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Editorial on the Research Topic

Computational intelligence for signal and image processing

1. Introduction

The contemporary world features an array of sensors, each with distinct functions.

Data from these sensors primarily come in the form of signals, images, videos, and similar

formats (Cheng D. et al., 2022). Effectively deciphering this data holds the key to enhancing

daily life and industrial efficiency (Wang et al., 2023). Initially, humans were responsible

for processing and interpreting signal and image data, a process with limited accuracy

and efficiency (Liu F. et al., 2023). However, the evolution of computational intelligence,

includingmachine learning and deep learning, has enabled the automated handling of sensor

measurements, reducing the need for human involvement (Jiang et al., 2023). Consequently,

vast amounts of signal and image data can be efficiently processed for diverse applications

(Cheng L. et al., 2022; Wang et al., 2022; Fu et al., 2023), given their varied and abundant

nature, which encompasses radar signals, biomedical signals, optical images, and distinctive

medical images (Zhuang et al., 2022a). To this end, distinct computational intelligence

algorithms are necessary for various signal and image types (Zhuang et al., 2022b; Dang et al.,

2023; Lu et al., 2023). Recent strides in machine learning and deep learning have introduced

a suite of tools for signal and image processing like convolutional neural networks, deep

belief networks, and deep generative models (Liu et al., 2021). Integrating these pioneering

computational intelligence techniques into the realm of signal and image processing holds

the promise of delivering accurate and rapid interpretations (Cong et al., 2023; Liu H. et al.,

2023).

2. Contributions

Within this research domain, a total of 10 articles have been published. Pan et al.

introduced a stepped image semantic segmentation network structure that incorporated

a multi-scale feature fusion scheme and boundary optimization. It enhanced the model

accuracy by optimizing the spatial pooling pyramid module in the Deeplab V3+ network by

employing the Funnel ReLU activation function for accuracy improvement. Experimental

results have shown that the enhanced networks achieved a 96.35% accuracy. Furthermore,

Zhijian et al. explored a method for simulating the infrared data, fusing simulated 3D
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infrared targets with real infrared images. Real infrared images

were fused into panoramic backgrounds, simulating infrared

characteristics on aircraft components like the tail nozzle, skin,

and tail flame. This approach, driven by Unity3D, allowed

flexible aircraft trajectory and attitude editing, generating

diverse multi-target infrared data. The experimental results

have shown that the simulated image closely resembled the real

infrared images and aligned with real data’s target detection

algorithm performance. Another study by Prabhakar et al.

focused on EEG signal modeling and classification. With a

sparse representation model and sparseness measurement

analysis for EEG signals, Swarm Intelligence (SI) techniques were

harnessed for Hidden Markov Model (HMM)-based classification.

Additionally, a Convolutional Neural Network (CNN)-powered

deep learning methodology achieved a remarkable 98.94%

classification accuracy.

Additionally, Fan et al. have given insights to elucidate the

association between Tic disorder and gut microbiota. A total of

78 stool samples were examined from Tic disorder cases and

62 from healthy controls, utilizing a case-control design for all

studies. The results have shown variations in gut microbiota

taxonomy between Tic disorder cases and controls, albeit with

inconsistencies across studies. In another study, Saikumar et al.

integrated the Internet of Things sensor data into a deep learning-

based application for diagnosing heart conditions. The Internet of

Things sensor data related to heart disease was utilized to train

the deep graph convolutional network (DG_ConvoNet). The K-

means technique was employed to reduce sensor data noise, aiding

the clustering of unstructured data. Extracted features were then

used in Linear Quadratic Discriminant Analysis. DG_ConvoNet, a

deep learning approach, exhibited 96% accuracy, 80% sensitivity,

73% specificity, 90% precision, 79% F-Score, and a 75% area

under the ROC curve, proficiently classifying and predicting heart

ailments. Furthermore, Yan et al. have discussed urban street

color analysis schemes by merging the color cards with efficient

software recognition by addressing the challenges in quantifying

urban color research. Using the China Building Color Card and

Python’s HSV color segmentation, Avenida de Almeida Ribeiro’s

colors from various angles have been assessed. This approach

combined color card colorimetry and computer recognition by

capturing both building and environmental influences. Themethod

comprehensively quantified, compiled, summarized, and compared

the architectural and environmental colors, offering practical

universality. The findings aided Macao’s color planning and

urban renewal, presenting a novel urban color study approach.

Gezawa et al. introduced a fused feature network that handled

the shape classification and segmentation tasks by a dual-branch

approach and feature learning. A feature encoding network was

devised for network simplification by integrating two distinct

building blocks with interposed batch normalization and rectified

linear unit layers. It accelerated learning, mitigating gradient

vanishing due to the limited number of layers for propagation. The

framework also introduced a grid feature extraction module using

convolution blocks and max-pooling to hierarchically represent

input grid features. The max-pooling reduced the overfitting risk

by gradually diminishing spatial dimensions, network parameters,

and processing load. The grid size limitations were handled

by locally sampling a constant point number from each grid

region via a basic K-nearest neighbor by enhancing approximation

functions for detailed feature characterization. It has shown

superior performance with state-of-the-art techniques.

In another study, Ming et al. introduced deep CNN using

CT scans for the diagnosis of severe pneumonia with pulmonary

infection. An EC-U-net model has been employed on 120

patients to find accuracy in comparison to the traditional

CNN. The learning rate of the model has decreased in over

40 training cycles by yielding results nearer to mask images.

The given EC-U-net has outperformed the CNN with a higher

Dice coefficient and lower loss. The method has increased

diagnostic accuracy by reducing false rates and improving the

recognition of infection-related features in CT scans by showing

potential for clinical applications. Zhang et al. discussed a

neural learning approach for the prediction of the best grasp

configuration for each detected object from the image. A 3D-

plane-based approach was used to filter the cluttered background

and then the objects and grasp candidates by two separate

branches were detected by an additional alignment module. A

series of experiments are conducted on two public datasets to

evaluate the performance of the proposed model in predicting

reasonable grasp configurations “from a cluttered scene.” A

deep learning-based method was proposed by Liu et al. to

classify the data, screen out double-peak data, and realize the

segmentation of the integral regions through the given U-Net

segmentation model. The presented classification model exhibited

an accuracy of 99.59%, while the segmentation model achieved an

intersection over a union value of 0.9680 by using the combined

loss function.

3. Conclusion

This editorial presented 10 research articles focused on

the applications of Computational Intelligence for Signal and

Image Processing. The aim was to gather related articles in

the Signal and Image Processing industry, such as education,

healthcare, and security. The findings presented in this Research

Topic showcased more active development and research within

the field of Computational Intelligence methods in the times

ahead. To facilitate this progression, future approaches might

encompass harnessing Computational Intelligence techniques to

improve prediction precision and enhance the reliability of

prediction models.
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A Study of English Learning
Vocabulary Detection Based on
Image Semantic Segmentation
Fusion Network
Leying Pan*

School of International Studies, Zhejiang Business College, Hangzhou, China

College students learn words always under both teachers’ and school administrators’

control. Based on multi-modal discourse analysis theory, the analysis of English

words under the synergy of different modalities, students improve the motivation and

effectiveness of word learning, but there are still some problems, such as the lack of visual

modal memory of pictures, incomplete word meanings, little interaction between users,

and lack of resource expansion function. To this end, this paper proposes a stepped

image semantic segmentation network structure based on multi-scale feature fusion

and boundary optimization. The network aims at improving the accuracy of the network

model, optimizing the spatial pooling pyramid module in Deeplab V3+ network, using

a new activation function Funnel ReLU (FReLU) for vision tasks to replace the original

non-linear activation function to obtain accuracy compensation, improving the overall

image segmentation accuracy through accurate prediction of the boundaries of each

class, reducing the intra-class error in the prediction results. The accuracy compensation

is obtained by replacing the original linear activation function with FReLU. Experimental

results on the Englishhnd dataset demonstrate that the improved network can achieve

96.35% accuracy for English characters with the same network parameters, training data

and test data.

Keywords: multi-modal discourse analysis, learning, image semantic, feature fusion, Deeplab V3+ network

INTRODUCTION

English Word Memory provides solutions for teaching English vocabulary in college. Some
competitions have been held in Jiangsu alone with over 90 undergraduate and higher education
institutions and over 200,000 students participating. Unlike the traditional way of learning by
reading word books and memorizing words, the corpus-based English word platform brings
together a variety of learning contents such as pronunciation, spelling and example sentences,
and collaboratively uses media forms such as sound, image, text and color to generate dynamic
vocabulary exercises, allowing students to learn word collocations and usage in the exercises,
improving the efficiency of learning. In addition, the platform provides teachers with management
and supervisory functions for vocabulary teaching (Liu et al., 2007; Liu, 2021).

Both the design and the use of English words contain a five-level system of multimodal discourse
analysis theoretical framework. At the cultural and contextual levels, English Words users are
divided into a teacher side and a student side (Dai et al., 2018; Yin, 2021). Because both teachers
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and students are in the same cultural context, the ideology and
the structure of the subject matter are potentially the same, and
the scope of the discourse is the same (Huang et al., 2019). The
word content of English Words is designed from the textbook
in which it is taught, and reflects the conceptual meaning and
schematic meaning of words through word interpretation, usage,
and example sentences in both English and Chinese. Through
“check-in” and “ranking”, students and teachers can interact with
each other and realize interpersonal meaning (Wu and Chen,
2020).

At the formal level, the different formal systems for achieving
meaning include the “lexico-grammatical system of language”
(Sung et al., 2016). The lexicon refers to the items that are
already given meaning in their own right, while the grammar
is a more complex system of structural rules for combining
these items. Since one modality cannot fully express the meaning
of communication. Other modal forms need to be used to
enhance and complement the meaning. Chen Hsieh et al.
(2017) classifies the relationship of multimodal discourse forms
into two types-“complementary” and “non-complementary”.
English words are dynamically generated based on a large-
scale corpus of vocabulary exercises for students, and the non-
reinforcing relationship between visual and auditory modalities
is used to complement each other through word pronunciation
identification, interpretation, and detailed example sentences, so
that students can repeatedly compare and contrast in different
contexts to promote learning through practice (Huang et al.,
2011; Duman et al., 2015).

Image semantic segmentation, as a cornerstone technique in
computer vision tasks, is different from target detection and
image classification in that each pixel in an image is assigned
a predefined label indicating its semantic class to achieve the
task of pixel-level classification (Saalbach et al., 2009; Chen et al.,
2021). Specifically, image semantic segmentation is the process of
distinguishing at the pixel level exactly what and where the target
object is in an image, i.e., first detecting the target in the image,
then depicting the outline between each individual and the scene,
and finally classifying them by assigning a color to things that
belong to the same class (Lyu et al., 2018; Zhang et al., 2020).

In recent years, with the development of deep learning
technology in computer vision, image semantic segmentation
has been widely used in autonomous driving, intelligent medical
treatment, etc. (Sanonguthai, 2011). The intrinsic invariance
of DCNN (Di Wu et al., 2021) can learn dense abstract
features, which is much better than the performance of
traditional systems designed based on sample features. However,
existing semantic segmentation algorithms still suffer from
intra-class semantic misidentification, small-scale object loss,
and blurred segmentation boundaries. Therefore, capturing
more feature information and optimizing for the target
boundary are important research elements to improve the
segmentation accuracy.

In 2016, Xue et al. (2018) proposed Deeplab V2 model
based on Deeplab V1 network (Zhang et al., 2018), using
inflated convolution instead of partial pooling operation for
down sampling filter for feature extraction, and using spatial
deterministic pyramid pooling (ASPP) module (Xie et al., 2018)

for multi-scale feature extraction, In 2017, Deeplab V3 (Laufer,
2006) improved the ASPP module on the basis of V2 network
to form an end-to-end network structure, and eliminated the
CRF boundary optimization module. In the field of semantic
segmentation, the network structure usually adopts the codec-
decoder structure; except for Deeplab V3+, almost all of the
above mentioned algorithms do not consider using the effective
decoder module, or only use the codec-symmetric structure
with a single structure, which fails to effectively fuse the high-
level semantic information and the low-level spatial information
across layers in the up sampling process, and loses the important
pixel information of the feature map.

Related Work
Through literature combing, we found that the current research
on adaptation of English learning supported by artificial
intelligence is mainly about the design and development of
adaptive, wisdom-adapted related learning systems for students,
and there is no literature on learning adaptation from the
students’ perspective. Since, learning adaptability is related
to learning performance, learning quality, etc. Therefore, the
literature is extended to study “learning performance,” “learning
effectiveness,” “learning quality,” “teaching effectiveness,” and
“teaching quality” related to artificial intelligence-supported
learning. “Teaching quality,” etc. (Duman et al., 2015; Xue et al.,
2018; Zhou et al., 2020). A review of the literature shows that the
research focuses on two aspects of speaking and composition,
and specific teaching practices of AI English learning tools
are mainly educational APPs and intelligent online systems.
In speaking training and assessment, Gorman’s “English Fun
Dubbing” has stimulated students’ interest and confidence in
speaking learning, and thus improved students’ English learning
petrifaction (Hessamy and Ghaderi, 2014). Liu et al. (2021) study
came to a similar conclusion that although a small number of
students were not very active, most of them were able to accept
the learning mode of using English Fun Voiceover to learn
speaking, and there was a significant difference between English
majors and non-Englishmajors in their willingness to use English
APPs for listening and speaking. In terms of smart writing, the
smart writing system criterion significantly improved the quality
of students’ writing in Attali, which found that the number of
student essay revisions was positively correlated with improved
scores, but 70% of the students in that study lacked confidence
or interest in the system (Cameron, 2002), and if teachers do not
approve of the smart writing system, then students also If teachers
do not approve of the intelligent writing system, then students
will also lack motivation to use it consistently. Gu and Zhang
(2020) pointed out that the intelligent composition review system
can help students develop the habit of repeated revision, but it
should not be It is still necessary to have teacher guidance. Zhang
and Liu (2021) study found that course assessment mechanisms,
students’ vocabulary levels, their perceptions of the feedback
from the intelligent writing system, and the quality of the
intelligent system itself affect students’ use, and that students’
motivation to learn English affects their learning outcomes in
the automatic evaluation feedback system. Zhao et al. (2017)
concluded that at the individual level, students’ familiarity with
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computers, online learning experience, existing language ability
and writing level, and learning autonomy bring about different
usage effects in the collaborative artificial intelligence system, but
there are no related research topics.

PROPOSED ALGORITHM

Deeplab V3+ Network Architecture
The Deeplab V3+ network architecture is the latest generation
of semantic segmentation network framework in the Deeplab

series proposed by Google Labs, with superior performance on
multiple datasets. Or Xception as the backbone network, using a
data normalization (BN) layer to prevent training overfitting (Liu
et al., 2020), and adding a decoder network component to build
an end-to-end coder-decoder network model.

The structure of DeeplabV3+ network is shown in Figure 1.
The input image is passed through a neural network with an
inflated convolution to reduce the number of down sampling
while ensuring a large perceptual field, and the high-level
semantic information and low-level spatial information are

FIGURE 1 | DeeplabV3+ network structure.
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FIGURE 2 | Improved ladder-type DeeplabV3+ network structure.

FIGURE 3 | Improved ASPP module.
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extracted separately. The number of channels is adjusted using
the convolution operation, and the bilinear FOE (Tian et al.,
2019) quadruple up sampling is used to fuse the low-level spatial
information with the adjusted number of channels across the
layers, and the quadruple up sampling restores the original image
resolution and spatial details.

Improved Stepwise Deeplab V3+ Network
Compared with the Deeplab V3+ network, the large scale target
prediction is more prone to the problem of missing small scale
targets and rough category boundaries. The improved Deeplab
V3+ network is shown in Figure 2, which is based on ResNet-
101 (Xie et al., 2019) as the backbone network, including encoder,
decoder, and optimizer.

DeeplabV3+ network uses V3 model as encoder, and
continues to use the original expansion convolution of V3 model
ASPP module with expansion rate of 6, 12, and 18, while the
feature map resolution decreases as CNN extracts the image
feature information. Considering that when extracting low-
resolution features, the expansion convolution of 4 and 8 can

better capture the details of small-scale targets than the expansion
convolution of 6, and when segmenting large-scale targets, it
is necessary to obtain a larger sensory field, and the expansion
convolution of 24 has a larger sensory field than the expansion
convolution of 18, which is more favorable when segmenting
large-scale targets. The ASPP parameters proposed in this paper
are compared with the ASPP modules (6, 12, 18) provided by
the V3+model, and the proposed parameters are better than the
original ones.

The original Deeplab V3+ model only designs a simple
decoder, and the decoder mainly handles high and low-level
feature map fusion operations; when performing feature map
cross-layer fusion, considering that the 1/4 times downsampled
feature map of the ResNet101 network contains rich low-level
spatial information, while the 1/16 feature map generated by
the encoder ASPP module contains rich high-level Therefore,
in the fusion of feature maps, it is necessary to resize the high-
level feature map generated by the ASPP module to the low-
level feature map generated by the backbone network, so the
1/16th feature map generated by the encoder ASPP module

FIGURE 4 | Two-dimensional FReLU activation function with funnel condition.
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is upsampled 4 times and then fused with the 1/4th feature
map generated by the backbone network. Then convolution and
upsampling operations are performed to generate the prediction
result map; the ReLU activation function is used in the original
codec network for non-linear activation, the reliability of the
ReLU activation function has been recognized in the field of
deep learning, but it lacks pixel-level modeling capability in
computer vision tasks, so this paper uses the two-dimensional
visual activation function FReLU to replace the ReLU activation
function in the codec to obtain accuracy compensation (Shin
et al., 2016).

Encoder Optimization
The ASPP module passes the input feature map evenly through
different expansion rates of expansion convolution and global
average pooling layers. The smaller expansion rate is more
effective in segmenting small-scale targets; the larger expansion
rate is more effective in segmenting large targets. The ASPP
module in the encoder is improved as shown in Figure 3.
The 1/16 feature maps generated by the backbone network are
put into the 1 × 1 convolution, the expanded convolution

with 4, 8, 12, and 24 expansion rates, and the global average
pooling layer to generate 6 1/16-size feature maps with 256
channels, and the 6 feature maps are stitched together in the
channel dimension to generate the ASPP module feature maps.
The ASPP module feature maps are stitched together in the
channel dimension to generate ASPP module feature maps,
which can better extract multi-scale image features and improve
the segmentation capability of the network for different scales
of objects.

Code-and-Decoder Modeling Capability
Optimization
In deep learning, CNN have good performance superiority
in processing visual tasks. Non-linear activation function is
a necessary component of CNN to provide good nonlinear
modeling capability (Shin et al., 2016). Nowadays, the main
common activation functions are ReLU and its evolved PReLU.

ReLU(x) =

{

x if x > 0
0 if x ≤ 0

PReLU(x) = {
xi, if xi > 0
aixi if xi ≤ 0

)
(1)

FIGURE 5 | Englishhnd dataset.
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FIGURE 6 | Representation of the letters A and B.

ReLU as the most commonly used activation function, when the
input is greater than zero, for the linear part of the function.
However, when the input is less than zero, the function is
adjusted by artificially setting the zero value. Therefore, there is
a dead zone of activation, which leads to the poor robustness
of the activation function during training, and the problem of
“necrosis” of neurons when facing large gradient input. The
gradient value is zero.

PReLU adds a linear activation part to the input less
than zero by introducing a random parameter a that varies
with the data computation. The above activation functions
have been applied in various fields of deep learning with
proven reliability. However, in the field of computer vision,
these activation functions are unable to extract finer pixel-
level spatial modeling capabilities, so the semantic segmentation
network FReLU, a visual task activation function proposed
by Shin et al. (2016) and Zhang et al. (2019), is used to
compensate for the accuracy and obtain richer spatial contextual
semantic information.

FReLU is a two-dimensional funnel-like activation
function proposed specifically for computer vision
tasks, which is expanded to two dimensions by adding
the funnel condition T(X) to the one-dimensional
ReLU activation function (as shown in Figure 4),
introducing only a small amount of computation and
overfitting risk to improve the vision task with spatially
insensitive information in the activation network, with

the expression:

f
(

xc,i,j
)

= max
(

xc,i,j, T
(

xc,i,j
))

T
(

xc,i,j
)

=ω
c,i,j ·p

ω
c

(2)

where xc,i,j is the two-dimensional spatial location of
the cth channel non-linear activation function f (.)
and function T (.) is the functor condition; xω

c,i,j is the

parametric pooling window on xc,i,j; pω
c is the shared

coefficient on the common channel; (.) is the dot
product operation.

Its funnel condition is a square sliding window with preset
parameters, which is realized by deep separable convolution
and data normalization (BN), which can enhance the spatial
dependence between pixel and pixel kweek, activate spatially
insensitive information still while obtaining rich spatial context
information, and improve the pixel-level spatial modeling
capability. The graphical depiction of the funnel condition pixel-
level modeling capability is shown in Figure 4; only a small
number of parameters are introduced, introducing very little
complexity. Considering the fact that in natural objects, besides
vertical and horizontal directions, diagonal and circular arcs are
also common, the pixel spatial information extracted by different
activation layers is represented by squares of different sizes, and
the diagonal and circular arc activation domains are formed by
extreme approximation thinking to avoid the lack of modeling
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capability caused by using only the usual horizontal and vertical
activation domains (Radwan et al., 2016).

METHOD IMPLEMENTATION

Data Pre-processing
The effect of this paper’s model in English semantic analysis
is verified. English is composed of letters, and compared with
other languages, there are only 26 letters in English, and the
form changes are relatively simple, so English characters can be
recognized directly by neural networks.

The dataset used in this paper is Englishhnd (Saghezchi et al.,
2013), in which the symbols used in English and Kannada
are included. The English language includes: Latin characters
(excluding accent marks) and Arabic numerals, and the dataset
includes 64 classes (0–9, a–z, A–Z) of characters. Among
them, there are 7,705 characters from natural images, 3,410
characters input by computer handwriting board, and 62,992
characters merged by computer font. Some of their characters,
as shown in Figure 5.

Since this paper only recognizes English characters, firstly, the
characters corresponding to “0∼9” in the data set are screened

TABLE 1 | Network parameters.

Parameter name Parameter value

Number of hidden layers 1

Number of hidden units 500

Enter the number of nodes 35

Number of output nodes 52

Target error 0.0001

Maximum training times 40

out. Second, each English letter is digitally represented as a 7×5
squares, as shown in Figure 6.

Figure 6 gives the digital representation of the capital letters
A and B. The part of the letter with data is represented by 1 and
the part without data is represented by 0. For different 52 letters
(including case) there are 52 different representations. Then,
according to the order from rows to columns, we can get 3 vectors
of dimension 35 for different letters. “A” and “B” is represented as
follows:

A= [0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 1 1
1 1 0 0 0 1 1 0 0 0 1]
B= [1 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1 0 1 0 0 0
1 1 0 0 0 1 1 1 1 1 0]

After digitizing the characters, the captured images are often
disturbed by noise due to the actual English character
recognition. Therefore, in order to simulate the actual application
scenario, this paper superimposes noisy data on Englishhnd.
The operation of adding noise can be implemented by the rand
function in python software.

Simulation Results
In order to better evaluate the performance of the RBF network,
a BP neural network is used in the paper for comparative
simulation tests. In order to ensure the consistency of time and

TABLE 2 | Dataset parameters.

BP network Our model

Recognition accuracy 88.56% 96.35%

AUC 0.72 0.89

FIGURE 7 | Relationship between word vector dimensionality and F1, training time. (A) BP network. (B) Our method.
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FIGURE 8 | Histogram of word vectors.

FIGURE 9 | The semantic segmentation process of English units in this model. (A) Original picture. (B) Grayscale. (C) Binarization diagram. (D) Peak noise. (E)

Splitting effect.
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space complexity during the training of the two networks, the
parameters of the two networks, as shown in Table 1.

In Figure 7, the solid line shows the change in the error rate
at test with the test dataset after adding noise after training with
the ideal signal; the dashed line shows the change in the error rate
after using the noise-added signal.

As can be seen from the solid line in Figure 7A, the BP
network is trained using the ideal signal without noise, and
the error rate of the network recognition increases more when
the test dataset is noise-added. The dashed line in Figure 7A

shows that the network is less affected by noise in the test when
trained using characters with noise-added signals. Therefore,
the BP network is more disturbed by image noise, and this
network has better recognition accuracy only when the test set
is not noise-added.

The solid line in Figure 7B shows that when the our model
is trained with noiseless data, the recognition error rate of the
network only changes significantly after the mean value of noise
exceeds 0.1 for the test data.

As can be seen from the dashed line in Figure 7B, when
training with noisy data, the performance of the network also
deteriorates after the mean value of noise exceeds 0.1 for the
test data. Since the dashed line follows basically the same trend
as the solid line, the our model is less disturbed by noise
when performing character recognition and has stronger noise
immunity compared to the BP neural network.

Table 2 gives the test results of BP and our models with a noise
level of 0.1 for the test set after adding noise to the training data.

As can be seen from Table 2, with the same network
parameters, training data and test data, the recognition accuracy
of our model for English characters can reach 96.35%, which
is 7.79% higher than that of BP network (88.56%); the AUC of
our model reaches 0.89, which is closer to 1 than that of BP
network (0.72).

As can be seen from Figure 8, the word vector histogram

of this paper’s scheme, an exact graphical representation of the
distribution of the value data. The range of values is segmented,

i.e., the entire range of values is divided into a series of intervals,

and then how many values are counted in each interval. The
values are usually specified as consecutive, non-overlapping

intervals of variables. Intervals must be adjacent and usually (but
not necessarily) of equal size.

Recognition of Segmentation Effects
The semantic segmentation process of English units in this

model is shown in Figure 9, where Figure 9A shows the original

image and Figure 9E shows the segmentation effect on English
words. It is thought that the pixels in the image with gray
scale values in the same class belong to the same object. Since
it is a direct application of the gray scale characteristics of
the image, the calculation is convenient and concise, and the
applicability is strong. Obviously, the key and difficulty of the
threshold segmentation approach is how to obtain a suitable
threshold value. The threshold setting in Figure 9B is vulnerable
to noise and luminance. The approaches in recent years are: the
approach of selecting the threshold value with the maximum
correlation criterion, the approach based on the image topology
stable state, the Yager measure minimization approach, the
gray scale co-generation matrix approach, the variance method,
the entropy method, the peak and valley analysis method, etc.
Figure 9C shows several algorithms that are more successful
in improving the traditional shareholding method. In more
cases, the selection of thresholds will be a combination of 2 or
more approaches, which are also a trend in the development of
image segmentation.

CONCLUSIONS

Analyzing English words under the synergistic effect of
different modalities, students improve the motivation and
effectiveness of word learning, but there are still some
problems. In this paper, we construct a stepped network
framework based on the Deeplab V3+ network, retain
the inflated convolution and code-decoder structures in the
original network, and replace the original non-linear activation
function ReLU with a more effective visual activation function
FReLU by improving the spatial pooling determinant module.
Experimental results on the Englishhnd dataset show that the
improved network results on the Englishhnd dataset show
that the improved network has high recognition accuracy for
English characters.
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Training infrared target detection and tracking models based on deep learning requires

a large number of infrared sequence images. The cost of acquisition real infrared target

sequence images is high, while conventional simulation methods lack authenticity. This

paper proposes a novel infrared data simulation method that combines real infrared

images and simulated 3D infrared targets. Firstly, it stitches real infrared images into

a panoramic image which is used as background. Then, the infrared characteristics

of 3D aircraft are simulated on the tail nozzle, skin, and tail flame, which are used as

targets. Finally, the background and targets are fused based on Unity3D, where the

aircraft trajectory and attitude can be edited freely to generate rich multi-target infrared

data. The experimental results show that the simulated image is not only visually similar

to the real infrared image but also consistent with the real infrared image in terms of the

performance of target detection algorithms. The method can provide training and testing

samples for deep learning models for infrared target detection and tracking.

Keywords: infrared image simulation, infrared target simulation, infrared radiation, deep learning, Unity3D

INTRODUCTION

With the rapid development of deep-learning technology, data-driven models and algorithms have
become a hot topic in infrared target detection and tracking (Dai et al., 2021; Hou et al., 2022).
Unlike conventional methods, data-driven methods require a large amount of infrared data for
model training and testing (Yi et al., 2019; Junhong et al., 2020).

However, the current infrared image datasets used for object detection and tracking are of poor
quality (Hui et al., 2020). The cost of measured data is high, and it is difficult to obtain infrared
images in various scenarios (Zhang et al., 2018). For example, the target type in real data is single,
and it is difficult to obtain infrared images of important types of aircraft. The authenticity of the
simulation data is insufficient (Xia et al., 2015). The battlefield in modern warfare involves a wide
range of complex environments. It is difficult for knowledge-based models to simulate a complex
infrared battlefield. These problems significantly limit research progress in infrared target detection
and tracking.

Currently, infrared target simulation can be performed using two approaches: methods based
on infrared characteristic modeling (Shuwei and Bo, 2018; Guanfeng et al., 2019; Yongjie et al.,
2020) and methods based on deep neural networks (Mirza and Osindero, 2014; Alec et al., 2016;
Junyan et al., 2017; Chenyang, 2019; Yi, 2020). The former is typically based on infrared radiation
theory. Physical models of various parts of an aircraft (such as engines, tail nozzles, tail flames,
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and casings) are established, atmospheric radiation is modeled,
and infrared simulation data under various conditions are
obtained. These methods start with a physical model and have
strong interpretability. If sufficient parameters are added, high-
fidelity infrared images can be produced (Yunjey et al., 2020).
With a large number of parameters and calculations, they
are suitable for simple target simulations. However, these are
unsuitable for real-environment simulations with complex types
of ground objects (Chenyang, 2019; Rani et al., 2022). Methods
based on deep learning, typically using a generative adversarial
network (GAN), learn the style of the infrared image from a
large number of real infrared images and then transfer visible
light images to infrared images (Alec et al., 2016; Junyan et al.,
2017; Chenyang, 2019; Yi, 2020). These methods do not require
complex physical modeling processes and are fast, but lack
authenticity and reliability (Shi et al., 2021; Bhalla et al., 2022).
More importantly, the method is based on deep learning and
cannot add infrared targets as needed, nor can it edit the flight
trajectory and attitude, which is exactly what the infrared target
dataset needs most.

Therefore, it is meaningful and valuable to study an infrared
data generation method that conforms to the real infrared
radiation characteristics, and can addmultiple types andmultiple
aircraft targets arbitrarily. This paper proposed a new method,
and its main contributions are as follows:

(1) A method combining the real infrared data of background
with the simulated infrared data of target is proposed, which
can easily generate multi-target infrared simulation data
with high authenticity. It uses the panorama of the real
infrared data mosaic as the background, rather than the
direct 3D infrared simulation of the ground objects. It can
avoid the complex problem of infrared modeling of ground
objects. Compared with the 3D infrared simulation of the
whole scene, it is much easier, and the generated data are
more authentic.

(2) The method is based on the Unity3D to fuse the target
model with the infrared scene. It can freely add the type and
number of aircrafts, edit the aircraft trajectory, and attitude.
So it can generate rich multi-target infrared simulation data.

(3) Starting from the infrared radiation characteristics, our
method simulates the physical characteristics of the key
parts of the 3D target (the tail nozzle, skin, and tail flame),
which can generate high authenticity infrared target data.

METHODS

Overall Framework
Figure 1 shows the overall framework of this study, divided
into three branches: infrared background stitching, infrared
radiation modeling, and flight trajectory editing. The infrared
radiation modeling branch first establishes a 3D model on
the basis of the size of the aircraft and then establishes an
infrared radiation model of the aircraft according to the infrared
radiation theory (such as the engine nozzle, skin, and tail flame).
The infrared background stitching branch performs panoramic
stitching based on real infrared dataset, and after uniform light

processing, a uniform infrared panoramic image is obtained. We
used the infrared panorama as background for the 3D scene.
The flight-trajectory editing branch provides trajectory-editing
tools. Users can call editing tools to create flight trajectories based
on the aircraft performance parameters. The trajectory included
the time, position, and attitude of each node. The observation
window can track and record targets in a field of view of a
specified size. Because multiple and various types of aircrafts can
be selected and various trajectories can be edited, a rich variety of
infrared simulation data can be obtained.

Infrared Target Modeling
As an infrared radiation source, the radiation characteristics of
different parts of an aircraft show evident differences owing to
different degrees of heat generation. The main components with
the strongest infrared radiation include the engine nozzle, aircraft
skin, and tail flame (Haixing et al., 1997). This study starts with
the basic theory of infrared radiation, grasps the main infrared
radiation characteristics of each component, and establishes its
infrared radiation intensity model.

Assuming that the infrared detector can perceive light of
wavelengths ranging from λ1 to λ2 (only mid-wave infrared is
considered in this study, that is, the wavelength range is 3–5µm),
according to the Planck’s law (Yu, 2012), the infrared radiation
intensity of a gray body can be expressed as:

Mλ1∼ λ2 =

∫ λ1

λ2

c1

λ5

1

ec2/λT − 1
dλ =

c1T
4

c42

∫ c1/λ1T

c2/λ2T

(c2/λT)3

ec2/λT − 1

d
( c2

λT

)

(1)

where T is the gray body surface temperature, c1 is the
first radiation constant, typically (3.741774 ± 0.0000022) ×

10−16W · m2, and c2 is the second radiation constant, typically
(1.4387869 ± 0.00000012) × 10−2m · K. Assuming x = c2/λT,
the above equation can be simplified as follows:

Mλ1−λ2 =
c1T

4

c42

∫ c1/λ2T

c2/λ2T

x3

ex − 1
dx (2)

Nozzle Radiation Model

When the fuel in an engine burns, it emits high-temperature
radiation, which is the main heat source when the aircraft is
flying (Chuanyu, 2013). As an extension of the engine outside
the fuselage, the tail nozzle also exhibits relatively strong infrared
radiation. The tail nozzle is a typical gray body, and the surface
emissivity is approximately in the range of 0.8–0.9. According
to Equation (2), the relationship between the infrared radiation
intensity of the tail nozzle IW and temperature TW is as follows:

IW =
εW

π

∫ λ2

λ1

c1

λ5

1

ec2/λTw − 1
dλ · SW · cos θW (3)

where εM is the radiation rate of the nozzle surface, which is
determined by the aircraft surface material. SM is the cross-
sectional area of the skin facing the probe. θM is the angle
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FIGURE 1 | Overall framework of this study.

between the orientation of the probe and the orientation of the
infrared radiation.

Aircraft Skin Radiation Model

Aircraft skin temperature is mainly affected by two factors: the
ambient temperature of the atmosphere and the temperature
generated by the friction between the aircraft and the atmosphere
during the high-speed motion. Because this study only considers
aircraft flying at medium and low altitudes, the linear relationship
between the atmospheric ambient temperature T0 and altitude
H satisfies T0=(288.2-0.0065 H) K, and T0=280 K for simplicity.
The temperature TM generated by friction and flight speed follow
the following functional relationship: TM = T0

(

1+ 0.16M2
)

,
whereM is the Mach number of the aircraft.

Furthermore, according to Equation (2), the functional
relationship between the aircraft skin radiation intensity IM and
temperature TM is as follows:

IM =
εM

π

∫ λ2

λ1

c1

λ5

1

ec1/2TM − 1
dλ · SM · cos θM (4)

where εM is the skin surface emissivity, which is determined by
the surface material of the aircraft skin. SM is the cross-sectional
area of the aircraft skin facing the probe, and θM is the angle
between the probe and infrared radiation orientation.

Tail Flame Radiation Model

The high-temperature flame and high-temperature gas injected
by the engine form the tail flame of the aircraft. We assume
that the gas temperature in the tail nozzle is TF, the tail flame

temperature is TP, and the gas pressures inside and outside the
tail nozzle are PP and PF, respectively; then, we have:

Tp = TF

(

Pp/PF
)(γ−1)/γ

(5)

where γ is the specific heat of the gas; its value for turbofan
aeroengines is 1.3. According to Equation (2), the functional
relationship between the radiation intensity IP of the tail nozzle
and temperature TP can be established as follows:

Ip =
εp

π

∫ 2

2

c1

λ5

1

eσ2/2Tp − 1
dλ · Sp · cos θp (6)

where ερ is the surface emissivity of the aircraft tail flame,
SP is the cross-sectional area of the aircraft tail flame facing
the probe, and θP is the angle between the probe and infrared
radiation orientation. To improve the intuitive effect, the tail
flame is typically simulated by particle flow. Based on the above-
infrared radiation model, a 3D target with infrared radiation
characteristics was obtained. The infrared radiation intensity of
an aircraft dynamically changes with the speed and attitude of
the target. Figure 2 shows the simulation effect of F-35 aircraft at
different attitudes. Figure 3 shows the simulation effect of Su-35
aircraft at different speeds.

Panoramic Stitching of Infrared Images
We expect the targets to fly in a wide infrared scene to obtain a
simulated image sequence of moving targets. However, the field
of view of infrared sensors is typically narrow. For example, the

field of view in the public infrared dataset (Hui et al., 2020)
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FIGURE 2 | Simulation effect of F-35 aircraft at different attitudes. The speed is Mach 1, and the background is a real infrared image. The coordinates are roll, yaw,

and pitch.

FIGURE 3 | Infrared characteristics of Su-35 aircraft at different speeds. The speed varies from 0.6 to 2.3Ma.
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FIGURE 4 | Panoramic stitching results of real infrared images.

FIGURE 5 | Fusion of simulation targets and real infrared scene.

(dataset used for infrared detection and tracking of dim-small
aircraft targets under a ground/air background, http://www.
csdata.org/p/387/) is only 1◦ × 1◦.

To obtain a continuous projection of the moving target in

a real infrared scene, it is necessary to stitch infrared images
of a narrow field of view into a panoramic image. In view

of the small texture and low contrast of infrared images, a

stitching and fusion method must be adopted specifically for
infrared images, as detailed in our previous paper (Zhijian et al.,
2021), which describes how to stitch a panoramic image from
infrared sequence images. Figure 4 shows only a part of the
stitching results.

Fusion of Simulated Targets and Real
Infrared Scene
This study realized the fusion of a static real infrared scene and
dynamic simulated targets based on the Unity3D engine. The
main steps were as follows: (1) Constructing a hemisphere with
the camera position as the center and the real farthest observation
distance as the radius. The panoramic image obtained by splicing
real infrared images was used as the epidermis to cover the
hemisphere to obtain a pseudo 3D scene, as shown in Figure 5.
(2) Based on the flight trajectory (information, such as the
position, attitude, and speed of the aircraft at each moment, is
set), the 3D infrared simulation target flies in a 3D space. (3)
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FIGURE 6 | Real infrared scene and simulated infrared scene.

Through human–computer interaction, the observation position
and viewing angle were dynamically adjusted to track and
observe the targets. (4) Each frame of the observation projects
the target onto the infrared background and obtains the target
infrared data with the real infrared background.With continuous
observation, dynamic simulation image sequences of the targets
can be obtained.

EXPERIMENT AND ANALYSIS

Dataset and Experiment Setting
The real infrared data used in this experiment comes from
the public infrared dataset (Hui et al., 2020) (dataset used
for infrared detection and tracking of dim-small aircraft
targets under a ground/air background, http://www.csdata.
org/p/387/). The dataset covers a variety of scenes such
as sky and ground, with a total of 22 data segments, 30
tracks, 16,177 images, and 16,944 targets. Each frame is a
gray image with a resolution of 256 × 256 pixels, BMP
format, 1◦ × 1◦ field of view. Each target corresponds to a
label position, and each data segment corresponds to a label
file. This data set is usually used in the basic research of
dim-small target detection, precision guidance, and infrared
target characteristics.

The hardware environment of this experiment is: Dual Core
CPU above 2.0 GHz and body memory above 4G. Software
environment: system software aboveWindows 7. The experiment
is based on the development of 2021.2.6f1 version of Unity3D.
The development language is c#, and the development platform
is visual studio 2017.

Subjective Analysis
We selected four scenes from real infrared data introduced
in (Hui et al., 2020): sky background, ground background,
mixed background, and sky multi-target, which are from data
1, data 7, data 3, and data 2, respectively, in the public dataset.
Correspondingly, we also intercepted the above four scenarios
from the simulation data, and the comparative results are shown
in Figure 6. Visually and intuitively, both the real and simulated
data have the following characteristics: (1) The images are gray
overall, which conforms to the characteristics of infrared images.
(2) The images have low contrast and relatively few textural
features. (3) The target appears as bright spots and diffuses into
the surroundings. Therefore, the simulated and real infrared data
are intuitively similar.

Objective Analysis
The purpose of this study was to provide simulation data for
the training and testing of infrared target detection and tracking
models. Therefore, determining whether the performance of
an algorithm on simulated data is consistent with that of the
algorithm on real data is the most effective evaluation method
(Deng et al., 2022). We used two algorithms (Zhijian et al.,
2021; Deng et al., 2022) employed in the 2nd Sky Cup National
Innovation and Creativity Competition in 2019 for testing. We
compared their performance both on real infrared data and
simulated data generated by our method.

In the experiment, the data shown in Figure 6 were used; the
real infrared data came from data 1, data 7, data 3, and data
2 in the public dataset (Hui et al., 2020). The simulation data
also included the sky background, ground background, mixed
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background, and multiple targets. The resolution was 256× 256.
The targets were all small, that is, <10 pixels.

As in (Zhijian et al., 2021; Deng et al., 2022), four indicators,
namely the accurate detection rate, correct detection rate, missed
detection rate, and false alarm rate, were used to evaluate the
performance of the algorithm. An accurate detection (Acc) is
when the detection result is within the 3 × 3 pixel range of the

TABLE 1 | Infrared target detection results on real and simulated data with

algorithm (Tianjun et al., 2019).

Sky Ground Mixed Multi-targets

Real Simu Real Simu Real Simu Real Simu

Acc (%) 100 99.5 91.5 84.7 94.7 90.2 99.0 98.4

Corr (%) 100 100 93.0 90.1 96.0 93.4 99.5 99.5

Miss (%) 0.0 0.0 4.0 9.9 4.0 6.6 0.5 0.5

FA (%) 0.0 0.0 1.8 3.0 1.2 0.5 0.0 0.0

TABLE 2 | Infrared target detection results on real and simulated data with

algorithm (Xianbu et al., 2019).

Sky Ground Mixed Multi-targets

Real Simu Real Simu Real Simu Real Simu

Acc (%) 100 99.2 92.7 88.3 65.0 70.0 98.7 92.4

Corr (%) 100 100 97.2 92.1 79.0 83.3 99.2 95.3

Miss (%) 0.0 0.0 2.8 17.9 21.0 16.7 0.8 4.7

FA (%) 0.0 0.0 1.5 2.3 0.0 1.3 0.0 0.0

ground truth. Correct detection (Corr) is when the detection
result is within the 9× 9 pixel range of the ground truth. Missing
detection (Miss) is when the detection result is outside the 9 ×

9 pixel range of the ground truth. A false alarm (FA) refers to a
detected non-real target. Tables 1, 2 present the detection results
without changing any parameters of the original algorithm.

As shown in Table 1, the algorithm reported in (Tianjun
et al., 2019) performed well on the above four types of scenes,
particularly in terms of the Acc and Corr indicators on sky
background and multi-target scenes, which reached more than
99%. The performance on the ground background and mixed
background is slightly worse; nevertheless, the accurate detection
rate is above 90%. On the simulation data, the algorithm also
performed well on sky background and multi-target scenes and
is similar to the detection results on real data. On the ground and
mixed backgrounds, the detection results of the simulated data
are slightly worse than those of the real data; nevertheless, the
maximum difference in the accurate detection rates is no more
than 7% (on the ground background, the difference between the
accurate detection rates of the real and simulated data was 6.8).

The performance of the simulation data generated by our
method and the real data in the algorithm (Tianjun et al., 2019)
is compared as shown in Figure 7. When it performs well on
the real dataset, the simulation data generated by our method
also perform well, such as in sky and multi-targets scenarios.
When its performance of real datasets is poor, the simulation data
generated by our method is also poor, such as in ground and
mixed scenarios. This consistency is both reflected in the ACC
and Corr indicators. Therefore, the simulation data generated by
our method are consistent with the real data on the performance
of algorithm (Tianjun et al., 2019).

FIGURE 7 | Performance of simulation data and real data on algorithm (Tianjun et al., 2019).
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FIGURE 8 | Performance of simulation data and real data on algorithm (Xianbu et al., 2019).

As shown in Table 2, the performance of the algorithm
(Xianbu et al., 2019) is similar to that of the algorithm (Tianjun
et al., 2019) on sky background, ground background, and multi-
target scenes; however, the Acc drops to 65% on the mixed
background. This may be related to the applicability of the
algorithm in different scenarios. Interestingly, the detection
results on the simulated data also drop to 70%. Both simulation
data and real data show the low performance of the algorithm
(Tianjun et al., 2019) in mixed scenarios. Regardless of the
scenario, themaximumdifference between the accurate detection
rates of the simulated and real data is still <7% (in a multi-target
scenario, the difference between the accurate detection rates of
the real and simulated data is 6.3).

Similarly, the performance of the simulation data generated
by our method and the real data in the algorithm (Xianbu et al.,
2019) is compared as shown in Figure 8. When it performs well
on real datasets, the simulation data generated by our method
performs also well, such as in sky, ground, and multi-targets
scenarios. When its performance on the real dataset is poor, the
simulation data generated by our method are also poor, such as
in the mixed scene. Therefore, the simulation data generated by
our method are consistent with the real data on the performance
of algorithm (Xianbu et al., 2019).

CONCLUSION AND FUTURE WORK

Training infrared target detection and tracking models based
on deep learning requires a large number of infrared sequence
images. The cost of acquisition real infrared target sequence
images is high, while conventional simulation methods lack
authenticity. This paper proposes a novel infrared data
simulation method that combines real infrared images and

simulated 3D infrared targets. Firstly, it stitches real infrared
images into a panoramic image which is used as background.
Then, the infrared characteristics of 3D aircraft are simulated on
the tail nozzle, skin, and tail flame, which are used as targets.
Finally, the background and targets are fused based on Unity3D,
where the aircraft trajectory and attitude can be edited freely to
generate rich multi-target infrared data. The experimental results
show that the simulated image is not only visually similar to
the real infrared image but also consistent with the real infrared
image in terms of the performance of target detection algorithms.
The method can provide training and testing samples for deep
learning models for infrared target detection and tracking.

The infrared simulation of the target in this method has
not considered the environmental factors (such as weather,
temperature, illumination, etc.) and the sensor error. It is
necessary to further improve the precision of target infrared
simulation to meet some special application scenarios. This is
also the direction of our future work.
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The association between gut microbiota and psychiatric disorders has

received increasing research attention. Meanwhile, big data analysis has been

utilized in many filed including business, human healthcare analysis, etc. The

primary objective of this article was to provide insights into Big Data Analytics

(BDA) to clarify the association between gut microbiota and TD (Tic disorder).

Specifically, we investigated the recent studies related to gut microbiota

composition differences in patients with TD compared to health people. We

searched on PubMed and Embase (Ovid) databases for relevant published

articles until June 15, 2021. A total of 78 TD and 62 health control stool

samples were examined. Case-control design was applied in all the studies.

No consensus was evident in α-diversity and β-diversity. The abundance

of phyla Bacteroidetes and Firmicutes was predominant at the taxa level.

Gut microbiota taxonomic differences were found between TD cases and

controls, though inconsistently across studies. Further studies are needed to

reveal the underlying pathophysiology of TD and correlation between TD and

gut microbiota composition.

KEYWORDS

tic disorder, gut microbiota, data analysis, bacteroidetes, firmicutes

Introduction

Tic disorder (TD) is characterized by sudden, recurrent, non-rhythmic movement,
or phonic tic with childhood onset, ongoing throughout adulthood (Plessen, 2013).
According to the Diagnostic and Statistical Manual of Mental Disorders (DSM)-
5 (American Psychiatric Association., 2013), TD includes Tourette syndrome (TS),
chronic motor or vocal tic disorder (CTD), provisional tic disorder (PTD), other
specified tonic disorders, and unspecified tic disorders. TD is the most common
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movement disorder in children, but the reported prevalence
of TD varies considerably (Cubo et al., 2011; Yang et al., 2016;
Mohammadi et al., 2021) because a significant proportion of
patients do not recognize their tics (Ueda and Black, 2021).
Children with TD may experience subjective discomfort,
sustained social problems, sleep difficulties, and many
emotional problems (Conte et al., 2020; Fernández de la
Cruz and Mataix-Cols, 2020; Isaacs et al., 2021). TD is
commonly associated with obsessive-compulsive disorder
(OCD), attention-deficit/hyperactivity disorder (ADHD),
and anxiety disorders (Hirschtritt et al., 2015; Eapen et al.,
2016). Thus, research to understand the development of TD
is receiving increasing attention lately. TD occurs through
interactions including but not limited to genetic (Cao et al.,
2021), neurobiochemical (Kanaan et al., 2017), inflammation-
related (Martino et al., 2021), immunological (Lamothe et al.,
2021), and environmental factors (Storch et al., 2017). However,
its pathophysiology remains unknown.

Gut microbiota is a variety of microorganisms in the
gastrointestinal tract, normally more than 1,000 bacterial
species and with more than nine million genes. Gut
microbiota is extremely diverse and changeable with the
majority of bacteria from the four dominant phyla including
Bacteroides, Firmicutes, Proteobacteria, and Actinobacteria,
which constitutes more than 98% of all of the human gut
microbes. Gut microbiota constitute a very important part in
both of the health maintenance and the disease pathogenesis
process. It is a known fact that a diverse and stable and gut
microbiota is essential to for various normal physiologic
functions such as immunology regulation, prevention of
bacterial infection, energy harvest and metabolism, and so
on. Meanwhile, the gut microbiota is associated with disease
is often characterized by a decrease or increase in species
richness and proliferation of some specific pathogens. The gut
microbiota plays an important role in the extensive reciprocal
connections between the gastrointestinal system and human
brain, forming the microbiome-gut-brain axis (Cryan et al.,
2020). The association between gut microbiota and psychiatric
disorders has received increasing research attention (Morais
et al., 2021). Over the past decade, many studies have revealed
that the gut microbiota is directly involved in the production
of various neurotransmitters, such as gamma-aminobutyric
acid (GABA), serotonin (5-HT), glutamate, and dopamine
(DA) (Bull-Larsen and Mohajeri, 2019; Altaib et al., 2021;
Bhatt et al., 2022), which are closely associated with a number

Abbreviations: TD, Tic disorder; DSM, Diagnostic and Statistical Manual of
Mental Disorders; TS, Tourette syndrome; CTD, chronic motor or vocal
tic disorder; PTD, provisional tic disorder; OCD, obsessive-compulsive
disorder; ADHD, attention-deficit/hyperactivity disorder; GABA, gamma-
aminobutyric acid; 5-HT, serotonin; DA, glutamate and dopamine; FMT,
fecal microbiota transplantation; HC, healthy control; NOS, Newcastle-
Ottawa Scale; GSI, gastrointestinal severity index; DRA, dopamine
receptor antagonists; YGTSS, Yale Global Tic Severity Scale; ASD, autism
spectrum disorders; SCFA, short-chain fatty acid.

of psychiatric disorders, including TD (Kanaan et al., 2017),
ADHD (Turna et al., 2020), OCD (Simpson et al., 2021), and
anxiety (Ridaura and Belkaid, 2015).

Gastrointestinal symptoms are not common in TD patients
(Fernández de la Cruz and Mataix-Cols, 2020). However, studies
show that TD patients have a higher risk of metabolic or
cardiovascular disease than the general population, which also
plays an important role in the pathogenesis and course of TD,
suggesting a relationship between TD and microbiota (Brander
et al., 2019; Fernández de la Cruz and Mataix-Cols, 2020;
Tomasova et al., 2021). Most TD patients have sleep disorder
(Hibberd et al., 2020; Isomura et al., 2022) and are sensitive to
psychological stress (Tilling and Cavanna, 2020). Meanwhile,
gut microbiota can get disrupted under psychological stress
(Madison and Kiecolt-Glaser, 2019; McGuinness et al., 2022)
and is correlated with the sleep behavior (Qi et al., 2022).
Recent studies have shown that the gut microbiota plays an
indispensable role in regulating microglial maturation and
function (Bairamian et al., 2022). Circulation of microbe-
derived neurotransmitters, including acetylcholine, GABA,
and 5-HT, can regulate microglial activation (Fung et al.,
2017). Interestingly, abnormalities in microglial activation,
development, and function in the basal ganglia of TD patients
are also widely recognized (Frick and Pittenger, 2016). Some
studies have demonstrated that fecal microbiota transplantation
(FMT) effectively ameliorates TD symptoms (Zhao et al.,
2017, 2020). Animal studies have also shown that microbiota
have the potential to improve tic syndromes (Liao et al.,
2019). Despite evidence pointing to a connection between
gut microbiota and TD, the nature of this relationship
remains unclear. Better understanding of which microbiome is
associated with TD and its pathophysiological effects will enable
researchers to provide new therapeutic and diagnostic avenues
of TD in the future.

Thus, the primary objective of this review was to investigate
and compare the recent studies relating to gut microbiota
composition differences in patients with TD.

Thus, the primary objective of this work is to summarize,
investigate and compare recent studies on gut microbiota
composition differences in patients with TD.

Materials and methods

This work has been uploaded and accepted into PROSPERO
under the identification number CRD42021265088, performed
in accordance with PRISMA guidelines (Page et al., 2021).

Information sources

The databases PubMed and Embase (Ovid) were searched
for human studies in English up until June 15, 2021,
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using the following search strategies (for PubMed): ["tic
disorder"(Text Word) OR "tic disorders"(Text Word) OR
"tourette syndrome"(Text Word) OR "gilles de la tourette"(Text
Word) OR "pediatric autoimmune neuropsychiatric
disorders associated with streptococcal infections"(Text
Word)] AND ["gut microbiota∗"(Text Word) OR "gut
microbiome∗"(Text Word) OR "intestinal microbiota"(Text
Word) OR "intestinal microbiome"(Text Word) OR
"gastrointestinal microbiota"(Text Word) OR "gastrointestinal
microbiome"(Text Word)] (Supplementary Material 1). Gray
literature was included if fulfill the inclusion criteria.

Inclusion and exclusion criteria

Inclusion criteria:

• Original observational studies performed on TD patients
diagnosed according to DSM-5 (or IV) or ICD-11 (or 10).
• Detection of gut microbiota composition through high-

throughput sequencing techniques.
• Inclusion of a healthy control (HC) group.
• Published in English.

Exclusion criteria:

• Animal studies.

Study selection

Studies were imported into the Mendeley reference
manager1 to remove duplicates using its automatic function.
Files generated from PubMed and Embase were reviewed and
selected using the website: http://syrf.org.uk independently by
authors FF and SW based on titles and abstracts, and later the
included studies were whole-text reviewed manually. Studies
inconsistently agreed upon both reviewers were resolved by a
third author, FH.

Outcome measures

Data were extracted from the TD and HC groups using a
Microsoft Excel file (Supporting Information 2), focusing on
the demographics, microbiota analysis methodology, α- and
β-diversity, clinical information, and other relevant findings.
A meta-analysis was not performed in the present study.

1 https://www.mendeley.com/

Risk of bias assessment

The Newcastle-Ottawa Scale (NOS) was used to evaluate
the risk of bias in case–control studies. The NOS scale contains
three categories comprising total of eight items: selection (four
items), comparability (one item), and exposure (three items).
Quality score with a maximum of ten was obtained using a
rating algorithm: 0–5 (poor), 6–7 (moderate), and 8–10 (high).

Results

Study selection

Study selection was conducted using the PRISMA
guidelines. Using keywords, we found 41 studies from the
literature search. After the automatic removal of duplicates,
35 unique articles were identified. After screening the
titles and abstracts of these articles, six were assigned
to a full-text assessment, out of which three unqualified
articles were removed (one did not focus on TD and
two did not have original gut microbiota statistics).
Finally, we focused on three articles for further analysis
(Lee and Wong, 2018; Zhao et al., 2020; Xi et al., 2021;
Figure 1).

Assessment of study quality/bias

Estimates of bias were obtained for the three studies
that compared patients with TD with HCs using the
NOS, as indicated in Table 1. One study (Xi et al.,
2021) received a score of six (moderate) because the
interview was not blinded to the status. The second
study received a score of four (low) (Zhao et al., 2020)
due to the HC being only one child and thus the
resulting potential biases, and the last study received
three (low) (Lee and Wong, 2018) due to inadequate
description of the study.

Characteristics of studies

Demographic data of the three studies are shown in Table 2.
Two out of three studies were conducted in Beijing, including
a total of 54 patients diagnosed with TD and 51 HCs (Zhao
et al., 2020; Xi et al., 2021). The other study was conducted
in Taiwan, which included 24 TD patients and 11 HCs (Lee
and Wong, 2018). The total sample size of the selected studies
ranged from 6 to 99, with the number of cases ranging from
5 to 49, and the number of controls ranging from 1 to 50.
With these three studies combined, a total of 78 cases and
62 controls were investigated and included TD patients and
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FIGURE 1

PRISMA flowchart of the screening process.

TABLE 1 Quality assessment of included studies based on Newcastle-Ottawa scale (NOS).

No. Study Year Selection Comparability Exposure Total

1 Lee and Wong (2018) 2018 1 1 1 3

2 Zhao et al. (2020) 2020 2 1 1 4

3 Xi et al. (2021) 2021 3 2 1 6
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TABLE 2 Demographic data of the studies.a

No. Study Year City Participants Age mean (SD) Male (m/f) BMI mean (SD)

TD HC TD HC TD HC TD HC

1 Lee and Wong (2018) 2018 Taiwan n = 24 n = 11 NA NA NA NA NA NA

2 Zhao et al. (2020) 2020 Beijing n = 5 n = 1 8 14 5/0 1/0 18.0 NA

3 Xi et al. (2021) 2021 Beijing n = 49 n = 50 8.84 (2.35) 8.78 (2.26) 38/11 39/11 18.28 (2.99) 17.22 (2.66)

aData are presented as mean (standard deviation, SD) or number of participants. m, male; f, female; TD, tic disorder; HC, healthy controls; BMI, body mass index; DSM-5, Diagnostic and
Statistical Manual of Mental Disorders-5.

TABLE 3 Clinical information of patients with tic disorder (TD) and healthy controls (HCs).a

No. Study Diagnoses
(n)

Diagnostic
instrument

Disease
duration (SD),
year

YGTSS
scores (SD)

Comorbidities
(n)

GSI
(SD)

Gastrointestinal
disturbances

(%)

Medication
(n)

1 Lee and Wong
(2018)

TS: severe tics
(14); mild tics
(10)

N/A severe tics: 4.5 (2.33)
mild tics: 2.25 (2.5)

TTS scores:
severe tics,
27.4 (7.5); mild
tics, 14.8 (4.1)

N/A N/A N/A N/A

2 Zhao et al.
(2020)

TS DSM-5 1.5–4 YGTSS-
TTS > 13

ADHD (3),
variant asthma

(1)

N/A N/A Tiapride (3);
aripiprazole (2);
trihexyphenidyl
(2); risperidone

(1)

3 Xi et al. (2021) TD: TS (23);
PTD (17);
CTD (9)

DSM-5 2.11 (1.92) 36.71 (16.73) N/A 2.31
(1.86)

mild constipation,
26.53; abdominal

pain, 28.57

DRAs (12);
topiramate (1);
valproate (1);

treatment-naive
(35)

aSD, standard deviation; YGTSS, Yale Global Tic Severity Scale; YGTSS-TTS, Yale Global Tic Severity Scale Total Tic Scale (combined motor tic and vocal tic score); GSI, Gastrointestinal
Severity Index; TD, tic disorder; PTD, provisional tic disorder; CTD, chronic motor or vocal tic disorder; TS, Tourette syndrome; DRA, dopamine receptor antagonist.

TABLE 4 Microbiota analysis methodology and diversity results.a

No. Study Samples Stool storage Genetic quantification Alpha diversity Beta diversity

1 Lee and Wong (2018) Stool N/A N/A N/A N/A

2 Zhao et al. (2020) Stool −80◦C Shotgun metagenomic sequencing A reduced OTU number A different cluster in PCoA

3 Xi et al. (2021) Stool −80◦C Shotgun metagenomic sequencing No significant differenceb No significant differenceb

aOTU, operational taxonomic unit; TD, tic disorder; HC, healthy controls; PCoA, principal coordinate analysis. bBetween treatment-naïve TD patients and HCs.

HCs younger than 18 years. Moreover, the study design of two
studies was cross-sectional and compared gut microbiota in TD
patients with that in a HC group (Lee and Wong, 2018; Xi et al.,
2021).

In two studies (Zhao et al., 2020; Xi et al., 2021), patients
were assessed according to the DSM-5 criteria. We found that
only one study (Xi et al., 2021) mentioned gastrointestinal
disturbances (mild constipation and abdominal pain), and
provided gastrointestinal severity index (GSI) scores. Two
studies (Zhao et al., 2020; Xi et al., 2021) included cases
that received dopamine receptor antagonists (DRA) and other
medications, while the rest (Zhao et al., 2020; Xi et al., 2021)
did not mention these criteria. In addition, only one study
(Xi et al., 2021) excluded antibiotics/probiotics taken within

4 weeks prior to sample collection and any infective or other
severe disease conditions that may influence the gut microbiota.
The ability to compare or interpretation of individual studies
is limited by the extensive variability of different aspects of the
studies (Table 3).

Microbiota analysis

There were some differences in the sample analysis
with respect to the diversity of results in the included
studies, as shown in Table 4. Two out of three studies
(Zhao et al., 2020; Xi et al., 2021) used shotgun
metagenomic sequencing and analyzed the α-diversity
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TABLE 5 Different microbiota findings in tic disorder (TD) patients.a

No. Study Gut microbiota profiles Other findings

1 Lee and Wong
(2018)

Family: Prevotella was negatively
correlated with the
severity of tics.

↓:Prevotellaceae

Genus:

↑:Ruminococcus

↓:Prevotellab

Species:

↓:Clostridium bartlettii, Prevotella
copri, and Subdoligranulum
variabile

2 Zhao et al.
(2020)

Genus:
↓:Bifidobacterium,
Catenibacterium, Collinsella, and
Dorea

Species:

↑:Bacteroides vulgatus

↓:Allisonella histaminiformans,
Bacteroides coprocola,
Catenibacterium mitsuokai,
Dialister succinatiphilus,
Holdemanella biformis, and
Roseburia faecis

3 Xi et al. (2021) Species:
↑:Bacteroides plebeius,
Ruminococcus lactaris
↓:Prevotella stercorea,
Streptococcus lutetiensis

Bacteroides eggerthii,
Bacteroides dorei, and
Bacteroides
thetaiotaomicron positive
correlations with the
YGTSS scores.

aTD, tic disorder; YGTSS, Yale Global Tic Severity Scale. bSevere TS samples (n = 14).

and β-diversity of their samples without mentioning
the exact index.

Microbiota findings

The gut microbiota of TD patients was compared to that
of HCs to assess changes in different individuals’ bacterial
abundances. The findings are presented in Table 5 and a more
comprehensive listing in Supplementary Material 2. A study
by Lee and Wong (2018) stated that the Prevotellaceae family
and Prevotella genus were decreased and Ruminococcus genus
was increased in TD patients. In the study by Zhao et al. (2020),
Bifidobacterium, Catenibacterium, Collinsella, and Dorea genera
were decreased in TD patients. In another study by Xi et al.
(2021), the species Bacteroides plebeius, Ruminococcus lactaris,
Prevotella stercorea, and Streptococcus lutetiensis were decreased
in TD patients. Moreover, Xi et al. (2021) found that Bacteroides
eggerthii, Bacteroides dorei, and Bacteroides thetaiotaomicron
species were positively correlated with the Yale Global Tic
Severity Scale (YGTSS) scores (as with the severity of tics).
Genus Prevotella was negatively correlated with the severity of
tics in another study (Lee and Wong, 2018).

Discussion

Due to the limited treatment methods for tic disorder at
present, and the effectiveness of some treatment methods is not
so effective, or the effectiveness is limited, so the exploration
of its pathogenesis is particularly important, which will guide
the better diagnosis and treatment of tic disorder in the
future. In recent 10 years, in addition to finding better drug
treatments, there are more and more studies on the influences
of both hereditary and environmental factors on the occurrence
and development of tic disorders (TD). Understanding the
microbiome associated with TD has the potential to further
research on TD pathophysiology and provide individual
treatment options. Although many microbiome infections
appear to be correlated with TD (Müller et al., 2004; Mell
et al., 2005; Prasad, 2021), to our knowledge, so far no study
has revealed the fine-grain pathophysiology. In this work, we
attempt to assess whether individuals with TD had a distinct
gut microbiota composition compared to HCs. Notably, all the
studies identified that the gut microbiota of individuals with TD
were distinguishable from that of HCs, although the results of
each study varied. The fine structure of the gut microbiota varies
greatly among cases (Caporaso et al., 2011).

Main findings

Overall, no consensus regarding α-diversity and β-diversity
was found. Xi et al. (2021) found no significant differences
in diversity. However, Zhao et al. (2020) found some possible
differences, but this was not described in detail. At the taxa
level, the abundance of phyla Bacteroidetes and Firmicutes was
the predominant difference between TD patients and HCs.
One family, one genus, and three species of Bacteroidetes were
found to be decreased, while two species were found to be
increased in patients with TD. Two genera and eight species
of Firmicutes were found to be decreased, while one genus and
one species were found to be increased in TD patients. A study
by Lee and Wong (2018) found that the proportion of genus
Prevotella was negatively correlated with the severity of tics.
Meanwhile, Xi et al. (2021) found that the species Bacteroides
eggerthii, Bacteroides dorei, and Bacteroides thetaiotaomicron
were positively correlated with severity. Bacteroidetes and
Firmicutes phyla are also the most dominant gut microbiota in
normal people (Jandhyala et al., 2015) and are correlated with
inflammatory conditions such as inflammatory bowel disease
(Stojanov et al., 2020). The establishment of the gut microbiota
has been shown to be a progressive process, and the ratio
of Firmicutes to Bacteroidetes is significantly correlated with
human age (Ley et al., 2006). The Firmicutes/Bacteroidetes ratio
increases from birth to adulthood and further changes with age
(Mariat et al., 2009). Reports have shown that changes in the
ratio of Firmicutes/Bacteroidetes are significant factors affecting
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childhood diseases childhood obesity (Indiani CMDSP et al.,
2018), autism spectrum disorders (ASD) (Strati et al., 2017),
and others (Quagliariello et al., 2016; Valentini et al., 2020).
TD typically begins in childhood and often improves in early
adulthood, but the reason remains unknown (Hartmann et al.,
2020). Current studies link age correlation with TD and the ratio
of Firmicutes to Bacteroidetes, although the result is still not
definitive. Further studies should focus on this ratio to reveal
more comparable results.

Bacteria with increased abundance were found in the gut
microbiota of patients with various inflammatory diseases
(Zhang et al., 2015; Mondot et al., 2016), suggesting a
potential pro-inflammatory effect. Moreover, other studies
suggest that decreased abundance of genus Bifidobacterium
(Plaza-Díaz et al., 2017) and species Holdemanella biformis
(Pujo et al., 2021), which also decreased in this study,
had an anti-inflammatory effect. Zhao et al. (2020) analyzed
a wide range of inflammatory markers associated with
the gut microbiota. Several studies have confirmed this
mechanism, and reported elevated levels of pro-inflammatory
cytokines [including IL-12 and TNF-α (Leckman et al.,
2005)] and decreased levels of anti-inflammatory cytokines
(including IL-13) in TD patients (Parker-Athill et al., 2015).
In addition, the decreased levels of Prevotella copri, Prevotella
stercorea, and Roseburia faecis also determine short-chain
fatty acid (SCFA) levels (Louis et al., 2010; Liu et al.,
2021). SCFAs play an anti-inflammatory and antimicrobial
role in various interactions between gut microbiome and host
metabolism (Tan et al., 2014; Sanna et al., 2019). Additionally,
microbial metabolites can affect central neurotransmitters
by activating afferent nerve fibers. SCFAs can stimulate
the release of central neurotransmitters (including 5-HT)
in the intestine (Yano et al., 2015). Bifidobacterium is a
key member of the human gut microbiota affecting GABA
production (Barrett et al., 2012). High levels of Ruminococcus
lactaris (Dan et al., 2020) and low levels of the genera
Collinsella and Dorea (Strati et al., 2017) have also been
found in ASD patients with constipation symptoms, further
explaining the potential role and related symptoms of
Ruminococcus lactaris in the pathological mechanism of
neurodevelopmental disorders.

Treatment and diet

Although there have studies that attempted to utilize FMT
(Zhao et al., 2017, 2020) in the treatment of TS (the most severe
type of TD), the results have been limited. Zhao et al. (2020)
found that FMT might reduce fecal lipopolysaccharide levels
in TD patients and increase Bacteroides coprocola and Dialister
succinatiphilus abundance and decrease Bacteroides vulgatus
abundance. In the study by Xi et al. (2021), DRA-treated patients
showed enrichment of Bacteroides dorei, Escherichia coli,

Bacteroides caccae, and Ruminococcus gnavus. These enterotypes
also seem to have some functional relevance to diet. The genus
Bacteroides is associated with high-fat or high-protein diets and
Prevotella with high-carbohydrate diets (Wu and Hui, 2011).

Risk of bias

Of the three studies, Xi et al. (2021) displayed age and
BMI information as mean and SD, and Zhao et al. (2020)
included mean age and BMI. It has been reported that
age and BMI are related to the composition of the gut
microbiota (Haro et al., 2016; Odamaki et al., 2016). The
study by Zhao et al. (2020) was the only study with all-male
cases. This actually made the samples more homogeneous
because gut microbiota composition has also been shown to
differ according to sex (Haro et al., 2016). Lee and Wong
(2018) study had scarce demographic data. Although all
included studies reported YGTSS scores, there was a lack
of consistent diagnostic criteria for the case definition. The
reliability and accuracy of microbiome studies depend largely
on the molecular biology techniques used, and differences
in databases can affect the results of microbiome data
(Haro et al., 2016). The studies in this review lack such
information, and it is recommended that all studies use
uniform classification criteria and databases to obtain more
comparable results.

Limitation

However, there are several limitations that should be
acknowledged. First, this review included only three studies
and a small sample size; thus, more TD patients enrolled from
different studies are needed to make our results more reliable
and reasonable. Second, in vitro and in vivo experiments were
not conducted in the included studies. Finally, differences in the
study population, including age, sex, height, weight, genetics,
emotion, stress, and environmental factors, were not analyzed
in the included studies.

Conclusion

Emerging scientific data support the significant role of
the gut microbiota in the regulation of the central nervous
system. The results of the included studies show that the gut
microbiota in children with TD is significantly different from
healthy children. There is variability in microbial diversity as
well as the abundance of taxa in patients with TD, which
suggesting the complicity of the phenomenon. Furthermore,
pro-inflammatory cytokines and central neurotransmitters may
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both play an important role in the pathophysiology of the gut
microbiota in TD.
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In this study, a new quantifiable and refined urban street color analysis method

was proposed by combining professional color cards and e�cient software

color recognition, which solved the problems of low e�ciency and di�culty

in the quantification of urban color research and analysis. The research mainly

uses China Building Color Card (CBCC) and Python (use programs for the

HSV color segmentation of pictures) and other software to carry out color

recognition for a street view. From the aspects of color composition, type,

proportion, visual level, and color sequence of the street facade, this article

makes a quantitative analysis of the color of Avenida de Almeida Ribeiro in

Macao frommultiple angles. The method of combining color card colorimetry

with computer color recognition, which not only considers the inherent color

of the building but also includes the color situation under the influence

of the environment, can express the “actual color situation” of the building

more completely. This article quantifies, combs, summarizes, and compares

architectural color and environmental color completely. Thismethod has good

universality and ease of use in practice, and the conclusion of the study can

provide a reference for the color planning of Macao, the color selection of

urban renewal has reference significance, and provide a new method for the

study of urban color.

KEYWORDS

computer vision, architectural color, streets of Macao, color identification,

quantitative research

Introduction

Research background

The urban color shows the unique style and temperament of a city, and streets

and buildings are the main manifestations of urban color. With the continuous

improvement of the demand for urban space quality, the study of urban color emerged

in western countries in the mid-twentieth century. In 1978, French scholar Jean-Philippe
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Lenclos, established “Atelire 3D Coulour,” which designed

and studied the urban color environment of residential and

industrial environments in many cities (Lenclos, 2019). In 1996,

Professor Michael Lancaster of the University of Greenwich put

forward “Color Landscape Theory,” which emphasized: “to show

the relationship between colors and colors and between colors

and environment, and proposed to show the color characteristics

of cities in the context” (Hsiao et al., 2013). Haroldting, a

professor of architecture in the United States, took color in

architectural design as the object and wrote “Color Consulting”

to discuss architectural color in cities (Tang et al., 2020).

In addition to the development of western color theory,

Japan is one of the first countries in Asia to study urban

color. In the 1970s, based on the research of French

scholars, Japan established the Color Planning Center

(Hsiao, 1995), an institution dedicated to the study of

urban environmental Color. Subsequently, the country

such as China, Korea of Italy, Germany, and Asia brings

color into urban landscape environment management

successively. At the end of 1990, with the introduction of

urban color theory in China, urban color received more and

more attention in urban construction, and color has been

included in detailed urban control planning as a guiding

indicator. Nowadays, many cities in China began to put

forward representative urban construction colors, such as

Beijing proposed compound gray, Harbin proposed beige

and white.

Macao not only combines the diversity of Chinese and

Western cultures but also shows its unique charm through its

urban color. Just as the famous American scholar Jane Jacobs

mentioned in her urban diversity theory: diversity is nature to

big city (Wickersham, 2001). Urban color is also an objective

existence of urban diversity and plays an important role in

the urban spatial image. Streets and buildings, as the main

embodiment of urban color, do not exist in isolation. The

combination of architecture and environment can form a unique

urban personality.

Object of study

Avenida de Almeida Ribeiro in Macao, built-in 1918, is

about 580M long, ending at “Avenida da Praia Grande” (road

name) in the east and “Rua das Lorchas” (road name) in the

west. The road width is 9–12M, showing a changing trend

of wide in the east and narrow in the west. As a relatively

prosperous street in Macao, it has witnessed the development

process of Macau’s inner port area from the old fishing port

wharf to the commercial hotel building. The building near Rua

Das Lorchas in the west retains the original overhang structure.

In the middle section are the “Instituto Para Os Assuntos

Municipais” (Municipal Department) and “Largo Do Senado”

(square), a hotel and a bank built-in the twentieth century. The

eastern end, near Avenida da Praia Grande, was built after the

twentieth century.

Avenida de Almeida Ribeiro is popularly known by residents

as “The New Road.” Different from other roads in the

region, Avenida de Almeida Ribeiro, a major urban renewal

project of Macao in the twentieth century, is an important

passageway through the entire inner harbor from east to west

based on the original inner harbor area of Macao. Before

1918, Avenida de Almeida Ribeiro was the section from

Largo do Senado to the inner-Harbor area. In 1918, after the

renovation, the government renamed the new road as “Avenida

de Almeida Ribeiro.”

Macao’s government attaches great importance to the

protection and management of historical and cultural heritage.

Avenida de Almeida Ribeiro is an important part of Macao’s

World Cultural Heritage, and its street facade has retained

its original appearance in the early twentieth century. The

former municipal and commercial space forms not only show

the unique charm of the coexistence of Chinese and Western

cultures but also completely retain the original color of the street

facade, which is beneficial to the study of the traditional color of

Macao city streets in this article (Figures 1, 2).

Computational vision

Human vision mainly relies on light-sensitive cells in the

retina of the eye, and color vision with the cone cells in the

retina, the layer of nerve cells that transmits visual signals to

the brain. In other words, color perception is based on cells

and is a subjective feeling. However, the computer is based on

image pixel color data statistics and can be more objective and

quantified statistics.

The concept of computer vision was first proposed in 1970

(Szeliski, 2010). It is a method of translating three-dimensional

objects into two-dimensional images into pixel numbers, color

values, and other information for analysis through a software

editing algorithm (Lee et al., 2015). The purpose is to establish

a quantitative understanding of spatial images with the help

of computers. Compared with the traditional way of using

color cards directly or using an electronic color spectrometer

to identify the color of buildings, the method of computer

vision extraction is more similar and efficient to human visual

perception. The traditional color card colorimetric method,

through the naked eye judgment, will inevitably produce color

perception error. The same color in different environments will

be affected by weather, ambient light and other environmental

factors and change its original color.

Consequently, this article uses computer vision to quantify

color value recognition tomake up for the color deviation caused

by eye color recognition. Through a picture color segmentation

program to obtain a variety of color statistics. This is a more

objective and reproducible approach.
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FIGURE 1

The post o�ce of the Macao special administrative.

Color extraction and analysis
methods

Foundation of architectural color system

Based on the “Munsell Color System,” the Chinese

architectural color system has formed The color standard of

GB/T 15608-2006 (The Chinese Color System). The standard

divides color into hue (H), value (V), and chroma (C) based

on the three attributes of color perception. “CBCC China

Building Color Card” was compiled under this standard. This

study follows China’s architectural color standards, based on the

Munsell Color System, with the help of the “CBCC Chinese

Architectural Color Card” as the reference for building inherent

color sampling, combined with computer vision. “HSV color

space” (Sural et al., 2002) (hue—H, saturation—S, and value—V)

was used as the extraction of environment color and space color.

The computer algorithm can be easily used in HSV color

space to present the hue, saturation, value, and shade of the

color in the form of data. The description of HSV color space

is close to the human perception of color. HSV encapsulates

information about color in ways that are more familiar to

humans: “What color is this? What about the depth? How about

light and shade?” In addition, these color data can be separately

and independently processed to facilitate more refined color

quantization research.

Street color extraction—A combination
of old and new methods

The method of this study combines color cards with

computer color recognition.

First, “CBCC China Building Color Card” was used to

compare the actual buildings with Color cards on-site. To

avoid the color difference caused by weather, light changes and

environmental reasons, the on-site color taking time is from

9 a.m. to 11 a.m. or from 3 p.m. to 5 p.m. on cloudy days for

color card comparison and shooting (18/05/2021–20/05/2021).

The number of recorded photographs shall be at least five for

each building. We took 460 photos to provide a field data source

for subsequent computer color recognition.
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FIGURE 2

Largo do Senado.

Second, color segmentation and recognition of architectural

environment color and space color were carried out with the

help of Python (a program for the HSV color segmentation of

pictures) (Srane96, 2019). This python program (HSV-Color-

Range-Calculator) can be used to calculate HSV color ranges for

each color and see the result live. We referenced and modified

his program for image color processing.

Finally, the obtained color data are the approximate value of

the color deviation perceived by human eyes. After sorting out

the data, the overall color situation of street building facades can

be obtained (Figure 3).

Color analysis method—Quantitative
statistics

After extracting the “inherent color” of buildings mentioned

above, the inherent color is classified into main color, auxiliary

color, and ornament color according to the ratio of architectural

color area and its proportion is counted.

At the same time, the computer is used to perceive

and recognize the “environment color” of the building. The

color sequence of the whole street building is compared and

summarized according to the style characteristics and color

types of the building facades on both sides of the street.

Then, with the help of Rhino and Grasshopper and other

software combined with the current photos, the influence

of distance and color on the “space color” of the building

was analyzed.

In general, a relatively complete architectural color

classification and analysis system is formed in this article from

the three perspectives of “color type, color sequence, and color

visual level” of street building facades.

Analysis of architectural color

Classification of architectural colors

There are a total of 73 buildings on both sides. Using

CBCC color cards to compare the walls, doors, windows, and

decoration of the buildings, 186 types of color samples were
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FIGURE 3

Color card selection and computer vision recognition of architectural color analysis example.

obtained. But many of the colors are the same, so we excluded

the same color samples and ended up with 35 colors comparable

to the color card. Among them, gray is the most abundant

architectural color type and has more decorative colors. The

rest is composed of a large wall face and white decoration.

From the perspective of inherent color, the main color of street

architecture is clear, which can be divided into red, yellow, green,

blue, and gray. Auxiliary color is mainly located in the building

decoration part of the gray color system. Ornament color is

mainly located in the blinds, window frames, and shop sign text

position (Figure 4).

Next, this study splices a large number of building facade

photos taken by field research into a complete street facade map.

As shown in the figure, the upper part is the full elevation of the

east side of the street, and the lower part is the full elevation of

the west side of the street. The color calculation range is only for

the building part, and the sky and ground are not included in the

calculation. After stitching, the image size is 319.28∗71.79 cm,

37,710∗8,479 pixels, and 300 dpi.

On this basis, the “environmental color” of street buildings

is recognized by Python. Finally, color data obtained by

computer color recognition are quantified and integrated with

the inherent color obtained above. Complete quantitative

results of street color obtained after statistics are as follows

(Figure 5).

In terms of the proportion of color types of the whole

building, the number of buildings identified as yellow is the

largest, accounting for 33.07%. This was followed by 31.43%
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FIGURE 4

The statistical table of “inherent color” of buildings based on the CCBC color card.

gray, 17.15% green, and 15.89% blue red buildings are less,

accounting for 2.79%.

From the distribution of the overall building color (Figure 5:

H-information) on both sides of the street, yellow, green, and

blue occupy the majority, and red is less. It is worth noting that

most of the peripheral green and blue colors in polar coordinates

are not inherent colors of the building body. Among them, green

(10GY ∼ 7.5 g) is greatly affected by the construction enclosure

with higher purity, and blue (2.5B−10B) is greatly affected by the

reflection of the sky. Therefore, excluding these two colors with

greater interference, yellow (5RY−2.5Y) can be obtained as the

main hue of the street building facade. Followed by yellow-green

(10Y−10GY), blue-green (7.5G−2.5B), and red (10RP−7.5R),

among which red (near 2.5R) with high saturation is the color

of the shop’s sign.

From the perspective of the overall building color saturation

(Figure 6: S-information), the saturation is at a low value, and

the overall color saturation of the street is mostly between 0
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FIGURE 5

Two facades of Avenida de Almeida Ribeiro, Macau.

FIGURE 6

HSV color information analysis diagram.

and 0.6. The overall architectural color lightness (Figure 6: V-

information) tends to be medium-high, mostly between 0.2

and 0.8.

On the whole, architectural colors are characterized by clear

hue types, low overall saturation, and medium-high lightness

(Figure 7).

Color sequence of street building facades

As the street with the largest concentration of

historical buildings in Macao, Avenida de Almeida

Ribeiro’s architectural color sequence can better reflect

the color characteristics of historical buildings in Macao.

According to the location of buildings on both sides of

the street, the corresponding lightness, saturation, main

color, and auxiliary color of each identified building

are arranged and expanded accordingly, that is, the

continuous color sequence of the building facade is obtained

(Figure 8).

In terms of the value and saturation of the color

sequence, the data fluctuation of the west facade is small and

the color continuity is good. The lightness and saturation

values on both sides of the street are very similar. The

average saturation of buildings on the east side is 21.13%,

and the average lightness is 62.52%. On the west side,

the average saturation is 22.09% and the average lightness

is 59.85%. The east side of the building is affected by

facade maintenance and construction, the continuity of color

is blocked and broken, and there is a high saturation

of construction envelope color. Nevertheless, although the

continuity of color on the east side is blocked, the intensity
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FIGURE 7

Statistical table of building “environmental color” based on computer vision analysis.

FIGURE 8

Analysis of the changing trend of building type and facade color lightness and saturation.

and area of maintenance also reflect that Macao attaches great

importance to the protection and maintenance of historic

building facades.

The style of the architectural is corresponding to the

color. The relation between architectural style and color

can be obtained by calculating pixel values of different
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colors. The architectural styles on both sides of the street

can be roughly divided into (1) buildings listed as having

artistic value; (2) Portuguese-style architecture, (3) the

simplified version of Portuguese architecture, (4) Lingnan and

Portuguese mixed style architecture, and (5) Contemporary

architectural styles. In terms of the color pixel value of each

type, Portuguese architecture occupies the highest proportion

(42.3%). Portuguese architecture accounted for 30.6% of the

total pixels, and simplified Portuguese architecture accounted

for 11.6% of the total pixels. Contemporary architectural style

occupies the second place, accounting for 35.6% due to its

higher overall height and larger color area. Again, 8.7% of

Macau’s buildings were listed as artistic, including the baroque

civil affairs office (Instituto Para Os Assuntos Municipais).

The post office of the Macao special administrative, and the

preserved pink facades on the ground floor of the Banco

Nacional Ultramarino (B.N.U Building). Finally, construction

and maintenance accounted for 2.2% of the total. In addition,

through the perception of cold and warm architectural colors, it

is found that Portuguese classical historical buildings are mainly

yellow-green warm colors. Buildings in the Chinese Lingnan

style are mainly gray; contemporary buildings are a cool shade

of blue with glass walls and marble veneers.

In conclusion, the building color value of the whole street

is higher, and the saturation is lower. Higher color value makes

the streets look brighter, and lower saturation makes the street

feel softer. These styles not only blend on the same road but also

maintain their color characteristics and coordinate with each

other, forming the color gene barcode with the characteristics

of Macao City.

Visual hierarchy of street architectural
colors

Define the visual hierarchy of colors

Based on human field angle, with the help of Python and

GH (Grasshopper parametric analysis software), the spatial color

recognition of street buildings affected by distance is studied,

that is, the color change analysis of street buildings located in

the front, middle, and back of different visual levels.

The computer color perception setting is based on the

height of the human eye position. From the average sizes of

men and women in China (male: 1.75m, female: 1.63m), the

total average height is 1.69m (World Data, 2020). Some studies

have demonstrated that the ratio of head height to body height

in adults is 1:7.5 and the height range of the eyes is 1/2 of

head height (Shi and Huang, 2015). Therefore, according to the

calculation, the average eye height of Chinese adults is about

1.58 m.

The upper and lower limits of the visual field color

discrimination range are 30◦ up and 40◦ down. The left and

FIGURE 9

The range of color discrimination of human visual field (vertical

direction).

FIGURE 10

The range of color discrimination of human visual field

(horizontal direction).

right boundaries are 30◦-60◦ to the left and 30◦-50◦ to the right

(Mollon, 1982) (Figures 9, 10).

In addition, the perceived depth of the view level is

divided into three scales according to “Exterior Modular

theory,”(Ashihara, 1981) which is convenient for calculation and

statistics. The observation range is set as follows: 0–25m is the

close-up view that can see the details of the building; The mid-

range from 25 to 100M of the building outline can be observed;

able to see objects with the blurred outline of 100M or more in

distance by color or light (Yang et al., 2020).

To have a comprehensive understanding of people’s different

visual feelings in the two directions of the street, six isometric

observation sections were set between the beginning and end
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FIGURE 11

Analysis of Architectural Color Hierarchy perception of Avenida de Almeida Ribeiro in Macao.

of the sidewalk on both sides of the street with a total length

of about 590M according to the 100M boundary of the vision.

There were seven observation points including the starting

and ending points, and each observation point was a two-

way forward and backward observation. Thus, a total of 14

observation angles were used to analyze the spatial color of street

building facades.

Visual hierarchy analysis of color

According to the overall color level perception analysis of

street building facades, the spatial color of the street building

facade is affected by distance, street width, and building height.

Avenida de Almeida Ribeiro is 9–12M wide. The road is

wide on the east and narrow on the west. The horizontal angle

of view is set to 0–25m at close range, which can completely

cover the color recognition of the building facades on both sides

of the street. For the vertical view, the limits are set to 30◦ up

and 40◦ down. Avenida da Praia Grande to Largo Do Senado

is dominated by high-rise buildings. The section from Largo

do Senado to Rua do Visconde Paco de Arcos is dominated

by the three stories Macau Varanda building with a height of

about 15M. Therefore, the spatial color perception of the section

of high-rise buildings is dominated by the color of low-rise

buildings. According to the calculation, the color perception

degree of the high-rise building section is 40–70%; the section of

the Macau Varanda building can completely cover the building

facade, and the color perception is 80–100%. The overall color

perception degree is bounded by Largo do Senado, presenting

two obvious spatial color perception states (Figure 11).

Thus, it can be seen that the integrity of spatial color

perception can be better ensured by controlling the width of the

street and building height within the close-range view of 25 M.

At the same time, space color is greatly affected by the

distance between the two directions of the street. Avenida de

Almeida Ribeiro is 590M long and has a relatively straight

road, which is relatively transparent from one end without large

buses. This kind of road state has a great influence on the

architectural space color on both sides of the street. As the

depth of field changes, the greater the refraction of light by

atmospheric dust at greater distances, the less clear the distant

buildings become. It also reduces color saturation. In good

weather, the dust refracts atmospheric blue light more, and the

farther away from the building, the bluer it is. The color and
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FIGURE 12

Statistical table of spatial color levels and colors of 14 observation points in two directions of the street.

the distance of the building present a subtle hierarchical change

(Figure 12).

From the data of the specific spatial color perceptive area, the

variation trend of 0–25m close-range in both directions is large,

and the value is in the range of 10.22–49.30%. The variation

of mid-shot from 25 to 100M ranged from 36.82 to 73.88%.

Distant-view above 100M has little variation, ranging from

0.51 to 10.64%. In addition, according to the data changes in

observation points, it can be found that Largo do Senado (View

point-3) is also the cut-off point, and there are two obvious

trends of change: The “high-rise section” between Avenida da

Praia Grande and Largo do Senado has a relatively small close-

range area, ranging from 10.22 to 21.21%, and its color is mainly

blue and gray. The area of the mid-shot is generally larger, with

values ranging from 53.64 to 73.88%. The value and saturation of

colors are relatively high, especially in the vicinity of observation

point 3 (Figure 13).

While the close view of the “Macau Varanda Building

Section” from Largo Do Senado to Rua do Visconde Paco de

Arcos is more than that of the “High-rise Section,” the close-

range value is between 16.73 and 49.30%, and the color is mainly

yellow and gray. The mid-shot is less than the “tall building

section,” the value is between 36.87 and 69.33%, and the color

is mainly yellow-green. From another point of view, the spatial

color perceptive area of the “High-rise section” is characterized

by less close-range and great mid-shots, while the proportion of

close-up views and mid-shots of the “Macau Varanda Building

Section” is large and fluctuates steadily.
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FIGURE 13

Space color perception area and trend of observation points.

In addition, as the space color perception of “Distant-view”

is affected by the height of buildings at both ends of the road,

the spatial color perception shows different rules. Avenida de

Almeida Ribeiro is surrounded by tall buildings at both ends,

so the spatial color area of the “Distant-view” is affected by the

height of distant tall buildings both in the forward and backward

directions. The range of “Distant-view” in two directions was

0.51–10.64% and 1.09–9.16%, respectively.

The data in both directions have their characteristics.

According to distant-view spatial color statistics from Avenida

da Praia Grande to Rua do Visconde Paco de Arcos, except

for the endpoint of Rua do Visconde Paco de Arcos, the area

of the distant-view in this direction remains between 5.25 and

10.64%. As the endpoint of this direction is a T-junction and the

buildings at the end are in large yellow tones, the distant-view is

almost blocked by the tall buildings on the opposite side of the

road, and the color perception level of the view space is mainly

yellow in close-up view and mid-shot. Although the blue-gray

color of distant-view is only 0.51%, it continues the yellow color

characteristics of this section of the Macau Varanda building.

From Rua do Visconde Paco de Arcos to Avenida da Praia

Grande, the trend is obvious, showing a gradually increasing

trend from 1.09 to 9.16%. This is because Avenida da Praia

Grande is directly connected to Avenida do Infante D. Henrique

(road name) with the same long value, which further extends

the distant space. Avenida do Infante D. Henrique is dominated

by tawdry high-rise commercial buildings and hotels. The sense

of space of color spreads from blue-gray in close-up views to

yellow-gray of distant-view.

Conclusion

This article takes the color of the Avenida de Almeida

Ribeiro in Macao as the research object and analyzes the

color classification from the three aspects of “inherent color,”

“environment color,” and “space color” of the street facade.

After extracting the “inherent color” from the CBCC Chinese

architecture color card and quantifying the “environmental

color” by the Python program, the phenomenon and rules of

color classification research on the facade of the Macau World

Cultural Heritage street building are discussed in terms of color

types, color sequences, and color levels. Thus, a multi-angle

street building facade color research system is formed, which

can comprehensively summarize the color characteristics of the

road-building facade.

From the perspective of color classification, this article

classifies and arranges the main and auxiliary colors according

to color types to find out the combination rules of architectural

colors. The results show that the color ofMacau’sWorld Cultural

Heritage Street buildings is characterized by clear hue type, low

overall saturation (S = 0–0.6), and medium-high value (V =
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0.2–0.8). At the same time, the number of buildings identified

as yellow is 33.07%, followed by gray at 31.43%, green at 17.15%,

blue at 15.89%, and red at 2.79%.

From the perspective of horizontal space of color, the article

summarizes the relationship between architectural style and

color sequence. Buildings of artistic value, including baroque

municipal offices (Instituto Para Os Assuntos Municipais), the

post office of the Macao special administrative and Banco

Nacional Ultramarino, 8.7%; Portuguese classical historical

buildings accounted for 42.3%, mainly in the warm color

of yellow and green; Buildings with Chinese Lingnan style

accounted for 11.2%, mainly gray; Modern buildings, moreover,

are 35.6 percent blue. Architectural types in different periods on

the same road can not only blend in style but also maintain their

color characteristics and coordinate with each other in color.

From the perspective of vertical space of color, GH software

is used to sort out the color horizon level of “space color”

and the change in the color space level. The overall color level

perception degree of street building facade space color is affected

by distance, street width, and building height. Largo do Senado is

taken as the turning point to present the distinctive spatial layers

of the “High-rise Road section” and “Macau Varanda Building

Road Section.” Space color is greatly influenced by the distance

between the two directions of the street and the height of the

building at the end of the road.

In conclusion, based on the characteristics of human vision,

a new method of color quantization combining color cards

and computer vision analysis can be used to comprehensively

analyze and comb the street facade colors of Avenida de

Almeida Ribeiro in Macao. This method can reduce the error

of traditional empirical visual recognition and has ease of use

and universality in practice. The conclusion can provide a

reference for color planning and facade color restoration of

Macao, and has reference significance for the color selection

of urban renewal. Nevertheless, the accuracy of this color

recognition method needs to be further improved. In future

research, the computer vision color perception analysis method

used in this article will continue to be enhanced in a more

accurate and intelligent direction, providing new ideas for the

study of urban color.
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Heart disease is an emerging health issue in the medical field, according

to WHO every year around 10 billion people are affected with heart

abnormalities. Arteries in the heart generate oxygenated blood to all body

parts, however sometimes blood vessels become clogged or restrained due

to cardiac issues. Past heart diagnosis applications are outdated and suffer

from poor performance. Therefore, an intelligent heart disease diagnosis

application design is required. In this research work, internet of things

(IoT) sensor data with a deep learning-based heart diagnosis application is

designed. The heart disease IoT sensor data is collected from the University of

California Irvine machine learning repository free open-source dataset which

is useful for training the deep graph convolutional network (DG_ConvoNet)

deep learning network. The testing data has been collected from the

Cleveland Clinic Foundation; it is a collection of 350 real-time clinical

instances from heart patients through IoT sensors. The K-means technique

is employed to remove noise in sensor data and clustered the unstructured

data. The features are extracted to employ Linear Quadratic Discriminant

Analysis. DG_ConvoNet is a deep learning process to classify and predict heart

diseases. The diagnostic application achieves an accuracy of 96%, sensitivity

of 80%, specificity of 73%, precision of 90%, F-Score of 79%, and area under

the ROC curve of 75% implementing the proposed model.

KEYWORDS

heart disease, detection, IoT - internet of things, sensor data, deep learning, artificial
neural network
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Introduction

According to WHO, cardiovascular disease (CVD) is a
significant reason of death worldwide, with 17.8 million
deaths every decade (Rath et al., 2021). The American
Cardiac Organization (Zhang and Xu, 2021) specifies detailed
indications like sleep disorders, slight pain increase as well as a
drop-in heart rate and fast weight improvement (up to 1.5-2.5 kg
per 7 days) (Vincent Paul et al., 2021). However, more study
data and patient records from hospitals become available as
time goes on. Machine learning (ML) and artificial intelligence
(AI) are now widely recognized as able to play a vital role in
the medical industry. ML and deep learning (DL) methods are
often used to diagnose conditions as well as classify or anticipate
results. ML algorithms can do a complete examination of genetic
data in a short amount of time. Medical records are modified
and analyzed extra thoroughly for improved predictions, and
methods are trained for knowledge pandemic predictions (Liu
et al., 2022). Heart disorders are identified with congenital,
coronary and rheumatic events, and 370,000 Americans died
due to coronary heart disease (HD) type heart attacks in 2015.
Annually Americans are spending $250 billion USD on HD
diagnosis and treatment. According to the American heart
association, medical HD disorders will be able to be predicted
by 2030.

Exercise stress tests, chest X-rays, CT scans, MRI, coronary
angiograms, and electrocardiograms (ECG) are currently used
to diagnose the severity of HD in patients. Patients need
early and precise diagnoses of coronary HD to receive timely
and effective treatment and boost their chances of long-
term survival. Unfortunately, cardiovascular specialists may
not be available in many resource-limited places worldwide
to do these diagnostic tests. Missing diagnoses, incorrect
diagnoses, and therapies put patients’ health in danger in
many circumstances. In addition, early detection of HD causes
preventative interventions such as drugs, lifestyle changes,
angioplasty, or surgery, which can help to slow disease
development as well as minimize morbidity (Morris and Lopez,
2021). As a result, precise and timely heart disease diagnostics
are critical for lowering mortality as well as enhancing long-term
survival rates in patients. Because early detection of coronary
HD is challenging, computer-assisted techniques for detecting
and diagnosing heart disease in people have been developed.
In medical institutions, ML methods that analyze clinical data,
evaluate it, and diagnoses medical conditions is becoming
increasingly common in healthcare fields.

The research contributions of this paper are as follows:

1. Collect internet of things (IoT) sensor-based heart disease
data in the detection of heart disease using a deep
learning architecture.

2. Process input data for noise removal and cluster the data
using K-means clustering.

3. Extract the features using Linear Quadratic
Discriminant Analysis.

4. Classify the extracted data using a deep graph
convolutional network (DG_ConvoNet).

Appendix

Internet of things (IoT), World Health Organizations
(WHO), cardiovascular disease (CVD), Receiver Operating
Characteristic Curve (ROC), Machine learning (ML), Artificial
Intelligence (AI), Deep learning (DL), Heart-Disease (HD),
Support Vector Machine (SVM), Heart Rate Variability
(HRV), Convolution Neural Network (CNN), Magnetic
Resonance Imaging (MRI), Deep Graph Convolutional
Network (DG_ ConvoNet).

Related work

In this section, a brief literature has been employed from
the latest research papers related to heart disease prediction
using IoT sensor data. Feature extraction, classification and
predictions are the major steps involved in intelligence
algorithms. Manogaran et al. (2017) utilized a variety of big
data methods to detect cardiac illness, as well as hyperparameter
tuning to improve the accuracy of results. Kanksha Aman
et al. (2021) employed generalized discriminant analysis for
extracting nonlinear HD features. A binary classifier with
extreme ML has been used to reduce overfitting issues as
well as increase training time on finding heart disorders
prediction. For detecting coronary HD, the accuracy was 73%
had been attained which was very less. Heart rate variability
was classified as an arrhythmia by Divya et al. (2021). The
heart abnormality disorders classification was done with a
multilayer perceptron neural network, and 91% accuracy was
reached by decreasing features or using Gaussian Discriminant
Analysis, in this research work hidden features haven’t been
included. Hasan and Bhattacharjee (2019) employed Gaussian
discriminant analysis to reduce HRV signal characteristics to
15 and an SVM classifier to obtain 70% precision, this research
work cannot solve unstructured sensor data from IoT networks.
An enhanced CNN model is proposed by Huang et al. (2019), in
which 92.35% accuracy had been detected, the main limitation
of this work is STFT-based spectrogram analysis. The STFT
model is very old and faces clustering issues when large datasets
have been applied to it. The Fruit classification is a complex
process to predict heart diseases through IoT sensor data. The
following challenge was solved by using a CNN-based technique
by Wang et al. (2020). According to the researchers, designed
past HD detection methods has a less classification accuracy,
which is get improved than the existing methods. Zhang et al.
(2019) proposed a comprehensive description of multimodal
data fusion of heart-related sensor data. A combination of
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CT, MRI, PET, optical imaging and radionuclide datasets has
resulted in complete pathology of heart disorders in a radiology
manner. The image fusion-based approach has been found
to improve clinical diagnosis in recent years but failed at
emergency diagnosis conditions. The CNN-based diagnosis
algorithm implemented by Zhang et al. (2020a). In this research,
stochastic pooling, as well as optimization of hyperparameters
connected with CNN. The major drawback of this study is
neuroimages orientation is altered from patient to patient so that
when applying a new image to the designed application, the HD
abnormality detection rate had been getting changes extremely.

The realized methods which are shown in Table 1 have less
operational sensitivity, specificity, and accuracy. Zhang et al.
(2020b) introduced an FGCNet-based HD features extraction
from GCN and CNN models. This method is used to diagnose
chest CT scan-based heart disorders prediction but fails at noise-
based CT scan radiology images specified as test input. The
FGCNet is said to aid quick COVID 19 detection utilizing
chest CT scans. Wang et al. (2021a) presented the CCSHNet
method for heart disorders detection, which combines deep
fusion. The designed CCSHNet models failed at large data
samples applied at the training stage. The DCA and transfer
learning-based models are very critical to detecting HD at
large dimensional data. The CCSHNet is a viable option
for detecting infectious heart illnesses, including COVID 19,
according to deep exhaustive analysis. The literature review
from many latest articles identified that traditional ML-based
detection of arrhythmia with ECG signals analysis methods are
outdated. However, fewer research works have been published
on HD detection utilizing ECG signals and DL techniques are
trending but IoT-related works are not much efficient to predict
HD. Wang et al. (2021b) evaluate classification algorithms
using an ML technique to predict cardiac disease. This work
demonstrated the bagging technique prediction for HD with
a good performance rate, as well as accuracy level. Superior
HD prediction models other than past techniques are necessary.
Martins et al. (2021) offer a genetic approach for predicting
human heart disease through echocardiographic, the designed
method is limited to huge unstructured data. The implemented
method might reduce the number of test cases required to
detect HD issues based on Ali et al. (2021) and Ladefoged
et al. (2021). The successful HD abnormality prediction based
on the radiology dataset is outdated as well as latest IoT-based
techniques are required. Saikumar et al. (2022) aim to develop
a precise categorization algorithm for accurately predicting
cardiac disease but are unable to work on IoT sensor data.
The following work concluded that regression classification is
used to predict HD more accurately than other techniques
by Saikumar and Rajesh, 2020a,b. R-C4.5 is proposed, and its
features are extractí from the given technique by Koppula et al.
(2021). The study used their equipment and found it a very
beneficial machine in the healthcare industry for predicting ML-
based approaches Garigipati et al. (2022). The above discussions

are providing information about earlier HD prediction models
and its limitations. It is clear that many cardiac diagnosis models
are facing various low-level and high-level issues under dynamic
conditions. This research work looks to solve some of the
indicated issues from the related works.

System model

This section discusses the proposed DL technique based
on feature extraction as well as classification in heart disease
diagnosis. Here, the input data has been collected as IoT sensor
data from a patient monitoring system.

The collected data has been processed for noise abstraction
using a clustered-based K-means algorithm. Gaussian noise
that was present in the medical images was removed at
this block. Clustered information is used to extract the
features utilizing Linear Quadratic Discriminant Analysis.
Finally, the extracted features have been classified using the
DG_ConvoNet. The architecture of the proposed method is
shown in Figure 1. The pre-processing unit categorizes image
registration from the medical raw image data (University of
California Irvine machine learning repository). The registration
enhancement process is used to line up the image for de-
noise processing. Due to speckle disturbances, medical images
get damaged and hinder the ability to identify deep features
needed for DL. As a result, medical images are de-specked
using a filtering approach technique to improve categorization
results.

K-means clustering

Since k represents the number of clusters, there are k
centroids, one for every cluster. After the Euclidean distance
between each data point and the centroid has been evaluated, the
assignment of data points to the centroid is based on the shortest
Euclidean distance from that centroid. An early grouping is
done when no point is left unassigned. Now, k new centroids
are generated, and the iteration continues until the k centroids’
positions do not change. In this stage, 256 clusters had to be
created and processed for the centroid calculation of the cluster.

Let Y = {x1, x2, x3, ..., ..., xn} are set of dataset opinions as
well as Z = {z1, z2, ..., ...zc} be set of centers.

1. Arbitrarily choose ‘c’ cluster centers.
2. Evaluate the distance among each information point as

well as cluster centers.
3. Allot data points to the cluster center with the shortest

distance between it and all other cluster centers.
4. Again, evaluate the original cluster center using the

following Eq. (1):

Zi = (1/ci) .6E1
j = 1xI (1)
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TABLE 1 Recent studies related to heart abnormality prediction.

S No Author Techniques Performance
accuracy

Limitation

1 Rahmani et al., 2018 IoT based e-health Accuracy = 93.24%
HD Detection rate = 0.76
Application score = 0.86

Data clustering is a
complex issue

2 Majumder et al., 2019 Smart IoT-based cardiac
disorders detection

Accuracy = 95.23%
HD Detection rate = 0.79
Application score = 0.72

Limited large
dimensional data

3 Golande et al., 2019 Smart medical
applications using IoT

Accuracy = 91.47%
HD Detection rate = 0.86
Application score = 0.83

Network issue due to
conventional data

analysis

4 Haq et al., 2018 ML-based HD detection Accuracy = 95.42%
HD Detection rate = 0.83
Application score = 0.71

Radiology data-based
analysis is sometimes

altered from sample to
sample

5 Hinton and
Salakhutdinov, 2006

High dimensional HD
data-based abnormality

detection

Accuracy = 93.68%
HD Detection rate = 0.69
Application score = 0.82

Limited to structured
HD data

FIGURE 1

Proposed IoT sensor data-based heart disease (HD) prediction.
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FIGURE 2

Flow chart K-means.

5. Where ’ci’ indicates the number of data opinions in
the ith cluster.

6. Again, calculate the distance between every data point as
well as the original cluster centers.

7. Stop if no information points were reallocated; otherwise,
start over at step 3.

The flow chart of K-means clustering is shown in Figure 2.
In this K-means flow is explained with clustered extraction on
the dataset. The centroid, Euclidean and particle estimation
parameters have been providing information about deep dataset
information. The dataset consists of shape-based image features
which are processed by the K-means algorithm.

Linear quadratic discriminant analysis
based feature extraction

Let Sb and Sw be among and within-class scatter matrices,
low-dimensional complement space of null space of Sb,
related as S ′ , is first extracted. Let Vb = [vb1, ..., vbM]
be M eigenvectors of Sb corresponding to M non-zero
eigenvalues A = [λb1, ...,λbM], where M = min(C−1, J).
The Sb subspace B′ is thus spanned by Vb, which is further
scaled by U = VbA−1/2

b so that UTSbU = I , where

Ab = diag (A), diag()indicates the diagonalization operator
and I is the (M = M) identity matrix by Eq. (2):

6̀i(α, γ) = (1−γ)6̀i(α)+
γ

M
tr
[
6̀i(α)

]
I,

6̀i(α) =
1

Ci(α)
[(1−α)Si+αS] , (2)

M is the dimensionality of B′ .Ci(α) = (1−α)Ci+αN
and Si is the covariance matrix of ith class evaluated in B′ ,
i.e., Si = 6Ci

j = 1
(
yij−yi

) (
yij−yi

)T
, yij = UTzij, yi = (1/Ci)

6Ci
j = 1yij and S = 6C

i = 1Si.

Let 8 = [φ (z11) , ...,φ (zCCc)] be corresponding
feature representations of training samples in kernel
space FF. Let K be N = N Gram matrix, i.e.,
K = (Klh)

h = 1,,CIh
l = 1,,C is a Cl × Ch sub−matrix of K composed

of samples from classes Il and Zh, i.e., Klh =
(
kij
)j = 1,

i = 1,.,Cl
,

where kij = k
(
zli, zhj

)
and k( · )indicates kernel function

defined in RJ. Let Sb be between-class scatter in FF, described as
Eq. (3)

S̀b =
1
N

C∑
i = 1

Ci

(
↼
φ i−

↼
φ

)(
↼
φ i−

↼
φ

)T
(3)

where
↼
φ i = (1/Ci) 6Ci

j = 1φ
(
zij
)

is the mean of Yi in FF and
↼
φ = (1/N)6C

i = 16
Ci
j = 1φ

(
zij
)

is mean of training samples FF.
Eigenvectors of Sb, i.e., V̀b = [vb1, ..., vbM], corresponding

to M largest eigenvalues. V̀bis obtained by solving the eigenvalue
issue of Sb, which is represented as Eq. (4):

sb =
c∑

i=1

(√
ci
N

(
↼
φ i−

↼
φ)

)(√
ci
N

(
↼
φ i−

↼
φ)

)T

=

c∑
i=1

↼̀
φ i

↼̀
φ i

T
= 8b8

T
b (4)

where φ̀i =
√

Ci/N
(

↼
φ i−

↼
φ

)
and 8b =

[
φ̀1, ..., φ̀C

]
.

It is given that Sb is a matrix of size F × F, where
F indicates kernel space dimensionality. Due to HD
of FF, a direct computation of eigenvectors of Sb is

impossible
(
8b8

T
b
)
(8bebi) =

↼
λbi (8bebi). Therefore, it

is deduced that (8bebi) is the i th eigenvector of Sb = 8b8
T
b−

8T
b 8b =

1
N

B
(

AT
NC · K · ANC−

1
N

(
AT

NC · K · 1NC

)
−

1
N

(
1T

NC · K · ANC

)
+

1
N2

(
1T

NC · K · 1NC

))
B (5)

where B = diag
[√

C1, ...,
√

CC
]
, 1NC is an N × C matrix

with all elements equal to 1,ANC = diag
[
aC1 , ..., aCC

]
is an

N × C block diagonal matrix and a Ciis a Ci = 1 vector with
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all elements equal to 1/Ci. Let EbM =
[
eb1, ..., èbM

]
consist

of M significant eigenvectors of 8T
b 8b corresponding to M

largest eigenvalues
↼
λb1 > , · · · , >

↼
λbM and V̀b = 8bEbM,

it is not difficult to derive that VT
b SbVb =

↼
3b, where

↼
3b = diag

[
↼
λ

2

b,1, ...,
↼
λ

2

b,M

]
. Thus, the transformation matrix

−→
U such that UTS̀bU = Iis evaluated as Eqs. (6), (7):

U = Vb
↼
A
−1/2

b , Vb = 8bÈbM (6)

ỳij = UT
φ
(
zij
)
=

↼
A
−1/2

b ET
bM8T

b φ
(
zij
)

(7)

where 8T
b φ
(
zij
)

can be expressed as Eq. (8)

8T
b φ
(
zij
)
=

1
√

N
B
(

ANC · v
(
φ
(
zij
))
−

1
N

1T
NC · v

(
φ
(
zij
)))

(8)
where v

(
φ
(
zij
))

=
[
φ
(
z11
)
φ
(
zij
)
, φ
(
z12
)
φ
(
zij
)
, ...,φ(

zCCC

)
φ
(
zij
)]Tis evaluated implicitly through the kernel

function described in RJ, i.e., φ (zmn) φ
(
zij
)
= k

(
zmn, z ij

)
.

6̀i(α, γ) = (1−γ)6̀i(α)+
γ

M
tr
[
6i(α)

]
I,

6̀i(α) =
1

Ci(α)

[
(1−α)Si+αS

]
,

Ci(α) = (1−α)Ci+αN,

S̀i =

Ci∑
j = 1

(
yij−yi

) (
yij−yi

)T
,

S =
C∑

i = 1

S̀i.

yi = (1/Ci)

Ci∑
j = 1

yij (9)

and (α, γ) is a pair of regularization parameters.
The key component in the evaluation of 6i(α, γ)is to arise

covariance matrix of ith class, i.e., Siwhich is given as Eq. (10):

S̀i =

Ci∑
j1

(
ỳij−yi

) (
yij−yi

)T

=

Ci∑
j1

yijy
T
ij−

Ci∑
j1

yiy
T
ij−

Ci∑
j1

yijy
T
i +

Ci∑
j1

ỳ
T
i yT

i

=

Ci∑
j1

yijỳ
T
ij−Ciyi

↼
y

T

i −Ciyiy
T
i +Ciyiy

T
i

=

Ci∑
j1

ỳijyT
ij−Ciyiy

T
i

= J1−Ci × J2, (10)

where J1 = 6Ci
j = 1ỳijyT

ij and J2 = yiy
T
i . The detailed derivation

of J1 and J2is determined in Appendices A and B.
Mahalanob is distance between feature representation of test

image q and each class centre yi is then used to identify the test
image. i.e., ID

(
p
)
= arg minidi

(
q
)
, that can be calculated in

Eq. (11) as:

di(q) =
(
q−yi

)T
6̀−1

i (α, γ)
(
q−yi

)
+ln

∣∣6i(α, γ)
∣∣−2lnπi,

(11)

where πi = C i /N.(
À = arg maxA

∣∣∣ÀTS̀bÀ
∣∣∣ / ∣∣∣ÀTSbA

∣∣∣+ ∣∣∣ÀTS̀wÀ
∣∣∣)

when
(
α = 1,γ =

(
tr
(
Si/N

)
+M

)
/M
)

Classification using deep graph ConvoNet (convolutional
network)- DG_ ConvoNet:

G = (Y, E,H) defines an undirected and connected
graph, Here A and S are limited sets of | A| = S vertices
as well as edgesW ∈ RN × N. Numerous variables in each
vertex represent the graph signals. L = D−W, where
D = diag

(
d̀0, · · · , dN−1

)
is a grading matrix designed in

steps di = 6jWi,jof vertex i. {χl}
N−1
/ = 0, as well as nonnegative

eigenvalues 0 ≤ λ0 ≤ · · · λN−1 · L. L is verified by
a matrix of eigenvectors X = [χ0, · · · ,χN−1] such that
L = X3X Twhere L is a diagonal matrix of eigenvalues.

Instead of complex exponentials, the eigenvectors,
{
χ,

}N−1
/ =0

of Laplacian matrix L that meet perpendicularity criteria are
utilized as breakdown bases for graph-structured data is defined
as Eq. (12):

f̂ (λ′) = 6N−1
n = 0χ

T
, (n)f(n) = X Tf (12)

Inverse Fourier transformation is shown in Eq. (12):

f(n) = 6N−1
l = 0̂f (λ′) χ′(n) = x̂f (13)

In the Fourier domain, convolution is converted to a
point-wise product, which can then be reconverted to vertex
domain utilizing graph Fourier transform as well as convolution
theorem, as shown in Eq. (14):

f∗g = 6N−1
/ = 0̂f

(
λ/

)
g̀
(
λζ

)
χf(n) = X

((
X Tf

)
·

(
X Tg

))
= Xdıag

(
g̀ (λ0) , · · · ,g̀ (λN−1)

)
X Tf (14)

The graph convolution process of 2 graph signals f(n) and
g(n) is shown in Figure 3, and its transform, g () l, is called a
Conv kernel. A set of free parameters θN−1 in Fourier domain,
i.e., Laplacian eigenspace is used to build this kernel. It can
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also be thought of as a function of eigenvalues, written as g(A).
Convolution is then written as Eq. (15):

f∗g = xdıag (θ0, · · · ,θN−1)XTf = XG(3)XTf (15)

The convolution mentioned above on a graph has two
drawbacks: (1) Each process involves an Eigen decomposition,
which incurs high computational costs; (2) after this operation,
the variable value of a vertex is associated with global vertices
without considering its locality in space, which is inconsistent
with CNNs’ local connections.

suggested a low-order polynomial approximation based on
rapid localized convolution that depicts g(A) as a polynomial
function of eigenvalues Eq. (16):

G(3) = 6K
k = 0θk3

k (16)

θk is the polynomial order, and _k is a vector of polynomial
coefficients. The convolution is then rewritten where K is a small
positive integer, such as Eq. (17).

f∗g = X
(
6K

k = 0θk3
k
)
X Tf =

(
6K

k = 0θk

(
X3kX T

))
f

= 6K
k = 0θkLkf (17)

The convolution is performed by K multiplications of sparse
matrix L, which speeds up computation by avoiding the Eigen
decomposition procedure.

Update equation for a layer l is defined as Eq. (18):

h̀l+1
i = Ol

hHk = 1

(
6j∈Ni w

k,l
ij Vk,lhl

j

)
èl+1

i = Ol
eHk = 1(

ẁk,l
i,j

)
wk,l

ij = softmaxj

(
ẁk,l

i,j

)
wv̀k,l

i,j =

(
Qk,lhl

i · K
k,lhl

j√
dk

)
Ek,lel

i,j′
(18)

with Qk,l, Kk,l, Vk,l, Ek,l
∈ Rdk, Ol

h′
, Ol

e ∈ Rd × d, k ∈
{1, 2, ..., H} represents the number of attention heads, and
where Ol

h ∈ Rd × d, Vk,l
∈ Rdk × dH indicates the number of

heads, L number of layers, d is the hidden dimension and dkis
the dimension of a head d H = dk. Note that hl

i is ith node’s
feature at lth layer Eq. (19).

cut
(

Sk, S̀k

)
=

∑
vi∈Sk,vj∈Sj

e
(
vi, vj

)
(19)

where Sk is the kth set of a given eigenvector, S̀kindicates residual
sets excluding Sk and e

(
vi, vj

)
is an edge among vertex vi and

vj.The cut problem can be rewritten as follows when referring to
several sets Eq. (20):

cut
(
S1, S2, S3...Sg

)
=

1
2

g∑
i = k

cut (Sk, Sk) (20)

The minimum cut problem is extensively researched in
literature, with normalized cut reflecting a separate direction Eq.
(21):

Ncut
(
S1, S2...Sg

)
=

g∑
k = 1

cut
(

Sk, S̀k

)
vol (Sk, V)

(21)

wherever vol (Sk, V) = 6vi∈Sk,vi∈Ve
(
vi, vj

)
is the entire grade

of bulges from Sk in diagram g.
utilizing DL optimization to turn the minimum cut issue

into a DL format Eq. (22):

Lcut =
∑

lower sum

[(Y� 0)(1−Y)T]
⊙

A+
∑

lower sum

(
1TY−

n
g

)2

(22)

The normalized cut is the first term, and Y is defined as an n
∗ g dimension matrix that indicates the neural network’s output.
Finally, 0, Y calculates A, which is the adjacency matrix Eq. (23).

H[l+1]
j = σ

( Fin∑
i = 1

( K∑
k = 0

θi,jkL
kH[l]i

)
+b[l]j

)
(23)

Manifold convolutional and pooling layers, as well as one
fully associated layer, make up the model. Figure 4 depicts the
model’s architecture with two convolutional layers.

Convolutional network: Convolutional layers are the
foundation of a convolutional neural network. It has some
filters (or kernels) whose settings will be figured out as the
training progresses. Typically, its filter’s size will be less than
that of the image it’s applied. Each filter performs a convolution
on the image, yielding an activation map. For convolution,
the filtration is moved throughout the height & width of the
image, and at each point in space, the dot product between
each component of the filter & the input is measured. The
implemented design with the Deep Graph CNN model can
provide better heart disease prediction compared to earlier
models. The main features of this design are to give less ToC
and accurate diagnosis results compared to earlier models.
Heart diseases had been predicted at the classification stage
using the GS-CNN process. The shape-based features are more
helpful to find the information medical image such that getting
differentiation with training data.

Performance analysis

A thorough experimental analysis was used to calculate the
suggested hybrid technique performance. The proposed hybrid
technique was tested on a PC with the following parameters:
Intel(R) Core (TM) i5-7500 CPU, 32-bit Windows 7 OS, 4
GB RAM with SciPy, NumPy, Pandas, Keras and Matplotlib
frameworks and Python 2.7 as the programming language.
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FIGURE 3

Graphical illustration of convolution f (n) and g (n).
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FIGURE 4

Model’s architecture with two convolutional layers.
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TABLE 2 Comparative analysis of diagnostic accuracy.

Number of epochs SVM CNN FGCNet K-means_LQDA_ DG_ConvoNet

100 45 52 59 65

200 49 55 63 72

300 52 59 65 79

400 55 61 69 85

500 59 65 72 96

FIGURE 5

Comparative analysis of diagnostic accuracy.

TABLE 3 Comparative analysis of sensitivity.

Number of epochs SVM CNN FGCNet K-means_LQDA_ DG_ConvoNet

100 52 55 57 60

200 59 61 63 65

300 63 65 66 69

400 65 69 72 75

500 66 70 75 80

Dataset description

Public Health Dataset, which dates from 1988 and consists
of four databases: Cleveland, Hungary, Switzerland and Long
Beach V, was used for this study. Even though there are 76
qualities in total, including expected attributes, all published
studies only utilize a selection of 14 of them.

Information on heart disease

The clinical HD data used in this study came from 303
patients at CCF in Cleveland, Ohio, in the US. Dataset was

collected from UCI_MLRepository (Hinton and Salakhutdinov,
2006), part of the Heart Disease Database. There were 75
attributes and a target attribute in each of the 303 clinical
situations. The target attribute was an integer ranging from 0
to 4, indicating whether a patient had HD [0] or not [1, 2, 3].
Target qualities for the absence or presence of cardiac disease
in patients were ascribed to binary values of 0 and 1 for this
study. There were 125 cases with heart disease (44.33%) and 157
cases without heart disease (55.67%) among the 282 total clinical
episodes. A total of 76 raw attributes were used to describe each
clinical event. Due to missing values among other raw variables,
only 29 of the raw attributes were used in the building of DNN
models (Djenouri et al., 2022; Mezair et al., 2022).

Frontiers in Computational Neuroscience 09 frontiersin.org

59

https://doi.org/10.3389/fncom.2022.964686
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-16-964686 October 7, 2022 Time: 6:29 # 10

Saikumar et al. 10.3389/fncom.2022.964686

FIGURE 6

Comparative analysis of sensitivity.

TABLE 4 Comparative analysis of specificity.

Number of
epochs

SVM CNN FGCNet K-means_LQDA
_DG_ConvoNet

100 41 45 51 55

200 45 49 55 59

300 49 51 61 62

400 52 55 63 65

500 55 59 67 73

Table 2 and Figure 5 show comparative analysis
in diagnostic accuracy for proposed K-means_LQDA_
DG_ConvoNet. The diagnostic accuracy has been analyzed
based on the number of epochs the neural network carries
out. The epochs are taken as 100, 200, 300, 400 and 500.
For all the iterations of the neural network, the proposed
K-means_LQDA_ DG_ConvoNet obtained optimal results
than the existing technique. The accuracy obtained in
the diagnosis of disease by proposed K-means_LQDA_
DG_ConvoNet is 96% and existing SVM achieved
59% for 500 epochs and CNN obtained 65%, FGCNet
attained 72%.

Table 3 and Figure 6 show comparative sensitivity
analysis for proposed K-means_LQDA_ DG_ConvoNet.
The sensitivity calculation refers prediction of the true
positive and false positive rate of the proposed technique in
diagnosing heart disease. The sensitivity obtained in disease
diagnosis by proposed K-means_LQDA_ DG_ConvoNet
is 80% for 500 epochs and existing SVM achieved
66% for 500 epochs and CNN obtained 70%, FGCNet
attained 75%.

Table 4 and Figure 7 show comparative analysis in terms
of specificity for proposed K-means_LQDA_ DG_ConvoNet.
The specificity calculation relates to the percentage of real
negatives projected as negatives. This means that a part of
true negatives is forecasted as positives, which is denoted as
false positives in the suggested method for identifying HD. The
specificity obtained in the diagnosis of disease by proposed

FIGURE 7

Comparative analysis of specificity.

TABLE 5 Comparative analysis of precision.

Number of
epochs

SVM CNN FGCNet K-means_LQDA
_DG_ConvoNet

100 55 59 63 76

200 59 63 67 79

300 62 66 71 82

400 65 69 75 85

500 71 73 79 90

FIGURE 8

Precision analysis differentiation.

K-means_LQDA_ DG_ConvoNet is 73% for 500 epochs and
existing SVM achieved 55% for 500 epochs and CNN obtained
57%, FGCNet attained 67%.

Table 5 and Figure 8 show qualified examination in terms of
Precision for proposed K-means_LQDA_ DG_ConvoNet. The
precision calculation mentions the number of true positives
separated by the whole number of positive calculations made
by the suggested technique in diagnosing heart disease,
as well as the superiority of a positive forecast made
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TABLE 6 Comparative analysis of F-Score.

Number of epochs SVM CNN FGCNet K-means_LQDA_ DG_ConvoNet

100 51 55 59 63

200 56 61 65 66

300 59 63 69 71

400 63 66 72 75

500 65 71 79 79

FIGURE 9

Comparative analysis of F-Score.

TABLE 7 ROC curve on various methods.

Number of epochs SVM CNN FGCNet K-means_LQDA_ DG_ConvoNet

100 31 36 45 61

200 35 39 49 65

300 39 42 53 69

400 42 49 56 72

500 45 53 62 75

by the proposed technique. The precision obtained in
the diagnosis of disease by proposed K-means_LQDA_
DG_ConvoNet is 90% for 500 epochs and existing SVM
achieved 71% for 500 epochs and CNN obtained 73%, FGCNet
attained 79%.

Table 6 and Figure 9 show a comparative analysis in terms
of F-Score for proposed K-means_LQDA_ DG_ConvoNet.
The F-Score computation is utilized to assess binary
classification techniques which categorize examples as
“positive” or “negative.” F-score is shown as the harmonic
mean of precision and recall. For example, F-Score obtained
in the diagnosis of disease by proposed K-means_LQDA_
DG_ConvoNet is 79% for 500 epochs and existing SVM
achieved 65% for 500 epochs and CNN obtained 71%, FGCNet
attained 79%.

Table 7 and Figure 10 show an examination of the
area under the ROC curve for proposed K-means_LQDA_
DG_ConvoNet. The calculation of the extent under the ROC
curve is a measure of a classifier’s ability to distinguish

FIGURE 10

ROC curve analysis.

between classes as well as used as an instant of the
ROC curve.

AUC indicates how well the method differentiates
between positive and negative classes. F-Score
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FIGURE 11

Classification of heart disease prediction.

obtained in the diagnosis of disease by proposed
K-means_LQDA_ DG_ConvoNet is 75% for 500 epochs
and existing SVM achieved 45% for 500 epochs and
CNN obtained 53%, FGCNet attained 62% shown in
Figure 11.

Conclusion

The proposed work is a novel technique for detecting heart
disease based on IoT sensor data with a monitoring application
using deep learning architectures. Here, the input data has been
collected from IoT sensor data from the University of California
Irvine machine learning repository. The collected data has
been processed for noise removal and clustered based on
K-means clustering. The clustered data has been extracted using
Linear Quadratic Discriminant Analysis where the features of
clustered data have been extracted. The extracted features have
been classified using the deep graph ConvoNet (convolutional
network)- DG_ConvoNet. The diagnostic accuracy of 96%,
sensitivity of 80%, specificity of 73%, precision of 90%, F-Score
of 79%, and area under the ROC curve of 75% are obtained
by the proposed classification and prediction model, according
to the testing findings. Our strong results clearly show the
strength of our methodology and DG_ConvoNet. In the
future, we wish to test our system model on other datasets
and also look at implementing the DG_ConvoNet for other
diseases.

Data availability statement

Publicly available datasets were analyzed in this study. This
data can be found here at doi: 10.1136/bmjopen-2020-044070.

Author contributions

KS and VR contributed to the conception and design of the
study. GS performed the statistical analysis. KS and JL wrote
the first draft of the manuscript. All authors contributed to the
manuscript revision, read, and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Frontiers in Computational Neuroscience 12 frontiersin.org

62

https://doi.org/10.3389/fncom.2022.964686
https://doi.org/10.1136/bmjopen-2020-044070
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-16-964686 October 7, 2022 Time: 6:29 # 13

Saikumar et al. 10.3389/fncom.2022.964686

References

Ali, F., Hasan, B., Ahmad, H., Hoodbhoy, Z., Bhuriwala, Z., Hanif, M., et al.
(2021). Protocol: Detection of subclinical rheumatic heart disease in children using
a deep learning algorithm on digital stethoscope: A study protocol. BMJ Open
11:e044070. doi: 10.1136/bmjopen-2020-044070

Divya, K., Sirohi, A., Pande, S., and Malik, R. (2021). “An IoMT assisted heart
disease diagnostic system using machine learning techniques,” inCognitive internet
of medical 4ings for smart healthcare, Vol. 311, eds A. E. Hassanien, A. Khamparia,
D. Gupta, K. Shankar, and A. Slowik (Cham: Springer), 145–161. doi: 10.1007/978-
3-030-55833-8_9

Djenouri, Y., Belhadi, A., Srivastava, G., and Lin, J. C. (2022). When explainable
AI meets IoT applications for supervised learning. Cluster Comput. 17:1. doi:
10.1007/s10586-022-03659-3

Garigipati, R. K., Raghu, K., and Saikumar, K. (2022). “Detection and
identification of employee attrition using a machine learning algorithm,” in
Handbook of research on technologies and systems for E-collaboration during global
crises, eds J. Zhao and V. Vinoth (Pennsylvania, PA: IGI Global), 120–131. doi:
10.4018/978-1-7998-9640-1.ch009

Golande, A., Sorte, P., Suryawanshi, V., Yermalkar, U., and Satpute, S. (2019).
Smart hospital for heart disease prediction using IoT. Int. J. Inform. Vis. 3,
198–202.

Haq, A. U., Li, J. P., Memon, M. H., Nazir, S., and Sun, R. (2018). A hybrid
intelligent system framework for the prediction of heart disease using machine
learning algorithms. Mob. Inf. Syst. 2018:3860146. doi: 10.1155/2018/3860146

Hasan, N. I., and Bhattacharjee, A. (2019). Deep learning approach to
cardiovascular disease classification employing modified ECG signal from
empirical mode decomposition. Biomed. Signal Process. Control 52, 128–140. doi:
10.1016/j.bspc.2019.04.005

Hinton, G. E., and Salakhutdinov, R. R. (2006). Reducing the dimensionality of
data with neural networks. science 313, 504–507. doi: 10.1126/science.1127647

Huang, J., Chen, B., Yao, B., and He, W. (2019). ECG arrhythmia classification
using STFT-based spectrogram and convolutional neural network. IEEE Access 7,
92871–92880. doi: 10.1109/ACCESS.2019.2928017

Kanksha, Aman, B., Sagar, P., Rahul, M., and Aditya, K. (2021). An intelligent
unsupervised technique for fraud detection in health care systems. Intell. Decis.
Technol. 15, 127–139. doi: 10.3233/IDT-200052

Koppula, N., Sarada, K., Patel, I., Aamani, R., and Saikumar, K. (2021).
“Identification and recognition of speaker voice using a neural network-based
algorithm: Deep learning,” inHandbook of research on innovations and applications
of AI, IoT, and cognitive technologies, eds J. Zhao and V. Vinoth Kumar
(Pennsylvania, PA: IGI Global), 278–289. doi: 10.4018/978-1-7998-6870-5.ch019

Ladefoged, C. N., Hasbak, P., Hornnes, C., Højgaard, L., and Andersen, F. L.
(2021). Low-dose PET image noise reduction using deep learning: Application to
cardiac viability FDG imaging in patients with ischemic heart disease. Phys. Med.
Biol. 66:054003. doi: 10.1088/1361-6560/abe225

Liu, J., Wang, H., Yang, Z., Quan, J., Liu, L., and Tian, J. (2022). Deep learning-
based computer-aided heart sound analysis in children with left-to-right shunt
congenital heart disease. Int. J. Cardiol. 348, 58–64. doi: 10.1016/j.ijcard.2021.12.
012

Majumder, A. K. M., ElSaadany, Y. A., Young, R., and Ucci, D. R. (2019).
An energy efficient wearable smart IoT system to predict cardiac arrest. Adv.
Hum.Comput. Interact. 2019:1507465. doi: 10.1155/2019/1507465

Manogaran, G., Lopez, D., Thota, C., Abbas, K. M., Pyne, S., and Sundarasekar,
R. (2017). “Big data analytics in healthcare internet of things,” in Innovative
healthcare systems for the 21st century, ed. H. Qudrat-Ullah (Cham: Springer),
263–284. doi: 10.1007/978-3-319-55774-8_10

Martins, J. F. B., Nascimento, E. R., Nascimento, B. R., Sable, C. A., Beaton,
A. Z., Ribeiro, A. L., et al. (2021). Towards automatic diagnosis of rheumatic heart
disease on echocardiographic exams through video-based deep learning. J. Am.
Med. Inform.Assoc. 28, 1834–1842. doi: 10.1093/jamia/ocab061

Mezair, T., Djenouri, Y., Belhadi, A., Srivastava, G., and Lin, J. C. (2022).
Towards an advanced deep learning for the internet of behaviors: Application to
connected vehicle. ACM Trans. Sens. Netw. 1–18. doi: 10.1145/3526192

Morris, S. A., and Lopez, K. N. (2021). Deep learning for detecting congenital
heart disease in the fetus. Nat. Med. 27, 764–765. doi: 10.1038/s41591-021-01
354-1

Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M.,
et al. (2018). Exploiting smart e-health gateways at the edge of healthcare internet-
of-yhings: A fog computing approach. Future Gener. Comput. Syst. 78, 641–658.
doi: 10.1016/j.future.2017.02.014

Rath, A., Mishra, D., Panda, G., and Satapathy, S. C. (2021). Heart disease
detection using deep learning methods from imbalanced ECG samples. Biomed.
Signal Process. Control 68:102820. doi: 10.1016/j.bspc.2021.102820

Saikumar, K., and Rajesh, V. (2020a). A novel implementation heart diagnosis
system based on random forest machine learning technique. Int. J. Pharm. Res. 12,
3904–3916. doi: 10.31838/ijpr/2020.SP2.482

Saikumar, K., and Rajesh, V. (2020b). Coronary blockage of artery for heart
diagnosis with DT Artificial Intelligence Algorithm. Int. J. Res. Pharma. Sci. 11,
471–479. doi: 10.26452/ijrps.v11i1.1844

Saikumar, K., Rajesh, V., and Babu, B. S. (2022). Heart disease detection based
on feature fusion technique with augmented classification using deep learning
technology. Trait. Signal 39, 31–42. doi: 10.18280/ts.390104

Vincent Paul, S. M., Balasubramaniam, S., Panchatcharam, P., Malarvizhi
Kumar, P., and Mubarakali, A. (2021). Intelligent framework for prediction of
heart disease using deep learning. Arab. J. Sci. Eng. 47, 2159–2169. doi: 10.1007/
s13369-021-06058-9

Wang, H., Shi, H., Chen, X., Zhao, L., Huang, Y., and Liu, C. (2020). An
improved convolutional neural network based approach for automated heartbeat
classification. J. Med. Syst. 44:35. doi: 10.1007/s10916-019-1511-2

Wang, S. H., Govindaraj, V. V., Gorriz, J. M., Zhang, X., and Zhang, Y. D.
(2021a). Covid-19 classification by FGCNet with deep feature fusion from graph
convolutional network and convolutional neural network. Inf. Fusion 67, 208–229.
doi: 10.1016/j.inffus.2020.10.004

Wang, S. H., Nayak, D. R., Guttery, D. S., Zhang, X., and Zhang, Y. D. (2021b).
COVID-19 classification by CCSHNet with deep fusion using transfer learning
and discriminant correlation analysis. Inf. Fusion 68, 131–148. doi: 10.1016/j.
inffus.2020.11.005

Zhang, P., and Xu, F. (2021). Effect of AI deep learning techniques on possible
complications and clinical nursing quality of patients with coronary heart disease.
Food Sci. Technol. 42, 1–6. doi: 10.1590/fst.42020

Zhang, Y. D., Dong, Z., Chen, X., Jia, W., Du, S., Muhammad, K., et al.
(2019). Image based fruit category classification by 13-layer deep convolutional
neural network and data augmentation, multimed. Tools Appl. 78, 3613–3632.
doi: 10.1007/s11042-017-5243-3

Zhang, Y. D., Dong, Z., Wang, S. H., Yu, X., Yao, X., Zhou, Q., et al. (2020a).
Advances in multimodal data fusion in neuroimaging: Overview, challenges, and
novel orientation. Inf. Fusion 64, 149–187. doi: 10.1016/j.inffus.2020.07.006

Zhang, Y. D., Nayak, D. R., Zhang, X., and Wang, S. H. (2020b). Diagnosis
of secondary pulmonary tuberculosis by an eight-layer improved convolutional
neural network with stochastic pooling and hyperparameter optimization.
J. Ambient Intell. Humaniz. Comput. 1, 1–18. doi: 10.1007/s12652-020-02612-9

Frontiers in Computational Neuroscience 13 frontiersin.org

63

https://doi.org/10.3389/fncom.2022.964686
https://doi.org/10.1136/bmjopen-2020-044070
https://doi.org/10.1007/978-3-030-55833-8_9
https://doi.org/10.1007/978-3-030-55833-8_9
https://doi.org/10.1007/s10586-022-03659-3
https://doi.org/10.1007/s10586-022-03659-3
https://doi.org/10.4018/978-1-7998-9640-1.ch009
https://doi.org/10.4018/978-1-7998-9640-1.ch009
https://doi.org/10.1155/2018/3860146
https://doi.org/10.1016/j.bspc.2019.04.005
https://doi.org/10.1016/j.bspc.2019.04.005
https://doi.org/10.1126/science.1127647
https://doi.org/10.1109/ACCESS.2019.2928017
https://doi.org/10.3233/IDT-200052
https://doi.org/10.4018/978-1-7998-6870-5.ch019
https://doi.org/10.1088/1361-6560/abe225
https://doi.org/10.1016/j.ijcard.2021.12.012
https://doi.org/10.1016/j.ijcard.2021.12.012
https://doi.org/10.1155/2019/1507465
https://doi.org/10.1007/978-3-319-55774-8_10
https://doi.org/10.1093/jamia/ocab061
https://doi.org/10.1145/3526192
https://doi.org/10.1038/s41591-021-01354-1
https://doi.org/10.1038/s41591-021-01354-1
https://doi.org/10.1016/j.future.2017.02.014
https://doi.org/10.1016/j.bspc.2021.102820
https://doi.org/10.31838/ijpr/2020.SP2.482
https://doi.org/10.26452/ijrps.v11i1.1844
https://doi.org/10.18280/ts.390104
https://doi.org/10.1007/s13369-021-06058-9
https://doi.org/10.1007/s13369-021-06058-9
https://doi.org/10.1007/s10916-019-1511-2
https://doi.org/10.1016/j.inffus.2020.10.004
https://doi.org/10.1016/j.inffus.2020.11.005
https://doi.org/10.1016/j.inffus.2020.11.005
https://doi.org/10.1590/fst.42020
https://doi.org/10.1007/s11042-017-5243-3
https://doi.org/10.1016/j.inffus.2020.07.006
https://doi.org/10.1007/s12652-020-02612-9
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-16-1016516 November 10, 2022 Time: 15:9 # 1

TYPE Original Research
PUBLISHED 16 November 2022
DOI 10.3389/fncom.2022.1016516

OPEN ACCESS

EDITED BY

Dan Chen,
Wuhan University, China

REVIEWED BY

B. Nataraj,
Sri Ramakrishna Engineering College,
India
Mario Versaci,
Mediterranea University of Reggio
Calabria, Italy

*CORRESPONDENCE

Dong-Ok Won
dongok.won@hallym.ac.kr

†These authors have contributed
equally to this work

RECEIVED 11 August 2022
ACCEPTED 10 October 2022
PUBLISHED 16 November 2022

CITATION

Prabhakar SK, Ju Y-G, Rajaguru H and
Won D-O (2022) Sparse measures
with swarm-based pliable hidden
Markov model and deep learning for
EEG classification.
Front. Comput. Neurosci. 16:1016516.
doi: 10.3389/fncom.2022.1016516

COPYRIGHT

© 2022 Prabhakar, Ju, Rajaguru and
Won. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Sparse measures with
swarm-based pliable hidden
Markov model and deep
learning for EEG classification
Sunil Kumar Prabhakar1†, Young-Gi Ju1†,
Harikumar Rajaguru2† and Dong-Ok Won1*†

1Department of Artificial Intelligence Convergence, Hallym University, Chuncheon, South Korea,
2Department of Electronics and Communication Engineering, Bannari Amman Institute of
Technology, Sathyamangalam, India

In comparison to other biomedical signals, electroencephalography (EEG)

signals are quite complex in nature, so it requires a versatile model for feature

extraction and classification. The structural information that prevails in the

originally featured matrix is usually lost when dealing with standard feature

extraction and conventional classification techniques. The main intention of

this work is to propose a very novel and versatile approach for EEG signal

modeling and classification. In this work, a sparse representation model

along with the analysis of sparseness measures is done initially for the EEG

signals and then a novel convergence of utilizing these sparse representation

measures with Swarm Intelligence (SI) techniques based Hidden Markov

Model (HMM) is utilized for the classification. The SI techniques utilized to

compute the hidden states of the HMM are Particle Swarm Optimization

(PSO), Differential Evolution (DE), Whale Optimization Algorithm (WOA),

and Backtracking Search Algorithm (BSA), thereby making the HMM more

pliable. Later, a deep learning methodology with the help of Convolutional

Neural Network (CNN) was also developed with it and the results are

compared to the standard pattern recognition classifiers. To validate the

efficacy of the proposed methodology, a comprehensive experimental

analysis is done over publicly available EEG datasets. The method is supported

by strong statistical tests and theoretical analysis and results show that

when sparse representation is implemented with deep learning, the highest

classification accuracy of 98.94% is obtained and when sparse representation

is implemented with SI-based HMM method, a high classification accuracy of

95.70% is obtained.
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Introduction

In order to capture the activity of the brain,
electroencephalography (EEG) signals are used which are
nothing but the electrophysiological recordings of electrical
potentials across the cortical regions of the brain (Lee et al.,
2018). The spontaneous electrical activity of the brain in
a very short span of time is thus measured by EEG. For
analyzing various neurological-related disorders, such as coma,
anesthesia, epilepsy, sleep disorders, schizophrenia, alcoholism,
brain death, and encephalopathies, EEGs are widely used (Chen
et al., 2016). During earlier times, the analysis was based only
on visual inspection and interpretation that lead to more errors
and also it required extensive training by the clinicians. With
the advent of both specialized data acquisition devices and
computer technology, identifying abnormalities have been
incorporated very successfully (Lee et al., 2019). As EEG signals
are extremely complex when compared to other biomedical
signals, specialized and versatile feature extraction and selection
methods incorporated with classification techniques have to be
utilized. In this process, the selection of the most important
features is highly useful and significant as it depicts the subsets
of discriminant patterns (Won et al., 2018). Once that is
achieved, the classification accuracy can be enhanced, the curse
of the dimensionality problem can be alleviated, and thus the
generalization capability of the system enhances gradually (Lee
et al., 2015). This kind of methodology is adopted in a typical
biomedical signal processing work and in this work since
epilepsy classification and schizophrenia classification from
EEG signals are discussed, a few important and relevant past
literature in recent years is discussed as follows.

Plenty of articles are available online for epilepsy
classification as it is a well-established research field nearly
for the past two decades, and only a few articles are available
online for schizophrenia classification as it has triggered interest
among researchers very recently. A comprehensive review of the
different machine learning techniques for epilepsy classification
was reported in Sharmila and Geethanjali (2019), and the latest
deep learning techniques utilized for epilepsy classification
from EEG signals were analyzed thoroughly in Shoeibi et al.
(2007). These two survey articles published in 2019 and 2020
review all the past works, working methodologies, statistical
feature analysis techniques used, and datasets analyzed along
with the comparison of classification accuracies obtained by
every method, thereby easing the work of other researchers
to not reproduce the past literature over and over again.
However, some prominent ideas reported in high-quality
literature during 2020 and 2021 for both epilepsy classification
and schizophrenia classification are discussed as follows. An
automated classification of epilepsy from EEG signals based on
spectrogram and CNN was utilized in Mandhouj et al. (2021)
reporting a classification accuracy of 98.25%. By means of
integrating the property of convolutions with Support Vector

Machine (SVM), a hybrid methodology called as Convolution
SVM (C-SVM) was developed in Xin et al. (2021) reporting a
classification accuracy of 99.56%. The optimal wavelet features
were selected and combined with Long-Short Term Memory
(LSTM) for epilepsy classification from EEG signals reporting
a classification accuracy of 99% (Aliyu and Lim, 2021). Based
on Jacobi polynomial transforms and Least Squares SVM,
the classification of epilepsy was done in Nkengfack et al.
(2021), reporting a classification accuracy ranging from 88.75
to 100%. The concept of synchrosqueezing transforms was
utilized with standard machine learning techniques reporting a
classification accuracy of 95.1% (Cura and Akan, 2021). A deep
neural network model based on CNN is utilized for the analysis
of robust detection of epileptic seizures from EEG signals
reporting classification accuracy in the ranges of 97.63–99.52%
(Zhao et al., 2020). A deep CNN with 10-fold cross-validation
methodology was also implemented for epilepsy classification
reporting a high classification accuracy of 98.67% (Abiyev et al.,
2020). Other works discussed in this study are for the sake of
comparing the proposed results with the previous works as
the results implemented in this work were done with those
same datasets. Different approaches for epilepsy classification
included the usage of genetic programming (Bhardwaj et al.,
2016), complex-valued classifiers (Peker et al., 2016), Empirical
Mode Decomposition (EMD) based supervised learning (Riaz
et al., 2016), weighted complex networks analysis (Diykh
et al., 2017), Support Vector Machine (SVM) based automated
seizure analysis (Zhang and Chen, 2017), and Recurrent Elman
neural network classifier (Raghu et al., 2017) are some of the
prominent works in this field of epilepsy classification. Recent
approaches utilized for epilepsy classification in the past three
years involve the usage of deep learning by means of proposing
a Pyramidal 1D-CNN (Ullah et al., 2018), Continuous Wavelet
Transforms with CNN (Turk and Ozerdem, 2019), and a
simple normalization with a 1D-CNN (Zhao et al., 2020).
Entropy-based analysis included the usage of fuzzy entropy and
distribution entropy for seizure classification (Li et al., 2018)
and a Fourier–Bessel series expansion-based rhythms splitting
depending on weighted multiscale Renyi Permutation Entropy
for epilepsy classification (Gupta and Ram, 2019). Other
approaches incorporated are the usage of orthogonal wavelet
filtering methodology (Sharma et al., 2018), matrix determinant
approach (Raghu et al., 2019), and alpha band statistical
feature-based detection of epileptic seizures (Sameer and Gupta,
2020). All these recent previous literature works are done on
different epileptic datasets depending on their classification
problem requirement, with some researchers focusing only on
a single epileptic dataset while other authors concentrate on
multiple epileptic datasets. When it comes to schizophrenia
classification, many research results reported in high-quality
literature are not available, and therefore, a selected few ones
are presented in this study to get a clear understanding. An
interesting methodology of schizophrenia classification from
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EEG was reported in Prabhakar et al. (2020a), where using three
different features such as isometric mapping features, nonlinear
regression features, and expectation maximization based
principal component features was optimized using nature-
inspired algorithms and classified with Modest Adaboost
classifier reporting a classification accuracy of 98.77%. Another
methodology for schizophrenia classification from EEG utilizes
the standard statistical features such as Hurst exponent, Sample
Entropy, and Detrend Fluctuation Analysis (DFA) with four
kinds of optimization techniques, and finally, when it was
classified with SVM, a classification accuracy of 92.17% was
reported (Prabhakar et al., 2020b). Finally, a deep learning
methodology was also involved using a 11-layer CNN for
schizophrenia classification in Oh et al. (2019) and they
reported a classification accuracy of 81.26% for subjects-based
testing and 98.51% for non-subject-based testing. All the works
proposed in the literature have its own merits and demerits,
and consistent improvement is being made by researchers
constantly with the usage of new ideas and methods so that the
performance is improved.

In recent years, the sparse representation of the signals
has received huge attention (Schoellkopf et al., 2007). The
most compact signal representation is solved by a sparse
theory that models a signal in the context of the linear
combination of atoms in an overcomplete dictionary. The
signals when represented in both multi-scale and multi-
orientation aspects such as contourlet, ridgelet, wavelet,
and curvelet transforms play an important role in the
progress of research on sparse representation. For efficient
signal modeling, a better performance is provided by sparse
representation when compared to techniques based on direct
time domain processing. On three different aspects of the sparse
representation, the focus of sparse representation research
is usually concerned, (a) pursuit techniques for solving the
optimization problems, (b) dictionary design techniques, and
(c) application of sparse representation for various tasks
(Schoellkopf et al., 2007). The primary objective in the standard
theory of sparse representation is to mitigate the signal
reconstruction errors utilizing a very few number of atoms.
In literature too, the application of sparse representation for
modeling and classification has been well explored. Sparse
representation for signal classification (Schoellkopf et al., 2007)
and EEG classification based on sparse representation with
deep learning (Gao et al., 2018) are the two most important
applications of sparse concepts in biomedical signal processing.
A widely utilized generative model is HMM which usually
deals with sequential data and it assumes that based on a
specific state of hidden Markov chain, the conditioning of every
observation is done (Rezek and Roberts, 2002). It is a very
famous probabilistic model where the general assumption is
that a signal is generated by means of the utilization of a
double-embedded stochastic process. For analyzing sequential
data, HMMs are highly useful as the dynamics of the signal is

encoded by a discrete-time hidden state process which projects
as a Markov chain. At each instant of time, the appearance of the
signal is encoded by an observation process and it is conditioned
on the present state. For biomedical signal analysis especially
the EEG, HMMs are highly useful and a few applications
utilizing them for various aspects of EEG signal processing are
ensemble HMM for analyzing EEG, parallel HMM to classify
the multichannel EEG patterns, detection of various brain
diseases from EEG signals using HMM and an obstructive sleep
apnea detection approach using a discriminative HMM from
EEG (Eberhart et al., 2001). Swarm Intelligence combined with
HMMs serves as a good combination and has been successfully
implemented in our work.

The main contributions of this work are as follows:

a) An efficient sparse representation model with sparseness
measures analysis with the usage of Analysis Dictionary
Learning Algorithm (ALDA) for the biosignal datasets
has been implemented and no literature in the past have
reported it for epileptic EEG signal classification and
schizophrenia EEG signals classification.

b) A swarm intelligence–based pliable HMM has been
developed and incorporated in this study and it is the first
of its kind to do after the sparse representation analysis
is done, as no literature in the past has proceeded in
this methodology.

c) The sparse-modeled features are also classified with
deep learning methodology using CNN and other
traditional pattern recognition techniques for providing a
comprehensive analysis.

d) Overall, the amalgamation of these techniques in this
proposed kind of methodology is totally new and it
can be successfully implemented in other biosignal
processing datasets, imaging applications, speech signal
processing, financial risk level assessment classification,
biometrics, etc.

In this work, sparse modeling is implemented with HMM
ideology controlled by SI techniques and it is the first of
its kind to adopt this methodology for biosignal processing
datasets, making the system more versatile and adaptable. The
organization of the work is as follows. The simplified block
diagram of the work for an easy understanding is projected
in Figure 1. Section “Sparse representation model” explains
the sparse representation model of the EEG signals. Section
“Hidden Markov model analysis” explains the modeling of
HMM followed by the usage of swarm intelligence techniques
and the incorporation of the deep learning methodology is
explained in section “Deep learning–based methodology.” The
results and discussion with experimentation and dataset details
are projected in section “Results and discussion” and conclusion
in section “Conclusion and future work.”
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FIGURE 1

A simplified block diagram of the work for easy understanding.

Sparse representation model

The notations utilized in analyzing the sparse representation
concept are explained as follows. An upper case alphabet Z
denotes a matrix and lower case letter zij expresses the ijth entry
of Z. A vector is defined by the lower-case letter, such as z. The
jth entry of z is expressed as zj. The ith row and jth column of
a particular matrix Z is defined by the matrix slices Zi: and Z:j,
respectively. For a matrix Z, the Frobenius norm is expressed as

||Z||F =
(
6i,j

∣∣zij
∣∣2)1/2

. To indicate the determinant value of a
specific matrix, det (•) is utilized.

Sparse signal representation

With the help of sparse representation, the observed signals
are decomposed into a unique product of a dictionary matrix
which will have the signal base and along with it a sparse
coefficient matrix will also be present (Schoellkopf et al.,
2007). A synthesis model and analysis model are the two
various structures of the sparse representation model. The firstly
initiated sparse model is the synthesis model and it is very widely
utilized. Assuming that the modeling of signals to be done as
Z ∈ <p×N , where the signal dimensionality is represented as p

and the total number of measurements are represented as N. The
signals could be expressed in the synthesis sparse model as

Z = DG (1)

Z ≈ DG (2)

such that ||Z-DG||2F ≤ ε, (3)

where D ∈ <p×n is considered as a dictionary, G ∈ <n×N

denotes a representation co-efficient matrix, and a very small
residual factor is given by ε ≥ 0. The number of bases is
represented by ′n′ and it is termed as dictionary atoms. To
obtain the sparse representation of the signals, it is assumed that
from the dictionary matrix D, the representation matrix G is
sparse in nature (i.e., numerous zero entities). From equations
(1) and (2), it implies that the representation of every signal is
done as a linear combination of a few atoms.

The choice of solution for the dictionary is the most
important key issue of the sparse representation which the
discovered signals are utilized to decompose. The famous
choices are either a pre-defined dictionary such as wavelets,
Discrete Fourier Transform (DFT), and Discrete Cosine
Transform (DCT) or a learned dictionary which results to match
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the contents of the signals in a better manner (Schoellkopf
et al., 2007). In real-world applications, a better performance
is exhibited by the learned dictionary when compared to
the pre-defined dictionaries. The analysis model is a simple
and interesting twin of the synthesis model and it should
be considered important. Supposing that there is a matrix
� ∈ <n×p that gives a sparse coefficient matrix G by means of
being multiplied by the signal matrix G = �Z.

For the error function ||G−�Z||F , there is a minimization
problem and the equation G = �Z can be utilized as a solution
to it. The standardized optimization methods can be very well
deployed in this study as the error function is convex. To
perform optimization in the analysis model is very easy as the
error function present in the synthesis model is non-convex in
nature. Now the analysis dictionary is represented as� ∈ <n×p.
In the analysis dictionary �, the atoms are considered as its
rows rather than the consideration of atoms as columns in the
synthesis dictionary D. In order to assemble a sparse result,
the dictionary analyses the signal and so the term “analysis” is
used. To clearly distinguish and stress the importance between
analysis and synthesis models, a co-sparsity has been utilized
(Gao et al., 2018), which helps in counting the number of zero-
valued elements of �Z, which is nothing but the zero elements
co-produced by� and Z. Therefore, the cosparse model can also
be used instead of sparse model, and cosparse dictionary can also
be used instead of analysis dictionary.

Now analysis sparse model is examined more carefully. The
analysis model represented for one signal z ∈ <p, which is a
column in the signal matrix Z is now indicated utilizing an
acceptable analysis dictionary � ∈ <n×p. The ith row termed
as the ith atom in � is specified by qi. Now the analysis
representation vectors g = �z should be made sparse and it is
done by means of introducing a sparse measure M(g), so that the
behavior becomes negatively influenced by the sparsity nature of
g and therefore by mitigating M

(
g
)
, it gives the sparsest solution

represented as
� = arg min

�

M(g)

s.t g = �z
(4)

By utilizing l0 norm thoroughly by means of setting
M(g) =

∣∣∣∣g∣∣∣∣0, the sparsest solution is obtained. Such a
constraint leads to often NP hard problem and the optimization
problem becomes combinatorial. To have easier optimization
problems, the other sparsity measures such as the l1 norm
are utilized. It is also known that utilizing l1 norm can
lead to the solution becoming too sparse as it often over-
penalizes large elements.

Sparseness measures analysis

For estimation and appraisal of the sparseness of a vector,
the lp norms are highly useful and are popularly used, where

p = 0, 1, or 2. An NP-hard problem is often yielded by the
l0 norm, and therefore, l1 norm has its convex evaluation
utilized often (Gao et al., 2018). For a vector g, the l1 -norm is
expressed to be the total sum of the absolute values of g; i.e.,∣∣∣∣g∣∣∣∣1 = 6i

∣∣gi
∣∣.

For non-negative vectors, g ∈ <+, the l1 -norm of g is
expressed as

∣∣∣∣g∣∣∣∣1 = 6igi . The l1 -norm is usually smooth
and differentiable for non-negative vectors and therefore
such gradient techniques are utilized in optimization. The
introduction of l2 -norm with non-negative matrix factorization
is sometimes considered as its yields sparse solutions. The results
with l0 -norm or l1 -norm are more sparser than the results with
l2 norm. The instantaneous sparsity nature of only one signal
can be expressed by the sparsity measures mentioned above and
are generally not utilized for covering and evaluating the sparsity
across various sources of measurement.

For non-negative sources, a determinant type of sparsity
measure is employed to express the joint sparseness. The
sparseness of non-negative matrices can be explicitly measured
by the determinant-sparse type and measures as it has various
good qualities. The determinant value of a non-negative matrix
is well bounded if the normalization of a non-negative matrix
is done, thereby interpolating its value between two extremes
0 and 1, and thus enhancing the sparsity. Supposing if the
non-negative matrix Y is non-sparse, then the determinant of
YYT , det(YYT) addresses toward 1. If all the entries of YYT are
similar, then the determinant value acts in a manner such that
0 ≤ det

(
YYT)

≤ 1, where det
(
YYT)

= 0. The following two
conditions are fully complacent at the time when det

(
YYT)

= 1
and are mentioned as follows:

(i) For all i ∈
{

1, 2, ..., p
}

, only a single element in yi is non-
zero

(ii) For all i, j ∈
{

1, 2, ..., p
}

, and i 6= j, yi, and yj are
orthogonal in nature, yT

i yj = 0

Thus, in the cost function, the determinant measure can
be utilized. If the determinant measure has a larger value, then
the matrix is more sparse. Therefore, with these determinant
constraints, the sparse coding problem can be now modeled as
an optimization problem and represented as

max
y

det
(

YYT
)
= min

y
− det

(
YYT

)
(5)

Formulation of sparse representation
problem

The analysis sparse representation problem description is
explained as follows. It is assumed that the observed signal
vector t ∈ <p

+ is present and it is a noisy aspect of a signal
z ∈ <p

+. Therefore, t = z + v, where v denotes additive positive
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white Gaussian noise. With the help of an analysis dictionary
� ∈ <n×p, every row which explains 1× p analysis atom is
considered so that z satisfies ||�z||0 = p− s, where s expresses
the cosparsity of the signal which is matched to be the total
number of zero elements. To define the signals with every
column as one signal, a matrix Z is utilized so that the signals
matrix can be extended. In this study, the sparse measure
is analyzed as M(.). The noise in the measured signals is
considered, and therefore, for analyzing dictionary learning, an
optimization task is formulated as

min
�,Z

M (�Z) (6)

such that ||T-Z||2F ≤ σ.
The noise level parameter is denoted by σ, the sparse

regularization is expressed as M. With the help of penalty
multipliers, a regularized version of the above equation can be
done. In such a case, X is considered as an approximation of
�Z, which tends to make the learning fast and easy. By means of
thresholding the sparsity measure on X and the product of �Z,
the analysis sparse coding is obtained.

The analysis sparse representation is expressed as

min
�,Z,X

M(X)+ λ ||T-Z||2F + β ||�Z-X||2F (7)

such that
∣∣∣∣qi

∣∣∣∣
2 = 1,∀i, where the representation coefficient

matrix is denoted by X ∈ <n×N . Now the representation matrix
X is considered as sparse. The λ and β in (7) are estimated
with the help of the famous Lower Upper (LU) decomposition
technique. To remove the scale ambiguity, a normalization
constraint is introduced

(
∀i
∣∣∣∣qi

∣∣∣∣
2 = 1

)
. The analysis dictionary

learning procedure is summarized in Algorithm 1.

Initialization: �0,X0,Z0 = T, i = 0
While convergence is not achieved do

�i+1 = min� ||�Z − X||2F s.t.∀i
∣∣∣∣qi

∣∣∣∣
2 = 1

Xi+1 = minX M(X)+ β ||�Z − X||2F
Zi+1 = minZ λ ||T − Z||2F + β ||�Z − X||2F
i = i+ 1

Algorithm 1. Analysis dictionary learning algorithm (ADLA).

For the sparse represented EEG signal, the statistical
feature parameters such as mean, variance, skewness, kurtosis,
sample entropy, approximate entropy, Shannon entropy, Hurst
exponent, Largest Lyapunov Exponent, Fractal Dimension,
Recurrence Quantification Analysis, Higher Order Cumulants,
Lempel Ziv Complexity, Kolmogorov Complexity, and Hjorth
exponent are computed. Table 1 shows the average statistical
feature parameter values for sparse represented EEG data
signals. It is noted from Table 1 that low values of mean,
variance, and skewness are observed among the Bonn dataset
(Andrzejak et al., 2001) (normal, inter-ictal, and ictal categories)
and schizophrenia dataset, while the kurtosis parameter reached
a high value in the Bonn dataset and schizophrenia dataset

(Olejarczyk and Jernajczyk, 2017). Bonn dataset does not
differentiate among the entropy features, but in the case
of schizophrenia dataset, there exists a difference in the
entropy features. All the statistical parameters for the features
such as Hurst Exponent, Largest Lyapunov Exponent, Fractal
Dimension, Recurrence Quantification Analysis, Higher Order
Cumulants, Lempel Ziv Complexity, Kolmogorov Complexity,
and Hjorth Exponent show the nonlinear behavior and it
has very close values among the group of datasets. This
justification indicates that the sparse represented data should be
further processed through the HMM with bio-inspired learning
algorithms.

Hidden Markov model analysis

To express a Markov process with unknown parameters,
HMM is often used (Rezek and Roberts, 2002). Through
observable parameters, it is hectic to understand the implicit
parameter of the process, and so it is utilized to proceed
with further in-depth analysis. Two discrete-time stochastic
processes that are related to each other are described by
HMM. Hidden state variables are applicable to the first process
and denoted as (V1,V2, ...,Vn), which emits the observed
variables with various probability factors. The second process
is applicable and related to observed variables (w1,w2, ...,wn).
The transition probability and the emission probability are the
two main parameters of HMM.

Transition Probability: P
(

Vl = vp
∣∣Vl−1 = vm

)
It implies

that the current state depends on the previous state vm.
Emission Probability: P

(
wl|Vl = vp

)
The current state vp

is used to release the observation symbol. In our model, for
every extracted sparse signal feature fi, an HMM λ(fi) is built.
The observed variables are nothing but the sparse representation
features extracted from the signal ′s′, while every hidden state
V(fi)

l of λ(fi) is assured as a state related to the feature wl. If
the sparse representation S obtains a very high probability for
the model λ(fi), it implies that S is related to the sparse signal
feature fi.

Consideration of sparse features as
observed variables

The features extracted from the sparse signal model are
termed as sparse features, and these are considered as observed
variables. Under this domain, category-based extraction and
global-based extraction are the two main categories of feature
extraction techniques. As global-based extraction methods
cannot be utilized to differentiate the various sparse features
so well, in our work we adopted category-based feature
extraction techniques.

Frontiers in Computational Neuroscience 06 frontiersin.org

69

https://doi.org/10.3389/fncom.2022.1016516
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-16-1016516 November 10, 2022 Time: 15:9 # 7

Prabhakar et al. 10.3389/fncom.2022.1016516

TABLE 1 Average statistical feature parameters for sparse represented EEG dataset signals.

Sl. No. Statistical parameters Bonn EEG dataset Schizophrenia dataset

A C E Schizophrenia Normal

1 Mean 0.10049 0.300822 0.850364 0.971108 0.189563

2 Variance 0.001707 0.001091 0.000505 3.9E-05 5.31E-05

3 Skewness 0.561381 1.5384 –0.69973 0.596389 1.523915

4 Kurtosis 64.37504 48.20223 29.77208 59.32448 77.81783

5 Sample entropy 11.7308 11.5397 11.3726 6.8751 10.289

6 Approximate entropy 1.986 1.648 1.461 1.7916 2.041

7 Shannon entropy 10.87 6.69 5.421 5.832 11.67

8 Hurst exponent 0.734 0.582 0.348 0.231 0.831

9 Largest Lyapunov 0.839 0.2311 0.469 0.415 0.942

10 Fractal dimension 0.2769 0.281 0.286 0.341 0.242

11 Recurrence quantification 0.1208 0.1176 0.2177 0.2307 0.098

12 Higher order cumulants 0.2495 0.482 0.725 0.774 0.2116

13 Lempel–Ziv complexity 341.33 334.9 326.58 406.91 312.21

14 Kolmogorov complexity 11.039 9.873 9.5684 7.8002 7.6749

15 Hjorth exponent 1.528 1.7153 1.6887 1.6002 1.726

Considering a set of n feature extraction techniques
{F1, F2, ..., Fn}, a sparse representation S is divided into n terms(
k1, k2, .., kn

)
. Assuming zjl is the lth feature which is extracted

by the method Fl. For computing the sparse representation
feature vector, an intermediate h× n matrix of term-level
feature is utilized. For every sparse signal feature fi, the sparse
representation feature vector of the signal S is represented as
follows:

k1

k2

:

kh

→


z11 z12 .. z1n

z21 z22 .. z2n

: : : :

zh1 zh2 .. zhn

→ [w1,w2, ..,wn](fi) (8)

where wl =
∑h

j=1 zjh
/

h,
(
1 ≤ l ≤ n

)
.

Over all the signal features,wl is a mean value of lth features
over all the extracted signal features.

Development of hidden Markov
model-based signal classification
model

A value is supposed to be emitted by each hidden state
and so the sequence of values is generated by the whole model
that constitutes and manages the sparse representation feature
vector. The representation of the best signal category is done by
a set of values and it is considered to be as a state in our work.
Between the sparse representation and the HMM states, there
is a one-to-one mapping that requires the transition of hidden
states to be in a stationary mode and the states to indicate the
start level v1. During the working of the classifier, the features of

test sparse representations being drawn closer to the signal are
done by the transition probability and are expressed as follows:

P
(

Vl = vp
∣∣Vl−1 = vm

)
=

{
1,
(
p = m+ 1

)
0,
(
p 6= m+ 1

) (9)

With the help of known state Vl, the feature wl and the training
data, the emission probability P

(
wl
/

Vl
)
is calculated. The HMM

model λ(fi) for every feature fi is expressed in Algorithm 2 as
follows:

The signal level feature vector is

expressed as [w1,w2, ...,wn](fi)

Input: feature vector [w1,w2, ...,wn](fi)

Output: Probability

P
([

w1,w2, ...,wn
](fi)∣∣∣ λ(fi))

For l = 1 to n do
Calculate P

(
wl
/

Vl
)(fi)

End for

Calculate P
([

w1,w2, ...,wn
](fi)∣∣∣ λ(fi))

using forward algorithm.

Algorithm 2. Expression of every feature in the HMMModel.

For each of the signal features, the HMM concept
is constructed and implemented. The calculation of the
probabilities of the sparse representations on the signal feature
models is done when a new sparse representation arrives. The
sparse representation is labeled with the signal features whose
model is highly related to the maximum probability.

To compute P (wl|Vl)
(fi), a Jaccard similarity (J) is

utilized which helps in testing the correlation between
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the value wl and Vl .

P (wl|Vl)
(fi) = J (wl|Vl)

(fi) =
H11

H11 +H10 +H01
(10)

where H11 indicates the number of sparse representations
contained with wl and Vl in fi; H01 indicates the number of
sparse representations which has only wl in fi; H10 indicates the
number of sparse representations which has only Vl in fi.

To assess whether the signal feature fi relates to the
observation wl or the state Vl, an associated factor is included
and it is specified by δl. The feature extracted from the training
data be w

′

l and the association is described as follows:∣∣∣w′l − wl

∣∣∣ ≤ δl or
∣∣∣w′l − Vl

∣∣∣ ≤ δl (11)

If the above inequalities are satisfied, then it is understood
that the observation wl or the state Vl is related to fi.

Self-Pliable mechanism of hidden
Markov model by swarm intelligence
techniques- computation of
parameters

It is very important to build a versatile HMM classifier,
and it is significant to trace the optimized sequences of the
HMM states. For the optimization of state parameters, various
strategies are utilized by means of utilizing SI techniques. In this
work, PSO, DE, WOA, and BSA are utilized. The main reasons
for selecting these four SI techniques are because they are very
easy and have a simple implementation with fast convergence
and good computational efficiency. As HMM can adapt itself to
the various optimization techniques, the HMM techniques can
be called as self-pliable one.

Particle swarm optimization
A famous population-dependent stochastic optimization is

PSO (Eberhart et al., 2001). The candidate solution of an HMM
parameter is represented by every particle in PSO. Around the
search space, the movement of the particles takes place. With
the help of the local best-known position of a particle, the
best-known positions are found. The best parameters can be
iteratively found by this technique. PSO has the extreme power
to achieve global optimization and it has a good application in
our study. The mathematical expressions concerning it are as:

ve [] = We × ve []+ ac1 × r ×
(
pbest []− presentposition[]

)
+ac2 × R×

(
gbest []− presentposition[]

)
(12)

presentposition[] = present []+ ve [] (13)

[] specifies that its specific variable is a vector. In the range of
[0,1], the variables rand R are represented.

The individual extremes are recorded by pbest[], and the
global extremes are recorded by gbest[]. The inertia weight is
represented by the constant We. The acceleration constants are
represented as ac1 and ac2.

Based on the previous velocity value and its corresponding
distance to the best particle, the updates of the velocities
of particles are done. The present [] particle’s position is
updated by (13) based on the current velocity and the
previous position value.

Parameter settings of PSO: To have various impacts
on optimization performances, various PSO parameters are
considered. The PSO parameters are selected on the following
basis:

Vmax : It is set by values of training data and it implements
the searching space granularity.

We : It decides the motion inertia of the particles and the
value is set as 0.5 in our experiment.

ac1, ac2 : indicates the accelerated weight so that it could
propagate each particle to pbest[] and gbest[], the weights of both
of them are set to 4 after a lot of trial and error basis.

To find the two types of parameters in HMM, a fitness
function is used; (i.e.) the reduced associated factor δl and the
V(fi)

l , which indicates the lth hidden state of the HMM λ (fi).
The definition of fitness function is done as follows:

fitness
(
δl,V(f1)l , ...,V(f6)l

)
= F1 −Measure,(

1 ≤ l ≤ n
)

(14)

where F1 measure is one of the metrics used for classification
accuracy. The exhaustive search is done for a total number of
the involved parameters. The set of parameters is divided into
n independent parts as training the whole parametric set is
time-consuming by PSO. Depending on the fitness function, the
parameters are thoroughly learned.

Differential evolution
It is a famous population-based approach that is widely

used by everyone and is a promising global search technique
and can be used well for HMM (Sarker et al., 2014). The
candidate solution of an HMM parameter is represented by
every evolution process in DE. Once the initial population is
generated, then by looping mutation, selection, and crossover
operations, the updation of the population is done. In the
following four steps, the DE procedure is summarized as follows:

(A) Initialization: By utilizing random number
distributions, the generations of an initial population are
done. The jth dimension of the ith individual is initialized as

zi,j = Bj + rand(0, 1)∗
(
Uj − Lj

)
,

i = 1, 2, ..., S, j = 1, 2, ...,D (15)

where the population size is S and the dimension of individual
is represented as D,
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A random number in [0,1] range which is uniformly
distributed is expressed by rand (0,1). The upper bound of the
jth dimension is expressed as Uj and the lower bound of the jth

dimension is expressed as Lj, respectively.
(B) Mutation: The differential evolution enters the main

loop after the initialization is done. A mutant individual mi

through mutation operators
(
DE/rand

)
/1 is generated by every

target individual zi in the population. The generated mi is
represented as

mi = zr1 + C∗ (zr2 − zr3), r1 6= r2 6= r3 6= i (16)

where r1, r2, and r3 are selected randomly from the present
population. To scale the difference vector, C is utilized and is
termed as the mutation control parameters.

The other generally used mutation operators for DE are
expressed as follows:

(1) "DE/best/1"

mi = zbest + C∗ (zr1 − zr2) , r1 6= r2 6= i (17)

(2) "DE/rand/2"

mi = zr1 + C∗ (zr2 − zr3)+ C∗ (zr4 − zr5) ,

r1 6= r2 6= r3 6= r4 6= r5 6= i (18)

(3) "DE/best/2"

mi = zbest + C∗ (zr1 − zr2)+ C∗ (zr3 − zr4) ,

r1 6= r2 6= r3 6= r4 6= i (19)

(4) “DE/Current − to− best/1′′

mi = zi + C∗ (zr1 − zi)+ C∗ (zr2 − zr3) ,

r1 6= r2 6= r3 6= i (20)

(5) “DE/rand − to− best/1′′

mi = zi + C∗ (zbest − zi)+ C∗ (zr1 − zr2) ,

r1 6= r2 6= i (21)

zbest represents the individual with the best
fitness function value.

However in this work, all the above-mentioned five
combinations were utilized and upon analysis,

(
DE/rand

)
/1 was

finally chosen and implemented as it was very convenient to set
and alter the values after the initialization process is done.

(C) Crossover:
To generate a trial individual ti, a crossover operation which

is binomial in nature is implemented to the target individual zi

and the mutant individual mi as follows:

ti,j =

mi,j if rand(0, 1) ≤ LR or j = jrand

z
i,j otherwise

(22)

where a randomly chosen integer in the range of [1,D]
is expressed as jrand. The crossover control parameters are
expressed as CR and it is in the range of CR ∈ [0, 1].

(D) Selection:
Selection of the better one from the target individuals zi

and crossover individual ti into the upcoming generations is
important and so the greedy selection operator is utilized in this
study. Based on the primary comparison of fitness values, this
operation is performed, and it is computed as:

zt+1
i =

{
ti, if fit(ti) < fit(zi)

zi, otherwise
(23)

where the fitness function is denoted by fit.

Whale optimization algorithm
A famous swarm-based metaheuristic algorithm is WOA

(Mirjalili and Lewis, 2016). The candidate solution of an
HMM parameter is represented by every whale in WOA. The
intelligent foraging behavior of hump back whales is mimicked
in it, and this algorithm is influenced by bubble net hunting
strategy (Mirjalili and Lewis, 2016). The main operators are
included in WOA such as

(i) Simulation and searching the prey.
(ii) Encircling behavior of the prey.

(iii) Bubble net foraging behavior of the whales.

The exploration phase is nothing but searching for prey, and
the exploitation phase is the encircling prey and spiral bubble net
attacking method. For the two phases, the mathematical model
is presented below.

(I) Initial stage: Exploitation stage
This includes the encircling prey phase/bubble net

attacking method. Based on two mechanisms, the updation
of their positions is done by the hump back whales during
the exploitation phases such as shrinking with encircling
mechanism and the spiral updation position. The former is
called encircling prey, and the latter is called spiral bubble
net attacking method. Using the following equations, the
representation of the shrinking mechanism is done as follows:

EZ(t + 1) = EZ
∗

(t)− EM.
−→
Dis, (24)

−→
Dis =

∣∣∣∣−→N.−→Z∗ (t)− EZ(t)∣∣∣∣ (25)

where the current iteration is represented by t.
The best solution of the position vector obtained so far is

represented by EZ
∗

(t), and the position vector is indicated as
−→
Z (t).

The coefficient vectors are denoted as −→M and −→N , and it is
calculated as follows:

−→
M = 2−→m .−→r −−→m
−→
N = 2.−→r

(26)
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In both the phases, over the period of iterations, −→m is linearly
decreased from 2 to 0. Here, −→r represents a random vector
in the range of [0.1]. Using the following equation, the
mathematical representation of the spiral updating position is
expressed as follows:

−→
Z (t + 1) =

−→

Dis
′

.ecq. cos
(
2πl

)
+

−→

Z
∗

(t) (27)

−→

Dis
′

=

∣∣∣∣−→Z∗ (t)−−→Z (t)∣∣∣∣ (28)

The distance of the xth humpback whale to the best solution

derived is represented by
−→

Dis
′

.
The logarithmic spiral shape is defined by a constant c and

the random number in the range of [–1,1] and is expressed by
q. The element-by-element multiplication is given by (·). The
mechanism exhibited by whale when catching a prey such as
shrinking encircling mechanism and spiral updating positions
are accomplished at the same time. The assumption is that a
probability of 50% is chosen between them so that this behavior
could be initiated. This mathematical modeling is expressed as
follows:

−→
Z (t + 1) =


−→

Z
∗

(t)−
−→
M .
−→
Dis if k < 0.5

−→

Dis
′

.ecq. cos
(
2πq

)
+

−→

Z
∗

(t) if k ≥ 0.5
(29)

where the random number k is in the range of [0,1].
(II) Prey Searching Phase (Exploration Phase):
In order to increase the exploration capability of WOA,

based on randomly selected whale, the position of the whale is
updated instead of utilizing the best whale food in the process.
To force or to propagate away from a whale and to move very far
from the best-known whale, a coefficient vector M with random
values substantially greater than 1 or less than -1 is utilized.

Mathematically, it is expressed as

−→
Z (t + 1) =

−→
Z rand(t)−

−→
M.
−→
Dis (30)

−→
Dis =

∣∣∣−→N.−→Z rand(t)−
−→
Z (t)

∣∣∣ (31)

where a random position vector selected from the current
population is expressed as

−→
Z rand.

Backtracking search optimization algorithm
A famous population-based metaheuristic algorithm is BSA

(Beek, 2006). The candidate solution of an HMM parameter
is represented by every search in backtracking mechanism
of BSA. By means of implementing mutation, crossover, and
selection of population, this algorithm achieves the optimization
purpose similar to other meta-heuristic algorithms. It has the
unique quality to remember historical populations and therefore
by completely mining the historical information, previous
generations can be benefitted. Five steps are present in the

original BSA, namely, (i) initialization (ii) Selection Phase I
(iii) Mutation (iv) Crossover, and (v) Selection Phase II. The
explanation for the 5 steps is as follows:

Step 1: Initialization:
At the outset, with the following formula, the population

A and the historical population oldA is initialized by BSA,
respectively.

Ai,j ∼W
(
lowj, upj

)
OldAi,j ∼W

(
lowj, upj

) (32)

where i = 1, 2, ..., S, j = 1, 2, ...,D.
The population size is represented by S, and the population

dimension is represented by D, respectively. The uniform
distribution is denoted by W. The lower boundaries of variables
are denoted as lowj, and the upper boundaries of variable are
denoted as uppj.

Step 2: Selection Phase I:
Based on equation (32), the updation of the historical

population oldA is done. Then there is a random change in the
locations of individuals in oldA as projected in equation (33):

if p < q
(
p, q ∼W(0, 1)

)
, then oldA = A (33)

oldA = permuting
(
oldA

)
(34)

where a random permutation of the integers from 1 to Nis done
by permuting (·) operations.

Step: 3 Mutation Process
The initial trial population is generated by the mutation

operator of BSA so that there is complete control of the
documented and authentic information along with the current
information. The expression of mutual operation is expressed as:

Mi,j = Ai,j + C∗(oldAi,j − Ai,j) (35)

where the control parameters are denoted by C, and the value
of C is chosen to be 5 in our experiment after a lot of trial
and error basis. A powerful global search ability is obtained
by this operation.

Step: 4 Crossover:
Here, it comprises of 2 steps:

(1) Initially, a binary integer value matrix map is generated
which is of size S∗D

2) Secondly, depending on the matrix map generated, the
location of crossover individual elements are determined
in population A

3) Therefore, to get the final trial population Tp, the
individual elements in A are exchanged with the respective
collaborating positive elements in population V . The
expression of crossover operation is expressed as

Ri,j =

Ai,j if mapi,j = 1
V

i,j otherwise
(36)
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Sometimes they might be an overflow of few individuals of
the trial population T than the allowed search space limits
after the crossover operation. There will be a regeneration
of individuals present beyond the boundary control based
on equation (32).

Step 5: Selection II phase:
To preserve the best favorable trial individuals, a greedy

selection mechanism is utilized. For the trial individuals and
the target individuals, the fitness values are compared. The trial
individual can get accepted to the next generation if the fitness
value of trial individuals is much less than the target individuals.
If the fitness merit and utility of trial individuals are more than
the target individual, then the target individual is retained in the
population. The definition of selection operation is expressed as
follows:

Ai =

{
Tpi , if fitness

(
Tpi

)
< fitness (Ai)

Ai, otherwise
(37)

where the objective function value of a particular individual is
f (·).

Feedback mechanism for swarm
computing techniques

To manually label all the sparse feature representations, it
is pretty time-consuming and very expensive too. Therefore, a
feedback technique is introduced that can automatically deal
and relate whether an unlabeled sparse representation is chosen
and present in a training data pool once the HMM assigns it
with the signal feature. Therefore, the best strategy is to calculate
the entropy measures of a sparse representation S so that the
signal is more discriminating than all the other signal features
on the sparse representations S. A famous information theoretic
measure it is expressed as

φ(S) = −
∑

i

P
(

fi
∣∣ S
)

log P
(

fi
∣∣ S
)

(38)

where P
(

fi
∣∣ S
)

expresses the probability of the sparse
representations S recognized as a signal feature fi. If φ(s)
is less, then the certainty about the sparse representations S
on the signal feature fi is more. To decide whether a sparse
representation should be present in the training data set, the
algorithm of feedback-based mechanism is utilized as shown in
Algorithm 3.

Input: training data D, test pool data

N, query strategy parameter φ (•), query

batch size parameter Bs

Repeat

For i=1 to |F| do
Optimized λ(fi) by utilizing current D

and PSO/DE/WOA/BSA algorithm

End for

For bs = 1 to Bs do
S
∗

bs
= arg max

S∈U
φ(S)

Move S
∗

bs from N to D

End for

Utilizing some stopping criterion

Algorithm 3. Feed back mechanism.

The gist of EEG signal classification with sparse
representation measures and a swarm computing-based
HMM methodology is as follows:

(a) Preprocessing of signals is done initially by using
Independent Component Analysis (ICA).

(b) Sparse Modeling of the signals is done.
(c) Computation and extraction of sparse feature vectors of

the entire dataset are done.
(d) Building an HMM for the assessed sparse signal features as

observed variables.
(e) The hidden states of each λ(fi) are optimized by

PSO/DE/WOA/BSA.
(f) For every λ(fi)

(
fi ∈ |F|

)
, the signal vector[

w1,w2, ...,wn
](fi) of S in sparse signal

feature fi is computed, and the output values
P
(

[w1,w2, ...,wn](fi)
∣∣∣λ(fi)) are calculated through

model λ(fi ).
(g) Return f

∗

= arg maxfi∈|F|

{
P
(

[w1,w2, ...,wn]|λ(fi
)}

.

To test the performance of every HMM, several sparse
representation features represented as observed variables are
selected randomly. For each signal representation, the test
dataset contains numerous sparse representation features. For
about ten times, each test result is executed, and the evaluation
is based on the average results.

Deep learning–based
methodology

Generally, to perform the classification in an end-to-end
manner, the deep CNN model (Zhao et al., 2020) is utilized but
in this work, once the sparse representation modeling to EEG
signals is done, then deep feature extraction happens through
the developed deep learning model, and finally, it is fed to
classification. The utilized 1D-CNN deep learning architecture
is expressed in Figure 2 as follows:

The sparse represented EEG signals are fed into the four
convolution blocks where every block is comprised of five
different layers so that the sparse representation can be learned
more deeply. For the generation of a group of linear activation
responses, multiple convolutions in parallel are computed by
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FIGURE 2

Deep learning 1D-CNN for the classification of EEG.

the first layer. In order to solve the internal variable shift, the
second layer utilized is Batch Normalization (BN). A nonlinear
activation function in the layer is passed by each linear activation
response. Rectified Linear Unit (ReLU) is the chosen activation
function and is implemented in this work. To avoid overfitting,
the concept of dropout methodology is used in the fourth
layer. Finally, translation invariance is introduced by the max
pooling layer, which serves as the last layer in the block. In
the developed deep learning architecture, the second, third, and
fourth convolution blocks are same as the first convolution
block repeating the same actions. The flattening of the feature
maps is done into a one-dimensional vector at the end of
the fourth convolution block which is connected to the Fully
Connected (FC) layer so that the features are integrated. The
activation function is chosen as ReLU for the first two FC
layers which are accompanied by a dropout layer. Softmax
activation function is implemented in the third FC layer so
that a vector of probabilities communicating to every category
is given as output. The experiments were tried with various
model parameters and the one which produced good results is
provided in this work.

Convolution layer

In order to process the data with same network structures,
CNN is widely preferred. By means of regular sampling

on time axis, the consideration of the time series data can
be done as a one-dimensional grid. The important three
layers, namely, convolution layer, activation function layer,
and pooling layer are present in any convolutional block
of the standard CNN model. The convolution operation for
the 1D EEG data utilized in this article is expressed as:

s(t) =
(
x∗w

)
(t) =

∑
a

x(a)w (t − a) (39)

The attributes of the sparse interaction are present in the
convolutional network that helps to mitigate the storage
requirements of the developed deep learning model. This
ensures that all the memory parameters are thoroughly
learned with the parameters shared by the convolution
kernel. Convolution is actually a special type of linear
operation and it is only with the help of activation function,
the nonlinear characteristics are bought in the network.
The commonly utilized activation function in CNN is
ReLU, which helps to solve the vanishing gradient issue so
that the models can learn faster and enhance the overall
performance. The spatial size of the representation is
mitigated with the help of pooling function so that the
total number of parameters along with the computation
is reduced in the network. At specific portions, the output
of the system is replaced by the pooling function, thereby
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making the representation roughly invariant to minor
input translations.

Computation of batch normalization

To the standard convolution blocks, the addition of the BN
layer along with the dropout layer is done. There is always a
close relation between the parameters of every layer where the
training of the deep neural network is done. When the input
layers are distributed, an inconsistency occurs causing an issue
called as internal covariate shifts, making it hectic to choose a
suitable learning rate. Therefore, BN process is used in this study
so that almost any deep network can be reparametrized quite
easily by means of coordinating the updation process between
multiple layers of the network. Therefore, the normalization
is considered as part of the deep learning model architecture
and it helps to normalize every mini-batch. For the mini-batch
response H, the computation of the sample mean (µ) and
standard deviation (σ ) in backpropagation during training is
done as follows:

µ =
1
m

∑
i

Hi (40)

σ =

√
δ +

1
m

∑
i

(H − µ)2i (41)

To prevent the gradient from becoming undefined, the delta
component δ is usually added and it is a very small positive value.
In order to normalize H, the following expression is utilized as:

H
′

=
H − µ

σ
(42)

The convergence of the training phase can be well accelerated by
BN so that overfitting can be avoided easily and therefore BN is
employed after every convolution layer.

Fusion of features along with
classification

A large number of parameters need to be learned by the deep
neural networks and in the case of smaller datasets, there is a
high chance for occurrence of overfitting. Therefore, to solve this
issue, dropout technology was added so that the coadaptation of
feature detection is avoided fully. The random dropping of units
with a predefined probability from the neural network seems
to be the main intention of dropout layer during the training
process. When compared to other regularization methods, this
technique can reduce the overfitting to a great extent and
therefore after each ReLU activation function, a dropout layer is
added. The high-level features of the EEG signals are indicated
by the output of the final convolutional block. The FC layer can

easily learn all the nonlinear combinations of these functions. In
this work, three FC layers have been developed. The connection
of all the neurons in the last max-pooling layer is done with
the neurons of the first FC layer. Depending on the final
classification problem, the determination of the total number
of neurons in the final FC layer is done and since a two-class
epilepsy classification problem and a two-class schizophrenia
classification problem is dealt in this study, the number of
neurons in FC3 layer is chosen to be two. A generalized
form of the binary manifestation of logistic regression is the
softmax activation function. In order to assemble a categorical
distribution over the class labels and to trace the probability of
every input element belonging to a particular label, this softmax
function is usually implemented in the ultimate layer of a deep
neural network. The respective probability of the ith sample
expressed by x(i) which belongs to each category and is indicated
by the softmax function hθ

(
x(i)
)

as follows:

hθ

(
x(i)
)
=


p(y(i) = 1| x(i); θ)
p(y(i) = 2| x(i); θ)

:

p(y(i) = k
∣∣ x(i); θ

 = 1∑k
l=1 eθT

l x(i)


eθT

1 x(i)

eθT
2 x(i)

:

eθT
k x(i)


(43)

where the softmax model parameters are expressed by
θ1, θ2, ..., θ k.

Model training

The weight parameters are required to be learned from
the EEG data for the training of the proposed model. The
standard Backpropagation algorithm was used and the loss
function utilized is cross entropy. The stochastic gradient
descent technique with Adam optimization is utilized to learn
the parameters. The hyperparameters of Adam are set as follows:
learning rate is 0.0001, beta1 value is set at 0.5 and beta2 value is
set at 0.55. The batch size is considered as 200 in our experiment
which helps in the updation of the training process. The total
number of epochs utilized in this work is expressed as 250 so
that the training of the model can be done well.

Results and discussion

For evaluating and validating this proposed model, it
has been tested on University of Bonn dataset (Andrzejak
et al., 2001) which deals with epilepsy classification and
the schizophrenia dataset from Institute of Psychiatry and
Neurology in Warsaw, Poland, which deals with schizophrenia
classification (Olejarczyk and Jernajczyk, 2017). There are five
sets of epileptic data available such as A, B, C, D, and E. Set A
and B belongs to the normal category, Set C and D belongs to the
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inter-ictal category, and set E belongs to the ictal category. The
classification problem considered in epileptic dataset are A-E,
AC-E, B-E, CD-E, ACD-E, and ABCD-E, and the classification
problem considered in schizophrenia datasets are normal versus
schizophrenia. The elaborate details of both datasets are given
in Andrzejak et al. (2001) and Olejarczyk and Jernajczyk (2017).
For both datasets, the Independent Component Analysis (ICA)
is utilized as a common pre-processing technique. As far as the
epilepsy dataset is considered, 100 single-channel recordings of
EEG signals are present in each of these sets with a sampling rate
of 173.61 Hz and time duration of 23.6 s. The respective time
series is sampled into 4097 data points and further every 4097
data point is divided into 23 chunks, thereby the total number
in each category has about 2,300 samples. For deep learning
methodology, once the sparse modeling is implemented to it,
the random division of the 2,300 EEG samples is done into ten
non-overlapping folds as a 10-fold cross-validation is adopted
here for evaluation. As far as the SI-based HMM along with the
conventional machine learning is considered, the 2,300 samples
are reduced by means of sparse feature extraction eliminating
the redundant ones. Only the essential sparse features are
considered as observed variables as expressed in the sparse
representation modeling concept and then it is proceeded
for classification by the SI-based HMM and the conventional
machine learning models. As far as the schizophrenia dataset is
concerned, there are about 225,000 samples with each channel,
and the data are represented in this study with a matrix of
[5,000 × 45]. As there are 19 such channels available there,
it is represented as [5,000 × 45 × 19]. For the deep learning
methodology, once the sparse modeling is implemented to it,
the random division of the schizophrenia EEG samples is done
into ten non-overlapping folds as a 10-fold cross-validation is
adopted in this study for evaluation. As far as the SI-based HMM
along with the conventional machine learning is considered for
schizophrenia EEG signal classification, the [5,000 × 45] data
are reduced by means of sparse feature extraction eliminating
the redundant ones. Only the essential sparse features are
considered as observed variables as represented in the sparse
representation modeling concept and then it is proceeded
for classification by the SI-based HMM and the conventional
machine learning models. The performance metrics analyzed
are the general measures used widely such as Classification
accuracy, Sensitivity, and Specificity. The details of the 1D-CNN
model utilized in this research are tabulated in Table 2.

Table 3 indicates the performance analysis of the proposed
SI-based HMM for different datasets with optimization
techniques. The highest sensitivity of 100% is attained for
Schizophrenia dataset with DE-HMM, WOA-HMM, and BSA-
HMM methods. In the case of epileptic dataset (AC-E) with
BSA-HMM, and epileptic dataset (B-E) with WOA-HMM also,
it reached 100% sensitivity. The lower sensitivity value of
69.86% is reached for epileptic dataset (AC-E) with WOA-HMM
method. The highest specificity of 100% is obtained for epileptic
dataset (AC-E) with PSO, DE, and WOA-based HMM methods.

As in the case of epileptic dataset (A-E) with DE-HMM and
epileptic dataset (B-E) with DE and BSA-based HMM methods,
it reached 100% specificity. A low specificity value of 76.83%
is reached for schizophrenia dataset with DE-HMM method.
A high classification accuracy of 95.70% is attained for epileptic
dataset (A-E) with DE-HMM method and low classification
accuracy of 82.43% is reached for epileptic dataset (ABCD-E)
with BSA-HMM method. For schizophrenia datasets, a high
classification accuracy of 91.41% is obtained with PSO-HMM,
and a low classification accuracy of 88.41% is obtained from
DE-HMM.

Table 4 shows the performance analysis of the proposed
methodology for the biosignal processing datasets in terms of
accuracy using swarm intelligence–based HMM, conventional
machine learning, and deep learning techniques. If the proposed
flow of methodology is implemented with NBC for the datasets,
then a high classification accuracy of 92.12% is obtained for
the B-E dataset. When the standard LDA is utilized, then a
high classification accuracy of 92.34% is obtained for the A-E
dataset, and low classification accuracy of 80.5% is obtained
for the ACD-E dataset. When KNN methodology is utilized,
a high classification accuracy of 90.23% is obtained for A-E
dataset and a low classification accuracy of 79.98% is obtained
for ABCD-E dataset. If the proposed flow of methodology is
implemented with Adaboost classifier for the datasets, then
a high classification accuracy of 89.34% is obtained for the
B-E dataset. When comparing all the conventional classifiers,
the SVM performs better as a higher classification accuracy
of 93.49% is obtained for the schizophrenia dataset and low
classification accuracy of 87.9% is obtained ABCD-E dataset.
Before computing the swarm intelligence–based HMM model,
the methodology was tested for the ordinary HMM model and
the highest result of only 87.34% was obtained for the A-E
dataset. This seemed to motivate the researchers to undergo
more research in fine-tuning HMM so that a better result could
be obtained. The swarm techniques were successfully computed
with HMM, and much better results were obtained. For the
PSO-HMM combination, a higher classification accuracy of
92.45% was obtained for the B-E combination and a lower
classification accuracy of 85.86% was obtained for the ACD-
E combination. For the DE-HMM combination, a higher
classification accuracy of 95.7% was obtained for the A-E
combination and a lower classification accuracy of 86.8%
was obtained for the ABCD-E combination. For the WOA-
HMM combination, a higher classification accuracy of 89.9%
was obtained for the schizophrenia dataset and a lower
classification accuracy of 82.87% was obtained for the ABCD-
E combination. For the BSA-HMM combination, a higher
classification accuracy of 92.97% was obtained for the A-E
dataset and a lower classification accuracy of 82.43% was
obtained for ABCD-E combination. For the proposed 1D-CNN
combination, a higher classification accuracy of 98.94% was
obtained for the A-E dataset, and a lower classification accuracy
of 97.05% was obtained for ACD-E combination.
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TABLE 2 Convolutional neural network (CNN) structure details utilized in this work.

Name of the block Types of layer Number of neurons Kernel size (output feature map) Stride

Conv1 Convolution 179× 20 60 1

BN 179× 20 – –

ReLU 179× 20 – –

Dropout 179× 20 – –

Max-pooling 90× 20 2 2

Conv2 Convolution 71× 40 40 1

BN 71× 40 – –

ReLU 71× 40 – –

Dropout 71× 40 – –

Max-pooling 36× 40 2 2

Conv3 Convolution 31× 60 20 1

BN 31× 60 – –

ReLU 31× 60 – –

Dropout 31× 60 – –

Max-pooling 18× 60 2 2

Conv4 Convolution 13× 80 10 1

BN 13× 80 – –

ReLU 13× 80 – –

Dropout 13× 80 – –

Max-pooling 5× 80 2 2

FC1 FC 64 – –

ReLU 64 – –

Dropout 64 – –

FC2 FC 32 – –

ReLU 32 – –

Dropout 32 – –

FC3 FC 2 – –

Comparison of results with previous
works associated with similar datasets

The authors in recent years have dealt with classification
problems as per their wish depending on their problem
requirement, and therefore, it was not mandatory to perform
the analysis of classification on every available subset of the
epileptic data. Therefore, the available results are compared with
our works and projected in Table 5.

On analyzing Table 5, it is quite evident that a wonderful
attempt has been made by the authors to attain good
classification accuracy results. As far as the A-E epileptic
dataset is considered, among the proposed methodology, the
sparse representation measures with 1D-CNN surpassed all
the other results proposed in this work and gave the highest
classification accuracy of 98.94% for A-E dataset, 97.15% for
AC-E dataset, 98.56% for B-E dataset, 97.56% for CD-E dataset,
97.05% for ACD-E dataset, and 97.34% for ABCD-E dataset.
When the swarm intelligence–based HMM is concerned, the
highest classification accuracy of 95.70% is obtained when

the sparse representation measures are implemented with DE-
HMM for the A-E dataset. Similarly, the DE-HMM gives a high
classification accuracy of 94.92% in AC-E dataset, 95.44% in B-E
dataset, 90.65% in CD-E dataset, and 88.81% in ACD-E dataset
when compared to other swarm-based HMM methods. For
the ABCD-E dataset, the sparse representation measures with
PSO-HMM provided a high accuracy of 88.9% when compared
to other swarm-based methods. It is commonly known that
deep learning outperforms most of the conventional pattern
recognition techniques and so in this work also, the highest
classification accuracy of 98.94% is obtained with the novel
idea of sparse modeling with deep learning. When the results
of the present work are compared to the previous works, the
deep learning results obtained by us have matched more or less
similar to the results obtained by the previous methods though
at many places, the classification accuracy obtained by this work
is slightly lower than the earlier proposed works by a range
of two to four percent. In such a case, it should not induce
the research community into thinking that as the classification
results are slightly lower, the proposed methodology is not
as versatile as the other methods. It has to be observed and
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TABLE 3 Performance analysis of the proposed swarm intelligence based HMM for different datasets.

Performance metrics (%) Datasets Swarm intelligence based HMM

PSO-HMM DE-HMM WOA-HMM BSA-HMM

Sensitivity Epileptic dataset (A-E) 93.26936 91.40875 83.12805 95.83567

Epileptic dataset (AC-E) 79.03875 89.84875 69.86516 100

Epileptic dataset (B-E) 94.53375 90.88625 100 85.69125

Epileptic dataset (CD-E) 88.38541 89.83978 83.87825 84.27894

Epileptic dataset (ACD-E) 85.34346 88.38376 82.47892 82.47892

Epileptic dataset (ABCD-E) 87.46243 85.38761 81.17835 81.48923

Schizophrenia dataset 92.97457 100 100 100

Specificity Epileptic dataset (A-E) 90.36875 100 86.52344 90.1125

Epileptic dataset (AC-E) 100 100 100 83.4325

Epileptic dataset (B-E) 90.36875 100 77.02032 100

Epileptic dataset (CD-E) 89.19385 91.46782 87.47892 85.56672

Epileptic dataset (ACD-E) 86.37892 89.23872 86.37892 86.38997

Epileptic dataset (ABCD-E) 90.34678 88.22389 83.35781 84.37781

Schizophrenia dataset 89.85625 76.8375 79.81938 81.27457

Classification accuracy Epileptic dataset (A-E) 91.81906 95.70435 84.82575 92.97409

Epileptic dataset (AC-E) 89.51938 94.92435 84.93258 91.71625

Epileptic dataset (B-E) 92.45125 95.44312 88.51016 92.84563

Epileptic dataset (CD-E) 88.78963 90.65381 85.67858 84.92283

Epileptic dataset (ACD-E) 85.86119 88.81124 84.42892 84.43445

Epileptic dataset (ABCD-E) 88.90460 86.80575 82.87462 82.434445

Schizophrenia dataset 91.41541 88.41875 89.90969 90.63729

TABLE 4 Performance analysis of sparse representation based swarm HMM and deep learning for the biosignal processing datasets in
terms of accuracy.

Classifier A-E AC-E B-E CD-E ACD-E ABCD-E Schizophrenia

NBC 91.37582 87.34981 92.12783 85.01358 82.10368 81.89451 87.03481

LDA 92.34589 86.24951 91.34591 86.93169 80.50275 83.67912 85.56921

KNN 90.23578 85.34917 89.25791 85.87615 81.28507 79.98205 88.45917

Adaboost 88.98659 83.45691 89.34725 87.58941 77.28905 75.91632 86.68113

SVM 93.45781 91.87543 92.46915 91.34721 88.56891 87.90982 93.49812

HMM 87.34591 81.12678 83.45916 84.33861 79.48697 71.26748 81.36991

PSO-HMM 91.81906 89.51938 92.45125 88.78963 85.86119 88.90460 91.41541

DE- HMM 95.70435 94.92435 95.44312 90.65381 88.81124 86.80575 88.41875

WOA-HMM 84.82575 84.93258 88.51016 85.67858 84.42892 82.87462 89.90969

BSA-HMM 92.97409 91.71625 92.84563 84.92283 84.43445 82.43444 90.63729

1D-CNN 98.94919 97.15912 98.56781 97.56789 97.05981 97.34862 98.19864

noted that in the field of machine learning, the classification
accuracies may be more or less in the range of plus or minus
3–5%, but what has to be observed carefully is the ease of
methodology and implementation strategy. If that aspect is
considered, the proposed methodology surpasses many earlier
techniques as no strong mathematical model has been built
in earlier models, whereas a strong mathematical model for
sparse representation with the hybrid SI-based HMM along
with deep learning is done in this work. Moreover, swarm
intelligence field is like an ocean and there are hundreds

of algorithms developed in the past two decades by various
researchers. This work is just a starting step to use the concept
of sparse modeling with SI-based HMM. In the upcoming
years, a variety of other SI algorithms shall be implemented
to HMM to test its ability and check its performance with the
sparse representation models, and the authors are confident
of obtaining much higher classification accuracy. As far as the
schizophrenia classification analysis is concerned, very high-
quality literature is not available online as it is an emerging
field. All the important works in schizophrenia classification are
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TABLE 5 Performance comparison of our works with the previous works – Epilepsy dataset.

References A-E AC-E B-E CD-E ACD-E ABCD-E

Bhardwaj et al., 2016 98.64 – – – 98.61 98.89

Peker et al., 2016 99.50 – – – – 99.13

Riaz et al., 2016 99.00 – – – – 96.00

Diykh et al., 2017 100 – 99.76 – 96.50 94.00

Zhang and Chen, 2017 – – – – – 98.87

Raghu et al., 2017 99.70 – – – – –

Ullah et al., 2018 100 – 99.6 99.7 – 99.7

Li et al., 2018 – – – 91.00 – –

Sharma et al., 2018 100 – – – – –

Raghu et al., 2019 99.45 96.50 96.06 96.85 96.00 97.20

Gupta and Ram, 2019 99.50 – 99.50 99.00 – 98.60

Turk and Ozerdem, 2019 99.50 – 99.50 – – –

Sameer and Gupta, 2020 98 – 96 96.33 – 97.40

Zhao et al., 2020 99.52 – 99.11 98.03 – 98.76

Proposed technique 1:
Sparse representation measures with PSO-HMM [2022] 91.81 89.51 92.45 88.78 85.86 88.90

Proposed technique 2:
Sparse representation measures with DE-HMM [2022]

95.70 94.92 95.44 90.65 88.81
86.80

Proposed technique 3:
Sparse representation measures with WOA-HMM [2022]

84.82
84.93

88.51
85.67 84.42

82.87

Proposed technique 4:
Sparse representation measures with BSA-HMM [2022]

92.97
91.71

92.84 84.92 84.43 82.43

Proposed technique 5:
Sparse representation measures with 1D-CNN [2022] 98.94 97.15 98.56 97.56 97.05 97.34

discussed in the introduction section of the article with their
respective classification accuracies, where reference (Prabhakar
et al., 2020a) reported 98.77%, reference (Prabhakar et al.,
2020b) reported 92.17%, and reference (Oh et al., 2019) reported
81.26% for subject-based testing and 98.51% for non-subject-
based testing. However, when comparing our results with the
previous works, the concept of sparse representation with 1D-
CNN produced a very high classification accuracy of 98.19%,
and the concept of sparse representation with SI-based HMM
produced an accuracy of 91.41% for PSO-HMM, 88.41% for
DE-HMM, 89.90% for WOA-HMM, and 90.9% for BSA-
HMM. Every swarm intelligence technique is so inspiring and
it would take a life time to understand why a particular
combination with sparse representation measures performs
better with HMM or deep learning. Possible ways to obtain
better results in SI-based HMM is to fine-tune the parameters
much more carefully, varying the hyperparameters depending
on the problem requirement, increasing the iteration numbers
if the pre-requisite conditions are not satisfied, enhancing the
essential parameters of the algorithm depending on the SI
techniques considered, and updating the state space model of
the HMM effectively by efficient techniques. Better results could
also be obtained by means of utilizing other hybrid deep learning
methods for the efficient classification of biomedical signals.
An interesting classification tool based on fuzzy similarities

which are characterized by a low computational complexity, and
high utility for real-time applications is proposed in Versaci
et al. (2022). Although it was tested on a NdT problem, due to
the transversality of the approach, the method could be easily
applied to the problem studied in this work too, and the authors
wanted to implement a similar strategy utilized in Versaci et al.
(2022) to the analysis of neurological disorders in future.

Conclusion and future work

An efficient modality through which brain signals
corresponding to different states can be acquired easily is
by means of using EEG. In this article, sparse representation
and modeling of EEG signals are done initially, and later,
an HMM classification model was proposed to compute the
hidden states in the HMM, four different types of SI techniques
were incorporated to make the HMM very flexible. This
kind of methodology involving sparse representation with
a pliable HMM for biosignal classification seems to be very
efficient and easy to handle. An exhaustive analysis of the
proposed SI-based HMM for epileptic and schizophrenia
datasets was computed and comprehensively analyzed. The
sparse representation modeling was also combined with deep
learning, and conventional machine learning techniques and
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exhaustive analysis are provided. When the proposed sparse
representation measures were combined with SI-based HMM,
the highest accuracies reported are 92.45% for PSO-HMM,
95.7% for DE-HMM, 89.9% for WOA-HMM, and 92.97%
for BSA-HMM. When the proposed sparse representation
measures were utilized with deep learning by utilizing a CNN,
high accuracy of 98.94% was obtained. Future works aim to
develop more efficient sparse representation models by means
of introducing more advanced concepts in the synthesis and
analysis side. Though the sparse representation–based swarm
HMM methods did not provide very high classification accuracy
when compared to other previous works, the careful selection of
the swarm intelligence algorithm with HMM would aid a very
high classification accuracy with less error rate in the upcoming
years. Future works also aim to hybrid the sparse representation
measures with other nature-inspired algorithms such as Ant
Colony Optimization (ACO), Artificial Bee Colony (ABC),
Genetic Bee Colony (GBC), Cuckoo Search Optimization
(CSO), Spider Monkey Optimization (SPO), Bat algorithm, and
Firefly algorithm, so that the hidden states of the HMM can
be well computed in order to assess its performance on the
biomedical signal datasets. Other work plans to incorporate in
future include the usage of sparse representation measures with
efficient deep learning techniques, such as Long Short-Term
Memory (LSTM), Bidirectional LSTM, Gated Recurrent Unit
(GRU), Bidirectional GRU, and hybrid deep learning techniques,
for efficient classification of epilepsy and schizophrenia from its
respective datasets. This proposed kind of methodology is also
planned to be implemented in other image processing datasets,
stock market datasets, speech processing datasets, and other
beneficial datasets to check its performance assessment. In the
upcoming years, the work can be integrated with Very Large
Scale Integration (VLSI) technology to produce some good
advancement in medicine and technology for the betterment of
human health care.
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Lateral flow immunoassay (LFIA) is an important detection method in vitro diagnosis,

which has been widely used in medical industry. It is difficult to analyze all peak

shapes through classical methods due to the complexity of LFIA. Classical methods

are generally some peak-finding methods, which cannot distinguish the difference

between normal peak and interference or noise peak, and it is also difficult for them

to find the weak peak. Here, a novel method based on deep learning was proposed,

which can effectively solve these problems. The method had two steps. The first

was to classify the data by a classification model and screen out double-peaks data,

and second was to realize segmentation of the integral regions through an improved

U-Net segmentation model. After training, the accuracy of the classification model

for validation set was 99.59%, and using combined loss function (WBCE + DSC),

intersection over union (IoU) value of segmentation model for validation set was

0.9680. This method was used in a hand-held fluorescence immunochromatography

analyzer designed independently by our team. A Ferritin standard curve was created,

and the T/C value correlated well with standard concentrations in the range of

0–500 ng/ml (R2 = 0.9986). The coefficients of variation (CVs) were ≤ 1.37%. The

recovery rate ranged from 96.37 to 105.07%. Interference or noise peaks are the

biggest obstacle in the use of hand-held instruments, and often lead to peak-finding

errors. Due to the changeable and flexible use environment of hand-held devices,

it is not convenient to provide any technical support. This method greatly reduced

the failure rate of peak finding, which can reduce the customer’s need for instrument

technical support. This study provided a new direction for the data-processing of

point-of-care testing (POCT) instruments based on LFIA.

KEYWORDS

lateral flow immunoassay, data processing, point of care testing, deep learning,
convolutional neural network, U-Net model

1. Introduction

In vitro diagnosis (IVD) generally refers to detecting targets in the blood, urine, sweat,
saliva, tissue fluid, or tissue outside the body, and is mainly used to diagnose diseases,
prevent infections, manage chronic diseases, track pathological changes, evaluate therapeutic
effects, and other aspects of health care (Yang et al., 2021; Peng et al., 2022). Currently, the
instruments used for IVD include biochemical, immunological, molecular, microbial, and blood
diagnosis as well as point-of-care testing (POCT) (Haung and Ho, 1998; Xiao and Lin, 2015;
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Chen et al., 2017; Vila et al., 2017; Li et al., 2020; Liao et al., 2021).
Compared with previous instruments, POCT has the characteristics
of high speed, convenience, and low cost; therefore, it has received
considerable attention from the medical industry (Singer et al., 2005;
Damhorst et al., 2019).

Point-of-care testing is a patient-centered method for rapid
sample detection using portable analytical instruments or simple
reagents (Luppa et al., 2011; Florkowski et al., 2017). There
are many kinds of POCT instruments, among which the lateral
flow immunoassay (LFIA), based on paper-based and fluorescence
detection technology, is increasingly being applied (Chen and Yang,
2015). It has the advantages of being cheap, lightweight, and easy
to handle, and the fluorescence detection method can realize the
quantitative detection of the sample. Both of them make LFIA highly
competitive, especially for developing countries where budget is an
important criterion, which is a good choice (Wu et al., 2018).

According to the published literature, LFIA technology has
successfully realized the detection of biomarkers in many fields.
Our research group combined many medical units using fluorescent
microsphere labeling and immunochromatography technology to
successfully detect COVID-19 and evaluated the analytical ability and
clinical application of this technology (Zhang et al., 2020). Hu et al.
(2016) developed a highly sensitive quantitative lateral flow analysis
method for protein biomarkers using fluorescent nanospheres (FNs)
as materials, which can be used to detect the concentration of CRP in
the human body with a detection limit of 27.8 pM. Lee et al. developed
a novel portable fluorescence sensor that integrates a lateral flow assay
with quantum dots (Qdots) labeling and a mobile phone reader for
the detection of Taenia solium T24H antibodies in human serum (Lee
et al., 2019). Huang et al. (2020) used a double-antibody sandwich
immunofluorescence method based on the combination of nano
europium (EUNP) and lateral flow immunoassay (LFIA) to detect
IL6 with a wide linear range (2–500 pg/ml) and high sensitivity
(0.37 pg/ml) (Huang et al., 2020). Shao et al. (2017) used the
double-antibody sandwich immunofluorescence method combined
with the time-resolved immunofluorescence (TRFIA) and lateral
flow immunoassay (LFIA) to detect human procalcitonin with high
sensitivity (0.08 ng/ml). Gong et al. (2019) developed a miniaturized
and portable UCNP-LFA platform that can be used to detect small
molecules (ochratoxin A, OTA), heavy metal ions (Hg2+), bacteria
(Salmonella, SE), nucleic acids (hepatitis B virus, HBV), and proteins
(growth-stimulating expressed gene 2, ST-2).

As shown in Figure 1, there are two schemes of fluorescence
detection technology for LFIA: a photoelectric scanning data
acquisition platform based on Si photodiode, which is the current
mainstream technology because of better performance, and a data
acquisition platform based on CCD photography (Shao et al., 2019).
The classical method of LFIA data processing is to obtain the C-/T-
lines of the strip by peak-finding method. In this way, the normal
peak and interference peak or noise peak cannot be distinguished,
and wrong peak is easy to be regarded as normal peak, thus
giving wrong detection result. These methods still perform poorly in
effectively identifying weak and overlapping peaks while maintaining
a low false-discovery rate. Qin et al. (2020) used a U-Net neural
network, a variant of the convolutional neural network (CNN), to
achieve the region of interest (ROI) containing T-/C-lines of test
strips, and which was only used for CCD photography. In this study,
we proposed a novel data processing method, which can be applied to
both CCD photography and photoelectric scanning data acquisition
platform. When applied to CCD photography, it only needed to

convert the data to one dimension, which can be done by averaging
the same row pixels parallel to the fluorescent band. This method
greatly reduced the failure rate of peak finding, which can reduce
the customer’s need for instrument technical support, and provided a
new direction for the data processing of POCT instruments based on
LFIA.

Compared with the classical peak-finding method, method
proposed in this study has the following advantages:

(1) Classical peak-finding methods combined with threshold-based
techniques do not have the ability to identify peak shapes.
They can only find local maxima according to certain rules,
and cannot accurately identify certain noise signals as invalid
data. For example, according to the setting rules in section “3.4.
Comparison with classical methods,” they will misjudge peak
1 as C-peak in Figures 2A–G, and misjudge peak 2 as T-peak,
resulting in incorrect detection results. They will also misjudge
peak 1 as C-peak in Figure 2H, and no T-peak can be found,
resulting in a false concentration of 0. In fact, all the data listed
in Figure 2 were judged invalid by the technician. Due to the
diversity of sample types and detection items, coupled with
some problems in user operation, various invalid data could
be generated. The classification model based on deep learning
proposed in this study has ability to distinguish peak shape, and
it can identify these invalid data as noise (class 1) or only T-peak
(class 3), thus solving this problem well.

(2) Classical peak-finding methods cannot solve the problem of
interference peaks, especially the interference peaks around
weak T-peak, as shown in Figure 4. Interfering peaks may
appear anywhere, to the left or right of valid peak. Classic peak-
finding methods combined with threshold-based techniques,
such as setting an interval range for the positions of C-peak and
T-peak or setting a threshold for the height of C-peak, are not
completely reliable. Because the positions of C- and T- peaks
will change with assembly position of nitrocellulose membrane,
insertion position of test strip, difference between different
instruments, sampling speed and so on, errors will occur when
the set range is exceeded. For example, the classic peak-finding
methods will misjudge peak 1 as C-peak in Figure 4B, and
misjudge peak 2 as T-peak in Figure 4C and peak 1 or 2
as T-peak in Figure 4D. In addition, the classic peak-finding
methods perform poorly when looking for weak T-peak. They
often fail to find T-peak and misjudge the tailing peak (peak
2 in Figures 4E, F) as T-peak. Similarly, the improved U-net
segmentation model proposed in this study has ability to
distinguish shape of peaks, which can solve this problem well.

(3) For classical methods, a minimum threshold is generally set for
the height of C-peak. If the threshold is too small, accuracy
will be greatly reduced due to presence of interference peaks or
invalid data. If the threshold is too large, it will be unfavorable
to process data with low height of C-peak in test strips of
competition method. This is an unavoidable shortcoming of
classical methods, but the method proposed in this study does
not have this problem.

(4) Method proposed in this study can enhance its generalization
ability by constantly learning new type data, but classical
algorithm obviously does not have this ability. They are only
some fixed peak-finding rules and threshold judgments, and
cannot accurately identify some noise peaks similar to valid
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FIGURE 1

Schematic diagram of LFIA. A hand-held fluorescence immunoassay analyzer which was used to measure fluorescent intensity controlled by a mobile
phone via Bluetooth. Its sensor can be CCD or Si photodiode.

peaks. In particular, the noise data is ever-changing, and
it is difficult for classical methods to be suitable for every
new type of data.

2. Materials and methods

2.1. Materials

The data used for training, validation, and testing in this study
were obtained from Beijing Savant Biotechnology Co., Ltd. These
data are the result of testing a variety of items. The detection items
mainly included human ferritin, vitamin D, D-dimer, and C-reactive
protein and so on. The sample types mainly included whole blood,
serum, and plasma.

2.2. Principle of LFIA

A double-antibody sandwich test strip with fluorescent
microspheres (FMS) as the carrier was used to illustrate the
detection principle of LFIA. The double-antibody sandwich structure

is shown in Figure 1. The test strip was composed of a sample pad,
conjugate pad, nitrocellulose membrane (NC membrane), absorbent
pad, and plastic backing card. After the sample was dripped into
the sample pad, it was subjected to immunochromatography under
capillarity. The detection antibody-FMS (DAb-FMS) and rabbit IgG
antibody-FMS (Rabbit-Ab-FMS) were placed on the conjugate pad.
There are T and C lines on the NC membrane; the T line is coated
with capture antibody (CAb), and the C line is coated with goat
anti-rabbit IgG antibody (GAR-Ab). The absorbent pad causes liquid
to flow via capillary action. The plastic backing card plays the role of
fixing and supporting.

When the sample solution containing the analyte was added to
the sample pad, it was laterally transferred along the NC membrane
via capillary action. When the sample flowed through the conjugate
pad, the Antigen in the sample reacted with DAb to form a DAb-
FMS/Antigen complex. When the complex flows to the T line in the
NC membrane, the Antigen and CAb on the T line are immunized
to form a DAb-FMS/Antigen/CAb complex. Rabbit-Ab-FMS, which
does not participate in the reaction, continues to flow forward to the
C line and reacts with GAR-Ab.

Generally, the entire reaction process takes approximately
15 min. After immunochromatography is completed, the excitation
light generated by the scanning mechanism irradiates the T and C
lines, and fluorescence is generated. In the process of scanning the
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FIGURE 2

Noise (Class 1) of different shapes (A–H). The classical methods will
misjudge peak 1 as C-peak in panels (A–G), and misjudge peak 2 as
T-peak, resulting in incorrect detection results. They will also misjudge
peak 1 as C-peak in panel (H), and no T-peak can be found, resulting
in a false concentration of 0.

NC membrane, the fluorescence intensity produced at each point
of the scan was recorded using a photodiode, and the peak data
shown in Figure 1 were finally formed. The ratio of the fluorescence
intensities of the two lines can be obtained by calculating the ratio of
the peak areas of the T- and C-peaks. The concentration of the antigen
detected in the sample was proportional to the T/C. By establishing
a standard curve, the concentration of the antigen detected in the
sample can be calculated.

2.3. Data augmentation

During the testing of clinical samples, four different peak shape
data were obtained: noise (class 1), only C-peak (class 2), only T-peak
(class 3), and double-peaks (C-peak and T-peak, class 4). Class 1
was generated by a fluorescence analyzer scanning the fouled NC
membrane, whereas class 2 was generated by detecting the sample

with a concentration of 0. However, the data of class 3 were very
few, and were generally generated from the test strips with the
disappearance of the C-peak. To better train the model, the C-peak
of the double-peaks (class 4) was deleted and transformed into the
background by a cubic spline interpolation method; thus, a large
amount of data containing only the T-peak was generated manually.

2.4. Label annotation

To train the model, a large amount of labeled data is required.
Data annotation is a complex process, and the quality of the
annotation directly affects the results of the model training. This
method includes two steps corresponding to a classification and a
segmentation model, and the training data of the two models must
be annotated separately. The labeled dataset was randomly divided
into training and verification sets.

The entire dataset for the classification model includes
approximately 4,100 detection data, including four types of peak
shapes, namely, noise, only C-peak, only T-peak, and double-peaks.
These four types of data were encoded according to one-hot, which
were noise (class 1), only C-peak (class 2), only T-peak (class 3),
and double-peaks (class 4), as shown in Figures 2–4. There were
approximately 900 data for noise (class 1), 900 for only C-peak (class
2), 900 for only T-peak (class 3), and 1,400 for double-peaks (class
4). The peak shape of the detection data is particularly complex and
diverse, and only a few typical ones are selected for display here.

The dataset of the segmentation model includes approximately
1,400 pieces of detection data, that is, all the data of class 4. In
this study, based on the Python language, software was designed
to annotate the integral regions of the T-peak and C-peak, and the
integral regions of the C-peak and T-peak of 1,400 fluorescence
detection data were annotated.

2.5. Network architecture

Convolutional neural network is an artificial neural network
specially designed to process data such as images or videos. It
generally has three layers, namely, convolution, pooling and full
connection layer. In the convolution layer, input samples are
convolved with kernel, and the discrete convolution function is
defined as:

(f ∗ g)(x) =
∑

τ

f (τ) · g(x− τ)

where f and g are two functions.
Pooling is used to extract high-dimensional features, and the

most commonly used ones are maximum and average pooling.
In a fully connected layer, all neurons in the current layer are
interconnected with every neuron in the next layer.

As shown in Figure 5, the entire data-processing flow consists
of two steps. First, a classification model was used to classify the
input data. Second, after analyzing the input data, if the output result
was class 4 (double-peaks), the data were imported into the next
segmentation model to realize the data segmentation of the C-peak
and T-peak areas.

The input of the classification model had two channels. Because
the fluorescent signal has strong background noise, we subtracted
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FIGURE 3

Panels (A–D) are only C-peak (Class 2) of different shapes, and panels (E,F) are only T-peak (Class 3) of different shapes.

the background and then normalized it as the first channel. It was
achieved by the following formula.

Y1 =
X−xmin

xmax − xmin

where Y1 is the first channel, X is raw input data, xmin is minimum
value, and xmax is maximum value of raw data. In order to make
the model learn the peak shape rather than intensity, we performed a
logarithmic operation on the signal which was deducted background

as the second channel. It was achieved by the following formula.

Y2 =
log10(X − xmin)

log10(xmax − xmin)

where Y2 is the second channel, X is raw input data, xmin is minimum
value, and xmax is maximum value of raw data.

The network architecture of the classification model is illustrated
in Figure 5A. The entire network architecture consisted of 10
layers; the first seven layers were conv1d + ReLU + MaxPool1d
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FIGURE 4

Double-peaks (Class 4) of different shapes (A–F). Peaks 1 and 2 are interference peaks. The classic methods will misjudge peak 1 as C-peak in panel (B),
misjudge peak 2 as T-peak in panel (C), and peak 1 or 2 as T-peak in panel (D). They often fail to find T-peak and misjudge the tailing peak [peak 2 in
panels (E,F)] as T-peak.

(Acharya et al., 2017; Gu et al., 2018; Zhang et al., 2019), and the
input data were extracted into four features of high-dimensional
1,024 channels. The eighth layer extended the number of channels to
2,048. Next, Max + Transposition was used to extract the maximum
value from the four high dimension features (Gu et al., 2018).
To improve the accuracy of classification, we used dropout layer

before fully connected layers. The last layer (Dropout + Fully-
connected + SoftMax) classified the data into one of four classes
(Srivastava et al., 2014).

We designed an improved U-Net segmentation model with
reference to the classic U-Net model (Ronneberger et al., 2015);
the network architecture is shown in Figure 5B. We changed
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FIGURE 5

Each blue box represents a feature map of a layer. Number above the blue box is the number of channels, whereas number in lower left corner is the
number of data points. The arrows represent different operations. (A) Neural network architecture of the classification model. The first blue box
represents the format of input data. After being processed by the classification model, the input data were finally classified into four classes, namely,
Class 1 (Nosie), Class 2 (Only C-peak), Class 3 (Only T-peak), and Class 4 (double-peaks). (B) Neural network architecture of segmentation model,
through which the ROI of test strip containing T-/C- peak can be extracted and obtained.

the input data into two channels. This model had four parts:
input unit, encoding structure, decoding structure, and output unit
(Ronneberger et al., 2015; Oh et al., 2019; Wang et al., 2021; Zheng
et al., 2021; Zunair and Ben Hamza, 2021). The encoding structure
used four units to reduce the dimensions, and the number of feature
maps was increased gradually. In order to reduce training time,
we added batch normalization after each convolution (Melnikov
et al., 2020). In the decoding structure, each step was symmetrical
with the encoding part to recover data. The upsampling section
allowed the network to propagate the context information to a

higher-resolution layer. In the last layer, the discrimination of
whether each point in fluorescence data belonged to an integral
region was realized.

2.6. Loss function

The classification model classified the data into one of four
classes, which is a problem of four classes. Multi-classification neural
networks generally use cross-entropy loss as a loss function. The
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mathematical expression of this loss function in the program is:

LCE = −
1
M

M∑
j = 1

C∑
i = 1

yij log oij

where M is the batch size, C is the total number of classes (four), yij is
the real label, and oij is the predictive output.

The Dice coefficient (also known as the Dice score or DSC) is a
function of the set similarity measurement, which is usually used to
calculate the similarity between two sets (Saeedizadeh et al., 2021),
with values ranging from 0 to 1. Here, it was used to measure the
overlap between the ground-truth and predicted masks, where 0
indicates no overlap and 1 indicates complete overlap.

DSC (A,B) =
2 |A ∩ B|
|A| + |B|

where A and B denote the predicted and ground-truth masks.
To minimize the loss function, we used the 1-DSC as the final

loss function. The mathematical expression of this loss function in
the program is:

LDSC = 1−
1
M

M∑
j = 1

2
∑N

i = 1 yij oij∑N
i = 1 yij +

∑N
i = 1 oij

where M is the batch size, N is the number of sample data, yij is the
ground-truth mask, and oij is the predictive mask.

For unbalanced sample data, weighted binary cross entropy can
be used as the training loss function. Therefore, compared with the
standard cross-entropy loss, better results can be obtained when the
number of positive and negative points is unbalanced (Zhu et al.,
2019). The mathematical expression of this loss function in the
program is:

LWBCE = −
1

M × N

M∑
j=1

N∑
i=1

(
w1yij log oij + w0(1− yij) log(1− oij)

)
where M is the batch size, N is the number of sample data, yij is
the ground-truth mask, and oij is the predictive mask. w1 and w0
correspond to the weights labeled 1 and 0, respectively.

In this study, the mathematical expression for the weight
parameter wc is:

wc =
N − Nc

N

where N represents the total number of data points for each sample
and Nc represents the number of data points in class c.

2.7. Model hyper-parameters of models

After labeling the data, we trained the model. The classification
and segmentation models were trained separately. The training
parameters of the classification and segmentation model are listed in
Table 1.

3. Results

3.1. Evaluation metrics of models

Accuracy, which is the proportion of correctly predicted samples
to the total number of samples, is generally used as the evaluation

metric of a multi-classification model. The mathematical expression
of accuracy in the program is:

Accuracy (y, o) =
1
M

M∑
i = 1

1
(
oi = yi

)
where M denotes the batch size, yi denotes the real label, and oi is the
predictive output.

The intersection over union (IoU), also known as the Jaccard
index, calculates the ratio of the intersection and union of the ground-
truth and predicted segmentation masks (Saeedizadeh et al., 2021). It
can be used to measure the similarity between the ground-truth and
predicted segmentation masks; the higher the similarity, the higher
the value.

IoU (A,B) =
|A ∩ B|
|A ∪ B|

where A and B denote the predicted and ground-truth masks. The
mathematical expression of IoU in the program is:

IoU
(
y, o

)
=

1
M

M∑
j = 1

∑N
i = 1 yij oij∑N

i = 1 yij +
∑N

i = 1 oij −
∑N

i = 1 yij oij

where M is the batch size, N is the number of sample data, yij is the
ground-truth mask, and oij is the predictive mask.

3.2 Model hyper-parameters optimization
of segmentation model

Both the weight coefficients of the weighted binary cross-entropy
and cut-off threshold have a certain influence on the performance of
the model. To obtain appropriate weights and cut-off thresholds, this
study conducted cross experiments on weights and cut-off thresholds.
As presented in Table 2, when w0 : w1 = 0.6 : 0.4 and the cut-off
threshold = 0.6, the IoU achieved a maximum value of 0.9680. The
other parameters used during the training are listed in Table 1.

We also compared the three loss functions of WBCE, DSC,
and WBCE + DSC. When the other conditions were the same, the
combined loss function (WBCE + DSC) was used to obtain the
maximum IoU, as illustrated in Table 3.

TABLE 1 Important parameters used in two models training.

Network
parameters

Classification
model

Segmentation
model

Batch size 8 8

Epoch 30 100

Activation function ReLU ReLU

Padding mode MaxPool AvgPool

Pooling size 2 2

Optimizer Adam Adam

Learning rate 0.001 0.001

Convolution kernel 3 3

Upsample – Nearest

Input size 512× 2 512× 2
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TABLE 2 Cross experiments result on weights of the weighted binary cross entropy and cut-off threshold.

w0:w1 IoU
(Cut-off = 0.3)

IoU
(Cut-off = 0.4)

IoU
(Cut-off = 0.5)

IoU
(Cut-off = 0.6)

IoU
(Cut-off = 0.7)

0.3:0.7 0.9668 0.9652 0.9665 0.9677 0.9660

0.4:0.6 0.9674 0.9657 0.9658 0.9674 0.9674

0.5:0.5 0.9668 0.9674 0.9674 0.9665 0.9670

0.6:0.4 0.9677 0.9676 0.9666 0.9680 0.9674

0.7:0.3 0.9668 0.9674 0.9652 0.9669 0.9654

When w0 : w1 = 0.6 : 0.4 and the cut-off threshold = 0.6, the IoU achieved a maximum value of 0.9680.

TABLE 3 Overall performance with different loss functions,
w0 : w1 = 0.6 : 0.4 and cut-off threshold = 0.6.

Loss w0:w1 Cut-off IoU

WBCE 0.9652

DSC 0.6:0.4 0.6 0.9586

WBCE + DSC 0.9680

3.3. Training convergence analysis of
models

Figure 6A shows the loss curves of different epochs during
the classification model training process, and Figure 6B shows the
accuracy of the training and validation sets corresponding to different
epochs. The maximum accuracy of the model validation set was
99.59%.

To analyze which samples were misclassified, we built confusion
matrix. As in Figure 6C, only five samples were misclassified, two
class 1 and three class 2 data were misclassified as class 4. These five
samples had the characteristics of two different classes, which leaded
to misclassification. In general, such samples are rare.

Figure 7A shows the loss curves of different epochs during the
segmentation model training process, and Figure 7B shows the IoU
of the training and validation sets corresponding to different epochs.
The maximum IoU of the model validation set was 0.9680.

3.4. Comparison with classical methods

There are many types of peak detection methods, such as the
direct peak location, Fourier transform, cumulative sum derivative,
curve fitting, devolution, and wavelet transform (CWT) methods
(Deng et al., 2021). The direct peak location according to the
properties of peak and continuous wavelet transform are two classical
methods in traditional methods. The principle of direct peak location
is to find out all the local maxima of the signal through the simple
comparison method, and then select the subset of these peaks
according to the specified peak properties. The method principle of
CWT is that the signal is first transformed by CWT in certain scales,
and then the ridges are found in the CWT matrix. The positions
of these ridges correspond to the positions of all peaks (Du et al.,
2006). Using the verification set, method proposed in this paper was
compared with the two traditional methods. These two methods have
been implemented in SciPy library based on Python, so we directly
used the related functions (find_peaks() and find_peaks_cwt()) in
SciPy library.

Classical peak-finding methods can only find the local maxima
of the signal, and do not have the ability to classify the signal.
Here, after obtaining the local maxima through the classical methods,
some subsequent processing steps were adopted to make it have the
classification ability, and then compared with the classification model
proposed in this study. These subsequent processing steps are as
follows:

(1) According to the characteristics of the strip, the data of 512
sample points are divided into C peak region (0–220) and T
peak region (221–511).

(2) Judge whether there are local maxima in the C peak region (0–
220), and if so, take the maximal local maximum as the C peak.
Judge whether the height of the C peak is greater than 1,000,
and if it is greater than 1,000, it is considered to be an effective
C peak (according to the characteristics of the strip, the height
of the C peak is usually greater than 1,000).

(3) Judge whether there are local maxima in the T peak region (0–
220), and if so, take the maximal local maximum as the T peak.

(4) According to the results of (2) and (3), the signal is classified to
noise (class 1), only C-peak (class 2), only T-peak (class 3), and
or double-peaks (class 4).

The comparison results are shown in Table 4. It can be seen that
the performance of the two classical methods is similar in term of
accuracy, one is 80.10%, the other is 80.76%. Accuracy of the method
proposed in this study is 99.59%, which is much better than classical
methods.

For two classical methods, the function of peak_widths() in the
SciPy library can be used to identify the integral region. Compared
with the segmentation method in this study in terms of IoU, Dice,
Recall and Precision. The results are shown in Table 4. As can be
seen from the table, no matter which evaluation term it is, the method
proposed in this paper is much better than two classical methods.

3.5. Test of the method

The method proposed in this study was tested using instrument
test data. First, the ability of the segmentation model to segment
various peak shapes was tested. Next, three most important indicators
(standard curve, repeatability, and recovery) were tested.

After training, the method can classify raw input data into one
of four classes and perform data segmentation on data belonging
to Class 4. The segmentation model could effectively segment C-
and T-peak regions from fluorescence intensity of 512 data points.
Figure 8 shows examples of data segmentation results for some
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FIGURE 6

(A) Loss of classification model during training. (B) Training and validation accuracy of classification model during training. (C) Confusion matrix showing
the result of trained classification model for validation set. The row number reflects the predicted label, and column number reflects the true label.

FIGURE 7

(A) Loss of segmentation model during training. (B) Training and validation IoU of segmentation model during training.

TABLE 4 Comparison of classical peak-finding methods and proposed method performance in terms of accuracy, IoU, dice, recall and precision.

Method Accuracy IoU Dice Recall Precision

Direct peak location 80.10% 0.7753 0.8509 0.8801 0.8391

CWT 80.76% 0.7597 0.8423 0.8510 0.8541

Our method 99.59% 0.9680 0.9836 0.9857 0.9821

typical peak shapes, where the orange shaded areas are segmented
C- and T-peak regions. Figure 8A shows segmentation of the normal
peak shape, and C -and T-peak regions were accurately extracted and
obtained. Figures 8B, C show that in the presence of overlapping
and interference peaks, C- and T-peaks can be accurately segmented.
Figures 8D–F show the segmentation results for weak T-peak with
baseline drift, tailing or interference peak. As shown in the figure,
baseline drift, tailing and interference peaks did not affect accurate
segmentation of the data; the detection of weak T-peak region is also
excellent. After data were imported into the segmentation model,
they were first normalized. The network model only focused on

learning the shape of entire data set and did not learn the value of
fluorescence intensity. The experimental results indicate that it can
meet the requirements of LFIA for data processing.

The method was tested using Ferritin. A standard curve was
established using a range of concentrations (0, 15, 50, 200, 300, and
500 ng/ml) of the standards. Each concentration of the standard
was tested three times using test strips. The detection data were
processed using proposed method. First, data were classified, then
segmented, and finally, the segmented regions were integrated and
T/C was calculated. The method accurately classified the detection
data of 0 ng/ml as class 2 (only C-peak), and the corresponding
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FIGURE 8

The results of ROI extraction by segmentation model on different kinds of data. (A) Normal peak data, (B,C) overlapping and interference peak data,
(D–F) Weak T-peak with baseline drift, tailing or interference peak data.

T/C values were 0. The remaining data were classified as class 4
(double-peaks) and then segmented. Using T/C as the ordinate and
concentration as the abscissa, a standard curve was established using
four parameters, as shown in Figure 9. It can be observed that the
T/C and concentration have a good correlation with a correlation
coefficient of 0.9986. This shows that the method is effective in
dealing with LFIA data.

Three concentrations (20, 220, and 400 ng/ml) of the reference
standards were tested for repeatability using the same batch of
test strips. Each concentration was tested 10 times, and the

CV values were calculated. The data were processed using the
method described in this study. The data for all the three
concentrations were classified as class 4 (double-peaks). The data
were segmented, and concentrations were calculated; the results
are listed in Table 5. It can be observed that the CV values of
three concentrations are all good, and the maximum does not
exceed 1.37%. This shows that the stability of the method is
good.

Recovery was tested using samples of three concentrations (40,
100, and 150 ng/ml). Each sample was tested thrice. The method in
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FIGURE 9

Four parameter fitting line for ferritin detection in the range of
0–500 ng/ml.

TABLE 5 Precision results of ferritin test strips.

Mean (ng/ml) SD CV (%)

17.561 0.240 1.37

212.541 1.274 0.60

369.034 1.401 0.38

TABLE 6 Recovery rates results of Ferritin test strips.

Concentration (ng/ml) Mean (ng/ml) Recovery rate (%)

40 42.030 105.07

100 96.371 96.37

150 149.502 99.67

this study was used to process the data, and all the data were classified
as class 4 (double-peaks); the results are listed in Table 6. The
calculated recovery rates were 105.07, 96.37, and 99.67%, respectively.
This shows that concentration calculated by the method is very
accurate.

4. Discussion

Because POCT instruments based on LFIA detection technology
are used in a variety of situations and there are many different types
of samples, the peak shape of the test data is complex. It is difficult for
classical peak-finding methods to deal with all peak shapes. The data-
processing method proposed in this study has several advantages.

First, through a classification network, the peak types were
classified into four classes, and the peak types that needed to be
calculated for the concentration were screened. In this manner, the
data processing difficulty of the segmentation model is reduced,
and the model can easily achieve better performance. Second, an
improved U-Net-based segmentation model directly identifies the
integration regions, replacing the operations of the peak finding,
peak start and end location in the classical method, which makes
the data processing process more accurate and convenient. It is very
difficult to determine the starting point and ending point of the peak
accurately by the traditional method. Our segmentation model can
easily solve this problem. Third, through experiments, it was found
that this U-Net -based segmentation method also performs well in
effectively identifying weak and trailing peaks. Forth, the classical
peak-finding methods can only find the local maxima of the signal,
and do not have the ability to classify the signal. In this case, it is

difficult to distinguish the noise peak from the effective peak. Our
classification model has perfectly solved this problem.

The method was applied to the hand-held immunofluorescence
analyzer developed by ourselves and good results were obtained.
Interference peaks are the biggest obstacle in the use of hand-
held instruments, and often lead to peak-finding errors. The use
environment of hand-held instruments is flexible and changeable,
which makes it inconvenient to provide technical support. This
method greatly reduced the failure rate of peak finding, which can
reduce the customer’s need for instrument technical support. This is
a great advantage for hand-held instruments sold in large quantities.

5. Conclusion

In this study, a deep-learning-based LFIA photoelectric scanning
data-processing method was proposed. The entire method had two
steps. The first step was to build a CNN classification model to classify
the LFIA peak shape and screen out the data required to calculate
the concentration. The second step was to build an improved 1D
U-Net segmentation model to achieve the segmentation of C- and
T-peak integration regions for data containing double-peaks and then
perform calculations such as T/C and concentration. A large amount
of experimental data were used to train the two models. The accuracy
of classification model on validation set was 99.59% and the IoU of
segmentation model on validation set was 0.9680. Using the data-
processing method, a standard curve was established for Ferritin,
and the CV and recovery rate, the two most relevant indicators in
clinical testing, were tested. The CV values corresponding to the
three concentrations of 20, 220, and 400 ng/ml were 1.37, 0.60,
and 0.38%, respectively. The recovery rates corresponding to the
three concentrations of 40, 100, and 150 ng/ml were 105.07, 96.37,
and 99.67%, respectively. These experimental results show that the
data-processing method proposed in this study can be used for the
processing of LFIA photoelectric scanning data, and the obtained
results are accurate and reliable, which proposes a new direction for
POCT instrument data processing.
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Object detection and grasp detection are essential for unmanned systems working in

cluttered real-world environments. Detecting grasp configurations for each object in

the scene would enable reasoning manipulations. However, finding the relationships

between objects and grasp configurations is still a challenging problem. To achieve

this, we propose a novel neural learning approach, namely SOGD, to predict a

best grasp configuration for each detected objects from an RGB-D image. The

cluttered background is first filtered out via a 3D-plane-based approach. Then two

separate branches are designed to detect objects and grasp candidates, respectively.

The relationship between object proposals and grasp candidates are learned by

an additional alignment module. A series of experiments are conducted on two

public datasets (Cornell Grasp Dataset and Jacquard Dataset) and the results

demonstrate the superior performance of our SOGD against SOTA methods in

predicting reasonable grasp configurations “from a cluttered scene.”

KEYWORDS

grasp detection, object detection, RGB-D image, deep neural network, robotic manipulation

1. Introduction

Automated object grasping is essential and challenging to robots or unmanned systems

working in real-world cluttered scenarios. As a core component of autonomous grasping, grasp

detection, which outputs themost possible grasp configuration for themanipulator, has attracted

great attention from both academic and industrial communities. Existing methods often predict

a series of possible grasp configurations based on the input images (Depierre et al., 2018; Zhang

et al., 2019; Wang et al., 2021; Yu et al., 2022b). When encountered with a cluttered scene, which

is a common case in our daily life, we humans often identify the target object first and then

determine the best pose to grab the object. This provides two kinds of benefits: (1) we can easily

explain why the predicted grasp configuration is the best, and (2) our efforts will be focused on

the object area instead of the cluttered background to make a better decision. However, most

previous studies do not have a strong ability to model the relationship between the target objects

and the predicted grasp configurations. In order to make grasp detection more accurate and

reasonable, we investigate the problem of simultaneous object detection and grasp detection,

where the best grasp configuration is predicted for each detected object in the cluttered scene.

Since object manipulation is performed in a 3D space, using a 3D representation for grasp

detection is a natural way. A grasp candidate is a 6-DOF gripper pose g =
(

x, y, z, rx, ry, rz
)

,

g ∈ SE (3), with the 3D position and rotation angles along each axis of the gripper. Methods

based on this 3D representation (Pas et al., 2017; Liang et al., 2019) often generate a large

number of candidates and then evaluate whether it is a good grasp according to a specific

criterion. These methods are easy to understand but often suffer efficiency problems due to 3D

operations. Motivated by the superior performance of deep learning technology on detection
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or segmentation tasks (Cheon et al., 2022; Huang et al., 2022; Khan

et al., 2022), image-based deepmodels have become popular for grasp

detection (Chu et al., 2018; Zhang et al., 2019; Dong et al., 2021; Yu

et al., 2022a). These methods often use a rectangle representation

g =
(

x, y, h,w, θ
)

, where
(

x, y
)

is the center pixel location of a grasp

candidate,
(

h,w
)

are height and width of the gripper, and θ is the

rotation of the gripper. This representation is widely used in end-to-

end deep networks. Some other studies (Wang et al., 2019, 2022) also

used a score map with the same size as the image to represent the

quality of grasp configurations at each pixel.

A number of existing grasp detection methods are inspired by

object detection (Zhou et al., 2018; Zhang et al., 2019; Park et al.,

2020). These two problems share a similar output, which consists of a

regression of a rectangle (a grasp configuration for grasp detection

or a bounding box for object detection) and a classification score

(quality of the grasp or confidence in the predicted category). Thus,

one straightforward way for designing a grasp detection model is

to modify it from an object detector. For example, Zhang et al.

(2019) propose an ROI-based grasp detection method which is a

modification from Faster R-CNN. They use the region proposal

network (RPN) to generate graspable proposals and an ROI-pooling

layer to extract features for each proposal. Then grasp configurations

and corresponding successful rates are estimated with the local

features. However, grasp detection differs from object detection in

the additional prediction of orientation. To predict the orientation

of the gripper, serval existing methods (Chu et al., 2018; Dong

et al., 2021; Yu et al., 2022a) convert this regression problem into a

classification problem by discretizing continuous angles into angle

anchors. This makes orientation prediction much more convenient

but will also cause a loss of accuracy. To overcome this short back,

other studies (Park et al., 2020) use classification and regression

processes to predict the final angles. Another kind of grasp detection

method (Yu et al., 2022b) makes dense predictions at each pixel

and outputs a set of heatmaps representing the grasp configurations

and quality.

To generate more reasoning and human-like grasp candidates,

we investigate the problem of simultaneously detecting objects

and grasp configurations from an RGB-D image and propose

a novel neural learning approach, namely SOGD, for this task.

Our SOGD model takes an RGB-D image as input and outputs a

set of tuples (xo, yo,wo, ho, clso, xg , yg ,wg , hg , θg , sg), representing

the joint prediction of the object detection result and the grasp

detection result. To this end, features extracted by the top

stages of a backbone and feature pyramid network (FPN) are

used for both detection tasks. Two separate detection branches

are designed to detect objects and grasp them, respectively.

The correspondences between object proposals and grasp

candidates are modeled by an alignment module. In addition,

we present a depth-based method to filter out backgrounds in

a cluttered scene. This would enable our detectors to focus on

features from the target objects other than the texture from

the environment.

Our main contributions are summarized as follows:

(1) We propose a novel neural learning approach

to detect target objects and their best grasp

configurations in cluttered environments

simultaneously.

(2) An alignment module is designed to estimate the

correlations between the separately detected objects and

grasp configurations. This module enables our model to predict

more reasonable grasp configurations for each detected object.

(3) A 3D-plane-based pre-processing is presented to filter out

cluttered backgrounds from the RGB-D image.

(4) A series of experiments are conducted on two publicly

available datasets (the Cornell Grasp Dataset and the Jacquard

Dataset). Our method achieves +0.7 to +1.4% improvement

in average accuracy compared with the existing RGB-D-based

grasp detection methods.

2. Related studies

Grasp detection methods can be divided into traditional methods

and learning-based methods. The traditional methods are mainly

divided into the template matching method and the feature point

matching method. The template-based pose estimation algorithm

(Georgakis et al., 2019) needs to build the template of the object in

advance, which can be strongly applicable to objects with regular

shapes and has a good effect on targets without texture. However,

when the object is blocked and the light is insufficient, the matching

will be too low, leading to the failure of prediction. The pose

estimation method based on feature points can extract effective

feature points from images and match them with standard images.

Since descriptors can describe visual features stably and robustly, this

method is not susceptible to illumination. However, this method only

uses the information of feature points in the image, so the utilization

rate of information is very low. If there are not many feature points in

the image, this method will have a high probability of deviation from

the predicted capture rectangle.

Motivated by the superior performance of deep learning

technology (Chhabra et al., 2022; Motwani et al., 2022; Shailendra

et al., 2022; Singh et al., 2022), it has been applied in grasping

detection to improve the accuracy of grasping in recent years.

In order to improve the generalization of 3D models, some grab

detection methods based on 3D reconstruction are proposed.

According to Yang et al. (2021), this method uses 3D reconstruction

to optimize the candidate grasping objects generated by the grasping

suggestion network and improves the grasping accuracy of unknown

objects. According to Jiang et al. (2021), this method uses implicit

neural representation and studies synergies between affordance

and geometry to improve the accuracy of grasping detection.

Sundermeyer et al. (2021) used a 3D point cloud to predict the 3D

points of grasping contact and reduce the dimension from 6-Dof to

4-Dof to make the learning process more convenient. However, the

method based on 3D reconstruction needs a certain amount of time

to build the 3D model, and the real-time capturing will be affected to

some extent.

Since deep learning has shown excellent results in detection and

segmentation tasks, image-based capture detection methods have

become increasingly popular. But different from object detection,

grasp detection needs to predict the angle of the gripper. Therefore,

some of the methods (Chu et al., 2018; Dong et al., 2021; Yu

et al., 2022a) discretized continuous angles into angle anchors and

transformed the regression problem into a classification problem.

However, these methods may cause a lack of accuracy. To solve
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this problem, Park et al. (2020) predicted the final angle using

classification and regression processes. The method provided by

Yu et al. (2022b) intensively predicts that each pixel represents the

heat map of the capture configuration and quality. Zhang et al.

(2018) divided the grasping problem into two separate tasks (object

detection and grab detection) and then integrated them as the

final solution. Yu et al. (2022b) proposed a module that extracts

feature mappings from bidirectional feature pyramid networks,

object detection, and grab detection, and outputs the optimal grab

position and appropriate operational relations. Park et al. (2020)

predicted the boundary box, the category of objects, and the direction

of the grab rectangle and grab configuration using a global feature

map. Ainetter and Fraundorfer (2021) designed an end-to-end CNN-

based network architecture and designed a refinement module to

improve the accuracy of prediction.

Most deep-learning-based methods directly output grasp

candidates without recognizing the target object. They cannot

answer the question that what is the best grasp configuration

for every single object in a cluttered scene. Unfortunately, this

is a common case an unmanned system needs to deal with. To

generate a more reasoning prediction, Zhang et al. (2018) designed a

recognize-and-then-grasp approach, which divides the problem into

two separate tasks (object detection and grasp detection) and then

integrates them as the final solution. Another way is to perform grasp

detection together with object detection or segmentation tasks (Park

et al., 2020; Ainetter and Fraundorfer, 2021; Yu et al., 2022a). For

example, Park et al. (2020) generated a global feature map to predict

the bounding box, the category of an object, the grasp rectangle,

and the orientation of a grasp configuration. Then, non-maximum

suppression is applied to both bounding boxes and grasp rectangles

to filter out unnecessary predictions. The relationship between the

bounding boxes and the grasp rectangles is built via computing the

Intersection over Union (IoU) of the two areas. If the IoU is greater

than a certain threshold, the grasp will be assigned to the detected

object. However, choosing an appropriate threshold is not easy.

When the graspable area is much smaller than the entire object, the

IoU between the grasp rectangle and the bounding box of the object

will be too small. As a result, such a strategy cannot avoid filtering

out possible solutions.

3. Materials and methods

3.1. Problem formulation and
reparameterization

In the process of object grabbing, humans usually first identify

the object to be grabbed in the scene and then select an appropriate

grabbing position for the target object. Whether a grasping pose

is appropriate is directly related to the target object to be grasped.

Motivated by this fact, this study investigates the problem of robotic

manipulation by detecting the target object in the scene and its grasp

position simultaneously.

Given an RGB-D image, the goal of the simultaneous object and

grasp detection is to identify every single object in the scene and

find out a grasp configuration for it. To this end, we formulate the

representation of the simultaneous object and grasp detection det as:

det=
(

od, gd
)

FIGURE 1

An example of our simultaneous object and grasp detection

representation. (A) 11D object and grasp detection representation. (B)

5D object detection representation with location (xo, yo), width wo,

height ho, and the category of the object clso. (C) 6D grasp detection

representation with location (xg, yg), gripper width wg, plate size hg,

orientation θg, and its success rate sg.

od=
(

xo, yo, wo, ho, clso
)

gd=
(

xg , yg , wg , hg , θg , sg
)

The representation consists of two parts: object detection and

grasp detection. Figure 1 shows an example of this representation.

For the object detection part, we use (xo, yo,wo, ho) to represent the

location of a bounding box and clso to represent the category of

the object inside of it. For the grasp detection part, we adopt the

famous 5-dimensional rectangular representation (Lenz et al., 2013),

which consists of the location and orientation (xg , yg ,wg , hg , θg) of

the gripper for a grasp configuration. In addition, we add sg , a value

between 0 and 1, to represent the score of a grasp. The higher sg is,

the greater chance of the grasp being a success.

Similar to Park et al. (2020), we formulate the estimation of

θg as a classification + regression problem instead of a single

regression problem. According to the symmetry of the gripper,

the range of θg is [0,π]. We convert this range into several bins
{

0, π
ka
, 2π
ka
, ...,

(

ka − 1
)

π
ka

}

to be angle anchors, with ka is the number

of bins. The classification problem is to predict a one-vs.-all vector

to determine which bins θg belongs to. The regression problem is to

estimate the angle offset to the anchors.

Inspired by Redmon and Farhadi (2018) and Ge et al. (2021),

we reparametrize the regression problem of (xj, yj,wj, hj, θj) as

estimation of (txj , t
y
j , t

w
j , t

h
j , t

θ
j ) to the location of the grid cell (axj , a

y
j ),

bounding box prior width and height (awj , a
h
j ), and orientation angle

bin aθ
j . The relationship between (xj, yj,wj, hj, θj) and (t

x
j , t

y
j , t

w
j , t

h
j , t

θ
j )

is defined as follows.

xj = σ (txj )+ axj

yj = σ (t
y
j )+ a

y
j

wj = awj × e
twj
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hj = ahj × e
thj

θj = σ (tθj )×

(

π

ka

)

+ aθ
j

This reparameterization is applied to both the object bounding box

regression and the grasp rectangle regression.

3.2. Overview of the SOGD model

The architecture of our SOGDmodel is shown in Figure 2. It takes

an RGB-D image as input, and outputs the detected object’s bounding

(txo , t
y
o , t

w
o , t

h
o ) and category cls together with the corresponding grasp

position (txg , t
y
g , t

w
g , t

h
g ), orientation tθg , and success rate sg . Our model

consists of five parts: a pre-processing for background removal, a

backbone and a feature pyramid network (FPN) for image feature

extraction, an object detection head, a grasp detection head, and an

alignment module for candidate objects and grasp configurations.

Motivated by Dong et al. (2021), we design a pre-processing

module to remove the background from the cluttered scene.

According to Dong et al. (2021), backgrounds are recognized by an

encoder–decoder network to segment the original image. However,

our module utilizes the priors of the scene that objects to be grabbed

are laid on a 3D plane, such as the surface of a desk. According to this

fact, we categorize pixels on and under the 3D plane as background

and filter them out. We argue that this background removal strategy

is more reasonable and robust than the U-net-based method (Dong

et al., 2021). Details about the 3D-plane-based background removal

are discussed later.

For multi-scale feature extraction, various deep models [e.g.,

Darknet (Wood, 2009) or ResNet (He et al., 2016)] can be utilized.

In this study, ResNet-50 is used as the backbone to release the

computational burden of deep models during feature extraction and

facilitate real-time performance. The very last feature map learned

by different stages (e.g., conv1, conv2, and conv3) is used as multi-

scale features. We denote these feature maps as {C1,C2,C3,C4,C5}.

The stride steps of these feature maps are {2, 4, 8, 16, 32} with respect

to the original image. Only {C3,C4,C5} are used in FPN for feature

fusion and the fused feature maps are denoted as {P3, P4, P5}. Our

feature extraction and fusion module can be formulated as follows:

image_f = BackgroundRemoval
(

image_rgbd
)

Fbackbone = {C3, C4, C5} = ResNet
(

image_f
)

FFPN = {P3, P4, P5} = FPN (Fbackbone)

Inspired by the fact that grasp rectangles are often much small than

the object’s boundaries, we use different prior rectangle sizes for

object detection and grasp detection. The object detection head and

the grasp detection head share a similar structure with the detection

head (Redmon and Farhadi, 2018). The output tensor for object

detection is in the shape ofN×N×ko× (4 + 1+ Co), whereN×N

is the size of the feature map, ko is the number of predicted bounding

boxes, 4 stands for the number of parameters of a bounding box, 1

stands for the channel of confidence, and Co is the number of object

categories. Similarly, the output tensor for grasp detection is in the

shape of N ×N × kg × (5+ Ca + 1), where 5 stands for the location,

width, height, and orientation of a grasp rectangle, Ca is the number

of angle bins, and 1 stand for the successful rate prediction.

3.3. Background removal

Robotic manipulation often encounters a cluttered environment.

The captured RGB-D images include both the target objects to be

grasped and the background surroundings. To achieve an accurate

object and grasp detection, we should focus on the pixels belonging to

the targets. The additional observation on backgrounds may distract

our attention from the targets. Figure 3 presents a quantitative

analysis of this additional information. When the background is

removed, the detection model only needs to learn features from

the target objects and all learned features are valuable for final

manipulation. However, if the RGB-D image encounters a cluttered

background, the model will have to learn features from both

the targets and the background, and distinguish which feature

contributes to the downstream tasks. This will increase the burden

of the model for feature extraction and also increase the number of

parameters to learn task-specific features. According to Dong et al.

(2021), these additional cluttered background pixels will even lead to

a false grasp detection.

To eliminate the cluttered background and let the model focus on

the targets, Dong et al. (2021) adopt an encoder–decoder-based U-net

model to segment the input image into foreground and background.

It is indeed a potential way to filter out the background in an image.

But the U-net model needs to be trained on a large dataset and its

generalizability to new observations is limited. Instead of recognizing

the background in the image domain, we present a background

removal method in 3D space. We assume that objects to be grasped

are laid on a 3D plane (such as the surface of a desk), which is the

common case in robotic manipulation. Under this assumption, pixels

that are up to the 3D plane are defined as the foreground, while pixels

in or under the 3D plane are defined as the background. This could

separate the targets from the cluttered background in most cases. In

the top-left image in Figure 3, the white vertical surface will also be

considered as the foreground using the aforementioned approach.

But this mis-segmentation will not affect the detection of the targets

since the vertical surface is disconnected from the targets.

For the 3D plane estimation, we use a model-based method to

fit the unknown parameters. In 3D spaces, a plane is defined as

aX + bY + cZ + d = 0, with
(

a, b, c, d
)

as the plane parameters.

Given three points, we can fit a plane for it. Since pixels belonging

to the 3D plane are dominant in the image, we adopt a RANSAC-

based method to fit the parameters of the largest 3D plane in the

image. The method achieves its goal by iteratively selecting a random

subset of the original 3D points. The selected subset is assumed to

be inliers and the plane parameters are fitted with respect to these

inlier points. Then all other points are tested against the fitted model.

If a point fits well to the estimated model, it will be considered

as inliers to the model. The fitted 3D plane is reasonably good if

sufficiently many points are classified as inliers. In this study, 3D

coordinates are computed from the depth image with a fixed camera

intrinsic parameter when 3D points are not presented in the dataset.
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FIGURE 2

Outline of our Simultaneous Object and Grasp Detection (SOGD) model. SOGD takes an RGB-D image as input and outputs a series of recognized

objects together with the most appropriate grasp for every single object. It consists of five parts: a pre-processing module to remove background from

the cluttered scene, a backbone (e.g., Darknet or ResNet) and FPN for hierarchical feature extraction, two separate branches for object detection and

grasp detection, and an alignment module to assign a most appropriate grasp for each detected object.

FIGURE 3

Illustration of the unnecessary e�orts spent on the cluttered background during feature extraction. Top lines are original images and foreground images.

Bottom lines are the corresponding histograms of the top images. From the histograms, it can be seen that the additional information which is useless to

target detection will significantly increase when a cluttered background is encountered in the image.

We also applied voxelization to speed up the process and generate a

finer plane.

3.4. Separate object and grasp detection
branches

Object detection and grasp detection are both detection

problems. These two tasks share a similar output in the regression

of location, width and height of a rectangle (as the bounding box

for object detection and the grasp rectangle for grasp detection),

and a confidence score (as the classification for object detection and

the grasp quality for grasp detection). According to observation, we

design two separate detection branches for these two tasks, but the

branches share a similar architecture as shown in Figure 4.

The structure of our two detection branches is motivated by

modern object detectors (Redmon and Farhadi, 2018). The detection

head takes multi-stage outputs from FPN as inputs to detect objects
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FIGURE 4

Structure of the object/grasp detection head. Our object detection head and grasp detection head share a similar structure except for the output

channels. Both heads take {P3,P4,P5} from the FPN as inputs. The output of object detection includes the bounding box and object categories, while the

output of grasp detection has more channels for orientation and grasp score.

or grasp configurations at different scales. In fact, a gripper only needs

to grab a small part of an object to take it up, instead of grabbing

the whole of it. As a result, the detected rectangle for grasp is often

smaller than the bounding box of the object. Thus, we use the same

inputs as modern detectors for object detection and grasp detection,

but a relatively small-scale prior size for grasp detection. This enables

our model to use a same-level semantic feature for both tasks.

Our detection head consists of a convolution set, a 3 ×

3 convolution block, and a 1× 1 convolution layer for prediction. The

multi-stage outputs of FPN are treated as fused features which include

both texture and semantic information extracted from the input

image. The convolution set is designed to learn a task-correlated

feature representation from the texture and semantic information.

Then the 3 × 3 convolution block fuses task-corelated features at

the top and current scales. The 1 × 1 convolution layer is used to

match the number of channels to the final predictions. The number

of channels of outputs for object detection is ko × (4 + 1+ Co),

where ko is the number of predicted bounding boxes for each grid

cell; 4 stands for (txo , t
y
o , t

w
o , t

h
o ), parameters of a bounding box; 1 stands

for the confidence of the prediction; and Co is the number of object

categories. Similarly, the number of channels of output for grasp

detection is kg × (5+ Ca + 1), where kg is the number of predicted

grasp rectangles; 5 stands for (txg , t
y
g , t

w
g , t

h
g , t

θ
g ), parameters of a grasp

rectangle; 1 stands for the score of the grasp configuration; and Ca

is the number of angle bins. The mathematical computation of our

detection head is as follows:

Ftask = {T3,T4,T5} = ConvolutionSet (FFPN)

Ftask_fusion = {TF3,TF4,TF5}

TFi = Convolution (TFi+1 + Ti)

Pro= Conv1×1

(

Ftask_fusion
)

3.5. Alignment between objects and grasp
configurations

The two detection branches make predictions for objects and

grasp configurations separately. To model the correspondence

between detected objects and grasp configurations, we design an

alignment module. Given an object prediction Proo ∈ RN×N×ko and

a grasp prediction Prog ∈ RN×N×kg , the correspondences between all

possible pairs are defined as Procorr ∈ R(N×N×ko)×(N×N×kg). Objects

and grasp configurations are detected at different scales. Generating

correspondences across multi scales would significantly increase the

computational complexity. Thus, we only consider possible object-

grasp pairs within the same scale.

Our alignment module takes the task-correlated features from

object detection head TFo ∈ RN×N×co and grasp detection head

TFg ∈ RN×N×cg as input. Then two 1 × 1 convolution layers

are applied to the features separately, resulting in the outputs of
´

Fo ∈ RN×N×ko×f and
´

Fg ∈ RN×N×kg×f . The two feature maps are

reshaped into a 2D matrix and transpose matrix multiplication is

applied to generate the output Fcorr ∈ R(N×N×ko)×(N×N×kg). Finally,

we use a sigmoid activation function to model the joint possibility of

the detection pairs. The mathematical computation of our alignment

module can be formulated as follows:

´

Fo = Conv1×1 (TFo)

´

Fg = Conv1×1

(

TFg
)

Fcorr = reshape(
´

Fo) • (reshape(
´

Fg))

T

Procorr = sigmoid(Fcorr)
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Though our two detection heads make predictions separately, our

model is forced to learn a better Procorr to model the correlation

between the predictions. At inference, we use two additional

parameters ko and kc to control the number of final predictions.

First, top ko object predictions are selected from Proo, then top kc
correlated grasp predictions are selected and assigned to the detected

objects. If the quality of a grasp prediction is smaller than a threshold,

the grasp prediction will be filtered out from the alignment results. In

this way, our model can be easily extended to multi-object detection

and multi-grasp detection cases.

3.6. Loss function

The loss of our SOGD model consists of three parts: object

detection loss Lo, grasp detection loss Lg , and alignment loss Lcorr .

The loss of object detection is defined as:

Lo = L
reg
o + α × Lclso

L
reg
o =

1

N
reg
o

∑

i

smoothL1
(

tio,t̂
i
o

)

Lclso =
1

Ncls
o

∑

i

Lossfocal

(

clsi,ĉlsi

)

where tio and t̂
i
o are ground truth and predictions for a bounding box,

respectively. We use the smooth L1 loss for regression and focal loss

(Lin et al., 2017) for classification. N
reg
o and Ncls

o are the normalizers.

α is the weight of classification loss.

Similarly, the loss of grasp detection is defined as:

Lg = L
reg
g + β × L

angle
g + γ × Lscoreg

L
reg
g =

1

N
reg
g

∑

i

smoothL1

(

tig ,t̂
i
g

)

L
angle
g =−

∑

i

[

ai log
(

âi
)

+ (1−ai) log
(

1−âi
)]

Lscoreg =−
∑

i

[

si log
(

ŝi
)

+ (1−si) log
(

1−ŝi
)]

where tig and t̂
i
g are ground truth and predictions for a grasp rectangle,

respectively. β and γ are hyperparameters.

The loss of object and grasp alignment is defined as:

Lcorr =−δ×
∑

i

[

pi log
(

p̂i
)

+
(

1−pi
)

log
(

1−p̂i
)]

where pi and p̂i are ground truth and predictions of a candidate pair

for object and grasp, respectively. δ controls the weights of alignment

loss to the total loss.

The total loss function is the summation of the three losses:

L= Lo + Lg + Lcorr

4. Results

To evaluate the performance of our proposed SOGD model

against previousmethods, we test it on two publicly available datasets:

the Cornell Grasp Dataset (Lenz et al., 2013) and the Jacquard Dataset

(Depierre et al., 2018). Our model is designed for the task of grasp

detection, but it also outputs predictions for object detection. Thus,

themetrics used in our experiments consist of two parts. For the grasp

detection task, we use the popular Jaccard Index and angle difference

as metrics, consistent with previous methods (Jiang et al., 2011; Chu

et al., 2018; Kumra et al., 2020; Yu et al., 2022b). A predicted grasp

configuration is considered as correct if and only if the following two

conditions are satisfied.

(1) Jaccard Index of the predicted grasp rectangle and the ground

truth is >0.25. Assuming that b̂g is the predicted grasp rectangle and

bg is the ground truth, Jaccard Index is defined as:

Jaccard Index =

∣

∣

∣
b̂g∩bg

∣

∣

∣

∣

∣

∣
b̂g∪bg

∣

∣

∣

(2) the difference between the predicted orientation angle and the

ground truth is <30◦.

For object detection tasks, we use accuracy instead of the

commonly used mAP as metrics. In this research, object detection

is an additional output only to achieve the final goal of predicting the

most possible grasp for each individual object in a cluttered scene.

Our method only needs to know where the object is, and what kind

of object it is does not matter too much. So, we consider a prediction

as correct if the intersection over union of the predicted bounding

box and ground truth is >0.5.

4.1. Grasp detection results on cornell grasp
dataset

There are 878 images together with the corresponding depth

image and 3D point clouds in the Cornell Grasp Dataset (Lenz et al.,

2013). The resolution of the images is 640× 480. Each image contains

a single graspable object at different positions and orientations. The

dataset is manually annotated with many positive and negative grasp

rectangles. Following previous research (Zhang et al., 2019; Dong

et al., 2021), we use a five-fold cross-validation strategy to evaluate

the performance of our method and report the average detection

accuracy in this section. The reported results include both image-

wise (IW) and object-wise (OW) detection accuracy. In image-wise

experiments, all images are randomly divided into a train set and

a test set. The object in the test set may have been learned during

training but at different poses and views. This is mainly to test

the generalization ability of our method when objects are captured

from multiple points of view. In object-wise experiments, images are

divided according to the object categories. Objects in the test set have

never been seen during training. This is to test the generalization

ability of our method when it faces a new kind of object.

The evaluation of grasp detection accuracy and efficiency are

summarized in Table 1. Our method achieves 98.9 and 98.3%

accuracy on image-wise and object-wise detection tasks, respectively.

Compared with the state-of-the-art RGB-D-based method (Yu et al.,

2022b), our SOGD shows an improvement of +0.7 and +1.2% in
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accuracy. The efficiency of our method is relatively low than SE-

ResUNet (Yu et al., 2022b). In SE-ResUNet, a squeeze-and-excitation

residual network is designed to predict the width and orientation of

the grasp rectangle and the quality of the grasp outputs. It does not

involve the detection of the target object. As a result, the complexity

of SE-ResUNet is smaller than ours and their detection ability is

not strong as ours. Similar results are observed when our SOGD is

compared with Kumra et al. (2020). Compared with the state-of-the-

art RGB-based method (Yu et al., 2022a) and RG-D-based method

(Park et al., 2020), our SOGD shows a similar performance in the

TABLE 1 Grasp detection results on the Cornell Grasp Dataset.

Methods IW/% OW/% FPS Input

Chu et al. (2018) 94.4 95.5 8.3 RGB

Wang et al. (2021) 96.1 95.5 - RGB

Asif et al. (2019) 96.7 - - RGB

Yu et al. (2022a) 98.9 97.8 50.0 RGB

Dong et al. (2021) 96.4 96.5 9.4 RG-D

Song et al. (2020) 95.6 97.1 RG-D

Zhang et al. (2019) 92.3 91.7 25.2 RG-D

Park et al. (2020) 98.6 97.8 62.5 RG-D

Jiang et al. (2011) 60.5 58.3 0.2 RGB-D

Lenz et al. (2013) 73.9 75.6 0.7 RGB-D

Chu et al. (2018) 96.0 96.1 8.3 RGB-D

Kumra et al. (2020) 97.7 96.6 50.0 RGB-D

Yu et al. (2022b) 98.2 97.1 40.0 RGB-D

SOGD (ours) 98.9 98.3 9.6 RGB-D

The best performance of methods within a same kind of input is shown as bold.

image-wise detection task, but a superior performance in the object-

wise detection task. This is mainly because our SOGD not only learns

possible grasp configurations but also the correspondences between

the target object and grasp candidates. In this way, it has the ability

to figure out what is the best grasp configuration for a specific kind

of object. Therefore, when facing new objects, it can benefit from

learned knowledge of the relationship between grasp configurations

and objects.

Visualization of typical grasp detection results is shown in

Figure 5. The three lines in the figure are ground truth annotations,

predicted grasp configurations of our SOGD, and the corresponding

grasp quality predicted by our SOGD. For each detected object, our

model outputs the best grasp rectangle for it. In this experiment, the

quality is not the direct output from the grasp detection branch in

our SOGD model. Our grasp detection branch outputs a score map

for each grasp candidate that can be treated as the quality of the grasp,

as mentioned in a previous study (Yu et al., 2022a,b). But our model

includes an alignment module to learn the correspondences between

predicted objects and grasp configurations. The quality is the product

of the score map and the correspondences. It represents the success

rate of a grasp if there is a detected target object. From the figure,

it can be seen that our SOGD has a good ability in detecting grasp

rectangles and the output quality map is able to provide a clear reason

for the grasp decision.

4.2. Grasp detection results on Jacquard
Dataset

The Jacquard Dataset (Depierre et al., 2018) is collected from a

simulator with CAD models of the ShapeNet dataset. There are 54k

images with 11k different kinds of objects in the dataset. A large

number of samples facilitate ourmodel training. However, we still use

some data augmentation strategies (like random rotation) to increase

FIGURE 5

Typical grasp detection results of our SOGD on the Cornell Grasp Dataset. Top line is ground truth annotation; middle line is the prediction of our SOGD;

and bottom line is the estimated grasp quality of the corresponding detection.
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the robustness of the learned model. The resolution of images in this

dataset is 1,024 × 1,024. We down-sample the original image to a

size of 512 × 512 for both training and testing. Unlike results on the

Cornell Dataset, we report the overall accuracy of the grasp detection

results on the Jacquard Dataset.

Table 2 reports the performance of our SOGD against the state-

of-the-art methods. Our SOGD shows a 99% accuracy on the

Jacquard Dataset, which is higher than both RGB-based and RG-D-

based state-of-the-art methods. Compared with MASK-GD (Dong

et al., 2021), our method achieves a +1.4% performance boost.

MASK-GD also involves pre-processing for background removal.

Background removal is treated as an image segmentation problem

and a deep network is trained for it in MASK-GD. This strategy

has the potential to recognize the foreground targets from the

cluttered scenes, and may also suffer the problem of limited

generalization ability. In addition, our model has an additional

alignmentmodule to learn the relationship between object candidates

and grasp candidates, whileMASK-GD cannot. Compared with other

TABLE 2 Grasp detection results on the Jacquard Dataset.

Methods Accuracy/% Input

Zhou et al. (2018) 91.8 RGB

Zhang et al. (2019) 90.4 RGB

Dong et al. (2021) 97.1 RGB

Zhou et al. (2018) 92.8 RG-D

Zhang et al. (2019) 93.6 RG-D

Dong et al. (2021) 97.6 RG-D

SOGD (ours) 99.0 RGB-D

The best performance of methods within a same kind of input is shown as bold.

grasp detection methods, the improvement of our SOGD is more

significant.

Figure 6 shows some typical grasp detection results of our SOGD

on this dataset. Both the detected grasp configurations and the quality

maps are visualized to give a better understanding of the results.

From the figure, it can be seen that our SOGD can well detect grasp

candidates and outputs a reasonable quality map on this dataset.

4.3. Object detection results

For object detection evaluation, our SOGD model is trained and

tested on the two datasets mentioned earlier. We use the Labelme

tools from MIT to manually annotate bounding boxes and class

labels on the Cornell Dataset. To prevent overfitting, the pre-trained

FIGURE 7

Typical object detection results.

FIGURE 6

Grasp detection results of our SOGD on the Jacquard Dataset. Top line is ground truth annotation; middle line is the prediction of our SOGD; and

bottom line is the estimated grasp quality of the corresponding detection.

Frontiers inComputationalNeuroscience 09 frontiersin.org
104

https://doi.org/10.3389/fncom.2023.1110889
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fncom.2023.1110889

FIGURE 8

Grasp detection results on images with various kinds of backgrounds. (A) SOGD without background removal (BR) on images without background. (B)

SOGD without BR on original images from Jacquard Dataset. (C) SOGD with BR on the original images. (D) SOGD without BR on images with the

background being replaced. (E) SOGD with BR on images with the background being replaced. From left to right the background of the image becomes

more cluttered.

parameters of ResNet-50 are fixed for the backbone and several data

augmentation strategies are involved, such as rotation, translation,

flip, random crop, and illumination change. Typical experimental

results are shown in Figure 7. From the figure, it can be seen that

after removing the background boundaries foreground objects are

much easier to detect, releasing the burden of the object detection

branch and resulting in more accurate bounding box predictions. In

our experiments, though we pay more attention to the prediction

accuracy of where the object is, the classification confidence of

our SOGD is almost above 0.75 on the two datasets. The above-

mentioned observations show that our SOGD model has a good

performance in detecting objects from a cluttered scene, especially

in identifying the boundaries of the objects.

4.4. Discussion on background removal

From the results in Tables 1, 2, it has already been seen that

our SOGD has superior performance than existing methods without

background removal (Zhang et al., 2019; Kumra et al., 2020; Yu

et al., 2022b). But to investigate how much the background removal

contributes to this performance boost, we conduct an ablation

study on this pre-processing. The Jacquard Dataset is used in this

experiment since it provides a ground truth mask for foreground

target objects. With this mask, we generate two additional types of

images from the original dataset to test the performance of our SOGD

on it. The first one is to filter out backgrounds with the ground

truth mask. The second one is to fill the background with a cluttered

background. To achieve this, we download a number of images from

the Internet as the background image datasets and randomly choose

one to replace the background images from the Jacquard Dataset.

We provide a comparison among five types of grasp detection

configurations: (1) SOGD without background removal on images

with background filtered out, (2) SOGDwithout background removal

on the original image, (3) SOGD with background removal on

the original image, (4) SOGD without background removal on

images with background being replaced, and (5) SOGD with

background removal on images with background being replaced.

Typical results are shown in Figure 8. The background of the

scene in Figure 8 becomes more cluttered from left to right. From

the figure, we observe that the predicted grasp configurations

will be much better when the background is removed from

the image.

5. Conclusion and future study

This study is focused on the problem of grasp detection

from an RGB-D image. Unlike previous methods, we solve this

problem by simultaneously detecting the target object and the

corresponding grasp configurations. This is motivated by the fact

that when grabbing an object, we humans first identify where the

object is and then make a decision on which part of the object

to grab. To this end, a novel neural network SOGD together

with its learning method is proposed. In SOGD, object and

grasp configurations are first detected by two separate branches,

and then the relationship between object candidates and grasp

configurations is learned by an alignment module. The best grasp

configuration is predicted according to the grasp score and its

correspondence to the target object. Our method is tested on two

publicly available datasets. A series of experiments are conducted

and both qualitative and quantitative experimental results are

presented. The results demonstrate the validity and practicability of

our method.

To deal with grabbing in a cluttered scene, a pre-processing

for background removal is designed. Unlike previous methods

where background removal is treated as an image segmentation
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problem, we propose to leverage the prior knowledge that objects

to be grabbed are often placed on a 3D plane. Therefore,

we adopt a RANSAC-based plane fitting method to detect the

largest 3D plane in the scene. All pixels laid in or under

the plane are considered background. The experimental results

show that our strategy makes grasp detection more robust in

cluttered environments.

The stacked scene is not considered in this research. In daily life

cases, it is common that objects to be grabbed are laid on top of

each other. This is more challenging for the grasp detection method

because it has to figure out the execution order of the predicted grasp

configurations. This is an interesting topic for our future study. In

addition, the kind of object for model training is limited. It has to

face a large number of unknown objects when the learned model is

deployed to real devices. It is interesting to extend our model with

the life-long learning ability after deployment. We will explain it in

our future study.
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This work aimed to explore the diagnostic value of a deep convolutional neural

network (CNN) combined with computed tomography (CT) images in patients

with severe pneumonia complicated with pulmonary infection. A total of 120

patients with severe pneumonia complicated by pulmonary infection admitted to

the hospital were selected as research subjects and underwent CT imaging scans.

The empty convolution (EC) and U-net phase were combined to construct an

EC-U-net, which was applied to process the CT images. The results showed that

the learning rate of the EC-U-net model decreased substantially with increasing

training times until it stabilized and reached zero after 40 training times. The

segmentation result of the EC-U-net model for the CT image was very similar

to that of the mask image, except for some deviations in edge segmentation.

The EC-U-net model exhibited a significantly smaller cross-entropy loss function

(CELF) and a higher Dice coefficient than the CNN algorithm. The diagnostic

accuracy of CT images based on the EC-U-net model for severe pneumonia

complicated with pulmonary infection was substantially higher than that of CT

images alone, while the false negative rate (FNR) and false positive rate (FPR)

were substantially lower (P < 0.05). Moreover, the true positive rates (TPRs) of CT

images based on the EC-U-net model for patchy high-density shadows, diffuse

ground glass density shadows, pleural effusion, and lung consolidation were

obviously higher than those of the original CT images (P < 0.05). In short, the

EC-U-net model was superior to the traditional algorithm regarding the overall

performance of CT image segmentation, which can be clinically applied. CT

images based on the EC-U-net model can clearly display pulmonary infection

lesions, improve the clinical diagnosis of severe pneumonia complicated with

pulmonary infection, and help to screen early pulmonary infection and carry out

symptomatic treatment.

KEYWORDS

empty convolution, deep convolutional neural network, severe pneumonia, pulmonary
infection, computed tomography images

1. Introduction

Inflammation in lung tissues (bronchioles, alveoli, and interstitium) caused by various
etiologies and pathogens on different occasions has similar or the same pathophysiological
process and can deteriorate into severe pneumonia (Zhou et al., 2021; Al Khoury et al.,
2022). It can be caused by various pathogenic causes. Pneumonia with cardiopulmonary
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foundation or additional risk factors or infection with special
pathogenic microorganisms, such as severe acute respiratory
syndrome (SARS) virus, avian influenza virus, and legionella
bacteria, will aggregate pneumonia and increase the risk of death
(Cai and Zheng, 2020; Gerges Harb et al., 2020; Wan et al.,
2021). Severe pneumonia is a serious respiratory disease, and most
patients will be complicated with organ dysfunction. In addition
to the common respiratory symptoms of pneumonia, there are
respiratory failure and obvious involvement of the circulatory
system, nervous system, and other systems. Common symptoms
include fever, chills, cough, expectoration, chest pain, dyspnea, and
increased respiratory rate (Issa et al., 2020). Severe pneumonia
will result in various sequelae, the most common of which is
lung injury (such as bullae, empyema, and pyopneumothorax) and
heart-related diseases, including heart failure or pulmonary heart
disease. Therefore, it is very important to pay attention to the early
diagnosis and treatment of severe pneumonia.

Imaging examination is an important process in the diagnosis
of pneumonia and is one of the important indexes to judge severe
pneumonia. Clinical diagnosis of lung lesions often adopts X-ray,
bedside ultrasound, conventional chest computed tomography
(CT) plain scan, etc (Hu et al., 2021). Chest X-ray examination
is relatively convenient and cost-effective, but it exhibits great
limitations in the patient’s position and scope of fluoroscopy, which
limits the imaging results and easily leads to a false negative result
(Sayad et al., 2021). Ultrasound shows the lungs clearly and features
with low price, is easy to operate, and is easily disturbed by lung gas.
CT images are grayscale images with high density resolution that
can clearly display the lung and other soft tissue organs at low cost
and have been widely used in the diagnosis of lung diseases.

Image segmentation refers to finding and distinguishing the
target area according to the properties and characteristics of the
image. In the medical field, segmenting the images of tissue and
organ lesions is an important auxiliary means for clinical diagnosis,
treatment, and efficacy evaluation of diseases. Traditional image
segmentation algorithms are still widely used, even in commercial
applications. However, with the exponential growth of the current
data volume, the requirements for the depth of information mining
and segmentation technology are increasing, so it is necessary to
study higher-level technologies (Arej et al., 2022). Deep learning
is a deep nonlinear structure that is based on the human neural
network mechanism, layered feature extraction, and recognition.
Ideally, as long as the amount of data is sufficient and the network
is deep enough, an ideal effect can be achieved, and the accuracy
rate of human beings can even be exceeded (Diab et al., 2020;
Alimoradi et al., 2021). Due to its excellent quality, deep learning
is also widely used in medical image processing. Therefore, deep
learning was combined with CT imaging technology and applied
in clinical diagnosis in this work. Wang et al. (2021) discussed the
application of deep learning technology in conical beam computed
tomography image analysis of oral lesions, and processed images
by artificial segmentation, threshold segmentation algorithm, and
full convolutional neural network algorithm. The results showed
that the image segmentation accuracy of the full convolutional
neural network algorithm was superior to the traditional manual
segmentation and threshold segmentation algorithms. Wu et al.
(2020) proposed a deep convolutional neural network fusion
support vector machine algorithm (DCNN-F-SVM) and applied it
to brain tumor image segmentation. According to the segmentation

results obtained, the image segmentation performance of this
model was significantly better than that of deep convolutional
neural network and integrated SVM classifier.

In summary, the combination of deep learning technology and
medical imaging is still the focus of clinical research. Therefore,
120 patients with severe pneumonia complicated with pulmonary
infection were selected as subjects for CT imaging scanning. An
EC-U-net network model based on empty convolution (EC) and
the U-net network phase was constructed and applied to patient
CT image processing. The diagnostic value of a deep convolutional
neural network (CNN) combined with CT images for severe
pneumonia complicated with pulmonary infection was discussed
by analyzing the imaging characteristics of patients. In this study,
deep learning technology was innovatively combined with lung CT
image, which was jointly applied in clinical treatment, providing
a theoretical reference for the evaluation of lung infection in
patients with pneumonia.

2. Materials and methods

2.1. Research objects

In this work, 120 patients with severe pneumonia complicated
with pulmonary infection, aged 20–69, admitted to the hospital

Input Output

Contracting Path Expansive Path

FIGURE 1

Schematic diagram of the U-net network structure.

Empty convolution 3×3

Activate function

Up-sampling

FIGURE 2

The convolution blocks of the EC-U-net network model.
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from November 2019 to April 2021, were selected as the research
subjects. This study was approved by the medical ethics committee
of the hospital, and patients and their families were informed of this
study and signed informed consent.

Inclusion criteria: (i) patients older than 18 years; (ii) patients
with complete clinical data; (iii) patients who signed informed
consent; (iv) patients who met the diagnostic criteria for severe
pneumonia formulated by the American Society of Infectious
Diseases/American Thoracic Society in 2007 (Vetrugno et al.,
2020); and (v) the diagnosis of severe pneumonia was in accordance
with the guidelines of the Respiratory Society of Chinese Medical
Association in 2006 (Kim, 2020).

Exclusion criteria: (i) patients with autoimmune diseases; (ii)
patients complicated with organ transplantation; (iii) patients with
other tumors; (iv) patients with heart disease and other important
organ damage; and (v) patients who had poor compliance
with examination.

2.2. CT image scanning

All patients were scanned by 64-row spiral CT. The patients
were placed in the supine position and scanned from the chest
entrance to the bottom of the lung. The scanning parameters
were as follows: layer thickness of 2.5 mm, pitch of 1.25, tube
voltage of 120 kV, tube current of 120 mA, and matrix of
521× 521.

0 2 4 6-2-4-6

0

0.5

1

FIGURE 3

Sigmoid function.
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FIGURE 4

ReLU function diagram.

2.3. CT image segmentation based on
the deep learning model

The U-net model (Feng et al., 2020) is an improved
fully convolutional network (FCN) structure, which is generally
composed of a contracting path on the left half and an expansive
path on the right half (Figure 1). The compression channel
is a typical CNN structure. It repeats the structure with two
convolutional layers and one maximum pooling layer. The
dimensionality of the feature map is doubled after each pooling
operation. In the expansion channel, a deconvolution operation
was performed first to reduce the dimensionality of the feature map
by half, and then the feature maps obtained from the corresponding
compression channel were spliced to reconstitute a feature map of
two times the size. Then, two convolutional layers were adopted
for feature extraction, and this structure was repeated. In the final
output layer, two convolutional layers were employed to map the
64-dimensional feature map into a 2-dimensional output map.

Empty convolution (EC) (Moore and Gardiner, 2020) is
essentially a convolution with intervals. It can enlarge the receiving
field without changing the number of parameters and enhance
the ability of the model to extract information. EC and the U-net
network were combined to design an EC-U-net network model in
this work. The convolution block of the model (Figure 2) mainly
included the EC and activation function.

In the field of mathematics, convolution is an operation on a
function. In fact, it is a weighted summation process, which is an
integral operation. The convolution operation is expressed as the
following equation.

(h∗1h2)(t) ,
∫
∞

−∞

h1(υ)h2(t − υ)dυ (1)

In equation (1), h1 and h2 are functions, and two continuous
functions are integrable within the real number range. When CNN
is adopted to process the CT image, image pixels are used as
input, the convolution kernel is an impact function that acts on the
system and can extract system features, and the output is a feature
map corresponding to the image. Therefore, the image convolution
process is actually a linear operation, and the convolution of a
two-dimensional vector is expressed as follows.

P∗(i, j) = (P × C)(i, j) =
∑
a

∑
b

P(a+ i, b+ j)∗C(a, b) (2)

In equation (2), P represents the input, C represents the
convolution kernel, with a step size of 1, P∗ represents the output,
and (i, j) represents the pixel coordinates. Since the input data
dimension may not be an integer multiple of the convolution kernel
dimension, the method of padding zeros in the edge area is usually
adopted to protect effective information, and the filling column is
introduced.

P =
[
i− c+ 2k

l

]
+ 1 (3)

In equation (3), k represents the filling column, and l represents
the step size. Weight sharing is a major feature of CNNs, which
can greatly reduce the number of parameters and increase the
nonlinearity of the model. Then, the total number of parameters
(TNP) is calculated as shown in the following equation.

TNP = m+ n = c2
∗ z ∗ j+ j (4)
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FIGURE 5

Model learning rate under different training times.

In equation (4), m represents the weight, n represents the bias value,
z is the number of feature channels, and j represents the feature
map. In practical applications, the EC may cause some image pixels
to not participate in the convolution calculation due to the interval,
thereby losing the continuity of some information. To solve this
problem, the hole size of the model network is designed according
to the hybrid dilated convolution (HDC) standard. The following
condition is needed.

Ti = max[Ti+1 − 2ei,Ti+1 − 2(Ti+1 − ei), ei] (5)

In equation (5), ei is the space interval of the i-th layer, and Ti is the
space interval of the i-th layer.

Calculation of the convolutional layer is essentially a linear
weighted summation, so the model lacks nonlinear expression, and
the expression ability is extremely limited. Therefore, an activation
function should be introduced. In this work, the sigmoid function
(Ma et al., 2021) is used for classification output, and the ReLU
function (Kwee and Kwee, 2020) is employed for internal feature
extraction.

The sigmoid function can compress the value of the function
to the range of (0, 1), and it can be derived everywhere (Figure 3),
which is expressed as follows.

Sigmoid = 1
/

(1+ e−(mx+n)) (6)

The sigmoid function is related to the parameter update and model
optimization, and the step size of the parameter update is related to
the gradient. The reverse transfer process of the gradient between
the layers can be expressed as the following equation.

∂D
∂bu
= Sigmoid′(zc)mc+1Sigmoid′(zc+1)mc+2 (7)

· · · Sigmoid′(zu)
∂D
∂av

In equation (7), av is the v-layer output, and ∂D
∂bu

is the gradient of
the objective function to the bias term.

The ReLU function (Figure 4) can effectively avoid gradient
disappearance. It is an optimization of the sigmoid function, which
is expressed as the following equation.

Relu() = max(0, z) (8)

Relu()′ =

{
0 z < 0
1 z > 0

(9)

After the model is constructed, a learning criterion should be set to
supervise the model or select the optimal model. The cross-entropy
loss function (CELF) and Dice coefficient are used as the learning
criteria, which are expressed as the following equations.

CELF() = −

∑
[X log(F(I))+ (1− X) log(F(I))]

n
(10)

Dice = 2∗
M ∩ N
|M| + |N|

(11)

FIGURE 6

Cross-entropy loss function and Dice coefficient of the EC-U-net
model.
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FIGURE 7

Image segmentation results of the EC-U-net model. (A) Lung CT; (B) mask diagram; (C) segmentation results.

FIGURE 8

Comparison of segmentation performance between the traditional CNN algorithm and this model. (A) CELF; (B) Dice coefficient. *Compared to the
CNN algorithm, P < 0.05.

In equation (11), M represents the pixel matrix of the image mask,
N is the pixel matrix of the output predicted image, and M ∩ N
represents the inner product of the two image matrices.

2.4. Construction of the experimental
environment

The operating system is Windows 10, the processor uses
Xeon CPU E5-2630, and the graphics card uses NVIDIA Quadro
K2200. The framework uses TensorFlow, the language uses
Python3.5, and the dependent libraries use CUDA9.0, cudnn,
OpenCV, and SimpleITK.

The data set uses lung data from the Kaggle competition, which
includes 2,650 lung images and corresponding 250 mask images
made by experts. The training set and test set are set to 1:1.

2.5. Statistical methods

SPSS 19.0 was used for data processing in this study. The
mean ± standard deviation (X ± s) was used to indicate
the measurement data, and the percentage (%) was used for
counting data. Pairwise comparisons were performed by one-
way ANOVA. The difference was statistically significant at
P < 0.05.
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FIGURE 9

CT images of a 38-year-old male patient.

FIGURE 10

CT images of a 51-year-old male patient.

3. Results

3.1. Experimental results

In Figure 5, the learning rate of the EC-U-net model decreased
substantially as the number of training iterations increased until it
stabilized and became zero after 40 training iterations.

The CELF and Dice coefficients were compared (Figure 6). The
CELF of the EC-U-net model attenuated with increasing training
times, while the Dice coefficient increased with increasing training
times (gradually approaching 1) until it was stable.

3.2. Application effect of the EC-U-net
model in CT images

Figure 7 showed the CT image segmentation result of the EC-
U-net model. The result of CT image segmentation using the EC-
U-net model was very similar to the mask image, but there were
some deviations in the segmentation at the edge.

The traditional CNN algorithm was introduced and compared
with the segmentation results of the established model (Figure 8).
The CELF of the EC-U-net model for lung CT image segmentation

was observed to be substantially smaller than that of the CNN
algorithm, and the difference was considerable (P < 0.05). The
Dice coefficient of the EC-U-net model for lung CT image
segmentation was substantially greater than that of the CNN
algorithm (P < 0.05).

3.3. Patient imaging findings

Figure 9 showed the CT images of a 38-year-old male
patient, showing multiple small nodules in both lungs,
mostly in the upper and posterior parts of the lungs; fibrotic
masses were observed in the posterior segments of the
upper lobes of both lungs, with bilateral symmetry and
extravasation-like changes. Pulmonary bullae were observed
below the pleura in the periphery of the lungs where the
nodules were concentrated, and a pneumothorax shadow
was seen on the periphery of the lungs with localized pleural
hypertrophy.

Figure 10 showed the CT images of a 51-year-old male patient,
showing multiple segmental lesions in both lungs spreading more
than before. It was considered infectious lesions, multiple small
lymph nodes in the mediastinum, and a small amount of free
effusion in the right pleural cavity.

Frontiers in Computational Neuroscience 06 frontiersin.org113

https://doi.org/10.3389/fncom.2023.1115167
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-17-1115167 July 31, 2023 Time: 13:35 # 7

Ming et al. 10.3389/fncom.2023.1115167

84 86 88 90 92 94 96

1

2

%

Accuracy rate

*

0 1 2 3 4 5 6 7 8

Misdiagnosis rate

Missed diagnosis rate

%
2 1

*

*

A

B

FIGURE 11

Comparison of patient diagnosis accuracy, FNR, and FPR. (A)
accuracy; (B) FNR and FPR. 1: CT image based on the EC-U-net
model; 2: original CT image. *Compared with 1, P < 0.05.

3.4. Comparison of patient diagnosis
accuracy, false positive rate (FPR) and
false negative rate (FNR)

From Figure 11, the accuracy of CT images based on the
EC-U-net model in the diagnosis of severe pneumonia combined
with infection was substantially higher than that of CT images
(P < 0.05). The FPR and FNR of CT images based on the EC-
U-net model for severe pneumonia complicated by infection were
substantially lower than those of CT images, and the differences
were considerable (P < 0.05).

3.5. Comparison of diagnosis results of
CT imaging features

Figure 12 compared the diagnosis results of patients with
CT imaging features. The CT image based on the EC-U-net
model had a true positive rate (TPR) of 57.93% for patchy high-
density shadows and a TPR of 75.31% for diffuse ground-glass
density shadows. The TPRs were 16.39, 32.88, and 5.08% for
pleural effusion, pulmonary consolidation, and reticular nodules,
respectively. The original CT image had a TPR of 48.89% in
the diagnosis of patchy high-density shadows, 64.03% in diffuse
ground-glass density shadows, 11.27% in pleural effusion, 24.91%
in pulmonary consolidation, and 4.55% in reticular nodules. In
short, CT images processed by the EC-U-net model had a higher
TPR for patchy high-density shadows, diffuse ground glass density
shadows, pleural effusions, and lung consolidation shadows than
the original CT images, and the differences were substantial
(P < 0.05).

4. Discussion

Severe pneumonia is a very common critical symptom around
the world. It usually occurs in elderly individuals. Because its
onset is relatively insidious and there are no obvious symptoms
in the early stage, it will lead to delayed detection of the patient’s
condition and endanger the life of the patient (Salerno et al.,
2021). Therefore, early examination and early treatment are of
great significance to patients with severe pneumonia complicated
with pulmonary infection (Ding et al., 2020; Huang et al., 2021).
Thanks to the continuous development of computer technology,
medical imaging technology has gradually exceeded the scope
of traditional X-ray photography, among which CT imaging
technology is widely adopted in the diagnosis of various diseases
because of its high accuracy, low cost, and convenient operation.
A total of 120 patients with severe pneumonia combined with
pulmonary infection were selected as the research subjects and

FIGURE 12

Comparison of diagnosis results of patients with CT imaging features. 1: CT image based on the EC-U-net model; 2: original CT image; 3: patchy
high-density shadow; 4: diffuse ground-glass-like density shadow; 5: pleural effusion; 6: lung consolidation shadow; 7: reticular nodule shadow.
*Compared with 1, P < 0.05.
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underwent CT imaging scans. Then, an EC-U-net network model
was constructed based on empty convolution and the U-net
network and applied to CT image processing. First, analysis of
the performance of the model suggested that the learning rate
of the EC-U-net model decreased substantially as the training
times increased until it stabilized, and it even became 0 when
there were 40 training times. Such results indicated that the
training efficiency of the model was high and local fluctuations
were avoided. The segmentation result of the CT image by
the EC-U-net model was very similar to the mask image, but
there were some deviations in the edge segmentation. This was
different from the results of Shi et al. (2021), indicating that the
segmentation effect on the microstructure of the lungs in the EC-
U-net model was not satisfactory. The segmentation results of the
introduced traditional CNN algorithm and the proposed model
were compared. It was found that the EC-U-net model for lung CT
image segmentation exhibited a substantially smaller CELF and a
greatly larger Dice coefficient than the CNN algorithm (P < 0.05).
This showed that the overall segmentation performance of the EC-
U-net model for CT images was better than that of traditional
algorithms, and it had clinical application feasibility (Gordaliza
et al., 2018).

Accuracy reflects the precision of prediction. The FNR and FPR
are a pair of indicators from the perspective of prediction coverage.
The EC-U-net model was applied to the CT image processing
of 120 cases of severe pneumonia combined with pulmonary
infection. It was found that the accuracy of CT images based
on the EC-U-net model in the diagnosis of severe pneumonia
complicated by infection was substantially higher than that of CT
images. The FNR and FPR of CT images based on the EC-U-
net model for severe pneumonia complicated by infection were
substantially lower than those of CT images, and the differences
were great (P < 0.05). This showed that the combination of
the EC-U-net model and CT images can effectively improve the
clinical diagnosis of severe pneumonia complicated by pulmonary
infection, improve the diagnostic accuracy, and help screen early
pulmonary infections for symptomatic treatment (Haas et al., 2017;
Borodulina et al., 2020). Then, the CT image characteristics of
patients were analyzed, and the CT images based on the EC-U-net
model had a higher TPR for patchy high-density shadows, diffuse
ground-glass density shadows, pleural effusions, and pulmonary
consolidation shadows, and the differences were notable (P< 0.05).
This is similar to the research results of Morris et al. (2020),
indicating that CT images based on the EC-U-net model can
clearly show pulmonary infection lesions and determine the
scope of the lesion, thereby providing a diagnostic basis for the
early diagnosis of severe pneumonia combined with pulmonary
infection.

5. Conclusion

In this research, 120 patients with severe pneumonia
complicated with pulmonary infection were recruited to receive
CT imaging scans. Furthermore, an EC-U-net network model
based on the EC and U-net network phases was constructed
and applied to process the CT images of patients. The results
showed that the EC-U-net model was superior to the traditional

algorithm in the overall performance of CT image segmentation
and had feasibility for clinical application. CT images based on
the EC-U-net model can clearly display pulmonary infection
lesions, improve the clinical diagnosis of severe pneumonia
complicated with pulmonary infection, and help to screen early
pulmonary infection and carry out symptomatic treatment.
However, this study has not solved the unideal segmentation
effect of the EC-U-net model on microscopic structures such
as tiny pulmonary vessels, and imaging analysis of pulmonary
infections caused by different pathogens is lacking. In future
studies, we will include more case data of patients with severe
pneumonia complicated with pulmonary infection, and conduct
more image segmentation experiments with the proposed
algorithm to verify the reliability of deep learning technology.
In conclusion, the results provide data support for the clinical
diagnosis and treatment of severe pneumonia complicated with
pulmonary infection.

Data availability statement

The original contributions presented in this study are included
in this article/supplementary material, further inquiries can be
directed to the corresponding author.

Ethics statement

The studies involving human participants were reviewed and
approved by the China Academy of Chinese Medical Sciences. The
patients/participants provided their written informed consent to
participate in this study.

Author contributions

MM: writing-original draft, conceptualization, and formal
analysis. NL: software and validation. WQ: methodology, writing-
review, and editing. All authors contributed to the article and
approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Frontiers in Computational Neuroscience 08 frontiersin.org115

https://doi.org/10.3389/fncom.2023.1115167
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-17-1115167 July 31, 2023 Time: 13:35 # 9

Ming et al. 10.3389/fncom.2023.1115167

References

Al Khoury, C., Bashir, Z., Tokajian, S., Nemer, N., Merhi, G., and Nemer, G. (2022).
In silico evidence of beauvericin antiviral activity against SARS-CoV-2. Comput. Biol.
Med. 141:105171. doi: 10.1016/j.compbiomed.2021.105171

Alimoradi, M., Chahal, A., El-Rassi, E., Daher, K., and Sakr, G. (2021). Synthol
systemic complications: hypercalcemia and pulmonary granulomatosis. A case report.
Ann. Med. Surg. 69, 102771. doi: 10.1016/j.amsu.2021.102771

Arej, N., Mechleb, N., Issa, M., Cherfan, G., Tomey, K., Abdelmassih, Y., et al. (2022).
Combining spectral domain optical coherence tomography of retinal nerve fiber layer
and noncontact tonometry in mass glaucoma screening during the World Glaucoma
Week. J. Fr. Ophtalmol. 45, 384–391. doi: 10.1016/j.jfo.2021.11.010

Borodulina, E., Vasneva, Z., Borodulin, B., Vdoushkina, E., Povalyaeva, L., and
Mateesku, K. (2020). Hematological indicators for lung damage caused by COVID-19
infection. Klin. Lab. Diagn. 65, 676–682. doi: 10.18821/0869-2084-2020-65-11-676-
682

Cai, Z. P., and Zheng, X. (2020). A private and efficient mechanism for data
uploading in smart cyber-physical systems. IEEE Trans. Netw. Sci. Eng. 7, 766–775.

Diab, K., Rieger, K., and Noor, A. (2020). Endobronchial valve placement
for pulmonary tuberculosis-related bronchocutaneous fistula after thoracoplasty.
J. Bronchol. Interv. Pulmonol. 27, 294–296. doi: 10.1097/LBR.0000000000000688

Ding, X., Xu, J., Zhou, J., and Long, Q. (2020). Chest CT findings of COVID-19
pneumonia by duration of symptoms. Eur. J. Radiol. 127:109009. doi: 10.1016/j.ejrad.
2020.109009

Feng, X., Ding, X., and Zhang, F. (2020). Dynamic evolution of lung abnormalities
evaluated by quantitative CT techniques in patients with COVID-19 infection.
Epidemiol. Infect. 148:e136. doi: 10.1017/S0950268820001508

Gerges Harb, J., Noureldine, H., Chedid, G., Eldine, M., Abdallah, D., Chedid, N.,
et al. (2020). SARS, MERS and COVID-19: clinical manifestations and organ-system
complications: a mini review. Pathog. Dis. 78:ftaa033. doi: 10.1093/femspd/ftaa033

Gordaliza, P., Muñoz-Barrutia, A., Abella, M., Desco, M., Sharpe, S., and Vaquero, J.
(2018). Unsupervised CT lung image segmentation of a mycobacterium tuberculosis
infection model. Sci. Rep. 8:9802. doi: 10.1038/s41598-018-28100-x

Haas, B., Clayton, J., Elicker, B., Ordovas, K., and Naeger, D. (2017). CT-guided
percutaneous lung biopsies in patients with suspicion for infection may yield clinically
useful information. Am. J. Roentgenol. 208, 459–463. doi: 10.2214/AJR.16.16255

Hu, M., Zhong, Y., Xie, S., Lv, H., and Lv, Z. (2021). Fuzzy system based medical
image processing for brain disease prediction. Front. Neurosci. 15:714318. doi: 10.
3389/fnins.2021.714318

Huang, T., Zheng, X., He, L., and Chen, Z. (2021). Diagnostic value of deep learning-
based CT feature for severe pulmonary infection. J. Healthc. Eng. 2021:5359084. doi:
10.1155/2021/5359084

Issa, E., Merhi, G., Panossian, B., Salloum, T., and Tokajian, S. (2020). SARS-CoV-2
and ORF3a: nonsynonymous mutations, functional domains, and viral pathogenesis.
mSystems 5, e00266–20. doi: 10.1128/mSystems.00266-20

Kim, E. (2020). CT diagnosis of coronavirus infection. Curr. Med. Imaging 16:273.
doi: 10.2174/157340561604200402091854

Kwee, T., and Kwee, R. (2020). Chest CT in COVID-19: what the
radiologist needs to know. Radiographics 40, 1848–1865. doi: 10.1148/rg.202020
0159

Ma, J., Wang, Y., An, X., Ge, C., Yu, Z., Chen, J., et al. (2021). Toward data-efficient
learning: a benchmark for COVID-19 CT lung and infection segmentation. Med. Phys.
48, 1197–1210. doi: 10.1002/mp.14676

Moore, S., and Gardiner, E. (2020). Point of care and intensive care lung ultrasound:
a reference guide for practitioners during COVID-19. Radiography 26, e297–e302.
doi: 10.1016/j.radi.2020.04.005

Morris, M., Goettel, C., Mendenhall, C., Chen, S., and Hirsch, K. (2020). Diagnosis
of asymptomatic COVID-19 infection in a patient referred for CT lung biopsy. J. Vasc.
Interv. Radiol. 31, 1194–1195. doi: 10.1016/j.jvir.2020.04.002

Salerno, D., Oriaku, I., Darnell, M., Lanclus, M., De Backer, J., Lavon, B., et al. (2021).
Temple University Covid-19 Research Group. Association of abnormal pulmonary
vasculature on CT scan for COVID-19 infection with decreased diffusion capacity in
follow up: a retrospective cohort study. PLoS One 16:e0257892. doi: 10.1371/journal.
pone.0257892

Sayad, E., Coleman, R., Chartan, C., and Tillman, R. (2021). Diagnostic delays
and characteristics of pediatric pulmonary hypertension presenting as syncope. Clin.
Pediatr. 60, 443–446. doi: 10.1177/00099228211037190

Shi, F., Wei, Y., Xia, L., Shan, F., Mo, Z., Yan, F., et al. (2021). Lung volume reduction
and infection localization revealed in big data CT imaging of COVID-19. Int. J. Infect.
Dis. 102, 316–318. doi: 10.1016/j.ijid.2020.10.095

Vetrugno, L., Bove, T., Orso, D., Barbariol, F., Bassi, F., Boero, E., et al. (2020).
Our Italian experience using lung ultrasound for identification, grading and serial
follow-up of severity of lung involvement for management of patients with COVID-19.
Echocardiography 37, 625–627. doi: 10.1111/echo.14664

Wan, Z., Dong, Y., Yu, Z., Lv, H., and Lv, Z. (2021). Semi-supervised support
vector machine for digital twins based brain image fusion. Front. Neurosci. 15:705323.
doi: 10.3389/fnins.2021.705323

Wang, X., Meng, X., and Yan, S. (2021). Deep learning-based image segmentation
of cone-beam computed tomography images for oral lesion detection. J. Healthc. Eng.
2021:4603475. doi: 10.1155/2021/4603475

Wu, W., Li, D., Du, J., Gao, X., Gu, W., Zhao, F., et al. (2020). An intelligent diagnosis
method of brain MRI tumor segmentation using deep convolutional neural network
and SVM algorithm. Comput. Math. Methods Med. 2020:6789306. doi: 10.1155/2020/
6789306

Zhou, X., Li, Y., and Liang, W. (2021). CNN-RNN based intelligent
recommendation for online medical pre-diagnosis support. IEEE/ACM
Trans. Comput. Biol. Bioinform. 18, 912–921. doi: 10.1109/TCBB.2020.299
4780

Frontiers in Computational Neuroscience 09 frontiersin.org116

https://doi.org/10.3389/fncom.2023.1115167
https://doi.org/10.1016/j.compbiomed.2021.105171
https://doi.org/10.1016/j.amsu.2021.102771
https://doi.org/10.1016/j.jfo.2021.11.010
https://doi.org/10.18821/0869-2084-2020-65-11-676-682
https://doi.org/10.18821/0869-2084-2020-65-11-676-682
https://doi.org/10.1097/LBR.0000000000000688
https://doi.org/10.1016/j.ejrad.2020.109009
https://doi.org/10.1016/j.ejrad.2020.109009
https://doi.org/10.1017/S0950268820001508
https://doi.org/10.1093/femspd/ftaa033
https://doi.org/10.1038/s41598-018-28100-x
https://doi.org/10.2214/AJR.16.16255
https://doi.org/10.3389/fnins.2021.714318
https://doi.org/10.3389/fnins.2021.714318
https://doi.org/10.1155/2021/5359084
https://doi.org/10.1155/2021/5359084
https://doi.org/10.1128/mSystems.00266-20
https://doi.org/10.2174/157340561604200402091854
https://doi.org/10.1148/rg.2020200159
https://doi.org/10.1148/rg.2020200159
https://doi.org/10.1002/mp.14676
https://doi.org/10.1016/j.radi.2020.04.005
https://doi.org/10.1016/j.jvir.2020.04.002
https://doi.org/10.1371/journal.pone.0257892
https://doi.org/10.1371/journal.pone.0257892
https://doi.org/10.1177/00099228211037190
https://doi.org/10.1016/j.ijid.2020.10.095
https://doi.org/10.1111/echo.14664
https://doi.org/10.3389/fnins.2021.705323
https://doi.org/10.1155/2021/4603475
https://doi.org/10.1155/2020/6789306
https://doi.org/10.1155/2020/6789306
https://doi.org/10.1109/TCBB.2020.2994780
https://doi.org/10.1109/TCBB.2020.2994780
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


TYPE Original Research

PUBLISHED 30 August 2023

DOI 10.3389/fncom.2023.1204445

OPEN ACCESS

EDITED BY

Si Wu,

Peking University, China

REVIEWED BY

Laith Abualigah,

Amman Arab University, Jordan

Saghir Alfasly,

Mayo Clinic, United States

*CORRESPONDENCE

Chibiao Liu

lcbsmc@163.com

RECEIVED 12 April 2023

ACCEPTED 03 August 2023

PUBLISHED 30 August 2023

CITATION

Gezawa AS, Liu C, Jia H, Nanehkaran YA,

Almutairi MS and Chiroma H (2023) An

improved fused feature residual network for 3D

point cloud data.

Front. Comput. Neurosci. 17:1204445.

doi: 10.3389/fncom.2023.1204445

COPYRIGHT

© 2023 Gezawa, Liu, Jia, Nanehkaran, Almutairi

and Chiroma. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

An improved fused feature
residual network for 3D point
cloud data

Abubakar Sulaiman Gezawa1, Chibiao Liu1*, Heming Jia1,

Y. A. Nanehkaran2, Mubarak S. Almutairi3 and Haruna Chiroma4

1College of Information Engineering, Fujian Key Lab of Agriculture IOT Application, Sanming University,

Sanming, Fujian, China, 2Department of Software Engineering, School of Information Engineering,

Yancheng Teachers University, Yancheng, Jiangsu, China, 3College of Computer Science and

Engineering, University of Hafr Al-Batin, Hafar Al Batin, Saudi Arabia, 4College of Computer Science and

Engineering Technology, Applied College, University of Hafr Al-Batin, Hafar Al Batin, Saudi Arabia

Point clouds have evolved into one of the most important data formats for

3D representation. It is becoming more popular as a result of the increasing

a�ordability of acquisition equipment and growing usage in a variety of fields.

Volumetric grid-based approaches are among the most successful models

for processing point clouds because they fully preserve data granularity while

additionally making use of point dependency. However, using lower order local

estimate functions to close 3D objects, such as the piece-wise constant function,

necessitated the use of a high-resolution grid in order to capture detailed features

that demanded vast computational resources. This study proposes an improved

fused feature network as well as a comprehensive framework for solving shape

classification and segmentation tasks using a two-branch technique and feature

learning. We begin by designing a feature encoding network with two distinct

building blocks: layer skips within, batch normalization (BN), and rectified linear

units (ReLU) in between. The purpose of using layer skips is to have fewer layers to

propagate across, which will speed up the learning process and lower the e�ect

of gradients vanishing. Furthermore, we develop a robust grid feature extraction

module that consists of multiple convolution blocks accompanied by max-

pooling to represent a hierarchical representation and extract features from an

input grid. We overcome the grid size constraints by sampling a constant number

of points in each grid using a simple K-points nearest neighbor (KNN) search,

which aids in learning approximation functions in higher order. The proposed

method outperforms or is comparable to state-of-the-art approaches in point

cloud segmentation and classification tasks. In addition, a study of ablation is

presented to show the e�ectiveness of the proposed method.

KEYWORDS

point clouds, part segmentation, classification, shape features, 3D objects recognition

1. Introduction

Three-dimensional (3D) data are a great asset in the computer vision field since it

contains detailed information on the whole geometry of detected objects and scenes. With

the availability of massive 3D datasets and processing power, it is now possible to apply deep

learning to learn specific tasks on 3D data such as segmentation with classification (Varga

et al., 2020; Ergün and Sahillioglu, 2023; Qi et al., 2023), recognition, and correspondence
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(Long et al., 2021). There are several categories of 3D data

representations including point cloud, voxel, mesh, multi views,

octree, and many others. A comprehensive overview of point

clouds and other 3D data representations may be found in the

study by Bello et al. (2020) and Gezawa et al. (2020). Point

cloud data processing employs a variety of approaches. Following

dispatching a point cloud to a voxel grid that is quantized

spatially in the grid space, volumetric models use a volumetric

convolution to compute (Maturana and Scherer, 2015; Choy et al.,

2016). Volumetric approaches correlate points with grid positions

by using grids as data structuring technique and convolutional

kernels in 3D to get data from nearby voxels. Although grid

data structures are efficient, to maintain the granularity of the

data position, a high voxel resolution is essential. The amount

of processing and memory used grows in a cubical relationship

with the voxel resolution since large point clouds are expensive

to process. Furthermore, most point clouds contain ∼90% empty

voxels (Zhou and Tuzel, 2018), processing no data could use a

lot of computing power. Point-based models are another type of

point cloud data processing paradigm. Unlike volumetric models,

point-based models offer effective computation but have poor

data organization. For instance, PointNet (Charles et al., 2017)

aggregates the data in the network’s final stage using the point cloud

without quantization, as a result the precise locations of the data

are preserved. However, the cost of computation rises in lockstep

with the point number. Subsequent studies (Qi et al., 2017; Wang

et al., 2018; Yifan et al., 2018; Qiangeng et al., 2019; Wang Y. et al.,

2019) aggregate information using a downsampling approach at

each layer. Graph convolutional networks (GCN) have been used

in the network layer to generate a local graph for each point cluster

(Simonovsky and Komodakis, 2017; Kuangen et al., 2019; Wang L.

et al., 2019; Li et al., 2023) that can be regarded as a variant of the

PointNet++ design (Qi et al., 2017). This architecture, however, is

costly in terms of data structuring [e.g., Random Point Sampling

(RPS)]. As reported by Zhijian et al. (2019), data structuring costs

account for up to 88% of the entire computational cost in three

common point-based models (Li Y. et al., 2018; Yifan et al., 2018;

Wang Y. et al., 2019). Furthermore, SO-Net (Li J. et al., 2018)

employs the self-organizing map (SOM; Kohonen, 1998) to create

a set of points used to model a point cloud’s spatial pattern. Even

though SO-Net considers a point cloud’s regional correlation, SOM

is trained independently. As a result, SOM’s spatial modeling and

a specific point cloud task are no longer coupled. DGCB-Net (Tian

et al., 2020) uses cutting-edge convolutional layers built by weight-

shared multiple-layer perceptrons (MLPs), to automatically extract

local features from the point cloud graph structure. A feature

aggregation is formed by concatenating the features received from

all edge convolutional layers. Rather than stacking multiple layers

deep, the DGCB-Net adopts a strategy to flatly extend point cloud

feature aggregation.

In this study, we utilize deep learning to develop an approach

that manage enormous 3D object datasets without compromising

shape resolution. The majority of handcrafted 3D features are

limited to low 3D resolutions. For example, Chiotellis et al.

(2016) and Zhou and Tuzel (2018) require each 3D model in

the datasets to be down-sampled to 20,000 faces with Meshlab

before they can be fed into the system. Additionally, a method

is provided that can handle structural variations in 3D objects

without the need for data pre-processing. Many machine learning

algorithms, such as the support vector machine (SVM), are effective

when the datasets are small and well-curated, which implies

that the data have been carefully pre-processed and requires

human intervention. To address these challenges, this study offers

an improved fused feature network, an end-to-end framework

that solves shape classification and segmentation tasks using a

two-branch technique with feature representation learning. To

efficiently simplify the network, we start by developing a feature

encoding network with two independent building blocks and layer

skips with batch normalization and ReLU in between. Because there

are few layers through which to propagate, using the layer skips

speeds up learning and lessens the effect of gradients vanishing.

Figure 1 presents the entire network structure of the approach. In

addition, we create a detail grid feature extraction module, which

comprises various convolution blocks accompanied by a max-

pooling to represent a hierarchical representation of several feature

representations and extracts features from the input grid. Max-

pooling is used in each of the pooling layers, resulting in each spatial

dimension having a smaller grid and helps to manage overfitting

by gradually lowering the representation’s spatial dimension, the

parameters in the network, and the amount of processing. This

module includes a regular-structured enclosing volumetric grid

that helps capture details and features hierarchically. To extract

features of high-resolution inputs, this module is utilized in

conjunction with the feature encoding network. To pull through

the limitation of the grid size, the local region in every grid sampled

a constant number of points using a simple KNN search which

aids in learning approximation functions in higher order to better

characterize the details of the features.

Our major contributions are as follows:

• We design an effective module named detail grid feature

extraction (DGFE)module. This module aids 3D convolutions

to hierarchically capture global information and reduces the

grid size in each spatial dimension as well as managing

overfitting by gradually lowering the spatial dimension of the

representationmaking it viable for high-resolution 3D objects.

• We design a feature encoding network that uses two

different building blocks with layer skips containing batch

normalization and ReLU in between, resulting in fewer layers

in the early training phase which helps speed learning and

reduces the effect of gradients vanishing since there are few

layers through which to propagate.

• We built a network using the modules that have been

proposed, which achieves a notable balance of accuracy

and speed.

2. Related work

2.1. 3D learning using voxel-based methods

To build on the advance of CNN models on images (He et al.,

2016a; Huang et al., 2017), Voxnet and its revisions (Maturana and

Scherer, 2015; Wang and Posner, 2015; Wu et al., 2015; Brock et al.,

2016) start by converting a point cloud to a grid occupancy and then

used convolution in a volumetric form. To overcome the problem
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FIGURE 1

The complete architecture of the proposed method. The network is divided into three branches. The feature encoding network extract features from

the input grid in (A). The DGFE module exploits the detailed shape characteristics in (B). The feature fusion unit which has two consecutive

convolutional layers, fuses the features from the two branches to produce a feature with improved contextual representation by exploiting both local

and global shape structures in (C). See also Section 3.5.

of rising memory usage due to cubical expansion, OctNet creates

structures like a tree for non-empty voxels to avoid computing in

space. While the volumetric approach is effective at structuring

data, it suffers from poor computational effectiveness and data

granularity loss. Transformers have lately been incorporated into

the model designs of many 3D vision approaches in response to

the success of transformer-based designs in the two-dimensional

(2D) domain. The transformer has improved previous 3D learning

techniques because of its ability to read remote input and provide

task-specific inductive biases. The point-voxel transformer for

single-stage 3D detection (PVT-SSD) proposed by Yang et al. (2023)

uses input-dependent query initialization and voxel-based sparse

convolutions for strong feature encoding. The PVT-SSD overcame

the drawbacks of both point clouds and voxels by combining their

advantages. To reduce farthest point sampling (FPS) runtime, they

used sparse convolutions to transform points into a limited number

of voxels rather than directly sampling them. They also sampled

non-empty voxels. The voxel features were adaptively blended with

the point features to make up for the difficulty of quantization.

2.2. 3D learning using point cloud-based
methods

Charles et al. (2017); Qi et al. (2017) pioneered the use of

point-based models which used pooling to aggregate the point

features to achieve the permutation invariant. To better capture

local characteristics, methods such as kernel correlation (Atzmon

et al., 2018; Wu et al., 2019) and extended convolutions (Thomas

et al., 2019) are proposed. To resolve the ambiguity, the local point

order is predicted by PointCNN (Li Y. et al., 2018) while RSNet

(Huang et al., 2018) sequentially consumes points from various

directions. In methods based on points, the cost of computation

grows linearly with the points input. The cost of structuring

data, nevertheless, turned out to be a performance bottleneck

for large inputs. Recently, a dynamic sparse voxel transformer

(DSVT) was presented by Wang et al. (2023) in an effort to

widen the uses of transformers so that they may serve as a solid

foundation for outdoor 3D perception just as they do for 2D

vision. A number of local regions are split up into smaller ones in

each window using DSVT based on sparsity, and each window’s

attributes are then computed fully in parallel. Another recent

point cloud classification framework named point content-based

transformer (PointConT) was introduced by Liu et al. (2023), and

it employs local self-attention in the space of features rather than

the 3D space. One of the main advantages of PointConT is that

it takes advantage of the locality of points in the feature space by

clustering sampled points with similar features into the same class

and computing self-attention within each class, allowing for an

efficient trade-off between collecting long-range dependencies and

computational complexity.

2.3. Strategies for point data structuring

Themajority of point-basedmethods (Qi et al., 2017; Li Y. et al.,

2018; Bello et al., 2021; Gezawa et al., 2021) employ FPS (Eldar et al.,

1997) to sample uniformly distributed group centers. However, it
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does not account for the subsequent processing of the sampled

points whichmay result in suboptimal performance. Random point

sampling (RPS) has the advantage of having a minimal downtime.

It is indeed, nevertheless, sensitive to variation in density. The

KNN search we used for sampling the local region in each grid cell

combines sampling and neighbor querying in a single step, making

it faster than RPS.

SO-Net (Li J. et al., 2018), on the other hand, creates a

self-organizing map. To split the spaces, KDNet (Klokov and

Lempitsky, 2017) employs kd-tree. Gumble subset sampling is

used instead of FPS by Yang et al. (2019). To create super points,

Landrieu and Simonovsky (2018) employs a clustering algorithm.

The majority of these approaches are either too slow or necessitate

structure preprocessing. VoxelNet (Le and Duan, 2018; Zhou

and Tuzel, 2018), for example, blends point-based and volumetric

approaches by performing voxel convolution and employing the

study by Charles et al. (2017) inside each voxel. Similar concepts

are used by the fast model (Zhijian et al., 2019), whereas Lu et al.

(2022) made use of ball query with graph convolution layers.

However, the number of points is not steadily decreased over all

layers. Our DGFE module, however, utilized max-pooling in each

of the pooling layers, resulting in each spatial dimension having a

smaller grid allowing it to be used for high-resolution 3D objects.

Apart from those features, the local region in every grid sampled

a constant number of points using a simple KNN search which

aids in learning approximation functions in higher order to better

characterize the detailed features.

3. The proposed method

In this section, the KNN search for local region sampling is

first introduced. Following that, we propose the feature encoding

network that serves as the basis of the enhanced fused feature

network. The split-transform-merge paradigm, which is based

on the residual learning framework, is one of the primary

building block we employ to design our feature encoding network

(Figure 1A). One of the primary benefits of employing the residual

network is its simplicity in training networks with many layers

without raising the training error percentage. It also aids in solving

the vanishing gradient problem by applying identity mapping.

To compensate for structural changes in 3D objects, our feature

encoding network employs two different building blocks [feature

encoding block (FEB) unit A and feature encoding block (FEB)

unit B], with layer skips in between. We begin with 3x3x3

convolutions twice, followed by 1x1x1 convolutions with a stride

in each convolution to accommodate both small and large datasets

without possible overfitting and to lower the spatial dimension

of the representation. Then, we introduce the detail grid feature

extraction module and finally the feature fusion unit. The complete

framework is presented Figure 1.

3.1. KNN search for local region sampling

Point clouds are typically represented as raw coordinates of

points in 3D space. Here, we will go over how our model extracts

features from 3D objects when given a point cloud of number of

FIGURE 2

Building blocks of the feature encoding network with two di�erent

layer skips. (A) Feature encoding block (FEB unit A) (B) Feature

encoding block (FEB unit B).

points (N) as input. When provided with an input of N × 3 set

of point clouds, the object is then subdivided into equal-sized 3D

voxels, such as 64 × 64 × 64, 16 × 16 × 16 or 8 × 8 × 8. Using

KNN, K points will be sampled from each grid cell. To avoid extra

computation, those with empty points will be padded with zeros.

In contrast to standard KNN, in which the search area consists of

all points, it just needs to search among non-empty voxels in our

situation, making the querymuch faster. Unlike VoxNet (Maturana

and Scherer, 2015) which represents the 3D structure using an

occupancy grid, we build a grid from point clouds and designate

the grid’s key feature to the points that are inside each grid. Some

grids, on the other hand, may contain a different point number.

This implies that we need a grid that will share kernels in 3D

convolution. Moreover, for addressing this constraint, we utilized a

sampling strategy that ensures each grid has an equal point number.

In particular, if there are beyond K points in the grid, we use the

KNN sampling strategy to choose K points from the total points. K

points are sampled with substitution when the points inside a grid

are below K. Consequently, each grid will have the same number

of points, allowing us to encode the grid feature so that each grid

feature has the same feature size vector which enables us to extract

hierarchical features of the object using 3D convolutional kernels.

3.2. Feature encoding network

We concentrate on developing a robust network for shape

classification and segmentation that achieves a notable balance of

accuracy and speed. The feature encoding network is one of the key

blocks that we create by making use of the split-transform-merge
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FIGURE 3

Detail grid feature extraction module (DGFE Module). This module extracts features from the input grid using many convolution blocks. Max-pooling

is used in each of the pooling layers, resulting in each spatial dimension having a smaller grid and helps to manage overfitting by gradually lowering

the representation’s spatial dimension, the parameters in the network, and the amount of processing.

FIGURE 4

Illustration of the detailed design of the feature fusion unit, which

consists of two consecutive 3x3x3 convolutions with BN and ReLU

in between, as well as a stride in each convolution to help manage

overfitting.

paradigm, inspired by the residual learning framework design in

the study by Szegedy et al. (2015), He et al. (2016a,b), and Elhassan

et al. (2021) and leveraging its powerful representational ability.

These networks are scalable structures that bundle building units

with the same linked shape which are referred to as residual units

or blocks. The original blocks in the study by He et al. (2016b)

compute as follows:

Oi = h (Ii) + f
(

Ii,Weightsi
)

, (1)

Ii+1 = f (Oi) . (2)

In this case, Ii represents the i-th block’s input feature.

Weightsi =
{

Weightsi, k | 1 ≤ k ≤ K
}

contains biases and weights

connected to block i-th. K stands for total layers in a block.

f signifies the block function, such as a pile of convolutional

layers of two 3x3 in Equation 1. The operation following element-

wise addition is represented by the function f , which is ReLU in

Equation 1. The h function is designated as an identity mapping:

h (Ii) = Ii. Similarly, if function f is identity mapping, Ii+1 ≡ Oi.

Putting Equation 2 into Equation 1 yields:

Ii+1 = Ii + f
(

Ii,Weightsi
)

. (3)

To efficiently accelerate training and reduce the number

of parameters, the feature encoding network uses two separate

construction blocks, such as Feature encoding block (FEB unit

A) and feature encoding block (FEB unit B), with layer skips

containing batch normalization (BN) and ReLU in between. The

BN and ReLU are regarded as the weight layers’ pre-activation,

according to He et al. (2016b). We make some minor changes

here by using the ReLu with BN and Conv before the addition of

operation. We start with 3x3x3 convolutions twice, followed by

1x1x1 convolutions, and then we apply the BN and ReLu before

the addition. We use a stride in each convolution to help manage

overfitting by gradually reducing the spatial dimension of the

representation. The feature encoding network’s design is shown in

Figure 2.

3.3. Detail grid feature extraction module

To represent numerous hierarchical feature representations,

the detail grid feature extraction module employs several

convolution blocks and max-pooling and extracts features from the

input grid, as shown in Figure 3. Max-pooling is used in each of the

pooling layers, resulting in each spatial dimension having a smaller

grid and helps to manage overfitting by gradually lowering the

representation’s spatial dimension, the parameters in the network,

and the amount of processing. BN (Ioffe and Szegedy, 2015) can be

done to any set of network activations using:

y = g(Hu+ p) (4)

where H and p are model parameters that have been learned, and

g(.) denotes a non-linearity being ReLU or sigmoid. By normalizing

z = Hu + p, the BN transform can be introduced right before

the non-linearity. Since z is normalized, y = g(Hu + p) can be

replaced with

y = g(BN(Hu)) (5)
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where the BN (Ioffe and Szegedy, 2015) is used separately

for each dimension of z = Hu, with a distinct set of learned

parameters for each dimension. We utilized a 3× 3× 3 kernel with

stride 1 convolution and a ReLU (Nair and Hinton, 2010) in each

convolution layer. The initial block employs 32-filter convolutions,

which are then doubled in subsequent blocks. This module offers

a regular-structured embedding volumetric grid that supports 3D

convolutions in hierarchically capturing global information. To

extract features of high-resolution inputs, this module is utilized

in conjunction with the feature encoding network. To keep local

fine details in early encoder layers, at the same spatial resolution,

we connect the encoder network’s encoded features to equivalent

features extracted from the detail grid feature extraction module.

3.4. Feature fusion unit

The feature fusion unit is made up of two consecutive

convolutional layers. We used 3 × 3 × 3 convolutions twice, with

BN and ReLU in between, and a stride in each convolution to

help manage overfitting. The proposed DGFE module and the

encoding network outputs are fused using a cross-product in the

feature fusion unit, as shown in Figure 4, to produce a feature with

improved contextual representation.

3.5. Network overview

We built a 3D convolutional network with fixed points inside

each grid cell, which aids in the learning of local approximation

functions in high-order that better capture local shape features.

Figure 1 presents a diagram of the proposed architecture. The

network is made up of two major modules. A feature encoding

network that serves as the foundation for extracting features

from the input grid, as shown in Figure 1A in Section 3.2, and

detail grid feature extraction (DGFE) module which comprises

various convolution blocks accompanied with an operation of max-

pooling to help in representing several relational features and

pull out features from the input (Section 3.3). We hierarchically

combine these two modules to form the proposed improved fused

feature network. The proposed DGFE module and the encoding

network outputs are fused in the feature fusion unit containing two

consecutive convolutional layers (Figure 1C) to produce a feature

with improved contextual representation by utilizing both local and

global shape structures.

The point cloud is first normalized within the unit box. In each

grid, the coordinates of the points are piled as features. accordingly,

given the appropriate x, y, and z coordinates, a K-point grid has

features 3K. In theory, by dividing the sum of points (P) by its grid

cells, K can be approximated. To acquire classification scores, the

resulting fused feature can be categorized using two fully connected

layers. Finally, one additional fully connected layer is added, along

with a softmax, which aids in regressing the likelihood in every

group. The whole layer’s nodes correspond to the set of categories

of objects inside the dataset. To generate the segmentation, the

segmentation network decodes the retrieved features. To create

the output, this network upsamples and combines the features.

For every cell inside the grid, this network produces K+1 labels,

as for K points in that cell equivalent to K labels and one more

label level cell. Obtaining ground truth labels of object components,

we chose its greater label among the labels of points within

every cell. Unoccupied Cells are tagged "no label." Before actually

acquiring the object part, we perform a deconvolution operation

by concatenating the feature obtained from the feature fusion

unit, with the feature retrieved out of each block of the feature

encoding network.

4. Experiments

In this section, a number of datasets including ModelNet10

and ModelNet40 (Wu et al., 2015) for object classification and

part segmentation on ShapeNetPart (Yi et al., 2016) were used

to assess the performance of the proposed network. We discuss

the dataset’s specifics and the evaluation metrics in Section 4.1.

The implementation protocol discussion presented in Section 4.2.

In Sections 4.3, 4.4, and 4.5, we discuss some experimental

results from applying the proposed network to classify shapes on

ModelNet, measure precision-recall on ModelNet10, and segment

parts on ShapeNetPart. In Section 4.6, we demonstrate the

advantages of the proposed method by conducting a good set of

ablation experimental tests to evaluate various setup adjustments.

4.1. Datasets and evaluation metrics

ModelNet dataset: This is indeed a notable dataset. It

comprises two datasets with CAD models in 10 and 40 categories,

respectively. ModelNet10 is made up of 4,899 object instances

including 2,468 training samples and 909 testing samples.

ModelNet40 is made up of 12,311 object instances, 9,843 of which

are in the training set and 3,991 samples in the testing set. For object

classification on the ModelNet dataset, we employed accuracy as

the assessment metric.

ShapeNetPart dataset: There are 16,881 shapes in this dataset,

divided into 16 categories and annotated with a combined amount

of 50 components. A considerable share of shape categories is

partitioned into 2–5 segments. We, then, used mean intersection

over union (mIoU) for evaluation. For every part shape within the

object category, we calculate the union of prediction and ground

truth. The mIoU was computed using Equation 6 as follows:

mIoU =
X

X + G− P
(6)

where G, P, and X denote the number of ground truth points,

predicted positive points, and true positive points, respectively. The

mIoU is obtained by taking the average of each class’s IoU.

4.2. Implementation protocol

In Python, the proposed method was implemented using the

Tensorflow deep learning library. Each experiment is conducted on

an Nvidia Geforce Titan GTX GPU, CUDA 10.1, and CuDNN 7.1

with RAM of 12 GB. For the classification task, we test with various
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parameters setup including different grid sizes and K values. Each

point’s location is jittered with a standard deviation of 0.02. The

batch size is 32, and batch normalization is used for all layers. For

both the segmentation and classification tasks, we used the cross-

entropy loss to improve the discrimination of the class features. We

utilized an initial learning rate of 10−4 and employ Adam optimizer

(Kingma and Ba, 2015).

Loss function: Over the years, a wide range of loss functions

have been proposed to perform 3D shape analysis tasks.

For example, the cross-entropy loss was already been utilized

successfully in many shape analysis tasks. Although the network

can be trained using cross-entropy loss alone, we employ a

combination of Shape loss (Wei et al., 2020) and modified cross-

entropy loss (Huang et al., 2019) to make the class features more

discriminatory. The Shape Loss is given as follows:

Lshape = Ls
(

C(S),M
)

(7)

where M is the shapes’s class label, Ls is a cross-entropy loss based

on shape feature S, and C is a classifier.

Moreover, the cross-entropy loss is given as follows:

Lcross−entropy =
1

n

∑

y

(

zlogQ+ (1− z)log(1− Q)
)

(8)

For each sample, Q ∈ [0, 1] is the likelihood of the network

output and z represents the class ground truth. To minimize the

weight of easily categorized samples, the cross-entropy function

can be reshaped by inserting a hyperparameter that aids in

weight balancing.

Lcross−entropy =
1

n

∑

y

[

z(1− Q)γ logQ+ (1− Q)Qγ log(1− Q)
]

(9)

Once a sample is successfully identified, Q → 1, the factor

(1 − Q) → 0; Alternatively, when Q is small, the factor (1 − Q)

approaches 1. Our total loss is the combination of this two losses

as follows:

Ltotal = Lshape + Lcross−entropy (10)

4.3. Classification on ModelNet

We use the PointNet (Charles et al., 2017) convention to

prepare the data. Input points are set to 1,024 by default.

Furthermore, we improve performance by incorporating more

points and surface normal. To analyze various models to varying

degrees of speed and accuracy, the network is trained with varying

settings to balance speed and performance (Section 4.6). The

variants are in different grid sizes and K values.

4.3.1. Classification on ModelNet10
Comparison: The proposed improved fused feature residual

network approach was compared with a number of state-of-

the-art methods, as shown in Table 1. The proposed method

TABLE 1 Object classification accuracy (%) on ModelNet10.

Method Input Acc (%)

VoxNet (Maturana and Scherer, 2015) Volume 92.0

3DShapeNet (Wu et al., 2015) Volume 83.5

3DGAN (Wu et al., 2016) Volume 91.0

VSL (Liu et al., 2018) Volume 91.0

BV-CNNs (Ma et al., 2017) Volume 92.3

VRN (Brock et al., 2016) Volume 97.1

PolyNet (Yavartanoo et al., 2021) Mesh 94.9

DeepPano (Shi et al., 2015) Image 85.4

OrthographicNet (Kasaei, 2019) Image 88.5

PANORAMA-NN (Sfikas et al., 2017) Image 91.1

SeqViews2SeqLabels (Han et al., 2019) Image 94.8

Geometry-image (Sinha et al., 2016) Image 88.4

Gan Classifier (Varga et al., 2020) Image 89.2

GPSP-DWRN (Long et al., 2021) Image 92.4

G3DNet (Dominguez et al., 2018) Point 93.1

OctNet (Riegler et al., 2017) Point 90.4

ECC (Simonovsky and Komodakis, 2017) Point 90.0

DGCB-Net (Tian et al., 2020) Point 94.6

VACWGAN-GP (Ergün and Sahillioglu, 2023) Point 91.7

(Ours) Point 95.6

The bold values used to differentiate our results from the rest of the other methods.

outperforms the majority of previous voxel-based techniques in

terms of "overall accuracy" including VoxNet (Maturana and

Scherer, 2015), 3DShapeNets (Wu et al., 2015), 3DGAN (Wu

et al., 2016), VSL (Liu et al., 2018), and BV-CNN’s (Ma et al.,

2017). Although VRN (Brock et al., 2016), which combines many

networks, outperforms our method in ModelNet classification,

their network structure is quite complex, with each network being

trained separately and taking many days to complete, making

them unsuitable for large datasets. When compared with point

cloud-based methods, the proposed method outperforms many of

them, including Dominguez et al. (2018), OctNet (Riegler et al.,

2017), ECC (Simonovsky and Komodakis, 2017), DGCB-Net (Tian

et al., 2020), and VACWGAN-GP (Ergün and Sahillioglu, 2023).

The DGFE module helps 3D convolutions hierarchically acquire

global information, allowing the network to capture the contextual

neighborhood of points. Despite using viewpoints in a predefined

sequence, as opposed to any random views by DeepPano (Shi et al.,

2015), Gan classifier (Varga et al., 2020), GPSP-DWRN (Long et al.,

2021), OrthographicNet (Kasaei, 2019), PANORAMA-NN (Sfikas

et al., 2017), and SeqViews2SeqLabels (Han et al., 2019) both of

which are multi-view techniques, the method outperforms these

approaches, making it suitable for high resolution input. The

proposed method also outperforms PolyNet (Yavartanoo et al.,

2021), a mesh-based 3D representation network that combined

the features in a much smaller dimension using PolyShape’s multi-

resolution structure.
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TABLE 2 Object classification accuracy (%) on ModelNet40.

Method Input Acc (%)

VoxNet (Maturana and Scherer, 2015) Volume 83.0

3DShapeNet (Wu et al., 2015) Volume 77.0

3DGAN (Wu et al., 2016) Volume 83.3

VSL (Liu et al., 2018) Volume 84.5

BV-CNNs (Ma et al., 2017) Volume 85.4

VRN (Brock et al., 2016) Volume 95.5

NormalNet (Wang et al., 2019a) Volume 88.6

DeepNN (Gao et al., 2022) Mesh 91.0

PolyNet (Yavartanoo et al., 2021) Mesh 82.8

GIFT (Bai et al., 2016) Image 83.1

DeepPano (Shi et al., 2015) Image 77.6

OrthographicNet (Kasaei, 2019) Image 88.5

SeqViews2SeqLabels (Han et al., 2019) Image 93.0

Geometry-image (Sinha et al., 2016) Image 83.9

PointNet (Charles et al., 2017) Point 89.2

PointConT (Liu et al., 2023) Points 93.5

RECON (Qi et al., 2023) Point 93.9

Pointwise (Hua et al., 2018) Point 86.1

NPCEM (Song et al., 2020) Point 89.4

ECC (Simonovsky and Komodakis, 2017) Point 83.2

DGCB-Net (Tian et al., 2020) Point 92.9

3DCTN (Lu et al., 2022) Point 91.2

VACWGAN-GP (Ergün and Sahillioglu, 2023) Point 81.3

(Ours) Point 93.1

The bold values used to differentiate our results from the rest of the other methods.

4.3.2. Classification on ModelNet40
Comparison: We further tested the effectiveness and

applicability of the proposed approach using the ModelNet40

dataset. Table 2 compares the classification accuracy of the

proposed method to that of alternative scalable 3D representations

techniques on the ModelNet40 datasets. As observed, the proposed

method performs better than VoxNet (Maturana and Scherer,

2015), 3DGAN (Wu et al., 2016), 3DShapeNets (Wu et al.,

2015), NormalNet, VACWGAN-GP (Wang et al., 2019a; Ergün

and Sahillioglu, 2023), DPRNet (Arshad et al., 2019), Pointwise

(Hua et al., 2018), BV-CNN’s (Ma et al., 2017), NPCEM (Song

et al., 2020), ECC (Simonovsky and Komodakis, 2017), PointNet

(Charles et al., 2017), Geometry image (Sinha et al., 2016), VSL

(Liu et al., 2018), GIFT (Bai et al., 2016), FPNN (Li et al., 2016),

DGCB-Net (Tian et al., 2020), and DeepNN (Gao et al., 2022) that

utilized mesh 3D data. The recent RECON (Qi et al., 2023) and

PointConT (Liu et al., 2023) slightly outperformed our technique,

which could be attributed to their usage of transformers and pre-

train models. The improved fused feature residual network offers

a significant advantage over the bulk of voxel and point cloud-

based approaches, as shown in Table 2. The proposed method

TABLE 3 ModelNet40 per-class classification comparison between

PointNet, Pointwise, DPRNet, and (ours).

Methods Ours PointNet Pointwise DPRNet

Avg. class 87.4 86.2 81.4 81.9

Airplane 100 100 100 100

Bathtub 90.0 80.0 82.0 76.0

Bed 94.0 94.0 93.0 95.0

Bench 80.0 75.0 68.4 80.0

Bookshelf 88.0 93.0 91.8 85.0

Bottle 98.0 94.0 93.9 95.0

Bowl 95.0 100 95.0 95.0

Car 99.0 97.9 95.6 91.0

Chair 97.0 96.0 96.0 97.0

Cone 100 100 80.0 90.0

Cup 90.0 70.0 60.0 70.0

Curtain 85.0 90.0 80.0 80.0

Desk 77.0 79.0 76.7 86.0

Door 92.0 95.0 75.0 85.0

Dresser 74.0 65.1 67.4 60.5

Flowerpot 44.6 30.0 10.0 25.0

Glassbox 91.0 94.0 80.8 86.0

Guiter 99.0 100 98.0 100

Keyboard 100 100 100 100

Lamp 87.0 90.0 83.3 80.0

Laptop 86.0 100 95.0 100

Mental 87.0 96.0 93.9 93.0

Monitor 71.0 95.0 92.9 96.0

Nightstand 65.0 82.6 70.2 70.9

Person 90.0 85.0 89.5 90.0

Piano 91.0 88.8 84.5 83.0

Plant 91.0 73.0 78.8 83.0

Radio 88.0 70.0 65.0 55.0

Range hood 96.0 91.0 88.9 89.9

Sink 85.0 80.0 65.0 70.0

Sofa 93.0 96.0 96.0 93.0

Stairs 90.0 85.0 80.0 75.0

Stool 90.0 90.0 83.3 70.0

Table 98.0 88.0 90.9 77.0

Tent 85.0 95.0 90.0 90.0

Toilet 98.0 99.0 94.9 95.0

TV stand 80.0 87.0 84.5 89.0

Vase 83.0 78.8 81.3 80.0

Wardrobe 65.0 60.0 30.0 20.0

Xbox 90.0 70.0 75.0 80.0

The bold values used to differentiate our results from the rest of the other methods.
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performs below VRN (Brock et al., 2016), which makes usage of

24 rotating replicas for training and voting when compared with

non-voxel-based approaches. Additionally, the proposed method

outperformed PolyNet (Yavartanoo et al., 2021), a mesh-based

3D representation network that integrated the features in a much

fewer dimension using PolyShape’s multi-resolution structure. It is

also worth noting that the improved fused feature residual network

proposed already has a high level of accuracy, with a score of above

90%. This may be attributed to the fact that our feature encoding

network together with the DGFE module, directly extracts features

from the input grid and represents an organized structure of

numerous feature representations.

4.3.3. ModelNet40 per-class classification
accuracy comparison

Table 3 and Figure 5 compared the per-class accuracies of the

proposedmethod to PointNet (Charles et al., 2017), Pointwise (Hua

et al., 2018), and DPRNet (Arshad et al., 2019) on ModelNet40

dataset. As shown in Table 3 and Figure 5, using residual learning

and extracting detail features improves per class classification

accuracy. The proposed method outperforms PointNet, Pointwise,

and DPRNet in key classes such as bathhub, car, bottle dresser,

flowerpot, cup, and radio. In terms of average class performance,

the method outperformed PointNet (1.2%), Pointwise (6%), and

DPRNet (5.5%). Table 3 illustrates it.

4.4. Precision-recall on ModelNet10

Precision is a metric that assesses the accuracy of predictions,

i.e., the percentage of correct predictions. It determines how many

of the model’s predictions were actually right. The precision was

computed using Equation 11 as follows:

P =
TP

TP + FP
(11)

where TP is true positive while FP is false positive (predicted as

positive but was incorrect). In the case of recall, it determines how

well all of the positives are found which is given as follows:

R =
TP

TP + FN
(12)

where FN is false negatives (unable to predict the presence of

an object). The mAP is calculated as the average precision of all

classes in the dataset while the F1-score is the harmonic mean

of the precision and recall. We used these metrics to assess the

efficacy and robustness of the proposed method. We used a grid

size of 32 × 32 × 32 and kept the value of K at 8. As shown in

Figure 6, the model can learn all 10 object class categories with

high precision and recall on the ModelNet10 dataset, with 100%

precision on bathtub and chair and 100% recall on bed and toilet.

We can also observe that the four classes with the lowest precision

and recall (desk, table, nightstand, and dresser) are highly similar

which makes them difficult to distinguish even by a human expert.

As shown in Figure 6, we observed that the proposed approach

successfully generated results with (1) more than 90% precision

on the bed, monitor, sofa, table, and toilet and more than 80% on

the remaining classes, (2) 90% or higher recall of bathtub, chair,

monitor, sofa, and table with more than 80% on the desk, dresser,

and nightstand, and (3) 90% or higher F1-score of the bathtub, bed,

chair, monitor, sofa, toilet, and table with more than 80% on the

desk, dresser, and nightstand. This demonstrates that our model

can learn discriminative features from 3D shapes directly across

several classes.

To calculate the mAP, we perform several experiments, one

of which involved using 16 × 16 × 16 voxel size combined

with sampling 8 points per grid. The model was trained using

ModelNet10 from scratch, which achieved a 90.2% mAP score.

We, then, reduced the learning rate by half (0.5−5) and retrained

the model. The effect of fine-tuning improves the mAP to 90.7%.

Another experiment was using a 32 × 32 × 32 grid size with

the same points per grid. We train the model using the same

procedure in the first experiment. We achieved 92.5% with 0.1−4

learning rate, and after reducing the learning rate to half and

retraining the model, the result improves to 93.3%. With mAP

scores of 93.3%, our model surpasses 3DShapeNets (Wu et al.,

2015), PANORAMA-ENN (Sfikas et al., 2017), DeepPano (Shi et al.,

2015), PolyNet (Yavartanoo et al., 2021), Multimodal (Chen et al.,

2021), SeqViews2SeqLabels (Han et al., 2019), Geometry image

(Sinha et al., 2016), and GIFT (Bai et al., 2016) on the ModelNet10

dataset, as shown in Table 4. Even while SeqViews2SeqLabels (Han

et al., 2019) has the advantage of pre-existing 2D networks that

have been pre-trained on big datasets such as ImageNet1K, we

achieved a highermean average preciousmAPwith 1.9%margin on

ModelNet10. To further illustrate the effectiveness of the improved

fused feature network, Figure 7 shows the confusion matrix. The

confusion matrix was normalized to 100%. We can see that most

objects from all classes are recognized correctly.

4.5. Part segmentation on ShapeNetPart

Part segmentation seems to be more difficult than classification

tasks and is regarded as every-point classification. Given a

triangular mesh or point cloud representation of a 3D object, the

purpose of part segmentation is to give each point or triangle

face a part category which makes it more challenging than object

classification because of the fine-grained and dense predictions.We

used the metric procedure from PointNet++ (Qi et al., 2017). For

every part shape within the object category, we calculate the union

of prediction and ground truth. Figure 8 shows some ShapeNetPart

dataset segmentation results from our method. As observed, in

most cases, the proposed method results are visually appealing.

Comparison: The segmentation performance of the proposed

method is compared with that of various deep learning methods, as

shown in Table 5. AlthoughOCNN and RS-Net (Huang et al., 2018)

exceed ours in terms of mIoU of all shapes, the improved fused

feature residual network outperforms OCNN in specific categories,

such as bag, cap, rocket, lamp, and motorbike, and achieves

comparable results in the remaining categories. While OCNN has

the best IoU, it also uses a conditional dense random field to rectify

their network output which serve as a post-processing step, whereas

our approach has no similar strategy.
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FIGURE 5

ModelNet40 per-class classification accuracy comparisons between PointNet, Pointwise, DPRNet, and (proposed).

FIGURE 6

Precision, recall, and F1-score on ModelNet10.

4.6. Ablation experiments

Here, we conduct some ablation experimental tests to assess

various setup modifications and highlight the benefits of the

improved fused feature network. The experiments were carried out

using the ModelNet10 (Wu et al., 2015) dataset.

4.6.1. E�ects of extracted features in the DGFE
module

We present an ablation test on ModelNet10 classification to

demonstrate the impact of the DGFE module’s extracted features.

Specifically, we experimented with many variables, including

different grid sizes and K values. In the first settings, using a grid

size of 16 × 16 × 16 and increasing the value of K from 2 to 8, the

classification accuracy increased from 88.1% with K = 2 to 90.5%

with K= 8. In the second attempt, we used a grid size of 32×32×32

and kept the values of K between 2 and 8, and the classification

accuracy increased from 90.1% with K = 2 to 91.8% with K =

TABLE 4 Mean average precision mAP (%) on ModelNet10.

Method mAP (%)

3DShapeNet (Wu et al., 2015) 68.3

DeepPano (Shi et al., 2015) 84.1

PANORAMA-ENN (Sfikas et al., 2017) 93.2

SeqViews2SeqLabels (Han et al., 2019) 91.4

Geometry-image (Sinha et al., 2016) 88.4

GIFT (Bai et al., 2016) 91.1

PolyNet (Yavartanoo et al., 2021) 84.6

(Ours) (16× 16× 16− grid) 90.7

(Ours) (32× 32× 32− grid) 93.3

The bold values used to differentiate our results from the rest of the other methods.

8. We end up using the later attempt to set the DVFE module in

our approach which yields the best model result of 95.6%. Figure 9

displays the results. It shows how the proposed DGFE module

encourages correlation among different point cloud regions and is

useful for modeling the entire point cloud spatial distribution.

4.6.2. E�ects of feature encoding network
This section analyzes the significance of the encoding branch

in the proposed approach. After removing the encoding branch,

the network is trained using only the DVFE module and KNN

search, to sample the local region in each grid cell. We, then,

repeated the tests using the same configuration as the previous

ablation experiment, with a grid size of 16x16x16 and K = 2. The

classification accuracy was 90.1% with K = 2 and 91.1% with K

= 8. The classification accuracy improved from 91.3% with K =

2 to 92.4% with K = 8 when utilizing a grid size of 32 × 32 ×

32. The results are shown in Figure 9. The model design aids in
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FIGURE 7

Confusion matrix on ModelNet10.

the efficient encoding of features from the input grid and DVFE

module. The output features are combined to complement one

another. Figure 9 demonstrates the accuracy achieved by inserting

the feature encoding network into the whole network, which

results in boosting the classification accuracy. The next experiments

investigate the sensitivities of the feature encoding units which

consist of two units (Feature Encoding Block FEB Unit A and

Feature Encoding Block FEB Unit B) with layer skips containing

BN and ReLU in between. In each unit, we start with 3 × 3 ×

3 convolutions twice, followed by 1 × 1 × 1 convolutions. The

main difference between the units is in the application of BN, a

regularly used technique to speed up and stabilize the learning

process of deep neural networks, and Relu, which has the advantage

of allowing complicated correlations in the data to be learned.

To test how resilient our approaches are to changes of this type,

we swapped the units in different orders. With a 32 × 32 × 32

grid size and K = 8, we apply four possible combinations, such

as ABAB, BABA, AABB, and BBAA. We train the model from

the scratch. As shown in Table 6, the classification accuracy is

fairly stable across the different combinations. The combination of

ABAB has the highest accuracy and the lowest total log loss, with

AABB coming in second. Although the two other combinations,

BABA and BBAA, have lower accuracy, their overall performance

is generally stable. The above result seems to indicate that, in

line with He et al. (2016a), adding BN after addition forces skip

connections to perturb the output, which is problematic. The main

advantage of applying BN before addition here is that it speeds

up training and allows a wider range of learning rates without

sacrificing training convergence.

4.6.3. Time complexity
Table 7 compares the average testing time for classification

and segmentation with other similar methods. TensorFlow 1.1

is used to record forward time using Nvidia Geforce Titan

GTX GPU. The proposed method requires less testing time than

many other methods, such as (Leng et al., 2016; Charles et al.,

2017; Huang et al., 2018), DGCNN (Wang Y. et al., 2019),

SpecGCN (Wang et al., 2018), and 3D-UNet (Cicek et al., 2016),

because of its strong data closeness and consistency. Because

zeros are padded to empty voxel, the proposed voxelization and

sampling approaches both include random memory accesses,

which help to decrease unnecessary computation. As observed,

using the same voxel resolution of 323, the proposed improved

fused feature residual network is faster than the 3DCNN (Leng

et al., 2016) method and still outperforms it in terms of

mIoU, as shown in Table 5. Another advantage of this strategy

is that the same number of points is kept in each grid cell

while still being able to describe neighborhood information.

Now lets analyze the approach to the PointNet++ (Qi et al.,

2017), set abstraction module. If we have a batch of 2,048

points with 64-channel characteristics, the technique can model

the entire point cloud, but the SA module must aggressively

downsample the input, resulting in information loss. The proposed

method does not necessitate dynamic kernel computing, which

is typically rather expensive. Even though RSNet (Huang et al.,

2018) outperformed ours in terms of Mean IoU by 0.7%, the

proposed improved fused feature residual network is much

faster and requires less memory consumption, as shown in

Table 7.
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FIGURE 8

On the ShapeNet-part dataset, we compared the visual results of our object part segmentation with groundthruth.

4.6.4. E�ects of neighborhood query
In this section, we experiment with ball query and sift query,

two other popular neighbor queryingmethods to sample local areas

and experiment with general search radius. For all experiments, we

use a 32× 32× 32 grid size with a K= 8 value on the ModelNet10

dataset. Table 8 shows that KNN is more effective for our strategy.

The sift query is the most inefficient method when compared with

the KNN and ball query.

5. Conclusion and future work

In this study, we proposed the detail grid feature extraction

(DGFE) module which is a highly efficient module. This

module assists 3D convolutions in hierarchically capturing global

information, reducing the grid size in each spatial dimension

and managing overfitting by gradually lowering the spatial

dimension of the representation, making it practical for high-

resolution 3D objects. Furthermore, we design a feature encoding

network that uses two different building blocks with layer

skips containing batch normalization and non-linearity ReLU

in between, resulting in fewer layers in the early training

phase which helps speed learning and reduces the effect of

gradients vanishing since there are few layers through which

to propagate. The outputs of the two modules are fused in

the feature fusion unit to produce a feature with improved

contextual representation by utilizing both local and global shape

structures. We built a network called improved fused feature
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TABLE 5 Segmentation results of di�erent methods on ShapeNet-part dataset (Yi et al., 2016).

Methods (Ours) P.Net ShapeNet KD-Net MRTNet 3DCNN RS-Net O-CNN

mIoU 84.2 83.7 81.4 77.2 83.0 79.4 84.9 85.9

Airplane 83.8 83.4 81 79.9 81.0 75.1 82.7 85.5

Bag 88.9 78.7 78.4 71.2 76.7 72.8 86.4 87.1

Cap 91.9 82.5 77.7 80.9 87.0 73.3 84.1 84.7

Car 72 74.9 75.7 68.8 73.8 70.0 78.2 77.0

Chair 88 89.6 87.6 88.0 89.1 87.2 90.4 91.1

Earphone 47.0 73.0 61.9 72.4 67.6 63.5 69.3 85.1

Guitar 86.8 91.5 92 88.9 90.6 88.4 91.4 91.9

Knife 86.7 85.9 85.4 86.4 85.4 79.6 87.0 87.4

Lamp 89.8 80.8 82.5 79.8 80.6 74.4 83.5 83.3

Laptop 60.8 95.3 95.7 94.9 95.1 93.9 95.4 95.4

Motorbike 93.7 65.2 70.6 55.8 64.4 58.7 66.0 56.9

Mug 94.4 93.0 91.9 86.5 91.8 91.8 92.6 96.2

Pistol 80 81.2 85.9 79.3 79.7 76.4 81.8 81.6

Rocket 86.1 57.9 53.1 50.4 57.0 51.2 56.1 53.5

Skateboard 70.1 72.8 69.8 71.1 69.1 65.3 75.8 74.1

Table 74.1 80.6 75.3 80.2 80.6 77.1 82.2 84.4

The bold values used to differentiate our results from the rest of the other methods.

FIGURE 9

To highlight the influence of both the DGFE module and the feature encoding network, a ModelNet10 classification ablation test is presented. We

experimented with some variables including di�erent grid sizes and K values. (A) Shows how the feature encoding network performs with

16× 16× 16 and 32× 32× 32 grid sizes and di�erent values of K; (B) demonstrates the performance of the DGFE module’s e�ects of extracted

features on 16× 16× 16 and 32× 32× 32 grid sizes with 2, 3, 6, and 8 K values.

residual network using the modules that have been proposed,

which achieve a notable balance of accuracy and speed. In both

ModelNet10 and ModelNet40 datasets, the proposed improved

fused feature residual network offers a significant advantage over

the bulk of voxel and point cloud-based approaches, as shown

in Tables 1, 2. Due to its scalability and efficiency, the proposed

method can be used in extracting large-scale features of high-

resolution inputs.

Although our method performs well with normal datasets, we

note that when noise is added to the datasets, the performance

drops, for example, whenGaussian noise is added to the 3Dmodels,

the performance decreases despite applying different parameters.

In future, instead of directly sampling points, we will use sparse

convolutions to convert them to a small number of voxels and

sample non-empty voxels to ensure that precise point positions

are retained.

In addition, numerous mechanisms for attention employed in

transformer approaches are adaptable and offer a high potential

for future advances. We think cutting-edge outcomes can be

attained by extending generic point cloud processing innovation
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TABLE 6 Di�erent combinations of feature encoding units on

ModelNet10.

FEB unit Acc (%) Logloss

ABAB 95.6 2.22

BABA 93.8 2.38

AABB 94.54 2.25

BBAA 93.94 2.32

TABLE 7 Average testing time of our method with others on ModelNet40.

Method Classification
(ms)

Segmentation
(ms)

PointNet++ (Qi et al., 2017) 163 -

3DCNN (Leng et al., 2016) 49 137

SpecGCN (Wang et al., 2018) 11254 -

DGCNN (Wang Y. et al., 2019) 52 87.8

3D-UNet (Cicek et al., 2016) - 682.1

RSNet (Huang et al., 2018) - 74.6

(Ours) 28 19

The bold values used to differentiate our results from the rest of the other methods.

TABLE 8 E�ects of neighborhood query on ModelNet10 classification.

Sift query Ball query KNN

r = 0.1 r = 0.2 r = 0.1 r = 0.2

90.8% 91.0% 92.6% 93.0% 95.6%

to transformer techniques. For instance, one possible option we

are looking at is by swapping out the feature extraction module

in our network design for one that is transformer/attention-based.

Instead of just depending on transformers to extract features,

we can conduct local feature extraction using non-transformer-

based approaches and then couple it with a transformer for global

feature interaction which will lead to the extraction of more fine

grain features.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

AG: conceptualization of this study, methodology, writing—

original draft preparation, and software. CL: conceptualization,

software, supervision, resources, project administration, and

funding acquisition. HJ, YN, and MA: data curation, writing—

reviewing and editing, and software. HC: data curation, software,

and supervision. All authors contributed to the article and

approved the submitted version.

Funding

This study was supported by the Fujian Province University

Key Lab for the Analysis and Application of Industry Big

Data, Fujian Key Lab of Agriculture IOT Application, and IOT

Application Engineering Research Center of Fujian Province

Colleges and Universities.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Arshad, S., Shahzad, M., Riaz, Q., and Fraz, M. (2019). DPRNet: deep
3D point based residual network for semantic segmentation and classification
of 3D point clouds. IEEE Access 7, 68892–68904. doi: 10.1109/ACCESS.2019.29
18862

Atzmon, M., Maron, H., and Lipman, Y. (2018). Point convolutional
neural networks by extension operators. ACM Trans. Graph. 37, 1–12.
doi: 10.1145/3197517.3201301

Bai, S., Bai, X., Zhou, Z., Zhang, Z., and Latecki, L. J. (2016).“GIFT: A
real-time and scalable 3D shape search engine,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV: IEEE), 5023–5032.
doi: 10.1109/CVPR.2016.543

Bello, S. A., Wang, C., Wambugu, N. M., and Adam, J. M. (2021). FFpointNet: local
and global fused feature for 3D point clouds analysis. Neurocomputing 461, 55–62.
doi: 10.1016/j.neucom.2021.07.044

Bello, Saifullahi, A., Yu, S., Wang, C., Adam, Jibril, M., and Li, J. (2020). Review:
deep learning on 3D point clouds. Remot. Sens. 12, 11. doi: 10.3390/rs12111729

Brock, A., Lim, T., Ritchie, J., and Weston, N. (2016). Generative and
discriminative voxel modeling with convolutional neural networks. ArXiv.
doi: 10.48550/arXiv.1608.04236

Charles, R., Su, H., Kaichun, M., and Guibas, L. (2017). “PointNet: Deep learning
on point sets for 3D classification and segmentation,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (Honolulu, HI: IEEE), 77–85.
doi: 10.1109/CVPR.2017.16

Chen, Z., Jing, L., Liang, Y., Tian, Y., and Li, B. (2021). Multimodal semi-supervised
learning for 3D objects. ArXiv. doi: 10.48550/arXiv.2110.11601

Chiotellis, I., Triebel, R., Windheuser, T., and Cremers, D. (2016). “Non-rigid 3D
shape retrieval via large margin nearest neighbor embedding,” in European Conference
on Computer Vision (ECCV) (Amsterdam). doi: 10.1007/978-3-319-46475-6_21

Frontiers inComputationalNeuroscience 14 frontiersin.org130

https://doi.org/10.3389/fncom.2023.1204445
https://doi.org/10.1109/ACCESS.2019.2918862
https://doi.org/10.1145/3197517.3201301
https://doi.org/10.1109/CVPR.2016.543
https://doi.org/10.1016/j.neucom.2021.07.044
https://doi.org/10.3390/rs12111729
https://doi.org/10.48550/arXiv.1608.04236
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.48550/arXiv.2110.11601
https://doi.org/10.1007/978-3-319-46475-6_21
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gezawa et al. 10.3389/fncom.2023.1204445

Choy, C., Danfei, X., JunYoung, G., Kevin, C., and Savarese, S. (2016). “3D-R2N2:
A unified approach for single and multi-view 3D object reconstruction,” in European
Conference on Computer Vision (ECCV) (Amsterdam).

Cicek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger, O. (2016).
3D U-Net: Learning dense volumetric segmentation from sparse annotation. ArXiv.
doi: 10.48550/arXiv.1606.06650

Dominguez, M., Dhamdhere, R., Petkar, A., Jain, S., Sah, S., and Ptucha, R. (2018).
“General-purpose deep point cloud feature extractor,” in 2018 IEEE Winter Conference
on Applications of Computer Vision (WACV) (Lake Tahoe, NV: IEEE), 1972–1981.
doi: 10.1109/WACV.2018.00218

Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y. (1997). The farthest point
strategy for progressive image sampling. IEEE Trans. Image Process. 9, 1305–1315.
doi: 10.1109/83.623193

Elhassan, M. A., Huang, C., Yang, C., and Munea, T. L. (2021). DSANet: dilated
spatial attention for real-time semantic segmentation in urban street scenes. Expert
Syst. Appl. 183, 115090. doi: 10.1016/j.eswa.2021.115090

Ergün, O., and Sahillioglu, Y. (2023). 3D point cloud classification with
ACGAN-3D and VACWGAN-GP. Turk. J. Electr. Eng. Comput. Sci. 31, 381–395.
doi: 10.55730/1300-0632.3990

Gao, M., Ruan, N., Shi, J., and Zhou, W. (2022). Deep neural network for 3D shape
classification based on mesh feature. Sensors 22, 187040. doi: 10.3390/s22187040

Gezawa, A. S., Bello, Z. A., Wang, Q., and Yunqi, L. (2021). A voxelized point clouds
representation for object classification and segmentation on 3D data. J. Supercomput.
21, 1–22. doi: 10.1007/s11227-021-03899-x

Gezawa, Sulaiman, A., Zhang, Y., Wang, Q., and Lei, Y. (2020). A review on deep
learning approaches for 3D data representations in retrieval and classifications. IEEE
Access 8, 57566–57593. doi: 10.1109/ACCESS.2020.2982196

Han, Z., Shang, M., Liu, Z., Vong, C.-M., Liu, Y.-S., Zwicker, M., et al.
(2019). SeqViews2SeqLabels: learning 3D global features via aggregating
sequential views by RNN with attention. IEEE Trans. Image Process. 28, 658–672.
doi: 10.1109/TIP.2018.2868426

He, K., Zhang, X., Ren, S., and Sun, J. (2016a). “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (Las Vegas, NV: IEEE), 770–778. doi: 10.1109/CVPR.2016.90

He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity mappings in deep residual
networks. ArXiv. doi: 10.48550/arXiv.1603.05027

Hua, B.-S., Tran, M.-K., and Yueng, S.-K. (2018). “Pointwise convolutional neural
networks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(Salt Lake City, UT: IEEE), 984–993. doi: 10.1109/CVPR.2018.00109

Huang, F., Xu, C., Tu, X., and Li, S. (2019). Weight loss for point clouds
classification. J. Phys. 1229, e012045. doi: 10.1088/1742-6596/1229/1/012045

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2017). “Densely
connected convolutional networks,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (Honolulu, HI: IEEE), 2261–2269.
doi: 10.1109/CVPR.2017.243

Huang, Q., Wang, W., and Neumann, U. (2018). “Recurrent slice networks
for 3D segmentation of point clouds,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (Salt Lake City, UT: IEEE), 2626–2635.
doi: 10.1109/CVPR.2018.00278

Ioffe, S., and Szegedy, C. (2015). Batch normalization: accelerating deep network
training by reducing internal covariate shift. ArXiv. doi: 10.48550/arXiv.1502.03167

Kasaei, H. (2019). OrthographicNet: a deep learning approach for 3d object
recognition in open-ended domains. ArXiv. doi: 10.48550/arXiv.1902.03057

Kingma, D. P., and Ba, J. (2015). Adam: amethod for stochastic optimization.CoRR.
doi: 10.48550/arXiv.1412.6980

Klokov, R., and Lempitsky, V. (2017). “Escape from cells: Deep Kd-networks for
the recognition of 3D point cloud models,” in 2017 IEEE International Conference on
Computer Vision (ICCV) (Venice: IEEE), 863–872. doi: 10.1109/ICCV.2017.99

Kohonen, T. (1998). The self-organizing map. Neurocomputing 21, 1–6.
doi: 10.1016/S0925-2312(98)00030-7

Kuangen, Z., Ming, H., Wang, J., de Silva, C. W., and Fu, C. (2019). Linked
dynamic graph CNN: learning on point cloud via linking hierarchical features. ArXiv.
doi: 10.48550/arXiv.1904.10014

Landrieu, L., and Simonovsky, M. (2018). “Large-scale point cloud semantic
segmentation with superpoint graphs,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (Salt Lake City, UT: IEEE), 4558–4567.
doi: 10.1109/CVPR.2018.00479

Le, T., and Duan, Y. (2018). “PointGrid: A deep network for 3D shape
understanding,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (Salt Lake City, UT: IEEE), 9204–9214. doi: 10.1109/CVPR.2018.00959

Leng, B., Liu, Y., Yu, K., Zhang, X., and Xiong, Z. (2016). 3D object
understanding with 3D convolutional neural networks. Inf. Sci. 366, 188–201.
doi: 10.1016/j.ins.2015.08.007

Li, G., Muller, M., Qian, G., Delgadillo, I. C., Abualshour, A., Thabet, A., et al. (2023).
DeepGCNs: making GCNs go as deep as CNNs. IEEE Trans. Pattern Anal. Mach. Intell.
45, 6923–6939. doi: 10.1109/TPAMI.2021.3074057

Li, J., Chen, B. M., and Lee, G. H. (2018). “SO-Net: Self-organizing network for
point cloud analysis,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (Salt Lake City, UT: IEEE), 9397–9406. doi: 10.1109/CVPR.2018.00979

Li, Y., Bu, R., Sun,M.,Wu,W., Di, X., and Chen, B. (2018). “PointCNN: convolution
on x-transformed points,” in Proceedings of the 32nd International Conference onNeural
Information Processing Systems (NIPS’18) (Red Hook, NY: Curran Associates Inc),
828–838.

Li, Y., Pirk, S., Su, H., Qi, C., and Guibas, L. (2016). FPNN: field probing neural
networks for 3D data. ArXiv. doi: 10.48550/arXiv.1605.06240

Liu, S., Giles, L., and Ororbia, A. (2018). “Learning a hierarchical latent-variable
model of 3D shapes,” in 2018 International Conference on 3DVision (Verona), 542–551.
doi: 10.1109/3DV.2018.00068

Liu, Y., Wang, B., Lv, Y., Li, L., and Wang, F. (2023). Point cloud
classification using content-based transformer via clustering in feature space. ArXiv.
doi: 10.48550/arXiv.2303.04599

Long, H., Lee, S.-H., and Kwon, K.-R. (2021). A deep learning method for 3D object
classification and retrieval using the global point signature plus and deep wide residual
network. Sensors 21, 82644. doi: 10.3390/s21082644

Lu, D., Xie, Q., Gao, K., Xu, L., and Li, J. (2022). 3DCTN: 3D convolution-
transformer network for point cloud classification. IEEE Trans. Intell. Transport. Syst.
23, 24854–24865. doi: 10.1109/TITS.2022.3198836

Ma, C., An, W., Lei, Y., and Guo, Y. (2017). “BV-CNNS: binary volumetric
convolutional networks for 3D object recognition,” in British Machine Vision
Conference 2017, BMVC 2017 (London: BMVA Press).

Maturana, D., and Scherer, S. (2015). “VoxNet: A 3D Convolutional Neural
Network for real-time object recognition,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (Hamburg: IEEE), 922–928.
doi: 10.1109/IROS.2015.7353481

Nair, V., and Hinton, G. E. (2010). “Rectified linear units improve restricted
Boltzmann machines,” in Proceedings of the 27th International Conference on
International Conference on Machine Learning (Madison, WI: Omnipress),
807–814.

Qi, C., Yi, L., Hao, S., and Guibas, L. (2017). “Pointnet++ : deep hierarchical feature
learning on point sets in a metric space,” in Proceedings of the 31st International
Conference onNeural Information Processing Systems (NIPS’17) (RedHook, NY: Curran
Associates Inc), 5105–5114.

Qi, Z., Dong, R., Fan, G., Ge, Z., Zhang, X., Ma, K., et al. (2023). Contrast with
reconstruct: contrastive 3D representation learning guided by generative pretraining.
ArXiv. doi: 10.48550/arXiv.2302.02318

Qiangeng, X., Weiyue, W., Duygu, C., Mech, R., and Neumann, U. (2019). “DISN:
deep implicit surface network for high-quality single-view 3D reconstruction,” in
Proceedings of the 33rd International Conference on Neural Information Processing
Systems (Red Hook, NY: Curran Associates Inc), 492–502.

Riegler, G., Ulusoy, A. O., and Geiger, A. (2017). “OctNet: Learning deep
3D representations at high resolutions,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (Honolulu, HI: IEEE), 6620–6629.
doi: 10.1109/CVPR.2017.701

Sfikas, K., Theoharis, T., Pratikakis, I. (2017). “Exploiting the PANORAMA
representation for convolutional neural network classification and retrieval,” in
Proceedings of the Workshop on 3D Object Retrieval (3Dor ’17) (Goslar: Eurographics
Association), 1-7. doi: 10.2312/3dor.20171045

Shi, B., Bai, S., Zhou, Z., and Bai, X. (2015). DeepPano: deep panoramic
representation for 3-D shape recognition. IEEE Sign. Process. Lett. 22, 2339–2343.
doi: 10.1109/LSP.2015.2480802

Simonovsky, M., and Komodakis, N. (2017). “Dynamic edge-conditioned filters
in convolutional neural networks on graphs,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (Honolulu, HI: IEEE), 29–38.
doi: 10.1109/CVPR.2017.11

Sinha, A., Bai, J., and Ramani, K. (2016). “Deep learning 3D shape surfaces using
geometry images,” in European Conference on Computer Vision (ECCV) (Amsterdam).

Song, Y., Gao, L., Li, X., and Shen, W. (2020). A novel point cloud encoding method
based on local information for 3D classification and segmentation. Sensors 20, 92501.
doi: 10.3390/s20092501

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et
al. (2015). “Going deeper with convolutions,” in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (Boston, MA: IEEE), 1–9.
doi: 10.1109/CVPR.2015.7298594

Thomas, H., Qi, C. R., Deschaud, J.-E., Marcotegui, B., Goulette, F., and Guibas,
L. (2019). “KPConv: Flexible and deformable convolution for point clouds,” in 2019
IEEE/CVF International Conference on Computer Vision (ICCV) (Seoul: IEEE), 6410–
6419. doi: 10.1109/ICCV.2019.00651

Frontiers inComputationalNeuroscience 15 frontiersin.org131

https://doi.org/10.3389/fncom.2023.1204445
https://doi.org/10.48550/arXiv.1606.06650
https://doi.org/10.1109/WACV.2018.00218
https://doi.org/10.1109/83.623193
https://doi.org/10.1016/j.eswa.2021.115090
https://doi.org/10.55730/1300-0632.3990
https://doi.org/10.3390/s22187040
https://doi.org/10.1007/s11227-021-03899-x
https://doi.org/10.1109/ACCESS.2020.2982196
https://doi.org/10.1109/TIP.2018.2868426
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.1603.05027
https://doi.org/10.1109/CVPR.2018.00109
https://doi.org/10.1088/1742-6596/1229/1/012045
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2018.00278
https://doi.org/10.48550/arXiv.1502.03167
https://doi.org/10.48550/arXiv.1902.03057
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/ICCV.2017.99
https://doi.org/10.1016/S0925-2312(98)00030-7
https://doi.org/10.48550/arXiv.1904.10014
https://doi.org/10.1109/CVPR.2018.00479
https://doi.org/10.1109/CVPR.2018.00959
https://doi.org/10.1016/j.ins.2015.08.007
https://doi.org/10.1109/TPAMI.2021.3074057
https://doi.org/10.1109/CVPR.2018.00979
https://doi.org/10.48550/arXiv.1605.06240
https://doi.org/10.1109/3DV.2018.00068
https://doi.org/10.48550/arXiv.2303.04599
https://doi.org/10.3390/s21082644
https://doi.org/10.1109/TITS.2022.3198836
https://doi.org/10.1109/IROS.2015.7353481
https://doi.org/10.48550/arXiv.2302.02318
https://doi.org/10.1109/CVPR.2017.701
https://doi.org/10.2312/3dor.20171045
https://doi.org/10.1109/LSP.2015.2480802
https://doi.org/10.1109/CVPR.2017.11
https://doi.org/10.3390/s20092501
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/ICCV.2019.00651
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gezawa et al. 10.3389/fncom.2023.1204445

Tian, Y., Chen, L., Song, W., Sung, Y., and Woo, S. (2020). DGCB-Net: dynamic
graph convolutional broad network for 3D object recognition in point cloud. Remote.
Sens. 13, 66. doi: 10.3390/rs13010066

Varga, M., Jadlovský, J., and Jadlovska, S. (2020). Generative enhancement
of 3D image classifiers. Appl. Sci. 2020, 10217433. doi: 10.3390/app1021
7433

Wang, C., Cheng, M., Sohel, F., Bennamoun, M., and Li, J. (2019a). NormalNet:
a voxel-based CNN for 3D object classification and retrieval. Neurocomputing 323,
139–147. doi: 10.1016/j.neucom.2018.09.075

Wang, C., Samari, B., and Siddiqi, K. (2018). “Local spectral graph convolution
for point set feature learning,” in Computer Vision – ECCV 2018: 15th European
Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part IV (Berlin;
Heidelberg: Springer-Verlag), 56–71. doi: 10.1007/978-3-030-01225-0_4

Wang, D. Z., and Posner, I. (2015). “Voting for voting in online point cloud object
detection,” in Robotics: Science and Systems (Rome), 10–15607.

Wang, H., Shi, C., Shi, S., Lei, M., Wang, S., He, D., et al. (2023). DSVT: dynamic
sparse voxel transformer with rotated sets. ArXiv. doi: 10.48550/arXiv.2301.06051

Wang, L., Huang, Y., Hou, Y., Zhang, S., and Shan, J. (2019). “Graph attention
convolution for point cloud semantic segmentation,” in 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (Long Beach, CA: IEEE), 10288–
10297. doi: 10.1109/CVPR.2019.01054

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon, J. M.
(2019). Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. 38, 1–12.
doi: 10.1145/3326362

Wei, X., Yu, R., and Sun, J. (2020). “View-GCN: View-based graph convolutional
network for 3D shape analysis,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (Seattle, WA: IEEE), 1847–1856.
doi: 10.1109/CVPR42600.2020.00192

Wu, J., Zhang, C., Xue, T., Freeman, B., and Tenenbaum, J. (2016). “Learning a
probabilistic latent space of object shapes via 3D generative-adversarial modeling,”
in Proceedings of the 30th International Conference on Neural Information Processing
Systems (NIPS’16) (Red Hook, NY: Curran Associates Inc), 82–90.

Wu, W., Qi, Z., and Fuxin, L. (2019). “PointConv: Deep convolutional
networks on 3D point clouds,” in 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (Long Beach, CA: IEEE), 9613–9622.
doi: 10.1109/CVPR.2019.00985

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., et al. (2015). “3D
ShapeNets: A deep representation for volumetric shapes,” in 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (Boston, MA: IEEE), 1912–1920.
doi: 10.1109/CVPR.2015.7298801

Yang, H., Wang, W., Chen, M., Lin, B., He, T., Chen, H., et al. (2023).
PVT-SSD: single-stage 3d object detector with point-voxel transformer. ArXiv.
doi: 10.48550/arXiv.2305.06621

Yang, J., Zhang, Q., Ni, B., Li, L., Liu, J., Zhou, M., et al. (2019). “Modeling
point clouds with self-attention and gumbel subset sampling,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (Long Beach, CA:
IEEE), 3318–3327, doi: 10.1109/CVPR.2019.00344

Yavartanoo, M., Hung, S.-H., Neshatavar, R., Zhang, Y., and Lee, K. M. (2021).
“PolyNet: Polynomial neural network for 3D shape recognition with polyshape
representation,” in 2021 International Conference on 3D Vision (3DV) (London),
1014–1023, doi: 10.1109/3DV53792.2021.00109

Yi, L., Kim, V. G., Ceylan, D., Shen, I.-C., Yan, M., Su, H., et al. (2016). A scalable
active framework for region annotation in 3D shape collections. ACM Trans. Graph.
35, 1–12. doi: 10.1145/2980179.2980238

Yifan, X., Tianqi, F., Mingye, X., Long, Z., and Qiao, Y. (2018). “SpiderCNN:
deep learning on point sets with parameterized convolutional filters,” in European
Conference on Computer Vision (ECCV) (Munich).

Zhijian, L., Haotian, T., Yujun, L., and Song, H. (2019). “Point-voxel CNN for
efficient 3D deep learning,” in Proceedings of the 33rd International Conference on
Neural Information Processing Systems (Red Hook, NY: Curran Associates Inc), 965–
975.

Zhou, Y., and Tuzel, O. (2018). “VoxelNet: End-to-end learning for point
cloud based 3D object detection,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (Salt Lake City, UT: IEEE), 4490–4499.
doi: 10.1109/CVPR.2018.00472

Frontiers inComputationalNeuroscience 16 frontiersin.org132

https://doi.org/10.3389/fncom.2023.1204445
https://doi.org/10.3390/rs13010066
https://doi.org/10.3390/app10217433
https://doi.org/10.1016/j.neucom.2018.09.075
https://doi.org/10.1007/978-3-030-01225-0_4
https://doi.org/10.48550/arXiv.2301.06051
https://doi.org/10.1109/CVPR.2019.01054
https://doi.org/10.1145/3326362
https://doi.org/10.1109/CVPR42600.2020.00192
https://doi.org/10.1109/CVPR.2019.00985
https://doi.org/10.1109/CVPR.2015.7298801
https://doi.org/10.48550/arXiv.2305.06621
https://doi.org/10.1109/CVPR.2019.00344
https://doi.org/10.1109/3DV53792.2021.00109
https://doi.org/10.1145/2980179.2980238
https://doi.org/10.1109/CVPR.2018.00472
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Fosters interaction between theoretical and 

experimental neuroscience

Part of the world’s most cited neuroscience 

series, this journal promotes theoretical modeling 

of brain function, building key communication 

between theoretical and experimental 

neuroscience.

Discover the latest 
Research Topics

See more 

Frontiers in
Computational Neuroscience

https://www.frontiersin.org/journals/computational-neuroscience/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT

	Computational intelligence for signal and image processing

	Table of contents

	Editorial: Computational intelligence for signal and image processing
	1. Introduction
	2. Contributions
	3. Conclusion
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	A Study of English Learning Vocabulary Detection Based on Image Semantic Segmentation Fusion Network
	Introduction
	Related Work

	Proposed Algorithm
	Deeplab V3+ Network Architecture
	Improved Stepwise Deeplab V3+ Network
	Encoder Optimization
	Code-and-Decoder Modeling Capability Optimization

	Method Implementation
	Data Pre-processing
	Simulation Results
	Recognition of Segmentation Effects

	Conclusions
	Data Availability Statement
	Author Contributions
	References

	An Infrared Sequence Image Generating Method for Target Detection and Tracking
	Introduction
	Methods
	Overall Framework
	Infrared Target Modeling
	Nozzle Radiation Model
	Aircraft Skin Radiation Model
	Tail Flame Radiation Model

	Panoramic Stitching of Infrared Images
	Fusion of Simulated Targets and Real Infrared Scene

	Experiment and Analysis
	Dataset and Experiment Setting
	Subjective Analysis
	Objective Analysis

	Conclusion and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Big data analytics frameworks for the influence of gut microbiota on the development of tic disorder
	Introduction
	Materials and methods
	Information sources
	Inclusion and exclusion criteria
	Study selection
	Outcome measures
	Risk of bias assessment

	Results
	Study selection
	Assessment of study quality/bias
	Characteristics of studies
	Microbiota analysis
	Microbiota findings

	Discussion
	Main findings
	Treatment and diet
	Risk of bias
	Limitation

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Computer vision quantization research on the architectural color of Avenida de Almeida Ribeiro in Macau based on the human eye perspective
	Introduction
	Research background
	Object of study
	Computational vision

	Color extraction and analysis methods
	Foundation of architectural color system
	Street color extraction—A combination of old and new methods
	Color analysis method—Quantitative statistics

	Analysis of architectural color
	Classification of architectural colors
	Color sequence of street building facades
	Visual hierarchy of street architectural colors
	Define the visual hierarchy of colors
	Visual hierarchy analysis of color


	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher's note
	References

	Heart disease detection based on internet of things data using linear quadratic discriminant analysis and a deep graph convolutional neural network
	Introduction
	Appendix
	Related work

	System model
	K-means clustering
	Linear quadratic discriminant analysis based feature extraction

	Performance analysis
	Dataset description
	Information on heart disease

	Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher's note
	References

	Sparse measures with swarm-based pliable hidden Markov model and deep learning for EEG classification
	Introduction
	Sparse representation model
	Sparse signal representation
	Sparseness measures analysis
	Formulation of sparse representation problem

	Hidden Markov model analysis
	Consideration of sparse features as observed variables
	Development of hidden Markov model-based signal classification model
	Self-Pliable mechanism of hidden Markov model by swarm intelligence techniques- computation of parameters
	Particle swarm optimization
	Differential evolution
	Whale optimization algorithm
	Backtracking search optimization algorithm

	Feedback mechanism for swarm computing techniques

	Deep learning–based methodology
	Convolution layer
	Computation of batch normalization
	Fusion of features along with classification
	Model training

	Results and discussion
	Comparison of results with previous works associated with similar datasets

	Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Deep learning on lateral flow immunoassay for the analysis of detection data
	1. Introduction
	2. Materials and methods
	2.1. Materials
	2.2. Principle of LFIA
	2.3. Data augmentation
	2.4. Label annotation
	2.5. Network architecture
	2.6. Loss function
	2.7. Model hyper-parameters of models

	3. Results
	3.1. Evaluation metrics of models
	3.2 Model hyper-parameters optimization of segmentation model
	3.3. Training convergence analysis of models
	3.4. Comparison with classical methods
	3.5. Test of the method

	4. Discussion
	5. Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	A neural learning approach for simultaneous object detection and grasp detection in cluttered scenes
	1. Introduction
	2. Related studies
	3. Materials and methods
	3.1. Problem formulation and reparameterization
	3.2. Overview of the SOGD model
	3.3. Background removal
	3.4. Separate object and grasp detection branches
	3.5. Alignment between objects and grasp configurations
	3.6. Loss function

	4. Results
	4.1. Grasp detection results on cornell grasp dataset
	4.2. Grasp detection results on Jacquard Dataset
	4.3. Object detection results
	4.4. Discussion on background removal

	5. Conclusion and future study
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher's note
	References

	Evaluation of computed tomography images under deep learning in the diagnosis of severe pulmonary infection
	1. Introduction
	2. Materials and methods
	2.1. Research objects
	2.2. CT image scanning
	2.3. CT image segmentation based on the deep learning model
	2.4. Construction of the experimental environment
	2.5. Statistical methods

	3. Results
	3.1. Experimental results
	3.2. Application effect of the EC-U-net model in CT images
	3.3. Patient imaging findings
	3.4. Comparison of patient diagnosis accuracy, false positive rate (FPR) and false negative rate (FNR)
	3.5. Comparison of diagnosis results of CT imaging features

	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher's note
	References

	An improved fused feature residual network for 3D point cloud data
	1. Introduction
	2. Related work
	2.1. 3D learning using voxel-based methods
	2.2. 3D learning using point cloud-based methods
	2.3. Strategies for point data structuring 

	3. The proposed method
	3.1. KNN search for local region sampling
	3.2. Feature encoding network
	3.3. Detail grid feature extraction module
	3.4. Feature fusion unit
	3.5. Network overview

	4. Experiments
	4.1. Datasets and evaluation metrics
	4.2. Implementation protocol
	4.3. Classification on ModelNet
	4.3.1. Classification on ModelNet10
	4.3.2. Classification on ModelNet40
	4.3.3. ModelNet40 per-class classification accuracy comparison

	4.4. Precision-recall on ModelNet10
	4.5. Part segmentation on ShapeNetPart
	4.6. Ablation experiments
	4.6.1. Effects of extracted features in the DGFE module
	4.6.2. Effects of feature encoding network
	4.6.3. Time complexity
	4.6.4. Effects of neighborhood query


	5. Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Back Cover



