surgery to tumor progression, including local recurrence and/or metastasis or death. Follow-up visits were performed every 3–6 months in the first 2 years, then every 6 months in the following 3 years, and once a year thereafter.



MRI scanning and segmentation

Pretreatment pelvic MRI was performed using Trio Tim 3.0T (n = 74; Siemens Healthcare GmbH Henkestr) with two body Matrix coils and two spine Matrix coils or Discovery750 3.0T (n = 92; GE Healthcare) using an 8-channel phased array body coil in the supine position. Gadolinium-diethylenetriamine pentaacetic acid was injected as the contrast agent at a dosage of 0.1 mL/kg with a flow velocity of 3.0 mL/s. The scanning protocol included the axial, coronal, and sagittal T1-weighted (T1-w) images; T2-weighted (T2-w) images, axial short-axis T2-weighted images (short-axis T2-w), and contrast-enhanced T1-weighted (T1C-w) sequences. Short-axis T2–w, a thin section (3 mm) T2-weighted fast spin echo sequence acquired in a plane perpendicular to the long axis of the tumor (26), was helpful to precisely examine the tumor and its relationship with the intestinal wall, mesorectal fascia, vessels, and adjacent organs.

MR images were retrieved from the picture archiving and communication system and loaded onto AnalyzePro1 for manual segmentation. Two radiation oncologists with more than 10 years of experience outlined the whole-tumor volumes of interest, representing the contour of the tumor on each slice of all sequences separately.



Extraction of radiomic features and radiomic signature construction

Feature extraction in this study was performed using PyRadiomics2 (27). In total, 14,089 radiomic features were extracted from the axial T1C-w, T1-w, T2-w, and short-axis T2-w scans. The parameter settings for image preprocessing and radiomic feature extraction are presented in the Supplementary Information. To evaluate the effect of semi-automatic segmentations on the values of radiomic features, the inter-class correlation coefficient (ICC) was utilized. For this, 30 patients in the training cohort were randomly selected and segmented by two other radiation oncologists with more than 10 years of experience (Supplementary Figure S2A). The stability of each extracted feature was assessed by different expert radiologists. Stable radiomic features were defined as ICCs > 0.8 (Supplementary Figure S2B).

The RAD score was computed for each patient using a linear combination of selected features, weighted by their respective coefficients, and used to construct a radiomic signature. The potential association of the radiomic signature with 3-year early PFS was evaluated in the training cohort and then validated in the validation cohort.



Statistical analysis

The LASSO Cox regression method (Supplementary Information) was applied to select the most effective combination of prognostic features. The models were determined using the backward stepwise Akaike information criterion method, in which the least significant variables were removed one by one after fitting a full model with the candidate variables. The Mann-Whitney U test for continuous variables and the chi-square test for categorical variables were used to compare clinical characteristics between the training and validation cohorts. Considering multiple factors (including clinical T stage, clinical N stage, TRG, CEA, CA19-9, GLO, ypT stage, ypN stage), univariate and multivariate analyses were performed with the Cox proportional hazards model, and the hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated. Harrell’s concordance indices were used to assess the predictive power of each model. Statistical analyses were performed using R version 4.0.23. R packages, including glmnet, caret, survival, rms, Hmisc, corrplot, pheatmap, and rmda, were used. All statistical tests were two-sided, and P < 0.05 was considered statistically significant.




Results

A total of 166 consecutive patients (median age, 58 [interquartile range, 49‒64] years; 117 [70.48%] men) were included in the analysis. The patients were randomly divided in a 2:1 ratio, with 110 in the training cohort and 56 in the validation cohort. Table 1 summarizes the clinical characteristics of the patients with LRAC in the training and validation cohorts. There were no differences in those characteristics between the training and validation cohorts (P = 0.202–0.930).


Table 1 | Clinical and pathological characteristics of patients in the training and validation cohorts.



The median follow-up duration was 32.3 months (range, 2.6–58.8 months). During the last follow-up, disease progression was confirmed in 24 patients (21.8%) in the training cohort and 14 (25.0%) in the validation cohort (P = 0.708).

After univariate analysis in the training cohort, candidate variables with a P value < 0.1 were included in the multivariate model analysis. Pretreatment variables, including clinical T stage, CEA, CA 19-9, and globulin, and post-treatment predictors, including pathologic T stage and TRG, were selected as summarized in Supplementary Table S1. The pretreatment clinical prognostic model (PreM) for 3-year PFS prediction was established based on the four pretreatment variables. Multivariate analysis identified CEA and globulin as independent predictors (Supplementary Table S2). The clinical stage prognostic model was built based on the clinical T and N stages.

The C-indices of PreM and the clinical stage prognostic model were 0.627 (95% confidence interval [CI]: 0.572–0.682) and 0.578 (95% CI: 0.522–0.634) in the training cohort, and 0.552 (95% CI: 0.482–0.622) and 0.611 (95% CI: 0.531–0.691) in the validation cohort, respectively (Table 2). The nomograms and corresponding calibration curves for the probability of 3-year PFS generated using the pretreatment clinical prognostic models are shown in Supplementary Figure S3.


Table 2 | C-index for each prognostic model for survival prediction.



Additionally, by integrating the clinical variables for pre- and post-treatment, we established post-treatment prognostic models. The pathologic stage prognostic model was built based on the pathologic T and N stages. Stepwise multivariable analyses identified pathologic T stage, CEA, and globulin as independent predictors for PFS in the first post-treatment prognostic model (PostM1). In the validation cohort, PostM1 showed a higher predictive power for PFS than PreM (P = 0.307) and the pathologic stage prognostic model (P = 0.156), but it was slightly lower than that of the clinical stage prognostic model (P = 0.429). When the influences of clinical T stage and pathologic T stage were excluded, TRG, CEA, and globulin remained significant for PFS after performing multivariate Cox regression. Consequently, PostM2 was built with these three factors. The C-indices of the three post-treatment prognostic models are summarized in Table 2. The nomograms and corresponding calibration curves for the 3-year PFS probability generated using the post-treatment clinical prognostic models are shown in Figure 1 and Supplementary Figure S4. The multivariable Cox regression results of the pre- and post-treatment clinical prognostic models are summarized in Supplementary Table S2. Notably, compared with PreM without TRG, PostM2 achieved a better predictive performance (P = 0.356), which indicates that TRG is an important prognostic factor for predicting PFS.




Figure 1 | Nomogram for 3-year progression-free survival (PFS) in (A) iPostM and (C) PostM2. The nomogram allows the user to determine the probability of 3-year PFS corresponding to a patient’s combination of covariates. Calibration curves for predicting 3-year PFS in (B) iPostM and (D) PostM2 in the training and validation cohorts. The y-axis shows observed survival estimated using the Kaplan-Meier method, and the x-axis shows predicted survival calculated using the prognostic model. The closer fit to the diagonal dotted line indicates a better assessment. iPostM, integrated prognostic model combining tumor regression grade (TRG) and radiomic signature; PostM2, post-treatment clinical prognostic model without pathologic stage.



In the training cohort, we selected 11 radiomic features based on MRI that were significantly associated with PFS (Supplementary Table S3). The detailed selection process and LASSO results are shown in Supplementary Figures S5 and S6, respectively. The formula for the Rad score calculation of the radiomic prognostic model is shown in the Supplementary Information. In the training cohort, the radiomic signature yielded a C-index of 0.937 (95% CI: 0.917–0.957). The good prognostic performance of this radiomic signature was validated with a corresponding C-index of 0.730 (95% CI: 0.651‒0.809) in the validation cohort. The radiomic nomogram showed significant improvement compared to the clinical prognostic models (P = 0.007‒0.039), except for PostM2 (P = 0.077) (Table 2). Thus, the developed radiomic signature was more accurate than the clinical prognostic models for evaluating 3-year PFS.

Next, we built two integrated prognostic models that combined the radiomic signature based on MRI features with important pre- and post-treatment clinical factors. Using the multivariate Cox proportional hazard model based on pretreatment clinical factors and radiomic signature, we found that only the radiomic signature remained significant for PFS after adjusting for various cofactors. The integrated PostM (iPostM) was constructed using the radiomic signature and TRG (Table 3). The iPostM showed significant improvement compared to the radiomic signature in terms of evaluating 3-year PFS (C-index: 0.752; 95% CI: 0.684‒0.820), with a P value < 0.05 (Table 2).


Table 3 | Multivariate Cox regression analysis of the final integrated model.



The result of iPostM is visually represented by a nomogram, as shown in Figure 1A. The calibration curve for the 3-year PFS probability showed good agreement between the evaluation based on nomogram and actual survival (Figure 1B).

Then, we calculated the risk scores of all the prognostic models for each patient in both the training and validation cohorts and then classified the patients into categories: low-risk (patients with a score < 0) and high-risk (patients with a score ≥ 0), with zero as the risk score cutoff. The survival curves between patients in the low- and high-risk categories, generated using clinical and radiomic prognostic models in the training and validation cohorts, are shown in Supplementary Figures S7 and S8, and Figure 2. The patients with disease progression after treatment were concentrated in the high score area, and the survival curve showed good prognostic stratification of patients in the low-and high-risk groups in the validation cohort of iPostM. However, such trends were not observed in the validation cohort of other clinical prognostic models and radiomic signature.




Figure 2 | Stratified Kaplan-Meier analyses of the prognostic models to estimate 3-year progression-free survival (PFS) in various risk stratification subgroups in the validation cohort. Patients with high and low risks of PFS were stratified by the prognostic models (A) Pathologic TN, (B) PostM2, (C) Radiomics signature, (D) iPostM models. Only the iPostM could stratify patients into high- and low-risk groups based on significantly different 3-year PFS rates (P < 0.05). The log-rank test was used to calculate P values. Pathologic TN, pathologic stage prognostic model; PostM2, post-treatment clinical prognostic model without pathologic stage; iPostM, integrated prognostic model combining tumor regression grade (TRG) and radiomic signature.



Decision curve analysis of the validation cohort in all the prognostic models showed that iPostM was the most efficient (Figure 3). The iPostM exhibited the highest efficacy especially in high risk areas. Using a heatmap to determine the association between the radiomic signature and clinical data, we found no significant correlation between the radiomic signature and clinical factors (Supplementary Figure 9). In contrast, TRG and pathologic T stage showed a strong correlation (r = 0.69).




Figure 3 | The DCA curves of the nomograms compared for 3-year progression-free survival (PFS) in the validation cohort. The x-axis represents the threshold probabilities, and the y-axis indicates the net benefit. The net benefit is calculated by adding the benefits (true-positive results) and subtracting the risks (false-positive results), with the latter weighted by a factor related to the harm of an undetected cancer relative to the harm of unnecessary treatment. Clinical TN, clinical stage prognostic model; PreM, pretreatment clinical prognostic model; ypTN, pathologic stage prognostic model; PostM1, post-treatment clinical prognostic model; PostM2, post-treatment clinical prognostic model without pathologic stage; iPostM, integrated prognostic model combining tumor regression grade (TRG) and radiomic signature.





Discussion

In the present study, we established effective prognostic models for predicting 3-year PFS in patients with LARC. Further, we proposed an integrated prognostic model that combined the radiomic signature and TRG and yielded the highest C-index with a value of 0.752 in the validation cohort, outperforming the radiomic signature and all other clinical prognostic models. There was a strong correlation between TRG and pathologic T stage (r = 0.69). Notably, only the integrated post-treatment prognostic model could stratify patients into high- and low-risk groups based on significantly different 3-year PFS rates.

The prognostic models, based on only clinical and pathological factors, showed relatively weak predictive performance, indicating the need to find more useful markers. Additionally, the C-indices of PostMs were higher than those of PreM, possibly because pathological information can better reflect the preoperative state of the tumor. The models with TRG, used as a qualitative evaluation of tumor cells replaced by fibrosis that can reflect the sensitivity of tumors to nCRT, showed higher C-indexes, confirming the findings of previous studies (11, 28–30). TRG was significantly correlated with ypT, which may lead to the absence of ypT in multi-parameter models. Different from some previous studies (10, 24, 31), the discriminatory power of ypN was weakened and not included in the final model, which may attributed to the heterogenous distribution of ypN stage, the adding of TRG and radiomics in our model. For example, Cui et al. (24) included ypN in the prediction model instead of TRG. In their study, the percentages of ypN 0 in the training and validation groups were 60.3% and 50.9%, respectively, which were lower than those in our study (81.33% and 80.36%) and previous findings (96.9% and 94.6%) (9). Thus, to make radiomics-based model more robust, larger sample size and external validation are needed to confirm the results.

Our study indicates that radiomics is an independent prognostic factor for predicting 3-year early PFS in LARC, which is in accordance with a previous study (23). MRI is the standard imaging method for post-nCRT evaluation in LARC, and MRI-based radiomics, can provide minable information from conventional medical images and dig out quantitative features which can reflect tumor heterogeneity, other intrinsic characteristics and microenvironment related with individualized biological behavior of tumor (12–14, 25, 32). It is reported that higher levels of radiomics heterogeneity (ie, higher entropy) was associated with worse response to treatment and/or survival (33, 34), which may caused by the occurrence of constant complex mutations within a tumor to remain resistant to treatment (34). The correlation coefficient between the RAD score and clinical data was low, indicating that radiomic features include details derived from images rather than the clinical TNM stage derived from the macro level (35). Further, compared clinical and pathological models with underfitting, the iPostM obtained enough fitting in training cohort and achieved the highest C-index in the validation cohort, in which the RAD score contributed significantly to the nomogram. The reason may be that the RAD score comprises multiple underlying tumor characteristics associated with disease risks (32, 36, 37), whereas TRG is merely a pathological signature. Additionally, radiomics may decrease the discriminatory power of previously proven independent prognostic indicators (8, 38, 39) as shown in Supplementary Table S4. Thus, radiomics was the most influential indicator in the nomogram, followed by TRG and others. Based on the relatively comprehensive information, iPostM may identify patients in high-risk groups and suggest the administration of adjuvant chemotherapy after TME (4) to reduce the risk of occurrence of distant metastasis and recurrence.

Based on the strengths of similar prognostic prediction models for LARC (23, 24), we included multiparametric MR images for extracting radiomic features, with the addition of T1-w, T2-w, and short-axis T2-w, while other studies included relatively fewer sequences. Multiple MRI sequences can detect anatomical details and provide more specific histological information, such as necrosis, cystic degeneration, hemorrhage, and tumor angiogenesis (40). Notably, previous studies have proven that the predictive performance of a radiomic model derived from multi-modal MRI is superior to that based on mono-modal MRI (8, 38). Hence, our model could improve the prognosis ability for patients with LARC.

Nevertheless, there are some limitations to our study. First, it was a relatively small retrospective study performed and validated at a single center with short follow-up duration; however, we enrolled the patients consecutively to reduce underlying selective bias. Second, we only extracted signatures from preoperative primary tumors, lacking lymph nodes, functional MRI images, such as diffusion weighted imaging and apparent diffusion coefficient, which would provide more signatures and inner information. In addition, the value of post-treatment radiomics features need to be further confirmed. Third, we focused on random combinations of imaging features with clinical data rather than genetic heterogeneity. Furthermore, TRG, which is included in our best performing model, was not available to predict the prognosis for the “wait and see” patients. Future studies need to be carried out to validate the prognostic value of our iPostM model in multiple centers with longer follow-up duration.

In summary, we developed pre- and post-treatment prediction models based on clinical and radiomic features. Post-treatment prognostic models with postoperative pathological factors showed better predictive performance than pretreatment prognostic models, and TRG was important for predicting the 3-year PFS of LARC. The multi-modal MRI radiomic model with improved predictive ability could act as a pretreatment-independent prognostic factor for LARC and assist clinicians in determining appropriate neoadjuvant chemoradiotherapy regimens. In addition, the integrated post-treatment prognostic model has potential for recognizing high-risk patients who may benefit from postoperative adjuvant therapy. In future studies, we will validate the performance of our model and explore its clinical applications.
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Objective

Peritoneal metastasis is difficult to diagnose using traditional imaging techniques. The main aim of the current study was to develop and validate a nomogram for effectively predicting the risk of peritoneal metastasis in colorectal cancer (PMCC).



Methods

A retrospective case-control study was conducted using clinical data from 1284 patients with colorectal cancer who underwent surgery at the First Affiliated Hospital of Guangxi Medical University from January 2010 to December 2015. Least absolute shrinkage and selection operator (LASSO) regression was applied to optimize feature selection of the PMCC risk prediction model and multivariate logistic regression analysis conducted to determine independent risk factors. Using the combined features selected in the LASSO regression model, we constructed a nomogram model and evaluated its predictive value via receiver operating characteristic (ROC) curve analysis. The bootstrap method was employed for repeated sampling for internal verification and the discrimination ability of the prediction models evaluated based on the C-index. The consistency between the predicted and actual results was assessed with the aid of calibration curves.



Results

Overall, 96 cases of PMCC were confirmed via postoperative pathological diagnosis. Logistic regression analysis showed that age, tumor location, perimeter ratio, tumor size, pathological type, tumor invasion depth, CEA level, and gross tumor type were independent risk factors for PMCC. A nomogram composed of these eight factors was subsequently constructed. The calibration curve revealed good consistency between the predicted and actual probability, with a C-index of 0.882. The area under the curve (AUC) of the nomogram prediction model was 0.882 and its 95% confidence interval (CI) was 0.845–0.919. Internal validation yielded a C-index of 0.868.



Conclusion

We have successfully constructed a highly sensitive nomogram that should facilitate early diagnosis of PMCC, providing a robust platform for further optimization of clinical management strategies.





Keywords: colorectal cancer, peritoneal metastasis, nomogram, LASSO, logistic regression analysis



1 Introduction

According to the latest global cancer statistics in 2021, more than 1.9 million new colorectal cancer (CRC) (including anal) cases and 935,000 related deaths were recorded in 2020 from 185 countries, accounting for 10% of all 36 cancer types. Overall, CRC ranks third in terms of incidence and second in terms of mortality worldwide (1). In recent decades, the survival rate of metastatic CRC (mCRC) has improved owing to multidisciplinary discussions and provision of individualized comprehensive treatment regimens, in particular, molecular targeted therapy and biological immunotherapy. Molecular biomarkers such as RAS, BRAF and PIK3CA (key driver genes mutated in CRC) (2) and microsatellite instability (MSI) state have been successfully applied to guide targeted and immunotherapy decisions in clinical practice (3). However, treatment of mCRC remains a significant challenge, with local or distant recurrence commonly reported in numerous patients with stage II or III disease (4). Documented studies so far have reported that ~21% patients are diagnosed with distant dissemination (5) and >85% mCRCs do not have specific driver genes (6), especially colorectal cancer patients with peritoneal metastasis (PMCC), 4% of which are characterized by solitary peritoneal dissemination (7). Effective treatment options for PMCC in the clinic are limited at present. Peritoneum is the third common metastasis site after liver and lung (8) and PMCC is associated with poor survival rates and prognosis. In the past two decades, PMCC has been considered a local progressive disease and try to establish and explore the palliative treatment based on this concept. However, even after active medical intervention, median survival rate remains between 10 and 18 months (9). Moreover, since conventional imaging modalities such as computed tomography (CT) lack spatial resolution to effectively detect early peritoneal diseases and tumor markers are usually the only available tool for diagnosis and evaluation of therapeutic effects, rapid and early identification these patients remain a major challenge. The overall sensitivity of CT scanning in PM is 43%, sensitivity to lesions >5 mm is 94% and that to lesions <5 mm is reduced to 11% (10). Existing studies showed that the sensitivity and specificity of PET-CT for PMCC were 85% and 88%, respectively (11). However, PET-CT is also constrained by lesions with a diameter less than 1 cm. The uptake rate of 18F-fluorodeoxyglucose (18F-FDG) by certain pathological subtypes, particularly those prone to peritoneal metastasis formation (i.e., poorly differentiated adenocarcinomas and mucinous adenocarcinomas) is not high, affecting the diagnostic value of PET-CT scanning in the detection of these lesions (12).Therefore, modern imaging techniques are unable to effectively detect peritoneal metastasis at the early stages. Additionally, current non-invasive assessments (such as clinical examination, imaging or biology) are ineffective. At present, the gold standard for PM assessment is early detection through systematic surgical exploration (diagnostic laparoscopy or laparotomy). While surgical exploration displays greater sensitivity in diagnosis of PMCC, the procedure is invasive and expensive, along with significant risk of surgical complications (13). Therefore, this method cannot be recommended for all relevant patients and is only employed for high-risk peritoneal metastasis cases. Identification of more reliable tools for early prediction of risk of PMCC is essential for early intervention and improvement of outcomes.

The nomogram is an effective prediction tool that can quantify risk using statistical software combined with all known risk factors and has been practically applied for diagnosis of several diseases. To date, relatively few nomograms have been developed to predict peritoneal metastasis risk in colorectal cancer patients. For many cancer types (14–19), nomograms show better performance than the traditional TNM staging system and are therefore recommended as an alternative method or even a new prediction standard for diagnosis of recurrence and metastasis for various tumor types. In view of the unreliability of imaging, clinical and biological tests, we constructed a nomogram for prediction of PMCC as a guide for patient management in this study. Our newly developed nomogram provides more personalized prediction criteria that should aid in optimization of management decisions for PMCC.



2 Materials and methods


2.1 Ethics statement

All patients provided written informed consent for information storage in the hospital database of the First Affiliated Hospital of Guangxi Medical University. We obtained separate consent for the use of this information for our research. Study approval was obtained from the independent Ethics Committee of the First Affiliated Hospital of Guangxi Medical University. Our research was performed in accordance with the ethical standards of the World Medical Association Declaration of Helsinki. Patients did not receive economic compensation.



2.2 Inclusion and exclusion criteria

Inclusion criteria were as follows: (a) patients were over 18 years of age, (b) tumor resection was performed, (c) no peritoneal metastasis was detected with preoperative CT or other imaging examinations and postoperative histological examination confirmed colorectal cancer metastasis, (d) primary colorectal cancer was confirmed with histopathology and peritoneal dissemination was synchronous, and (e) complete preoperative imaging and serological data were available. Exclusion criteria were as follows: (a) patients were younger than 18 years of age, (b) imaging and serological data were incomplete or unavailable, (c) patients were diagnosed with mental disorders or severe liver and kidney dysfunction, (d) history of neoadjuvant chemotherapy, and (e) detection of other tumor types at the time of diagnosis or history of cancer. Based on the above criteria, we included 1284 consecutive patients with colorectal cancer who underwent surgery in the First Affiliated Hospital of Guangxi Medical University from January 2010 to December 2015 for case analysis, model construction and internal validation.



2.3 Clinicopathologic variables

In this retrospective case-control study, the clinical data collected included sex, age, blood group, course, race, initial symptoms, tumor location, perimeter ratio, tumor size, liver metastasis, lung metastasis, gross type, pathological type, pathological grade, tumor invasion depth, Dukes stage, T-stage, N-stage, M-stage, total protein level, albumin, and CEA level. According to the 8th edition of Tumor-Node-Metastasis (TNM) staging guidelines for colorectal cancer (20) issued jointly by the American Joint Committee on Cancer (AJCC) and the Union International Center of Cancer (UICC), ctTNM staging, tumor invasion depth and Dukes staging were defined in combination with colonoscopy/pathological diagnosis and preoperative enhanced CT scan data. Tumor size, perimeter, pathological type and grade were comprehensively assessed via preoperative imaging and electronic colonoscopy. According to primary tumor location in the left colon, right colon and rectum and the left and right colons are distinguished by the middle transverse colon. The cutoff values of age and tumor size were derived from the receiver operating characteristic (ROC) curve. The longest diameter of tumors was taken as tumor size.



2.4 Statistical analysis

All data were analyzed using IBM SPSS Statistics (Version 20.0, IBM corp., New York, USA) and R version 4.1.2 (The R Foundation for Statistical Computing, Vienna, Austria). Measurements for clinical indicators were transformed into classified variables according to median values of each group and SPSS software applied to analyze the statistical characteristics of all variables. The LASSO regression algorithm was used to select risk factors with optimal predictive value of colorectal cancer patients. Cross-validation was applied to confirm the appropriate tuning parameters (λ) for LASSO regression analysis. Finally, the most significant features were screened with the LASSO algorithm. After selecting the characteristics of non-zero coefficients in the LASSO regression model, independent risk factors of PMCC were determined via multivariate logistic regression and the nomogram prediction model established by combining the characteristics selected in the LASSO regression model.

Using the ‘ rms ‘ package of R software to build the PMCC nomogram prediction model, the score of all risk factors was added, whereby the probability of the total score corresponding to the model represented the probability of predicting PMCC before surgery. The nomogram presented risk factors in a graphical form and the risk of peritoneal dissemination in single patients could be calculated based on accumulating points related to each risk factor. Therefore, a higher score signified higher risk of PMCC.

The bootstrap method was used for repeated sampling 1000 times for internal verification of the nomogram model and the consistency index (C-index) calculated to determine its efficiency of discrimination. The area under curve (AUC) and calibration curve under receiver operating characteristics (ROC) (equivalent to C-index) were employed to evaluate the effectiveness and discrimination ability of the nomogram. ROC curve is a tool that can be used to graphically identify the cut-off value of any disease. AUC values ranged from 0 to 1, whereby 1 signified complete consistency. Values closer to 1 were indicative of stronger discrimination and prediction ability. In general, AUC values of 0.5–0.7 indicate low prediction ability, 0.7–0.9 medium prediction accuracy, and >0.9 high prediction accuracy. Differences were considered statistically significant at P < 0.05.




3 Results


3.1 Analysis of PMCC risk factors


3.1.1 LASSO and logistic regression of colorectal cancer patients in the development set

A total of 1284 patients with colorectal cancer were included, of whom 1188 (77.5%) showed no peritoneal metastasis in postoperative pathological examination and 96 (22.5%) had peritoneal metastasis. The demographic and clinical characteristics of patients in the study group are shown in the Table 1. In the LASSO regression model, 15 potential predictors with non-zero coefficients were selected from 22 features, including age, blood group, initial symptoms, tumor location, perimeter ratio, tumor size, lung metastasis, tumor gross type, pathological type, pathological grade, tumor invasion depth, Dukes’ stage, N-stage, M-stage, and CEA level, which could serve as risk factors for PMCC (Figure 1). We further used the ‘rms’ package in ‘R’ software to incorporate these clinicopathological factors into the logistic regression model for multivariate analysis. Ultimately, age (P = 0.024), tumor location (P = 0.002), perimeter ratio (P = 0.017), tumor size (P = 0.002), pathological type (P = 0.000), tumor invasion depth (P = 0.001), CEA level (P = 0.005) and gross type (P = 0.037) were identified as independent risk factors for PMCC (Table 2).


Table 1 | Characteristics of patients included in this study.






Figure 1 | Demographic and clinical feature selection using the LASSO binary logistic regression model. (A) Twenty-two characteristic profiles of the LASSO coefficient. According to the logarithmic (lambda) sequence, a coefficient profile was generated. The optimal lambda produced 15 non-zero coefficients. (B) The optimal parameter (lambda) in the LASSO model was selected via 10-fold cross-validation using minimum criteria. The partial likelihood deviation (binomial deviation) curve relative to log (lambda) was plotted. A virtual vertical line at the optimal value was drawn using one SE of minimum criterion (the 1-SE criterion).




Table 2 | Predictors in the risk nomograms for PMCC using multivariate logistic regression.






3.2 Establishment, verification and evaluation of the nomogram


3.2.1 Development and internal validation of our nomogram model in prognostic prediction of PMCC

Using R software, the eight predictive variables screened via logistic regression were substituted into the nomogram prediction model (Figure 2). The outcome indicator was risk of PMCC, which was evaluated based on the total point score. ROC curve of the combined diagnosis was generated according to the results of software equation operation. AUC of the training set was 0.882 and C-index was 0.882 (95% CI: 0.845-0.919) (Figure 3), indicating good predictive ability of the model. After internal verification of the nomogram prediction model using the bootstrap method with 1 000 repeated samplings, the C-index value was 0.868, confirming high discriminative and predictive ability (Figure 4). The correction curve revealed good agreement between the prediction and actual results (Figure 3). Data from the decision curve analysis (DCA) are shown in the Figure 5. DCA findings suggest that with a predicted occurrence probability of PMCC in the range of 1 – 94% with the nomogram model, application of the nomogram to predict risk of PMCC is more beneficial relative to both “treat all patients” and “treat none” regimens.




Figure 2 | The newly developed PMCC prediction nomogram. PMCC, peritoneal metastasis of colorectal cancer; CEA, carcinoembryonic antigen.






Figure 3 | Calibration curve of the predictive value of the PMCC nomogram. The X-axis represents predicted PMCC risk and Y-axis represents actually diagnosed risk of PMCC. The diagonal dotted line represents the perfect prediction of the ideal model. The solid line represents the performance of nomogram (specifically, the closer to the imaginary diagonal line, the better the prediction effect).






Figure 4 | Receiver operating curve (ROC) of the nomogram.






Figure 5 | Decision curve analysis of the PMCC nomogram. The Y-axis represents the net benefit. The grey solid line represents the PMCC risk map. The black solid line signifies assumption of PMCC for all patients. The blue solid line indicates no PMCC assumption. DCA showed that under probability of PMCC threshold of 1–94%, using a nomogram to predict risk of PMCC was more beneficial than “all patient intervention” and “non-intervention” programs.







4 Discussion

The peritoneum, a complex monolayer mesothelial cell structure (producing surface active phospholipids), is supported by the basement membrane and located on the connective tissue layer. The major function of peritoneum is to provide an effective barrier for preventing biological macromolecules, including tumor cells, from entering the cortex. Peritoneal dissemination refers to a series of events that begin with cancer cell shedding from the cancer nest into the peritoneal cavity, followed by their adherence to the mesothelial surface and, finally, invasion of the subperitoneal space for proliferation and angiogenesis (21). PMCC is a common advanced stage of colorectal cancer and often regarded as a pre-mortem state that reflects extensive spread of tumors. Among patients with colorectal cancer, about 10% progress to PMCC (22). Medical oncologists and gastroenterologists have reported poor prognosis of PMCC, with a median survival time of 6-9 months (23, 24). The group of Sugarbaker proposed that peritoneal cancer occurs due to local spread as a result of dialog between cancer cells and host molecules (25). Recent studies have shown that cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC) improves survival in patients with PMCC (22.3 months vs 12.6 months) (26), while the UNICANCER PRODIGE 7 randomized clinical trial reports a median overall survival more than 41 months with or without HIPEC (41.7 months (95% CI 36.2–53.8) in the cytoreductive surgery plus HIPEC group and 41.2 months (35.1–49.7) in the cytoreductive surgery group (hazard ratio 1.00 [95.37% CI 0.63–1.58]; stratified log-rank p=0·99) (27),which is considered the only potentially curative option to achieve long-term survival (28). Until recently, the presence of peritoneal metastases (PM) originating from gastrointestinal tumors has been considered to indicate terminal disease. However, the emergence of improved systematic treatment, better understanding of prognostic factors, and the emergence of new local treatment modalities opened the door for the multimodal treatment of PM. These strategies, including radical surgery and thermoperitoneal chemotherapy (HIPEC), showed surprisingly promising results and prolonged the survival time of patients with peritoneal metastasis. Because the therapeutic effect of PMCC has been greatly improved in recent years and the therapeutic concept is mainly based on active intervention rather than palliative treatment (29), although from the current research status, there is still a long way to go to achieve revolutionary therapeutic effect. Therefore, considerable efforts should be made to identify patients with PC at the earliest stages before further dissemination of PMCC. However, current traditional imaging techniques cannot meet the clinical needs for accurate preoperative diagnosis of PMCC (30, 31). In an earlier retrospective study, ~23% colorectal cancer patients with peritoneal metastasis were misdiagnosed based on clinical and imaging profiles before surgery. Although molecular diagnostic techniques and CT colonography have developed rapidly in recent years, their application in practice remains a challenge due to the high false positive rates, lack of unified standards, and significant cost (32). Identification of independent risk factors for predicting PMCC is therefore of great clinical value. Our results suggest that age, tumor location, perimeter ratio, tumor size, pathological type, tumor invasion depth, CEA level, and gross tumor type are independent risk factors for PMCC. Peritoneal metastasis is caused by shedding of tumor cells from the primary lesion into the abdominal cavity, which could explain why colorectal cancer with deeper invasion is more likely to develop into peritoneal cancer. Our experiments showed that a positive correlation between depth of tumor invasion and PMCC. Earlier reports have documented a 10-fold increase in risk of PC after colorectal cancer invades the outer membrane (7, 33). Due to the abundance of blood vessels and lymphatic vessels in the plasma membrane of the intestinal wall, with greater tumor infiltration, a large number of active cancer cells may be separated after penetrating the plasma membrane and enter the abdominal cavity, forming free tumor thrombus that adheres to and degrades the extracellular matrix of the peritoneal cavity and is implanted in the peritoneal mesothelial tissue for proliferation, eventually leading to peritoneal metastasis (34). Our results are consistent with this theory. In addition, clinicopathological parameters, such as tumor size, distant organ metastasis and pathological type, are closely associated with peritoneal dissemination. Mucinous adenocarcinoma accounts for 6–20% of all colorectal cancer cases and peritoneal dissemination in mucinous adenocarcinoma is more intense than that in non-mucinous adenocarcinoma (4, 35). In general, in colorectal cancer with mucinous carcinoma pathotype, tumor invasion and dissemination, poor prognosis, and recurrence and peritoneal dissemination are more likely. Experiments by Negri et al. (36) showed that patients with mucinous carcinoma did not respond well to chemotherapy regimens based on 5-fluorouracil, oxaliplatin and irinotecan, which could partly underlie the high recurrence rates in these subgroups. Consistent with earlier findings, age over 60 was negatively correlated with risk of PMCC (OR value: 0.588 [95% CI: 0.177 to 0.890; p < 0.001]) in our patient population (7, 37). Statistical analysis of the primary location of tumors disclosed that risk of PMCC of tumors located in the rectum is low while that of tumors in the left and right colon regions is markedly higher. This finding may be attributed to the fact that primary tumors in the rectum are mainly located outside the peritoneal cavity, and therefore, tumor shedding and planting in the abdominal cavity would require a large tumor load. The results of Kerscher and van Gestel are partial consistent with our conclusion (4, 9), while for patients with sigmoid colon cancer, the conclusions arecontradictory to our findings. This discrepancy highlights the importance of the location of primary tumors of colorectal cancer for peritoneal metastasis. Other than anatomical location, the size of tumor infiltrating the intestinal circumference is one of the important factors affecting peritoneal metastasis. Notably, risk of peritoneal metastasis is positively correlated with size of primary tumor. In this study, the peritoneal metastasis rates of primary tumors based on size were 9.42% (72/692) in the intestinal cavity ≥1/2 diameter group and 4.629% (24/469) in the intestinal cavity ≤ 1/2 diameter group. This difference was statistically significant (χ2 = 10.343, P = 0.001). Tumors can grow to >1/2 the circumference of the intestinal cavity, suggestive of a rich blood supply that provides nutrition. The processes of tumor occurrence and development reflect proliferation and infiltration properties and tumor size indicates the stage of disease. Larger tumors are correlated with longer disease periods and deeper invasion. In addition, with treatment delay, tumor cells have sufficient time to form distant metastasis or micrometastasis lesions. The principle is similar in that greater tumor infiltration depth is associated with higher risk of PMCC. CEA > 10 ng/mL was included in the nomogram, potentially indicating that high serum CEA is related to risk of PMCC. Tumor load and possibility of peritoneal infiltration and metastasis were correlated with higher CEA index in serum. Increased serum CEA indicates a later stage of colorectal cancer and stronger proliferation of tumor cells (38), along with low tumor differentiation, poor pathological type and metastasis.

An effective prediction tool requires low cost, easy access to clinical data and relatively high accuracy. Here, we established a risk model by analyzing a large-capacity database, which led to the identification of eight risk indicators of PMCC. The purpose and practical value of any prediction model must be its applicability and relevance to clinical practice. The eight predictors included in this study, age, tumor location, perimeter ratio, tumor size, pathological type, tumor invasion depth, CEA level, and gross type are very easy to collect (Figure 2). According to the classification of various factors on the nomogram, we drew vertical lines above the horizontal points at each prediction factor, and the corresponding value is the score of this factor. Finally, the scores for these eight factors are added together to obtain a total score. A point can be found in the total score, and the vertical line is drawn again along this point. The corresponding value below is the risk probability of PMCC.On this basis, we developed a simple and easy-to-use nomogram to predict the possibility of PMCC, with a view to providing targeted assessment recommendations and interventions for patients.

In the training data set, the nomogram had good discrimination and calibration values, with AUC of 0.882. Decision-making curve analysis (DCA) showed that at a prediction probability of PMCC of 1–94%, the nomogram model was more beneficial for patients than the ‘whole patient treatment’ or ‘no patient treatment’ schemes. The bootstrapping method was additionally applied for internal validation of the nomogram. The scale map showed good consistency between prediction and observation results. A C-index of 0.868 was obtained, indicative of medium to high prediction ability, reasonable discrimination and acceptable scaling. The nomogram developed in our study incorporated not only CT-based features but also clinical data related to pathology, clinical symptoms, age, and tumor morphology, which are easy to obtain. Moreover, our nomogram showed good identification and calibration ability. Quantitative risk-predictive nomograms facilitate objective evaluation of risk of PMCC, thus helping to optimize individualized management of patients and reduce the pain and additional expenses caused by traumatic diagnosis. To this end, our collective findings support the utility of this newly developed nomogram as an effective tool for clinical treatment decision-making.

The current study has a number of limitations that should be taken into consideration. First, this is a retrospective analysis of single-center prospective databases, thus lacking prospective cohorts to validate accuracy and stability. Secondly, utilization of traditional imaging diagnosis technology inevitably causes measurement deviations. In addition, recent studies suggest that vascular and perineural invasion and a number of gene mutations are related to specific metastatic organs in CRC. For example, BRAF mutations are associated with peritoneal dissemination (39). Yaeger et al. (40) examined the genomic map of 1134 cases of colorectal adenocarcinomas and found that there is a high degree of genomic consistency between primary tumors and metastatic lesions, indicating that most mutations develop in primary tumors, not at metastatic sites. In their analysis, mutations in NRAS, KRAS, BRAF, and APC were all associated with poor survival, confirming the known adverse effects of these mutations (41). In addition, mutations affecting RAS/RAF and other genes, including PIK3CA, PTEN, AKT1, SMAD2, and SMAD4 appear to be associated with a high risk of peritoneal metastasis. Other studies reported that the incidence of PM in patients with tumors carrying the V600E BRAF mutation was three times higher than that in tumors with wild-type BRAF (42, 43). Mutations in RAS, high PCI, and lymph node status were identified as specific risk factors for peritoneal recurrence. These new findings emphasize the heterogeneity of colorectal metastasis. Given the importance of these mutations it is regrettable that we could not include them in the predictive nomogram. However, data about the factors included in the nomogram can be collected immediately, or very shortly after surgery. In practice the results of tests investigating the presence of mutations affecting RAS/RAF, or other relevant genes are unlikely to be available at this point in time. Furthermore, mutation testing is currently not carried out in the majority of patients. No routine detection of RAS/RAF mutations was performed in early patients, partly because these are not routine examination tools. Thus, we were not able to incorporate information on gene mutations into the analysis and statistical modelling of biological behavior. Finally, although the robustness of our nomogram was extensively validated internally through bootstrap tests, no external verification was performed, and its generalized application for other regions and countries may be questionable. Despite these limitations, we believe that our nomogram prediction model provides a strong reference for development of individualized treatment regimens for PMCC patients. Further studies are warranted to obtain data that can be integrated to accurately identify the patients requiring additional chemotherapy or radiotherapy and, conversely, avoid overtreatment in other groups.



5 Conclusion

We constructed a robust nomogram using clinical variables associated with PMCC, which showed good predictive ability. This nomogram may be utilized as a tool to strengthen early diagnosis of PMCC and aid in optimal development of individualized treatment plans by clinicians in the future. However, prior to clinical application, studies on more multi-center databases are required for external validation to verify the prediction accuracy and generalization ability of the newly developed nomogram.
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Background

Medical imaging is critical in clinical practice, and high value radiological reports can positively assist clinicians. However, there is a lack of methods for determining the value of reports.



Objective

The purpose of this study was to establish an ensemble learning classification model using natural language processing (NLP) applied to the Chinese free text of radiological reports to determine their value for liver lesion detection in patients with colorectal cancer (CRC).



Methods

Radiological reports of upper abdominal computed tomography (CT) and magnetic resonance imaging (MRI) were divided into five categories according to the results of liver lesion detection in patients with CRC. The NLP methods including word segmentation, stop word removal, and n-gram language model establishment were applied for each dataset. Then, a word-bag model was built, high-frequency words were selected as features, and an ensemble learning classification model was constructed. Several machine learning methods were applied, including logistic regression (LR), random forest (RF), and so on. We compared the accuracy between priori choosing pertinent word strings and our machine language methodologies.



Results

The dataset of 2790 patients included CT without contrast (10.2%), CT with/without contrast (73.3%), MRI without contrast (1.8%), and MRI with/without contrast (14.6%). The ensemble learning classification model determined the value of reports effectively, reaching 95.91% in the CT with/without contrast dataset using XGBoost. The logistic regression, random forest, and support vector machine also achieved good classification accuracy, reaching 95.89%, 95.04%, and 95.00% respectively. The results of XGBoost were visualized using a confusion matrix. The numbers of errors in categories I, II and V were very small. ELI5 was used to select important words for each category. Words such as “no abnormality”, “suggest”, “fatty liver”, and “transfer” showed a relatively large degree of positive correlation with classification accuracy. The accuracy based on string pattern search method model was lower than that of machine learning.



Conclusions

The learning classification model based on NLP was an effective tool for determining the value of radiological reports focused on liver lesions. The study made it possible to analyze the value of medical imaging examinations on a large scale.
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Introduction

Liver metastasis occurs in approximately 30% of patients with colorectal cancer (CRC), and is the cause of death in around two thirds of the death from CRC (1). Medical imaging plays a great part in its diagnosis, with the common examination methods including ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI). Patients with CRC diagnosed by enteroscopy and pathology typically undergo liver medical imaging to screen for metastasis, compared with the common purposes for upper abdominal imaging, those patients may prompt an urgent need for efficient detection of suspect lesions of metastasis, rather than a detailed description of all normal organs. On the other hand, the patterns of liver metastasis remain to be further discovered by means of medical meta-data, free-text radiology reports contain highly informative diagnostic messages nevertheless require to be processed by NLP techniques before converted into a useable dataset, so far there is a lack of methods to hierarchically classify the certainty of radiology reports.

Moreover, as liver lesions could relate to multiple diseases and presented on fibrosis background, resulting in the ambiguity and hedging results in radiology, however, there is scarcely. In this study, liver radiological reports of patients with CRC were divided into five categories according to the radiologist’s opinion. Category I was defined as liver without any abnormality; I was defined as a small liver lesion without clinical significance with no clinical recommendations made; III was defined as clinically significant liver lesions accidentally discovered and unrelated to CRC; IV was defined as suspected liver metastasis needing further clinical examination or follow-up observation; V was defined as positive for liver metastasis. Once the model was able to accurately classify the findings in radiological reports, clinicians could intuitively obtain results and be provided with decision support for further clinical management of CRC patients.

Recent studies have demonstrated the feasibility of natural language processing (NLP) methods in extracting information from radiology reports, helping to overcome the obstacles faced when reusing medical imaging report information in clinical research and other medical and health care applications (2, 3). Some recent studies have also used statistical NLP methods to make differential diagnoses. Tong et al. (4) used random forest (RF) and convolutional neural network approaches to identify disease entities and established a disease classification model for ulcerative colitis, Crohn’s disease, and intestinal tuberculosis. Eskin et al. (5) used a support vector machine (SVM) algorithm and gene sequence kernel to predict the position of protein in cytoplasm, achieving 87% precision and 71% recall. Al-Garadi et al. (6) proposed a bidirectional encoder representation from a transformers based model, a fusion learning model, and bi-directional long short-term memory based model, and then used these models to detect self-reports of prescription medication abuse on Twitter. Brown et al. (7) used three machine learning models, namely logistic regression (LR), SVM, and RF, to predict future use of radiology department resources.

Because the structured report template may sometimes not fully express the ideas of radiologists, liver imaging reports are still written in free text in most hospitals in China. The complexity of Chinese language, the writting style and template of radiology reports have significant differences due to the perference across different hospitals, a comprehensive analysis of semantic features in radiology reports is quite attractive but hard to complete in short time. Therefore, the rule-based NLP method was used to extract information from imaging reports written by specific templates in Chinese, just such as breast cancer (8, 9). The NLP model based on machine learning is used in more researches on imaging reports in Chinese, and good results have been achieved (10, 11).

An ensemble learning classification model of liver medical imaging reports of patients with CRC should be sensitive to the relationships between different examination methods and their clinical significance. Based on these motivations, the purpose of this study was to establish an ensemble learning classification model based on NLP methods to classify the of radiological reports concerning liver lesion detection in patients with CRC and written in Chinese free text. Such a classification model could improve the efficiency of clinicians’ interpretations of medical imaging examination results, and make it possible to analyze the value of medical imaging examinations on a large scale.



Methods


Data set and data preparation

This study focused on CT/MRI examinations of the upper abdomen of patients with CRC that were performed at our institution between October 1, 2014 and April 30, 2021. The medical imaging reports on the liver were extracted from the medical imaging information system of a clinical medicine big data platform. The dataset included examination methods and the text of the medical imaging reports. Examination methods included CT without contrast, CT with/without contrast, MRI without contrast and MRI with/without contrast (Figure 1). A radiological report usually consists of two parts: image description and diagnostic conclusion. To generate features from each report, we focused on the conclusion section of the report. For the purposes of this classification problem, the conclusion section was considered the highest yielding portion in respect to the clinical significance of the report, because it could include information such as specific diagnosis, differential diagnosis, or recommendations for follow-up diagnostic studies. Cases were excluded according to the following criteria (1): follow-up reports, (2) covered liver surgery, (3) incomplete reports.




Figure 1 | showed a 66 year old male patient with rectal cancer. (A) CT without contrast showed there was an irregular low-density focus in S7 segment of the liver, which could not be well diagnosed qualitatively. (B, C) CT with contrast showed there seemed to be slight enhancement at the edge of the lesion. CT imaging combined with the patient’s history could make an imaging diagnosis of suspected liver metastasis. (D-F) MRI without contrast could basically characterize the lesion as malignant. (G, H) with contrast could make a definite diagnosis of metastases.



In preparation for the model development, all liver reports were classified as I to V according to their clinical significance. Reports were reviewed and manually labeled by 2 clinicians with at least 3 years of experience reviewing upper abdominal radiology reports, the labeling criteria was made previously at the consensus of all authors. The classification and labeling of a radiologist served as the reference standard. The code of patient, imaging examination method, imaging report and manual label of clinical significance were shown in eTable 1 in Supplement.



Problem definition

This study defined the task of determining the clinical significance of liver reports of a population with CRC as a multi-classification problem. The results of the liver medical imaging examinations were classified into five categories. Category I was defined as normal liver without any abnormality; II was defined as a small liver lesion without clinical significance and without clinical recommendations; III was defined as clinically significant liver lesions of unknown nature, with the radiologist putting forward clinical suggestions; IV was defined as suspected liver metastasis in need of further clinical examination or follow-up observation; and V was defined as positive for liver metastasis. Categories I and II generally excluded liver metastasis of CRC, while category V was a positive diagnosis of liver metastasis. Categories III and IV required special attention from clinicians. A representative original liver report and it’s category label were shown in Figure 2.




Figure 2 | A representative original liver CT with/without contrast report and category label of patient with colorectal cancer. The report consists of an imaging description and diagnostic conclusion. For publication purposes, we provided English version of Chinese words from the imaging reports.





Data processing

Before classification, NLP was used to extract language features. First, using the Python package “jieba”, Chinese word segmentation was applied to the description to tokenize the input text. Second, a stop word dictionary was established to remove stop words. The stop words mainly included adjectives and some adverbs and connectives. Currently, there are approximately 2000 stop words in the dictionary.

The core of the text classification involved the extraction of key features reflecting the characteristics of the text and capturing the mapping between the features and the categories. Regardless of the frequency of a word, as long as it appeared, it would be marked with 1 in the corresponding position, otherwise it would be marked with 0. Under the general belief that the more a word appeared in a text the more important it was, and therefore the greater the weight it had. We built a bag-of-words model, selected words with a word frequency of more than 1000 as features, and used 1-gram and 1–3-gram methods. Then, non-participles were also directly tried as features.



Development of classifiers

We studied the descriptions of the liver and the conclusions of all medical imaging reports, and applied 1-gram and 1–3-gram language model methods. The validation set was then randomly divided into proportions of 1:5, and 5-fold cross-validation was performed. Details are as follows.

We group the original data sets. One part is used as the training set to train the model, and the other part is used as the test set to evaluate the model. The 5-fold cross validation reduces the variance by averaging the training results of 5 different groups, so the performance of the model is less sensitive to the division of data. (1)The first step is to randomly divide the original data into 5 copies without repeated sampling. (2) The second step is to select one of them as the test set each time, and the remaining four as the training set for model training. (3) The third step is to repeat the second step for 5 times, so that each subset has one chance as the test set and the rest as the training set. After training on each training set, a model is obtained, Use this model to test on the corresponding test set, calculate and save the evaluation indicators of the model. (4) The fourth step is to calculate the average value of the five groups of test results as the estimation of the model accuracy and as the performance index of the model under the current 5-fold cross validation.

The value of the examination results itself was the classification problem, and therefore general pattern classification methods could be used for text research, and the following methods were applied: LR, RF, multinomial naive Bayes (NB), multi-layer perceptron (MLP), k-nearest neighbor algorithm (KNN), SVM, and extreme gradient boosting (XGBoost).

LR is a classification and prediction algorithm (12) that can predict the probability of future results based on the performance of historical data. NB models assume that the features are generated by a simple polynomial distribution (13), and multinomial NB is usually used for text classification. Its features refer to the numbers or frequency of occurrences of words in the text being classified. The MLP is a feed forward artificial neural network model that maps multiple input datasets to a single output dataset (14). When a KNN algorithm is given a training dataset, for a new input instance it finds the K instances closest to that instance in the training dataset, with most of these K instances belonging to a certain class, and then assigns the input instance into this category (15). The basic SVM model finds the best separation hyperplane in feature space to maximize the interval between positive and negative samples in the training set (16).

RF and XGBoost are both ensemble learning methods. The idea of ensemble learning is to solve the inherent shortcomings of a single model or a certain set of parameter models, so as to integrate more models, learn from each other’s strengths, and avoid limitations. RF is the product of the idea of ensemble learning, and integrates many decision trees into a forest, where together they are used to predict the final result (17). XGBoost is an efficient implementation of the gradient boosting decision tree (18). The base learner in XGBoost can be either classification and regression trees (gbtree), or a linear (gblinear) classifier.

We adopted a string pattern research method to further explore the efficacy of using key-word based technique to identify critical information and properly classify radiology reports. Two groups of string patterns are developed, group 1 contains key words representing clinical tendency, addressed by 3 experienced radiologists according to their expertise. Group 2 applies a vectorization strategy: Term Frequency-Inverse Document frequency (TF-IDF), a class-specified lexicon is built to segment the sentences, then a vector is created through the statistics of segmented words to represent a text body. The equation for TF-DF is shown in Eqs.1

For a term i in document j:

	

tfi,j = number of occurrences of i in j

dfi = number of documents containing i

N=total number of documents

Eqs.1 Equation of TF-IDF Embedding

The string patterns defined by 3 experienced radiologists (Group I) and calculated by TF-IDF method (Group2) were shown in Figure 3.




Figure 3 | The string patterns defined by 3 experienced radiologists (Group I) and calculated by TF-IDF method (Group2). For publication purposes, we provided English version of Chinese words from the imaging reports.





Ethics approval and consent to participate

As the data were retrospectively collected for administrative purposes and completely anonymized, this study does not fall within the scope of the Medical Research Involving Human Subjects Act (19). Accordingly, the study obtained permission to use anonymized data and a full waiver for the requirement for informed patient consent from the Medical Ethics Review Board of Beijing Friendship Hospital Affiliated to Capital Medical University (reference number 2021-P2-144-01).




Results


Basic characteristics of the study population

We acquired a total of 2790 reports, with 10.2% covering CT without contrast, 73.3% CT with/without contrast, 1.8% MRI without contrast, and 14.6% MRI with/without contrast. Table 1 summarizes the numbers and proportions of the four methods in each of the radiologist’s five classifications. In category V, the lowest proportion of examinations was CT without contrast, whereas the highest proportion of examinations was MRI with/without contrast performed for the purpose of detecting liver metastasis.


Table 1 | Dataset in each diagnosis category according to the different examination methods.



This study used LR, RF, multinomial NB, MLP, KNN, SVM, and XGBoost to classify the examination results. The results of the 1-gram and 1–3-gram models are shown in Tables 2, 3, respectively. The accuracy of XGBoost was the highest, reaching 95.91%.


Table 2 | The result of 5-fold cross-validation with 1 gram language model.




Table 3 | The results of 5-fold cross-validations with the 1–3-gram language model.



The accuracy of the string model based on expert experience (group 1) is 83.78%, and TF-IDF model (group 2) is 64.95%. The accuracy based on string pattern search method model is lower than machine learning (Table 4).


Table 4 | The comparation of results based on machine learning model and string pattern search method.





Visualization of the classifications

To present the classification results more intuitively, we visualized the results using the ELI5 algorithm (20). A confusion matrix of XGBoost results with 5-fold cross-validation classification is shown in Figure 4. The abscissa represented the predicted results and the ordinate the actual results. The numbers of errors in categories I, II and V were very small. The results of these reports were usually positive and easily classified, and were consistent with the radiologist.




Figure 4 | The confusion matrix for the XGBoost model in the dataset of CT with/without contrast. The abscissa represented the predicted results and the ordinate the actual results.



We used ELI5 to select important feature words of the XGBoost classifier for use in the general classification, as shown in Figure 5. Green represented positive correlation, and the weight represented the contribution. The darker the green, the stronger the correlation between the word and classification. Words such as “no abnormality”, “suggest”, “fatty liver”, and “transfer” showed relatively large positive correlation. Figure 6 showed an example of a radiological report classification. In this example, “y” was assigned to a certain category according to the probability, with green representing features that were positively related to this category, and the darker the green the greater the degree of correlation. Red represented features that were negatively related to this category, and the darker the red the less relevant they were. When “y” = IV, the probability reached 0.986 and the score was 4.067. Words such as “low density”, “suggest” and “metastasis” had a relatively large degree of positive correlation.




Figure 5 | The feature weights of the XGBoost model for the general classification accuracy. Green represented positive correlation, and the weight represented the contribution. The darker the green, the stronger the correlation between the word and classification. For publication purposes, we provided English version of Chinese words from the imaging reports.






Figure 6 | The classification result of an example of CT with/without contrast report. “y” was assigned to a certain category according to the probability, with green representing features that were positively related to this category, and the darker the green the greater the degree of correlation. Red represented features that were negatively related to this category, and the darker the red the less relevant they were. For publication purposes, we provided English version of Chinese words from the imaging reports.






Discussion


Principal results

In this study, the NLP approach showed high accuracy in classification of liver medical imaging reports of patients with CRC according to clinical significance. These findings suggest that an ensemble learning classification model based on NLP could be an effective tool for determining the value of radiological reports focused on liver lesions. The advantages of our method were as follows: First, by applying this classification model, researchers can carry out large-scale clinical research in the future. For example, we can quickly establish a study group of CRC patients with/without liver metastasis from the imaging report. Secondly, classifying image reports according to clinical value can better understand the application of oncologists for liver examination of patients with CRC. This encourages oncologists to select appropriate examination, CT or MRI, in future clinical work. Thirdly, if this classification model is embedded in the medical record system in the future, clinicians can quickly know whether the patient has liver metastasis or other liver disease that need further management without reviewing the image report, so as to improve work efficiency.

The evaluation and management of distant metastases is generally very similar between colon and rectal cancer (21). Approximately 14.5% of patients with CRC present with synchronous liver involvement (22), although the great majority of patients with CRC undergo medical imaging examinations for pretreatment staging and detection of distant metastasis as a routine check. For the purpose of screening for liver metastasis, this study classified the medical imaging reports into five categories according to the degree of correlation with the examination purpose. Categories I and III excluded the diagnosis of liver metastasis. liver lesions of category III, such as primary carcinoma of the liver and lesions of unknown nature, should be further examined or treated by clinicians according to the patient’s condition. Category IV is suspected liver metastasis, and for diagnoses in this category, clinicians would need other examinations to make further confirmation. Category V is confirmed diagnosis of liver metastasis, and with this diagnosis clinicians could customize the treatment plan directly. With this classification result, clinicians could quickly respond to the medical imaging examination.

The study results revealed that most clinicians in our single center chose the imaging method of “CT with/without contrast” to screen for liver metastasis, which is consistent with the recommended methods in the clinical practice guidelines (23). Because of the long imaging time and high price, the use of MRI was not as high as that of CT. However, MRI showed higher detection ability than CT because of its high soft tissue resolution. Patients with a high suspicion of liver metastasis should be examined using MRI. Therefore, in our medical center, the largest proportion of liver metastases were confirmed by MRI, especially MRI with/without contrast.



Comparison with prior work

Thus far, the primary focus of much of the research examining applications of NLP in the text analysis of medical imaging reports has been in serving health care providers (24–26). There are also some examples of NLP technology applied to clinical research. For instance, Kim et al. (27) classified brain MRI reports of acute ischemic stroke and non-acute ischemic stroke using NLP, and evaluated a variety of machine learning algorithms for this procedure, among which the F1 value (0.93) and accuracy (98.0%) of a single decision tree were the highest. Wheater et al. (28) developed a rule-based NLP algorithm to automatically identify brain MRI reports, and found sensitivity, positive predictive value, and specificity of 89%, 85%, and 100%, respectively, for identifying ischemic stroke reports, 96%, 72%, and 100% for identifying hemorrhagic stroke, and 96%, 84%, and 100% for recognizing brain tumors. Lee et al. (29) used NLP to infer the classification of brain tumor reports and a data system from unstructured brain MRI reports. They found that when classifying unstructured reports, section-wise ensemble models using XGBoost and word2vec semantic words were more accurate than a model using Tf-idf statistics, with an F1 value of 0.72. The model using traditional Tf-idf statistical data was better than the word2vec semantic method in structured report classification, with an F1 value of 0.98. There is great potential for applying these technologies in health care management. With increasing waiting times and patient lists in hospitals around the world, endpoints such as clinical value and resource utilization are becoming increasingly important for managers, providers, and patients.

In this study, we trialed the n-gram language model of NLP method. N-gram is an algorithm based on statistical language model. Its basic idea is that the contents of the text are operated by n-size sliding windows according to bytes, forming a sequence of n-length byte fragments. Each byte segment is called gram. The occurrence frequency of all grams is counted and filtered according to the preset threshold to form a list of key grams. N-gram language model shows good performance in many text mining tasks (30–32). For example, Giannakopoulos and Karkaletsis (30) expressed the text as an n-gram model using a sliding window with a length of n by connecting the adjacent n-grams with the edges representing their co-occurrence frequency in a given text window, they captured the word order in the text and detected some similarities in the text morphology.

Our study using NLP realized automatic classification of liver results from the text of medical imaging reports of patients with CRC. The classifier built from machine learning algorithms such as XGBoost and LR had extremely high sensitivity and specificity for the five classification categories applied to the liver radiological reports, and reached a high rate of accuracy. The classifier can strongly indicate the clinical value of the reports ordered by the clinician. The terms “no abnormality”, “clinical”, “re-examination”, “related examination”, and “metastasis” were among the important characteristics used for the classification. The confusion matrix revealed that categories III and IV were difficult to distinguish, which is similar to the experience of the radiologist. These two categories required further decision-making by doctors, which indicates that existing imaging methods might not play a definitive role in determining or excluding target lesions.




Conclusion

The learning classification model based on NLP was an effective tool for determining the value of radiological reports focused on liver lesions. The study made it possible to analyze the value of medical imaging examinations on a large scale and it could be used to provide decision support for further clinical management of CRC patients in the future.



Limitations

This preliminary study has several limitations. First, the classification model was trained on data from a single medical center, and the generalizability of the results is unknown. More work must be done to explore the application of the technology in different institutions and medical imaging research applications. Second, for most of the observations used to construct the dataset, our medical institution did not widely adopt a standardized framework for the description and classification of liver lesions. Standardized reporting using tools such as the Liver Imaging Reporting and Data System (33) can reduce the variability of reporting and improve model performance. However, despite the limitations of our dataset, the system operated with high accuracy in the classification. Third, we acknowledge that the common phrases in radiology literature can identify positive report of specific diseases without the need for artificial intelligence (AI). The purpose of our application of AI is not to identify a specific case, but to classify a large number of image reports according to clinical significance, so as to help understand the effectiveness of a certain imaging method for its clinical purpose. Finally, we have not embedded the report classification model into the medical record system because this is currently only preliminary research.
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Background

Necroptosis is a recently discovered form of cell death that plays an important role in the occurrence and development of colon adenocarcinoma (COAD). Our study aimed to construct a risk score model to predict the prognosis of patients with COAD based on necroptosis-related genes.



Methods

The gene expression data of COAD and normal colon samples were obtained from the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was used to calculate the risk score based on prognostic necroptosis-related differentially expressed genes (DEGs). Based on the risk score, patients were classified into high- and low-risk groups. Then, nomogram models were built based on the risk score and clinicopathological features. Otherwise, the model was verified in the Gene Expression Omnibus (GEO) database. Additionally, the tumor microenvironment (TME) and the level of immune infiltration were evaluated by “ESTIMATE” and single-sample gene set enrichment analysis (ssGSEA). Functional enrichment analysis was carried out to explore the potential mechanism of necroptosis in COAD. Finally, the effect of necroptosis on colon cancer cells was explored through CCK8 and transwell assays. The expression of necroptosis-related genes in colon tissues and cells treated with necroptotic inducers (TNFα) and inhibitors (NEC-1) was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR).



Results

The risk score was an independent prognostic risk factor in COAD. The predictive value of the nomogram based on the risk score and clinicopathological features was superior to TNM staging. The effectiveness of the model was well validated in GSE152430. Immune and stromal scores were significantly elevated in the high-risk group. Moreover, necroptosis may influence the prognosis of COAD via influencing the cancer immune response. In in-vitro experiments, the inhibition of necroptosis can promote proliferation and invasion ability. Finally, the differential expression of necroptosis-related genes in 16 paired colon tissues and colon cancer cells was found.



Conclusion

A novel necroptosis-related gene signature for forecasting the prognosis of COAD has been constructed, which possesses favorable predictive ability and offers ideas for the necroptosis-associated development of COAD.





Keywords: TCGA, necroptosis, colon adenocarcinoma, prognosis model, immune



Background

Colon adenocarcinoma (COAD) is characterized by high mortality and morbidity. Despite the development in the early diagnosis and treatment of COAD, it still accounts for 880,000 estimated deaths and over 1.85 million new cases per year (1, 2). Currently, the American Joint Committee on Cancer (AJCC) TNM staging system is the main prognostic method for COAD patients (3). However, significant differences in the survival time of COAD patients with the same clinicopathologic characteristics still exist due to tumor heterogeneity (3, 4). Thus, searching for a model to predict the prognosis of COAD patients precisely is an urgent need.

Traditionally, apoptosis has been considered the only form of programmed cell death, while necrosis has been considered an accidental death that is not controlled by molecular events (5, 6). However, this concept has recently been updated, given that partial necrotic cell death has been demonstrated to be regulated by various molecular pathways. Necroptosis has been reported as a novel programmed form of cell death, whose mechanism is similar to that of apoptosis and whose form is similar to that of necrosis (7). Necroptosis can be regulated by some key molecules such as RIPK1, RIPK3, and MLKL and can also be triggered by various death receptors such as TNF receptor and Toll-like receptors (7, 8). It has been shown that necroptosis plays a key role in the regulation of cancer progression including oncogenesis and cancer immunity (6, 7, 9). However, the role of necroptosis in cancer is diverse. On the one hand, some key mediators of necroptosis-related genes were downregulated in tumor cells, suggesting that tumor cells may defend themselves from necroptosis to continue their growth. The upregulation of the expression of some regulatory factors can induce an adaptive immune response, which may prevent tumor progression. On the other hand, in some cases, necroptosis may contribute to an immunosuppressive tumor microenvironment (TME) and promote oncogenesis and cancer metastasis (9, 10). In previous studies about COAD and necroptosis, the tumor-suppressing effects of RIPK3 and RIPK1 have been studied in COAD (11). But PIPK3 has the potential to promote COAD progression by promoting tumor cell proliferation and immunosuppression (12). Therefore, it is necessary to systematically analyze the relationship between necroptosis and COAD progression.

In this study, we explored the prognostic value of necroptosis-related genes in COAD patients and built a novel nomogram model to predict the prognosis of patients with COAD. Moreover, we analyzed the correlation between necroptosis-related genes and cancer immunity and explored the potential biological mechanisms by which necroptosis-related genes influence COAD progression. Finally, the effect of necroptosis on colon cancer cells and the expression of necroptosis-related genes in cells and tissues were evaluated.



Materials and methods


Data acquisition

The gene expression matrix of normal colon tissues was downloaded from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. The TCGA and GTEx databases contained 41 normal colon samples and 308 normal colon samples, respectively. The gene expression matrix of the colon cancer samples and their clinical information were acquired from the TCGA database, which contained 473 COAD samples. Samples lacking complete clinical data or with an overall survival (OS) of 0 days were excluded. Finally, we included 425 COAD samples from the TCGA in the follow-up work. The GSE152430 dataset, containing 48 COAD samples with complete clinical information, was downloaded from the Gene Expression Omnibus (GEO) database to further validate the reliability of the analysis. The gene expression data from the TCGA and GEO were both normalized by log2 (transcripts per kilobase million (TPM) + 0.01). We used the GeneCards database (https://www.genecards.org/) to screen out necroptosis-related genes (13). These genes are shown in Supplementary Data Sheet S1.



Bioinformation analysis

The Wilcoxon test was used to identify necroptosis-related differentially expressed genes (DEGs) between normal colon samples and COAD samples from the TCGA cohort with a false discovery rate (FDR) <0.05. Univariate Cox analysis was utilized to select prognostic necroptosis-related genes in the TCGA cohort. The common genes between DEGs and prognostic necroptosis-related genes were selected as the candidate genes. In addition, the correlation among the candidate genes was analyzed by Spearman correlation analysis in the TCGA cohort. Metascape (http://metascape.org) is a reliable, intuitive tool for gene annotation and gene list enrichment analysis. Based on the functional annotation of gene/protein lists, Metascape can facilitate data-driven decisions (14). In this study, Metascape was used to conduct pathway and process enrichment analysis of the candidate genes.

Furthermore, the candidate genes were then included in the least absolute shrinkage and selection operator (LASSO) regression analysis to construct a prognostic model and determine the LASSO genes to minimize the level of overfitting via “glmnet” (version 4.1.1) R package in the TCGA cohort (15). To reduce the potential instability of the results, a three-fold cross-validation was conducted and the optimal tuning parameter λ was identified according to a 1-SE (standard error) standard. The risk score was calculated based on the corresponding regression coefficients and the expression of each gene as follows: risk score = (gene expression level × corresponding coefficient). The optimal cutoff value was determined based on the log-rank statistic by the “surv_cutpoint” function of the package “survminer” (version 0.4.9) (16). Patients with COAD in the TCGA cohort were separated into high- and low-risk groups based on the optimal cutoff value. The expression levels of LASSO genes between the low-risk group and the high-risk group were compared by the Wilcoxon test. Otherwise, the Human Protein Atlas (HPA) was used to analyze the expression of proteins encoded by the LASSO genes. OS and progression-free survival (PFS) were calculated to analyze survival differences between the high- and low-risk groups in the TCGA cohort by R package “survival” (version 3.1.10). Univariate and multivariate Cox regression analyses for OS and PFS were carried out to identify independent prognostic factors of COAD in the TCGA cohort.

Based on the results of the multivariate Cox regression analysis, we constructed nomogram models to help us make a better clinical prediction of OS and PFS for COAD patients in the TCGA cohort by using the “survival” (version 3.1.10) and “rms” (version 6.2.0) packages (17). Moreover, the calibration curve showed the difference between the predicted results of the nomogram and the actual results in the TCGA cohort. Decision curve analysis (DCA) was utilized to assess the effectivity of the constructed nomogram compared with the TNM stage (18).

The GSE152430 dataset as a validation cohort was used to validate the repeatability of the risk model. The risk score was calculated based on the formula of the training cohort. Patients with COAD in the validation cohort were separated into high- and low-risk groups based on the optimal cutoff value of the training cohort. The survival analysis was used to analyze differences in OS and PFS between the high-risk and low-risk groups in the validation cohort. The calibration curve was used to assess the accuracy of the predicted results of the nomogram in the validation cohort. In addition, the expression levels of LASSO genes between the low-risk group and the high-risk group were compared by the Wilcoxon test in the validation cohort.

To investigate the cancer immunity of COAD patients, the stromal/immune scores were determined via the “ESTIMATE” (version 1.0.13) package (19). According to the expression levels of immune cell-specific markers, the level of immune infiltration was determined by single-sample gene set enrichment (ssGSEA) with the R package “gsva” (version 1.38.2), which was recorded as the ssGSEA score (20). Finally, TME and 16 immune cell types were evaluated in the different risk groups.

DEGs between the two risk groups with P <0.05 and log2 (fold change) >1 or <−1 were selected. DEGs were included in the functional enrichment analysis. The Gene Ontology (GO) analysis of biological processes (BP), cellular components (CC), and molecular functions (MF) and WikiPathways analysis were performed by Metascape, and terms with P-values <0.01 were regarded as significant (21).

All processes of our study are shown in Figure 1.




Figure 1 | Flow chart of the analyses used in this study.





Cell culture and administration of drugs

The HCT116 and SW480 human colon cancer cell lines (Stem Cell Bank, Chinese Academy of Sciences, Shanghai, China) were cultured in high glucose Dulbecco’s modified Eagle’s medium (DMEM) (Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) supplemented with 10% fetal bovine serum (FBS; Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) in 5% CO2 at 37°C. A stock solution of necrostatin-1 (NEC-1; Apexbio, Houston, USA) was prepared in DMSO at a concentration of 20 mM, and the working solution was diluted into 0.1% with DMEM. TNFα (PeproTech, Suzhou, China) was dissolved in stock solution at a concentration of 100 μg/ml and diluted to 100 ng/ml for actual use. Some cells were pretreated with NEC-1 for 6 h. Subsequently, TNFα was added to the cells in the absence or presence of NEC-1 for 24 h prior to cell collection.



Cell viability assay

The cell counting kit-8 (CCK-8; Beyotime, Shanghai, China) was used to monitor cell proliferation. Briefly, the cells were seeded in 96-well plates in 100 μl of culture medium without or with NEC-1 and TNFα, and then incubated in a 37°C, 5% CO2 incubator. After culturing for 0, 12, or 24 h, 10 μl of the CCK-8 reagent was added to each well, and the cells were incubated for 2 h at 37°C. Finally, the optical density was measured at 450 nm using a universal microplate reader (BioTek, Winooski, USA).



Migration and invasion assays

Migration and invasion assays were performed in 24-well cell culture chambers (Costar 3422; Corning Inc., Corning, NY, USA), and the lower and upper chambers were separated by a polycarbonate membrane (8-μm pore size). About 4 × 104 cells stimulated without or with NEC-1 and TNFα were seeded on the upper chamber with DMEM without FBS. Moreover, the upper chambers were precoated with Matrigel (BD, Franklin Lakes, USA) for the invasion assay rather than for the migration assay. DMEM containing 10% FBS was added to the lower chamber. After incubation for 24–48 h at 37°C with 5% CO2, we removed the cells remaining on the upper membrane with cotton wool. At the same time, the cells on the other side of the membrane were fixed with methanol and stained with 0.1% crystal violet solution. Finally, a microscope (Olympus, Tokyo, Japan) was used to observe the cells.



Western blotting

All protein samples from the cells were extracted using RIPA reagent containing 100 μg/ml of PMSF (Beyotime, Shanghai, China) and boiled to denaturation for 5 min. The concentrations of the protein samples were evaluated with the bicinchoninic acid (BCA) protein assay kit (Beyotime, Shanghai, China). The protein samples were isolated by 10% SDS–PAGE (Beyotime, Shanghai, China) and later transferred to polyvinylidene fluoride (PVDF) membranes (Merck Millipore, Shanghai, China). The membranes were blocked with TBS with 0.1% Tween (TBST) containing 5% skim milk for 2 h and then incubated at 4°C overnight with the following antibodies: anti-RIPK1 (R25595, 1:1000; ZENBIO, Chengdu, China), anti-P-RIPK1 (66854-1-Ig, 1:1,000; Proteintech, Wuhan, China), anti-P-RIPK3 (ab209384, 1:1,000; Abcam, Cambridge, UK), anti-P-MLKL (382136, 1:1,000; ZenBio, Chengdu, China), and anti-GAPDH (60004-1-Ig, 1:1,000; Proteintech, Wuhan, China). After washing three times with TBST, the membranes were incubated with the secondary antibody for 1.5 h at room temperature and later visualized by enhanced chemiluminescence (ECL) (Thermo Fisher Scientific, Waltham, MA, USA). The qualification of Western blotting was performed using ImageJ.



Extraction of RNA and quantitative real-time polymerase chain reaction

The tissue specimens of 16 COAD patients were collected from the Department of General Surgery, First Affiliated Hospital of Anhui Medical University. Experiments using patients’ specimens were approved by the Institutional Ethics Committee, First Affiliated Hospital of Anhui Medical University. Total RNAs were extracted from colon cancer tissues and cells using a total RNA Quick Extraction Kit (Generay Biotech, Shanghai, China) in accordance with the manual. Then, the extracted RNAs were reverse-transcribed into cDNAs using the PrimeScript™ RT Master Mix (TaKaRa, Dalian, Liaoning, China). qRT-PCR was performed with TB Green™ Premix Ex Taq™ II (Takara, Dalian, Liaoning, China) in ABI Prism 7900HT/FAST (Applied Biosystems, USA). The relative expression levels were analyzed via the 2−ΔΔCT method normalized by GAPDH expression. The Wilcoxon test was used to analyze the differences in gene expression between the cancer and normal samples. t-test was used to evaluate the differences in gene expression between cells treated without or with NEC-1 and TNFα. The primer sequences used in our study are shown in Supplementary Data Sheet S2.



Statistical analysis

The statistical analysis and plots were performed in R version 4.0.5 (https://cran.r-project.org/bin/windows/base) and GraphPad Prism 7.0. All categorical variables were tested by the chi-square test. The independent prognostic factors for COAD were identified by univariate and multivariate Cox analyses. P-values <0.05 were considered significant.




Results


Identification of prognostic necroptosis-related genes in the COAD samples

There were 155 necroptosis-related DEGs (FDR < 0.05) between adjacent normal and tumor tissues were identified. To analyze the potential biological functions of these DEGs, we conducted function enrichment analysis using Metascape. As we expected, the results revealed that the most significant enriched terms were involved in necroptosis (Figure 2A). Then 13 necroptosis-related genes associated with OS in tumor tissues were identified. Finally, 9 common genes were selected as candidate genes for further study (Figure 2B). The prognosis and expression of the candidate genes in COAD samples are shown in Figures 2C, D. And the results of the correlation analysis among the candidate genes are shown in Figure 2E. Finally, the candidate genes were also enriched in the process of necroptosis (Figure 2F).




Figure 2 | Identification of candidate necroptosis-related DEGs in TCGA cohort. (A) Function enrichment analysis of 155 DEGs by Metascape. (B) Venn diagram to identify candidate genes by taking the intersection between the prognostic genes and DEGs. (C) Forest plot showing the results of univariate Cox regression analysis of nine candidate genes. (D) Heat map showing the expression of nine candidate genes in normal tissues and COAD tissues. (E) Spearman’s correlation analysis of the nine candidate genes. (F) Function enrichment analysis of nine candidate genes by Metascape. DEGs, differentially expressed genes; OS, overall survival; TCGA, the Cancer Genome Atlas. *P < 0.05, **P < 0.01.





Construction of a necroptosis-related gene prognostic risk model

Furthermore, LASSO regression analysis was used to construct a necroptosis-related gene signature based on nine candidate genes. Finally, eight genes as LASSO genes were determined given the optimal value of λ, and a risk score formula was calculated (Figures 3A, B) as follows: risk score = (TRAF2 × 0.20 + UCHL1 × 0.057 + DAPK1 × 0.164 + TRADD × 0.041 + RBCK1 × 0.381 − VDAC3 × 0.269 + JMJD7-PLA2G4B × 0.213 + H2AC6 × 0.220). Then, the optimal cutoff value of the risk score was determined to be 4.11 (Figure 3C). The patients were split into low- and high-risk groups based on the optimal cutoff value (Figure 3D). Compared with the OS and PFS of the low-risk group, the OS and PFS of patients in the high-risk group were shorter significantly (Figures 3E, F). In addition, the expression levels of LASSO genes were different significantly between the low-risk group and the high-risk group (Figures 4A–H) and the expression levels of classical executors of necroptosis (RIPK1, RIPK3, MLKL, TNF) in high and low risk groups in the TCGA were showed in Supplementary Image S1(A).




Figure 3 | Establishment of the risk score by LASSO regression analysis. (A) LASSO coefficient profiles of the eight genes in colon cancer samples. (B) A coefficient profile plot was generated against the log (lambda) sequence. Selection of the optimal parameter (lambda) in the LASSO model for colon cancer. (C) The optimal cutoff value was determined to maximize log-rank statistic. (D) The distribution and cutoff value of the risk scores in the TCGA cohort. Kaplan–Meier curves for the OS (E) and PFS (F) of patients in the high- and low-risk groups in the TCGA cohort. LASSO, least absolute shrinkage and selection operator; TCGA, The Cancer Genome Atlas; OS, overall survival; PFS, progression-free survival.






Figure 4 | The expression levels of LASSO genes between the low-risk group and the high-risk group. The expression of the eight necroptosis-related genes [TRAF2 (A), UCHL1 (B), DAPK1 (C), TRADD (D), RBCK1 (E), VDAC3 (F), JMJD7-PLA2G4B (G), H2AC6 (H)] between the low-risk group and the high-risk group in the TCGA cohort. **P < 0.01, ***P < 0.001.





Prognostic value of the risk score model

The clinical characteristics between the high-risk group and the low-risk group in the TCGA cohort are shown in Table 1. The T stage, N stage, and M stage in the high-risk group were more advanced than those in the low-risk group. Subgroup survival analysis showed the OS and PFS of the high- and low-risk groups in stages I–II, stage III, and stage IV in the TCGA cohort (Figures 5A–F). After univariate and multivariate Cox regression analyses, the T group, N group, M group, age group, and risk score were selected as independent risk factors for OS and PFS of COAD patients in the TCGA cohort (Figures 6A–D). Among these factors, the risk score was significantly related to OS [univariate: hazard ratio (HR), 4.28; 95% CI, 2.82–6.50; P < 0.001; multivariate: HR, 3.06; 95% CI, 1.98–4.72; P < 0.001] and PFS (univariate: HR, 2.97; 95% CI, 2.08–4.25; P < 0.001; multivariate: HR, 2.17; 95% CI, 1.50–3.14; P < 0.001).


Table 1 | Clinical characteristics of the colon patients between the high- and low-risk groups.






Figure 5 | Impact of risk score on prognosis by subgroup analysis. OS differences between the high- and low-risk groups in stages I–II (A), stage III (B), and stage IV (C). PFS differences between the high- and low-risk groups in stages I–II (D), stage III (E), and stage IV (F). OS, overall survival; PFS, progression-free survival.






Figure 6 | The prognostic value of clinical features and the risk score. (A) Univariate Cox regression analyses regarding OS in the TCGA cohort. (B) Multivariate Cox regression analyses regarding OS in the TCGA cohort. (C) Univariate Cox regression analyses regarding PFS in the TCGA cohort. (D) Multivariate Cox regression analyses regarding PFS in the TCGA cohort. OS, overall survival; TCGA, The Cancer Genome Atlas; PFS, progression-free survival.





The nomogram model for COAD patients

We then successfully built nomogram models to predict the OS and PFS of COAD patients according to the multivariate model (Figures 7A, B). The C-index value of the nomogram for OS was 0.784 and the C-index value of the nomogram for PFS was 0.73. As shown in Figures 7C–E, the predicted 1-, 3-, and 5-year OS probabilities were similar to the actual observations. Moreover, the predicted 1-, 3-, and 5-year PFS probabilities were also similar to the actual observations (Figures 7F–H). Compared with the TNM stage model, DCA demonstrated that our prognosis model to predict the OS and PFS of COAD patients was more effective (Figures 7I–N).




Figure 7 | Nomogram model for colon cancer in the TCGA cohort. Nomogram models to predict the 1-, 3-, and 5-year OS rates (A) and PFS rates (B) of colon cancer cases. Calibration graphs indicate that the predicted 1- (C), 3- (D), and 5-year (E) OS rates correspond with the actual OS rates. DCA showing the net benefit of our prognosis model and the TNM staging model in the predictive models of 1- (F), 3- (G), and 5-year OS rates (H). Calibration graphs indicate that the predicted 1- (I), 3- (J), and 5-year (K) PFS rates correspond with the actual PFS rates. DCA showing the net benefit of our prognosis model and the TNM staging model in the predictive model of 1- (L), 3- (M), and 5-year PFS rates (N). TCGA, The Cancer Genome Atlas; DCA, decision curve analysis; OS, overall survival; PFS, progression-free survival.





Validation of the risk score model

The risk score formula of the training cohort was further used in the validation cohort to verify the prognostic significance of the constructed risk score model. The patients in the validation cohort were divided into low- and high-risk groups based on the same optimal cutoff value of 4.11 (Figure 8A). The OS and PFS of patients in the high-risk group were shorter (Figures 8B, C). The predicted 1-, 3-, and 5-year OS and PFS probabilities were similar to the actual observations in the validation cohort, which further verified the robustness of the predictive model (Figures 8D–I). In addition, the expression levels of the LASSO genes between the high-risk group and the low-risk group are shown in Figures 8J–Q and the expression levels of RIPK1, RIPK3, MLKL, TNF in high and low risk groups in the validation cohort were showed in Supplementary Image S1(B). The clinical characteristics between the high-risk group and the low-risk group in the validation cohort are also shown in Table 1.




Figure 8 | Validation of the risk score model. (A) The distribution and cutoff value of the risk scores in the GSE152430 cohort. Kaplan–Meier curves for the OS (B) and PFS (C) of patients in the high- and low-risk groups in the GSE152430 cohort. Calibration graphs indicate that the predicted 1- (D), 3- (E), and 5-year (F) OS rates correspond with the actual survival rates. Calibration graphs indicate that the predicted 1- (G), 3- (H), and 5-year (I) PFS rates correspond with the actual survival rates. The expression of the eight necroptosis-related genes [TRAF2 (J), UCHL1 (K), DAPK1 (L), TRADD (M), RBCK1 (N), VDAC3 (O), JMJD7-PLA2G4B (P), H2AC6 (Q)] between the low-risk group and the high-risk group in the GSE152430 cohort. *P < 0.05, **P < 0.01, ***P < 0.001. OS, overall survival; PFS, progression-free survival. NS, no significance.





Cancer immunity analysis and functional enrichment analyses in the two risk groups

Immune and stromal scores were significantly higher, and tumor purity was lower in the high-risk group than in the low-risk group (Figures 9A–C). Moreover, the high-risk group contained more B cells, macrophages, and T helper cells (P < 0.05) (Figure 9D). We also analyzed the enrichment information of DEGs between the two risk groups. The GO (BP, CC, MF) and WikiPathways analyses showed that DEGs were mainly enriched in immune-related processes (Figures 10A–D). The detailed results of the functional enrichment analyses are shown in Supplementary Data Sheet S3.




Figure 9 | Analysis of immune infiltration in COAD. (A) The stromal scores in the high- and low-risk groups. (B) The immune scores in the high- and low-risk groups. (C) The purity scores in the high- and low-risk groups. (D) The content of 16 immune cells between the high- and low-risk groups. P-values were obtained using t-test. *P < 0.05, **P < 0.01. COAD, colon adenocarcinoma. NS, no significance.






Figure 10 | The functional enrichment analysis of the DEGs between the two groups. Gene Ontology analysis of BP (A), CC (B), MF (C) and WikiPathways (D) analysis of the DEGs between the high- and low-risk groups. BP, biological processes; CC, cellular components; MF, molecular functions; DEGs, differentially expressed genes.





Validation of the expression of the necroptosis-related genes in colon cancer tissues and cells

To validate the expression levels of the necroptosis-related genes from the prognostic signature, we first detected the expression levels of eight necroptosis-related genes in 16 colon cancer tissues and adjacent normal mucosa. The clinical characteristics of 16 patients are shown in Supplementary Table S1. Our results showed that TRAF2, RBCK1, JMJD7-PLA2G4B, and VDAC3 were upregulated, while UCHL1, DAPK1, and H2AC6 were downregulated significantly in the COAD samples compared with those in normal colon samples. The expression levels of eight necroptosis-related genes in human colon cancer and normal colon samples are shown in Figure 11.




Figure 11 | Validation of gene expression in tissues via qRT-PCR. The expression of eight necroptosis-related genes [TRADD (A), H2AC6 (B), VDAC3 (C), JMJD7-PLA2G4B (D), TRAF2 (E), DAPK1 (F), UCHL1 (G), RBCK1 (H)] in the normal and cancer tissues. *P < 0.05, **P < 0.01, ***P < 0.001. qRT-PCR, quantitative real-time polymerase chain reaction.



In addition, to further validate the protein expression levels of necroptosis-related candidate genes in COAD specimens and normal colon tissues, we performed immunohistochemical (IHC) staining analysis from the HPA database (Figure 12). IHC staining analysis suggested that TRADD, VDAC3, JMJD7-PLA2G4B, and TRAF2 expression levels were upregulated in COAD tumor tissues compared with those in normal gastric tissues at the protein level, which was consistent with the expression pattern of the genes. Furthermore, the protein levels of DAPK1 and H2AC6 were downregulated in COAD samples compared with those in normal colon samples. However, the protein level of UCHL1 was not detected in the HPA database.




Figure 12 | IHC analysis of the protein expression of necroptosis-related candidate genes in COAD and normal tissues in the HPA database. The protein expression levels of TRADD (A), H2AC6 (B), VDAC3 (C), JMJD7-PLA2G4B (D), TRAF2 (E), DAPK1 (F) and UCHL1 (G) in colon cancer tissues and normal tissues in the HPA database. IHC, immunohistochemical.



Then, we used TNFα to stimulate the human colon cancer cells HCT116 and SW480 and used NEC-1 to inhibit the occurrence of necroptosis in the cells. TNFα could inhibit the viability, migration, and invasion ability of the cells, while NEC-1 could counteract the effects of TNFα on the cells (Figures 13A–D). Western blot analysis demonstrated that the protein levels of RIPK1, P-RIPK1, P-RIPK3, and P-MLKL, which were key molecules of necroptosis, increased in the cells treated with TNFα and decreased in the cells treated with NEC-1 (Figures 13E–L). qPCR results demonstrated that UCHL1, TRADD, RBCK1, JMJD7-PLA2G4B, H2AC6, TRAF2, and VDAC3 were upregulated in cells treated with TNFα and downregulated in cells treated with NEC-1, while the expression trend of DAPK1 was the opposite (Figures 13M–T).




Figure 13 | Evaluation of gene expression in the HCT116 cell and SW480 cell treated with or without TNFα/NEC-1. TNFα inhibited the viability of cells and NEC-1 can counteract the effects of TNFα on HCT116 cells (A) and SW480 cells (C). TNFα inhibited the migration and invasion ability of cells and NEC-1 can counteract the effects of TNFα on HCT116 cells (B) and SW480 cells (D). Representative images of the Western blot analysis of RIPK1 (E), P-RIPK1 (F), P-RIPK3 (G), and P-MLKL (H) in the HCT116 cells and RIPK1 (I), P-RIPK1 (J), P-RIPK3 (K), and P-MLKL (L) in the SW480 cells treated with or without TNFα/NEC-1. Eight necroptosis-related genes [TRADD (M), H2AC6 (N), VDAC3 (O), JMJD7-PLA2G4B (P), TRAF2 (Q), DAPK1 (R), UCHL1 (S), RBCK1 (T)] in the cells treated with or without TNFα/NEC-1. *P < 0.05, **P < 0.01, ***P < 0.001 versus the TNFα group.






Discussion

Recently, a growing number of studies have shown that necroptosis plays a key role in tumor progression (9, 11, 22). However, the effect of necroptosis on tumor cells is complex, and its dual impact of reducing and promoting the growth of tumor cells was shown in different types of cancer. On the one hand, the downregulation of the expression of numerous key molecules in necroptosis such as RIPK1, RIPK3, and MLKL has been found in different types of cancer cells, suggesting that cancer cells may evade necroptosis to survive (8, 9, 22, 23). On the other hand, necroptosis can accelerate tumor metastasis in some cases. For instance, the knockout of the necroptosis key molecules such as RIPK1, RIPK3, or MLKL in cancer cells markedly reduced tumorigenicity (24, 25). Moreover, the role of necroptosis in tumor immunity is also complex. RIPK3 has been found to be necessary for regulating the expression of cytokines in dendritic cells (DCs), a key security guard for regulating immune homeostasis by expressing regulatory cytokines and linking the innate and adaptive immune systems (26). Necroptosis can also activate the adaptive immune response by releasing damage-associated molecular patterns (DAMPs) into a tissue microenvironment (27). Although necroptosis plays a role in the induction of tumor immunity to limit tumor growth, there is also evidence suggesting that necroptosis-induced immune inflammatory cells can promote tumor progression by promoting angiogenesis and cancer cell proliferation and accelerating cancer metastasis (10, 25). For example, inflammatory cells activated by necroptosis also release reactive oxygen species (ROS), which can damage DNA to promote the progression of tumors (28). In COAD, RIPK3-mediated inflammation can promote intestinal tumors by inducing an immune-suppressive tumor microenvironment, and RIPK1 has been shown to interact with mitochondrial Ca2+ uniporter to promote colorectal oncogenesis (12, 29). Thus, in consideration of the vital role of necroptosis, we investigated the expression levels of necroptosis-related genes in COAD to explore whether these genes could serve as significant biomarkers for COAD prognosis and influence the progression and TME in COAD.

Through studying the prognostic effect and expression level of necroptosis-related genes at the RNA level, eight LASSO genes were determined to identify a prognostic model with the LASSO method, a suitable method for high-dimensional data which can prevent overfitting and obtain an interpretable prediction rule (15). The Kaplan–Meier analysis showed that the risk score group had great validity. However, in the subgroup survival analysis, there was no significant difference in the OS between the high-risk group and the low-risk group in stage IV. However, the median survival time of the high-risk group was shorter than that of the low-risk group in stage IV. This risk score was then considered an independent prognostic factor for COAD through univariate and multivariate Cox regression analyses. Currently, the AJCC TNM staging system is the main prognostic method for COAD patients in the clinical process. However, there was a significant difference in OS and PFS of COAD patients with the same clinicopathologic characteristics due to tumor heterogeneity (4). So, the nomogram was built to facilitate the prediction of the OS and PFS of COAD patients. Calibration curves showed the great predictive performance of this nomogram, and DCA curves demonstrated that the novel nomogram can serve as a great model as it outperforms the TNM stage prediction model for patients with COAD. In addition, the predictive power of our risk group model was also great in the GSE152430 dataset. These results demonstrated that our model had a certain applicability.

The prognostic model in this study was composed of eight necroptosis-related genes which were directly or indirectly involved in the process of necroptosis. In previous studies, UCHL1 was reported to play a major role in promoting podocyte necroptosis by regulating the ubiquitination state of the RIPK1/RIPK3 pathway (30). TRADD acted as a partner of RIPK3 to initiate necroptosis in response to TNF stimulation (31). Histone H2A family members can act as DAMPs to induce necroptosis by binding to pattern recognition receptors once they are released to the cell extracellular space (32). The opening voltage-dependent anion channels (VDAC) promoted oxidative stress and mitochondrial dysfunction to influence the processes of necroptosis (33). JMJD7-PLA2G4B significantly increased starvation-induced cell death in head and neck squamous cell carcinoma (34). However, Petersen et al. elucidated that TRAF2 can influence the association between RIPK3 and MLKL to inhibit necroptosis (35). Moreover, the inhibitory role of DAPK1 and RBCK1 in necroptosis has been discovered (36, 37). In summary, five of the abovementioned genes (UCHL1, TRADD, H2AC6, VDAC3, JMJD7-PLA2G4B) promote necroptosis and necroptosis-independent cell death, while the remaining three genes (TFAF2, DAPK1, and RBCK1) have roles in protecting cells from necroptosis.

To better evaluate the effect of the eight necroptosis-related genes in the prognostic model in COAD, we evaluated the expression levels of the eight necroptosis-related genes between the low-risk group and the high-risk group. The results demonstrated that the expression levels of TRADD, H2AC6, JMJD7-PLA2G4B, TRAF2, UCHL1, DAPK1, and RBCK1 are higher in the high-risk group than those in the low-risk group, suggesting that the high expression of these genes in COAD is associated with poor prognosis. Then, we evaluated the expression of these eight necroptosis-related genes in tissues. Most of the genes were expressed differently between cancer tissues and normal tissues that we collected in RNA levels. The lack of statistical significance in the case of TRADD may be related to the small sample size. Otherwise, the protein expression levels of TRADD, H2AC6, VDAC3, JMJD7-PLA2G4B, TRAF2, and DAPK1 in colon cancer tissues and normal tissues in the HPA database were shown, which were consistent with the expression levels of these genes in RNA levels. However, the data on the protein expression level of UCHL1 were not detected and RBCK1 in the HPA database is lacking. In the future, the protein expression level of necroptosis-related genes needed to be explored further. Furthermore, we used TNFα to induce necroptosis of cells and NEC-1 as RIPK1 inhibitor to inhibit the process of necroptosis. The expression of DAPK1 decreased in cancer cells treated with TNFα and increased in cells treated with NEC-1, showing that DAPK1 may influence the progression of cancer by inhibiting necroptosis. A previous study has also shown the inhibitory role of DAPK1 in necroptosis in HT-29 cells, since knockdown or knockout of DAPK1 in such cells increased cancer cell sensitivity to necroptosis (36). These results suggested that these eight LASSO genes may be vital prognostic factors for patients with COAD and may influence the progression of cancer by influencing necroptosis in COAD.

In terms of immunity analysis in our study, different risk groups showed diverse TME scores and immune infiltration landscape, suggesting that necroptosis-related genes may play a vital role in the immunity of COAD. Some studies have demonstrated that TME could have an impact on carcinogenesis and metastasis (28, 38). As the most abundant stromal cells, fibroblasts secrete various cytokines and remodel the extracellular matrix to promote tumor proliferation and metastasis (39). In our study, in the high-risk group associated with poorer OS, stromal cells and immune cells were more abundant, which suggests that disorders of stromal cells and immune cells promote the progression of cancer. On the other hand, B cells, macrophages, and T helper cells were more abundant in the high-risk group. Previous studies have shown that necroptotic cancer cells release DAMPs, chemokines, cytokines, and cancer antigens, which create an inflammatory immune microenvironment that can either have antitumor or protumor effects (40, 41). On the one hand, macrophages and DCs can be activated by necroptosis-derived DAMPs and cytokines, which can present antigens. Antigens recruit other immune cells to infiltrate the tumor and kill the cancer cells (42, 43). On the other hand, necroptotic cancer cells can attract tumor-associated macrophages which can cause immune suppression. Cytokines released by necroptotic cancer cells can also promote angiogenesis, cancer proliferation, and metastasis, combined with the release of ROS, which facilitates genomic instability and further contributes toward tumor progression (25). Moreover, a previous study demonstrated that RIPK3 blockade protects against pancreatic ductal adenocarcinoma progression via promoting infiltration of T cells and B cells (25). Overall, these findings suggest that necroptosis-related genes may have a potential impact on the function of the TME and immune cells in COAD and may become the target of immunotherapy in the future.

This study has several limitations. First, as the data in our study were acquired from public databases and the study was retrospective, there were some data that we could not collect. Thus, more prospective data are necessary to verify the clinical utility of the model. Second, we found only one high-throughput sequencing dataset with survival time information and a sample size greater than 40 of COAD specimens—GSE152430. Given that the TNM stage of all samples in the GSE152430 dataset is stage II, it is not adequate for us to validate the effectiveness of our model. In the future, with the popularity of high-throughput sequencing, we can further verify the effectiveness of our model based on large sample bioinformatics. Finally, we explored the effects of necroptosis on colon cancer cells and the expression of eight key necroptosis-related genes in the progression of necroptosis, but our study lacked basic experimental studies on the effects of necroptosis on immune cells and functional experiments of the eight key necroptosis-related genes. Further basic biological experiments are needed to further explore the mechanisms of necroptosis in COAD and tumor immunity.



Conclusion

In our study, we identified a novel prognostic risk score model based on eight prognostic necroptosis-related DEGs in COAD. Then, we constructed a nomogram model to predict the prognosis of COAD patients. The immune and enrichment analyses suggested that necroptosis may be a vital mechanism for the progression and immunity of COAD.
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Background

In recent years, the rapid development of artificial intelligence (AI) technology has created a new diagnostic and therapeutic opportunity for colorectal cancer (CRC). Numerous academic and clinical studies have demonstrated that high-level auxiliary diagnosis and treatment systems based on AI technology can significantly improve the readability of medical data, objectively provide a reliable and comprehensive reference for physicians, reduce the experience gap between physicians, and aid physicians in making more accurate diagnosis decisions. In this study, we used bibliometric techniques to visually analyze the literature about AI in the CRC field and summarize the current situation and research hotspots in this field.



Methods

The relevant literature on AI in the field of CRC research was obtained from the Web of Science Core Collection (WoSCC) database. The software CiteSpace was utilized to analyze the number of papers, countries, institutions, authors, journals, cited literature, and keywords of the included literature and generate a visual knowledge map. The present study aims to evaluate the origin, current hotspots, and research trends of AI in CRC using bibliometric analysis.



Results

As of March 2022, 64 nations/regions, 230 institutions, 245 journals, and 300 authors had published 562 AI-related articles in the field of CRC. Since 2016, each year has seen an exponential increase. China and the United States were the largest contributors, with the largest number of beneficial research institutions and the closest collaboration relationship. The World Journal of Gastroenterology is this field’s most widely published journal. Diagnosis and treatment research, gene and immunology research, intestinal polyp research, tumor grading research, gastrointestinal endoscopy research, and prognosis research comprised the six topics derived from high-frequency keyword cluster analysis.



Conclusion

In recent years, field research has been a popular topic of discussion. The results of our bibliometric analysis allow us to comprehend better the current situation and trend of this research field, and the quantitative data indicators can serve as a guide for the research and application of global scholars.
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Introduction

Colorectal cancer (CRC) is one of the most prevalent malignant tumors. In 2020, there will be more than 1, 9 million new cases and 940,000 deaths worldwide, placing it third in terms of morbidity and second in terms of mortality. It is anticipated that the number of new cases of CRC will rise to 2.5 million by 2035, posing a grave threat to human life and health (1). In recent years, thanks to the support of clinical data, artificial intelligence (AI) has made significant advancements in the medical field and has been applied in various fields. Numerous intelligent, innovative information processing technologies have emerged in recent years (2). The application of AI in medicine consists primarily of two components. One is the virtual application form represented by “deep learning”, which relies on the continuous improvement of computer capabilities and the development of statistics through continuous learning and the accumulation of experience from data, as well as mathematical algorithms to improve machine learning. The other is the application form represented by “physical medicine”, which primarily consists of physical medical objects, medical equipment, and robots (3).

A large number of summary studies are also included in the published related studies, indicating that many researchers pay close attention to the progress and direction of AI research in the field of CRC. However, traditional literature retrieval and review research has a general subjective bias because it emphasizes the content and extracts representative papers from existing literature.

Bibliometrics based on big data and statistical analysis reduces to some extent the common subjective bias in the research progress of traditional literature retrieval and review forms, and the results presented via digitization and visualization are more objective and trustworthy. Moreover, using visual processing, we can quantitatively and qualitatively evaluate the research trends in the research field, reveal the most productive authors and institutions and the current research hotspots, and predict future research trends (4, 5). Presently, bibliometric analysis is widely used to study the development trend of numerous subjects and disciplines, and many fruitful efforts have also been made in AI (6–8).

The purpose of the reported bibliometric analysis is to create a knowledge map of AI in CRC research, which can systematically demonstrate the global academic community’s research status and development trend and offer literature data support and reference for formulating research strategies and directions.



Methodology


Data sources

The literature search was conducted using the Web of Science Core Collection (WoSCC) database. Two researchers compared their respective findings. This procedure was repeated twice, once by the author and once by the co-author. The search query was TS=((“artificial intelligence” OR “deep learning”) AND (“colorectal cancer” OR “colon cancer” OR “rectal cancer”)). To ensure that the internalized literature was representative, the document types were restricted to “article” and “review”, and the language was restricted to English. From 1985.1.1 to 2022.3.23, the publication timeframe was analyzed. Duplicate and non-representative items such as conference papers, news, and errata were removed.



Data analysis

The records (complete records and cited references) retrieved from the WoSCC database in plain text file format were imported into CiteSpace 5.8 R1 software to discuss this study’s dynamic development and trend research. The time slicing parameters were set from January 1999 to March 2022 (the pertinent literature on the application of AI in CRC was first published in 1999). The time slicing parameters were set to 1 year. Using CiteSpace software, the country or region, author, and institution were analyzed. The journal double image overlay utilized the CiteSpace software’s Overlay Maps function. Meanwhile, VOSviewer and Carrot 2 software were employed for keyword co-occurrence analysis. The keyword emergence analysis used CiteSpace’s Burstiness function. Then, parameters were set for each node type (country, author, institution, and keywords) and visual analysis, the knowledge map of research, the co-occurrence, emergence, and clustering knowledge maps of keywords, as well as the time axis map and time zone map of keywords were generated.




Results


Research trends

From the WoSCC database, 745 AI-related CRC-related papers were retrieved. After excluding non-literature papers, the follow-up analysis included 562 of the remaining papers.

The number of papers published in various years reflected the researchers’ commitment to this field. In 1999, Anandk combined k-nearest neighbor (KNN) and Genetic Algorithms (GA) to create the first report in this field: an AI prognosis model for CRC patients (9).

Since then, the number of papers published between 1999 and 2015 had been relatively low, with only ten papers published in 16 years and no relevant research results published for a considerable time. The research has increased exponentially since 2016, with an exponential trend line of y = 1.6573e0.8601x, R2 = 0.9849, reaching a peak of 278 in 2021. This increase results from the maturation of AI technology and the expansion of research. As of March 2022, 50 papers have been published in this field. The number of papers published in 2022 may be lower than in 2021, but it will still be higher than in 2021. It is hypothesized that AI applications will continue to receive a great deal of attention and will continue to be the focus of future research. Figure 1 provides specific information.




Figure 1 | Publication trend with respect to time.





Contribution by country or region

The papers originated from 64 countries and regions (Figure 2). Twenty-four countries or regions have published more than five papers (Figure 3). China (154), the United States (131), the United Kingdom (56), Germany (41), South Korea (40), Japan (40), Italy (38), Taiwan (23), Canada (21), and France (20) rounded out the top ten countries (Table 1). The number of documents issued by China and the United States (USA) was significantly higher than that of any other country, which reflects the academic level and standing of these two nations in this field and demonstrates that they play significant leadership roles in determining the direction of research in this field. In addition, although the number of papers published in the United Kingdom (UK) accounted for only 9.96% of all papers published, their citations were the highest (33.55), indicating that British scholars have published a large number of high-quality papers. Although China has been active in this field and has produced more achievements in recent years, there is still a gap in the quality and influence of research results compared to the UK and the USA, and the proportion of ground-breaking research results must be increased.




Figure 2 | Co-countries analysis of global research.






Figure 3 | Co-institutions analysis of global research.




Table 1 | Top 10 of most produtive countrie/region.



Figure 2 depicts a visual network map of the source countries’ cooperation to comprehend better the cooperation relationship between various countries in this field. Different colors represent various countries or regions; the area of each color represents the amount of literature published in each country or region; the thickness of the connection indicates the cooperation frequency. Figure 4 demonstrates that various countries have united and collaborated in this field, contributing to the breakthrough and innovation in this field. The USA and China, the countries with the most publications, have demonstrated a very close working relationship. In addition, the USA works closely with Italy, Germany, and the UK, whereas China works closely with Singapore and the UK.




Figure 4 | Co-authors anaysis of global research.





Contribution by institution

The main research visualization map (Figure 3) included 230 research institutions, 415 lines, and a network density of 0.0158. The greater the size of the dot, the greater the number of published papers. The closer the partnership, the stronger the connection. We discovered that Sun Yat Sen University (20, 3.56%), National Cancer Center (14, 2.49%), Harvard Medical School (12, 2.56%), Southern Medical University (10, 1.78%), and the Chinese Academy of Sciences (10, 1.78%) were the top five research institutions in terms of AI application. Concurrently, numerous research institutions have engaged in extensive cooperation in this field, forming two major research groups in China, Europe, and the USA. In contrast, China’s scientific research institutions predominately engage in domestic cooperation. Table 2 lists the top 15 research institutions, seven of which are from China, three from the USA, one from the Netherlands, one from Norway, one from Italy, one from Japan, and one from the UK.


Table 2 | Top 15 of most productive institution.





Contribution of authors

The authors’ collaboration network (Figure 4) revealed that 300 researchers worldwide contributed to the research, involving 574 lines and a network density of 0.0128. Researchers collaborated to form several research groups with the same research focus and consistent membership. In addition, six of the twelve researchers who published more than five articles were Japanese, three were Italian, two were Chinese, and one was American. Table 3 provides the results.


Table 3 | Top 12 of most productive authors (Related studies reported＞5) .





Journals upon publication

A total of 562 papers were published in 245 journals, with around 2.29 articles per journal and an impact factor of 6.906. The top ten journals (Table 4) published more than seven papers, and the number of papers published by these ten journals represented 22.60% (127/562) of the total papers. The World Journal of Metrology published the most results (21 articles), Metrology had the highest impact factor (22.682), and IEEE Transactions on Medical was the most cited journal (256.71). Moreover, most published journals belonged to Q1 and Q2 medical journals with high impact factors and academic influence, indicating that AI is more likely to be utilized in CRC.


Table 4 | Top 10 of most productive journal.



Figure 5 depicts a double map overlay of research topics between cited journals and CRC-cited journals. The labels on the map indicated the research topics that the journals covered. On the map, the citation journals are on the left, while the cited journals are on the right. The most published articles were “molecular biology, biology, and immunology” and “medicine and clinical”. In contrast, the most cited papers were published in “nursing, health, and medicine” and “molecular biology, biology, and genetics”. Moreover, the citation path indicated that it was published in “medicine, medical”. The research published in “clinical” was more likely to cite journals in “health, nursing, and medicine”.




Figure 5 | A dual-map overlay of journals related to AI on CRC.(Left) Citing journals. (Right) Cited journals. The color of the links distinguishes the discipline of the source.





Keyword o-occurrence analysis

A total of 2,256 keywords were extracted from 562 articles, and the VOSviewer software was used to generate the visualization map. There were 183 keywords with at least five occurrences. Figure 6 illustrates the visual density map.




Figure 6 | Density distribution of keywords clusters.



Based on the cluster analysis result, the keywords were divided into six clusters (Figure 7A): cluster 1 (red, diagnosis and treatment research, 50 keywords), cluster 2 (green, gene and immunology research, 43 keywords), cluster 3 (dark blue, intestinal polyp study, 36 keywords), cluster 4 (yellow, tumor grade study, 25 keywords), cluster 5 (purple, gastrointestinal endoscopy, 21 keywords), and cluster 6 (light blue, prognosis study, eight keywords). Cluster 1 was the largest cluster, with the algorithm, automatic segmentation, radiotherapy and chemotherapy, image analysis, and metastasis as the most critical aspects. The overlay visual map can color keywords differently based on the year they first appeared. The results are depicted in Figure 7B. In the time process, purple nodes represented earlier keywords, while yellow nodes represented the most recent. Recently, critical terms related to gastrointestinal endoscopy have emerged, indicating a new hotspot for research in this field.




Figure 7 | Network visualization (A) and overlay visualization map (B) of the keywords co-occurrence analysis by VOS viewer.



In addition, the key concepts were displayed using the foamtree function of the Carrot2 software, and the keyword with the highest occurrence rate was “colored polyps in colonoscopy”, confirming the conclusion that the application of AI in gastrointestinal endoscopy has garnered considerable attention. The remainder consisted of “classification results”, “cancer tissue” and “segmentation results”. Figure 8 demonstrates the results.




Figure 8 | major topic survey based on the carrot system.



Using the Timeline view mode of the CiteSpace software, the variation in the frequency of literature citations was analyzed. Figure 9 depicts a timeline view of the number of Chinese land contributions in each cluster. The greater the number of Chinese contributions in each cluster, the greater the significance of the cluster domain, reflecting the time characteristics of clustering. Analysis revealed that the clusters were representative of colonoscopy, chemotherapy, expression, lymph node metastasis, hepatic steatosis, and capsule endoscopy. Over time, it was possible to observe the flow of research topics between clusters. The literature about colonoscopy, chemotherapy, lymph node metastasis, and capsule endoscopy has been cited more frequently, which has made this field a hot topic. The reference lines between adjacent topics indicated the source and origin of research hotspots.




Figure 9 | Co-citation timeline of references in studies on AI in colorectal cancer.






Frontier dynamic analysis

Emergent words are keywords whose frequency of occurrence or usage increases dramatically over a short period. Emergent words can reflect the significant junctures of research hotspots during a given period. Based on an analysis of keyword cluster maps and with the assistance of CiteSpace’s emergent word detection function, the academic frontier in this field has been identified. Figure 10 displays the top 15 emergent words, with the red bar on the right representing the duration of the hot spot. The results revealed that the literature in this study was most frequently observed between 2017 and 2020, and many emergent words appeared, indicating that the scope of AI research in CRC is rapidly expanding. The research appears to have developed rapidly during this period and received constant attention. In addition, it is noteworthy that many early emergent words have disappeared since 2021.




Figure 10 | Burst map of kevwords.





Literature citation analysis

Since the publication of the first article in this field in 1999, the 562 articles included in this study have been cited 8,629 times on average, resulting in an h-index of 42 and a mean of 15.35 citations per article. The top 10 most-cited articles were chosen, and the results (Table 5) revealed that the highest impact factor of the ten articles was 23.059. The highest citation of a single article was 1,202, resulting in a total of 3,373 citations which accounted for 39.09% of the total citations, an average citation of 337.3, and an impact factor of 12.568. The information above reflects the academic influence of these documents and the current research trends in this field. The results of the analysis of the highly cited articles are presented in Table 5.


Table 5 | Top 10 most cited articles.





Discussion


Current research status and achievements

From 1999 to 2022, 562 research articles were published in this field by 300 authors, 230 research institutions, 245 journals, and 64 countries or regions. Since 2016, the number of published papers has increased exponentially in tandem with the continuous maturation of AI technology. China and the USA are the countries with the most active researchers in this field. They also demonstrate the closest cooperation, indicating that these two countries play significant roles in this field. The research conducted in the USA and the UK is generally of high quality, and the World Journal of Gastroenterology publishes the most articles in this field. In addition to fostering more significant research innovation and breakthroughs through collaborative efforts, close exchanges and cooperation among countries, research institutions, and academics can guide research to keep pace with the international research frontier and research hotspots.



Research focus on AI in CRC

Cluster analysis illustrates the direction of research hotspots in this field, whereas the timeline view illustrates the evolution of relevant hotspots over time. For example, diagnosis and treatment, genes and immunology, intestinal polyps, tumor grading, and prognosis are research hotspots. When keyword co-occurrence is combined with highly cited papers, research hotspots and frontiers can be more accurately identified and detected.

Cluster analysis demonstrates that the researcher is most interested in diagnosis and treatment, with the algorithm being the most important keyword. Evolutionary neural networks for medical image analysis: full training or fine tuning?, published in IEEE Transactions on Medical Imaging in 2016 and authored by Nima Tajbakhsh from Arizona State University, was the most-cited article (1,202 times) (10). Based on four different medical imaging applications from three different imaging modality systems, the research demonstrated that deeply fine-tuned Convolutional Neural Networks (CNNs) are helpful for medical image analysis, outperforming fully trained CNNs when limited training data is available. This study’s related algorithm optimization research pertains to the clustering of diagnosis and treatment. Meanwhile, Locality sensitive deep learning for detection and classic, published in IEEE Transactions on Medical Imaging in 2016 and authored by Sirinukun Wattana from the University of Warwick, UK, ranked second with 515 citations (11). The research demonstrated neighborhood-aware deep learning approaches for nucleus detection and classification in routinely stained histology images of colorectal adenocarcinomas. The novel Neighboring Ensemble Predictor (NEP) and CNN combination could provide a systematic quantitative analysis of tissue morphology and tissue constituents, making it a valuable tool for a deeper understanding of the tumor microenvironment.

The prognosis of tumors is closely related to genetics and immunology, and AI technology has also produced fruitful results in this field. For example, Zhang et al. (20), used computer propagation artificial neural network (CP-ANN) and near-infrared spectroscopy to detect the mutation of BRAF gene V600E in CRC pathological specimens with a sensitivity of 93.8%. This study demonstrates that AI is reliable for detecting CRC gene mutations and has the benefits of simple, rapid, and inexpensive sample preparation.

Moreover, studies have demonstrated that CD3 and CD8 infiltration are strongly associated with the prognosis of CRC. The quantitative analysis of immune cells infiltrating the tumor performed better than tumor-intrinsic prognostic variables. According to related research, AI tools can detect additional prognostic markers on pathological sections. Reichling et al. (21), conducted a prospective study based on a pathological slide stained with CD3 and CD8 from 1,018 patients. They designed a new AI software (ColoClass) that utilized the random classification 32 machine learning model and the VSURF algorithm. To study the tumor-intrinsic prognostic variables CD3 and CD8 immune infiltration in stage III CRC, automated quantifying lymphocyte density and surface area in the tumor core and infiltrating margins (AUC=0.56) was performed. AI could assist pathologists in determining the prognosis for stage III colon cancer patients.

We must continue to pay attention to the issue of early CRC diagnosis, which is also a hotspot of current research. Neoplastic and non-neoplastic growths that protrude into the intestinal lumen are categorized as intestinal polyps. Adenomas are precancerous lesions that are easily transformed into CRC. The detection and removal of adenomas can prevent the development of CRC. Colonoscopy is primarily utilized for the differential diagnosis of polyps. It is anticipated that using AI technology during colonoscopy will improve colonoscopist performance, diagnostic accuracy, and polyp detection, classification, and isolation abilities. These modifications may result in increased adenoma detection rates and, ultimately, a reduction in CRC morbidity and mortality (22).

Four of the ten most-cited articles have significantly improved AI identification of intestinal polyps. First, Urban et al. (12), utilized CNN for computer-assisted image analysis to enhance the detection of polyps. The accuracy rate is 96.4%, and the area under the characteristic curve is 0.991. Second, Pu Wang et al. (13), confirmed that the real-time CADe system based on deep learning could significantly increase the detection rate of adenomas in individuals with a low prevalence of ADR (29.1% vs. 20.3%, p < 0.01), and the average number of adenomas per patient (0.53 vs. 0.31, p < 0.001), which is also the article with the highest impact factor. Third, Chen et al. (14), developed the DNN-CAD system to identify colorectal polyps smaller than 5 mm that are neoplastic or proliferative. This system classifies polyps with a PPV of 89.6% and NPV of 91.5%, and it is faster than endoscopy. Finally, Zhang et al. (19), developed a CNN algorithm to detect and classify hyperplastic and adenomatous colorectal polyps. The results indicate that the proposed method is as accurate as the visual inspection by endoscopists (87.3% vs. 86.4%), but the recall rate is higher (87.6% vs. 77.0%), and the accuracy is higher (85.9% vs. 74.3%). On the other hand, the high number of citations of these four articles confirms that the application of AI in gastrointestinal endoscopy has become a hot topic of research since 2021.

In addition to those above highly cited papers, Yamada M developed a real-time, robust AI diagnostic system for CRC that can significantly reduce the risk of missed diagnosis of nonpolyposis lesions during colonoscopy (23). The sensitivity and specificity of the AI system were 97.3% and 99.0%, respectively, with an AUC of 0.975. This AI system can remind endoscopists in real time to avoid missing the diagnosis of nonpolypoid polyps during colonoscopy. It is expected to compensate for the disparity in diagnostic quality between physicians of different levels and improve the early detection of CRC. In recent years, optical coherence tomography (OCT) has emerged as one of the most promising new tomographic techniques, particularly for tissue detection and imaging. Zeng et al. (24), developed a CNN pattern recognition optical coherence tomography (PR-OCT) system based on 26,000 CT images of colonic mucosa, which can accurately diagnose colon cancer mucosa in real-time with computer assistance. Sensitivity is 100%, specificity is 99.7%, and the area under the ROC curve (AUC) is 0.998. The system is anticipated to aid physicians in real-time screening and treatment evaluation of early mucosal tumors.

The colonoscopy diagnosis system based on AI technology has the advantages of reducing the missed diagnosis rate of CRC lesions, shortening the examination time, and bridging the diagnostic quality gap between different levels of endoscopists in comparison to traditional endoscopy. It is anticipated to be an invaluable resource for early cancer detection.

This study has some limitations. First, the WoSCC database is the only data source analyzed in this study. The VOSviewer software can only perform statistical analysis on the contents of a single database, which may produce biased results. Nevertheless, as one of the most extensive databases in the world, the WoSCC database chosen for this study is regarded as the best database for bibliometric analysis. Second, only the literature in the English language is included in this study; literature in other languages is excluded. China, the most active nation in this field, has also published many research results in Chinese. However, English is the language most commonly used for publishing academic articles, so the results of this study are still reliable. Due to the short publication time of recently published high-quality and ground-breaking achievements, the citation frequency of the primary assessment indicators of literature quality is low, which may affect the results of this study. On the other hand, bibliometric analysis allows us to determine AI’s current state and future development trends in CRC. The quantitative data index can provide global scholars with theoretical guidance for future research.




Conclusion

This study used hybrid analysis and visualization techniques to examine the number of publications, countries, major research institutions, published journals, prominent authors, and their associated cooperation networks. These results can provide future researchers with guidance on potential opportunities for collaboration. Furthermore, through bibliometric analysis, this study also reveals objectively and exhaustively the current research hotspots and frontiers, thereby providing researchers with valuable guidance for choosing future research directions.
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Pancreatic cancer adenocarcinoma (PDAC) is a lethal disease, with the lowest 5-years survival rate of all cancers due to late diagnosis. Despite the advance and success of precision oncology in gastrointestinal cancers, the frequency of molecular-informed therapy decisions in PDAC is currently neglectable. The reasons for this dismal situation are mainly the absence of effective early diagnostic biomarkers and therapy resistance. PDAC cancer stem cells (PDAC-SC), which are regarded as essential for tumor initiation, relapse and drug resistance, are highly dependent on their niche i.e. microanatomical structures of the tumor microenvironment. There is an altered microbiome in PDAC patients embedded within the highly desmoplastic tumor microenvironment, which is known to determine therapeutic responses and affecting survival in PDAC patients. We consider that understanding the communication network that exists between the microbiome and the PDAC-SC niche by co-culture of patient-derived organoids (PDOs) with TME microbiota would recapitulate the complexity of PDAC paving the way towards a precision oncology treatment-response prediction.
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Introduction

Precision medicine (PM) involves the customization of healthcare for a specific individual on the basis of biomarker measurements obtained at the individual and population levels (1). Remarkably, in the last years the management of cancers of the gastrointestinal system is moving towards a precision medicine paradigm (2) in which biomarkers for precision medicine are a topic of intense research (3, 4).

In the last decade it has been established the central role of cancer stem cells (CSC)- i.e. the subpopulation of cancer cells capable of self-renewing and producing progeny- in the progression, treatment resistance and metastasis of gastrointestinal cancer (5–7). CSCs depend on their niches, which are anatomically distinct regions within the tumor microenvironment (TME). These niches maintain the principal properties of CSCs, preserve their phenotypic plasticity, protect them from the immune system and facilitate their metastatic potential (8–10). Interestingly, biomarkers related to CSCs and its niche/TME have been found to be among the most accurate in prediction of disease progression and, specially, disease recurrence (11–13) and also to develop tailored therapies that optimize patient’s opportunities to cure (14)

A variety of tumors contain bacteria what suggests that the microbiome could play a role in the TME (15). In fact, the microbiome is proposed to have an active involvement in the pathogenesis and treatment responses. This is in line with the view that tumors should be treated as biosystems instead of only a set of transformed epithelial cells (16). Specifically, microbiota-related biomarkers have recently been posed both as predictors of disease progression and treatment response (17), and as relevant targets of anti-cancer therapies in many malignancies (18). Thus, studying the interplay between cancer stem cells and intratumoral microbiota seems to be a promising strategy in the development of new biomarkers for a cancer precision medicine.



Challenges in PDAC personalized treatment

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, with the lowest 5-years survival rate of all cancers (18)Although PDAC presents low frequency (incidence of 8–12 cases per 100 000 people per year, and a 1·3% lifetime risk for the disease) will be the second cancer-related death reason in 2040 in the USA (18). Despite the advance and success of precision oncology in gastrointestinal cancers, the frequency of molecular-informed therapy decisions in PDAC is currently neglectable (19)Therefore, understanding the pathogenesis of this lethal disease is urgently needed to stratify patients and to develop personalized novel therapeutic approaches for it.

Current therapies rely on conventional polychemotherapies with poor outcomes and molecular-informed targeted therapy opportunities only exist in a tiny minority of patients (19). This clearly demonstrates that the tremendous potential of genetically guided precision oncology used in other GI malignancies (2, 20), in PDAC meets important limitations. For that reason, there is the need to expand the knowledge about PDAC biology in order to decipher other targetable mechanism such as tumor microenvironment and cellular plasticity (5, 21)

Cellular plasticity is the ability of tumor cells to adapt to changing conditions by acquiring different molecular and phenotypic identities and, thereby, plasticity programs are key regulators of acquired treatment resistance (22).For this purpose, one of the most critical questions in both cancer research and clinic is how PDAC is maintained and expanded after it has emerged. Cancer stem cells (CSCs), and particularly PDAC stem cells (PDAC-SC) have been considered as a subpopulation of cancer cells capable of self-renewing and producing progeny cells that are critical for cancer growth (23, 24). This mechanism may underlie the maintenance of cancer and its resistance to conventional therapies.

According to the current model, CSCs are not a fixed cell population but a plastic one, i.e. the aforementioned characteristics can be acquired and lost dependent on environmental stimuli (25)Therefore, CSC are highly dependent on their niche, i.e. microanatomical structures of TME in which CSCs are maintained and protected from therapy (26, 27)

In this regard, in an unbiased approach, clonogenic capacity of PDAC-SC was shown to be fully defined by the microenvironment and not by tumor-cell-intrinsic-features (28) confirming a dichotomous role of stroma either promoting or inhibiting PDAC-SC tumorigenic capacity (29, 30)

We believe that the PDAC CSC (PDAC-SC) biology is strongly affected by the interplay between the genetic alteration and the tumor microenvironment, particularly the microbiome. Unraveling the link between microbiota and cancer stem cells technologies will provide insights into the pathology of cancers of the gastrointestinal system, as well as promote the translation of these findings to the clinics towards personalized medicine.


Late diagnostic

Given the dismal prognosis of PDAC patients, early and differential diagnosis of severe pancreatic cancers is essential and challenging for patients with PDAC and constitutes an unmet clinical problem (18). Symptoms are unspecific and often emerge only during late disease stages, at which point, tumors can be either locally non-resectable or present as metastatic disease. At present, PDAC is diagnosed using imaging tests and currently, despite other promising circulating biomarkers have been described (31) the sole FDA-approved biomarker for PDAC is serum CA19-9, mostly used for disease monitoring rather than screening, due to inherent limits of sensitivity and specificity: CA19-9 levels can be elevated in several conditions unrelated to pancreatic cancer, while subjects lacking the Lewis-A antigen do not produce CA19-9 at all (32). Thus, the outcome of PDAC patients could improve with sensitive and affordable tests that would permit early detection of the disease.

A plethora of studies have shown that microbiota most likely affects the malignant phenotype and prognosis of PDAC (33, 34)Therefore, microbiome signatures enable robust metagenomic classifiers for PDAC detection at high disease specificity and with potential towards cost-effective PDAC screening and monitoring. Interestingly, in a recent study (35), showed that faecal metagenomic classifiers had much better performance than saliva-based classifiers and could identify patients with PDAC with an AUC score of up to 0.84 based on a set of 27 microbial species, with consistent accuracy across early and late disease stages, increasing when combined with serum levels of CA19-9, indicating the potential for non-invasive, robust, and specific faecal microbiota-based early diagnosis for PDAC (35)

Many studies suggest that quiescent plastic CSCs are already present but resting/latent during early stages of disease development (26, 36). Importantly, early quiescent PDAC-SCs initiate KRAS mutant pancreatic lesions leading to PDAC in the context of pancreatitis (37, 38) a condition known to be heavily influenced by microbiome (33). Interestingly, circulating PDAC circulating tumor cells with stem-like characteristics could be used as an early PDAC biomarker (39).



Therapy resistance

The accumulation of driver mutations is accompanied by histological changes that represent the different stages of PDAC development. Morphological evolution begins with the formation of precursor lesions, termed pancreatic intraepithelial neoplasia (PanIN), with increasing histological grades followed by progression to invasive adenocarcinoma (Figure 1A).




Figure 1 | Intratumoral Microbiota may define PDAC stem cell niche, thereby constituting a diagnosis and prognosis biomarker. (A) In the development of PDAC, driver mutations accumulation is accompanied by an increasing desmoplastic reaction (blue lines) as a hallmark histopathological feature in PDAC stroma. Microbiota embedded in the desmoplastic stroma changes towards a dysbiotic low-diversity composition that might impact the PDAC stem cell niche by favoring tumor progression and resistance to chemotherapy. (B) Patient-derived organoids (PDOs) are generated mainly from PDAC resection containing PDAC cancer stem cells (PDAC-SC). PDOs can be co-cultured with the patient microbiota to recapitulate the PDAC-SC niche. This co-culture technique paves the way to the study of microbiome-focused precision medicine bench-to-beside approaches to overcome the lack of early diagnosis and therapy resistance in PDAC.



A histopathological hallmark of PDAC is a desmoplastic reaction to the tumor that is present in both primary and metastatic tumors (40). Pancreatic stellate cells, a myofibroblast-like type of cell in the pancreas are activated by cancer cells to produce high fibrosis surrounding the tumor (41).The resultant desmoplasia is known to be responsible for creating a mighty mechanical barrier around the tumor cells, preventing appropriate vascularization, and thus limiting exposure to chemotherapy and largely preventing immune cell infiltration (42)

Early research largely stemmed from the idea that the surrounding desmoplasia is tum or promoting but this view of its role is most probably an imperfect one (29). Therapeutic approaches to target stromal desmoplasia have classically focused on depleting the stromal constituents but results have been generally disappointing, owing to the multi-faceted nature of tumor stroma (43). Furthermore, TME composition is a cell-extrinsic factor that influences the transcriptional landscape. Depending on the mRNA expression two major tumor subtypes have been described: basal or classical (44, 45). Interestingly, basal subtype presents stem-like properties (46), which interestingly correlates with dismal prognosis (47) and poor gemcitabine response (48).

In this regard, the intestinal microbiome has recently gained increasing interest in the field of PDAC TME with studies suggesting a tumorigenic relevance of bacterial dysbiosis within the TME. Since the early evidence of bacteria presence in PDAC TME (16, 34) and despite substantial inter-individual variability of the gut flora, some studies concur in their findings, pointing at different bacterial species potentially involved in PDAC tumorigenesis thought their interaction with the desmoplastic stroma (49). The formation of a new desmoplastic niche that offers lower colonization resistance and provides nutrition in the form of increased glycan levels might favor the migration of specific bacteria (25, 50, 51). In turn, new resident bacteria might remodulate the TME to promote tumor development and progression by favoring a PDAC-SC niche refractive to chemotherapy by inducing EMT-dependent stemness state or metabolizing chemotherapeutic agents (25, 34, 51), processes that could even cooperate to enhance therapy resistance (52).

The most prominent, although not exclusive, microbes identified in pancreatic tissue samples and associated with PDAC TME are Gram-negative bacteria, more specifically from the phylum Proteobacteria (25, 50, 53). Among Proteobacteria, Gammaproteobacteria was associated with poor patient prognosis (34, 53). These bacteria express the enzyme cytidine deaminase which enables the metabolization of the chemotherapeutic drug gemcitabine (2′,2′-difluorodeoxycytidine), which is commonly used for treatment of PDAC patients in the adjuvant and palliative setting, into its inactive form (2′,2′-difluorodeoxyuridine) (40). This might synergize with a quiescent PDAC-SC subpopulation, able to evade chemotherapeutic anti-tumor therapies (54) which is a hallmark of plastic PDAC-SC and responsible for disease relapse years after successful surgical intervention or tumor free survival (55).

Importantly, a distinct tumor microbiome was shown to clearly discriminate long-term survivor (median survival: 9.66 years) from short-term survivor (median survival: 1.66 years) PDAC patients with a strong correlation between dismal prognosis and low diversity (56). Long-term-survivors (LTS) contain higher alpha-diversity, presenting also Gram positive classes such as Clostridia and Actinomycetia, and a LTS-specific intra-tumoral microbiome signature was described (56). Of note, elevated levels of single microbial species correlated with poor prognosis, making diversity analysis, even in the stools an attractive, cheap, and non-invasive method to predict prognosis (35, 57).




Personalized medicine in PDAC: A holistic ex vivo co-culturing modeling to predict treatment response

To follow a personalized medicine approach, there is an urgent need to find a model that recapitulates the tumor characteristics and that could be generated in a useful time frame taking into account the time constraints of PDAC management. Current models show limitations. PDAC derived 2D cell lines fail in reproducing the polarity, microenvironment, cell metabolism and gene expression which can affect drug response prediction (58). Patient-derived xenografts (PDX) better reproduce the tumor and predict drug response but the use of PDX remains challenging due to time concerns and the lack of a human microenvironment.

Alternatively, organoids are a 3D model derived from CSC that can be generated in 2-4 weeks and maintain the histological and genetic features of the tumor of origin. In 2013, Huch et al. described for the first time the generation of pancreatic organoids (59). Several years later, the same model was used to generate PDAC organoids from mouse and human tissue defining the medium composition (60). This offers the possibility to design a personalized medicine approach by using primary PDAC patient material (tumor resection or fine needle biopsy) to generate patient-derived-organoids (PDOs) that can work as patient avatars to predict the therapy response. PDOs can be also generated from human induced pluripotent stem cells (61).

In that sense, different PDAC PDOs biobanks have been generated (30, 60, 62, 63). PDAC organoids recapitulate the mutation profile of the original tumor (62, 63) and have been demonstrated to be a valuable tool to test drug sensitivity (48, 62–64) that even allows the study of drug-induced vulnerabilities in tumor relapse that can be therapeutically exploited in a bench-to-bedside approach (19).

Nevertheless, PDOs present some limitations such as that the drug response can be modified by the transcriptional changes due to the bottleneck of medium composition. In fact, PDOs transcriptional landscape depends on culture conditions favoring certain subtypes (63). Furthermore, dependence on growth factors and medium composition can exert a selective pressure to select the organoids containing the driver mutations of PDAC (30).

The lack of physiological niche factors could be bypassed by the use of tumor-on-a-chip devices that reproduces the TME. This includes the incorporation of stromal cells (65, 66) what highlights the importance of the co-culture with other cell types in order to mimic the complexity of the tumor. This is particularly relevant in PDAC, a tumor characterized by its low cellularity. Organotypic co-culture models have been established in PDAC PDOs. In that sense, PDOs have been co-cultured with cancer associated fibroblasts (CAFs) (67–70) and infiltrating lymphocytes isolated from blood (67) Interestingly, in co-culture experiments, Lodestijn et al. demonstrated that the factors secreted by TME maintain populations of tumor cmells with clonogenic potential (28).This shows the importance of co-culture PDAC-SC with the stromal factors responsible for maintaining CSCs and/or promoting the dedifferentiation of non-CSC tumor cells.

Since tumor microbiome is clearly affecting PDAC oncogenesis (34, 53, 71–73) this could be considered another key TME element with an impact on PDAC drug screening. The addition of the purified tumor microbiome to the PDO models would add a layer of complexity to the in vitro modeling of this dismal prognosis disease, better reproducing the tumor characteristics anticipating a good predictive drug response tool. In particular, it could be interesting to study the effect of microbiome on PDAC-SC population. As far as we know, the co-culture of organoids and microbiome has not been done yet in PDAC but there are established protocols in intestinal models (74, 75). The microinjection of the bacteria into the lumen mimics the microbiome habitat (75). However, the manipulation of specific factors (e. g. oxygen and nutrient levels) to allow the co-culture of a diversity of bacteria with organoids remain to be established.

Co-culture experiments could be used to envisage the effect of tumor microbiota on CSCs. Furthermore, developing a model able to recapitulate the complexity of PDAC-SC niche (Figure 1B) paves the way towards a more accurate and physiological treatment-response prediction capacity of cultured PDOs.



Molecular studies to uncover microbiome- stem cell niche crosstalk

As stated before, in vitro models aiming to recapitulate the complexity of PDAC-SC niche need to include the microbiome axis to fully define the complex crosstalk between stem cells and microbiota.

The controlled escalation of biological complexity on the host side as well as in the composition of microbiome-derived secreted factors or live bacterial communities enable the proof-of-concept of a complex interaction mechanism in a controlled and standardized environment. These models open the door to a new generation of molecular studies difficult to study in vivo.

Microbial communities in the gut are known to produce small molecules and metabolites that significantly contribute to host functions and homeostasis (76). This interplay has been extensively studied in the intestine using microbiome-organoid co-culture models. In this regard, Sodhi et al. (28) found that bacterial Lipopolysaccharide (LPS) activates Toll-like receptor 4 (TLR-4) and enhances cell differentiation of goblet cell lineages in colonic organoids but inhibits Lgr5+ colon stem cells (77, 78) Similarly, a recent study found that dietary raffinose is utilized by Lactobacillus reuteri to convert it to fructose which in turn engages glycolysis to fuel stem cell proliferation under stress conditions (79).

As stated before, some bacterial families are conducive to oncogenesis and progression, while others prevent tumor development and might aid innate and therapeutically induced anti-tumor immunity. However, studying microbiome effects on tumor-related immunity in ex vivo systems is challenging, normally forcing the use of in vivo models which makes it difficult to dissect direct effects of microbiota on immune cells. Again, the use of microbiome-organoid co-culture approaches could circumvent the difficulties. In this regard, a recent study developed a novel immune-enhanced tumor organoid system to study factors affecting Immune Checkpoint Blockade (ICB) response. Selective testing of bacterial-derived metabolites from species found in the immunomodulatory host-microbiome significantly increased ICB-induced apoptosis of tumor cells and altered immune cell receptor expression (80).

Organoid have been used extensively to model senescence and aging-related conditions (81). In this regard, a recent study (82) found that gut microbiota metabolite trimethylamine N-oxide induces aging-associated senescent phenotype in midbrain organoids. Also, with these models, stem cell DNA damage associated to microbiota could be studied. Microbial co-culture with gastric organoids uncovered the mechanism by which Helicobacter pylori favours the accumulation of DNA damage promoting gastric cancer. In this regard (83), reported that DNA damage by H. pylori occurs in an ALPK1/TIFA/NF-KB-dependent manner in S-phase cells and importantly, the H. pylori LPS precursor (β-ADP-heptose) was sufficient to induce this damage.

Similar approaches could indeed be used to isolate individual microbiome-induced factors that alter PDAC-SC niche with the intrinsic limitation of the complexity of PDAC TME defined above. Although a co-culture of microbiome and escalation of biological complexity on the host side is possible, certain hallmarks of PDAC such as the strong desmoplastic reaction and the organoid bias towards a classical subtype (84) would be challenging to fully recapitulate PDAC complexity at the experimental level.



Discussion and future prospects: Towards a microbiome-targeted precision medicine

Current research in the personalized medicine field promises new hope for developing new tools for early diagnosis and for improving treatment of this deadly disease. Along these lines, our ever-expanding understanding of PDAC-SC and the interplay between intratumoral microbiome and oncogenes in all aspects of PDAC is promising. We now know that PDAC-SC play a fundamental role in the initiation and development of PDAC, and these cells are largely responsible for the aggressive, chemoresistant and metastatic nature of this cancer (26, 37, 85) (32, 43, 74). They are known to be dependent on niche factors (28–30). Thus, understanding the communication network that exists within the TME, including the PDAC-SC niche, are not only important for understanding PDAC pathogenesis, but may also be relevant at the level of resistance to conventional therapies and cellular plasticity.

As outlined above, evidence supporting a tumor-promoting role of an altered host microbiome at different sites is accumulating (34, 53, 71). This altered diversity may be a consequence of tumorigenesis, as the evolution of an inflammatory tumor microenvironment might promote bacterial translocation from the gut into the pancreas (25, 34, 56). Considering all the above evidence it is reasonable to speculate that the interplay between the intratumoral microbiota and oncogenic mutations promotes a specific PDAC-SC niche thereby impacting the tumor progression, chemoresistance and patient prognosis.

This interplay seems to be important in other gastrointestinal malignancies such as gastric cancer (86), esophageal cancer (87, 88). In this line, 26 microbial markers were proposed as early detection biomarkers to discriminate adenoma from colorectal cancer (89), and 30 microbial markers were identified and validated as diagnosis biomarkers in cohorts of individuals with early hepatocellular carcinoma and healthy controls (90).

In the case of PDAC, an improvement in treatment response due to the modulation of the patient’s microbiome is already proposed in preclinical studies. Some even demonstrate a potential modulation of PDAC intratumoral microbiota with specific antibiotics overcoming gemcitabine and immunotherapy resistance in mouse models (57). In this regard, clinical trials focusing on compiling 16S rRNA profiles of PDAC patient samples and modulating microbiota are on the rise (based on http://clinicaltrials.gov/)

There is mounting evidence that patient microbiome composition can be used as a biomarker for disease progression as well as a druggable target to increase therapeutic efficacy of PDAC treatment. Therefore microbiome modulating strategies targeting the microbiome-dependent PDAC-SC niche would increase therapeutic responses and survival of PDAC patients paving the way towards the cure of this deadly disease.
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The current level of evidence for immunotherapy in previously untreated microsatellite unstable metastatic colorectal cancer is based on recent pieces of evidence of few studies that demonstrated durable response and clinical benefit, in terms of objective response rate, disease control rate, and progression-free survival in this subgroup of patients. On the basis of combinatorial immunotherapy with nivolumab plus ipilimumab, we report the exceptional case of a complete pathological response in a 21-year-old woman presenting a clinically aggressive stage IV colorectal cancer with massive nodal and liver involvement. Extensive molecular analyses based on whole genome next-generation DNA sequencing, RNA sequencing, fluorescent multiplex immunohistochemistry, and flow cytometry provided a detailed description of tumoral and immunological characteristics of this noteworthy clinical case.
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Introduction

Colorectal cancer (CRC) is the fourth cause of cancer-related deaths worldwide (1). Deficient mismatch repair/microsatellite instability-high (dMMR/MSI-H) occurs in about 5% of metastatic CRC (mCRC) (2). The optimal first-line treatment regimen in mCRC has been represented by combining chemotherapy and anti-vascular endothelial growth factor or anti-epidermal growth factor receptor antibodies. However, its clinical benefit is limited with a median overall survival (OS) of approximately 30 months (3, 4). In the last 2 years, practice-changing results of two studies, KEYNOTE-177 and CHECKMATE-142, validated immunotherapy in previously untreated microsatellite unstable (dMMR/MSI-H) mCRC. The first trial demonstrated durable clinical benefits of pembrolizumab in terms of progression-free survival (PFS) compared with standard chemotherapy in patients with dMMR/MSI-H mCRC (16.5 months vs. 8.2 months; HR, 0.59; 95% CI, 0.45 to 0.79) and a significant increase in objective response rate (ORR). The second study confirmed the benefits of immunotherapy in this subgroup and identified a synergy from the dual blockade of Programmed cell death-1 PD-1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4), and nivolumab and ipilimumab. The primary endpoint ORR was 69% (95% CI, 53 to 82) with a disease control rate (DCR) of 84% (95% CI, 70.5 to 93.5) and a radiological complete response rate of 13% at median follow-up of 29.0 months (5–7).

Here, we describe an exceptional case of a clinically complex MSI-H stage IV CRC associated with Lynch syndrome. The patient received exclusively nivolumab plus ipilimumab as upfront treatment and obtained an impressive response. She underwent surgical resection of radiological residual disease with the confirmation of a pathological complete response (pCR), a very rare event with standard chemotherapies (8).



Case report

In March 2017, a 21-year-old woman with no significant past medical or familiar history was referred to a Community Hospital after a 3-month history of diarrhea, progressive worsening of asthenia (up to grade 3), and 13% body weight loss in 8 weeks. Visit and laboratory tests showed clinical deterioration [Eastern Cooperative Oncology Group (ECOG) Performance Status (PS) = 3], hyperpyrexia, increase in white blood count, and thrombocytosis. Abdomen computed tomography (CT) and magnetic resonance imaging (MRI) showed a large neoplastic mass involving the ascending colon, the right colic flexure (maximum diameter of 13 cm) and the liver, suspected infiltration of the head of the pancreas and the duodenum, extensive abdominal lymphadenopathies, and ascites. Moreover, colonic perforation was suspected due to perilesional fluid collection (Figure 1A).




Figure 1 | (A) CT scan performed before surgery on primary tumor. (B) CT at day 42, after the first cycle of immunotherapy. (C) CT after six cycles of immunotherapy (first evidence of partial response according to RECIST 1.1 criteria).



The patient underwent an urgent right colonic resection. Histology evidenced a poorly differentiated colonic adenocarcinoma (CRC), pT4a N2b based on TNM classification with macroscopic residual of disease (Figure 2C). The carcinoembrionyc antigen (CEA) level was determined at the diagnosis and subsequently at CT scan evaluations; it remained within normal limits during all the history of the disease.

DNA sequencing, performed subsequently at our center by mass spectrometry (with Kit Myriapod Colon status, Diatech Pharmacogenetics – MassArray analyzer), and immunohistochemistry (IHC) revealed a RAS/BRAF wild-type status, a high tumor mutational burden (TMB), with more than 1,700 somatic non-synonymous variants, and an estimated exonic mutation rate of 68.3 mutations/megabase.

The determination of microsatellite instability was evaluated by multiplex amplification with fluorescent primers and subsequent DNA fragment analysis on automated sequencer (Titano MSI kit CE-IVD Diatech Pharmacogenetics). It confirmed a germline non-sense mutation in MLH1 gene with a complete loss expression of MLH1 and PMS2 (mismatch repair deficiency), and Lynch syndrome was diagnosed.

RNA sequencing (RNAseq) data were used to assess potential overexpression of key immune modulators and also to assign the patient to one of the four colorectal consensus molecular subtypes (CMSs). The patient’s CMS was predicted as CMS4 (9), whereas RNAseq of immunotherapy-related genes revealed a high expression of Indoleamine 2,3-Dioxygenase 1 (IDO1) only.

The post-operative course was complicated by jaundice and hyperbilirubinemia (up to 8 mg/dl); hepatic ultrasound showed bile duct dilatation due to duodenal compression, which required insertion of a biliary metallic stent. After 28 days, she was dismissed with a mild improvement of general conditions and referred to our Comprehensive Cancer Center. Two days later, worsening of clinical conditions, hyperpyrexia (up to 39°C), and persistent alteration of liver function required immediate hospitalization. A re-staging CT scan confirmed large liver metastases, with diameter up to 12.2 cm, associated to hilar and abdominal lymphadenopathy, and a 7-cm abscess associated with cancer in S4 (Figure 2A).




Figure 2 | Characterization of primary tumor and liver lesion. (A) Re-staging scan before treatment start: large liver metastases in the right lobe associated with a wide abscess in S4. (B) Re-staging CT scan after nine cycles of immunotherapy and surgical resection of residual disease: outcomes of hepatic surgery without any evidence of residual disease. (C) Primary tumor from colonic resection: poorly differentiated adenocarcinoma (hematoxylin and eosin stain at ×200 magnification on light microscopy). (D) Liver lesion after nine cycles of immunotherapy and surgical resection: fibrous scar tissue and flogosis, without any evidence of residual neoplastic disease (hematoxylin and eosin stain at ×200 magnification on light microscopy). (E, F) Representative seven-color mIHC images of immune cell infiltrates in PT (E) and LL (F); staining antibodies of “panel 1”: CD3 (magenta), CD68 (yellow), CD20 (white), CD56 (green), neutrophil elastase (red), pan-cytokeratin (cyan), and nuclei (blue). Original magnification, ×20. (G, H) Representative seven-color mIHC images of myeloid composition of PT (G) and LL (H); staining antibodies of “panel 2”: CD68 (magenta), CD11c (red), CD11b (green), CD163 (yellow), neutrophil elastase (white), pan-cytokeratin (cyan), and nuclei (blue). Original magnification, ×20. (I, J) Pie charts of cumulative mIHC data for PT (I) and LL (J). Data reported for each cell subset are the mean values of 10 fields from the same section. The total number of cells analyzed in PT (I) and LL (J) is 24,272 and 35,141, respectively. T cells, macrophages, neutrophils, B cells, natural killer (NK) cells, and tumor cells are identified as CD3+, CD68+, neutrophil elastase+, CD20+, CD56+, and pan-cytokeratin+ cells, respectively; “other cells” refer to cells negative for all these markers. (K) mIHC cell densities (cells/mm2) of immune cells infiltrating PT and LL. Mean values and SD derived from the analysis of the same 10 fields considered in (I, J) pie charts. (L, M) Percentages of T cells (CD3+) (L) and B cells (CD20+) (M) infiltrating fresh liver lesions, as assessed by flow cytometry. Patient data (case; red square) are reported together with those from the reference group (Ref. group; black dots). Data are gated on total leukocytes (CD45+). Mean and SD of the reference group are reported.



An endoscopic retrograde cholangiopancreatography evidenced the partial obstruction of the biliary metallic stent, which required the insertion of an additional self-expandable metallic stent. Although liver function progressively improved, clinical conditions remained extremely unstable with recurrent febrile episodes, elevation of inflammatory markers, and a high risk of septic shock.

A multidisciplinary team extensively discussed the options of: i) a surgical exploration, ii) standard systemic treatment, or iii) opportunity for molecularly driven clinical trial.

Over a 48-h observation period, fever resolved and general conditions and liver functions improved, and she was enrolled in a phase 2 clinical trial (5) and received nivolumab (3 mg/kg q2w) plus ipilimumab (1 mg/kg q6w).

On 28 April 2017, nivolumab plus ipilimumab treatment was started. After 2 h from the administration, the patient had a progressive pain worsening in right hypochondrium and a sudden drop of hemoglobin. An ultrasound revealed bleeding of liver metastases requiring radiological embolization. After a few hours, the patient had hyperpyrexia and shivering, increase of inflammation markers, and hypotension. On 30 April 2017, the patient was transferred to the intensive care unit; blood cultures grew Enterococcus faecium, and meropenem and daptomycin were started, with a rapid general improvement and defervescence. At day 14 from the first administration, the patient received the second planned dose. A follow-up ultrasound showed a major shrinkage of the hepatic abscess. Thus, she was discharged, and the following cycles were planned as an outpatient.

General conditions rapidly improved over the next 4 weeks. A CT scan after the first cycle showed an initial reduction of all target lesions (Figure 1B). A massive shrinkage and the best response were achieved after six cycles, being maintained thereafter up to the completion of 9 cycles over a 12-month period, without any toxicity or delay (Figures 1C, 2B).

On the basis of clinical course and multidisciplinary discussion, a surgical abdominal exploration was decided without evidence of extrahepatic involvement, whereas an intraoperative ultrasound suspected S4b-S5 metastatic residual disease. Consequently, an anatomic liver resection of en bloc S4b-S5, cholecystectomy, and hilar lymphadenectomy were performed. The post-operative course was uneventful, and the patient was discharged in post-operative day 6.

Liver lesion (LL) histology evidenced a pCR with fibrous tissue, necrosis and lympho-histiocytic inflammation, and no residual tumor cells (Figure 2D). Sample was graded as tumor regression score equal to 1 (10, 11).

Fluorescent multiplex IHC (mIHC) was performed to characterize lymphocyte population and immune checkpoint expression. mIHC analysis was carried out on of formalin-fixed paraffin-embedded tissue samples from primary tumor (PT) and secondary LL, whose cell composition is described in Figures 2E–J. According to histology, no cytokeratin+ tumor cells were detected in LL (Figures 2F, H, J), whereas infiltrating immune cells were increased at least five-folds compared to PT (Figures 2I–K). In particular, B cells increased more than 200-folds (Figures 2I–K) and appeared organized in agglomerates resembling tertiary lymphoid structures (Supplementary Figure S1). Flow cytometry analysis of total leukocytes infiltrating the fresh lesion revealed that the percentages of T- and B cells were higher than in the reference group (Figures 2L, M, S2), which consisted of liver metastases (n=7) collected from additional CRC patients treated with standard chemotherapy (Supplementary Table 1). Moreover, peripheral blood T and B cells increased after treatment start (Supplementary Figure S3).

A deeper assessment of lymphocyte populations disclosed a strong prevalence of CD8+ T cells in PT (CD8+/CD4+ ratio = 3.2) that was partially maintained in LL (CD8+/CD4+ ratio = 2) (Figures 3A–C). These data were confirmed in the fresh sample (CD8+/CD4+ ratio = 1.4) and completely differed from the reference group (CD8+/CD4+ ratio = 0.38; Figure 3D). Notably, in the PT, almost all T cells stained positive for granzyme B, irrespective of the subset phenotype (Figures 3A, C). This activation status persisted in LL (Figures 3B, C), where most of infiltrating T cells showed an effector-memory phenotype with a minority being terminally differentiated (Supplementary Figure S4). Peripheral blood T cells disclosed an expression peak of the IL-7 receptor (IL-7Rα) just after treatment start (Figure 3E), suggesting the induction of a memory pool subsequently observed in the LL. T-regulatory cells were already detected in PT and increased 20-folds in LL (Figure 3F). They were higher than in the reference group (Figure 3G).




Figure 3 | T-cell functional state in primary tumor, liver lesion, and PBMCs. (A, B) Representative seven-color mIHC images of T-cell infiltrates of PT (A) and LL (B); staining antibodies of “panel 3”: CD3 (pink), CD8 (magenta), CD4 (red), granzyme B (yellow), FoxP3 (green), pan-cytokeratin (cyan), and nuclei (blue). Original magnification, ×20. (C) mIHC cell densities of CD4+, CD8+, and granzyme B+ T cells in 10 fields of PT and LL samples. Mean values and SD are reported for each cell population. (D) Percentages of CD4+ and CD8+ T cells infiltrating fresh liver lesions from the patient (Case; red square) and from the reference group (Ref. group; black dots), as assessed by flow cytometry. Data are gated on CD3+ cells. Connected date derived from the same lesion. (E) Percentages of IL-7R–expressing circulating T cells before therapy start (t0) and during treatment (t1 = disease re-staging after four cycles of immunotherapy, t2 = disease re-staging after six cycles of immunotherapy, t3 = disease re-staging after eight cycles of immunotherapy, and t4 = before surgical resection of the liver residual disease), as assessed by flow cytometry. Data are gated on CD4+ and CD8+ T cells before the start of immunotherapy. (F) mIHC cell densities of T-regulatory cells (CD3+/CD4+/FoxP3+) detected in PT and LL samples. Mean values and SD are reported. Data derived from the same 10 fields previously considered (C). (G) Percentages of T-regulatory cells (CD25bright/CD127low) infiltrating fresh liver lesions from the patient (Case; red square) and from the reference group (Ref. group; black dots), as assessed by flow cytometry. Data are gated on CD4+ T cells.



Moreover, mIHC showed that 25% of T cells expressed PD-1 in PT, most of them being also TIM-3+ and LAG-3+ (Figures 4A, C). These percentages remained essentially unchanged in LL after treatment (Figures 4B, C). Cytometry data of LL additionally demonstrated that the percentage of PD-1+ cells within either CD4+ or CD8+ populations was much lower than in the reference group (Figure 4D). In both PT and LL, intensity of PD-1 expression in T cells was low (Supplementary Figure S5 and Figure 4E) and differed clearly from the reference group (Figure 4F). PD-1 expression was appreciable in peripheral blood T cells before treatment and decreased after immunotherapy start (Figure 4G). A small fraction of cancer cells expressed PD-L1 in PT (Figures 4A, H). Putative PD-L1+ macrophages were organized in rare agglomerates in the PT, whereas they were scattered and highly increased in LL (Supplementary Figure S6 and Figures 4B, H).




Figure 4 | Immune checkpoint expression in primary tumor, liver lesion, and PBMCs. (A, B) Representative seven-color mIHC images of immune checkpoint expression in PT (A) and in LL (B); staining antibodies of “panel 4”: CD3 (magenta), PD-1 (white), PD-L1 (green), TIM-3 (yellow), LAG-3 (red), pan-cytokeratin (cyan), and nuclei (blue). Original magnification, ×20. (C) Percentages of PD-1–, TIM-3–, and LAG-3–expressing T cells on total CD3+ cells infiltrating the PT and the LL, as assessed by mIHC. Mean values and SD are reported for each cell population. Data derived from analysis of 10 fields of each sample. (D) Percentages of PD1+ cells infiltrating fresh liver lesions from the patient (Case; red square) and from the reference group (Ref. group; black dots), as assessed by flow cytometry. Data are gated on CD4+ and CD8+ T cells. (E) mIHC analysis of PD-1 expression intensity on PD-1+ T cells (CD3+) and other PD-1+ cells (PD-1+/CD3−) infiltrating the PT and the LL. Mean values and SD are reported for each cell population. Data derived from analysis of the same 10 fields previously considered (C). Intensity values are expressed in counts. (F) Flow cytometry data of PD-1 expression intensity (Geomean) on PD-1+ cells infiltrating fresh liver lesions from the patient (Case; red square) and the reference group (Ref. group; black dots). Data are gated on CD4+ and CD8+ T cells. (G) Percentages of PD-1–expressing circulation T cells before therapy start (t0) and during treatment (t1 = disease re-staging after four cycles of immunotherapy, t2 = disease re-staging after six cycles of immunotherapy, t3 = disease re-staging after eight cycles of immunotherapy, and t4 = before surgical resection of the liver residual disease), as assessed by flow cytometry. Data are gated CD+ and CD8+ cells. (H) mIHC cell densities of PD-L1–expressing cells in PT and LL. Mean values and SD are reported for each cell population. Data derived from analysis of the same 10 fields previously considered (C).



At the time of writing, 4 years since surgery, the patient is in excellent clinical conditions. She received immunotherapy until the end of 2018. A re-staging CT scan was performed every 8 weeks for 2 years and then every 16 weeks without evidence of disease recurrence. She lives a completely normal life without significant consequences related to surgery or immunotherapy. Regular oncologic follow-up and Lynch syndrome surveillance are still ongoing.



Discussion

In this case report, we describe the case of a very young patient with a Lynch syndrome with MSI-H stage IV mCRC. The patient received exclusively nivolumab plus ipilimumab as upfront treatment within a phase 2 study and obtained an impressive and durable response, in line with clinical data of the trial CheckMate-142 (6, 7) and particularly with results obtained in a previously untreated patient’ cohort receiving immunotherapy combination (5).

In this regard, Chalabi et al. presented a study with a single-dose of neoadjuvant ipilimumab plus nivolumab in early-stage CRC, resulting in 100% major pathological response and 57% pCR in a total of seven MSI-H tumors (12). Moreover, very recently, Cercek and colleagues reported that single check point blockade in mismatch repair–deficient II or III rectal cancer reached 100% of clinical response rate (13). Although the sample size and the follow-up are limited, this amazing result and the growing pieces of evidence confirm the high efficacy of immunotherapy as upfront therapy and support its role even in the neoadjuvant setting.

From a clinical perspective, this case remarks the following open issues: a) whether immunotherapy should be always offered upfront to all patients with MSI-H; b) which is the optimal treatment duration; c) how to properly interpret radiological data, d) which could be reliable surrogate markers of a pCR; and therefore e) whether surgery on residual disease is really necessary.

To date, a large part of patient with advanced MSI-H mCRC are not candidate to radical surgery, and data about pathological response are limited. Our case provided a rare opportunity for running a parallel extensive translational study on primary and post-treatment samples. MSI-H status and high TMB support the high immunogenic features of this tumor and predicted sensitivity to immunotherapy (14, 15). On the other hand, a high expression of IDO1 and CMS4 subtype is somewhat unexpected, with these features being advocated as putative mechanisms of immune resistance (16). Moreover, CMS4 is not typical of MSI-H and BRAF wild-type tumors, which normally belong to CMS1 (9). Only a fraction of MSI-H CRCs is associated to Lynch syndrome, but preliminary data on their response to immunotherapy are based on small subgroup analyses and do not definitely clarify whether they benefit more than sporadic tumors (5, 6).

Tumor neoantigens generated by the high TMB likely induced a strong immune response even before immunotherapy start. Indeed, PT disclosed a strong prevalence of CD8+ over CD4+ T cells with both subsets having an activated and cytotoxic phenotype. Such infiltrating immune cells largely increased in post-treatment LL as compared to PT, with a partially maintained CD8+/CD4+ ratio but the acquisition of an effector-memory phenotype. With regard to B cells, they not only strongly increased in LL but organized in agglomerates resembling tertiary lymphoid structures.

Finally, also, T-regulatory cells, already detected in PT, increased in LL.

All these features are strongly reminiscent for a powerful boost of a pre-existing immune response. Accordingly, kinetics analysis of circulating cells confirmed that immunotherapy unleashed the patient’s immune response, especially during the first 6–9 months of therapy.

In fact, the raising of T and B cells and the rapid increase of IL-7Rα-expressing T cells indicated the development and the maintenance of memory pools (17, 18) and anticipated the immune features found in the LL.

The fact that T and B cells were more represented in LL together with a cytotoxic phenotype of both CD4+ and CD8+ cells and a prevalence of CD8+ T-cells are all features associated with a better prognosis in CRC (19–21). Furthermore, the presence of tertiary lymphoid structures is another marker associated with a favorable clinical prognosis not only in CRC (22–24). Notwithstanding, the CD4+ and CD8+ T cells infiltrating the LL appeared poorly proliferating and had a moderate expression of IL-7Rα (data not shown), whose downregulation prepares cells for death during the resolution of the immune response (25). In the LL, we also observed more suppressive Treg and PD-L1+ macrophages. Collectively, these data are not only the signature of an immune response that is still operative and specialized, but also the mark of resolution after tumor eradication.

Regarding immune checkpoint expression, the percentage of T cells expressing PD-1 in PT remained essentially unchanged in LL after treatment, and this, in turn, appeared lower than in the reference group. Moreover, PD-1 was present at a low intensity on infiltrating T cells, and its expression decreased in peripheral blood T cells during treatment, globally suggesting a therapeutic response (26). Similarly, the slight expression of PD-L1 in PT can be considered another favorable prognostic feature, although still debated (27–29). Despite the role of LAG-3 and TIM-3 is still open to discussion (30–34), these molecules may not be considered as independent and isolated immune inhibitors but rather as co-indicators together with PD-1 of a still active inflammatory response where T cells are activated to exert their antitumor activity, and a part of them is progressively turning off and becoming exhausted. Therefore, the co-expression of PD-1, LAG-3, and TIM-3 on T cells suggests that additional combinatory immune checkpoint blockade therapies could be required in poorly responding cases (35, 36).

In summary, we present an exceptional and clinical complex case of a patient with MSI-H mCRC with a 4-year complete durable response after receiving exclusively immunotherapy agents, i.e., the PD-1 inhibitor nivolumab and the CTLA-4 inhibitor ipilimumab, without any relevant adverse event. In this case, the high efficacy of immunotherapy combination in MSI-H mCRC also relied, from a pathological point of view, on the confirmation of a pCR, a rare event with standard therapies that is associated to long-term survival or even the chance for cure. Nevertheless, the extensive molecular analysis and immunoprofiling carried out provided additional dynamical insights about the evolution of an immune response, which ultimately leads to a therapeutic success. In addition, the characterization of the immune contexture in the primitive lesions, like the expression/co-expression of checkpoint inhibitors, can offer important predictive hints about the potential benefit of combinatorial immune checkpoint blockade therapies to overcome resistance in patients with poor response to primary treatments.

Overall, further studies are required to validate the current immunological conclusions and to identify patients in which surgery could be an option despite stage of disease or, conversely, when it could be avoided in the presence of complete response after immunotherapy treatment.
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Introduction

Contrast-enhanced MRI is routinely performed as part of preoperative work-up for patients with Colorectal Cancer Liver Metastases (CRLM). Radiomic biomarkers depicting the characteristics of CRLMs in MRI have been associated with overall survival (OS) of patients, but the reproducibility and clinical applicability of these biomarkers are limited due to the variations in MRI protocols between hospitals.



Methods

In this work, we propose a generalizable radiomic model for predicting OS of CRLM patients who received preoperative chemotherapy and delayed-phase contrast enhanced (DPCE) MRIs prior to hepatic resection. This retrospective two-center study included three DPCE MRI cohorts (n=221) collected between January 2006 and December 2012. A 10-minute delayed Gd-DO3A-butrol enhanced MRI discovery cohort was used to select features based on robustness across contrast agents, correlation with OS and pairwise Pearson correlation, and to train a logistic regression model that predicts 3-year OS.



Results

The model was evaluated on a 10-minute delayed Gd-DO3A-butrol enhanced MRI validation cohort (n=121), a 20-minute delayed Gd-EOB-DTPA (n=72) cohort from the same institute, and a 5-minute delayed Gd-DTPA cohort (n=28) from an independent institute. Two features were selected: minor axis length and dependence variance. The radiomic signature model stratified high-risk and low-risk CRLM groups in the Gd-DO3Abutrol (HR = 6.29, p = .007), Gd-EOB-DTPA (HR = 3.54, p = .003) and Gd-DTPA (HR = 3.16, p = .04) validation cohorts.



Discussion

While most existing MRI findings focus on a specific contrast agent, our study shows the potential of MRI features to be generalizable across main-stream contrast agents at delayed phase.
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1 Introduction

Colorectal cancer is the 2nd leading cause of cancer deaths in North America (1). Many patients develop metastatic disease, with the liver being the most common site for metastases. In patients with colorectal liver metastases (CRLM), hepatic resection may potentially be curative (2). Contrast-enhanced MRI is routinely performed as part of preoperative work-up for patients with CRLM due to its high sensitivity and specificity (3, 4).

Gadolinium-based contrast agents (GBCA), including extracellular contrast agents (ECA) and hepatobiliary-specific contrast agents (HCA) have been widely used for liver imaging. ECA such as Gadopentetate dimeglumine (Gd-DTPA, Magnevist®) and macrocyclic gadobutrol (Gd-DO3A-butrol, GadovistTM (EU), Gadavist® (USA)) have been extensively utilized in the past two decades for liver MRI (5, 6). HCA on the other hand, for example Gadoxetic acid agents (Gd-EOB-DTPA, Primovist® (EU), and Eovist® (USA)), have been playing an increasingly important role in imaging CRLM because of their higher sensitivity in detecting liver lesions. As an HCA, Gd-EOB-DTPA demonstrates active uptake of contrast by hepatocytes leading to approximately 50% hepatobiliary excretion and 50% renal excretion, assuming a normal functioning liver (7). This active uptake leads to increased enhancement in hepatocytes; however, similar to ECAs, there remains a proportion of contrast that diffuses into the extracellular space on delayed phase (8).

The ability to accurately and non-invasively risk-stratify CRLM patients based on tumor characteristics may have important implications for personalized therapy, including treatment decision-making. Imaging biomarkers are attractive as they are non-invasive and can be readily implemented in clinical workflows as part of preoperative assessment. Radiomic biomarkers have been developed to predict CRLM prognosis from delayed-phase contrast enhanced (DPCE) MRIs. Late gadolinium enhancement of CRLM with both ECA and HCA have been shown to correlate with tumor fibrosis and overall survival in patients who had hepatic resection (9, 10). Radiomic features depicting the characteristics of CRLMs and liver parenchyma have been associated with pathological covariates and OS (11). However, the reproducibility and clinical applicability of these biomarkers are limited due to the variations in MRI protocols between hospitals and the lack of independent validation in external datasets (12). Factors including choice of contrast agent, timing of delayed image acquisition, and scanner types could have considerable impacts on enhancement patterns of CRLMs but they are rarely taken into account when developing biomarkers (13).

The purpose of this study is to identify radiomic features of DPCE MRI that are relatively robust across contrast agents, and investigate whether a radiomic signature built based on these features, when developed on a single contrast-agent, is generalizable to other types of contrast agents for the prediction of OS in CRLM patients.



2 Materials and methods

This is a retrospective study performed on three cohorts of CRLM patients, including two previously described Gd-DO3A-butrol-enhanced and Gd-EOB-DTPA-enhanced MR imaging cohorts from the same institute and a new Gd-DTPA-enhanced MRI cohort from an independent institute. The Gd-EO3A-butrol cohort was randomly split (stratified by OS events) into a discovery cohort (n=81) and a validation cohort (n=40). The Gd-EOB-DTPA (n=72) and Gd-DTPA cohorts (n=28) were used for evaluation only (
Figure 1
). 121 out of 130 Gd-EO3A-butrol patients, and 65 out of 72 Gd-EOB-DTPA patients have been previously reported (9, 10). The prior articles investigated the associations of tumor enhancement patterns with patient survival within individual contrast agents while in this manuscript we incorporate multiple cohorts from multiple institutes and use radiomics for contrast-agnostic biomarker discovery.




Figure 1 | 
Overview of the data split and the general discovery and validation workflow.



The review board at each institute approved the study and waived the requirement for written informed consent because the study design was retrospective and personal health information was deidentified.



2.1 Participants

Three retrospective patient cohorts were used in this study: patients who received preoperative chemotherapy (variable regiments determined by standard of care) and MRI with Gd-DO3A-butrol, Gd-EOB-DTPA, or Gd-DTPA enhancement prior to hepatic resection for colorectal cancer liver metastases between January 1, 2006 and December 31, 2012, between January 1, 2010 and December 31, 2012, and between January 1, 2010 and December 31, 2012, respectively (
Figure 2
)




Figure 2 | 
Flow chart of the inclusion and exclusion criteria.



In all three cohorts, patients were excluded for poor image quality, unmeasurable lesions according to Response Evaluation Criteria in Solid Tumors 1.1 (14), or surgery-related mortality. If multiple pre-surgical MRIs were available, the one closest to the surgical date was used. Patients with both Gd-DO3A-butrol and Gd-EOB-DTPA enhanced MRIs from the same institute (n=9) were assigned to the Gd-EOB-DTPA cohort.

Demographic information was obtained using the patient’s electronic patient record and publicly available obituary databases. The following clinical information was obtained: age, sex, chemotherapy prior to MRI, number of tumors, time from diagnosis of primary to diagnosis of metastasis, node positivity of primary colorectal tumor, carcinoembryonic antigen (CEA) level, and overall survival. The primary endpoint for this study was overall survival (OS).



2.2 MRI examination

Gd-DO3A-butrol and Gd-EOB-DTPA enhanced MRIs were acquired using standard institutional clinical liver imaging protocols. Delayed 3D axial T1 imaging was performed with 10-min post-intravenous injection of Gd-DO3A-butrol (0.1ml/kg body mass up to 10ml at 1.0mmol/ml) and 20-min post-intravenous injection of Gd-EOB-DTPA (10ml of 0.25mmol/ml). Scans were performed on 1.5-T (GE Twinspeed™, TR, 4.5; TE, 2.2; flip angle, 15; slice thickness, 5mm; spacing, 2.5mm; FOV, 380mm; matrix, 320×192) or 3.0-T (Philips Achieva™, TR, 3.0; TE, 1.4; flip angle, 10; slice thickness, 3mm; spacing, 1.5mm, FOV, 380; matrix, 250×250) magnets with an eight-channel body phased array coil covering the entire liver. Further details are given elsewhere (9, 10). Gd-DTPA enhanced MRI were acquired using delayed 3D axial T1 imaging at 5-min post-intravenous injection of Gd-DTPA (10-20mL of 0.5mmol/mL), on 1.5-T (Siemens SymphonyTim™, TR, 4.3; TE, 1.4; flip angle, 18; slice thickness, 2.5mm; spacing, 1.25mm; matrix, 320×132) or 1.5-T (Siemens TrioTim™, TR, 3.5; TE, 1.3; flip angle, 11; slice thickness, 2mm; spacing, 1.125mm, matrix, 320x144) magnets with a phased array coil covering the liver.



2.3 MRI lesion segmentation

For cohorts with Gd-DO3A-butrol and Gd-EOB-DTPA enhanced MRI, segmentations were performed on ClearCanvas, an open source DICOM viewer (http://clearcanvas.github.io/), by HC (with 7 years of experience). The images and segmentation files were converted into the NIfTI file format for further analysis. For the cohort with Gd-DTPA-enhanced MRI, image segmentations were performed in ITK-Snap v3.6.0 (15), by AL (with 1 year of experience). Segmentations were performed on the 10-minute delayed phase sequence in the Gd-DO3A-butrol cohort, 20-minute delayed phase sequence in the Gd-EOB-DTPA cohort, and 5-minute delayed phase sequence in the Gd-DTPA cohort. The readers were blinded to all clinical information except for history of CRLM at time of segmentation.



2.4 Image preprocessing and analysis

Radiomics features were extracted using the pyradiomcs (v3.0.1) package. The delayed 3D axial T1 images were interpolated using B-spline interpolation (SimpleITK v1.1.0) with the resampled pixel spacing of 1, 1, 1mm. The resampled image intensities were z-score normalized, scaled by 100 and discretized with the bin size of 5. The preprocessed image was inputted into pyradiomics (v3.0.1) for feature extraction. 100 features describing intensity, shape and texture were extracted. For patients with multiple metastases, features of the largest lesion were extracted.



2.5 Feature selection

Scans from patients who received both Gd-EO3A-butrol and Gd-EOB-DTPA enhanced MRI were evaluated to select radiomic features that are contrast-agent-agnostic (
Figure 3
). We discovered that scans across contrast-agents vary little in size but vary greatly in intensity. We also observed that second and higher-order texture features are relatively stable across contrast agents compared to intensity features, as expected since texture features are calculated based on local texture changes rather than absolute intensity values. First-order intensity features were discarded as they were heavily influenced by contrast agents, while shape features and texture features were further analyzed.




Figure 3 | 
Example images of patients who had received both Gd-DO3A-butrol and Gd-EOB-DTPA-enhanced imaging. Two patients with colorectal cancer liver metastases. A 44-year-old female patient with a hypointense lesion in both (A) 10-minute delayed Gd-DO3A-butrol-enhanced T1 axial image, and (B) 20-minute delayed Gd-EOB-DTPA-enhanced T1 axial image. A 58-year-old male patient with 3-layer tumor enhancement pattern in both (C) 10-minute delayed Gd-DO3A-butrol-enhanced T1 axial image and (D) 20-minute delayed Gd-EOB-DTPA-enhanced T1 axial image taken after 3 months. The patient received chemotherapy during the interval. MA: minor axis length, DA: gray level dependence variance.



A rank for each feature was calculated based on the average rank of the Mann-Whitney U-statistic in five stratified (by OS) cross-folds of the discovery dataset (Gd-DO3A-butrol, n=81), comparing feature distributions in patients with and without OS events. We then selected the feature with the highest overall ranking, and found the next best feature from the other feature category that is not correlated with the selected feature (Pearson correlation p>0.05), in order to reduce overfitting and maximize feature diversity. As a baseline comparison, we also performed least absolute shrinkage and selection operator (LASSO) feature selection across the Gd-DO3A-butrol discovery dataset (n=81) for association with OS events.



2.6 Statistical analysis

A radiomic signature was built using logistic regression to evaluate the predictive performance of the selected features. The model was trained on the discovery cohort and applied to the validation cohorts for evaluation. Model predictions were dichotomized at the default value of 0.5 in the Gd-DO3A-butrol validation cohort. To account for the shift in feature distributions with different contrast agents, which may lead to lower precision and recall if the same model cutoff is used, thresholds for the Gd-EOB-DTPA and Gd-DTPA cohorts were determined using the Maximally Selected Rank Statistics algorithm (16). Log-rank tests were used to test associations between patient OS and radiomic signature groups. Cox proportional hazards modeling was used to evaluate associations between OS and signature groups, alone and in combination with clinical covariates. The radiomic signature groups were compared to other radiomic biomarkers, including models trained with LASSO selected features, and a recent clinical-radiomic model for Gd-EOB-DTPA MRI (17).

All statistical analysis was implemented in R (v3.6.3), using base-R functions and package survival (v3.2-7).




3 Results

A total of 230 DPCE MRI scans from 221 CRLM patients (128 male, 93 female; mean age ± standard deviation, 63 ± 11 years; age range, 30-86 years) were included in this study (
Table 1
). 111 out of 221 patients (50%) had more than one lesion. Median follow-up was 40 months (range, 2-107 months). 69 deaths (out of 221, 31%) occurred during the follow-up period. 34 out of 179 patients with available clinical annotations (19%) had Fong clinical risk scores larger or equal to 3 (18).


Table 1 | 
Demographics of the study population (n = 221).





3.1 Generalizable radiomic features selection

We first extracted 100 quantitative features describing tumor characteristics from each scan. Features describe tumor intensity (n=18), shape (n=22), and texture (n=68). We reason that since all intensity features (n=18) are sensitive to changes in the absolute value of voxel intensities, which is naturally influenced by contrast agent choice and other imaging parameters, they should be excluded upfront to prevent overfitting to these parameters and impeding generalizability.

We then performed feature selection on the remaining features to discover those that were associated with patient OS. In the discovery cohort of Gd-DO3A-butrol patients (n=81), we ranked features based on their average association with OS in 5 cross-folds. The best performing feature was minor axis length
1
 (shape feature; HR=1.50, p=.001, log-rank test). To diversify feature selection, we looked for the next best performing feature that describes tumor texture that is not correlated with minor axis length. We calculated the threshold of significant correlation as Pearson correlation larger or equal to 0.3, based on sample size of 81 at alpha of.05 and power of 0.8. As a result, the second selected radiomic feature was dependence variance
2
 (texture feature; HR=1.43, p=.01, log-rank test; correlation with minor axis, r=0.23, Pearson correlation).



3.2 Radiomic signature is independent predictor of OS

Using the two radiomic features selected, we trained a radiomic signature using logistic regression on the discovery Gd-DO3A-butrol dataset. The intercept of the model is -0.86 and the coefficients are 0.48 for minor axis length and 0.15 for dependence variance, respectively. We then evaluated our radiomic signature on never-seen data, including the validation Gd-DO3A-butrol dataset, the Gd-EOB-DTPA dataset, and the Gd-DTPA dataset. We further dichotomized patients in each cohort into low- and high-risk groups for survival analysis.

Our model successfully validated in the Gd-DO3A-butrol validation cohort. Patients in the high-risk group (n=18) had significantly lower 3-year survival rate than patients in the low-risk group (n=22) (
Figure 4A
; p=.005, log-rank test). Univariate analysis was performed to identify clinical covariates that are significant predictors of patient survival. The number of tumors was found to be significant in Gd-DO3A-butrol cohort (HR=4.11, 95% CI 1.19-14.14; p=.03; c-index=0.67), none of the covariates were significant in the Gd-EOB-DTPA cohort and age was significant in the Gd-DTPA cohort (HR=0.27, 95% CI, 0.09-0.79; p=.2, Wald test). We performed multivariable cox regression analysis with number of tumors, sex and our radiomic signature in all cohorts to test whether our radiomic signature provides added prognostic value of OS. In the validation cohort (
Table 2
), the combined model showed improved predictive power (c-index=0.72) over the clinical covariates alone and the radiomic signature remained independently predictive after adjusting for the clinical covariate (adjusted HR=13.54, 95% CI, 4.32-75.27; p=.003, Wald test).




Figure 4 | 
Radiomic signature risk group associations with overall survival. (A) Overall survival in 40 patients in the validation cohort who underwent preoperative Gd-DO3A-butrol-enhanced MRI, stratified by the radiomic signature model trained on Gd-EO3A-butrol training cohort (model score dichotomization threshold=0.5; log-rank test, p=.005). (B) Overall survival in 72 patients who underwent preoperative Gd-EOB-DTPA enhanced MRI, stratified by radiomic signature model (Maximally Selected Rank Statistic threshold=0.30; log-rank test, p=.04) (C) Overall survival in 28 patients who underwent preoperative Gd-DTPA enhanced MRI, stratified radiomic signature model (Maximally Selected Rank Statistic threshold=0.26; log-rank test, p=.03).





Table 2 | 
Cox regression model results for the association of radiomic biomarker with overall survival in the Gd-DO3A-butrol validation cohort.





3.3 Validation in datasets with other contrast agents

We next evaluated our radiomic signature on cohorts that used different contrast agents to assess its generalizability. Despite being trained on the discovery Gd-DO3A-butrol dataset, our radiomic signature was associated with OS in both the Gd-EOB-DTPA cohort (
Figure 4B
; high-risk n=43, low-risk n=29, p=.04, log-rank test) and Gd-DTPA cohort (
Figure 4C
; high-risk n=11, low-risk n=17, p=.03, log-rank test). Similar to the Gd-DO3A-butrol validation cohort, in both the Gd-EOB-DTPA (
Table 3
) and the Gd-DTPA (
Table 4
) cohorts. In the Gad-EOB-DTPA cohort, none of the clinical variates were significant, and the radiomic signature is the only significant predictor of survival (HR=3.54, 95% CI, 1.53-8.21; p=.003, Wald test, c-index=0.66). Combining the radiomic signature with clinical covariates improved predictive power (c-index=0.69). In the Gad-DTPA cohort, combing radiomic signature (HR=3.16, 95% CI, 1.08-9.19, p=0.04, Wald test, c-index=0.64) with clinical covariates also improved predictive power (c-index=0.74). The radiomic signature remained a significant independent predictor of OS after accounting for clinical factors in both cohorts, with adjusted hazard ratio of 3.23 (95% CI, 1.38-7.65; p=.008, Wald test) in the Gd-EOB-DTPA cohort and adjusted hazard ratio of 7.78 (95% CI, 1.79-33.73; p=.006, Wald test) in the Gd-DTPA cohort. This demonstrates that radiomic signatures could generalize across contrast agents when features are selected considering robustness across contrast agents and feature diversity.


Table 3 | 
Cox regression model results for the association of radiomics biomarker with overall survival in the Gd-EOB-DTPA cohort.





Table 4 | 
Cox regression model results for the association of radiomics biomarker with overall survival in the Gd-DTPA cohort.



To assess whether the generalizability of our radiomic signature can be attributed to our radiomic feature selection approach, we also used LASSO, a popular technique for feature selection in radiomics, to select features associated with OS in the Gd-DO3A-butrol discovery cohort. Grey level non-uniformity was the only feature selected (texture feature; HR=1.45, p=.01, log-rank test). We also evaluated two features (first-order minimum and small area emphasis, Shur et al.) that have been reported to associate with CLRM prognosis in Gd-EOB-DTPA MRI scans in a recent study (17). Analogous to our radiomic signature, the LASSO feature and Shur et al. selected features were used to build two signatures using logistic regression based on the Gd-DO3A-butrol discovery cohort. Maximally Selected Rank Statistics was applied to find the dichotomization cutoff for other cohorts, resulting in a threshold of 0.30 for Gd-EOBDTPA and 0.26 for Gd-DTPA for our signature. As a result, the high-risk patient group defined by our model is 0.48*MinorAxis +0.15*DependenceVariance−0.86>0.5, 0.3, 0.26 for Gd-DO3A-butrol, Gd-EOB-DTPA and Gd-DTPA, respectively. Thresholds for the other two signatures for the validation cohorts were obtained in the same way.  When evaluated for generalizability in the Gd-EOB-DTPA and Gd-DTPA datasets, the model based on features from Shur et al. was only prognostic in the Gd-EOB-DTPA cohort, which is the contrast agent the features were originally proposed in (C-index 0.58; HR=3.45; 95%CI=1.13-10.53; p=.03), and neither model was predictive in the Gd-DTPA cohort. Only our radiomic signature was significantly prognostic in both validation cohorts (
Table 5
).


Table 5 | 
Comparison of generalizability of biomarkers when applied to different contrast agents.






4 Discussion

A few studies have built predictors of long-term prognosis for patients with resected colorectal cancer liver metastases (CRLM) from MRI findings and radiomic features (9, 10, 17, 19). Findings and features were usually selected through correlations with survival. However, the reproducibility and generalizability of these markers have been limited, likely due to the inter-institution variability in MRI protocols. In our study, we excluded radiomic features that describe tumor intensity as they are likely heavily influenced by contrast agent choice. We also selected a feature in each of the remaining radiomic feature categories: shape and texture, and ensured that the two selected features were not correlated in the discovery cohort. Our radiomic signature model based on minor axis length (shape feature) and dependence variance (texture feature) not only validated in the validation cohort (Gd-EO3A-butrol, n=40, HR=6.29, p=.007) and an independent cohort using a different contrast agent from the same institute (Gd-EOB-DTPA, n=72, HR=3.54, p =.003), but also a cohort using a third contrast agent from an independent center (Gd-DTPA, n=28, HR=3.16, p=.04).

Although CRLMs appear qualitatively very different on delayed phase with extracellular contrast agents (Gd-DO3A-butrol and Gd-DTPA) as compared to hepatobiliary-specific contrast agents (Gd-EOB-DTPA), this is largely due to differences in background hepatic uptake. Because the tumors themselves do not contain hepatocytes and therefore do not actively take up contrast, their enhancement characteristics are likely very similar in both types of contrast agents. This could explain why radiomics models that focus on segmented tumors might be generalizable across different contrast agents. While intensity features vary considerably due to changes in the absolute intensity of voxels, texture features, which could reflect intra-tumor heterogeneity (20), remain relatively stable across different contrast agents. The ability of our radiomics signature to be robust across different contrast agents and institutions suggests that it is possible to build a predictive biomarker for DPCE MRI of CRLM patients based on only shape and texture features, and its applicability may be relatively generalizable. Further studies are required to validate this in larger datasets.

In this study we looked at MRIs enhanced with three different contrast agents and acquired using different imaging parameters. Gd-EOB-DTPA is increasingly the contrast agent of choice for staging of CRLM, although Gd-DO3A-butrol is still used in many instances for diagnosing focal liver lesions and remains used for staging in some institutions. Gd-DTPA has subsequently been discontinued due to increased risk of nephrogenic systemic fibrosis. However, the purpose of our study is not to develop a signature for these three contrast agents but to demonstrate that radiomic biomarkers can be designed to be more generic to avoid overfitting to specific imaging protocols.

There are several limitations in our study. First, this study is a preliminary, retrospective study that investigated the overall survival of patients with resected CRLM, which is a highly selective cohort of CRLM patients. A future work with a radiomic biomarker that is also predictive for unresectable CRLM patients would be beneficial to a broader patient population. Second, the external Gd-DTPA dataset is relatively small. Prospective studies with large enrolments are required to validate the radiomic signature proposed and determine its clinical value. Third, there exist variations in the exact amount and types of preoperative chemotherapy in this retrospective study, which could affect the results. Also, tumor segmentation was performed by a single reader in each cohort and further studies investigating segmentation inter-rater reliability is required.

In conclusion, in patients with resectable CRLM, a logistic regression model based on radiomic features discovered and trained on a Gd-DO3A-butrol discovery cohort was shown to be prognostic in three multi-contrast, multi-center cohorts. While most existing MRI findings focus on a specific contrast agent, our study shows the potential of MRI features to be generalizable across main-stream contrast agents at delayed phase.
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2
https://pyradiomics.readthedocs.io/en/latest/features.html#module-radiomics.gldm



References

1. Siegel, RL, Miller, KD, Sauer, AG, Fedewa, SA, Butterly, LF, Anderson, JC, et al. Colorectal cancer statistics, 2020. CA: A Cancer J Clin (2020) 70(3):145–64. doi: 10.3322/caac.21601

2. Wei, AC, Greig, PD, Grant, D, Taylor, B, Langer, B, and Gallinger, S. Survival after hepatic resection for colorectal metastases: A 10-year experience. Ann Surg Oncol (2006) 13(5):668–76. doi: 10.1245/aso.2006.05.039

3. Schulz, A, Viktil, E, Godt, JC, Johansen, CK, Dormagen, JB, and Holtedahl, JE. Diagnostic performance of CT, MRI and PET/CT in patients with suspected colorectal liver metastases: the superiority of MRI. Acta Radiol (2016) 57(9):1040–8. doi: 10.1177/0284185115617349

4. Bipat, S, van Leeuwen, MS, Comans, EFI, Pijl, ME, Bossuyt, PM, Zwinderman, AH, et al. Colorectal liver metastases: CT, MR imaging, and PET for diagnosis–meta-analysis. Radiology. (2005) 237(1):123–31. doi: 10.1148/radiol.2371042060

5. Scott, LJ. Correction to: Gadobutrol: A review in contrast-enhanced MRI and MRA. Clin Drug Investig (2018) 38(8):773–84. doi: 10.1007/s40261-018-0674-9

6. Frydrychowicz, A, Lubner, MG, Brown, JJ, Merkle, EM, Nagle, SK, Rofsky, NM, et al. Hepatobiliary MR imaging with gadolinium-based contrast agents. J Magn Reson Imaging. (2012) 35(3):492–511. doi: 10.1002/jmri.22833

7. Van Beers, BE, Pastor, CM, and Hussain, HK. Primovist, eovist: what to expect? J Hepatol (2012) 57(2):421–9. doi: 10.1016/j.jhep.2012.01.031

8. Reimer, P, Schneider, G, and Schima, W. Hepatobiliary contrast agents for contrast-enhanced MRI of the liver: properties, clinical development and applications. Eur Radiology (2004) 14(4):559–78. doi: 10.1007/s00330-004-2236-1

9. Cheung, HMC, Karanicolas, PJ, Hsieh, E, Coburn, N, Maraj, T, Kim, JK, et al. Late gadolinium enhancement of colorectal liver metastases post-chemotherapy is associated with tumour fibrosis and overall survival post-hepatectomy. Eur Radiol (2018) 28(8):3505–12. doi: 10.1007/s00330-018-5331-4

10. Cheung, HMC, Karanicolas, PJ, Coburn, N, Seth, V, Law, C, and Milot, L. Delayed tumour enhancement on gadoxetate-enhanced MRI is associated with overall survival in patients with colorectal liver metastases. Eur Radiol (2019) 29(2):1032–8. doi: 10.1007/s00330-018-5618-5

11. Nakai, Y, Gonoi, W, Kurokawa, R, Nishioka, Y, Abe, H, Arita, J, et al. MRI Findings of liver parenchyma peripheral to colorectal liver metastasis: A potential predictor of long-term prognosis. Radiology. (2020) 297(3):584–94. doi: 10.1148/radiol.2020202367

12. Traverso, A, Wee, L, Dekker, A, and Gillies, R. Repeatability and reproducibility of radiomic features: A systematic review. Int J Radiat Oncol Biol Phys (2018) 102(4):1143–58. doi: 10.1016/j.ijrobp.2018.05.053

13. Glazer, DI, DiPiro, PJ, Shinagare, AB, Huang, RY, Wang, A, Boland, GW, et al. CT and MRI protocol variation and optimization at an academic medical center. J Am Coll Radiol (2018) 15(9):1254–8. doi: 10.1016/j.jacr.2018.06.002

14. Eisenhauer, EA, Therasse, P, Bogaerts, J, Schwartz, LH, Sargent, D, Ford, R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1. 1). Eur J Cancer (2009) 45(2):228–47. doi: 10.1016/j.ejca.2008.10.026

15. Yushkevich, PA, Piven, J, Hazlett, HC, Smith, RG, Ho, S, Gee, JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. (2006) 31(3):1116–28. doi: 10.1016/j.neuroimage.2006.01.015

16. Lausen, B, and Schumacher, M. Maximally selected rank statistics. (1992) (1):73–85. doi: 10.2307/2532740

17. Shur, J, Orton, M, Connor, A, Fischer, S, Moulton, CA, Gallinger, S, et al. A clinical-radiomic model for improved prognostication of surgical candidates with colorectal liver metastases. J Surg Oncol (2019) 121(2):357–64. doi: 10.1002/jso.25783

18. Fong, Y, Fortner, J, Sun, RL, Brennan, MF, and Blumgart, LH. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg (1999) 230(3):309–18. doi: 10.1097/00000658-199909000-00004

19. Cheung, HMC, Kim, JK, Hudson, J, Coburn, N, Karanicolas, PJ, Law, C, et al. Late gadolinium MRI enhancement of colorectal liver metastases is associated with overall survival among nonsurgical patients. Eur Radiol (2019) 29(7):3901–7. doi: 10.1007/s00330-019-06177-w

20. Daye, D, Tabari, A, Kim, H, Chang, K, Kamran, SC, Hong, TS, et al. Quantitative tumor heterogeneity MRI profiling improves machine learning–based prognostication in patients with metastatic colon cancer. Eur Radiology (2021) 31(8):5759–67. doi: 10.1007/s00330-020-07673-0


Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2023 Chen, Cheung, Karanicolas, Coburn, Martel, Lee, Patel, Milot and Martel. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.





ORIGINAL RESEARCH

published: 17 March 2023

doi: 10.3389/fonc.2023.927608

[image: image2]


Identification of cuproptosis-based molecular subtypes, construction of prognostic signature and characterization of immune landscape in colon cancer


Xu Wang 1†, Xiaomin Zuo 1†, Xianyu Hu 1†, Yuyao Liu 2, Zhenglin Wang 1, Shixin Chan 1, Rui Sun 1, Qijun Han 1, Zhen Yu 1, Ming Wang 1, Huabing Zhang 3,4* and Wei Chen 1*


1 Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China, 2 Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China, 3 The First Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, Anhui, China, 4 Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China




Edited by: 

Zexian Liu, Sun Yat-sen University Cancer Center (SYSUCC), China

Reviewed by: 

Guifang Guo, Sun Yat-sen University Cancer Center (SYSUCC), China

Zheng Wang, Shanghai Jiao Tong University, China

Zhengwei Huang, Jinan University, China

*Correspondence: 

Huabing Zhang
 huabingzhang@ahmu.edu.cn 

Wei Chen
 chenwei366@ahmu.edu.cn


†These authors have contributed equally to this work


Specialty section: 
 This article was submitted to Gastrointestinal Cancers: Colorectal Cancer, a section of the journal Frontiers in Oncology


Received: 10 May 2022

Accepted: 27 February 2023

Published: 17 March 2023

Citation:
Wang X, Zuo X, Hu X, Liu Y, Wang Z, Chan S, Sun R, Han Q, Yu Z, Wang M, Zhang H and Chen W (2023) Identification of cuproptosis-based molecular subtypes, construction of prognostic signature and characterization of immune landscape in colon cancer. Front. Oncol. 13:927608. doi: 10.3389/fonc.2023.927608





Background

Cuproptosis is a newly discovered form of cell death induced by targeting lipoacylated proteins involved in the tricarboxylic acid cycle. However, the roles of cuproptosis-related genes (CRGs) in the clinical outcomes and immune landscape of colon cancer remain unknown.



Methods

We performed bioinformatics analysis of the expression data of 13 CRGs identified from a previous study and clinical information of patients with colon cancer obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. Colon cancer cases were divided into two CRG clusters and prognosis-related differentially expressed genes. Patient data were separated into three corresponding distinct gene clusters, and the relationships between the risk score, patient prognosis, and immune landscape were analyzed. The identified molecular subtypes correlated with patient survival, immune cells, and immune functions. A prognostic signature based on five genes was identified, and the patients were divided into high- and low-risk groups based on the calculated risk score. A nomogram model for predicting patient survival was developed based on the risk score and other clinical features.



Results

The high-risk group showed a worse prognosis, and the risk score was related to immune cell abundance, microsatellite instability, cancer stem cell index, checkpoint expression, immune escape, and response to chemotherapeutic drugs and immunotherapy. Findings related to the risk score were validated in the imvigor210 cohort of patients with metastatic urothelial cancer treated with anti-programmed cell death ligand 1.



Conclusion

We demonstrated the potential of cuproptosis-based molecular subtypes and prognostic signatures for predicting patient survival and the tumor microenvironment in colon cancer. Our findings may improve the understanding of the role of cuproptosis in colon cancer and lead to the development of more effective treatment strategies.
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1 Introduction

Cancer is the leading cause of death and reduces life expectancy worldwide (1). It is estimated that there were over 19 million new cancer cases and nearly 10 million cancer-related deaths in 2020. These cases included more than 1.9 million new cases of colorectal cancer (CRC) and 935,000 deaths, accounting for approximately one-tenth of all cancer cases and cancer-related deaths. The incidence of CRC ranks third among all cancer types, whereas its mortality rate ranks second (2). Early-stage colon cancer can be treated using surgery; however, patients with advanced colon cancer are more likely to experience metastasis and tumor recurrence, and their 5-year survival rates are less than 10% (3–5). With the development of chemotherapy and targeted medicine, the overall survival rate of patients with colon cancer has greatly improved. In recent years, advances in tumor immunotherapy and the application of immune checkpoint inhibitors (ICIs) have led to improvements in cancer treatment. Programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte antigen-4 (CTLA-4) blockade therapy are effective for treating patients with different mismatch repair metastatic CRC (6, 7).

Copper is an essential trace element in all living organisms and plays important roles in biochemical processes (8). Copper metabolism is involved in several human diseases. Wilson disease is an autosomal recessive genetic disease that mainly occurs in adolescents and is caused by a congenital disorder of copper metabolism. Patients with Wilson disease and animal models of Wilson disease show an increased incidence of hepatocellular carcinoma, suggesting that abnormal copper accumulation promotes malignant transformation through unknown mechanisms (9). Increased copper concentrations have been reported in tumors and the sera of animal models and patients, including in lung (10–12), gastrointestinal (13–18), breast (19–24), and prostate cancer (25). Resisting cell death is a basic hallmark of cancer (26). Programmed cell death is a basic physiological process that occurs in all organisms and plays a role in many biological processes, ranging from embryonic development, organ maintenance, and aging to the coordination of immune responses and autoimmunity. The effects of programmed cell death on malignant tumors, including apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis, have been widely studied. A recent study (27) reported that copper induces cell death via targeting lipoacylated proteins involved in the tricarboxylic acid cycle. The study showed that copper ions penetrated the mitochondria through copper carriers that directly bind to these lipoacylated proteins, causing them to form long chains and aggregate, leading to cell death. These copper ions also interfere with iron-sulfur clusters, resulting in iron-sulfur protein downregulation and leading to cytotoxic stress and death. This new form of cell death is known as cuproptosis. The authors also found that cuproptosis occured when cells were treated with the Cu ionophore elesclomol at a very low concentration, and this type of cell death can not be reversed by inhibiting necroptosis, ferroptosis, oxidative stress, and apoptosis, which indicated that cuproptosis was different from other forms of cell death. Cuproptosis may be related to various human diseases and may be a useful target for cancer therapy. It is suggested that elesclomol treatment of mice with multiple myeloma reduced the ability of cancer cells to resist the toxicity induced by proteasome inhibitors. Cu (II) bound to elesclomol interacted with mitochondrial enzyme ferredoxin 1 (FDX1) and was reduced to produce Cu (I), leading to an increase in reactive oxygen species (ROS) levels (28, 29). Xu et al. (30) reported a novel cupreous nanomaterial which could induce cuproptosis and could be used for synergistic therapy in bladder cancer. However, the effects of cuproptosis on malignant tumors remain largely unknown. Understanding how cuproptosis is initiated, propagated, and ultimately executed may be of great significance for treatment intervention and developing possible combination treatment.

With the development of high-throughput sequencing technology, researchers can access sequencing data from public databases such as The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). In recent years, many studies have focused on using sequencing data from public databases to construct tumor classifications or prognostic signatures for predicting the survival and immune landscapes of various types of malignant tumors. Chen at al (31). calculated an immune-related prognostic index for head and neck squamous carcinoma and analyzed the relationship between the index and Tumor Immune Dysfunction and Exclusion (TIDE) score and molecular subtypes. The prognostic index can be used to predict survival, immune characteristics, and the immune benefit of ICI therapy in patients with head and neck squamous carcinoma. Zhang et al. (32) classified patients with gastric cancer into three distinct molecular subtypes and constructed signatures for predicting survival and the response to immunotherapy based on the expression levels of RNA N6-methyladenosine-related genes. A previous study (33) used TCGA data to identify six immune subtypes (ISs) that encompass nearly all human malignancies, including wound healing, interferon (IFN)-γ dominance, inflammation, lymphocyte depletion, immunologically quiet, and transforming growth factor-β dominance. These six ISs are related to patient prognosis and genetic and immune characteristics, and CRC covers four of these six ISs, including wound healing, IFN-γ dominance, and inflammatory and lymphocyte depletion. Genes and long non-coding RNAs related to cell death have also been used to construct tumor classifications and prognostic signatures, including autophagy- (34), ferroptosis- (35), pyroptosis- (36), and necroptosis-related (37) genes and long non-coding RNAs. Cuproptosis is a newly discovered cell death pathway; the effects of cuproptosis-related genes on malignancies require further exploration.

In this study, we evaluated the genetic and transcriptional alterations and prognostic values of cuproptosis-related genes (CRGs) and classified patients with colon cancer into two distinct CRG clusters based on their CRG expression levels; patients were stratified into three gene clusters according to differentially expressed genes (DEGs) between two CRG clusters. A risk score was calculated to construct a prognostic signature for accurately determining the patient outcome, immune landscape, and response to immunotherapy in colon cancer. These findings improve the understanding of the role of cuproptosis in colon cancer and may enable the development of more effective treatment strategies.



2 Materials and methods



2.1 Acquisition of colon adenocarcinoma patient data

Expression profiles (fragments per kilobase million) and clinical data for were downloaded from the Genomic Data Commons Data Portal (https://portal.gdc.cancer.gov), Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/, ID: GSE39582 and GSE78820), iMvigor210 (http://research-pub.gene.com/IMvigor210CoreBiologies), and Tumor Immune Dysfunction and Exclusion (TIDE) website (https://tide.dfci.harvard.edu/, ID: PRJEB25780). Fragments per kilobase million data were transformed into transcripts per kilobase million using R studio software (version 1.4.1106; The R Project for Statistical Computing, Vienna, Austria). Data from TCGA and GEO were combined, and batch effects were eliminated using sva package. Patients with COAD with missing clinical information were excluded from this study, and 952 patients with COAD were included after selection. The clinical characteristics of the patients are presented in Supplementary Table S1.



2.2 Genetic and transcriptional alterations of CRGs in COAD

Thirteen CRGs were recently identified (1): FDX1, LIPT1, LIAS, DLD, DBT, GCSH, DLST, DLAT, PDHA1, PDHB, SLC31A1, ATP7A, and ATP7B (Supplementary Table S2). The expression levels of CRGs in the tumor and normal tissues were compared using the Wilcoxon signed-rank test. Genomic transcriptional alterations in the 13 CRGs were analyzed. To explore CRG-related biological functions and pathways, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed using the ggplot2, Bioconductor, and org.Hs.eg.db R packages.



2.3 Unsupervised clustering analysis of CRGs

Univariate Cox regression analysis, the Kaplan-Meier (KM) method and log-rank test were used to identify prognosis-related CRGs. Based on the 13 CRGs, consensus clustering analysis was performed using the ConsensusClusterPlus R package. Clustering with the highest intragroup and lowest intergroup correlations was performed to classify patients into two distinct molecular subtypes. The survival times of patients in the two identified clusters were compared. Principal component analysis was performed to distinguish between CRG clusters using the stats R package. The Wilcoxon test was used to compare the clinical features between the two clusters, and DEGs between CRG clusters were screened using the criteria |log fold-change| > 1 and a p-value < 0.05. Gene set variation analysis and single-sample gene set enrichment analysis were performed to evaluate differences in biological processes between the two clusters, immune cell infiltration, and immune-related functions using gsva R package.



2.4 Construction of cuproptosis-related prognostic risk score

Univariate Cox regression analysis was used to select prognosis-related DEGs (PRDEGs). To identify additional cuproptosis-related genes for signature construction, the patients were classified into three distinct gene clusters based on their PRDEG expression levels. The survival times, clinical characteristics, and CRG expression levels of the three gene clusters were compared, and the DEGs were identified. Least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analyses were performed to select CRGs for constructing the risk score using the survival, survminer, and glmnet R packages. The cuproptosis-related prognostic risk score was calculated based on the expression levels of the five identified CRGs. Patients with COAD were divided into high- and low-risk groups according to their risk scores. The expression of CRGs, survival status, and overall survival time of patients were compared between the high- and low-risk groups. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to determine the efficiency of the risk score for predicting patient survival. The risk scores between the identified clusters were compared using the Wilcoxon signed-rank test, and differences in the risk score between different risk groups based on clinical characteristics were analyzed. Univariate and multivariate Cox regression analyses were performed to determine whether the risk score was an independent prognostic factor for the prognosis of patients with COAD. A nomogram model was developed using the risk score and other clinical features, and calibration graphs were constructed to show the differences between the actual and predicted survival rates. ROC was performed to compare the prediction efficiency of the nomogram model with other clinical features.



2.5 Tumor microenvironment evaluation between high- and low-risk groups

To explore the relationship between the calculated risk score and TME, CIBERSORT was used to quantify the abundance of infiltrating immune cells in high- and low-risk COAD samples. Spearman’s method was used to evaluate the correlation between the risk score and immune cell abundance. The association between these immune cells and the five CRGs was also analyzed to calculate the risk score. Differences in the TME scores, including the stromal score, immune score, and ESTIMATE score, between the high- and low-risk groups were compared using Wilcoxon signed rank test.



2.6 Mutations, microsatellite instability, and cancer stem cell index between high- and low-risk groups

The mutation annotation format was generated using the maftools R package to better understand gene mutations in the two risk groups. Furthermore, the association between risk groups and the MSI and CSC index was analyzed using Wilcoxon signed rank test and the Spearman method.



2.7 Immune checkpoints expression, immune subtypes, and TIDE score in high- and low-risk groups

To further explore the relationship between the risk score and immune landscape in COAD, immune checkpoint expression was compared between the two risk groups. A previous study (30) described the immune landscape of various types of cancer, and COAD was classified into four distinct ISs: wound healing, IFN-γ dominant, inflammatory-depleted, and lymphocyte-depleted. The proportions of the four ISs in the high- and low-risk groups were compared using chi-square test. The TIDE scores were also compared to evaluate the potential clinical efficacy of immunotherapy in different risk groups using Wilcoxon signed-rank test.



2.8 Relationship between risk score and IC50 of therapeutic drugs

The IC50 is the half maximum inhibitory concentration of a drug and represents the concentration of drug required to achieve 50% inhibition of cancer cells. The IC50 values of nine drugs used for cancer therapy were calculated. Differences in the IC50 between the high- and low-risk groups were analyzed using Wilcoxon signed-rank test, and the results were shown in boxplots using ggpubr, pRRophetic, and ggplot2 R packages.



2.9 Validating the risk score in immunotherapy cohorts

IMvigor210, GSE78820, and PRJEB25780 are three clinical cohorts of patients with urothelial carcinoma, melanoma, and metastatic gastric cancer who received immune checkpoints blockade therapy. Patients were divided into complete response (CR)/partial response (PR) and stable disease (SD)/progressive disease (PD) groups based on responses to immunotherapy, risk score between different groups was computed and compared using Wilcoxon signed-rank test.



2.10 Verifying the expression levels of five signature genes

Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to verify the expression differences between normal and colon cancer tissues. Total RNA was extracted from 8 pairs of colon cancer patient tissues using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). cDNA was synthesized using the total RNA and a PrimeScript RT reagent kit (Vazyme, Nanjing, China). Concentrations of cDNA samples were measured using TB Green Premix Ex Taq II (GenStar, China) with the LightCycler480 System (Applied Biosystems, Waltham, MA, United States). Relative expression levels were compulated using the 2-ΔΔCt method, normalizing with GAPDH. Expression levels were compared using t-test. The primer sequences of five signature genes and GAPDH are listed in Supplementary Table S3. Immunohistochemistry (IHC) images were retrieved from HPA database (http://www.proteinatlas.org) to show the expression of signature genes at protein levels.




3 Results



3.1 Cuproptosis-related genes in COAD

Gene expression data and clinical information of the patients were downloaded from the COAD project of TCGA database and GSE39582 dataset of the GEO database. Thirteen CRGs were evaluated, and the expression levels of these CRGs in the high- and low-risk groups were compared. Among the 13 CRGs, 7 were differentially expressed; FDX1, DLD, DBT, and DLST were significantly downregulated in COAD tissues, whereas LIPT1, GCSH, and ATP7B were upregulated in COAD tissues (Figure 1A). The somatic copy numbers of the 13 CRGs were analyzed, and DBT showed the highest copy number variation frequency (Figure 1B). Figure 1C shows the somatic mutation incidence of 13 CRGs in patients with COAD; ATP7A exhibited the highest mutation frequency. The locations of copy number variations in CRGs on the chromosomes are presented in Figure 1D. A protein-protein interaction network of the 13 CRGs was constructed using the GeneMANIA online program to determine the associations of the CRGs (Figure 1E). Gene Oncology (Figure 1F) and Kyoto Encyclopedia of Genes and Genomes (Figure 1G) analyses revealed significant biological processes, cellular components, molecular functions, and pathways involving the CRGs. The CRGs were mainly associated with the biological processes of the tricarboxylic acid cycle, acetyl-CoA metabolic process, and acetyl-CoA biosynthetic process from pyruvate and were correlated with the cellular components of the mitochondrial matrix, oxidoreductase complex, and dihydrolipoyl dehydrogenase complex, which are also involved in the molecular function of oxidoreductase activity, transferase activity, and S−acyltransferase activity. These CRGs further participate in several pathways, including biosynthesis of cofactors, carbon metabolism, and the tricarboxylic acid cycle. A network was constructed to display the interactions between the CRGs and their prognostic significance (Supplementary Figure S1A). Survival curves indicated that high expression of ATP7A is correlated with poor prognosis in patients with COAD, whereas patients with high expression of DLAT, DLD, FDX1, LIAS, PDHA1, PDHB, and SLC31A1 had longer survival times (Supplementary Figure S1B).




Figure 1 | Genetic, transcriptional alterations and functional analyses of 13 cuproptosis-related genes (CRGs) in colon cancer. (A) Expression levels of differentially expressed CRGs between normal and tumor samples. (B) Mutation frequencies of 13 CRGs in colon cancer patients from TCGA cohort; (C) Frequencies of CNV gain, loss, and non-CNV among CRGs; (D) Locations of CNV alterations in CRGs on 23 chromosomes; (E) Protein-protein interaction network of CRGs; (F) GO analysis of CRGs; (G) KEGG analysis of CRGs. **p < 0.01; ***p < 0.001.





3.2 Identification of CRG clusters in COAD

Consensus clustering analysis was performed to construct a molecular classification based on the expression levels of the CRGs. Clusters with the highest intragroup and lowest intergroup correlations were also identified. By increasing the clustering variable (k), we found that when k = 2, classification met the standard. Patients were separated into two distinct CRG clusters: A and B (Supplementary Figure S2). Satisfactory separation between CRG clusters A and B was observed using principal component analysis (Figure 2A). The KM curve revealed no significant difference in the survival time between the two clusters (Figure 2B). Single-sample Gene Set Enrichment Analysis was performed to evaluate differences in immune cell infiltration between CRG clusters A and B. The results suggested that CRG cluster A had higher immune cell infiltration levels, including activated B cells, activated CD4+ T cells, activated CD8+ T cells, macrophages, mast cells, and natural killer cells (Figure 2C). Figure 2D shows the correlation between CRG clusters, clinical characteristics, and CRG expression in patients with COAD. Gene Set Variation Analysis showed that CRG cluster A was significantly enriched in immune-related pathways, including neuroactive ligand receptor interaction, glycosaminoglycan degradation, glycosaminoglycan biosynthesis chondroitin sulfate, and dilated cardiomyopathy (Figure 2E).




Figure 2 | Molecular subtypes and clinical characteristics, tumor microenvironment between colon cancer samples. (A) PCA showed good distiction between two CRGclusters. (B) The KM curve revealed no significant difference in the survival time between the two clusters (p = 0.243). (C) ssGSEA investigated the differences of immune cell infiltration between two clusters. (D) Heatmaps showed the relationship between CRGclusters and clinical features and CRGs expression in colon cancer patients. (E) GSVA showed the enriched pathways in CRGclusters. *p < 0.05; ***p < 0.001. (F) The KM curve shows that patients in genecluster A had the longest survival time, whereas patients in genecluster C had the worst prognosis (p = 0.024). (G) Sankey plot showed the correlation between molecular classifications, risk groups and survival status in colon cancer patients. (H, I) Association between risk score and molecular classifications. (J) Expression levels of DECRGs in two geneclusters. (K) Heatmap showed the association between genecluster and clinical features. *p < 0.05; ***p < 0.001.





3.3 Identification of gene clusters based on DEGs

To identify additional CRGs for calculating the risk score, gene clusters were identified. Univariate Cox regression analysis was performed to screen for PRDEGs. Patients with COAD were classified into three clusters (gene clusters A–C) according to their PRDEG expression (Supplementary Figure S3). Figure 2F shows that patients in cluster A had the longest survival time, whereas patients in cluster C had the worst prognosis (p = 0.024). A Sankey plot showed the relationship among CRG clusters, gene clusters, risk groups, and the living status of patients with COAD (Figure 2G). The risk scores in the two CRG clusters were compared; CRG cluster A had a higher risk score than CRG cluster B (Figure 2H). The risk score in the three gene clusters was also calculated, and the boxplot showed that gene cluster C had the highest risk score, whereas gene cluster A had the lowest risk score (Figure 2I). The boxplot shows that FDX1, LIPT1, LIAS, DLD, DBT, DLST, DLAT, PDHA1, PDHB, SLC31A1, ATP7A, and ATP7B were differentially expressed among the three clusters (p < 0.05) (Figure 2J). The heatmap revealed an association between gene clusters and clinical characteristics, PRDEG expression, and CRG clusters (Figure 2K).



3.4 Identification of gene clusters based on DEGs

Patients with COAD were randomly divided into training and testing groups at a ratio of 1: 1. LASSO and Cox regression analyses were performed to screen CRGs to construct a prognostic signature, and five genes were included after selection. Risk scores were calculated based on the following formula: risk score =  , where n represents the number of genes included to construct the signature and βi and Λi represent the regression coefficient and gene expression value, respectively. Patients with COAD were divided into high- and low-risk groups based on their calculated risk scores. Differences in the expression of these five genes between the two risk groups in the training group are shown in Figure 3A. Patients with high-risk COAD had a higher risk of mortality (Figure 3B). The KM plot also suggested that patients with low risk scores had a better prognosis than those with high risk scores (Figure 3C). ROC analysis was performed to examine the prediction efficiency of the risk score, showing AUCs for 1-, 3-, and 5-year survival of 0.596, 0.659, and 0.675, respectively (Figure 3D). These results were validated in the testing group (Figures 3E–H). PDHA1, PDHB, LIPT1, DLD, DLAT, DBT, ATP7B, FDX1, ATP7A, and LIAS showed higher expression levels in the low-risk group than in the high-risk group (p < 0.05) (Figure 4A). The risk score was correlated with tumor stage (Figure 4B) and infiltration depth (Figure 4C). Univariate (Figure 4D) and multivariate (Figure 4E) Cox regression analyses showed that the risk score is an independent prognostic factor for predicting the survival of patients with COAD (p < 0.05). A nomogram model was constructed based on the risk score and other clinical features (Figure 4F). A calibration graph was drawn to test the prediction efficiency of the nomogram model (Figure 4G); the predicted survival rates were similar to the actual survival rates. Prediction efficiency of the established nomogram model was compared with other clinical features, 1-, 3-, and 5-year AUC showed that the nomogram had satisfactory efficiency in predicting patient survival (Figures 4H–J).




Figure 3 | Construction and validation of the prognostic signature. (A) Heatmap showed the expression of 5 signature genes in two risk groups in training cohort. (B) Risk score and survival outcome of each case in training cohort. (C) KM curve showed that patients in high-risk group had a worse prognosis in training cohort (p < 0.001). (D) The AUCs for 1-, 3- and 5-year survival in training cohort. (E) Heatmap showed the expression of 5 genes in two risk groups in testing cohort. (F) Risk score and survival outcome of each case in testing cohort. (G) KM curve showed that patients in high-risk group had a worse prognosis in testing cohort (p = 0.041). (H) The AUCs for 1-, 3- and 5-year survival in testing cohort.






Figure 4 | Relationship between risk score, CRGs expression and clinical features in colon cancer patients. Identification of independent prognostic factors in colon cancer and development of the nomogram model for predicting patient survival. (A) Expression levels of CRGs in two risk groups. Scatters diagram showed that (B) clinical stage and (C) tumor infiltration depth significantly correlated with the risk score. Forest plots of univariate (D) and multivariate (E) Cox regression analyses in colon cancer. (F) Nomogram using risk score and other clinical features were constructed for predicting survival of colon cancer patients. (G) Calibration graphs investigated that the actual survival rates of colon cancer patients were close to the nomogram-predicted survival rates. (H–J) 1-, 3-, and 5-year AUC showed that the nomogram had satisfactory efficiency in predicting patient survival. ns, not significant; *p < 0.05; **p < 0.01; and ***p < 0.001.





3.5 TME evaluation between high- and low-risk groups

The relationship between the risk score and immune cell abundance is shown in Figure 5A. M0 macrophages, M1 macrophages, neutrophils, activated natural killer cells, and follicular helper T cells were positively correlated with the risk score, whereas memory B cells, resting dendritic cells, eosinophils, plasma cells, and resting memory CD4+ T cells were negatively correlated with the risk score. The relationship between the abundance of immune cells and the five genes in the prognostic signature is shown in Figure 5B. The high-risk group showed significantly higher risk scores than the low-risk group, including the stromal, immune, and ESTIMATE scores (Figure 5C).




Figure 5 | Evaluation of tumor microenvironment, MSI, and cancer stem cell (CSC) index in high- and low- risk groups. (A) Relationship between risk score and different immune cell types. (B) Correlation between the abundance of immune cells and seven genes in the prognostic signature. (C) Correlation between risk score and immune-related scores. (D, E) The relationship between the risk score and microsatellite instability (MSI) status. (F) The correlation between the risk score and CSC index. ns, not significant; *p < 0.05; **p < 0.01; and ***p < 0.001.





3.6 Comparative analysis of mutations, MSI, and CSC index in high- and low-risk groups

Somatic mutations in the two risk groups of patients with COAD were compared. The five most mutated genes in the high- and low-risk groups were APC, TP53, TTN, KRAS, and SYNE1 (Supplementary Figure S4). The correlation between the risk score and MSI status was analyzed (Figures 5D, E). A high-risk score was significantly associated with MSI-high status, whereas a low-risk score was related to microsatellite stable status. In addition, we evaluated the correlation between the risk score and CSC index values to assess the correlation between the risk score and CSCs in COAD. Figure 5F suggests that the risk score was negatively correlated with the CSC index (R = -0.22, p < 0.001).



3.7 Immune checkpoint expression, immune subtypes and TIDE score in high- and low-risk groups

We further explored the potential of the risk score for guiding clinical therapy for COAD. The expression levels of checkpoint genes between the high- and low-risk groups were compared. Figure 6A shows that immune checkpoint genes, including CTLA-4, LAG3, CD274, and PDCD1, were significantly differentially expressed between the two groups (p < 0.05). Figure 6B shows the proportion of ISs in the high- and low-risk groups; accordingly, there were more IS1 samples in the low-risk groups and more IS2, IS3, and IS4 samples in the high-risk group. The TIDE score was used to evaluate the clinical efficacy of immunotherapy in the different risk groups. A higher TIDE score indicates a higher likelihood of immune escape, suggesting that patients are less likely to benefit from ICI therapy. Our results revealed that the low-risk group had a lower TIDE score, indicating that patients in the low-risk group would show a greater benefit from ICI therapy compared to those in the high-risk group (Figures 6C–E).




Figure 6 | Immune checkpoint genes expression, immune subtypes distribution and TIDE score of colon cancer patients in two risk groups. (A) The differences of immune checkpoint gene expression in high-risk and low-risk groups. (B) Heatmap and table showing the distribution of colon cancer immune subtypes between two risk groups. (C-E) Violin plots showed the relationship between TIDE score and risk groups. ns, not significant; *p < 0.05; **p < 0.01; and ***p < 0.001.





3.8 Relationship between risk score and IC50 of therapeutic drugs

The differences in the IC50 values between the high- and low-risk groups were analyzed (Figures 7A–F). Lower IC50 values of nine drugs were associated with the risk score, and the low-risk groups showed lower IC50 values, suggesting that the low-risk group was more sensitive to therapeutic drugs. These results provide a reference for the clinical treatment of COAD. 2D structures of these drug molecules were also presented (Figure 7G).




Figure 7 | (A–F) Six therapeutic drugs showed significant IC50 differences in high- and low-risk groups. (G) 2D structures of these six therapeutic drugs. ***p < 0.001.





3.9 Validation of the risk score in immunotherapy cohorts

CR/PR patients had lower risk score that SD/PD patients, and proportion of CR/PR patients was higher in low-risk group in iMvigor210 (Figure 8A), GSE78220 (Figure 8B), and PRJEB25780 (Figure 8C) cohorts. The results indicated that the risk score can be used to predict immunotherapy benefits.




Figure 8 | (A–C) CR/PR patients had lower risk score in all the three immunotherapy cohorts, and low risk group showed higher proportion of responders to anti-PD-1 and anti-PD-L1 immunotherapy. ns, not significant; *p < 0.05 and **p < 0.01.





3.10 Verifying the expression levels of five signature genes

Among these five signature genes, HOOK1 and SPINK4 did not show significant changes in mRNA expression levels between normal and tumor tissues, whereas LGR5, HOXC6, and CKMT2 exhibited significantly increased expression in colon cancer tissues compared with that in normal tissues (Figures 9A–E), suggesting that these LGR5, HOXC6, and CKMT2 might be potential therapeutic targets for patients with colon cancer. IHC images of HOXC6 in colon cancer were not available in HPB database, we compared the expression differences of other four signature genes at protein levels, the expression levels were consistent with the results of qRT-PCR (Figure 9F).




Figure 9 | Quantitative real-time polymerase chain reaction (qRT-PCR) analyses of HOOK1 (A), LGR5 (B), HOXC6 (C), CKMT2 (D) and SPINK4 (E) expression in 8 pairs of colon cancer tissues and adjacent non-cancer tissues, and the immunohistochemical stainings shows expression of HOOK1, LGR5, CKMT2, and SPINK4 at protein levels (F). ns, not significant; **p < 0.01 and ***p < 0.001.






4 Discussion

Trace elements are essential for human health and are involved in many biological functions, such as enzyme activity, cell signaling, and oxygen transport (38–40). Copper metabolism plays an important role in many human diseases, including in malignant tumors. A recent study (41) was performed to measure blood copper levels in 187 patients with CRC and 187 matched controls in a Polish population; the results showed that high blood copper levels were associated with an increased occurrence of CRC. Cuproptosis may be related to various types of cancer; however, its effects on colon cancer remain largely unknown.

Thirteen CRGs were identified in a previous study (27). Some CRGs were correlated with malignant tumors. FDX1 was reported to be related to the prognosis of patients with lung cancer (42). The antisense regulation of GCSH can determine the viability of breast cancer cells (43). Increased expression of ATP7A correlates with platinum resistance in esophageal squamous cell cancer (44). APT7A and ATP7B have also been reported as predictive markers of platinum resistance in ovarian cancer (45). Genetic and transcriptional alterations of 13 CRGs in colon cancer were explored, and we determined the relevant biological functions and pathways of these CRGs. The prognostic values of CRGs were also analyzed, and eight CRGs were correlated with the survival of patients with colon cancer.

Expression and clinical data were used to classify patients with colon cancer into two distinct CRG clusters based on their CRG expression levels. CRG cluster A showed higher immune cell infiltration levels. Tumor-infiltrating immune cells can affect the response to anti-checkpoint blockade. A previous study (46) reported that tumor-infiltrating CD4+ T cells can upregulate some immune checkpoint genes, including PD-1, T-cell immunoglobulin, mucin domain-3, cytotoxic T lymphocyte associated protein-4, and lymphocyte-activation-gene-3. PRDEGs between CRG clusters A and B were identified, and patients were divided into three distinct gene clusters according to the expression values of the PRDEGs. Patients with gene cluster A had the longest survival time, whereas those in cluster C had the worst outcomes.

Multivariate Cox and LASSO regression analyses were performed to screen for CRGs to construct a prognostic risk signature. The risk score was calculated based on the expression levels of five genes: HOOK1, LGR5, HOXC6, CKMT2, and SPINK4. HOOK1 expression is related to histologic variants, the maximum tumor diameter, and intrathyroidal dissemination in patients with thyroid carcinoma (47). LGR5 has been identified as a strong CSC biomarker in CRC (48). Overexpression of HOXC6 is significantly associated with high immunogenicity in non-metastatic CRC (49). High SPINK4 expression is associated with advanced clinicopathological features and a poor response to neoadjuvant concurrent chemoradiotherapy in patients with rectal cancer (50).

Based on the calculated risk score, the patients were divided into high- and low-risk groups. Low-risk patients had a significantly longer survival time compared to high-risk patients. The relationship between the risk score and two CRG clusters, three gene clusters, CRGs expression, and clinical features was analyzed. CRG cluster A had higher risk score compared to the CRG cluster B; gene cluster C showed the highest risk score, whereas gene cluster A had the lowest risk score. Ten CRGs showed higher expression levels in the low-risk group. The risk score was correlated with tumor stage and tumor infiltration depth, indicating that the risk score can be used to predict the occurrence and development of colon cancer. Analysis of the role of clinical variables and the risk score for predicting the prognosis of patients with colon cancer patients showed that the risk score remained significant after these analyses, suggesting that the calculated risk score was an independent prognostic factor for predicting patient survival. Nomograms are widely used as tools in oncology, particularly for survival prediction (51, 52). A nomogram model was developed based on the risk score and other clinical characteristics, and calibration graphs showed that the predicted survival rates were similar to the actual survival rates, indicating that the nomogram model has a high prediction efficiency.

The TME consists of cellular components, including fibroblasts, endothelial cells, and immune cells, such as macrophages, myeloid-derived suppressor cells, and lymphocytes, and non-cellular components, including matrix proteins, cytokines, growth factors, nucleic acids, and metabolites (53). A previous study (54) suggested that the TME plays an important role in tumor development, progression, and resistance to therapeutic drugs. The correlation between the risk score and immune cells was analyzed, and five types of immune cells were positively related to the Wisk score, whereas the other five types of immune cells were negatively correlated with the risk score. CKMT2, HOOK1, HOXC6, LGR5, and SPINK4 were significantly associated with various types of immune cells. An immune score based on immunogenomic analysis can indicate the efficacy of immunotherapy and chemotherapy (55). TME scores, including stromal, immune, and ESTIMATE scores, showed significant differences in high- and low-risk groups, suggesting that the risk score can be used to predict the response to immunotherapy and chemotherapy in patients with colon cancer.

MSI is caused by different mismatch repair mechanisms, which are strongly associated with the response to PD-1 blockade therapy (56). Patients with MSI-high/different mismatch repair CRC do not greatly benefit from neoadjuvant chemoradiotherapy or neoadjuvant chemotherapy (57). A high-risk score was found be significantly associated with an MSI-high status in patients with colon cancer, suggesting that high-risk patients would benefit less from neoadjuvant chemoradiotherapy or neoadjuvant chemotherapy. CSCs are a subset of tumor cells associated with tumor metastasis, recurrence, and drug resistance. CSCs exhibit self-renewal and differentiation abilities similar to those of normal stem cells (58). The risk score was related to the CSC index, indicating that the risk score is related to colon cancer progression. Differences in immune checkpoint gene expression between the high- and low-risk groups were also analyzed. The expression levels of the checkpoints significantly differed between the two groups. The correlations between risk groups and previously identified immune subtypes of colon cancer indicated that there was more wound healing and fewer lymphocyte depletion, inflammatory, and IFN-γ-dominant samples in the high-risk group compared to in the low-risk group. The high-risk group showed a higher TIDE score, indicating a higher likelihood of immune escape, and high-risk patients were less likely to benefit from ICI therapy. The low-risk group had lower IC50 values for nine types of therapeutic drugs, suggesting that low-risk patients may be more sensitive to immunotherapeutic and chemotherapeutic drugs. To validate our findings in an external cohort, the relationship between the risk score and patient survival and response to immunotherapy was explored using immunotherapy cohorts. Patients with complete/partial responses had lower risk scores, indicating that low-risk patients would achieve better immunotherapeutic effects in response to immunotherapy compared to those of high-risk patients. These results validated the efficiency of the risk score for predicting patient outcomes and responses to immunotherapy.

However, our study had some limitations. First, our analysis was based on public datasets and retrospectively collected samples, which may have caused inherent case selection bias. Second, further in vitro and in vivo experiments are required to validate our findings. Finally, clinical features related to surgery, neoadjuvant chemotherapy, and tumor markers were not considered. Thus, more clinical cases must be evaluated to confirm our conclusions.

The cuproptosis-based molecular subtypes and prognostic signature may be useful for predicting survival, TME, and guiding clinical therapy for colon cancer. Our findings may improve the understanding of cuproptosis in colon cancer and suggest more effective treatment strategies. However, additional experiments should be performed and clinical cases must be evaluated to validate our findings and further explore the effects of cuproptosis on colon cancer.
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Background

Dexmedetomidine (DEX) has been widely applied in the anesthesia and sedation of patients with oncological diseases. However, the potential effect of DEX on tumor metastasis remains contradictory. This study follows up on patients who received intraoperative DEX during laparoscopic resection of colorectal cancer as part of a previous clinical trial, examining their outcomes 5 years later.





Methods

Between June 2015 and December 2015, 60 patients undergoing laparoscopic colorectal resection were randomly assigned to the DEX and control groups. The DEX group received an initial loading dose of 1μ/kg before surgery, followed by a continuous infusion of 0.3μg/kg/h during the operation and the Control group received an equivalent volume of saline. A 5-year follow-up analysis was conducted to evaluate the overall survival, disease-free survival, and tumor recurrence.





Results

The follow-up analysis included 55 of the 60 patients. The DEX group included 28 patients, while the control group included 27 patients. Baseline characteristics were comparable between the two groups, except for vascular and/or neural invasion of the tumor in the DEX group (9/28 vs. 0/27, p = 0.002). We did not observe a statistically significant benefit but rather a trend toward an increase in overall survival and disease-free survival in the DEX group, 1-year overall survival (96.4% vs. 88.9%, p = 0.282), 2-year overall survival (89.3% vs. 74.1%, p = 0.144), 3-year overall survival (89.3% vs. 70.4%, p = 0.08), and 5-year overall survival (78.6% vs. 59.3%, p = 0.121). The total rates of mortality and recurrence between the two groups were comparable (8/28 vs. 11/27, p = 0.343).





Conclusion

Administration of DEX during laparoscopic resection of colorectal cancer had a nonsignificant trend toward improved overall survival and disease-free survival.





Clinical Trial Registration

http://www.chictr.org.cn/, identifier ChiCTRIOR-15006518.





Keywords: colorectal resection, dexmedetomidine, recurrence, survival, colorectal cancer





Introduction

Surgical resections are the major treatment for most solid tumors and are associated with patients’ long-term functionality and quality of life. Perioperative treatment has shown great potential for influencing postoperative outcomes of cancer patients. For instance, intraoperative local anesthetic infusion would increase cancer-specific mortality in colon resections (1), and propofol-based total intravenous anesthesia was associated with better overall survival compared to volatile anesthesia in oncological patients (2). However, the effect of different anesthesia methods and anesthetics on the long-term prognosis of oncological patients remains controversial (3–5).

In recent years, dexmedetomidine (DEX), a highly selective alpha2 adrenoceptor agonist, has been widely applied in clinical anesthesia settings, including in oncological patients (6–8). However, whether DEX is reasonably used in tumor resections remains controversial. Some recent investigations suggested that DEX could promote tumor cell proliferation (9–11), metastasis, and migration in vitro (12, 13), and even decrease the overall postoperative survival in oncological patients who underwent lung resections (14), whereas others found that DEX would attenuate tumor cell metastasis and progression in the perioperative period (15–17). Regarding these controversial reports, there is still a notable lack of high-quality clinical studies to clarify the effects of DEX on the long-term prognosis of cancer patients.

In a previous study, we examined the immediate effects of administering DEX during elective laparoscopic resection of colorectal cancer. The findings indicated that DEX improved postoperative gastrointestinal motility function and resulted in more stable hemodynamics throughout the surgery (18). In the current study, we conducted a 5-year follow-up analysis of the same cohort to investigate the impact of intraoperative DEX on long-term survival and tumor recurrence following laparoscopic resection of colorectal cancer.





Methods

The present study was carried out in accordance with the Declaration of Helsinki and was approved by the Institutional Review Board of the Third Affiliated Hospital of Sun Yat-Sen University (approval number: [2015]02-95-02). The study was registered on the Chinese Clinical Trial Registry (www.chictr.org) on June 7, 2015 (registration number: ChiCTRIOR-15006518). The trial protocol, design, and short-term outcomes of the randomized double-blind clinical trial have been reported previously (18).

A total of 60 patients undergoing elective laparoscopic colorectal resection at the institution (The Third Affiliated Hospital, Sun Yat-Sen University, China) between June 2015 and December 2015 were randomly assigned to the DEX group and the control group. All patients were operated on under the same general anesthesia protocol as described previously (18). All surgical procedures were performed by the same surgical group. In the DEX group, a loading dose of DEX (1 μg/kg) was given before induction for 10 min, followed by continuous intraoperative infusion (0.3 μg/kg/h). The patients in the control group were given the same volume of saline instead. Patients who met the following criteria were excluded in our previous research: gastrointestinal motility disorder; abdominal surgery history; bradyarrhythmia including sick sinus syndrome, sinus bradycardia or atrioventricular block; long-term administration of sedatives; psychiatric or neurologic comorbidity; hepatic or renal dysfunction; or distant metastasis.

A follow-up analysis of postoperative mortality and tumor recurrence was conducted in November 2021. Medical records were extracted from the hospital information system (HIS), and telephone follow-ups were utilized to access patient information.  Patients who had benign lesions, non-malignant polyps, or Stage IV metastatic disease were not included in the follow-up analysis. Survival rate was calculated from the date of surgery until the date of death resulting from any cause. The duration of disease-free survival was measured from the date of surgery to the date of recurrence or death due to any cause. All-cause mortality was defined as death by any cause, while cancer-specific mortality was defined as death due to metastatic progression. The types of recurrence were classified as locoregional or distant. The duration between the date of surgery and the date of recurrence was defined as the time to recurrence. Patients with no evidence of recurrence at the time of death were censored on the date of patients’ death, while patients who remained alive at the time of analysis were censored at the end date of the follow-up period.

Baseline characteristics compared between the two groups included age, gender, body mass index (BMI), American Society of Anesthesiologists Physical Status Classification (ASA grade), type of operation, American Joint Committee on Cancer (AJCC) stage, tumor pathology, and adjuvant chemotherapy treatment. To ensure that recorded postoperative complications up to 30 days after surgery were comparable in both groups, specific complications were defined according to the criteria shown in Table 1 (19). The Clavien-Dindo classification system (20) was used to grade postoperative complications. If a patient experienced multiple complications, the highest grade was considered for analysis.


Table 1 | Definition of perioperative complications.






Statistical analysis

Statistical analysis was conducted using SPSS 19.0 software (SPSS Inc., Chicago, IL). One-sample Kolmogorov-Smirnov test was performed to assess the normality of the quantitative data. Mean ± standard deviation (SD) was used to describe quantitative variables that followed a normal distribution, and the T-test was utilized to compare the differences between groups. Categorical data or data without normal distribution were presented as median (interquartile range) or counts and compared by Fisher’s exact test for categorical variables or otherwise by Mann–Whitney U test. Survival differences between groups were assessed by Kaplan-Meier curves and analyzed using the Mantel-Cox test. Statistical significance was defined a priori as a p-value < 0.05.






Results

Out of the 60 patients, 55 from the previous randomized clinical trial were included in the follow-up analysis. Five subjects were excluded from the analysis because of metastatic tumor at the time of operation. In total, 28 patients received intraoperative DEX, while 27 received the same dose of saline.




Baseline characteristics of the study population

Baseline characteristics between the two groups are listed in Table 2. Demographic characteristics were comparable between the two groups in age, gender, height, weight, BMI, ASA grade, operation type, tumor stage, and adjuvant chemotherapy treatment. The majority tumor type was adenocarcinoma at stages II or III. All patients underwent R0 resection. Tumor differentiation between the two groups was comparable. However, there was a significant difference between the two groups in vascular and/or neural invasion of the tumor, with more patients in the DEX group having vascular and/or neural invasion of the tumor (9/28 vs. 0/27, p = 0.002). There were no significant differences in either the grade or type of postoperative complications observed between the groups (Table 3).


Table 2 | Subject characteristics.




Table 3 | Postoperative complications.







Primary and secondary outcomes

By the time of analysis, the median duration of the follow-up was 5.3 years (1.72–5.58 years) in the control group and 5.47 years (5.24–6.03 years) in the DEX Group (Table 4). The primary outcome, the overall survival, is shown in Figure 1. The study did not demonstrate a statistically significant benefit for overall survival in 5 years, but rather a trend towards an increase in survival of the DEX group, which was demonstrated by relatively higher 1-year overall survival (96.4% vs. 88.9%, p = 0.282), 2-year overall survival (89.3% vs. 74.1%, p = 0.144), 3-year overall survival (89.3% vs. 70.4%, p = 0.08), and 5-year overall survival (78.6% vs. 59.3%, p = 0.121). Similarly, there was also a nonsignificant trend towards improved disease-free survival in DEX group in 1 (85.7% vs. 77.8%, p = 0.446), 2 (78.6% vs. 66.7%, p = 0.322), 3 (75.0% vs. 59.3%, p = 0.214), and 5 years (71.4% vs. 59.3%, p = 0.343).


Table 4 | Mortality and cancer recurrence.






Figure 1 | Survival of patients between the two groups. (A) Overall survival. (B) Disease-free survival. Kaplan–Meier curves showing overall survival and disease-free survival for patients receiving intraoperative dexmedetomidine (black line) or saline (red line).



Consistently, the all-cause mortality (6/28 vs. 11/27, p = 0.121) and cancer-specific mortality (5/28 vs. 10/27, p = 0.110) in the DEX group were relatively lower during the follow‐up period, though there were no significant differences (Table 4). Meanwhile, compared with the control group, there was a trend toward a lower rate of tumor distant recurrence in the DEX group (4/28 vs. 8/27, p = 0.205). The total rates of mortality and recurrence between the two groups were comparable (8/28 vs. 11/27, p = 0.343), as well as the rate of locoregional recurrence (3/28 vs. 2/27, p = 1.000). Moreover, there was no significant difference in the time from operation to recurrence between the two groups (1.08 (0.79) years vs.1.11 (0.97) years, p = 0.95).






Discussion

This study tried to analyze the follow-up of the patients involved in a previously published randomized controlled trial who were operated on for colorectal cancer and who had DEX during the surgical procedure. We compared the long-term outcomes of patients who had DEX vs. those who had saline instead, after 5 years of follow-up. The results showed a nonsignificant trend toward improved overall survival and disease-free survival in the DEX group compared with the control group. The total rates of mortality and cancer recurrence between the two groups were comparable. However, the postoperative pathological results showed a significant difference in vascular and/or neural invasion of the tumor, there were more patients having vascular and/or neural invasion of the tumor in the DEX group. Patients receiving DEX had relatively lower all-cause mortality, cancer-specific mortality, and rate of distant recurrence, though not statistically different. However, the sample of the study was too small to get such results and conclusions. It would be more significant to wait and add more patients.

Being one of the most effective treatments for most solid tumors, surgical resection has been reported to potentially promote tumor metastases by different mechanisms, including the increased risks of micro-metastasis and the formation of new metastatic foci when shedding tumor lesions. Stress-related immunity suppression, the trauma-related release of growth factors to facilitate tumor cell proliferation, attenuated inhibition of angiogenesis after primary tumor removal, and the complex effect of anesthetics have also been reported to be involved (2, 21–24). The introduction of Enhanced Recovery After Surgery (ERAS) has prompted an increased focus among anesthesiologists on the impact of perioperative interventions on the long-term prognosis of cancer patients (25). There is growing evidence suggesting that perioperative care and different anesthetics can influence long-term oncological outcomes (26). For instance, it was suggested that patients who received propofol and sevoflurane in general anesthesia were associated with better overall survival than those who received desflurane alone (2). Although DEX has been shown to promote tumorigenesis in neurogliomas and lung carcinomas, breast cancer, and colon cancers (12, 27), others suggested that DEX could lower the tumor weight and tumor burden in xenograft mice with ovarian cancer (28), and repressed esophageal cancer cell proliferation in vivo (29). Despite the controversial in vivo results, the effect of DEX on long-term survival and tumor recurrence after laparoscopic resection of colorectal cancer has not been evaluated in the clinical setting.

Being a widely applied anesthesia adjuvant drug, administration of DEX has appeared to be associated with lower mortality in cardiac surgery and demonstrated a trend toward reduced cardiac complications in non-cardiac surgery (30–32). In a previous study conducted by our team, it was demonstrated that administering DEX during the intraoperative period improved the recovery of gastrointestinal motility function following laparoscopic resection of colorectal cancer (18). Vascular and neural infiltrations are known to be ominous prognostic factors in the tumor. The presence of vascular and/or neural invasion is associated with worse 5-year cancer-specific survival and worse 5-year overall survival in stages III and IV patients (33, 34). Although more patients in the DEX group had neurovascular invasion, there was no significant difference between the two groups in survival and mortality. Surprisingly, it presented a trend toward an increase in overall survival and disease-free survival in the DEX group. The study suggested that intraoperative administration of DEX may have potential benefits for the long-term prognosis of patients undergoing laparoscopic resection of colorectal cancer, which is consistent with the results of its recent application in uterine cancer surgery (35), but contradictory to what is biologically plausible based on some in vivo evidence (27, 36).

The contradictory findings could potentially be attributed to variations in the study subjects. It has been suggested that DEX may inhibit the hypothalamic-pituitary-adrenal (HPA) axis and reduce sympathetic activation (37). Surgical stress has been reported to activate the HPA axis and sympathoadrenal responses, which promote the expression of adrenoreceptors on T cells (38, 39), facilitate T cells to differentiate from Th1 into Th2 cells, thus altering the balance between the two subtypes, and result in inhibition of immune function (40, 41). Increasing evidence confirmed that administration with DEX was associated with improved postoperative immunosuppression, as reflected by the increased CD4+:CD8+ ratio and Th1:Th2 ratio (42, 43), and the results were also confirmed in the patients with colorectal cancer (38, 44).

Notably, we found the incidence of postoperative complications within 30 days after surgery in our study to be lower than in other reports (1, 26). We think this may be attributed to the superb technical skills of our gastrointestinal surgical team (45), who are devoted to applying total mesorectal excision with preservation of Denonvilliers’ fascia (iTME) in laparoscopic colorectal resection, which has shown to improve postoperative urogenital function (46).

This study has several limitations. Firstly, given that the initial randomized controlled trial was designed to detect postoperative intestinal function, The primary objective of the original study was not to assess long-term survival and cancer recurrence rates. Consequently, the sample size was limited, and the conclusions that can be drawn from this follow-up study are of restricted scope. As such, it should be noted that this study is exploratory in nature and serves to generate hypotheses for further investigation. A retrospective cohort study enrolling more patients who underwent laparoscopic resection of colorectal cancer could be conducted in the near future to confirm the current hypothesis. However, the inclusion and exclusion criteria, the dosage of dexmedetomidine, and the difference in surgical and anesthesia groups are all confounding factors that are difficult to control. Thus, it was difficult for us to expand the sample size for this study. A further multicenter randomized controlled study with a larger sample size would help to confirm the effects of dexmedetomidine on all-cause mortality and recurrence among patients who undergo laparoscopic resection for colorectal cancer. Secondly, we did not collect detailed information on the mediation and surgery history of the patients, and whether the patients in the control group also received DEX during the 5-year follow-up period was unclear; this might be another confounder. Despite its limitations, the initial randomized controlled trial design has enhanced the analysis in this study by ensuring subject randomization, which creates equivalent groups and minimizes the chance of significant confounding variables.

In summary, administration of DEX during laparoscopic resection of colorectal cancer had a nonsignificant trend towards improved overall survival and disease-free survival. The small sample size may limit statistically positive findings in the study. Studies with larger sample sizes should be developed to verify the results.
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Background

The purpose of this study is to investigate the predictive significance of (platelet × albumin)/lymphocyte ratio (PALR) for lymph node metastasis (LNM) in patients with clinically node-negative colon cancer (cN0 CC).





Methods

Data from 800 patients with primary CC who underwent radical surgery between March 2016 and June 2021 were reviewed. The non-linear relationship between PALR and the risk of LNM was explored using a restricted cubic spline (RCS) function while a receiver operating characteristic (ROC) curve was developed to determine the predictive value of PALR. Patients were categorized into high- and low-PALR cohorts according to the optimum cut-off values derived from Youden’s index. Univariate and multivariate logistic regression analyses were used to identify the independent indicators of LNM. Sensitivity analysis was performed to repeat the main analyses with the quartile of PALR.





Results

A total of eligible 269 patients with primary cN0 CC were retrospectively selected. The value of the area under the ROC curve for PALR for predicting LNM was 0.607. RCS visualized the uptrend linear relationship between PALR and the risk of LNM (p-value for non-linearity > 0.05). PALR (odds ratio = 2.118, 95% confidence interval, 1.182-3.786, p = 0.011) was identified as an independent predictor of LNM in patients with cN0 CC. A nomogram incorporating PALR and other independent predictors was constructed with an internally validated concordance index of 0.637. The results of calibration plots and decision curve analysis supported a good performance ability and the sensitivity analysis further confirmed the robustness of our findings.





Conclusion

PALR has promising clinical applications for predicting LNM in patients with cN0 CC.





Keywords: colon cancer, lymph node metastasis, (platelet × albumin)/lymphocyte ratio, restricted cubic spline, sensitivity analysis





Introduction

Colon cancer (CC) is a common malignancy of the gastrointestinal tract and the third leading cause of cancer-related mortality worldwide (1). A large number of studies have shown that lymph node metastasis (LNM) is an independent risk factor for the prognosis of patients with CC (2, 3). In addition, the scope of surgery for patients with CC should take full account of the preoperative lymph node status to avoid overtreatment (4). Furthermore, neoadjuvant chemotherapy is recommended for patients with stage cT1-4N+M0 CC, which can promote tumor regression and improve survival in patients with CC after borderline negative resection (5–8). Therefore, accurate preoperative prediction of LNM is essential for individualized treatment decisions and prognostic assessment (9). Although widely used in clinical practice, imaging techniques have not produced satisfactory results in the preoperative assessment of lymph node status in CC. It has been estimated that about 30% of lymph node involvement is missed by preoperative abdominal contrast-enhanced computed tomography (CECT) (10, 11). The clinical application of several new molecular biomarkers discovered for detecting LNM in CC, such as FXYD3 and miR-323a-3p, seems unrealistic due to their high cost and technical complexity (12, 13). Therefore, there is an urgent need for cost-effective and convenient preoperative biomarkers to accurately assess the LNM in CC. It has been clarified that preoperative inflammatory biomarkers, including platelet/lymphocyte ratio (PLR), neutrophil/lymphocyte ratio (NLR), and albumin (ALB) can predict LNM in patients with CC (14–16). To our knowledge, the clinical significance of (platelet × albumin)/lymphocyte ratio (PALR), has not been assessed in cancers. The purpose of this study was to investigate the predictive value of PALR for LNM in patients with clinically nodal-negative CC (cN0 CC) and develop a nomogram to assist clinicians in formulating individualized treatments.





Materials and methods




Patients

A total of eligible 269 patients with primary cN0 CC who underwent radical surgery between March 2016 and June 2021 in Yijishan Hospital were retrospectively selected. The inclusion criteria were as follows: [1] CC was confirmed by pathological examination; [2] patients underwent curative surgery (R0) and lymph node dissection; and [3] CECT was performed before operation in our hospital. Patients who met the following criteria were excluded: [1] LNM was detected by CECT before operation (cN+); [2] insufficient number of detected lymph nodes (< 12); [3] emergency admission; [4] a history of other malignancies or colectomy; [5] neoadjuvant chemotherapy; [6] with diseases affecting the blood system; and [7] incomplete data. Figure 1 demonstrates the detailed screening process.




Figure 1 | The screening flowchart.







Data collection

We recorded the serum levels of lymphocytes, platelets, ALB, and carcinoembryonic antigen (CEA) by performing routine blood tests on the day of admission. PLR and PALR were calculated according to the following formulas: PLR = Platelets (109/L)/Lymphocytes (109/L), PALR = (Platelets (109/L) × ALB (g/L))/(Lymphocytes (109/L)/1000). Postoperative pathology results including tumor site, size, grade, and the depth of tumor invasion (T stage) were reviewed by senior pathologists in our hospital. All patients were staged according to the 8th edition of the American Joint Committee on Cancer (AJCC) staging system (17).





Statistical analysis

Continuous variables were expressed as medians (interquartile range) and analyzed by Mann-Whitney U tests, while categorical variables were expressed as numbers and analyzed by the Chi-square test (18). Comparisons of the values of area under the receiver operating characteristic (ROC) curve (AUC) were carried out using the DeLong test (19, 20). Youden’s index was used to identify the optimum cut-off values of PALR and PLR based on the ROC curves (21). Independent predictors of LNM were obtained by combining univariate and multivariate logistic regression analyses. We used a restricted cubic spline (RCS) function with three knots at the 5th, 50th, and 95th centiles to develop a flexible model of the association of PALR with the risk of LNM (22). In terms of sensitivity analysis, we incorporated the quartile of PALR in the multivariate analysis. We used AUC, decision curve analysis (DCA), and the calibration curves to evaluate the nomogram as previously described (23–25). The internal validation of the model was performed via a bootstrap resample approach (1000 samples), together with the calculation of a corrected concordance index (C-index) (26). SPSS (Version 26.0), MedCalc (Version 15.2), and R (Version 4.0.2) were used for statistical analyses and graphics. All two-sided p values < 0.05 were considered significant.






Results




Patients’ baseline characteristics

We enrolled 269 eligible patients in our study with a 28.6% LNM rate. The optimum cut-off values of the PALR and PLR for LNM were set to 5.62, and 80.95, respectively. The patients were divided into high- and low- groups according to the optimum cut-off values. Young patients accounted for 52.0% and more than half of the patients were male (58.7%). The location of the tumor was mostly on the left side of the colon (61.7%). The majority of the patients were in T3 and T4 stages (81.0%) and almost all patients had highly or moderately differentiated primary tumors (96.3%). No significant differences were observed in terms of age (p = 0.110), tumor site (p = 0.491), and CEA (p = 0.693) between LNM-positive and LNM-negative groups. However, significant differences were observed between LNM-positive group and LNM-negative group while considering females (p = 0.048), and patients in a more advanced T stage (p = 0.023), with poorer differentiation (p = 0.025), smaller tumor size (p = 0.024), and higher PALR (p = 0.002), and PLR (p = 0.043). Table 1 provides detailed information regarding the different observations. When PALR was considered a continuous variable, patients in the LNM-negative group had lower PALR than those in the LNM-positive group (p = 0.006) (Figure 2).


Table 1 | Clinicopathological variables of patients with cN0 colon cancer.






Figure 2 | Distribution of PALR values in LNM-positive and LNM-negative groups.







Univariate and multivariate logistic regression

Univariate analysis showed that sex, T stage, grade, and PALR were correlated with LNM in patients with cN0 CC. Multivariate analysis identified sex, T stage, and PALR as the independent predictors of LNM in cN0 CC (Table 2). The AUC value of PALR for predicting LNM was 0.607 (95% confidence interval [CI], 0.546 - 0.666), which was significantly better than that of PLR (0.568; P < 0.001). The diagnostic sensitivity and specificity of PALR were 41.2% and 77.1%, respectively. We used RCS with three knots at the 5th, 50th, and 95th centiles to develop a flexible model of the association of PALR with the risk of LNM based on multivariate analysis. In essence, the odds ratio (OR) curve exhibited an upward tendency, indicating a linear association between PALR and the risk of LNM (p for non-linearity > 0.05) and the risk of LNM increased with increasing PALR (Figure 3).


Table 2 | Logistic analyses the predictors of lymph node metastasis in patients with cN0 colon cancer.






Figure 3 | The non-linearity relationship between PALR and the risk of LNM was explored using RCS.







Clinicopathological characteristics of cN0 CC associated with PALR

Of the 269 patients, 193 were categorized as the ‘low PALR’ group while the remainder as the ‘high PALR’ group according to the optimum cut-off values. The results showed a significant association between higher PALR and the parameters including right-sided CC, larger tumor size, higher PLR, and higher LNM rate, while sex, age, T stage, grade, and CEA were not statistically correlated with higher PALR (Table 3). The distribution of PALR among different clinicopathological variables is shown in Figure 4. A higher PALR was observed in patients with right-sided CC with deeper invasion.


Table 3 | The relationship between clinicopathological variables and PALR.






Figure 4 | Distribution of PALR values among different clinicopathological variables. (A) Age, (B) Sex, (C) T stage, (D) Tumor site, (E) Grade.







Sensitivity analyses

Higher PALR quartiles are independently correlated with the risk of LNM in cN0 CC after adjustments for sex, T stage, and grade (p for trend = 0.041). The adjusted OR for the highest PALR versus the lowest quartile was 2.328 (95% CI, 1.060 - 5.291) for LNM (Supplementary Table 1).





Construction and validation of the nomogram

To facilitate clinicians to calculate the risk of LNM in the individual patient with cN0 CC, we constructed a nomogram incorporating PALR. After taking into account previous research results and the biology of CC (27, 28), tumor grade was still included in our prediction model, although it was not an independent factor of LNM in our study. The indicators, including sex, T stage, grade, and PALR were selected in this model, as shown in Figure 5A. The adjusted C-index of nomogram after 1000 times of bootstrap resampling was 0.637. The calibration plots showed that the calibration prediction curve fits well with the ideal curve (Hosmer-Lemeshow test: p = 0.993) (Figure 5B). The ROC and DCA curves showed that the nomogram had a higher predictive value and net benefit compared with PALR only, indicating that this model could benefit patients in predicting the risk of LNM (Figures 5C, D).




Figure 5 | Developing and evaluating a nomogram for predicting LNM in patients with cN0 colon cancer. (A) nomogram, (B) calibration curves, (C) ROC curves, (D) Decision curve analysis.








Discussion

In this study, we reported a novel preoperative biomarker, PALR, an independent predictor of LNM in patients with cN0 CC, which had a linear association with the risk of LNM. In addition, a nomogram based on PALR and clinicopathological parameters was constructed, which exhibited good performance in predicting the individual risk of LNM.

Previous studies have clarified that the systemic inflammatory response and nutritional status play important roles in tumor development and progression (29, 30). High levels of platelets are capable of promoting tumor progression and metastasis by increasing angiogenesis through the production of the vascular endothelial growth factor (31). Further, the platelet-derived growth factors have been suggested to be lymphangiogenic factors, which may either alone or jointly promote lymphatic metastasis (32). A recent study reported by Kundaktepe et al. showed a positive association of platelet counts with LNM in patients with CC (33). On the other hand, lymphocytes play a pivotal part in antitumor response by inducing cytotoxic cell death and inhibiting tumor cell proliferation and migration (34, 35). Several studies have consistently shown that tumor-infiltrating lymphocytes can kill CC cells via the Fas/FasL pathway (36, 37). Moreover, high platelet and low lymphocyte counts are associated with tumor progression and high PLR levels may contribute to unfavorable anti-tumor function (38).

ALB is the most abundant serum protein that reflects the nutritional status and inflammatory responses (39). Jiang et al. reported preoperative hypoalbuminemia as a risk factor for a high proportion of LNM in patients with CC (40). Inflammation or nutritional index as independent predictors of LNM have been reported in many types of tumors. In the previous studies of CC and medullary thyroid carcinoma, PLR was independently correlated with LNM (14, 41). ALB was also confirmed as a predictive biomarker of LNM in patients with gastric neuroendocrine tumor (42). Chen et al. identified that the prognostic nutritional index had an independent correlation with LNM of patients with non-small cell lung cancer (43). Our focus on the role of inflammation and nutrition in tumor progression prompted us to evaluate PALR as a novel biomarker for predicting LNM in patients with cN0 CC, which has the potential to reflect the balance between systemic inflammation and nutritional status.

The current study has several limitations. First, this study is a single-center retrospective study, and selectivity bias is inevitable. Second, due to the relatively small sample size, the persuasiveness of our findings will be compromised to some extent. Therefore, future validation studies having a large-sample size with adequate representative groups from other centers are necessary to promote the clinical application of PALR. Third, the indicators of grade and the T stage were obtained from the postoperative pathological analysis. Although the T stage and grade can be obtained preoperatively through imaging techniques and puncture, respectively, there is a possibility that the preoperative diagnosis may differ from the postoperative pathological findings (44, 45). Fourth, further follow-up of patients is warranted to investigate the relationship between PALR and overall survival.





Conclusion

PALR is a novel promising inflammation-nutrition biomarker to predict the LNM in patients with cN0 CC. Large-scale prospective studies are required to validate our results in the future.
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Overall survival (n = 28)

Univariate analysis Multivariable analysis
(C-index = 0.74)

Factor 95% Cl P Value 95% Cl P Value
Age (years)
260 0.68 027 0.09, 0.79 02 0.10 0.02,0.43 002*
<60 - - - - - - o
Sex
Male 054 0.40 0.09, 1.77 23 - = =
Female - - - - - - _

Number of tumors

>1 0.57 157 0.57, 4.37 .38 0.77 0.24, 2.45 .66

=1 - - - - - - -

Radiomic risk score

High' 0.64 3.16 1.08, 9.19 .04 7.78 1.79, 33.73 -006*

Low' = - - - - = =

c-index, concordance index; HR, hazard ratio; CI, confidence interval.

* with p value that indicates statistical significance.

- denotes reference groups.

* high and low risk groups are determined using the Maximally Selected Rank Statistic.
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Overall survival (n = 72)

Univariate analysis Multivariable analysis
(C-index = 0.69)
HR 95% Cl 95% Cl

Age (years)

260 0.54 [ 004 [ 0.40, 2.19 89 124 0.52, 3.00 63

<60 - - - - - . o

Sex

Male 055 139 0.60,3.22 44 - - -
| esiate I = [ - - - 1

Number of tumors
>1 0.57 172 0.67, 440 26 152 0.57, 4.03 40

=1 - - - - - - -

Radiomic risk score

High' 0.66 3.54 153,821 003* 323 1.38,7.65 008*
Low' = = - = = = =

c-index, concordance index; HR, hazard ratio; CI, confidence interval.

*with p value that indicates statistical significance.

-denotes reference groups.

"high and low risk groups were determined using the Maximally Selected Rank Statistic.
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Overall survival (n = 40)

Univariate analysis Multivariable analysis

(C-index = 0.72)

95% Cl 95% Cl
Age (years)
260 0.65 038 011,129 .10 099 0.31,3.15 98
<60 - - - - - " o
Sex
Male 0.54 0.40 0.09, 1.77 23 - = -
Female - - ~ - - - N

Number of tumors
>1 0.57 157 0.57,4.37 38 7.03 3.38,29.31 007+

=1 - - - - - - -

Radiomic risk score

High' 0.64 3.16 1.08, 9.19 .04* 13.54 4.32,7527 .003*

Low' - - - = = = =

c-index, concordance index; HR, hazard ratio; CI, confidence interval.

*with p value that indicates statistical significance.

-denotes reference groups.

*high and low risk groups are determined using the default threshold for logistic regression models (0.5).
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Gd-DO3A-butrol Gd-DO3A-butrol Gd-EOB-DTPA Gd-DTPA cohort*®

discovery cohort® validation cohortt cohort*
Parameters
No. of patients 81 40 72 28
Male 45 (56) 25 (63) 38 (53) 20 (71)
Female 36 (44) 15 (37) 34 (47) 8(29)
Age (y): mean + SD 65+ 11 64+ 11 61+13 62+9

Clinical risk score

<3 61 (84)* 30 (81)* 54 (75) -
>3 12 (16)* 7(19) 15 (25)* =
Not available 8 (10) 3(8) 3(4) 28 (100)

Number of tumors
=1 tumor 48 (57) 21 (53) 27 (38) 14 (50)
>1 tumor 33 (43) 19 (47) 45 (62) 14 (50)

Size of largest tumor

<5cm 67 (83) 31(78) 60 (83) 23 (75)

> 5em 14 (17) 9(22) 12(17) 7 (25)
OS event 27 (33) 13 (33) 18 (25) 11(39)

Unless otherwise specified, data are numbers of patients, with percentages in parentheses. OS, overall survival. Clinical risk score is the Fong risk score.

*Node positive status was missing for some patients, resulting in incomplete clinical risk score. The percentages for risk scores are therefore calculated based on patients who have complete clinical
data.

"Used as a discovery set to identify features associated with survival and train models.

#Used as independent validation sets.

®External dataset.
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From Jan 2006 to Dec 2012, patients who received preoperative chemotherapy
and Gd-DO3A-butrol-enhanced MRI prior to hepatic resection (n = 161)

From Jan 2010 to Dec 2012, patients who received preoperative chemotherapy
and Gd-EOB-DTPA-enhanced MRI prior to hepatic resection (n = 90)

From Jan 2010 to Dec 2012, patients who received preoperative chemotherapy
and Gd-DTPA-enhanced MRI prior to hepatic resection (external, n=32)

Gd-DO3A-butrol

e Suboptimal image quality of MRI (n = 17)
e Did not have measurable lesion (n=9)

e Died within 30 days of surgery (n = 5)
Gd-EOB-DTPA

e  Suboptimal image quality of MRI (n = 7)
e Had portal vein embolisation prior to MR (n = 4)
e Died within 30 days of surgery (n =7)
Gd-DTPA

e Suboptimal image quality of MRI (n = 2)
e Died within 30 days of surgery (n = 2)

230 cases were evaluated (130 Gd-DO3A-butrol, 72 Gd-EOB-DTPA and 28
Gd-DTPA-enhanced MRI)

Excluded

Excluded

Gd-DO3A-butrol
e Patients who were also included in the

Gd-EOB-DTPA-enhanced cohort (n = 9)

221 patients eligible for this study (121 Gd-DO3A-butrol, 72 Gd-EOB-DTPA and
28 Gd-DTPA-enhanced MRI)
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A Patients’ characteristics

n (%)

Age, years 70 (25-83)
Sex

Male 52 (72.2)

Female 20 (27.8)
ECOG performance status

0 46 (63.9)

1 26 (36.1)
Anatomical location

Intrahepatic bile duct 26 (36.1)

Extrahepatic bile duct 22 (30.6)

Gallbladder 21 (29.2)

Ampulla of Vater 3(4.2)
Histology

Adenocarcinoma 70 (97.2)

Carcinosarcoma 1(1.4)

MiIiNEN 1(14)
Extent of disease at enrollment

Local advanced 11 (15.3)

Metastatic 11 (15.3)

Recurrence 50 (69.4)
Previous lines of therapy

1 37 (51.4)

2 29 (40.3)

>2 6 (8.3)
B Samples for genomic profiling

n (%)

Sampling site

Primary tumor 42 (58.3)

Liver metastasis 9 (12.5)

Lymph metastasis 7(9.7)

Lung metastasis 2(2.8)

Colon metastasis 2(2.8)

Peritoneum metastasis 2(28)

Ovarian metastasis 1(14)

Pleura metastasis 1(14)

Ascites 1(1.4)

Blood 5(6.9)
Sampling method

Operation 47 (65.7)

Liver needle biopsy 7(9.7)

EUS-ENA 6(8.3)

Endoscopic biopsy 6 (8.3)

Ascites puncture 1(14)

Blood collection 5(6.9)
Re-Biopsy

Yes 1(1.4)

No 71 (98.6)

Data are presented as n (%) or median (range).

ECOG, Eastern Cooperative Oncology Group; MiNEN, mixed neuroendocrine-non-
neuroendocrine neoplasm.

EUS-FNA, endoscopic ultrasound-guided fine needle aspiration.
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Actionable genomic alterations

CDKN2A
MDM2
BRCA2
ERBB2
TMB high
ATM
BRAF*
IDHI

KRAS G12C
FGFR2
TSC1

MST high
PD-L1/-L2

n (%)

16 (22.2)
10 (13.9)
6(8.3)
6(8.3)
6(8.3)
4(5.6)
3(4.2)
2(28)
2(28)
1(1.4)
1(1.4)
1(14)
1(14)

*serine/threonine protein kinase B-Raf (BRAF) alterations include missense mutation

(V600E, G469A) and rearrangement (TYW1).

ATM, ataxia-telangiectasia mutated; BRCA2, breast cancer gene 2; CDKN2A, cyclin-
dependent kinase inhibitor 2A; ERBB2, Erb-B2 receptor tyrosine kinase 2; FGFR2,
fibroblast growth factor receptor 2; IDHI, isocitrate dehydrogenase 1; KRAS, Kirsten
rat sarcoma virus; MDM2, mouse double minute 2 homolog; MSI, microsatellite
instability; PD-L1/-L2, programmed death ligand 1/2; TMB, tumor mutational burden;

TSC1, TSC complex subunit 1.
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Clinicopathological Parameter

Gender

Male

Female

Age

<60

>60

Tumor grade
G1-G2
G3-G4
Tumor stage
S1-82
S3-S4
Tumor T stage
T1-T2
T3-T4
Lymph node metastasis
Yes

No
Metastasis
Yes

No

Total

108
236

162
182

213
1381

254
90

256
88

91
253

82
262

Expression of ELOVL1

Low

63

148

98
113

146
65

163
48

165
46

60
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57
154

High
45
88
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67
66
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42
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42

31
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25
108

P-Value

0.475
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0.001

0.078
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0.65
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Parameter Coefficient Standard Error HR 95% confidence p value
Interval for HR
Age (<60 vs.>60)’' 0.506 0.348 1.658 0.838-3.280 0.146
Tumor diameter (<5 cm vs. >5 cm)? -0.042 0.263 0.959 0.572-1.606 0.872
Tumor invasion (T1/T, vs.Ta/T4)° 0.440 0.360 1.663 0.767-3.146 0.221
Lymph node metastasis (Negative vs. Positive) 0.922 0.261 2514 1.5607-4.196 <0.001
Metastasis (no vs. yes) 2.677 0.653 14.536 4.040-52.294 <0.001
AJCC stage (I-II vs. IHV)* 0.960 0.264 2611 1.657-4.376 <0.001
TMEM100 level (low vs. high) -0.743 0.275 0.475 0.277-0.815 <0.01

"The age in 8 patients cannot be accessed.

2The tumor size of cancer in 3 patients cannot be accessed.
3The tumor invasion in 8 patients cannot be accessed.

“The AJCC stage in 1 patient cannot be accessed.
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Parameter

Coefficient Standard Error HR 95% confidence p value
Interval for HR
Lymph node metastasis (Negative vs. Positive) 0.986 0.274 2.681 1.566-4.588 <0.001
Metastasis (no vs. yes) 1.961 0.670 7.107 1.911-26.431 <0.01
TMEM100 level (low vs. high) -0.848 0.286 0.428 0.245-0.750 <0.01

*The freedom of “AJCC stage” was not computable because “AJCC stage” was linear correlated with “Metastasis”.
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Clinicopathological features

Age (years)'

<60

>60

Gender?

Male

Female

Tumor diameter®
<5cm

>5 cm

Location*

Colon ascendens
Colon transversum
Colon descendens
Colon sigmoideum/rectum
Tumor invasion®
T1 /T =

To/Ta

Lymph node metastasis
Negative

Positive
Metastasis

no

yes

AJCC stage®

-

-1V

TMEM100 level

low (%)

41(36.3)
19 (16.8)
119.7)
42(37.2)

8(7.1)
104 (92.9)

54 (46.2)
63 (53.8)

103 (88.0)
14 (12.0)

51 (43.6)
66 (56.4)

high (%)

26 (40.0)
39 (60.0)

43 (62.3)
26 (37.7)

45 (67.2)
22 (32.8)

16 (24.2)
13 (19.7)
10 (16.2)
27 (40.9)

14 (21.2)
52 (78.8)

49 (71.0)
20 (29.0)

67 (97.1)
229

48 (70.6)
20 (29.4)

p value

0.007

0.620

0.042

0.350

0.006

0.001

0.033

<0.001

"The age in 8 patients cannot be accessed.
2The gender in 1 patient cannot be accessed.

3The tumor size of cancer in 3 patients cannot be accessed.

“The location in 7 patients cannot be accessed.

®The tumor invasion in 8 patients cannot be accessed.

5The AJCC stage in 1 patient cannot be accessed.
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Overall Survival

Trained on Gd-DO3A-butrol (n=81) Validated on Trained on Gd-DO3A-butrol (n=81) Validated on

Gd-EOB-DTPA (n=72)

C-index HR 95% ClI P Value

Gd-DTPA (n=28)
HR 95% Cl

Grey level non-uniformity*

High risk? 055 155 0.5, 4.34 I 41 063
First-order minimum + small area emphasis*

High risk® 0.58 345 1.13,10.53 03 0.59
Minor axis length + dependence variance (our radiomic signature)

High risk?® 0.66 3.54 1.53,8.21 .003* 0.64

C-index, concordance index; HR, hazard ratio.

* with p value that indicates statistical significance.

" feature selected using least absolute shrinkage and selection operator (LASSO).

* features reported in Shur et al’s radiomic analysis for predicting CRLM prognosis in Gd-EOB-DTPA-enhanced MRI.
? high risk groups are determined using the Maximally Selected Rank Statistic.

2.82 0.99, 8.08 .05
230 0.82, 6.40 11
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Variables

Sex
Male 119 39 0.121
Female 74 37

Age (years)

265 94 35 0.695
<65 99 41

Tumor site
Left 127 39 0.028
Right 66 37

T stage
T1+T2 42 9 0.062
T3+T4 151 67

Grade
High/Moderate 187 72
Low 6 4

Tumor size (cm)

Median (IQR) 4.00 (3.25-5.00) 4.50 (3.50-6.00) 0.019
CEA (ng/ml)

Median (IQR) 3.28 (2.06-6.77) 2.57 (1.86-4.94) 0.110
PLR

Low 48 0 < 0.001

High 145 76
LNM

Negative 148 44 0.002

Positive 45 32

CEA, carcinoembryonic antigen; PALR, (platelet x albumin)/lymphocyte ratio; PLR, platelet/lymphocyte ratio; IQR, interquartile range; LNM, lymph node metastasis.
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Variables Univariate analysis Multivariate analysis

OR (95% Cl) OR (95% CI)
Sex 0.049 0.048
Female Ref Ref
Male 0.585 (0.342-0.997) 0.567 (0.325-0.994)
Age (years) l 0.111
265 Ref
<65 0.646 (0.376-1.101)
Tumor site 0491
Right Ref
Left 1213 (0.704-2.122)
T stage 0.027 0.046
T1+T2 Ref Ref
T3+T4 1.645 (2.489-5.966) 2.331 (1.062-5.708)
Grade 0.037 0.072
Low Ref Ref
High/Moderate 3.972 (1.103-15.925) 3.407 (0.907-14.154)
Tumor size (cm) 0.874 (0.741-1.016) 0.092
CEA (ng/ml) 1.004 (0.997-1.017) 0.296
PALR 0.002 ‘ 0.011
Low Ref » Ref
High 2.392 (1.358-4.212) | 2.118 (1.182-3.786)

CEA, carcinoembryonic antigen; PALR, (platelet x albumin)/lymphocyte ratio; OR, odds ratio; CI, confidence interval.
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Variables Lymph node metastasis

Positive Negative
(=77) (n=192)

Sex 0.048
Male 158 38 » 120
Female 111 39 72

Age (years) 0.110
265 129 31 98
<65 140 46 94

Tumor site ) 0.491
Left 166 50 116
Right 103 27 76

T stage 0.023
TI+T2 51 8 | 43
T3+T4 218 69 149

Grade 0.025
High/Moderate 259 71 188
Low 10 6 4

Tumor size (cm) 0.024
Median (IQR) 4.00 (3.50-5.50) 4.00 (3.00-5.00) | 4.30 (3.50-5.50)

CEA (ng/ml) 0.693
Median (IQR) 3.13 (1.99-6.28) 3.42 (2.00-6.57) 2.97 (1.98-6.16)

PALR ‘
Low 193 | 45 148 0.002
High 76 32 » 44

PLR ‘
Low 48 8 40 0.043
High 1 221 69 | 152

PLR, platelet/lymphocyte ratio; PALR, (platelet x albumin)/lymphocyte ratio; CEA, carcinoembryonic antigen; IQR, interquartile range.
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A All patients

Univariate analysis

Overall survival
HR (95% CI) P value
1
0.63 (0.28-1.40) 0257
PS
0 1
1 049 (0.20-1.19) 0114
Cancer type
icc 1
ECC 059 (0.17-1.99) 0.399
GBa 303 (1.11-827) 0.030
Ampullary Ca 127 (0.15-10.57) 0.828
Alteration
TP53 alteration . 1
+ 184 (0.78-4.33) 0.165
CDKN2A/B loss . i
+ 1.80 (0.74-4.39) 0.196
KRAS alteration - 1
+ 037 (0.11-1.24) 0.106
SMADA alteration - 1
+ 2,03 (0.83-4.96) 0.119
MTAP alteration - 1
+ 1.58 (0.62-4.01) 0.341
MDM2 alteration - 1
+ 2.15 (0.70-6.62) 0.183

B Patients with ICC
Univariate analysis

Overall survival

HR (95% CI) P value
Sex
Male 1
Female 0.96 (0.18-4.96) 0957
PS
0 1
1 0.24 (0.03-2.13) 0.202
Alteration
TP53 alteration - 1
+ 3.10 (0.59-16.29) 0.181
(CDKN2A/B loss - 1
+ 11.55 (2.04-65.29) 0.005
KRAS alteration b 1
+ 0.35 (0.04-2.92) 0332
SMADA4 alteration - 1
+ 5.60 (0.58-54.45) 0.138
MTAP alteration - 1
+ 4.73 (0.94-23.71) 0.059
MDM2 alteration - :
+ 1.41(0.16-12.14) 0.753

Ca, carcinoma; CDKN2A, cyclin-dependent kinase inhibitor 2A; CI, confidence interval; ECC, extrahepatic cholangiocarcinoma; GB, gallbladder; HR, hazard ratio; ICC, intrahepatic cholangiocarcinoma; KRAS, Kirsten rat sarcoma virus; MDM2, mouse
double minute 2 homolog MTAP, methylthioadenosine phosphorylase; PS, performance status; SMAD4, SMAD family member 4; TP53, tumor protein p53.
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Pt No Cancer type

1 Ampullary Ca
1cc

GB Ca

ECC

1CcC

1CC

GB Ca

GB Ca

L N e W R W e

Targeted genetic alterations

BRCA2

PD-L1/-L2 amplification
TMB high

BRCA2

FGFR2 fusion (AHCYL1)
'ERBB2 amplification
MSI high

TMB high

Treatment lines

2nd
3rd
2nd
3rd
2nd
4th
2nd
3rd

Treatment options

clinical trial
clinical trial
clinical trial
clinical trial
public health insurance
clinical trial
public health insurance

public health insurance

BRCAZ, breast cancer gene 2; Ca carcinoma; ECC, extrahepatic cholangiocarcinoma; ERBB2, Erb-B2, receptor tyrosine kinase 2; FGER2, fibroblast growth factor receptor 2; GB, gallbladder;
ICC, intrahepatic cholangiocarcinoma; MSI, microsatellite instability; PD-L1/-L2, programmed death ligand 1/2; Pt No, patient number; TMB, tumor mutational burden.
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Control group (n = 27) DEX group (n = 28) p-value
Follow-up time (year; median (range)) 530 (1.72-5.58) 5.47 (5.24-6.03) 0.099
All-cause mortality 11 6 0.121
Cancer-specific mortality 10 5 0.110
Distant recurrence 8 4 0.205
Locoregional recurrence 2 3 1.000
Death or recurrence 11 8 0.343
Time from operation to recurrence (year; mean (SD)) 1.08 (0.79) 1.11 (0.97) 0.950
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b)) DEX group (n = 28)

Complications 2 2 1.000

Complication grade®

1 0 2 0.333

11 1 0
it 0 0
v 0 0

v 1 0

Complication type

Cardiorespiratory 0 0
Wound 1 1
Anastomotic leak 0 0
Urinary tract infection 0 0
Ileus 1 0
Urinary retention 0 1
Other 0 0

“Complication grade definitions (20): Grade I: any deviation from the normal postoperative course without the need for pharmacologic treatment or surgical, endoscopic, and radiological
interventions. Allowed therapeutic regimens are as follows: drugs as anti-emetics, antipyretics, analgesics, diuretics and electrolytes, and physiotherapy. This grade also includes wound infections
opened at the bedside. Grade 1I: requiring pharmacologic treatment with drugs other than those allowed for grade I complications. Blood transfusions and total parenteral nutrition are also
included. Grade I1I: requiring surgical, endoscopic, or radiological intervention. Grade IV: life-threatening complication (including central nervous system complications) requiring intermediate
care/intensive care unit management. Grade V: death of a patient. Fisher’s exact test is used unless otherwise stated.
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DEX group (n

Age (year; median (range)) 59.5 (53-65) 0.376
Sex

Male 14 11 0.349
Female 13 17

Height (median (range)) 160 (155-165) 162 (155.25-170) 0.146
Weight (mean (SD)) 58.9 (7.4) 61.9 (11.8) 0.259
BMI (kg/mz; median (range)) 23.0 (21.0-24.7) 235 (21.0-25.4) 0.711
ASA grade

b1 1 3 0.495
1T 20 21

it 6 4

Operation

Right hemicolectomy | 6 [ 8 1 0.690
Left hemicolectomy 6 6

High anterior resection 2 0

Low anterior resection 13 14

AJCC stage

1 2 6 0.327
1A 13 14

1A I 0

1B 4 4

1c 5 1

v 2 3

Tumor stage

T1 2 2 0.383
T2 1 5

T3 3 4

T4 21 17

Nodal stage

No 15 20 0.530
N1 7 5

N2 5 3

M stage

1 25 25 1.000
I 2 3

Tumor type

Adenocarcinoma 27 25 0.248
Mucinous adenocarcinoma 0 3

Adjuvant chemotherapy

Yes 16 20 0.403
No 11 8

Vascular and/or neural invasion

Yes 0 9 0.002
No 27 19

Tumor differentiation

Carcinoma in situ 2 1 0.747
Poor 2 4

Moderately 23 23

High 0 0

Tumor resection

RO resection 27 28 -
R1 resection 0 0

R2 resection 0 0

ASA, American Society of Anesthesiologists; BMI, body mass index; AJCC, American Joint Committee on Cancer; SD, standard deviation.
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Complications Criteria

Cardiorespiratory | New-onset ischemia determined by electrocardiograms and plasma cardiac markers or new-onset arthythmia in need of intervention; documented
respiratory complication requiring antibiotic treatment, whether it is a clinical diagnosis hinted at by pyrexia, hypoxia, and sputum with a positive
bacteriologic culture or a radiologic diagnosis

‘Wound Documented erythema, discharge requiring antibiotic treatment, or wound dehiscence requiring closure

Anastomotic leak Clinical or radiologic diagnosis requiring intervention

Urinary tract Symptomatic infection and positive microbiology requiring treatment

infection

Tleus No flatus, abdominal distension, nausea, or vomiting prevented oral intake or required therapeutic use of the nasogastric tube

Urinary retention Failure to pass urine that requires insertion of a urinary catheter
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DEX 96.4% 89.3% 89.3% 78.6% DEX 85.7% 786% 75.0% 71.4%
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Patients diagnosed as primary colon
cancer who underwent radical
surgery between March 2016 and
June 2021 (N = 800)

Remove patients without CECT
examination before operation
in our hospital (N = 186)

Clinical positive lymph nodes
(cN+) (N = 139)

Number of lymph nodes detected < 12 (N = 138)
Emergency admission (N = 30)

A history of other malignancies or colectomy (N = 22)
Neoadjuvant chemotherapy (N = 3)
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Characteristics N (cases) Model a Model b Model ¢

HR (95% CI) P HR (95% CI) P HR (95% CI) P

IWS =0 205 (34) ref. ref. ref.

IWS =1 297 (77) 1.51 (1.01, 2.27) 0.044 1.51 (1, 2.27) 0.049 1.49 (0.98, 2.24) 0.06
IWS =2 126 (60) 337 (221, 5.14) <0.001 3.11 (197, 492) <0.001 2.86 (1.77, 4.63) <0.001
p for trend 628 (171) <0.001 <0.001 <0.001
Categories

IWS =0 205 (34) ref. ref. ref.

IWS =1 423 (137) 1.99 (1.37, 2.9) <0.001 1.84 (1.25, 2.71) 0.002 1.74 (117, 2.57) 0.006

IWS, inflammation-water score.

Model a: Not adjusted.

Model b: Adjusted for age, sex, BMI, and TNM stage.

Model ¢: Adjusted for age, sex, BMI, TNM stage, smoking, drinking, surgery, and chemoradiotherapy.
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Inflammation-water score Score

NLR <2.42 and ICW/TBW ratio 20.61 0
NLR >2.42 or ICW/TBW ratio <0.61 1
NLR >2.42 and ICW/TBW ratio <0.61 2

NLR, neutrophil-to-lymphocyte ratio; ICW/TBW ratio, intracellular water/total body
water ratio.
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Characteristics

NLR
<2.42
22.42
ICW/TBW ratio
>0.61
<0.61

Model a
HR (95% CI)
ref.

1.92 (14, 2.63)

ref.

1.86 (137, 2.51)

<0.001

<0.001

Model b
HR (95% CI)
ref.

2.16 (1.56, 2.99)

ref.

1.48 (1.07, 2.05)

NLR, neutrophil-to-lymphocyte ratio; ICW/TBW ratio, intracellular water-total body water ratio.

Model a: No adjusted.

Model b: Adjusted for age, sex, BMI, TNM stage.
Model c: Adjusted for age, sex, BMI, TNM stage, smoking, drinking, surgery, chemoradiotherapy.
In three models ICW/TBW ratio (20.61, <0.61) and NLR (<2.42, >2.42) were adjusted mutually.

<0.001

0.019

Model ¢
HR (95% CI) P
ref.
2.04 (1.44, 2.88) <0.001
ref.
1.45 (1.04, 2.02) 0.028
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Characteristics

Sex

male, n (%)]
Age

median (IQR)]
BMI

median (IQR)]
Smoking

yes, n 9%)]
Drinking

yes, n (%)]
Surgery

yes, n (%)]
Chemoradiotherapy
yes, n (%)]
Tumor stage

n (%)]

[

11

I

v

Neutrophil
median (IQR)
Lymphocyte
median (IQR)
ICW

median [IQR)
TBW

median (IQR)
NLR

median (IQR)
ICW/TBW ratio
median (IQR)

Status
death, n 9%)]

BMI, body mass index; NLR, neutrophil-to-lymphocyte ratio; ICW, intracellular water; TBW, total body water; ICW/TBW ratio, intracellular water/total body water ratio.

Overall N = 628

376
[59.87)

60.00 [13.00]

22.85 [4.64]

239
[38.06]

126
[20.06]

167
[26.59]

379
[60.35]

36
[5.73]

133
[21.18]

257
[40.92]

202
[32.17)

326
[2:61]

148
[0.75]

21.20 [6.40]

35.00 [10.22]

225
[2.61]
061
[0.01]
171
[27.23]

NLR ICW/TBW ratio
Low High P Low High P
N =339 N =289 N =260 N =368
185 191 0.004 135 241 0.001
[54.57] [66.09] [51.92] [65.49]

58.00 [12.00] 62.00 [13.00] <0.001 63.00 [12.00] 57.00 (14.00] <0.001
2258 23.11 [4.84] 0.356 22.06 [4.20] 2335 [4.88] <0.001
[4.36]

121 118 0215 91 148 0214
[35.69] [40.83) [35.00] [40.22]

65 61 0.615 42 84 0.051
[19.17) [21.11] [16.15] [22.83]
38 129 <0.001 68 99 0.907
[1121] [44.64] [26.15] [26.90]
257 122 <0.001 160 219 0.668
[75.81] [42.21] [61.54] [59.51]
0.029 0.188

15 21 13 23

[4.42] [7.27) [5.00] [6.25]

65 68 16 87
[19.17) [23.53] [17.69] [23.64]

156 101 108 149
[46.02] [34.95) [41.54] [40.49]

103 99 93 109
[30.38] [34.26] [35.77] [29.62]

240 489 <0.001 3.36 319 0575
135 [3.35) [2.90] [2.50]

1.70 119 <0.001 144 1.50 0539
0.69 [0.69] [071] [0.81]

20.50 21.90 [6.00] 0.034 19.50 [5.45) 22.70 [6.10] <0.001
670

33.80 [10.80] 35.80 (9.30] 0.033 32.50 9.40] 36.65 [9.95] <0.001
145 421 <0.001 2.32 224 0.44
074 [3.52] [2.69] [2.50]

0.61 0.61 0.158 0.60 0.62 <0.001
0.01 [0.02] [0.01] [0.01]

62 109 <0.001 88 83 0.002
[18.29] [37.72] [33.85] [22.55]
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1.90(1.04-3.46)

2.63(0.71-9.76)
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Characteristic Low expression of TNFRSF17 High expression of TNFRSF17 P

n 227 227

T stage, n (%) 0.383
Tl 3(0.7%) 8 (1.8%)
T2 40 (8.8%) 37 (8.2%)
T3 153 (33.8%) 156 (34.4%)
T4 31 (6.8%) 25 (5.5%)

N stage, n (%) 0.348
NO 128 (28.2%) 139 (30.6%)
N1 59 (13%) 46 (10.1%)
N2 40 (8.8%) 42 (9.3%)

M stage, n (%) 0.028
Mo 155 (39%) 178 (44.8%)
M1 40 (10.1%) 24 (6%)

Pathologic stage, n (%) 0.161
Stage T 35 (7.9%) 40 (9%)
Stage IT 82 (18.5%) 94 (21.2%)
Stage IIT 64 (14.4%) 64 (14.4%)
Stage IV 40 (9%) 24 (5.4%)

Primary therapy outcome, n (%) 0.426
PD 11 (4.7%) 14 (6%)
SD 1(0.4%) 3 (1.3%)
PR 8 (3.4%) 4 (1.7%)
CR 86 (36.6%) 108 (46%)

Gender, n (%) 0.925
Female 106 (23.3%) 108 (23.8%)
Male 121 (26.7%) 119 (26.2%)

Weight, n (%) 0.677
<=90 96 (38.6%) 80 (32.1%)
>90 37 (14.9%) 36 (14.5%)

Height, n (%) 0.885
<170 61 (26.3%) 53 (22.8%)
>=170 61 (26.3%) 57 (24.6%)

BMI, n (%) 0.332
<25 45 (19.4%) 33 (14.2%)
>=25 77 (33.2%) 77 (33.2%)

Residual tumor, n (%) 0.776
RO 151 (42.4%) 177 (49.7%)
R1 2 (0.6%) 2 (0.6%)
R2 13 (3.7%) 11 (3.1%)

CEA level, n (%) 0.100
<=5 81 (28.3%) 107 (37.4%)
>5 53 (18.5%) 45 (15.7%)

Perineural invasion, n (%) 0.405
NO 75 (41.9%) 58 (32.4%)
YES 22 (12.3%) 24 (13.4%)

Lymphatic invasion, n (%) 0.546
NO 119 (29%) 129 (31.4%)
YES 84 (20.4%) 79 (19.2%)

History of colon polyps, n (%) 0.026
NO 134 (34.7%) 116 (30.1%)
YES 56 (14.5%) 80 (20.7%)

Colon polyps present, n (%) 1.000
NO 77 (34.2%) 69 (30.7%)
YES 42 (18.7%) 37 (16.4%)

Neoplasm type, n (%) 1.000
Colon adenocarcinoma 227 (50%) 227 (50%)
Rectum adenocarcinoma 0 (0%) 0 (0%)

Age, meidan (IQR) 69 (58, 77.5) 68 (59, 77) 0.577
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Characteristic

n
T stage, n (%)
Tl
T2
T3
T4
N stage, n (%)
NO
N1
N2
M stage, n (%)
Mo
M1
Pathologic stage, n (%)
Stage I
Stage 11
Stage IIT
Stage IV
Primary therapy outcome, n (%)
PD
SD
PR
CR
Gender, n (%)
Female
Male
Weight, n (%)
<=90
>90
Height, n (%)
<170
>=170
BMI, n (%)
<25
>=25
Residual tumor, n (%)
RO
R1
R2
CEA level, n (%)
<=5
>5
Perineural invasion, n (%)
NO
YES
Lymphatic invasion, n (%)
NO
YES
History of colon polyps, n (%)
NO
YES
Colon polyps present, n (%)
NO
YES
Neoplasm type, n (%)
Colon adenocarcinoma
Rectum adenocarcinoma

Age, meidan (IQR)

Low expression of MS4A1

227

2 (0.4%)
29 (6.4%)
165 (36.4%)
31 (6.8%)

129 (28.4%)
58 (12.8%)
40 (8.8%)

155 (39%)
37 (9.3%)

25 (5.6%)
94 (21.2%)
67 (15.1%)

37 (8.4%)

11 (4.7%)
0 (0%)
7 (3%)

88 (37.4%)

107 (23.6%)
120 (26.4%)

96 (38.6%)
36 (14.5%)

62 (26.7%)
59 (25.4%)

44 (19%)
77 (33.2%)

154 (43.3%)
1(0.3%)
12 (3.4%)

88 (30.8%)
47 (16.4%)

67 (37.4%)
23 (12.8%)

128 (31.1%)
74 (18%)

133 (34.5%)
56 (14.5%)

80 (35.6%)
38 (16.9%)

227 (50%)
0 (0%)
69 (58, 77)

High expression of MS4A1

227

9 (2%)
48 (10.6%)
144 (31.8%)

25 (5.5%)

138 (30.4%)
47 (10.4%)
42 (9.3%)

178 (44.8%)
27 (6.8%)

50 (11.3%)
82 (18.5%)
61 (13.8%)

7 (6.1%)

14 (6%)

4 (1.7%)

5(2.1%)
106 (45.1%)

107 (23.6%)
120 (26.4%)

80 (32.1%)
37 (14.9%)

52 (22.4%)
59 (25.4%)

34 (14.7%)
77 (33.2%)

174 (48.9%)
3 (0.8%)
2 (3.4%)

100 (35%)
51 (17.8%)

66 (36.9%)
23 (12.8%)

120 (29.2%)
89 (21.7%)

117 (30.3%)
80 (20.7%)

66 (29.3%)
41 (18.2%)

227 (50%)
0 (0%)
68 (58, 77.5)
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Characteristic No. Low expression of SNHG7 High expression of SNHG7 P
Gender 0.314
Female 226 119 (24.9%) 107 (22.4%)
Male 252 120 (25.1%) 132 (27.6%)
Age 0.780
<65 194 99 (20.7%) 95 (19.9%)
>65 284 140 (29.3%) 144 (30.1%)
Race 0.046*
Asian 1" 2(0.7%) 9(2.9%)
Black or African American 63 36 (11.8%) 27 (8.8%)
White 232 131 (42.8%) 101 (33%)
T stage 0.062
T1 11 4(0.8%) 7 (1.5%)
T2 83 45 (9.4%) 38 (8%)
T3 323 168 (35.2%) 155 (32.5%)
T4 60 21 (4.4%) 39 (8.2%)
N stage 0.249
NO 284 147 (30.8%) 137 (28.7%)
N1 108 56 (11.7%) 52 (10.9%)
N2 86 36 (7.5%) 50 (10.5%)
Residual tumor 0.045*
RO 346 173 (46.3%) 173 (46.3%)
Ri 4 2 (0.5%) 2(0.5%)
R2 24 6 (1.6%) 18 (4.8%)
Perineural invasion 0.630
NO 135 75 (41.4%) 60 (33.1%)
YES 46 23 (12.7%) 23 (12.7%)
Lymphatic invasion 0.388
NO 266 144 (33.2%) 122 (28.1%)
YES 168 83 (19.1%) 85 (19.6%)
OS event 0.026*
Alive 375 198 (41.4%) 177 (37%)
Dead 103 41 (8.6%) 62 (13%)
DSS event 0.008*
Alive 398 211 (45.7%) 187 (40.5%)
Dead 64 22 (4.8%) 42 (9.1%)

*P <0.05 P <0.01.
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Characteristics

Total (N)

Univariate analysis

Multivariate analysis

Hazard ratio (95% Cl) P value Hazard ratio (95% CI) P value

Gender 477

Female 226 Reference

Male 251 1.101 (0.746-1.625) 0.627
Age 477

<=65 194 Reference

>65 283 1.610 (1.052-2.463) 0.028* 1.296 (0.488-3.444) 0.603
T stage 476

T1&T2 94 Reference

T3 322 2.576 (1.183-5.612) 0.017* 0.301 (0.073-1.238) 0.096

T4 60 7.021 (2.993-16.473) <0.001** 1.367 (0.283-6.614) 0.697
N stage 477

NO 283 Reference

N1 108 1.681 (1.019-2.771) 0.042* 3.687 (0.922-14.754) 0.065

N2 86 4.051 (2.593-6.329) <0.001** 6.048 (1.006-36.361) 0.049*
Pathologic stage 466
Stage | & Stage Il 267 Reference
Stage Ill & Stage IV 199 2.947 (1.942-4.471) <0.001**
Perineural invasion 181

NO 135 Reference

YES 46 1.940 (0.982-3.832) 0.056 2.249 (0.747-6.770) 0.150
Lymphatic invasion 433

NO 265 Reference

YES 168 2.450 (1.614-3.720) <0.001** 1.454 (0.472-4.476) 0.514
CEA level 302

<=5 195 Reference

>5 107 3.128 (1.788-5.471) <0.001** 1.822 (0.663-5.009) 0.245
SNHG7 477

Low 239 Reference

High 238 1.847 (1.244-2.741) 0.002* 0.438 (0.151-1.267) 0.128

Cl. confidence interval: HR, hazard ratio. *P < 0.05, **P < 0.01.
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Method of examination Number of reports (proportion)

Total I I i IV A
CT without contrast 286 (100%) 105 (36.7%) 57 99 22 3
(19.9%) (34.6%) (7.7%) (1.0%)
CT with/without contrast 2047 (100%) 602 (29.4%) 546 (26.7%) 639 144 116
(31.2%) (7.0%) (5.7%)
MRI without contrast 49 7 12 16 8 6
(100%) (14.3%) (24.5%) (32.7%) (16.3%) (12.2%)
MRI with/without contrast 408 (100%) 16 90 129 66 107 (26.2%)
(3.9%) (22.1%) (31.6%) (16.2%)

CT, computed tomography; MRI, magnetic resonance imaging.
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Sex

Duration, month

Tumor size(cm)

Perimeter ratio

Liver metastasis

Lung metastasis

Total protein level(g)

Albumin(g)

CEA-level (ng/ml)

Age (years)

Blood group

Race

Initial symptom

Tumor location

Gross type

Histological type

Grade

Ducks stage

T stage

N stage

Tumor invasion depth

M stage

Male
Female
<6

<5cm
>5cm
<1/2
=1/2

<40

240 OR <60
>60

A

B

AB

[¢]

Ethnic Han
Zhuang

others

Bowel
Abdominal
Both

Left colon
Right colon
Rectum

Mass type
Ulcer type
Infiltration type
Adenocarcinoma

Mucinous
carcinoma

Others
I

s

it

ol

D

Tl

T2

T3

T4

No

N1

N2
Mucosal
Serosa
Outside the serous layer
Mo

M1

PMCC (n)
No Yes
679 61
509 35
713 66
475 30
815 33
373 63
496 24
692 72
1035 39
153 57
1171 95

17 1
293 24
895 72
1007 85
181 11
883 40
305 56
177 27
495 48
515 21
288 31
337 25

78 10
484 30
919 71
216 20

51 5
733 29
316 56
139 11
315 40
286 35
586 21
297 29
651 23
240 44
1071 59

90 33

27 4
170 7
873 65
145 24
171 3
401 8
456 15
160 70

22 0
242 3
773 63
151 30
618 21
408 36
162 39
271 2
802 63
115 31
1026 28
161 68

Incidence of PMCC (%)

8.24
6.43
8.47
5.94
3.89
14.45
4.62
9.42
3.63
27.14
7.50
5.56
7.57
7.45
7.78
573
433
15.51
13.24
8.84
3.92
9.72
691
11.36
5.84
7.17
847
893
381
15.05
7.33
11.27
10.90
3.46
8.90
341
15.49
522
26.83

12.90
3.95
6.93
14.20
1.72
1.96
3.18
3043
0.00
122
7.54
16.57
329
8.11
19.40
0.73
7.28
21.23
2.66
29.69

X*/Z value

1.484
2.839
46.401
10.343
140.367
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0.005
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46.879

21.207

6.403

0.642

45.722
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43.425

76.222

14.627

214.129

37.284

57.804

57.935

198.666

P value

0.223

0.092

0.000

0.001

0.000

0.755

0.941

0.318

0.000

0.000
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0.000
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Variables Coetficient HR (95% CI) P values

Radiomics signature

(per 1 increase) 1.029 2.797 (1.934-4.046) 4.74E-08
TRG
1
2 0.543 1.721 (0.555-5.339) 0.347
3 0.551 1.735 (0.445-6.758) 0.427
4 1.417 4.125 (1.043-16.303) 0.043

Hazard ratios estimated by Cox proportional hazards regression. All statistical tests were
two-sided. The results of the multivariate Cox analysis correspond to the nomogram in
Figure 1A.

HR, hazard ratio; CI, confidence interval; TRG, tumor regression grade.
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Models for survival prediction Predictors in each Training cohort Validation cohort

model
C- 95% CI C- 95% CI P values
index index
Pretreatment clinical prognostic TN cT + cN 0.578 (0.522- 0.611 (0.531- 429 503 .039* <.001*
models 0.634) 0.691)
PreM CEA+GLO 0.627 (0.572- 0.552 (0.482- 307 356 .007* <.001*
0.682) 0.622)
Posttreatment clinical prognostic ypTN ypT+ypN 0.675 (0.615- 0.532 (0.441- 156 636 .033* <.001*
models 0.735) 0.623)
PostM1  CEA+GLO+ypT 0.737 (0.679- 0.603 (0.534- ref 647 .027* <.001*
0.795) 0672)
PostM2  TRG+CEA+GLO 0.664 (0.603- 0.609 (0.542- 647 ref .077 .009*
0.725) 0.676)
Radiomics signature Radscore Radscore 0.937 (0.917- 0.730 (0.651- 010% 077  ref .014*
0.957) 0.809)
Integrated prognostic model iPostM  Radscore+TRG 0.942 (0.922- 0.752 (0.684- <001* .009* .014*  ref
0.962) 0.820)

P values were calculated by comparing with the corresponding reference prognostic model in each column in the validation cohort (ref represents the reference model). A P value < 0.05
indicates a significant difference.

“Represent P < 0.05. In the validation cohort, five clinical prognostic models showed similar PFS predictive power. Notably, compared with PreM without TRG, the constructed PostM2
achieved better predictive performance (P = 0.356). The developed radiomics signature appeared to be more accurate than clinical prognostic models (P = 0.007 to 0.077). The integrated
model (iPostM) combining radiomics signature and TRG gained the highest C-index in the validation cohort (0.752), outperforming the radiomics signature and all other clinical
prognostic models in term of evaluating 3-year PES (all P < 0.05).

¢TN, the clinical stage prognostic model; PreM, the pre-treatment clinical prognostic model; ypTN, the pathologic stage prognostic model; PostM1, the post-treatment clinical prognostic
model; PostM2, the post-treatment clinical prognostic model without pathologic stage; iPostM, the integrated prognostic model combining TRG and radiomics signature; CI, confidence
interval; GLO, globulin; TRG, tumor regression grade; cT/N: clinical T/N stage; ypT/N, the pathologic classification after nCRT; CEA, carcinoembryonic antigen; CA19-9, carbohydrate
antigen 19-9.
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Total Training cohort Validation cohort P

Characteristics (N = 166) (N =110) (N =56) values
No. (%) No. (%) No. (%)
Gender 0.582
Female 49 (29.52) 34 (30.91) 15 (26.79)
Male 117 (70.48) 76 (69.09) 41 (73.21)
Age (years)
Median (IQR) 58 (49-64) 58 (49-64) 57 (49-64) 0.792
TRG 0.514
1 41 (24.70) 30 (27.27) 1(19.64)
2 48 (28.92) 28 (25.45) 20 (35.71)
3 53 (31.93) 36 (32.73) 17 (30.36)
4 24 (14.46) 16 (14.55) 8 (14.29)
Clinical T stage 0.202
T2 9 (5.42) 7 (6.36) 2(3.57)
T3 109 (65.66) 76 (69.09) 33 (58.93)
T4 48 (28.92) 27 (24.55) 21 (37.50)
Clinical N stage 0.511
NO 41 (24.7) 28 (25.45) 13 (23.21)
N1 56 (33.73) 40 (36.36) 16 (28.57)
N2 69 (41.57) 42 (38.18) 27 (48.21)
ypT stage 0.311
TO 33 (19.88) 26 (23.64) 7 (12.50)
T1 19 (1145) 12 (10.91) 7 (12.50)
T2 55 (33.13) 38 (34.55) 17 (30.36)
T3 51 (30.72) 29 (26.36) 22(39.29)
T4 8 (4.82) 5 (4.55) 3(5.36)
ypN stage 0.930
NO 135 (81.33) 90 (81.82) 45 (80.36)
N1 27 (1627) 17 (15.45) 10 (17.86)
N2 4 (241) 3 (2.73) 1(1.79)
CEA 0.505
< 5ng/ml 89 (53.61) 61 (55.45) 28 (50.00)
> 5ng/ml 77 (46.39) 49 (44.55) 28 (50.00)
CA19-9 0.496
< 35U/ml 138 (83.13) 93 (84.55) 45 (80.36)
> 35U/ml 28 (16.87) 17 (15.45) 11 (19.64)
Treatment 0.921
CAP 75 (45.18) 50 (45.45) 25 (44.64)
CAPOX 91 (54.82) 60 (54.55) 31 (55.36)

Follow-up time (month)

Median (IQR) 36.3 (28.1-43.6) 36.1 (29.0-43.8) 37.0 (25.9-43.6) 0.870

Data are n (%) unless otherwise indicated. P values were calculated by the Mann-Whitney U test for continuous variables and Chi-square test for categorical variables. No significant
differences were found between the training cohort and the validation cohort (P = 0.202-0.930).

IQR, inter-quartile range; TRG, tumor regression grade; ypT/N stage, the pathologic classification after nCRT; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9;
CAPOX, oxaliplatin and capecitabine chemotherapy; CAP, capecitabine chemotherapy.
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Variables

Age
<65
>65
Gender
Female
Male

T stage
T1-T2

Stage
Stage T
Stage 1T
Stage IIT
Stage IV

NA, not available.

Training data (n = 425)

Low risk

140 (41.3%)
199 (58.7%)

161 (47.5%)
178 (52.5%)

73 (21.5%)
233 (68.7%)
33 (9.7%)

218 (64.3%)
74 (21.8%)
47 (13.9%)

266 (78.5%)
35 (10.3%)
38 (11.2%)

66 (19.5%)
148 (43.7%)
90 (26.5%)
35 (10.3%)

High risk

37 (43.0%)
49 (57.0%)

37 (43.0%)
49 (57.0%)

11 (12.8%)
58 (67.4%)
17 (19.8%)

34 (39.5%)
25 (29.1%)
27 (31.4%)

51 (59.3%)
23 (26.7%)
12 (14.0%)

9 (10.5%)
21 (24.4%)
33 (38.4%)
23 (26.7%)

P-value

0.867

0.535

0.014

<0.001

<0.001

<0.001

Validation data (n = 48)

Low risk

5 (23.8%)
16 (76.2%)

18 (85.7%)
3 (14.3%)

1 (100.0%)

1 (100.0%)

21 (100.0%)

High risk

3 (11.1%)
24 (88.9%)

26 (96.3%)
1(3.7%)

27 (100.0%)

27 (100.0%)

27 (100.0%)

P-value

0435

0.430

NA

NA

NA





OPS/images/fonc.2022.941156/fonc-12-941156-g013.jpg
A HCT 116 B
259 - NC c
o
-# TNF-a g
4 TNF-a+NEC-1 , S
L s
= s ‘
3 K]
05 8
>
=
oh 12h 24h
c SW 480 D
251 - NC
s
20 -& TNF-a ﬁ
9 -4 TNF-a+NEC-1 =
2
=
=
o
(%2}
©
>
£
oh 12h 24h
E HCT116 HCT116

RIPK1 P-RIPK1
(74kDa) (74kDa)

GAPDH GAPDH
(37kDa) (37kDa)

NS
sy iy
N ¥
| SW480 J SW480

RIPK1 P-RIPK1
(74kDa) (74kDa)
GAPDH GAPDH
(37kDa) (37kDa)

< S A < S N
W _‘\,\Q r \A(’/O W (V\(( K §\</’O
o N
M TRADD N H2AC6
4 SWag0 HCT116 20 SW480 HCT116

w
o

Gene expression(2"24°T)
~
°
o

°
Gene expression(244¢T)
B

°
>

DAPK1

. O

o

swaso .. HCT116

w
°

e
o

Gene expression(2724¢T)
S

°
Gene expression(22°T)

e
>

RCT116

NC TNF-a
HCT116
P-RIPK3 l I l
(70kDa) | =
GAPDH
37kDa)
S o A
A _\\,\? OK\A@G
N
K SW480
P-RIPK3
(70kDa)

GAPDH
(37kDa)
< © N
€
N
(o) VDAC3
:;‘ 23] Swaso HCT116
3 20
g 1.5
]
& 1.0
H
g 0.5
o

°
°

S UCHL1
25

N
3

>

10

Gene expression(222¢T)

TNF-a+NEC-1

H HCT116

Pk
(37kDa)

L SW480

o | S
(37kDa)

] oS N
W _‘\8 g \A@O
S
<

P JMJD7-PLA2G4B
I 5 Swaso HCT116
£
34
S
S
9 3
2
H
§ 2
]
E 1
o

RBCK1

-

swa4so HCT116






OPS/images/fonc.2022.941156/fonc-12-941156-g012.jpg
A Normal COAD B Normal COAD

TRADD H2ACG6
Staining: Low Staining: Medium Staining: Medium Staining: Low

COAD D Normal COAD

> -
JMJD7-
PLA2G4B

Staining: Not detected Staining: Medium Staining: Low Staining: Medium
E Normal COAD F Normal COAD

TRAF2

Staining: Low Staining: High Staining: Medium  Staining: Not detected

COAD

UCHLA1

A7F 43

Staining: Not detected Staining: Not detected





OPS/images/fonc.2022.941156/fonc-12-941156-g011.jpg
D JMJD7-PLA2G4B

VDAC3

H2AC6

me © <

TRADD

Sl
LI

e 8@ & o o

¥ 8 R’ @°
uoissaidxa auab eAneiey

2 ® © ¥ ~ o

uoissaidxa auab aAneieN

uojssaidxa auab

2 2 Py o
8

S &
uolssaidxe sueh sAneleN

Normal

Cancer

Normal
UCHL1

Cancer

Normal
DAPK1

Cancer

Normal
TRAF2

Cancer

o =_

x

g,

m =

) _|_H_”_|A

rs 8 & ¢ °
uojssaidxe ausb eanejey

—]

s 2 & o o
& 8 ¥ R®

uoissaidxa auab aAne(oy

—
& 3 o
[TH- 3 ¥ R
uoissaidxe ausb aAnejey
—————
g ¢ & °

uoissaidxe auab aAneley

[y

G

Bluswmrced

i

Mgt

A

AR

i





OPS/images/fonc.2022.941156/fonc-12-941156-g010.jpg
A GO-BP

skeletal system development-

regulation of B cell activatios

spliceosomal tri-snRNP complex assembly-
extracellular matrix organizatiol
extracellular structure organizatior

external encapsulating structure organizatios

neuron projection morphogenesi

plasma membrane bounded cell
projection morphogenesis

0 4 6
-Log10(P)

C GO-MF
glycosaminoglycan binding

extracellular matrix structural constituent
heparin binding

protein self-association

sulfur compound binding

syntaxin-1 binding

snRNA binding

calmodulin binding

4
-Log10(P)

extracellular matrix-
external encapsulating structure-

collagen-containing extracellular matrix-

distal axon.
neuronal cell body-

neuron projection terminus-
side of membrane-

cell body-

Differentiation of white and
brown adipocyte
B cell receptor signaling pathway
PPAR signaling pathway
Whnt signaling
Adipogenesis

Circadian rhythm genes

G protein signaling pathways

‘Synaptic vesicle pathway

GO-CC

) 6
-Log10(P)

WiKipathways

2 3
-Log10(P)





OPS/images/fonc.2022.941156/fonc-12-941156-g009.jpg
A Group 3 Lowga High B Group &3 Lowga High Cc Group & Lowga High

0.0041 0.047 0.0069
3000 1

ImmuneScore
Purity

StromalScore

Low High Low High

D Risk &3 Low g3 High

1.00 ns * ns ns ns ** ns ns ns ns * ns ns ns * ns

0.75

0.25

0.00






OPS/images/fonc.2022.941156/fonc-12-941156-g008.jpg
® High risk® Low Risk c ® High risk® Low Risk

60

o High risk 1.0
o Low Risk

Fs 207
£ z
] 3
]
o g
La 5050 — = = = — — g
2 g k]
5., 2
X 3 B2 @

P<0.001

40

0.0

01 2 3 45 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0OS(years) PFS(years)
Number at risk Number at risk
xH\ghI 2725242422212 6 4 3 332210 High§ 27 25 23 23 21 21 11 3 %2 29 0
€ Llowd 21 21 21 202019 1510 8 8 3 3 3 3 3 3 Llowg 21 20 20 20 19 18 14 10 8 8 3 3 3 3 3 3
5 T 3 3 45 6 7 5 5 00 T 1 2 3 % 5 6 7 5 5 101112151815
OS(years) PFS(years)

35

risk

Y
=
IS
&

o
m
M

oF—m—mm—— o.
e I ] 2 ] A1 & !
0 2 1] >4 » o
o o e} O o /
@ @ o —
© © © T oo
0 o o 9 51
v T I l
-~ 2l w
O g— kel o ™~
Q [} o ©
s = =
D o @ @
@ < @ 2 o
o o o o g
(] (] o

2} [}

o =5

0.9 1.0 05 06 07 08 09 1.0 05 06 07 08 09 1.0
Nomogram-prediced 1-years OS (%) Nomogram-prediced 3-years OS (%) Nomogram-prediced 5-years OS (%)

10

08 09
N\
N

Observed 1-years PFS (%) o)

Observed 3-years PFS (%) =T
Observed 5-years PFS (%)

~
o
o]
5
v, 0
oy T T T T — e T T T T L
o 06 07 08 09 10 05 06 07 08 0.9 10 05 06 07 08 09 1.0
Nomogram-prediced 1-years PFS (%) Nomogram-prediced 3-years PFS (%) Nomogram-prediced 5-years PFS (%)
J TRAF2 K UCHL1 L DAPK1 M TRADD
5.0 o 4 NS 15 - 6. NS
= = & =
g s g, S0 3
2 g E z
= = 4
£ E 3 3
3 g0 S s 8
3.0 -2 0 2.
Low risk High risk Low risk High risk Low risk High risk Low risk High risk
N RBCK1 o VDAC3 P JMJD7-PLA2G4B Q H2AC6
8 bl 6.5 NS 4 * 8 o
- _. 6.0 - -
= = s 3 S7
3 g 55 3 3
E S = =
E 6 E 5.0 E 2 E 6:
§ 5 § 48 § 1 § 5
- 40 - 3
4 3.5 0 4

Low risk High risk Low risk High risk Low risk High risk Low risk High risk





OPS/images/fonc.2022.941156/fonc-12-941156-g007.jpg
A

©
8
2
8
(2]

Points e e e e s
>65
Age(years) '
<65
T3
T —_——
T1-T2 N1 T4
N e —
NO N2
MX
M r L 1
Mo M1 bigh
risk r !
Low
Total Points [aaaas T T T T T L T —
0 50 100 150 200 250 300 350 400 450
1-year Survival —
0.9 0.8 06 04 02
3-year survival —_—
0.9 08 06 04 0201
5-year survival ——m————————
0.9 0.8 06 04 0201
B
0 10 20 30 40 5 60 70 80 90 100
Points | PRSP SRS WP SR S SRS S S PP S SN |
T3
T _— M - s -
T1-T2 T4
N1
N ~ 1
NO N2
MX
M — — -——
Mo M1
high
risk e EE—
low
Total Points T
0 50 100 150 200 250 300 350 400
1-year Survival r T T T T 1
09 08 06 04 02 0.1
3-year survival ———
08 06 0.4 02 0.1
5-year survival ——
06 04 n? 01

0a0 0gs 030 095
i

ops

Observed 1-years OS (%)

—_—

080 o8 0% 0%
Nomogram-prediced 1-years OS (%)

05 o7 08 03 10

Observed 3-years 05 (%) T

05

08 07 08 0o
Nomogram-prediced 3-years O (%)

- g =

8 S

S o —
5 . = orioge

S S
23 5o
g 25
22 33

8 S

B 2

! b

ok o o 0% 0m om 0o  do 13

08 09
X 2

Observed 1-years PFS (%)
07
X

-

Net benefit
-0.05 0,00 005 010 015

000 005 010 015 020 025 030

Threshold probability

070 075 080 085 090
Nomogram-prediced 1-years PFS (%)

Threshold probability

[

Observed 3-years PFS (%)
03 04 05 06 07 08 09

03

Net benefit

0.1

02

00

01 o2 03 o4
Threshold probability

04 05 06 07 08
Nomogram-prediced 3-years PFS (%)

E.; T

g /l
8] 1
%5 |
8:

04
Nomogram-prediced 5-years OS (%)

05 06 01 08

I

Net benefit
02 03

01

310z 05 o4
Threshold probability

do 05

Oﬂx

04 06

Observed 5-years PFS (%)

02

01 02 03 04 05 08
Nomogram-prediced 5-years PFS (%)

=
L
= i e

01 02 03 04 05
Threshold probability

02 03 04 05

Net benefit

0.0 0.1

03 0. 0.6
nOd 04 i

00 04 02
o2

07





OPS/images/fonc.2022.914192/fonc-12-914192-g007.jpg
No. of Patients

score





OPS/images/fonc.2022.914192/fonc-12-914192-g008.jpg
Rk 5 v = Lo 5 e

ke 5 g e 5 o

Tie (Morths)

e 0

5 = = = =
= T
r ot xocing
il i e b . .,‘_lhljll_l_lll nimE 1
: = L - s - = =

Tine (Morths)

]

g % = = = g = = = %
ine ) i o)
Number o cansoring Number of consorg
s
I l
L_._.LL_J_H.,J__.‘MJ‘M F TR | N l.L. 1] Ll L 1
g % 3 % % g % % @ %
o T e





OPS/images/fonc.2022.914192/table1.jpg
Variable

Age year

<65

>65

Race

Black

White

Other

Sex

F

M

AJCC Stages®
1}

\%

Tumor size
0-5 cm

5-10 cm

>10 cm
Number

1

>1

Regional nodes
Negative

Not examined
Positive
Treatment

No operation
Local tumor destruction
Hepatectomy or transplant
Radiation

Yes

No
Chemotherapy
Yes

No

DX bone®

Yes

No

DX lung

Yes

No

Marital

Married
Divorced
Single

“AJCC Stages: The seventh edition American Joint Committee on Cancer (AJCC) TNM staging system.

DX distant metastasis.

Whole population

n
3,103

1,878
1,225

574
1,871
658

600
2,503

1,722
1,381

1,530
1,444
129

2,687
416

2,364
12
627

2,819
96
188

482
2,621

1,385
1,718

313
2,790

397
2,706

1,511
736
856

%

60.52
39.48

18.50
60.30
21.21

19.34
80.66

55.49
44.51

49.31
46.54
4.16

86.59
13.41

76.18
3.61
20.21

90.85
3.09
6.06

15.53
84.47

44.63
55.37

10.09
89.91

1279
87.21

48.69
23.72
27.59

Training cohort

n
2,175

1,308
867

382
1,325
468

417
1,758

1,210
965

1,052
1,027
96

1,883
292

1,662
84
429

1,987
63
125

355
1,820

963
1,212

234
1,941

273
1,902

1,073
497
605

%

60.14
39.86

17.56
60.92
21.52

19.17
80.83

55.63
44.37

48.37
47.22
4.41

86.57
13.43

76.41
3.86
19.72

91.36
2.90
5.75

16.32
83.68

44.28
55.72

10.76
89.24

12.55
87.45

49.33
22.85
27.82

Validation cohort

928

570
358

192
546
190

183
745

512
416

478
417
33

804
124

702
28
198

832
33
63

127
801

422
506

79
849

124
807

438
239
251

%

61.42
38.58

20.69
58.84
20.47

19.72
80.28

55.17
44.83

51.51
44.94
3.56

86.64
13.36

75.65
3.02
21.34

89.66
3.56
6.79

13.69
86.31

45.47
54.53

8.51
91.49

13.36
86.96

47.20
25.75
27.05

P value

0.53

0.12

0.72

0.81

0.20

0.96

0.33

0.31

0.06

0.53

0.06

0.55

0.21
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Variable

Age

<65

>65

Race

Black

White

Other

Sex

F

M

AJCC Stages®
1}

\%

Tumor size
0-5

5-10

>10

Number

1

>1

Regional nodes
Negative

Not examined
Positive
Treatment

No operation
Local tumor destruction
Hepatectomy or transplant
Radiation

Yes

No
Chemotherapy
Yes

No

DX bone®

Yes

No

DX lung

Yes

No

Marital
Married
Divorced
Single

HR

Reference
1.1

Reference
1.02
1.09

Reference
1.12

Reference
1.52

Reference
0.84
1.21

Reference
0.82

Reference
2.08
1.22

Reference
0.47
0.31

Reference
15

Reference
1.87

Reference
0.7

Reference
0.57

Reference
1.26
1.23

Univariate

95% ClI

1.00-1.20

0.90-1.15
0.95-1.26

0.99-1.24

0.39-1.66

0.77-0.92
0.82-0.98

0.72-0.93

1.67-2.60
1.09-1.36

0.36-0.62
0.25-0.38

1.33-1.69

1.69-2.01

0.61-0.80

0.50-0.65

1.183-1.40
1.14-1.36

P value

0.03

0.71
0.19

0.06

<0.001

<0.05
0.07

<0.001

<0.001
<0.001

<0.001
<0.001

<0.001

<0.001

<0.001

<0.001

<0.001
<0.001

“AJCC Stages: The seventh edition American Joint Committee on Cancer (AJCC) TNM staging system.

DX distant metastasis.

HR

Reference
117

Reference
1.08
1.25

Reference
1.06

Reference
15

Reference
0.93
1.18

Reference
0.84

Reference
1.28
1.12

Reference
0.37
0.22

Reference
1.93

Reference
229

Reference
0.78

Reference
0.82

Reference
1.14
147

Multivariate

95% ClI

1.01-1.22

0.96-1.22
1.07-1.45

0.96-1.19

1.2-1.89

0.85-1.03
0.94-1.46

0.74-0.96

1.01-1.62
0.94-1.33

0.28-0.49
0.18-0.28

1.70-2.10

2.09-2.51

0.66-0.93

0.70-0.96

1.02-1.28
1.05-1.30

P value

0.02

0.18
<0.001

0.26

<0.001

0.19
0.13

0.01

0.03
0.17

<0.001
<0.001

<0.001

<0.001

<0.001

<0.001

0.01
<0.001
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Patients with HCC in SEER database between 1975 and 2018
(n=57349)

Patients with advanced HCC ( AJCC Stage III and IV)

n=(34286)

Exclusion (n=31183)
-Race unknow (n=175)
-Number unknow (493)
-Size unknow (583)
-Marital unknow (1349)
-Radiation unknow (651)
-Survival months unknow (3827)
-Vital status unknow (1239)
-Unknown cause of death (1423)

Eligible patients with ECCA -Blank(21443)

(n=3103)

Validation cohort
(n=928)

Training cohort
(n=2175)
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LR RF Multinomial NB MLP KNN SVM XGBoost Group 1 Group 2

Accuracy 0.9589 0.9500 0.9329 0.9416 0.8716 0.9504 0.9591 0.8378 0.6495

ML, machine learning; SP, String Pattern; LR, logistic regression; RF, random forest; NB , naive Bayes; MLP, multi-layer perceptron; KNN, k-nearest neighbor; SVM, support vector
machine; XGBoost, extreme gradient boosting.
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LR

RF

Multinomial NB
MLP

KNN

SVM

XGBoost

Ccvil

0.9545
0.9403
0.9183
0.9310
0.8127
0.9310
0.9618

V2

0.9535
0.9457
0.9202
0.9300
0.8112
0.9315
0.9569

CvV3

0.9525
0.9452
0.9207
0.9344
0.8136
0.9339
0.9574

CV 4

0.9540
0.9437
0.9154
09315
0.8078
0.9334
0.9584

CvVs5

0.9540
0.9374
0.9168
0.9281
0.8083
0.9325
0.9603

Average

0.9537
0.9424
0.9183
0.9310
0.8107
0.9325
0.9590

CV, cross-validation; LR, logistic regression; RF, random forest; NB, naive Bayes; MLP, multi-layer perceptron; KNN, k-nearest neighbor; SVM, support vector machine; XGBoost, extreme

gradient boosting.





OPS/images/fonc.2022.913806/table2.jpg
LR

RF

Multinomial NB
MLP

KNN

SVM

XGBoost

Cvil

0.9618
0.9486
0.9330
0.9442
0.8694
0.9515
0.9589

V2

0.9574
0.9545
0.9359
0.9437
0.8733
0.9511
0.9579

CvV3

0.9579
0.9496
0.9354
0.9413
0.8753
0.9491
0.9603

CV 4

0.9594
0.9481
0.9290
0.9364
0.8723
0.9491
0.9594

CvVs

0.9579
0.9491
0.9310
0.9422
0.8679
0.9511
0.9589

Average

0.9589
0.9500
0.9329
0.9416
0.8716
0.9504
0.9591

CV, cross-validation; LR, logistic regression; RF, random forest; NB, naive Bayes; MLP, multi-layer perceptron; KNN, k-nearest neighbor; SVM, support vector machine; XGBoost, extreme

gradient boosting.
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Gene  Polymorphism  Allele  Genotype frequency (%)
frequency

MTHFR 677G>A (rs1801133)
G 0.83
A 0.17
GG 75 (69.4)
GA 29 (26.9)
AA 4(3.7)

MTHFR 1298A>C
(rs1801131)

A 073

(@ 0.27

AA 55 (50.9)
AC 47 (43.5)
cc 6 (5.6)
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Characteristics

Age (years), median + IQR
Gender

Male

Female

ECOG performance status
0

1

2

Site of disease

Rectum

Sigmoid

Right side

Rectosigmoid

Left side

Transverse

Sites of metastases

Liver

Lung

Others

Histopathology type
Well differentiated
Moderately differentiated
Poorly differentiated
Line of treatment

First line

Second line

Treatment regimen
5-Fluorouracil + Leucovolin
FOLFOX

mFOLFOX

FOLFOX + Avastin

Number of patients (%)

60, + 13

31 (59.6)
21 (40.4)

36 (69.2)
15 (28.8)
1(1.92)

26 (50)
14 (26.9)
4(7.7)
4(7.7)
2(3.9)
2(3.9)

31 (47.7)
16 (24.6)
18 (27.7)

15 (28.8)
33 (63.5)
4(7.7)

47 (90.4)
5(9.6)

22 (42.3)

20 (38.5)
7 (13.5)
3(5.8)
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Toxicity Gene Genotype N First cycle Second cycle

Grade 1-4'n P Grade3-4°n P Grade1-4'n P  Grade3-4n P

(%) (%) (%) (%)

Anemia MTHFR GG 35 19 (54.3) 0223 0(0.0) ND 14 (40.0) 0333 0(0.0) ND
677G>A GA+AA 17 12 (70.6) 0(0.0) 9(52.9) 0 (0.0)
MTHFR AA 31 17 (54.8) 0.343 0(0.0) ND 13 (41.9) 0.650 0(0.0) ND
1296A>C AC+CC 21 14 (66.7) 0(0.0) 10 (47.6) 0 (0.0)

Leucopenia MTHFR GG 35 8 (229) 0.544 0(0.0) 0.036* 11 (31.3) 0.224 0(0.0) ND
677G>A GA+AA 17 5(29.4) 2(11.8) 8 (47.1) 0(0.0)
MTHFR AA 31 7 (22.6) 0.579 2(65) 0.568 12 (38.7) 0.660 0(0.0) ND
129845C AC+CC 21 6 (28.6) 0(0.0) 7(33.3) 0(0.0)

Neutropenia MTHFR GG 35 11 (31.4) 0.768 5(14.3) 0.712 10 (28.6) 0.945 129) 0.049*
677G>A GA+AA 17 4(235) 3(17.6) 5(29.4) 3(17.6)
MTHEFR AA 31 9(29.0) 0.968 4(129) 0.488 9(29.0) 0.968 2(65) 0.640
1298A>C AC+CC 21 6 (28.6) 4(19.0) 6 (28.6) 2(95)

Thrombocytopenia MTHER GG 35 0(0.0) ND 0(0.0) ND 0(0.0) <0.001* 0(0.0) 0195
677G>A GA+AA 17 0(0.0) 0(0.0) 5(29.4) 1(59)
MTHEFR AA 31 0(0.0) ND 0(0.0) ND 5(16.1) 0.059 1(32) 0.405
1298A>C AC+CC 21 0(0.0) 0(0.0) 0(00) 0(00)

ND = Not determined; * P value < 0.05 was considered statistically significant. *Grade 1-4 was considered as toxicity. *Grade 3-4 was considered as severe toxicity.
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Gene Genotype
MTHER 677G>A GG
GA +AA
MTHER 1298A>C AA
AC+CC

p value < 0.05 was considered as severe toxicity.

35
17
31
21

Responders (CR + PR) (N=7)

5(14.3)
2(11.8)
5(16.1)
2(9.5)

Non-responders (SD + PD) (N=45)

30

P value

1.000

0.721
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Index Training cohort P value Validation cohort P value
Estimate 95% ClI Estimate 95% Cl

NRI

For 1-year CSS 0.77 0.65-0.86 0.82 0.70-0.96

For 2-year CSS 0.46 0.37-0.58 0.72 0.42-0.92

For 3-year CSS 0.48 0.35-0.61 0.49 0.80-0.70

IDI

For 1-year CSS 0.16 0.13-0.18 <0.001 0.19 0.14-0.23 <0.001

For 2-year CSS 0.15 0.12-0.17 <0.001 0.18 0.12-0.22 <0.001

For 3-year CSS 0.12 0.09-0.16 <0.001 0.16 0.11-0.23 <0.001
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108 colorectal cancer patients
Exclusion

56 patients treated with irinotecan-base regimen with
lack of clinical data collection.

52 colorectal cancer patients recerving 5-FU
Start 5-FU regimen at Ist Cycle

2nd Cycle =% Toxicity assessment at post cycle 1

3rd Cycle -~ Toxicity assessment at post cycle 2
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Reference Statistics for each study

Odds Lower Upper
ratio limit  limit Z-Value p-Value

Kaneko et al** 10.983 3.204 37.646 3.813 0.000

Odds ratio and 95% CI

Yu et al® 15519 4.064 59.266 4.011  0.000
overall 12.868 5.196 31.867 5521 0.000
0.1 1 10 100
Favours A Favours B
Reference Statistics for each study 0Odds ratio and 95% CI
Odds Lower Upper
ratio  limit limit Z-Value p-Value
Nakazawa etal® 1817 0744 4435 1312 0190
Goi etal® 4375 0895 21392 1.823 0.068
overall 2244 1031 4884 2037 0042
0.1 1 10 100
Favours A Favours B
Reference Statistics for each study Odds ratio and 95% CI
Odds Lower Upper
ratio  limit limit  Z-Value p-Value
Franko et al * 1515 1062 2161 2290 0.022
Cremolini et al 2097 1256 3500 2832 0.005 -
Smith et al* 3132 1357 7228 2675 0.007 ——
Eurboonyanunetal? 0715 0220 2329 -0556 0578
Shelygin et al ** 6529 0632 67438 1575 0.115
Cheng et al%® 2662 1.131 6.265 2243 0.025 ——
Jang et al 2 4053 1361 12070 2514 0012
Sayaguésetal?® 19250 2909 127.393 3.067  0.002
Sasaki et al 3 4886 1924 12408 3336  0.001
overall 2586 1674 3994 4283  0.000 L 3
0.1 ;| 10 100

Favours A Favours B

B Prospective study

B Retrospective study





OPS/images/fonc.2022.995357/crossmark.jpg
©

2

i

|





OPS/images/fonc.2022.885504/fonc-12-885504-g006.jpg
Reference Statistics for each study Odds ratio and 95% CI
Odds Lower Upper
ratio limit limit Z-Value p-Value
Franko et al 1213 0970 1517 1.692 0.091
Smith et al** 1.017 0507 2038 0.046 0.963
Sherman etal** 0.543 0519 0567 -26.842 0.000 [ |
Shelygin etal’* 1.874 0627 5602 1.124 0.261
Sayagués etal® 0.413 0.047 3624 -0.798 0425
Sasaki et al*° 1207 0762 1913 0803 0.422
overall 0972 0576 1638 -0.108 0.914
0.01 0.1 1 10 100
Favours A Favours B
Reference Statistics for each study Odds ratio and 95% CI
Odds Lower Upper
ratio  limit limit Z-Value p-Value
Smith et al** 0492 0029 8363 -0491 0624
Sayagués etal?® 3533 0132 94561 0753 0452
overall 1.140 0133 9748 0120 0.905
0.01 0.1 3 10 100
Favours A Favours B
c Reference Statistics for each study Odds ratio and 95% CI
Odds Lower Upper
ratio  limit limit Z-Value p-Value
Smith etal’* 0408 0.096 1.734 -1.215 0.225
Sasakietal®® 0.854 0306 2384 -0302 0.763
overall 0667 0289 1540 -0949 0.343
001 0.1 1 10 100
Favours A Favours B
Reference Statistics for each study Odds ratio and 95% CI
Odds Lower Upper
ratio  limit limit Z-Value p-Value
Smith et al ** 3.119 0663 14680 1.439 0.150
Sherman et al*? 1.654 1540 1.777 13.776  0.000 | |
Shelygin et al** 0.149 0.008 2829 -1.268 0.205
Jang et al*® 0.131 0008 2196 -1413 0.158
overall 1.087 0351 3367 0.145 0885
0.01 01 1 10 100
Favours A Favours B

W Prospective study

MW Retrospective study
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Title

Convolutional Neural Networks for Medical Image Analysis:
Full Training or Fine Tuning? (10)

Locality Sensitive Deep Learning for Detection and
Classification of Nuclei in Routine Colon Cancer Histology
Images (11)

Deep Learning Localizes and Identifies Polyps in Real Time
With 96% Accuracy in Screening Colonoscopy (12)
Real-time automatic detection system increases colonoscopic
polyp and adenoma detection rates: a prospective randomised
controlled study (13)

Deep Learning in Label-free Cell Classification (14)

Deep learning based tissue analysis predicts outcome in
colorectal cancer (15)

The Applications of Radiomics in Precision Diagnosis and
Treatment of Oncology: Opportunities and Challenges (16)
Accurate Classification of Diminutive Colorectal Polyps
Using Computer-Aided Analysis (17)

Predicting survival from colorectal cancer histology slides
using deep learning: A retrospective multicenter study (18)
Automatic Detection and Classification of Colorectal Polyps
by Transferring Low-Level CNN Features From Nonmedical
Domain (19)

Paper
type

Article

Article

Article

Article

Article

Article

Review
Article
Article

Atrticle

First author Journal

Nima Tajbakhsh IEEE Transactions on

Medical Imaging
Sirinukunwattana  TEEE Transactions on

Medical Imaging

Urban Gastroenterology
Pu Wang Gut
Chen, Claire Scientific Reports
Lifan

Bychkov, Dmitrii Scientific Reports

Liu, Zhenyu THERANOSTICS

Chen, Peng-Jen Gastroenterology

Kather, Jakob
Nikolas

Zhang, Ruikai

Plos medicine

IEEE Journal of
Biomedical and
Health Informatics

Conntry

USA

UK

USA

China;
USA

USA

Finland;
Sweden;
UK

China

Chinese
Taipei

Germany

Hong
Kong SAR

IF

10.048

10.048

22.682

23.059

4.380

4.380

11.556

22.682

11.069

5.772

Total Time
citations

1202 2016
515 2016
274 2018
241 2019
222 2016
221 2018
190 2019
178 2018
170 2019
160 2017
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RANK
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Journal

‘World Journal of GastroenterologyNTEROLOGY
Caners
Scientific Reports
Frontiers in Oncology
IEEE Access
Applied Sciences-Basel
Diagnostic
Sensors
Gastroenterology

IEEE Transactions on Medical Imaging

Count

21
20
18
15
13

15

NN ® ®

Percentage

3.76%
3.58%
3.22%
2.68%
2.33%
1.79%
1.43%
1.43%
1.25%
1.25%

IF

5.742(Q2)
6.639(Q1)
4.38(Q1)
6.244(Q2)
3.367(Q2)
2.679(Q3)
3.706(Q2)
3.576(Q2)
22.682(Q1)
10.048(Q1)

Citations

44
157
748

27

49
61
25
28
687

1797

Q1 and Q2 represent the influencing factors of journals rank the top 25% and >25%-50% in the given subject in 2019, respectively.

Average citations per paper

210
7.85
41.56
18
3.76
6.10
3.13
3.50
98.14
256.71
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Authors

Perry ] Pickhardt
Masashi Misawa
Changhong Liang
Shinei Kudo
Alessandro Repici
Yutaka Saito
Yuichi Mori
Hayato Itoh
Giulio Antonelli
Kensaku Mori
Cesare Hassan

Ke Zhao

Count
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Screening Identification

Eligibility

Included

Records identified through database
searching n = 9470
PubMed n = 5772
Embase n = 3437

Cochrane CENTRAL n = 261

Records after removal of duplicates
n= 7659

Full-text articles assessed for eligibility
n=224

Studies included in systematic review
and meta-analysis
=S

Articles excluded by title and abstract n = 7435

Case reports n = 803

Review articles n = 438

Animal studies n =456

Non-English language n = 693

Not related to colorectal cancer n= 1470
No peritoneal metastasis n= 43
Metachronous peritoneal metastases n= 130

No analysis of the risk factors n= 3402

Full-text articles excluded n= 199

No comparator group n = 55

No relevant data n = 128

Mixed primary tumor n= 1
Non-standardized histological type n= 1
Asynchronous peritoneal metastases n= 2
Synchronous peritoneal metastases not

clearly or correctly defined n= 12
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Refference Statistics for each study Odds ratio and 95% CI

Odds Lower Upper

ratio  limit limit Z-Value p-Value
Franko et al? 1240 1104 1392 3640 0.000
Lemmens etal®® 1.218 1.066 1.393 2.894 0.004
Sherman etal’® 1.483 1.444 1523 29.014 0.000
Sjo et al’® 1558 1.005 2415 1984 0.047
Shelygin etal’®* 0425 0.141 1.287 -1.513 0.130
Kaneko etal® 0.359 0.106 1212 -1.651 0.099
Sasaki et al*° 1458 0964 2206 1.787 0.074
Overall 1299 1.118 1509 3426 0.001 ‘
0.01 0.1 1 10 100
Favours A Favours B
Reference Statistics for each study Odds ratio and 95% CI
Odds Lower Upper
ratio limit limit  Z-Value p-Value
Kerscheretal®® 16.567 10.612 25866 12352 0.000 il
Lemmensetal® 8601 7.301 10.132 25744 0.000
Sjo etal ® 17.412 9811 30902 9761 0.000
Kaneko et al** 8912 2727 29126 3620 0.000
overall 12331 7734 19660 10555 0.000
0.01 01 1 10 100
Favours A Favours B
Reference Statistics for each study Odds ratio and 95% CI
Odds Lower Upper
ratio  limit limit Z-Value p-Value
Kerscher etal®* 9.947 5261 18.807 7.069 0.000
Lemmens etal3® 4513 3678 5537 14439 0.000 [ ]
Sjo et al® 4975 2714 9117 5191 0.000 E 2
overall 5665 3628 8848 7625 0.000 3
0.01 01 1 10 100
Favours A Favours B
Reference Statistics for each study Odds ratio and 95% CI
Odds Lower Upper
ratio  limit limit Z-Value p-Value
Lemmens etal® 3423 2908 4.029 14.799 0.000 [ |
Sherman etal’? 1663 1577 1.754 18.730 0.000 [ ]
Sjo et al 2347 1259 4376 2686 0.007 -
Akino et al *© 3.835 1851 7947 3616 0.000 -
Kaneko etal? 1957 0.239 16.048 0626 0.532
overall 2560 1537 4265 3611 0.000 L 2
0.01 01 1 10 100

Favours A Favours B

W Prospective study MW Retrospective study
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Reference

Statistics for each study
Odds Lower Upper

Odds ratio and 95% CI

ratio limit  limit Z-Value p-Value
Franko et al® 3.000 2516 3578 12229 0.000
Kerscheretal® 2342 1498 3662 3.732 0.000
Lemmens etal® 2277 1963 2641 10.873 0.000
Sjo et al*® 1742 1.086 2794 2301 0.021
Shelygin etal’* 2350 0.777 7.410 1513 0.130
Kaneko etal®* 4331 1279 14660 235 0.018
overall 2468 2050 2970 9549 0.000
0.01 01 1 10 100
Favours A Favours B
Reference Statistics for each study Odds ratio and 95% CI
Odds Lower Upper
ratio  limit limit Z-Value p-Value
Franko et al? 1297 1.089 1545 2911 0.004
Kerscher etal® 1501 0985 2288 1.890 0.059
Lemmens etal® 1.056 0906 1230 0696 0.486
Sjo et al*® 0574 0.358 0921 -2301 0.021 E
Shelygin etal*® 0540 0.180 1.621 -1.099 0272
Kaneko etal® 0.346 0.092 1297 -1575 0.115
overall 1.000 0.761 1.314 -0.002 0.998
001 01 1 10 100
Favours A Favours B
Reference Statistics for each study 0Odds ratio and 95% CI
Odds Lower Upper
ratio limit  limit Z-Value p-Value
Franko et al? 0.335 0281 0.400 -12.125 0.000
Kerscher etal® 0.323 0.199 0526 -4.551 0.000
Lemmens etal3® 0.305 0247 0.377 -10.988 0.000
Shelygin etal’> 0.447 0047 4.296 -0.697 0.486
Kaneko etal®* 0380 0048 2987 -0.920 0.357
overall 0.323 0284 0.368 -17.008 0.000
0.01 100
Favours A Favours B

M Prospective study

B Retrospective study
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Reference Statistics for each study Odds ratio and 95% CI

Odds Lower Upper

ratio limit limit Z-Value p-Value
Hugenetal® 0267 0206 0.345 -10.039 0.000
Kerscheretal® 0.344 0224 0529 -4870 0.000
Lemmens et al®® 0.401 0340 0471 -11.026 0.000
Akino et al*© 0.381 0.151 0.963 -2.039 0.041

Jimi et al* 0.081 0.031 0210 -5.177 0.000
Song et al*® 0.441 0276 0.705 -3.424 0.001 E 3
overall 0.319 0.237 0429 -7.524 0.000 ¢
001 01 1 10 100
Favours A Favours B
Reference Statistics for each study Odds ratio and 95% CI

Odds Lower Upper

ratio limit limit Z-Value p-Value
Hugenetal®™ 3525 2692 4616 9.156  0.000
Kerscheretal® 2114 1335 3.346 3.194  0.001
Lemmens etal® 2497 2122 2938 11.026  0.000
Sherman etal’® 6.857 6.615 7.108 105.095  0.000
Akinoetal!® 2623 1.038 6.627 2039 0.041
Jimi et al®* 12311 4759 31846 5177  0.000
Song etal® 2167 1.308 3.590 3.001 0.003

overall 3565 2095 6.064 4689 0.000
0.01 0.1 1 10 100
Favours A Favours B
Reference Statistics for each study Odds ratio and 95% CI
Odds Lower Upper
ratio limit limit Z-Value p-Value
Hugen et al 3 3205 1719 5973 3666 0.000 E &
Kerscheretal® 11.388 4707 27549 5397 0.000
Song et al** 2412 0817 7120 1594 0111
overall 4480 1836 10933 3294 0.001
0.01 0.1 1 10 100
Favours A Favours B

B Prospective study B Retrospective study
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Characteristics

Total (N)

Univariate analysis

Multivariate analysis

Hazard ratio (95% Cl) P value Hazard ratio (95% Cl) P value

Gender 461

Female 220 Reference

Male 241 1.142 (0.697-1.871) 0.599
Age 461

<=65 191 Reference

>65 270 1.165 (0.702-1.933) 0.555
T stage 460

T1&T2 93 Reference

T3 307 5.984 (1.447-24.751) 0.014* 0.634 (0.053-7.643) 0.720

T4 60 20.180 (4.693-86.773) <0.001** 2.933 (0.218-39.407) 0.417
N stage 461

NO 275 Reference

N1 106 2.601 (1.353-5.000) 0.004™ 4.141 (0.586-29.247) 0.154

N2 81 6.357 (3.512-11.504) <0.001** 15.636 (1.525-160.294) 0.021*
Pathologic stage 451
Stage 18Stage Il 259 Reference
Stage lll&Stage IV 192 6.085 (3.235-11.447) <0.001**
Perineural invasion 180

NO 134 Reference

YES 46 2.977 (1.325-6.686) 0.008™ 3.136 (0.800-12.298) 0.101
Lymphatic invasion 422

NO 255 Reference

YES 167 4.133 (2.361-7.235) <0.001** 1.560 (0.321-7.589) 0.682
CEA level 301

<=5 194 Reference

>5 107 3.018 (1.543-5.901) 0.001* 1.273 (0.350-4.633) 0.714
SNHG7 461

Low 233 Reference

High 228 2.353 (1.404-3.944) 0.001* 0.736 (0.194-2.798) 0.653

Cl. confidence interval: HR, hazard ratio. *P < 0.05, **P < 0.01.
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ONTOLOGY ID Description GeneRatio pvalue p.adjust
BP G0:0019080 viral gene expression 201177 1.75e-15 3.72e-12
BP G0:0019083 viral transcription 19177 5.81e-15 6.16e-12
BP G0:0045047 protein targeting to ER 16177 3.82e-13 2.70e-10
BP GO:0072599 establishment of protein localization to endoplasmic reticulum 161177 6.30e-13 3.33e-10
BP GO:0006614 SRP-dependent cotranslational protein targeting to membrane 14177 1.22e-12 5.18e-10
CC G0:0022626 cytosolic ribosome 15/188 1.95e-13 4.45e-11
CC G0:0044445 cytosolic part 20/188 2.84e-13 4.45e-11
cC GO:0044391 ribosomal subunit 16/188 4.16e-11 4.34e-09
cC G0:0005840 ribosome 18/188 1.33e-10 1.04e-08
cC G0:0022625 cytosolic large ribosomal subunit 9/188 8.17e-09 5.11e-07
MF GO:0003735 structural constituent of ribosome 14/181 2.12e-08 7.88e-06
MF GO:0001055 RNA polymerase Il activity 4/181 3.30e-06 4.36e-04
MF GO:0003899 DNA-directed 5'-3' RNA polymerase activity 6/181 3.52e-06 4.36e-04
MF G0:0034062 5'-3' RNA polymerase activity 6/181 6.16e-06 4.58e-04
MF GO:0097747 RNA polymerase activity 6/181 6.16e-06 4.58e-04
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ID Description GeneRatio pvalue p.adjust
hsa03010 Ribosome 14/89 1.45e-09 2.44e-07
hsa05016 Huntington disease 14/89 5.47e-06 4.60e-04
hsa03020 RNA polymerase 5/89 1.97e-05 0.001
hsa03040 Spliceosome 7/89 0.001 0.056
hsa05014 Amyotrophic lateral sclerosis 11/89 0.002 0.070
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Number

O NV A W N

Country/Regions

China
USA
England
Germany
South Korea
Japan
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