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Organ transplantation is a life-saving surgical procedure through which the functionality 
of a failing organ system can be restored. However, without the life-long administration of 
immunosuppressive drugs, the recipient’s immune system will launch a massive immune 
attack that will ultimately destroy the graft. Although successful at protecting the graft from 
an immune attack, long-term use of immunosuppressive drugs leads to serious complications 
(e.g., increased risk of infection, diabetes, hypertension, cardiovascular disease, and cancer). 
Moreover, recipients suffer from limited long-term graft survival rates due to the inability 
of current treatments to establish tolerance to the transplanted tissues. Thus, there is a great 
medical need to understand the complex network of immune system interactions that lead to 
transplant rejection so that new strategies of intervention can be determined that will redirect 
the system toward transplant acceptance while preserving immune competence against 
offending agents. 

In the past 20 years, the discovery and growing understanding of the positive and negative 
regulators of the activation of the immune system have fostered new interventional 
procedures targeting one or the other. While pre-clinical results proved the validity of these 
strategies, their clinical implementation has been troublesome. These results underscore the 
need for additional methods to determine the most effective interventions to prevent long-
term transplant rejection. New tools of genomics, proteomics and metabolomics are being 
implemented in powerful analyses that promise the development of better, safer personalized 
treatments. In parallel, theoretical modeling has emerged as a tool that transcends investigations 
of individual mechanistic processes and instead unravels the relevant mechanisms of complex 
systems such as the immune response triggered by a transplant. In this way, theoretical models 
can be used to identify important behavior that arises from complex systems and thereby 
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delineate emergent properties of biological systems that could not be identified studying single 
components. Employing this approach, interdisciplinary collaborations among immunologists, 
mathematicians, and system biologists will yield novel perspectives in the development of more 
effective strategies of intervention. 

The aim of this Research Topic is to demonstrate how new insight and methods from 
theoretical and experimental studies of the immune response can aid in identifying new 
research directions in transplant immunology. First, techniques from various theoretical and 
experimental studies with applications to the immune response will be reviewed to determine 
how they can be adapted to explore the complexity of transplant rejection. Second, recent 
advances in the acquisition and mining of large data sets related to transplant genomics, 
proteomics, and metabolomics will be discussed in the context of their predictive power and 
potential for optimizing and personalizing patient treatment. Last, new perspectives will be 
offered on the integration of computational immune modeling with transplant and omics data 
to establish more effective strategies of intervention that promote transplant tolerance.

Citation: Raimondi, G., Wood, K. J., Perelson, A. S., Arciero, J. C., eds. (2017). Transplant Rejection and 
Tolerance: Advancing the Field through Integration of Computational and Experimental Investigations. 
Lausanne: Frontiers Media. doi: 10.3389/978-2-88945-292-7
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The Editorial on the Research Topic

Transplant Rejection and Tolerance—Advancing the Field through Integration of Computational 
and Experimental Investigation

Seventy years after the first proof of concept that the immune system can be trained to accept 
transplanted tissues via induction of immune tolerance, we are still waiting for a clinical approach 
that could be used routinely in transplant patients. Transplantation is a life-saving surgical proce-
dure that is still only successful when paired with life-long administration of immunosuppressive 
drugs. However, the debilitating side effects of the long-term use of these drugs, together with their 
incomplete control of the immune system, compromise the quality of life and survival of transplant 
recipients. Thus, there is a strong push to find new therapeutic strategies that promote indefinite 
acceptance of a transplanted tissue without compromising the effectiveness of the patient’s immune 
system. Although many exciting ideas have been explored, none of the resulting strategies have been 
successfully converted into a widely applicable therapeutic approach.

Our knowledge of the complex immunological processes leading to transplant rejection contin-
ues to grow, and our understanding of the limitations associated with experimental models deepens. 
There is a great opportunity to foster a different approach to identify novel interventions. New tools 
of genomics, proteomics, and metabolomics are being implemented in powerful analyses that prom-
ise the development of better and safer personalized treatments. In parallel, theoretical modeling is 
slowly but progressively being welcomed among experimentalists due to its ability to unravel relevant 
mechanisms of complex systems and generate new hypotheses (1). The successful employment of 
these promising tools requires effective communication and collaboration among immunologists, 
data-driven modelers, and system biologists.

This Research Topic provides a venue for stimulating these interdisciplinary conversations in the 
context of transplantation. The articles collected under this Research Topic introduce new theoretical 
and experimental studies that describe novel techniques and methods for understanding the interac-
tions between the immune response and transplants and for establishing more effective strategies of 
diagnosis and intervention that will promote transplant tolerance. The contributions of this Research 
Topic can be divided into two main groups according to the approaches they implement: (i) big data 
and bioinformatics and (ii) mechanistic and equation-based models of rejection.

To identify correlations and sensitivities from large data sets, various statistical methods and bio-
informatics approaches are needed. Wang and Sarwal offer a concise review of the current uses and 
advances in statistical approaches and high-dimensional data applications for identifying possible 
transplant biomarkers. Identifying markers of injury, causative markers, and predictive markers is 
key for monitoring, managing patients, and identifying the re-purposing potential of existing drugs. 
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Mastoridis et  al. review current techniques (transcriptomic 
technologies) and propose future ideas for identifying biomark-
ers predictive of tolerance in the context of liver transplantation. 
They also explore how this knowledge could offer great insight 
into studying tolerance to other organs. In their perspective 
article, Stegall and Borrows argue that more accurate and mecha-
nistic mathematical models can be designed to predict (renal) 
allograft loss or chronic injury, but they note that this will require 
access to more detailed molecular, histologic, and serologic data. 
Mechanistic studies conducted in parallel to focused clinical 
trials also would be tremendously useful for understanding why 
grafts fail and for designing tailored intervention.

Several statistical methods are applied to transplant data in 
articles of this collection to identify key biomarkers. Pike et  al. 
used principle component analysis and other tools to analyze a 
large set of T cell immunophenotyping data before and after renal 
transplantation. They discovered that pretransplant frequency of 
programmed death 1 (PD-1) expressing T  cell subsets stratifies 
patients at risk of developing rejection episodes. In a study of 
kidney transplants, Kadota et al. used various statistical algorithms 
to analyze the transcriptome of allograft biopsies and showed that 
histological classification of T  cell mediated rejection contains 
multiple subtypes of rejection amenable to more personalized 
treatments. When studying the inflammatory response associated 
with ischemic injury, Starzl et al. combined principal component 
analysis and a regression approach to discover a cytokine-based sig-
nature to define the type and severity of the inflammatory response.

In transplant modeling, identifying the key players and inter-
actions between transplants and the immune system is critical to 
understanding the pathway to rejection or tolerance. An agent-
based model presented by An provides a dynamic and mechanistic 
understanding of transplant immunology so that control strategies 
to induce tolerance can be built. Arciero et al. provide one of the first 
comprehensive mathematical models of mouse heart transplant 
rejection. This ordinary differential equation-based model tracks 
innate and adaptive immunity and provides important suggestions 
of new investigations to improve the understanding of rejection. 
Day et al. present an ordinary differential equation model focused 
on the inflammatory response to surgical and ischemia/reperfu-
sion injury. The model predicts specific conditions that lead to 
tolerance and others that lead to an exaggerated rejection response. 
Best et al. use a computational model of T cell repertoire develop-
ment to examine self/non-self discrimination when incorporating 
features of cross-reactivity and T cell cooperativity. The resulting 
dynamic state of tolerance suggests specific opportunities for 
therapeutic intervention to achieve long-term tolerance.

Overall, all of the contributions to this Research Topic high-
light the still largely untapped potential of integrating data-driven 

and mechanistic modeling into the “ordinary” experimental 
scientific approach to address key questions of transplant immu-
nology in academic settings. As noted at a recent workshop of 
computational and experimental immunologists convened by the 
NIAID (2), there is still a broad divergence among researchers 
on how to approach fundamental immunological questions. 
This separation between modelers and experimentalists is even 
deeper in transplant immunology. However, all researchers share 
the common goal of improving the life of transplanted patients 
by understanding how to predict the behavior of immunologi-
cal responses underlying graft rejection and failure. Despite the 
continuous growth of technological advances, it is still difficult 
to predict how a certain molecular or cellular intervention will 
affect the behavior of the entire system over time. This could be 
achieved, however, by properly integrating experimentation, data-
driven modeling, and mechanistic modeling to test non-intuitive 
conditions impractical to explore using experimentation alone. 
The close collaboration between experimentalists and modelers 
necessary to reach this result requires a novel component of for-
mal training of each part that will lead to productive communica-
tion and work integration. This Research Topic encourages the 
research community to embrace and implement this approach 
and witness exciting new discoveries that will ultimately benefit 
the patient population.
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Computational models for  
transplant biomarker discovery
Anyou Wang and Minnie M. Sarwal *

Department of Surgery, Division of MultiOrgan Transplantation, University of California San Francisco, San Francisco, CA, USA

Translational medicine offers a rich promise for improved diagnostics and drug discovery 
for biomedical research in the field of transplantation, where continued unmet diagnostic 
and therapeutic needs persist. Current advent of genomics and proteomics profiling 
called “omics” provides new resources to develop novel biomarkers for clinical routine. 
Establishing such a marker system heavily depends on appropriate applications of com-
putational algorithms and software, which are basically based on mathematical theories 
and models. Understanding these theories would help to apply appropriate algorithms to 
ensure biomarker systems successful. Here, we review the key advances in theories and 
mathematical models relevant to transplant biomarker developments. Advantages and 
limitations inherent inside these models are discussed. The principles of key  computational 
approaches for selecting efficiently the best subset of biomarkers from high- dimensional 
omics data are highlighted. Prediction models are also introduced, and the integration of 
multi-microarray data is also discussed. Appreciating these key advances would help to 
accelerate the development of clinically reliable biomarker systems.

Keywords: transplant, model, theory, computation, bioinformatics, rejection

introduction

In the new era of biomedical research, it is being increasingly recognized by funding agencies and 
journals that traditional hypothesis-driven research alone cannot provide the rapid and incremental 
advances needed to change the current clinical practice management for transplant patients, so as 
to positively impact long-term graft outcomes. In addition, given that organ transplantation is an 
orphan disease, there are few if any focused efforts for discovery of new immunosuppressive drugs 
for transplant recipients. In fact, the number of Food and Drug Administration (FDA) approved 
drugs has been relatively constant to about 20 drugs per year, yet the cost of drug discovery has 
ramped up ($138 million in 1975 to $1.3 billion in 2006), and the rate of new drug production by a 
pharmaceutical company generally follows a Poisson distribution and is constant (about 2–3 drugs 
per year at most) (1). This constant rate of output is often blamed on the traditional hypothesis-driven 
research model, primarily because hypotheses derived from complex experimental models often do 
not translate to human pathology. Hence, there is a growing need to harness “big data” at the RNA/
protein/metabolite/antibody/DNA level to get novel insights into interlinked global processes that 
have been hitherto poorly understood. With this direction, comes the companion need to develop 
and apply the right computational tools to harness this data and interlink it to the entire electronic 
medical record (EMR) in an identified, regulated process.

Although short-term survival rates of grafts have increased, long-term graft survival rates have 
shown little improvement (2, 3). Five-year graft survival for transplanted organs varies from 43% 
for lung to 78% for kidney, highlighting the need for improved analysis of post-transplant injury 
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pathways. There is a desperate urgency to advance the field of 
organ transplantation through improved monitoring by (a) the 
discovery of informative biomarkers, specific and sensitive to 
phenotypes of injury and acceptance, and (b) through improved 
algorithms and/or drugs for treatment with targeted efficacy and 
reduced toxicity (4, 5). Many single gene/protein pathway studies 
have shown associative and mechanistic insights into animal and 
restricted human sample studies, but the field has stalled with 
regard to the additional exponential insights needed at a genome-
wide level to develop significant improvements in biomarker 
discovery for diagnosis/prediction and to evaluate the role of 
novel pathways for improved rational drug design as it applies to 
organ transplantation. In this review, we focus on the application 
of different computational approaches to mine high-dimensional 
human data in transplantation with a view to changing current 
clinical practice and patient management. Some of the critical 
requirements that the transplantation process needs to fulfill with 
this meta-data approach are highlighted in Figure 1.

Biological experimental tools that explore genome-wide profil-
ing referred as “omics” provide promising pathways to investigate 
transplant biology, and they have been increasingly applied in 
transplantation, with the number of generated data tripling over 
last decade (Figure 2). These omics technologies (e.g., functional 
genomics for RNA analysis, proteomics for protein and peptide 
analysis, metabolomics for metabolite analysis, and antibiomics 
for HLA- and non-HLA-antibody analysis) also provide “big 
data” that contains high-dimensional variables. Harnessing the 
“big data” to low dimensional variables could generate small 
sets of biomarkers for diagnostic tools, which detect and predict 

FiGURe 1 | Transplant fields require computations. The boxes show the areas of investigation needed by translational computational methods to advance 
organ transplant management. Figure adapted from Ref. (6).

transplant injury as well as discriminate different causes of 
injuries. However, these omics data are generally complex, due to 
its inherent high-dimensional complexity, platform differences, 
hybridization variations, and different data scales. These com-
plexities challenge scientists to directly extract biologically valid 
and clinically useful information by selecting, generating, and 
using the appropriate computational tools to meet the demands 
of the composition of the input data.

Decomposing the complex omics datasets to derive biomark-
ers often requires customization of computer algorithms and 
software. Limitations and pitfalls inherent inside these software 
tools, such as biased p-value estimation, over-estimated predic-
tion accuracy, could derail the successful selection of biomarkers 
due to enhanced false positives and negatives. Thus, applying 
appropriate algorithms to decompose the complexity requires 
an understanding of the theories and principles behind these 
algorithms. Here, we review key advances of theory and compu-
tational models relevant to transplant biomarker development. 
Understanding these key advances would help to master the 
wave of biomarker development and to develop novel reliable 
biomarker systems (4, 7–9).

High-Dimensional Data Applications in 
Transplantation

Gene expression microarrays have been the most commonly 
used high-throughput technology in transplantation (10, 11). 
Microarrays were applied to biomedical science in 1995, and 
the first landmark study of kidney biopsy microarrays was 
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published in 2003 [Sarwal et al. (12), NEJM], uncovering for the 
first time molecular heterogeneity in acute rejection that was 
far greater than previously understood by histology alone and 
a pivotal role for B cells in steroid-resistant late post-transplant 
rejections occurring secondary to treatment non-adherence. 
There are an increasing number of human studies in the public 
domain profiling biopsy, bronchoalveolar lavage, and blood 
and urine samples from different organ transplant recipients, 
with phenotypes defined by matching graft biopsies as acute 
rejection, chronic injury, recurrent glomerulonephritis, viral 
nephritis, operational and induced tolerance, and drug toxicity. 
Transcriptional profiling of peripheral blood as a correlate of 
intragraft events has been successfully applied in the IMAGE 
Study in heart transplantation (13) and in the SNSO1 (14) 
and AART (15) studies in kidney transplantation and for the 
detection of chronic graft vs. host disease in bone marrow 
transplantation (16). Pathogenesis-based transcripts (PBT) 
expression panels have been inferred from mouse experiments 
and applied to human transplant expression patterns in an 
effort to develop correlates of histopathological lesions in renal 
transplant biopsies (17).

A major challenge in transplantation is the life-long admin-
istration of immunosuppressive drugs with multiple side effects. 
Calcineurin inhibitors are associated with nephrotoxicity, which 
in turn can contribute to long-term graft failure, along with 
opportunistic infections. To better understand the mediators 
of calcineurin inhibitor toxicity, selected patients from the 
BENEFIT trial (Vincenti, NEJM), had their 1-year protocol 
biopsies profiled against gene-sets selected after loading cyclo-
sporine and tacrolimus on renal proximal tubular cells, as the 
in vitro model of calcineurin inhibitor toxicity. Patients receiving 
Belatacept and no calcineurin inhibitor agents demonstrated 
more immune reactivity, but reduced expression of profibrotic 
genes and increased expression of solute transporter genes, corre-
lating with the preserved renal architecture seen in these patients 
(18). To better understand how to optimally dose patients with 
immunosuppressive drugs, operationally tolerant patients were 
profiled (19), and informative genes were used to identify patients 
on full dose immunosuppression that may benefit from safe 

immunosuppression wean (19), after controlling for multiple 
clinical variables and confounders.

High-throughput technologies have also been expanded to 
study the role of microRNAs (miRNAs) in graft rejection in 
peripheral blood (20) and the allograft (18), and suggests that 
intragraft changes in miRNA levels are explained by the burden 
and composition of infiltrating cells in the course of injury.

The introduction of high-density protein arrays as allowed 
for the evaluation of serological responses to ~9,000 human 
full-length proteins on a single slide. This technology was used 
to understand the differential immunogenicity of different tissue 
compartments of the transplanted kidney (21), and identified that 
the renal outer cortex, glomerulus, and the deep pelvis antigens 
mount new autoantibody responses after organ engraftment, most 
of which may not be pathogenic. In addition, this technology was 
also used to evaluate the identity of novel non-HLA antibodies 
in patients with HLA-antibody-negative acute renal transplant 
rejection, and identified a novel target, Kinase C-ζ (PKCζ), as a 
dysregulated epitope in severe allograft injury (22). Additionally, 
using protein microarrays, Angiotensinogen and PRKRIP1 were 
identified as biomarkers of chronic kidney injury, with correlative 
results with hypertension in patients with high-antibody titers. 
These results suggested for the first time that autoantibodies are 
raised against previously unknown antigenic targets in the trans-
planted organ, which are likely exposed to the immune system of 
the recipient in the process of cellular damage in the organ (23).

Recent advances in small molecule identification technologies 
(e.g., mass spectrometry, surface enhanced laser desorption/ioni-
zation, liquid chromatography/mass spectrometry, nuclear mag-
netic resonance) have given rise to the application of proteomics, 
peptidomics, and metabolomics to transplantation. Urine is a rich 
biofluid source for biomarker discovery in organ transplantation. 
Shotgun proteomics provides us with a map the entire urinary 
proteome (24) in health and transplant injury states. Smaller 
fragments of the urinary peptidome, consisting of degraded 
byproducts of intact proteins by enzymatic cleavage, also provide 
insights into the perturbations in chemical balance during kidney 
injury (25, 26). Metabolomics has been used for identifying graft 
injury as well as for monitoring drug toxicity (27–29).
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Computational Challenges and 
Approaches for Selecting Biomarkers 
from High-Dimensional Data

The integration of hypothesis generation by high-dimensional 
data analysis is poised to fulfill the current unmet needs in 
organ transplantation, which relates to poor long-term survival 
despite improvement in short-term outcomes, the need for 
life-long immunosuppressive medications and their associated 
morbidities, and the lack of non-invasive markers for monitor-
ing and predicting graft injury, superior to current standards of 
monitoring. Computational biology expands from the traditional 
molecular biological method of studying pair-wise interactions 
into a network-based approach by integrating individual compo-
nents to model a complex system, thus beginning to understand 
disease at the level of regulatory pathways in tissues and organs, 
even in whole organisms, while also accounting for dynamics 
within regulatory networks. A large number of computational 
approaches have been developed to generate co-expression 
networks from protein binding data (30), functional annotations 
(31), and drug activity (32). Using these approaches, it has been 
shown that such networks have properties that are not otherwise 
discernable from the relations themselves, and have preferential 
connectivity that results in “hub” nodes, which are molecules that 
connect to a larger number of other molecules (33).

To date, a large number of biomarkers have been identified 
for various post-transplant conditions as markers of an ongoing 
injury (effect markers) or related to the actual causes of the injury 
(causal markers). Development of new drugs that reduce drug 
toxicity and chronic rejection requires identification of causal 
markers that can be targeted for novel therapeutics. The use of 
systems and computational biology is the critical next step for 
deeper understanding and the identification of causal markers of 
graft injury in transplantation.

One of the reasons for the limited impact of the high-through-
put studies in transplantation relates to low number of individu-
als and samples used resulting in lack of sufficient independent 
validation. As described in our previous review (6), searching the 
NCBI GEO for microarray studies in humans described with the 
term “transplant” yields 69 experiments, of which only 16 have 
more than 50 samples and only 6 have more than 100 samples. 
These numbers are even more disappointing when put into the 
context that these experiments are divided among four different 
organs (lung, kidney, liver, heart) studying at least three different 
conditions (acute rejection, chronic rejection, tolerance). The 
sample limitations relate to sample availability and assay cost, 
both of which truncate greater enrollment. We addressed the 
sample availability shortcoming by performing meta-analysis by 
integrating smaller independent experiments, and customized 
algorithms were generated to deal with experiment-specific 
technical biases, such as microarray platform or hybridization 
protocol (6, 34). This approach allowed for the identification of a 
core of 12 genes (BASP1, CD6, CD7, CXCL9, CXCL10, INPPD5, 
LCK, NKG7, PSMB9, RUNX3, TAP1, ISG20), called the common 
immune response module, which was a similarly dysregulated 
set of genes in acute rejection across tissue source; these genes 
were all upregulated in kidney, heart, liver, and lung rejection 

across 236 microarrays downloaded from GEO. Their biological 
relevance in graft rejection was further tested by repositioning 
two drugs against LCK (Dasatinib) and CXCL10 (Atorvastatin) 
in a murine heart transplant model of rejection; thus suggesting 
that FDA-approved drugs for indications other than transplant 
immunosuppression may be repositioned across the remainder 
of the gene-set to identify new drug targets for organ transplant 
recipients. In another example of an integrative analysis, Chen 
et  al. performed a meta-analysis using three transplant RNA 
microarray data sets from biopsies with kidney and heart acute 
rejection (35), and then the corresponding significant proteins 
(inferring gene/protein 1:1 mapping) coded for by these RNA 
were then screened as potential blood markers for acute rejection. 
This approach confirmed that three proteins (PECAM1, CD44, 
and CXCL9) were significantly over-expressed in blood samples 
in both kidney and heart transplant patients. These integrative 
approaches demonstrate that integration of data sets can reduce 
biological bias across experiments, experimenters, platforms, and 
tissue source, while allowing for the generation of novel hypoth-
eses and drug repositioning.

Data integration can also be performed across different types 
of molecular measurements. Li et  al. integrated antibody-level 
measurements from a protein array with renal compartment-
specific gene expression data (21) and demonstrated that 
post-transplant serological responses observed using protein 
microarrays were specific to the transplanted organ and to spe-
cific organ compartments.

The efficient selection of biomarkers to limit false negatives 
and false positives is another challenge for high-dimensional data 
analysis. A typical microarray experiment produces approximately 
50,000 data points per sample. An experiment with 50 samples will 
produce more than 2.5 million data points. Millions of data points 
are generated by SNP genotyping platforms for thousands of sam-
ples in a typical genome-wide association study. The amount of 
data generated increases again exponentially for next-generation 
sequencing population studies. Incorporation of computational 
skills into the curricula of transplantation training program needs 
to be a high priority, to arm the next-generation clinician scientist.

Various methods are used to limit false-positive/negative sig-
nals and reduce variables. These mainly use stepwise regression 
models (36, 37), principal component analysis (PCA) (38, 39), 
T-statistic, and correlation to clinical variables (7, 8, 40–43).

Stepwise-Based Models
Traditional Stepwise Methods
Many regression models are available to select a particular set 
of independent variables and the commonly used methods are 
stepwise techniques (36, 37). Traditional stepwise selection 
alternates between forward and backward regression selection, 
in which variables are added or removed that meet a selection 
criteria setting for entry or removal, until a final subset of vari-
ables make the model saturated. However, this stepwise method 
has essential problems. It applies methods intended for one single 
hypothesis test to many tests, leading to results biased to a certain 
degree, such as higher in R2 (explained variation/total variation), 
lower in standard errors and p-values than the actual values, and 
as models they can be complex to develop.
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Vorlat et al. used stepwise multiple regression and identified 
B-type natriuretic peptide (BNP) and age as the most important 
factors in evaluating outcomes after heart transplantation, after 
evaluating many variables, such as body mass index, age, BNP, 
norepinephrine dose, gender, and total ischemic time (37).

Lasso (Least Absolute Shrinkage and  
Selection Operator)
Lasso (least absolute shrinkage and selection operator) (44) is a 
penalized regression method for shrinkage and variable selection, 
and uses the equation:
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  i = 1, 2, …, n (n equivalent to sample size);
  j = 1, 2, …, p (p equivalent to omics gene number);
  yi = response variable of sample i, βj = coefficient for gene 

j, j = 1, 2, …, p, and xij = observation value of sample i and 
gene j.

Lasso estimation actually introduces a penalized constraint 
to minimize the usual sum of squared errors to get solution. 
This penalization is estimated by ∑ β ≤ s| | ,j  sum of the absolute 
coefficients.

If s is set to a large number, it does not affect Lasso estimation 
that actually acts as a usual multiple linear least squares estimates. 
Then, a large number of genes might be selected as biomarkers. 
However, if s is small (s  ≥  0), Lasso works as shrunken least 
squares regression and then only a few genes would be selected 
as biomarkers. Lasso has several limitations. For example, the 
gene number (p) is usually large and sample size (n) is small. In 
this case, at most n genes are selected by Lasso before the model 
saturates. In addition, Lasso tends to select the biomarker with 
greater variance (44) and it might likely ignore some important 
genes in a correlated group.

Elastic-Net
To overcome the limitations existing in Lasso, elastic-net adds an 
additional quadratic part ∑ β ≤2 tjj

 to the penalization to make it 
work for both variable selection and shrinkage (45). Many modi-
fications have been made to improve its prediction performance. 
Elastic-net and lasso are arguably the best methods so far for 
shrinkage and biomarker selection. Lasso and elastic-net were to 
select a best subset of 17 genes as biomarkers to predict the most 
informative acute rejection blood-based biomarkers (15).

Modified t-Statistic Methods
Prediction Analysis of Microarrays
Prediction analysis of microarrays (PAM) has been commonly 
applied in transplant (40, 46, 47). PAM uses the following equa-
tion to determine if a gene is significant for classification:
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It actually looks like t-statistic formula, where wk ×  si is the 
standard error of the numerator. The only modification is to add 
s0 as a fudge factor to avoid very large statistics for very small 
standard errors. Thus, PAM is a modified t-statistic to measure 
the difference between the mean of gene i in class k with the over-
all mean of gene i. A gene with a statistic of large absolute value 
discriminates one class from the rest. PAM then selects significant 
genes by then shrinking the dik toward zero.

This measurement in PAM actually shrinks each gene toward its 
overall mean cross classes. After this shrinkage, all class centroids 
become more similar to each other than before. This might not 
help to improve the overall discriminant accuracy in omics data.

Reeve et al. used PAM to select the most significant genes from 
186 microarrays to build a classifier system to predict acute rejec-
tion. These genes are mostly associated with interferon-gamma-
inducible or cytotoxic T-cell associated, such as CXCL9, CXCL11, 
GBP1, and INDO (47).

ClaNC
To circumvent the PAM limitations, an alternative classifier called 
ClaNC (42) has been developed. ClaNC uses standard statistics to 
select genes and does not shrink centroids, and it also selects class-
specific gene and allows a gene to be active only in one class. Kurian 
et al. used this algorithm to select 200 biomarkers from genome-
wide gene expression profiling and created a discriminant system 
for classifying three phenotypes in kidney transplantation (48).

Principal Component Analysis
Principal component analysis method selects biomarkers based 
on an eigengene score (38), score |cor= x Ei , | ,( ) ( )| cor , |x Ei  is 
the absolute value of Pearson correlation coefficient, where xi is 
a vector of gene i, and E is a eigenvalue.

Genes Selected by Correlating with  
Clinical variables
A subset of genes can also be selected by correlating gene expres-
sion level and clinical variables, such as patient survival or graft 
loss. This correlation can be measured by univariate Cox propor-
tional hazards scores that derived from Cox regression model. 
Genes that pass the interquartile range (IQR) filter are considered 
as significant (40, 41).

evaluation of Models and Biomarkers 
Requires Robust validation

Many biomarker systems published to date for transplant fail in 
the real world, partially due to lack of robust model validation. 
Models usually should be subject to cross-validation, a technique 
for evaluating the performance of predictive models, like linear 
models for discriminating acute rejection against stable samples, 
with the use of independent samples in the different subsets. 
Different types of cross-validations are available. Repeated random 
sub-sampling validation randomly splits all samples into subsets of 
samples, a training set, and validating set. The training subset is 
used to fit a model and the validating set is for examining predictive 
accuracy. A large iteration of splits (e.g., 10,000) is usually run to 
avoid splitting sample bias. The accuracy is calculated by the aver-
age of all iterations. k-fold cross-validation randomly splits total 
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samples into k subgroups with equal size. One out of k subgroups 
is treated as testing validation and the remaining k − 1 subgroups 
are used as training data to train models. The whole process is run 
k times (k folds). Each time, each of the k subgroups is used as 
validation but each group is used only once. The sensitivity and 
specificity can be calculated by combined result from each run. 
We have extensively used these systems of study (15, 19), and 
the process of robust cross-validation has also been extensively 
reviewed in a recent publication by Roedder et al. (49).

The binary classified performance of an entire biomarker 
system should typically be evaluated by receiver operating char-
acteristic curve, ROC curve. ROC is a graphical plot of the true 
positive rate (sensitivity) against specificity or false positive rate 
(1-specificity) at various threshold settings. The sensitivity is equal 
to the proportion of correctly classified positive observations, and 
the specificity is calculated as the proportion of correctly classi-
fied negative observations. Area under the curve (AUC) serves as 
estimated index of overall accuracy and serves a useful practice 
to compare different ROCs, and it is usually plotted within ROC 
curve. The biomarker panels developed for graft rejection and 
tolerance in recent studies provide ROC curves of >85% (15, 19).

Prediction Models for Biomarker  
Risk Analysis

One of the most interesting goals in developing biomarker systems 
is to predict and monitor the phenotype outcome of transplanta-
tion. For example, selecting biomarkers from short-term data (e.g., 
3 months biopsy profiling) may be associated with a phenotype of 
long-term (e.g., 1-year graft chronic injury) outcomes. Predictive 
models have been applied to reach this purpose. Although all 
machine learning models have predictive functions, such as 
Support Vector Machine (38, 39) and LASSO described above, 
two out of them, linear discriminant analysis (LDA) and logistic 
regression, have been widely applied in transplant biomarker 
systems to classify the discrete classes of variables (40, 48, 50, 51).

Linear Discriminant Analysis
Linear discriminant analysis has been widely applied to trans-
plant biomarker development (40, 48). LDA is a classifier (52) 
that classifies samples to their nearest given centroid. Assuming 
that we have k classes with prior probabilities πk, then LDA can 
be defined below:
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2x u  is the square of the Mahalanobis distance between 
sample value (x) and centroid or mean (u).

Logistic Regression
Logit link function can be understood as follows:
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The left side of logit link function above can be signed as Y, 
and then this function can be simply written as Y = β0 + βX, so it 
can actually be understood as a linear regression. The phenotype 
variable in logit could be binary value (e.g., AR vs. non-AR) or 
multinomial.

Correlation

Besides machine learning, other mathematical methods have also 
been employed to establish quantitative biomarker system. Here, 
we introduce one, kSORT (15), based on Pearson correlation 
coefficients of multiple genes (12 genes). Genes for kSORT were 
selected by Lasso and elastic-net. Binary classification of AR vs. 
non-AR was based on accumulated scores. These scores were 
accumulated from running correlation for 13 times with 12 gene 
panels. The score was assigned as 1 (if greater correlation to AR) 
or −1 (if greater correlation to non-AR). After 13 runs, the final 
score of a sample would be in the range from −13 to 13. This rank 
is then used as an index of a risk factor for acute rejection.

Data integration Strategies

Many omic experiments have been performed with different 
platforms by different laboratories. These omics data cannot be 
treated as a single experiment and a meta-analysis strategy should 
be applied to integrate these data to get a panel of prioritized 
genes. Several techniques and theories have been proposed (34, 
53, 54). Here, we only briefly described four methods employed 
in transplant biomarker development.

Normalization and Batch effect Removal
For combining small set of microarray data with a big data set, 
normalization can be performed using Lowess (locally weighted 
scatterplot smoothing) or Loess (55) (later generalization of 
Lowess), and then batch effect should be removed. Lowess is a 
non-parametric regression method for fitting a smoothing curve 
to a dataset by combining regression models and weights of local 
neighbors. It splits the microarray intensity curve into a series 
of windows by a given window size and then performs regres-
sion locally with nearest weight to smooth the curve. A larger 
window size produces a smoother curve, and a smaller window 
size generates more local variation. After normalized, batch effect 
can be removed by using empirical Bayes methods (56) before 
combining the data (57).

Frozen Robust Multiarray Analysis
Robust multiarray analysis (RMA) is a pre-processing algorithm 
that pre-processes microarray data by background correction, 
quantile normalization, and summarization in a modular way by 
fitting the normalized data with models. It is widely used, but 
RMA cannot be used in clinical data directly because these data 
are normally in small batches, and clinical samples are normally 
processed individually and separately and they are comparable. 
Therefore, a modified RMA, frozen robust multiarray analysis 
(fRMA), has been proposed. fRMA computes and freezes probe-
specific effects and variances of a dataset, and with new data sets 
coming, these precomputed and frozen info are used in concert 
with those from the new coming microarrays to normalize and 
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summarize the data. Thus, it provides a way to combine data 
analyzed individually or in small batches (53).

When merging multiple datasets, the raw data (e.g., CEL file 
for Affymetrix array) are usually used in order to pre-processing 
all data (e.g., outlier deletion and normalization) with the same 
algorithm and the similar criteria. If multiple probes exist for a 
transcript, the mean of probes is used to represent the expression 
level of this transcript. The genome annotation IDs (e.g., refGene 
IDs) universal for all platforms are usually employed to combine 
the data.

p-value Meta-Analysis
p-value meta-analysis uses Fisher’s method to combine the 
squares of the p-values as defined below (34):

 
∑χ ( )= −

=

2 log2
2

1

pk
i

k

i

 

where k = experiment number, pi is devised from each experiment. 
This p-value combination would generate a list of genes with meta 
p-value for each gene. Genes with up- and down-regulation is 
separated into two groups during combining p-value but only one 
with minimum p-value is selected. The meta p-value can then 
further be corrected by multiple hypothesis testing to obtain 
adjusted p-value. The final adjusted p-value is used to prioritize 
genes. Lower in adjusted p-value ranked in the top.

Fold-Change Meta-Analysis
Another prioritized gene method is based on fold-change meta-
analysis as defined below (34):
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where,

  fi = fold-changes in sample i;
  wi = reverse variance of the fi.

It should be noted that meta-analyses might produce different 
rank prioritizations of genes differentially expressed across stud-
ies, and the final biological relevance of the selected genes also 
becomes important in the final gene selection.

Conclusion and Future Directions

In order to take our understanding of injury mechanisms in 
organ transplantations to the next level, integration of molecular 
measurement data from different experiments and different 
technologies is required. Furthermore, these integrated data 
need to be analyzed at a global, systems biology level to identify 
better diagnostic and therapeutic markers. Predictive biomark-
ers should cover diverse genetic and epigenetic backgrounds. 
Clinical and pathology-based variables should be considered as 
confounding variables during biomarker development. Next-gen 
sequencing will provide much higher resolution than microar-
rays to get insights into the diversity of injury and patient-specific 
responses. With new advances in mathematical theories, a new 
biomarker system may include many variables from different 
biology aspects, such as genetics, epigenetics, clinical variables, 
and pathology.

Biomarker discovery suffers from difficulties in selecting 
“noise” form “true biology” as this discovery relies on human 
studies and human samples, which are inherently associated with 
sample and tissue variation, and often result from the use of mul-
tiple measurement platforms, with experimental methodology 
variations, all of which challenge the process of robust biomarkers 

TABLe 1 | Primary computational algorithms for transplant biomarker discovery.

Name environment Features and 
functions

Limitations Availability web resources

Biomarker selection
Traditional stepwise methods R/SAS Stepwise regression High R2, low SE Free/commercial www.r-project.org, www.sas.com
LASSO and Elastic-net R/SAS Shrinkage and 

biomarker selection
Model could be saturated for 
Lasso when simple size is small

Free/commercial www.r-project.org, www.sas.com

Prediction analysis of 
microarrays (PAM)

Excel/R Shrinkage and 
biomarker selection

Might not improve the overall 
discriminant accuracy

Free http://statweb.stanford.edu/~tibs/PAM/

ClaNC R Classification and 
biomarker selection

Limited improvement in 
discriminant accuracy

Free http://www.stat.tamu.edu/~adabney/clanc/

Principal component analysis R/SAS Classification and 
biomarker selection

Sometimes it is hard to interpret 
data

Free/commercial www.r-project.org, www.sas.com

Prediction models
Linear discriminant analysis 
(LDA)

R/SAS Classification and 
prediction

Linear Free/commercial www.r-project.org, www.sas.com

logistic regression R/SAS Classification and 
prediction

Requires large sample size Free/commercial www.r-project.org, www.sas.com

Data integration strategies
Normalization and batch 
effect removal

R Pre-processing Might not fit clinical data directly Free https://www.r-project.org/

Frozen robust multiarray 
analysis (fRMA)

R Pre-processing Requires large data set and 
platform limitation 

Free https://www.r-project.org/

P-value meta-analysis Any/R Gene prioritization Significance test only Free https://www.r-project.org/
Fold-change meta-analysis Any/R Gene prioritization Fold-change-based effect size only Free https://www.r-project.org/
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discovery. Hence, publications suggest that a set of biomarker 
that works well for one center or one set of patients based on 
well-conducted statistical methods may not work as well for 
another center or a different set of patients with variable demo-
graphics or other previously unrecognized clinical confounders. 
It is also important to recognize that most of the biomarkers in 
transplantation are still in development, as they do not have the 
support of robust prospective clinical trials. The biomarkers also 
face the challenge of their correlation being based on histology as 
the “gold standard,” a standard that we know is not perfect, as it 
underdiagnoses alloimmune injury and is not really a predictive 
measure. Thus, most of the biomarkers in research are really just 
“associated” with histologic findings. It is still unclear if using 
these biomarkers will ever actually improve graft survival as this 
requires the conduct of large clinical trials with long-term follow-
up, making this research very expensive and often untenable in 
clinical practice; thus, most omic studies are underpowered with 

it comes to predicting graft loss. Biomarkers often do not dictate 
the type of therapy, but accurate prediction of immune risk may 
allow for their use as companion diagnostics for specific drugs 
or for safe immunosuppression minimization. Biomarkers may 
also not always obviate the need for a biopsy, as often they do not 
differentiate between infections such as polyoma and rejection 
as both are associated with graft inflammation. Thus, there may 
still be the need for confirmatory biopsies for the cause or type 
of organ injury.

The fragmented and incomplete nature of the existing knowl-
edge bases poses a challenge to achieving these goals, and wider 
adoption of a policy to submit raw data into public repository 
should be required by the transplant-related journals. It is also 
imperative that the next generation of clinician scientists is armed 
with computational skills that will ensure novel questions contin-
ued to be posed and answered, enabled by the proper integration 
of diverse sources of data.
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Liver transplantation offers a unique window into transplant immunology due, in part, to 
the considerable proportion of recipients who develop immunological tolerance to their 
allograft. Biomarkers are able to identify and predict such a state of tolerance, and thereby 
able to establish suitable candidates for the minimization of hazardous immunosuppressive 
therapies, are not only of great potential clinical benefit but might also shed light on the 
immunological mechanisms underlying tolerance and rejection. Here, we review the 
emergent transcriptomic technologies serving as drivers of biomarker discovery, we 
appraise efforts to identify a molecular signature of liver allograft tolerance, and we consider 
the implications of this work on the mechanistic understanding of immunological tolerance.

Keywords: liver, transplant, tolerance, biomarkers, transcriptome, gene, transplantomics

introduction

The liver represents a unique window to the immune system. Unlike other transplanted organs, it 
exhibits immunoregulatory, tolerogenic properties, enabling an allograft to be more readily spontane-
ously accepted. The phenomenon of operational tolerance, i.e., stable allograft function in spite of 
complete discontinuation of immunosuppressive therapy, while rarely achieved in cases of renal 
transplantation, for instance, is relatively commonplace in liver transplant recipients. Indeed, the 
prevalence of operational tolerance following liver transplantation appears to be far greater than 
previously appreciated. Until recent clinical trial evidence to the contrary, an average estimate was 
that approximately 20% of liver allograft recipients were able to successfully be weaned off immu-
nosuppression, and thereby to achieve a state of induced operational tolerance (1, 2). Benítez and 
colleagues, however, showed that a remarkable 42% of 98 liver allograft recipients undergoing weaning 
of immunosuppression achieved operational tolerance. Furthermore, the propensity to tolerance 
was noted to develop over time, with those who had had their graft for 10.6 years or more achieving 
tolerance in 79.2% of cases (3). While these results should be taken with some caution, the inescapable 
implication is that a significant proportion of liver transplant recipients, particularly if in the second 
decade of graft survival, are unnecessarily subjected to immunosuppressive therapy and the significant 
risks associated with it. The incentive, therefore, to search for a biomarker by which to identify patients 
amenable to drug minimization, becomes clear. Furthermore, the pursuit of such biomarkers might aid 
in the fuller characterization of the immunological phenotype associated with tolerance, and so offer 
a mechanistic understanding of the processes by which tolerance is achieved and might be induced.

Major advances have been made in recent years in the fields of genetic and molecular biology. 
Large international collaborations such as the human genome and proteome projects enabled further 
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technological developments of high-throughput technologies. 
Broadly, with new technologies, arise new investigative paradigms. 
Reductionist scientific approaches have been overtaken, to an 
extent, by the generation of vast biological datasets enabling the 
study of complete sets of molecules. The umbrella neologism 
“omics” has appeared in order to describe these changes and to 
classify emerging fields – metabolomics, proteomics, transcrip-
tomics, and so on. The systems biology approach has developed 
to offer a computational and mathematical framework enabling 
the integration and analysis of data from these seemingly disparate 
fields. The application of these developing fields to the arena of 
transplantation, with a view to the personalized treatment of 
patients, has recently been dubbed as “transplantomics” (4, 5).

Regarding the identification of biomarkers of tolerance, of 
all the emerging work in transplantomics, the high-throughput 
measurement of the transcriptome has shown the greatest promise 
and formed a focus of research. Here, we review the application 
of transcriptomic technologies to the unique window proffered 
by liver transplantation tolerance. We set out an overview of the 
technologies and of the associated analytical tools. We review 
recent progress in developing novel biomarkers of tolerance, 
and look at their application in trials of immunosuppression 
withdrawal. We discuss the limitations and pitfalls associated with 
high-throughput transcriptomic research. Finally, we consider the 
implications of these tools on our mechanistic understanding of 
operational tolerance and how this might guide future therapeutic 
developments.

Principles of Transcriptome Analysis

The “transcriptome” describes the complete set of messenger 
RNA (mRNA) and non-coding RNA (ncRNA) transcripts, which 
include micro RNA (miRNA), small nuclear RNA (snRNA), and 
small nucleolar RNA (snoRNA) among others. Comprehensive 
understanding of the transcriptome must also take into consid-
eration further complexities – splicing isoforms, gene-fusion 
transcripts, post-translational modifications, and epigenetic 
controls for example. Thus, “Transcriptomics,” can be understood 
as the large-scale study of transcriptional products as well as their 
regulation and modification (5, 6).

Transcriptome Profiling
Transcriptome profiling can be subdivided into two general 
approaches for simplicity – the candidate gene strategy focuses on 
single gene transcripts, while high-throughput approaches allow 
for the simultaneous measurements of thousands of transcripts. 
The first candidate gene-based studies utilized the Northern Blot 
(7). This method fixed RNA on a solid support, following its separa-
tion by electrophoresis, and then the presence and abundance of 
the fixed RNA species of interest were deduced by hybridization 
with complementarily labeled radioactive nucleic acid probes. 
The low throughput and requirement of large quantities of input 
RNA made this technique cumbersome. Reverse transcriptase 
polymerase chain reaction (RT-PCR) is now the method most 
commonly used for candidate gene transcript measurement and 
has broad applications in the clinical setting (8). In this approach, 
mRNA is reverse transcribed to complementary DNA (cDNA) and 

amplified with primers specific for the gene of interest using PCR. 
Quantitative measures of mRNA abundance are made possible 
by monitoring the accumulation of PCR product (9). While the 
method requires only small quantities of input RNA, is robust, 
cost-effective, and rapid, the throughput remains in the order of 
hundreds of known transcripts at a time and so is not amenable 
to transcriptome-wide investigations (10).

Microarray technology, on the other hand, has enabled the 
rapid, simultaneous measurement of the whole transcriptome. 
mRNA is hybridized to an array of oligonucleotide or cDNA probes 
that are robotically spotted onto a solid support chip, thereby 
allowing the identity of each probe to be defined by its location. 
Hybridization intensity to a particular probe is related to the abun-
dance of corresponding transcript (11, 12). Microarray technology 
has been applied to the gamut of transplantation biology over 
the last decade, including studies of acute and chronic rejection, 
and more relevant herein, the understanding of immune tolerance 
and identification of biomarkers. Microarrays have become the 
best standardized, most affordable, and widely accessible of the 
high-throughput omics technologies (13).

Microarray experimental Design and Analysis
A typical microarray generates expression levels for thousands 
of genes, thereby producing vast quantities of data. The major 
challenge is to analyze and understand these data, to distinguish 
true from misleading signals on the one hand, and to uncover 
clinically relevant findings on the other. The steps typically 
involved in a microarray experiment are (i) experimental design, 
(ii) sample preparation and processing, and (iii) data analysis and 
interpretation. Careful experimental design is crucial. It depends 
heavily on the array technology used and, of course, on the research 
objectives (14, 15). Objectives are often characterized as either 
“class comparison” or “class prediction” (16). In this setting, the 
former describes attempts to identify genes differentially expressed 
between operationally tolerant recipients and another comparison 
group. The latter involves the development of multi-gene formulae 
able to predict which patients might exhibit tolerance based on 
their expression profiles. The high-dimensional datasets generated 
cannot be adequately analyzed with conventional comparative 
statistics. The complexity of analysis and the potential pitfalls 
require a team approach and a good understanding of the relevant 
software required for the steps of quality control, normalization, 
clustering, classification, and pathway analyses (8, 17).

More Data Herald More Challenges…
Rigorous quality control criteria help to ensure high quality 
data collection from arrays that are reproducible and compa-
rable. The MicroArray Quality Control project (MAQC), an 
unprecedented, community-wide effort to appraise microarray 
reliability and quality control metrics, reported that, with care-
ful experimental design and appropriate data transformation 
and analysis, data can be reproducible and comparable across 
laboratories, institutions, and researchers (18). A number of 
commercial software packages have been developed to aid 
the quality control process (19–22). Specialist software is also 
available to aid with data normalization, a crucial step in the 
conversion of raw data into scaled relative expression levels 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/


June 2015 | Volume 6 | Article 30419

Mastoridis et al. Liver transplant tolerance transcriptomic biomarkers

Frontiers in Immunology | www.frontiersin.org

(8, 23, 24). Statistical packages are also utilized for calculating 
differential expression, controlling for false positives, selecting 
significance cut-offs, the clustering of genes thought to be 
similar or co-regulated, and final pathway analyses, enabling 
the identification of gene sets associated with specific biological 
functions (25–27).

Much of the complexity involved in the statistical analyses stems 
not only from the high numbers of genes measured per sample 
(“curse of dimensionality”) but also the disproportion between this 
and the limited numbers of samples available for testing (“curse 
of scarcity”) – a difficulty often faced in biomarker research. This 
is overcome, in part, through adjusted p-values (q-value) such 
as false discovery rates (5). Tools for analysis are often free to 
download and now widely used. They include significance analysis 
of microarrays (SAM), GenePattern, and GenMAPP (5). Despite 
robust analytical tools, an undiscerning researcher can erroneously 
use data to “discover” sets of genes that are able to differentiate 
the samples on which the gene algorithm modeling was based 
even when the data are completely random. This problem should 
be circumvented by ensuring that a gene model is tested on a 
validation group that is independent from the training set used to 
create the model in the first place. This approach is more desirable 
than cross-validation techniques sometimes employed (28–30). 
Further, technical validation of microarray results on a different 
transcriptional platform, usually RT-PCR, is also recommended 
to minimize inter- or intra-platform variability in hybridization 
noise that may arise between batches or laboratories.

In order to verify the reproducibility of analyses and to cor-
roborate clinical validity, public microarray databases serve as 
essential repositories. In the transplant setting, where studies 
often include only small numbers of recipients, these resources 
are especially important. The Functional Genomics Data (FGED) 
Society (formerly the MGED Society), a non-profit, volunteer 
run organization promoting the sharing of high-throughput 
research data, helped to define the Minimum Information About 
a Microarray Experiment (MIAME) guidelines for data content 
standards. The Society also set the standard data exchange format, 
known as the Microarray Genetic Expression Markup Language 
(MAGE-ML). Thorough reviews of the numerous databases in 
existence have been set out in the literature (31).

Microarray data output is necessarily dependent on the qual-
ity of the original biological samples. RNA is considerably more 
susceptible to rapid enzymatic degradation than DNA, thereby 
making efficient processing and appropriate storage using robust 
protocols essential. Microarrays offer snapshots of gene expression. 
The kinetics of transcripts and the variability of changing levels of 
expression in relation to their baseline remain little understood and 
so are not amenable to statistical interpretation (32, 33). Matters 
are further complicated by tissue heterogeneity, as is the case in 
blood samples for instance. This heterogeneity makes anatomical 
detail in the microarray approach difficult, in that it is difficult 
to know which cells’ gene expression profiles are being analyzed. 
Cell sorting and microdissection are ways to tackle this difficulty, 
as is the application of statistical deconvolution methods such 
as the cell-specific significance analysis of microarrays (csSAM) 
(34). While peripheral blood has been at the forefront of efforts to 
identify biomarkers, the possibility of interrogating RNA extracted 

from paraffin embedded biopsies is a useful addition to investiga-
tive efforts.

It becomes clear then, that to discern biological fact from mere 
noise, it is essential that due attention is paid to the analytical 
complexities involved in microarray interpretation. Although, as 
we will see, microarray profiling has yielded important data in the 
pursuit of biomarkers of tolerance, and the technology is becoming 
more commonplace in transplantation research, the promise of 
emerging next-generation sequencing (NGS) technologies is likely 
to eclipse many microarray applications. In essence, NGS involves 
the sequential identification of the bases of small fragments of 
DNA from signals, which are emitted when each fragment is re-
synthesized from a DNA template strand. By extending this process 
across millions of reactions in parallel, the technology enables 
rapid sequencing of large stretches of DNA base-pairs spanning 
entire genomes (35).

In part, the promise of NGS stems from sidestepping some 
of the aforementioned problems inherent in microarray technol-
ogy. NGS is highly reliable, and has greater dynamic range as it 
directly quantifies discrete digital sequencing readouts as opposed 
to relying on hybridization steps. Loss of specificity due to cross-
hybridization is controlled; the detection of rare and low abundance 
transcripts is made more achievable; the unbiased detection of 
novel transcripts is made possible since the need for transcript-
specific probes utilized by microarray become redundant; and 
errors in probe design, which are relatively common in microarray 
chips, are avoided. In addition to these technical considerations, 
NGS technology is advancing at such a pace that the prospect of 
“sequencing everything” (genome, epigenome, transcriptome) in 
a timely and cost-effective manner is well within reach. In the 
4 years between 2007 and 2011, a single sequencing run’s output 
increased 1000×, far outstripping Moore’s law, while the cost of 
sequencing the entire genome has fallen from over 150,000 USD in 
2009, to less than 5000 USD in 2014 (36). Of course, NGS presents 
its own technological and bioinformatics challenges – which have 
been comprehensively reviewed elsewhere (37, 38).

identification of Tolerance Biomarkers

Much hope has been placed upon transcriptomic technologies 
as the drivers of a “new era of individualized therapy” (4). The 
application of these technologies in the discovery of novel diag-
nostic and predictive markers has spanned diverse transplantation 
research fields, including the development of predictors of allograft 
risk, the identification of biomarkers of acute and chronic allograft 
injury, the assessment of organ suitability and viability during the 
preservation period, and forming the focus here, the discovery of 
biomarkers of tolerance.

Much of this work is in its infancy; transcriptomic investigation 
of biomarkers of liver allograft tolerance began less than a decade 
ago (39). Already though, biomarker-based diagnostic tests have 
gained regulatory approval and have reached the market (40–42). A 
diagnostic kit based on an 11-transcript set identified with micro-
array technology is used to non-invasively identify rejection in 
heart transplant recipients (41). As we will see, biomarkers of liver 
transplant tolerance have also yielded extremely promising results 
showing good potential for clinical translation in the near future.
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Martínez-Llordella and colleagues were the first to use microar-
ray technology for the gene expression profiling of blood samples 
from operationally tolerant liver transplant patients (39). This 
retrospective, cross-sectional study compared 16 operationally 
tolerant recipients to 16 recipients failing to undergo immunosup-
pression withdrawal, and found 462 positively and 166 negatively 
regulated genes. Functional analysis revealed that tolerance expres-
sion profiles were enriched in gamma-delta T (γδ T) cells and 
natural killer (NK) cells (see Table 1). Genes involved in mRNA 
processing, protein biosynthesis, DNA repair, cell cycle control, 
Interleukin 2 receptor signaling, and transcription regulation 
were also noted to be differentially expressed. While this was 
a first step toward proof of principle, there were considerable 
methodological limitations. One difficulty common to all studies 
of tolerant patients is the selection of an appropriate control group. 
Stable transplant patients are sometimes used as a control, but 
the immunosuppressive medications they receive may skew any 
comparative interpretations. Another approach is to use healthy 
controls to circumvent the concerns with immunosuppressive 
therapy, but in this case the absence of transplantation becomes a 

significant limitation in itself. Without a perfect control popula-
tion, one reasonable approach is to use multiple control groups. In 
an attempt to address other methodological limitations with their 
first study, Martínez-Llordella’s group followed up with a more 
robust analysis of a larger cohort of patients and incorporated 
both training and validation sets, as well as the necessary cross-
validation checkpoint procedures (43). Of 1932 differentially 
expressed genes identified in this follow-up study, RT-PCR valida-
tion of 68 promising candidate genes was performed with good 
correlation shown between platforms. Utilizing a novel modeling 
approach based on the misclassified penalized posterior (MiPP) 
algorithm, three optimally parsimonious gene signatures were 
identified, containing 2, 6, and 7 genes, respectively, and altogether 
comprising 12 different genes (see Table 1). These signatures were 
shown to be capable of accurately predicting the clinical status not 
only of the group of recipients from whom they were derived but 
also of an independent validation cohort of 23 patients. When 
these gene signatures were evaluated against a cohort of stable 
recipients on maintenance immunosuppression, they predicted 
that 26% of these patients would be tolerant; a prediction that is 

TABLe 1 | Studies using microarray transcriptomic profiling to identify biomarkers of liver transplant tolerance.

Study Study population Tissues 
analyzed

Microarray 
platform

Summary/significance Reference

Martínez-Llordella 
(2007)

16 OLTT; 16 nOLTT Blood Affimetrix Retrospective, cross-sectional study (39)
462 up-regulated, 166 down-regulated genes identified
OLTT expression profiles enriched in gamma-delta T cells and natural 
killer cells (CD94, NKG2D, NKG7, TRD@, KLRC1, KLRC2, KLRB1, 
CD160)

Kawasaki (2007) 11 OLTT; 11 HV Blood Agilent Retrospective, cross-sectional study (46)
627 up-regulated and 90 down-regulated genes identified
No independent data validation steps performed

Martínez-Llordella 
(2008)

28 OLTT; 33 nOLTT Blood Affimetrix Retrospective, cross-sectional study (43)
Identification of three gene signatures, containing 2, 6, and 7 genes, 
respectively, and altogether comprising 12 different genes (KLRF1,  
SLAMF7, NKG7, IL2RB, KLRB1, FANCG, GNPTAB, CLIC3, PSMD14, 
ALG8, CX3CR1, RGS3)

Lozano (2011) 12 OLTT; 12 nOLTT; 
12 OKTT; 12 nOKTT; 
12 HV

Blood Affimetrix Retrospective, cross-sectional study, multicenter study (47)
Enrichment of B cell-related transcript in OKTT, stable over time and 
across cohorts. Enrichment in natural killer cells in OLTT. Liver and 
kidney tolerant recipients exhibited distinct transcriptional and cell 
phenotypic patterns with little overlap

Bohne (2012) 33 OLTT; 42 AR Blood and 
biopsy

Affimetrix Prospective, multicenter trial of immunosuppressive withdrawal in liver 
transplant recipients

(48)

Enrichment of natural killer and gamma-delta cell transcripts 
corroborated
Accurate prognostic model developed using intragraft expression 
profiles, mainly enriched with genes involved in iron homeostasis

Li (2012) Pediatric: 16 OLTT; 19 
nOLTT; 6HV; 22 STA; 
20 MIS
Adult: 17 OLTT; 21 
nOLTT; 19 STA

Blood Affimetrix and 
Agilent

Amalgamation of publically available gene-expression data, and data 
generated in two US centers of pediatric liver transplant recipients

(49)

Identification of 13-gene signature, of high predictive accuracy, and 
independent of recipient age, donor type, and concomitant viral 
infection
Enriched in natural killer cell transcripts (SENP6, FEM1C, ERBB2,  
AKR1C3, MAN1A1, UBAC2, GPR68, NFKB1, MAFG, BT3G, ASPH,  
PTBP2, PDE4DIP)

OLTT, patients exhibiting operational liver transplant tolerance; nOLTT, patients not achieving a state of operational liver transplant tolerance; OKTT, patients exhibiting operational 
kidney transplant tolerance; nOKTT, patients not achieving a state of operational kidney transplant tolerance; HV, healthy volunteer; STA, stable under standard immunosuppressive 
therapy; MIS, minimally immunosuppressed; AR, acute rejection.
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roughly equivalent to the prevalence of tolerance indicated by the 
literature (1, 44, 45).

Mechanistic interpretations of these findings were hampered 
by the retrospective study design and the lack of simultaneous 
molecular analyses of allograft tissue. These issues were addressed 
in a prospective, multi-center immunosuppression withdrawal 
trial in liver transplant recipients, as reported by Bohne and col-
leagues (48). Of 75 recipients completing the trial, 42 underwent 
rejection, while 33 were successfully weaned off immunosuppres-
sion, thereby achieving a tolerant state. Microarray and RT-PCR 
analyses of both peripheral blood and the grafts themselves were 
conducted. While previous conclusions regarding peripheral 
blood mononuclear cell (PBMC) enrichment in NK and γδ cells 
were corroborated, of special interest is the fact that, in side-by-
side comparisons, liver tissue-derived transcriptional signatures 
proved more robust, accurate, and reproducible than PBMC 
derived signatures. The intragraft expression profile was mainly 
enriched with genes involved in iron homeostasis, and showed 
no overlap with genes identified from PBMC. The role of iron 
redistribution is a well-established antimicrobial strategy and has 
been shown to play a significant part in pathogenic infection of 
the liver, where iron overload is associated with poorer outcomes 
(50–52). Whether this is a property mediated through effects on 
pathogen growth, or on the host immune response itself is unclear. 
What this study is first to highlight, though, is the possibility that 
the dampening of alloreactive immune responses required for the 
establishment of tolerance may be dependent on the iron-store 
status of the allograft.

Liver biopsy tissue was also analyzed in a more recent study 
by Zhao and colleagues looking at a cohort of pediatric patients 
(53). While previous work had already identified the enrichment 
of γδ T cell subpopulations and the genes associated with their 
expression in the peripheral blood of tolerant recipients, Zhao’s 
group examined these cells at the transcriptional level within 
the graft itself. Two prominent subsets of γδ T cells have been 
defined based on their δ chain – Vδ1 and Vδ2 T cells. Vδ2 cells 
are normally the predominant subset in blood and are involved in 
the inflammatory response. Vδ1 cells normally reside and are pre-
dominant in mucosal surfaces, possess potent immunoregulatory 
and suppressive capacities, and have been shown to emerge into 
the peripheral blood to a degree, which gives them predominance 
over Vδ2 cells in tolerant liver transplant recipients (39, 54). Zhao 
et al. showed that Vδ1 cells also accumulated within the grafts of 
operationally tolerant recipients in an antigen driven process, and 
that the complementarity-determining region 3 (CDR3) sequence 
of the δ chain of these Vδ1 cells specifically undergoes oligoclonal 
expansion, thereby suggesting that tolerance might be identified 
through sequencing analysis of these intragraft cells.

In the largest analysis of transcriptomic data pertaining to 
transplant tolerance, Li and colleagues extended previous work 
by developing a tolerance signature independent of recipient age 
and donor source, cause of end-stage liver disease, or concomitant 
viral infection (49). This was achieved through the amalgama-
tion of living and deceased donor and pediatric, as well as adult 
data from across different clinical centers. The 13-gene tolerance 
signature identified (Table 1) was highly associated with NK cells, 
corroborating earlier work, and proved to have striking predictive 

accuracy, exhibiting 100% sensitivity and 83% specificity. This 
degree of predictive capacity would appear to obviate the need 
for the biopsy derived gene signatures, thought to be of superior 
utility as biomarkers of tolerance in earlier studies (43).

The benefits of identifying robust non-invasive biomarkers 
over those derived from biopsy tissue are self-evident. Non-
coding transcripts such as miRNAs have been shown to be 
more stable in peripheral blood than mRNA, have been shown 
to be implicated in the control of genes relevant to alloreactive 
immune responses, and with the advent of NGS techniques offer 
the promise of novel PBMC-derived tolerance signatures (55, 56). 
Using miRNATaqman low-density arrays targeting 381 human 
miRNAs, Danger et al. reported on the modulation of expression 
of eight miRNAs in peripheral blood samples, nine tolerant kidney 
transplant recipients as compared to 10 patients with stable renal 
function under immunosuppression (57). They noted that B cells 
from the operationally tolerant group overexpressed miR-142-3p, 
and that this expression was not modulated by immunosuppres-
sion. The stability of miRNA in biofluids allowed Lorenzen et al. 
to investigate miRNA levels in the urine of a small retrospective 
cohort of kidney transplant recipients, and to identify miR-210 
as a reliable marker of acute rejection and predictor of long-term 
graft function (58). In a multicentre cohort of renal allograft 
recipients, Suthanthiran and colleagues prospectively validated a 
three-gene urinary mRNA signature [interferon inducible protein 
10 (IP-10) mRNA, 18S rRNA, and CD3ε mRNA] (59). Their results 
represent a major step toward achieving non-invasive diagnosis 
and prediction of acute allograft rejection, and highlight the utility 
of pursuing biomarkers across varied tissue and biofluid samples. 
The success of miRNA biomarkers in studies of renal allograft 
tolerance and rejection has helped to instigate some early work in 
rodent models of liver transplant tolerance, while human studies 
are still awaited (60, 61).

As highlighted by miRNA biomarkers, it would be remiss to 
conclude this review of transcriptomic research into biomarkers 
of liver transplant tolerance without reference to the important 
cross-fertilization of ideas, of methodological approaches, and of 
data and sample sharing with research groups investigating kidney 
transplantation tolerance. Transcriptomic research into kidney 
transplantation faces some unique challenges, the scarcity of 
patients able to achieve operational tolerance being one important 
example. Fewer than 200 cases of kidney operational tolerance 
have been described over the last 40  years (62). Nevertheless, 
with the successful development of research consortia in this 
field, a number of transcriptional studies have been successfully 
undertaken (47, 63–69). Very broadly, these reports presented gene 
lists converging toward a B cell signature of tolerance, and in so 
doing corroborated other data showing that both the percentage 
and the absolute number of B cells are increased in operation-
ally tolerant kidney allograft recipients (64, 65, 70, 71). Despite 
efforts to coordinate these studies, reports on kidney transplant 
tolerance have been extremely heterogeneous in terms of the 
techniques used, the controls groups drawn upon, and the vari-
ous clinical profiles of the patients studied. Unsurprisingly then, 
overlap between the gene-markers identified between research 
groups has been poor, raising questions about their reliability 
and about their eventual applicability in clinical contexts (72). 
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Similarly, while identifying shared features of tolerance between 
kidney and liver transplant recipients would be helpful in finding 
common mechanistic processes underpinning tolerance induc-
tion, in developing therapeutic strategies, and in identifying 
novel biomarkers, it is the case that comparisons of data from 
disparate studies can be problematic. Array platforms often vary 
significantly in the probes they have in common; lymphochip and 
affymetrix chips, for instance, have only a few probes in common 
(43). Furthermore, in their direct comparison, employing the same 
transcriptional technology, Lozano et al. revealed an absence of 
significant overlap in blood phenotypic and transcriptional pat-
terns between operationally tolerant liver and kidney recipients 
(47). Nevertheless, in recent work, the power of transplantomic 
technologies coupled with novel statistical techniques have helped 
to overcome many of these difficulties. This was exemplified by 
the recent identification of a common rejection molecule (CRM) 
across multiple transplanted organs (liver, kidney, heart, and 
lung) by Khatri and colleagues, who were able to compare and 
integrate data from several transcriptional studies by meta-analysis 
(73). The CRM consists of an 11-gene signature able to diagnose 
acute rejection with high sensitivity and specificity and could 
accurately predict future injury to a graft across all four organs. 
In recent months, a similar methodological approach was applied 
to integrate five of the disparate kidney transcriptional datasets 
aforementioned, in order to define a robust gene signature of 
operational tolerance (72). The meta-analytical methodology was 
able to reconcile the lack of overlap between the five studies, and 
to identify a gene-signature involving proliferation of B and CD4 
T cells, and inhibition of CD14 monocytes. This gene signature, 
narrowed down to 20 biomarkers, underwent full cross validation, 
and was shown to be highly predictive in new samples and new 
patients, independent of the array technology used. It is critical 
that similar meta-analyses are performed on the liver tolerance 
datasets discussed here. The proof of the clinical utility of all these 

predictive biomarker sets rests on their successful application in 
prospective studies of biomarker-targeted immunosuppression 
weaning within a randomized, controlled setting. This precisely, 
is the purpose of a large, European trial currently underway 
called “BIOmarker-Driven personalized IMunosuppression,” or 
BIO-DrIM (www.biodrim.eu).

Conclusion

The unique characteristics of the liver transplant setting, along-
side the technological advances in transplantomic disciplines, 
which have enabled the discrimination of operational tolerance 
at a molecular level, present researchers with the opportunities to 
decipher the immunological mechanisms underlying drug-free 
allograft survival and to develop therapeutic targets aimed toward 
tolerance induction strategies.

The understanding that a large proportion of liver transplant 
recipients, particularly those living with their graft for a number 
of years, are over-immunosuppressed, must act to incentivize the 
translation of biomarker discovery into everyday clinical practice.

Emergent technologies, including next generation sequenc-
ing, must be capitalized upon to provide insights into normal, 
pathological, and pharmacological processes. As the diverse 
omics fields become more elaborate and produce ever more data, 
the collaboration between researchers, laboratories, hospitals and 
other institutions, and the integration of clinical and molecular 
data become essential to the pursuit of advancing the field of 
transplantation and developing personalized therapy.
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New approaches are needed to develop more effective interventions to prevent long-
term rejection of organ allografts. Computational biology provides a powerful tool to
assess the large amount of complex data that is generated in longitudinal studies in this
area. This manuscript outlines how our two groups are using mathematical modeling
to analyze predictors of graft loss using both clinical and experimental data and how we
plan to expand this approach to investigate specific mechanisms of chronic renal allograft
injury.

Keywords: renal transplantation, computational biology, chronic renal allograft dysfunction, immunology, mathe-
matical modeling

Introduction

Improving long-term renal allograft survival is one of the major unmet needs in organ transplanta-
tion. It is a sad fact that the rate of late graft loss (2–3%/year beyond the first year) appears to have
changed little over the past two decades (1). While some progress has been made in understanding
the multiple causes of late renal allograft loss, our picture is still incomplete (2, 3).

The goal of this manuscript is to outline how our two groups have already started to use
mathematical modeling to analyze predictors of graft loss using both conventional clinical data and
more detailed histologic and genomic data. We also outline how we plan to expand this approach
going forward to investigate specific mechanisms of progressive injury.

Complexity of Transplant Outcomes

Post-transplant events are maddeningly complex. All renal allografts are exposed to at least one type
of injury-causing process and most are exposed to several. Yet, the vast majority of grafts function
quite well for many years. Serial surveillance biopsies suggest that several pathologic processes may
lead to chronic injury ultimately resulting in graft loss (3). Importantly, these studies suggest that
the process may be present for years before a clinically significant endpoint is reached and patients
who seem to have similar pathologic processes may have very different outcomes. Some progress
to graft loss, some develop chronic injury yet maintain function, and still others appear to have
no injury. Subclinical inflammation and chronic antibody-mediated rejection due to donor-specific
alloantibody (DSA) are two good examples. A remarkable calculus exists in which multiple different
pathologic influences, occurring with varying frequency and severity at different time points, result
in an almost linear rate of graft loss over many years in the entire population.

It is important to identify grafts that will fail at an early time point when the graft function is
good and thus salvageable. Since not all grafts with DSA or subclinical inflammation will fail, it is
also important to determine which features of the chronic immunologic injury process predispose
to graft failure and thus develop specific therapy for progressors.
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Our understanding of the mechanisms by which a biological
process takes years to reach a clinically significant endpoint is
lacking. However, mathematical modeling of increasingly com-
prehensive and complex data appears to be a promising path
forward.

Modeling Renal Allograft Loss Using
Clinical Factors

Mathematical models that aim to predict renal allograft outcomes
based on clinical factors have been around for years. In the United
States, the Federal Government through the Scientific Registry of
Transplant Recipients issues “center-specific” expected outcomes
for patient and graft survival based on a combination of donor
and recipient factors present pretransplant (4). Combined, the C-
statistic for this model is estimated to be only 0.6 (5). Two of
the most important recipient factors affecting outcomes that are
present pretransplant are age and diabetes.

However, renal transplantation is a dynamic process, and post-
transplant events clearly affect outcomes. Several groups have
tried to develop outcomes models based on post-transplant fac-
tors. One such model from Birmingham, UK, uses factors present
at 1-year post-transplantation to predict graft survival at 5 years
(6). The factors that go into the predictive formula are both demo-
graphic data and clinical data points present at 1 year including
estimated glomerular filtration rate at 1 year, age at 1 year, recip-
ient race, sex, presence of absence of rejection at 1 year, urinary
albumin to creatinine ratio at 1 year, and serum albumin at 1 year.
Risk scores were generated based on calculations of weighted
coefficients from the regression analyses.

This “Birmingham Model” was validated in four independent
cohorts from three other centers (Tours, France; Leeds, United
Kingdom; and Halifax, Canada). It showed good discrimination
for both overall graft failure (C statistics 0.75–0.81) and for death-
censored graft failure (C statistics 0.78–0.90). Discrimination
alone is insufficient to determine the utility of a risk model.
Therefore, othermeasures were evaluated in the cohorts described
above, specifically calibration (a comparison of rates of expected
and observed outcomes across risk strata) and risk reclassifica-
tion [evaluation of incremental accuracy of the model above and
beyond accepted and existingmeasures, in this case renal function
(eGFR)]. The “Birmingham Risk Score” similarly performed well
across these domains.

However, other potentially important biological data were
lacking from these studied datasets. Notably, histological data
(specifically protocol biopsy findings at the 1-year time point
post-transplantation) were not analyzed and anti-HLA antibodies
(“alloantibody”) tested simultaneously were not evaluated.
These potential “predictors” have much in common: they
are both emerging risk factors for outcome, but are not yet
universally incorporated into clinical practice; they require
specialist analysis, which is time-consuming, labor-intensive, and
expensive; the results require careful evaluation alongside clinical
data; the results may be bewilderingly complex with a single
“analysis” yielding multiple outputs, which may or may not be
interdependent. It is for the former reasons that many centers do
not collect these data, and it is for the latter reasons that detailed

mathematical and computational modeling is vital to understand
their relevance.

Adding Histology and Alloantibody Data to
Predictive Models

Histologic findings at 1 year have been shown to correlate with
outcomes (7). In a recent collaborative study between the Birm-
ingham group and the Mayo Clinic, Rochester, MN, USA, the
Birmingham model was again validated in a Mayo Clinic pop-
ulation consisting primarily of living donor kidney transplants
(8). In the Mayo cohort, the presence of glomerulitis (g) and
chronic interstitial fibrosis (ci) found on 1 year protocol biopsy
independently predicted 5-year graft failure. The presence of anti-
class II donor-specific antibody (DSA) in the serum 1 year post-
transplantationwas also associatedwith adverse outcome.When a
new prognosticmodel was developed by incorporating these stan-
dard histological qualifiers (by conventional light microscopy)
alongside other clinical variables, discrimination (compared with
the original Birmingham risk Score) was improved, with the C-
statistic increasing from0.84 to 0.90 (Figure 1). The stepwise addi-
tion of DSA data did not further improve discrimination, presum-
ably because the presence of alloantibody-associated histological
injury already “captured” the antibody effect. Furthermore, the
new risk model improved calibration and (again, in comparison
with the original model) resulted in statistically significant and
clinically relevant risk reclassification with a net reclassification
improvement (“NRI”) of 29% for the endpoint of death-censored
graft survival (p= 0.01). The inclusion of both histology and
antibody also resulted in improved reclassification of outcome,
although with borderline statistical significance (p= 0.11).

Mathematical Modeling: A Method to
Identify Mechanisms of Chronic Injury?

In reality, clinical factors such as age and race are simply
surrogates for biological processes that cause graft loss. Similarly,
non-specific laboratory findings, such as renal function and
proteinuria, although good readouts for damage, do not provide

5-year Death Censored Graft Loss: 
Adding Histology to the Birmingham Model

1. Histology only (g and ci)

• H-L Test p = 0.01

• NRI 29% (p<0.001)*

2. Antibody only (Class II DSA 
MFI>800)

• H-L Test p = 0.32

• NRI 1.2% (p=0.9)*

3. Histology and Antibody

• H-L Test p = 0.53

• NRI 14.4% (p=0.11)*

Model - 1 C-statistic

Existing risk score 0.84 (0.78, 0.90)

New model 

(g and ci)

0.90 (0.85, 0.95)

Model - 2 C-statistic

Existing risk score 0.82 (0.72, 0.92)

New model 

(class II DSA)

0.83 (0.72, 0.94)

Model - 3 C-statistic

Existing risk score 0.76 (0.64, 0.89)

New model 

(g, ci and class II DSA)
0.83 (0.69, 0.96)

*Compared Birmingham Model

FIGURE 1 | Data showing that the risk score C-statistic is improved by
adding histology and calibration improves by adding antibody.
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detailed insight into the actual mechanisms of renal allograft
injury. As we move further down the pathway from non-specific
data to more detailed data, we likely will not only reach higher
levels of prediction but also begin to understand the underlying
mechanisms of progressive injury. Using the approach outlined
above, any type of molecular, histologic, or serologic data can
be examined in mathematical models to determine its effect on
outcome.

Molecular Signatures and Other
Biomarkers

The past several years have seen the development of novel
biomarkers and it is possible that the inclusion of some of these
variables might further improve our ability to predict graft out-
come. They might also improve our ability to diagnose specific
pathologic processes and design intervention studies. These other
approaches include gene expression and proteomic profiles in
the graft, peripheral blood, or urine; more detailed DSA charac-
terization, such as C1q binding; and/or more detailed histologic
studies including immunohistochemistry for specific cell types of
the infiltrates. Of these, “omics” studies deserve special mention
here (9–19).

Gene expression signatures correlatingwith acute cellular rejec-
tion have been identified in peripheral blood and they are on their
way to becoming clinically-available tests (13, 17). A signature
has been identified in renal allograft biopsies that correlates with
antibody-mediated rejection (9, 15). Other signatures have been
identified that correlate with patients who are “operationally tol-
erant” (i.e., off immunosuppression and have stable kidney or liver
allograft function). In addition, microRNA signatures have been
correlated with rejection (18) and diabetic nephropathy (19).

It is likely that some of these molecular signatures also might
be shown to correlate with late graft outcomes, but how well they
actually predict graft loss is unclear. Currently, these primary
value of these tests is that they appear to correlate well with known
histologic findings and thus in some cases they may obviate the
need for surveillance biopsies. Currently, none of these novel
signatures is being used to identify progression of injury or is used
in a model of chronic injury similar to the Birmingham model.

Another possible use of these omics data is that of a biomarker
that would serve as a surrogate endpoint for clinical trials aimed at
improving long-term graft survival. Under “accelerated approval,”
the FDA might approve a drug based on its improving surrogate
makers at an early time point (20). Longer-follow up would then
be continued in Phase 3 studies to confirm improvement in the
true clinical endpoint, such as graft survival. Thus, modeling
the mechanisms of long-term graft survival will be important in
the development of new therapeutics. Unfortunately, the develop-
ment of effective biomarkers has been difficult in almost all fields
of medicine and we must proceed down this pathway with some
caution (21).

Other Mathematical Model Issues

There are several causes of late graft loss and each may require
a different therapeutic approach. Thus, identifying specific sub-
types of patients with a specific known injury process and then

modeling what aspects of that process are involved in progression
will be an important path toward new therapy. One of the most
important issues to consider when we begin to concentrate on
subtypes of chronic injury is the issue of patient classification.
Clearly identifying the phenotype categories will be important.
We are unlikely to find the cause of progression in patients with
alloantibody at 1 year if they are lumped together with all patients
with low renal function at 1 year. Indeed, computational methods
might be able to identify the phenotypes.

Another issue is dealing with several factors that are all part of
the same process. For example, in the histologic study mentioned
above, the inclusion of glomerulitis (a process associated with
alloantibody) probably obviated the need to include DSA in order
to improve the discrimination of the model. However, this does
not mean that DSA is unimportant in chronic injury, and in fact
is likely to be a major mechanistic driver. Underpowered studies
also can lead to false-negative assessment in modeling and must
be considered. There are far more “null” studies in transplantation
than truly “negative” ones, and although the latter may inform
practice, the former require recognition and refinement.

Mathematical modeling may identify the presence of processes
for which we have no data. In the case of DSA, there is experi-
mental data suggesting that an allograft may develop resistance
of DSA, termed accommodation (22–24). Mathematically, this
might be viewed as a “vector” that would favor graft survival
even when erstwhile injury-causing stimuli are present. We then
would be charged with searching for processes that might explain
the observed outcomes. Sir Arthur Eddington might understand
this (25).

Finally, when considering a process that occurs over many
years, it is likely that other injury-causing events might also occur.
For example, in the renal allograft setting, chronic hypertension,
diabetes, nephrotoxicity from calcineurin inhibitors, and recur-
rent disease are just a few of the many possible injury stimuli
that might also be occurring in addition to immunologic injury.
Mathematical modeling also will likely able to control for all of the
different injury processes present in the graft. It is likely that there
will be common features and, hopefully, specific features. Separat-
ing other causes of injury from the primary process being studied
adds yet another complicating factor in this type of research.

How to Optimize Mathematical Modeling
in Transplantation?

We contend that a major impact of computational biology will be
to enhance our ability to study chronic renal allograft injury in
humans (Table 1). The critical component for these studies will
be data –lots and lots of detailed, accurate data. Data regarding
the recipient’s immune response and biomarkers that are related to
the pathologic process under study would be helpful. Mechanistic
studies done in parallel to focused clinical trials also would be
tremendously useful. For example, combining gene expression
studies with a trial of an agent that specifically blocks one pathway
(e.g., eculizumab or IL-6 receptor) might provide new insight into
why grafts fail.

We also need detailed long-term data beyond what is cur-
rently available. Graft survival at 5 years is just the beginning.
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TABLE 1 | Possible approaches to using computational biology to studying
chronic renal allograft injury.

• Comprehensive assessment of subjects
◦ Immune system assays
◦ Target tissue assessment

• Long-term studies with serial assessments
• Biomarkers related to the biology/targeted interventions

◦ Omics studies of peripheral blood lymphocytes, serum, plasma,
urine, or tissue

◦ Detailed alloantibody studies

What happens between 5 and 10 years? We need to model these
later time points and this will require data that are rarely captured.

In most disease groups, there are many phenotypes and small
numbers of patients in each phenotype. Thus, in order to study
sufficient numbers of patients, these studies will need to be

multicenter and very collaborative and we may need to combine
data from many different databases.

Finally, studying a complex biologic process, such as chronic
injury, probably will require a change in mindset among
researchers. We tend to strive to make model systems as simple as
possible with as few variables. While this makes for good science,
it may be an inadequate approach to studying chronic injury.

Summary

The application of computational biology to transplantation
seems to be a natural progression of both fields. The interaction
between mathematicians and transplant biologists will likely lead
to novel new interpretations of phenomena and new understand-
ing of the mechanisms of chronic injury.
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PD1-expressing T cell subsets 
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We tested whether multi-parameter immune phenotyping before or after renal 
 transplantation can predict the risk of rejection episodes. Blood samples collected 
before and weekly for 3 months after transplantation were analyzed by multi-parameter 
flow cytometry to define 52 T cell and 13 innate lymphocyte subsets in each sample, 
producing more than 11,000 data points that defined the immune status of the 28 
patients included in this study. Principle component analysis suggested that the patients 
with histologically confirmed rejection episodes segregated from those without rejection. 
Protein death 1 (PD-1)-expressing subpopulations of regulatory and conventional T cells 
had the greatest influence on the principal component segregation. We constructed 
a statistical tool to predict rejection using a support vector machine algorithm. The 
algorithm correctly identified 7 out of 9 patients with rejection, and 14 out of 17 patients 
without rejection. The immune profile before transplantation was most accurate in deter-
mining the risk of rejection, while changes of immune parameters after transplantation 
were less accurate in discriminating rejection from non-rejection. The data indicate that 
pretransplant immune subset analysis has the potential to identify patients at risk of 
developing rejection episodes, and suggests that the proportion of PD1-expressing 
T cell subsets may be a key indicator of rejection risk.

Keywords: transplantation, rejection, T cells, protein death 1, risk factor

inTrODUcTiOn

Transplantation remains a life saving treatment for patients with kidney failure. Due to improvement 
in organ preservation, advances in surgical technologies, and the use of potent immune suppressive 
treatment regimens, the incidence of acute rejection has dramatically decreased in the recent past. 
However, despite potent immune suppression, approximately 20% of patients still develop acute 
rejection episodes (1). Such episodes predispose to chronic antibody-mediated rejection, tubule-
interstitial fibrosis, and atrophy, resulting in irreversible damage and failure of the transplanted kid-
ney. A registry study of 63,045 renal transplant patients showed that acute rejection episodes were the 
single most important predictor of chronic allograft nephropathy, increasing the risk of graft failure 
by 5.2-fold compared to patients without episodes of acute rejection (2). The loss or damage of a renal 
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transplant secondary to rejection has substantial consequences 
for patients in terms of increased all cause mortality. Acute rejec-
tion episodes result in an increased burden of immunosuppres-
sion contributing to the high rate of infectious and cancer-related 
deaths in the transplant population. Furthermore, graft loss has 
very substantial financial repercussions, as the annual cost of 
providing dialysis is approximately six times that of supporting 
a stable transplant.

Because of the importance of avoiding rejection and the 
consequences of unnecessary over-immunosuppression there is 
an ongoing search for biomarkers, which can identify the risk of 
rejection. Preexisting antibodies to donor HLA are an established 
risk factor for acute rejection (3). Soluble CD30, a member of the 
TNF receptor superfamily, which is expressed on T cells and shed 
into blood, has received considerable attention, but the predic-
tive power of this marker is still not clear (4). More recently, a 
transcriptomic analysis has identified a panel of 17 genes whose 
expression can identify rejection episodes without the need for 
biopsy, and can predict rejection episodes up to 3 months before 
rejection can be observed histologically (5). The screening for 
expression of a set of five genes has been similarly used to identify 
patients with episodes of acute rejection (6). We were particularly 
interested in exploring whether pre-transplantation immune-
profiling might provide a tool to predict those patients at risk 
of rejection, which would inform patient management and allow 
clinicians to adjust the dosing parameters of immunosuppressive 
medication accordingly.

Hence, we have performed a multi-parameter flow cytom-
etry analysis of adaptive and innate lymphocyte subsets in the 
peripheral blood of renal transplant patients before and in the 
first 12  weeks after transplantation. Using statistical machine 
learning algorithms to analyze this complex data set, we find that 
the pretransplant immune-phenotype predicts the risk of acute 
rejection episodes, and that the proportion of PD1-expressing 
regulatory and conventional T cells is a key component of the 
predictive signature. These results suggest a strategy for develop-
ing personalized immune suppressive regimes according to the 
predicted rejection risk assessed prior to transplantation.

MaTerials anD MeThODs

Patients
The Immune Monitoring Study was conducted at the Royal Free 
Hospital, London, between May 2011 and October 2014. The 
study protocol was approved by the National Research Ethics 
Committee. All patients (n  =  28) had given written informed 
consent to participate in the study, and participants were of diverse 
age and ethnicity. Clinical details and patient demographics are 
shown in Table  1. Blood samples were collected from patients 
pretransplant and posttransplant. For live donor organ recipients, 
pretransplant samples were taken before immunosuppression 
was started, and on the day of transplant. For cadaveric donor 
organ recipients, pretransplant samples were taken before immu-
nosuppression on the day of transplant. After transplant, weekly 
samples were taken until week 12 posttransplant for all patients. 
All samples were taken before starting immunosuppression.

Patients received the following immunosuppressive medi-
cations: 20 mg Basiliximab monoclonal antibody (anti-CD25) 
therapy on the day of transplant and on day 4 after transplant. 
Five hundred milligram intravenous methylprednisolone on 
the day of transplant followed by 40 mg intravenous methyl-
prednisolone for 3  days after transplant, then 20  mg of oral 
prednisolone for 7 days, followed by 7 days of 5 mg oral pred-
nisolone. Tacrolimus was given with dose adjusted according 
to plasma levels. 1  g of Mycophenolate Mofetil for 1  month, 
750 mg for a further 2 months, reduced to 500 g by 3 months 
posttransplant. Live donor recipients received both Tacrolimus 
and Mycophenolate Mofetil from ~2 weeks before transplant, 
while cadaveric donor recipients received these from the day of 
transplant. Both groups of patients continue with these medica-
tions indefinitely.

rejection
In cases of unexplained increased serum creatinine levels, 
patients underwent kidney biopsy, and rejection of the kidney 
allograft was confirmed by histological analysis. Rejection was 
either cell-mediated (characterized by infiltration of lymphocytes 
and inflammatory cells into the organ) or antibody-mediated 
(characterized by C4d deposition in the organ and circulating 
donor-specific antibodies). Rejection was treated with steroids 
and/or modification of maintenance immunosuppression.

Blood samples
Peripheral blood mononuclear cells (PBMCs) were separated 
from whole blood by means of density gradient centrifugation, 
and were stored at −180°C in vapor-phase nitrogen in the UCL-
RFH Biobank. Samples were analyzed for flow cytometry no 
more than 3 years after storage.

Flow cytometry
Multi-parametric flow cytometry was used for immunopheno-
typing. PBMC (1 × 106) were stained with a T-cell panel, an innate 
lymphoid panel or with an isotype control panel. Before antibody 
labeling, cells were incubated with purified human IgG (Sigma) to 
reduce non-specific binding. Cells were stained with mAbs against 
CD3-PE Cy7 (clone SK7), CD4-BD Horizon v500 (clone RPA-
T4), CD8-BD Horizon v450 (clone RPA-T8), CD45R0-PECF594 
(clone UCHL1), CD62L-APC (clone DREG-56), CD25-APC Cy7 
(clone M-A251), CD127-FITC (clone HIL-7R-M21), CD279-PE 
(clone EH12.2H7) (Biolegend), HLA-DR-PerCPCy5.5 (clone 
LN3) (eBioscience), CD16-APC H7 (clone 3G8), CD56-APC 
(clone NCAM 16.2), iNKT-PE (6B11), Vδ2-FITC (clone B6), 
IgG1k-APC Cy7 (clone MOPC-21), IgG1k-APC (clone MOPC-
21) (Biolegend), IgG1k-FITC (clone MOPC-21) (Biolegend), 
IgG1k-PE (clone MOPC-21) (Biolegend), and IgG2b-PerCPCy5.5 
(clone N/S) (eBioscience). Antibodies were from BD Biosciences 
unless stated otherwise.

Flow cytometric analysis
Flow cytometric analysis was carried out using a BD 
LSRFortessa™ cytometer with BD FACSDiva™ software v.6.0.1 
(BD Biosciences). The data were analyzed using FlowJo v7.6.5 
software (Treestar Inc.). Gates for CD25+, CD127+, PD-1+, and 
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HLA-DR+ CD4+ and CD8+ T cell populations were set using the 
isotype control stained samples for each patient to define the 
negative population.

Principal component analysis
Principal component analysis (PCA) is an exploratory technique 
that is used to visualize high-dimensional data by projecting 
the data into a new smaller set of dimensions called principal 
components (PC), which contain most of the information within 
the data set. The first dimension of the new data is made up of a 
linear combination of all the measured dimensions of the data, 
with the coefficients chosen such as to maximize the variance of 
the dimension across all the samples. Subsequent PCs contain 
progressively less of the variance. Each PC is linearly independent 
uncorrelated to all other PC. Typically most variance is contained 
within a few PCs, which can be visualized in a series of two-
dimensional plots. Since the mapping into the new coordinate 
system is given by a weighted linear sum of all original input 
variables (i.e., T cell subset frequencies in peripheral blood), the 
contribution of each original variable to each PC is reflected by 
the size of the corresponding weight coefficients.

support Vector Machines
Support vector machines (SVM) are supervised binary clas-
sification tools (7). Given a set of training data, an SVM seeks 
an optimal separating hyperplane to split data points from two 
classes (e.g., rejection vs. no rejection). In order to accommo-
date non-linear boundaries between the data, a kernel function 
can be used to transform the original input space into a higher 
dimension feature space, where linear structure may be found. 
We initially compared the results of using untransformed data 
with a radial Gaussian kernel when constructing the SVM. No 
difference in classification accuracy was observed and all results 
shown use untransformed data.

The SVM algorithm learns the separating hyperplane such 
that the distance between the plane and the nearest points from 
each class, the margin, is maximized, subject to a cost (governed 
by a tuning parameter C), which penalizes points that falls on the 
wrong side of the margin. The value of the cost parameter, C, was 
determined by optimizing model accuracy over a range of values.

The algorithm, which yields the optimal separating hyper-
plane, is defined by a linear combination of the data dimensions. 
The linear coefficients defining the hyperplane can be considered 
as a set of weights, which identify those dimensions of the data 
with the greatest influence on the classification.

Additionally, the probability of class membership (e.g., 
 rejection vs. no rejection) can be calculated by fitting a logistic 
regression model to the decision values that are output from the 
SVM (8). The decision values are the Euclidean distances that 
define how far each patient sample lies from the optimal separat-
ing hyperplane. Loosely speaking, the further sample lies from 
the boundary, the greater the probability that the sample belongs 
to its predicted class.

Validation
A key element to evaluate the power of any statistical model in 
classification is validation. In order to maximize the statistical 
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power from our initial patient sample size (n = 23), we evaluated 
the model using leave-one-out validation. In this approach, one 
patient is selected, and all results from that patient are removed 
from the data set. The SVM model is then optimized using the 
data from the remaining 22 patients, together with their known 
classification labels (i.e., reject/non-reject). The model is then 
used to predict the classification of the sample, which had been 
left out. In this way, the classification algorithm is built without 
including any knowledge from the patient who is being tested, and 
this patient serves as an unbiased validation case. The procedure 
is repeated for each individual patient, and the success rate of the 
classification is measured over all 23 patient data sets. We also 
used more traditional train/test strategy. An additional 5 patients 
were included into our study and independently analyzed by flow 
cytometry by a scientists who was not involved with the analyses 
of the initial 23 patients. A repeat flow analysis of a previously 
studied patient was also included to test reproducibility. The SVM 
algorithm trained on the initial 23 patients was used to assess the 
rejection risk of the 6 independently analyzed patients.

All analyzes were performed using statistical programing 
language R. SVM were implemented using the package e1071, 
while PCA and hierarchical clustering were performed using the 
heatmap.2 and prcomp functions in the core library.

Traditional statistical tests for significance were carried out 
using Mann–Whitney tests with Bonferroni test for multiple 
testing where required.

resUlTs

Table 1 shows a summary of the patient cohort included in this 
study. Of the 28 patients, histologically confirmed rejection was 
seen in 11 patients and 17 did not show signs of rejection. The 
CMV status and the percentage of patients with live and cadaveric 
donor organs were similar in the two subgroups. We did not 
see an increased incidence of CMV reactivation and viremia in 
the patients who had rejection episodes. BK infection was not 
detected in any of the patients.

The antibodies used in our T cell panel were specific for 
nine molecules that allowed us to define distinct T cell subsets, 
and quantify the proportion of activated cells (using CD25 and 
HLA-DR) and exhausted cells (using PD-1) within each subset. 
FlowJo analysis of the flow cytometry data was used to extract 
quantitative data on 52 T cell phenotypes each defined by expres-
sion of a particular combination of markers (see Table S1 in 
Supplementary Material for full list). Figure 1 shows a representa-
tive flow cytometry profile obtained after staining with our T cell 
panel and indicates some of the T cell subsets that were included 
in the bioinformatics analysis. We used the expression pattern of 
CD45RO and CD62L to define T cells that were phenotypically 
defined as naive (N), central memory (CM), effector memory 
(EM), or end-stage (ES) effector cells (Figures  2B,C). We also 
used a cocktail of nine antibodies to define subsets of NK, iNKT, 
and γ/δ T cells. In this case, the bioinformatic analysis included 13 
distinct phenotypes (see Table S2 in Supplementary Material for 
full list). Figure S1 in Supplementary Material shows a representa-
tive plot of this panel and some of the subsets identified. In total, 

multi-color flow cytometry was initially performed on 23 patients 
using >150 samples collected at six- to eight-time points pre- and 
post-transplantation. An additional 5 patients were included in 
our study and independently analyzed to validate the prediction 
tool derived from the analysis of the first 23 patients.

We employed PCA as a powerful exploratory tool for revealing 
potential structure within the data set of the 23 patient cohort. The 
first few principal components often capture most of the informa-
tion in the data and are therefore a very effective way to reduce 
the dimensionality of a high-dimensional data set. We initially 
based our analysis on the adaptive immune panel. Figure  2A 
shows a PCA based on T cell subset frequencies, as determined 
by our adaptive immune panel. Strikingly, patients who experi-
enced rejection tend to cluster toward the left hand side, with 
PC1 scores <0. Conversely, patients who did not present with 
any signs of clinical rejection tend to have positive PC1 scores. 
Interestingly, the distinction between graft rejection and toler-
ance was lost when patient subset frequencies were normalized 
to pretransplant baseline measurements (Figure 2B). Differences 
between patients at baseline are therefore more important than 
relative differences post transplant in predicting graft prognosis 
post transplantation.

In contrast to the results obtained with the T cell panel, no 
clear stratification of rejection and tolerance was evident when 
the data obtained with the NK, iNKT, and γ/δ T immune panel 
were analyzed (Figure 2C). The frequency of the subsets identi-
fied by this panel therefore had no detectable predictive power for 
the development of rejection episodes in our cohort.

The first PCA component of the T cell panel suggested differ-
ential clustering of patients with and without rejection episodes. 
We therefore went on to investigate which T cell subsets were most 
important in driving this segregation. PCA allocates a “loading” 
to each dimension of the data (i.e., each T cell subset analyzed), 
which lie between −1 and 1. We identified those subsets with 
the largest, negative PC1 loadings (Table 2) to determine which 
subsets were implicated in predicting graft rejection. A common 
feature of all the largest loadings was the expression of PD1 in the 
identified T cell subsets. The largest negative loading in the CD8+ 
T cell population was seen in the PD1-expressing ES effector cells 
(CD45RO−/CD62L−). The negative loading in the CD4+ T cell 
population was similar in the N subset (CD45RO−/CD62L+), 
and in Treg cells (identified as CD25+ CD127 dull) with the ES 
(CD45RO−/CD62L−) phenotype.

On the basis of these results, we examined in more detail the 
expression of PD1 in the CD4+ and CD8+ T cell subpopulations in 
patients who had rejection episodes, compared to those who did 
not. Figure 3A shows flow cytometry plots of PD1 expression in 
a representative patient of each class. As predicted from the PCA 
analysis, the comparison of the flow cytometry plots showed that 
increased expression levels of PD1 was associated with rejection 
episodes. The summary of the PD1-expressing T cell subsets in all 
patient samples analyzed is shown in Figure 3B.

While PCA suggests that immune-phenotyping data can 
stratify patients with risk of transplant rejection, it is not designed 
to provide accurate predictions from new data. SVM are a class 
of very well-studied machine learning classification tools (see 
Materials and Methods). We constructed SVM classifiers based 
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on data from three distinct time points during the course of renal 
transplantation: baseline, mid (between 4 and 6 weeks post-tx), 
and late (9–12 weeks post-tx). Using leave-one-out validation, we 
observed that baseline and midtime points correctly predicted 
the rejection status in 77 and 82% of the samples, respectively. 
The SVM based on later time points showed a poorer ability to 
discriminate, correctly predicting 68% of the samples. The SVM 
risk score (see Material and Methods) based on baseline/pre-
transplant phenotype alone (which was available for 20 patients, 
9 rejectors, and 12 non-rejectors) is shown in Figure 4A. A SVM 

risk score of >0.5 suggests that the patient is more likely to exhibit 
a rejection episode, while a score of <0.5 suggests the patient is 
more likely not to show a rejection score. The further the risk 
score is from 0.5, the greater the confidence of the prediction.

We initially used leave-one-out validation because this provides 
the most powerful way to analyze the relatively small number of 
patients available for this study. However, we also used the more 
traditional train/test strategy. We selected the first (by date order 
of transplant) seven rejector and non-rejector data sets (in order 
to have a balanced data set) and used the data from these patients 
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TaBle 2 | The five largest negative loadings (predictive of rejection) 
obtained from Pca of T cell subset frequencies.

T cell subset loading

CD8+ CD45RO− CD62L− PD1+ −0.28

CD8+ PD1+ −0.25

CD4+ PD1+ −0.23

CD4+ CD25+ CD127− CD45RO− CD62L− PD1+ −0.22

CD4+ CD45RO− CD62L+ PD1+ −0.22
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further support for the robustness of the predictions. Finally, we 
used the SVM built on the first set of 23 patients analyzed to predict 
the rejection status of five further patients for whom baseline pre-
transplant samples were available and independently analyzed by 
a scientist who was not involved with the first cohort analysis. As a 
control for reproducibility, we included one sample of a patient of 
the first cohort in this independent analysis. All analyzed patients 
were correctly predicted to be non-rejectors (Figure 4B).

The SVM generates a set of weights (between −1 and 1) equiva-
lent to those generated by the PCA weights and corresponds to 
“loadings” given to each dimension of the data (i.e., each T cell 
subset analyzed) when generating the classifying hyperplane. We 
analyzed the weights given to each data subset by the optimized 
SVM. In agreement with the results of the PCA, three of the five 
subsets with the largest coefficients included PD1 (Table 3). The 
remaining two subsets consisted of CD8 and CD4 EM T cells 
expressing CD25 and CD127, respectively. The mean frequency 
(as a proportion of parent) of each of all five subsets is shown in 
Figure 5A, and flow cytometry plots of PD1 expression in three 
representative patients with and without rejection episodes are 
shown in Figure 5B.

In addition to prediction of rejection prior to transplantation, 
it would be useful to use non-invasive screening to identify 
rejection post-transplantation without the need for biopsy. We 
therefore examined whether the immune-phenotype could 
identify rejection episodes using the SVM-derived probabilities 
of class membership (see Materials and Methods). We calculated 
the risk of rejection episodes over the 12-week period post-tx for 
each time point when a blood sample was collected and analyzed. 
Figure 6A shows the projected risk of rejection for each of the 11 
patients who clinically presented with either cell- or antibody-
mediated rejection; the time of rejection episodes is indicated 
with diamonds. In patients 1, 6, and 7, the rejection occurred 
after 12 weeks (see Table 1), which was outside the time period 
of collecting samples for this study. All but one of the remaining 
seven patients had a risk score >0.5, and five of the seven patients 
had a risk score greater than 0.75 at the time point when rejection 
episodes occurred. In contrast, only 4 out of 12 patients without 
rejection episodes had a risk score of more than 0.75 at any time 
point during the 12-week observation period (Figure 6B).

DiscUssiOn

The major conclusion of our study is that the immune-phenotype 
of the peripheral blood T cell compartment contains informa-
tion, which can predict the risk of a rejection episode following 
renal transplantation. In contrast, the panel defining NK, iNKT, 

to build an SVM. We then used this SVM to predict the outcome 
of the remaining 10 patients. The SVM correctly predicted 7/10 of 
the remaining patients even using this small training set, providing 
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and γ/δ T cells did not identify a phenotype, which segregated 
between rejection and non-rejection. This may reflect a dominant 
role of α/β T cells in acute graph rejection, but it is also possible 
that our “innate lymphoid” flow cytometry panel did not include 
markers that might identify subsets involved in regulating trans-
plant tolerance or rejection. It should be noted that we have used 
a limited number of markers to identify the T cell subsets and 

the expression of activation and exhaustion markers. It is pos-
sible that revised panels that include additional markers might 
improve the ability to identify patients at risk of rejection. In this 
study, we have not explored the risk factors of antibody-mediated 
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rejection, which is mediated by donor-specific antibodies that are 
present in patients before transplantation.

Advances in multi-color flow cytometry have led to a continual 
increase in the complexity of immune-phenotyping. The introduc-
tion of new technologies, such as mass-cytometry or single cell 
transcriptomics, has the potential to further increase the number 
of molecules that can be quantified (9, 10). However, the high cost 
and technical challenges of using these new technologies mean 
that flow cytometry remains the technique of choice for immune 
phenotyping in most clinical settings. In this study, we have used 
nine parameters, which generated a large number of possible 
combinations that cannot be comprehensively interrogated using 
manual approaches. In addition, there is an increasing awareness 
that a classification on the basis of a few defined phenotypes is 
a simplification of the underlying biology. Computational tools, 
which can efficiently mine the increasingly high-dimensional 
space of immune-phenotyping data, are therefore likely to 
become a key to future biomarker discovery and translation into 
the diagnostic laboratory.

We have used a hybrid approach, in which quantitative popu-
lation frequency data is first collected using classical manual flow 
cytometry analysis and then analyzed using high-dimensional 
computational statistical tools. This combination of manual and 
computational analysis was used to define 52 different T cell 
subsets, many of which were nested in each other. The overall 
accuracy of the classification was >75% when using samples col-
lected either before, at or within 6 weeks post transplant. These 
data provide a strong rationale for further immunophenotyping 
studies, with the dual objective of increasing the size of the training 
cohort and thus the power of the machine learning algorithm, and 
perhaps incorporating additional immunophenotyping markers, 
which might further dissect the intrinsic variation in the immune 
status of patients, and hence accurately predict the response to the 
transplant and the associated immunosuppression.

In addition to the ability to predict rejection episodes, two 
important further conclusions emerge from both the PCA and 
SVM analysis. The first is that the predictive power lies pre-
dominantly within the pretransplant immunophenotype, and 
that the phenotype predictive power becomes much weaker at 
later times. In the first few weeks after transplantation, there is 
remarkably little change in the immune phenotype, but as time 
progresses the phenotype of different patients seems to converge. 
This unexpected finding provides a rationale to potentially use 
the pretransplant immune phenotype to identify patients at risk 
of developing rejection episodes, and then increase immune sup-
pressive medication during the early phase after transplantation.

The second finding is that high PD1 expression in several 
T cell subsets predicts a higher rate of rejection. The function 
of PD1 has been studied extensively (11), although its role in 
Treg is less well understood (12). PD1 up-regulation has been 
observed in murine models of chronic viral infection and was 
found to identify exhausted T cells with reduced function (13). 
Similar observations have been made in cancer patients, and the 
treatment with anti-PD1 antibodies has reversed T cell dysfunc-
tion and resulted in impressive clinical benefits for patients (14). 
Recent experiments have indicated that the PD1/PD-L1 pathway 
is involved in Treg-mediated suppression of autoreactive B cell 

responses (15). However, this did not involve PD1-positive 
Treg, as the suppression was mediated by PD-L1 expressed 
by Treg binding to PD1 expressed by the autoreactive B cells. 
Maybe more relevant for our observation is a recent study that 
demonstrated increased numbers of PD1-expressing Treg in the 
blood of patients suffering from an autoimmune condition that 
results in generalized vitiligo (16). Interestingly, upregulation of 
PD1 in Treg was also found in patients with chronic hepatitis C 
infection, and the observation that blockade of PD1 improved 
Treg function suggested that PD1 acted as negative regulator of 
Tregs in this setting (17). Together, these studies suggest that 
chronic immune activation (autoimmune or chronic infec-
tion) can result in the accumulation of PD1-expressing Treg 
with impaired functional activity. In our case, increased PD1 
expression before transplantation might identify patients with a 
history of chronic immune activation combined with impaired 
Treg function, which together might enhance the potential of 
mounting damaging T cell responses against the transplanted 
kidney. This is in keeping with the recent demonstration that 
variations in the immune response profile of humans are 
strongly affected by environmental factors (18). It is possible that 
dialysis, age, and increased pathogen exposure might impact on 
the number of PD1-expressing Treg; in our cohort more patients 
were on dialysis and had a higher median age in the rejection 
group compared to the group without rejection. We note that 
an mRNA expression study in the peripheral blood of renal 
transplant patients showed that increased levels of PD1 mRNA 
was associated with acute rejection episodes (19). In this study, 
we have not analyzed the expression profile of CD57, a marker 
that has been linked to the resistance of renal transplant patients 
to respond to treatment with recombinant proteins that inhibit 
CD28 costimulation (20).

In conclusion, our study shows how computational tools, 
which are able to analyze the increasingly high-dimensional 
immunophenotyping data available, can be used to generate bio-
markers useful for patient stratification, and to identify new bio-
logical features underlying a complex process such as transplant 
rejection. Validation of these results on a larger cohort is required, 
but this study suggests that immune-phenotyping may be useful 
in guiding patient management and may provide a strategy for 
developing personalized immune suppressive regimes according 
to the predicted rejection risk assessed prior to transplantation.
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Among kidney transplant recipients, the treatment of choice for acute T cell-mediated
rejection (TCMR) with pulse steroids or antibody protocols has variable outcomes.
Some rejection episodes are resistant to an initial steroid pulse, but respond to subse-
quent antibody protocols. The biological mechanisms causing the different therapeutic
responses are not currently understood. Histological examination of the renal allograft is
considered the gold standard in the diagnosis of acute rejection. The Banff Classification
System was established to standardize the histopathological diagnosis and to direct
therapy. Although widely used, it shows variability among pathologists and lacks criteria
to guide precision individualized therapy. The analysis of the transcriptome in allograft
biopsies, which we analyzed in this study, provides a strategy to develop molecular
diagnoses that would have increased diagnostic precision and assist the development
of individualized treatment. Our hypothesis is that the histological classification of TCMR
contains multiple subtypes of rejection. Using R language algorithms to determine
statistical significance, multidimensional scaling, and hierarchical, we analyzed differential
gene expression based on microarray data from biopsies classified as TCMR. Next,
we identified KEGG functions, protein–protein interaction networks, gene regulatory
networks, and predicted therapeutic targets using the integrated database Consesnsus-
PathDB (CPDB). Based on our analysis, two distinct clusters of biopsies termed TCMR01
and TCMR02 were identified. Despite having the same Banff classification, we identified
1933 differentially expressed genes between the two clusters. These genes were further
divided into three major groups: a core group contained within both the TCMR01 and
TCMR02 subtypes, as well as genes unique to TCMR01 or TCMR02. The subtypes
of TCMR utilized different biological pathways, different regulatory networks and were
predicted to respond to different therapeutic agents. Our results suggest approaches
to identify more precise molecular diagnoses of TCMR, which could form the basis for
personalized treatments.

Keywords: TCMR, precision medicine, personalized medicine, kidney transplant, systems biology

Frontiers in Immunology | www.frontiersin.org November 2015 | Volume 6 | Article 53641

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2015.00536
https://creativecommons.org/licenses/by/4.0/
mailto:perkinsd@uic.edu
http://dx.doi.org/10.3389/fimmu.2015.00536
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2015.00536&domain=pdf&date_stamp=2015-11-06
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00536/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00536/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00536/abstract
http://loop.frontiersin.org/people/243161/overview
http://loop.frontiersin.org/people/269108/overview
http://loop.frontiersin.org/people/282656/overview
http://loop.frontiersin.org/people/234597/overview
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Kadota et al. Precision subtypes of acute rejection

INTRODUCTION

An important goal in medicine is to develop precision therapies
specific to each individual to deliver personalized medicine. As
eloquently stated by Sir William Osler over 100 years ago, “vari-
ability is the law of life, and as no two faces are the same, so no
two bodies are alike, and no two individuals react alike and behave
alike under the abnormal conditions we know as disease.” Since
the introduction of cyclosporine in the late 1980s, the therapeutic
protocols for many patients in clinical transplantation have been
based on three types of immunosuppressive drugs: a calcineurin
inhibitor, an antimetabolite, and a steroid. More recently, an
array of new agents including biological agents have emerged
or are entering investigational study. In addition, protocols that
are calcineurin inhibitor free or steroid sparing have also been
developed. Given the increasing number of therapeutic agents
and potential protocols and the limited number of transplant
patients, it is not tractable to evaluate all of the potential thera-
peutic permutations in prospective clinical trials. Furthermore, a
strategy is needed to precisely identify the optimal therapy to apply
personalized medicine for each individual patient based on each
patient’s genotype and phenotype (1–7).

Since its development in 1993, the Banff Classification has
served as a valuable tool in the diagnosis of allograft rejection and a
guide for clinical management. The first Banff classification stan-
dardized the histopathological criteria to diagnose rejection into
six major categories based on the histopathological findings (8):
(1) normal, (2) hyperacute, (3) borderline mild tubulitis, (4) acute
rejection, (5) chronic allograft nephropathy (CAN), (6) other
changes not due to rejection. A numerical grading was introduced
for each of the renal compartments. This classification created a
framework for further changes and modifications in subsequent
updates of the Banff classification. Despite the success and huge
positive impact this classification had on transplant medicine, it
also had limitations. The major weaknesses are the substantial
variability among pathologists and the lack of an external valida-
tion tool (9). The reproducibility of the Banff classification was
assessed with a Kappa statistics scoring system (10–12). These
studies showed a moderate reproducibility score for diagnostic
classification, whereas the numerical grading of tubulitis had an
extremely low kappa score indicating low reproducibility (10).
Identifying a correlation between the Banff classification and graft
survival has also been a challenge. In 2015, Krisl et al. followed
182 patients who developed a rejection episode for a median
of 527 days. They noted no difference in death censored graft
survival in the first 6months after transplantation between the
acute cellular rejection grades IA, IB, IIA, and IIB. They also
noted no difference between the early and late Banff IA or IB
classifications. However, the same histological classification of
IIA had a significant difference in graft survival if it occurred
late (after 6months) versus early (13). These differences suggest
that the different subtypes do not represent a graded severity
score that correlates with graft survival, but rather a different type
of rejection. In another study, Wu et al. followed 270 patients
with rejection and noted no significant difference in the graft
survival between TCMR I, II, or III. However, they noted worse
graft outcomes in patients with vascular involvement regardless

of the degree of the timing or the degree of interstitial or tubular
involvement (14). Again, this analysis suggests different subtypes
of TCMR that are not precisely captured by the Banff classifica-
tions. In summary, these studies demonstrate the limitations of
the Banff classification in grading the severity of rejection and in
predicting outcomes.

Our overall hypothesis is that the histological diagnosis of
TCMR as defined by the Banff classification of kidney transplant
biopsies contains multiple subtypes of rejection involving differ-
ent biological pathways and functions. To address these goals, in
this report, we use a systems biology approach to provide a proof of
principle analysis that identifies potential therapeutic agents that
target specific subtypes of T cell-mediated rejection (TCMR).

The basis of our approach is the analysis of the transcriptome
in allograft biopsies. The analysis of differential expression of
mRNA has several advantages. First, genome wide assays of the
transcriptome are relatively quick, quantitative, and reproducible.
In contrast, other “omic” technologies, in particular proteomics
and metabolomics can be technically more challenging and not
genome wide. Second, the level of gene expression quantitated
in the transcriptome reflects multiple effects including genomic,
epigenetic, metagenomic, and environmental influences and thus
integrates the effect of multiple biological regulatorymechanisms.
Based on these considerations, analysis of the transcriptome,
which is utilized in this study, is a quantitative, reproducible, and
cost-effective approach to assay a genome wide response.

To interpret genome wide data, the application of systems biol-
ogy methods that analyze pathways and networks of molecules
in an “interactome” increases confidence in functional biologi-
cal interpretations compared with the reductionist approach of
analysis of isolated molecular interactions. In our analysis, we
first identified the significant changes in the transcriptome of
microarray data in a public database of kidney transplant biopsies
that were classified as TCMR or control. After excluding outliers
using multidimensional scaling (MDS), which is an essential step
that supports precision analysis, we identified subtypes of TCMR
using unsupervised hierarchical clustering. For each subtype, we
constructed a protein–protein interaction (PPI) network, a gene
regulatory network, and a KEGG pathway analysis, which illu-
minated interaction networks, signaling pathways, and regulatory
mechanisms. In addition, we analyzed the DrugBank database of
candidate drugs to identify putative therapeutic agents that would
be specific for each subtype of TCMR.

MATERIALS AND METHODS

Data
The data files were downloaded from NCBI through R, ver-
sion 3.10, using a Bioconductor package, GEOquery (15, 16).
The dataset contains the microarray expression from an HG-
U133_Plus_2 Affymetrix Human Genome array. Gene expres-
sion was given as log2 fold change against controls. The dataset
included 202 kidney biopsies taken from renal transplant patients
undergoing biopsies for cause (17). The expression and pheno-
typic data can be found on the Gene Expression Omnibus (GEO)
database, using GEO ascension number (GSE21374) (18).
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The initial data set of 202 kidney biopsies included eleven
diagnoses based upon pathology report. These biopsies included
rejection diagnoses of antibody-mediated rejection (ABMR),
acute tubular necrosis (ATN), BK virus, borderline, CAN, cal-
cineurin inhibitor toxicity (CNIT), glomerulonephritis (GN),
tubular atrophy/interstitial fibrosis (TAIF), T cell-mediated rejec-
tion (TCMR), and transplant glomerulopathy (TGP). There were
143 samples taken from 85 patients that underwent renal trans-
plant. Eight additional kidney biopsies were taken from normal,
native kidneys from patients undergoing nephrectomy for renal
cell carcinoma. Finally, 51 additional transplant biopsies were
added as a validation set.We focused on the largest cohort, TCMR,
using the renal nephrectomy samples as a baseline control.

Statistical Methods
An analysis pipeline was created in the R language statistical
and graphing environment (19). First, we normalized the 54,675
Affymetrix probe sets by Z-score and filtered the data based on
the scaled expression level>0.12 and coefficient of variation (CV),
which selected 6,473 genes that showed high expression and high
CV. Next, we identified outlier samples using MDS. Samples with
an intracentroid distance >2 SD greater than the mean were
classified as outliers and removed from further analysis. To iden-
tify subtypes of TCMR, we performed unsupervised hierarchical
clustering using the stats package. The clusters were evaluated by
connectivity, Dunn, and Silhouette index, which identified two
subtypes of TCMR. Differential gene expression was determined
by student’s t test (p< 0.05). Correction for multiple testing was
performed by false discovery rate algorithm (fdr <0.05).

Molecular Interaction Analysis
We used the ConsesnsusPathDB (CPDB), hosted by the Max
Plank Institute of Molecular Genetics (20). CPDB combines 32
public resources for biological interactions including the KEGG,
BIND, DrugBank and MINT databases. For each database, we
analyzed TCMR01, TCMR02, and core gene list independently.

Over-representation analysis was performed in CPDB for
KEGG pathways. The resulting enriched pathway-based sets
included a minimum of two input genes with a hypergeometric
test p-value of 0.01. Edges between KEGG pathways included at
least a 30% overlap between connecting nodes.

We used CPDB induced network module analysis of high-
confidence PPI, gene regulatory interactions, and drug-target
interactions.

Network Visualization
Network data were visualized with the imaging platform
Cytoscape (21).

RESULTS

Defining Subtypes of T Cell-Mediated
Rejection
To identify subtypes of TCMR rejection in kidney allografts,
we analyzed all samples classified as TCMR rejection (and
nephrectomy controls) using the Banff histological classification

of rejection in a database of kidney transplant biopsies (GSE
21374). First, we filtered microarray expression data based on the
CV>0.12. Next, we analyzed the 31 samples classified as TCMR
using MDS to identify statistical outliers among the samples
(Figure 1).Wedefined samples as outliers thatweremore than two
SD from the medoid. Based on this criterion, we classified three
samples (T.31, T.22, and T.13) as outliers. The remaining samples
were analyzed by hierarchical clustering using stats Package in R
language (Figure 2B). To determine the optimal number of clus-
ters, we analyzed the dendrogram based on connectivity, Dunn
Index, and Silhouette Index (Table S1 in SupplementaryMaterial).
All three methods supported partitioning the results into two
distinct clusters that we termed “TCMR01” and “TCMR02.”

Hierarchical Clustering Based on
Molecular Heterogeneity
Next, we calculated the mean expression levels of genes in
TCMR01, TCMR02, NEPH01 (nephrectomy control), and
NORM01 (biopsies pathologically classified as normal) and
analyzed the subtypes with hierarchical clustering (Figure 2A).
NEPH01 and NORM01 were similar based on proximity in
the dendogram. Interestingly, TCMR01 was more dissimilar
than TCMR02 from the NEPH01 and NORM01 subtypes
suggesting that TCMR01 exhibited the more extreme subtype. To
determine if the two clusters contained differentially expressed
genes, we performed t-tests between TCMR01 and TCMR02,
which identified 1933 genes that were significantly differentially
expressed (fdr<0.05) (Table S2 in SupplementaryMaterial). Thus,
although the TCMR01 and TCMR02 subtypes of rejection had
similar histological diagnoses, they were markedly heterogeneous
at the molecular level of gene expression.

Functional Differences Between Subtypes
of T Cell-Mediated Rejection
Based on the large number of differentially expressed genes in the
TCMR01 and TCMR02 subtypes, we investigated whether the
two subtypes had different biological functions. We selected
three groups of differentially expressed genes: a core group that
was differentially expressed in both subtypes and groups that
were uniquely differentially expressed in either TCMR01 or
TCMR02. Next, we identified the KEGG pathways that were
significantly associated with each group of genes (Figure 3;
Table S3 in Supplementary Material). In the core group, defined
as the genes common to both TCMR01 and TCMR02, the
pathway with the highest significance was “allograft rejection”
(q< 9.67E−16), which supported the validity of our approach.
Additional highly significant pathways included “graft-versus-
host disease” (q< 2.10E−15), “antigen processing and presenta-
tion” (q< 2.10E−15), “type I diabetes mellitus” (q< 2.90E−15),
“autoimmune thyroid disease” (q< 4.75E−14), “viral myocardi-
tis” (q< 9.44E−14), “phagosome” (q< 1.27E−10), and “cell
adhesion molecules” (q< 3.37E−09). All of the significant path-
ways share a strong pathological immune response and the emer-
gence of pathways associated with autoimmunity, allergy and
infections in addition to alloimmunity are due to the over-
lap in the genes involved in these immune processes. Impor-
tantly, it is notable that the significance level of “allograft
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FIGURE 1 | Analysis of potential sample outliers with multidimensional scaling (MDS). We analyzed 31 samples with a pathological diagnosis of
T cell-mediated rejection (TCMR) in the kidney transplant database (GSE21374). Using multidimensional scaling of the gene expression data, we identified samples
with an intracentroid distance z-score >2 (represented by the dashed lines) which included three samples (T13, T22 and T31).

FIGURE 2 | (A) Comparison of TCMR01 and TCMR02 with the normal and nephrectomy controls. Unsupervised hierarchal clustering of TCMR01, TCMR02,
NEPH01 (nephrectomy) and NORM01 (normal biopsy samples). (B) The subtypes of T cell-mediated rejection (TCMR) classified by unsupervised hierarchical
clustering. After filtering the initial 54,675 Affymetrix probe sets based upon scaled expression and coefficient of variation, we identified two distinct groups of
T cell-Mediated Rejection: TCMR01 (left) and TCMR02 (right). The two sub-diagnoses were differentiated by 1933 significant genes based upon false-discovery rate
corrected p-values of 0.05.

rejection” is more than an order of magnitude more signif-
icant than the other pathways. In addition to immune pro-
cesses, we also detected significant metabolic pathways including
“tryptophan metabolism” (q< 0.000152), “histidine metabolism”

(q< 0.000194), “glycine, serine, and threonine metabolism”
(q< 0.00154), “fatty acid degradation” (q< 0.00242), “valine,
leucine, and isoleucine degradation” (q< 0.00285), “arginine and
proline metabolism” (q< 0.0074), and “fructose and mannose
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FIGURE 3 | Functional analysis of the KEGG pathways in the core (A), TCMR01 (B), and TCMR02 (C) subtypes. We identified KEGG pathways for the
significantly modulated genes in the three subtype. The five main functional pathways are presented in the figures. Allograft rejection pathways along with other
immune pathways are highly expressed in the core group, whereas the TCMR01 is rich with metabolic pathways. Complement and coagulation cascades seem to
be uniquely expressed in the TCMR02 group. The numbers on the lines represent the p-values and are all significant with a value of <0.05. The data was analyzed
with CDBP and the networks were visualized with Cytoscape.

metabolism” (q< 0.00864) that may be important in modu-
lating the immune response and could potentially serve as
novel therapeutic targets. In contrast to the core response,
the pathways associated with the TCMR01 subtype predomi-
nantly involved metabolism. The pathways represented a diverse
array of metabolic functions ranging from the citrate cycle
to amino acid metabolism to glyoxylate metabolism to extra-
cellular matrix interaction. The TCMR01 subtype did not
contain any significant pathways directly involving immune func-
tions, whereas the TCMR02 included a number of immune
responses associated with infections, complement and coag-
ulation cascades and natural killer cell-mediated cytotoxicity.
Based on the KEGG pathway analysis, our data indicate that
the TCMR01 and TCMR02 subtypes of rejection, in addi-
tion to differential gene expression, have different biological
functions.

Protein Interactions
To investigate the mechanisms regulating the different biolog-
ical functions in the different subtypes of rejection, we con-
structed PIP graphs (Figure 4). Overall, it is apparent that the
PIPs include subnetworks involved a diverse array of biological
processes. For example, the core genes common to both sub-
types mediated upregulation of HLA class I and II molecules,
expression of cytoskeletal molecules including tubulin, fibulin,

and actin-binding proteins, proteasome components, IFNγ recep-
tor, and interferon response factors and regulators of stress and
energy production. The TCMR01 subtype upregulated collagen
and metabolic enzymes. In contrast, the TCMR02 subtype had
increased expression of RANTES, complement components of
C1q, matrix protein keratin 19, cytoskeletal components of actin
and tropomyosin, proteasome components, and GTP-binding
proteins.

Transcription Factors
Next, we analyzed the mechanisms regulating the differential
gene expression by focusing on the regulation of gene expres-
sion by transcription factors (Figure 5). In the core genes, we
detected STAT1, JUND, HNF1, and IKB. In contrast, transcrip-
tion factors unique to the TCMR01 subtype include STAT3,
FRA, JUNB, MYC, GR, and ZIC1, whereas transcription fac-
tors unique to the TCMR02 subtype include STAT2, MAFb,
Kaiso, EGR1, and CEBPd. In addition, FKBP5, which is a
cis–trans prolyl isomerase that mediates calcineurin inhibition
and binds the immunosuppressants, FK506 and rapamycin is
upregulated in TCMR02. The differential abundance of tran-
scription factors, which are known to be regulated by dif-
ferent cytokines and growth factors, suggest the activation of
different signal transduction pathways in the two rejection
subtypes.
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FIGURE 4 | Analysis of the protein–protein interaction networks in the core, TCMR01 and TCMR02 subtypes. We identified the protein–protein interaction
networks of the significantly modulated genes for the core, TCMR01 and TCMR02. Each node represents a protein from the input gene list, and each edge shows a
high-confidence protein–protein interaction (PPI). The three subnetworks show how the TCMR subtypes are vastly different on a molecular level. The data was
analyzed with CDBP and the networks were visualized with Cytoscape.

Drug–Target Interactions
Given the different transcription factor and effector mechanisms
functioning in the different subtypes, we investigated the notion
that different treatment modalities would be more precise for
each subtype of rejection. An analysis of the potential therapeutic
drugs effective against the core genes containing both TCMR01
and TCMR02 phenotypes identifies multiple drugs that have
been studied in clinical trials or FDA approved as treatment
for transplantation including Muromonab (OKT3), Epothilone
B, Epothilone D, Gemtuzumab ozogamicin, Ibritumonab, PDX,
Fucose, Sulfasalazine, and TNRF2 (cleaved) (Figure 6). In an
analysis of drugs that may be more precisely targeted to each
subtype, we identified, as expected based on the PIP, drugs tar-
geted to metabolic processes in TCMR01. In contrast, among the
drugs targeted to TCMR02, we detected 15 agents in clinical use
or that have undergone clinical trials including Alemtuzumab,
Alefacept, and Gemtuzumab. In addition, several potential cancer
drugs had potential targets in the TCMR02 subtype. These results
suggest that our analytical methods may identify therapeutic

drugs that would be more precise in the treatment of subtypes
of TCMR.

DISCUSSION

In this study, we investigated the hypothesis that the histo-
logical classification of TCMR contained multiple subtypes of
rejection involving different biological pathways and functions.
Our analysis using systems biology approaches identified two
distinct subtypes of rejection, TCMR01 and TCMR02. We con-
firmed the validity of the clusters by three criteria (connectiv-
ity, Dunn index, and Silhouette index). A direct comparison of
gene expression between the two subtypes identified 1933 genes
that were significantly differentially expressed (fdr <0.05) despite
the fact that all samples had a similar histological diagnosis.
We suggest that the significance of our study is the demon-
stration of the proof of principle that analysis of the transcrip-
tome may be a more precise classifier than current histological
diagnoses.
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FIGURE 5 | Analysis of the gene regulatory interaction networks in the core, TCMR01 and TCMR02 subtypes. We identified putative gene regulatory
networks in the core, TCMR01 and TCMR02 based on the significantly modulated genes (blue nodes). The contrasting elements in the two subnetworks show that
the TCMR subtypes are different on the level of transcriptional regulation. The data was analyzed with CDBP and the networks. Gray nodes represent products.
Purple nodes represent transcription factors. Green nodes represent repressors.

We identified three groups of differentially expressed genes that
composed the core response defined as the genes common to
both subtypes and groups unique to each subtype of rejection.
A functional analysis of gene expression data using the KEGG
database identified different functions for each group (18). For
example, the core functions that were based on genes differentially
expressed in both subtypes included immune functions involved
in alloimmune responses. In fact, the most significant pathway
was “allograft rejection,” which strongly supports the validity of
our analysis. In contrast, the KEGG pathways associated with
the unique genes in TCMR01 included predominantly metabolic
functions (e.g., glyoxylate metabolism, amino acid metabolism,
and citrate cycle), which may indicate parenchymal damage to
the graft. The pathways unique in TCMR02 included complement
and coagulation cascades and natural killer cell cytotoxicity. Thus,
at the functional level our analysis demonstrated core functions
common to both subtypes as well as unique functions specific
for either TCMR01 or TCMR02. The unique functions suggest
potential strategies to develop precision treatments, potentially
applicable to transplant rejection.

We analyzed the KEGG database, which is collated on current
knowledge (22). It is notable that multiple pathways activated in
the core genes were either immune or metabolic processes. For
example, another immune pathway was graft-versus-host disease;

however, the patients did not have clinical evidence of graft-
versus-host disease. Importantly, this pathway was more than one
order of magnitude less significant than allograft rejection and a
manual inspection of the relevant genes in these pathways shows
that the identical genes can participate in multiple broad disease
focused KEGG pathways, such as allograft rejection or GVHD.
Thus, when evaluating these disease pathways, it is essential to
include additional criteria such as clinical correlates or metadata.
When considering the more biologically fundamental pathways
(e.g., phagosome, histidine metabolism, proteasome, fatty acid
degradation, valine degradation, endocytosis, natural killer cell
cytotoxicity, arginine metabolism, and fructose metabolism), we
observed that the relevant genes are activated.

We also investigated potential mechanisms that mediated the
disease processes identified by KEGG pathways. At the level
of protein interactions, the core response includes anticipated
immune molecules including HLA Class I and II, CD8, and com-
plement receptors. In addition, we identified antigen processing
and presenting molecules (HLA-DMβ, proteasome, and CD74)
cytoskeletal proteins (tubulin, actin). In contrast, the TCMR01-
specific proteins included numerous metabolic mediators and
collagen proteins suggesting possible wound healing and fibrosis.
The TCMR02-specific proteins included C1q complement pro-
teins, FKBP, RANTES, and cathespin O. At the level of differential
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FIGURE 6 | Analysis of the network of potential drug-targets. Potential drugs (red nodes) that target proteins (gray nodes) that were significantly modulated in
the core, TCMR01 and TCMR02 subtypes were identified. The majority of these drug-target relationships have been curated by the literature associated by
DrugBank. The data was analyzed with CDBP and the networks were visualized with Cytoscape.

expression of transaction factors, there were differences among
the three groups. Interestingly, an analysis of the STAT molecules
showed that the core response included STAT1, TCMR01 included
STAT3, and TCMR02 included STAT2 indicating the activation of
different signal transduction pathways in each group.

Considered as a whole, we emphasize that the most compelling
observation of our systems biology approach is the demonstra-
tion that diverse biological mechanisms are coordinated in an
integrated response in allograft rejection. As expected, multiple
immune mechanisms are identified (e.g., MHC Class I and II,
complement pathways, cytokines, and chemokines). In addition,
genes involved in regulation of the cytoskeleton, extracellular
matrix, metabolism, gene regulation, apoptosis, signal transduc-
tion, and stress response were identified. Importantly, diverse
regulatory mechanisms that could potentially coordinate the reg-
ulation of these mechanisms were also identified including reg-
ulators of transcription, RNA processing, splicing and stability,
translation, nuclear transport, chromatin remodeling and epige-
netic modifications. The subnetworks and pathways depicted in

our analyses identify some of the molecular interactions that may
regulate and coordinate the biological systems in TCMR.

Bunnag et al. analyzed the relationship between the molecular
expression, histopathology, and renal function in kidney trans-
plant biopsies with low GFR using microarray technology. They
analyzed transcripts differentially expressed in patients with low
versus high GFR. They noted that the highest expressed were
tissue injury transcripts, whereas the lowest expressed were the
kidney parenchyma transcripts (23). Genes which were highly
expressed in the tissue injury pathway included integrins, ker-
atin genes and a metalloproteinase gene (MMP7) were noted in
our TCMR02 group. This indicates that our analysis of rejection
subtypes identifies some of the same genes. A major difference
between the studies is that the study population analyzed by Bun-
nag et al. only included 13% biopsy proven TCMR. Einecke et al.
investigated whether there is a specific transcriptome indicative of
organ failure when the biopsy is performed 1 year after transplan-
tation. A direct analysis between our gene data set and their gene
data set shows a 50% shared genes in the core andTCMR01 groups
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and 37% with the TCMR02 group (Supplementary Material) (17).
Their study population had multiple causes of graft failure and
only 13% had TCMR. The authors developed a gene expression
risk scorewhichwas predictive of graft failure in biopsies of kidney
transplants greater than 1 year after transplantation. Their analysis
differs from ours as they did not focus on TCMR but rather
analyzed all biopsies with graft dysfunction. As expected, the
genes associated with graft failure had functions related to tissue
injury. Sarwal et al. analyzed microarray data from 59 pediatric
renal allograft biopsies with poor function. They identified three
different signatures of the transcriptome although the samples
were indistinguishable by light microscopy (24). Their study re-
emphasizes the need to establish a genetic classification which will
aid in the management of TCMR, which is the problem our study
addressed. We analyzed microarray data of only TCMR biopsies
and classified the results into two major subtypes according to
their functional pathways. Our detailed approach allowed us to
identify specific pathways, which may be targeted in the future
with specific therapies for TCMR01 or TCMR02 subtype of rejec-
tion. This new classification could provide specific therapeutic
targets for personalized treatment.

Our study identified two specific subtypes of rejection,
TCMR01 or TCMR02. As expected, we also identified drugs
that had putative targets in both subtypes. Interestingly, a
number of the drugs that were potential therapies are either
current or previous therapies (Muromonab, Alemtuzumab, and
Alefacept), are in clinical trials or are treatments for other
diseases including cancer (Abciximab, Gemtuzumab ozogam-
icin, Ibritumonab, sunitinib, Bevacizumab, CPG52364, mc0457,

mln518, ptk787, Ranibizumab, PDX, Efalizumab, and Natal-
izumab) (25–40). The fact that some of these agents have
been clinically effective in the treatment of rejection (e.g.,
Muromonab) supports the validity of the analysis and sug-
gests that it could be informative to develop clinical trials that
link therapeutic agents with a specific molecular classification,
either TCMR01 or TCMR02. In addition, future studies that
combine integrated omics analyses, e.g., combining proteomics,
metabolomics, etc., with transcriptomics could increase the power
of a systems analysis.
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and Patterns of inflammatory 
Mediators Differently in skin and 
Muscle Following localized Tissue 
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Data-Driven Modeling
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Background: Trauma often cooccurs with cardiac arrest and hemorrhagic shock. 
Skin and muscle injuries often lead to significant inflammation in the affected tissue. 
The primary mechanism by which inflammation is initiated, sustained, and terminated is 
cytokine-mediated immune signaling, but this signaling can be altered by cardiac arrest. 
The complexity and context sensitivity of immune signaling in general has stymied a clear 
understanding of these signaling dynamics.

Methodology/principal findings: We hypothesized that advanced numerical and 
biological function analysis methods would help elucidate the inflammatory response to 
skin and muscle wounds in rats, both with and without concomitant shock. Based on 
the multiplexed analysis of inflammatory mediators, we discerned a differential interleukin 
(IL)-1α and IL-18 signature in skin vs. muscle, which was suggestive of inflammasome 
activation in the skin. Immunoblotting revealed caspase-1 activation in skin but not 
muscle. Notably, IL-1α and IL-18, along with caspase-1, were greatly elevated in the 
skin following cardiac arrest, consistent with differential inflammasome activation. 

conclusion/significance: Tissue-specific activation of caspase-1 and the NLRP3 
inflammasome appear to be key factors in determining the type and severity of the 

Abbreviations: BRD, band relative density; CTA, composite tissue allotransplantation; df, degrees of freedom; F, F-statistic 
(ratio of the between-group and within-group mean squares); FAN, confirmatory factor analysis; “injury only,” excisional 
wound group; LPS, lipopolysaccharide; MS, mean squares (the ratio SS/df); NMR, nuclear magnetic resonance; PCA, principal 
component analysis; PMN, polymorphonuclear neutrophil; “shock associated with cardiac arrest,” cardiac arrest group; SS, 
sum of squares.
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inTrODUcTiOn

Healthy skin and muscle tissue exist in a steady-state equilib-
rium that is characterized in large part by the absence of acute 
inflammation (1). When injured, the tissue’s steady state is upset, 
inducing a cascade of responses that include inflammation, 
repair, and remodeling of the affected region. The inflammatory 
response is an essential part of successful wound healing and sets 
the stage for effective repair and remodeling (2). The composition 
of the underlying inflammatory/immune signaling that drives the 
inflammatory response to injury is therefore critical in determin-
ing whether the inflammation ultimately leads to successful 
healing or instead leads to additional damage and dysfunctional 
tissue healing. However, when inflammatory signaling propor-
tional to an injury is altered, the inflammatory response does 
not successfully transition to subsequent stages of tissue healing 
(3). Significant systemic insults, such as cardiac arrest, have the 
potential to drastically alter local immune signaling activity and 
possibly disrupt wound healing. To the best of our knowledge, the 
effect of cardiac arrest on these local wound-healing-associated 
immune signaling processes has not been elucidated.

In the setting of both civilian and military trauma, severe local 
tissue injury can often be accompanied by cardiac arrest (4–7). 
Cardiac arrest affects numerous physiological processes, as well as 
setting in motion systemic inflammation (8–11). Although short-
term hypoxia may be an important part of stimulating wound 
healing (12), severe or extended disruption of oxygen supply 
interferes with successful wound healing (13). We hypothesize 
that the specific local inflammatory mediator network patterns 
expressed during the initial inflammatory response contain 
information about how the immune system is responding to a 
localized injury, and whether the response is leading to successful 
or dysfunctional healing outcome.

Cardiac arrest, even with eventual sudden restoration of blood 
flow, is known to cause significant cellular stress, the buildup of 
toxins, and the release of endogenous danger signals that can 
promote inflammation. In the neurological context, cardiac arrest 
is particularly well understood to cause a great deal of damage to 
nerves. Therefore, we further hypothesize that the eventual sud-
den restoration of blood flow will in essence create an ischemia/
reperfusion milieu characterized by the further release of inflam-
matory mediators, which will have a further deleterious effect on 
properly localized and moderated wound healing.

The domain of wound healing has been extensively studied 
with many excellent articles and reviews that provide an overview 
of the phases, cellular processes, and molecular signals that have 
been observed in various wound-healing settings (2, 14–18). 
The effect of the insult of cardiac arrest on patient outcomes has 
been studied with respect to the impact on patient survival and 

neurological damage, with significant focus on the potential pro-
tective effects of induced mild hypothermia (19–22). However, to 
the best of our knowledge, no prior studies examine the effect that 
cardiac arrest may have on the local immune signaling processes 
essential to inflammation and wound healing.

Analysis and interpretation of the immune signaling process 
that drives inflammation is challenging because of the complex 
interplay among inflammatory mediators and their sensitive 
dependence on local and systemic conditions. Consequently, 
analysis of the progression of inflammation must leverage analytic 
methods and the insights that are capable of robustly assessing 
multiple dimensions of variance simultaneously, and of obtaining 
relevant information from high-dimensional data matrices (23).

A variety of data analysis methods suitable to exposing the 
internal structure of such noisy, high-dimensional data have been 
developed and utilized extensively for the analysis of complex 
systems in areas such as computational linguistics and machine 
learning (24). We and others have suggested the need to employ 
data-driven computational modeling in order to derive insights 
from the types of high-dimensional datasets obtained when 
studying complex biological system, such as the inflammatory 
response (25–27). We have explored multiple techniques for 
visualizing and enumerating salient features of acute inflamma-
tion in both preclinical and clinical settings, thus providing some 
insight into the types of analytic methods likely to be effective in 
elucidating key aspects of the observed inflammatory response 
(25, 28–37).

In the present study, we investigated patterns of immune 
signaling induced in vivo in rat skin and muscle following tissue 
injury in the form of excisional wounding. We then carried out 
in  silico analyses to define principal drivers of local inflamma-
tory responses, in the presence or absence of cardiac arrest. We 
demonstrate that tissue-specific immune signaling patterns are 
modified by cardiac arrest (also a paradigm of severe hemorrhagic 
shock) and suggest that inflammasome activity may govern the 
type of inflammation initiated.

MaTerials anD MeThODs

rat Model of Tissue injury
To simulate tissue injury, we carried out deep tissue excisional 
biopsies of skin and muscle (38, 39). All animal procedures, care, 
and housing were reviewed and approved by the University of 
Pittsburgh Institutional Animal Care and Use Committee and 
followed the National Institutes of Health guidelines for the care 
and use of laboratory animals. We divided the study into two 
experimental groups: injury only (injury group) and injury with 
cardiac arrest (cardiac arrest group). In the “injury group,” four 
Lewis rats were anesthetized, and an excision biopsy was taken 

inflammatory response to tissue injury, especially in the presence of severe shock, as 
suggested via data-driven modeling.

Keywords: inflammasome, inflammatory mediators, computational modeling, data driven modeling, cardiac 
arrest and trauma, immunoregulatory, localized tissue injury, hemorrhagic shock
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from the lateral aspect of the thigh on one of the hind limbs in 
each of the rats. Tissue was drawn away from the body and held 
in forceps while surgical scissors cut 15 mm × 10 mm of tissue 
from the lateral aspect of the thigh. In the “cardiac arrest group,” 
four Lewis rats were sacrificed with a fatal sodium pentobarbital 
(Lundbeck Inc., Deerfield, IL, USA) overdose, and excision 
biopsy taken 15–30 s after cessation of heartbeat.

Protein isolation and sample Preparation
We have previously shown the preservation of animal and 
human tissues in RNALater™ (Ambion, Austin, TX, USA) 
is a method compatible with subsequent Luminex™ analysis 
(40–42). Accordingly, all tissue samples were sectioned into 
≤0.5  cm3 pieces and placed into individual sample tubes filled 
with RNALater™ and stored as per manufacturer instructions 
and as determined empirically in our prior study (40). For tissue 
processing, approximately 50 mg of the tissue was transferred to 
a 2-ml microcentrifuge tube containing 0.6 ml of 1× BioSource™ 
(Invitrogen, San Diego, CA, USA) tissue extraction reagent sup-
plemented with 10 μl of 100mM phenylmethanesulfonyl fluoride 
in ethanol as a protease inhibitor. The tissues were then homog-
enized using a tissue homogenizer, then centrifuged at 4°C for 
10 min at 10,000 × g. After centrifugation, the supernatant were 
collected and assayed for protein content using the bicinchoninic 
acid (BCA) protein assay (Pierce, Rockford, IL, USA) as per 
manufacturer’s protocol.

assays for inflammation Biomarkers
All samples were assayed for inflammatory cytokines and 
chemokines using the Luminex™ multiplexing platform (100 
IS; MiraiBio, Alameda, CA, USA) and a Millipore™ 14-plex rat 
cytokine bead set (Millipore, Billerica, MA, USA) that included 
interferon (IFN) γ, interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-5, 
IL-6, IL-10, IL-12p70, IL-18, monocyte chemotactic protein 
(MCP-1), GRO/KC, TNFα, and granulocyte-macrophage colony-
stimulating factor (GM-CSF). Results were read in picogram per 
milliliter, then subsequently normalized to total mass of sample 
protein (picogram of cytokine/milligram of protein) for each of 
the 14 cytokines by the formula x = (a/b) × 1000, where x = (pico-
gram of cytokine/milligram of protein), a = (picogram per mil-
liliter of cytokine), and b = (microgram per milliliter of protein).

For immunodetection of caspase-1, protein samples (25 μg) 
were separated on 12% SDS-polyacrylamide gels, and the gels were 
electroblotted onto PVDF membranes. After overnight blocking, 
the membranes were incubated overnight with a rabbit polyclonal 
antibody from Abcam (Cambridge, MA, USA) at 4°C followed by 
1 h incubation with a goat antirabbit secondary antibody from 
Pierce (Rockford, IL, USA) at room temperature. Bands were 
detected using the Supersignal™ West Dura Extended Duration 
Substrate Chemiluminescent kit as per the manufacturer instruc-
tions. All readings are for active caspase-1 (20 kDa).

For Coomassie blue staining, the same procedure was followed 
as for acrylamide gels (4–15%), then stained with Bio-safe™ 
(BioRad, Hercules, CA, USA) stain. After washing, 50 ml of Bio-
safe™ Coomassie stain was added. After shaking for 1 h, the pro-
tein bands became visible within 20 min and reached maximum 

intensity within 1  h. Skin to muscle caspase-1 expression was 
calculated by dividing the measured band relative density (BRD) 
ratio of skin with the measured BRD ratio of muscle: r =  s/m, 
where s = skin BRD, m = muscle BRD, and r = ratio of skin BRD 
to muscle BRD. SEM was calculated for each group.

statistical and computational analyses
Statistical analyses were performed using Math Works MatLab™, 
Microsoft Excel™, and SAS Stat View™. Western blot quantifica-
tions were compared using a balanced one-way ANOVA with 5% 
significance. Cytokine quantifications were compared utilizing 
an unpaired one-tailed heteroscedastic t-test, again with a 5% 
significance level.

Principal component analysis (PCA) (26) was used to 
help discern which of the 14 proinflammatory cytokines and 
chemokines measured by Luminex™ are the most informative 
with regards to the observed immune response, similar to 
methodology we have used previously in the context of murine 
trauma/hemorrhage (25). Data were grouped by tissue (all skin 
samples and all muscle samples), and linear combinations of 
the original 14 dimensions (cytokines/chemokines) in each 
group were created in order to produce synthesized latent 
variables that explain >95% of the variance observed. The 
strength of each inflammatory mediator’s contribution to each 
of the principal components was also examined, in order to 
provide additional evidence for determining which cytokines/
chemokines could be considered to be driving the observed 
immune reactions (25).

Immune signaling is driven to a large extent by the local 
inflammatory mediator milieu. While methods, such as PCA, 
are able to identify mediators that contribute the most variance 
to the observed immune response, it is essential to place these 
numerical results in biological context. Therefore, the PCA was 
combined with a confirmatory factor analysis (FAN) to elucidate 
the relevant pathways of the observed immune response. As a part 
of the FAN, the published literature was examined for descrip-
tions of the similarities and differences in the known biological 
properties of the cytokines identified through PCA, in order to 
find common or complimentary patterns of function. Groupings 
of inflammatory mediator contributions to components one and 
two in the PCA were interpreted as latent factors and used as the 
basis for FAN. FAN seeks to model the observed variables as lin-
ear combinations of the provided potential factors. This form of 
analysis is based on regression modeling, and therefore provides 
additional weight to similar evidence found through PCA when 
there is similarity in the results.

While factor analysis is related to PCA, the two analyses are 
not identical. PCA takes a linear combination of the observed 
variables to derive synthesized latent variables; however, factor 
analysis takes the conceptually opposite approach. Using regres-
sion techniques, this method models the observed variables 
through linear combinations of potential latent variables that 
are provided. When the two methods produce models that are 
in agreement or similar, we interpret this as suggestive evidence 
that the latent variables are indeed playing an influential role in 
the observed pathology.
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The literature-based analysis is a process by which we have uti-
lized previously published studies that elucidate the mechanisms 
or behaviors of the signaling proteins under analysis. We extract 
the biological functions described as associated with the proteins 
and use those functions as labels in our feature transformation 
and factor analysis work. We believe that this is an efficient 
evidence-based method to describe what signaling proteins the 
transformation and factor analysis methods are emphasizing as 
important and putting them into a narrative that describes what 
role they are likely fulfilling in context.

resUlTs

As a paradigm of localized tissue injury, excisional biopsies were 
made on the lateral aspect of the thigh on Lewis rat hind limbs, 
as described in Section “Materials and Methods.” To elucidate 
changes in the immune signaling profile that occur at the ces-
sation of heartbeat, cardiac arrest was induced as described 
in Section “Materials and Methods.” The testing of the second 
hypothesis stated in the introduction is through samples collected 
within 30 s of cardiac arrest, within a timeframe that is common 
in trauma-associated cardiac arrest events.

Samples taken from the wounded areas of skin and muscle 
were found to have significantly different levels and patterns 
of inflammatory mediator expression. These differences were 
evident across groups as well as across tissue.

In skin, the levels of IL-18 and IL-1α present in “cardiac arrest 
group” animals (Figure 1A) were much higher than those seen 
in any other groups. MCP-1, GM-CSF, IL-10, IL-6, and IL-1β 
were all also elevated in the “injury group” animals (Figure 1B). 
In muscle, similar differences between “cardiac arrest group” 
animals (Figure 1C) and “injury group” (Figure 1D) were also 
seen, along with marked increases in IL-18, IL-1α, IL-6, IFNγ, 
and MCP-1.

The presence of IL-18 and IL-1β led us to hypothesize the pres-
ence and activation of the NLRP3 inflammasome in response to 
localized tissue injury and cardiac arrest. To test this hypothesis, 
we examined the expression of caspase-1, which is required for 
inflammasome activity (43). As determined by Western blot-
ting analysis, caspase-1 was present in both skin and muscle in 
all study groups (Figures  2A,B). This finding, in combination 
with the presence of IL-18 and IL-1β, strongly indicates NLRP3 
inflammasome activity. Similar levels of caspase-1 expression 
were found in both the skin (Figure 2C) and muscle (Figure 2D) 
of “injury group” animals, implying relatively equal levels of 
inflammasome activation. In contrast, “cardiac arrest group” ani-
mals expressed significantly more caspase-1 in skin than muscle, 
by approximately a factor of 12.

“Cardiac arrest group” skin was associated with elevated levels 
of caspase-1 and IL-18. In “cardiac arrest group” muscle, IL-18 
levels were also markedly increased; however, caspase-1 levels 
were lower than in “injury group” muscle.

Whereas significant inflammatory mediator concentration 
differences in the skin were observed between the “injury group” 
and “cardiac arrest group,” the levels were consistently higher in 
the “cardiac arrest group” animals (Figures  3B–G). The single 
exception was GM-CSF, which was present at a much higher 

concentration in the skin of “injury group” animals (Figure 3A). 
In “cardiac arrest group” animals, the cytokine with the highest 
differential elevation relative to “injury group” animals was IFNγ. 
The only cytokine elevated differentially between groups within 
muscle tissue was IL-18, whose expression was considerably 
higher in “cardiac arrest group” animals (Figure 3N).

Also notable was the contrast between skin and muscle tissue 
inflammatory mediator profiles, particularly within the “injury 
group” (Figures 3H–Q). Interestingly, the “injury group” animals 
displayed a much wider range of statistically significant differ-
ences in the expression of cytokines and chemokines between 
skin and muscle tissue as compared to “cardiac arrest group” ani-
mals. Although the concentration of many of these inflammatory 
mediators was actually higher in “cardiac arrest group” animals, 
the difference between skin and muscle tissue expression of each 
cytokine was much smaller. IL-4, IL-12p70, and TNFα were 
expressed at significantly different levels between skin and muscle 
tissues within the “cardiac arrest group” animals (Figures 3O–Q). 
These expression levels are also distinct from any inflammatory 
mediators within the “injury group,” revealing distinct immune 
signaling patterns in the two groups.

Principal component analysis synthesized two latent variables 
in skin (Figure 4A) and in muscle (Figure 4B). In skin, the first 
principal component was comprised mostly of IL-18 and IL-1α, 
while the second component was comprised of IL-18, IL-6, 
MCP-1, IL-1β, and GRO/KC (Figure  4C). The first principal 
component of muscle was also primarily made up of IL-18 and 
IL-1α, whereas the second principal component was mostly com-
prised of IL-6, IL-18, MCP-1, and GRO-KC (Figure 4D). TNFα 
and IL-4 were identified as important cytokines in both “cardiac 
arrest group” skin and muscle and are known to play a role in 
many immune regulation or intercellular signaling contexts 
(44–46). Although the contribution of each of these cytokines is 
similar in the first principal component, their contributions were 
substantially different in the second principal component. This 
finding suggests that the cytokines are complementary in some 
respects but have distinct roles in the inflammatory mediator 
network.

Principal component analysis suggested a potential role for 
GM-CSF in tissue injury (but not shock) skin. The converse was 
observed in the case of the chemokine MCP-1 (CCL2), which 
was highly expressed in the skin of “cardiac arrest group” animals, 
but expressed at far lower levels in the skin of the “injury group” 
animals. Furthermore, high levels of IFNγ were observed in the 
“cardiac arrest group” animals, while IFNγ was entirely absent 
from the “injury group” animals.

Two-factor analysis of the skin generated a model of cytokine/
chemokine contributions to the latent variables that was very 
similar to the representation derived by PCA (Figure 5A). Two-
factor analysis of the muscle yielded a model that has similarities 
with the model derived by PCA; however, the overall agreement 
of the two models is not as strong as found in skin (Figure 5B). 
The functions of inflammatory mediators most heavily influenc-
ing each factor were correlated with descriptions of their biologi-
cal function from the literature, and through this analysis labels 
for the latent variables, which were established as “macrophage 
activation” and “cell-mediated cytotoxic response.”
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DiscUssiOn

inferring inflammasome-Driven networks 
from Data-Driven Modeling
In the present study, we sought to elucidate immune/inflamma-
tory signaling patterns in the response to skin and muscle dam-
ages, in the presence or absence of cardiac arrest. We reasoned 
that this would represent an important step in understanding the 
potential mechanisms that drive immunological responses to tis-
sue damage at the earliest stages in the settings of complex injury.

In the present study, we hypothesized that application of 
high-dimensional feature transformation methods, combined 
with biological knowledge from reports in the literature, can 
provide a deeper understanding of the immune signaling pro-
cesses that underlie injury-associated inflammation. Based on 
the multiplexed analysis of inflammation biomarkers coupled 
with data-driven modeling, we suggest that tissue injury leads to 
the differential induction of IL-1α and IL-18 in skin vs. muscle. 
This inflammatory profile is associated with elevated caspase-1 

FigUre 1 | cytokine expression in skin and muscle tissue: “cardiac arrest group” vs. “wound group.” The concentration of each cytokine in skin tissue in 
the “cardiac arrest group” (a) and the “wound group” (B) and in muscle tissue [“shock” (c) and the “wound group” (D)] across all time points, measured by 
Luminex™ as described in Section “Materials and Methods.” Cytokine concentrations are expressed in picogram per milligram total protein.

immunoblotting in skin but not muscle. Cardiac arrest greatly 
elevates IL-1α, IL-18, and caspase-1 in the skin. Thus, inflam-
masome activity appears to be central to the type and severity of 
the inflammatory response to local tissue injury, and this activity 
appears to be augmented greatly in the presence of cardiac arrest.

We utilized PCA in the current study, because this method 
is capable of quantifying the amount of information contributed 
by individual cytokines to the observed inflammation (25, 47, 
48). Because this method evaluates the contribution of new 
information derived from each inflammatory mediator to each 
of the inflammatory processes observed, PCA assigns the highest 
scoring to cytokines most correlated with a specific inflammatory 
response. As utilized herein, PCA seeks to find the linear combina-
tion of the original 14 inflammatory mediators that captures the 
most variance in the smallest number of synthesized variables. 
Thus, since PCA can show which combination of inflammatory 
mediators lies in a particular principal component, this method 
can suggest inflammatory networks which interact together to 
drive a particular facet of the overall response.
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FigUre 2 | caspase-1 expression in skin and muscle tissue: “cardiac arrest group” vs. “wound group.” Skin and muscle samples from both experimental 
groups (“cardiac arrest group” and “wound group”) were processed for protein isolation followed by Western blotting and analysis for active caspase-1 protein and 
Coomassie blue staining for loading control (see Materials and Methods). (a,B) Show a Western blot for caspase-1 in the “wound group” (W) and the “cardiac arrest 
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November 2015 | Volume 6 | Article 58756

Starzl et al. Computational Inference of Inflammasome Activation Post-Injury

Frontiers in Immunology | www.frontiersin.org

Although a well-established numerical analysis method, 
additional evidence to support the interpretation of PCA results 
is desirable and can be provided by FAN (49–51). PCA and FAN 
are related methods and can intuitively be understood as provid-
ing confirmatory analysis. While PCA is based on variance, FAN 
takes as the input the number of hypothesized factors driving 
the observed process and then seeks to find the optimal linear 
coefficients for each cytokine to project from the hypothesized 
factors back to the original values measured for each cytokine. In 
short, PCA reduces the dimensionality of a given dataset, while 
FAN expands that dimensionality. In both cases, the effect is to 
expose the orthogonal aspects of the data in order to gain a better 
perspective of what measured parameters are most responsible 
for driving the observed process, which in the present study is 
inflammation. When the two methods produce coefficient scores 
for the inflammatory mediators that are similar to each other, 
this can be interpreted as evidence in support of the hypothesis 
that inflammation is, to some degree, driven by those particular 
mediators. However, if the two methods produce coefficient scores 
that do not agree, it is likely that the number of hypothesized fac-
tors is insufficient to capture the complexity of the inflammatory 
process.

Using such dimensionality reduction methods, we have previ-
ously inferred principal characteristics or drivers of inflammation 
in mice subjected to surgical trauma alone vs. that same trauma 
in combination with hemorrhagic shock (25). More recently, we 
have utilized PCA to suggest a key module in a multicompart-
ment mechanistic mathematical model of inflammation and 
organ pathophysiology in endotoxemic swine (48), to suggest key 
physiologic effects of peritoneal suction as a therapy for sepsis 
(32), to connect in vitro and in vivo outcomes in the inflammatory 
response to implanted biomaterials (28), as well as suggesting 
key changes in metabolism that occur in the setting of pulsatile 
perfusion of livers prior to transplantation (29). Importantly, we 
have recently used these methods to suggest a role for the inflam-
masome (including elevated IL-18 and caspase-1) in a rat model 
of chronic neuropathic pain (42).

To better understand the observed immune signaling activity, 
we investigated two classes of insult: tissue injury only and tissue 
injury with shock. In the first model, the inflammatory response 
to surgically excised wounds in skin and muscle tissue without 
any secondary contaminants reveals immune signaling patterns 
primarily associated with wound healing. In the model of injury 
with shock, changes in the patterns of the inflammatory response 

FigUre 3 | cytokine levels in “wound group” vs. “cardiac arrest group” and in skin vs. muscle tissue. Tissue protein-normalized cytokine concentrations 
in “wound group” vs. “cardiac arrest group” (a–g) and in skin vs. muscle tissue (h–Q). The concentrations of each cytokine were measured by Luminex™ as 
described in Section “Materials and Methods” and are expressed in picogram per milligram total protein. *P < 0.05 by one-tail heteroscedastic t-test.
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Using such dimensionality reduction methods, we have previ-
ously inferred principal characteristics or drivers of inflammation 
in mice subjected to surgical trauma alone vs. that same trauma 
in combination with hemorrhagic shock (25). More recently, we 
have utilized PCA to suggest a key module in a multicompart-
ment mechanistic mathematical model of inflammation and 
organ pathophysiology in endotoxemic swine (48), to suggest key 
physiologic effects of peritoneal suction as a therapy for sepsis 
(32), to connect in vitro and in vivo outcomes in the inflammatory 
response to implanted biomaterials (28), as well as suggesting 
key changes in metabolism that occur in the setting of pulsatile 
perfusion of livers prior to transplantation (29). Importantly, we 
have recently used these methods to suggest a role for the inflam-
masome (including elevated IL-18 and caspase-1) in a rat model 
of chronic neuropathic pain (42).

To better understand the observed immune signaling activity, 
we investigated two classes of insult: tissue injury only and tissue 
injury with shock. In the first model, the inflammatory response 
to surgically excised wounds in skin and muscle tissue without 
any secondary contaminants reveals immune signaling patterns 
primarily associated with wound healing. In the model of injury 
with shock, changes in the patterns of the inflammatory response 

FigUre 3 | cytokine levels in “wound group” vs. “cardiac arrest group” and in skin vs. muscle tissue. Tissue protein-normalized cytokine concentrations 
in “wound group” vs. “cardiac arrest group” (a–g) and in skin vs. muscle tissue (h–Q). The concentrations of each cytokine were measured by Luminex™ as 
described in Section “Materials and Methods” and are expressed in picogram per milligram total protein. *P < 0.05 by one-tail heteroscedastic t-test.
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FigUre 4 | Principal component analysis suggests distinct groups of inflammatory mediators induced in the “wound group” vs. the “cardiac arrest 
group” in skin and muscle. (a) Percentage of variance explained by principal components in skin. Over 95% of the variance observed in skin can be explained by 
two latent variables, formed through linear combination of the original 14 variables (cytokines). Latent variables eliminate redundant information and identify the 
cytokines that are most informative about the observed immune response. (B) Percentage of variance explained by principal components in muscle. Over 95% of 
the variance observed in muscle can be explained by two latent variables, formed through linear combination of the original 14 variables (cytokines). (c) Principal 
component variable composition in skin. Each vector represents a cytokine’s contribution to each of the first and the second principal components. The lengths of 
the vectors indicate the strength of that cytokines contribution, and the direction indicates the proportion of principal component it is contributing to. This figure 
represents these relationships in the skin. (D) Principal component variable composition in muscle. This figure represents the strength of each measured cytokine’s 
contribution to each of the first and the second principal components, in muscle.
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to surgically incised wounds under conditions of cardiac arrest 
represent the disruptive effect of a disruption in blood flow and 
the associated stresses have on wound-healing signaling. Changes 
in immune signaling under these circumstances are caused by 
metabolic stress and other factors accompanying shock.

In the present study, we observed elevations in a wide range of 
proinflammatory mediators, including IL-1α, IL-1β, IL-4, IL-6, 
IL-12, IL-18, MCP-1, and TNFα. These networks of inflammatory 
mediators, observed in both the “injury group” and the “cardiac 
arrest group” are indicative of highly activated immune cells, 
such as dendritic cells, mast cells, and neutrophils. Dendritic cells 
are known as sensitive and potent pathogen presentation cells, 
but they are also becoming recognized as important in wound 

detection and healing in a variety of contexts (52–54). The specific 
role of these immune cells in a tissue is affected by the cytokine 
milieu present (23, 55). Importantly, most of these mediators have 
been implicated in the response to trauma/hemorrhage, in prior 
studies, especially TNFα (56–59) and MCP-1 (31, 35).

Although the specific milieu of the “injury group” and “cardiac 
arrest group” animals appeared distinct, PCA and FAN suggested a 
central role for IL-1α and IL-18, leading us to hypothesize and con-
firm the concomitantly elevated expression of activated caspase-1 
as evidence for strong inflammasome activation in these tissues. As 
cells are killed, are damaged, or are induced into apoptosis by the 
wounding process, they release endogenous damage-associated 
molecular pattern (DAMP) molecules, such as uric acid crystals 
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FigUre 5 | Factor analysis suggests distinct groups of inflammatory mediators induced in the “wound group” vs. the “cardiac arrest group” in skin 
and muscle. (a) Factor analysis (two factors) variable composition in skin. Modeled cytokine contribution to “cell-mediated cytotoxic response” and “macrophage 
activation” as calculated by linear combinations of provided latent factors. The direction of each vector indicates which factor the cytokine influences, while the 
length indicates the relative strength of influence as calculated by the model. (B) Factor analysis (two factors) variable composition in muscle. Modeled cytokine 
contribution to “macrophage activation” and “cell-mediated cytotoxic response” as calculated by linear combinations of provided latent factors.
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and high-mobility group protein B1 (HMGB1), molecules that 
trigger inflammatory response mechanisms (60–64). One DAMP-
induced mechanism of particular relevance to the inflammatory 
signaling profile observed in this study involves the activation of 
the NLRP3 inflammasome (65), which is one of several multipro-
tein complexes that play important roles in inflammation and cell 
death (66). Deficiency or overactivation of these cytoplasm-based 
protein assemblies has been implicated in inflammation-associated 
damage in a variety of disorders (67), and inflammasome activation 
is widely regarded as critical in the initiation of the innate immune 
response. NLRP3 responds to DAMPs and involves a spontane-
ous protein assembly that forms primarily in the cytoplasm of 
macrophages, monocytes, some keratinocytes (65), and mast cells 
(68). The NLRP3 inflammasome is known to respond to cytokines 
as well as DAMPs including HMGB1 and uric acid crystals (69). 
The inflammasome, in turn, produces and secretes bioactive proin-
flammatory cytokines. This process initiates an inflammation and 
wound-healing cycle that may moderate and conclude successfully 
with functional wound healing or may lead to runaway inflamma-
tion resulting in dysfunctional wound healing (68).

Although all classes of inflammasome produce proinflamma-
tory cytokines, each assembly only forms in response to specific 
stimuli. In the present study, we found evidence for the activation 
of NLRP3 (cryopyrin, NALP3) inflammasome. This inflam-
masome forms specifically in response to the types of DAMPs 
released in wounding and shock, as well as pathogen-associated 
molecular patterns (PAMPs) (70, 71). This class of inflammas-
omes leads to the recruitment of caspase-1 and the cleavage 
of pro-IL-1β and pro-IL-18 to yield the bioactive, proinflam-
matory cytokines IL-1β and IL-18. These cytokines are able to 
induce degranulation in polymorphonuclear neutrophil (PMN) 

leukocytes (72). Importantly, caspase-1 activity appears to be 
essential for the innate immune response, given that caspase-
1-deficient mice are resistant to developing shock in response to 
PAMPs, such as LPS (73).

NLRP3-depleted mice produce neither IL-1β nor IL-18 but 
are still able to express IL-1α, IL-12p40, and TNFα (74). In the 
present study, we found large quantities of IL-1α in wounded skin 
across all groups, suggesting that the observed immune response 
may in fact be comprised of several components that are driven 
by different activation and signaling pathways. Furthermore, we 
observed larger quantities of IL-18 vs. IL-1β, in line with reported 
requirement for prestimulation, for example with LPS, for the 
detection of large quantities of IL-1β (73). These findings are also 
in line with our recent studies in a rat model of chronic constric-
tion injury and neuropathic pain (42).

In addition to inflammasome-derived cytokines, analysis of 
the biological functions of the cytokines identified by PCA sug-
gested other potential mechanisms of inflammation induced by 
skin injury and cardiac arrest. For example, GM-CSF was highly 
expressed in skin in the “injury group” animals, while this cytokine 
was relatively absent in the “cardiac arrest group” animals. Since 
GM-CSF is an important regulator of macrophage and granulo-
cyte populations and has been shown to play an important role in 
the onset and propagation of inflammation (75, 76), its presence 
indicates strong macrophage recruitment and host defense or 
inflammatory activity. Thus, we hypothesize that GM-CSF plays 
a key role in the phenotype of the skin of the “injury group,” a 
role which we hypothesize is supported by cytokines, such as 
TNFα and IL-4. Numerous reports on the healing properties of 
GM-CSF in the literature support our PCA-derived hypothesis 
for the role of GM-CSF in the “injury group” (77–82).
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In muscle, IL-6, IL-18, and IL-1α shared both direction and 
strength of influence in both PCA and FAN models of muscle. 
Interestingly, we have suggested that MCP-1 in some way controls 
IL-6 expression (31), and it was notable that MCP-1 figured in 
both PCA and FAN. Additionally, GM-CSF and IL-1β were 
influential variables in PCA but were not highly influential in 
FAN. These findings suggest that the muscle response to injury, 
both with and without shock, is likely driven by a larger number 
of latent factors than in skin.

The high concentrations of MCP-1 seen in the “cardiac arrest 
group” may possibly be caused by the cellular metabolic stress 
associated with cardiac arrest, resulting in insufficient cellular 
perfusion that would then lead to vasodilation, shock, and wide-
spread degranulation of mast cells (83, 84). This chemokine helps 
recruit monocytes, dendritic cells, and memory T cells to sites 
of inflammation. Perhaps more significantly, MCP-1 exerts an 
important role in the degranulation of basophils and mast cells, 
facilitating the release of serine proteases, histamine, serotonin, 
and proteoglycans (70). In turn, mast cell and neutrophil degran-
ulation induced by chemokines, such as MCP-1, and cytokines, 
such as IL-18, releases TNFα, eosinophil chemotactic factor, 
histamine, and a number of other factors (85, 86). This release 
alerts other nearby cells of injury and is a part of the cascade 
that begins the immune response to the injury. This hypothesis 
is supported by evidence that the mast cells are required for 
optimal migration of dendritic cells, swelling, neutrophil infiltra-
tion, and other effects associated with wound healing (87). We 
have recently suggested, through combined in vitro, in silico, and 
clinical studies that liver-derived MCP-1 is a central mediator in 
dynamic networks of inflammation in trauma (31).

In the “cardiac arrest group,” it is likely that the release of 
TNFα as a proapoptotic cytokine was triggered, leading to higher 
concentrations of TNFα in the skin of the “cardiac arrest group.” 
However, the role of TNFα is varied and dependent on a wide 
range of factors, including receptor binding (TNF-R1 vs. TNF-
R2), the local cytokine milieu, the presence of reactive oxygen 
species, as well as many additional factors (88, 89). It is therefore 
not surprising that TNFα is seen also seen in the “injury group” 
although not in as primary a role as in the “cardiac arrest group.”

TNFα also plays a potentially important role as a costimula-
tor of IFNγ production with IL-12 (IL-12p70) (90–92). Levels 
of IFNγ in the skin of the “cardiac arrest group” suggest this as 
an important role of IL-12 in this context but is also capable of 
a variety of immunological capabilities, including stimulating 
proliferation in resting peripheral cells, promoting the generation 
of lymphokine-activated killer cells (LAK cells), and augmenting 
the cytolytic activity of natural killer cells (NK cells) (93–96).

Another prominent cytokine observed in our studies was IL-4, 
which is known to stimulate IgE B cell differentiation as well as 
alternative activation of macrophages into M2 repair cells (97), 
suggesting that IL-4 may be supporting a wound-healing pattern 
in the “injury group.” However, in the “cardiac arrest group,” sig-
nificantly higher concentrations of IL-4, as well as the increased 
presence of additional cytokines that are associated with shock, 
suggest that in this context IL-4 may be acting as a promoter of 
IgE synthesis, contributing to the shock reaction and promoting 
widespread rapid degranulation of PMN leukocytes. Importantly, 

in the “injury group,” high levels of GM-CSF are seen along with 
moderate amounts of IL-4. This same combination of cytokines 
has been shown to enable the maturation of monocytes into 
dendritic cells in vitro (98).

limitations
There are several challenges and limitations in this study. This 
study focuses on the early inflammatory phase following injury and 
therefore does not follow wounds through full healing. Although 
statistically significant differences in the expression levels of multi-
ple inflammatory mediators were found between groups, the study 
size was limited to eight animals (four in the “injury group” and 
four in the “cardiac arrest group”). Additionally, a single time point 
proximal to the time of injury was studied. Future studies would 
ideally extend the findings reported here with larger study groups, 
sampled at multiple longitudinal time points. Our focus on the 
inflammasome was derived from an analysis of a limited number 
of inflammatory mediators. Thus, it is possible that (1) others, 
unmeasured inflammatory mediators play key roles in postinjury 
inflammation and (2) that our analysis methods were insufficient to 
inform our hypotheses. With regard to the former, we attempted to 
focus our analysis on mediators that have been studied previously 
in wound biology. With regard to the latter, we attempted to use 
corroborative methodologies (PCA and FAN) to gain confidence 
in our conclusions. In skin, the agreement between PCA and 
FAN models was high across all measured mediators, providing 
additional evidence that two factors are explanatory. Nonetheless, 
confirmation of this hypothesis requires studies in which the 
inflammasome, caspase-1, IL-1α, and/or IL-18 is antagonized.

cOnclUsiOn

The inflammasome appears to govern the early inflammatory 
response to tissue injury in the skin, releasing proinflammatory 
factors likely to initiate host defense and clearance of debris. 
Normal wound healing is characterized and regulated by char-
acteristic immune signaling patterns, reflected in characteristic 
cytokine and chemokine profiles of skin and muscle (17, 99–102). 
The mediator profile characteristic of an early inflammatory 
response to tissue injury is modified extensively as a result of 
cellular stress induced by shock, likely interfering with eventual 
wound repair and regeneration. Moreover, the inflammatory 
network characteristics of skin and muscle injury responses 
(both with and without severe shock) are recognized as distinct 
from each other, as inferred from data-driven computational 
analyses. These findings support the use of feature transformation 
methods, in combination with literature-based analysis of the 
underlying biological functions, as a method to separate relevant 
biological processes from irrelevant homeostatic processes, or 
other background functions.
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Agent-based modeling has been used to characterize the nested control loops and 
non-linear dynamics associated with inflammatory and immune responses, particularly 
as a means of visualizing putative mechanistic hypotheses. This process is termed 
dynamic knowledge representation and serves a critical role in facilitating the ability to 
test and potentially falsify hypotheses in the current data- and hypothesis-rich biomedical 
research environment. Importantly, dynamic computational modeling aids in identifying 
useful abstractions, a fundamental scientific principle that pervades the physical sci-
ences. Recognizing the critical scientific role of abstraction provides an intellectual and 
methodological counterweight to the tendency in biology to emphasize comprehensive 
description as the primary manifestation of biological knowledge. Transplant immunology 
represents yet another example of the challenge of identifying sufficient understanding 
of the inflammatory/immune response in order to develop and refine clinically effective 
interventions. Advances in immunosuppressive therapies have greatly improved solid 
organ transplant (SOT) outcomes, most notably by reducing and treating acute rejection. 
The end goal of these transplant immune strategies is to facilitate effective control of the 
balance between regulatory T cells and the effector/cytotoxic T-cell populations in order 
to generate, and ideally maintain, a tolerant phenotype. Characterizing the dynamics of 
immune cell populations and the interactive feedback loops that lead to graft rejection or 
tolerance is extremely challenging, but is necessary if rational modulation to induce trans-
plant tolerance is to be accomplished. Herein is presented the solid organ agent-based 
model (SOTABM) as an initial example of an agent-based model (ABM) that abstractly 
reproduces the cellular and molecular components of the immune response to SOT. 
Despite its abstract nature, the SOTABM is able to qualitatively reproduce acute rejection 
and the suppression of acute rejection by immunosuppression to generate transplant 
tolerance. The SOTABM is intended as an initial example of how ABMs can be used to 
dynamically represent mechanistic knowledge concerning transplant immunology in a 
scalable and expandable form and can thus potentially serve as useful adjuncts to the 
investigation and development of control strategies to induce transplant tolerance.

Keywords: transplant immunology, agent-based modeling, immunosuppressive agents, mathematical 
modeling, discrete models, immune system modeling, immune system models, agent-based models
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INtRodUCtIoN: the RoLe oF dYNAMIC 
KNoWLedGe RePReseNtAtIoN to 
AddRess the tRANsLAtIoNAL 
dILeMMA

The central dilemma for the biomedical research community 
today can be described as a paradoxical challenge of dealing with 
an embarrassment of riches. Technological advances in experi-
mental methodology have led to an unprecedented ability to 
probe deeply into the workings of biological systems and acquire 
information at a level of detail not previously imagined. Advances 
in computational capability, both in terms of storage and process-
ing, have allowed the analysis of data sets at a fundamentally dif-
ferent scale. However, the challenges of interpreting this plethora 
of data are growing as quickly as the ability to acquire it. This 
condition is most evident in the ability to turn this increased basic 
biomedical knowledge into effective therapies to treat the diseases 
that most impact society today. The United States Food and Drug 
Administration report: “Innovation or Stagnation: Challenge and 
Opportunity on the Critical Path to New Medical Products” (1) 
clearly delineates a steadily increasing expenditure on Research 
and Development that is concurrent with a progressive decrease 
in the delivery of medical products to market; while this report 
is over a decade old, this trajectory has not substantively changed 
since the release of that report. This is the Translational Dilemma 
that faces biomedical research: the inability to effectively and 
efficiently translate basic mechanistic knowledge into clinically 
effective therapeutics, most apparent in attempts to understand 
and modulate “systems” processes/disorders, such as sepsis, can-
cer, wound healing, and immunomodulation (including trans-
plantation). The current situation calls for a re-assessment of the 
scientific process as currently executed in biomedical research as 
an initial step toward identifying where and how the process can 
be augmented by technology. We have asserted that the primary 
bottleneck in the current biomedical research workflow is the 
ability to evaluate and falsify the vast sets of putative mechanistic 
hypotheses being generated from the data-rich environment and 
that the use of computational modeling for dynamic knowledge 
representation is the means by which this bottleneck, and the 
Translational Dilemma, can be addressed (2). With the specific 
goal of facilitating the computational representation of the 
mechanistic knowledge generated from basic biological research, 
agent-based modeling is a modeling method that is particularly 
well suited for this purpose.

dYNAMIC KNoWLedGe 
RePReseNtAtIoN WIth AGeNt-BAsed 
ModeLING

Agent-based modeling is a discrete event, object-oriented, rule-
based, and often spatially explicit method for dynamic computer 
modeling that represents systems as a series of interacting com-
ponents (3–7). An agent-based model (ABM) is a computer pro-
gram that generates populations of discrete computational objects 
(or agents) that correspond to the component-level at which the 
reference system is being examined. These computational agents 

are organized into agent classes representing groupings of agents 
of a similar type defined by shared properties and characteris-
tics. Agents are governed by agent rules, which are a series of 
instructions that allow the agent to be treated as an input–output 
object. ABM rules are often expressed as conditional statements 
(“if-then” statements), making ABMs an intuitive way for rep-
resenting mechanisms identified from basic science research. 
Consider the following simple example. There is an agent class 
called cell-type-1 used to represent a particular cell type. That 
cell type is known to have a particular receptor, which is called 
receptor-A, which can bind to a ligand, ligand-A. The binding 
of ligand-A to receptor-A activates a signal transduction enzyme 
that is called ST-enzyme-B. This knowledge would be expressed 
in an ABM in the following manner:

Rule for agent-class cell-type-1:
If ligand-A present, then bind to receptor-A
If receptor-A bound to ligand-A, then activate 
ST-enzyme-B…

The general nature of a “rule” allows other types of mathemati-
cal or computational models (i.e., differential equation, stochastic, 
or network) to be used as rule systems (7–13). Individual agents 
incorporate the properties and rule structures of their parent 
agent class but are able to manifest diverging behavioral paths 
based on the differing local inputs that are possible through the 
ABM’s spatially heterogeneous simulation environment. For 
instance, in the example presented earlier, it can be readily seen 
that the behavior of different individual computational agents 
of type cell-type-1 might now deviate from each other: those in 
the presence of ligand-A will behave differently from those not 
exposed to ligand-A. This is the key property of ABMs that allow 
them to behave “realistically,” generating population/system level 
outputs from the heterogeneous behavioral trajectories of indi-
vidual agent instances that embody lower-level knowledge and 
mechanisms. Thus, ABMs intrinsically cross scales of biological 
organization, utilizing behavioral rules (Scale #1) to determine 
individual agent behavior (Scale #2) and then aggregating 
individuals into population dynamics of the global system (Scale 
#3). The ability to generate distributions of population behavior 
is also enhanced by the common practice of adding stochastic 
components to the agents’ rules: this stochasticity may reflect 
either apparent randomness associated with limitations of meas-
urement, or actual stochastic processes present in the reference 
system (which may amount to the same thing).

Agent-based modeling has been used in multiple domains, 
particularly in those systems that can be viewed as involving the 
interactions between populations of components, such as ecol-
ogy (14, 15), social/political science (16), microeconomics (17), 
and epidemiology (18). Agent-based modeling has also been 
increasingly and more extensively applied to biomedical systems, 
primarily in terms of characterizing multicellular interactions, 
such as in the study of sepsis (19–22), cancer (8, 23–26), cellular 
trafficking (27–31), host–microbe interactions (32, 33), gastroin-
testinal biology (34–36), and wound healing (12, 37, 38).

By virtue of their rule-based nature, ABMs are an intui-
tive means of dynamically representing the mechanisms and 
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hypotheses present in the biomedical literature, allowing them 
to serve as dynamic knowledge representations of mechanistic 
hypotheses (21, 39). The intrinsic multiscale nature of ABMs 
allows researchers to translate putative causal mechanisms to 
system level phenotypes, an essential function in dealing with the 
complexity of biological systems. Additionally, the non-prescribed 
nature of the rules embedded in an ABM, which facilitates the ini-
tial development of abstract models and the progressive addition 
of more detail as it becomes needed, makes agent-based modeling 
well suited as a scalable modular framework that can evolve with 
the state of knowledge about a particular system (7, 8, 13, 22, 40).

Agent-based models are related to and share many features 
of other spatially discrete modeling methods, most notably cel-
lular automata. However, what distinguishes ABM from cellular 
automata and other types of discrete methods is the ease of the 
mapping between the reference system and the construction of 
the ABM. Importantly, ABMs facilitate abstraction. The process 
of abstraction is an essential step in the scientific process; it is 
only through abstraction that generalization is possible: the abil-
ity to extrapolate how one seemingly unique object/system can 
be treated as similar to another seemingly unique object/system. 
The process of generalization is the means by which science 
gains its explanatory power: now one thing learned about one 
object can be applied to another distinct yet related object. It is 
readily apparent that this principle of abstraction is embedded 
in the structure of ABMs through the relationship between the 
descriptions of a particular agent class and the behaviors of the 
individual instances of that class. Recognizing the essential role of 
abstraction in the scientific process leads to the driving concept of 
parsimony in the quest for explanation (i.e., hypothesis construc-
tion). Explanatory power is thus tied to an iterative process of 
evaluating and refining hypotheses that grow from a parsimoni-
ous root. The historical, philosophical, and logical bases for this 
understanding of the scientific process are reviewed and described 
in Ref. (41). This concept of parsimony also applies to the process 
of developing computational/mathematical models. As with all 
mathematical modeling methods, the initial construction of an 
ABM should keep the rules as simple as possible, often at the 
initial expense of mechanistic detail. What initially may seem 
to be a limitation is actually of considerable benefit, as ABMs 
representing incomplete and uncertain mechanisms can provide 
a mean of testing the plausibility of those mechanisms (14, 15). 
As such, the goal of simulation experiments is to provide suf-
ficiently plausible model behavior given a particular ABM such 
that it is possible to state that the ABM has face validity. Face 
validity is the initial standard for validation as described in the 
modeling and simulation community and reflects the ability of a 
particular simulation to behave in a plausible and recognizable 
way (42, 43). Very often, this is reflected in the qualitative nature 
of the mapping between the simulation output and the real-world 
data, with an emphasis on having real-world behaviors targeted at 
multiple scales. This approach has been termed pattern-oriented 
modeling (POM) (14, 15) and has an established role in the bio-
medical application of ABMs (3, 6, 21). While initially developed 
for the use of agent-based modeling in ecology, the principles 
of POM, defined as “…the multi-criteria design, selection and 
calibration of models of complex systems” (14), can serve as a 

useful framework for the development and use of ABMs in the 
biomedical context. POM contains three primary elements: (1) 
patterns used to determine model structure, 2) patterns used for 
model selection, and 3) patterns used for calibration. Each of 
these elements is treated with an iterative process that involves 
identification, instantiating, and refinement. As with all compu-
tational models, the greater fidelity of mapping between the ABM 
and its biological counterparts enhances the correlation between 
simulation results and the real-world behaviors, but it must be 
recognized that such increased fidelity can only be achieved 
through an iterative process of refinement arising from a neces-
sarily parsimonious origin (6, 21).

The advantages of agent-based modeling are most evident 
when trying to integrate multiple populations of subcompo-
nents (such as biological cells) that interact in a highly dynamic 
fashion. The multiple cell types and interactions present in 
transplant immunology represent exactly this type of system. 
Therefore, presented herein is an abstract representation of fun-
damental knowledge concerning the process of acute solid organ 
transplant (SOT) rejection incorporated into the solid organ 
transplant agent-based model (SOTABM). While there have 
been multiple prior ABMs of the immune response (as opposed 
to inflammation) (44–46) to our knowledge, there have been no 
prior published applications of agent-based modeling to SOT. 
The fundamental conceptual basis of the SOTABM is the view 
that effective transplantation centers around a “tipping point” 
between the proinflammatory aspects of the immune response 
aimed at eradicating non-self-cells (evolutionarily reflected in 
infection) versus the anti-inflammatory control mechanisms 
that prevent that immune response to damaging the host. More 
specifically, this tipping point is primarily governed by the cel-
lular components that bridge the transition from the non-specific 
innate inflammatory immune response, which is the primary 
end effector for cellular/tissue/microbe damage, and the adaptive 
immune capability that focuses on partitioning response between 
self and non-self. The SOTABM is intended to provide an initial 
example of how a dynamic knowledge representation framework 
can be used to instantiate and replicate the general properties 
of transplant immunology with respect to acute rejection. As 
such, the SOTABM necessarily represents a simplified version 
of the real-world system, with its form the result of modeling 
choices made by the developer (as is the case with virtually any 
model, computational, or otherwise) governed by the principle 
of parsimony. Thus, there is no supposition that the SOTABM is 
a comprehensive representation of the sum total of knowledge 
concerning the cellular and molecular mechanisms of transplant 
immunology. Rather, the situation is quite the opposite, with 
the SOTABM intended to represent a basic and fundamental 
set of components and actions sufficient to explain core general 
behaviors associated with transplant immunology. Furthermore, 
the SOTABM represents one perspective (the modelers) of what 
these most basic and fundamental components and actions are. 
Given the goal of implementing canonical processes, initial 
models like the SOTABM draw heavily from literature reviews 
that present the best approximation of what is generally accepted 
within a scientific community. Therefore, the SOTABM is based 
on a series of literature reviews of transplant immunology, with 
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particular emphasis of the modeler’s interpretation of Ref. (47) as 
the central reference text to provide the overall structure of the 
SOTABM. The exercise of developing the SOTABM as presented 
in this article is intended as an example of how such biomedi-
cal knowledge can be instantiated in an ABM, and in so doing 
demonstrate how such a process could be extended to incorpo-
rate greater mechanistic detail and a wider range of transplant 
pathophysiology.

Throughout the text we will attempt to clarify the distinction 
between the actual biological objects and the  computational 
objects used to represent them by depicting the names of the 
computational objects in courier font.

Methods

General Principles and Purpose of the 
solid organ transplant ABM
As stated earlier, the intent of this presentation of the SOTABM 
is as a demonstration of how knowledge concerning transplant 
immunology could be initially incorporated into an ABM, 
with particular emphasis on the utilization of abstraction and 
qualitative pattern matching to enhance the understanding of 
biological systems. It is critical to emphasize the importance 
of looking at “model” in its verb form: “to model” as opposed 
to “a model.” As such, one should not think of these models as 
end products, but rather at subjects for discourse in the iterative 
process that is science. Admittedly, this viewpoint is not the 
familiar one for biologists/experimentalists when dealing with 
“computation” in biomedicine. The far more common perspec-
tive is one of the computational modeling as an analysis service 
rooted in statistics and the identification of correlations: i.e., 
“Here are my results, tell me what this means using your fancy 
algorithms.” Alternatively, the use of dynamic computational 
modeling as a form of knowledge representation and integration 
(which is how mathematical modeling is most powerfully used 
in the physical sciences) requires much more engagement on the 
part of the biologist, where the dynamic computational model 
is now a “conversation piece,” subject to interactions where its 
explanatory power is assessed, its underpinnings challenged, and 
refinements applied, with the intent of moving toward a greater 
understanding of the system being studied. The SOTABM is 
very much intended to be the initial step in such an engagement. 
In reviewing the development and evaluation of the SOTABM 
presented in this article, the reader is encouraged to note the spe-
cific inclusions and omissions made (inherent in the modeling 
process) and consider how they would potentially address their 
perceived shortcomings/limitations of the SOTABM if they were 
to undertake such an exercise. At a fundamental level, dynamic 
models such as the SOTABM should not be viewed as end 
products, but rather as objects intended to generate discourse 
and simulate an iterative process of testing, falsification, and 
refinement.

A Note on Parameters
As with all computational models, ABMs require the use of 
multiple parameters (constants utilized in the model’s rules). For 

example, in the sample rule previously provided, its implementa-
tion would be:

If [some value of] ligand-A is present, then bind to 
receptor-A [to some degree].
If [some threshold value] of receptor-A is bound with 
ligand-A, the activate ST-enzyme-B [to some degree]

It should be immediately evident that the behavior of any model 
is heavily dependent upon the parameters chosen. As such, the 
issue of parameter selection holds particular importance in the 
development and use of computational models. Ideally, choosing 
parameters that are derived from experimentally available data 
substantially enhances the believability of a computational model 
(assuming it behaves plausibly with those parameters). However, 
the process of experimentally acquiring specific parameters is 
often extremely difficult, if not infeasible or impossible, given 
current experimental and sampling technologies. This latter 
condition, in fact, has substantially limited the adoption of 
dynamic computational models in biomedical research, where 
a very stringent and restrictive criteria for what constitutes a 
“believable model,” dependent upon quantitative parameter and 
model behavior matching, substantially reduces the number of 
“believable models” that can actually be produced. Interestingly, 
it has been argued that such specifically detailed parameters can 
only be obtained in highly constrained and artificial experimen-
tal conditions, with the end result of a model “valid” for those 
experimental conditions, but of limited applicability beyond 
those conditions when more systems-level phenomena are 
being examined (6). This latter understanding is actually more 
in keeping with the traditional scientific goal of discovery and 
establishing generalizing principles, as opposed to the engineer-
ing paradigm of optimization and design that underlies many 
researchers’ experience with modeling and simulation.

The demonstration of agent-based modeling with the 
SOTABM takes the generalizing, parsimonious approach. As 
noted earlier, one of the advantages of agent-based modeling 
is its embracement of abstraction as a means of dealing with 
incomplete knowledge. By utilizing population effects as their 
primary output metrics, ABMs allow the characterization of 
system behavior in a more qualitative fashion, at least in the 
initial stages of development. For this reason, POM (14, 15) and 
the use of face validity as assessment criteria (42, 43) are heavily 
utilized in the development and evaluation of ABMs. This shifts 
the utility of dynamic computational modeling from quantita-
tive prediction or engineering optimization to explorations of 
plausible and recognizable behaviors; this shift in the goal of 
modeling influences the selection and determination of the 
parameters used in the SOTABM. As can be seen in the sample 
rule explained earlier, ABM rules can start off as logical state-
ments; the addition of conditional reified modifiers turns these 
rules into expressions closer to arithmetic. This allows certain 
types of parameters, specifically those associated with processes 
with known time scales, to be derived arithmetically. Even though 
these rates are potentially extractable and knowable, within the 
context of the specific ABM, their actual values are not important. 
In fact, since the SOTABM utilizes an abstract representation 
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of space, an attempt to directly apply experimentally derived 
numerical values for those parameters could potentially foster 
the belief that the model is somehow more “real” than it actually 
is. Rather, the relationship certain parameters have to other con-
nected parameters is what is crucial for determining the behavior 
of the model. The relative dependencies of these connected and 
related parameters can prove very challenging if one required 
quantitative fidelity, but given that the current modeling goal 
is determining and examining sets of overall system behaviors, 
this type of parameter representation is appropriate [and argu-
ably more relevant to translating the findings of a model beyond 
its specific implementation (6)]. As such, the establishment of 
these parameter values often starts with an arbitrary range and is 
generally followed by a heuristic, hand-fitting process involving 
repeated runs of the ABM and adjustment based on plausible 
behavior. If such plausible behavior cannot be generated, then this 
points to a fundamental insufficiency in the model. This process is 
integral to the development and calibration of an ABM. However, 
note that this hand-fitting process of calibration occurs before 
the execution of the presented simulation experiments; there is 
no retrofitting of parameters based on the outcomes of the actual 
experimental simulations.

sotABM overview
SOTABM is an abstract representation of the inflammatory and 
immune components involved in the acute rejection process of a 
SOT. The SOTABM is implemented in the freeware agent-based 
modeling toolkit Netlogo (48). Netlogo is a self-contained toolkit 
for agent-based modeling and is specifically designed to allow 
non-computer programmers/mathematicians to create dynamic 
models of their systems of interest. Interested readers are directed 
to the Netlogo website (https://ccl.northwestern.edu/netlogo/) to 
see examples and download the toolkit for their own use. Cellular 
components are depicted by computational agents (“turtles” in 
Netlogo terminology): some of these cell types are able to move 
while others remain static. The background grid spaces (“patches” 
in Netlogo terminology) represent the extracellular environment 
of the model. Agents hold variables representing determinants of 
their internal state (i.e., molecular components of the cells), which 
in turn govern their state transition rules (i.e., behavior). Patches 
hold variables that represent extracellular mediators, which dif-
fuse between discrete patches using Netlogo’s diffuse function 
[which takes the value of the variable on an individual patch and 
evenly distributes some fraction of that value to the surrounding 
eight patches; see Ref. (48)]. Interactions with the SOTABM take 
place through the standard Netlogo interface, consisting of vari-
ous GUI buttons, switches, and sliders by which certain functions 
are called and parameters set. The stochasticity in the SOTABM 
is produced by the use of Netlogo’s random number generator to 
add probabilistic modifiers to the agents’ state transition rules; 
Netlogo uses the Mersenne Twister pseudorandom generator, 
one of the most commonly used pseudorandom number genera-
tors utilized in software design (48). Consistent with the general 
modeling strategy that it is necessary to represent the baseline 
healthy state with some degree of the system robustness and func-
tion present in the real-world reference system, the SOTABM is 
constructed to be able to utilize its inflammatory and immune 

functions to deal with both sterile injury (i.e., tissue trauma) and 
an infectious insult. The SOTABM is available for download from 
http://bionetgen.org/SCAI-wiki/index.php/Main_Page.

description of the Model World  
for the sotABM
At its current level of abstraction the SOTABM does not explic-
itly represent tissue or organ architecture but instead utilizes an 
abstract representation of various tissue compartments where 
different cellular interactions occur. The SOTABM does not 
include the means to differentiate the various degrees of immu-
nogenicity seen between renal, hepatic, and cardiac transplants. 
The primary interaction space in the host tissue is represented 
by a two-dimentional square grid where the edges “wrap,” mak-
ing it topologically a torus. The size of the grid is 41 × 41 grid 
spaces; this size was arbitrarily chosen to trade off computational 
efficiency versus enough space to allow for distinct groupings 
of agents (see Figure  1). Each grid space is populated by an 
agent representing a generic host tissue cell (self-cell), and 
populations of immune cells move in a semi-Brownian fashion 
over this surface. The specific cell types and produced mediators 
represented in the SOTABM are described later in the respective 
Section “Methods.” The modeling choice was made to divide the 
overall world space of the SOTABM into four quadrants each 
representing a spatially distinct, but still connected, interaction 
space with different functions. Thus, the SOTABM has a distinct 
area in the left upper quadrant of the grid, which is intended 
to represent the intralymph node interaction space in a more 
spatially defined and limited area. Similarly, simulations of 
transplanted tissue, as well as remote tissue infection or injury, 
are localized in different quadrants of the grid (see Figure  1). 
Three different conditions are able to be applied to the system: 
Condition #1 sterile injury, Condition #2 localized infection, and 
Condition #3 solid tissue transplant. Conditions #1 and #2 can 
be varied in their size and are depicted as generally circular areas; 
Condition #3 is of fixed size consisting of 109 transplant 
cells in a roughly rectangular configuration. The size of the 
simulated transplant (109 cells) is semiarbitrary, decided upon 
primarily based on the size of the world grid (itself an arbitrary 
constraint) and the modeling decision to represent different 
body compartments/tissues in different quadrants of the world 
grid. As noted earlier, the current version of the SOTABM uses a 
generic “transplanted tissue,” and therefore does not distinguish 
between the different immunological properties seen between 
renal, hepatic, or cardiac tissues. In addition to depicting generic 
transplanted organ tissue, graft mesenchymal stromal/stem cells 
(graft-MSCs) are also included in the transplanted area. These 
cells were selected for inclusion based on their role in suppress-
ing the generation of cytotoxic immune cells directed against the 
graft (see later). Other graft-associated immune cells, such as 
macrophages, dendritic cells, and T-cell subtypes residing in any 
graft lymphoid tissue, were not included since the intent at this 
stage is not to attempt to represent graft versus host disease. While 
it is potentially possible to have concurrent conditions within the 
SOTABM, such as simulating the tissue trauma of transplant fol-
lowed by the transplanted organ itself, or the development of an 
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infection in a previously transplanted case, for purposes of this 
initial demonstration of the SOTABM it was elected not to add 
this complexity at this time.

Given the abstraction of the functions represented in the 
SOTABM, it is not precisely calibrated to time at a granular 
mechanistic level. Rather, the effects of the cellular-molecular 
events are simulated to take place with one cycle of the SOTABM 
(ticks in Netlogo terminology) approximating 15 min of real-
world time.

Interaction and Control structure of the 
sotABM
As noted earlier, the primary goal of the SOTABM is to serve as 
an initial example of how to depict the general control structure 
of the transplant immune response, particularly pertaining to 

FIGURe 1 | screenshot of the solid organ transplant agent-based model (sotABM). This figure depicts the Netlogo graphical interface of the SOTABM. The 
model world consists of a two-dimensional square grid that is 41 × 41 grid spaces in size. Each grid space is populated by a self-cell (red), and multiple 
inflammatory/immune cells can be seen distributed over its surface. Letter (A) emphasizes the simulated lymph tissue area in the left upper quadrant of the 
SOTABM; naïve-CD8-ts (blue dots) can be seen in this area. Letter (B) emphasizes the region where either infectious insult (here depicted as gray bugs) or  
tissue trauma (not shown) can be applied. Placement of the perturbation in this area constitutes a “remote” insult from the area of potential transplant.  
Letter (C) emphasizes the area where transplant tissue is applied in the right upper quadrant. Transplant cells can be seen as blue squares, with various other 
agents representing graft/donor macrophages and dendritic cells can be seen overlying the transplant tissue. Note that the concurrent presence of infection and 
transplant tissue is provided for depiction purposes only; in the simulation experiments presented for the SOTABM, there were no concurrent types of system 
perturbations performed.

acute rejection, in an ABM. A schematic of this control structure 
can be seen in Figure  2. Note that in order to not generate a 
completely uninterpretable figure, the exact model components 
utilized in the SOTABM (i.e., the names of all the agent classes) 
are not explicitly represented in Figure 2; rather representative 
labels are used to depict the main categories of cells and media-
tors chosen to be included in the SOTABM. Text contextual-
izing the specific model components to Figure  2 is provided 
in the descriptions of those components in the sections later. 
As a general description, the initial components of the innate 
immune response represent the end effector of the system, 
being primarily responsible for interactions influencing tissue 
damage, microbial killing, and abstracted tissue reconstitution. 
The innate immune response incorporates both pro- and anti-
inflammatory components, consistent with a self-contained 
control structure befitting its role as a highly evolutionarily 
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FIGURe 2 | Interaction map of the sotABM: this schematic 
demonstrates the interactions between the various cell types and 
tissue conditions present in the sotABM. The green arrows represent 
positive/additive/stimulatory relationships, whereas the red-diamonds 
represent negative/reducing/inhibitory relationships. Note the blue emphasis 
area in the right lower corner of the figure: these are the primary effector 
components for tolerance. Augmentation of the functions of T-regs and 
tolerogenic dendritic cells is a primary goal of immunosuppressive therapies 
aimed at “tipping” the balance of the control structure depicted here toward 
the tolerance phenotype (47, 58–60). Notes: 1“Ag Source” can come from 
either infection, injury, or transplanted tissue and has two distinct functional 
roles, one as an activator for macrophages “Macro-Ag” and one for dendritic 
cells “DC-Ag.” In the SOTABM, bacteria-Ag represents “Ag source” from 
infection, whereas transplant-Ag represents “Ag source” from the 
transplant graft. Both of these bacteria-Ag and transplant-Ag may 
activate macrophages (as “Macro-Ag”) and dendritic cells (as “DC-Ag”). 2The 
macrophages represented in this figure “Macrophages,” “Pro-Inflam Macros,” 
and “Anti-Inflam Macros” may be in either the host or the grafted tissue, but 
in the current iteration of the SOTABM only host macrophages are 
represented. 3The fact that “IL-10” is listed twice is not meant to represent 
two distinct pools of IL-10 but is rather an attempt to limit the number of 
crossing connectors in an already complex figure.
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from Ref. (47) and from other resources utilized for the develop-
ment of the SOTABM (49–57) that there are multiple subtypes 
of regulatory T cells (T-regs), for simplicity’s sake this initial 
version of the SOTABM abstracts these into the general classes 
of effector/cytotoxic T cells and T-regs. This simplifying process 
utilizes the following general guidelines:

 1. If a cell type or subtype has essentially the same set of input 
and output relationships as another cell type, then these were 
aggregated to a more general cell type description.

 2. If a cell type did not have an output relationship that rendered 
it unique, it was not included.

 3. If a cell type served as an intermediate pathway that was 
otherwise represented in the model using previously selected 
cell types, it was not included.

 4. If a cell type had an output that did not fit into the existing 
level of functional representation of the SOTABM, such as 
ischemia–reperfusion, these cells were not included.

 5. In general, specific secreted mediator/cytokine relationships 
were abstracted out if their action could be represented with 
a cell-to-cell influence/interaction. Note that this does not 
mean the interaction represented is an actual cell-to-cell 
physical event, but rather that the effect of the omitted media-
tor could be represented through a direct relationship.

For instance, comparing Figure 2 with Figures 1 and 2 from 
Ref. (47), Figure 2 in this paper aggregates T-cell subtypes that 
have the same input/output or target into the more abstract 
grouping. This modeling decision is based on the assessment 
that the impact of the subtleties associated with the finer control 
provided by these T-cell subtypes is below the representational 
resolution of the current SOTABM. It is also assumed that there 
is essentially no lymphoid tissue in the transplanted graft; this 
is generally consistent with the most common types of SOTs 
(hepatic, renal, and cardiac) and is consistent with the previously 
noted decision not to model graft versus host disease at this stage. 
It is acknowledged that these abstractions may have an impact 
on the subsequent iterations of the SOTABM as it becomes more 
refined, but these are accepted possibilities intrinsic to the itera-
tive nature of model development. Furthermore, recognition of 
these abstractions/omissions would be natural points for future 
expansion of the SOTABM.

Cell and Agent types
The following sections describe the specific agent classes included 
in the SOTABM. As noted earlier, the overall relationships between 
the cellular components included are depicted in Figure  2, 
albeit with a generalization of the cellular subtypes necessary to 
facilitate depiction in the figure. The relationships and interaction 
rules for the agents are described later, with the recognition that 
the encoding of those rules in the SOTABM follows the process 
described in Section “*A Note on Parameters.” Since the actual 
values used in the SOTABM would have little meaning outside 
the context of the actual code, the entire SOTABM model is 
available for download from http://bionetgen.org/SCAI-wiki/
index.php/Main_Page so that interested readers can view the 
interactions themselves.

conserved, fundamental function of multicellular organisms. 
This component of the SOTABM is very similar to structure to 
our prior work modeling the acute inflammatory response (20, 
22). The SOTABM also includes an additional layer of control 
representing the regulatory role of lymphocytes, primarily 
T-cell subtypes. It is noted again that as with all mathematical/
computational models, the specific components included in the 
SOTABM are the result of choices made by the modeler. Given 
the intent to start from the most well-established and generally 
accepted components and mechanisms present, introductory 
ABMs such as the SOTABM often focus on utilizing the content 
of well-respected review articles for their initial structure. In 
this case, the initial version of the SOTABM takes the informa-
tion reviewed in Ref. (47) as its primary source for its included 
components and mechanisms. While it is clearly evident both 
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Host Tissue (Self-Cells)
These cells represent the general tissue of the host. They do 
not move and occupy each intact grid space of the SOTABM 
at baseline. They contain a life variable, which determines 
their health state. Damage to the self-cells is reflected by a 
decrement of the life variable. When damaged beyond a cer-
tain threshold (arbitrarily set at <70% health, or <life = 70), 
the self-cells will produce damage-associated molecular 
pattern molecules (DAMPS) that will activate various inflam-
matory cells. Self-cells can be damaged by bacteria, or by 
the production of reactive oxygen species (r-oxy-s) from 
immune cells, or directly upon initialization in the sterile tissue 
injury mode. They are healed primarily by anti-inflammatory 
macrophage species (host-anti-inflam-macros), though 
also to a less or degree by proinflammatory macrophage spe-
cies (host-pro-inflam-macros).

Simulated Bacteria (Bacteria-Present)
Ref. (20, 57) was used to develop the rules for bacterial infection 
in the SOTABM. Bacterial infection is simulated abstractly by 
using placeholder agents representing the presence of infec-
tion (bacteria-present), which themselves have a state 
variable representing the amount of bacteria present on a single 
patch (bacteria-count). As noted earlier, bacteria are 
introduced into the simulation at initialization at varying sizes 
of initial insult. The bacteria reduce the life of the self-cell present 
on their own patch, and when the life of that self-cell is reduced 
to 0, the bacterial colonies/clusters spread to an adjacent patch, 
where the subsequent value of  bacteria-count on the target 
patch represents the magnitude of bacteria that have spread. 
The bacteria produce pathogen-associated molecular pattern 
molecules (PAMPS), which act analogously to DAMPS in terms 
of attracting and activating immune cells. Bacteria are killed by 
r-oxy-s, as well as by activated proinflammatory macrophages 
(host-pro-inflam-macros).

Transplanted Tissue (Transplant Cells)
Solid organ transplant is represented by the application of a solid 
section of 109 transplant cells in the right upper quadrant 
of the SOTABM (size arbitrarily set to 109 cells). Transplant 
cells perform all the functions of the self-cells in terms 
of keeping track of their health via the life variable and pro-
ducing DAMPS if damaged. In addition, they also have a state 
variable for non-self antigen (transplant-Ag), which can be 
passed on to any host antigen-presenting cells [host macrophages 
(host-macros) and host-DCs] that come into contact with 
them. Also, in addition to being able to be damaged by bacteria 
or r-oxy-s, they can also be directly damaged by activated 
cytotoxic CD8+ T cells (cyto-CD8-ts).

Polymorphonuclear Neutrophil Cells
These are the most common type of inflammatory cells; the rules 
for polymorphonuclear neutrophil cells (PMNs) are drawn from 
Ref. (20, 52, 53, 57). They move randomly unless in the presence 
of their chemotactic triggers (DAMPS and PAMPS). When trig-
gered, they follow the gradients of these molecules to the areas of 
injury or infection, where they undergo respiratory burst. This 

results in the production of r-oxy-s, which kills bacteria and 
damages normal tissue.

Host Macrophages (Host-Macros)
Their interactions are depicted under boxes “Macrophages,” 
“Pro-Inflam Macros,” and “Anti-Inflam Macros” in Figure 2. The 
rules for host-macros and their subtypes are derived from 
Ref. (20, 47, 52, 53, 57, 61, 62). Similar to PMNs, these immune 
cells move randomly unless in the presence of threshold levels of 
their chemotactic triggers: a combination of DAMPS/PAMPS and 
tumor necrosis factor (TNF). They become activated into either a 
proinflammatory phenotype or an anti-inflammatory phenotype 
depending on their milieu. DAMPS, PAMPS, and TNF all favor the 
proinflammatory state, while interleukin-10 (IL-10) favors the 
anti-inflammatory state. Proinflammatory activated macrophages 
(host-pro-inflam-macros) will produce both TNF and IL-
10 based on their level of stimulation by PAMPS and DAMPS. The 
effect of IL-10 is to decrease the responsiveness of host-DCs 
and host-macros to recognize antigen. They will also abstractly 
perform phagocytosis (by reducing the bacteria-count of 
bacteria-present on patches colocated with the host-
macro), and weakly heal normal tissue. Anti-inflammatory 
activated macrophages (host-anti-inflam-macros) will 
produce IL-10 based on their level of stimulation by PAMPS, 
DAMPS, and TNF; they do not produce TNF. They are the primary 
healing cells in the SOTABM, representing this function abstractly 
by increasing the life of any self-cells present until they return 
to normal. Also, unactivated host-macros are able to recognize 
non-self antigens (transplant-Ag) when they come into 
contact with transplant cells. Once they carry transplant-Ag, 
they are able to convert any naïve CD8 T cells (naïve-CD8-ts) 
in the lymph node area of the SOTABM to cyto-CD8-ts, which 
can then migrate to the area of the transplant and damage it.

Host Dendritic Cells (host-DCs, pro-host-DCs,  
and tol-host-DCs)
These cells function similarly to unactivated host-macros, and 
rules for their behavior were derived from Ref. (47, 63, 64). If they 
come into contact with bacteria or transplant cells, they 
will pick up either bacteria-Ag or transplant-Ag. These 
activated dendritic cells have two distinct paths: either their default 
path as proinflammatory dendritic cells (pro-host-DCs) that 
are able to activate naïve-CD8-ts to their cytotoxic form 
(cyto-CD8-ts) through direct contact, or as tolerogenic den-
dritic cells (tol-host-DCs) that directly inhibit the generation 
of cyto-CD8-ts, as well as activating T-regs and producing 
IL-10. This last function, the production of IL-10, is a negative 
feedback control mechanism that reduces the ability of host-
DCs and host-macros to pick up antigen in the first place. The 
default trajectory of an antigen-activated host-DC is toward the 
pro-host-DC phenotype, but interaction with graft-MSCs 
will switch them to the tol-host-DC phenotype.

CD8+ T Cell Species (naïve-CD8-ts and  
cyto-CD8-ts)
Rules for T cells in this and the following sections were derived 
from Ref. (47, 49–53, 62, 63). These cells are initialized as 
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naïve-CD8-ts in the left upper quadrant of the SOTABM, 
simulating their baseline existence in lymph tissue. In their 
naïve form, they do not move, but if they are exposed to/colo-
cated with host-macros or host-DCs that are positive for 
transplant-Ag, then they become activated to cyto-CD8-
ts, which can then move to the area of transplant tissue. If they 
come into contact with transplant cells they will reduce 
their life, leading to the production of DAMPS and eventually 
killing the transplant cell.

Regulatory T Cells
This agent class is used to abstractly aggregate a large set of 
different subtypes of T cells (many of which are CD4+ but also 
includes CD8+ regulatory cells, double negative CD T cells, 
among others) (47, 49–53, 55, 63). While a plethora of these cell 
types exist, in general, they share many common features:

 1. Their production and function are enhanced by IL-10.
 2. Many produce IL-10.
 3. They inhibit the generation of, function of, and promote 

the apoptosis of both effector T cells and non-tolerogenic 
dendritic cells.

 4. They promote the generation and function of tolerogenic 
dendritic cells.

Therefore, the current version of the SOTABM aggregates 
these functions into a single abstract t-regs class. T-regs 
freely move, reflecting their initial peripheral location. They 
become activated through interactions with antigen-presenting 
cells (either host-macros or host-DCs with positive 
transplant-Ag); once activated, they produce IL-10. They 
are also able to induce apoptosis of antigen-presenting cells 
already activated with transplant-Ag.

Mesenchymal Stromal/Stem Cells
These are immature, multipotent cells initially derived from the 
bone marrow but present in virtually all organ tissue (including 
transplanted organs); rules for implementation of mesenchymal 
stromal/stem cells (MSCs) are drawn from Ref. (47, 54, 55, 58, 
65–67). These cells are activated by inflammation, though not 
immediately or acutely, as would be seen in tissue trauma or 
bacterial infection. Rather, their function is more pronounced 
in the face of longer standing inflammation, as would be seen in 
chronic infections or persistent inflammation. MSCs have 
potent anti-inflammatory properties triggered by exposure to 
DAMPS, resulting in the downregulation of effector T cells. 
Their specific role in transplant immunology is not completely 
clear. The SOTABM focuses on the role of MSCs only in the 
graft tissue (graft-MSCs) because: (1) MSCs do not appear 
to be present in meaningful numbers in the circulation, (2) the 
apparent time course of MSC activity lies outside the time period 
where host-derived MSCs might affect acute rejection, and (3) 
MSCs are present in organs commonly transplanted (i.e., liver, 
kidney, and heart). Graft-MSCs become activated by DAMPS, 
deactivate cyto-CD8-ts, and promote the generation of 
tol-host-DCs.

simulated Antirejection 
Immunosuppression
It is generally accepted that in the absence of immunosuppression, 
all non-identical genotype organ transplants will result in acute 
rejection (47). A primary goal of immunosuppressive therapy is to 
tip the balance from T-cell-mediated immunity and cytotoxicity 
toward a tolerogenic phenotype dominated by T-regs (59). The 
end effector targets of immunosuppression can be seen in the 
blue emphasis region in Figure 2. While there are many different 
specific targets for immunosuppressive drugs, this current paper 
is focused on evaluating the effects of reducing effector T-cell 
populations/function while attempting to spare the role of 
T-regs. The SOTABM simulates the following general classes of 
immunosuppression.

T-Cell Eradicative Therapies
These therapies, which are primarily polyclonal or monoclonal 
antibodies directed against T cells, are used as induction modali-
ties (60). They are traditionally thought to function by deplet-
ing the host’s T-cell populations, reducing the initial adaptive 
immune cellular response to the graft, and favoring the generation 
of tolerogenic, T-reg populations, though they are more recently 
recognized as having additional effects related to interference 
with leukocyte–endothelial adhesion as well as reducing dendritic 
cell function (60). For simplicity’s sake, this initial version of the 
SOTABM focuses on simulating only the effect of T-cell depletion 
and represents this effect by allowing for 90% percentage deple-
tion of  T cells from day 2 to day 14 following transplant (68).

Calcineurin Inhibition
Calcineurin is a phosphatase that dephosphorylates the transcrip-
tion factor necessary for T-cell activation (nuclear factor for the 
activation of T cells or NFAT) and allowing its localization in the 
nucleus. Inhibition of calcineurin prevents this localization and 
limits the activation of T cells. The SOTABM uses data regarding 
two of the most commonly used calcineurin inhibitors, cyclo-
sporine A and tacrolimus, as reference points for the simulation of 
calcineurin inhibition (69–72). While both of these compounds 
block T-cell activation arising from interleukin-2 (IL-2) respon-
siveness, in the interest of simplicity the dynamics of IL-2 are not 
explicitly modeled. As such, the SOTABM qualitatively simulates 
the effect of calcineurin inhibition by reducing the probability 
that both naïve-CD8-ts are converted to cyto-CD8-ts, as 
well as the activation of T-regs by tol-host-DCs.

Cell-Based Supplementation Therapies
There is increasing interest in providing organ transplant patients 
with supplementary populations of those cells believed to favor the 
tolerogenic phenotype. T-regs and regulatory macrophages have 
been employed in this fashion, with initially promising results (47). 
However, the scalability of these modalities is hampered by practi-
cal barriers in the collection/generation of sufficient populations 
of appropriately configured cells. Therefore, cell transfer research 
has naturally turned toward those cell types that may be more 
readily available. Specifically, mesenchymal stromal cells have 
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been employed, with varying results (47, 54, 58). The SOTABM 
simulates the effect of MSC transfer therapy by the addition of 100 
MSCs to the simulation following application of the transplant.

sIMULAtIoN eXPeRIMeNts

As noted earlier, current version of the SOTABM is intended as an 
initial example of an ABM that can serve as a scalable framework 
for dynamic knowledge representation of transplant immunol-
ogy. The goal of such initial simulation experiments is to provide 
face validity, i.e., sufficiently plausible model behavior reflected 
in the qualitative mapping between the simulation output and 
the real-world behavior (6, 42, 43). This modeling goal places the 
current version of the SOTABM in the earliest phases of the POM 
process (14, 15). It should be noted that there is not a presumption 
of “uniqueness” of this particular configuration of the SOTABM. 
Rather, achieving face validity with the current iteration of the 
SOTABM just demonstrates that there exists a configuration of 
model parameters such that these behaviors can be reproduced 
(3, 6, 21). As applied to the SOTABM, this approach leads to the 
execution of simulation experiments aimed at replicating the 
conditions listed below.

Simulation experiments utilize the stochastic nature of ABMs 
to generate simulated populations for each experiment performed 
with the SOTABM. The following experiments were performed 
with N = 100 incidences per condition:

• Baseline immune response to injury and infection: these 
simulations were performed to establish plausible behavior of 
the SOTABM in terms of its ability to recover initial perturba-
tions involving just tissue damage (sterile injury) or infection. 
“Death” of the system was arbitrarily defined as when the sim-
ulation run reached a level <20% total system health (reflected 
by the summed life variables of all the self-cells). 
Simulations were performed reflecting 28  days of simulated 
time and consisted of a parameter sweep of the level of the ini-
tial insult. A parameter sweep consists of a series of simulation 
runs (N  =  100) across a range of the selected parameter. In 
this case, the parameter is the initial amount of injury (initial 
injury number) or infection (initial infection number) applied 
to the SOTABM, and the parameter sweeps performed can be 
considered analogous to the dose–response range or generated 
mortality in the design of a particular wet-lab experimental 
model. Plausible behavior would be reflected by bounds on the 
ability of the system to survive based on the magnitude of the 
initial insult, below which where survival = 100% and above 
which survival = 0%. This is similar to the previously utilized 
method for evaluating the response of an ABM of systemic 
inflammation to injury and infection (19, 20).

• Baseline immune response to transplant: as opposed to 
the simulation experiments used to examine SOTABM 
response to injury and infection, which consisted of 
parameter sweeps of the magnitude of initial perturbation, 
the amount of transplanted tissue applied is fixed (109 
contiguous transplant cells in a roughly square 
configuration). Since all transplanted organs undergo some 
degree of damage, a “successful” transplant was viewed 

as the simulation having >20% of the transplanted tissue 
remaining (as reflected by the sum of the life variable of 
all the) after 1 year of simulated time (arbitrary percentage). 
Plausible behavior would consist of loss of all transplant 
tissue by the end of 1 year simulated time in the absence of 
immunosuppression (73).

• Simulation of immunosuppressive therapies: as noted in 
Section “Methods,” the SOTABM has the capability to simulate 
several antirejection therapies.

 ⚬ T-cell eradicative therapy is simulated by the deactivation of 
90% of all T-cell agents on day 2 post-transplant extending 
to day 14 post-transplant, at which time T-cell populations 
were allowed to recover. This rule was adapted from Ref. 
(60, 68), with an exclusive focus on the effect of anti-T-cell 
antibody therapy with respect to decreasing T-cell popula-
tions at doses approximately corresponding to use in human 
organ transplant.

 ⚬ The effect of calcineurin inhibition is simulated by the reduc-
tion of the probability that naïve-CD8-ts are converted 
to cyto-CD8-ts to 10% per encounter, while the effec-
tive preserving activation of T-regs by tol-host-DCs 
consists of having activation occur at a probability of 80% 
per encounter; this effect was persistent during the 1 year of 
simulated time, reflecting the continued use of the therapeu-
tic agent. These effects and values were extrapolated from 
information extracted from Ref. (69–72).

 ⚬ Simulation of cell transfer therapy using MSCs was simu-
lated by the addition of 100 MSCs to the simulation follow-
ing application of the transplant (58). This number of MSCs, 
relative to the number of PMNs (=200 at initialization) in 
the SOTABM, is within the range (lower end) of in  vivo 
studies investigating MSC transfer therapy (58). PMNs were 
chosen as the reference cell population number due to the 
greater availability of their circulating numbers.

Simulation experiments of immunosuppressive strategies 
consisted of each intervention alone (parsed interventions), T-cell 
eradicative therapy plus calcineurin inhibition (approximation 
of current clinical practice), and T-cell eradicative therapy plus 
calcineurin inhibition plus MSC transplant (hypothetical). Parsed 
immunomodulation simulations are considered component 
testing for the SOTABM’s simulation of immunosuppression. 
However, since clinical data do not exist for such interventions in 
isolation, the SOTABM’s output can only be viewed in the most 
qualitative fashion aimed at producing plausible results. The clini-
cal reference outcome focuses on 1-year graft survival in the T-cell 
eradication  +  calcineurin inhibition group, which most closely 
approximates current standard clinical practice. Given the fact 
that the SOTABM utilizes a generic transplanted tissue, reference 
values were drawn from a range of SOTs: specifically kidney, liver, 
and heart. The reference range for renal transplant (cadaveric, due 
to the allogenic nature of the generic transplanted tissue in the 
SOTABM) was a 1-year graft survival range of 89–91% (74). The 
reference range for hepatic transplant was a 1-year graft survival of 
71–80% (the range representing the difference between deceased 
cardiac donors and deceased brain donors, a distinction not 
within the SOTABM’s current representational capacity) (75). The 
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FIGURe 3 | Parameter sweep of the sotABM for infection. this figure 
depicts the transition zone from 100% survival (below initial infection 
number = 50) toward 0% survival (above initial infection 
number = 110). These results demonstrate that the response of the 
SOTABM to infection is appropriately and plausibly bounded, meaning that 
there was an initial infection number below which the system always healed 
and an initial infection number above which the system always died. There 
were 100 replicates (N = 100) for each condition simulated, simulated 
time = 28 days.

FIGURe 4 | Parameter sweep of the sotABM for tissue injury. this 
figure depicts the transition zone from 100% survival (below initial 
injury number = 90) toward 0% survival (above initial injury 
number = 150). These results demonstrate that the response of the 
SOTABM to tissue trauma is appropriately and plausibly bounded. N = 100 
for each condition simulated, simulated time = 28 days. The behaviors 
displayed in Figures 3 and 4 with respect to non-transplant conditions where 
inflammation and immune responses are recognized to occur serve as 
verification points for the SOTABM.
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reference range for cardiac transplant was a 1-year graft survival 
of 83–89% (range reflecting stratification of high to low risk trans-
plants in a study on the effect of case volume on outcome) (76). 
While there are several ongoing clinical trials for MSC transfer, 
explicit data for 1-year graft survival currently do not exist for this 
intervention (47, 54, 58, 59); therefore, the “hypothetical” condi-
tion of MSC transfer + T-cell eradication + calcineurin inhibition 
is considered a prediction pending the reporting from those trials.

ResULts

Baseline Immune Response  
to Injury and Infection
In the absence of any perturbation, the cell levels and tissue 
integrity of the SOTABM were dynamically stable, as would be 
expected. The results of the parameter sweeps of initial perturba-
tion demonstrated plausible behavior for both sterile tissue injury 
and infection. Simulated infection demonstrates an initial inflec-
tion point with respect to the transition from complete survival 
at initial infection  =  50 (survival  =  100%), with progressively 
worsening likelihood of survival at increments of 10 of initial 
infection until reaching a second point, beyond which there is 
always system death (initial infection = 110 with survival = 0%); 
see Figure 3. Similarly, with respect to sterile injury, the earlier 

transition point from complete recovery (100% survival) was at 
initial injury = 90, with an upper transition into complete lethal-
ity (0% survival) at initial injury = 150 (see Figure 4).

Baseline Immune Response to transplant
As expected, there were no simulation runs with transplant tissue 
survival at the end of 1 year simulated time; the average time to 
critical transplant tissue loss was 14.6 days of simulated time, with 
the longest transplant survival ~21 days. This is slightly greater 
that the recognized timeframe of 10–13 days for cell-mediated 
tissue graft rejection, but not vastly so (73).

simulation of Immunosuppressive 
therapies
These results are depicted in Figure 5. There were 100 replicates 
(N = 100) for all conditions, with the total simulated time repre-
sented by a simulation run = 1 year. The results of the simulated 
immunosuppressive therapies are as follows:

• Parsed modalities: T-cell eradicative therapy alone = 37% graft 
survival (note no re-dosing for episodes of acute rejection); 
calcineurin inhibition alone  =  60% graft survival; and MSC 
transfer alone = 40% graft survival (no re-dosing but immor-
tal MSCs). As noted earlier, since corresponding clinical data 
does not exist for each of these therapeutic interventions in 
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FIGURe 5 | effectiveness of different immunosuppression simulations 
in the sotABM. This figure depicts the results of first no 
immunosuppression, then the following simulated immunosuppressive 
therapies alone and in combination: T-cell eradicative therapy alone = 37% 
graft survival (note no re-dosing for episodes of acute rejection); calcineurin 
inhibition = 60% graft survival; combination therapy of T-cell eradication with 
calcineurin inhibition = 72% graft survival; MSC transfer alone = 40% graft 
survival (no re-dosing but immortal MSCs); and T-cell eradication plus 
calcineurin inhibition plus MSC transfer = 76% graft survival. N = 100 for all 
conditions, total simulated time = 1 year. Note: 1Aggreated solid organ 
transplant (SOT) 1-year graft survival range of 71–91% incorporating 
outcomes from renal, hepatic, and cardiac transplants (74–76).

November 2015 | Volume 6 | Article 56175

An Solid organ transplant ABM

Frontiers in Immunology | www.frontiersin.org

isolation, the results of the SOTABM can only be evaluated 
in a highly qualitative fashion. Given this limitation, each 
modality plausibly has some beneficial effect on 1-year graft 
survival, but with a plausibly lower efficacy than combination 
therapy approximating current practice.

• Approximated current therapy: combination therapy of T-cell 
eradication with calcineurin inhibition = 72% graft survival; 
compare to a range of 1-year graft survival of 71–91% incorpo-
rating outcomes from renal, hepatic, and cardiac transplants 
(74–76). Simulation 1-year graft survival was lower than 
reported clinical rate. However, this can be explained by the 
fact that the current set of simulated immunosuppressive reg-
imens did not allow for re-dosing of immunosuppression for 
episodes of acute rejection, as would be the case in the clinical 
situation.

• Hypothetical MSC transfer: T-cell eradication plus calcineurin 
inhibition plus MSC transfer = 76% graft survival. As noted 
earlier, there currently does not exist an appropriate data set 
for comparison. The slight increase in 1-year graft survival is 
plausible but must remain only a prediction from the SOTABM 
pending the reporting of the outcomes of the ongoing clinical 
trials.

dIsCUssIoN

The most fundamental goal of biomedical research is to develop 
the ability to effectively and beneficially control the trajectory 

between health and disease; in short, the practice of medicine is a 
control problem. The ability to exercise control requires a putative 
mechanism by which the control can be exercised, and this in 
turn requires an understanding of the overall and aggregate struc-
ture in which the individual mechanisms reside. Furthermore, 
effective control does not necessarily require comprehensive 
knowledge of the system being controlled; what is required is a 
sufficiently detailed representation of the target system such that 
a control strategy can be developed and potentially tested. The use 
of selective abstraction is fundamental to the scientific process: it 
is universally utilized as a means of gaining insight, increasing the 
general applicability of acquired knowledge, and from a practical 
standpoint, identifying what constitutes actionable knowledge. 
Unfortunately, there is a general paucity of abstract thinking in 
biology; a situation with historical and cultural antecedents (41). 
Therefore, the current challenge that faces the biological (and bio-
medical) research communities is gaining the ability to facilitate 
abstract representations of mechanistic knowledge in order to 
best leverage the vast sets of data that are currently being gener-
ated. It has been proposed that dynamic computational models, 
and ABMs in particular, can aid in affecting this translational goal 
(22, 39).

The SOTABM is an initial step at developing an agent-based 
modeling framework to do this for transplant immunology, 
representing a highly abstracted model of the components 
and processes of the immune response, upon which various 
perturbations, including transplant, can be applied. The design 
philosophy of the SOTABM emphasizes its ability to represent a 
greater range of conditions (i.e., response to infection, tissue injury, 
and transplant challenge) rather than striving for “precision” with 
respect to replicating a specific disease process. This, in fact, is 
how biological systems function: they have an underlying set of 
functions that have been acted upon by evolution in a selection 
process that favors the ability to deal with heterogeneous, 
disparate, and potentially novel conditions. Without this ability 
to have conserved core functionality, evolution of biological 
systems could not occur. Therefore, this initial presentation of 
the SOTABM emphasizes the ability of the system to recover from 
a range of perturbations, rather than necessarily trying to create 
a highly detailed representation aimed specifically at simulating 
solid organ transplantation. As such, the SOTABM utilizes the 
minimally sufficient control structure that maps to the biological 
system while being able to produce the desired behavioral 
features. Once this iteration of the model is deemed sufficient, 
the next step is to identify features of the reference system that 
are not adequately represented; at this point, additional detail 
is added to the model. This is the iterative refinement process 
defined by Hunt et  al. (6, 21) and represents a model design 
and development strategy that is consistent with the Popperian 
paradigm that science progresses via sequential falsification.

The current version of the SOTABM generally, plausibly, 
and qualitatively reproduces the inflammatory/immune system 
response to different types of perturbations while incorporating a 
set of minimally detailed components and primary features nec-
essary in characterizing early adaptive immunity. The simulation 
experiments concerning the response of the SOTABM to infec-
tion and injury represent plausibility checks, particularly since the 
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cellular–molecular control structure represented in the SOTABM 
arose through evolution to meet these types of perturbations. Put 
a different way, a model that solely focuses on the response to 
transplant would have limited biological plausibility, since the 
evolutionary forces that led to the development of the control 
structure would not be accounted for. It is only in the context of 
a model that does produce plausible responses to evolutionarily 
relevant conditions that the behavior of the model in response to 
an “artificial” situation (i.e., SOT) can be reasonably assessed. The 
fact that even given its high degree of abstraction and biological 
incompleteness the SOTABM is able to generate qualitatively 
plausible responses to a range of perturbation points to a funda-
mental soundness of the knowledge representation incorporated 
into the model. However, there are clear limitations to the current 
version of the SOTABM, several of which are listed below:

• As a model created in Netlogo, the SOTABM inherits the 
limitations associated with that modeling environment, as 
would be the case with any computational model of virtually 
any form. The benefits of Netlogo are that it has a very low 
initial threshold for use, possessing an excellent tutorial and a 
robust library of example models; it allows a novice modeler to 
fairly rapidly engage in the model-creation process. However, 
this ease-of-use carries with it a set of hidden dangers, most 
prominently related to the fact one can readily fall into the trap 
that with increasing facility in the use of the tool one starts 
to think of their reference system in primarily terms of that 
tool, rather than as a subject in of itself. This is not an issue 
unique to NetLogo, rather it is a pervasive issue that not only 
affects computational modeling but also affects experimental 
research, where the tools for investigation begin taking prece-
dence and coloring the interpretation of the reference system 
itself. The aphorism describing this phenomenon is: “To one 
with a hammer everything looks like a nail.” The solution 
this challenge is the use of cross platform validation, where 
the underlying conceptual model is implemented in a set of 
different, ideally unrelated modeling methods. Full discussion 
of this issue is beyond the scope of this paper, except to say that 
this is an issue that the modeling community struggles with, 
and where recognition of the challenge is currently the best, 
most prudent strategy.

• Moving on to specific limitations of the SOTABM within the 
context of its development environment, the lack of adjustment 
of therapeutic regimen to treat episodic acute rejection. In the 
clinical setting, there is considerable surveillance looking for 
signs of early rejection, and these episodes are addressed with 
temporary augmentation of the immunosuppressive regimen. 
The current cycle of simulation experiments do not reflect this 
practice.

• Lack of sufficient model detail with respect to the mechanisms 
of immunosuppression, While above we have made the argu-
ment concerning the benefits of abstraction, there is a definite 
point at which the failures of a particular abstraction level 
become evident. This may be most pronounced when dealing 
with putative mechanisms of control. In the case of simulated 
immunosuppression in the SOTABM, the abstractions made 
with respect to the life cycle of immune cells, and the various 

stages of activation possibly resulted in a too-coarse grain-
ing of responses the system; in short the abstractions made 
enforced a more binary, and less nuanced, set of possible 
trajectories for the different cellular populations and their 
activation status.

• Solid organ transplant does not occur without tissue trauma 
from the initial surgery. In fact, there can be a huge variation 
in the amount of surgical trauma/resuscitation associated with 
a transplant, which in turn is due to a large amount of variance 
in the presurgical morbid state of the patient. These factors 
clearly influence the success of the overall transplant, but due 
to the inherent interactive complexity of this clinically relevant 
condition, it is essentially impossible to parse out how each 
of those factors might actually come into play for a particular 
individual. A suggestion for that process of parsing is the goal 
of this initial paper: by decomposing the different possible 
functional components of the overall transplant patient, the 
sets of conditions presented here should be thought of as 
semi-idealized, reductionist interpretations of the admit-
tedly complex system dynamics. The process is analogous 
to the rationale for using simpler, reduced biological proxy 
experimental platforms to do research (cell cultures, tightly 
controlled animals, etc.), but with significant and critical dif-
ferences. The first of these differences is the fact that computa-
tional models are transparent with respect to the mechanisms 
being evaluated: there are no “hidden variables” (i.e., biological 
components or functions). This means that ABMs will only do 
what is put into them, and therefore their failure to be made to 
generate a desired behavior is direct evidence of their insuffi-
ciency (thereby achieving the goal of falsification). The second 
difference is that their transparent, modular structure allows 
ABMs to be aggregated (perhaps “reverse parsed”) in a fashion 
that is not currently feasible in experimental biology. While 
there are several steps in this direction (i.e., linked “organs-on-
a-chip”), the current translational step from in vitro to in vivo 
experimental platforms is opaque to a whole host of processes 
and interactions that cannot be identified or characterized.

Recognizing the costs of the abstractions and omissions 
made in the current version of the SOTABM provides a guide 
for the necessary refinements to be made in its next iterations. 
Importantly, the ability to modularly extend the SOTABM to more 
closely match the richness of the cellular subtypes and response 
capabilities in the early adaptive immune response is one of its 
key intended features. It is hoped that this initial implementation 
of the SOTABM will demonstrate its promise as a framework 
that can serve to integrate the continually evolving knowledge 
concerning transplant immunity and help fulfill the promise of 
dynamic knowledge representation as a means of addressing the 
Translational Dilemma.

ACKNoWLedGMeNts

This work was supported in part by the NIH NIDDK 
P30DK42086 grant. This work was also supported by Grant NIH 
1RO1-GM-115839-01.

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


November 2015 | Volume 6 | Article 56177

An Solid organ transplant ABM

Frontiers in Immunology | www.frontiersin.org

ReFeReNCes

1. Food and Drug Administration. Innovation or Stagnation: Challenge and 
Opportunity on the Critical Path to New Medical Products. Silver Spring, MD: 
Food and Drug Administration (2004). p. 1–38.

2. An G. Closing the scientific loop: bridging correlation and causality 
in the petaflop age. Sci Transl Med (2010) 2(41):41s34. doi:10.1126/
scitranslmed.3000390 

3. An G, Mi Q, Dutta-Moscato J, Vodovotz Y. Agent-based models in transla-
tional systems biology. Wiley Interdiscip Rev Syst Biol Med (2009) 1(2):159–71. 
doi:10.1002/wsbm.45 

4. Bankes SC. Agent-based modeling: a revolution? Proc Natl Acad Sci U S A 
(2002) 99(Suppl 3):7199–200. doi:10.1073/pnas.072081299 

5. Bonabeau E. Agent-based modeling: methods and techniques for simulating 
human systems. Proc Natl Acad Sci U S A (2002) 99(Suppl 3):7280–7. 
doi:10.1073/pnas.082080899 

6. Hunt CA, Ropella GE, Lam TN, Tang J, Kim SH, Engelberg JA, et al. At the bio-
logical modeling and simulation frontier. Pharm Res (2009) 26(11):2369–400. 
doi:10.1007/s11095-009-9958-3 

7. Walker DC, Southgate J. The virtual cell – a candidate co-ordinator for ‘mid-
dle-out’ modeling of biological systems. Brief Bioinform (2009) 10(4):450–61. 
doi:10.1093/bib/bbp010 

8. Zhang L, Athale CA, Deisboeck TS. Development of a three-dimensional 
multiscale agent-based tumor model: simulating gene-protein interaction 
profiles, cell phenotypes and multicellular patterns in brain cancer. J Theor 
Biol (2007) 244(1):96–107. doi:10.1016/j.jtbi.2006.06.034 

9. Santoni D, Pedicini M, Castiglione F. Implementation of a regulatory gene 
network to simulate the TH1/2 differentiation in an agent-based model of 
hypersensitivity reactions. Bioinformatics (2008) 24(11):1374–80. doi:10.1093/
bioinformatics/btn135 

10. Fallahi-Sichani M, El-Kebir M, Marino S, Kirschner DE, Linderman JJ, et al. 
Multiscale computational modeling reveals a critical role for TNF-alpha 
receptor 1 dynamics in tuberculosis granuloma formation. J Immunol (2011) 
186(6):3472–83. doi:10.4049/jimmunol.1003299 

11. Hoehme S, Drasdo D. A cell-based simulation software for multi-cellular 
systems. Bioinformatics (2010) 26(20):2641–2. doi:10.1093/bioinformatics/
btq437 

12. Adra S, Sun T, MacNeil S, Holcombe M, Smallwood R. Development of a three 
dimensional multiscale computational model of the human epidermis. PLoS 
One (2010) 5(1):e8511. doi:10.1371/journal.pone.0008511 

13. Christley S, Alber MS, Newman SA. Patterns of mesenchymal condensation 
in a multiscale, discrete stochastic model. PLoS Comput Biol (2007) 3(4):e76. 
doi:10.1371/journal.pcbi.0030076 

14. Grimm V, Railsback SF. Pattern-oriented modelling: a ‘multi-scope’ for 
predictive systems ecology. Philos Trans R Soc Lond B Biol Sci (2012) 
367(1586):298–310. doi:10.1098/rstb.2011.0180 

15. Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, 
et  al. Pattern-oriented modeling of agent-based complex systems: 
lessons from ecology. Science (2005) 310(5750):987–91. doi:10.1126/
science.1116681 

16. Macy M, Willer R. From factors to actors: computational sociology and agent-
based modeling. Annu Rev Sociol (2002) 28:143–66. doi:10.1146/annurev.
soc.28.110601.141117 

17. Tesfatsion L. Agent-based computational economics: growing 
economies from the bottom up. Artif Life (2002) 8(1):55–82. 
doi:10.1162/106454602753694765 

18. Parker J, Epstein J. A distributed platform for global-scale agent-based models 
of disease transmission. ACM Trans Model Comput Simul (2011) 22(1):2. 
doi:10.1145/2043635.2043637 

19. An G. Agent-based computer simulation and sirs: building a bridge 
between basic science and clinical trials. Shock (2001) 16(4):266–73. 
doi:10.1097/00024382-200116040-00006 

20. An G. In  silico experiments of existing and hypothetical cytokine-directed 
clinical trials using agent-based modeling. Crit Care Med (2004) 32(10):2050–
60. doi:10.1097/01.CCM.0000139707.13729.7D 

21. Hunt CA, Ropella GE, Yan L, Hung DY, Roberts MS. Physiologically based 
synthetic models of hepatic disposition. J Pharmacokinet Pharmacodyn (2006) 
33(6):737–72. doi:10.1007/s10928-006-9031-3 

22. Deissenberg C, van der Hoog S, Dawid H. EURACE: a massively parallel 
agent-based model of the European economy. Appl Math Comput (2008) 
204(2):541–52. doi:10.1016/j.amc.2008.05.116 

23. Mansury Y, Diggory M, Deisboeck TS. Evolutionary game theory in an agent-
based brain tumor model: exploring the ‘Genotype-Phenotype’ link. J Theor 
Biol (2006) 238(1):146–56. doi:10.1016/j.jtbi.2005.05.027 

24. Engelberg JA, Ropella GE, Hunt CA. Essential operating princi-
ples for tumor spheroid growth. BMC Syst Biol (2008) 2(1):110. 
doi:10.1186/1752-0509-2-110 

25. Deisboeck TS, Berens ME, Kansal AR, Torquato S, Stemmer-Rachamimov 
AO, Chiocca EA. Pattern of self-organization in tumour systems: complex 
growth dynamics in a novel brain tumour spheroid model. Cell Prolif (2001) 
34(2):115–34. doi:10.1046/j.1365-2184.2001.00202.x 

26. Chen S, Ganguli S, Hunt CA. An agent-based computational approach 
for representing aspects of in  vitro multi-cellular tumor spheroid 
growth. Conf Proc IEEE Eng Med Biol Soc (2004) 1:691–4. doi:10.1109/
IEMBS.2004.1403252

27. Thorne BC, Bailey A, Benedict K, Peirce-Cottler S. Modeling blood vessel 
growth and leukocyte extravasation in ischemic injury: an integrated agent-
based and finite element analysis approach. J Crit Care (2006) 21(4):346. 
doi:10.1016/j.jcrc.2006.10.007 

28. Tang J, Ley KF, Hunt CA. Dynamics of in silico leukocyte rolling, activation, 
and adhesion. BMC Syst Biol (2007) 1:14. doi:10.1186/1752-0509-1-14 

29. Tang J, Hunt CA, Mellein J, Ley K. Simulating leukocyte-venule interac-
tions – a novel agent-oriented approach. Conf Proc IEEE Eng Med Biol Soc 
(2004) 7:4978–81. doi:10.1109/IEMBS.2004.1404376

30. Bailey AM, Thorne BC, Peirce SM. Multi-cell agent-based simulation of 
the microvasculature to study the dynamics of circulating inflammatory 
cell trafficking. Ann Biomed Eng (2007) 35(6):916–36. doi:10.1007/
s10439-007-9266-1 

31. Bailey AM, Lawrence MB, Shang H, Katz AJ, Peirce SM. Agent-based model 
of therapeutic adipose-derived stromal cell trafficking during ischemia 
predicts ability to roll on P-selectin. PLoS Comput Biol (2009) 5(2):e1000294. 
doi:10.1371/journal.pcbi.1000294 

32. Peer X, An G. Agent-based model of fecal microbial transplant effect 
on bile acid metabolism on suppressing Clostridium difficile infection: 
an example of agent-based modeling of intestinal bacterial infection. 
J Pharmacokinet Pharmacodyn (2014) 41(5):493–507. doi:10.1007/
s10928-014-9381-1 

33. Seal JB, Alverdy JC, Zaborina O, An G. Agent-based dynamic knowledge 
representation of Pseudomonas aeruginosa virulence activation in the stressed 
gut: towards characterizing host-pathogen interactions in gut-derived sepsis. 
Theor Biol Med Model (2011) 8:33. doi:10.1186/1742-4682-8-33 

34. Wendelsdorf KV, Alam M, Bassaganya-Riera J, Bisset K, Eubank S, Hontecillas 
R, et al. ENteric Immunity SImulator: a tool for in silico study of gastroenteric 
infections. IEEE Trans Nanobioscience (2012) 11(3):273–88. doi:10.1109/
TNB.2012.2211891 

35. Cockrell C, Christley S, An G. Investigation of inflammation and tissue pat-
terning in the gut using a spatially explicit general-purpose model of enteric 
tissue (SEGMEnT). PLoS Comput Biol (2014) 10(3):e1003507. doi:10.1371/
journal.pcbi.1003507 

36. Cockrell RC, Christley S, Chang E, An G. Towards anatomic scale agent-
based modeling with a massively parallel spatially explicit general-purpose 
model of enteric tissue (SEGMEnT_HPC). PLoS One (2015) 10(3):e0122192. 
doi:10.1371/journal.pone.0122192 

37. Mi Q, Rivière B, Clermont G, Steed DL, Vodovotz Y. Agent-based model of 
inflammation and wound healing: insights into diabetic foot ulcer pathology 
and the role of transforming growth factor-beta1. Wound Repair Regen (2007) 
15(5):671–82. doi:10.1111/j.1524-475X.2007.00271.x 

38. Walker DC, Hill G, Wood SM, Smallwood RH, Southgate J. Agent-based 
computational modeling of wounded epithelial cell monolayers. IEEE Trans 
Nanobioscience (2004) 3(3):153–63. doi:10.1109/TNB.2004.833680 

39. An G. Dynamic knowledge representation using agent-based modeling: 
ontology instantiation and verification of conceptual models. Methods Mol 
Biol (2009) 500:445–68. doi:10.1007/978-1-59745-525-1_15 

40. Kirschner DE, Chang ST, Riggs TW, Perry N, Linderman JJ. Toward a 
multiscale model of antigen presentation in immunity. Immunol Rev (2007) 
216:93–118. doi:10.1111/j.1600-065X.2007.00490.x 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1126/scitranslmed.3000390
http://dx.doi.org/10.1126/scitranslmed.3000390
http://dx.doi.org/10.1002/wsbm.45
http://dx.doi.org/10.1073/pnas.072081299
http://dx.doi.org/10.1073/pnas.082080899
http://dx.doi.org/10.1007/s11095-009-9958-3
http://dx.doi.org/10.1093/bib/bbp010
http://dx.doi.org/10.1016/j.jtbi.2006.06.034
http://dx.doi.org/10.1093/bioinformatics/btn135
http://dx.doi.org/10.1093/bioinformatics/btn135
http://dx.doi.org/10.4049/jimmunol.1003299
http://dx.doi.org/10.1093/bioinformatics/btq437
http://dx.doi.org/10.1093/bioinformatics/btq437
http://dx.doi.org/10.1371/journal.pone.0008511
http://dx.doi.org/10.1371/journal.pcbi.0030076
http://dx.doi.org/10.1098/rstb.2011.0180
http://dx.doi.org/10.1126/science.1116681
http://dx.doi.org/10.1126/science.1116681
http://dx.doi.org/10.1146/annurev.soc.28.110601.141117
http://dx.doi.org/10.1146/annurev.soc.28.110601.141117
http://dx.doi.org/10.1162/106454602753694765
http://dx.doi.org/10.1145/2043635.2043637
http://dx.doi.org/10.1097/00024382-200116040-00006
http://dx.doi.org/10.1097/01.CCM.0000139707.13729.7D
http://dx.doi.org/10.1007/s10928-006-9031-3
http://dx.doi.org/10.1016/j.amc.2008.05.116
http://dx.doi.org/10.1016/j.jtbi.2005.05.027
http://dx.doi.org/10.1186/1752-0509-2-110
http://dx.doi.org/10.1046/j.1365-2184.2001.00202.x
http://dx.doi.org/10.1109/IEMBS.2004.1403252
http://dx.doi.org/10.1109/IEMBS.2004.1403252
http://dx.doi.org/10.1016/j.jcrc.2006.10.007
http://dx.doi.org/10.1186/1752-0509-1-14
http://dx.doi.org/10.1109/IEMBS.2004.1404376
http://dx.doi.org/10.1007/s10439-007-9266-1
http://dx.doi.org/10.1007/s10439-007-9266-1
http://dx.doi.org/10.1371/journal.pcbi.1000294
http://dx.doi.org/10.1007/s10928-014-9381-1
http://dx.doi.org/10.1007/s10928-014-9381-1
http://dx.doi.org/10.1186/1742-4682-8-33
http://dx.doi.org/10.1109/TNB.2012.2211891
http://dx.doi.org/10.1109/TNB.2012.2211891
http://dx.doi.org/10.1371/journal.pcbi.1003507
http://dx.doi.org/10.1371/journal.pcbi.1003507
http://dx.doi.org/10.1371/journal.pone.0122192
http://dx.doi.org/10.1111/j.1524-475X.2007.00271.x
http://dx.doi.org/10.1109/TNB.2004.833680
http://dx.doi.org/10.1007/978-1-59745-525-1_15
http://dx.doi.org/10.1111/j.1600-065X.2007.00490.x


November 2015 | Volume 6 | Article 56178

An Solid organ transplant ABM

Frontiers in Immunology | www.frontiersin.org

41. Vodovotz Y, An G. Translational Systems Biology: Concepts and Practice for the 
Future of Biomedical Research. Waltham, MA: Elsevier (2014). 178 p.

42. Balci O. Verification, validation and testing. In: Banks J, editor. Handbook of 
Simulation: Principles, Methodology, Advances, Applications, and Practice. New 
York, NY: John Wiley & Sons (1998). p. 335–96.

43. Balci O. A methodology for certification of modeling and simulation 
applications. ACM Trans Model Comput Simul (2001) 11(4):352–77. 
doi:10.1145/508366.508369 

44. Baldazzi V, Castiglione F, Bernaschi M. An enhanced agent based model of 
the immune system response. Cell Immunol (2006) 244(2):77–9. doi:10.1016/j.
cellimm.2006.12.006 

45. Folcik VA, An GC, Orosz CG. The Basic Immune Simulator: an agent-based 
model to study the interactions between innate and adaptive immunity. Theor 
Biol Med Model (2007) 4:39. doi:10.1186/1742-4682-4-39 

46. Mata J, Cohn M. Cellular automata-based modeling program: 
synthetic immune system. Immunol Rev (2007) 216:198–212. 
doi:10.1111/j.1600-065X.2007.00511.x 

47. Wood KJ, Bushell A, Hester J. Regulatory immune cells in transplantation. Nat 
Rev Immunol (2012) 12(6):417–30. doi:10.1038/nri3227 

48. Wilensky U, NetLogo. Center for Connected Learning and Computer-Based 
Modeling. Evanston, IL: Northwestern University (1999).

49. Askar M. T helper subsets & regulatory T cells: rethinking the paradigm in 
the clinical context of solid organ transplantation. Int J Immunogenet (2014) 
41(3):185–94. doi:10.1111/iji.12106 

50. Turner DL, Gordon CL, Farber DL. Tissue-resident T cells, in situ immunity 
and transplantation. Immunol Rev (2014) 258(1):150–66. doi:10.1111/
imr.12149 

51. Rothstein DM, Camirand G. New insights into the mechanisms of Treg 
function. Curr Opin Organ Transplant (2015) 20(4):376–84. doi:10.1097/
MOT.0000000000000212 

52. Spahn JH, Li W, Kreisel D. Innate immune cells in transplantation. Curr Opin 
Organ Transplant (2014) 19(1):14–9. doi:10.1097/MOT.0000000000000041 

53. Otterbein LE, Fan Z, Koulmanda M, Thronley T, Strom TB. Innate immunity 
for better or worse govern the allograft response. Curr Opin Organ Transplant 
(2015) 20(1):8–12. doi:10.1097/MOT.0000000000000152 

54. Cortinovis M, Casiraghi F, Remuzzi G, Perico N. Mesenchymal stromal 
cells to control donor-specific memory T cells in solid organ transplan-
tation. Curr Opin Organ Transplant (2015) 20(1):79–85. doi:10.1097/
MOT.0000000000000145 

55. Duffy MM, Ritter T, Ceredig R, Griffin MD. Mesenchymal stem cell effects 
on T-cell effector pathways. Stem Cell Res Ther (2011) 2(4):34. doi:10.1186/
scrt75 

56. Cowan M, Chon WJ, Desai A, Andrews S, Bai Y, Veguilla V, et  al. Impact 
of immunosuppression on recall immune responses to influenza vaccination 
in stable renal transplant recipients. Transplantation (2014) 97(8):846–53. 
doi:10.1097/01.TP.0000438024.10375.2d 

57. Chong AS, Alegre ML. The impact of infection and tissue damage in solid- 
organ transplantation. Nat Rev Immunol (2012) 12(6):459–71. doi:10.1038/
nri3215 

58. Casiraghi F, Perico N, Remuzzi G. Mesenchymal stromal cells to promote 
solid organ transplantation tolerance. Curr Opin Organ Transplant (2013) 
18(1):51–8. doi:10.1097/MOT.0b013e32835c5016 

59. Monguio-Tortajada M, Lauzurica-Valdemoros R, Borras FE. Tolerance in 
organ transplantation: from conventional immunosuppression to extracellu-
lar vesicles. Front Immunol (2014) 5:416. doi:10.3389/fimmu.2014.00416 

60. Mohty M. Mechanisms of action of antithymocyte globulin: T-cell depletion 
and beyond. Leukemia (2007) 21(7):1387–94. doi:10.1038/sj.leu.2404683 

61. Kwan T, Wu H, Chadban SJ. Macrophages in renal transplantation: roles and 
therapeutic implications. Cell Immunol (2014) 291(1–2):58–64. doi:10.1016/j.
cellimm.2014.05.009 

62. Mannon RB. Macrophages: contributors to allograft dysfunction, repair, 
or innocent bystanders? Curr Opin Organ Transplant (2012) 17(1):20–5. 
doi:10.1097/MOT.0b013e32834ee5b6 

63. Morelli AE. Dendritic cells of myeloid lineage: the masterminds behind 
acute allograft rejection. Curr Opin Organ Transplant (2014) 19(1):20–7. 
doi:10.1097/MOT.0000000000000039 

64. Zhuang Q, Lakkis FG. Dendritic cells and innate immunity in kidney trans-
plantation. Kidney Int (2015) 87(4):712–8. doi:10.1038/ki.2014.430 

65. Keating A. Mesenchymal stromal cells: new directions. Cell Stem Cell (2012) 
10(6):709–16. doi:10.1016/j.stem.2012.05.015 

66. Xu G, Zhang L, Ren G, Yuan Z, Zhang Y, Zhao RC, et al. Immunosuppressive 
properties of cloned bone marrow mesenchymal stem cells. Cell Res (2007) 
17(3):240–8. doi:10.1038/cr.2007.4

67. da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells 
reside in virtually all post-natal organs and tissues. J Cell Sci (2006) 119(Pt 
11):2204–13. doi:10.1242/jcs.02932 

68. Préville X, Flacher M, LeMauff B, Beauchard S, Davelu P, Tiollier J, et  al. 
Mechanisms involved in antithymocyte globulin immunosuppressive 
activity in a nonhuman primate model. Transplantation (2001) 71(3):460–8. 
doi:10.1097/00007890-200102150-00021 

69. Herold KC, Lancki DW, Moldwin RL, Fitch FW. Immunosuppressive effects of 
cyclosporin A on cloned T cells. J Immunol (1986) 136(4):1315–21. 

70. Sadawa S, Suzuki G, Kawase Y, Takaku F. Novel Immunosuppressive agent, 
FK506: In  vitro effects on the cloned T cell activation. J Immunol (1987) 
139(6):1797–803. 

71. Tsuda K, Yamanaka K, Kitagawa H, Akeda T, Naka M, Niwa K, et  al. 
Calcineurin inhibitors suppress cytokine production from memory T cells 
and differentiation of naive T cells into cytokine-producing mature T cells. 
PLoS One (2012) 7(2):e31465. doi:10.1371/journal.pone.0031465 

72. Koenen HJ, Michielsen EC, Verstappen J, Fasse E, Joosten I. Superior T-cell 
suppression by rapamycin and FK506 over rapamycin and cyclosporine A 
because of abrogated cytotoxic T-lymphocyte induction, impaired memory 
responses, and persistent apoptosis. Transplantation (2003) 75(9):1581–90. 
doi:10.1097/01.TP.0000053752.87383.67 

73. Janeway CA Jr, Travers P, Walport M, Schlomchik MJ, editors. Responses to 
alloantigens and transplant rejection. In: Immunobiology: The Immune System 
in Health and Disease. 5th edition. New York, NY: Garland Science (2001). 
Available from: http://www.ncbi.nlm.nih.gov/books/NBK27163/

74. Gondos A, Döhler B, Brenner H, Opelz G. Kidney graft survival in Europe and 
the United States: strikingly different long-term outcomes. Transplantation 
(2013) 95(2):267–74. doi:10.1097/TP.0b013e3182708ea8 

75. Mateo R, Cho Y, Singh G, Stapfer M, Donovan J, Kahn J, et al. Risk factors 
for graft survival after liver transplantation from donation after cardiac death 
donors: an analysis of OPTN/UNOS data. Am J Transplant (2006) 6(4):791–6. 
doi:10.1111/j.1600-6143.2006.01243.x 

76. Russo MJ, Iribarne A, Easterwood R, Ibrahimiye AN, Davies R, Hong 
KN, et  al. Post-heart transplant survival is inferior at low-volume centers 
across all risk strata. Circulation (2010) 122(11 Suppl):S85–91. doi:10.1161/
CIRCULATIONAHA.109.926659 

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2015 An. This is an open-access article distributed under the terms of 
the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are 
credited and that the original publication in this journal is cited, in accordance with 
accepted academic practice. No use, distribution or reproduction is permitted which 
does not comply with these terms.

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1145/508366.508369
http://dx.doi.org/10.1016/j.cellimm.2006.12.006
http://dx.doi.org/10.1016/j.cellimm.2006.12.006
http://dx.doi.org/10.1186/1742-4682-4-39
http://dx.doi.org/10.1111/j.1600-065X.2007.00511.x
http://dx.doi.org/10.1038/nri3227
http://dx.doi.org/10.1111/iji.12106
http://dx.doi.org/10.1111/imr.12149
http://dx.doi.org/10.1111/imr.12149
http://dx.doi.org/10.1097/MOT.0000000000000212
http://dx.doi.org/10.1097/MOT.0000000000000212
http://dx.doi.org/10.1097/MOT.0000000000000041
http://dx.doi.org/10.1097/MOT.0000000000000152
http://dx.doi.org/10.1097/MOT.0000000000000145
http://dx.doi.org/10.1097/MOT.0000000000000145
http://dx.doi.org/10.1186/scrt75
http://dx.doi.org/10.1186/scrt75
http://dx.doi.org/10.1097/01.TP.0000438024.10375.2d
http://dx.doi.org/10.1038/nri3215
http://dx.doi.org/10.1038/nri3215
http://dx.doi.org/10.1097/MOT.0b013e32835c5016
http://dx.doi.org/10.3389/fimmu.2014.00416
http://dx.doi.org/10.1038/sj.leu.2404683
http://dx.doi.org/10.1016/j.cellimm.2014.05.009
http://dx.doi.org/10.1016/j.cellimm.2014.05.009
http://dx.doi.org/10.1097/MOT.0b013e32834ee5b6
http://dx.doi.org/10.1097/MOT.0000000000000039
http://dx.doi.org/10.1038/ki.2014.430
http://dx.doi.org/10.1016/j.stem.2012.05.015
http://dx.doi.org/10.1038/cr.2007.4
http://dx.doi.org/10.1242/jcs.02932
http://dx.doi.org/10.1097/00007890-200102150-00021
http://dx.doi.org/10.1371/journal.pone.0031465
http://dx.doi.org/10.1097/01.TP.0000053752.87383.67
http://www.ncbi.nlm.nih.gov/books/NBK27163/
http://dx.doi.org/10.1097/TP.0b013e3182708ea8
http://dx.doi.org/10.1111/j.1600-6143.2006.01243.x
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.926659
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.926659
http://creativecommons.org/licenses/by/4.0/


ORIGINAL RESEARCH
published: 07 November 2016

doi: 10.3389/fimmu.2016.00448

Edited by:
Rene Duquesnoy,

University of Pittsburgh, USA

Reviewed by:
Eric Spierings,

Utrecht University, Netherlands
Judy Day,

University of Tennessee, USA

*Correspondence:
Julia C. Arciero

jarciero@iupui.edu;
Giorgio Raimondi

g.raimondi@jhmi.edu

Specialty section:
This article was submitted to

Alloimmunity and Transplantation,
a section of the

journal Frontiers in Immunology

Received: 02 May 2016
Accepted: 10 October 2016

Published: 07 November 2016

Citation:
Arciero JC, Maturo A, Arun A, Oh BC,
Brandacher G and Raimondi G (2016)

Combining Theoretical and
Experimental Techniques to Study
Murine Heart Transplant Rejection.

Front. Immunol. 7:448.
doi: 10.3389/fimmu.2016.00448

Combining Theoretical and
Experimental Techniques to Study
Murine Heart Transplant Rejection
Julia C. Arciero1*, Andrew Maturo1, Anirudh Arun2, Byoung Chol Oh2, Gerald Brandacher 2

and Giorgio Raimondi2*

1 Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA,
2 Vascularized and Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery,
Johns Hopkins School of Medicine, Baltimore, MD, USA

The quality of life of organ transplant recipients is compromised by complications
associated with life-long immunosuppression, such as hypertension, diabetes, oppor-
tunistic infections, and cancer. Moreover, the absence of established tolerance to the
transplanted tissues causes limited long-term graft survival rates. Thus, there is a great
medical need to understand the complex immune system interactions that lead to
transplant rejection so that novel and effective strategies of intervention that redirect
the system toward transplant acceptance (while preserving overall immune competence)
can be identified. This study implements a systems biology approach in which an
experimentally based mathematical model is used to predict how alterations in the
immune response influence the rejection of mouse heart transplants. Five stages of
conventional mouse heart transplantation are modeled using a system of 13 ordinary
differential equations that tracks populations of both innate and adaptive immunity as
well as proxies for pro- and anti-inflammatory factors within the graft and a representative
draining lymph node. The model correctly reproduces known experimental outcomes,
such as indefinite survival of the graft in the absence of CD4+ T cells and quick rejection
in the absence of CD8+ T cells. The model predicts that decreasing the translocation rate
of effector cells from the lymph node to the graft delays transplant rejection. Increasing
the starting number of quiescent regulatory T cells in the model yields a significant but
somewhat limited protective effect on graft survival. Surprisingly, the model shows that a
delayed appearance of alloreactive T cells has an impact on graft survival that does not
correlate linearly with the time delay. This computational model represents one of the first
comprehensive approaches toward simulating the many interacting components of the
immune system. Despite some limitations, the model provides important suggestions of
experimental investigations that could improve the understanding of rejection. Overall,
the systems biology approach used here is a first step in predicting treatments and
interventions that can induce transplant tolerance while preserving the capacity of the
immune system to protect against legitimate pathogens.

Keywords: mathematical model, transplant, rejection, immune response, antigen-presenting cells, T cells,
cytokines

Abbreviations: APCs, antigen-presenting cells; POD, post-operative day; Treg, regulatory T cells.
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INTRODUCTION

Organ transplantation is a life-saving surgical procedure through
which the functionality of a failing organ can be restored via
replacement with a functioning one. Transplants are performed
for a wide variety of organs, including skin, heart, kidney, liver,
pancreas, spleen, and lung (1). However, without the administra-
tion of immunosuppressive drugs, the recipient’s immune system
recognizes the transplanted tissue as a foreign and potentially dan-
gerous material and responds with a massive immune attack that
ultimately destroys the graft. This immune response represents a
major roadblock in the development of effective therapeutic regi-
mens for the care of patients requiring organ transplants. Current
therapeutic regimens rely on chronic immunosuppression. How-
ever, the quality of life of transplant recipients is compromised
by complications that derive from life-long immunosuppression
(such as hypertension, diabetes, opportunistic infections, and
cancer) and by the limited long-term graft survival rates due to
the absence of established immune tolerance to the transplanted
tissues. Ultimately, 20% or more of transplanted patients die by
5 years post-transplant. Thus, there is a pressing need for a new
investigative approach to understand the systemic effects that
arise from the dynamic interactions between components of the
immune system and transplanted tissues.

Previous hypothesis-driven research has provided important
insight into the complex interactions among the multiple compo-
nents of the immune system, including T cells, antigen-presenting
cells (APCs), and cytokines (2–10). Such studies have helped to
determine the critical players and processes in transplant rejec-
tion. For example, the rationale for “costimulation blockade”
therapies stems from such studies. These therapies, which target a
key step of lymphocyte activation, aim to control T cell activation
and promote transplant survival. They have been shown to be a
potent strategy for promoting long-term acceptance of transplants
in rodents (11–15) and primates (16–18). However, their clinical
translation encountered serious difficulties, and ultimately cos-
timulation blockade therapies were only approved asmaintenance
therapies (19) since they could not promote tolerance (20). To
date, the only clinically successful avenue of transplant tolerance
induction has been through protocols that induce hematopoi-
etic chimerism (21, 22) (the coexistence of donor and recipient
hematopoietic cells) via donor bone marrow co-transplantation
with the organ to be transferred. This procedure requires heavy
conditioning of patients and carries a significant risk of immuno-
logical complications (e.g., the development of graft versus host
disease). Consequently, this approach is applicable only in a very
restricted cohort of patients in need of a transplant. Thus, a valid
andwidely applicable strategy to alter the reactivity of the immune
system of transplant recipients in a robust and reliable way is still
needed.

Biological studies of rejection face various challenges. Exper-
imental in vivo models of immune rejection can elucidate pre-
cise information regarding select immune cell dynamics and the
production and distribution of cytokines. However, conclusions
about the system as a whole and the generalizability of these
conclusions to other species or types of allografts are further
complicated by factors such as procedural variability between

models of rejection and variability in parameter measurements.
These factors, in combination with the complexity of the immune
response, motivate the use of an integrated theoretical and exper-
imental approach to unravel the inter-connected components
of the immune response that contribute to transplant rejection.
A mathematical model of allograft rejection, refined by multi-
ple clinical and experimental observations, can help to identify
variables and parameters that play a significant role in immune
system dynamics and yield a better understanding of the complex
mechanisms of transplant rejection.

Several computational models have been implemented to pre-
dict the dynamics of the immune system in response to viral or
bacterial infections (23–26), although only a few theoretical stud-
ies have addressed transplant rejection. A recent publication used
agent-basedmodeling (ABM) to investigate solid organ transplant
rejection (27). In their study, the model provides an abstract
representation of the innate and adaptive immune components
involved in the acute rejection process of a solid organ trans-
plant. The study does not use experimentally based parameter
values, but it gives a range of possible responses to a transplant
challenge without replicating a specific disease process. Another
recent study (28) used ordinary differential equations to model
the impact of the initial inflammatory response to a surgical insult
on overall graft damage. These studies have addressed general
transplant immunology questions and have studied a very specific
aspect of the initiation of the transplant rejection response, but
they do not offer the capacity to capture the important intrica-
cies of the rejection response in a combined experimental and
theoretical system that could lead to useful predictions to design
new experimentations. The mathematical model presented in
the current study aims to provide useful theoretical predictions
of transplant rejection based on biologically relevant parameter
values, initial conditions, and cellular interactions.

The objectives of this study are (i) to develop a theoretical
model to predict the effect of the immune response dynamics
on the rejection of a murine heart transplant based on exper-
imental measurements, and (ii) to identify new and effective
strategies to promote transplant acceptance that could be inves-
tigated experimentally. The model is composed of a system of
ordinary differential equations describing the cellular dynamics
in the lymph node and graft in the context of a simulated acute
rejection of murine heart allograft. The model equations and
parameters are based on previous immune system models and
are designed to incorporate key assumptions and experimental
observations of the immune response tomurine heart transplants.
The model captures the known behavior of mouse heart rejection
and recapitulates the effect of previously reported experimental
manipulations. It also underscores the relative importance of
the ratios of effector versus regulatory T cells (Tregs) on the
speed of graft rejection. Importantly, the model predicts a previ-
ously unappreciated behavior when altering the timing of T cell
exposure to the graft, providing details for the design of new
experimentations that could confirm or refute these findings.
Ultimately, we believe this model could become an innovative tool
to improve our understanding of transplant rejection and signifi-
cantly aid in the design of new and effective strategies of immune
intervention.
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MATERIALS AND METHODS

Model Development
In this study, a mathematical model of murine heart transplants
is developed to investigate the interactions between the host
immune system and transplanted graft. A compartmental model
is used in which all interactions are assumed to occur in either
the graft or the draining lymph node. A separate compartment
for blood is not included, but the rates of exit and entry of the
various cells into the graft or lymph node are assumed to account
for transit time in the blood. Table 1 provides the definition and
description of all the variables tracked by this model. As with
any model, some assumptions and simplifications are necessary
to address a specific question using quantitative techniques.

The following list provides a summary of the assumptionsmade
in this study:

• Antigen-presenting cells: a single population of APCs is defined
in the model and includes the populations of dendritic cells,
macrophages, and B cells; no distinction is made between the
origin of the APCs (donor or recipient);

• Antigen presentation: direct, indirect, and semi-direct antigen
presentation pathways are grouped into a single function;

• Rejection mechanisms: only cell-mediated mechanisms of graft
cell destruction (by effector T cells and inflammatoryAPCs) are
included since the absence of B cells and associated antibody
production in mouse heart transplant models (obtained via
genetic manipulation or depletion strategies) does not extend
graft survival (29);

• Lymphoid tissue: the activation of the immune response is
restricted to an ideal lymph node that drains the graft. The
contribution of the response by multiple lymphoid tissues is
accounted for by amplifying the translocation rate of activated
T cells from a single lymph node to the graft;

• Naïve T cells: the population of graft-reactive T cells is consid-
ered to be homogeneously naïve. No contribution of memory
T cells is considered at this stage. A continuous output of newly
generated T cells (from the thymus) is assumed to maintain a
constant number of naïve T cells in the lymph node. Of the total
T cell population, 5% are considered to be alloreactive (30);

TABLE 1 | Description of model variables.

Variable Description Location

ALN
mat Mature antigen-presenting cells Lymph node

TLNE Activated effector T cells

TLNR Activated regulatory T cells

TLNH Activated helper T cells

AG
mat Mature antigen-presenting cells Graft

AG
imm Immature antigen-presenting cells

AG
inf Inflammatory antigen-presenting cells

TGE Activated effector T cells

TGR Activated regulatory T cells

TGH Activated helper T cells

GG Graft cells

CG
p Pro-inflammatory cytokine

CG
a Anti-inflammatory cytokine

• Inflammatory response: the danger signals generated by the
surgical procedure of transplantation (e.g., surgical trauma,
ischemia/reperfusion injury, and potential exposure to bac-
terial and viral components) (31) and the ensuing release of
inflammatory cytokines (i.e., IL-6, IL-18, TNF, IP-10, IL-1) by
graft tissues and innate immune components are simplified
and represented in a single population (CG

p ). No contribution
to the rejection response by concomitant protective immune
responses (anti-pathogens) is assumed. Moreover, as no spe-
cific quantification of each of inflammatory factors is currently
available in the literature, their functions and behavior are
represented with a single model variable. CG

p has both inflam-
matory and chemotactic functions, and its behavior is initially
modeled based on the production and accumulation of IL-6, the
most representative inflammatory cytokine in transplantation
as previously reported (32, 33);

• Anti-inflammatory response: the anti-inflammatory cytokines
(i.e., IL-10, TGF-β, IL-35, pro-resolving mediators) normally
produced by graft tissues and cells of the immune system as
compensatory mechanisms to the inflammatory response ini-
tiated by the transplant and by the rejection response are all
included in a single population (CG

a ). As per CG
p , there is no

transplant-specific quantification available for these factors and
CG

a is mainly modeled on the behavior reported for IL-10 in the
regulation of immune responses (34–36).

• Graft cells turnover: the growth of heart cells is considered
negligible in the model based on reported data (37).

With these assumptions, the dynamics between the immune
system and the graft are described in the following five stages (and
are depicted in Figure 1):

1. Transplantation: transplantation (introduction of the graft)
occurs at day 0 and is captured by themodel using the following
initial conditions (listed in Table 2) for the graft population
(GG), pro-inflammatory cytokines (CG

p ), and immature APCs
(AG

imm): GG(0)= 5,600,000 cells (38, 39), CG
p (0)= 50 pg/ml

(32, 33), and AG
imm = 2,000 cells (40, 41). GG(0) was chosen

by extrapolating the number of cells in a mouse heart based
on the average mass of a mouse heart and the average cell
density of a human heart. Pro-inflammatory cytokines are
assumed to be present at time 0 since transplantation is
associated with surgical trauma and exposure to bacterial
and viral agents. Additionally, during the procedure, the
reconnection to the recipient circulation initiates the process
of ischemia/reperfusion injury, causing rapid accumulation
of inflammatory mediators (31, 42, 43). Although there is a
general agreement on the presence of inflammatory elements
at time 0, the overall amount is not known and, thus, an
arbitrary value is chosen here. This value reflects the kinetics
of mRNA expression and plasma accumulation of IL-6 – a
key “danger signal” in the activation of the immune system in
transplantation – that have been described previously (32, 33).
The presence of these inflammatory cytokines leads to a rapid
influx of host immature APCs into the graft (representing
the influx of circulating monocytes rapidly converting in the
tissues into APCs).

Frontiers in Immunology | www.frontiersin.org November 2016 | Volume 7 | Article 44881

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Arciero et al. Modeling Mouse Heart Transplant Rejection

FIGURE 1 | Schematic of the five stages of transplant rejection defined in the theoretical model. Circled numbers correspond to the stage number.
(1) Transplantation is represented in the model by positive initial conditions for the graft population, pro-inflammatory cytokines, and immature APCs. (2) The
activation of AG

imm into AG
mat by pro-inflammatory factors, and the translocation of AG

mat from the graft to the lymphoid tissue. Pro- (CG
p ) and anti-inflammatory (CG

a )
cytokines attract AG

imm to the graft. (Note the depictions of CG
a - and CG

p -dependent interactions are not included in the figure to prevent overcrowding the schematic.

Please refer to the equations for a detailed explanation of the cytokine actions.) (3) The activation of TLNE , TLNH , and TLNR in the lymph node. T cell activation is facilitated
(blue lines) by ALN

mat and TLNH and inhibited (red lines) by TLNR . (4) The translocation of T cells from the lymph node to the graft. (5) In the presence of TGH , A
G
imm are

activated into AG
inf (blue line). Graft cells are destroyed by AG

inf and TGE . Graft destruction and AG
imm activation are inhibited by TR (orange lines).

TABLE 2 | Initial values for model variables.

Variable Initial value Unit

ALN
mat 0 cells

TLNE 0 cells

TLNR 0 cells

TLNH 0 cells

AG
mat 200 cells

AG
imm 2,000 cells

AG
inf 0 cells

TGE 0 cells

TGR 0 cells

TGH 0 cells

GG 5.6e6 cells

CG
p 50 pg/ml

CG
a 0 pg/ml

2. APC maturation and presentation of donor antigens in the
lymph node: once exposed to CG

p , immature APCs are activated
into mature APCs in the graft (AG

mat). The maturation of APCs
contributes to an increased accumulation of pro-inflammatory
factors as well as, in a delayed fashion, to the production of
anti-inflammatory factors (CG

a ) (34–36). Once mature, APCs
exit the graft and travel to the draining lymphoid tissue.

3. Activation of T cells in the lymph node: in the theoretical model
of the lymph node, naïve CD8+ effector T cells (TEN), naïve
Tregs (TRN), and naïve CD4+ helper T cells (THN) that have
the capacity to recognize donor antigens are assumed to be
present initially at background levels of 55,000, 9,500, and
70,000 cells, respectively. Upon entering the lymph node, ALN

mat
facilitate the activation of T cells (6, 10). As shown in Figure 1,
ALN

mat are necessary to promote the activation of naïve CD8+

(TLN
E ), CD4+ (TLN

H ), and regulatory (TLN
R ) T cells in the lymph

node. CD8+ T cell activation is dependent on the licensing of
interacting APCs by activated CD4+ T cells. Once activated,
Tregs inhibit the activation of CD8+ and CD4+ T cells. T cell
proliferation in the lymph node depends on the autocrine
and paracrine effects of growth factors (e.g., IL-2). Tregs are
unable to produce and secrete these growth factors and, thus,
their proliferation is delayed and dependent on the presence
of activated CD4+ and CD8+ T cells (44).

4. T cell infiltration of the graft: following their activation, TLN
E ,

TLN
H , and TLN

R exit the lymph node and search for the inflamed
tissues of the graft. It is important to note that not all T cells
exiting the lymphnodewill locate the graft. Also, thoughT cells
originate from multiple lymph nodes, only one lymph node is
explicitly depicted and described in the model for simplicity.
The translocation rate parameters eE, eH, and eR in Eqs 8–10
are multiplied by a factor k that accounts for the contribution
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of these two phenomena to the number of cells entering the
graft. Specifically, the parameter k is interpreted as the product
of the percent of T cells that reach the graft and the number of
lymph nodes (and spleen) from which T cells originate.

5. Destruction of the graft: in the graft, TG
H promote the conversion

of AG
imm into inflammatory APCs (AG

inf); this represents the
activation of macrophages into inflammatory cells that release
cytotoxic agents (e.g., reactive oxygen species) that induce
death of surrounding graft cells. This process is inhibited
by TG

R (45, 46). The release of pro-inflammatory cytokines
is promoted in the presence of AG

mat, TG
E , TG

H, and AG
inf. The

release of CG
a is assumed to depend on AG

mat, TG
R , CG

p , GG, and
AG

inf (47). The presence of CG
a inhibits the conversion of AG

imm
into AG

mat or AG
inf. AG

inf and TG
E direct the destruction of the

graft, while TG
R inhibit graft destruction.

Model Equations
The interactions described in the five stages are modeled using
a system of 13 ordinary differential equations that tracks cell
populations and cytokine concentrations within the graft and
lymph node.Many of the parameter values are taken directly from
literature sources, some were obtained experimentally, and the
remaining are estimated according to experimental assumptions
and observations. The initial values of allmodel variables are given
in Table 2. The model parameter values, units, and references are
listed in Table 3.

Themodel equations describe the activation, proliferation, nat-
ural decay, destruction, and inhibition of the various populations
when appropriate. The interactions in the lymph node are mod-
eled using four equations, and the interactions in the graft are
modeled using nine equations. The superscripts LN and G denote
cell populations in the lymph node and graft, respectively.

In Eq. 1, the rate of change of mature APCs in the lymph node
(ALN

mat) is defined. This rate depends on the entrance of mature
APCs from the graft at rate eA (first term) and on the natural decay
of ALN

mat in the lymph node (second term).

dALN
mat

dt
= eAAG

mat − μAA
LN
mat (1)

The naïve alloreactive T cell populations (TEN, TRN, and THN)
in the lymph node are assumed to be constant since a background
population of these cells is always present (due to thymopoiesis).

In Eq. 2, the rate of change in CD8+ T cells in the lymph node
is shown to depend on T cell activation (term 1), decay (term 2),
proliferation (term 3), and translocation (term 4). The activation
of TLN

E depends on the presence of both ALN
mat and TLN

H , while
TLN

R inhibit this process (10, 46, 51). Proliferation of the TLN
E cells

depends on ALN
mat and TLN

E and occurs at rate rE (used as a proxy for
the production, secretion, and autocrine effect of IL-2) (52). The
translocation of TLN

E from the lymph node is assumed to occur at
rate eE.

dTLN
E

dt
=

aETENALN
matTLN

H(
γ1 + ALN

mat
) (

α1 + TLN
R
) − μET

LN
E

+
rETLN

E ALN
mat

β1 + ALN
mat
− eETLN

E (2)

TABLE 3 | Names, values, units, and citations for all model parameters.

Equation Parameter
name

Value Unit Source

1 eA 5.5 1/day (24)
1 μA 1.2 1/day (48)
2 TEN 55,000 cells Section “Experimental

Data Collection”
2 aE 3 1/day (25)
2 γ1 100 cells (25)
2 α1 2,500 cells Estimated
2 μE 0.7 1/day (25)
2 rE 1.51 1/day (25)
2 β1 5,000 cells Estimated
2 eE 0.001 1/day (24)
3 TRN 9,500 cells Section “Experimental

Data Collection”
3 aR 2.82e−4 1/day Optimized
3 γ2 1,000 cells Estimated
3 μR 0.7 1/day (24, 49)
3 rR 0.02 1/day Estimated
3 α2 9,500 cells Estimated
3 eR 0.001 1/day (24)
4 THN 70,000 cells Section “Experimental

Data Collection”
4 aH 6,018.9 cells/day Optimized
4 γ3 100 cells (25)
4 α3 2,500 cells Estimated
4 μH 0.4 1/day (24, 25)
4 rH 1.51 1/day (25, 50)
4 γ4 4,000 cells (25)
4 eH 0.001 1/day (24)
5 ap1 1,500 cells/day/(pg/ml) Optimized
5 η1 10 pg/ml Estimated
5 α4 12,000 cells Estimated
6 kCP 0.005 1/day/(pg/ml) Optimized
6 μAimm 60 1/day Optimized
6 ap2 3.844 1/day Optimized
6 η2 10 pg/ml Estimated
6 α5 12,000 cells Estimated
7 μAinf 1.2 1/day (48)
8 k 15 – Estimated
8 rEG 0.3 1/day Optimized
8 η3 10 pg/ml Estimated
8 β2 4e6 cells Estimated
9 rRG 0.00375 1/day Optimized
9 α6 12,000 cells Estimated
10 rHG 0.755 1/day Estimated
10 γ5 4,000 cells Estimated
10 η4 10 pg/ml Estimated
11 dinf 0.055 1/day Optimized
11 α7 12,000 cells Estimated
11 dE 0.004 cells/day Optimized
11 α8 12,000 cells Estimated
12 ρ1 10.98 (pg/ml)/day Optimized
12 α9 12,000 cells Estimated
12 ρ2 0.024 (pg/ml)/day Estimated
12 α10 12,000 cells Estimated
12 ρ3 0.24 (pg/ml)/day Estimated
12 α11 12,000 cells Estimated
12 ρ4 10.95 (pg/ml)/day Optimized
12 α12 12,000 cells Estimated
12 μCp

0.15 1/day Optimized

13 ξ1 2.08e−4 (pg/ml)/cells/day Estimated
13 ξ2 6.3e−6 (pg/ml)/cells/day Estimated
13 ξ3 4.2e−9 1/cells/day Estimated
13 ξ4 2.5e−4 (pg/ml)/cells/day Estimated
13 μCa

0.05 1/day Estimated
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The rates of change of Tregs in the lymph node (Eq. 3) and
CD4+ T cells in the lymph node (Eq. 4) contain the same four
terms (activation, decay, proliferation, and exit) as the equation
for CD8+ T cells, with a few important differences: the activation
of TLN

R and TLN
H depends only on ALN

mat, and the proliferation of TLN
R

occurs only in the presence of TLN
E or TLN

H . The activation of TLN
H

is inhibited by TLN
R (10, 45).

dTLN
R

dt
=

aRTRNALN
mat

γ2 + ALN
mat
− μRT

LN
R +

rRTLN
R
(
TLN

E + TLN
H
)

α2 + TLN
R

− eRTLN
R

(3)
dTLN

H
dt

=
aHTHNALN

mat(
γ3 + ALN

mat
) (

α3 + TLN
R
) − μHTLN

H

+
rHTLN

H ALN
mat

γ4 + ALN
mat
− eHTLN

H (4)

The rate of change of the AG
imm population in the graft is defined

in Eq. 5. The first term represents the influx of AG
imm due to the

presence of the graft and pro-inflammatory cytokines. The second
term accounts for the natural decay of AG

imm. The third term
indicates the loss of immature APCs once they become activated
into AG

mat. The fourth term defines the TG
H-mediated activation of

AG
imm into AG

inf. In both of these last two terms, the conversion of
AG

imm into activated populations is inhibited by CG
a and TG

R (35,
47, 51, 53, 54). The functional form describing the inhibition by
CG

a is chosen to emphasize that the rate is a decreasing sigmoidal
function of CG

a .

dAG
imm
dt

= kCpC
G
p GG − μAimmAG

imm − ap1

(
1−

(
CG

a
)2

η2
1 +
(
CG

a
)2
)

×

(
AG

immCG
p

α4 + TG
R

)
− ap2

(
1−

(
CG

a
)2

η2
2 +
(
CG

a
)2
)(

AG
immTG

H

α5 + TG
R

)
(5)

Equation 6 describes the dynamics of mature APCs in the graft
(AG

mat). The first term defines the activation of AG
mat by CG

p , which
is inhibited by CG

a and TG
R (35, 47, 51, 53, 54). The second term is

the natural decay of AG
mat, and the last term accounts for the exit

of AG
mat from the graft to the lymph node.

dAG
mat

dt
= ap1

(
1−

(
CG

a
)2

η2
1 +
(
CG

a
)2
)(

AG
immCG

p

α4 + TG
R

)
− μAA

G
mat − eAAG

mat

(6)

In Eq. 7, inflammatory APCs are differentiated from AG
imm in

the presence of TG
H and inhibited by CG

a and TG
R (term 1) (35, 47,

51, 53, 54) and are assumed to exhibit natural decay (term 2).

dAG
inf

dt
= ap2

(
1−

(
CG

a
)2

η2
2 +

(
CG

a
)2
)(

AG
immTG

H

α5 + TG
R

)
− μAinfA

G
inf (7)

The rates of change for CD8+, regulatory, and CD4+ T cells
in the graft (Eqs 8, 9, and 10, respectively) depend on the rate at

which they enter the graft (term 1), their natural decay (term 2),
and their proliferation (term 3). The proliferation of TG

E and TG
H

is inhibited by CG
a (36). The parameter k that multiplies the exit

rate of T cells from the lymph node accounts for the fact that not
all T cells exiting the lymph node reach the graft and that T cells
arrive frommultiple lymphnodes. The value for k is obtained from
the product of the percent of T cells that reach the graft and the
number of lymph nodes from which T cells originate.

dTG
E

dt
= keETLN

E − μET
G
E + rEG

(
1−

(
CG

a
)2

η2
3 +

(
CG

a
)2
)

TG
EGG

β2 + GG

(8)

dTG
R

dt
= keRTLN

R − μRT
G
R +

rRGTG
R
(
TG

E+TG
H
)

α6 + TG
R

(9)

dTG
H

dt
= keHTLN

H − μHTG
H + rHG

(
1−

(
CG

a
)2

η2
4 +

(
CG

a
)2
)

TG
HAG

mat

γ5 + AG
mat

(10)

Equation 11 describes the dynamics of themass of the graft. The
first and second terms represent the destruction of the graft due
to AG

inf and TG
E , respectively. TG

R work to inhibit the destruction of
the graft through mechanisms that differ from the ones used in
the lymph node. It is recognized that in non-lymphoid tissues, TG

R
do not inhibit the accumulation, nor the proliferation, of AG

imm,
TG

E , and TG
H. Instead, they prevent damage via inhibition of the

destructive activities of AG
inf and TG

E (in addition to preventing the
conversion of AG

imm into AG
inf and AG

mat, depicted in Eqs. 6 and 7)
(54–56). No growth of graft cells is assumed in thismodel as stated
in our model assumptions.

dGG

dt
= − dinfAG

infGG(
α7 + TG

R
) − dETG

EGG(
α8 + TG

R
) (11)

As defined in Eq. 12, the release of pro-inflammatory cytokines
is triggered by the conversion of AG

imm into AG
mat and AG

inf (terms 1
and 4) as well as by the execution of effector functions by both TG

E
and TG

H recognizing their target (10) (terms 2 and 3). The release
of CG

p by each of these cells is inhibited by TG
R (46, 54). The natural

decay of CG
p is modeled in the last term.

dCG
p

dt
=

ρ1A
G
mat

α9 + TG
R

+
ρ2T

G
E

α10 + TG
R

+
ρ3T

G
H

α11 + TG
R

+
ρ4A

G
inf

α12 + TG
R
−μCp

CG
p

(12)
Equation 13 describes the release of CG

a due to the conversion of
AG

imm into AG
mat and AG

inf – a regulatory pathway embedded in the
process of activation to prevent uncontrolled reactivity (35) – and
due to activity of TG

R (46) that infiltrate the graft (terms 1, 4, and
2, respectively). Upon encountering pro-inflammatory cytokines,
the graft tissue also produces anti-inflammatory mediators (term
3). The last term gives the natural decay of CG

a . Since the four
populations leading to the production of CG

a are already inhibited
in the presence of CG

a , additional inhibition is not included in any
of the terms.

dCG
a

dt
= ξ1A

G
mat + ξ2T

G
R + ξ3C

G
p GG + ξ4A

G
inf − μCa

CG
a (13)
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Experimental Data Collection
Male 8- to 10-week-old Balb/C (H-2d), and C57BL/6 (B6; H-2b)
mice were purchased from the Jackson Laboratory (Bar Har-
bor, ME, USA) and housed in specific pathogen-free facilities at
Johns Hopkins University, Baltimore, MD, USA. All experiments
were conducted according to Institutional Animal Care and Use
Committee-approved protocols.

Heterotopic (intra-abdominal) heart transplantation was per-
formed from BALB/c to B6 mice, as previously described (57).
On day 7 post-transplantation, cells from grafts were isolated
using an adaptation of the technique described by Setoguchi et al.
(58). Briefly, tissues were digested at 37°C via 3 consecutive 15-
min incubations in PBS containing Collagenase IV (560U/ml;
Worthington) DNAse I (275U/ml; Amresco), and Dispase II
(0.4U/ml; Roche). Leukocytes were enriched using a 24% Histo-
denz (Sigma-Aldrich)-based gradient separation. These prepara-
tions were then used to quantify the content of CD4+, CD8+, and
Tregs in the rejecting hearts via flow cytometry. Cells were stained
using anti-CD4+ and anti-CD8+ mAb (from BD Bioscience) and
anti-Foxp3 mAb (Affymetrix/eBioscience) according to the man-
ufacturer protocols; samples were acquired using a BD LSR-II
flow cytometer. Data were analyzed via FlowJo analysis software
(FlowJo, LLC).

Table 4 summarizes the absolute counts and relative ratios of
T cell subsets infiltrating a rejecting heart on post-operative day
(POD) 7 deriving from such analysis. From these data, the biolog-
ical variability observed between animals in the total number of
each subset that infiltrate the heart is clearly evident. Strikingly,
however, the ratios among T cell subsets were maintained within
very narrow ranges. Consequently, we used the average number of
T cells to set the scale for the number of T cells in the model, and
we optimized various model parameters to the observed ratios of
T cells.

A similar approach was used to determine the average number
of each T cell subset in a typical lymph node. Our data agree
with a previously published data set (3). Briefly, collection of 16
lymph nodes from multiple animals averaged the identification of
17e6 CD8+ T cells, 22e6 CD4+ T cells, and 3e6 Treg. This renders
1.1e6 CD8+ T cells, 1.4e6 CD4+ T cells, and 0.19e6 Treg in the
average lymph node. Considering that ~5% of T cells are reactive
against donor antigens, the average lymph nodes contains (at time
0) 55,000 CD8+ T cells, 70,000 CD4+ T cells, and 9,500 Treg.

Parameter Estimation
The model contains 61 parameters. Many of the values of these
parameters have been obtained directly from experimental studies

TABLE 4 | Absolute counts and relative ratios of T cell subsets infiltrating a
rejecting murine heart on POD 7.

CD8 CD4 CD8/CD4
ratio

Treg Treg (% of CD4)

Heart #1 2.7e6 5.4e5 5 7.4e4 13.6
Heart #2 4.3e5 8.3e4 5.3 1.2e4 14.9
Heart #3 6.5e5 1.8e5 3.7 2.5e4 14.1
Average 1.27e6 2.7e5 4.7 3.7e4 14.2
SE 6e5 1.2e5 0.4 1.5e4 0.3

(1–6, 8–10, 26, 32, 33, 46, 47, 50–52, 57, 59–68) or other math-
ematical models of the immune system (3, 23–26, 48, 69–74).
Table 3 provides a list of all the model parameter values and
sources for their values when possible. A definition of “estimated”
in Table 3 indicates that the value was not found directly in the
literature but was estimated according to known relationships and
ratios among cell populations in the model. For example, due to
the potency and cellular similarities of Tregs and helper T cells, the
activation rate of TLN

R is assumed to be smaller than the activation
rate of TLN

H (46). As another example, the death rate of AG
inf is

assumed to equal the death rate of AG
mat. The constant values for

TEN and THN are obtained from experiments conducted in the
present study (Table 4). According to reported ratios (26, 46, 57),
the TRN population should be chosen to be about one-tenth of the
helper T cell initial populations.

Several remaining model parameters are optimized (and are
defined as “optimized” in Table 3) to satisfy the following experi-
mental observations:

(1) Presence of all T cells
a. APC conditions (40, 41)

i. AG
mat have a peak population of ~18,000 cells.

ii. AG
imm have a peak population of ~12,000 cells.

iii. AG
mat and AG

imm peak between days 1 and 3.
b. Graft destruction (66)

i. A 75% reduction of the graft mass occurs by
12–14 days following transplantation.

c. T cell ratios (Table 4 and see Experimental Data Collec-
tion)
i. The maximum TG

E value is approximately five times
greater than the maximum TG

H value (ratio of average
TG

E :TG
H values is 4.7, Table 4).

ii. The maximum TG
H value is approximately seven times

greater than the maximum TG
R value (ratio of average

TG
H:TG

R values is 7.29, Table 4).
iii. The maximum number of TLN

E occurs at ~4 days post-
transplantation.

iv. The maximum number of TG
E occurs at ~6 days post-

transplantation.
(2) Absence of helper T cells (7, 64)

No graft rejection.
(3) Absence of effector T cells (7, 64)

Rejection should be delayed slightly.
(4) Absence of all T cells (40, 41)

a. No damage to the graft.
b. APC measures:

i. Immature APCs: 23000, 12000, 2100, and 2000 cells on
days 1, 3, 5, and 10.

ii. Mature APCs: 17000, 12000, 2400, 3000 on days 1, 3, 5,
and 10.

RESULTS

Model Verification
The following four model simulations were used to confirm that
the model results indeed reflect the assumptions on which the
model was built in terms of expected physiological behavior.
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Timing of Graft Rejection
In the absence of any external manipulation (i.e., administration
of immunosuppressive drugs or any immunomodulatory
intervention), experimental murine cardiac transplants are
rejected at ~12–14 days after transplantation. Tanaka et al. (66)
performed in vivo visualization of murine cardiac allograft
rejection and identified the cessation of the heartbeat to occur on
day 12, which corresponded to a 75% reduction in the measured
luminescence of donor tissue from transgenic luciferase-GFP
(green fluorescent protein)-modified mice. The present model

uses this as an approximate metric, defining graft rejection once
the number of graft cells has decreased by 75% of their initial
number. Figure 2A shows the time dynamics of graft rejection
predicted by the model. The behavior of other key populations
including APCs in the graft, T cells in the lymph node, T cells in
the graft, and cytokines in the graft are shown in Figures 2B–F.
The number of T cells in the lymph node peaks around days 6–7
in the lymph node and days 7–9 in the graft, which agrees with
experimental observations (70). The ratios of TG

E :TG
H and TG

H:TG
R

at their peaks are calculated to be 4.7 and 7.29, respectively, in the

FIGURE 2 | (A) Graft rejection is predicted to occur ~11days following transplantation. (B) Model predicted values of immature APCs (AG
imm, magenta), mature APCs

(AG
mat, green), and inflammatory APCs (AG

inf, cyan) in the graft. (C) Model predicted values of regulatory T cells (black), CD4+ T cells (blue), CD8+ T cells (red) in the
lymph node. (D) Model predicted values of regulatory T cells (black), CD4+ T cells (blue), CD8+ T cells (red) in the graft. (E) Model predicted concentration of
pro-inflammatory cytokines (CG

p , red) and anti-inflammatory cytokines (CG
a , blue) in the graft. (F) Ratio of CG

a :C
G
p in the graft.
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graft, which are consistent with experimental values obtained in
this study (Table 4).

Graft Rejection in the Absence of CD8+ T Cells (TE)
As demonstrated experimentally (7), transplant rejection can
occur even if no CD8+ cells are present in the system; the time
to rejection is just slightly delayed. The absence of CD8+ cells is
simulated in the model by modifying the initial value of naïve
effector T cells to be TEN = 0. As a result, no effector T cells
are generated in the lymph node, but graft rejection is predicted
to occur at day 22 (dashed curve, Figure 3A) instead of day 11
when all T cells are present (solid curve, Figure 3A). Rejection
is predicted to occur despite the absence of CD8+ T cells since
activated CD4+ T cells in the graft promote the differentiation of
inflammatory APCs (Figure 3B) which cause graft destruction.
Figure 3C serves to explain why the graft is not destroyed sooner
when no CD8+ T cells are present given that AG

inf is much higher in
their absence (Figure 3B). When all T cells are present, the graft is
destroyed by both AG

inf and CD8+ T cells (terms 1 and 2 in Eq. 11,
respectively). The contribution of each of these terms to the rate
of change of the graft population is plotted in Figure 3C (solid
curves). Specifically, the contribution of the AG

inf term (labeled
dinf) is shown in red, the contribution of the CD8+ T cells when
they are present (labeled dE) is shown in black, and the sum of
these contributions (labeled total) is shown in blue. The dashed
curves correspond to these same cases when CD8+ T cells are
absent. Note that in this case the contribution of AG

inf (dashed red
curve) and the sum of the contributions (dashed blue curve) lie
on top of each other since the contribution of the CD8+ T cells
is zero (black dashed curve). As can be seen in Figure 3C, the
contribution of AG

inf whenCD8+ T cells are absent exceeds the total
solid blue curve until a time point between days 5 and 10 when the
blue solid curve exceeds the dashed blue curve. This explains the
steep decline in graft population initially in the absence of T cells
followed by a slower decay than when all T cells are present.

Graft Acceptance in the Absence of All T Cells
As discussed in Ref. (10, 75), animals with no T cells (i.e., no CD4+

T cells, no CD8+ T cells, and no Tregs) are incapable of rejecting
transplants. To simulate conditions of no T cells in the model,
the naïve T cell populations are set to 0: TEN =TRN =THN = 0.
As a result, no T cells are generated in the lymph node or graft.
Although AG

mat are activated, the absence of T cells or AG
inf pre-

vents any damage to the graft (Figure 4A), which survives indef-
initely. The APC dynamics in the graft under these conditions
are compared with data reported by Oberbarnscheidt et al. (40)
in Figure 4B. It shows a fairly accurate description of the trend
of AG

mat with, however, an overestimation of the accumulation
of AG

imm, a result that we attribute to the model assumptions
employed (see Model Limitations). The levels of the pro- and
anti-inflammatory cytokines are shown in Figure 4C.

Graft Acceptance in the Absence of TH

Several studies (7, 52, 64) have demonstrated that the presence of
CD4+ T cells is a necessary and sufficient condition for rejection.

FIGURE 3 | (A) Graft rejection is delayed by ~10 days in the absence of CD8+

T cells. Dashed curve: model prediction in the absence of effector T cells.
Solid curve: model prediction in the presence of all T cells. (B) Model
predicted values of inflammatory APCs in the absence of effector T cells
(dashed curve) and in the presence of all T cells (solid curve). (C) Individual
contributions of AG

inf (red curve, labeled dinf) and CD8+ T cells (black curve,
labeled dE) and combined contribution (blue curve, labeled total) to the rate of
change of the graft population in the absence (dashed) and presence (solid) of
CD8+ T cells.
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FIGURE 4 | (A) Model predicted number of graft cells when no T cells are present. (B) Model predicted number of mature APCs (green), immature APCs (magenta),
and inflammatory APCs (cyan) in the graft when no T cells are present. The model predictions are compared with data reported in Ref. (40, 41) (asterisks).
(C) Concentrations of pro-inflammatory cytokines (red) and anti-inflammatory cytokines (blue) when no T cells are present.

In accordance with this, the model reproduces the finding that in
the absence of CD4+ T cells in the lymph node (THN = 0), the graft
is accepted since no damage-inducing cells are activated without
the contribution of CD4+ T cells.

Model Simulations
The model is used to assess the effect of altering the number of
naïve Tregs (adoptive transfer), altering the translocation rate of
T cells from the lymph node to the graft, and performing a tran-
sient peri-transplant depletion of T cells. Insight from simulation-
generated hypotheses may have eventual implications for design-
ing improved therapeutic strategies that promote tolerance of
transplants.

Adoptive Transfer of Regulatory T Cells
Adoptive transfer is a technique by which T cells are obtained
from an animal, stimulated in a polyclonal or antigen-specific
fashion, and grown in culture. The cells are then transferred back
into the original animal or into a separate animal with the overall
goal of expanding the frequency of those T cells. Ultimately, this
procedure can be exploited to increase or decrease the reactivity of
the immune system. Adoptive transfer has been employed using
Treg, aiming to counter graft destruction, and is currently under
active investigation for its clinical translation (67, 76). The size,
frequency, and type of these transfers can vary greatly depending
on the system and overall treatment goal. Here, a single injection
of naïveTregs into the lymphnode immediately prior to transplan-
tation is simulated by varying TRN from 9,500 cells to 3e8 cells.
Figure 5 shows that the graft survival time increases non-linearly
with the injection dose. However, fairly rapid transplant rejection
is still observed, as expected (67). The model reproduces previous
observations that indicate the simple increase of TRN would have a
very limited impact on transplant survival unless combined with
ideal complementary strategies, such as immunosuppression (in
a form that does not affect Treg activity, but only effector T cells)
and pre-activation of the injected Tregs (to effectively reduce the
levels of the other T cells so that a large ratio of TR to T cells is
maintained).

FIGURE 5 | Impact of naïve Treg adoptive transfer on graft survival.
Model predicted values of time until transplant rejection as the initial (and
constant) level of naïve regulatory T cells is varied between 9,500 and 3e8
cells.

Translocation Rates
The ease with which T cells can travel between the lymph node
and the graft is expected to influence the destruction of the graft.
For example, decreasing the rate (eE) at which TE cells translocate
from the lymph node to the graft should extend the survival
of the graft, though not indefinitely. Figure 6 depicts the effect
of eE alone on graft survival time (i.e., eE is varied while the
other translocation rates are held constant eH = eR = 0.001 day−1,
magenta curve) or in combination with the translocation rate
of CD4+ cells (i.e., eE and eH are varied and assumed equal
to each other while eR = 0.001 day−1, blue curve) or with the
translocation rate of Tregs (i.e., eE and eH and eR are all varied
and assumed equal to each other, black curve). Under normal
model conditions, eE = eH = eR = 0.001 day−1. If eE is increased,
the graft survival time is decreased from baseline. If both eE and
eH are increased, the graft survival time is even more decreased.
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However, if eE, eH, and eR are increased, the survival time is
longer because more Tregs are present to inhibit the effects of
the CD8+ and CD4+ T cells. The logic is reversed to the left
of eE = 0.001 day−1.

Delayed Injection of T Cells
In Figure 7, the model is used to simulate the effect of introducing
T cells into a system that originally has no T cells for a fixed
number of days [simulations for 10 (red), 20 (blue), 30 (black),
40 (magenta), and 50 (green) days are shown]. These simulations
were used to assess the ability of the model to reproduce the out-
come of published experiments in which T cells were introduced

FIGURE 6 | Impact of T cell translocation rates on graft survival. Model
predicted values of transplant survival times as the translocation rate of CD8+

T cells (i.e., eE is varied while the other translocation rates are held constant
eH = eR = 0.001day−1, magenta curve) is varied alone or in combination with
the translocation rate of CD4+ cells (i.e., eE and eH are varied and assumed
equal to each other while eR =0.001 day−1, blue curve) or with the
translocation of regulatory T cells (i.e., eE and eH and eR are all varied and
assumed equal to each other, black curve).

into a lymphopenic animal 50 days after heart transplantation.
The rationale for this test was that the healing process would
make the graft incapable of initiating the rejection response. The
reported results, however, refuted that hypothesis and showed a
complete rejection initiated even when T cells were introduced
50 days after transplant (2). The model presented in the current
study fails to predict this outcome, but provides valuable insight
into the behavior of the system modeled. For example, the red
curve in Figure 7A shows that themodel predicts graft acceptance
when no T cells are present and graft destruction once T cells
are introduced starting at day 10. As indicated by the additional
curves in Figure 7A, the steady state population of graft cells
(e.g., the population of graft cells after 200 days) does not change
monotonically with the number of days till lymphocyte injec-
tion. That is, the steady-state number of graft cells is higher if
T cells are injected at 20 days instead of 10 days, but lower if T
cells are injected at 40 days instead of 10 days. This unexpected
behavior is summarized inFigure 7B, which shows the population
of graft cells at 200 days as a function of the day at which T
cells are injected. This graph clearly shows the non-monotonic
relationship between these values.

DISCUSSION

In this study, a mathematical model of transplant rejection that
encompasses both innate and adaptive elements of the immune
response is presented. The model is based on combining experi-
mentally observed ratios of different types of T cells in the lymph
node and graft as well as the time at which their numbers are
maximum together with defined characteristics of the immune
response that have been reported in the literature (2–10, 26, 46, 47,
50, 51, 57, 60, 64, 66, 67, 75, 77). Our efforts in the development
of this transplant rejection model were driven by its ultimate
application as a tool to provide a better understanding of the
complex dynamics that underlie the rejection response and to
provide a novel and powerful perspective to predict new methods
for preventing graft rejection. Three hypothetical immune inter-
ventions are explored in this study:modulation of the frequency of
naïve Tregs, alteration of the migration of T cells to the graft, and

FIGURE 7 | (A) Model predicted number of graft cells when no T cells are initially present and then injected after 10 (red), 20 (blue), 30 (black), 40 (magenta), and 50
(green) days. (B) The number of graft cells predicted by the model at day 200 when T cells are administered at different time points between 10 and 60days.
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transient depletion of the T cell pool. First, we considered a simple
experiment of adoptive transfer of naïve Tregs simulating condi-
tionswhere the starting number of restingTregs in the lymphnode
was altered. Our model indicates that a higher number of Tregs
causes an increase in the time to allograft rejection (Figure 5).
As expected, however, the impact on graft protection is modest
and requires what would be a non-physiological augmentation
of Treg numbers to achieve a therapeutic effect. As indicated
below, this model is well suited to investigate which combination
of strategies could maximize the impact of Treg adoptive transfer
(67). For example, although indirectly, the model simulations
already suggest a powerful effect of activated Tregmigrating to the
graft (see comments on third simulation below). While this paper
only considers a simple example, the ultimate goal of adoptive
transfer is tomaintain a high level of Tregs so that they accumulate
in both the lymphnode and the graft (46, 47, 57, 67). Achieving the
greatest possible ratio of Treg to other T cells would yield themax-
imum inhibitory effect on the activation of TG

E , TG
H, CG

p , AG
mat, and

AG
inf, and, as a result, provide a significant protection to the graft.
Second, as shown in Figure 6, reducing the translocation rate

of TLN
E has a non-linear effect on graft destruction. For example,

a 50% decrease in eE yields an 82% increase in graft survival
time, while a 50% increase in eE decreases the graft survival
time by 34%. Decreasing both the translocation rate of TLN

E and
the translocation rate of TLN

H causes an even more pronounced
increase in graft survival time. This protective effect is not only
due to a more limited damage inflicted directly by a reduced
number of translocating T cells but is also due to the powerful
suppressive effect of Tregs that localize to the graft. In fact, the
concomitant reduction of eR with eE and eH shows a much more
limited prolongation of graft survival. This behavior helps to
explain why the inhibition of TLN

E translocation to the graft has
a more beneficial effect than their complete absence (Figure 3).
This is probably due to the contribution of TLN

E to the expansion of
Tregs in the lymph node that would then more efficiently control
the remaining immune response, a situation that would not occur
in the absence of TLN

E . Thus, the manipulation of activated T cell
migration could have a more profound therapeutic effect than
the prevention of their activation or their deletion, as long as
the migration of activated Tregs is not concomitantly affected.
Such complex dynamics could contribute to understanding the
disparate therapeutic effects observed when targeting specific
chemokine receptors (78, 79). Alternatively, this result highlights
the importance of using activated Tregs rather than resting ones
for adoptive transfer strategies.

Third, the theoretically predicted non-linear and non-
monotonic relationship between graft survival and the delayed
appearance of alloreactive T cells suggests that new experiments to
confirm such a relationship are needed to determine if the results
suggest a new method for promoting graft survival. The model
prediction is in discordance with the experimental observation
that the re-introduction of T cells 50 days post-transplant causes a
prompt rejection response (2). This underscores the need to adapt
the theoretical model to incorporate other important mechanisms
that would contribute to such an outcome. At the same time,
this discrepancy indicates that the basic principles implemented

in our model are not sufficient to explain the intricate behavior
of the immune system and suggest that additional scenarios
need to be investigated experimentally. We can speculate two
plausible scenarios: (a) the accumulation of pro-inflammatory
mediators follows a longer kinetic that supports delayed activation
(though not observed experimentally), or (b) the phenomenon
of lymphopenia-induced proliferation of T cells (observed when
T cells are transferred into a lymphopenic mouse) causes the
non-specific activation of T cells that can travel directly to the
graft and initiate the rejection response (80). The experimental
validation of these possible hypotheses would strengthen the
understanding of the non-linear and non-monotonic behavior
predicted in this scenario by our model. For example, the model
prediction of graft rejection when T cells are administered at
40 days versus the model prediction of near graft acceptance
when T cells are administered at 42 days warrants additional
investigation. This improved understanding would be essential
in determining the extent to which the transient elimination of T
cells would be more effective and, possibly, what combinatorial
intervention strategy would maximize this effect.

Model Limitations
Some of the choices and assumptions made in this study limit
the capabilities of the model. First, the model focuses on the
interactions of T cells, APCs, and inflammatory cytokines, but
does not include small-scale details, such as cell signaling or the
secretion of various factors. Additionally, cytokines are grouped
into two categories (pro- and anti-inflammatory signals) and are
tracked only in the graft, not in the lymph node. Considering
the vast number of individual cytokine molecules involved in a
full immune response as well as their independent dynamics, the
relative strength of their effects on the overall immune system
(as well as independent effects on individual cell types), and their
unique production and decay rates, amodel that accounts for each
cytokine molecule individually will rapidly become complicated
and cumbersome. But, studies show that the overall balance of
these signals and their specific varieties can significantly impact
graft outcome (4, 6, 33, 47). Effects of pro- and anti-inflammatory
cytokines are assumed to be included in parameters such as rE, rR,
and rH. The tradeoff of specificity for simplicity allows the model
to reproduce general behavior.

Some of the diversity and antigen-specificity of the various
cell populations are generally neglected in the model. B cells and
memory T cells are excluded, allowing the model to be com-
pared with experimental preparations only involving a naïve T
cell repertoire (6, 7, 9, 50, 64, 77, 81). One aspect of initiation
of acute organ rejection includes cross-reactivity of non-naïve
T cells cross-reacting against specific foreign MHC molecules
(HLA in humans) presented by graft cells. The contributions of
non-naïve T cells can vary widely, depending on the immuno-
logical history of the individual (including the formation of het-
erologous immunity toward the transplant), and serve as a point
of customization that can be adjusted in subsequent iterations
of this model. The model also does not accurately represent the
accumulation of immature APC in the graft when no T cells
are present in the system. This limitation likely derives from the
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simplification of incorporating multiple APC types into one vari-
able and having AG

inf and AG
mat originating from the same starting

population. Moreover, the effects of mechanisms of tolerization,
namely the induction of T cell anergy by immature APC or the
conversion of T cells into Tregs, are not presently included but
could be incorporated in the future. These processes contribute
significantly to the underlying anti-inflammatory processes, as
they allow AG

imm and TG
R to inhibit activated cells in ways cur-

rently not being modeled. Modeling these factors may require
probabilistic considerations of co-stimulatory encounters of anti-
gen with or without pro-inflammatory signals. Additionally, graft
rejection experiments typically conclude upon rejection and no
furthermeasurements of the graftmass are taken. Thus, anymodel
predictions post-rejection unfortunately cannot be compared to
available experimental observations.

The model also assumes that the entire graft is attacked at day
0. In reality, due to the three-dimensional heterogeneity of the
system, sites undergoing an inflammatory response are damaged
more. There are also early and late inflammatory populations that
could be included in the model using a time delay. This would
require converting the system into delay differential equations, as
in (25).

Model Extensions
Excitingly, despite the presented limitations, multiple avenues
of experimentation to understand the rejection response and to
assess the efficacy of therapeutic interventions are suggested by
the results obtained with this model. For example, the current
model predicts that altering the TRN population has a significant
impact on graft survival, as shown in Figures 5 and 6. The size,
timing, and repetition of Treg transfers can vary widely; many
experiments have started to identify appropriate combinations for
maximizing graft life (10, 46, 47, 51, 57, 67, 77). This model can
be used to simulate a multitude of adoptive transfer regimens that
may or may not have been explored experimentally. In addition,
pharmaceutical immunosuppression can be simulated by target-
ing terms in the equations that represent chemical pathways. In
particular, there ismuch interest in directlymanipulating pro- and
anti-inflammatory signals as novel immunosuppressive strate-
gies; model simulation could help to identify optimal regimens.
The model can also be used to assess the compatibility between

the current strategy of immunosuppression and experimental
immune interventions and guide the identification of optimal
conversion strategies. Moreover, future iterations of the model
could encompass the heterogeneity of reactivity of each individual
repertoire of alloreactive T cells (combined with the extent of
mismatch in HLA molecules between donor and recipient) to
achieve a more “personalized” level of intervention – an ideal goal
of current medical research. Overall, the model can be used to
hypothesize that pathways are viable targets for pharmaceutical
intervention based on parameter sensitivity analysis and model
dynamics. Combined with a continuous cycle of suggested exper-
imentation and model optimization, this approach has potential
for valuable contributions in the quest of transplant tolerance
induction.
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A mathematical model of the early inflammatory response in transplantation is formulated 
with ordinary differential equations. We first consider the inflammatory events associated 
only with the initial surgical procedure and the subsequent ischemia/reperfusion (I/R) 
events that cause tissue damage to the host as well as the donor graft. These events 
release damage-associated molecular pattern molecules (DAMPs), thereby initiating an 
acute inflammatory response. In simulations of this model, resolution of inflammation 
depends on the severity of the tissue damage caused by these events and the patient’s 
(co)-morbidities. We augment a portion of a previously published mathematical model 
of acute inflammation with the inflammatory effects of T cells in the absence of antigenic 
allograft mismatch (but with DAMP release proportional to the degree of graft damage 
prior to transplant). Finally, we include the antigenic mismatch of the graft, which leads to 
the stimulation of potent memory T cell responses, leading to further DAMP release from 
the graft and concomitant increase in allograft damage. Regulatory mechanisms are also 
included at the final stage. Our simulations suggest that surgical injury and I/R-induced 
graft damage can be well-tolerated by the recipient when each is present alone, but that 
their combination (along with antigenic mismatch) may lead to acute rejection, as seen 
clinically in a subset of patients. An emergent phenomenon from our simulations is that 
low-level DAMP release can tolerize the recipient to a mismatched allograft, whereas 
different restimulation regimens resulted in an exaggerated rejection response, in agree-
ment with published studies. We suggest that mechanistic mathematical models might 
serve as an adjunct for patient- or sub-group-specific predictions, simulated clinical 
studies, and rational design of immunosuppression.

Keywords: DaMPs, allo-recognition, ischemia/reperfusion injury, transplant, equation-based model, ordinary 
differential equations
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introduction

Solid organ transplantation represents the treatment of choice 
for end-stage organ failure-associated diseases, and has proved 
effective at extending and improving the quality of life of patients. 
Approximately 22,000 patients receive solid organ transplants 
every year in the United States, according to United Network for 
Organ Sharing1. While 1-year outcomes after solid organ trans-
plantation are excellent, the long-term outcomes are still medio-
cre, and range from 70% survival rate for kidney transplantation 
to 40–50% survival for heart/lung and intestine transplantation 
at 5  years (1–3). These poor long-term outcomes depend on 
multiple factors related to both donor and recipient, but are in 
their vast majority dictated by initial polyclonal, multimodal, and 
redundant innate and adaptive immune responses of the recipient 
directed against the allograft (4). These early immune responses 
occur both locally and systemically, in response to non-specific 
inflammatory damage-associated molecular pattern molecules 
(DAMPs) or to allo-antigen (allo-Ag)-specific major histocom-
patibility complex (MHC)-mismatch. These responses may be 
triggered by (i) the transplant surgery procedure (5); (ii) the 
type and the quality of the graft, including the level of ischemia/
reperfusion (I/R) injury (IRI) post-revascularization; and (iii) the 
level of pre-formed cellular (T cells) allogeneic and heterologous 
immunologic memory responses (4, 6).

inflammation and immunity in solid Organ 
Transplantation

While most work in the transplant field has focused on the antigen-
driven immune processes that drive graft rejection, recent work 
has begun to focus on the interplay between early innate immune 
mechanisms and subsequent antigen-driven responses (7–10). In 
this respect, the transplant community has begun to acknowl-
edge the tightly woven interplay between innate and adaptive 
immunity that has been recognized in other fields (11–20). These 
studies have pointed to multiple intersecting pathways by which 
early stress or injury leads to activation of innate and adaptive 
lymphoid pathways. Key among these pathways are those driven 
by DAMPs, which play intracellular housekeeping roles normally 
but which are released both locally and systemically upon stress, 
injury, or infection (21, 22). DAMPs activate classical innate 
immune cells such as macrophages and polymorphonuclear 
cells (PMN; i.e., neutrophils), but also stimulate dendritic cells 
(DC) to drive cytotoxic (Tc) and helper (TH) T cell activation/
polarization (23–26). In addition, non-conventional γδ-T cells, 
natural killer (NK)-T cells, as well as TH1 and TH17 cells (along 
with innate cells) provide other points of intersection between 
innate and antigen-specific (adaptive) immune responses (6, 27).

The transplantation procedure involves oxygen deprivation 
(ischemia) in the recipient host tissues as well as in the donor 
graft due to the time interval from donor organ removal to its 
placement in the recipient host. Once the transplant is complete, 
blood flow resumes, a process known as reperfusion. The I/R 

1 http://optn.transplant.hrsa.gov/

event is well-known to cause injury (IRI) to tissues, in addition 
to any direct tissue damage from the surgical procedure. These 
injurious events further initiate release of DAMPs, and this 
abates as IRI resolves (28–31). However, DAMPs initiate an 
acute inflammatory cascade involving the early expression of 
adhesion and co-stimulation molecules, chemokine release, and 
the inflammatory cytokine production by innate immune cells as 
well as memory T cells. Briefly, neutrophils respond to DAMPs 
by extruding highly inflammatory DNA material [neutrophil 
extracellular traps (NETs)] that trigger monocytes and tissue 
macrophages to secrete interleukins (IL-) IL-1β, IL-6, and tumor 
necrosis factor-α (TNF-α). In turn, these pro-inflammatory 
cytokines stimulate monocyte-derived DC to produce IL-12, 
a pivotal cytokine for generation of type-1 immunity (6, 27, 
32, 33). In addition, activated monocytes can release IL-23, a 
cytokine critical for recruitment of IL-17-producing γδ-T cells, 
responsible in turn for neutrophil chemotaxis and activation (34, 
35). As a result of the innate immune cell cytokine storm, the 
direct response to DAMPs, γδ-T cells, and memory T cells further 
contribute to IRI by IL-17 and interferon-γ (IFN-γ) release and 
costimulatory molecule up-regulation in an allo-Ag-independent 
manner (27, 36, 37).

A second layer of effector and inflammatory molecules is 
released by pre-formed alloreactive memory Type-1 and Type-
17 T cells in response to graft mismatched allo-Ag recognition. 
The levels of T cell pre-sensitization of the recipient to the donor 
correlate directly with early acute rejection episodes (38). The 
ensuing inflammation acts as a feedback loop, and may further 
cause tissue damage that drives additional release of DAMPs and 
allo-Ags. Resolution of cellular and tissue inflammation triggered 
by surgery, IRI, and subsequent DAMP release is mediated by 
innate regulatory macrophages (M2 and Mreg), intrinsic regula-
tory cytokines [IL-10, IL-4, and transforming growth factor-β1 
(TGF-β1)] along with T regulatory cells (Tregs) in animal models 
of heart, kidney, and liver transplantation (27, 39–42), while 
pre-formed alloreactive memory T cells seem less sensitive to 
regulation by Tregs (43).

These immunologic events may play a significant role in driv-
ing the diverse outcomes that accompany organ transplantation 
in various cases of apparent antigenic mismatch. We use the term 
“apparent antigenic mismatch” since the response to allo-Ag 
includes multiple factors, such as (1) actual allo-Ag differences; 
(2) individual, genetically predetermined thresholds of immune 
activation in response to a given degree of antigenic mismatch; (3) 
pre-existing levels of memory T cells; and (4) individual-specific 
response to immunosuppressive therapy.

Modern organ transplantation has utilized potent strate-
gies to control these unwanted, early immune responses. 
Specifically, thorough pre-transplant screening of recipient’s 
pre-formed donor-specific allo-antibody reactivity against the 
donor (cross-match screening for humoral sensitization) is 
combined with depleting or non-depleting induction therapy 
at organ implantation and with versatile maintenance immu-
nosuppression (44–46). All of these methods seek to mitigate 
the deleterious effects of immunity while allowing regulatory 
molecules and cells to develop. Notably, these strategies target 
mostly adaptive immune cells such as T cells, leaving the innate 
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immune players mostly unchecked. Thus, patients with elevated 
DAMP release and inflammation – due to significant IRI after 
reperfusion that carry undetected memory T cells to the donor 
MHC – may experience early rejection episodes despite proper 
pre-transplant screening, induction therapy, and maintenance 
immunosuppression. This contrasts with non-sensitized or 
minimally sensitized patients who experience minimal IRI 
due to live donation and/or optimal MHC matching, resulting 
in either indolent subclinical inflammation or in uneventful 
clinical course with desirable quiescent outcomes. For example, 
acute cellular rejection (ACR) events in the first 3 months after 
kidney transplantation occur in 10–12% of patients, while 
biopsy-proven subclinical rejection occurs in an additional 
15–18% of kidney recipients (47).

Deciphering the complexity of 
inflammation and immunity with 
Mathematical Models

The foregoing discussion suggests an emerging paradigm in 
which context and timing matter more than semantic distinctions 
among immune/inflammatory responses: in essence, inflamma-
tion/innate immunity triggers early memory lymphoid pathways 
that can subsequently become more focused after exposure to 
specific antigens, while chronic inflammation might be thought 
of as the chronic restarting of acute inflammation (48). In this 
context, attempting to define and predict responses under par-
ticular circumstances, especially in individuals, becomes almost 
overwhelmingly complex.

Mathematical modeling provides a key tool by which to study 
the integrated innate/adaptive response or acute/chronic inflam-
matory response and thereby untangle some of this complexity 
(48–50). Therefore, such models provide a means to drive novel 
hypotheses with regard to complex immune processes like those 
involved in the transplantation procedure and can assist in identi-
fying viable – and possible novel – points of control or diagnostic 
biomarkers. Multiple mathematical models that integrate innate 
and adaptive immune responses have been developed over 
the past decade to address diverse questions and disease states 
(51–54). However, a comprehensive mathematical model of 
organ transplantation is as yet lacking, and the complexity of the 
immune events involved in the procedure reiterates the need for 
such an approach. Complex systems, especially biological ones, 
are notoriously sensitive to initial conditions (55, 56). Thus, to 
address the solid organ transplant process comprehensively, we 
hypothesize the need to model not only the transplant and its 
antigenic properties, but also the initial conditions relating to the 
transplant surgery and subsequent IRI as drivers of innate immu-
nity. Indeed, prior mathematical modeling studies have suggested 
the need to model the underlying process, for example, in the case 
of the role of underlying trauma in the setting of hemorrhagic 
shock (57).

The modeling simulations in this present study suggest that 
surgical injury and graft damage can be well-tolerated by the 
recipient when each is present alone, but that their combination 
(along with antigenic mismatch) may lead to acute rejection. An 

emergent phenomenon from our simulations is that low-level 
DAMP release can tolerize the recipient to a mismatched graft 
under specific restimulation settings, while other restimulation 
regimens lead to an exaggerated rejection response.

results

To examine the early stages of inflammatory/immune responses 
to an organ transplant, including investigating the role of IRI 
in transplantation, we developed a mathematical model that 
includes the inflammatory hallmarks of IRI as well as the immune 
responses elicited by the apparent antigenic mismatch of the 
graft. As described above, we use the term “apparent antigenic 
mismatch” to comprise (1) actual antigenic differences; (2) 
individual, genetically predetermined thresholds of immune acti-
vation in response to a given degree of antigenic mismatch; (3) 
pre-existing levels of memory T cells; and (4) individual-specific 
response to immunosuppressive therapy.

The degree of this apparent antigenic mismatch is governed 
by a parameter, α, wherein a value of zero implies that the graft 
has 0% apparent mismatch with the host and a value of 1 implies 
complete (i.e., 100%) apparent mismatch. The model is initiated 
with a specified level of initial damage to the host and to the graft 
from the surgery and I/R, and thus the model simulations begin at 
approximately the time that transplant surgery is concluded (~8 h 
after the surgery begins), at which time reperfusion would occur.

In order to increase our ability to analyze qualitatively the 
driving forces behind diverse transplant outcomes, we simplify 
the number of components considered in the model and aim 
to create an abstract representation of the processes mentioned 
above. We focus on the following core scenarios and outcomes:

1. Clinical quiescence: the graft, following transplantation, 
shows no signs of inflammatory infiltrates. This is repre-
sented by model simulations showing little or no graft dam-
age and corresponding to fully or almost fully recovered graft 
functionality.

2. Acute clinical rejection: the graft, following transplantation, 
sustains levels of damage from the host response that cause 
it to lose functionality, occurring in the first 3 months after 
transplant. This is represented by model simulations showing 
high graft damage and corresponding poor graft functional-
ity very early after the simulation is initiated (i.e., after the 
transplant is completed).

3. Subclinical inflammation: the allograft, following transplan-
tation, shows no apparent clinical signs of organ damage, but 
subclinical levels of inflammation and cellular infiltrates are 
detected in the protocol biopsies in the first 3 months after 
surgery. This is represented by model simulations showing 
either stabilized but diminished graft functionality due to 
lingering inflammation, or non-stabilized, poor graft func-
tionality due to oscillating inflammatory responses driven by 
T cells.

The Mathematical Model
Figure 1 provides a schematic of all the components and inter-
actions included in the model equations. Table  1 provides a 
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TaBle 1 | Dynamic model variables.

Dynamic model 
variable name

Description initial condition(s)

D Tissue damage to recipient host; measured in arbitrary units: D-units D(0) = D0 ≥ 0 due to surgery and 
ischemia reperfusion injury of host

DG Graft tissue damage; measured in arbitrary units: DG-units DG(0) = DG0 ≥ 0 due to ischemia 
reperfusion injury of graft

I Early innate pro-inflammatory components, such as tissue M1 macrophages, monocytes, 
neutrophils, TNF-α, and natural killer (NK) cells; measured in arbitrary units: I-units

I(0) = I0 = 0 in all of the scenarios 
considered

A Anti-inflammatory mediators such as IL-10 and TGF-β1; measured in arbitrary units: A-units A(0) = A0 = 0.125 maintains a 
background level at homeostasis (69)

TP Pro-inflammatory T cells such as γδ-T cells, TH1 cells, and TH17 cells; measured in arbitrary  
units: TP-units 

TP(0) = TP0 = 0

TA Anti-inflammatory T cells such as TH2 and regulatory T cells; measured in arbitrary units: TA-units TA(0) = TA0 = 0
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description of the dynamic model variables and Table 3 in the 
Section “Materials and Methods” explains the auxiliary model 
variables. The dynamic model variables are those whose rates 

change over time and are modeled with an ordinary differential 
equation (ODE); whereas auxiliary variables are functions of 
dynamic variables. We first discuss the interactions that are 

FigUre 1 | interaction diagram. The diagram provides an abstract, high-level view of the immune and inflammatory processes involved in solid organ transplant 
that we include in our mathematical model. Four dynamic immune variables are defined: I, A, TP, and TA as described in the figure legend next to their respective 
graphic marker. Also tracked is host tissue damage and graft tissue damage via the dynamic variables, D and DG, which are represented in the diagram by the 
shape labeled “Surgical, Ischemia/Reperfusion, and Graft Injury” at the top of the diagram, along with DAMP release as a result of this injury. Arrows represent 
induction/activation of a target variable (connected at the arrow head) by an initiating variable (connected at the arrow tail). Inhibitory effects are indicated by the 
presence of an inhibitory variable marker resting atop the middle part of an arrow. For example, A inhibits the activation of I from DAMPs released by tissue damage. 
Multiple arrows coalescing into a target variable at the same point indicate that all initiating variables are required to complete that particular induction/activation 
process. For instance, I and A are both needed to activate TA. Circulating/resting source populations of T cells and innate immune components, T0 and IR, 
respectively, are required for all processes that induce/activate these into the variables TP or TA and I, respectively. To keep the diagram uncluttered, the source 
populations are not shown in all of the processes in which they are required. Instead a representative example is given for each, as seen in the activation of IR into I 
by TP and in the activation of T0 into TP (alternatively, into TA) by TP (alternatively, by TA). The presence of allo-Ag of the graft is indicated with a red cross and 
represents another excitatory factor of the pro-inflammatory arms of the system as is the DAMP release by damaged tissue. Some activation processes require the 
presence of allo-Ag and these are represented by a red cross at the initiating (tail) end of an arrow.
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pro-inflammatory and then discuss how these processes initiate 
and/or are inhibited by the anti-inflammatory components, all 
based on the immunology discussed in Section “Inflammation 
and Immunity in Solid Organ Transplantation.” The model does 
not currently take into consideration explicitly the immuno-
suppressive therapies given before/during the transplantation 
procedure, though the effect of immunosuppression is in a sense 
contained in the concept of apparent antigenic mismatch. We 
envision testing specific immunosuppression mechanisms (e.g., 
killing of all inflammatory cells vs. specific killing of T cells) in 
future iterations of this model.

The goal of this modeling exercise is to understand the dynam-
ics of the transplant procedure from a more abstract perspective, 
in which we group multiple components into a single variable. 
While this level of abstraction will in no way allow a quantitative 
prediction of specific mediators and cells, this approach does 
allow for an examination of the overall qualitative dynamics 
of this system in which excitatory and inhibitory mechanisms 
interact. The early innate components of the model, denoted by 
the variable I, incorporate the general pro-inflammatory effects 
of cells such as tissue-resident M1 macrophages, circulating 
monocytes, neutrophils, and NK cells as well as cytokines such 
as TNF-α, IL-6, IL-1β, IL-12, and IL-23. Pro-inflammatory 
T cells are represented by the variable TP, and incorporate the 
general properties of γδ-T cells, TH1, and TH17 T cell subsets. 
Also included are anti-inflammatory components, denoted by A, 
which include M2 macrophages, IL-10, and TGF-β1. In addition, 
anti-inflammatory T cells are denoted by the variable TA and are 
comprised of T regulatory and TH2 T cells. There are also two 
dynamic variables that track the rate of change of tissue dam-
age: one for host tissue, denoted by the variable D, and another 
for graft tissue, denoted by the variable DG. These six dynamic 
variables are modeled with ODEs that describe how the rates of 
these entities change over time as they interact with one another 
under different simulation scenarios. The variables have arbitrary 
units, as we are not aiming to match them with quantitative data 
but instead examine their dynamic behavior. The time scale is in 
hours. Whereas some parameters governing the various rates of 
the interactions are estimated from the literature when possible 
(e.g., from half-lives of cells and inflammatory mediators), the 
parameters are largely estimated to constrain the model to display 
basic biologically feasible behavior; see Section “Materials and 
Methods” for more information.

Figure 1 shows that D and I interact in a positive feedback loop 
that is inhibited by A. This models the effect of DAMPs released by 
tissue damaged due to IRI. This process is driven by early innate 
immune components, resulting in the activation of pro-inflam-
matory components from a resting/circulating population, IR (5). 
These activated pro-inflammatory components cause further tis-
sue damage; but the activation is inhibited by anti-inflammatory 
influences in a “checks-and-balances” manner. However, severe 
damage can cause an unabated positive feedback loop among 
these components, resulting in an unresolved response (31, 57). 
In the absence of graft placement (i.e., considering the surgical 
procedure alone), the innate pro-inflammatory components can 
also induce pro-inflammatory memory T cell recruitment from 
a circulating T cell population, T0 (9, 58). In the presence of the 

anti-inflammatory components, A, the innate components, I, can 
induce Tregs and TH2 cells, represented by TA. Many of these 
activation/induction processes are inhibited by either A or TA 
(27, 41, 59–61). This describes the interactions surrounding the 
surgical procedure and IRI of the host.

When a solid organ is transplanted, we considered that it 
would have some initial IRI due to the removal and transport 
procedures. In addition, the organ could subsequently be dam-
aged by the pro-inflammatory components (both innate and T 
cell-mediated) present at the transplant site, even in the absence 
of allo-Ag (58). We model graft functionality (percent), G, as 
a function of this damage, DG (see Table  3 in “Materials and 
Methods”). Subsequently, we include a parameter (α) governing 
the mismatch factor to scale the response from innate and T 
cell pro-inflammatory components in response to an allograft. 
Figure 1 also shows that graft injury can release DAMPs, which 
in turn can activate innate immune components as discussed 
above. Furthermore, the presence of a graft with a positive anti-
genic mismatch factor, governed by the parameter α, will cause 
antigen-specific memory T cells to infiltrate and cause further 
injury to the graft. This process is modeled by a gain to DG. This 
damage will reduce graft function, G, as illustrated in the inset 
figure of Table 3, and consequently will reduce the percentage of 
graft tissue available to harm further.

With a positive graft mismatch factor, the early innate pro-
inflammatory components, such as monocytes and M1 mac-
rophages, through allo-recognition, will provide additional and 
specific activation via DC of the pro-inflammatory memory 
T cells, TP (10, 58). This process is indicated in Figure  1 by 
the arrow coming from I into TP, with the apparent host–graft 
mismatch marker (red plus sign) present at the tail end of the 
arrow. In keeping with the abstract model representation of 
these processes, we do not include the DC component directly, 
yet the process is implicit in the interactions. Additionally, a 
positive graft mismatch factor will enhance further recruitment/
activation of both pro- and anti-inflammatory T cells, from the 
source T cell population, T0, by already activated components 
of these types. Again, various processes are inhibited by A and/
or TA, as indicated in the legend of Figure 1 by an induction 
arrow that has a particular variable marker sitting atop it in 
the middle.

In the Section “Materials and Methods,” the construction of 
the model is discussed and the full model is given by Eqs 1–6, 
with the model parameter descriptions and values used in the 
simulations given in Table 4. The equations are solved numeri-
cally to produce time courses of each of the system variables or 
states (see Materials and Methods). These resulting time courses 
are translated to clinical outcomes in the following manner. In 
general, we define a pre-surgery initial condition for the model 
variables as (I0, D0, A0, DG0, TP0, TA0) = (0, 0, 0.125, 0, 0, 0), which 
indicate that all system components are at their background 
values. This state is referred to as the baseline equilibrium. This 
setting assumes that there are no underlying immune conditions 
prior to transplant surgery, which is typically not realistic in 
the case of transplant recipients. Future iterations of the model 
could incorporate prior host health conditions. The system can 
be perturbed from this baseline state, for instance, by setting a 
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FigUre 2 | simulation results of the inflammatory cascade following transplant surgery only without graft placement (i.e., G = 0). (a–D) Below a 
certain threshold, initial host tissue damage caused by IRI incites an inflammatory response that resolves to baseline levels. Initial condition for this simulation was (I0, 
D0, A0, DG0, TP0, TA0) = (0, 3, 0, 0.125, 0, 0) with parameters as given in Table 4. For D < 4, this outcome is possible. (e–h) Above a certain threshold, initial host 
tissue damage caused by IRI incites an inflammatory response that does not resolve and results in host health failure. Note that this scenario is not the one we 
would consider for transplant conditions, but demonstrate the scope of the model dynamics to produce theoretically possible outcomes of traumatic injury. Initial 
condition for this simulation was (I0, D0, A0, DG0, TP0, TA0) = (0, 4, 0, 0.125, 0, 0) with parameters as given in Table 4. For D ≥ 4, this outcome is possible.
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non-zero initial condition for D and/or DG, which indicates the 
presence of damaged tissue to host and/or graft, respectively, 
due to IRI. The rates at which system variables change as a func-
tion of time are governed by the Eqs 1–6. A simulation in which 
the variables’ time courses return to the background levels, after 
a brief transient increase away from this state due to perturba-
tion, is translated as a healthy outcome. Figures 2A–D display a 
basic healthy outcome scenario in terms of host health.

On the other hand, an unhealthy outcome is presumed if the 
departure away from the healthy equilibrium is not transient but 
instead causes the variables to approach a different equilibrium 
that has elevated levels of the variable states. The unhealthy 
equilibrium implies host health failure and, when a graft is con-
sidered, graft failure as well. Alternatively, one could define a level 
of cumulative damage that could be considered as irreparable, 
rather than defining non-recovery only by the system’s long-term 
behavior; we did not explore this possibility in the present study. 

Figures  2E–H display a basic unhealthy outcome scenario in 
terms of host health. When a graft placement is considered (with 
and without apparent mismatch), outcomes also include the per-
cent graft functionality, where a steady-state graft functionality 
value of 12% represents outright graft failure. See Figures 3A–D, 
for instance.

simulation: ischemia/reperfusion injury Without 
graft Placement (i.e., G = 0)
As a first scenario, we consider only the aspects of the inflamma-
tory response of the host involved during the surgical transplant 
procedure in the absence of a graft placement. This scenario could 
also be viewed as a look at the trauma of transplant surgery or 
an instance of accidental blunt trauma, in general. To simulate 
this situation, we set the initial condition for the host damage 
variable, D, to a non-zero value, and remove the presence of the 
graft, G, from the model. All other variable initial conditions 
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FigUre 3 | simulation results of the inflammatory cascade following transplant surgery and non-allo-ag graft placement (i.e., α = 0). Combined initial 
host and graft IRI can synergize to incite an inflammatory response that (a–D) cannot resolve, causing graft failure or (e–h) transiently decrease graft function 
significantly. (a–c) present a series of simulations in which (a) a moderate level of initial surgical IRI in the host is considered with no corresponding graft IRI 
associated with the placement, (B) no initial surgical IRI in the host is considered with a low level of initial graft IRI, or (c) the moderate level of initial surgical IRI in 
the host of simulation (a) is coupled with the low level of initial graft IRI of simulation (B). In (D), the graft functionality curves corresponding to simulations (a–c) are 
shown. The “Graft function for C” time course in (D) displays the synergy to severely affect graft function such that the graft fails, shown as functionality decreasing 
to and remaining at 12%. Similarly, panels (e–g) display outcomes for (e) a low/moderate level of initial surgical IRI in the host with no corresponding graft IRI 
associated with the placement, (F) no initial surgical IRI in the host with a corresponding moderate level of initial graft IRI, or (g) the combination of the low/moderate 
initial level of surgical IRI in the host from simulation (e) with the moderate level of initial graft IRI from simulation (F). In (h), the graft functionality curves 
corresponding with (e–g) are shown. The “Graft function for G” time course in (h) displays the synergy to significantly affect graft function, but only transiently after 
which the graft functionality fully recovers. Initial conditions for (c): (I0, D0, A0, DG0, TP0, TA0) = (0, 3, 0.5, 0.125, 0, 0); initial conditions for (g): (I0, D0, A0, DG0, TP0, 
TA0) = (0, 2, 1, 0.125, 0, 0).
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are set to their healthy state baseline values. Figures  2A–D 
show that an inflammatory response is incited (e.g., levels of I, 
etc. increase from baseline values) for some initial level of host 
tissue injury corresponding to DAMP release. We note that this 
response resolves completely in a reasonable time frame. In other 
words, the inherent inhibitory mechanisms provided by the anti-
inflammatory variables, A and TA, are sufficient to regulate the 
response correctly. However, in Figures  2E–H, the initial level 
of IRI was high enough to cause irreparable damage, an unlikely 
situation in today’s modern operating theater, yet a theoretically 
possible outcome. Thus, our model displays feasible qualitative 
behavior related to surgical trauma.

simulation: ischemia/reperfusion injury with 
graft Placement But with no apparent antigenic 
Mismatch (i.e., α = 0)
The next iteration of simulations considers not only the IRI to 
the host from surgery but also the IRI associated with the graft 
due to the processes of harvest from donor and transportation 
to the recipient host. We assume that initial graft functionality 
starting at a percentage lower than 100% is a result of IRI due 
to the harvest and transport procedures, and not an indicator 
of the functionality that it had when still intact in the host 
from whom the graft was harvested. Thus, 100% in our model 
would mean 100% of the total functionality exhibited by a 
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FigUre 4 | simulation results showing outcomes of transplant surgery with placement of allo-ag graft for various degrees of apparent mismatch 
(i.e., α > 0). The initial condition used in Figure 3g [i.e., (I0, D0, A0, DG0, TP0, TA0) = (0, 2, 1, 0.125, 0, 0)] was also used here but now various values of the apparent 
mismatch factor parameter, α, were explored to observe the effects of initial host and graft tissue damage from IRI in conjunction with allo-recognition. (a) With low 
mismatch factor (α = 0–0.03), graft tolerance is seen. (B) Within a higher range (α = 0.04–0.25), damped oscillations in graft functionality appear but resolve to 
greater than 95% functionality in the long term with values of α on the higher end of the range taking months to resolve and stabilize. (c) Within the next highest 
interval (α = 0.29–0.5), undamped oscillations are apparent. This indicates a regime where graft function is affected by chronic inflammation driven by T cells that 
flares up and subsides periodically. (D) The last interval (α = 0.55–1.0) displays acute graft failure within 400 h for α values near the minimum of this range and within 
125 h near the maximum of this range.
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given organ pre-transplant. Presumably, organs harvested 
for transplant were functioning “normally,” such that they 
did not have existing damage affecting this normal function. 
However, this value could be lower if an organ were harvested 
from an older or less healthy donor (a scenario we did not 
explore explicitly). For this simulation set, we assume that the 
graft and host are identical, and therefore do not consider any 
interactions that involve allo-recognition due to mismatch 
(i.e., the parameter governing mismatch intensity is set to zero: 
α = 0). The model also displays feasible qualitative behavior 
for possible outcomes when considering ranges of injury 
severity. In Figures 3A–D, we show that initial host damage 
combined with initial graft damage can synergize to result 
in graft failure, whereas each of these challenges separately 
did not. Figures  3E–H show synergy as well, but in a less 
extreme manner, wherein the graft does not fail and recov-
ers fully. However, as seen in Figure 3H, the time course for 
“Graft Function for G” shows that the negative effects on graft 
function from IRI reduce graft function by 60% at one point 
in the simulation. This result suggests that the non-specific, 
detrimental effects of inflammatory processes initiated by IRI 
may make the graft that much more vulnerable in cases where 
host–graft mismatch is considered. We explore mismatch 
scenarios in the next two sections.

simulation: ischemia reperfusion injury with 
graft Placement and Varying apparent antigenic 
Mismatch levels (i.e., α > 0)
In this next simulation set, we consider varying levels of host–graft 
mismatch, and thus the interactions shown in Figure 1 involving 
allo-recognition come into play. We use the initial condition  
(I0, D0, A0, DG0, TP0, TA0) = (0, 2, 1, 0.125, 0, 0) as in Figure 3G, and 
set α to different values within the interval [0,1] in the multiple 
simulation runs. Figures 4A–D display four qualitatively differ-
ent outcome scenarios corresponding to ranges of the mismatch 
parameter, α. Each figure panel displays the graft functionality 
results of multiple simulation runs for values of α within the 
specified ranges. In these various scenarios, we observe outcomes 
corresponding to the clinical scenarios mentioned earlier at the 
beginning of Section “Results.” Clinical quiescence is represented 
in Figure 4A, where there is little or no graft damage and full 
or nearly full graft functionality is achieved and retained. Acute 
clinical rejection is represented in Figure 4D, where poor graft 
functionality is seen very early after the simulation is initiated 
(i.e., after the transplant is completed), and failure is predicted to 
occur within less than a month’s time. The subclinical inflamma-
tion outcome is represented in Figures 4B,C. In Figure 4B, we 
interpret the smaller oscillations as subclinical chronic inflamma-
tion predicted to resolve on the order of 1–3 months (shown for 
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TaBle 2 | Minimal initial graft function required for graft survival given a 
particular mismatch intensity factor.

Value of α Minimal graft 
functionality percent  
[or Dg(0) value]

ending graft functionality 
percentage (steady state 
value of G)

0 20% (or 1.9) 100%

0.1 20% (or 1.9) 99%

0.2 20% (or 1.9) 97%

0.3 20% (or 1.9) 75–97% oscillation range

0.4 20% (or 1.9) 48–99% oscillation range

0.5–0.6 20% (or 1.9) 38–99% oscillation range

0.7 24% (or 1.8) 27–99% oscillation range

0.8–1.0 No cutoff exists Graft failure (13%)

Ending graft functionality percentages are with respect to an initial assumed 100% 
functionality that a given organ had pre-transplant, as explained in Section “Simulation: 
Ischemia/Reperfusion Injury with Graft Placement But with No Apparent Antigenic 
Mismatch (i.e., α = 0).”
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up to 1000 h ~ 42 days), since the recovery behavior is different 
from, and takes longer than, the graft tolerance recovery scenario 
of Figure 4A. Furthermore, since in Figure 4B the damped oscil-
lations are such that (1) graft health does not decrease too often 
nor too greatly below the original graft health level; and (2) an 
acceptable recovery is seen eventually (i.e., graft health is greater 
than 95%), we interpret this behavior as subclinical. In other 
words, the graft is in comparable or better condition than when it 
was first transplanted, but it is not maintaining optimal function 
until much later. Note that Figure 4A could also be classified as 
subclinical, but the length of time in which graft health is not ideal 
is much shorter relative to the scenarios in Figure 4B. Thus, we 
do not classify Figure 4A as a chronic scenario. In Figure 4C, the 
oscillations are larger and do not resolve as in Figure  4B. We 
equate this outcome with long-term rejection since a high and 
steady level of graft function is never observed as T cells cause 
inflammation and subsequent damage to flare up and subside 
repeatedly. This prediction points to a scenario leading to graft 
failure, even though there are times when there is only subclinical 
inflammation, and a good level of graft function is observed.

Table 2 displays a summary of minimal initial graft functionality 
percentages (corresponding to an initial value of DG) from which 
outright graft failure (i.e., ending graft functionality of 12%) is 
avoidable, given a particular value of α. For ~0.032 < α < ~0.3, the 
healthy stable equilibrium is replaced by a suboptimal healthy stable 
equilibrium. Higher α values outside this range give rise to oscilla-
tions that indicate worsening graft function, with the minimal graft 
functionality of the oscillatory range reaching 27% as α approaches 
0.7. For α > ~0.75, outright graft failure is the only outcome and the 
ending graft functionality equilibrium value is 12%.

simulations of Preconditioning scenarios
In some simulations, an initial level of host tissue damage can act 
as a preconditioning factor in promoting graft survival. While the 
release of DAMPs from injured tissue incites pro-inflammatory 
components, the cascade also involves induction of anti-
inflammatory mediators. If the pro-inflammatory levels from this 
initial surgical DAMP release are below some threshold, and the 
corresponding anti-inflammatory cell/mediator levels are above 

some threshold at the time the additional DAMP release happens 
from an IR-injured graft, then an attenuated damage response 
may be possible. We depict one such simulation experiment of 
this preconditioning phenomenon, shown in Figure 5. This type 
of preconditioning, in which the response to a second insult is 
lower than that for the first, is called “tolerance” and has been 
reported widely in multiple settings of acute inflammation (62, 
63). Indeed, a similar tolerance phenomenon was reproduced in 
a mathematical model of the host immune response to repeated 
endotoxin challenge (64). That study also demonstrated that 
repeated endotoxin challenges that were not timed carefully 
displayed potentiation of the inflammatory response, another 
manifestation of preconditioning typically known as priming 
(65). The analogous potentiation feature was seen in the present 
model in Figure 3D even with no mismatch factor present. We 
interpret this outcome to be similar to the scenario in which a graft 
is rejected, and the patient undergoes repeat transplantation. The 
outcomes in this setting are known to be poor (44, 66). Thus, the 
timing of the excitatory and inhibitory mechanisms involved in 
the entire transplant process is important to understand in order 
for therapeutic strategies to positively synergize with these events.

Discussion

The integrated nature of inflammatory and antigen-specific 
immunity that underlie the response to organ transplantation 
has largely defied a synthetic understanding. This complexity can 
often be observed in the form of emergent phenomena that can-
not be predicted based on an understanding of the component 
parts of the immune system, and may be at the root of the need 
for life-long immunosuppression post-transplantation. We sug-
gest that the development of novel treatment strategies for organ 
transplantation can be aided greatly by mechanistic mathemati-
cal models such as the one presented here, because inevitably, 
independent mechanisms must be integrated in order to predict 
higher-order system properties in a clinically relevant manner. 
We regard a mechanistic model as one that describes “rules” for 
how the individual model components interact and evolve with 
time. We use the term “mechanistic” to distinguish this type of 
model from statistical or data-driven models, in which quantita-
tive associations are defined, rather than abstracted mechanisms.

The past decade has witnessed such a synthesis in the form of 
simplified (reduced-order) computational models of acute inflam-
mation, which have yielded useful insights into the mechanisms 
and pathophysiology of critical illness (64, 67–69). However, such 
models are at best only capable of general, high-level predictions, 
which are not sufficiently specific so as to be testable in individual 
patients or in in vitro/in vivo experiments. Alternatively, modeling 
biological systems in a realistic fashion often necessitates complex, 
large-scale models describing the underlying system dynamics 
(54, 70, 71). An important advantage of such mechanistic models 
is that they can allow for quantitative predictions (48, 49, 56, 
72–76) and clinically translational connections of molecular 
mechanisms to pathophysiology (77), with the ultimate goal of 
improving the drug development process (78).

Mechanistic models have helped suggest the central role of 
DAMPs in acute inflammation (49, 75–76, 79–84). Mechanistic 
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modeling has also helped elucidate the forces driving inflam-
matory preconditioning, namely the different inflammatory 
responses that ensue when multiple stimuli are given in succes-
sion (64, 85–90). Other applications of mechanistic modeling 
involve the understanding of multifactorial therapies for acute 
inflammatory diseases (91, 92). Key translational applications 
such as in  silico clinical trials based on mechanistic models of 
inflammation and damage/dysfunction were pioneered in the 
arena of acute inflammation (71, 93, 94). These models have 
grown in sophistication, and are beginning to show the potential 
for predicting the inflammatory responses of large, outbred 
animals (78, 95, 96) and individual human subjects (71, 97, 98).

The unmet need for new treatments and diagnostic modali-
ties allowing ultimately for long-term graft survival with low 
or no immunosuppression in organ transplantation is acute. 
While decades of work have led to many novel insights from the 
molecular to the physiological level, the net result has remained 
centered around life-long immunosuppression. We suggest that 
this is not because the effort has not been worthwhile or because 
promising candidate approaches were not pursued. Rather, it is 
our contention that what has not taken place is the process of 
synthesis of these insights into a larger whole. Computational 
modeling is a promising avenue for such synthesis; however, the 
current approach is based purely on statistical tools by which to 
associate multiple variables to outcomes.

In the present study, we created a mechanistic mathematical 
model based on ODEs that describe key mechanisms of innate 
and adaptive immunity and that span the full process of trans-
plantation. This model focuses on the very early inflammatory 
events linked to the surgery, IRI, and memory T cell attack, 
events cross-modulated by each other and which translate into 
significant subclinical and clinical manifestations in only a subset 
of organ transplant recipients. However, these complex, early 
inflammatory events, as they do occur, may set the tone for either 
excellent or poor long-term allograft and patient outcomes. Thus, 
key outputs of our model include the prediction of that surgical 
injury and I/R-induced graft damage can be well-tolerated by the 
recipient when each is present alone, but that their combination 
(along with antigenic mismatch) may lead to acute rejection, as 
seen clinically in a subset of patients (38, 47). An emergent phe-
nomenon from our simulations is that low-level DAMP release 
can tolerize the recipient to a mismatched allograft, whereas 
different restimulation regimens can drive an exaggerated 
rejection response. This former prediction is in agreement with 
published studies showing that preconditioning with the DAMP 
high-mobility group box 1 (HMGB1) can reduce the severity of 
inflammation and damage in the setting of graft IRI (99).

Limitations of this mechanistic mathematical model reside 
in the fact that the induction therapy and the maintenance 
immunosuppression are not considered in the model, and this is 
an area for expansion and augmentation of our modeling work. 
Moreover, this mechanistic mathematical model that predicts 
early innate and adaptive immune events is a generic one: each 
organ may have its own distinctive signature of early immune 
events. Thus, further augmentation of our model would involve 
making organ-specific variants. Additional limitations include 
the fact that this is a relatively abstract model, in which multiple 

mechanisms are lumped into single variables. As such, this model 
cannot be directly verified in a quantitative manner, other than as 
concerns the relative timing of various events. One key area where 
this limitation is apparent concerns the aforementioned emergent 
tolerization behavior as a function of prior exposure to damaged 
graft tissue, which we hypothesize as being due to DAMPs such 
as HMGB1 (99). Given tolerization is a manifestation of similar 
mechanisms to those that drive injury, and that HMGB1 can drive 
hepatic injury through activation of DCs (100), it is tempting 
to speculate that DCs are a key cell type in this process. Thus, 
future modeling work focused on examining this tolerization 
mechanism (or alternative mechanisms) in the context on organ-
specific environments is warranted. In addition, a greater in-depth 
mathematical analysis can be done to gain deeper insights into the 
dynamics, which becomes especially helpful when the models are 
more closely tied to experimental and clinical data.

Despite these limitations, this model was capable of reproduc-
ing a rich set of biological and clinical behaviors. Simulations of 
this model under various initial conditions of IRI, graft injury, and 
degree of antigenic mismatch yielded a broad spectrum of out-
comes from nearly complete graft function to outright (acute or 
chronic) rejection. Importantly, this model also yielded behaviors 
such as tolerization (durable unresponsiveness to donor-antigens) 
through preconditioning, as well as the harmful alternative out-
come of more severe graft failure upon retransplantation. Future 
iterations of this model could address these limitations and addi-
tionally explore the effects of variability that would naturally exist 
from patient to patient with respect to host health and immune 
function (94). Consequently, mathematical/engineering control 
methodologies could be employed on the models to suggest early 
therapeutic intervention strategies for this complex immune 
system (101).

In conclusion, we suggest that this model is a stepping stone 
toward further insights, not only into the response to allotrans-
plantation but also for other disease states. Several diseases with 
or without an immunologic trigger have been recently deter-
mined to have inflammation as a common fingerprint. Therefore, 
understanding diseases according to their common biological 
mechanism and using systems biology, mathematical modeling, 
and bioinformatics/data-driven modeling methods to interrogate 
the immune response before, during, and after perturbation will 
help not only to predict clinical outcomes but also guide prompt 
and precise targeting of new therapies (46, 102).

Materials and Methods

We formulate the model by building upon the approach and 
principles of prior modeling work to provide the foundation 
for the current model (64, 69). In this prior work, an abstract, 
four-equation model of the acute inflammatory response to 
bacterial pathogen and to Gram-negative bacterial endotoxin was 
developed. The approach considered various subsystems as a way 
to tractably analyze and calibrate the qualitative behavior of parts 
of the larger system to gain a greater understanding of which enti-
ties governed certain dynamic properties in the larger system. 
We refer to this modeling process as a “subsystem modeling 
approach.” The Reynolds et al.’s model displayed rich qualitative 
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FigUre 5 | Preconditioning phenomena: initial surgical iri allows damaged graft to recover compared to scenario wherein graft failure occurs in the 
absence of initial surgical damage. (a) Graft functionality with (blue) and without (red) an initial level of host I/R damage, D(0). Initial graft damage [DG(0) = 2] 
along with a low initial level of host tissue damage [D(0) = 1] results in graft recovery to full functionality (blue); whereas initial graft damage [DG(0) = 2] without the low 
initial level of host damage [D(0) = 0] leads to graft failure (red). (B) The anti-inflammatory components, A, and (c) anti-inflammatory T cells, TA, with (blue) and 
without (red) an initial level of host IRI, D(0). Comparing the red and blue time courses for both anti-inflammatory variables (A and TA) in (B,c), one observes a slight 
increase in levels (blue above red) in the first 24 h or so. This increase in the anti-inflammatory variables (especially of A) induced by the very inflammatory cascade 
that was due to DAMP release actually allows for graft survival.
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behavior that corresponded to multiple clinical outcomes seen in 
cases of severe systemic inflammation due to bacterial pathogen 
and experimental studies of endotoxemia and tolerance. The gen-
eral dynamical components of this prior model, when considered 
without a pathogenic or endotoxin insult, also correspond well to 
an abstract representation of the immune response to traumatic 
insult. Thus, the current model adopts a similar strategy and 
mindset for the development of the current model of immune 
responses in transplantation.

All model simulations and analysis were performed with 
XPPAUT (103). To create Figures  2–5, the numerical data 
produced from the XPPAUT simulations were exported to 
MATLAB® (R2013b, The Mathworks Inc., Natick, MA, USA). 
Additional calculations were performed with MAPLE (2015, 
Maplesoft™, Waterloo, ON, Canada). The complete math-
ematical model given by the ODE system (1)–(6) was analyzed 
using the subsystems approach mentioned above wherein the 
dynamics of a few interacting variables are examined prior to 
combining the equations altogether. Parameter values used 
in this section can be found in Table 4. In the subsystems we 
discuss throughout this section, of most interest is the number 
and stability properties of equilibria and how these change with 
parameter value changes. Equilibria of a system of differential 

equations occur at the intersections of nullclines which are the 
equations resulting from setting each differential equation to 
zero and solving the resulting system of algebraic equations. The 
points that satisfy this are naturally the system states at which 

there is zero rate of change e.g.,dx
dt =( )0 , indicating an equi-

librium state or fixed point. The dynamics of the ODE system 
are organized around these special points. For a system of two 
variables, the nullclines are especially useful for a geometric 
analysis of the system states and to observe how the shapes and 
positions of the nullclines change with changes to parameters 
or functional forms of the equation terms. Small perturbations 
of the system away from an equilibrium that cause the system 
solutions to return to the equilibrium as t→∞ define a locally 
asymptotically stable (or simply stable) equilibrium. If, on the 
other hand, the perturbation causes solutions to move away 
from said equilibrium, then we call the equilibrium unstable. 
We only concern ourselves with biologically feasible equilibria 
which are those in the positive orthant. The variables of the 
system are necessarily formulated to remain positive for all time 
and all parameters are positive as well. For more details regard-
ing the terminology and mathematical analysis used, consult 
for instance (104).
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DTotal/I subsystem: Total Damage and early 
innate components
We will first consider a subsystem that examines the dynamics 
of tissue damage and associated DAMP release with the early 
innate components of interest herein, as described in Table 1. 
In (69), it was shown that a similar subsystem involving 
damage and early pro-inflammatory phagocytes contained a 
stable healthy equilibrium as well as another stable equilibrium 
corresponding to elevated damage and elevated immune 
components. We build upon the structure developed there to 
construct our subsystem here and discuss the resulting analysis 
afterward. We note that the terms contained within the ODEs 
that we formulate are based on the principle of mass action 
kinetics. For instance, Table 5 provides the system of reactions 
involving the resting/circulating innate components, IR, and 
the activated innate components, I. Table 3 then provides the 
details on how we use a quasi-steady-state assumption to reduce 
the IR/I system to a single equation, based on the rapid nature of 
the activation process.

For the analysis of the DTotal/I subsystem, we model the 
activation of resting/circulating pro-inflammatory innate com-
ponents as described in Section “Deciphering the Complexity 
of Inflammation and Immunity with Mathematical Models” but 
ignore for now any inhibitory effects from anti-inflammatory 
components or additional activation by pro-inflammatory T cells 
and thus arrive at Eq.7.

 

dI
dt

ir id Total ii

ir id Total ii
i=

+
+ +

−
s k D k I

k D k I
( )

( )
I

µ
µ  (7)
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TaBle 3 | auxiliary model variables.

auxiliary variables Variable description, equation, and modeling explanation

IR Resting/Circulating population of I components, such as neutrophils and monocytes, from which the I population is activated. When 
the IR population is activated into I, via DAMPs for example, we assume that the activation is rapid and employs a quasi-steady state 
assumption. (See Table 5 for reactions governing IR and I.) The result is incorporated into the equations in which IR appears. (arbitrary 
units: IR-units)

I
s

k D D k I k TR
ir

ir id G ii itp P

=
+ + + +µ ( )   

,

derived from assuming that the following equation is in quasi-steady state:
dI
dt
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1
2  which incorporates the inhibitory effects of the anti-inflammatory mediators, 

represented in the variable, A, on the activation of I.

T0 Population of inactivated memory T cells from which the T cell subsets, TP and TA, are produced. The T0 population is also assumed to 
be in quasi-steady state and the result is incorporated into the equations in which T0 appears. (arbitrary units: T0-units)

T
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G Graft health/functionality; measured as a percentage with 0 indicating 0% functionality  
and 1 indicating 100% functionality. Graft health is defined as a function of  
associated graft damage, DG:

G
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[Frame1]The parameters kgdg and xgdg scale the level of the variable DG to relate it to the  
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+
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in the equation for G.  

See inset figure for an example response curve of G.
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6
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The total tissue damage can be modeled by combining tissue 
injury caused (a) to host tissues from the early innate components 
responding to DAMP release and (b) to the graft, G, by either 
early innate components, I, or by pro-inflammatory T cells, 
TP, the latter of which is ignored for the analysis of the DTotal/I 
subsystem. Thus, we formulate Eq. 8, where a decay term of the 
total damage is also incorporated to account for a combination 
of tissue repair and regeneration. Graft health, G, is a function of 
graft damage, DG as discussed in Table 3. Note that since Eq. 8 is 
for total damage and not just graft damage, the parameters kgdg 
and xgdg have a slightly different meaning in this subsystem than 
they will in the full system, where the DTotal equation is separated 
into two equations: one to represent the damage to the host, 
D, and another to represent the damage to the graft, DG. This 

separation is done later in order to distinguish between damage 
done in general and graft-specific damage. Additionally, the 
inhibitory effects of anti-inflammatory components, A and TA, 
are later incorporated as is the additional damage to graft tissue 
by activated pro-inflammatory T cell subsets, TP.

As in (69), we assume that the ability of the innate immune 
components to create damage saturates when these components 
are very large relative to their baseline levels. We also incorporate 
the Hill-type function given as f(x) under Eq.  8 with a hill-
coefficient of 6. We note that the choice of a hill coefficient in 
Reynolds et al. was made to ensure that the healthy equilibrium 
of the subsystem has a reasonable basin of attraction. Using the 
parameter values given in Table 4, this modified system behaves 
as in the prior work, with the I and DTotal nullclines intersecting 
at (0,0) and at two additional points in the positive quadrant. The 
“healthy equilibrium” (DTotal,I)  =  (0,0) is locally asymptotically 

stable when µ >
µi
ir ii

ir

s k
, which is the same criteria reached in (69) 

for the analogous parameters, even with the modifications made 
for this current focus. Furthermore, an unstable saddle equilib-
rium separates the basins of attraction of the healthy equilibrium 
and the other stable equilibrium (DTotal,I)≈(1.2,17.5), as observed 
in the prior work. Thus, the underlying structure of bi-stability is 

106

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


TaBle 4 | Model parameters.

name Description/source Value/units name Description/source Value/units

kii* Activation of innate components by previously activated innate  
pro-inflammatory components

0.01/I-units/h Sa* Source term for anti-inflammatory components (A) 0.0125 A-units/h

Sir* Source of resting/circulating inactivated innate pro-inflammatory 
components

0.08 IR-units/h kai* Maximum induction rate of anti-inflammatory components by 
activated pro-inflammatory innate components

0.04 A-units/h

μir* Natural decay/turnover rate of resting/circulating inactivated  
pro-inflammatory innate components

0.12/h kaid* Relative effectiveness of activated pro-inflammatory innate 
components and damaged tissue/DAMPs to induce anti-
inflammatory components (A)

48.0 I-units/D-units

μI* Natural decay/turnover rate of activated pro-inflammatory innate 
components

0.05/h μa* Decay rate of anti-inflammatory components (A) 0.1/h

kid* Activation of resting/circulating pro-inflammatory innate components by 
DAMP release from damaged host and graft tissue

0.02/(D-DG)-units/h kata Maximum induction rate of anti-inflammatory components (A) by  
anti-inflammatory T cells (TA)

0.001/A-units/TA-
units/h

kitp Activation of resting/circulating pro-inflammatory innate components by 
activated/memory pro-inflammatory T cells

0.008/TP-units/h St0 Source of inactivated memory T cells 1.0 T0-units/h

kdi* Maximum rate of host tissue damage by activated pro-inflammatory  
innate components

0.35 D-units/h μt0 Decay rate of inactivated memory T cells, T0. 0.05/h

xdi* Determines level of activated pro-inflammatory innate components that 
increases damage production to half its max

0.06 I-units ktpi Maximum activation rate of memory T cells by pro-inflammatory 
innate components

0.008/I-units/h

kdgig Maximum rate of graft tissue damage by activated pro-inflammatory  
innate components 

0.35DG-units/h ktpig Maximum activation rate of memory T cells by pro-inflammatory 
innate components in the presence of allo-Ag 

0.02/I-units/h

μd* Decay rate of host and of graft tissue damage representing repair/
regeneration of injured tissue

0.02/h ktpt0g Maximum activation rate of memory T cells by alloreactive  
activated memory T cells 

0.02/h

α Scaling parameter that governs the level of apparent mismatch between 
host and graft α = 0 indicates 0% mismatch; α = 1 indicates 100% 
mismatch

α∈[0,1] 
dimension-less

μtp Decay rate of activated pro-inflammatory memory T cells 0.03/h

kdgtp Maximum rate of damage by pro-inflammatory T cells to graft tissue 
scaled by the parameter α; set to be greater than kid and kdgig to indicate 
greater potency of alloreactive T cells

0.7 DG-units/h ktaia Maximum induction of anti-inflammatory T cells by pro- and anti-
inflammatory innate components

0.04/I-units/A-units/h

xdgtp Determines the level of pro-inflammatory T cells that increases graft tissue 
damage to half its max

1 DG-units ktat0g Maximum activation rate of anti-inflammatory T cells by already 
activated alloreactive anti-inflammatory T cells

0.001/h

kgdg Tuning parameter that governs the response curve of the graft function, 
G (See Table 3)

10 dimension-less μta Decay rate of activated anti-inflammatory T cells 0.03/h

xgdg Tuning parameter that governs the response curve of the graft function, 
G (See Table 3)

0.5 DG-units b∞ Controls the strength at which the anti-inflammatory T cells (TA)  
inhibit various processes

0.5 TA-units

a∞* Controls the strength at which the anti-inflammatory components (A) 
inhibit various processes

0.28 A-units

Parameters marked with an asterisk retain the baseline value as set in (69).
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present in the DTotal/I subsystem we developed here. This means 
that the system has the ability to display different outcomes, 
depending on the initial conditions of the variables that we test. 
These outcomes are then translated qualitatively into clinical 
scenarios as discussed in Section “Results.”

Additionally, we know from the prior results that the incor-
poration of the anti-inflammatory component when treated as 
a constant will yield a loss of this bi-stability when the level of 
the anti-inflammatory component exceeds a value of 0.6264 and 
only the healthy equilibrium remains stable. Therefore, when we 
incorporate the analogous dynamic anti-inflammatory compo-
nent, A, into the full model, we wish to make sure to calibrate any 
additions to A such that the maximum level of A does not exceed 
the 0.6264 threshold, since this would produce unreasonable 
(i.e., non-biological) behavior. For instance, if this threshold were 
exceeded, the DTotal/I subsystem would be incapable of reaching 
an unhealthy equilibrium while other components of the model, 
such as activated pro-inflammatory T cells or graft damage (when 
separated from total damage), would remain elevated. The condi-
tions for bi-stability noted above will not be changed when we 
combine subsystems at the end.

The I/TP subsystem

 

dI
dt

ir ii

ir ii
i=

+
−s k I

k Iµ
µ I  (9)

 

dT
dt

P
tpi tp P= ⋅ −k T I T0 µ ,  (10)

The I/TP system has one or two non-negative equilibria depend-
ing on the parameter values. If we fix the values for the parameters 
that appeared in the DTotal/I system, the following parameters 
govern the number and stability of the equilibria: kitp, st0, μt0, ktpi. 
The point (I,TP) = (0,0) is always an equilibrium and is stable for 
kitp = 0.01, st0 = 1, μt0 = 0.05, and ktpi = 0.01. Since we have an 
estimate for the half-life of activated T cells (unpublished work) 
which translates to a rate of 0.03/h, we estimate the half-life of 
inactivated memory T cells to be slightly longer than this at 
0.05/h. Also we fix the source term, st0, to a value of 1 and then 
determine the values of kitp and ktpi such that the (0,0) equilibrium 
is stable and that the rate at which trajectories approach this 
equilibrium is not unduly slow, which is related to the position of 
the nullclines. For simplicity, we let kitp=ktpi since there is a lack of 

TaBle 5 | reactions involved in the Ir/i subsystem.

I I
k D D k I k T

R

di G ii itp P

→
+ + +( ) Activation of resting/circulating innate components, 

IR, by damaged host tissue, D, damaged graft tissue, 
DG, activated innate cells or mediators, I, and pro-
inflammatory T cells, TP

*→
sir

RI
Source of resting/circulating innate components, IR

IR
ir

→
µ Natural decay of resting/circulating innate components, IR

I →
µi Natural decay of activated innate components, I

information regarding the relative strength at which one incites 
the other. Setting the value of kitp = 0.008 = ktpi allows for each 
variable to contribute to recruiting the other by a non-negligible 
amount in this subsystem and are, as a pair of values, not too close 
to a bifurcation value where the nullclines would cross a second 
time. In other words, if their values are set to 0.01, for example, 
then (0,0) will be unstable; however, we wish for this subsystem 
to have (0,0) stable under these parameters so that neither I nor 
TP will drive sustained TP or I levels, respectively. Therefore, when 
connected to the damage equations, when each is sustained at 
an elevated equilibrium, this will depend on feedback from the 
damage they incite, rather than just each other.

The Dg/TP (and G) subsystem

 

dD
dt

G
d G dgtp P= − + ⋅µ αD k G f T( ),  (11)

 
where 

di

f x x
x x

( ) ;=
+

6

6 6

 

 

dT
dt

P
tpt0g P tp P= ⋅ ⋅ ⋅ −α µk T T G T0 .  (12)

For the DG/TP subsystem that includes the auxiliary variable G, the 
same type of functional form used in modeling damage to host 
(D) via innate cells (I) is employed to model the graft damage, DG, 
created by pro-inflammatory T cells, TP. The parameter values are 
set according to Table 4. Bi-stability is not a feature of this system, 
but when there are no TP T cells, then (0,0) is always stable; and for 
low mismatch factor (i.e., α ≤ 0.074), (0,0) is stable. As α increases 
through this, (0,0) becomes unstable and a new equilibrium of 
interest is born and is stable (spiral). For values close to 0.075, the 
approach to the equilibrium is quite slow away from the stable 
manifolds of the equilibrium. When α = 0.08, the positive equi-
librium is a stable spiral which establishes the presence of damped 
oscillations in this subsystem. Naturally, as T cells destroy graft 
tissue, there is less tissue to destroy, but as the tissue regenerates, 
the T cells can then destroy this regenerated tissue. Also, as T cell 
numbers increase the source for new ones is depleted until the 
turnover/death of existing activated T cell subsets allow for the 
activation of more (literally the way the source/recruitment term 
is modeled) – this could be interpreted as a wait time for replenish-
ment of the T cell source from the bone marrow. Understanding 
the tissue repair process and time scale relative to T cell behavior 
could help calibrate this aspect better. For instance, tissue repair/
regeneration may be hindered significantly in disease states and 
therefore may depend on the existing level of damaged tissue.

The Dg/TP/i (and g) subsystem
The DG/TP/I subsystem which includes the auxiliary variable G is 
given by Eqs 13 and 14 and displays bi-stability for the parameters 
listed in Table 4 (with α = 0). Note that the DTotal\I subsystem is 
partially contained in this 3-variable subsystem. Initial graft dam-
age values in which DG(0) > 0.095 lead to graft/host failure. Recall 
that this behavior is in the absence of any anti-inflammatory 
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inhibition; so very little graft damage can lead to failure in this 
subsystem even without a positive mismatch factor. For very low 
initial graft damage [e.g., DG(0)  =  0.08 or ~2% graft damage] 
and for low graft mismatch (e.g., α = 0.01), survival is possible. 
Though the ranges of pairs of values of initial graft damage and 
α that produce survival outcomes is limited, the presence of bi-
stability exists and the presence of inhibitory components added 
later allow this range to increase. For some DG(0) and α value pairs 
[e.g., DG(0) = 0.08 and α = 0.02], graft functionality remains very 
high (~99%) for ~230 h (~1 week) after which it decreases rapidly 
to its ending steady-state functionality value of 13% by ~300 h.

If considering the presence of activated memory T cells at time 
zero [i.e., TP(0) > 0], the time to graph failure greatly decreases. 
For example with DG(0) =  0.08 and α =  0.02, when TP(0) =  1 
functionality decreases to 13% by 50 vs. 300 h without an initial 
population of activated memory T cells. A similar result occurs 
when there is an initial population of activated innate inflamma-
tory components, I. For example, with DG(0) = 0.08, α = 0.02, and 
TP(0) = 0, when I(0) = 0.01, graft functionality decreases to 13% 
by 165 vs. 300 h without an initial population of activated innate 
inflammatory components.
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anti-inflammatory effects
The parameter values for the anti-inflammatory components, 
A, were set as in Reynolds et al. where applicable and the addi-
tional parameters in this category were estimated to calibrate 
the baseline responses. For instance, the contribution of TA to 
A was calibrated such that maximum TA levels would not allow 
A to exceed its threshold value of 0.6264 as discussed previously. 
Additionally, in the case of severe initial tissue damage, it is pos-
sible that this positive feedback between DAMP release caused 
by tissue injury and inflammation causing further tissue injury 
may not resolve, and thus lead the way to multi organ failure 
and death. In the current state-of-the-art, the transplantation 
procedure and donor graft condition are such that the surgical 
procedure and associated I/R are typically not the cause of organ 
failure. However, theoretically, this scenario is possible and helps 
to calibrate the extreme cases of the model such that complete 
resolution is not the only outcome possible regardless of initial 
conditions and parameter values. Thus, the inhibitory effects of 
A and TA combined do not overly and unrealistically dampen 
the inflammatory arm of the responses. We retain the positive 
background level of the anti-inflammatory component at the 
non-perturbed healthy equilibrium, A, as set in Reynolds et al.: 
A(0) = A0 = 0.125 (69).
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The T cell population in an individual needs to avoid harmful activation by self peptides
while maintaining the ability to respond to an unknown set of foreign peptides. This
property is acquired by a combination of thymic and extra-thymic mechanisms. We
extend current models for the development of self/non-self discrimination to consider
the acquisition of self-tolerance as an emergent system level property of the overall
T cell receptor repertoire. We propose that tolerance is established at the level of
the antigen presenting cell/T cell cluster, which facilitates and integrates cooperative
interactions between T cells of different specificities. The threshold for self-reactivity is
therefore imposed at a population level, and not at the level of the individual T cell/antigen
encounter. Mathematically, the model can be formulated as a linear programing opti-
mization problem that can be implemented as a multiplicative update algorithm, which
shows a rapid convergence to a stable state. The model constrains self-reactivity within a
predefined threshold, but maintains repertoire diversity and cross reactivity which are key
characteristics of human T cell immunity. We show further that the size of individual clones
in the model repertoire becomes heterogeneous, and that new clones can establish
themselves even when the repertoire has stabilized. Our study combines the salient
features of the “danger” model of self/non-self discrimination with the concepts of quorum
sensing, and extends repertoire generation models to encompass the establishment
of tolerance. Furthermore, the dynamic and continuous repertoire reshaping, which
underlies tolerance in this model, suggests opportunities for therapeutic intervention to
achieve long-term tolerance following transplantation.

Keywords: immune tolerance, T cell population, dendritic cells, TCR repertoire, linear programming

1. Introduction

Vertebrate immune system recognition uses antigen receptors produced by stochastic and hence
unpredictable molecular recombination events. In this study, we propose a new explanation for
how the T cell compartment of the immune system may use a stochastic set of receptors whose
specificities are not predetermined to develop a useful repertoire. The requirements we impose are
that the repertoire of antigen receptors should cover the set of non-self antigens as comprehensively
as possible, in order to provide robust protection against any potential exposure to infectious
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pathogens. At the same time, the system must remain tolerant to
the set of self-antigens and generally avoid autoimmunity. The
fundamental aspect of our hypothesis is that self/non-self discrim-
ination is an emergent property of the combined population of T
cells, and cannot be linked by a one-to-one mapping to the indi-
vidual binding strength spectrum of individual T cells and their
receptors. The model we propose has important implications in
the context of transplantation, since it suggests that the repertoire
can be re-learnt throughout life, thus allowing an opportunity for
long-term acquisition of graft-tolerance.

The clonal theory of immune responses, and its corollary, clonal
deletion as a mechanism leading to self-tolerance, were developed
primarily in the context of antibody andB cells (1). The theorywas
subsequently extended to T cells, and self-tolerance was proposed
to result from clonal deletion in the thymus (2). Indeed thymic-
tolerance induction remains a major feature of current models
of T cell function. Nevertheless, a number of features of T cell
recognition distinguish it from antibody recognition, and have
suggested that repertoire selection may obey a modified form of
rules.

A first important difference lies in the average affinity of
T cell receptor (TCR) for its antigen. At least for the subset of
alpha/beta receptor carrying T cells (which is the main focus
of this study), which recognize major histocompatibility com-
plex/peptide complexes (pMHC), this affinity is in the order
of 10–5–10–6M, which is some three orders of magnitude less
than that for antibody/antigen recognition (3). In addition, only
a small proportion of the TCR-binding surface recognizes the
antigenic target peptide itself, while the rest binds to the host
MHC. A consequence of these characteristics is that the indi-
vidual TCRs exhibit a great deal of promiscuity: many TCRs
bind to the same peptide, while many peptides can be bound
by the same TCR (4, 5). The combination of low individual
affinities, and a large degree of cross-reactivity have led to the
development of an elegant cooperative model of T cell recog-
nition, the “quorum-sensing model” (6), which proposes that
functional T cell responses are the product of cooperative inter-
actions between T cells with different receptors. The decision of
whether to respond or not is made at the population level, rather
being determined solely at the level of an individual T cell/antigen
presenting cell encounter.

Another fundamental distinction between T and B cells is that
naive T cells require activation by antigen presented on the surface
of an antigen presenting cell (APC), usually a dendritic cell. The
APC provides the T cells with a high density array of MHC
molecules carrying a diverse set of self and non-self peptides, but
also a set of additional membrane bound and secreted signals
which are necessary for productive T cell activation (7). Dendritic
cells can interact simultaneously and consecutively with many
different T cells (10–20 cells at any one time, and in the order of
200–400/h) forming an APC/T cell cluster (8–10). Such a cluster
is an obvious candidate for the site of “quorum-sensing”, with
the cluster, rather than the individual cell, acting as the unit of
response. Cooperative behavior between cells within a cluster has
been documented by us and others (11, 12). However, the anti-
gen presenting activity of dendritic cells is not a static property.
Dendritic cells switch from a “resting” state to an “active” state,

and this transition is determined to a great extent by signals from
innate immunity (13). Since resting dendritic cells do not provide
the signals necessary for naive T cell activation, they become the
“gate keepers” of adaptive immunity, and dendritic cell activa-
tion becomes a key decision point in determining whether an
antigenic stimulus leads to immune activation. Resting dendritic
cells may not only fail to induce productive T cell activation, but
may actively induce tolerance (14). Indeed, subsets of immature
dendritic cells have been shown to kill T cells in particular circum-
stances (15). The concept of tolerogenic dendritic cells underlies
the influential “danger” model (16, 17), which postulates that
self-tolerance results from the fact that self antigens are generally
presented to T cells in the absence of innate immune responses.
Thus self/non-self discrimination, at least outside the thymus, is
determined as much by the dendritic cell and its interaction with
innate immunity as by the T cell compartment itself.

Models for self-tolerance are still dominated by the concept of
positive and negative selection operating on each individual T cell
independently. The question of the mechanism for setting precise
thresholds for positive or negative selection, so as to maximize
response to non-self but minimize response to self, continue to
be much debated (18, 19) and models have been developed that
demonstrate the impact of these thresholds on the T cell response
to self peptides (20, 21). The mechanisms for establishing self-
tolerance outside the thymus are also debated, although “natural”
T regulatory cells seem to play an important role (22, 23).

The very extensive literature on the induction of self-tolerance
has generally been distinct from the smaller corpus of papers
which deal specifically with repertoire generation. A number of
models for repertoire generation have been proposed. The key
experimental observations which all models must encompass are
the persistently high diversity of the naive T cell pool (24), the
ability for new clones to emerge and establish themselves in
the repertoire (25), and the variable clone size which was an
unexpected feature of the naive repertoire (26). The majority of
previous models, which often have an “ecological” flavor, focus on
clonal competition for a limited pool of presented self-antigens to
drive clonal diversity and clonal size heterogeneity. Competition
between T cells for access to pMHC results in stabilization of
clone sizes when all available binding sites are occupied (27)
and increased diversity as those T cells that are more different
from others and therefore occupy a niche are favored (28, 29).
In order to explain the emergence of new clones, and to prevent
the development of a repertoire dominated by the clones with
optimum affinities, a natural death rate of all clones is often
assumed.

In the new model outlined below, we combine repertoire gen-
eration and self/non-self discrimination into a single process. We
integrate cooperative behavior (quorum sensing) into the process
of naive T cell repertoire generation, and explicitlymodel a system
in which T cell receptors bind many different antigens with a
range of different affinities. The model can be formalized as a
linear programing (LP) optimization problem. It shows a rapid
convergence to a stable state, in which self-reactivity ismaintained
below a fixed threshold. The model focuses on the shaping of the
T cell repertoire in the absence of immune challenge, and in this
work we do not consider the changes to the repertoire following

Frontiers in Immunology | www.frontiersin.org August 2015 | Volume 6 | Article 360114

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Best et al. Cooperative maintenance of immune tolerance

activation in detail. Instead, we investigate the potential of the
system to mount an immune response and introduce measures of
the T cell population’s coverage of potential non-self antigens. We
show that despite the restrictions imposed by the linear constraints
that ensure self-tolerance, the repertoire remains diverse, coverage
is preserved and the size of individual clones is heterogeneous.
The diversity of the constrained repertoire becomes an important
factor when challenge with foreign antigens does occur, and we
find that this model is able to reshape the population to retain
both TCR diversity and the potential to respond to non-self more
strongly than self.

2. Materials and Methods

2.1. A Simple Computational Model
We introduce a simple computational model, and then we con-
sider possible variations of the model and possible underlying
mechanisms.

We suppose that the T cell system “learns” in the following way
to recognize self, and to react to self up to but not beyond response
thresholds, which are determined by the APCs (in this study we
prefer the more generic term APC, although the most important
cell type in maintenance of the naive T cell repertoire is probably
the dendritic cell). Each inactive APC carries a set of self-antigens
bound to MHC and is continually “scanned” by T cells. Some of
the TCRs of these T cells recognize one of the presented pMHC
complexes on the surface of the APC; T cells scan the surface of
the APC, stop for a period related to the strength of interaction
with pMHC and then release themselves, allowing other cells
an opportunity to assay their affinity to the presented antigens
(8). In this model, we ignore any potential effects of ecological
competition between T cells for pMHC binding sites in order to
study the effects of the quorum sensing behavior.

We suppose that the APC can detect the strength of the antigen
specific binding between each T cell and the APC, and we further
hypothesize that the APC maintains a record of the total APC/T
cell binding, using some (possibly leaky) integration mechanism
over a sliding time window. The APC does not need to “know”
which antigen has caused the T cell to bind, and still less which
TCR clonotype the T cell expresses. The strength of signal in this
model could arise from a combination of a strong affinity between
pMHC and a specific TCR, or the presence of high concentrations
of a particular pMHC. The model does not distinguish between
these parameters but allocates an overall signal strength to each T
cell/APC encounter.

We suppose that the APCs regulate the numbers of T cells in
the following simple way. If the combined binding signal strength
registered within a fixed time period by an APC exceeds some
threshold value, then the APC sends a “kill signal” (either actively
or passively) to each T cell that is bound currently or binds
subsequently (15). These T cells, or some fraction of them, then
die. Since the APC is recording the integrated signal over a sliding
time window, this value will subsequently fall to below the signal
threshold and the APC will then switch off the kill signal. The
molecular mechanisms which could mediate such models are
discussed below, but at this stage, we focus on the mathematical
properties of such a model.

We implement a simplified version of the model described
above. The biological validity of these assumptions and the
extension of the model to more realistic but more complex
scenarios are discussed later. We suppose that there are N dif-
ferent T cell clonotypes, with abundances at time t= 0 of x0 =
(x0

1, x0
2, . . . , x0

N). In reality, the abundances would be integer
counts, but in this model, we treat them as positive real numbers.

We denote the binding strength between a T cell clonotype i
and self-peptide MHC complex (“spMHC”) k as qik. We consider
a model in which each (non-activated) APC presents a particular
combination (or “profile”) of spMHCs. The spMHC profile j con-
tains an amount akj of spMHC k, and we suppose there areM such
profiles that T cells may encounter. The overall binding strength
of T cell i for APC profile j is then bij =

∑
k qikakj. Note that when

we refer to binding strength, we are describing a quantity that
represents the amount of signal that the APC integrates due to the
T cell-APC encounter.

Each T cell may have non-zero binding strength to many
spMHC complexes, and each spMHC complex may bind to many
T cells: the matrix of spMHC to T cell binding strengths Q= (qik)
is assumed to be sparse, non-negative, and with multiple positive
entries in each row and column. The matrix of binding strengths
of T cells to antigen profiles, B= (bij), therefore, is non-negative,
and less sparse than Q, because each antigenic profile contains
multiple spMHC complexes. B is non-negative because an APC
cannot present a negative amount of antigen; that is, the akj
are non-negative. Note that we do not consider the T cell to
pMHC binding strengths qik – instead we generate the T cell to
APC profile binding strengths bij by sampling from an assumed
distribution, described later.

On these assumptions, the total strength with which all T cells
bind to an APC with spMHC profile j is:

rj(x) =
∑
i

xibij (1)

where x is the vector of clonotype abundances at time t. Writing
bj = (b1j, . . ., bNj), we obtain:

rj(x) = bj · x (2)

We set a threshold binding rate τ above which each APC will
issue a kill signal to any T cell that is bound; that is, the APC
presenting spMHC profile j issues kill signals to any T cells bound
to it if rj(x)> τ . In principle, τ is a threshold that can be locally
defined by the antigen presenting system: it can depend on the
APC microenvironment or intrinsic antigen presenting parame-
ters such as the MHC haplotypes. In this initial implementation,
we have assumed τ is constant over all APCs. The rate at which
T cell i is eliminated by “kill” signals from APCs of type j is
proportional to the strength of the binding interaction of each T
cell with that spMHC profile j, such that:

Kill signals for clonotype i from APC type j
= η ϕ(bj · x− τj)bijxi (3)

where η is a rate parameter, ϕ(bj · x− τ j) is the fraction of all
T cells binding to APC j that receive a kill signal, and xi is the
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abundance of T cells of type i. Our hypothesis is that kill signals
are only issued when the rate of binding to APCs is greater than τ ;
this hypothesis is expressed in terms of the function ϕ(z), which
is some non-decreasing function such that 0≤ϕ(z)≤ 1 for all real
z. ϕ(z) should be small or zero for z< 0, and we suppose that ϕ(z)
rises toward 1 rapidly for z≥ 0. The simplest choice for ϕ would
be the Heaviside function H(z)= 1 if z≥ 0 and H(z)= 0 if z< 0;
a more biologically realistic function would be continuous and
differentiable, such as the logistic function ϕ(z) = 1

1+exp(−αz) ,
for some suitable scale parameter α. The implementation cap-
tured in equation (3) further assumes each APC, and hence each
spMHC profile j, occurs once, but the model is easily extended to
incorporate variable APC numbers for each antigen profile.

So far, the model only has a mechanism for killing T cells:
there must also be a method for T cells to multiply. Although it
is clear that naive cells must see self-antigens in order to survive,
the quantitative relationship between antigen-binding strength
and proliferation in the context of T cell homeostatic prolifera-
tion remains unclear. Here, we adopt the simplest assumption,
namely that all T cells spontaneously divide at some rate ν,
although a model relating ν to binding strength could also be
implemented.

Using these assumptions, we obtain that for each clonotype i:

ẋi = νxi − η
∑
j

ϕ(bj · x− τj)bijxi (4)

so that
ẋi
xi

= ν − η
∑
j

ϕ(bj · x− τj)bij (5)

We can demonstrate rather simply that the optimization will
indeed always converge. For a suitable choice of ϕ the right hand
side can be written as the gradient of a convex function of x.
Observe that:

Φ(u) =
∫ u

−∞
ϕ(z)dz (6)

exists for plausible choices of ϕ, and is convex and differen-
tiable provided that ϕ(z) is non-decreasing and continuous. Then
define:

fj(x) = Φ(bj · x− τj) (7)

Each fj is convex in x, and note that:

∂fj(x)
∂xi

= ϕ(bj · x− τj)bij (8)

Now define:

F(x) = −ν
∑
i

xi + η
∑
j

fj(x) (9)

which is a sum of convex differentiable functions. The scalar
function F(x) is constructed so that

∂F(x)
∂xi

= −ν + η
∑
j

ϕ(bj · x− τj)bij = − ẋi
xi

so that the rate of change of x is expressed as:

ẋi = xi
∂F(x)
∂xi

We can now write the rate of change of F(x) as:
dF(x)
dt = ẋ · ∇F(x) (10)

= −
∑
i
xi
(

∂F(x)
∂xi

)2
(11)

≤ 0 since all xi are positive (12)
F is convex and differentiable, because it is the sum of convex,

differentiable functions, and F therefore has a uniqueminimum in
the region of interest, which is the non-negative quadrant. At this
minimum, all constraints bj x≤ τ j will be approximately satisfied,
provided that the growth rate ν is small compared to the “kill
rates” from the APCs.

From equation (11), we know that the value of F, which includes
a sum of measures of constraint violation, must decrease over
time. However, it says little about the rate of convergence toward
the minimum of F. In the Supplementary Material, we present a
stronger analysis of the convergence of the process of equation
(4), by identifying it with a version of the multiplicative weight
updating algorithms surveyed by (30). This analysis establishes
regret bounds for such updates on a possibly time-varying set of
constraints.We note that equation (4) could be solved by standard
differential equationmethods, provided the rate of killing (and the
rate of proliferation) remains constant. Under these conditions,
the iterations become equivalent to a fixed time step, which can be
allowed to decrease to the continuous case. However, we prefer to
use the iterative algorithm we describe below because the discrete
time steps are readily interpretable in terms of cellular events (e.g.,
T cell/APC interactions) and because the regret bounds it estab-
lishes are robust to variations in rate. The model therefore leaves
open the possibility of introducing time-dependent and tissue-
dependent variations in rates in future extensions of the basic
model.

The implementation outlined above gives rise to a series of
constraints on T cell abundances, which are captured by a series of
linear inequalities as outlined above. An iterative method to solve
this linear programing problem is set out below, and can be given
a feasible biological interpretation. The proliferation rate ν is set
so that in the absence of any “kill signals”, the T cell population
would double in one unit of time, and the rate η of T cell killing is
set relative to this.

1. Calculate the immune response to each profile, r(j)←
∑

i xibij
for all j.

2. Determine for which self-profiles the response threshold has
been violated, v(j)← [r(j) > τ ] for all i.

3. Adjust the T cell clonotype abundances,
x(i)← x(i)

(
1 + ν δt− η δt

∑
j bijvj

)
.

Themultiplicative update analysis discussed in the Supplemen-
tary Material provides strong guarantees for time-varying con-
straints, corresponding to the case where APCs present varying
combinations of antigens over time.
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2.2. Assessing the Potential for an Immune
Response
In order to investigate the potential of the reshaped T cell popula-
tion to mount an immune response to previously unencountered
antigens, we create a set of new independently generated antigenic
profiles, which were not part of the set on which the T cell pop-
ulation has been trained. We refer to these as “non-self profiles”.
The binding strength of each existing TCR for each new profile is
selected independently of its given affinities for all the self profiles,
although the value is selected from the same probability distri-
bution. We use these non-self profiles to test whether under our
assumptions the T cell repertoire will achieve the dual objectives
of maintaining self-tolerance, while at the same time maintaining
as broad and strong a repertoire for non-self as possible.

Note that we do not model an immune response to these new
profiles in this work. If the APC remains in a tolerogenic state,
the introduction of new non-self profiles will typically violate the
constraints, but this will result in additional T cell killing and
the system will gradually readjust to remain within the immune
activation threshold. We envisage that if the APC were switched
to an immunogenic state (for example by exposure to innate
immune danger signals) then crossing the threshold would result
in activation of all APC bound T cells, resulting in an effector
immune response.

We measure the ability of the T cell population to respond to a
non-self profile as the total potential T cell response, calculated as
rj(x)=

∑
i xicij for non-self profile j, where C= (cij) is the matrix

of binding strengths between T cell clonotypes and non-self
profiles. It is important to note that we are not simulating the
behavior of the T cell population on immune challenge here,
but assessing the potential of the reshaped repertoire to respond
to previously unencountered profiles. In order to measure the
“success” of the reshaped repertoire, we can consider its coverage
of the potential non-self antigen space. The first coveragemeasure
we use in this study is the ratio of the mean total response against
non-self profiles to the mean total response against self profiles:
coverage = rns

rs for self profiles s and non-self profiles ns.
Alternatively, we also measure the coverage as the proportion of
non-self profiles that give a potential T cell response greater than
the average response to self profiles, i.e., |{ns : rns > rs}| expressed
as a fraction of the total number of non-self profiles modeled.

3. Results

3.1. Clone Size Adjustment Algorithm Reaches a
Solution of the Repertoire Constraints: Violations
are Resolved Rapidly and Repertoire is
Optimized Slowly
We first simulate a very simplified repertoire to allow us to visu-
alize the action of the update algorithm. We start with two T
cell clonotypes and three spMHC profiles. The clonotypes have
binding strengths for each of the profiles as detailed in Figure 1G.
In this simulation, each profile is given the same total response
threshold (=1), above which there will be harmful autoimmunity.

FIGURE 1 | Optimization of the T cell population to avoid autoimmunity
while maximizing T cell numbers in a simplified system with two
clonotypes and three spMHC profiles. The update algorithm is initiated with
different initial clonotype abundances each represented by a different color. The
colored lines track the changes in clonotype abundance over iterations of the
update algorithm (A–E). The clone abundances after (A) 5, (B) 10, (C) 100,
(D) 1,000, or (E) 10,000 iterations of the update algorithm. The gray lines
indicate the constraint that total T cell response should be less than the

threshold for each of the spMHC profiles (F). For each of the starting repertoire
configurations, the relationship between the Euclidean distance moved by the
repertoire configuration in an iteration of the update algorithm and the distance
from the furthest violated threshold, or if there are no violations the distance to
the nearest threshold (G). The affinities between clonotypes and spMHC
profiles. Other model parameters for all panels are: τ = 1, the self-response
threshold for each spMHC profile, ν = ln 2 δt–1, the growth rate and
η = 0.01001 δt–1, the learning rate.
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The other parameters of the update algorithm are set out in the
legend of Figure 1.

The self-response thresholds for each profile and the binding
strengths between clonotypes and spMHC profiles (Figure 1G)
give constraints on allowable repertoires. If xi is the abundance of
clonotype i, to avoid autoimmunity we require that:

1.2x1 + 1.0x2 ≤ 1
1.5x1 + 0.5x2 ≤ 1
0.6x1 + 1.4x2 ≤ 1

We repeatedly simulate the update algorithm with different
starting repertoire configurations. Each starting configuration is
represented as a color in Figure 1. The panels in this figure show
a time course of the update algorithm working on each initial
repertoire configuration.

We see that if the initial repertoire configuration violates one
or more of the response constraints, the update algorithm very
quickly shapes the repertoire (by adjusting clonotype abundances)
to a point where there is no autoimmunity (Figure 1B, 10 itera-
tions). By contrast, when no threshold is violated by the starting
configuration of the repertoire (yellow path in Figure 1), the
repertoire does not move very far from the initial configuration
in the first cycles.

Once the repertoire has been moved to a configuration where
all constraints are satisfied, the update algorithm continues to
allow each clonotype to grow as abundant as possible while
remaining inside the “feasible region” (Figures 1C–E). For this
arrangement of affinities, the “optimum” repertoire in terms of
having the highest total abundance while avoiding autoimmunity
is at a single vertex of the feasible region, and we can see that
the update algorithm moves each of the initial repertoires slowly
toward this point.

The speed which the clonotype abundances are adjusted is
dependent on the severity of the violation of the thresholds, as the
update rule is designed to do through the negative learning rate,
η. This can be quantified by considering the Euclidean distance
moved by the repertoire configuration in a timestep as a function
of the Euclidean distance by which the current configuration
violates a threshold (Figure 1F). There is a strong positive rela-
tionship between the severity of the violation and the speed with
which the update algorithm adjusts the clonotype abundances.

3.2. Positive Selection of Clonotypes Based on
Self-Profile Binding Strength is Required for
Successful Immune-Tolerance
We next simulated the update algorithm with a larger number
of T cell clonotypes and spMHC profiles (Figure 2). For each
clonotype-profile pair, the binding strength (bij for clonotype i
and profile j) is set to zero with probability 1− γ. If the binding
strength is not set to zero it is selected at random from a left-
censored normal distribution. For simplicity, we set the response
threshold to be equal to 1 for all self profiles.

We run the update algorithm and record the abundance of each
clonotype at each iteration. Note that under our constant growth
rate assumption, iterations can be thought of as directly equivalent
to T cell generations. We set the growth rate ν such that one

unit time is equal to one T cell generation, giving one T cell
generation in approximately 1387 iterations. The total T cell
response to a spMHC profile can be calculated as the sum of
abundance× binding strength for each T cell clonotype (rj =

∑
i

xibij for spMHC profile j). We can then define successful immune
tolerance as the reshaping of the T cell population into one
where the total T cell response to any spMHC profile (rj for
self-profile j) is below the threhsold τ . The mean total response to
spMHC profiles over time (Figure 2A, solid line) is initially well
controlled at the allowed threshold. However, after approximately
10 generation times algorithm, the control of the response breaks
down and there is an increased average response to self, above the
allowable threshold.

We noted that those clonotypes that are highly abundant after
running our simulation for 30,000 cycles of the update algorithm
have low maximum binding strength to spMHC profiles. We can
see the reason for breakdown of control of self response if we con-
sider a clonotype of abundance 1 that has zero binding strength
for all self profiles except one, for which it has binding strength
b. Then after one iteration of the update algorithm, the clonotype
will have abundance (1+ ν) or (1+ ν δt− η δt b) depending on
whether the total T cell response to the profile for which it has
non-zero binding strength is below the allowable self-response
threshold τ or not. In order to avoid uncontrolled growth of the
clonotype, we would require that (1+ ν δt− η δt b)< 1, which is
equivalent to requiring that b> ν/η. Therefore, we suggest that the
inability of the update algorithm to control average self response is
due to the presence of clonotypes for which themaximumbinding
strength to any of the self profiles is below ν/η. This indicates the
requirement for some form of positive selection.

In its simplest form, positive selection would take the form
of a function which deletes all clones whose maximum binding
strength for any self profile is below ν/η. A more realistic function
couldmake the growth rate in any one cycle depend on the average
binding strength to self profiles or to the maximum binding
strength to a randomly selected sample of “encountered” self
profiles. In the following work, we implement the simplest form
of the affinity-dependent selection, by eliminating all clonotypes
with maximum binding strength to self profiles below ν/η before
the update algorithm begins.

We implement this positive selection of clonotypes and re-run
the simulation with the same parameters (detailed in Figure 2
legend). The total T cell response to self profiles is now tightly
controlled at the allowable threshold (Figure 2A, dashed line). It
is, however, possible under this model that if a clonotype escapes
positive selection it slowly increases in size indefinitely.

3.3. Total Population Size Homeostasis but
Increased Clonotype Abundance Heterogeneity
as a Function of Time
Naive TCR repertoires are made up of clonotypes with a broad
range of abundances. We therefore examined the abundance dis-
tribution produced by themodel presented in this paper. Since our
implementation of themodel uses continuous rather than discrete
abundances, abundances never reach zero but become arbitrarily
small. In order to consider the abundance distribution, we there-
fore set a lower threshold below which a clone is considered to be
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FIGURE 2 | Evolution of the repertoire under the constraints of dendritic
cell dependent T cell deletion. (A) mean total T cell response to spMHC
profiles over time as clone sizes are updated according to the basic
immune-tolerance learning algorithm with or without positive selection
implemented. The total T cell response to a profile is calculated as the sum of
abundance×binding strength for each clonotype. (B) the total T cell
abundance (being the sum of the abundances of clonotypes present at a
particular time) in the simulation after T cell positive selection is implemented

(C) the abundance of each T cell clonotype over time after T cell positive
selection is implemented expressed as a fraction of the maximum size the clone
could reach in the absence of other clones without violating any self-response
thresholds. (D) the clone size distribution after the indicated amount of time after
T cell positive selection is implemented. Model parameters for all panels are:
self-response threshold τ = 1, growth rate ν = ln 2 δt−1, learning rate
η = 0.002001 δt−1, number of spMHC profiles M= 100, number of T cell
clonotypes N= 1,000, proportion of non-zero affinities γ = 0.01.

deleted. In this work, we consider a clonotype to be completely
absent when its abundance falls below a threshold defined by
N/108 where N is the number of clonotypes in the simulation.
This threshold was chosen based on consideration of a mouse
immune system, which has in the order of 108 T cells in total.
If N different clonotypes of equal abundance are present in this
repertoire, each clonotype could be considered to have a starting
abundance of 108/N. Hence, if a clone contracts by a factor of
>108/N, its abundancewould fall below 1 and hence the clonotype
can be considered as eliminated. Since the abundance of each
clonotype at the start of the model is arbitrarily initiated at a value
of one, this is equivalent to defining a clone with an abundance of
lower than N/108 as deleted.

We first considered the total size of the T cell compartment as a
function of time. At every timepoint during the simulation, we can
calculate the total size of the repertoire as the sum of the clonotype
abundances that are above the “presence” threshold of N/108

(Figure 2B). We see that this initially contracts as self-response
constraint violations are resolved, but then expands (driven by the
positive learning rate increasing the abundance of each clonotype
when constraints are not violated) until a stable level is reached
where growth and negative selection are balanced. If all other
parameters of the model are fixed, the eventual total size of the
T cell compartment at homeostasis is strongly correlated to the
number of clonotypes present in the repertoire at the beginning
of the simulation.
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We then consider the abundances of individual clonotypes. The
maximum allowable size for a clonotype in the model can be
defined as the self-response threshold divided by the maximum
binding strength that the clonotype has for any self profile, i.e.,

mi =
τ

max
j

bij

is the maximum allowable size for clonotype i. For each of
the clonotypes in the simulation, we consider its abundance
(expressed as a proportion of the maximum allowable abundance
mi for that clonotype) across time (Figure 2C). Some clonotypes
are present close to their maximum allowable size mi, presum-
ably due to lack of cross-reactivity with other profiles or other
clonotypes, while some clonotypes are quickly removed from the
repertoire. It is interesting to note that while the total T cell
abundance stabilizes rapidly (Figure 2B), the individual clonotype
sizes remain dynamic even in later stages of the simulation. The
clone size distribution (Figure 2D) spreads to include smaller
clonotypes during the initial part of the simulation, then starts to
include larger clonotypes as well in later iterations. At the end of
our simulation, there is a large spread of clone sizes in which large
and small clones co-exist, as observed experimentally, rather than
a repertoire completely dominated by a few large clonotypes.

3.4. Increased Number of T Cell Clonotypes
Provides Greater Repertoire Coverage
A successful T cell population needs to be able to control immune
response to self but at the same time must provide broad coverage
against a range of unknown non-self antigens that the individual
might encounter. The mean total potential T cell response to self
and non-self profiles (±standard deviation) across iterations is
shown for one set of simulation parameters in Figure 3A. This
shows that the response to self is well controlled at the allowed
threshold τ . By contrast, the average response to non-self pMHC
profiles becomes higher as the model shapes the repertoire. How-
ever, the non-self responses become very heterogeneous. After
30,000 iterations, the response to all self profiles is at or near the
allowed threshold while the majority of non-self profiles result
in more T cell binding, and therefore a larger potential T cell
response (Figure 3B). However, there are also a number of non-
self profiles that create a lower response than that of self profiles.
These presumably represent “holes” in the repertoire coverage.

We assess the ability of the reshaped repertoire to cover the
potential non-self antigen pool via the two coverage measures
described earlier. We ran the update algorithm a number of times
with the number of T cell clonotypes (N) ranging between 400
and 25,600 and number of spMHC profiles (M) ranging between
100 and 1,600 (only running combinations where M<N). Other
parameters of the simulation are detailed in Figure 3 legend.
We considered the evolution of the ratio of mean self potential
response to mean non-self potential response across cycles of the
algorithm (Figure 3C) and see that this increases until it is above 1
(indicating higher potential response to non-self than self profiles)
for all parameter sets. The repertoire coverage, using thismeasure,
depends on the total number of T cell clonotypes in the repertoire
at the start of the algorithm (Figure 3D).

The proportion of non-self profiles that the T cell population
has the potential to respond to more strongly than it does to self

profiles is initially low but is increased as the update algorithm
shapes the repertoire (Figure 3E). The success of the repertoire
under this measure is again strongly correlated to the number of
clonotypes (Figure 3F).

3.5. Clonotype Diversity and spMHC Profile
Cross-Reactivity are Preserved by the Update
Algorithm
We have demonstrated that the model described in this study
produces a TCR repertoire that respects self-response thresholds,
but violates the thresholds when exposed to non-self antigen
profiles. It has been observed that the TCR repertoire in an indi-
vidual remains diverse (many different clonotypes are present,
with cross-reactivity between clonotypes and profiles) until old-
age, when a few dominant clonotypes appear (31). We explored
whether our selection model can retain diversity in the repertoire
or whether the multiple linear constraints favor a sparse solution
with few surviving clonotypes.

We first consider the proportion of starting clonotypes surviv-
ing (i.e., with an abundance greater than the lower limit defined
above) as a function of time. The proportion of clonotypes present
in the repertoire falls rapidly in the initial stages of repertoire
reshaping and then stabilizes (Figure 4A, blue). The proportion of
the initial clonotypes that remain after 30,000 cycles of the update
algorithm is inversely correlated to the number of clonotypes in
the simulation (Figure 4B, blue).

A key parameter of the adaptive immune system is the amount
of information it can encode. The information content encoded in
the repertoire (which depends on a combination of the number of
different T cell clones, and also their relative size) can be captured
by the Shannon Information (SI) Entropy, which is the log of
the true diversity of order 1 (32). The SI coefficient of the reper-
toire initially decreases rapidly before stabilizing (Figure 4A, red).
However, there is only a weak (and not statistically significant)
correlation between the Shannon Information Entropy coefficient
and the number of clonotypes in the simulation (Figure 4B, red).

Cross-reactivity, such that multiple TCRs can recognize the
same pMHC profile and multiple pMHC profiles can be recog-
nized by the same TCR, is a well-recognized feature of the T cell
repertoire (4, 5). To investigate the evolution of cross-reactivity in
our model, we measure the number (or proportion) of clonotypes
which have non-zero binding strength for a single pMHC profile
(i.e., |{i: bij > 0}| for each profile j). The mean proportional cross-
reactivity against self profiles decreases initially then begins to
stabilize, while the mean cross-reactivity against non-self profiles
is maintained (Figure 4C).

After running the simulation for 30,000 iterations of the update
algorithm, the distributions of cross-reactivity against self and
non-self profiles are clearly different (Figure 4D). The majority of
non-self profiles are recognized bymore TCR clonotypes than self
profiles are, and the ratio of self:non-self cross-reactivity is not sig-
nificantly correlated to the size of the simulation (Figures 4E,F).

3.6. New Clonotypes can Establish Themselves
in a Stable Repertoire
The TCR repertoire is constantly being updated by the introduc-
tion of new T cells from the thymus, and new clonotypes can
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FIGURE 3 | Broad coverage to non-self is maintained during the
development of a self-tolerance repertoire. (A) The mean (±standard
deviation) total T cell response to self (blue) or non-self (green) pMHC profiles
over time with N= 2,000 and M= 200. (B) After 30,000 iterations of the
update algorithm with parameters as in (A), the distribution of total T cell
response to self (blue) and non-self (green) pMHC profiles. (C) The ability of
the repertoire to successfully mount an immune response to non-self pMHC
profiles, measured as the average total response to a non-self profile divided
by the average total response to a self profile, over time. The number of T
cell clonotypes in a simulation is indicated by color, with the number of self
profiles simulated ranging between 100 and 800. (D) The relationship

between number of T cell clonotypes and the average total response to a
non-self profile divided by the average total response to a self profile after
30,000 iterations of the update algorithm. (E) The proportion of non-self
profiles that have a total T cell response greater than the mean response
toward self profiles over time. The number of T cell clonotypes is indicated
by color. (F) The relationship between the number of T cell clonotypes and
the proportion of non-self profiles having a stronger total T cell response than
the mean response to self profiles after 30,000 cycles of the update
algorithm. Other model parameters for all panels are: self-response threshold
τ = 1, growth rate ν = ln 2 δt–1, learning rate η = 0.002001 δt–1 and
proportion of non-zero affinities γ = 0.01.

establish themselves despite competition from the existing clono-
types. We explored whether the update algorithm of our model
would allow introduction of new clonotypes. We ran the update
algorithm for 30,000 iterations to produce a self tolerant and

stable repertoire and then selected 10 of the clonotypes present
at random.We created 10 new duplicate clonotypes, with identical
spMHC profile binding strength values as the selected clonotypes,
and introduced them into the repertoire at an abundance equal
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FIGURE 4 | Clonotype diversity and pMHC profile cross-reactivity are
preserved by the update algorithm. (A) Blue: The proportion of clonotypes
(after positive selection) that are present over time during simulation of the
update algorithm. Red: The Shannon entropy of the repertoire over time.
Simulation implemented with N= 1,600 and M= 400. (B) Relationship between
number of clonotypes in the simulation and proportion of clonotypes remaining
(blue) or Shannon entropy of the repertoire (red) after 30,000 iterations of the
update algorithm. Simulation implemented with values of N between 400 and
25,600 and M between 100 and 800, with M<N. (C) Cross-reactivity of T cell
clonotypes against self (blue) and non-self (green) pMHC profiles over time, run
with N=3,200 and M= 400. Cross-reactivity is measured as the proportion of
present clonotypes that have non-zero binding strength for a given profile. Data
shown is mean cross-reactivity across all profiles± standard deviation.

(D) Distribution of cross-reactivity across all self (blue) and non-self (green)
pMHC profiles after 30,000 iterations of the update algorithm with N= 3,200
and M= 400. Cross-reactivity is measured as the absolute number of present
clonotypes that have non-zero binding strength to a profile. (E) Relationship
between the number of clonotypes present at the start of the update algorithm
and the ratio of the mean cross-reactivity against non-self profiles to the mean
cross-reactivity against self profiles after 30,000 cycles of the update algorithm.
(F) Relationship between the number of self profiles in the update algorithm and
the ratio of the mean cross-reactivity against non-self profiles to the mean
cross-reactivity against self profiles after 30,000 cycles of the update algorithm.
Other model parameters for all panels are: self-response threshold τ =1,
growth rate ν = ln 2 δt–1, learning rate η = 0.002001 δt–1 and proportion of
non-zero affinities γ = 0.01.

to the average abundance of the existing clonotypes. We then
tracked both the original 10 clones and their duplicates for further
iterations of the simulation.

The total T cell abundance increases transiently as new
clonotypes are introduced but quickly returns to a stable level
(Figure 5A). On introduction of the new duplicate clonotypes,
the abundances of the original 10 clonotypes fall in order to

satisfy the self-response constraints (Figure 5B). Clonotypes with
matched self-binding strength profiles are seen to tend toward
the same abundance over the additional iterations of the model
(Figures 5C,D). Although the abundances of the new clonotypes
do not reach equality with the original clonotypes, the introduced
clonotypes only disappear in cases where the original clonotypes
are also deleted. The introduced clonotypes are able to remain in
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FIGURE 5 | New clonotypes can establish themselves in a stable
repertoire. (A) Total T cell abundance over time. Ten new clonotypes, each
with self profile binding strength vector matching an existing clonotype, are
introduced (at the average clonotype abundance) after 30,000 iterations of
the update algorithm. (B) The clonal abundance of 10 selected clonotypes
over time. After 30,000 iterations of the update algorithm, 10 additional
clonotypes are introduced (dashed lines), each with a self profile binding
strengths equal to one of the original 10 clonotypes (colors represent binding
strength profiles). (C,D) For each of the selected original clonotypes and the

binding strength-matched introduced clonotypes, the relationship between
the original and match clone abundance when the new clonotype is
introduced (open circles) and after running the simulation for an additional
30,000 iterations of the update algorithm (solid circles). The dashed gray line
represents identical abundance of original and introduced clonotypes. Model
parameters used for all panels are: self-response threshold τ =1, growth
rate ν = ln 2 δt–1, learning rate η = 0.002001 δt–1, proportion of non-zero
affinities γ = 0.01, number initial clonotypes N=1,000, number self profiles
M= 100.

the repertoire evenwhen they are introduced at a lower abundance
than an already established clonotype with the same self-response
profile.

4. Discussion

We have outlined a simple computational model by which the
T cell repertoire in an individual can be continually adjusted in
order to optimize the chance of a successful response to unknown
pathogens while minimizing the amount of dangerous T cell
response to self. From a computational perspective, the update
method can be thought of as a multiplicative weight update algo-
rithm, and is shown to rapidly converge to a solution of the con-
straints. From a biological perspective, the model falls within the
well-established framework of APC-based self-tolerance models
(see below), but introduces the key features of cross-reactivity
and T cell cooperativity. The model produces the desirable fea-
tures of maintaining self-reactivity within a predefined threshold,
while driving the development of a diverse repertoire, which can
respond effectively to a broad selection of non-self antigens. The

model repertoire also reproduces the heterogeneous distribution
of naive T cell clonotype abundance, which has been described by
recent high throughput sequencing studies (33), and the extensive
cross-reactivity which is another recently recognized feature of the
T cell repertoire (5).We do not model an immune response in this
work. If the APC remains in tolerogenic state, the introduction of
new non-self pMHC profiles will violate the constraints, but this
will result in additional T cell killing and the system will gradually
readjust to remain within the immune activation threshold. If,
however, the APC are switched to an immunogenic state (for
example by exposure to innate immune danger signals) then
crossing the threshold will result in activation of all APC bound T
cells, resulting in an effector immune response.

The mechanisms whereby the vertebrate adaptive immune sys-
tem avoids harmful reaction with self antigens but retains the abil-
ity to react with a large and unknown set of potential pathogens
have been extensively discussed. The current molecular under-
standing of the stochastic recombination events, which generate
adaptive immune receptors (antibody and the TCR), requires self-
tolerance to be learnt rather inherited. The clonal deletion model
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of (1) has remained the dominant paradigm for many decades.
In the context of the T cell, this paradigm posits that T cells
developing in the thymus die if they react with antigens (which in
the context of the thymus are assumed to be predominantly self)
with an affinity above a given threshold, whose value has been
estimated to correspond to a disassociation constant of approxi-
mately 6µM (34). Indeed special molecular mechanisms exist to
ensure atopic expression of a whole range of non-thymic proteins
in the thymus (35), presumably to ensure robust self-tolerance.
Themolecularmechanism of clonal deletion has also been studied
intensively (36).

More recently, a number of immunologists have proposed the
need for some form of extrathymic (peripheral) tolerance, since
self-reactive mature T cells have been described in many cases.
Such models include those in which self/non-self discrimination
was assigned to the antigen presenting cell (typically a dendritic
cell) rather than the T cell (16, 17). The essence of these mod-
els was to propose that APCs exist in two different functional
states. Under resting conditions (e.g., in the absence of infection),
the interaction between antigen on the APC and cognate T cell
induces tolerance (either deletion, or anergy). When the APC
is activated (typically via the innate immune system), the same
interaction leads to activation, differentiation, and T cell effector
function. A fundamental feature of these models is that the APC
continues to present self-antigens in both states. However, since
the immune system has been “educated” to tolerize self-reactive
T cells during a resting period, and the majority of antigen pre-
senting cells at any time continue to remain in a resting state, the
T cell response to self-antigens presented together with non-self
by the activated antigen presenting cells is small and transitory,
and does not lead to significant pathology. Themodel presented in
this paper lies squarely within the conceptual framework of these
antigen presenting cell focused models of self/non-self discrim-
ination. However, our model simplifies the system by assuming
only a single type of APC. In reality, the immune system contains
a heterogeneous mixture of antigen presenting cells, with a spec-
trum of tolerizing or activating activity (37). The extension of our
model to incorporate antigen presenting cell heterogeneity will be
an important goal of future work.

The molecular mechanisms by which antigen presenting cells
induce tolerance remain an open question. Tolerogenic dendritic
cells, which express granzyme and perforin, and induce T cell
death in an antigen specific way, have been described (15). Den-
dritic cells also express several members of the Tumor Necrosis
Factor (TNF) family, and its cognate receptors, the TNF receptor
family. Some members of this family, for example CD40 and
CD40L, are known to play a critical part in T cell activation.
Impairment of this interaction leads to profound immunodefi-
ciency (38). Furthermore, CD40 expression on antigen presenting
cells is modulated by T cells, and the antigen presenting cell
integrates signals from multiple T cells, providing a molecular
mechanism for T cell cooperativity (39). Other members of the
family, which can be expressed by dendritic cells, in contrast,
deliver negative signals. The most well-studied example is the
Fas/FasL interaction, and impairment of this interaction leads to
a breakdown of self-tolerance (40–42). TNF itself can also induce

cell death via TNF receptor signals, although paradoxically it can
also induce cell activation (43). The precise function of many of
the more than 40 members of these families remains unknown,
and their potential role in tolerance induction remains to be
explored.

An interesting feature of our model is that it imposes a home-
ostatic limit on the total number of T cells, which depends on the
self-tolerance threshold. There is extensive experimental evidence
linking T cell homeostasis to inter-clonal competition for the
survival/proliferation cytokine IL7 (44). An important challenge
will be to integrate the phenomenon of clonal competition for a
limited resource into our model. Indeed, it is possible to retain the
computational infrastructure of our model but recast it emphasiz-
ing survival factors, rather than death signals. It may be the case
that integration occurs in both APC and T cells, with the APC
sending survival signals to bound T cells until a threshold level
of binding is violated, at which point the survival signals cease.
T cells would integrate the amount of survival signal received
over a number of TCR–APC interactions and if this does not
reach a sufficient level would die. This mechanism would increase
the specificity of clonotype size adjustment, only reducing those
clonotypes that repeatedly encounter APC for which the binding
threshold is violated.

Of necessity, both our basic model and its implementation
make a number of simplifying assumptions. The impact of some
of these could be explored further by in silico experimentation.
For example, it would be relatively straightforward to implement
a model in which the proliferation of the T cells is likely to be
dependent on the strength of the receptor/pMHC interaction. A
more complex, but important, question to explore is the extent to
which the averaging of the response over all antigen presenting
cells adequately captures the real scenario, where self-tolerance
must be distributed anatomically over the whole body, and where
each antigen presenting cell only presents a subset of all possible
self antigens.

Our model does not incorporate regulatory T cells, which are
clearly an important part of the mechanisms of self-tolerance, and
has been the basis for several previous theoretical models of self-
tolerance (22, 23). These cells may be of particular importance for
regulating those T cells with the highest affinity for self, which will
still exist albeit at reduced numbers in ourmodel, andwhich could
be inadvertently triggered in the context of responses to non-self
with potential pathogenic consequences.

Themodelwe propose has interesting implications for inducing
organ specific-tolerance in the context of allo-transplantation,
which remains an unsolved problem in the context of clinical
transplantation. The natural mechanisms, which maintain toler-
ance to self, are clearly insufficient in most cases to re-establish
complete and lasting tolerance to an allograft in the absence of
immune-suppression. This is perhaps not surprising since extra-
thymic-tolerance is only one component of tolerance, and in
isolation may be insufficient. However, with better understanding
of the molecular cell biology of tolerogenic dendritic cells, it may
be possible to experimentally increase the activity or number of
these cells and thus re-educate the peripheral repertoire versus
tolerance.

Frontiers in Immunology | www.frontiersin.org August 2015 | Volume 6 | Article 360124

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Best et al. Cooperative maintenance of immune tolerance

In conclusion, we propose a model of self-tolerance,
which incorporates T cell cooperativity (quorum-sensing) into
the mechanism for balancing self-tolerance with immuno-
competence. Once a stable repertoire has been produced, we
imagine that on immune challenge individual groups of antigen
presenting cells are switched into an activated state, where
they present antigens and drive the establishment of effector
and memory cells. However, the repertoire will have learnt
tolerance and hence the response to self will be small and not
pathogenic. A useful feature of the model is that the threshold
for self reaction can be set locally, and hence may vary in
different tissues. The balance between response and tolerance
may therefore be dependent on the local micro-environment. The
key prediction of our model is that perturbation of either the

existing T cell repertoire, or the presented pMHC landscape will
cause widespread distributed changes to the overall repertoire,
which will involve clones of many different specificities. The
nature of these changes can be predicted by our model, and can be
measured using the power of high throughput sequencing of TCR
repertoires. Thus, our model will stimulate further hypothesis
building and falsification, and lead to a better understanding of
adaptive immunity and self-tolerance.

Supplementary Material

The Supplementary Material for this article can be found
online at http://journal.frontiersin.org/article/10.3389/fimmu.
2015.00360
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the Limits of Linked suppression  
for regulatory t cells
Toshiro Ito1 , Akira Yamada1 , Ibrahim Batal2 , Melissa Y. Yeung2 , Martina M. McGrath2 , 
Mohamed H. Sayegh2 , Anil Chandraker2 and Takuya Ueno1,2*

1 Transplantation Unit, Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA, 
2 Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, 
Boston, MA, USA

Background: We have previously found that CD4+CD25+ regulatory T cells (Tregs) can 
adoptively transfer tolerance after its induction with costimulatory blockade in a mouse 
model of murine cardiac allograft transplantation. In these experiments, we tested an 
hypothesis with three components: (1) the Tregs that transfer tolerance have the capacity 
for linked suppression, (2) the determinants that stimulate the Tregs are expressed by the 
indirect pathway, and (3) the donor peptides contributing to these indirect determinants 
are derived from donor major histocompatibility complex (MHC) antigens (Ags).

Methods: First heart transplants were performed from the indicated donor strain to B10.
D2 recipients along with costimulatory blockade treatment (250 μg i.p. injection of MR1 
on day 0 and 250 μg i.p. injection of CTLA-4 Ig on day 2). At least 8 weeks later, a second 
heart transplant was performed to a new B10.D2 recipient who had been irradiated with 
450 cGy. This recipient was given 40 × 106 naive B10.D2 spleen cells + 40 × 106 B10.D2 
spleen cells from the first (tolerant) recipient. We performed three different types of heart 
transplants using various donors.

results: (1) Tregs suppress the graft rejection in an Ag-specific manner. (2) Tregs gener-
ated in the face of MHC disparities suppress the rejection of grafts expressing third party 
MHC along with tolerant MHC.

conclusion: The limits of linkage appear to be quantitative and not universally deter-
mined by either the indirect pathway or by peptides of donor MHC Ags.

Keywords: costimulation, indirect pathway, MHc class ii, tolerance, regulatory t cells

iNtrODUctiON

The physiologically unusual stimulation of T cells by donor antigen-presenting cells (APCs) has 
been called “direct” recognition, whereas stimulation by self-APCs, presenting peptides of donor 
origin, has been called “indirect” recognition. Direct recognition has been believed to be the major 
pathway involved in allograft rejection due to three basic observations, namely, (1) direct stimulation 
is very strong in a primary allogenic mixed lymphocyte reaction, (2) depletion of donor APCs can 

Abbreviations: Ags, antigens; APCs, antigen-presenting cells; MHC, major histocompatibility complex; MST, median survival 
time; Tregs, regulatory T cells.
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sometimes prolong allograft survival, and (3) donor major histo-
compatibility complex (MHC) antigens (Ags) are more important 
than minor Ags in causing graft rejection (1). Matching for MHC 
Ags achieves better allograft survival. Lechler and Batchelor 
showed the importance of MHC class II matching compared 
to MHC class I matching at least in the long-term survival (2). 
However, there are several remarkable reports of consequences 
of T cells responding via the indirect pathway. These reports 
showed the indirect pathway (a) helps for priming alloreactive 
CD8 T cells (3, 4), (b) is essential for tolerance induction in some 
models (5, 6), and (c) is involved in chronic transplant rejection 
(7, 8). In addition, several papers have shown the importance of 
an indirect response in allograft rejection (1, 3, 9, 10). Indirect 

allorecognition contributes not only to acute graft rejection  
(2, 9) but also possibly to the continuing response to the allograft 
in the long term after transplantation (11). Previously, we tested 
the role of costimulatory blockade for prolonging allograft sur-
vival with using class II-deficient mice when only one or the other 
pathway of graft rejection was available. We found that to achieve 
long-term survival after costimulatory blockade requires that 
the recipient expresses MHC class II molecules (12). This result 
indicated that indefinite cardiac transplant survival could not 
be achieved in the absence of an intact indirect pathway. These 
results are consistent with the fact that at least a component of 
the regulatory T cell (Treg) response must involve recognition 
of peptides of donor Ags presented by recipient MHC molecules 

FiGUre 1 | (A) Allograft survival in B10.D2 recipients: (>100 days, n = 5, p = 0.0017 compared to control: 16.2 days, n = 5). (B) Adoptive transfer model:  
naive splenocytes transfer (n = 6), both naive and Tol. splenocytes transfer (100 days, n = 6, p = 0.0007). (c) Linkage model: B6 hearts (>100 days), B10.BR 
hearts (~23 days, n = 6, p = 0.0006) (B6 × B10.BR) F1 (>100 days, n = 4/5, p = 0.0044).
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(13). Authors also mentioned that linked suppression can also be 
induced through the indirect pathway. However, little work seems 
to have addressed their direct role in transplantation. Therefore, 
in the current study, we tested whether the Tregs that transfer 
tolerance have the capacity for linked suppression.

MetHODs AND resULts

First, we made B10.D2 (H-2d) mice tolerant to B6 (H-2b) with 
costimulatory blockade [250 μg intraperitoneal (i.p.) injection of 
MR1 on day 0 and 250 μg i.p. injection of CTLA-4 Ig on day 2] 
(Figure 1A). At least 8 weeks later, a second heart transplant was 
performed to a new B10.D2 recipient who had been irradiated with 
450 cGy. All recipient received intravenous (i.v.) injection of naive 
40 × 106 splenocytes + 40 × 106 splenocytes that are taken from the 
tolerant mice (toleralized splenocytes: Tol.) significantly prolonged 
graft survival compared to recipient received only naive splenocyte 
(12  ±  1  days compared to >100, p  <  0.001) (Figure  1B). After 
these results, we considered linkage of Tregs. Next, we performed 
a second transplant from B6 mice to irradiated B10.D2 mice. The 
second donors express the same MHC and minor Ags as the first 
graft or B10.BR heart grafts differ from the first graft in their MHC 
Ags or (B6 × B10.BR) F1 mice, which express both H-2b and H-2k 
Ags. After transplant, the mice received i.v. injection of naive and 
toleralized splenocytes. All B6 hearts survived over 100 days. But 
B10.BR hearts expressing third party MHC were rejected by 23 days 
(Figure 1C). (B10.BR × B6) F1 hearts expressing third party MHC 
with tolerant MHC showed 80% survival of over 100 days; however, 
CAV was observed in some specimen. The institutional subcom-
mittee on research animal care at Massachusetts General Hospital 
approved all animal experiments.

DiscUssiON

Linked suppression has often been associated with Tregs, and 
its mechanisms must be important ones, as tolerance can be 
extended to whole MHC disparities when applied to cardiac 
transplantation. Tolerance was extended to third party transplant 

Ags, even to MHC-encoded Ags, provided they are expressed 
on the same graft as the tolerated Ags in some models (14–17). 
Thus, its mechanism of immunoregulation in transplantation is 
very important. In addition, understanding interactions between 
linked suppression and Tregs can potentially be great advantage 
in the setting of transplantation to propagate the development 
of specific unresponsiveness once the process has been initiated.

Our preliminary data showed that Tregs suppress the graft 
rejection in an Ag-specific manner and Tregs generated in the 
face of MHC disparities suppress the rejection of grafts expressing 
third party MHC along with tolerant MHC.

cONcLUsiON

The very limited comparison in this experiment will determine 
whether the patterns of gene expression can reliably distinguish a 
regulatory population from one that promotes rejection.
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