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As the structure and functions of proteins are correlated, investigating groups of proteins with the same gross structure may provide important insights about their functional roles. Trispanins, proteins that contain three alpha-helical transmembrane (3TM) regions, have not been previously studied considering their transmembrane features. Our comprehensive identification and classification using bioinformatic methods describe 152 3TM proteins. These proteins are frequently involved in membrane biosynthesis and lipid biogenesis, protein trafficking, catabolic processes, and in particular signal transduction due to the large ionotropic glutamate receptor family. Proteins that localize to intracellular compartments are overrepresented in the dataset in comparison to the entire human transmembrane proteome, and nearly 45% localize specifically to the endoplasmic reticulum (ER). Furthermore, nearly 20% of the trispanins function in lipid metabolic processes and transport, which are also overrepresented. Nearly one-third of trispanins are identified as being targeted by drugs and/or being associated with diseases. A high number of 3TMs have unknown functions and based on this analysis we speculate on the functional involvement of uncharacterized trispanins in relationship to disease or important cellular activities. This first overall study of trispanins provides a unique analysis of a diverse group of membrane proteins.
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INTRODUCTION

Cellular boundaries or membranes are imperative for cells to function properly and membrane formation is considered an essential step in the emergence of life. The plasma membrane is the most studied of cell membranes, and is composed of a phospholipid bilayer that contains phospholipids, glycolipids, sterols, and proteins. In addition to the plasma membrane, eukaryotic cells also contain intracellular membrane-bound organelles, including double membrane compartments such as the nucleus and mitochondria and single membrane-bound organelles such as the endoplasmic reticulum (ER), Golgi apparatus, lysosomes, peroxisomes, and vesicles. Each membrane-bound compartment is defined by its lipid and protein composition (Harayama and Riezman, 2018). For instance, localized sphingolipid metabolism is associated with membrane budding and formation of exosomes in multivesicular bodies, or in another example, membrane proteins are differentially transported to the apical or basal plasma membrane in polarized cells (Harayama and Riezman, 2018). Membranes act as barriers that not only physically separate the intracellular components from the extracellular environment or from each other, but selectively allow materials to flow in and out of the cell or other organelles, as well as extract energy from the environment (Thomas and Rana, 2007). Transmembrane proteins and complexes can form channels, pores, and gates that extend through the lipid bilayer and function in active and passive transport of substrates across a membrane. Membrane machinery and protein complexes on different organelles can be involved in specialized activities, for example vesicle formation and movement on the Golgi apparatus, protein targeting and transport at the ER, and specific receptor signaling and transduction at the plasma membrane. And due to the varied essential functional pathways that membrane proteins are involved in, they are of particular interest in investigating the pathophysiology of diseases. In fact, membrane proteins are major targets for pharmaceutical agents and more than 60% of drug targets are membrane proteins (Overington et al., 2006).

Of the ∼20,000 total protein coding genes in Homo sapiens, approximately 25–30% (∼5500) are coded for transmembrane proteins (Almén et al., 2009; Attwood et al., 2017). Further, ∼70% of these membrane proteins are estimated to be conserved since the last holozoa common ancestor, indicating the fundamental importance and evolutionary origins of many membrane proteins (Attwood et al., 2017). Investigating cell membrane structures and complexes harkens back to how life originated, i.e., how the lipid bilayer developed and how metabolism and replication evolved in cells (Griffiths, 2007; Thomas and Rana, 2007; Deamer, 2017). Further, membrane compartmentalization and expansion enabled the development of larger cells and the separation of cell functions in eukaryotic cells, which also inaugurated the need for communication between the different cellular compartments (Gabaldón and Pittis, 2015). Subcellular compartmentalization has been aided through evolutionary retargeting of membrane proteins to shared or different localizations, which is evident by the varied internal sorting of proteins across different physiological conditions, cell types, localizations, and lineages (Gabaldón and Pittis, 2015). Consequently, investigating the evolutionary developments of homologous protein families as well as where proteins localize to can provide insight into their different functional activities.

The membrane proteome can be characterized into functional groups based on the number of transmembrane helices; i.e., the tertiary structure of protein groups can promote specific functional activities. A widely known example is the large seven transmembrane spanning families of G protein-coupled receptors (GPCRs) that function in signaling (Lagerström and Schiöth, 2008) or the twelve transmembrane proteins of the major facilitator superfamily (MFS) that act as transporters (Reddy et al., 2012). Additionally, studies have shown that proteins that span the membrane once or twice are often engaged in enzymatic functions (Almén et al., 2009) or immune response signaling (Sällman Almén et al., 2012) while many tetra-spanning proteins are involved in transport activities (Attwood et al., 2016). Our previous investigation has suggested that there are many three transmembrane-spanning (3TM or trispanins) proteins that have unknown functions (Almén et al., 2009) and an in-depth analysis of membrane proteins that share a basic structural similarity with 3TM regions has yet to be published. Investigations of groups of proteins with the same gross structure may lead to important insights about the functional activities, perhaps in particular for proteins with unknown functions.

In this study we perform comprehensive bioinformatic analyses of all 3TM proteins in the human genome. We identify and characterize the 3TM group characteristics and incorporate information on relevant functional activities along with cellular localizations, tissue enrichment patterns, and protein-protein interaction networks to describe the predominant functional activities of this group of proteins. Additionally, we use this methodology to speculate on the functions of several uncharacterized trispanins that are associated with disease or potentially involved in important pathways.



FUNCTIONAL ANALYSIS RESULTS

We identified 152 proteins as 3TMs and these were classified into three primary functional classes plus a fourth group that has varied activities: 35 proteins were identified as enzymes that had an associated enzyme commission number (EC); 26 proteins had an associated transporter classification database identifier (TCDB) and were characterized as transporters; 21 receptors were identified based on IUPHARS guide to pharmacology descriptions; and 43 proteins with varied functional activities were characterized as well as 27 proteins that were classified as uncharacterized. Approximately one-third of trispanins localize to multiple membranes, with the plasma membrane and another intracellular organelle being the predominant combination. The original CCDS human protein sequences file contained 18,894 unique CCDS gene identifiers with 32,554 total entries including isoforms. The sequences were pre-processed and the signal peptides were excised, followed by evaluation with TOPCONS-single to predict transmembrane helices. The 3TM dataset was collated by removing ambiguous entries, isoforms, and manually adding proteins ascertained as 3TM through literature searches (see section “Materials and Methods” for details). Functional annotations and localizations were assessed through gene ontology (GO) descriptions (Ashburner et al., 2000; The Gene Ontology Consortium, 2019), the human protein atlas (Uhlén et al., 2015), the PANTHER classification database (Mi et al., 2019), and KEGG pathways database (Kanehisa et al., 2017). Supplementary File S1 contains the final 3TM dataset.


Membrane Complexes

Almost 35 of the proteins in the dataset are members of membrane complexes and localize to various membranes, including the plasma membrane, as well as organelles such as the mitochondrion, the endomembrane system with the ER and Golgi apparatus, and the nucleus (Figure 1). With the 17 proteins that localize to the mitochondrion, five of the nine proteins that are found in the inner mitochondrial membrane are involved in inner mitochondrial membrane complexes, including three members (TIMM23, TIMM17A, and TIMM17B) of the TIM23 translocase. The TIM23 complex is the major translocase for importing proteins across the inner mitochondrial membrane and into the mitochondrial matrix (Demishtein-Zohary and Azem, 2017). SDHC and SDHD are also members of inner mitochondrial membrane complexes. They are the two transmembrane components of succinate dehydrogenase, or the mitochondrial respiratory complex II, which functions in the mitochondrial electron transport chain, and these trispanins together contain one heme b and provide the binding site for ubiquinone (Yankovskaya et al., 2003). The trispanin TMEM177 has been recently discovered to form complexes with COX20 and associate with COX2, which are essential for the assembly of cytochrome c oxidase that is the final enzyme complex of the mitochondrial respiratory electron transport chain. TMEM177 dynamically interacts with COX2 subcomplexes in a COX20-dependant manner which in turn stabilizes COX2 during early synthesis (Lorenzi et al., 2018). TMEM11 is another inner mitochondrial protein and is associated with the multiple mitochondrial contact site and cristae junction organizing system (MICOS) complex, which dynamically regulates mitochondrial membrane architecture (Guarani et al., 2015). Both TMEM177 and TMEM11 have yet to be annotated as members of membrane protein complexes, which may contribute to an underrepresentation of complexes in the dataset.
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FIGURE 1. Proteins with varied functional activities and localization information. Trispanins from all four major classes involved in these common functional activities: membrane protein complexes; cell junctions; structural molecules; and endoplasmic reticulum (ER)-associated degradation processes (ERAD) and ubiquitination processes. All 18 ionotropic glutamate receptors are included in one row and individual localization information on them can be found in Figure 4. Functional activities and localization descriptions derived from gene ontology (GO) Annotations (Huntley et al., 2015), PANTHER classifications (Mi et al., 2019), and the human protein atlas (Uhlén et al., 2015).


Several membrane complexes that localize to the ER function in two different pathways that facilitate membrane insertion of proteins. One pathway uses the important signal recognition particle (SRP) dependent ER protein translocon, which consists of the co-translational protein-conducting channel Sec61 complex along with additional subunits involved in nascent chain processing and translocation (Mades et al., 2012). The SEC63 protein identified in the dataset is part of the Sec61 chaperone network that performs substrate-selective quantity control during co-translational ER import (Mades et al., 2012). An additional three proteins in the dataset are members of the oligosaccharyl-transferase (OST) complex: RPN2, DAD1, and OSTC (also known as DC2). The OST complex is also an integral component of the translocon that catalyzes co-translational N-glycosylation, which is one of the most common protein modifications in eukaryotic cells (Pfeffer et al., 2014; Braunger et al., 2018). Furthermore, homologs of BCAP29 and BCAP31, both members of the 3TM dataset, have been shown to form a complex together that is associated with the Sec61 complex and interacts with translocation substrates (Wilson and Barlowe, 2010). Two more proteins, WRB and CAML, are involved in another type of protein insertion into the ER membrane as subunits in the post-translational tail-anchored membrane protein insertion TRC40 complex (Yamamoto and Sakisaka, 2012).

Moreover, nearly 45% of the proteins in the dataset localize to the ER and function in activities such as protein biogenesis, folding, sorting, trafficking, and degradation. At least nine proteins are identified in the ER-associated protein degradation (ERAD) pathway and ubiquitination system. ERAD monitors the biogenesis and folding of membrane and secretory proteins in the ER and targets misfolded proteins for ubiquitination and subsequent degradation (Ruggiano et al., 2014). And at least two members of the ER membrane protein complex (EMC3 and EMC6), which is engaged in protein folding, are identified in the dataset. Additionally, several proteins are identified in ER morphogenesis and tubular organization network.

More than 70 proteins are described with engaging in various protein-protein interactions, with nearly half of them (33 proteins) annotated as forming homo- and/or heteromeric subunits of complexes. All 18 of the ionotropic glutamate receptors are identified in this group, which is expected as the structural arrangements of the subunit pairings, the ligand binding domains, as well as the N-terminal domains are the focus of intense research and several conformations have been experimentally determined; for review see Green and Nayeem (2015). Furthermore, several members of protein families in the dataset form heteromeric subunits including BCAP29 and BCAP31, NDFIP1, and NDFIP2 as well as other proteins that self-associate to form homomeric units such as BVES, MGST2, TMEM109, TMEM18, SGPL1, STS, SLC27A1, and SLC31A1.



Transport and Trafficking

Overall, 40% of trispanins are engaged in transport activities, with nearly 20% involved in intracellular transport and protein trafficking as well as membrane and vesicle trafficking (Figure 2). The majority of the trispanin transport activity is the movement of cargo, for example proteins and other macromolecules, around the cell utilizing small compartments of membranes called transport vesicles. Nine proteins participate in membrane trafficking and include the four members of the cornichon family. The cornichon (CNIH1-4) family members function as cargo receptors in ER export and are involved in the selective transport of TGF-alpha family proteins in COPII vesicles (Zhang and Schekman, 2016), while CNIH4 also acts as a cargo-sorting receptor that recruits GPCRs into COPII vesicles for export from the ER to the cell surface (Sauvageau et al., 2014). Additionally, CNIH2 and CNIH3 co-assemble as auxiliary subunits of AMPA receptors where they increase surface expression of AMPARs and alter channel gating (Schwenk et al., 2009). TBC1D20 is another predicted trispanin involved in COPII-coated vesicle cargo loading and Rab GTPase activating activity (Haas et al., 2007).


[image: image]

FIGURE 2. Trispanins involved in transport activities. All 26 proteins identified with a transporter classification database (TCDB) identifier (descriptive boxes on left) are included in this figure. Only 40 of the 61 total trispanins involved in transport activities are shown; however, all proteins are shown that are involved in intracellular transport; vesicle-mediated transport; transport of proteins, ions, and lipids; protein targeting; and membrane trafficking. The four members of the SLC27A1/2/4/6 also contain an enzyme commission number (EC) and are shown in Figure 3. Functional activities and localization descriptions derived from gene ontology (GO) Annotations (Huntley et al., 2015), PANTHER classifications (Mi et al., 2019), and the human protein atlas (Uhlén et al., 2015).


Nearly 30 proteins localize to vesicles including secretory vesicles (8 proteins), lysosomes (4), endosomes (8), exosomes (5), and Golgi-associated vesicles (4) to engage in a variety of activities. Furthermore, the dataset also contains proteins involved in vesicle formation and regulation, such as RAB5IF and EMC6, which both contain the Rab5 interacting protein Pfam domain (Rab5ip; PF07019). RAB5IF may function on endocytic vesicles as a receptor for rab5-GDP and be involved in the activation of RAB5A, which is an important regulator of the endocytic pathway (Hoffenberg et al., 2000), while EMC6 has been reported to interact with RAB5A and BECN1 and regulate autophagosome formation (Li et al., 2013). TBC1D9, also in the 3TM dataset, may regulate the membrane trafficking pathway to the late-endosome and/or Golgi apparatus in spermatocytes and in spermatogenesis (Nakamura et al., 2015). Another protein family with two mammalian homologs, the Nedd4 Family-interacting Proteins 1 and 2 (NDFIP1-2), is also involved in orchestrating protein trafficking, which may contribute to why they both localize to multiple regions, including the ER, Golgi apparatus and vesicles and NDFIP2 also localizes to the mitochondria. Both proteins bind to and activate members of the Nedd4 family of E3 ubiquitin ligases, which in turn targets proteins for degradation by the proteasome (Putz et al., 2008). NDFIP1-2 are important for protein trafficking via exosomes, which originate from late endosomes and multivesicular bodies (MVB) and provide a rapid manner of discarding unwanted proteins as well as functioning in cell to cell communication (Putz et al., 2008).

The 26 transporter proteins with an associated TCDB identifier include a variety of transporter classes. Six proteins are identified as alpha-type channels/pores (TCDB:1.A). This includes the important SLC31 family of copper transporters, which are involved in the maintenance of copper homeostasis and regulate intracellular copper concentration (Schweigel-Röntgen, 2014). Seven proteins are involved in transport systems that hydrolyze the diphosphate bond of inorganic pyrophosphate, ATP, or another nucleoside triphosphate to drive the active uptake or extrusion of a solute(s) (TCDB:3.A). Five of these proteins are involved in complexes of the previously mentioned Sec61 ER translocon. Four proteins are members of the acyl CoA ligase-coupled transporters (TCDB:4.C), which are group translocators that modify the transported substrate during the transport process. These four SLC27A proteins also engage in enzymatic activities; however, they are classified as transporters in this dataset to remove redundancy. Five proteins are identified as accessory factors involved in transport (TCDB:8.A) and four proteins are transporters of unknown classification (TCDB:9.A and 9.B). It is interesting to note that contrary to the many transporters that form oligomeric subunits to transport molecules across membranes (Alguel et al., 2016), only seven of the proteins identified in the dataset with a TCDB number are annotated to form homo- or heteromeric units. Many of the identified trispanin transporters appear to be engaged in other transport activity, for example intracellular transport, vesicle-mediated transport, and protein targeting.



Lipid Biogenesis and Metabolic Processes

Nearly 20% of the proteins in the dataset are involved in lipid metabolic processing and lipid transport (Figure 3). And as expected, nearly all of these proteins localize to the ER which is the main site for lipid synthesis. Four members of the 1-acylglycerol-3-phosphate O-acyltransferases (AGPAT) gene family (AGPAT1, LPCAT1, LPCAT2, and LPCAT4) are predicted to be trispanins. These enzymes are involved in maintaining the composition of fatty acyl chains that make up phospholipids, which are the major constituents of membranes (Wang and Tontonoz, 2019). Four members out of six of the SLC27A family of fatty acid transporters were predicted to contain three transmembrane helices (SLC27A1, SLC27A2, SLC27A4, and SLC27A6). The two other members of the family had conflicting transmembrane predictions from none to two to six and were not included in the dataset. This family is unusual in that their multifunctional activities include both transport and enzymatic activation of long chain fatty acids, which can then be used by the cell in many metabolic processes including phospholipid synthesis (Anderson and Stahl, 2013). Seven enzymes in the dataset are members of the Cytochrome P450 family, including four enzymes (CYP4F2, CYP4F11, CYP4F12, and CYP4B1) that play primary roles in the omega-hydroxylation of endogenous long chain and very long chain fatty acids, which include the physiologically important eicosanoids, prostaglandins, leukotrienes, and arachidonic acid (Johnson et al., 2015). Furthermore, CYP4F2 is primarily responsible for the formation of the important signaling metabolite 20-HETE. Catabolic processes are other functional activities trispanins are involved in, with approximately 16% (24 proteins) engaged in the dataset and 16 enzymes involved (shown in Figure 3). These proteins are involved in chemical reactions and pathways that result in the breakdown of substances including the apoptotic signaling pathway, alkaloid catabolic processes, steroid catabolic processes, and leukotriene B4 catabolic processes.
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FIGURE 3. Proteins with enzymatic functions. The 35 trispanins with an associated Enzyme Commission (EC) number (descriptive boxes on left) are shown along with the predominant functional activities including lipid metabolic processes, catabolic processes, and heme binding. Only 22 of the 31 trispanins involved in lipid metabolic processes and 16 of the 24 total proteins active in catabolic processes are shown here. The four members of the SLC27A1/2/4/6 are also classified as transporters. Functional activities and localization descriptions derived from gene ontology (GO) annotations (Huntley et al., 2015), PANTHER classifications (Mi et al., 2019), and the human protein atlas (Uhlén et al., 2015).




Signal Transduction

Twenty-one proteins are identified as receptors while an additional five more proteins are involved in signal transduction activity (Figure 4). The 18 proteins of the ionotropic glutamate receptor family are characterized as trispanins. The proteins in this receptor family contain three transmembrane helices with a fourth central pore-like helix that does not fully span the membrane. Hence, membrane prediction software can give conflicting results with this family and the X-ray resolved structure for an AMPA-subtype glutamate receptor was referenced to include all members (Sobolevsky et al., 2009). The ionotropic glutamate receptor family is grouped into four different classes based on pharmacology and structural homology and include: the four AMPA receptors (GRIA1-4); the five kainate receptors (GRIK1-5); the seven NMDA receptors (GRIN1, GRIN2A-D, and GRIN3A-B); and two delta receptors (GRID1-2). Glutamate receptor subunits co-assemble to form ligand-gated ion channels that mediate fast excitatory synaptic transmission in the central nervous system and regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system (Traynelis et al., 2010). As such, a significant volume of literature has been published regarding ionotropic glutamate receptors and will not be covered here; for example, see Traynelis et al. (2010); Reiner and Levitz (2018) for review. The three additional proteins identified as receptors in the dataset are: NACHT, LRR and PYD domains-containing protein 3 (NLRP3); P2X purinoceptor 7 (P2RX7); and Transmembrane protein PVRIG (PVRIG). As expected, virtually all of the receptors (except PVRIG) are annotated as involved in cell communication; moreover an additional 17 trispanins are also engaged cell communication such as Wnt signaling, insulin secretion, adiponectin-activated signaling, apoptotic signaling, and calcium-mediated signaling.
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FIGURE 4. Proteins engaged as receptors and in signaling. The 21 receptors in the dataset along with other trispanins involved in cell communication; signal transduction receptor activity; regulation of membrane potential; neurotransmitter receptor complexes; and synaptic adhesion molecules are shown here. The 18 ionotropic glutamate receptors are heavily involved in these activities. Functional activities and localization descriptions derived from gene ontology (GO) annotations (Huntley et al., 2015), PANTHER classifications (Mi et al., 2019), and the human protein atlas (Uhlén et al., 2015).




Structural Support Activity

Seven proteins are identified as cytoskeletal proteins that provide structural support according to GO annotations and PANTHER protein class analysis (Figure 1). Four proteins (LIM2, NKG7, CLDND2, and EMP2) contain the PMP-22/EMP/MP20/Claudin family (PF00822) Pfam domain, whose members perform diverse functions. Proteins containing this domain are often predicted to have four transmembrane helices; however, these four more distantly related proteins to mammalian claudins were predicted to have 3TMs. The first N-terminal helix was identified to be a signal peptide that was detected with the recently released SignalP v5.0 software (Armenteros et al., 2019b). The 3TM predictions for these proteins are also in agreement with the membrane predictions of the human protein atlas data, which uses a majority decision method to determine presence of signal peptides and transmembrane regions (Fagerberg et al., 2010; Uhlén et al., 2015).



Membrane Topology and Signal Peptide Predictions

The orientation of the N- and C-termini in relation to the cytoplasmic side or non-cytoplasmic side (i.e., extracellular region or organelle lumen) can indicate functional activities proteins are engaged in. For example, GPCRs have extracellular N-termini that interact with cognate ligands and function in signal transduction (Coleman et al., 2017). However, the connection between function and membrane topology was difficult to distinguish with most of the trispanins as 72 of the trispanins had the N-terminus predicted in the cytoplasmic region (in) and 80 proteins had the N-terminus in a non-cytoplasmic environment (out). Receptors were the only group that had a skewed proportion with one protein with the N-terminus in the cytoplasmic environment while 20 proteins were non-cytoplasmic. The N-terminus of the 18 ionotropic glutamate receptors were all categorized as non-cytoplasmic (out) in accordance with the experimentally determined GRIA2 amino-terminal domain (Jin et al., 2009). Enzymes had 18 proteins with the N-terminus predicted in with 17 out; transporters had 11 in and 15 out; proteins with varied functional activities had 25 in and 18 out; and uncharacterized trispanins had 17 in and 10 out.

N-terminus signal peptides are short peptides that direct proteins to different locations in the cell including the ER, plasma membrane as well as other intracellular organelle membranes. Using multiple localization prediction resources (see section “Materials and Methods” for details), 50 N-terminal signal peptides were predicted in trispanins; 44 of these proteins have associated annotations that they localize to the ER, plasma membrane, mitochondria, and/or Golgi apparatus. Moreover, C-terminus signaling sequences as well as internal signal retention sequences are also methods of directing proteins to the ER (Ouzzine et al., 1999). Interestingly, in addition to the 64 trispanins that are already annotated as ER resident proteins, 53 more proteins in the dataset are predicted to localize to the ER and 17 are predicted to localize to the plasma membrane that do not have any associated annotation. Three additional trispanins were predicted to localize to the mitochondria and two more proteins were predicted to travel to the Golgi apparatus. One limitation with various localization resources seems to be that the results only give one localization area, while experimental evidence gives multiple locales the protein is found.



Disease Involvement and Drugs Targeting 3TMS

Nearly one-third (48 proteins) of the dataset was identified as being targeted by drugs and/or being associated with diseases. Disease-gene associations with the trispanins were particularly identified with neurological disorders including epilepsy, Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, Parkinson’s disease, and also mental or behavioral disorders such as substance dependence and intellectual disabilities (Figure 5A). The emphasis on neurodegenerative disorders is expected due to the important ionotropic glutamate receptor family and their involvement in the underlying pathophysiology of many disorders (Reiner and Levitz, 2018). Disease-gene associations with disorders of the eye, cancer, infectious viral diseases like pertussis, human papilloma virus, and hepatitis were also identified in the dataset.


[image: image]

FIGURE 5. Trispanins identified in disease-gene associations and clinically established by FDA approved drugs. (A) Disease-gene associations with trispanins. The 41 proteins identified with disease-gene associations are shown at the top of the figure while the corresponding diseases are linked through color and identified in the bottom part. The disorders include: intellectual disability; addiction; neurodegenerative diseases including Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s disease; epileptic encephalopathy; cancer; non-alcoholic fatty liver disease (NAFLD); ataxia; diabetes mellitus; viral infections; and other. The disease-gene association data were collated from Jensen Diseases resource (Pletscher-Frankild et al., 2014) and DisGenet database (Piñero et al., 2017). (B) Trispanins targeted by FDA approved drugs. The 26 clinically established trispanins that have been targeted by FDA approved drugs are shown. The established drug targets are presented at the top of the figure and the corresponding therapeutic category of drugs that target each protein is color-linked and described on the bottom half. The FDA approved drug-target information comes from an updated dataset that provides curated information on FDA approved drug targets (Rask-Andersen et al., 2014; Attwood et al., 2018) as well as DrugBank (Wishart et al., 2017). Trispanins that were targeted and mediated the therapeutic action are included, while proteins as secondary targets or unknown mechanisms of action were not included. FDA: US Federal Drug Administration.


Of the 26 trispanins that are targeted by federal drug administration (FDA) approved drugs, approximately 70% of them are members of the ionotropic glutamate receptor family (Figure 5B). The FDA approved drugs that have established these trispanins as validated targets are therapeutically categorized as anesthetics, anti-neoplastic agents, anti-convulsants, nutraceuticals, and also anti-dementia agents for different conditions. The proteins in the dataset have also been targeted by immunosuppressive, and anti-addiction agents. The 3TM proteins have also been targeted by investigative drugs in clinical trials for such conditions as sleep disorders, depression, cardiovascular diseases, tinnitus, and Alzheimer’s disease. Membrane proteins have always been primary targets for pharmaceutical agents due to the critical functions they are involved with and the wide-reaching signaling pathways they participate in. And in fact, with the continued technological advancements in biopharmaceutical engineering, multipass membrane proteins are expected to be of increasing interest as antibody targets (Carter and Lazar, 2018).



DISCUSSION

Many of the proteins that comprise the 3TM dataset function in aspects of cellular membrane remodeling and trafficking systems including membrane synthesis, lipid metabolism, protein trafficking, membrane imbedded complexes, and also ionotropic glutamate receptor signaling (Figure 6). Proteins that localize to organelle membranes are overrepresented in comparison to the entire Homo sapiens membrane proteome [Fold Enrichment (FE) = 1.57; FDR = 3.00e-04), and in particular the ER (FE = 2.15; FDR = 2.29e-07) and nuclear outer membrane- ER membrane network (FE = 2.40; FDR = 4.06e-07; all p-values < 0.05)] (Figure 7). This is consistent with the overrepresentation of proteins involved in fatty acid and lipid metabolic processes (FE = 6.15; FDR = 5.13e-04 and FE = 2.25; FDR = 1.41e-02, respectively) as the ER and Golgi apparatus are major sites of de novo membrane lipid synthesis and also hubs for directing protein trafficking (Fagone and Jackowski, 2009). Conjointly, the 3TM dataset contains a spectrum of proteins that are involved in membrane genesis through lipid biosynthesis and remodeling. Specifically, 3TM members of the SLC27A family uptake, transport and also have the unique ability to activate long chain fatty acids (Anderson and Stahl, 2013) while members of the AGPAT family are responsible for catalyzing fatty acid transfer between acyl donor and acceptor and the incorporation of fatty acids into various lipids such as phospholipids (Yamashita et al., 2014). Furthermore, the compositions of phospholipids are regulated after de novo synthesis in a process called fatty acid remodeling, and the dataset contains acyltransferases that are involved in both de novo synthesis as well as the important remodeling activities. The varied phospholipids that result from the remodeling process produce compositional membrane diversity, which is necessary for membrane fluidity and curvature (Hishikawa et al., 2008). Moreover, at least two of the AGPAT enzymes in the dataset function in phospholipid remodeling in the Lands’ cycle to produce phosphatidylcholine (PC) (Hishikawa et al., 2008), which is the most abundant glycerophospholipid in mammalian cell membranes – comprising ∼40–50% of total phospholipids (Wang and Tontonoz, 2019). Hence, with 20% of the proteins in the dataset involved in lipid metabolic processes and lipid transport, these are key activities for 3TMs.
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FIGURE 6. Overrepresentation of select Gene Ontology terms identified in the 3TM dataset in comparison to the entire human transmembrane proteome. The x-axes are the percent of genes in each category identified in the 3TM dataset (orange) in comparison to the percent of genes in the human transmembrane proteome (blue). Select pathway overrepresentations from the PANTHER Overrepresentation Test are presented in all four sections (see Supplementary Table S1 for full statistical information). (A) Molecular pathways. As the glutamate-gated ion channel protein family is an important receptor/transporter family involved in many activities, specific pathways were chosen to highlight the breadth of different activities that trispanins are overrepresented in. Twenty proteins are involved in small molecule binding, which are predominantly the ionotropic glutamate receptor families. Nine enzymes including the seven members of the cytochrome p450 family identified in the dataset engage in heme binding. However, one area that the 3TM dataset is significantly underrepresented in is in GPCR activity. (B) Cellular localizations. The 3TM dataset is rich in proteins that localize to organelle membranes, with the ER in particular and also the nuclear outer membrane-ER network. Trispanins that localize to the mitochondrial inner membrane are also overrepresented due to the proteins functioning in the mitochondrial import inner membrane translocase complex. The ionotropic glutamate receptor families compose the overrepresented group of plasma membrane receptor complexes. (C) Biological pathways. More than 30 trispanins are involved in lipid metabolic processes, including those involved in lipid synthesis and remodeling, activation of long chain fatty acids, and membrane genesis. Six proteins are involved with membrane trafficking and vesicle budding from the membrane. (D) Reactome pathway. Several pathways were found to be overrepresented in the Reactome pathways dataset (v65, released on 2019-03-12). The NMDAR and AMPAR glutamate families interact with synaptic adhesion-like proteins which function in protein-protein interactions at synapses in the neuronal system. Many of the proteins involved in the metabolism of lipids function in lipid biosynthesis, mobilization, transport, and activation. Several of the members of the SLC27A family function specifically in the transport of fatty acids. The proteins involved in vesicle-mediated transport via COPII components traffic cargo from the ER to the ER-Golgi intermediate compartment. The overrepresentation analysis is from the PANTHER (Mi et al., 2019) overrepresentation test (v14.1) with the gene ontology (GO) Annotation (Huntley et al., 2015) database released on 2019-07-03. Fisher’s Exact test was performed and the False Discovery Rate was calculated with p < 0.05. The human membrane protein identities is from Attwood et al. (2017) with 5723 of 5777 proteins and 150 of 152 3TM proteins successfully mapped using GO annotation. GPCR, G protein-coupled receptor; OM, outer membrane; ER, endoplasmic reticulum.
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FIGURE 7. Cell localizations of three transmembrane spanning proteins. Major cellular localizations presented with the number of proteins identified in the 3TM dataset in parenthesis. Labels in boxes with pink hues are identified as statistically overrepresented, while the boxes with the blue hues are underrepresented in the 3TM dataset in comparison to the entire human membrane proteome (see Supplementary Table S1 for full statistical information). Localization data is extracted from QuickGO annotation web-based tool (Binns et al., 2009). The overrepresentation analysis is from the PANTHER (Mi et al., 2019) overrepresentation test (v14.1) with the gene ontology (GO) Annotation (Huntley et al., 2015) database released on 2019-07-03. Fisher’s Exact test was performed and the false discovery rate was calculated with p < 0.05. The human membrane protein identities is from Attwood et al. (2017) with 5723 of 5777 proteins successfully mapped and 150 of 152 trispanins successfully mapped using GO annotation.


Another interesting aspect of the 3TM dataset is that more than 20% of the proteins act as subunits of membrane-imbedded complexes, such as the TIMM23 translocase complex, OST complex, and the ER membrane complex. Proteins involved in both co-translational SRP dependent membrane insertion complexes as well as post-translational tail-anchored membrane insertion complexes are represented in the dataset. Moreover, proteins ensuring proper folding with the ER membrane complex as well as clearing misfolded proteins through the ERAD process are also classified in the dataset. Further literature investigation showed that GO annotation and PANTHER classifications have not yet included all relevant annotations for the 3TM dataset, and hence the overrepresentation analyses may yield conservative results in comparison to the actual functional activities the proteins are involved in. For example, BCAP29 and BCAP31 appear to form a complex that associates with the ER translocation apparatus and interacts with translation substrates (Wilson and Barlowe, 2010), but there is not associated GO annotations regarding these functions yet.

It is notable that proteins identified as receptors are under-represented in the 3TM dataset, with 13% identified in comparison to ∼25% in the entire Homo sapiens membrane proteome. However, the percent of enzymes (22%) and transporters (16%) are roughly comparable to the membrane proteome, which has 20% and 17%, respectively. As all eighteen members of the ionotropic glutamate receptor family are included in the 3TM dataset and they are involved in several unique essential activities, many of the functions they are involved in are overrepresented in the PANTHER analysis. Glutamate receptors play vital roles in the mediation of excitatory synaptic transmission in which neurons communicate with each other. Hence, for example, neurotransmitter receptor activity and regulation of postsynaptic membrane potential are overrepresented in the analysis (FE = 6.11; FDR = 1.73e-06 and FE = 7.51; FDR = 5.90e-06, respectively). However, aside from this glutamate receptor family, the 3TM dataset is not heavily involved in direct receptor signaling, although they may act as accessory proteins in receptor complexes such as with CNIH2 and CNIH3.


Tissue Expression and Enrichment

The TissueEnrich analysis demonstrated that almost 22% of the proteins in the 3TM dataset had enriched or enhanced expression in the cerebral cortex in comparison to the membrane proteome of Homo sapiens, and importantly that seven of these 37 proteins are uncharacterized. While it might be expected that protein expression might be overrepresented in the brain due to the large ionotropic glutamate receptor family, it is surprising that nearly 20% of the proteins specifically expressed in the brain are completely uncharacterized. Additionally, the testis had the second most abundant number of tissue specific genes expressed there, although they were not significantly overexpressed in comparison to the membrane proteome. Previous analysis has shown that more than 80% of all human proteins are expressed in the testis (Uhlén et al., 2015), so perhaps the high number of testis expressed genes is not unusual. However, three of the eleven proteins are uncharacterized, lending further curiosity into the nature of the not yet classified proteins into the dataset.



Uncharacterized Proteins and Proposed Functional Activities

Roughly 15% of the proteins in the dataset are uncharacterized, yet several interact with other 3TM proteins and, in particular, important membrane complexes. Furthermore, they are localized to specific subcellular locations, such as the ER, and expressed in specific tissues, including the cerebral cortex, testis, and spleen (Table 1). Hence, using bioinformatic analyses and literature research, we can speculate on the activities these uncharacterized proteins are engaged in. For example, we might suspect that FAM8A1 is involved in ER protein folding or targeting due to its localization in the Golgi apparatus, expression in many tissues, and interactions with the fellow 3TM protein EMC3, which is engaged in protein folding, and also HERPUD1, which is involved with ERAD. Recently, it was shown that FAM8A1 has a central role as a cofactor with HERPUD1 in the assembly and activity of the Hrd1 complex, which is engaged in ERAD of aberrant proteins (Schulz et al., 2017). Interestingly, researchers previously determined that FAM8A1, which is inserted within a human endogenous retrovirus, has ubiquitous mRNA expression and a testis-specific transcript present in the haploid phase of spermatogenesis (Jamain et al., 2001). TMCO4 is another uncharacterized protein we might infer is involved in protein targeting or trafficking as it localizes to the ER, is expressed at varying levels in many tissues, and has been annotated from experimental data to interact with VPS29, which is a vacuolar sorting protein that prevents missorting of transmembrane proteins into the lysosomal degradation pathway.


TABLE 1. Selected uncharacterized proteins with interacting proteins.

[image: Table 1]Intriguingly, the three uncharacterized proteins TMEM235, TMEM151A, and TMEM151B exhibit enriched tissue-expression in the cerebral cortex and all are identified in String interaction networks (Szklarczyk et al., 2015) to co-express with MAG, an adhesion molecule that is a myelin-associated glycoprotein, and also with OPALIN, which is the oligodendrocytic myelin paranodal and inner loop protein. TMEM151A and TMEM151B, which both contain a conserved but uncharacterized Pfam domain (PF14857), co-express with TMEM235, but not with each other. TMEM235, as well as TMEM114 which is another uncharacterized 3TM protein, both contain the Claudin_2 conserved Pfam domain (PF13903) and were shown to resolve within the distantly related voltage dependent calcium channel gamma subunits (CACNGs) rather than within the 27 members of the human Claudin family. However, the functional activities of these uncharacterized proteins have yet to be determined, although it is interesting to speculate that with the conserved claudin domain and co-expression with other adhesion and myelin associated proteins, this trio of uncharacterized proteins may be involved as structural components of oligodendrocytic cells or loops.

Piecing together the diverse information on the uncharacterized protein TMEM178B reveals a potentially important protein that exhibits enhanced expression in the cerebral cortex and localizes to vesicles and the nucleoli. It also contains the conserved Claudin_2 Pfam domain (PF13903), of which family members perform diverse functions. In a recent analysis that produced a protein-protein interaction map of the TNF-induced NF-κB signal transduction pathway, TMEM178B was found to interact with two proteins, TNIP2 and TRAF2, which both inhibit or regulate NF-κB signaling and kinase activity and are also involved in apoptotic functions (Van Quickelberghe et al., 2018). Furthermore, TMEM178B-BRAF gene fusions were identified in two primary mucosal malignant melanoma cases, which are more aggressive than cutaneous melanomas (Kim et al., 2017). And another recent study concluded that oncogenic BRAF fusions may be targeted therapeutically by the combination of a MEK inhibitor with a PI3K or CDK4/6 inhibitor (Kim et al., 2017). Hence, while the exact functional activities of TMEM178B remain unknown, results suggest that it may be oncogenic and involved in disease progression, and we might infer that it could be associated with important signaling pathways.



MATERIALS AND METHODS


Homo Sapiens Proteome Retrieval

The Homo sapiens current protein sequences (CCDS_protein.current.faa) using the GRCh38.p7 assembly with consensus coding sequence (CCDS) (Pruitt et al., 2009) annotation was downloaded from the National Center for Biotechnology Information (NCBI) website (National Center for Biotechnology Information, 2018). The following files were also downloaded from this website: CCDS2UniProtKB.current.txt, which gives the UniProtKB identifier corresponding to each CCDS identifier; CCDS_attributes.current.txt, which shows the corresponding gene and various attributes for each CCDS identifier; CCDS2Sequence.current.txt, with information on the nucleotide and protein ID and status in CCDS; and CCDS.current.current.txt, specifying more on CCDS status along with other information. CCDS is a collaborative effort to produce consensus annotation of a standard set of human genes that also includes alternative splicing sequences. The annotation uses manual curation through the Havana (Havana Annotation by Wellcome Sanger Institute, 2018) and RefSeq groups as well as automatic methods from ENSEMBL (Ensembl genome browser 91, 2018) and NCBI computational pipelines.



Transmembrane Prediction

Transmembrane prediction algorithms have difficulty differentiating between N-terminal alpha-helices and cleavable signal peptides. Thus, the protein sequences were assessed using SignalP v4.1 on an installment on the UPPMAX high-performance computing service. The default parameters were used with eukaryotic type of organism and the best method was selected which indicated transmembrane regions might be present. The mature sequences with the signal peptides excised were collated and evaluated with TOPCONS-single (Hennerdal and Elofsson, 2011) transmembrane prediction web server to assess membrane topology, including the number of membrane-spanning helices and the orientation of the N- and C-terminals. Prediction methods use different algorithms to discriminate transmembrane helices which results in possibly different numbers of helices within a protein. To improve the accuracy of transmembrane prediction methods, a consensus or majority decision using several different algorithms is preferred. TOPCONS-single, which is suitable to use for large proteome datasets, is a consensus method that incorporates multiple methods and uses a hidden-Markov model to estimate the consensus topology for a predicted transmembrane protein. The default methods used were SCAMPI-single (Bernsel et al., 2008), S-TMHMM (Viklund and Elofsson, 2004), HMMTOP (Tusnády and Simon, 2001), and MEMSAT (Jones et al., 1994). The resulting proteins identified as 2TM 3TM, and 4TM were retrieved. This included canonical sequences as well as isoforms. In early 2019 SignalP v5.0 was released that improved signal peptide predictions by using deep neural networks (Armenteros et al., 2019b) and the original sequence versions of the 2TM, 3TM, and 4TM groups of proteins were re-evaluated using SignalP v5.0 and then assessed with TOPCONS2.0. This transmembrane prediction software is also a consensus membrane prediction server, however, it is a more recent iteration of the TOPCONS series and can more successfully predict membrane topologies (Tsirigos et al., 2015). Furthermore, TOPCONS2.0 was chosen due to the robust benchmark sets used in assessing the software which posited ∼80% accuracy in predicting transmembrane proteins (Tsirigos et al., 2015), whereas other resources used smaller benchmark sets to state possibly higher accuracy. As reliability is still an issue for any membrane prediction resource, we further attempted to assess questionable proteins and protein families in the dataset through corroboration with other transmembrane prediction resources such as the Human Transmembrane Proteome database (Dobson et al., 2015), and also the human protein atlas which also uses a majority consensus method to determine signal peptides and transmembrane topology (Fagerberg et al., 2010). Additionally, comparisons of specific proteins or domains to experimentally determined 3D structures were evaluated. SignalP v5.0, SignalP v4.1, and TOPCONS2 were used to assess the presence of signal peptides and N-terminal topology. Several localization prediction resources were used to asses predicted versus annotated localization regions. ERPred uses split amino acid composition as support vector machine input to predict ER resident proteins (Kumar et al., 2017). DeepLoc uses sequence information with deep neural networks to predict subcellular localization of proteins (Almagro Armenteros et al., 2017). TargetP-2.0 uses deep learning to predict N-terminal signal peptides and mitochondrial transit peptides among others (Armenteros et al., 2019a). The predicted 3TM dataset was assessed for canonical or alternative splicing sequences using the UniProt identifiers (obtained from CCDS2UniProtKB.current.txt), where isoforms typically have an additional number at the end of the identifier. The canonical sequence is determined as the most prevalent, the most similar to orthologous sequences, the amino acid properties in the sequence, or else the longest sequence.



Protein Annotation and Information

Universal protein resource, UniProt, is a central repository for protein annotation data with both manually curated and automatically analyzed information (Consortium, 2015). Protein annotations for the canonical 3TM proteins were obtained from the website and included: review status, transporter classification number, EC, GO annotation terms, and protein family information. The 3TM proteins were also searched against the Pfam (Finn et al., 2016) database (v31) using an installment on the UPPMAX high-performance computing service. Pfam is a collection of protein families and domains, and also higher-level groupings of related entries called clans, and are represented by multiple sequence alignments and hidden Markov models. The IUPHAR/BPS Guide to Pharmacology (Harding et al., 2018) targets_and_families.csv file was downloaded and evaluated to aid in functional classifications of the dataset.

The Jensen lab DISEASES database (Pletscher-Frankild et al., 2014) is a resource that integrates evidence by assigning confidence scores on disease-gene associations from automatic text mining, manually curated literature, cancer mutation data, and genome-wide association studies. The human_disease_knowledge_filtered.tsv file was downloaded from their website and evaluated for gene-disease associations with the 3TM dataset. Additionally the DisGeNET drug encyclopedia was also utilized to assess genes associated to human diseases (Piñero et al., 2017). The evidence metrics limited, moderate, and strong were used to identify relevant associations. To identify possible drug targets in the dataset, the DrugBank annotations that were obtained via UniProt were further investigated (Wishart et al., 2017). Furthermore, an updated dataset from Rask-Andersen et al. (2014) that provides curated information for all current targeted as well as investigative proteins in clinical trials was obtained (Attwood et al., 2018).

The Kyoto Encyclopedia of Genes and Genomes, KEGG, is a database resource that assigns functional meaning to genes and genomes at molecular and higher levels (Kanehisa et al., 2017). BlastKOALA, which is the KEGG webserver for automatic annotation of query sequences, was used to obtain information on the pathways, or molecular interactions and relations, for networks that included: metabolism, genetic information processing, environmental information processing, cellular processes, organismal systems, human diseases, and drug development.



Gene Enrichment Analyses: Gene Ontology Annotation and TissueEnrich Analyses

The PANTHER Classification System (version 14.1; released July 11, 2019) (Mi et al., 2019) overrepresentation test was used to analyze gene enrichment in the 3TM dataset in comparison to the entire human membrane proteome. PANTHER is a comprehensive resource for the functional classification of genes using the GO annotations (released July 03, 2019). The PANTHER Overrepresentation Test uses the Fisher’s exact test, which assumes a hypergeometric distribution that is more accurate for smaller gene lists, and also uses the Benjamini-Hochberg False Discovery Rate (FDR) correction (p < 0.05) to control the false positive rate in the statistical test results (Mi et al., 2019). The annotation data sets included PANTHER GO-Slim Molecular Function, PANTHER GO-Slim Biological Process, and PANTHER GO-Slim Cellular Component, as well as the GO complete sets. The Reactome pathways (version 65; released March 12, 2019) data set and also PANTHER protein classes (version 14.1; released March 12, 2019) were also used. QuickGO annotations were also applied for additional protein annotation (Binns et al., 2009; Huntley et al., 2015). The reference protein list for the homo sapiens membrane proteome was obtained from (Attwood et al., 2017).

The recently released website resource TissueEnrich: Tool for tissue-specific gene enrichment in human and mouse (Jain and Tuteja, 2019) was used to analyze tissue-specific gene enrichment in the 3TM dataset in comparison to the human membrane proteome. TissueEnrich defines tissue-specific genes using RNA-Seq data from the human protein atlas, GTEx, and mouse ENCODE data sets. Tissue-specific genes are defined as: Not Expressed: Genes with an expression level less than 1 (TPM or FPKM) across all the tissues; Tissue Enriched: Genes with an expression level greater than or equal to 1 (TPM or FPKM) that also have at least five-fold higher expression levels in a particular tissue compared to all other tissues; Group Enriched: Genes with an expression level greater than or equal to 1 (TPM or FPKM) that also have at least five-fold higher expression levels in a group of 2–7 tissues compared to all other tissues, and that are not considered Tissue Enriched; and Tissue Enhanced: Genes with an expression level greater than or equal to 1 (TPM or FPKM) that also have at least five-fold higher expression levels in a particular tissue compared to the average levels in all other tissues, and that are not considered Tissue Enriched or Group Enriched. TissueEnrich uses the hypergeometric test to calculate the enrichment of tissue-specific genes in the 3TM data set and the Benjamini-Hochberg correction for multiple hypotheses (Jain and Tuteja, 2019). The parameter P-adjusted was selected in the Histogram Plot Options. The human protein atlas dataset was used in the enrichment tests.



Uncharacterized Proteins

The uncharacterized proteins were investigated further using the Cell Atlas (Thul et al., 2017) to obtain subcellular localizations where possible. String Protein-Protein Interaction Networks (Szklarczyk et al., 2015) and IntAct Molecular Interaction Database (Orchard et al., 2014) were utilized to retrieve interacting proteins with emphasis selected for other 3TM proteins within the database. The functions of the interacting proteins were obtained from UniProt (Consortium, 2015).

All analysis and classifications were performed using local Python and Perl script and SQL databases (sqlite3). Adobe Illustrator CS6 was used for the figures.



CONCLUSION

This analysis characterizes the structurally similar 3TM group and assimilates information on statistically relevant functional activities along with cellular localizations, tissue enrichment patterns, and protein-protein interaction networks to describe the prevailing functional activities of this group of proteins. Trispanins contain many evolutionarily conserved proteins that are predominantly localized to intracellular organelles and specifically to the ER. This group of proteins is primarily involved in aspects of cellular membrane composition and trafficking systems including membrane synthesis, protein trafficking, structural components, and are members of important membrane complexes. Further, the 3TM dataset contains the large and important ionotropic glutamate receptor superfamily which is involved in fast signal transduction in the brain. The methodology employed in this study uses bioinformatic analyses to identify uncharacterized proteins potentially involved in significant activities or disease pathways and provides means to reasonably speculate on the functional activities of several intriguing uncharacterized proteins.
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Lipid-transfer proteins (LTPs) were initially discovered as cytosolic factors that facilitate lipid transport between membrane bilayers in vitro. Since then, many LTPs have been isolated from bacteria, plants, yeast, and mammals, and extensively studied in cell-free systems and intact cells. A major advance in the LTP field was associated with the discovery of intracellular membrane contact sites (MCSs), small cytosolic gaps between the endoplasmic reticulum (ER) and other cellular membranes, which accelerate lipid transfer by LTPs. As LTPs modulate the distribution of lipids within cellular membranes, and many lipid species function as second messengers in key signaling pathways that control cell survival, proliferation, and migration, LTPs have been implicated in cancer-associated signal transduction cascades. Increasing evidence suggests that LTPs play an important role in cancer progression and metastasis. This review describes how different LTPs as well as MCSs can contribute to cell transformation and malignant phenotype, and discusses how “aberrant” MCSs are associated with tumorigenesis in human.
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INTRODUCTION

Lipid-transfer proteins (LTPs) are highly conserved lipid carriers that bind monomeric lipids in a hydrophobic pocket, and transfer them between donor and acceptor membranes through an aqueous phase (Zilversmit, 1983; Holthuis and Levine, 2005). Based on their lipid binding specificity, LTPs can be divided into several subgroups including: (1) sphingolipid-, (2) sterol-, and (3) phospholipid-transfer proteins (Lev, 2010). A close proximity between the donor and the acceptor membranes, as occurs at MCSs, reduces the diffusion distance of LTPs and accelerates intermembrane lipid transport. Although LTPs were discovered in the late 1970s (Wirtz, 1974; Wirtz et al., 1980) and MCSs already observed by electron microscopy in the 1950s (Porter, 1953), their physiological functions and regulatory properties have only been emerged in the last few years (Levine, 2004; Selitrennik and Lev, 2016).

Numerous studies on LTPs and MCSs from the last five years highlighted their important roles in regulating intracellular lipid distribution and signaling, and demonstrated the diversity of MCSs, their dynamics, tethering mechanisms, and various physiological functions (Saheki and De Camilli, 2017). These studies suggest that LTPs and MCSs are involved in central cellular processes, including cell growth and migration, cellular metabolism, and proteostasis (Sassano et al., 2017). Abnormal regulation of these processes is frequently associated with tumorigenesis, implying that LTPs and MCSs can contribute to tumor development and metastasis.

Indeed, increasing evidence suggests that LTPs can modulate local lipid composition of membranes, and thus, influence their biophysical properties (fluidity, curvature) as well as the content of lipid second messengers (van Meer, 1993; Levine, 2007; Van Meer et al., 2008). Of the various lipid second messengers, phosphoinositides, and in particular, phosphatidylinositol-3,4,5-trisphosphate (PIP3) and its precursor phosphatidylinositol-4,5-bisphosphate (PIP2) are tightly associated with human cancer (Toker, 2002; Brown and Toker, 2015). Other signaling lipids such as sphingolipids and fatty acids also play a role in cancer progression and metastasis (Luo et al., 2018), and further information on the function of lipids and lipid metabolism in cancer can be found elsewhere (Murai, 2015; Kim et al., 2016; Long et al., 2018). In this review, we discuss the role of several LTPs, including phosphatidylinositol (PI)-transfer proteins (PITPs) and steroidogenic acute regulatory protein (StAR)-related lipid transfer (START family) (Soccio and Breslow, 2003; Alpy and Tomasetto, 2005) in human cancer, and further describe the heterogeneity of MCSs, their function in lipid transport and calcium signaling, and their implication in cancer biology. Additional information related to LTPs and MCSs had been previously described in many excellent reviews and are not covered here (Cohen et al., 2018; Prinz et al., 2019; Scorrano et al., 2019; Wong et al., 2019).



PHOSPHOINOSITIDES AND CANCER

All phosphoinositides are derivatives of PI, a phospholipid that is synthesized in the ER and is composed of a hydrophobic diacylglycerol (DAG) coupled to inositol 1-monophosphate ring (Lev, 2012). Phosphorylation of the inositol ring at its 3, 4, and 5 hydroxyl groups, either at single site or in combination, results in the seven different phosphorylation states of membrane phosphoinositides, including PI3P, PI4P, PI5P, PI(3,4)P2, PI(3,5)P2, PI(4,5)P2, and PI(3,4,5)P3. These phosphoinositides are distinctly distributed between intracellular organelles and play different cellular functions (Balla, 2013). PI(3)P and PI(3,5)P2 are considered as endolysosomal species, PI4P is enriched in the trans-Golgi network (TGN) and PI5P within the nuclei, whereas PI(4,5)P2, PI(3,4)P2, and PI(3,4,5)P3 are mainly found at the plasma membrane (PM) (De Craene et al., 2017). The production and maintenance of these different phosphoinositides is mediated by a network of interconverting enzymes including phosphoinositide-specific kinases and phosphatases.

Although phosphoinositides are minor phospholipids of the PM, PI(4,5)P2, which plays a central role in cellular signaling, is considered to be the most abundant. It undergoes rapid hydrolysis by phospholipase C (PLC) in response to multiple external stimuli to generate DAG and inositol-1,4,5-trisphosphate (IP3) second messengers. In addition, it binds to proteins that regulate actin polymerization, cell adhesion and cell-cell contact, and consequently affects cancer cell motility (Bunney and Katan, 2010). Most importantly, PI(4,5)P2 is phosphorylated by PI3K (phosphatidylinositol 3-kinase) to generate PI(3,4,5)P3, an important phosphoinositide that regulates cell survival, proliferation and growth. PI(3,4,5)P3 can be dephosphorylated by the 3′-phosphatase PTEN to terminate PI3K signaling. Notably, activating mutations in the catalytic domain of PI3K, i.e., PIK3CA, and loss-of-function mutations in PTEN are among the most common genetic alterations found in human cancer, demonstrating the central role of this phosphoinositide in cancer biology (Engelman, 2009). In addition, AKT which is activated by PI(3,4,5)P3, is amplified, overexpressed or hyperactivated in multiple human cancers (Altomare and Testa, 2005). Given the central role of PI(3,4,5)P3 in human cancer, it is not surprising that inhibition of PI(3,4,5)P3 production and/or its downstream effectors utilizing kinase inhibitors to PI3K, AKT, or mTOR (mechanistic target of rapamycin) have been utilized as promising strategies for cancer therapy (Engelman, 2009).

Recent studies, however, suggested that several phosphoinositide-transfer proteins also regulate PI(3,4,5)P3 levels and are implicated in cancer progression and metastasis. We discuss a few examples including, PITPα and β, Nir2, PITPNC1, and TIPE3.


PITPs

In humans, there are five PITPs that can be classified into two major groups: small PITPs, which include PITPα, PITPβ, and PITPNC1, and large multi-domains proteins including Nir2 and Nir3 (Figure 1A; Lev, 2004). The PI-transfer domain is highly conserved in all human PITPs and can transfer PI and phosphatidylcholine (PC), whereas few PITPs can also transfer phosphatidic acid (PA) and sphingomyelin (SM) (Li et al., 2002; Yadav et al., 2015).


[image: image]

FIGURE 1. Phosphatidylinositols transfer proteins. (A) PI-transfer proteins. The five human PI-transfer proteins can be divided into small proteins consisting of a single PI-transfer domain (PITD) including PITPα/β and PITPNC1, and the multi-domains containing proteins Nir2 and Nir3. Shown are the PITD, the FFAT motif, DDHD, and the C-terminal LNS2 (Lipin/Nde1/Smp2) domain. Glycine rich region is found only in Nir3 (Lev, 2004). PITPNC1 phosphorylation sites (S274 and S299), which bind 14-3-3, are represented as red dots on PITPNC1 protein (Halberg et al., 2016). (B) TIPE3, a PIP2, and PIP3 transfer protein. TIPE is the only protein that is known to transfer phosphoinositides. It preferentially binds PIP2 and PIP3, and contributes to increase their levels at the PM by mediating efficient supply of PIP2 and presenting it to PI3K to produce PIP3 (Fayngerts et al., 2014). The numbers at the right side of each protein indicate the length of each protein in amino acids.


The involvement of PITPα and β in phosphoinositides production, turnover and signaling has been demonstrated by many studies employing reconstituted systems, cell-free assays and intact cells. Collectively, these studies showed that PITPα and β can enhance PI(4,5)P2 and PI(3,4,5)P3 production (Cockcroft and Garner, 2013). In addition, it was shown that overexpression of PITPα in mouse fibroblasts markedly enhanced cell proliferation (Schenning et al., 2004), and that depletion of Nir2 by shRNA substantially reduced PI(4,5)P2 levels at the plasma membrane and consequently PI(3,4,5)P3 production in response to growth factor stimulation (Chang et al., 2013; Kim et al., 2013; Chang and Liou, 2015). Low levels of these phosphoinositide second messengers were accompanied by reduced AKT and ERK1/2 phosphorylation, and as a result, inhibition of cell migration and invasion (Keinan et al., 2014). Nir2 depletion markedly attenuated the migration and invasion of mammary epithelial cells and human breast carcinoma and induced mesenchymal-to-epithelial transition (MET) of highly metastatic breast cancer cells. Consistent with these findings, we showed that Nir2 level was upregulated during EMT, and its depletion in breast cancer blocked lung metastasis in animal models (Keinan et al., 2014). We also observed high correlation between Nir2 expression and tumor grade as well as poor disease outcome of breast cancer patients.

PITPNC1 is also implicated in cancer metastasis, but in contrast to PITPα and β, has a unique C-terminal extension with two serine phosphorylation sites, which provide docking sites for 14-3-3 protein (Garner et al., 2011). It was proposed that 14-3-3 binding protects PITPNC1 from degradation and inhibits its lipid transfer activity (Cockcroft and Garner, 2012). While further studies should explore this hypothesis, currently there is strong evidence that PITPNC1 is associated with different human cancers. It is highly expressed in several cancers, and its overexpression significantly correlates with metastatic progression of breast, melanoma, and colon cancers. PITPNC1 was identified as a target gene of miR-126, a metastasis suppressor microRNA (Png et al., 2012). It is amplified in a large fraction of human breast cancers, and its depletion by shRNA markedly attenuated metastasis in animal models (Halberg et al., 2016). Mechanistic studies suggest that PITPNC1 binds PI4P and enhances the secretion of pro-invasive and pro-angiogenic mediators, through recruitment of RAB1B (Ras-related protein Rab-1B) and the PI4P-binding protein GOLPH3 (Golgi phosphoprotein 3) to the TGN (Halberg et al., 2016). Interestingly, PITPNC1 was also found to bind and transfer PA but not PC (Garner et al., 2012), implying that it has unique lipid binding and/or transfer capabilities.



TIPE3

TIPE3 belongs to the TNFAIP8 (tumor necrosis factor-alpha-induced protein 8, or TIPE) family of proteins which are implicated in tumorigenesis and inflammation (Moniz and Vanhaesebroeck, 2014). It contains a C-terminal TIPE2 Homology (TH) domain, consisting of a large hydrophobic cavity that accommodates phospholipid molecules (Fayngerts et al., 2014). Similarly to the other TNFAIP8 members (TIPE1, TIPE2, and TNFAIP8), TIPE3 can bind a number of phosphoinositides, including PI(4,5)P2, PI(3,5)P2, PI(3,4)P2, and PI(3,4,5)P3. It preferentially captures and transfers PI(4,5)P2 and PI(3,4,5)P3 and increases their levels at the PM, thereby promoting AKT and ERK pathways activation (Fayngerts et al., 2014). It was proposed that TIPE3 functions as a lipid-presenting protein and enhances PI(3,4,5)P3 production by PI3K (Figure 1B).

TIPE3 is highly expressed in several human cancers including lung, cervical, colon, esophageal and breast. Its overexpression enhances cell growth, migration and invasion in vitro and tumor growth in animal models, whereas its knockdown has opposite effects (Fayngerts et al., 2014; García-Tuñón et al., 2017). These observations suggest that TIPE3, and possibly its other family members, are a new class of phosphoinositide transfer proteins, which regulate tumor growth and progression.



START PROTEINS AND THEIR INVOLVEMENT IN HUMAN CANCER

In mammals, there are fifteen proteins containing the START (StAR-related lipid-transfer) domain, which can be grouped into six subfamilies according to sequence similarities and lipid binding specificities. The STARD1/D3 subfamily has specificity for cholesterol, STARD4/D5/D6 subfamily for cholesterol or oxysterol, and STARD2(PCTP)/D7/D10/D11 subfamily for phospholipids or sphingolipids (Figure 2). The lipid-binding specificity of the other three subgroups is unknown, but they share other functional domains. STARD8/12/13 subfamily shares a putative Rho-GTPase domain, STARD14/15 subfamily has thioesterase activity, and STARD9 has a kinesin motor function (Alpy and Tomasetto, 2005). Interestingly, the START domain is always located at the C-terminal of the START proteins, possibly to facilitate lipid binding, transfer and release. Few START proteins contain membrane targeting motifs that mediate their interaction with different organelles. STARD1, for example, has a mitochondrial targeting motif and STARD3 has a MENTAL (MLN64 NH(2)-terminal) domain for late endosome (LE) targeting, while STARD11/CERT (ceramide transfer protein) contains a PH (pleckstrin homology) domain for PI4P binding at the Golgi complex. STARD3 and STARD11 both contain a FFAT (two phenylalanines in an acidic tract) motif between their N-terminal membrane targeting determinants and the C-terminal START domain (Figure 2). Almost all START proteins have been implicated in either in cancer progression or suppression (Olayioye et al., 2004, 2005; Durkin et al., 2007a, b; Clark, 2012; Vassilev et al., 2015). Here we focus on the FFAT motif-containing proteins, STARD3 and STARD 11, and discuss their role in cancer.
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FIGURE 2. The START proteins. Fifteen START proteins in human are grouped into six subfamilies. Three groups share the indicated lipid binding/transfer specificity of START domain, while the other three groups share the indicated functional domains. All members have their START domain at the C-terminal region. Among 15 START proteins, two of them, STARD3 and CERT, contain FFAT motif. STARD3, STARD10, STARD7, and STARD5 are found to be highly expressed and connected to poor prognosis in various cancers including breast cancer, gestational trophoblastic tumor (Clark, 2012). On the other hand, the expression of all members of Rho-GTPase subgroup, STARD8/12/13, STARD9, and STARD15 are reported to be decreased in cancer (Clark, 2012). The number at the right side of each C-terminal represents the length of each protein in amino acids.



STARD3

STARD3 was originally named metastatic lymph node clone 64 protein (MLN64) since it was discovered in a screen designed to identify human genes that were amplified or overexpressed in aggressive breast tumor. The screen used subtractive hybridization method and identified clone number 64 as a gene that is overexpressed in all HER2 positive breast tumors (Tomasetto et al., 1995). Subsequently, it was shown to be co-amplified and co-expressed with HER2 in various breast cancer cell lines and in about 10–25% breast cancers (Bièche et al., 1996; Vassilev et al., 2015). STARD3 gene is located in the minimal amplicon of HER2-positive breast cancers. It is co-amplified with HER2 (Alpy et al., 2003) and always overexpressed with HER2 in breast cancer cells (Pollack et al., 1999; Perou et al., 2000; Vincent-Salomon et al., 2008).

Currently, it is unclear how STARD3 enhances tumorigenesis of HER2-positive breast cancer and how the two proteins cooperate. However, several possibilities could be postulated; STARD3, via its cholesterol transfer activity, plays a central role in redistribution of cholesterol between the ER and endosomes. It interacts with the ER via its FFAT motif and with endosome via its MENTAL domain (Figure 3). The MENTAL domain shares structural homology with tetraspanin superfamily consisting of four transmembrane helices. This domain does not have any typical late endosome (LE)-targeting motifs, however, mutagenesis analysis strongly suggests that the MENTAL domain is crucial for STARD3 targeting to LE (Alpy et al., 2013). When STARD3 is amplified or overexpressed in HER2-positive breast cancer, the endosomal membranes are wrapped by the ER, leading to rigid and static ER-LE MCSs, thus losing their transient and dynamic features. Interestingly, stacking of ER membranes is also observed by ectopic overexpression of LTP proteins containing FFAT motif together with vesicle-associated membrane protein-associated proteins (VAPs) which produces abnormal ER structures called karmellae (Amarilio et al., 2004). The ER-LE static structures might lock the LE and inhibit their maturation to lysosomes (Figure 3). Under these conditions, lysosomal degradation of cell surface receptors, including HER2 and other growth factors receptors would be impaired, receptors will be sorted back to the PM and signal termination will be prevented, leading to uncontrolled cell growth. In this way, STARD3 may enhance the progression of HER2-positive cancer. Indeed, it was shown that STARD3 overexpression increases the proliferation rates of HER2-positive breast cancer cells, while its knockdown has an opposite effect (Wilhelm et al., 2017).
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FIGURE 3. Endoplasmic reticulum-endosome MCSs in normal and cancer cells overexpressing STARD3. The sterol-transfer protein STARD3 promotes the formation of MCSs between late endosomes (LE) and the endoplasmic reticulum (ER), where it mediates cholesterol transport. Tethering of ER and LE occurs through the interaction of the LE-membrane anchored STARD3 (via its FFAT-like motif) with the integral ER proteins VAPs. In cancer cells, overexpression of STARD3 possibly induces the formation of aberrant LE-ER MCSs thereby inhibiting further endosomal maturation. Endosomal maturation is commonly associated with Rab5 to Rab7 switch and with PI3P to PI(3,5)P2. MSP, major sperm protein domain.




CERT (STARD11)

CERT, a 68-kDa cytosolic protein, also known as collagen type IV alpha-3-binding protein (Col4A3BP) or STARD11, transfers ceramide from the ER to the Golgi, where various modifications take place to produce complex sphingolipids (Hanada et al., 2003). CERT via its N-terminal PH domain binds PI4P at the Golgi and via its FFAT motif interacts with the ER-resident VAP proteins to transfer ceramide through the ER-Golgi MCSs (Kawano et al., 2006; Peretti et al., 2008). The START domain of CERT is exclusively specific for ceramide. The significance of CERT in cell physiology and cancer progression is mainly associated with its ceramide transfer activity, as ceramide is a precursor of sphingolipids (Figure 4).
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FIGURE 4. Phosphoinositides, sphingolipids, and cholesterol regulate cell growth, motility, and invasion. The depicted cellular pathways are regulated by phosphoinositeds (PIns), sphingolipids, and cholesterol and can influence cell growth, motility, invasion, or apoptotic cell death. LTPs are labeled in blue and include PIns-transfer proteins, ceramide transfer protein (CERT), and various cholesterol transfer proteins of the START and OSBP/ORP family. PLC, phospholipase C; PKC, protein kinase C; DAG, diacylglycerol; S6K, S6 kinase; SM, sphingomyelin; SMS, SM synthase; S1P, sphingosine 1-phosphate; C1P, ceramide 1-phosphate; LPP, lipid phosphate phosphatase; SPP-1, S1P phosphatase-1; CERK, ceramide kinase; SphK, sphingosine kinase.


Sphingolipids are made up of a large class of lipid species having sphingosine as their backbone. They are involved in maintaining the structural integrity and fluidity of cell membranes and in regulating various cellular processes such as proliferation, migration, angiogenesis and inflammation (Kunkel et al., 2013; Morad and Cabot, 2013; Kreitzburg et al., 2018). Ceramide, an N-acylated form of sphingosine, is the simplest type of sphingolipid; it serves as a precursor of more complex sphingolipids, including sphingomyelin (SM), glycosylceramide and ceramide 1-phosphate (C1P), which are produced at the Golgi by SMS (sphingomyelin synthase), UGCG (UDP-glucose ceramide glucosyltransferase) and CERK (ceramide kinase), respectively (Yamaji and Hanada, 2015).

Sphingomyelin, which is synthesized by SMS from PC and ceramide, is a key component of lipid rafts, affects membrane fluidity and is involved in signal transduction. Of note, CERT was first isolated as a factor that recovers SM levels in a SM-deficient cell line (Hanada et al., 2003). Glycosylceramide is synthesized by UGCG via transferring a glucose residue from UDP-glucose to ceramide. It serves as a precursor for lactosylceramide, which is the precursor of most of glycosphingolipids except galactosylceramide and its derivates. C1P is a phosphorylated form of ceramide and it functions as an adaptor for type IVA cytosolic phospholipase A2 (cPLA2) to produce pro-inflammatory eicosanoids. Among the three sphingolipids, SM is mostly affected by CERT defects, although the other two are also influenced (Prestwich et al., 2008; Yamaji and Hanada, 2014, 2015).

The central role of ceramide in sphingolipid metabolism is also demonstrated in sphingosine-1-phosphate (S1P) pathway, which regulates multiple cellular processes such as proliferation, neovascularization, migration, and invasion. Ceramide, sphingosine and S1P comprise the three core lipids of S1P pathway, which are rapidly interconverted in response to various external stimuli such as growth factors, inflammation and stress. Ceramidase converts ceramide to sphingosine, which is further modified by SphK (sphingosine kinase) to S1P or reversed to ceramide by ceramide synthase (Figure 4). ABC transporters and Spns2 (spinster homolog 2) can export S1P outside the cell, where it binds to S1PR1 to 5 (sphingosine-1-phosphate receptor), and induces their signal transduction in both autocrine and paracrine manner (Spiegel and Milstien, 2003).

While ceramide induces apoptosis, its metabolites induce signaling cascades that promote cell proliferation or migration (Figure 4). Therefore, CERT can either promote or inhibit cancer progression depending on cellular context. In triple-negative breast cancer (TNBC), for example, CERT depletion promotes cancer progression (Heering et al., 2012). It was proposed that low levels of CERT in TNBC concomitant with reduced levels of SM and cholesterol at the PM, increased PM fluidity and caused high activation of EGFR (epidermal growth factor receptor) to enhance tumorigenesis (Heering et al., 2012). On the other hand, CERT depletion was beneficial for cancer therapy in colorectal and HER2-positive breast cancer cell line (Lee et al., 2012). CERT is highly expressed in HER2-positive breast cancer, and its depletion induced ceramide accumulation in the ER and concomitant changes in genes expression. One of the genes induced by CERT depletion was LAMP2 (lysosomal associated membrane protein-2) which mediated paclitaxel sensitization via induction of autophagic cell death (Lee et al., 2012). It appears that inhibition of CERT could lead to tumor suppression in some cancers and tumor progression in others, and thus could represent a potential target for precision medicine. Similar to CERT, other LTPs that regulate phosphoinositides, shingolipids and cholesterol can affect different signaling and metabolic pathways to enhance cell survival, growth and motility or to inhibit cell death, and consequently could affect cancer progression, metastasis and/or response to treatment (Figure 4).



MEMBRANE CONTACT SITES

MCSs are defined as small cytosolic gaps of ∼10–25 nm between the ER membranes and PM [plasma membrane-associated membranes (PAM)], the mitochondria [mitochondria-associated ER membranes (MAM)], or other intracellular organelles including endosomes, Golgi complex, peroxisomes, lysosomes and lipid droplets (Levine, 2004; Wong et al., 2018). These contact sites enable the transport of lipids, calcium ions and different metabolites by non-vesicular transport mechanisms, and thus, provide a platform for inter-organellar communication (Holthuis and Levine, 2005). MCSs are highly dynamic and heterogenous structures formed by specialized tethering proteins that bridge two membrane compartments (Lev, 2010). Multiple organelle-specific tethering complexes have been isolated (Scorrano et al., 2019) and many of them contain the integral ER-membrane proteins, VAP-A and -B (Lev et al., 2008).

VAP proteins interact via their major sperm protein (MSP) domain with FFAT motif-containing proteins, including the LTPs CERT, OSBP (oxysterol-binding protein 1) and Nir2 (Hanada, 2006; Peretti et al., 2008), and play major roles in MCSs formation between the ER and other cellular membranes (Murphy and Levine, 2016). Nevertheless, VAPs depletion has no profound effects on cell viability and contacts between ER and other organelles (Stoica et al., 2014; Dong et al., 2016), implying that other proteins are involved. Indeed, many tether proteins have been identified in the last few years, including the ER-anchored protein MOSPD2 (motile sperm domain-containing protein 2), which also interacts with FFAT-containing proteins and is implicated in MCSs formation (Di Mattia et al., 2018). Notably, MOSPD2 and VAP proteins have been shown to interact and possibly form hetero-oligomers (Huttlin et al., 2017).

The molecular components of the different MCSs, their function in communication and metabolic exchanges, make MCSs a subject of great interest in cellular signaling and metabolism in both physiological conditions and pathological contexts, such as cancer and neurodegeneration. Here, we address the features of specific types of MCSs (involving mitochondria, endosomes, and lysosomes) with a focus on their role as key platforms for calcium signaling and lipid transfer, especially in cancer.



MITOCHONDRIA-ASSOCIATED ER MEMBRANES (MAM) AND ITS ROLE IN CANCER

Mitochondria-associated ER membranes (MAM) specific MCSs that create an intimate communication between ER and mitochondria and generate micro-domains in which the concentration of Ca2+ is much higher than the cytosol (Csordás et al., 2010), allowing for rapid mitochondrial Ca2+ uptake through the low affinity (KD of 20–30 μM) channel of the mitochondrial calcium uniporter (MCU) (Baughman et al., 2011; De Stefani et al., 2011). Calcium uptake through the MCU complex covers essential roles in regulating energy status, signaling events and survival (Mammucari et al., 2016; Penna et al., 2018).

In the mitochondrial matrix, Ca2+ controls the activity of the three dehydrogenases of the Krebs cycle and, thus, the overall synthesis of ATP. Cancer cells, which require high energy for growth, commonly turn their energy production from oxidative phosphorylation to glycolysis (Warburg effect) (Schwartz et al., 2017). Although the amount of ATP produced via glycolysis is lower than through oxidative phosphorylation, it provides a selective advantage to cancer cells due to significantly higher glycolytic rate, supporting tumor growth and progression. Such a metabolic switch from aerobic metabolism to glycolysis has been linked to alterations of Ca2+ signaling at the MAM (Bittremieux et al., 2016). Dysregulation of calcium import at MAM can therefore severely affect tumorigenesis through two critical mechanisms: cellular metabolism and cell death pathways (Figure 3).

The current concept is that Ca2+ overload in the mitochondria leads to apoptosis, whereas basal level of Ca2+ enhances tumorigenesis. Indeed, several compounds with anti-tumor activity act by promoting mitochondrial calcium overload and consequently cell death, which can be inhibited by MCU blockers (Garcia-Prieto et al., 2013; Madreiter-Sokolowski et al., 2016). Likewise, inhibition of mitochondrial Ca2+ uptake enhances resistance to apoptotic stimuli in colon, cervical and prostate cancers, and increases cancer cell survival (Cui et al., 2019). However, in MDA-MB-231 breast carcinoma, MCU downregulation reduced tumor growth and metastasis, implying that mitochondrial Ca2+ uptake enhanced tumorigenesis of some cancers (Tosatto et al., 2016).

Calcium is released from the ER through the IP3R, which is tethered to the mitochondrial VDAC1 via the GRP75 linker (Szabadkai et al., 2006; Figure 5). Several oncogenes modulate IP3R activity by post-translational modification or direct interaction. Phosphorylation of IP3R by AKT inhibits Ca2+ release and protects cancer cells from apoptosis (Szado et al., 2007). Similarly, interaction with the anti-apoptotic proteins Bcl-2 and Bcl-XL, which are frequently overexpressed in cancers (Delbridge et al., 2016), suppresses ER Ca2+ release to prevent apoptosis (Huang et al., 2013; Monaco et al., 2015; Morciano et al., 2018).
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FIGURE 5. Mitochondria-associated ER membranes in normal versus cancer cells. Schematic cartoon illustrating ER-mitochondria (MAMs) tethering proteins. MAMs regulate lipid transfer and play an important role in Ca2+ homeostasis by orchestrating Ca2+ shuttling from ER to mitochondria. Normal cells rely on oxidative phosphorylation for energy production, and possess normal MAM configuration, which promotes apoptotic cell death in response to calcium overloading. Conversely in cancer cells, which use the glycolytic pathway to produce ATP, expression level of tethering proteins is altered and “aberrant” MAMs are formed. In most cases, the ER-mitochondria contact is reduced and, hence, also the mitochondrial calcium uptake, favoring cell survival and resistance to chemotherapeutic drugs. Multiple proteins are involved in ER-mitochondria tethering (Sassano et al., 2017), those that are described in the text and the figures are: TMX1, thioredoxin related transmembrane protein 1; PTPIP51, protein tyrosine phosphatase-interacting protein 51; VAPB, VAMP-associated protein B; Mfn1/2, Mitofusin 1/2; PERK, protein kinase RNA-like ER kinase; GRP75, glucose-regulated protein 75; IP3R, IP3 (inositol 1,4,5-trisphosphate) receptor; VDAC, voltage-dependent anion channel; PACS2, phosphofurin acidic cluster sorting protein 2.


Different tether proteins have been postulated for MAMs formation and maintenance (Figure 5). Homo- and heterotypic interaction of Mitofusin 1 (MFN1) and 2 (MFN2) was initially proposed as a tether for MAM (Figure 5; De Brito and Scorrano, 2008). Despite both Mitofusins are transmembrane GTPases involved in mitochondrial fusion, MFN1 is localized to the outer mitochondrial membrane, while MFN2 is found both in the ER and mitochondria, largely present at MAM (De Brito and Scorrano, 2008; Naon et al., 2016). High MFN2 level in cancer cells was proposed to increase MAM and enhance ER-mitochondria Ca2+ flux and hence, susceptibility to apoptosis (Gautier et al., 2016; Cui et al., 2019). Interestingly, MFN2 also physically interacts with PERK (protein kinase RNA-Like ER kinase) (Muñoz et al., 2013), which also functions as a tether at MAM extensions (Verfaillie et al., 2012). In cancer cells, PERK may promote or suppress tumor progression. In the mesenchymal subtype of TNBC, PERK signaling enhanced invasion and metastasis through interaction with the transcription factor CREB3L1 (cAMP responsive element binding protein 3 like 1) (Feng et al., 2017), and its knockdown inhibited growth of breast carcinoma in animal models by limiting redox homeostasis (Bobrovnikova-Marjon et al., 2010).

Phosphofurin acidic cluster sorting protein 2 (PACS-2) is a sorting protein that also functions as a MAM tether, and is involved in ER-mitochondria coupling (Simmen et al., 2005), as well as in apoptosis and survival. Apoptotic signals trigger its dephosphorylation and redistribution from the ER to mitochondria, recruiting Bid, followed by Bid cleavage and cell death (Simmen et al., 2005), while its phosphorylation by AKT promotes NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells)-mediated pro-survival signaling (Betz et al., 2013).

Among the MAM proteins that regulate ER-mitochondria Ca2+ flux and affect cancer cells, are the redox-sensitive oxidoreductase thioredoxin related transmembrane protein 1 (TMX1) and protein tyrosine phosphatase-interacting protein 51 (PTPIP51). Reduced levels of TMX1 in cancer cells lead to increased ER Ca2+ levels, and a concomitant decrease in cytosolic and mitochondrial Ca2+ levels resulting in reduced mitochondrial respiration. This, in turn, makes the cancer cells more dependent on glycolysis, a hallmark of cancer cells (Ganapathy-kanniappan and Geschwind, 2013).

PTPIP51, an integral outer mitochondrial membrane (OMM) protein, interacts with VAP-B and is essential for VAP recruitment to MAM (Figure 5). It also interacts with the oxysterol-binding protein (OSBP)-related proteins ORP5 and ORP8, which transfer phosphatidylserine (PS) to the mitochondria for PE synthesis (Galmes et al., 2016). Depletion of PTPIP51 or VAP-B delays Ca2+ uptake by the mitochondria (De vos et al., 2012). Notably, both PTPIP51 and VAP have growth stimulatory activities, and high expression level of VAP-B in breast cancer enhanced cell growth in vitro and tumor growth in animal models (Rao et al., 2012).

Collectively, these examples demonstrate that many MAM proteins can influence tumor metabolism and/or apoptotic cell death and consequently may affect tumorigenesis or response to anti-cancer therapy.


Lipids Modifications at the MAMs and Their Role in Cancer

The role of MAM in the synthesis of specific lipids and their transfer to mitochondria was initially shown via cell fractionation (Vance, 1990; Vance and Canada, 1991). MAM is essential for the conversion of ER-derived PS to PE and for trafficking of cholesterol as a precursor for steroid species (Tatsuta et al., 2014).

Although mitochondria have low content of cholesterol compared to other organelles, cholesterol is enriched in MAMs compared to the rest of the ER and affects ER-mitochondria apposition (Sassano et al., 2017). In cancer cells, the inner mitochondrial membrane (IMM) has higher cholesterol content and phospholipids with shorter and more saturated acyl chains compared to normal cells. These lipid modifications decrease the IMM permeability, and consequently the vulnerability to apoptotic signals (Ribas et al., 2016).

Cardiolipin is a unique and abundant lipid of the IMM, accounts for ∼20% of the total lipid composition, which retains cytochrome c in the IMM (Shidoji et al., 1999). Its accumulation in the IMM requires PA supply mediated by the PA-transfer activity of the TRIAP1/PRELI protein complexes. Depletion or inhibition of these protein complexes impairs cardiolipin accumulation and increases cell susceptibility to apoptosis (Potting et al., 2013). Hence, it could be that “aberrant” MAMs in cancer cells or abnormal expression of TRIAP1/PRELI would modulate cardiolipin levels and cytochrome c release, and thus cell susceptibility to apoptosis that can be exploited for cancer therapy.



ROLE OF ER-ENDOSOME AND ER-LYSOSOME CONTACT SITES IN HUMAN CANCER

The endosomes undergo dynamic changes from biogenesis toward maturation. Endosome maturation is mediated by spatiotemporal phases, which regulate their size, location, uptake of macromolecules and sorting of cargos. The number of ER-endosomes MCSs is markedly increased during maturation, reaching a maximum in the LE (Friedman et al., 2013; Hariri et al., 2016). We describe the functions of key proteins that are involved in ER-endosomes MCSs and their putative implications in cancer.

In addition to STARD3, the retromer subunit SNX2 (sorting nexin-2) also interacts with VAPs and tethers the ER membrane to endosomes (Dong et al., 2016). SNX2 binds PI(3)P on the endosomal surface, and affects the level of several cell surface proteins in cancer cells, including the c-Met receptor in lung and gastric cancer cells (Ogi et al., 2013). Depletion of VAPs leads to accumulation of PI4P in endosomes and disrupts endosome-to-Golgi traffic. VAPs also interact with the ER proteins Protrudin and RTN3 (Reticulon protein 3), while Protrudin interacts with RAB11 (recycling endosomes), Rab7 (late endosomes) and PI(3)P at the endosomes via its FYVE domain (Shirane and Nakayama, 2006; Matsuzaki et al., 2011). Overexpression of Protrudin increases ER-endosomes contacts (Raiborg et al., 2015), while resistance to endocrine therapies of breast cancer cells is associated with reduced levels of Protrudin (Magnani et al., 2013). Rab7 was also shown to be a marker of poor prognosis in melanoma cancer (Alonso-Curbelo et al., 2014). Whether Protrudin overexpression in cancer induces aberrant MCSs is currently unknown, but could be interesting to explore.

Another protein that functions at the ER-endosome MCSs is the ER-localized protein tyrosine phosphatase PTP1B which interacts with EGFR on early and late endosomes at the ER-endosome MCSs (Eden et al., 2010). EGFR is implicated in various human cancers, while PTP1B can function either as an oncogene or tumor suppressor in various cancer types (Liu et al., 2015). At the ER-endosomes MCSs, PTP1B-EGFR interaction stabilizes MCSs, but it is not required for contact formation (Eden et al., 2010). As EGFR is highly expressed in many human cancers, it might stabilize aberrant ER-endosome MCSs to sustain endosomal signaling and prevent signaling termination by lysosomal degradation.

The lysosomes participate in many fundamental cellular processes, including recycling of cellular components, nutrient-dependent signal transduction, membrane repair and pathogen defense signaling (Perera and Zoncu, 2016). Increased lysosomal activity, especially under nutrient deprivation, favors cancer growth and resistance to therapy in certain cancer types (Thelen and Zoncu, 2017). Lysosomes are considered as a central hub for sorting of lipids from endogenous and exogenous origin, and for maintenance of cholesterol homeostasis (Thelen and Zoncu, 2017). Another important property of the lysosomes is the close proximity of 5–20 nm with other organelles including the ER and mitochondria (Csordás et al., 2006; Phillips and Voeltz, 2016; Wong et al., 2018).

Lysosomes can process and distribute exogenous (LDL-cholesterol) and endogenous (de novo synthesized in the ER) cholesterol through MCSs. The ER-anchored protein ORP5 and the membrane cholesterol transporter NPC1 (Niemann-Pick disease, type C1) interact and facilitate cholesterol export from lysosomes, whereas STARD3 in the LEs/Lys, through interactions with VAPs, mediates cholesterol transport from the ER to lysosomes (Thelen and Zoncu, 2017). ORP5 promotes cell proliferation and invasion via mTOR complex 1 (mTORC1) signaling (Du et al., 2018), and its overexpression is associated with poor prognosis of pancreatic cancer (Koga et al., 2008). Interestingly, ORP5 and ORP8 were also localized to MAM (Gao and Yang, 2018), similar to the ER protein PDZD8 (PDZ domain-containing protein 8) (Hirabayashi et al., 2017), which was recently found at the ER-LEs/Lys contacts through interaction with Rab7 (Guillén-Samander et al., 2019). It was proposed to regulate Ca2+ dynamics in neurons and lipid transport between the ER and ER-LEs/Lys (Hirabayashi et al., 2017; Guillén-Samander et al., 2019).

In addition to cholesterol distribution, the ER-lysosome MCSs promote efficient Ca2+ transport between the two organelles. It is now clear that many functions of lysosomes depend on their ability to acquire calcium from the ER through IP3Rs and to release calcium (Atakpa et al., 2018). Lysosomal calcium release was proposed to be mediated by three types of channels: the mucolipin family of TRPML (transient receptor potential) channels, the two-pore (TPC) channels, and the transient receptor potential cation channels TRPVs (Raffaello et al., 2016; Li et al., 2019). Interestingly, TRPV4 is associated with poor prognosis in colon cancer (Liu et al., 2019) and is implicated in breast cancer metastasis (Lee et al., 2016). Similarly, TPCs have been found to be highly expressed in several cancers (Brailoiu et al., 2009; Jahidin et al., 2016) to facilitate cell migration and invasion (Nam et al., 2017).

ER-lysosome MCSs also play role in mTOR activation. mTOR is a central regulator of cell metabolism and growth, and is considered as a promising target for cancer therapy (Faes et al., 2017; Saxton and Sabatini, 2017). mTOR is activated at the LE/LY in response to multiple growth factors and amino-acid stimulation. Its activation is regulated by lysosomal positioning and is mediated by translocation of mTORC1-positive lysosomes to the cell periphery, where it remains in proximity of signaling receptors. It turns out that this translocation is regulated by ER-lysosome MCSs, and is mediated by two PI3-binding proteins: FYCO1 (FYVE and coiled-coil domain-containing protein 1) which is recruited to lysosomes, and the ER-resident protein Protrudin. PI3P-binding of FYCO1 and Protrudin promotes mTORC1 activation and concomitantly inhibits autophagy (Hong et al., 2017).

Overall, these findings suggest that ER-lysosome MCSs can affect fundamental properties of cancer cells including growth and metabolism, which may have aberrant configurations in cancer.



CONCLUDING REMARKS

In contrast to normal cells, cancer cells are characterized by distinct cellular metabolism and uncontrolled cell growth, migration and invasion. Many of these processes are influenced by lipids and calcium, two critical second messengers, which are regulated by LTPs and MCSs. LTPs can modulate the levels of lipid second messengers and thus can modify signaling pathways, signaling duration and termination. LTPs can also modulate the distributions of lipids, and consequently the stiffness, fluidity, and permeability of membranes, therefore affecting cell adhesion, receptor endocytosis and recycling, cell growth and migration as well as susceptibility to cancer therapy. Identification of specific LTPs that regulate these cellular processes which are aberrantly expressed in human cancer could be used for therapeutic intervention. Similarly, MCSs which affect lipid and calcium homeostasis, have an impact on cell proliferation and growth. On the other hand, calcium and certain lipids are involved in stress response and cell death pathways. The challenge is to switch off abnormal function or expression of LTPs in cancer cells and/or to direct “aberrant” MCSs toward cell death rather than cell proliferation, by manipulating the different tethering mechanisms that regulate MCSs formation and stability. Further studies on MCSs configuration and LTPs functions in cancer cells will be able to shed more light on how they may affect cell transformation and promote cancer development and metastasis.
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The most common disease-causing mutation in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, F508del, leads to cystic fibrosis (CF), by arresting CFTR processing and trafficking to the plasma membrane. The FDA-approved modulators partially restore CFTR function and slow down the progression of CF lung disease by increasing processing and delivery to the plasma membrane and improving activity of F508del-CFTR Cl– channels. However, the modulators do not correct compromised membrane stability of rescued F508del-CFTR. Transforming growth factor (TGF)-β1 is a well-established gene modifier of CF associated with worse lung disease in F508del-homozygous patients, by inhibiting CFTR biogenesis and blocking the functional rescue of F508del-CFTR. Lemur tyrosine kinase 2 (LMTK2) is a transmembrane protein localized at the apical and basolateral membrane domain of human bronchial epithelial cells. Phosphorylation of the apical membrane CFTR by LMTK2 triggers its endocytosis and reduces the abundance of membrane-associated CFTR, impairing the CFTR-mediated Cl– transport. We have previously shown that LMTK2 knockdown improves the pharmacologically rescued F508del-CFTR abundance and function. Thus, reducing the LMTK2 recruitment to the plasma membrane may provide a useful strategy to potentiate the pharmacological rescue of F508del-CFTR. Here, we elucidate the mechanism of LMTK2 recruitment to the apical plasma membrane in polarized CFBE41o- cells. TGF-β1 increased LMTK2 abundance selectively at the apical membrane by accelerating its recycling in Rab11-positive vesicles without affecting LMTK2 mRNA levels, protein biosynthesis, or endocytosis. Our data suggest that controlling TGF-β1 signaling may attenuate recruitment of LMTK2 to the apical membrane thereby improving stability of pharmacologically rescued F508del-CFTR.

Keywords: LMTK2, TGF-β1, bronchial epithelial cells, endocytosis, recycling, cystic fibrosis


INTRODUCTION

Cystic fibrosis (CF), the most common autosomal recessive disease in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that encodes a cyclic adenosine monophosphate (cAMP)-activated anion channel. CFTR is expressed at the apical plasma membrane of epithelial cells in most tissues, including the airway (Andersen, 1938; Boucher et al., 1983; Riordan et al., 1989; Collins, 1992). In human bronchial epithelial (HBE) cells, CFTR regulates mucociliary clearance by maintaining the airway surface liquid (ASL) homeostasis (Regnis et al., 1994; Boucher, 2004). The most common disease-causing mutation present on at least one allele in 90% of CF patients is the deletion of Phe508 (F508del), caused by an in-frame deletion of three nucleotides (Feriotto et al., 1999). This mutation causes a biosynthetic processing defect leading to intracellular retention of CFTR protein and severely impairs the CFTR channel function (Penque et al., 2000). The Food and Drug Administration (FDA)-approved correctors rescue the biosynthetic processing of F508del-CFTR protein while potentiators improve the rescued channel function (Molinski et al., 2012). VX-809 (Lumacaftor) and VX-661 (Tezacaftor) are FDA-approved CFTR correctors that when combined with the potentiator VX-770 (Ivacaftor) modestly reduced exacerbation rates and respiratory symptoms (Donaldson et al., 2013; Wainwright et al., 2015; Ratjen et al., 2017). The new-generation correctors, VX-659 and VX-445 have recently demonstrated profound clinical promise because of additive benefit when combined with the dual therapy with VX-661/770 (Davies et al., 2018; Keating et al., 2018). The transforming growth factor (TGF)-β1 gene is a known modifier associated with worse lung disease in CF patients homozygous for F508del (Drumm et al., 2005; Bremer et al., 2008; Cutting, 2010). Published data show that TGF-β1 reduces CFTR mRNA levels and prevents the corrector/potentiator mediated rescue of the CFTR channel function in primary differentiated HBE cells homozygous for the F508del (Roux et al., 2010; Snodgrass et al., 2013; Sun et al., 2014). Thus, TGF-β1 may compromise the full beneficial effect of the corrector/potentiator therapy in the CF patients who have increased TGF-β1 signaling due to the TGF-β1 gene polymorphisms, lung infection or environmental factors (Arkwright et al., 2000; Drumm et al., 2005; Collaco et al., 2008; Cutting, 2015).

In addition to the role in CF, TGF-β1 is a critical mediator in chronic obstructive pulmonary disease (COPD), contributing to acquired CFTR dysfunction (Takizawa et al., 2001; Mak et al., 2009; Morty et al., 2009; Dransfield et al., 2013; Sailland et al., 2017). TGF-β1 also plays central role in the early phase of acute lung injury, leading to development of pulmonary edema by two mechanisms (Hurst et al., 1999; Pittet et al., 2001; Hamacher et al., 2002; Fahy et al., 2003). First, TGF-β1 decreases the airspace fluid clearance by reducing the apical abundance of epithelial sodium channel (ENaC) via extracellular signal-regulated kinase (ERK)1/2 dependent mechanism (Frank et al., 2003). Second, TGF-β1 inhibits the β-adrenergic agonist-stimulated CFTR-dependent alveolar fluid clearance via phosphatidylinositol 3-kinase (PI3K)-dependent inhibition of CFTR protein biosynthesis and channel function (Roux et al., 2010).

Cystic fibrosis transmembrane conductance regulator interactor lemur tyrosine kinase 2 (LMTK2), despite its name, is a transmembrane serine/threonine kinase involved in intracellular signaling, protein trafficking, apoptosis, and cell differentiation (Wang and Brautigan, 2002; Kesavapany et al., 2003; Kawa et al., 2004; Inoue et al., 2008). We have shown that LMTK2 mediates an inhibitory phosphorylation of membrane-resident CFTR-Ser737, leading to its endocytosis and inhibition of CFTR-mediated Cl– transport (Luz et al., 2014). The pre-clinical relevance of the finding is that LMTK2 depletion increased the efficacy of Lumacaftor in HBE cells from F508del homozygous lungs (Luz et al., 2014). Although little is known about the interface between LMTK2 and TGF-β1, it has been shown that the kinase facilitates Smad2 signaling (Manser et al., 2012).

In view of the role of TGF-β1 in CFTR dysfunction in different forms of lung disease, our aim was to determine whether TGF-β1 may inhibit the function of membrane-resident CFTR channels via LMTK2 dependent mechanism in HBE cell models. Here, we report that TGF-β1 augments the apical membrane abundance of LMTK2 by increasing its recycling in Rab11-dependent manner. The physiologic consequence of the TGF-β1 effect is inhibition of CFTR mediated Cl– transport. We propose that one of the mechanisms through which TGF-β1 inhibits CFTR mediated Cl– transport is by increasing the apical membrane density of LMTK2 that, in turn, phosphorylates membrane-resident CFTR-Ser737 inducing its endocytosis.



MATERIALS AND METHODS


Cell Lines and Cell Culture

Primary differentiated HBE cells were received from the CF Research Center Epithelial Cell Core at the University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States as previously described (Myerburg et al., 2010; Snodgrass et al., 2013; Luz et al., 2014). The Epithelial Cell Core procures these cells from excess pathologic lung tissue from explanted human lungs following lung transplantation at the University of Pittsburgh Medical Center under an approved IRB protocol. The F508del HBE cells were derived from lungs homozygous for the F508del mutation. Cells were prepared using previously described methods approved by the University of Pittsburgh Institutional Review Board (Myerburg et al., 2010). Subsequently, cells were cultured on collagen-coated Transwell filters (Corning, Corning, NY, United States) (0.33 cm2 at density of ∼2 × 105/cm2) and maintained in air-liquid interface (ALI) for 6 weeks while differentiation media was changed basolaterally twice weekly. Parental human bronchial epithelial CFBE41o- cells were seeded on collagen-coated Transwell filters and cultured in ALI for 6–9 days (Ye et al., 2010; Cihil et al., 2012; Luz et al., 2014). In some experiments, denoted below, CFBE41o- cells were cultured on tissue culture plates. Fetal bovine serum (FBS) was removed from the media 24 h before experiments to avoid any residual TGF-β1, increase cell polarization, and to promote cell cycle synchronization.



Antibodies and Reagents

The antibodies used were polyclonal anti-LMTK2 (SAB4500900, Sigma-Aldrich, St. Louis, MO, United States) and monoclonal anti-Na+/K+ ATPase a-1 (clone C464.6, Merck KGaA, Darmstadt, Germany), monoclonal anti-Rab5 (Cat. 610282) and monoclonal anti-Ezrin (Cat. 610603, BD Biosciences, San Jose, CA, United States), polyclonal anti-Rab11A (Cat. 71-5300, Thermo Fisher Scientific, Waltham, MA, United States), and goat anti-mouse and goat anti-rabbit horseradish peroxidase-conjugated secondary antibodies (Bio-Rad Laboratories, Hercules, CA, United States). All antibodies were used at the concentrations recommended by the manufacturer or as indicated in the figure captions. Human TGF-β1 (Sigma-Aldrich) was resuspended in the vehicle containing 4 mM HCl and 1 mg/mL bovine serum albumin (BSA, Sigma-Aldrich) and used at a concentration 15 ng/ml.



Real-Time Quantitative Reverse-Transcription PCR (qRT-PCR)

Real time reactions were run in triplicates with each reaction emanating from a starting sample amount of 20 ng total RNA before Reverse Transcription to cDNA. Superscript II Reverse Transcriptase (Thermo Fisher Scientific) was used to generate cDNA from total RNA. qRT-PCR was performed using ABsoluteTM Blue QPCR SYBR® Green ROX Mix (Thermo Fisher Scientific) and ABI PRISM® 7300 Sequence Detection System (Applied Biosystems, Foster City, CA, United States) according to the manufacturer’s instructions. The primer sequences for LMTK2 were from the Harvard Medical School Primer Bank (LMTK2-688F forward: 5′-TTGCCCGCCACAGTCTAAAC-3′ and LMTK2-770R reverse: 5′-GATGACTCTTGCTACGCTAGT-3′). Fluorescence emission was detected for each PCR cycle, and the threshold cycle (Ct) values and the average Ct of the triplicate reactions were determined for CFTR and the reference gene GAPDH. The Ct value was defined as the actual PCR cycle when the fluorescence signal increased above the threshold, and the ΔCt was determined for each sample by subtracting the Ct for GAPDH from the Ct for CFTR, and the average ΔCt of the triplicate samples was determined. The ΔΔCt was calculated by subtracting the ΔCt for the vehicle treated cells from the ΔCt for the TGF-β1 treated cells. Fold change values were determined according to the following formula: fold change = 2–ΔΔCt. Log2FC (Log2 fold change) was calculated by converting fold change value in log base 2.



Biochemical Determination of the Plasma Membrane Protein Abundance and Western Blotting

Detection of plasma membrane LMTK2 was performed by domain selective plasma membrane biotinylation, as previously described (Swiatecka-Urban et al., 2002). CFBE41o- cells were treated with TGF-β1 or vehicle for 1 h. Apical or basolateral plasma membrane proteins of ALI cultures of HBE or CFBE41o- cells were selectively biotinylated using cell membrane impermeable EZ-LinkTM Sulfo-NHS-LC-Biotin (Pierce Chemical Co., Dallas, TX, United States), followed by cell lysis in buffer containing 25 mM HEPES, 10% v/v glycerol, 1% v/v Triton X-100, and Complete Protease Inhibitor Mixture (Roche Applied Sciences, Indianapolis, IN, United States). Lysates were centrifuged at 14,000 x g and biotinylated proteins were isolated from the supernatants, considered as whole cell lysates (WCL), by incubation with streptavidin-agarose beads, eluted into 2x Laemmli sample buffer (Bio-Rad Laboratories) containing DL-dithiothreitol (DTT; Sigma-Aldrich), and separated by 7.5% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE; Bio-Rad Laboratories). The immunoreactive bands were visualized by western blotting (WB) with Western Lightning Chemiluminescence Reagent Plus (PerkinElmer LAS Inc., Boston, MA, United States). Protein abundance was quantified by densitometry using exposures within the linear dynamic range of the film.



Immunohistochemistry (IHC)

Formalin-fixed, paraffin-embedded tissue sections were stained on the Ventana BenchMark Ultra automated staining platform (Ventana Medical Systems Inc., Tucson, AZ, United States) as recently described (Mitash et al., 2019). Slides were pretreated with ULTRA cell conditioning solution CC1 (Ventana) for 64 min and stained using mouse monoclonal primary antibody against LMTK2 (Acris AM20991PU-N), at 1:100 dilution. OptiView 3,3′-diaminobenzidine (DAB) IHC detection kit with OptiView amplification indirect, biotin-free multimer amplification system (Ventana) was used for detection of primary antibodies. All slides were counterstained with hematoxylin and routinely dehydrated, cleared, and coverslipped in resinous mounting media.



Endocytic Assay

Endocytic assays were performed in CFBE41o- cells, as previously described with some modifications (Cihil et al., 2012; Cihil and Swiatecka-Urban, 2013). The apical or basolateral plasma membrane proteins were selectively biotinylated at 4°C using cleavable EZ-LinkTM Sulfo-NHS-SS-Biotin (Pierce Chemical Co.) and excess biotin was removed after biotinylation by washing with cold phosphate-buffered saline (PBS; Thermo Fisher Scientific), containing Ca+2 and Mg+2 (PBS++). To enable endocytic trafficking, cells were quickly moved to a 37°C bath of PBS++ containing in basolateral side TGF-β1 or vehicle for 5, 10 or 15 min. Subsequently, disulfide bonds on Sulfo-NHS-SS-biotinylated proteins remaining at the plasma membrane were reduced by L-glutathione (GSH; Sigma-Aldrich) at 4°C. At this point, biotinylated proteins reside within the endocytic compartment. Cells were lysed and biotinylated proteins were isolated by streptavidin-agarose beads. The amount of biotinylated LMTK2 at 4°C and without the 37°C warming was considered 100%. The amount of biotinylated LMTK2 remaining at the plasma membrane after GSH treatment at 4°C and without the treatment at 37°C was considered background and was subtracted from the biotinylated LMTK2 after warming to 37°C at each time point.



Cell Fractionation to Isolate the Cytosolic and Membrane Fraction

CFBE41o- cells were washed with PBS++, scrapped and centrifuged at 200 x g. After centrifugation, cells were resuspended in homogenization buffer (HB) containing 50 mM MOPS-NaOH, 125 mM NaCl, 1 mM EGTA, 0.1% 2-mercaptoethanol and Complete protease inhibitor mixture. Homogenates were centrifuged at 100,000 x g at 4°C for 20 min, using a Sorvall WX80 Ultra centrifuge. Supernatant containing the cytosolic fraction was collected. Pellet was resuspended in HB buffer, applied on top of 28% sucrose layered on 50% sucrose and centrifuged at 100,000 x g at 4°C for 40 min. The 28/50% interface was collected and washed by centrifugation with HB buffer. Pellet was resuspended with HB buffer with 1% Igepal (Sigma-Aldrich) and centrifuged at 16,000 x g for 15 min at 4°C. The resulting supernatant containing cellular membrane fraction was collected. The cytosolic and membrane fractions were mixed with 2x Laemmli sample buffer containing DTT and analyzed by WB.



RNA-Mediated Interference

Transfection of CFBE41o- cells with siRNA targeting human Rab5 gene (siRab5, siGENOME Human Rab5 siRNA; Dharmacon, Cambridge, United Kingdom), human Rab11A gene (siRab11 Accell Human Rab11A siRNA; Dharmacon) or non-targeting siRNA (siCTRL, siGENOME Non-Targeting Pool #2; Dharmacon) was performed using Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher Scientific), according to the manufacturer’s instructions. CFBE41o- cells were plated on collagen-coated cell culture plates and incubated with the optimized transfection mixture containing 50 nM of siRNA, at 37°C for 24 h. Next day, cells were transferred to collagen-coated Transwell filters for 5 days to allow cell polarization. Experiments were conducted 6 days after siRNA transfection.



Short Circuit Recordings

The short circuit current (ISC) was measured under asymmetrical Cl– conditions as previously described (Snodgrass et al., 2013). In brief, 6-week ALI cultures of HBE cells were mounted in Ussing-type chambers (Physiological Instruments, San Diego, CA, United States). Transepithelial resistance was measured by periodically applying a 1-mV voltage pulse and was calculated using Ohm’s law. The composition of the bathing Ringer’s solutions were as follows, apical: 115 mM NaCl, 25 mM NaHCO3, 5.0 mM KCl, 10 mM HEPES, 1.0 mM MgCl2, 1.5 mM CaCl2, and 5.0 mM glucose; and basolateral 114 mM Na gluconate, 25 mM NaHCO3, 5.0 mM KCl, 10 mM HEPES, 1.0 mM MgCl2, 1.5 mM CaCl2, and 5.0 mM glucose. Chambers were constantly gassed with a mixture of 95% O2 and 5% CO2 at 37°C, which maintained the pH at 7.4. Following a 5-min equilibration period, the baseline ISC was recorded. Amiloride (50 μM) was added to the apical bath solution to inhibit Na+ absorption through ENaC. Subsequently, CFTR mediated Isc was stimulated with the cAMP agonist forskolin (20 μM) together with the IBMX (1 mM) to prevent cAMP hydrolysis, added to the apical and basolateral bath solutions, and subsequently inhibited by thiazolidinone CFTRinh-172 (5 μM) added to the apical bath solution. Data are expressed as the forskolin/IBMX stimulated Isc, calculated by subtracting the peak-stimulated Isc from the baseline Isc after amiloride treatment.



Data Analysis and Statistics

Statistical analysis of the data was performed using GraphPad Prism version 8.0 for Windows (GraphPad Software Inc., San Diego, CA, United States). Data are expressed as mean ± standard error of the mean (SEM). The means were compared by a two-tailed t-test. p value < 0.05 was considered significant where ∗p < 0.05; ∗∗p < 0.01.



RESULTS


TGF-β1 Selectively Increases LMTK2 Abundance at the Apical Plasma Membrane by Post-transcriptional Mechanisms

We have previously shown that LMTK2 is present at the apical and basolateral membrane domain in bronchial epithelial cell models used in our studies, HBE and CFBE41o- cells, and triggers CFTR endocytosis from the apical membrane by phosphorylating CFTR-Ser737 (Luz et al., 2014). We first validated the cell models for subsequent LMTK2 studies and examined the subcellular localization of endogenous LMTK2 in human bronchial tissue. Evaluation by IHC demonstrated that LMTK2 assumes granular intracellular distribution and is enriched in the apical and basolateral membrane, consistent with the localization determined by selective cell surface biotinylation in HBE and CFBE41o- cells (Figure 1). There was no obvious difference in the subcellular localization of LMTK2 between tissues from lungs homozygous for F508del and controls without disease.


[image: image]

FIGURE 1. IHC experiments demonstrating subcellular localization of endogenous LMTK2 in human bronchial tissue. LMTK2 was detected with antibody AM20991PU-N. Hematoxylin stain (A) showing the ultrastructure of human bronchial tissue (20x) from control lung and the LMTK2 staining in the tissue at 20x (B). Images (40x), showing that LMTK2 assumes granular intracellular distribution and is enriched in the apical and basolateral membrane in control (C), and F508del bronchial epithelium (D). Experiments were performed in triplicates in tissues from five lungs per condition with similar results.


Next, we examined whether TGF-β1 affects the plasma membrane abundance of LMTK2. ALI cultures of CFBE41o- cells were treated with TGF-β1 (15 ng/ml) or vehicle added to the basolateral cell culture medium for up to 120 min and the plasma membrane abundance of LMTK2 was examined by domain-selective cell surface biotinylation, as previously described (Cihil and Swiatecka-Urban, 2013; Luz et al., 2014). We observed rapid and selective increase of LMTK2 levels in the apical membrane, reaching significance at 30 min and maximum at 60 min after TGF-β1 treatment (Figures 2A,B). TGF-β1 did not increase the total cellular abundance of LMTK2 by 120 min demonstrating that the apical membrane increase did not result from inhibiting the LMTK2 protein degradation (Figure 2A). As TGF-β1 did not change the basolateral membrane LMTK2 abundance, this suggests that the apical membrane increase of LMTK2 is domain-selective and not mediated by the basolateral-to-apical transcytosis of LMTK2. Next, we validated the results from an immortalized cell model in the primary differentiated HBE cells. Cells originated from the non-CF (HBE) or CF lungs (CF HBE) cultured in ALI for 6 weeks to full differentiation were treated with TGF-β1 or vehicle for 60 min as described above. TGF-β1 selectively increased the apical membrane abundance of LMTK2 in HBE and CF HBE cells (Figures 2C–F). To examine TGF-β1 effects on LMTK2 mRNA level, HBE cells were treated with TGF-β1 or vehicle for up to 24 h, total RNA was isolated and LMTK2 mRNA was quantified by qRT-PCR. TGF-β1 did not increase LMTK2 mRNA level (Figure 2G). Taken together, the rapid augmentation of LMTK2 abundance in the apical membrane and lack of effect at the LMTK2 mRNA level strongly suggest that TGF-β1 induces post-translational modifications or endocytic trafficking of LMTK2 to increase its apical membrane abundance.
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FIGURE 2. TGF-β1 increased LMTK2 abundance at the apical plasma membrane of polarized CFBE41o- and differentiated HBE cells. Representative immunoblots (A) and summary of experiments (B) demonstrating increased LMTK2 levels at the apical membrane after 30 min of TGF-β1 stimulation, and reaching maximum at 1 h. CFBE41o- cells were cultured on Transwell filters to allow polarization and treated with TGF-β1 (15 ng/ml) or vehicle control for 5, 15, 30, 60 or 120 min. Plasma membrane proteins were isolated by cell surface biotinylation and LMTK2 abundance in each domain was assessed by WB. LMTK2 expression in whole cell lysates (WCL) was used as loading control. 3–7 experiments/group. Additionally, TGF-β1 treatment for 60 min increased the apical membrane LMTK2 in HBE (C,D) and F508del HBE cells (F,G) without affecting the basolateral membrane LMTK2. LMTK2 expression in WCL was used as a loading control. Five replicates from three HBE cell donors (C,D) and three replicates from one F508del HBE cell donor (E,F). qRT-PCR experiments demonstrating that TGF-β1 did not increase the LMTK2 mRNA level in HBE cells (G). TGF-β1 (15 ng/ml) was added to the basolateral medium and cells were incubated for 6, 12 or 24 h. Raw data were analyzed using the ΔΔCt method. Changes in the LMTK2 mRNA were normalized to GAPDH and expressed as Log2 FC versus untreated cells (time zero). Experiments were performed in triplicates in HBE cells from 4 lung donors. ∗p < 0.05 and ∗∗p < 0.01 versus vehicle. Error bars, SEM. AP, apical; BL, basolateral; BT, biotinylation; IB, immunoblot; WCL, whole cell lysate.




TGF-β1 Inhibits CFTR Mediated Isc, Temporally Correlating It With Increased Apical Membrane LMTK2 Abundance

It is expected that TGF-β1, by way of augmenting LMTK2 abundance in the apical plasma membrane, should also inhibit CFTR mediated Isc. Except for alveolar epithelial cells, little is known about the short-term effect of TGF-β1 on the CFTR mediated Cl– transport (Roux et al., 2010). TGF-β1 or vehicle were added to the basolateral medium of HBE cells for 60 min, the time required for the maximal plasma membrane recruitment of LMTK2. The ENaC function was inhibited by amiloride and the CFTR channel was activated by forskolin in the presence of IBMX and it was inhibited with CFTRInh-172. TGF-β1 inhibited the CFTR mediated Isc without affecting the ENaC mediated Isc in HBE cells from three different lung donors (Figure 3). These data temporally correlate the TGF-β1 augmentation of LMTK2 at the apical membrane with inhibition of CFTR mediated Cl– transport.


[image: image]

FIGURE 3. TGF-β1 inhibited CFTR mediated Isc in HBE cells within 60 min. Representative Ussing chamber recordings (A) and summary of data (B) showing that TGF-β1 decreased the CFTR mediated Isc in HBE cells, compared to vehicle control. TGF-β1 or vehicle control were added to the basolateral medium for 60 min. In the Ussing chamber, amiloride (50 μM) was added to the apical bath solution to inhibit ENaC. Forskolin (20 μM) and IBMX (1 mM) were added to increase cAMP level and activate CFTR, and CFTRinh-172 (5 μM) was added to inhibit CFTR channel function. The CFTR mediated Isc was calculated by subtracting the Isc after amiloride treatment from the peak forskolin/IBMX-stimulated Isc and expressed as ΔIsc. The 60-min TGF-β1 treatment did not change the ENaC mediated Isc calculated by subtracting the Isc after amiloride treatment from the baseline Isc before any treatment (C) or the transepithelial resistance (TER; d). Three monolayers per donor HBE cell line from three lung donors per group were used. Each gray circle in panels (B–D) represents the mean value from three monolayers per donor HBE cells. The means were compared by paired two-tailed t-test. Error bars, SEM. ∗p < 0.05.




TGF-β1 Increases the Apical Membrane LMTK2 Abundance by Specifically Accelerating Its Recycling in Rab11-Positive Vesicles

Next, we examined TGF-β1 effects on the endocytic trafficking of LMTK2. In transfected HeLa cells, LMTK2 was found to be enriched in intracellular membranes associated with endocytic and recycling vesicles, namely the transferrin-, EEA1-, Rab5-, and Rab11-positive vesicles (Chibalina et al., 2007). However, the association of endogenous LMTK2 with these vesicular compartments is unknown in HBE cells. To determine the subcellular localization of LMTK2, Rab5 and Rab11, polarized CFBE41o- cells were homogenized and subjected to sucrose density gradient ultracentrifugation to isolate the membrane and cytosolic fraction. Endogenous LMTK2, Rab5 and Rab11 were specifically enriched in the membrane fraction in the HBE cell model (Figure 4A).
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FIGURE 4. TGF-β1 did not inhibit LMTK2 endocytosis. Representative immunoblots of LMTK2, Rab11 and Rab5 abundance in both cytosol and membrane fractions (A). CFBE41o- cells were cultured on Transwell filters to allow polarization. Subcellular fractionation was performed through ultracentrifugation (100,000 x g) and using discontinuous sucrose gradient (28%/50% sucrose interface). Cytosol and membrane fractions of the cells were isolated and protein levels were measured. LMTK2, Rab5 and Rab11 were enriched at the membrane fraction of the cells. Representative immunoblots (B) and summary of experiments (C,D) demonstrating that Rab5-dependent endocytosis is not affected by TGF-β1 stimulation. CFBE41o- cells were cultured on Transwell filters to allow polarization, transfected with Rab5-specific siRNA (siRab5) or non-targeting control siRNA (siCTRL) and treated with TGF-β1 (15 ng/ml) or its vehicle for 1 h. Apical membrane proteins were isolated by cell surface biotinylation. We observed an increase of LMTK2 abundance at the apical membrane after TGF-β1 in siNeg-transfected CFBE41o- cells that is disrupted after impairment of Rab5-dependent endocytosis. Apical LMTK2 levels were normalized to total LMTK2 levels present in the whole cell lysate. Three experiments/group. Representative immunoblots (E) and summary of experiments (F) showing the effects of TGF-β1 on CFTR endocytosis. Apical membrane proteins of polarized CFBE41o- cells were biotinylated, and endocytosis was induced at 37°C with TGF-β1 or vehicle treatment for 5, 10, and 15 min. LMTK2 endocytosis peaked at 10 min. TGF-β1 tended to increase the endocytosis. Internalized LMTK2 was normalized for total LMTK2 abundance. Five experiments/group. ∗p < 0.05; ∗∗∗∗p < 0.0001. Error bars, SEM. BT, biotinylation; IB, immunoblot; WCL, whole cell lysate.


Subsequently, TGF-β1 effects on the endocytic trafficking of LMTK2 were studied by the siRNA-mediated silencing approach and selective apical membrane biotinylation. CFBE41o- cells were transfected with siRab5 or siCTRL. Transfected cells were plated on culture dishes and 24 h later sub-cultured to collagen-coated permeable Transwell filters for 5 days, the time required for cell polarization. Subsequently, cells were treated with TGF-β1 or vehicle for 60 min, followed by biotinylation of the apical membrane proteins, cell lysis, pull-down of biotinylated proteins with streptavidin beads, elution, and WB. The Rab5 silencing efficiency was approximately 99% (Figures 4B,C). If TGF-β1 increases the apical membrane LMTK2 level by inhibiting its endocytosis in Rab5-positive vesicles, it is expected that Rab5 knockdown would increase the apical membrane abundance of LMTK2 in the vehicle and TGF-β1 treated cells. As shown in Figures 4B,D, TGF-β1 increased LMTK2 abundance in the apical membrane of cells transfected with siCTRL while the highly efficient siRab5 did not increase LMTK2 levels in the apical membrane in cells treated with either vehicle or TGF-β1. These data suggest that the recruitment of LMTK2 to the apical membrane is Rab5-independent.

To examine more directly how TGF-β1 affects LMTK2 endocytosis we performed the GSH protection assay in polarized CFBE41o- cells (Cihil et al., 2012; Cihil and Swiatecka-Urban, 2013; Luz et al., 2014). Apical plasma membrane proteins were biotinylated with NHS-SS-Biotin, and endocytosis of biotinylated proteins was induced by incubation with TGF-β1 or vehicle at 37°C. Subsequently, membrane trafficking was stopped by rapid cooling to 4°C and the disulfide bond in NHS-SS-Biotin attached to the proteins still remaining at the apical membrane was reduced with GSH so that only proteins that were endocytosed from the apical membrane were protected from GSH and remained biotinylated. After cell lysis, biotinylated proteins were isolated by streptavidin beads, eluted into sample buffer and biotinylated LMTK2 was detected by WB. TGF-β1 did not decrease LMTK2 endocytosis (Figures 4E,F). These data strongly support a model that the TGF-β1-induced augmentation of apical membrane LMTK2 is not mediated by inhibiting LMTK2 endocytosis.

Next, we examined whether TGF-β1 increases the apical abundance of LMTK2 by stimulating its trafficking to the apical membrane in Rab11-positive vesicles. Rab11 is associated with the perinuclear recycling endosomes and regulates the recycling of endocytosed proteins to the apical plasma membrane (Ullrich et al., 1996; Takahashi et al., 2012). In addition, Rab11 controls vectorial transport from the trans-Golgi to the plasma membrane. Silencing of Rab11a was performed as described above for Rab5 with the efficiency exceeding 75% (Figures 5A,B). TGF-β1 increased LMTK2 abundance in the apical membrane in cells transfected with siCTRL while siRab11 eliminated the effect (Figures 5A,C). These results demonstrate that TGF-β1 is unable to increase the apical membrane LMTK2 after Rab11 knockdown. Taken together, the results demonstrate that TGF-β1 stimulates specifically the Rab11-dependent trafficking of LMTK2 to augment its apical membrane abundance, without inhibiting the LMTK2 endocytosis.
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FIGURE 5. Rab11 knockdown blocked TGF-β1 recruitment of LMTK2 to the apical membrane. Representative immunoblots (A) and summary of experiments (B–D) demonstrating that TGF-β1 treatment increases apical LMTK2 abundance, in a process mediated by Rab11-dependent vesicular trafficking. CFBE41o- cells were cultured on Transwell filters to allow polarization, transfected with Rab11-specific siRNA (siRab11) or non-targeting control siRNA (siCTRL) and treated with TGF-β1 (15 ng/ml) or its vehicle control for 1 h. Apical membrane proteins were isolated by cell surface biotinylation. An increase of LMTK2 abundance at the apical membrane after TGF-β1 stimulation in siNeg-transfected CFBE41o- cells was observed; however, increased LMTK2 abundance is disrupted after impairment of Rab11-dependent recycling. Total levels of LMTK2 were not affected after siRab11 knockdown. Apical LMTK2 was normalized to total LMTK2 present in the whole cell lysate. Total LMTK2 abundance was normalized to ezrin in the whole cell lysate, used as a loading control. ∗p < 0.05; ∗∗p < 0.01, and ∗∗∗∗p < 0.0001. Three replicates. Error bars, SEM. BT, biotinylation; IB, immunoblot; WCL, whole cell lysate.




DISCUSSION

The work presented here connects the inhibitory effects of TGF-β1 and LMTK2 on CFTR function in HBE cells. Our data demonstrate that TGF-β1 acutely augments the apical membrane abundance of LMTK2 by increasing its recycling in Rab11-dependent manner and inhibits CFTR mediated Isc while our previously published work showed that LMTK2 promotes phosphorylation of the membrane-resident CFTR-Ser737 leading to CFTR endocytosis and decreased CFTR-mediated Cl– transport (Figure 6) (Luz et al., 2014).
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FIGURE 6. Model describing how TGF-β1 augments the apical membrane abundance of LMTK2 to inhibit CFTR mediated Cl– transport in human bronchial epithelia. TGF-β1 stimulation (1) increases LMTK2 recycling through Rab11-positive vesicles (2), enhancing the recruitment of LMTK2 to the apical plasma membrane of HBE cells (3). At the apical plasma membrane, LMTK2 induces the inhibitory phosphorylation of CFTR-Ser737 (4), triggering CFTR endocytosis (5) and the inhibition of CFTR-mediated Cl– transport. This figure was created with the aid of Servier medical art.


The above model is supported by data showing increased apical membrane LMTK2 abundance with concurrent inhibition of CFTR mediated Isc after 60 min of TGF-β1 treatment (Figures 2, 3). TGF-β1 recruited LMTK2 to the apical membrane by specifically stimulating Rab11-mediated endocytic trafficking of LMTK2 (Figure 5). By contrast, TGF-β1 did not inhibit LMTK2 endocytosis or LMTK2 trafficking in Rab5-positive endocytic vesicles (Figure 4), or induce LMTK2 protein degradation (Figure 2A). Finally, TGF-β1 did not increase LMTK2 mRNA level (Figure 2G).

The TGF-β family consists of several ligands playing an important role in lung physiology and pathophysiology (Bartram and Speer, 2004; Saito et al., 2018). The ligands are expressed at low levels in healthy adult lungs, playing a role in tissue repair after acute injury, while their expression increases in chronic lung disease (Magnan et al., 1994; Coker et al., 1996). The levels of different TGF-β ligands increase before development of abnormal lung function and correlate with the severity of chronic disease (Jagirdar et al., 1996; Minshall et al., 1997; Charpin et al., 1998; Salez et al., 1998). CF is a disease associated with increased levels of TGF-β1 due to TGF-β1 gene polymorphisms, exposure to environmental toxins, including cigarette smoke, as well as infections with Pseudomonas aeruginosa or poor nutritional status. Prolonged exposure to TGF-β1 inhibits CFTR biogenesis by reducing mRNA stability and protein abundance in primary differentiated HBE cells from non-CF individuals and F508del homozygous patients (Snodgrass et al., 2013; Mitash et al., 2019) and in nasal polyps (Prulière-Escabasse et al., 2005), as well as to impair the functional rescue of F508del-CFTR (Snodgrass et al., 2013; Sun et al., 2014). However, acute effects of TGF-β1 on CFTR are unknown. Data presented in this manuscript close the gap showing that a short-term exposure to TGF-β1 may also inhibit CFTR mediated Cl– transport. The specific mechanism, previously elucidated by our group, explains that LMTK2 phosphorylates CFTR-Ser737 at the apical membrane domain, leading to CFTR endocytosis and subsequent decrease of the CFTR-mediated Cl– transport (Luz et al., 2014). Our data are clinically relevant to CF and other lung diseases. TGF-β1 impairs the corrector/potentiator-mediated rescue of F508del-CFTR in vitro, suggesting that it may prevent the full beneficial effect of the therapeutic approach in those CF patients who present with elevated TGF-β1 levels. Acquired CFTR dysfunction has been observed in COPD and the acute phase of pulmonary edema where TGF-β1 is a critical mediator (Clunes et al., 2012; Rab et al., 2013). Overall, our work highlights the relevance of assessing downstream mediators of TGF-β1-induced CFTR dysfunction in order to develop novel therapeutic approaches for different forms of lung diseases.

Small Rab-GTPases regulate endocytic trafficking in different vesicular compartments. Rab5 regulates trafficking from the plasma membrane to early endosomes (Bucci et al., 1992; Grant and Donaldson, 2009; Los et al., 2011), while Rab11 directs vesicles from the recycling endosomes to the plasma membrane, and also functions as an adaptor for endocytic trafficking from the trans-Golgi network to the plasma membrane (Ullrich et al., 1996; Grant and Donaldson, 2009; Los et al., 2011). We have shown that TGF-β1 modulates the endocytic trafficking pathway of LMTK2 in HBE cells. Specifically, TGF-β1 did not inhibit LMTK2 endocytosis nor did increase LMTK2 apical membrane abundance after silencing Rab5, indicating that it does not lead to apical membrane retention of LMTK2 by preventing its endocytosis. By contrast, silencing Rab11 blocked the TGF-β1 increase of apical membrane LMTK2, suggesting that TGF-β1 stimulates Rab11-mediated LMTK2 trafficking. We were unable to directly examine LMTK2 recycling using the GSH protection assay because of insufficient abundance of endogenous LMTK2 in the apical plasma membrane. Thus, we cannot distinguish whether the TGF-β1-mediated increase of apical membrane LMTK2 is caused by trafficking in recycling endosomes or by the vectorial transport from trans-Golgi network.

Whereas numerous studies investigated the activation and/or regulation of the TGF-β1 signaling pathway (Miyazono, 2000; Zhu and Burgess, 2001; Yan et al., 2018), as well as the regulation of the endocytic recycling trafficking of the TGF-β receptors (Mitchell et al., 2004; Chen, 2009; Penheiter et al., 2010; Yakymovych et al., 2018), currently, there are no published data demonstrating the role of TGF-β1 in trafficking of transmembrane proteins. Here, we addressed the research gap by unveiling that TGF-β1 regulates intracellular trafficking of LMTK2 leading to inhibitory phosphorylation and endocytosis of cell surface CFTR, and subsequent inhibition of CFTR-mediated Isc. This novel mechanism increases our understanding of the role of TGF-β1 in the pathophysiology of lung disease, including CF and the decreased efficacy of CFTR modulators in the presence of TGF-β1.

In summary, our data demonstrate that TGF-β1 recruits LMTK2 to the apical plasma membrane in HBE cells by increasing LMTK2 recycling in Rab11-positive vesicles. LMTK2 induces the inhibitory phosphorylation of CFTR-Ser737 triggering CFTR endocytosis and inhibition of CFTR-mediated Cl– transport. Here, we propose a novel mechanism of TGF-β1-dependent inhibition of CFTR mediated by LMTK2 in human airway epithelial cells.
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Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease in the world, after Alzheimer’s disease (AD), affecting approximately 1% of people over 65 years of age. Exosomes were once considered to be cellular waste and functionless. However, our understanding about exosome function has increased, and exosomes have been found to carry specific proteins, lipids, functional messenger RNAs (mRNAs), high amounts of non-coding RNAs (including microRNAs, lncRNAs, and circRNAs) and other bioactive substances. Exosomes have been shown to be involved in many physiological processes in vivo, including intercellular communication, cell migration, angiogenesis, and anti-tumor immunity. Moreover, exosomes may be pivotal in the occurrence and progression of various diseases. Therefore, exosomes have several diverse potential applications due to their unique structure and function. For instance, exosomes may be used as biological markers for the diagnosis and prognosis of various diseases, or as a natural carrier of drugs for clinical treatment. Here, we review the potential roles of exosomes in the pathogenesis, diagnosis, treatment, and prognosis of PD.

Keywords: exosomes, Parkinson’s disease, neurodegeneration, neuroinflammation, pathogenesis, diagnosis, treatment, prognosis


INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disease in the world, after Alzheimer’s disease (AD) (Kalia and Lang, 2015). PD affects 0.3% of the whole population, and the percentage rises to 1% of the population above 65 years of age (De Lau and Breteler, 2006; Ascherio and Schwarzschild, 2016). The clinical symptoms of PD patients include resting tremor, muscular rigidity, bradykinesia, and postural instability. Prior to the eventual appearance of motor symptoms, non-motor symptoms can be observed in PD patients, including hyposmia, constipation, urinary dysfunction, depression, anxiety, and rapid eye movement sleep behavior disorder (RBD) (Schapira et al., 2017). Most cases of PD are idiopathic, although 10–15% of cases are genetic (Deng et al., 2018). Thus far, 23 genes related to PD (PARK genes) have been identified. Mutations in SNCA, LRRK2, and VSP32 cause autosomal dominant inheritance of PD, whereas mutations in PRKN, PINK1, and DJ-1 demonstrate autosomal recessive inheritance. Moreover, a mutation in glucocerebrosidase 1 (GBA1) which causes Gaucher disease has been identified as a potential genetic risk factor for PD (Nichols et al., 2009), and both Gaucher disease patients and obligate carriers are predisposed to PD. In addition to genetic factors, environmental factors are also crucial in PD pathogenesis. For example, personal exposure to noxious chemicals such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (Langston et al., 1983), rotenone (Betarbet et al., 2000), and paraquat (Elbaz et al., 2009; Tanner et al., 2011) can trigger PD symptoms. The risks for developing PD associated with heavy mental exposure were also investigated, but the correlation remained unclear. Notably, some studies have reported a reduced risk of developing PD among smokers (Hernán et al., 2001) and coffee drinkers (Ross et al., 2000; Palacios et al., 2012).

The hallmarks of PD pathology are lesions in the substantia nigra pars compacta (SNpc) and striatum, including the presence of cytoplasmic inclusion bodies known as Lewy bodies (LBs), and progressive loss of dopaminergic neurons (Dickson, 2012). LBs are mainly composed of filamentous α-synuclein (α-syn), a small protein of indefinite function that is ubiquitously expressed in the brain. In PD patients, α-syn becomes abnormally phosphorylated and aggregated (Spillantini et al., 1998). PD movement disorders become more and more severe as the disease progresses due to the continuing death of dopaminergic neurons in SNpc, even though other brain regions are also affected. Although α-syn misfolding and aggregation are central to the development of the disease, several other mechanisms are implicated in PD pathogenesis (Goedert et al., 2013). Indeed, mitochondrial dysfunction (Bose and Beal, 2016), neuroinflammation (Hirsch and Hunot, 2009), and abnormal protein clearance systems, including the ubiquitin-proteasome system (UPS) (McKinnon and Tabrizi, 2014) and the autophagy-lysosomal pathway (ALP) (Tanji et al., 2011), all play a role in PD pathogenesis. Although all of these processes are known to participate in the onset and progression of PD, the relationship between these pathways remains unknown.

Extracellular vesicles (EVs) were first described in plasma by Wolf some 50 years ago as “platelet dust” (Wolf, 1967). There are three main types of EVs and these are distinguished by their size and their different mechanisms of biogenesis and release. Microvesicles (MVs) and apoptotic bodies are 50–500 nm in diameter, and both are secreted directly from the cytoplasmic membrane by living or dying cells (Colombo et al., 2014). Exosomes, the smallest EVs, are 50–150 nm in diameter and are secreted from the cytoplasmic membrane into the extracellular environment via fusion with late endosomes or multivesicular bodies (MVBs). This type of vesicle was first identified in the rat (Harding et al., 1983) and sheep (Pan et al., 1985) reticulocytes and subsequently labeled as “exosomes” by Johnstone et al. (1987) and Johnstone (2005). Exosomes can be released by a wide range of cells, including neurons, blood cells, epithelial cells, immune cells, and cancer cells. Exosomes have been isolated from a variety of biological fluids, including cerebrospinal fluid (CSF), plasma, serum, saliva, urine, semen, breast milk, amniotic fluid, and ascites fluid. Besides, exosomes have been isolated in vitro from cell culture supernatants (Théry et al., 2006). This review aimed to examine the potential roles of exosomes in the pathogenesis, diagnosis, treatment, and prognosis of PD. Since circulating exosomes cannot definitively be distinguished from MVs using currently available purification methods, we refer to EVs rather than exosomes when referring to biomarker studies in this review.



BIOGENESIS AND RELEASE OF EXOSOMES


Exosome Biogenesis: Formation of Intraluminal Vesicles (ILVs) in MVBs and Cargo Sorting

Exosome biogenesis begins with the endosome system. The cytoplasmic membrane invaginates to form early endosomes, and while some are recycled by the Golgi apparatus, the majority of early endosomes develop into late endosomes (also called MVBs). ILVs are formed during the inward budding of the endosomal membrane into the lumen of MVBs (Klumperman and Raposo, 2014) (Figure 1). The whole process can be divided into ESCRT-dependent and ESCRT-independent mechanisms; the molecules involved in the biogenesis and release of exosomes are summarized in Table 1.
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FIGURE 1. Biogenesis and secretion of exosomes. Exosome biogenesis begins in the endosome pathway. The cytoplasmic membrane invaginates to form early endosomes, parts of early endosomes are recycled by the Golgi apparatus, but the majority of them mature into late endosomes (also called MVBs). The intraluminal vesicles (ILVs) in MVBs either secrete to the extracellular environment to form exosomes or are targeted to lysosomes for degradation. The autophagy pathway is proposed to interact with the endosome pathway, and the autophagosomes and MVBs can fuse to form amphisomes, which can be degraded by lysosomes or secreted extracellularly.



TABLE 1. Molecules involved in the biogenesis and secretion of exosomes.

[image: Table 1]The Endosomal Sorting Complex Required for Transport (ESCRT) mechanism was first identified in the 2000s (Katzmann et al., 2001). The ESCRT system is composed of four complexes ESCRT-0, -I, -II, -III, and their associated proteins. ESCRT-0 proteins HRS and STAM are involved in cargo sorting of ubiquitinated proteins (Hanson and Cashikar, 2012; Henne et al., 2013). ESCRT-I proteins TSG101 and ESCRT-II are responsible for bud formation. ESCRT-III induces vesicle scission.

In the ESCRT system, dissociation and recycling of vesicles is driven by the accessory proteins ALIX and VPS4. ALIX was recently found to interact with syntenin, which acts as a cytoplasmic adaptor of heparan sulfate proteoglycan receptors. VPS4 is an ATPase associated with various cellular activities (AAA + ATPase) and is involved in the final step of ILV formation.

In addition to ESCRT-dependent mechanisms, some studies have shown that exosome biogenesis can occur in the absence of ESCRT proteins. Lipids, tetraspanins, and heat shock proteins are all involved in ESCRT-independent mechanisms (Stuffers et al., 2009). After inhibiting the expression of ESCRT proteins, exosomes expressing proteolipid protein (PLP) are normally released by oligodendroglia cells. Sphingomyelinase, an enzyme involved in producing ceramide from sphingomyelin, plays a role in exosome biogenesis and secretion in oligodendroglia cells (Trajkovic et al., 2008). These findings are consistent with the high levels of ceramide in exosomes. Ceramides are proposed to facilitate inward budding of MVBs to form ILVs. Phospholipase D2 (PLD2), an enzyme involved in synthesizing the signal molecule phosphatidic acid (PA) from phospholipids, also influences exosome biogenesis (Laulagnier et al., 2004). As observed with ceramide, PA can also induce inward curvature of the MVB membrane to form ILVs. Lipids such as cholesterol are also enriched in exosomes (Strauss et al., 2010).

In addition to lipids, the Tetraspanin family of four transmembrane domain proteins, which are enriched in exosomes, have also been proposed to participate in sorting cargoes for exosome secretion. Finally, the chaperone Hsc70 also plays a role in cargo sorting for exosomes. Hsc70 mediates the association between cytosolic constituents and exosomal membrane proteins (Géminard et al., 2004). Recently, Hsc70 was shown to bind cytosolic proteins containing a KFERQ-motif, and to induce their selective transport to ILVs (Sahu et al., 2011).

Although the biogenesis of exosomes is divided into ESCRT-dependent and ESCRT-independent pathways, the two pathways cannot be totally separated. Moreover, multiple mechanisms may simultaneously occur in a single MVB, and different populations of exosomes may depend on different pathways.



Exosome Secretion: Transportation of MVBs to the Cytoplasmic Membrane and Subsequent Fusion of MVBs With the Cytoplasmic Membrane

After ILVs have formed in MVBs, the MVBs can either be transported to lysosomes for degradation or directed to the cytoplasmic membrane for exosome secretion. Transportation of MVBs to the cytoplasmic membrane requires actin and microtubule cytoskeletons and associated molecular motors, such as kinesins and myosins (Villarroya-Beltri et al., 2014). Silencing or overexpressing cortactin, an actin-binding protein, was confirmed to reduce or increase the exosome secretion, respectively (Sinha et al., 2016).

Members of the Rab GTPase family, the largest family of small GTPase proteins, play vital roles in several critical MVB transportation processes, including vesicles membrane budding, trafficking of vesicles with tubulin and actin, docking of vesicles to targeted compartments, and fusion of vesicles with the cytoplasmic membrane (Stenmark, 2009).

Upon transportation of MVBs to the cytoplasmic membrane, MVBs fuse with the cytoplasmic membrane. During this process, numerous interactions between proteins and lipids can reduce the energy barrier and facilitate the fusion. Soluble N-ethylmaleimide-sensitive factor attachment proteins receptors (SNAREs) complexes are intimately involved in fusion with intracellular membranes (Zylbersztejn and Galli, 2011). The SNAREs family is comprised of vesicle-associated SNAREs (v-SNAREs) and target membrane-associated SNAREs (t-SNAREs). Generally, during the membrane fusion process, v-SNAREs interact with t-SNAREs to form a trans-SNARE complex (Wang et al., 2017). SNARE proteins including vesicle-associated membrane protein 7 (VAMP7), vesicle-associated membrane protein 8 (VAMP8), and SNAP-23 are involved in exocytosis of lysosomes regulated by Ca2+ (Puri and Roche, 2008). However, whether SNAREs induce the fusion of MVBs with the cytoplasmic membrane is controversial.

Cell type and cellular homeostasis also have an essential effect on the pathways of exosome secretion. MVBs are targeted to lysosomes for degradation or to the cytoplasmic membrane for secretion depending on cellular homeostasis. Under stress conditions, such as hypoxia (King et al., 2012), irradiation (Lehmann et al., 2008), and ER stress (Kanemoto et al., 2016), the number of intracellular MVBs increase and more exosomes are released. Thus, exosome secretion may be an alternative route for stressful cells to clear waste products. The secreted exosomes may be degraded by phagocytes, or may communicate with neighboring cells to induce pathological conditions. Similarly, an association between exosome secretion and autophagy has been proposed. Autophagy is a degradative pathway for the elimination of cellular waste, damaged organelles, and aggregated proteins, and functions to maintain cellular homeostasis. The cargoes to be excreted are first packaged into autophagosomes, and the autophagosomes are then either directly targeted to lysosomes for degradation or fused with MVBs to form amphisomes. The amphisomes can be degraded in lysosomes or secreted extracellularly (Boya et al., 2013). The two pathways do somewhat overlap. However, the induction of autophagy by starvation can decrease exosome secretion. Moreover, inhibition of autophagic degradation induced by inhibiting the fusion of lysosomes with both autophagosomes and MVBs could enhance the secretion of exosomes (Fader et al., 2008).



ROLE OF EXOSOMES IN THE PATHOGENESIS OF PD

Parkinson’s disease is characterized by the histopathological formation of LBs which predominantly contain misfolded α-syn. The conspicuous motor symptoms occur because of the progressive loss of dopaminergic neurons in the SNpc and striatum. However, preceding motor symptoms, patients can display some non-motor symptoms including hyposmia, gastrointestinal dysfunction, and sleep disorders (Khoo et al., 2013). Although LBs are initially found in the periphery, they gradually spread to the brain stem, and ultimately to the cerebral cortex. Following these observations, a hypothesis has been proposed that PD may begin in the enteric nervous system or olfactory bulbs and then spread to other brain regions during disease progression (Braak et al., 2003b; Del Tredici and Braak, 2016). Currently, PD progression is unexplained, but α-syn has been thought to propagate in a prion-like process (Olanow and Brundin, 2013). Moreover, exosomes are proposed to play an important role in the progression of PD (Figure 2).
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FIGURE 2. Exosomes as mediators for cell-to-cell communication in the pathogenesis of PD. Exosomal α-syn is readily transmitted between neurons and neuroglia cells. Exosomes provide an environment for α-syn aggregation, and can potentially promote the propagation of α-syn oligomers in the CNS. Activated neuroglia cells increase the release of exosomes and pro-inflammatory cytokines, thus exacerbating neuroinflammation and the progression of PD.



α-syn Aggregation and Propagation Mediated by Exosomes

Several experiments showed that α-syn is directly released into the extracellular environment or packaged into exosomes via the endosome pathway (Lee et al., 2005). However, the underlying mechanisms by which α-syn is sorted into exosomes remains unclear. In addition, α-syn reportedly interacts with synaptic vesicles to facilitate SNAREs assembly and promote neurotransmitter release (Alvarez-Erviti et al., 2010). The synaptic vesicles containing α-syn can be sorted into early endosomes by the Golgi apparatus or clathrin-mediated endocytosis (Alvarez-Erviti et al., 2011b). Next, with the assistance of VPS4 and SUMO (Small Ubiquitin-like Modifier) proteins, α-syn containing endosomes transition into MVBs and fuse with the plasma membrane for secretion as exosomal cargoes (Cabin et al., 2002). Alternatively, α-syn containing endosomes can be sorted into recycling endosomes and be exocytosed as secretory granules in a Rab11a-dependent manner (Ben Gedalya et al., 2009). In all processes, the secretion of exosomal α-syn from cells is regulated by the intracellular calcium concentration (Emmanouilidou et al., 2010) (Figure 3).
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FIGURE 3. Proposed pathway for sorting α-syn into exosomes. Exosomes participate in the secretion of α-syn in an endosome-dependent mechanism. First, α-syn is packaged into early endosomes. Next, α-syn containing exosomes can be secreted by two pathways. With the assistance of VPS4 and SUMO, it can be secreted as exosomal cargoes upon fusion of MVBs with the cytoplasmic membrane. Alternatively, α-syn containing exosomes can be sorted into recycling endosomes and be exocytosed as secretory granules in a Rab11a-dependent way.


Although the levels of α-syn contained in exosomes are low, recent studies suggest that exosomes provide an ideal environment for α-syn to aggregate, and potentially promote the propagation of PD pathology (Grey et al., 2015). It is widely accepted that oligomeric α-syn is the toxic form of α-syn, responsible for neuronal death. Danzer et al. (2012) identified the presence of oligomeric α-syn in exosomes and demonstrated that α-syn in exosomes is more easily taken up by recipient cells than free α-syn (Danzer et al., 2012). Stuendl et al. (2016) reported that exosomes from the CSF of patients with PD and dementia with Lewy bodies (DLB) could induce the formation of α-syn oligomers (Stuendl et al., 2016). Together, these findings prove that exosomal α-syn is intimately involved in the transmission of α-syn oligomers between cells.

Exosomes may function as intercellular carriers allowing α-syn to propagate in PD patients. Li et al. (2008) found LBs formation in transplanted neurons within recipients with PD, suggesting disease propagation from host-to-graft (Li et al., 2008). In the long-term embryonic nigral transplants in PD, Kordower et al. (2008) observed LB-like pathology (Kordower et al., 2008). Moreover, Recasens et al. (2014) extracted LBs from the brains of PD patients and transplanted them into mice and monkeys, eventually triggering α-syn aggregation and neurodegeneration (Recasens et al., 2014). In in vitro experiments, α-syn in exosomes were isolated from the conditioned medium of SH-SY5Y cells following overexpression of wild-type α-syn. Subsequently, Alvarez-Erviti et al. (2011b) demonstrated that exosomes isolated from SH-SY5Y cells which overexpress α-syn could transfer α-syn to normal SH-SY5Y cells (Alvarez-Erviti et al., 2011b). Finally, Emmanouilidou et al. (2010) were able to show that α-syn containing exosomes can promote the cell death of recipient neuronal cells, providing support for the hypothesis that α-syn propagation between neurons facilitates PD progression (Emmanouilidou et al., 2010).

Many different pathways are involved in the secretion of α-syn by exosomes. One of the characteristics of PD pathology is the failure of protein clearance by the UPS and the ALP. If either of the two pathways is compromised, intracellular α-syn aggregation occurs (Alvarez-Erviti et al., 2011b). Inhibition of ALP has been found to increase exosomal α-syn release, while concomitantly reducing α-syn aggregation in the cell (Lee et al., 2013). Although inhibition of ALP can protect cells by the reduction of intracellular α-syn levels and an increase in exosomal α-syn secretion, it can also promote the intercellular transfer of α-syn by exosomes and lead to the propagation of PD pathology (Poehler et al., 2014).



Neuroinflammation Mediated by Exosomes

In addition to neuron-to-neuron communication, exosomes can also communicate between neurons and neuroglia cells. It has been reported that α-syn secreted from neurons can be phagocytosed by microglial cells (Alvarez-Erviti et al., 2011a) and astrocytes (Lee et al., 2010) in order to eliminate the toxic α-syn. However, the overload of α-syn in neuroglia cells can trigger a neuroinflammatory response. Chang et al. (2013) reported that α-syn could induce increased exosome release by BV-2 microglial cells, and this can cause increased cell apoptosis when co-cultured with cortical neurons (Chang et al., 2013). In addition, microglial cells and monocytes isolated from young (but not old) mice showed increased phagocytosis of exosomal α-syn oligomers and decreased secretion of the pro-inflammatory cytokines TNF-α (Bliederhaeuser et al., 2016). These studies suggest that microglia cells in the aged brain can exacerbate neurodegeneration by being unable to eliminate α-syn oligomers or by accelerating the secretion of exosomal α-syn oligomers. All these findings suggest that exosomes secreted by activated microglia cells may be vital factors in the neurodegeneration and progression of PD.

Inflammation is a critical process in PD progression (Panaro and Cianciulli, 2012). A proper inflammatory response is essential for tissue repair, but an excessive and delayed inflammatory response may lead to a malignant cycle of neuroinflammation and propagation of the disease (Gao and Hong, 2008). Exosomes may participate in different stages of the inflammatory process, including the activation stage, through neuron-to-neuroglia communication, and the exacerbation stage, through neuroglia-to-neuroglia communication (Figure 2). Thus far, the exact role of exosomes in neuroinflammation has not been completely elucidated, and more research is essential.



MicroRNAs in Exosomes Involved in PD Pathogenesis

MicroRNAs (miRNAs) are notoriously involved in PD pathogenesis, and can be packaged in exosomes. Exosomes and miRNAs form a network that, both individually and synergistically, participates in the pathogenesis of PD among several other diseases (Mirzaei et al., 2017; Li et al., 2018; Saeedi Borujeni et al., 2018; Pourhanifeh et al., 2019).

Of note, certain miRNAs target PD-related genes. McMillan et al. (2017) observed that miR-7 can combine with the 3′-untranslated region (UTR) of SNCA mRNA to inhibit its transcription, and loss of miR-7 leads to α-syn aggregation and dopaminergic neuronal loss in the brains of PD patients (McMillan et al., 2017). Chen et al. (2017) found significantly upregulated expression of miR-4639-5p in PD patients, which negatively regulated the post-transcription level of the PD-associated gene DJ-1, eventually causing severe oxidative stress and neuronal death (Chen et al., 2017).

Jiang Y. et al. (2019) reported that exosomal microRNA-137 (miR-137) is upregulated and plays a vital role in the induction of oxidative stress of neurons in PD. miR-137 was found to directly target oxidation resistance 1 (OXR1) and negatively regulate its expression, thus inducing oxidative stress in PD (Jiang Y. et al., 2019). In a manganese-induced PD cell model, the levels of 12 miRNAs were significantly increased in EVs, including miR-210-5p, miR-128-1-5p, miR-505-5p, miR-325-5p, miR-16-5p, miR-1306-5p, miR-669b-5p, miR-125b-5p, miR-450b-3p, miR-24-2-5p, miR-6516-3p, and miR-1291. These miRNAs were shown to regulate key pathways in the pathogenesis of PD, including protein aggregation, autophagy, and inflammation (Harischandra et al., 2018). Toll-like receptor (TLR) is a type of innate immune receptor that when activated can cause release of inflammatory cytokines. Winkler et al. (2014) reported that exosomes can transport miRNA let-7 to activate TLR7 in neuronal cells and consequently lead to neurodegenerative diseases (Winkler et al., 2014).

Although the role of exosomes in the pathogenesis of PD has been confirmed, it is still necessary to explore the molecular mechanisms which control and regulate exosome biogenesis, secretion, and communication with recipient cells both in vivo and in vitro. Additional research concerning cell-to-cell transfer and propagation of α-syn, inflammatory mediators, and microRNAs between neurons and neuroglia cells, can broaden our understanding of the mechanisms of PD occurrence and progression, and allow for the development of new strategies for the diagnosis and treatment for PD and other neurodegenerative diseases.



ROLE OF EXOSOMES IN THE DIAGNOSIS OF PD

Nowadays, PD is mainly diagnosed by the appearance of noticeable clinical motor symptoms (Postuma et al., 2015). However, prior to the occurrence of motor symptoms, some non-motor symptoms are evident (Chaudhuri et al., 2006). There is currently no useful diagnosis for early stage PD. The development of a method to diagnose PD early would be an important breakthrough. Previous analysis of disease-related constituents of EVs (including exosomes) isolated from the blood or cerebrospinal fluid (CSF) of PD patients suggests that EVs can be efficient biomarkers of PD (Vella et al., 2016). The potential biomarkers in EVs of PD are summarized in Table 2 (ROC: Receiver Operating Characteristic Curve; AUV: Area Under the Curve).


TABLE 2. Potential biomarkers in EVs (including exosomes) of PD.

[image: Table 2]α-syn aggregation in LBs is a hallmark of PD pathology (Braak et al., 2003a). Although α-syn can be separated from blood and CSF, it cannot be usefully as a significant biomarker of PD due to its low abundance. In the CSF of PD patients, α-syn has consistently been shown to be present at a lower level compared to healthy controls. Stuendl et al. (2016) reported that levels of EV α-syn are also lower in the CSF of PD patients, which is consistent with the low levels of total α-syn in CSF (Stuendl et al., 2016). However, the use of plasma and serum α-syn as a biomarker has proved to be ineffective and inconsistent, because peripheral blood cells can also produce α-syn. Shi et al. (2014) reported that α-syn can easily be transported from the CSF to blood, and that some α-syn was packaged into EVs expressing neural cell adhesion molecule L1 (L1CAM), which is the central nervous system (CNS) specific (Shi et al., 2014). Moreover, they were able to demonstrate that levels of EV α-syn in plasma derived from the CNS are significantly higher in PD patients and the levels are related to the degree of the disease (Shi et al., 2014). In view of this, the authors suggest that CNS-derived EV α-syn in plasma can be used as a biomarker for PD with high specificity and sensitivity (Shi et al., 2014). Recently, Cao et al. (2019) found that the absolute levels of α-syn oligomers and the α-syn oligomers/total α-syn ratio are both higher in salivary EVs isolated from PD patients compared with healthy controls (Cao et al., 2019). Rani et al. (2019) were able to show that CNS-derived salivary EVs increased and that the levels of phosphorylated α-syn in these salivary EVs are significantly higher in PD patients than in healthy controls (Rani et al., 2019). Although Tau is mainly thought to be important in AD, Shi et al. (2016) reported that tau in CNS-derived EVs isolated from human plasma was significantly higher in PD patients compared with AD patients (Shi et al., 2016).

Kitamura et al. (2018) isolated EVs from the plasma of PD patients at Hoehn and Yahr (HY) stage II and III to identify candidate biomarkers for PD progression. They found that levels of clusterin, apolipoprotein A1, and complement C1r subcomponent were prominently decreased in PD patients at HY stage II and III compared with healthy controls. In particular, in PD patients at HY stage III, the levels of apolipoprotein A1 were substantially decreased compared with PD patients at HY stage II. Therefore, these three EV proteins may be candidate biomarkers for PD, it should be noted that apolipoprotein A1 levels are also relevant to the progression of PD (Kitamura et al., 2018). Similarly, Jiang R. et al. (2019) isolated EV proteins from the serum of PD patients, and observed that the expression of afamin, apolipoprotein D and J, and pigmented epithelium-derived factor, were prominently increased, whereas the levels of complement C1q and protein Immunoglobulin Lambda Variable 1-33 (IGLV1-33) Cluster -33 were decreased in PD patients (Jiang R. et al., 2019).

Mutations in DJ-1 and LRRK2 have been related to familial and sporadic PD. Zhao et al. (2018) reported that the levels of DJ-1 in EVs derived from CNS, and the ratio of EV DJ-1 to total DJ-1 derived from CNS, were substantially higher in the plasma of PD patients compared to healthy controls (Zhao et al., 2018). Ho et al. (2014) found that the levels of DJ-1 and LRRK2 in urine EVs in Korean PD patients are dependent on gender. Thus, DJ-1 levels were prominently higher in male PD patients and the levels increased in an age-dependent manner. However, the sample size in their study was small (Ho et al., 2014). Fraser et al. (2016a) examined whether the levels of auto-phosphorylated Ser(P)-1292 LRRK2 in urine EVs could predict LRRK2 mutation carriers (LRRK2+) and non-carriers (LRRK2-) with or without PD. The results revealed that these levels could predict LRRK2 mutation status using the elevated ratio of Ser(P)-1292 LRRK2 to total LRRK2 in urine EVs. Furthermore, patients with PD demonstrated a higher ratio than those without PD among carriers with the LRRK2 mutation (Fraser et al., 2016a). Overall, Fraser et al. (2016a) measured the levels of auto-phosphorylated Ser(P)-1292 LRRK2 in urine EVs in 79 idiopathic PD patients and 79 healthy controls. They found that the Ser(P)-1292 LRRK2 levels were higher in men compared to women and that they increased in idiopathic PD patients in contrast to healthy controls (Fraser et al., 2016a). Ser(P)-1292 LRRK2 levels were also shown to be related to the severity of cognitive impairment (Fraser et al., 2016b). Therefore, Ser(P)-1292 LRRK2 may be used as a biomarker for both familial and idiopathic PD.

In addition to proteins, various RNA species are present in EVs. Gui et al. (2015) isolated EV miRNAs from CSF, and revealed that 16 miRNAs were higher and 11 miRNAs were lower in PD patients in contrast to healthy controls. Among those, miR-153, miR-409-3p, miR-10a-5p, and let-7g-3p were prominently increased in CSF EVs from PD patients, while miR-1 and miR-19b-3p were prominently decreased (Gui et al., 2015). Cao et al. (2017) collected serum samples and isolated EV miRNAs from serum. They found that miR-24 and miR-195 were prominently upregulated, whereas miR-19b was prominently downregulated in serum EVs isolated from PD patients, as compared with healthy controls (Cao et al., 2017). Yao et al. (2018) found that the expression of circulating EV miR-331-5p was higher in the plasma of PD patients, while the expression of circulating EV miR-505 was lower, as compared with healthy controls (Yao et al., 2018).

The above studies suggest that EVs may be useful tools for the diagnosis of PD. However, large-scale clinical trials should be conducted to verify the specificity and sensitivity. Moreover, new techniques to isolate higher numbers of pure exosomes while excluding contaminants are required to improve the diagnostic value of exosomes.



ROLE OF EXOSOMES IN THE TREATMENT OF PD

Currently, treatments for PD do not cure the disease, although many drugs can relieve the motor symptoms. However, as PD progresses, these drugs can produce adverse effects (Müller, 2012). Therefore, there is an urgent need for the discovery of new drugs or methods to treat PD.

Most of the drugs trialed for CNS diseases failed during clinical trials because that they cannot cross the blood-brain barrier(BBB) (Pardridge, 2012). However, exosomes can cross the BBB as natural nano-scaled vesicles, and they can be used as drug-delivery vehicles (Zhuang et al., 2011; Lai and Breakefield, 2012) (Figure 4). Qu et al. (2018) isolated exosomes from human blood, and loaded exosomes with a saturated solution of dopamine. In in vivo and in vitro experiments, the authors showed that blood exosomes could cross the BBB and deliver dopamine into the brain via an interaction between transferrin and transferrin receptor. The exosomes loaded with dopamine had a better therapeutic effect in the PD mice model and showed less toxicity than free dopamine by intravenously systemic administration (Qu et al., 2018). Haney et al. (2015) developed a new exosome delivery system loaded with catalase, which is a potent antioxidant, using monocytes and macrophages. These exosomes were taken up by neurons, and the catalase released could ameliorate neural inflammation and increase neural survival in in vivo or in vitro PD models (Haney et al., 2015). In addition, Kojima et al. (2018) reported a set of EXOsomal transfer into cells (EXOtic) devices that produces designer exosomes in engineered mammalian cells to deliver therapeutic catalase mRNA to the brain (Kojima et al., 2018).
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FIGURE 4. Exosomes as nano-delivery vehicles for PD treatment. It is proposed that exosomes can be used as nano-delivery vehicles for therapeutic drugs, proteins, siRNAs, shRNAs, and miRNAs. Exosomes are obtained from natural human cells or artificially synthesized, and then modified with therapeutic components in vitro, and finally re-injected into circulation. Exosomes can cross the BBB and reach the targeted cells to release their functional cargoes for therapeutic purposes (Aryani and Denecke, 2016).


Moreover, exosomes carrying specific exogenous small interfering RNAs (siRNAs) can be therapeutic for PD. In S129D α-syn transgenic mice, systemic injection of modified exosomes loaded with siRNA to α-syn can reduce the amount of α-syn mRNA transcription and protein translation (Cooper et al., 2014). Due to the short-term efficacy of siRNA, shRNA minicircles (shRNA-MCs) were designed by Izco et al. (2019). RVG-exosomes were used to deliver anti-α-syn shRNA-MCs to the PD mouse model induced by preformed α-syn fibrils. They found this treatment reduced the aggregation of α-syn, decreased the death of dopaminergic neurons, and ameliorated the clinical symptoms (Izco et al., 2019).

Exosomes derived from mesenchymal stem cells (MSCs) have been considered as an effective tool for treatment, and there use has been shown to be beneficial in different pathological conditions, including osteoarthritis (Mianehsaz et al., 2019), multiple sclerosis (Li et al., 2019), and PD. MSC-derived exosomes were discovered to rescue dopaminergic neurons in 6-OHDA mouse models of PD, providing a potential treatment for PD (Vilaca-Faria et al., 2019). MSC-derived exosomes can also carry beneficial miRNAs and interact with neuronal cells to reduce neuroinflammation and promote neurogenesis in PD animal models. miR-21 and miR-143 in MSC-derived exosomes are found to play a significant role in immune modulation and neuronal death. Moreover, as one of the miRNAs downregulated in PD, miR-133b in MSC-derived exosomes can be transmitted to neuronal cells to promote neurite outgrowth. In addition, by modifying MSC-derived exosomes with mimic-miR-7, it is possible to inhibit α-syn aggregation and suppress NLRP3 inflammasome activation in SNpc and striatum, thereby ameliorating the neuroinflammation response in PD. Modification with antago-miR-155 can also reduce microglia cell activation and neuroinflammation, and may be therapeutic for PD. Considering the above results, transfer of genetic materials such as miRNAs within MSC-derived exosomes, is indeed beneficial to PD animal models. Therefore, understanding how the miRNAs from MSC-derived exosomes interact with the cells and molecules in PD is of great importance.

Mounting evidence has been proved that exosomes separated from various types of cells can be modified to target specific neurons and specific regions of the brain and can be therapeutic for PD and many other neurodegenerative diseases (Tomlinson et al., 2015). Although the advantages of exosomes for therapy are apparent, some limitations exist. First, we cannot obtain pure exosomes using current technology, and so it is important for us to construct a minimum exosome delivery system to contain the therapeutic molecules and little else. Second, the adverse effects of using different sources of exosomes should be examined. Finally, we need to sort out the best cellular source for exosomes (Sarko and McKinney, 2017).



ROLE OF EXOSOMES IN THE PROGNOSIS OF PD

Not only do exosomes participate in the pathogenesis, diagnosis, and treatment of PD, exosomes can also be used as biomarker outcomes to show treatment response in PD clinical trials. In a single-center Exenatide-PD trial, 60 idiopathic PD patients were randomly assigned to subcutaneous administration of 2 mg exenatide (n = 31) or placebo (n = 29) once weekly for 48 weeks, followed by 12-week drug withdrawal. Blood samples were collected at week 0, 24, 48, and 60, and then neuronal-derived EVs with L1CAM were selectively isolated for insulin signaling proteins quantification. Athauda et al. (2019) found that patients receiving exenatide had enhanced brain insulin signaling with increased phosphorylation of insulin receptor substrate 1 (IRS-1) at 48 and 60 weeks, as compared with placebo controls. Moreover, the expression of downstream pathway substrates was increased, such as total phosphoinositide 3-kinase-protein kinase B (Akt) and phosphorylated mechanistic target of rapamycin (mTOR). In addition, they found that changes in levels of EV biomarkers including IRS-1 p-S616, t-mTOR, and p-mTOR S2448 were correlated with changes in Movement Disorders Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) Part 3 scores at 48 weeks. At 60 weeks, the changes in MDS-UPDRS Part 3 scores were closely associated with changes in t-mTOR. These findings suggest that exenatide can improve the MDS-UPDRS Part 3 scores, and scores were significantly related to changes in these biomarkers in EVs (Athauda et al., 2019).

This research showed that changes in EV biomarkers were significantly associated with clinical improvements in an Exenatide-PD trial, and that EV biomarkers could potentially be used to evaluate treatment response and prognosis. Furthermore, neuronal-derived EVs could be a novel tool to assess target engagement for drugs in clinical trials in PD and other CNS diseases.



CONCLUSION

Our in-depth analysis of exosomes reveals that these subcellular components participate in the onset, propagation and progression of PD, by spreading the harmful molecules, such as misfolded α-syn and inflammatory mediators. Isolation and identification of EV cargoes have been used to discover novel biomarkers for the diagnosis of PD. In addition, their ability to cross the BBB and the low immunogenic activity make exosomes ideal drug-delivery systems for the treatment of PD. Recent research suggests that neuronal-derived EVs isolated from peripheral blood can be used as biomarkers to assess prognosis and elucidate drug targets in clinical trials.

However, further investigations to elaborate the molecular mechanisms of exosomes in PD pathophysiology are warranted. What’s the direct mechanism for sorting α-syn into exosomes? In view of low levels of α-syn in exosomes, how many exosomes are required to propagate and cause pathology in in vivo or in vitro PD models? Are exosomes involved in the core pathogenesis of PD onset and progression, or are they released only as a result of PD pathophysiology? Most importantly, more accurate and standardized purification methods should be developed to isolate purer exosomes for diagnostic, therapeutic, and prognostic purposes. In 2011, the International Society of EVs was launched to tackle these challenges. We foretell that future research will shed light on these intriguing questions.
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The transport protein particle (TRAPP) complex was initially identified as a tethering factor for COPII vesicle. Subsequently, three forms (TRAPPI, II, and III) have been found and TRAPPIII has been reported to serve as a regulator in autophagy. This study investigates a new role of mammalian TRAPPIII in ciliogenesis. We found a ciliopathy protein, oral-facial-digital syndrome 1 (OFD1), interacting with the TRAPPIII-specific subunits TRAPPC8 and TRAPPC12. TRAPPC8 is necessary for the association of OFD1 with pericentriolar material 1 (PCM1). Its depletion reduces the extent of colocalized signals between OFD1 and PCM1, but does not compromise the structural integrity of centriolar satellites. The interaction between TRAPPC8 and OFD1 inhibits that between OFD1 and TRAPPC12, suggesting different roles of TRAPPIII-specific subunits in ciliogenesis and explaining the differences in cilium lengths in TRAPPC8-depleted and TRAPPC12-depleted hTERT-RPE1 cells. On the other hand, TRAPPC12 depletion causes increased ciliary length because TRAPPC12 is required for the disassembly of primary cilia. Overall, this study has revealed different roles of TRAPPC8 and TRAPPC12 in the assembly of centriolar satellites and demonstrated a possible tethering role of TRAPPIII during ciliogenesis.
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INTRODUCTION

Primary cilia are microtubule-based sensory organelles that project from the surface of most mammalian cells (Malicki and Johnson, 2017). They recognize signals from the extracellular environment and control multiple intracellular signaling pathways (Downs et al., 2014; Malicki and Johnson, 2017). Defects in ciliary structure and/or function cause developmental and physiological disorders collectively called ciliopathies, which include Bardel Biedl syndrome (BBS), orofaciodigital syndrome (OFD), Meckel Gruber syndrome (MKS), nephronophthisis (NPH), retinal degeneration (RPGR), and Joubert syndrome (JS) (Adams et al., 2007; Lopes et al., 2011; Hemachandar, 2014; Novas et al., 2015). These diseases are characterized by their genetic heterogeneity which shares a group of clinical features, mainly including polycystic kidney disease (PKD), defects in respiratory, retinal, neurological and hepatic, in addition to polydactyly, cranio-facial abnormalities, as well as obesity and diabetes caused by metabolic defects (Gerdes et al., 2009; Nigg and Raff, 2009; Hildebrandt et al., 2011; Waters and Beales, 2011; Valente et al., 2014; Ma et al., 2017).

Centriolar satellites are the membrane-free granules with a diameter ranging from 70 to 100 nm and move along microtubules in the vicinity of the centrosome (Balczon et al., 1994; Kubo et al., 1999; Dammermann and Merdes, 2002; Kubo and Tsukita, 2003). These structures, as dynamic protein complexes, are responsible for proteins trafficking from the cytoplasm toward the centrosome and ciliary complex, or vice versa (Barenz et al., 2011; Lopes et al., 2011; Tollenaere et al., 2015; Hori and Toda, 2017). Several ciliopathy-associated proteins, including Bardel Biedl syndrome 4 (BBS4), CEP290, pericentriolar material 1 (PCM1), and orofaciodigital syndrome 1 (OFD1), localize to centriolar satellites and are critical for cargos entry and/or exit from the primary cilium. BBS4 is a component of BBSome, which is a stable protein complex formed by eight conserved ciliary membrane-associated proteins (BBS1, BBS2, BBS4, BBS5, BBS7, BBS8, BBS9, and BBIP10) (Nachury et al., 2007; Nachury, 2008; Jin et al., 2010). PCM1 acts as a platform to recruit other satellite cargos and promote microtubule organization. OFD1, as a ciliary disease protein, also localizes to the distal end of mother centriole, which is converted into the basal body for the primary cilium formation upon cell division exit. This pool of OFD1 is responsible for the distal end decoration of centriole, IFT88 recruitment, and ciliogenesis (Ferrante et al., 2006; Singla et al., 2010). However, the population of OFD1 at centriolar satellites promotes the regular growth of the primary cilium via its degradation by autophagy under serum starvation conditions (Tang et al., 2013).

The transport protein particle (TRAPP) is a multi-subunit tethering protein complex that was initially identified in budding yeast (Sacher et al., 1998). The function of the yeast TRAPP has been well-documented, but that of mammalian TRAPP is still poorly understood. In yeast, the TRAPP complex has been found in three forms, TRAPPI, II and III, but only two forms, TRAPPII and III, have been identified in mammalian cells so far. The crystal structure of yeast TRAPPI revealed that TRAPPI as the core complex contains six subunits (Bet5p, Trs20p, Trs23p, Trs31p, Trs33p, as well as a couple of Bet3) and serves as the core for the assembly of TRAPPII and TRAPPIII. TRAPPI has not been identified as an independent complex in mammalian cells, but a six-subunit structure (TRAPPC1, TRAPPC2, TRAPPC4, TRAPPC5, TRPAAC6, and two copies of TRAPPC3) similar to yeast TRAPPI serves as the core for assembly of other specific subunits to form TRAPPII and TRAPPIII (Yu and Liang, 2012; Brunet and Sacher, 2014). In addition to the core, the mammalian TRAPPII also contains two specific subunits TRAPPC9 and TRAPPC10, homologues to yeast Trs120 and Trs130, and TRAPPIII contains TRAPPC8, TRAPPC13, homologues to yeast Trs85, and Trs65, as well as TRAPPC11 and TRAPPC12 not found in yeast (Yu and Liang, 2012; Bassik et al., 2013). TRAPPI complex, which acts as a tether with COPII vesicles derived from ER, mediates ER-to-Golgi transport (Sacher et al., 2001). TRAPPII mediates intra-Golgi transport, Golgi exit, endosome-to-Golgi traffic, as well as lipid droplet homeostasis (Brunet and Sacher, 2014; Li et al., 2017). Furthermore, TRAPPII interacts with Rabin8, which is a major GEF (guanine-nucleotide-exchange factor) for Rab8, to participate in ciliary vesicle formation during ciliogenesis (Westlake et al., 2011). TRAPPIII mainly functions in modulating COPII vesicle formation at the ER exit sites and regulates autophagy (Zhao et al., 2017). Recently, TRAPPC8, a subunit of TRAPPIII complex, was also found to serve in the trafficking of Rabin8 to the centrosome. However, it remains to be clarified whether the role of TRAPPC8 in ciliogenesis is related to its role as a TRAPPII protein.

Here, we investigate the different functions of two confirmed TRAPPIII components, TRAPPC8 and TRAPPC12, in the cilium formation using human retinal pigment epithelial (hTERT-RPE1) cells as a model. A tandem-affinity purification identified TRAPPC12-interacting protein, OFD1. We propose a novel model that explains how TRAPPIII regulates ciliogenesis via its interaction with a ciliopathy protein, OFD1.



MATERIALS AND METHODS


Cell Culture

Mammalian cells used in this study were originally obtained from the American Type Culture Collection (ATCC, Manassas, Virginia). hTERT-RPE1 cells were cultured in Dulbecco's Modified Eagle's Medium/Nutrient Mixture F-12 medium (DMEM/F12) supplemented with 10% fetal bovine serum (FBS, Sigma, A6003). Other cell lines, Hela and HEK293T, were grown in DMEM (Invitrogen, 12800-017) containing 10% FBS and 1% penicillin-streptomycin solution. All cells were cultured at 37°C and 5% CO2 and detached by incubating in trypsin (Invitrogen, 12604-02) for 5 min. hTERT-RPE1 cells were serum-starved for 24–48 h to induce cilia formation in its described culture medium but with 0.5% FBS. After cilium formation upon serum starvation for 48 h, cilium disassembly was stimulated by re-introduction of serum to the cells for 24 h.



Plasmids

Human OFD1 is subcloned into pMyc-CMV vector (Clontech). Mouse wild type and mutant forms of OFD1 (S75F, A80T, G139S, and S437R) were obtained from Addgene. Mouse TRAPPC8 and TRAPPC12 were obtained by our lab.



RNAi

hTERT-RPE1 cells were transfected using LipofectamineR 3000 reagent with 80 nmol of siRNA targeting human TRAPPC8, human TRAPPC12, human OFD1, and human PCM1 mRNA. TRAPPC12: siGENOME human TRAPPC12 (Dharmacon, Cat. #M016861000005); TRAPPC8 siRNA (1): 5′-GAAGAUGGCCCUUGUACUAUU- 3′, TRAPPC8 siRNA (2): 5′-UAGUACAAGGGCCAUCUUCUU-3′ (designed by our lab); OFD1 siRNA (1): 5′-GCUCAUAGCUAUUAAUUCA-3′, OFD1 siRNA (2): 5′-GAUCGAUCGUUCUGUCAAU-3′ (Lopes et al., 2011); PCM1 siRNA: 5′-GGCUUUAA CUAAUUAUGGATT-3′ (Kim et al., 2008).



Transfection

Transfections of DNA plasmids for gene expression in HEK293T cells and in Hela cells were done by PEI (Sigma, 408727) in a 3:1 plasmid concentration ratio, and JetPRIME transfection reagent (Polyplus, 114–15), respectively. Lipofectamine 3000 transfection reagent (ThermoFisher, L3000008) were used for plasmid or siRNA transfections in hTERT-RPE1 with a concentration of 80 nM siRNA (1 μl of Lipofectamine 3,000 per 1 ml medium) or 0.25 μg/ml plasmid (0.25 μl of Lipofectamine 3,000 per 1 ml medium).



Immunoprecipitation

The cells were lysed in pre-chilled 800 μl of RIPA buffer (20 mM Tris pH 8.0, 100 mM NaCl and 0.1% NP-40) plus protease inhibitor cocktail and harvested by scraping. For complete lysis, tubes containing cell lysates were incubated on ice for 30 min, and vortexed at every 10 min. The lyophilized protein A-sepharose (sigma, P3391) was swollen in 1 × PBS for 5 min at room temperature, and then centrifuged at 2,000 rpm for 2 min at room temperature. After removal of the supernatants, the protein A beads were washed with 1 × PBS twice more. Finally, the protein A beads were mixed with the equal volume of 1 × PBS. 30 μl of the above beads in 1 × PBS was added into the lysate and 1 μg of antibody was also added to the reaction mixtures. The mixtures (lysate, beads and antibody) were incubated on a rotating wheel at 4°C overnight. Then the mixtures were centrifuged and the supernatants were removed. The beads were washed 3–5 times with RIPA buffer before sample buffer was added to the beads for immunoblotting analysis. Antibodies for blotting: mouse c-myc (9E10) (1:50, established by our lab), mouse anti-GAPDH (1:3000, EMD Millipore, CB1001), rabbit-GFP (FL) (1:500, Santa Cruz, sc-8334), rabbit-OFD1 (1:500, GeneTex, GTX110010), mouse-PCM1 (1:500, Santa Cruz, sc-398365), rabbit-PCM1 (1:500, Proteintech, 19856-1-AP), rabbit-TRAPPC8 (1:500, ThermoFisher, PA5-59429), rabbit-TRAPPC12 (1:2000, established by our lab), mouse-β-Actin (1:3000, ABclonal, AC-006), and horseradish peroxidase (HRP) conjugated secondary antibody were used at 1:5000 (Invitrogen).



CRISPR/Cas9 System for Deletion of TRAPPC8

To knock out human TRAPPC8, three pairs of oligoes were designed by CRISPR gRNA Design tool-DNA2.0 (www.atum.bio/eCommerce/cas9/input). The oligos locate at 5′ upstream of a 3bp of NGG PAM sequence and shown as below:

C8KO-2 Forward: CACCGAATTAGGCAATTAAACGATC

C8KO-2 Reverse: AAACGATCGTTTAATTGCCTAATTC

C8KO-3 Forward: CACCGTAGAGCTCACCCACTTCAGT

C8KO-3 Reverse: AAACACTGAAGTGGGTGAGCTCTAC

Each pair of the above-mentioned annealed oligos was cloned into the digested guide RNA scaffold, lentiCRISPR v2 (Addgene, 52961). These plasmids were transfected into HEK293T cells, and the cells were selected by 2 μg/ml of puromycin for 24 h, and then by 1 μg/ml of puromycin for additional 48 h. The efficiency of the knockout was analyzed by PCR and western blot. The potential cells were seeded into 96-well for selection of a single cell. Overall, we got two populations of single cells with TRAPPC8 deletion from 35 samples. Procedures for getting TRAPPC12 deletion cells have been described previously (Zhao et al., 2017).



Immunofluorescence and Microscopy

Cells were grown on 12 mm glass coverslips for 24 h prior to the treatments (siRNA or plasmid transfection and/or starvation) and washed three times with 1 × PBS before fixation. Fixation was carried out with 3.7% formaldehyde was used for 15 min at room temperature or with 100% methanol (−20°C) on ice for 5 min. Then, the cells fixed with formaldehyde (PFA) were permeabilized with 0.1% Triton X-100 in 1 × PBS for 5 min at room temperature, before blocking with blocking buffer (1 × PBS containing 1% BSA) for 1 h. Then, primary antibodies were applied to the samples for 2 h at room temperature. The cells were washed three times with 1 × PBS, and then incubated with appropriate secondary antibodies for 1 h at room temperature. DAPI was used to counterstain for nucleus. Images were captured by an FV1200 Olympus inverted confocal microscopy equipped SIM scanner, with 100X objective. Same exposures were always used in imaging for the comparable samples. Antibodies for immunofluorescence: rabbit-ARL13B (1:300, Proteintech, 17711-1-AP), mouse-ERGIC53 (1:3000), a gift from Prof. Hans-Peter Hauri, mouse-GM130 (1:100, BD, 610823), rabbit-OFD1 (1:100, Novus, NBP1-89355), mouse-PCM1 (1:300, Santa Cruz, sc-398365), rabbit-PCM1 (1:300, Proteintech, 19856-1-AP), rabbit-Sec31A (H-143) (Santa Cruz, sc-98523), rabbit-TRAPPC8 (1:100, Thermo Fisher PA5-59429), TRAPPC12 (1:50, established by our lab). The antibodies were diluted in blocking buffer.



Ciliary Length Measurements

Cilium length was measured by Image J. The length of the scale bar (10 μm) was set as the scale distance in pixels. The segmented lines along cilia were drawn, and their length was measured to represent cilium length.



Quantification and Statistical Analysis

For fluorescent quantitative analysis, OFD1 and PCM1 puncta in hTERT-RPE1 cells were carried out by measuring the intensities of fluorescence in a respective 4 and 8 μm2 circular areas around the centrosome. Statistical analyses were carried out with Prism 6 software (GraphPad). The data were expressed as mean ± SEM (Standard Error of Mean) or mean± SD (Standard Deviation). The differences between two number groups were compared by two tailed unpaired T-test (p < 0.05), while within multiple groups were analyzed by no matching or pairing one-way ANOVA followed by bonferroni' multiple comparison test (p < 0.05).




RESULTS


TRAPPIII Localizes to the Basal Body

TRAPPC8 is a major subunit of TRAPPIII, and therefore, knowing its subcellular location is important for understanding its function. We investigated the localization of TRAPPC8 in ciliated cells and cancer cells with antibodies to TRAPPC8 and several intracellular organelle markers. We chose hTERT-RPE1, Hela, and HEK293T cells because hTERT-RPE1 is the human retinal pigment epithelial cell line immortalized with telomerase reverse transcriptase. In this cell line, the mother centriole projects a single primary cilium under the clearly defined condition such as serum starvation, making it very easy to score the efficiency for cilliogenesis. Second, we have been studying membrane trafficking using Hela and HEK293T cells (Zong et al., 2012; Gan et al., 2017; Li et al., 2017; Zhao et al., 2017; Satoh et al., 2019). These cells are easy to grow and show no obvious abnormalities in general secretion. Interestingly, when cells were fixed by methanol, the signals of TRAPPC8 were associated with centrosomal marker, γ-Tubulin in both ciliated hTERT-RPE1 cells and Hela cells (Figures 1A,C). In hTERT-RPE1 cells under serum starvation, TRAPPC8 signal was localized to the basal body, which is the base of the primary cilium (Figures 1D,E). In contrast, when Hela cells fixed with paraformaldehyde (PFA) and permeabilized with Triton X-100, TRAPPC8 signal presented fluorescent puncta co-localized with GM130, Sec31A, and ERGIC53 (Figure S1A). In hTERT-RPE1 cells fixed with PFA, TRAPPC8 did not show labeling in ER exit sites or ERGIC, possibly due to its weak endogenous signal. To further examine the localization of TRAPPC8 to these organelles, we also investigated the distribution of TRAPPC8 upon treatment with an antineoplastic agent, nocodazole. Nocodazole rapidly depolymerizes microtubules and causes the membrane organelles to fragment into small, scattered punctate structures (Rogalski et al., 1984). One hour after application of nocodazole, TRAPPC8 signal was mostly associated with fragmented Sec31A and ERGIC53, but poorly with GM130, as shown in Figure S1A, confirming TRAPPC8 in ER exit sites and the intermediate compartments.


[image: Figure 1]
FIGURE 1. TRAPPC8 and TRAPPC12 are localized to basal bodies and centrosomes. (A) TRAPPC8 was co-localized with centrosome marker γ-tubulin in Hela and hTERT-RPE1 cells. (B) TRAPPC12 was co-localized with γ-tubulin in hTERT-RPE1 cells that were prior treated with or without nocodazole for 1 h. (C) Quantifications of data shown in (A,B). Percentage of cells with TRAPPC8 or TRAPPC12 centrosomal signals were scored TRAPPC8, n = 82; TRAPPC12, n = 72. Mean ± SEM. (D) TRAPPC8 and TRAPPC12 were stained with axoneme marker acetylated α-Tubulin (AC-tubulin) in hTERT-RPE1 cells after the cells were induced to form cilia with serum starvation for 24 h. observe (E) Percentage of cells with TRAPPC8 or TRAPPC12 signals localized at the basal body. TRAPPC8, n = 108; TRAPPC12, n = 96. Mean ± SEM. Scale bar, 10 μm. Similar results were observed in three independent experiments.


It was reported that TRAPPC12 also localized to the ER exit sites and ERGIC in cancer cells (Zhao et al., 2017). The localization of TRAPPC12 in cells with primary cilia is, however, not determined. To investigate its localization in ciliated hTERT-RPE1 cells, we performed TRAPPC12 immunofluorescence after methanol fixation. TRAPPC12 signal was present in large punctate structure mostly on ER exit sites and ERGIC, but poorly on Golgi apparatus (Figure S1B), as the previous report in cancer cells. Additionally, another pool of TRAPPC12 signal was found on the centrosome and the base of the primary cilium (Figures 1B–E). To confirm that TRAPPC12 is also a centrosome/basal body-associated protein, we investigated its distribution with the treatment of nocodazole. TRAPPC12 was observed to be on small, discrete puncta dispersed in the cytoplasm, and one of puncta was localized to the centrosome in almost every cell (Figures 1B,C). Taken together, these data reveal that TRAPPIII localizes to the basal body, as well as the early secretory pathway.



TRAPPC8 and TRAPPC12 Play Different Roles in Ciliary Length

The basal body localization of TRAPPIII makes us wonder whether TRAPPIII has a function in ciliogenesis. To investigate the role of TRAPPIII in ciliogenesis, we analyzed the primary cilium formation in serum-starved hTERT-RPE1 cells depleted for TRAPPC8 or TRAPPC12 using small interfering RNA (siRNA) (Figure 2A). Similar to the previous report (Schou et al., 2014), TRAPPC8 depletion by siRNA resulted in a more than 35% decrease in cilium assembly compared with controls (Figures 2B,C). Moreover, for the cells that did assemble primary cilia, half of them displayed aberrant cilia with the shorter axoneme and bulbous tips (~2.0 μm in ciliary length compared to 4.5 μm for controls) (Figures 2C–F). In contrast, depletion of TRAPPC12 exhibited similar ciliogenesis efficiency as control cells (Figure 2C). We surprised to find that a significant portion of TRAPPC12-depleted cells formed unusually long primary cilia, measuring up to 18 μm in length with a median ciliary length of 7.28 μm compared to 4.5 μm for controls (Figures 2C,D,F). There was no observable abnormality in the TRAPPC12 depleted cilia other than increase in length (Figure 2E). These data imply a possible regulatory role of TRAPPC12 in ciliary elongation and a requirement of TRAPPC8 in normal cilium formation.


[image: Figure 2]
FIGURE 2. TRAPPC8 and TRAPPC12 depletions change ciliary length. (A) hTERT-RPE1 cells were transfected with control (siFFL), TRAPPC8 siRNA (siTRAPPC8) or TRAPPC12 siRNA (siTRAPPC12) for 72 h. FFL siRNA targets the firefly luciferase gene sequence, which is not present in human genome, and therefore, serves as non-targeting siRNA control. The expression level of the indicated proteins was analyzed from whole cell lysates by immunoblotting using antibodies against TRAPPC8, and TRAPPC12. β-Actin served as a loading control. (B) hTERT-RPE1 cells depleted TRAPPC8 or TRAPPC12 were induced with primary cilum formation. The approximate positions of the centrosome were indicated by PCNT (pericentrin) staining and primary cilia were indicated by AC-tubulin. (C,D) Percentage of cells with primary cilia and quantification of ciliary length in ciliated cells. Cilium length was measure by imageJ software and based on the scale bar length at 10 μm to set measurement scale. siFFL, n = 105; siTRAPPC8, n = 121; siTRAPPC12, n = 105. Mean ± SEM, *p < 0.05;**p < 0.01; ***p < 0.001, no matching or pairing one-way ANOVA. (E) TRAPPC8 depletion caused short primary cilia, while TRAPPC12 depletion caused aberrantly long primary cilia. (F) Percentage of cells with short cilia (0–3 μm); with normal cilia (3–6 μm); with long cilia (6–8 μm); with extra long cilia (>8 μm). siFFL, n = 168; siTRAPPC8, n = 185; siTRAPPC12, n = 165. no matching or pairing one-way ANOVA. Similar results were observed in three independent experiments.


The formation of these aberrant cilia in hTERT-RPE1 cells was confirmed by staining for ciliary membrane using ARL13B, which specifically localizes at the cilium membrane (Cantagrel et al., 2008) (Figure S2). To further examine this finding, we performed a comparative study of ciliation frequency at several time points following serum starvation. As shown in Figures 3A–C, TRAPPC12 depletion led to the earlier occurrence of the cilium formation than control at all time points investigated, and TRAPPC12-depleted cells contained longer primary cilia than control cells. Remarkably, 30.3% cells were found ciliated after TRAPPC12 depletion even when the cells were cultured in the presence of serum (Figure 3C). An abnormally elongated cilium on mammalian cells is usually involved in the delayed or failed ciliary resorption. We speculated that the long cilium in TRAPPC12-depleted cells be caused by the defective cilium disassembly. We arrested the control and TRAPPC12-depleted cells in G0 phase of the cell cycle by serum starvation for 48 h, and during this time, cilia were formed. Then, we stimulated cilium disassembly by re-introduction of serum to the cells for 24 h and estimated the efficiency of cilium disassembly. Indeed, ciliary resorption was not completed in TRAPPC12-depleted cells: 39.4% still had cilia, compared to 3.4% in siFFL-depleted cells (Figures 3D,E). Together, these data indicate that long cilium resulted from a defect in ciliary disassembly caused by TRAPPC12 depletion.


[image: Figure 3]
FIGURE 3. TRAPPC12 regulates cilia disassembly. (A) Time course of ciliogenesis induced by serum starvation. siFFL and siTRAPPC12 transfected hTERT-RPE1 cells were serum starved at the five indicated time points. (B,C) Statistical quantifcations of cilia length. Number of cilia measured at 0 h: siFFL, n = 13; siTRAPPC12, n = 27; 6 h: siFFL, n = 17; siTRAPPC12, n = 40; 12 h: siFFL, n = 46; siTRAPPC12, n = 58; 24 h: siFFL, n = 100; siTRAPPC12, n = 120; 48 h: siFFL, n = 100; siTRAPPC12, n = 100. Mean ± SEM for average ciliary length, ***p < 0.001; Mean ± SD for ciliated cells, *p < 0.05, two tailed unpaired T-test for two groups of each time point. (D) siFFL and siTRAPPC12 hTERT-RPE1 cells were serum starved for 48 h (0 h serum+) and re-simulated by serum (10%) for 24 h (24 h serum+). (E) Quantification of ciliated cells with mean ± SD, ***p < 0.001; two tailed unpaired T-test for two groups of each time point. Scale bar, 10 μm. Similar results were observed in three independent experiments.




TRAPPIII Interacts With OFD1

We have previously established the tandem affinity purification (TAP) to identify TRAPPIII-interacting proteins (Figure S3). TRAPPC12-OFD1 interaction caught our attention because OFD1 was reported to regulate ciliogenesis and ciliary length. To confirm the interaction between TRAPPC12 and OFD1, co-immunoprecipitation (co-IP) experiment was carried out with both NTAP-TRAPPC12/TRAPPC8 (NTAP-TRAPPC12/NTAP-TRAPPC8) and Myc tagged OFD1 (Myc-OFD1) co-transfected into HEK293T cells. We found that OFD1 physically interacted with both TRAPPC8 and TRAPPC12 (Figure 4A). Furthermore, overexpression of GFP-tagged OFD1 (GFP-OFD1) revealed colocalization with TRAPPC8 and TRAPPC12 at the centrosome in hTERT- RPE1 cells (Figures 4B,C). We further investigated how TRAPPC8 or TRAPPC12 interact with OFD1 using HEK293T cell line deleted with each of these TRAPPIII subunits (Figure 5A). We found that the interaction between OFD1 and TRAPPC8 was the same in wild type and TRAPPC12−/− HEK293T cells (Figure 5B), but the interaction between TRAPPC12 and OFD1 was enhanced in TRAPPC8−/− HEK293T cells (Figure 5C). When we co-expressed all three proteins and tested for their interactions, we confirmed that the presence of TRAPPC8 inhibited the interaction between TRAPPC12 and OFD1 (Figure 5D).


[image: Figure 4]
FIGURE 4. TRAPPIII interacts with OFD1. (A) Myc-tagged OFD1 (Myc-OFD1) and NTAP-tagged TRAPPC8 (NTAP-TRAPPC8) or TRAPPC12 (NTAP-TRAPPC12) were co-transfected into the HEK293T cells, and then cell lysates were subjected to immunoprecipitation with an anti-Myc antibody. Approximately 30% of immunoprecipitants were loaded on SDS PAGE (B) hTERT-RPE1 cells were transfected with GFP-tagged OFD1 and stained for TRAPPC8 and TRAPPC12 with antibodies to determine the colocalization of TRAPPC8 or TRAPPC12 and OFD1. (C) Percentage of cells with TRAPPC8 or TRAPPC12 colocalized with GFP-OFD1. TRAPPC8, n = 34; TRAPPC12, n = 38. Mean ± SEM. Scale bar, 10 μm. Similar results were observed in three independent experiments.
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FIGURE 5. TRAPPC8 binds OFD1 and inhibits TRAPPC12-OFD1 interactions. (A) Immunoblotting analysis of TRAPPC8, TRAPPC12, OFD1, PCM1, and BBS4 proteins in wildtype control, TRAPPC8- or TRAPPC12-deleted HEK293T cells. β-Actin served as a loading control. (B) The interaction between Myc-tagged OFD1 (Myc-OFD1) and NTAP-tagged TRAPPC8 (NTAP-TRAPPC8) were determined in the wild type or TRAPPC12−/− HEK293T cells by co-IP experiment. Approximately 30% of immunoprecipitants were loaded for analysis. (C) The interaction between Myc-tagged OFD1 (Myc-OFD1) and NTAP-tagged TRAPPC12 (NTAP-TRAPPC12) were determined in the wild type or TRAPPC8−/− HEK293T cells by co-IP experiment. Approximately 30% of immunoprecipitants were loaded for analysis. (D) NTAP-TRAPPC8 and NTAP-TRAPPC12 were co-expressed with Myc-OFD1 to allow competition of binding. Co-IP experiment was performed to pull down Myc-OFD1 and the extent of binding by TRAPPC8 or TRAPPC12 was investigated by immunoblotting. IP efficiency is calculated as the ratio of co-immunoprecipitated OFD1 proteins in TRAPPC8 and TRAPPC12 IP samples. Similar results were observed in three independent experiments.


To determine the region(s) of OFD1 responsible for TRAPPIII binding, we performed domain mapping experiment. OFD1 consists of a short N-terminal domain, Lis 1 homology (LisH) required for microtubule dynamics and its centriolar satellite localization, and six much longer coiled-coil domains that are responsible for its centrosome localization (Romio et al., 2004) (Figure 6A). The indicated Myc-tagged OFD1 truncation constructs were transfected into HEK293T cells, and co-IP experiment was performed. The N-terminal region (residues 1–192), including LisH motif, interacted with TRAPPC8 even stronger than full-length OFD1 (Figure 6B). Similarly, TRAPPC12 also interacted with the N-terminal region (LisH motif) and the C-terminal coiled-coil domains had no significant binding with TRAPPC12 (Figure 6B). We, therefore, concluded that OFD1 interacts with TRAPPC8 and TRAPPC12 via its N-terminal region including LisH motif. The significance of these findings is highlighted by the fact that several mutations observed in human OFD1 patients lie within the regions required for its TRAPPIII interaction. These mutations, S75F, A80T, G139S, and S437R, are four main disease-associated missense mutations found in patients with disease of OFD1. S75F and A80T lie within the LisH motif, and G139S affects intervening conserved amino acids, and S437R has an effect on the second coiled-coil motif (Ferrante et al., 2001; Rakkolainen et al., 2002; Romio et al., 2004; Thauvin-Robinet et al., 2006). In Figure 6C, the binding of OFD1 protein containing one of these disease-associated mutations with TRAPPIII components was examined. S75F, but not other indicated mutations reduced the interaction between OFD1 and TRAPPC8 and TRAPPC12. S75F mutation resides in the LisH domain, which is required for the localization of OFD1 at centriolar satellites, and therefore, we suspect that TRAPPIII may regulate ciliogenesis via controlling the localization of OFD1 at centriolar satellites.
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FIGURE 6. TRAPPIII interacts with the LisH domain of OFD1. (A) Schematic diagram of the indicated full-length OFD1 (FL) and its truncation constructs. The LisH (black), Coiled-coil (grey) and the numbers of amino acid residues in each constructs are indicated. (B) Lysates from HEK293T cells co-transfected with various OFD1 deletion constructs and NTAP-TRAPPC8 or NTAP-TRAPPC12 were subjected to immunoprecipitation and immunoblotted for Myc and TRAPPC8 and TRAPPC12. (C) OFD1 mutant S75F reduces the interaction with TRAPPC8 and TRAPPC12. The indicated OFD1 mutants were co-expressed with TRAPPC8 or TRAPPC12 and the strength of their interactions were determined by co-IP experiment. IP efficiency is calculated as the ratio of immunoprecipitated TRAPPC8/OFD1 or TRAPPC12/OFD1. Similar results were observed in three independent experiments.




TRAPPIII Components Regulate the Distribution of OFD1

To address whether OFD1 localization was affected by TRAPPIII, we used siRNA to deplete each of these TRAPPIII components, TRAPPC8 and TRAPPC12 in hTERT-RPE1 cells. The efficiency of TRAPPC8 and TRAPPC12 depletion was determined (Figure 7A). TRAPPC8 or TRAPPC12 depletion did not alter the abundance of the centrosome marker, γ-Tubulin (Figures 7B,C). However, depleting TRAPPC8 resulted in a significant reduction in the number of OFD1 puncta in the vicinity of the centrosome, and this effect was even more dramatic in TRAPPC12 depletion (Figures 7B,D). The pericentriolar signals of OFD1 almost completely disappeared in TRAPPC12-depleted cells, but the pool of OFD1 at centrosome was retained (Figures 7B,D).
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FIGURE 7. TRAPPIII depletion reduces the amount of OFD1 at centriolar satellites. (A) The efficiency of depletion for TRAPPC8 and TRAPPC12. The expression level of the indicated proteins was analyzed from whole cell lysates by immunoblotting using antibodies against TRAPPC8, TRAPPC12, OFD1, and PCM1. β-Actin served as a loading control. (B) Depletion of TRAPPC8 or TRAPPC12 reduced OFD1 puncta. Endogenous OFD1 and the centrosome were detected with OFD1 antibody and the centrosome marker γ-Tubulin in hTERT-RPE1 cells. (C) Quantitative analysis of γ-Tubulin puncta. (D) Quantitative analysis of OFD1 puncta was carried out by measuring the intensities of fluorescence in a 4 μm2 circular area around the centrosome by imageJ. siFFL, n = 100; siTRAPPC8, n = 100; siTRAPPC12, n = 80. Mean ± SEM, ***p < 0.001, no matching or pairing one-way ANOVA. Scale bar, 10 μm. Similar results were observed in three independent experiments.


We were aware that the secretory pathway was also affected by TRAPPC8 or TRAPPC12 depletion, as such change had already been reported in our previous publication. As shown in Figure S4A, both TRAPPC8 and TRAPPC12 depletions disrupted the Golgi morphology in hTERT-RPE1 cells, similar to what had previously been shown in Hela cells (Zhao et al., 2017). In addition, the ER related organelle markers, ERGIC53 and Sec31A were also fragmented into small puncta (Figure S4A). In fact, we were able to analyze the effect on OFD1 using cell with dispersed Golgi as indicator of TRAPPC8 or TRAPPC12 depletion. To determine the observed change of OFD1 was not caused by the Golgi fragmentation indirectly, we tested the distribution of OFD1 in hTERT-RPE1 cells with the treatment of Brefeldin A (BFA). BFA is a fungal metabolite which inhibits ER-to-Golgi vesicle trafficking and thereby causes the fragmentation of the Golgi apparatus. As shown in Figures S4C,D, BFA treatment led to Golgi dispersal but the abundance of OFD1 was not altered. Hence, depletion of TRAPPIII components led to a decrease in the satellite OFD1 (Figure S4B). We confirmed that even though depletion of TRAPPIII decreased the OFD1 signals at centriolar satellites, the overall OFD1 protein levels indicated by immunoblot analysis of whole cell lysates were not altered in both depleted cells (Figure 7A). This observation suggests that depletion of TRAPPIII components likely results in a redistribution of OFD1 from centriolar satellites to cytoplasmic satellites, suggesting TRAPPIII is required for the recruitment of OFD1 to centriolar satellites.



TRAPPC12 and TRAPPC8 Depletion Disperses Centriolar Satellites

PCM1 is the platform of centriolar satellites, and thus its localization reflects the organization of centriolar satellites (Tollenaere et al., 2015). Depletion of PCM1 reduced the satellite localization of OFD1 and vice versa (Lopes et al., 2011) (Figures S5A–C). Based on this role, we investigated the relationship between PCM1 and OFD1 after we depleted TRAPPC8 or TRAPPC12 in hTERT-RPE1 cells. OFD1 signals at the centriolar satellites were dispersed in depletion of TRAPPC8 and TRAPPC12 but its signal at the centrosome remained intact (Figures 8A–C). Strikingly, TRAPPC8 depletion led to a decrease in the number fluorescence puncta of PCM1 at centriolar satellites. These puncta were poorly co-localized with the OFD1 signal (Figure 8A). This result was confirmed by the lack of physical interaction between the two proteins in TRAPPC8−/− HEK293T cells, whereas this interaction was not affected in TRAPPC12−/− HEK293T cells (Figure 8D). To further confirm these IP findings, we also analyzed OFD1 and PCM1 distribution in TRAPPC8−/− and TRAPPC12−/− 293T cells. For any reasons that still await further investigation, we found that the total PCM1 fluorescence was increased in TRAPPC12−/− cells (Figures 8E,F). Immunoblotting of the lysate isolated from TRAPPC12−/− cell lines showed increased PCM1 protein level (Figure 5A).
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FIGURE 8. TRAPPIII regulates the assembly of centriolar satellites. (A) Depletion of TRAPPC8 reduced the PCM1 signals and colocalization with OFD1 and depletion of TRAPPC12 dispersed PCM1 signals in hTERT-RPE1 cells. Enhanced the exposure for OFD1 and PCM1 signals in hTERT-RPE1 cells with the depletion of TRAPPC8 or TRAPPC12. (B,C) Quantitative analysis of PCM1 puncta and percentage of cells with dispersed centriolar satellites. The intensities of fluorescence were measured in the 8 μm2 circular area around the centrosome by image J. siFFL, n = 50; siTRAPPC8, n = 48; siTRAPPC12, n = 50. Mean ± SEM, *p < 0.05; **p < 0.01; ***p < 0.001, no matching or pairing one-way ANOVA. (D) Myc-OFD1 was transfected in HEK293T wild type, TRAPPC12−/−, and TRAPPC8−/− cells, and co-IP was performed with an anti-Myc antibody and the presence of endogenous PCM1 in the immunoprecipitants were detected by western blotting with anti-PCM1 antibody. IP efficiency is calculated as the ratio of immunoprecipitated PCM1/OFD1. (E) hTRAPPC12 knockout (TRAPPC12−/−) dispersed PCM1 signals in 293T cells. (F) Quantitative analysis of endogenous PCM1 puncta, the intensities of fluorescence were measured in whole cell by image J. Wild type, n = 40; TRAPPC8−/−, n = 48; TRAPPC12−/−, n = 50. Mean ± SEM, **p < 0.01, no matching or pairing one-way ANOVA. Scale bar, 10 μm. Similar results were observed in three independent experiments.


These results strongly suggest TRAPPC12 is required for PCM1 to be associated with the centriolar satellite, so that it serves as a platform and recruits proteins such as OFD1 and pericentrin (PCNT). PCNT puncta was dramatically reduced upon depletion of PCM1 (Figures S6A,B), suggesting the delivery or the association of PCNT with centrosome is dependent on PCM1. However, TRAPPC12 depletion did not affect PCNT at the centrosome (Figures S6C,D). This suggests that the functional integrity of the centriolar satellites was not compromised by TRAPPC12 depletion and reduced association of PCNT at centrosome is not necessarily dependent on the status of PCM1. Together, these results are consistent with the hypothesis that TRAPPC12 plays a significant role in the structural integrity of centriolar satellites, the function of which remains largely unaltered in TRAPPC12 depletion. This notion is supported by our observation that BBSome was transported onto the cilium of TRAPPC12 depleted cells. BBS9 was transported to the cilium of TRAPPC12 depleted cells (Figures S6E,F). This suggests that molecular trafficking still could occur in spite of the mislocalization of PCM1.




DISCUSSION

We identified both TRAPPC8 and TRAPPC12 interact with a ciliopathy-related protein OFD1. The interaction of OFD1 with TRAPPC12 is increased, and with PCM1 is strongly reduced by the depletion of TRAPPC8. This observation confirms the requirement of OFD1-PCM1 interaction in ciliary growth because TRAPPC8 depletion reduced the number of ciliated cells and ciliary length. At present, however, we cannot rule out the possibility that the increased interaction between TRAPPC12 and OFD1 in the absence of TRAPPC8 might have been solely responsible for the defects in ciliogenesis in the TRAPPC8 depletion. In contrast, TRAPPC12 depletion does not disrupt the interaction between OFD1 and PCM1 nor change that between OFD1-TRAPPC8, but TRAPPC12 depletion caused PCM1 dispersal. We think that even though the subcellular location of centriolar satellites becomes fragmented in TRAPPC12 depleted cells, the function of this organelle remains intact. In particular, BBSome trafficking does not appear to be affected in the TRAPPC12 depleted cells. We also found BBS4 was completely mislocalized in TRAPPC12−/− cells (Figure S7). To our surprise, BBSome trafficking is functionally intact, even enough to generate abnormally long cilia even the centriolar satellite is dispersed. This observation is somewhat reminiscent of the role of Giantin on Golgi organization. Giantin serves as Golgi tether and its depletion causes fragmentation of the Golgi apparatus into mini-stacks. Though structurally compromised, Giantin-depleted cells have increased anterograde transport (Koreishi et al., 2013). Based on such similarity, we suspect the function of TRAPPIII at the centriolar satellites could be a tether, bringing together OFD1 and PCM1.

Based on the data at hand, we propose a model to depict the role of TRAPPIII in the assembly of centriolar satellites (Figure 9). TRAPPC8 may regulate the stable association of OFD1 with centriolar satellites, and TRAPPC12 may regulate the trafficking of OFD1 from cytosol to centriolar satellites. When TRAPPC8 is depleted, more OFD1 interacts with TRAPPC12 (Figure 5B), and less interacts with PCM1 to assemble centriolar satellites. However, when TRAPPC12 was depleted, OFD1 could not be carried to the sites of centriolar satellites that contain PCM1, and therefore, the integrity of centriolar satellites is compromised and PCM1 is dispersed throughout the cytoplasm. The domain mapping experiments also suggest these two TRAPPIII components interact with the same domain on OFD1 and TRAPPC8 inhibits the interaction between TRAPPC12 and OFD1 but not vice versa. This observation supports the role of TRAPPC12 being a chaperonin for OFD1 and TRAPPC8-OFD1 interaction being more stable. Distinct roles of TRAPPC8 and TRAPPC12 have been reported previously. They have different roles in autophagy even though they are members of the same protein complex (Behrends et al., 2010; Lamb et al., 2016). TRAPPC8 depletion results in defects in the early stage of autophagy. Several studies have shown that the effective degradation of satellite OFD1 through autophagy is essential for ciliary elongation (Tang et al., 2013; Gabriel et al., 2016). Even though depletion of TRAPPC8 reduces the association of OFD1 with PCM1, reduced autophagy allows the remaining OFD1 be located at centriolar satellites in TRAPPC8-depleted cells upon serum starvation. This may explain why TRAPPC8-depleted cells displayed short cilia. The opposing roles of TRAPPC8 and TRAPPC12 in the control of ciliary length are probably related to their functions in the assembly of centriolar satellites. Ciliary formation and elongation are simultaneously compromised by the reduced autophagy associated with TRAPPC8 depletion. However, depletion of TRAPPC12 leads to the mislocalization of OFD1, and this complete loss of OFD1 from centriolar satellites is a possible reason for long primary cilia and retarded ciliary resorption.
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FIGURE 9. Summary and working model of how TRAPPIII functions in the assembly of centriolar satellites and ciliogenesis. We hypothesize sequential interactions between OFD1 and TRAPPC12 and TRAPPC8. TRAPPC12 serves a chaperonin-like function and binds to OFD1, but this interaction is out-competed by TRAPPC8 within the TRAPPIII complex. TRAPPC8 has the ability to properly position OFD1 to the centriolar satellites so that OFD1 can interact with PCM1. In TRAPPC8 depleted cells, the TRAPPIII complex without TRAPPC8 is able to bind to OFD1 via TRAPPC12, but positioning of OFD1 to the centriolar satellites, and hence the interaction with PCM1, is defective. On the other hand, OFD1 positioning to the centriolar satellites is intact in TRAPPC12 depletion. TRAPPC12 also has a function in help delivery of BBS4 or associated cargo proteins to the centriolar satellites. Without TRAPPC12, impaired BBS4/cargo delivery disperses the centriolar satellites.


The data presented in this study casts doubt on the idea that the TRAPPIII complex functions as a single entity at all time, and implicates sequential actions of individual subunits within the complex. It has also been reported that TRAPPC12 alone has a regulatory role in chromosome congression, kinetochore stability and CENP-E recruitment during mitosis (Milev et al., 2015), apart from its role in early secretory pathway as a member of TRAPPIII complex. Is it possible that TRAPPC8 and TRAPPC12 each function in ciliogenesis as individual protein, rather than members within TRAPPIII complex? These possibilities are difficult to discern at this stage, but we think a complex is more likely with the following rationale: Mammalian TRAPPII complex was reported to colocalize with centrosomal Rabin8, which is a guanine nucleotide exchange factor for the activation of Rab8 GTPase, and function in the ciliary targeting of Rabin8 during ciliogenesis. Depleting TRAPPC3 (core subunit), TRAPPC9 and TRAPPC10 (both are TRAPPII-specific) reduced centrosomal Rabin8, it was suggested that TRAPPII was responsible for Rabin8-mediated events critical for ciliogenesis (Westlake et al., 2011). However, depleting TRAPPC1, TRAPPC4, and TRAPPC5 did not reduce centrosomal Rabin8 but nonetheless negatively affected ciliogenesis, suggesting these subunits are playing a role other than the TRAPPII-Rabin8 pathway. Because TRAPPIII is the only alternative TRAPP complex found in mammalian systems, it is likely that the defect in ciliogenesis caused by depleting these subunits is due to concomitantly reduced TRAPPIII function. TRAPPC8 depletion was reported to reduce the recruitment of transfected GFP-Rabin8 to the centrosome (Schou et al., 2014), we did not find the localization of endogenous Rabin8 (by antibody staining) affected by depletion of TRAPPC8 (Figure S8), suggesting that TRAPPC8 and TRAPPC12, as subunits of TRAPPIII complex, play novel functions in ciliogenesis in way that is very different from TRAPPII. Future experiments will unravel such functions.
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Figure S1. TRAPPIII is localized to ER-associated structures. (A) Colocalization of TRAPPC8 with the indicated subcellular organelle markers by immunofluorescence. Hela cells were stained with antibodies against GM130, Sec31A, or ERGIC53. GM130 is a cis-Golgi marker. Sec31A is a subunit of COPII vesicle coat and a marker for ER exit sites (ERES), and ERGIC-53 is a marker for ER to Golgi intermediate compartments. Hela cells were treated with 10 μg/ml nocodazole for 1 h before fixation. (B) hTERTRPE1 cells were co-stained with antibodies against GM130, Sec31A, or ERGIC53 and with antibody against TRAPPC12. Scale bar, 10 μm. Similar results were observed in three independent experiments.

Figure S2. TRAPPIII regulates ciliogenesis. hTERT-RPE1 cells depleted TRAPPC8 or TRAPPC12 were subjected to serum starvation for 48 h. The primary cilia were stained with axoneme marker AC-tubulin (green) and cilium membrane marker ARL13B (red). Scale bar, 10 μm. Similar results were observed in three independent experiments.

Figure S3. Mass spectrometry identification of oral-facial-digital syndrome 1 protein as a binding protein to NTAP-TRAPPC12.

Figure S4. TRAPPIII depletion reduces OFD1 at centriolar satellite. (A) Golgi, ERGIC and ER exit sites were dispersed upon depletion of TRAPPC8 or TRAPPC12. The cells were counterstained with DAPI indicate DNA/nucleus. (B) Depletion of TRAPPC8 or TRAPPC12 reduced OFD1 puncta. Endogenous OFD1 and Golgi were detected with OFD1 antibody and Golgi marker GM130 in hTERT-RPE1 cells. (C) hTERT-RPE1 cells were incubated with 5 μg/ml of Brefeldin (BFA) for 3 h. Washed, fixed and stained for GM130 and OFD1. (D) Quantitative analysis of OFD1 puncta. Scale bar, 10 μm. Similar results were observed in three independent experiments.

Figure S5. Depletion of PCM1 reduces OFD1 signal at the centriolar satellites. (A) hTERT-RPE1 cells were depleted of siFFL or depleted of PCM1 (siPCM1) or OFD1 (siOFD1) with siRNA oligonucleotides for 72 h. The efficiency of depletion was assessed by immunoblotting for the indicated proteins including TRAPPIII components, TRAPPC8 and TRAPPC12. (B) Depletion of PCM1 reduced OFD1 at centriolar satellites. OFD1 was co-stained with centrosome marker γ-Tubulin. Scale bar, 10 μm. (C) Depletion of OFD1 leads to the dispersal of centriolar satellites. hTERT-RPE1 cells were FFL-depleted (siFFL) or depleted of OFD1 (siOFD1) with siRNA oligonucleotides for 72 h. OFD1 was co-stained with PCM1. Scale bar, 10 μm. Similar results were observed in three independent experiments.

Figure S6. PCNT and recruitment of BBSome into cilium are not affected by TRAPPIII depletion. (A) Depletion of PCM1 reduced pericentrin (PCNT) signals. (B) Quantitative analysis of PCNT. The intensities of fluorescence were measured by image J. siFFL, n = 40; siPCM1, n = 50. Mean ± SEM, *p < 0.05, ***p < 0.01, two tailed unpaired T-test. Scale bar, 10 μm. (C) Confocal images and (D) quantitative analysis of PCNT in depleted of TRAPPC8 or TRAPPC12 hTERT-RPE1 cells. Scale bar, 10 μm. (E) Confocal images and (F) quantitative analysis of hTERT-RPE1 cells depleted TRAPPC8 or TRAPPC12 were subjected to serum starvation for 48 h. The primary cilia were stained with AC-tubulin (green) and BBSome component BBS9 (red). Scale bar, 10 μm. The percentage of cells with cilia that weree positive with BBS9 were quantified. The intensities of fluorescence were measured by imageJ. siFFL, n = 40; siTRAPPC8, n = 40; siTRAPPC12, n = 60. Mean ± SEM, *p < 0.05, ***p < 0.01, two tailed unpaired T-test. Scale bar, 10 μm. Similar results were observed in three independent experiments.

Figure S7. TRAPPC12 regulates localization of BBS4 at centriolar satellites. (A) TRAPPC12−/− but not TRAPPC8−/− HEK293T cells shows dispersed BBS4 signals. (B) Quantitative analysis of BBS4 puncta was carried out by measuring the intensities of fluorescence in a 4 μm2 circular area around the centrosome by image J. Wild type, n = 48; TRAPPC8−/−, n = 50; TRAPPC12−/−, n = 40. Mean ± SEM, *p < 0.05, no matching or pairing one-way ANOVA.

Figure S8. Depletion of TRAPPC8 does not reduce Rabin8 at the basal body. Confocal images of Rabin8 and γ-Tubulin staining of hTERT-RPE1 cells depleted TRAPPC8 were subjected to serum starvation for 1 h. Scale bar, 10 μm. Similar results were observed in three independent experiments. Efficiency of TRAPPC8 depletion is shown in the lower panels.
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The photoreceptor outer segment is the canonical example of a modified and highly specialized cilium, with an expanded membrane surface area in the form of disks or lamellae for efficient light detection. Many ciliary proteins are essential for normal photoreceptor function and cilium dysfunction often results in retinal degeneration leading to impaired vision. Herein, we investigate the function and localization of the ciliary G-protein RAB28 in zebrafish cone photoreceptors. CRISPR-Cas9 generated rab28 mutant zebrafish display significantly reduced shed outer segment material/phagosomes in the RPE at 1 month post fertilization (mpf), but otherwise normal visual function up to 21 dpf and retinal structure up to 12 mpf. Cone photoreceptor-specific transgenic reporter lines show Rab28 localizes almost exclusively to outer segments, independently of GTP/GDP nucleotide binding. Co-immunoprecipitation analysis demonstrates tagged Rab28 interacts with components of the phototransduction cascade, including opsins, phosphodiesterase 6C and guanylate cyclase 2D. Our data shed light on RAB28 function in cones and provide a model for RAB28-associated cone-rod dystrophy.
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INTRODUCTION

The photoreceptor outer segment (OS) is an elaborate membranous organelle which functions in the detection of light stimuli and their conversion to electrical signals via phototransduction (Fain et al., 2010; Goldberg et al., 2016). Outer segments are modified primary cilia and as such the molecular machinery which regulates transport and signaling within cilia is also essential for OS formation and function (Wheway et al., 2014). Furthermore, blindness due to photoreceptor degeneration (PRD) is a common phenotype of genetic diseases known as ciliopathies, characterized by ciliary dysfunction (Waters and Beales, 2011; Bujakowska et al., 2017).

Photoreceptor OS are composed of flattened, closed disks surrounded by an outer membrane in the case of rods, and open lamellae in cones. New disks/lamellae form at the base of the OS as ciliary ectosomes (Ding et al., 2015; Salinas et al., 2017), which expand via Arp2/3-regulated actin polymerization (Spencer et al., 2019) and gradually migrate upwards as the oldest disks/lamellae at the OS tip are shed and phagocytosed daily by the retinal pigment epithelium (RPE). OS shedding is integral to photoreceptor health and survival: as the OS are exposed to high levels of light, the oldest disks/lamellae accumulate photo-oxidatively damaged compounds (Kevany and Palczewski, 2010). Despite its essential role in photoreceptor biology, the molecular machinery which regulates OS shedding in photoreceptors is poorly described. Early studies identified species-specific differences in OS shedding regulation; for example, frog (Rana pipiens) photoreceptors require light to initiate shedding and display limited shedding in the dark (Basinger et al., 1976), while rat rod photoreceptors shed in a circadian manner, with minimal effect from light/dark conditions (LaVail, 1976). In the intervening years, some pathways involved in phagocytosis and subsequent degradation of shed disks in the RPE were elucidated (Bosch et al., 1993; Gibbs et al., 2003; Law et al., 2009; Jiang et al., 2015). More recently, genes important for OS shedding/phagocytosis were identified in zebrafish, including ceramide kinase-like (Cerkl) (Yu et al., 2017) and the ciliary kinesin Kif17 (Lewis et al., 2018). Recently, knockout of the small GTPase RAB28 was shown to result in impaired shedding and/or phagocytosis of material from the tips of mouse cones, but not rods (Ying et al., 2018). Failure to shed old lamellae led to the accumulation of membranous material at cone tips and eventual degeneration and death of the cones, followed by rods. In humans, RAB28 null and hypomorphic alleles cause autosomal recessive cone-rod dystrophy (arCRD) (Roosing et al., 2013; Riveiro-Álvarez et al., 2015; Lee et al., 2017). To our knowledge, this is the only example of inherited PRD arising exclusively from a disorder of cone OS (COS) shedding.

In C. elegans, we previously demonstrated that RAB28 is an IFT and BBSome-associated ciliary protein (Jensen et al., 2016), which regulates extracellular vesicle biogenesis in a subset of ciliated neurons (Akella et al., 2020). Here, we generate zebrafish rab28 knockout and transgenic reporter models to investigate the localization, function, GTP/GDP nucleotide regulation, and interactome of RAB28 in cone photoreceptors. Localization of RAB28 to the OS is partially dependent on GTP/GDP-binding, overexpression of GTP-preferring RAB28 in cones results in subtle visual behavior defects and RAB28 biochemically associates with components of the phototransduction cascade, as well as vesicle trafficking proteins. Significantly, rab28 null zebrafish display a 40–50% reduction in OS shedding as early as 15 days post fertilization (dpf), but without evidence of retinal degeneration up to 12 mpf.



MATERIALS AND METHODS


Zebrafish Strains and Maintenance

Zebrafish larvae from 0 to 5 days post fertilization (dpf) were cultured in Petri dishes of E2 medium (0.137M NaCl, 5.4 mM KCl, 5.5 mM Na2HPO4, 0.44 mM KH2PO4, 1.3 mM CaCl2, 1.0 mM MgSO4 and 4.2 mM NaHCO3, conductivity ∼1500 μS, pH 7.2) at 27°C on a 14 h/10 h light–dark cycle.

Adult zebrafish were housed in 1.4, 2.8, or 9.5 L tanks in system water and maintained at a temperature of 27°C on a 14 h/10 h light–dark cycle. The UCD facility environmental parameters are reported at Crowley et al. (2019). Juvenile fish were fed an increasingly complex, specialized diet (Special Diet Services) and gradually transferred to a diet of mainly brine shrimp (Artemia sp.). Zebrafish strains used in this study were:

WT (Tü), rab-28ucd7, rab-28ucd8, Tg[gnat2:eGFP], Tg[gnat2:eGFP-rab28], Tg[gnat2:eGFP-rab28Q72L] and Tg[gnat2:eGFP-rab28T26N].



Ethics Statement

All animal experiments were conducted with the approval of the UCD Animal Research Ethics Committee (AREC-Kennedy) and the Health Products Regulatory Authority (Project authorization AE18982/P062). All experiments were performed in accordance with relevant guidelines and regulations.



Generation of rab28 Mutant Zebrafish

sgRNAs were designed using the ZiFiT Targeter (v4.2) online tool. Several sgRNAs were designed against the zebrafish rab28 cDNA sequence. The sgRNA against exon 2 of rab28 was chosen as there was sufficient genomic sequence data to facilitate genotyping. sgRNAs were cloned into the pDR274 vector (Addgene) following a previously described protocol (Hwang et al., 2013). CRISPR mutants were generated by microinjection of Cas9-sgRNA ribonucleoprotein particles (RNPs) into one-cell stage WT embryos (Cas9 protein was acquired from Integrated DNA Technologies). P0 injected fish were raised to adulthood and screened for germline transmission of potential rab28 null alleles. These were outcrossed to a WT line and the subsequent heterozygous F1 fish raised and in-crossed to generate homozygous rab28–/– larvae.



Zebrafish Transgenesis

Transgenic zebrafish expressing eGFP-Rab28 in cone photoreceptors were generated by microinjection of plasmids containing a Tol2-gnat2:eGFP-rab28(cDNA)-Tol2 construct, together with Tol2 transposase mRNA. Plasmids were generated by MultiSite Gateway cloning using the Tol2kit and following a previously described protocol (Kwan et al., 2007). The gnat2 promoter was cloned previously (Kennedy et al., 2007). The zebrafish rab28 cDNA clone was acquired from the Zebrafish Gene Collection (IMAGE ID: 2643307). The T26N (GDP-preferring) and Q72L (GTP-preferring) mutants of RAB28 were generated by site-directed mutagenesis of the cDNA. Injected embryos were treated with 75 μM phenylthiourea (PTU, Sigma) diluted in embryo medium to suppress melanogenesis and screened for expression of eGFP at 5 dpf. Those larvae positive for eGFP were raised to adulthood and outcrossed to a WT line to generate heterozygous F1 transgenic carriers.



Molecular Biology

sgRNAs and Tol2 transposase mRNA were generated by in vitro transcription using the MEGAshortscript and mMessage mMachine SP6 kits (Invitrogen), respectively, following the manufacturer’s protocol. RNA was purified by LiCl precipitation. Genotyping PCRs were performed using MyTaq Red DNA polymerase (Bioline) for 30 cycles with a 72°C extension temperature. For RT-PCR, 5 dpf zebrafish larvae were placed in RNAlater and stored at 4°C overnight. Larvae were homogenized by aspiration through a needle and syringe and RNA was extracted from the resulting lysate using the mirVana RNA isolation kit (Life Technologies), following the manufacturer’s protocol. RNA was subsequently purified and concentrated by ethanol precipitation. cDNA was generated from the isolated RNA using the RevertAid cDNA synthesis kit (Thermo Fisher). This cDNA was then used as template DNA for subsequent PCR reactions.

Primers used in genotyping and generating transgenic constructs are provided in Table 1. Underlined nucleotides indicate mutated positions.


TABLE 1. Sequences of primers used in this study.
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Behavioral Assays

The optokinetic response (OKR) assay was performed by immobilizing 5 dpf larvae in 9% methylcellulose in a 55 mm Petri dish. The dish was placed inside a rotating drum with a black and white striped pattern on the inside with 18 degrees per stripe, contrast 99%. The drum was rotated clockwise and anticlockwise for 30 s each, at a speed of 18–21 rpm, during which time the number of eye movements (saccades) of the fish were manually recorded using a stereomicroscope. At least 30 larvae per transgenic strain, 32 mutants and 98 siblings were analyzed across three experimental replicates. The visual motor response (VMR) assay was performed using the ZebraBox® recording chamber (ViewPoint). 5 dpf larvae were placed in individual wells of a 96 well polystyrene plate in 600 μl of embryo medium, which was placed in the recording chamber. Locomotor activity of the larvae in response to changing light conditions was recorded using an infrared camera. Data analysis was performed as previously described (Deeti et al., 2014). All OKR and VMR experiments were performed during the afternoon, to avoid variations due to diurnal rhythms (Huang et al., 2018). At least 64 larvae per transgenic strain, 32 mutants and 49 siblings were analyzed.



Protein Extraction and Immunoblotting

5 dpf zebrafish larvae were killed on ice and eyes dissected in a solution of 5 mM NaCl with protease inhibitor cocktail tablets (Roche). Eyes were either snap frozen in liquid nitrogen and stored at −80°C or immediately lysed. Protein concentration was estimated by Bradford assay to ensure equivalence between samples. Proteins were separated on a 0.75 mm 12% Bis/Tris acrylamide SDS-PAGE resolving gel and transferred to nitrocellulose membranes. Membranes were blocked in 5% skim milk-PBST for 1 h at room temperature and subsequently probed with primary antibodies at 4°C overnight, followed by secondary antibodies. Primary antibodies used in this study were anti-GFP (1:500, Santa Cruz Biotechnology) and anti-PDE6D (1:500, Abcam). Secondary antibodies were HRP-conjugated anti-rabbit or HRP-conjugated anti-mouse (both 1:2000, Cell Signalling Technology). Blots were performed n = 2 for each primary antibody.



Immunoprecipitation

Immunoprecipitations were performed on 5 dpf larval eyes (100 per replicate) lysed in IP lysis buffer [50 mM Tris HCl, pH 7.5, 150 mM NaCl, 10 mM MgCl2, 1% NP-40, 1 mM DTT, 1 mM PMSF, 2 mM Na3VO4 and protease inhibitor cocktail (Roche), 1 tablet per 10 ml]. Tissue was disrupted by aspiration through a needle and syringe, followed by a 20 min incubation on a tube rotator (Stuart) at 4°C. Lysates were cleared by centrifugation at 20,000 × g for 15 min, the supernatant was loaded onto GFP-Trap beads (Chromotek) and incubated on a rotor at 4°C for 2 h or overnight. For nucleotide addition, the lysate was split into three equal volumes prior to bead loading and either GTPγS or GDP (Sigma-Aldrich) was added at a final concentration of 1 mM and incubated for 20 min on ice, with the third tube serving as a negative control. Following this the beads were pelleted by centrifugation at 2500 g and washed three times with lysis buffer. For immunoblotting, proteins were eluted from the beads with SDS sample buffer followed by boiling at 95°C for 5 min. For mass spectrometry, a previously described protocol was followed (Turriziani et al., 2014). Briefly, proteins were trypsinised on the beads in 60 μl of Buffer I (2M urea, 50 mM Tris-HCl pH 7.5, 5 μg/ml Trypsin [modified sequencing-grade trypsin; Promega]) for 30 min at 37°C in a thermomixer, shaking at 700 rpm. Samples were briefly centrifuged and supernatants transferred to clean Eppendorf tubes. The beads were then incubated in 50 μl Buffer II (2M urea, 50 mM Tris-HCl pH 7.5, 1 mM DTT) for 1 h at 37°C, shaking at 700 rpm in a thermomixer. Samples were again briefly centrifuged, and the supernatants from Buffers I and II pooled and left to continue trypsin digestion overnight at room temperature.



Mass Spectrometry

Samples from the overnight digest were alkylated by addition of 20 μl iodoacetamide (5 mg/ml) and incubation for 30 min in the dark. 1 μl 100% trifluoroacetic acid (TFA) was added to the samples to stop the reaction and samples were then loaded onto equilibrated C18 StageTips containing octadecyl C18 disks (Sigma) (Turriziani et al., 2014). Briefly, a small disk of Empore material 3M was inserted into a pipette tip, preparing a single tip for each sample. Tips were activated and equilibrated by washing through 50 μl of 50% acetonitrile (AcN) – 0.1% TFA solution followed by 50 μl of 1% TFA solution, using a syringe to pass liquid through the pipette tips. Once added to StageTips, samples were desalted by washing twice with 50 μl of 1% TFA solution. Peptides were then eluted into clean Eppendorf tubes using 2 × 25 μl 50% AcN – 0.1% TFA solution. The final eluates were concentrated in a CentriVap concentrator (Labconco, United States) and re-suspended in 12 μl 0.1% TFA solution, ready for analysis by mass spectrometry (Turriziani et al., 2014). Peptides were analyzed on a quadrupole Orbitrap (Q-Exactive, Thermo Scientific) mass spectrometer equipped with a reversed-phase NanoLC UltiMate 3000 HPLC system (Thermo Scientific). Three biological and two technical replicates were performed per transgenic line. To identify peptides and proteins, MS/MS spectra were matched to the UniProt Danio rerio database. LFQ intensities were subsequently analyzed using Perseus (v1.6.1.3) (Tyanova et al., 2016). Protein identifications were filtered to eliminate the identifications from the reverse database and common contaminants. Data was log2 transformed and t-test comparison of fractions carried out. Gene ontology terms were identified and visualized by submitting identified gene lists to the PANTHER database (Thomas et al., 2003). The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository with the dataset identifier PXD017523.



Fluorescence Microscopy

Zebrafish were euthanized with tricaine methanesulfonate, fixed in 4% PFA overnight at 4°C and subsequently washed with PBS, cryoprotected in a sucrose gradient ascending series and finally embedded in OCT (VWR). 10 μm thick frozen sections were cut on a Microm HM 505 E cryostat and mounted on Superfrost Plus slides (Thermo Fisher). Sections were stained with the following primary antibodies: rat anti-GFP (1:500, Santa Cruz Biotechnology), rabbit anti-UV opsin [1:250, a gift from David Hyde (Vihtelic et al., 1999)] or rabbit anti-cone transducin α [1:50 a gift from Susan Brockerhoff (Brockerhoff et al., 2003)]. Secondary antibodies were Alexa 488 or Alexa 567-conjugated (1:500, Thermo Fisher), respectively. Following antibody incubation, sections were stained with DAPI. Slides were then mounted with Mowiol® (Merck) and cover-slipped. For larvae, a total of 14, 24 and 25 individuals were imaged for WT, Q72L and T26N eGFP-Rab28 reporters, respectively. For adults, a total of 13, 11, and 11 retinas across at least six individuals were imaged for each reporter.

For disk shedding analysis, fish were euthanized and fixed at the peak shedding times, i.e., 4 h post lights-on and 4 h post lights-off (Lewis et al., 2018). For analysis of rab28 mutants and siblings, anti-UV opsin, anti-red opsin and anti-cone transducin α antibodies were used to label phagosomes. 13 and 11 retinal z-projections from at least three individuals were imaged for mutant and siblings, respectively. For analysis of eGFP-Rab28 transgenics, eGFP fluorescence was used to identify phagosomes. 17, 17, and 13 retinal z-projections from at least three individuals were imaged for each reporter.

Immunostained zebrafish retinal sections were imaged on an inverted Zeiss LSM 510 Meta confocal laser scanning microscope. High-resolution images of eGFP-Rab28 localization were taken with an Olympus FLUOVIEW FV3000 confocal microscope for 5 dpf retinas and with a Leica TCS SP8 X for 1 mpf retinas (resolution 120–200 nm). Images were deconvolved using Huygens Professional software (Scientific Volume Imaging B.V.) All image analysis was performed using Fiji (Schindelin et al., 2012).



Transmitted Light Microscopy

Zebrafish were euthanized with tricaine methanesulfonate and the eyes enucleated and fixed overnight at 4°C in 2% PFA and 2.5% glutaraldehyde in 0.1M Sorenson phosphate buffer pH 7.3. Samples were post-fixed in 1% osmium tetroxide and dehydrated in a gradient ascending series of ethanol concentrations prior to embedding in Epon 812 resin overnight. 1 μm sections were prepared using a Leica EM UC6 microtome and glass knife, mounted on glass slides and stained with toluidine blue. The appearance of the lens core was used as a landmark to ensure similarity of samples in imaging and measuring. Sections were imaged with a Nikon Eclipse 80i upright microscope equipped with a Canon EOS 600D camera.



Transmission Electron Microscopy

Zebrafish eyes were embedded for TEM using the same protocol for light microscopy. 90 nm sections were cut on a Leica EM UC6 microtome, mounted on copper grids and post-stained with 2% uranyl acetate and 3% lead citrate. Imaging was performed on an FEI Tecnai 120 electron microscope. For ultrastructural analysis, one retina from each strain (rab28 mutant, sibling and the three eGFP-Rab28 transgenics), was imaged. For phagosome analysis by TEM, phagosomes were manually counted and the density calculated as phagosomes per μm of RPE. Three mutants and siblings were sectioned and imaged.



Statistics and Data Analysis

Statistical analysis of all data was performed using GraphPad Prism (v5). CRISPR/Cas9 rab28 knockout OKR data was analyzed by unpaired t-test, transgenic OKRs were analyzed by one-way ANOVA. In the VMR assay, activity was taken as the sum of medium (middur) and high (burdur) activity levels, as measured by the ZebraBox, and plotted against time. Activity traces show the average of multiple individuals over the time period. For graphs of peak activity, the average of 5 s of activity for individual larvae after a light change was plotted. For mass spectrometry, data derived from MaxQuant were uploaded to Perseus (v1.6.1.3). Reverse, contaminant or identified-by-site protein IDs were removed. LFQ intensity value was log2 transformed and significantly enriched proteins identified by two sample t-test, comparing each eGFP-Rab28 variant to the eGFP only control.



RESULTS


Zebrafish rab28 and CRISPR Mutagenesis

We initiated CRISPR knockouts by characterizing the zebrafish ortholog of rab28. While the locus and genomic sequence were unknown, a sequenced mRNA transcript was reported (RefSeq: NM_199752.1). Human RAB28 has three splice isoforms (Roosing et al., 2013), whereas there is only one known zebrafish isoform. It most closely matches the human RAB28S isoform in sequence (Figure 1A). Due to poor annotation of the zebrafish rab28 locus, it was necessary to obtain genomic DNA sequence to accurately design CRISPR sgRNAs to target the gene. To design primers for sequencing it was necessary to estimate the exon–intron structure of zebrafish rab28. Primers were designed to each potential exon of rab28 to amplify the intervening introns. A product was successfully amplified in three reactions, the others failing either because the prediction of exon placement was incorrect or the introns were too large to amplify by PCR (Figure 1B). The amplified products were subcloned and DNA sequencing confirmed the predicted positions of exons 2 and 3 (Figures 1C,D). This sequence information facilitated the design of sgRNAs and genotyping strategies for the rab28 KO lines. Cas9-rab28exon2 sgRNA ribonucleoprotein particles (RNPs) were injected into one-cell stage embryos, which were subsequently raised to adulthood. Adult P0 fish were genotyped for the presence of mutant rab28 alleles by PCR and outcrossed to detect germline transmission. Two rab28 mutant lines were generated, rab28ucd7 and rab28ucd8, a 40 bp deletion and a 14 bp insertion or a 65 bp deletion and an 8 bp insertion, respectively. Both alleles disrupt part of exon 2 coding sequence and the intron 2 donor site. Retention of intron 2 is predicted to lead to truncation of Rab28 due to the presence of in-frame stop codons and therefore the loss of several functional motifs from the translated protein (Figure 1D). RT-PCR of RNA from homozygous knockout larvae shows an absence of the correctly spliced transcript (Figure 1E), suggesting that the transcript is degraded by nonsense-mediated decay. Zebrafish homozygous for each of these alleles were subsequently used in phenotypic analyses.


[image: image]

FIGURE 1. Sequencing of the zebrafish rab28 gene, CRISPR mutagenesis and Tol2 transgenesis. (A) Multiple sequence alignment of zebrafish Rab28 protein sequence, predicted from mRNA, with that of the three known human RAB28 protein isoforms. The percentage protein identity is shown in a matrix table. (B) Representative gel showing PCR amplification of predicted rab28 introns 2, 3, and 6. (C) DNA sequencing reveals the exon–intron boundary at exon 2 of zebrafish rab28 and the predicted translated sequence encoded by exon 2. SD: splice-donor site. (D) Schematic of predicted rab28 gene structure. Black boxes represent exons and connecting lines represent introns. Red stripe indicates location of sgRNA target site used to generate CRISPR mutants, arrows indicate genotyping primer positions, coding positions for critical Rab GTPase motifs are highlighted and the location of ucd7 and ucd8 indels indicated. (E) Example RT-PCR gel showing the absence of correctly spliced rab28 cDNA between exons 2 and 4 in homozygous ucd7 and ucd8 larvae, which is present in WT siblings. (F) Schematic of the construct used to generate eGFP-Rab28 transgenic zebrafish. Expression is driven by the gnat2 (cone transducin alpha) promoter (yellow box). att: Gateway att sites, Tol2 3′ and 5′: transposon inverted repeats.


In order to assess localization, function and protein-protein interactions of Rab28, we generated a transgenic fish line expressing an eGFP-Rab28 construct in cone photoreceptors (Figure 1F). We also generated two further transgenic lines, one harboring the (predicted GTP-preferring) Q72L mutation and another the (predicted GDP-preferring) T26N mutation. It should be noted that the TN mutation commonly used to ‘GDP-lock’ Rabs lowers the affinity for guanine nucleotides generally (Lee et al., 2009), so our T26N mutant may mimic the nucleotide empty state.



rab28 Mutant Zebrafish Have Normal Visual Function at 5 dpf

Compared to sibling controls, rab28–/– larvae display normal development and gross morphology at 5 dpf (Figure 2A). To assess visual function in rab28–/– zebrafish, we utilized two behavioral assays: the optokinetic response (OKR) and visual-motor response (VMR). Homozygous mutant larvae and control (+ / + and ±) siblings for both CRISPR alleles were assessed at 5 dpf, between the hours of 12 and 4 pm. The OKR of rab28–/– larvae was not different to control siblings at 5 dpf, under the conditions tested (Figure 2B). To investigate the possibility of a reduction in visual function at a later age, we performed OKR assays on 21 dpf rab28 mutants and controls (Supplementary Figure 1A). As at 5 dpf, the OKR of rab28 knockouts was not significantly different from siblings at 21 dpf (p = 0.5224), under the test conditions. In the VMR assay, at 5 dpf, the OFF peak activity between siblings and mutants is identical, whereas rab28 mutants display a 51% increased average ON peak activity (Figure 2C; p = 0.0017). The overall activity traces and the OFF and ON peak traces (100 s before and 400 s after a light change) highlight rab28 mutants with slightly elevated activity in the dark, but reduced activity in light conditions, compared to sibling controls (Figure 2D). These data show that, in zebrafish at 5 dpf, rab28 knockout results in subtle effects on visual behavior compared to WT.
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FIGURE 2. rab28 knockout zebrafish have subtle defects in visual behavior at 5 dpf. (A) Representative images of rab28 knockout and sibling zebrafish larvae at 5 dpf. Gross morphology is indistinguishable between knockouts and siblings. (B) Box and whisker plot of the optokinetic response (OKR) of rab28 knockout larvae versus sibling larvae at 5 dpf. OKRs are not significantly different. Box extremities represent 1st and 3rd quartiles; whiskers are maximum and minimum values. p-Value derived from unpaired t-test. OKR data are from 32 mutants and 98 siblings, across three experimental replicates. (C) Box and whisker plot of 5 dpf larval activity during the visual-motor response (VMR) assay. OFF peak activity is identical between rab28 knockouts and siblings, albeit rab28 knockouts have an average 51% higher ON peak activity. Data are from three independent replicates and are the average of 5 s of activity following light changes. Box extremities represent 1st and 3rd quartiles; whiskers are maximum and minimum values. p-Value derived from unpaired t-test. (D) Activity traces showing 5 dpf larval activity over the course of an entire VMR assay (100 min), as well as separate graphs showing activity 100 s before and 400 s after OFF and ON peaks, respectively. Black and yellow bars indicate dark and light conditions, respectively. VMR data are from 32 mutants and 49 siblings, across three experimental replicates.




rab28 Mutants Have Normal Retinal Histology and Ultrastructure Up to 12 mpf

The absence of visual behavior deficits in larval and juvenile rab28–/– fish led us to investigate the possibility of a slow-onset, progressive retinal degeneration, as observed in other zebrafish models, such as eys and rpgrip1 (Yu et al., 2016; Raghupathy et al., 2017). Thus, homozygous rab28–/– larvae were raised to adulthood and retinal histology assessed. At 3 mpf, the retina of a rab28–/– had equivalent retinal lamination to a sibling control and the photoreceptor layer contained all five photoreceptor cell types in their normal distribution and abundance (Figure 3A). We then assessed retinal histology in a 12 mpf sibling and rab28 mutant and again found mutant retinas to be healthy, with no evidence of degeneration. To investigate potential ultrastructural defects, TEM was performed on 3 mpf retinas. Photoreceptor ultrastructure was similar between sibling and mutant at 3 mpf. Both genotypes show normal basal body positioning, while cone lamellae in rab28–/– fish display normal organization and alignment (Figure 3B). Therefore, loss of rab28 is not associated with pronounced retinal structure degeneration in zebrafish, up to 12 mpf.
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FIGURE 3. rab28 knockout zebrafish have reduced outer segment shedding, but normal retinal histology and ultrastructure. (A) Representative images of retinal histology in 3 and 12 mpf zebrafish, showing views of the photoreceptor layer in the central and peripheral retina in rab28ucd8 mutants and siblings. The overall structure and composition of the photoreceptor layer is grossly normal in both. Scale bars 20 μm (B) Representative transmission electron micrographs of 3 mpf zebrafish rab28ucd7 knockout and sibling retinas. Low magnification images show several cone photoreceptors, while high magnification images show examples of OS base and tips. Yellow arrows indicate ciliary basal body. OS: outer segment; IS: inner segment; m: mitochondria. Low magnification image scale bars 5 μm, high magnification scale bars 500 nm. (C,D) Confocal z-projections of rab28 mutant and sibling control retinas at 1 mpf, stained for UV opsin to label phagosomes (white arrows). Samples were collected 4 h after lights on. Scale bars 10 μm (E) Scatter plots of phagosome density in rab28 mutant and sibling retinas. Data are derived cryosections immunostained for UV and red opsins and cone transducin α. p-Value is derived from t-test. Error bars show SEM. Data are from 13 and 11 retinal z-projections from at least three individuals for mutants and siblings, respectively. (F,G) Representative TEM of RPE phagosomes in 15 dpf rab28 mutants and sibling controls. Yellow arrows indicate phagosomes. Samples were collected 4 h after lights on. Scale bars 2 μm. (H) Scatter plots of phagosome density in 15 dpf rab28 mutant and sibling retinas, derived from TEM. p-Value is derived from t-test. Error bars show SEM. Data are from three sibling and three mutant individuals.




rab28 Mutant Zebrafish Have Reduced Shedding of Cone OS Disks

Defective cone outer segment shedding was investigated in rab28–/– zebrafish, as this phenotype was recently reported for rab28–/– mice (Ying et al., 2018). Unlike mice, two shedding peaks are reported for zebrafish photoreceptors: one in the morning and one in the evening (Lewis et al., 2018). Both rods and cones are reported to shed at these time points. In rab28–/– zebrafish, immunofluorescence staining was applied to identify cone OS protein staining (cone opsins and cone transducin alpha) located distal to the tips of the cone outer segments as a surrogate measure of RPE phagosomes containing shed outer segments, as previously reported (Esteve-Rudd et al., 2018; Ying et al., 2018). At 1–2 mpf, the number of cone phagosomes are reduced in rab28 mutant zebrafish by ∼44% compared to siblings (Figures 3C–E). To validate this finding, we performed TEM on the retinas of 15 dpf rab28 mutants and siblings and counted the number of RPE phagosomes. Phagosome number was reduced in rab28 mutants by 53% on average (Figures 3F–H). Our data demonstrate a conserved role for Rab28 in OS shedding in cone photoreceptors.



eGFP-Rab28 Localization to Cone Outer Segments Is Partially Dependent on GTP/GDP Binding

GTPase switching between the GTP or GDP-bound conformations is often accompanied by a change in protein localization to another cellular compartment. We previously reported that GTP and GDP-binding variants of C. elegans RAB-28 dramatically alter localization in ciliated sensory neurons (Jensen et al., 2016). While RAB28 localizes to murine rod and cone OS (Ying et al., 2018), it is unknown if this is influenced by nucleotide binding. This question was investigated with three eGFP-Rab28 variants expressed in zebrafish cones. Confocal imaging of cryosections from 5 dpf zebrafish revealed eGFP-Rab28 localized almost exclusively to cone OS (Figures 4A–C). However, in the T26N mutant, an average 30% reduction in OS enrichment was observed compared to the WT variant (Figure 4D; p < 0.0001), suggesting less efficient targeting of GDP-bound or nucleotide empty eGFP-Rab28 to OS.
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FIGURE 4. eGFP-Rab28 localization to larval zebrafish cone outer segments is partially dependent on GTP/GDP-binding. (A–C) Representative confocal z-projections of eGFP-Rab28 localization in 5 dpf zebrafish cone photoreceptors. The WT, putative GTP-preferring (Q72L) and GDP-preferring (T26N) variants of Rab28 all localize strongly to the outer segments of zebrafish cones, co-localizing with UV opsin labeling. Scale bars 5 μm. For WT, Q72L and T26N eGFP-Rab28 reporters a total of 14, 24 and 25 larvae were imaged, respectively. (D) Box and whisker plots of the ratio of eGFP-Rab28 intensity in the OS vs. synaptic region of larval cones. Box extremities represent 1st and 3rd quartiles; whiskers are maximum and minimum values. Data are from 60 cones per transgenic line. One-way ANOVA p-value < 0.0001. (E,F) Deconvolved, high resolution confocal z-projections of eGFP-Rab28 Q72L and T26N mutant localization in cones of 5 dpf larvae. A discrete localization pattern of the T26N mutant in COS is clearly observed (white arrowheads). Scale bars 4 μm.


Intriguingly, the eGFP-Rab28T26N mutant reporter was observed to occasionally localize to discrete, horizontal bands in the OS of some cones (Figures 4E,F). The OS of zebrafish photoreceptors are fully mature by 24 dpf (Branchek and Bremiller, 1984). To investigate whether further photoreceptor development is accompanied by changes in Rab28 localization, retinal sections were imaged from 1 mpf zebrafish. Again, the WT and mutant versions of eGFP-Rab28 were strongly enriched in the OS of all cones (Figures 5A–C). Strikingly, at this time point, discrete banding patterns were observed in all three transgenic lines, in a larger number of photoreceptors and was far more extensive than in larvae, occurring at regular intervals from base to tip of cone OS (Figures 5D–F). In the WT and Q72L mutant reporters, banding appeared largely restricted to the short single (SS) cone population, located in the bottommost row of photoreceptors (Figures 5A,B,D,E). The T26N reporter, by contrast, showed discrete banding in other cone populations (Figures 5C,F), though still primarily in SS cones. Our data show that Rab28 is efficiently targeted to cone OS in a manner only partially dependent on its nucleotide-bound state, where it is organized into discrete segments of the OS, a behavior that appears to be more prominent when in the GDP-bound/nucleotide free state.
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FIGURE 5. eGFP-Rab28 localization in 1 mpf zebrafish cone photoreceptors. (A–C) Representative confocal z-projections of eGFP-Rab28 localization in 1 mpf zebrafish cones. Cone OS are stained with anti-cone transducin alpha antibody. Each tier of photoreceptors is comprised of different classes of cone. DC: double cones; LSC: long single cones; SSC: short single cones. Scale bars 10 μm. For WT, Q72L and T26N eGFP-Rab28 reporters a total of 13, 11 and 11 retinas across at least six individuals were imaged, respectively. (D–F) Deconvolved, high resolution confocal z-projections of eGFP-Rab28 WT, Q72L and T26N mutant localization in 1 mpf cones. Arrowheads point to discrete bands present throughout the OS. Scale bars 5 μm.




eGFP-Rab28 Transgenic Zebrafish Have Reduced Visual Function at 5 dpf

We previously demonstrated overexpression of either GTP or GDP-preferring RAB28 induces functional and ultrastructural defects in the cilia and sensory organs of the nematode C. elegans. To assess an evolutionarily conserved function of this nucleotide binding domain in the vertebrate retina, we assessed visual function in transgenic eGFP-Rab28 zebrafish larvae (Figures 6A–E and Supplementary Figures 1A–E). In the OKR, 5 dpf transgenic larvae expressing eGFP-Rab28WT displayed normal saccadic eye movements equivalent to non-transgenic fish (18–25/min) (Figure 6A). eGFP-Rab28Q72L larvae, however, had a far greater range of responses and an average 30% reduction in OKR, while the eGFP-Rab28T26N expressing larvae had similar responses to WT (Figure 6A).
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FIGURE 6. Rab28 transgenic zebrafish have mild to moderate visual defects at 5 dpf. (A) Box and whisker plot of optokinetic response (OKR) assay of 5 dpf larvae overexpressing GFP-Rab28 WT, Q72L (GTP-preferring) or T26N (GDP-preferring). Larvae expressing the Q72L variant display greater variability and an overall reduction in OKR scores. Box extremities represent 1st and 3rd quartiles; whiskers are maximum and minimum values. Data are from three independent replicates; at least 30 larvae analyzed per strain over three experimental replicates; p-value derived from one-way ANOVA. (B,C) Representative activity traces of 5 dpf transgenic and sibling larval activity over the course of the entire VMR assay. Black and yellow bars indicate dark and light conditions, respectively. (D,E) Box and whisker plots of the OFF and ON peak activity of 5 dpf transgenic and sibling larvae. Data are from three independent replicates and are the average of 5 s of activity following light changes. At least 64 larvae were analyzed per strain. p-Value derived from unpaired t-test (D).


By contrast, the VMR assay of eGFP-Rab28WT and eGFP-Rab28Q72L 5 dpf larvae showed similar light and dark activity compared to non-transgenic sibling controls (Figures 6B,D,E and Supplementary Figures 1B,C), while the dark, but not light, activity of eGFP-Rab28T26N larvae was reduced (Figures 6C–E and Supplementary Figures 1D,E). T26N transgenic larvae also had significantly reduced OFF peak activity compared to siblings (Figure 6D). Overall, these data show that transgenic larvae overexpressing eGFP-Rab28 GTP and GDP-preferring mutants display mild to moderate defects in visual function at 5 dpf.



eGFP-Rab28 Transgenic Zebrafish Have Normal Photoreceptor Ultrastructure at 7 mpf and Normal Outer Segment Shedding

Given the slight visual behavior defects exhibited by eGFP-Rab28 mutant expressing larvae, we assessed photoreceptor ultrastructure in 7 mpf adults expressing the three different Rab28 reporters. We found that eGFP-Rab28 overexpressing cones had no obvious ultrastructural defects and normal outer segment morphology (Figure 7A). Thus, overexpression of eGFP-Rab28 or its GTP/GDP-preferring mutants does not adversely affect cone ultrastructure up to 7 mpf.
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FIGURE 7. Rab28 transgenic zebrafish have normal retinal ultrastructure and normal outer segment shedding. (A) Representative TEM of 7 mpf eGFP-Rab28 transgenic zebrafish. Low magnification images show rows of several cone photoreceptors, while high magnification images show examples of OS tips. Low magnification scale bars 5 μm, high magnification scale bars 500 nm. (B–D) Confocal z-projections of 1 mpf retinas of zebrafish expressing eGFP-Rab28 (WT, Q72L, or T26N variants). Phagosomes, labeled with eGFP, are indicated by white arrows. Samples were collected 4 h after lights on. Scale bars 10 μm. (E) Scatter plots showing normalized phagosome density in the retinas eGFP-Rab28 transgenic zebrafish. Data are derived from cryosections in which eGFP was used to identify phagosomes. p-Value derived from one-way ANOVA. Error bars show SEM. Data are from 17, 17, and 13 retinal z-projections from at least three individuals for WT, Q72L, and T26N variants, respectively.


Given our observation of reduced OS disk shedding in rab28 mutant zebrafish, we assessed whether OS shedding was disrupted in eGFP-Rab28 transgenic fish. We used the fluorescence signal of eGFP-Rab28 itself to identify phagosomes, as it is contained in shed OS tips. Surprisingly, all three transgenic models displayed normal levels of shedding (Figures 7B–D). Although there was a slight reduction in eGFP-Rab28WT retinas, this was not statistically significant (Figure 7E).



Rab28 Biochemically Interacts With Phototransduction Proteins

In order to identify effectors and/or regulators of Rab28, immunoprecipitation (IP) of eGFP-Rab28 in 5 dpf zebrafish whole-eye lysates was performed, followed by mass spectrometry (Figure 8A). This was performed with eGFP-Rab28 WT, Q72L and T26N mutant lines, to identify interactants specific to the GTP and GDP-bound states. We initially tested our ability to detect and pulldown eGFP-Rab28 from larval eye extracts by immunoblot (Figure 8B), in order to estimate the number of eyes required for mass spectrometry. Using the IP-MS approach, we identified 323 unique proteins across all three eGFP-Rab28 variants, of which 52 were deemed significantly enriched (t-test, p < 0.05) (Figure 8C, Table 2 and Supplementary Table 1). The identified proteins can be divided into two groups based on fold change. The first group of 19 proteins have a log2 fold change > 20 for at least one of the Rab28 variants, while the second group of 33 proteins have a log2 fold change < 5 (Table 2 and Supplementary Table 1), and cluster accordingly (Supplementary Figure 2). To functionally categorize the Rab28 interactome, enriched gene ontology terms were identified using PANTHER-DB (Figure 8D). For the most enriched proteins across all three Rab28 variants, overrepresented processes and functions include signal transduction, cellular transport, metabolic processes, and stimulus response (Figure 8D).
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FIGURE 8. Rab28 interacts with multiple phototransduction proteins in the zebrafish eye. (A) Schematic of experimental workflow for Co-IP/MS of eGFP-Rab28 (B) Western blotting with an anti-GFP antibody, showing eGFP-Rab28 in whole eye lysate and elute after immunoprecipitation with anti-GFP beads. An untagged eGFP only control is also shown. (C) Venn diagram showing the number and overlap of significantly enriched (vs. GFP-only control) interacting proteins identified for each variant. (D) Pie charts showing gene ontology terms for proteins identified by mass-spectrometry following co-immunoprecipitation, which demonstrate a statistically significant interaction with any of the three variants. (E) Western blot of whole adult zebrafish eye lysate with an anti-PDE6D antibody, before and after IP of eGFP-Rab28. PDE6D band at 15 kDa mark (PDE6D mass: 17.4 kDa). Extra bands in the lysates are either post-translationally modified PDE6D, degradation products or non-specific binding by the antibody. IPs either received no treatment, GTPγS or GDP. eGFP only control is also shown.



TABLE 2. Selected interactors of RAB28 in the zebrafish eye.

[image: Table 2]There is significant overlap between the three Rab28 variants (Figure 8C), although a few proteins are enriched for one specific variant. Overall, the Rab28 interactome is highly enriched for components of the phototransduction cascade, including green and blue opsins, as well as rhodopsin, phosphodiesterase 6C, retinal guanylate cyclase and cone transducin alpha (Table 2 and Supplementary Table 1). Additionally, membrane transport proteins such as Nsfa/b (regulators of SNARE-mediated vesicle fusion), Sv2a and Erlin1/2 were significantly enriched. The identification of some non-cone proteins (e.g., Rhodopsin, Rgra) is unsurprising, as the eGFP-Rab28 bait is exposed to potential interactants from other cell types in the whole-eye lysate.

Proteins specifically enriched for particular variants include Gnb3b, which is significantly enriched for the Q72L mutant alone, while Gucy2d and Erlin1/2 are significantly enriched for the T26N mutant only (Table 2 and Supplementary Figure 2).

One protein strongly detected across all three groups was the GDI-like solubilization factor Pde6d, which is known to transport lipidated proteins to cilia and known to interact with Rab28 (Humbert et al., 2012; Ying et al., 2018). In our dataset, an equivalent fold change in Pde6d was detected across all three Rab28 groups (Table 2), although it was slightly higher for the Rab28WT and Rab28Q72L vs. the Rab28T26N (log2 FC = 27.33, 28.95, and 25.04, respectively), suggesting that the latter has a lower affinity for Pde6d. As the T26N mutation lowers the affinity of Rab28 for GTP, it can be inferred that GTP-binding promotes Rab28 association with Pde6d. To test this further, IPs were performed using just eGFP-Rab28WT, using treatment of the lysate with an excess of either GTPγS or GDP to force Rab28 into the respective conformations. Western blots with an anti-PDE6D antibody showed co-precipitation of Pde6d with all three Rab28 baits, however, in contrast to the MS data, the amount of Pde6d pulled down was the same for GTPγS and GDP treatment and no treatment (Figure 8E). In summary, our data demonstrate that Rab28 interacts with phototransduction, and membrane transport proteins in the zebrafish larval eye.



DISCUSSION


Loss of rab28 Leads to Reduced Cone OS Shedding in Zebrafish

Mutation of RAB28 in humans is independently linked with cone-rod dystrophy in multiple pedigrees (Roosing et al., 2013; Riveiro-Álvarez et al., 2015; Lee et al., 2017). This form of retinal degeneration is characterized by initial cone death, followed by loss of rods. In agreement, a rab28 knockout mouse displays cone-rod dystrophy, resulting from failure of cone outer segment (COS) phagocytosis (Ying et al., 2018). In the zebrafish knockout model described here, we too find perturbed COS shedding, resulting in a significant reduction in the number of phagosome-like structures positive for COS proteins within the RPE. Our data confirms a conserved role for Rab28 in COS shedding. We also find that overexpression of Rab28 GTP/GDP-preferring mutants does not significantly alter shedding. The reason for this is unclear, though possible explanations include (i) the mutations used do not completely obliterate nucleotide exchange by Rab28 or (ii) transgene overexpression levels are insufficient to perturb OS shedding. In our previous studies in C. elegans, overexpression of GTP and GDP-preferring RAB-28 mutants resulted in defects in sensory compartment morphogenesis (Jensen et al., 2016), however, the degree of overexpression in that case was much higher than is achieved with our gnat2:eGFP-rab28 reporters. We also note that the background of our transgenic lines includes WT rab28, which may partially ameliorate the effects of overexpression. Given its broad conservation in vertebrates and eukaryotes generally, Rab28 likely acquired this function early in vertebrate evolution, possibly arising from a general role in the shedding of membrane (in the form of extracellular vesicles) from cilia (Jensen et al., 2016; Akella et al., 2020). The recent discovery that ectosome release is a conserved feature of cilia in many different cell-types and species provides an exciting opportunity to discover further regulators of OS shedding and phagocytosis. Indeed, one can speculate that photoreceptor outer segment phagocytosis is a specialized form of ciliary ectocytosis (Carter and Blacque, 2019; Nachury and Mick, 2019), as is the case for disk morphogenesis in mouse rods (Salinas et al., 2017). It cannot be ruled out, however, that the shedding deficit observed in rab28 null zebrafish and mice arise from defects in the RPE, rather than cones. The RPE is essential for disk shedding (Williams and Fisher, 1987) and appears to actively participate in it. If loss of Rab28 does lead to dysfunction within the RPE, however, this raises the question of why only cones are directly affected.



rab28 Mutant Zebrafish Have Normal Vision and Retinal Structure Up to 12 mpf

In contrast to the mouse rab28 knockout, rab28 knockout zebrafish display decreased RPE phagosomes, but normal visual function up to 21 dpf and no retinal degeneration up to 12 mpf. One possibility is that the level of outer segment shedding/phagocytosis remaining in zebrafish rab28 mutants (∼40–50% of WT levels) is sufficient to support photoreceptor survival. Notably, the reduction in phagosome density in the retinas of rab28 KO mice is higher, at approximately 80%. Zebrafish Rab28 may therefore be less essential for outer segment shedding than its mammalian orthologs.

Alternatively, genetic lesions which induce nonsense-mediated decay of mRNA were recently demonstrated to elicit a compensatory transcriptional response, whereby genes with similar functions are upregulated, masking the effect of the mutant gene (Rossi et al., 2015; El-Brolosy et al., 2019). This is particularly noted in zebrafish, where mutant phenotypes are often less severe or different from those of morpholino knockdown models (Kok et al., 2015), which do not display such compensation (Rossi et al., 2015). The absence of retinal degeneration in rab28 knockout zebrafish may be the result of this compensatory transcriptional adaptation. Finally, there exists a high degree of redundancy in the zebrafish genome due to genome duplication thought to have occurred in the ancestor of teleost fish (Meyer and Van de Peer, 2005). However, there is no indication for a rab28 paralog in zebrafish. More globally, functional redundancy between different Rab family members may overcome loss of rab28 (Pavlos and Jahn, 2011; Blacque et al., 2018).

Another explanation is species differences in growth and regeneration. Unlike mammals, the zebrafish retina displays persistent neurogenesis throughout life, generating new cone photoreceptors at the periphery (Otteson and Hitchcock, 2003). Retinal injury can also elicit a response from zebrafish Müller glia, which proliferate and re-differentiate to replace lost retinal cells (Yurco and Cameron, 2005). These physiological differences may mask slow-onset thinning of the retina during degeneration.



Rab28 Localization in Cones

Here, GFP-tagged Rab28 was highly enriched in the OS of zebrafish cones, regardless of whether it is in the GTP or GDP-bound state, suggesting all of its activity occurs within the OS, or that nucleotide binding is not important for Rab28 localization and/or function. The former scenario is in agreement with previous findings that mouse Rab28 regulates shedding from cone OS tips (Ying et al., 2018), and our own data suggesting the same. The latter case is supported by the relatively mild effects of overexpressing GTP/GDP-preferring mutants of Rab28 and our observation that the nucleotide bound state of Rab28 does not affect interaction with PDE6D, a critical transport regulator of Rab28 (Humbert et al., 2012; Ying et al., 2018). These results are surprising, given the substantial effects of GTP/GDP-binding on both the localization and function of C. elegans RAB-28 that we have previously demonstrated (Jensen et al., 2016; Akella et al., 2020). Our zebrafish data point to the possibility that vertebrate Rab28 is a non-canonical Rab in its behavior and function.

We also observed a striking pattern of localization with COS, particularly those of short single (SS) cones, involving the concentration of Rab28 into discrete bands throughout the OS. This banding pattern was more extensive for the Rab28T26N mutant, suggesting that GDP-bound or nucleotide free Rab28 is more efficiently targeted to these sites. As the average distance between cone OS lamellae [9–13 nm (Nilsson, 1965)] is much too small to be resolved by fluorescence microscopy, these aggregations of Rab28 must be present on only a subset of lamellae within the OS. In rods and cones, a relatively consistent number of disks/lamellae are shed each time (Kocaoglu et al., 2016; Campbell and Jensen, 2017). The precise reason for the rab28 pattern in cones and whether this has a functional purpose are fascinating future research questions. One possibility is they mark sites of contact between the OS and the RPE. Rab28 may recruit effectors to these outer segment membranes which cooperate with other proteins in the RPE membrane to initiate outer segment shedding. Why this pattern is primarily observed in SS cones may be due to a need for higher disk turnover in UV COS, arising from their absorbance of highly phototoxic UV light. At the very least, our Rab28 localization data indicates that there are differences in COS organization between different classes of cone.

Discrete banding patterns within outer segments were previously reported, though exclusively in rods (Haeri et al., 2013; Hsu et al., 2015), where it is thought to be a product of light-induced fluctuations in protein or disk synthesis. There is, however, some disagreement over whether such patterns have functional significance or are merely artifacts. Discrete patterns of localization within cone OS are themselves surprising, given that proteins can freely diffuse both laterally and axially within them, via the ciliary facing membrane which connects lamellae (Young, 1969; Bok and Young, 1972; Liebman, 1975; Willoughby and Jensen, 2012). This is in contrast to ROS, where the separation of disks precludes diffusion of membrane proteins between them. Indeed, it has been observed that a fluorescent reporter which can label discrete stacks of disks in rods becomes diffuse when expressed in COS (Willoughby and Jensen, 2012). Proteins which form banding patterns of localization in COS, such as Rab28, must therefore be prevented from undergoing diffusion and tethered to particular membranes.

One implication from this is that the oldest and most photo-oxidatively damaged proteins are evenly distributed throughout COS, while they are restricted to the tip of ROS. Thus, OS renewal is likely less efficient in cones than rods, potentially explaining why loss of rab28 appears to exclusively affect cones and not rods.



Rab28 Interacts With the Phototransduction Machinery of Zebrafish Cones

Using an IP-MS approach, we identified novel interactants of Rab28 in the zebrafish eye. Of these, the most notable include components of the phototransduction cascade (opsins, phosphodiesterase 6C, retinal guanylate cyclase, guanine-nucleotide binding protein 3b) and vesicular trafficking proteins (Sv2a, Nsfa/b). We also validate a previously identified interaction with the prenyl-binding protein Pde6d. Interactions with phototransduction proteins may point to a role for Rab28 in the transport of these proteins, perhaps within the OS itself, given that Rab28 almost exclusively localizes therein. The diversity of interactants either suggests roles for these proteins in photoreceptor OS, or roles for Rab28 outside the OS, such as in the inner segment (the location of photoreceptor mitochondria) or synapse.

There is a notably low degree of overlap between the interactants identified in our study and those in a previous study (Ying et al., 2018). There are several possible explanations for these discrepancies, first among them the characteristics of the species from which tissue was derived. The larval zebrafish retina is cone-dominant, consisting of ∼92% cones (Zimmermann et al., 2018), in contrast to the rod-dominant bovine retina (Szél et al., 1996) used by Ying et al. (2018), Our dataset may therefore be more enriched for the cone-specific interactome of Rab28, as suggested by the prevalence of cone-specific proteins in our interactant list. Additionally, our experiments were performed with still-developing larval tissue. We show here that retinal development is accompanied by changes in Rab28 localization within the COS and it is conceivable that this is accompanied by changes to the Rab28 interactome. Our data also offers insight into the effect of nucleotide binding on Rab28 interactions, as a small number of interactants only displayed significant interaction with one of the nucleotide binding mutants. For example, Gnb3b was significantly enriched by the Q72L (GTP-preferring) bait only, while Gucy2d and Erlin-1/2 were enriched for the T26N (GDP-preferring) mutant. Gnb3b may be a direct effector of Rab28 in its active state, while Erlin-1/2 may be a guanine nucleotide exchange factor (GEF), which promotes the exchange of GDP for GTP (Lee et al., 2009).
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Beta-herpesviruses develop a unique structure within the infected cell known as an assembly compartment (AC). This structure, as large as the nucleus, is composed of host-cell-derived membranous elements. The biogenesis of the AC and its contribution to the final stages of beta-herpesvirus assembly are still unclear. In this study, we performed a spatial and temporal analysis of the AC in cells infected with murine CMV (MCMV), a member of the beta-herpesvirus family, using a panel of markers that characterize membranous organelle system. Out of 64 markers that were analyzed, 52 were cytosolic proteins that are recruited to membranes as components of membrane-shaping regulatory cascades. The analysis demonstrates that MCMV infection extensively reorganizes interface between early endosomes (EE), endosomal recycling compartment (ERC), and the trans-Golgi network (TGN), resulting in expansion of various EE-ERC-TGN intermediates that fill the broad area of the inner AC. These intermediates are displayed as over-recruitment of host-cell factors that control membrane flow at the EE-ERC-TGN interface. Most of the reorganization is accomplished in the early (E) phase of infection, indicating that the AC biogenesis is controlled by MCMV early genes. Although it is known that CMV infection affects the expression of a large number of host-cell factors that control membranous system, analysis of the host-cell transcriptome and protein expression in the E phase of infection demonstrated no sufficiently significant alteration in expression levels of analyzed markers. Thus, our study demonstrates that MCMV-encoded early phase function targets recruitment cascades of host cell-factors that control membranous flow at the EE-ERC-TGN interface in order to initiate the development of the AC.

Keywords: cytomegalovirus, virion assembly compartment, endosomal recycling compartment, Rab proteins, Rab cascades


INTRODUCTION

Beta-herpesviruses infect almost all the human population, cause asymptomatic infections, and are associated with a wide range of pathologic conditions (rev in. Britt and Prichard, 2018). Despite the extensive and long-lasting efforts, the development of effective vaccines and antiviral therapies against beta-herpesviruses remains of outstanding importance (Britt and Prichard, 2018). Among several, potential viral and cellular targets of antiviral research are those that control critical points in the beta-herpesvirus life cycle, the assembly and egress of infectious virions.

The assembly of beta-herpesviruses occurs as a complex set of events in the nucleus and cytoplasm of the infected cell (rev in Tandon and Mocarski, 2012; Close et al., 2018a). The cytoplasmic stage requires a transformation of the membranous system of the cell, the establishment of the virus-encoded tegument matrix, and the accumulation of envelope glycoproteins at appropriate membranous organelle. Once the preparatory events in the membranous system are completed, pre-assembled nucleocapsids migrate from the nucleus, move through the cytoplasm, and acquire most of the tegument components and membranous envelope harboring viral glycoproteins by budding into the membranous organelle(s). All these cytoplasmic events take place within a sizeable cytoplasmic structure known as the assembly compartment (AC).

The beta-herpesvirus AC has been mainly studied during human cytomegalovirus (HCMV) infection (rev in Tandon and Mocarski, 2012; Close et al., 2018a). The AC develops in CMV infected cells as a juxtanuclear cylindrical aggregate of membranous structures delimited at its periphery by the Golgi complex. Given that the AC area is large, approximately the size of the nucleus (Close et al., 2018a), it contains a large number of membranous intermediates that may serve as a site for final CMV envelopment. The AC is fully formed at late stages of infection after late viral genes encoding tegument, and envelope proteins are expressed. However, the reorganization of the host-cell organelles could be initiated earlier in the infection, delineated as preAC (PrAC; Taisne et al., 2019).

Electron microscopy (EM) studies of the HCMV AC demonstrated displacement of the Golgi stacks into a vacuolar ring that surrounds centrally accumulated aggregate of vesicular, vacuolar, and tubular membranous structures (Homman-Loudiyi et al., 2003; Buser et al., 2007; Maninger et al., 2011; Tandon and Mocarski, 2012; Schauflinger et al., 2013; Archer et al., 2017). Non-enveloped capsids were randomly spread throughout the AC area in contact with membranous intermediates and were not localized in specifically defined structures (Schauflinger et al., 2013), whereas. enveloped capsids are relatively rare. Accordingly, the release of newly enveloped infectious virions is a rare event that occurs with the frequency of 1 infectious virion per hour (Sampaio et al., 2005). Immunofluorescence studies (Homman-Loudiyi et al., 2003; Das et al., 2007; Krzyzaniak et al., 2009; Cepeda et al., 2010; Das and Pellett, 2011; Hook et al., 2014) demonstrated that HCMV AC represents an extensive reorganization of the Golgi, early endosomes (EE), and recycling endosomes (RE), leading to the proposal that the cellular secretory pathway machinery is used for virion envelopment and egress (Close et al., 2018b). Systems studies of the host-cell transcriptome and proteome demonstrated that HCMV infection alters a large number of host-cell proteins that may be associated with membranous organelle organization and thereby might drive the AC biogenesis (Weekes et al., 2014; Tirosh et al., 2015; Jean Beltran et al., 2016). However, spatial and temporal proteomic analysis (Jean Beltran et al., 2016) could not sufficiently distinguish membranous compartments or intermediates reorganized by CMV infection. Thus, the composition, organization, and the sequence of events that characterize the development of the AC remained mostly unclear, and consequently, the mechanisms underlying these extensive organelle remodeling events remained unknown (Jean Beltran et al., 2016; Close et al., 2018b).

The analysis of the membranous organization of the AC was mainly restricted to the classical steady-state organelles. However, many publications in the last decade demonstrate much more complexity in the organization and function of the membranous system of the cell (Goldenring, 2015; Villaseñor et al., 2016; Naslavsky and Caplan, 2018). Accordingly, almost all classical organelles can be further subdivided into various functional subsets or maturation intermediates. Furthermore, membranous organelles display the domain organization that is dynamically shaped by the cascade-like recruitment of regulatory and effector proteins (rev. in Cherfils and Zeghouf, 2013; Wandinger-Ness and Zerial, 2014; Pfeffer, 2017). The domain organization is mostly governed by the recruitment of a small GTPase from Rab and ARF family, followed by membrane lipid modification and mobilization of various effector proteins that define the phenotypic and functional identity of membrane domains. According to the Rab/ARF cascade hypothesis, membranous system dynamics is based on the flow of domains in which upstream Rab/ARF recruits a guanine exchange factor (GEF) to activate downstream Rab/ARF, which in turn recruit a GTPase activating (GAP) protein to inactivate upstream Rab/ARF. Thus, all the cascades form highly dynamic spatially and temporarily organized functional networks that can be reconfigured in the course of CVM infection. Accordingly, it is debatable whether CMV infection reorganizes spatial and temporal domain dynamics of classical steady-state organelles or modifies the order within regulatory cascades and thereby reorganizes the endomembrane system into a new organelle composition. To address these questions, it is essential to analyze further reorganized membranous organelles within the AC, especially endogenous recruitment of host-cell regulatory proteins that shape membrane domains, and to determine the sequence of the membrane system reorganization during the CMV replication cycle.

At the current stage of the AC understanding, it remains unclear what is the site of final CMV secondary envelopment, and how are newly formed CMV virions released from the infected cell. Despite several efforts to label CMV virion particles as a tool for visualization of the final stages of CMV maturation (Rupp et al., 2005; Sampaio et al., 2005), it seems that the use of stable fluorescent virions is a tedious task. Thus, to make further progress in the understanding of CMV maturation processes it is essential: (1) to establish precise composition and reveal the biogenesis of the AC; (2) to analyze CMV maturation processes using visualizable CMV capsids within the resolved composition of the AC; and (3) to establish a temporal and spatial functional network of regulatory and effector host-cell proteins that drive these processes using proteomic and interatomic data. In the present study, we attempted to address the first issue. We analyzed the composition and the biogenesis of the AC in cells infected with murine CMV (MCMV) at four stages of infection, including two stages of the PrAC and two stages of the AC.

Murine CMV is a member of the beta-herpesvirus family, with many similarities to HCMV and other members of the family (Brizić et al., 2018). MCMV replication cycle is much shorter in tissue culture conditions and, thus, more suitable for studies of the role of host-cell factors that require long-term perturbation of host-cell functions, such as host-cell gene silencing. Therefore, understanding the AC composition, its biogenesis, and contribution to the final MCMV assembly may be beneficial for a more in-depth understanding of these processes during HCMV infection as well as infections with other members of the beta-herpesvirus family.



MATERIALS AND METHODS


Cell Lines, Viruses, and Infection Conditions

All the procedures in the cell culture laboratory, as well as the production of MCMV stocks and infection of cells with MCMV, have been performed according to standard procedures (Brizić et al., 2018). Balb 3T3 fibroblasts and murine dendritic cell line DC2.4 were obtained from American Type Culture Collection (ATCC), and primary murine embryonic fibroblasts (MEFs) were generated from 17 days embryos of BALB/c mice. Balb 3T3 cells were grown in DMEM, DC2.4 cells in RPMI, and MEFs in minimal essential medium (MEM), supplemented with 10% (v/v) of fetal bovine serum (FBS), 2 mM L-glutamine, 100 mg/ml of streptomycin and 100 U/ml penicillin (all reagents from Gibco/Invitrogen, Grand Island, NY, United States). The cells were grown in Petri dishes as adherent cell lines and used for infection when they were 90% confluent.

The recombinant virus Δm138-MCMV (ΔMC95.15), with the deletion of the fcr1 (m138) gene (Crnković-Mertens et al., 1998), was regularly used for infection. In some experiments, we used Δ9-MCMV, a recombinant MCMV with deletion of M23-M26 genes generated on the wild-type MCMV background, and MCMV wild-type strain Smith (ATCC VR-194; American Type Culture Collection [ATCC]).

Cells were infected at a multiplicity of infection (MOI) of 10 with an enhancement of infectivity by centrifugation (Brizić et al., 2018), and the efficiency of infection was monitored by the immunofluorescent detection of the intracellular immediate-early 1 (IE1) protein, as described previously (Karleuša et al., 2018).



Antibodies and Reagents

Antibody reagents to host-cell factors and MCMV-encoded proteins were used either as monoclonal (MAbs) or polyclonal antibodies. MAbs to MHC class I (clone SF1-1.1.1 for H2-Kd), murine transferrin (Tf) receptor (TfR) (clone R17 217.1.3), CD44 (clone IM7), and RAE1 (clone Rae1γ0.01) were used as hybridoma culture supernatant purified by affinity chromatography. Monoclonal antibodies to MCMV proteins are produced by the University of Rijeka Center for Proteomics. Other Ab reagents were purchased from different distributors. The sources of primary antibody reagents and references are presented in Supplementary Table S1. Alexa Fluor (AF)488- and AF555-conjugated secondary antibody reagents to mouse IgG2a, mouse IgG2b, mouse IgG1, rat IgG, rabbit IgG, and chicken IgG were from Molecular Probes (Leiden, Netherlands), and AF647-conjugated IgG1 and IgG2a were from Jacksons Laboratory (Bar Harbor, ME, United States).



Immunofluorescence and Confocal Analysis

Cells grown on coverslips were fixed with 4% formaldehyde (20 min at r.t.) and permeabilized. All primary Ab reagents to membranous organelle markers were tested, in addition to optimal reagent concentration, for optimal detergent (Triton X-100, Tween 20, saponin, and methanol) concentration and permeabilization temperature. In most cases, we used permeabilization at 37oC for 20 min with 0.5–1% Tween 20. After permeabilization, cells were incubated with primary Ab reagents for 60 min. Unbound Ab reagents were washed with PBS, and cells were incubated for 60 min with an appropriate fluorochrome-conjugated secondary reagent. All secondary Ab reagents were tested for cross-reactivity against primary Abs and secondary Ab reagents used in combination with double and triple immunofluorescence staining. After the three washes in PBS, cells were embedded in Mowiol (Fluka Chemicals, Selzee, Germany)-DABCO (Sigma Chemical Co, Steinheim, Germany) in PBS containing 50% glycerol and analyzed by confocal microscopy.

Imaging was performed on an Olympus Fluoview FV300 confocal microscope (Olympus Optical Co., Tokyo, Japan) equipped with Ar 488, He/Ne 543, and He/Ne 633 lasers. Images were acquired using Fluoview software, version 4.3 FV 300 (Olympus Optical Co., Tokyo, Japan), PLAPO60xO objective and the appropriate filters, NA = 2, PMT 600–800, beam splitter at 570 nm, without Kalman filtering.

The z-series of 0.5 μm optical sections were acquired sequentially with medium scan speed (1,65s/scan), resulting in either 8–10 slices or 10–16 slices in uninfected and MCMV infected cell samples (cell rounding), respectively. All acquisition parameters were adjusted on uninfected cells, with the offset below 5%, and the z-series of infected cell samples were acquired under identical condition without any correction. The images are acquired using the 2x zoom at areas with at least three infected cells with representative staining patterns (images shown in Supplementary) and 4x and 8x zoom to display as much as possible distinct structures within individual infected cells.

The images (515 × 512 pixels) were exported as a TIFF and analyzed using ImageJ software and available plugins (Plot Profile and JACoP) without any image rendition and additional processing. Volume Viewer plugin was used for the reconstruction of 3D images of the entire z-series. Focus plane (usually fourth or fifth section) images were used for image presentation and colocalization presentation by plotting profiles along the line.

Colocalization events were quantitatively evaluated on 8x zoomed images using a global statistic approach that performs intensity correlation coefficient-based (ICCB) analyzes. We used ImageJ 1.47v software, utilizing the JACoP plugin1 (Bolte and Cordeliéres, 2006) to calculate Manders’ overlap coefficients (M1 and M2) within the entire z-stack for three dimensional (3D) analysis of colocalization. The background was partially eliminated during the image acquisition process by adjusting detector settings in order to detect the maximal fluorescence intensity in red and green channels. The best-fit lower threshold to eliminate most of the signal background (Costes automatic thresholding method) was determined using the threshold tool and confirmed by visual inspection. Measures were made on 6–10 cells per experiment on the entire z-series.



Western-Blot

Cellular extracts for WB analysis were prepared in RIPA lysis buffer supplemented with protease and phosphatase inhibitors, separated by SDS-PAGE, and blotted onto a polyvinylidene difluoride (PVDF-P) WB membrane (Millipore) at 60 to 70 V for 1 h. Membranes were incubated with 1% blocking reagent (Roche Diagnostics GmbH, Mannheim, Germany) for 1 h, followed by 1-h to overnight incubation with primary Abs, three cycles of washing (TBS with 0.05% Tween 20 [TBS-T buffer]), and a 45-min incubation with peroxidase-conjugated secondary reagent diluted in TBS buffer containing 0.5% blocking reagent. After being washed three times with TBS-T buffer (pH 7.5), membranes were incubated for 1 min with ECL Prime substrate (GE Healthcare) and enveloped into plastic wrap. Signals were detected by Transilluminator Alliance 4.7 (Uvitec Ltd., Cambridge, United Kingdom).



Total RNA Isolation, RNA Sequencing, and the Analysis of the RNA-Seq Data

A total of 2.6 × 107 DC2.4 cells were grown in a 48-well plate in three triplicates in 10% RPMI without β-mercaptoethanol. One triplicate was mock-infected, while the cells in the two remaining triplicates were infected with wild-type MCMV at a MOI = 2. Total RNA isolation from mock-infected cells (3 h after mock infection), and wild-type MCMV infected cells (3 and 18 h after MCMV infection), was then performed using QIAzol Lysis reagent according to manufacturer instructions (QIAGEN, Germany). Following total RNA isolation, samples were treated with DNase I (New England Biolabs, United States) according to manufacturer recommendations in order to remove traces of contaminating chromosomal and/or mitochondrial DNA. Purified RNA was then transferred into RNA transport buffer (Omega Bioservices) and submitted to Omega Bioservices core sequencing facility (United States).

All RNA quality control procedures, polyA selection, cDNA library preparation, and sequencing have been performed at the Omega Bioservices core sequencing facility (United States). Quantification, sample purity assessment, and sample integrity assessment of isolated total RNA, performed on Nanodrop Spectrophotometer and Agilent Tapestation 2200, demonstrated that all RNA samples met the quality and quantity prerequisites required for downstream processing. Subsequently, the sequencing libraries were prepared using the TruSeq Stranded mRNA Prep Kit (Illumina, United States), and sequencing was performed on an Illumina HiSeq 2500 for a total of 51 sequencing cycles.

Quality control and the validation of RNA sequencing data are presented as Supplementary Figures S1–S6. Quality control of raw sequencing reads was performed using FastQC2. Additionally, the reads were screened for the most common biological contaminants of laboratory mice and cell cultures, as well as technical contaminants, such as vectors, adapters, and rRNA sequences. Following pre-mapping quality control, STAR aligner v.2.7.3a was used to map raw sequencing reads to a custom genome generated by concatenating the GENCODE nucleotide sequence of the mouse GRCm38.p6 primary genome assembly (release M23), and the wild-type MCMV genome sequence, strain Smith (PubMed accession no. NC_004065.1). Obtained coordinate sorted alignment files in.bam format were indexed using SAMTools v1.9. To identify potential errors, outliers, or other issues that could jeopardize differential expression analysis, visual inspection of mapping results, and comprehensive post-mapping quality controls were then performed in IGV v2.7.2 and QoRTs v1.3.6. Outputs from all supported tools were systematized using MultiQC v1.7. Summarization of reads mapping to exons of mouse genes was performed using featureCounts v2.0, and principal component analysis of the samples, gene-expression estimates, normalization of the expression data and differential expression analysis was performed using DESeq2 v1.26.0 in R programming environment v3.6.1 using RStudio v.1.2.5019 under Canonical Ubuntu v18.04 open-source operating system.



Statistics

The significance of difference was tested using Student’s t-test (p < 0.05 was considered significant).



RESULTS


Membranous Organelle Markers

To characterize membranous organelle reorganization, we used a selected set of membranous organelle markers for immunofluorescence staining and confocal analysis at four time-points after infection with MCMV. We used 64 cellular markers that specifically characterize compartmentalization of membranous organelle systems with focus on markers that can dissect subsets of the endosomal system and the Golgi. The sites of their principal localization or activation in unperturbed cells are defined by the literature survey and depicted in Figure 1A. Detailed description and classification of markers are provided in Supplementary Table S2 and Supplementary Figure S7.
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FIGURE 1. Cellular and MCMV markers used in this study. (A) Subcellular distribution of host-cell markers in membranous organelles indicates major sites of their retention or activation/recruitment to membranes (For references see Supplementary Table S2). Markers that circulate within the membranous system are labeled in red. EE, early endosome; ER, endoplasmic reticulum; ERC, endosomal recycling compartment; ERGIC, endoplasmic reticulum-Golgi intermediate compartment; LE, late endosome; LRO, lysosome-related organelles; LY, lysosome; MVB, multivesicular body; SE, sorting endosome; TGN, trans-Golgi network. C1-C7, cisternae of the Golgi stack. (B) Organization of the MCMV life cycle and expression kinetics of MCMV genes that encode proteins of interest for this study. The schematic presentation is based on the published data (Scrivano et al., 2010; Marcinowski et al., 2012; Kutle et al., 2017). IE, immediate early phase; E, early phase; L, late phase; 11/2-column fitting image.


Markers that are integral membrane components (i.e., transferrin receptor or MHC class I proteins) and migrate with the membrane flow (Type A markers, Supplementary Figure S7) display the entire trafficking route and primary retention localization in the cell. Markers that are cytoplasmic proteins which transiently recruit to membranes display the specific membrane domain and imply biochemical reaction that is behind their recruitment and activation (i.e., the lipid composition of the membrane, interacting effectors, or a slot in the regulatory cascade). These markers either migrate between two steady-state compartments (Type B markers) or transiently recruit to localized sites at membranes and do not migrate with the membrane flow (Type C markers). The interactome maps of these markers are not complete, but those that are available (i.e., https://www.genecards.org/and https://thebiogrid.org/) suggest complex interacting networks and require more sophisticated approaches in the reconstruction of the biochemistry of membranous domains. Thus, for the analysis in this study, we followed known functional interactions published in the literature (listed in Supplementary Tables S2, S3).



Analysis of the AC

The composition of the MCMV AC was analyzed by double or triple immunofluorescence staining of 64 cellular markers and three viral proteins that are required for the cytoplasmic envelopment of MCMV. This approach has been used in several studies of HCMV AC (Homman-Loudiyi et al., 2003; Cepeda et al., 2010; Fraile-Ramos et al., 2010; Das and Pellett, 2011). We used monoclonal antibodies (mAbs) against murine M55 (glycoprotein B) and M74 (glycoprotein O) gene products, two well-known components of the virion envelope (Kattenhorn et al., 2004), and against M25, the most abundant component of the virion tegument (Kattenhorn et al., 2004; Kutle et al., 2017). Previously characterized expression kinetics of these proteins, which is schematically depicted in Figure 1B, was confirmed by transcriptome (Marcinowski et al., 2012; Juranić Lisnić et al., 2013), biochemical, and immunofluorescence analysis (data not shown). Using visualization of these three proteins, we confined the AC boundaries, as described in HCMV studies.

In fibroblasts and fibroblast-like Balb 3T3 cells, the immediate-early (IE) and early (E) phase of infection is executed within the first 16 h (Figure 1B). Thus, for the analysis of PrAC, membranous organelle reorganizations in the E phase of infection, we performed studies on cells at 6 hpi, the earliest time with consistently observed landmarks of membranous system reorganization (Karleuša et al., 2018), and at 16 hpi, a time when the PrAC is fully developed (Lučin et al., 2018). The AC was analyzed in the late (L) phase, 30 and 48 h post-infection (p.i.). The L phase is initiated by viral DNA replication followed by the expression of late genes, including structural components of the virion envelope and the tegument (Marcinowski et al., 2012). The assembly of virion progeny was observed 20–24 hpi, and the first peak of released extracellular virions was detected between 24 and 48 hpi (Bosse et al., 2012). As an indicator of the infection in the E phase, we used immunofluorescence visualization of immediate-early 1 (IE1; m123) and M57, two MCMV proteins expressed in the IE and E phase of infection (depicted in Figure 1B; Marcinowski et al., 2012).

To avoid unspecific capture of Ab reagents on infected cells, we used Δ138-MCMV for infection, a recombinant virus devoid of m138 gene which encodes a protein with Fc-receptor properties in the E phase of infection (Crnković-Mertens et al., 1998), as described in our previous studies (Ilić Tomaš et al., 2010; Karleuša et al., 2018; Lučin et al., 2018).

Using 64 cellular markers and five viral proteins, we performed localization analysis in three dimensions (3D), as described in the HCMV study (Das and Pellett, 2011). Although localization analysis displayed a high level of complexity, as expected, we classified expression patterns according to primary/principal localization of cellular markers, which is presented in Figure 7. The 3D colocalization analysis across the entire z-stack of confocal images and detailed colocalization analysis of typical patterns in the L-phase of infection is presented in Figures 3–5 and Supplementary Figures S8–S18. Staining patterns of uninfected cells, as well as images displaying multiple cells and patterns within infected cell populations, are presented in Supplementary Figures S8–S16.



Expression Pattern of MCMV-Encoded Proteins

In the first set of experiments, we extensively characterized the expression pattern of virion structural proteins (M55, M74, and M25) that should localize within the AC. M55 and M74 build MCMV envelope glycoprotein complexes and are expected at membranous organelles of the secretory pathway (Scrivano et al., 2010). M25 is expressed in two main forms: 105 kDa M25 that is expressed in the nucleus during the E and L phase of infection, and 130 kDa M25 that is expressed only in the L phase of infection in both the nucleus and cytoplasm (Kutle et al., 2017), and incorporates into virions as a dominant tegument protein (Kattenhorn et al., 2004; Kutle et al., 2017).

M55 protein was detected at 6 hpi as a cytoplasmic signal in a small number of cells, presumably due to the staining of M55 incorporated with virions during infection, and massive expression was initiated at 16–17 hpi and later (Figure 1B). At 24 and 48 hpi, approx. 60–70% of cells (Figure 2A) displayed a typical perinuclear staining pattern of M55 in the bell- or ring-formed cytoplasmic cisternal/tubular structure that surrounded the empty juxtanuclear area (Figure 2B). Also, M55 was found in tubulo-vesicular structures in the cortical area of the cell, including subplasmalemmal accumulation and expression at the cell surface (Figure 2B). A similar perinuclear pattern was also presented after staining with mAb to M74, which almost entirely colocalized with M55, but with minimal cortical and subplasmalemmal distribution (Figure 2B). M74 staining was not detected in the E phase of infection, and it was present in approximately half of the cells at 48 hpi (Figure 2A).
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FIGURE 2. Expression pattern of MCMV-encoded envelope glycoproteins and tegument protein. (A) Percentage of cells that express MCMV-encoded proteins at 6, 24, and 48 hpi determined by immunofluorescence staining with specific mAbs (Supplementary Table S1). The data represent mean ± SEM from four experiments. (B) Colocalization analysis of M55 and M74. Cells were infected with Δm138-MCMV (MOI 10) and 48 hpi and stained for expression of M55 and M74. The pixel overlaps coefficients of M74 with M55 (M1), and M55 with M74 (M2) measured across the Costes-algorythm thresholded z-stacks of confocal images are shown in the right. Data represent mean ± SEM per cell (n = 20). Fluorescence intensity profiles along white dashed lines are shown below images. (C) Colocalization analysis of M55 and M25. Cells treated as described above were stained with specific mAbs (Supplementary Table S1) and corresponding isotype-specific secondary Abs. Serial images of the boxed area acquired at higher magnification are shown at the bottom. (D) Patterns of M55 and M25 expression. Cells stained for M55 and M25 as described in C were classified according to the pattern of M25 expression (M25 T1, T2, and T3) and the percentage of cells that express one of these patterns determined at 6, 16, 24, and 48 hpi. T1, cells that express M55 but not M25; T2, cells that express M55 and M25 in the nucleus; and T3, cells that express M55 and either M25 in both nucleus and cytoplasm or only in the cytoplasm. The data represent mean ± SEM from three experiments. Cell borders are indicated by fine dashed lines and nuclei by fine dotted lines. Bars, 10 μm. 2-column fitting image.


The progression through the E phase of infection was monitored by expression of IE1 and M57 proteins, which displayed strong nuclear staining at 1–2 and 6 hpi, respectively (data not shown). At 6 hpi, 80–90% of cells expressed IE1, and 50–60% expressed M57 (Figure 2A). At 24 hpi, almost all cells expressed IE1 and approx. 80% expressed M57, whereas, at 48 hpi, IE1 was detected in 50–60% of cells, which is consistent with decreased transcription at the late stages of infection (Marcinowski et al., 2012). On the other hand, M57 was detected in 80–90% of cells at 48 hpi (Figure 2A). These quantifications, together with quantification of M55 and M74 expression, demonstrate that progression through the E phase and consequently through the L phase is not synchronous throughout the entire cell population. Therefore, many cells that were positive for IE1 and M57 did not express M55 and M74. Even more, a fraction of cells that expressed M55 did not express M74 (Figure 2A).

As expected, M25 was expressed in the E phase in approx. 60% of cells (Figure 2A), displaying a nuclear punctate pattern (Kutle et al., 2017), and in the L phase (24 and 48 hpi) in approx. 3/4 of cells. At 30–48 hpi, M25 displayed either pattern of nuclear or cytoplasmic expression and various intermediary forms (Figure 2C). The nuclear pattern was present throughout the MCMV replication cycle (T2 in Figures 2C,D), whereas cytoplasmic forms were present only in a fraction (30–40%) of infected cells (T3 in Figures 2C,D). The enlarged cytoplasmic aggregates of M25 in the perinuclear area appeared to be enveloped by viral glycoprotein-loaded membranous structures, as exemplified by colocalization analysis of M25 and M55 in Figure 2C. Almost all cells expressing cytoplasmic M25 also expressed M55, indicating that only 30–40% of cells can develop AC with proper distribution of viral components required for final assembly. A small fraction of cells that developed M55-loaded perinuclear structure did not express cytoplasmic M25 (T1 in Figure 2D).

Altogether, expression patterns of two glycoproteins (M55 and M74) and the tegument protein (M25) display the site of tegumentation and secondary envelopment and thereby confine the AC boundaries.



Contribution of Classical Steady-State Organelles to the AC

The contribution of classical steady-state organelles to the AC was analyzed by colocalization of MCMV glycoproteins (M55/M74) and host-cell markers on MCMV-infected cells at 48 h p.i. We used antibodies against host-cell proteins that are recruited to the large membrane domains of classically defined membranous organelles and do not significantly migrate during the membrane flow (type C markers). Figure 3 presents images of individual cells acquired at high magnification, representative colocalization analysis by fluorescence intensity profiles along the selected area (dashed arrow), and true degree of colocalization across z-stacks as defined by Menders overlap coefficients. Images of infected cells acquired at lower magnification, as well as staining patterns in uninfected cells, are presented in Supplementary Figure S8.
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FIGURE 3. Subcellular distribution patterns of classical steady-state organelles at 48 hpi with MCMV. (A) The steady-state organelles were visualized using Ab reagents to cellular proteins that characterize EEs (Rab5), the ERC (Rab11), LEs (Rab7), trans-Golgi and TGN (Rab6), cis/medial-Golgi (GM130), ER (Rab18), cortical endomembrane system (CD44), and mitochondria (AIFM1). The sites of intracellular accumulation of viral envelope glycoproteins were visualized using mAb reagents to MCMV proteins M55 and M74. Antibody reagents used are listed in Supplementary Table S1, and each marker described in Supplementary Table S2. Colocalization analysis was performed by plotting fluorescence intensity profiles along white dashed lines and shown in the right column. Cell borders are indicated by fine dashed lines and nuclei by fine dotted lines. Bars, 10 μm. (B) Colocalization analysis of classical steady-state organelle markers with M55/M74 based on M1/M2 coefficients of pixel overlap. Data represent mean ± SEM per cell (n = 8–12). (C) Schematic presentation of major organelle localization in uninfected and MCMV-infected Balb-3T3 fibroblasts. The cytoplasmic area of an uninfected cell can be divided into three zones according to the distribution of membranous organelles: cortical, perinuclear, and juxtanuclear. The cortical zone of the cell can be confined by visualization of CD44 distribution, perinuclear zone by visualization of LEs using LBPA as a marker, and juxtanuclear zone by simultaneous visualization of LEs (using LBPA as a marker) and internalized TfR (see Supplementary Figure S9). The bottom image presents a schematic outline of cytoplasmic area zones in MCMV infected cells at 48 hpi. 11/2 -column fitting image.


In infected cells, Rab5 and Rab11 were concentrated in a large aggregate of vesiculo-tubular elements within the M55-loaded ring-shaped structure (Figure 3A). Rab5 and Rab11 coincided with M55 at the boundaries of the ring and in discrete M55-loaded structures within the ring (Figure 3A), typically resulting in the modest degree of colocalization (Figure 3B). These data demonstrate that the inner area of the AC concentrates EE- and the ERC-derived membranous structures which do not accommodate a significant fraction of viral glycoproteins. In contrast, Rab7- and Rab18-positive structures were found outside of the M55-loaded ring (Figure 3A), indicating that LE- and ER-derived membranous elements are dislocated to the outer area of the cell.

GM130-positive cis- and medial-Golgi cisternae were vacuolized and intertwined with the M55-loaded membranes (Figure 3A), resulting in a modest degree of colocalization (Figure 3B). Rab6-stained membranous structures displayed a similar pattern and highly overlapped with M55-loaded membranes (Figure 3A), indicating that viral structural glycoproteins are retained in the TGN cisternae and TGN-derived membranous structure. However, Rab6 and M55 never fully overlapped (Figure 3B), and M55 was found on membranous structures outside and within the ring of membranous structures confined by Rab6 labeling (Figure 3A). This pattern suggests that viral structural glycoproteins are also retained in the Golgi cisternae before the TGN, as well as in post-TGN membranous structures.

CD44 did not overlap with M55-loaded (not shown) and M74-loaded (Figures 3A,B) perinuclear ring, indicating that membranous cortical system, which can be confined by CD44 staining (Supplementary Figure S9), does not contribute in the building of the perinuclear membranous aggregate representing the AC. Finally, mitochondria of MCMV infected cells appeared enlarged and dislocated from the perinuclear area confined by M55-loaded and EE- and ERC-derived membranous structures (Figures 3A,B).

Altogether, the analysis using markers of the classical steady-state organelles demonstrates that MCMV extensively reorganizes membranous system of the cell, which is schematically presented in Figure 3C. These reorganizations are similar to those described for HCMV infection (Cepeda et al., 2010; Das and Pellett, 2011; Tandon and Mocarski, 2012). Thus, the entire area of the infected cell, which is confined by viral glycoprotein-loaded membranous organelles, can be considered as the AC. For further analysis, we designated the ring area containing cis/medial-Golgi and viral envelope glycoprotein-loaded trans-Golgi stacks as the outer AC (oAC) and the area within the ring as the inner AC (iAC).



The Late Endosomal System Does Not Redistribute Into the AC of MCMV Infected Cells

Although studies on HCMV infected cells demonstrated translocation of some LE markers into the iAC (Jean Beltran et al., 2016), our analysis of Rab7 expression in MCMV infected cells (Figure 3) indicates that LE-derived membranes do not contribute to the AC. Given that LEs are a heterogeneous population of endosomal subsets and/or membranous domains that can be subdivided according to the Lamp1 and Rab7 (Humphries et al., 2011), CD63 (Laulagnier et al., 2011), NPC1 (Garver et al., 2000) and MLN64 (van der Kant et al., 2013) distribution, we analyzed the expression pattern of these markers in MCMV infected cells. Also, we analyzed the expression of ganglioside M1 (GM1), which labels a subset of internal membranes of LEs, and Rab27b, which displays post-LE intermediates. None of these markers localized within the AC (Supplementary Figure S10), indicating that the membrane intermediates that build AC are not derived from the LE system or post-LE intermediates known as lysosome-related organelles (LRO). Importantly, Lamp1 and CD63 are integral membrane components that circulate throughout the entire endosomal system. Their absence in the AC indicates that there is either very little trafficking of LE-derived membranes through the AC or their transit through the AC is very fast.



Inner AC Contains a Large Number of Membranous Elements

Electron microscopy studies of both MCMV (Buser et al., 2007; Bosse et al., 2012) and HCMV (Homman-Loudiyi et al., 2003; Tandon and Mocarski, 2012; Schauflinger et al., 2013; Archer et al., 2017) AC demonstrated that the vacuolar rim of Golgi stacks surrounds centrally accumulated aggregate of numerous vesicular, vacuolar and tubular structures. Most of these structures have a diameter of 50–200 nm. Since the volume of the iAC area is relatively large (63–523 μm3), half of it can accommodate 7.8 to 62.5 thousand of membranous entities with a diameter of 200 nm, which can correspond to 150–600 entities through the equatorial section of the cell in confocal images.

Given that the iAC area may contain a mixture of membranous entities derived from EE, ERC, and TGN (Figure 3), we extended further analyses to markers that can dissect subsets and biogenesis of EE-, ERC-, and TGN-derived membrane domains and intermediates. The analysis is summarized in Figures 4, 5. Figure 4 presents a 3D colocalization analysis of 33 markers that act at EEs and the ERC, representative 3D reconstruction of the AC, and images of markers that may describe the iAC area. The detailed imaging analysis of all markers is presented in Supplementary Figures S11–S15.Figure 5 presents the colocalization analysis and distribution of markers of the Golgi system.
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FIGURE 4. Analysis of markers of early endosomes (EE), endosomal recycling compartment (ERC), and effector proteins that control scission at the EE-ERC-TGN interface at 48 hpi with MCMV. (A) 3D colocalization analysis of endomembrane markers with M55 protein based on M1/M2 coefficients of pixel overlap, determined on Costes-algorythm thresholded z-stacks of confocal images. Markers were visualized using Ab reagents (Supplementary Table S2), and the sites of intracellular accumulation of viral envelope glycoproteins were visualized using mAb reagents to M55. Antibody reagents used are listed in Supplementary Table S1. Data represent mean ± SEM per cell (n = 6–10). #, not available due to the low signal in infected cells. (B) Example of 3D reconstruction of the AC based on expression of Rab5 and M55 protein in 48-h infected MCMV cells. Upper panel presents confocal slices obtained through the focal plane and lower panel 3D reconstruction of the entire z-stack (14 slices) using Image J Volume Viewer plugin. Images shown on the right (* and **) present the view across the section of stack indicated by dashed arrows. (C–H)) Subcellular distribution of representative markers. Complete experiments are shown in the Supplementary Material (Supplementary Figures S11–S15). Examples of the subcellular distribution of markers of EEs (C), ERC (D), ERC-associated Arf6/Rab35 axis (E), ERC-associated effectors proteins (F), ARF system (G), and EE/ERC-associated scission machinery (H). Shown are images through the focal plane and colocalization analysis by plotting fluorescence intensity profiles along white dashed lines. Cell borders are indicated by fine dashed lines and nuclei by fine dotted lines. Bars, 10 μm. 2-column fitting image.
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FIGURE 5. Subcellular distribution patterns of Golgi markers at 48 hpi with MCMV. (A) Immunofluorescence analysis. Golgi-derived membranes were visualized using Ab reagents to cellular proteins that characterize various stages of Golgi maturation (Supplementary Table S2), and viral envelope glycoproteins were visualized using mAb reagents to M55 and M74. Antibody reagents used are listed in Supplementary Table S1. Colocalization analysis was performed by plotting fluorescence intensity profiles along white dashed lines and shown in the right column. Cell borders are indicated by fine dashed lines and nuclei by fine dotted lines. Bars, 10 μm. (B) Colocalization analysis of M55/M74 and classical steady-state organelle markers based on M1/M2 coefficients of pixel overlap measured across the Costes-algorythm thresholded z-stacks of confocal images. Data represent mean ± SEM per cell (n = 6–10). 1-column fitting image.




Accumulation of the Terminal Stages of EE Differentiation in the iAC

The EE system is generated by the recruitment of Rab5 to stable membranous compartments localized at the cell periphery, known as pre-EEs. It undergoes through a series of transformations which develop tubular recycling domains and vacuolar domain that mature into late endosomes (LEs) (rev. in Naslavsky and Caplan, 2018). The pre-EE system did not contribute to the formation of AC, as tested by APPL1 and Rabenosyn 5 staining (IF images not shown, the result is summarized in Figure 7), and MCMV infection did not redistribute cortical RE, as demonstrated by CD44 staining (Figure 3). Also, Rab4-controlled tubular endosomal network did not contribute to the AC since Rab4-positive endosomes are dislocated toward the periphery (Supplementary Figures S11, S12) and did not colocalize with M55 (Figure 4A).

Other EE markers analyzed mainly localized at membranes of the iAC area, as exemplified by the equatorial plane presentation (upper panel in Figure 4B) and 3D reconstruction of stacked images (lower panel in Figure 4B) of EEA1. M55-loaded membranes surrounded the cluster of EEA1-positive membranes within the iAC area, and a certain degree of colocalization was present at the boundaries and with M55-positive entities within the iAC (Figure 4B) which is detected in quantitative analysis (Figure 3B). The same pattern was identified for almost all EE markers that are over-recruited to the iAC membranes (Figure 4A).

Given that Rab5a-positive membrane accumulated at the iAC (Figure 3A), we checked the presence of several markers that act downstream in the Rab5 cascades. Rab22a, known to builds regulatory cascade with Rab5a and maintains Rab5a at endosomal membranes (Zhu et al., 2009), was also highly recruited at the iAC membranes (Supplementary Figures S11, S12), indicating prolonged activation of Rab5a at the iAC membranes. High recruitment of EEA1 within iAC (Figure 4B and Supplementary Figure S12) suggests prolonged maturation of Rab5a-enriched structures. This conclusion is confirmed by increased recruitment of Hrs and Vps24 (Supplementary Figures S11, S12), type C markers that do not display distinct structures in uninfected cells (Supplementary Figure S12). High recruitment of EEA1 and Hrs/HGS at the iAC membranes also indicates enrichment in PI3P, whereas increased recruitment of PIKfyve (Figure 4C and Supplementary Figure S12) and Vps24 (Supplementary Figures S11, S12) suggests the enhanced development of the PI(3,5)P2 domain, prolonged activation of the vacuolar protein sorting (VPS) pathway, and the retention of the reverse topology budding machinery at the iAC membranes (Schöneberg et al., 2017).

Altogether, the analysis of EE markers suggests that iAC is built of Rab5-controlled vacuolar domains of EEs and that MCMV infection alters trafficking through the EE system at the final stages of EE maturation, retards exit from EEs, and expands of EE-derived membranous that has the potential of the reverse-topology budding.



Accumulation of EE-TGN Intermediates in the iAC

In MCMV infected cells, Rab9a was highly recruited in the inner AC, although a significant fraction of Rab9a-positive membranes was found outside the AC (Figure 4C and Supplementary Figure S12). These patterns suggest altered maturation of Rab9-positive EE-derived intermediates that are retained at the iAC and completely segregated from outer Rab9-positive membranes that can be associated with LEs. Namely, Rab9a can display a subset of LE membranes that are distinct from Rab7 subset, LE-derived transport intermediates before fusion with TGN (Barbero et al., 2002), and EE membranes that regulate transport between EEs, TGN, and LEs (Kucera et al., 2016). Thus, the accumulation of Rab9a membranes within the iAC (Figure 4C) also suggests an alteration of trafficking between EEs and TGN.



Dysregulation of Membrane Flow at the ERC in MCMV Infected Cells

Over-recruitment of Rab11a at the iAC (Figure 3A) also suggests dysregulation of the ERC in MCMV infected cells. The ERC involves heterogeneous subsets of relatively large tubular RE and many small transport intermediates (Xie et al., 2016) that are functionally linked to EEs, PM, TGN, and LEs (Goldenring, 2015). Recent studies indicate that the ERC is usually composed of Rab11a-and Rab8a-positive, and at least one expandable ARF6/Rab35-positive subset of membranes (Kobayashi and Fukuda, 2013). In contrast to Rab11a, Rab8a- and ARF6/Rab35-positive subsets of membranes are not expanded to the stage of the steady-state organelles in the juxtanuclear area of uninfected Balb 3T3 cells (Supplementary Figure S13). However, in MCMV infected cells, both Rab8a (Figure 4D) and ARF6 (Supplementary Figures S11C, S14B) were highly enriched within the iAC area. Together with Rab11a, these data suggest that MCMV infection dysregulates membrane flow at the entire ERC.



Delayed Biogenesis of the ERC and Accumulation of EE-ERC Intermediates

The biogenesis of the ERC involves either relocation of maturing EEs or budding and fission of intermediates from EEs that fuse with stable ERC membranes (Naslavsky and Caplan, 2018). These processes could be controlled by small GTPases Rab15 (Strick and Elferink, 2005), Rab10 (Liu and Grant, 2015), and Rab14 (Linford et al., 2012), as well as regulatory proteins EHD1, dynamin 2 and WASH1 (Naslavsky and Caplan, 2018).

In uninfected cells, very little Rab15, Rab10, and Rab14 were found in the juxtanuclear area (Supplementary Figure S13). In contrast, in MCMV infected cells, Rab10 (Figure 4D and Supplementary Figure S14A) and Rab15 but not Rab14 (Supplementary Figures S11B, S14A) were highly recruited to the iAC area, suggesting for expansion of and delayed maturation of Rab10- and Rab15-controlled EE-ERC intermediates. Additionally, all three regulatory proteins involved in the biogenesis of the ERC, EHD1, dynamin 2, and WASH1, were also highly recruited to the iAC area (Figure 4H and Supplementary Figures S11E, S15). These data suggest their prolonged retention at EE membranes and delayed maturation of EEs into ERC.



Delayed Exit From the ERC

Exit from the Rab11-domain of the ERC toward the PM can be regulated by recruitment of Rab8a (Homma and Fukuda, 2016), whereas reciprocal recruitment of ARF6 and Rab35 (Klinkert and Echard, 2016) within the ERC determines the cascade-like recruitment of downstream Rabs (Rab8a, Rab10, Rab13, Rab36) (Kobayashi et al., 2014) as well as exit from the ERC toward LEs and the TGN. The direction of the outgoing flow from the ERC can also be regulated by activation of Rab-to-ARF cascades (D’Souza et al., 2014), which involve BIG2-mediated activation and recruitment of ARF1 and ARF3 for the recycling to the PM (Volpicelli-Daley et al., 2005; Kondo et al., 2012) or ARF1 and ARF4 for retrograde trafficking to the TGN (Nakai et al., 2013).

As described above, both Rab8a and ARF6 were highly enriched at membranes of the iAC, suggesting that MCMV infection delays maturation of Rab8a- and ARF6-positive domains and consequently exit from the ERC. The over-recruitment of ARF6 at the iAC was associated with the over-recruitment of Epi64 (Figure 4D and Supplementary Figure S15), an effector of activated ARF6, which indicates the overactivation od ARF6 at ERC-derived membranes within the iAC. Consistent with this observation, Rab35 (Figure 4D and Supplementary Figure S15), small GTPase that is in reciprocal relation with activated ARF6, and its effectors ACAP2 and MICAL-L1 (Klinkert and Echard, 2016) were absent from the iAC (Supplementary Figures S11C, S14B). Subsequently, we also examined the expression of Rab35 downstream effectors, Rab8a, Rab13, and Rab36 (Kobayashi et al., 2014; Klinkert and Echard, 2016). Although Rab35 was absent, Rab8a and Rab36 were highly recruited to membranes of the iAC (Figure 4D and Supplementary Figures S11B, S14A), suggesting that these Rabs are recruited to the Rab35-independent parts of the endomembrane system within the iAC and that the maturation of outgoing membranes at the ERC is delayed in MCMV infected cells. High enrichment of Rab8a suggests accumulation of membranes with a delayed exit from Rab11a domain toward the cell surface, whereas high enrichment of and Rab36 suggests a delayed exit from the ERC toward the TGN. The delay in maturation of intermediates at the ERC-to-TGN route was further confirmed by a high recruitment Evectin-2 (Figure 4F and Supplementary Figure S15), known to drive retrograde transport from the ERC to the TGN (Matsudaira et al., 2015).

The expansion of membrane domains that are subvisible in uninfected cells (i.e., ARF6-, Rab10-, Rab15-, Rab36-, and Evectin-2-positive domains) suggests that CMV infection retards the domain conversion and thereby expands membrane intermediates. Altogether, analysis of the ERC markers indicates that CMV infection highly reorganizes the ERC and the interface between EEs and the ERC, as well as to ERC and TGN, resulting in the accumulation of expanded subsets of ERC membranes and subsets of intermediates that mediate transport out of the ERC.



The iAC Is Highly Tubular

EM studies demonstrated many tubular elements within the iAC (Buser et al., 2007; Bosse et al., 2012). Tubulation is the property of membrane flow at EEs, ERC, and TGN, and the extent of tubulation reflects the membrane dynamics at these compartments. Analysis of the ERC markers (Figure 4) demonstrated that many host-cell factors associated with tubulation are over-recruited at membranes of the iAC, including Rab8 and ARF6.

The initiation of tubular domains at EEs and the ERC is associated with regulated activation of the ARF system. Thus, we further analyzed the recruitment of major components of the ARF system in MCMV infected cells. Both, ARF GEFs that may act at EEs and ERC (BIG1, BIG2, and BRAG2) as well as class I (ARF1) and class II (ARF4 and ARF5) ARFs were over-recruited to membranes of the iAC (Figure 4G and Supplementary Figures S11D, S14C,D), suggesting that expanded EE- and ERC-derived intermediates are highly tubulated. Most of these components demonstrated substantial colocalization with M55 (Figure 4A), especially at the border of iAC area, suggesting that ARF system is also over-activated at M55-loaded TGN membranes.

In addition to the ARF system, adaptor protein (AP) complexes are also associated with the initiation of tubular extension. AP1, known to initiate membrane exit at EEs, ERC, and TGN, highly colocalized with M74 (Figure 4A) and was recruited to membranes of the oAC but also at M74-negative membranes of the iAC (Figure 4H). To our surprise, AP2 was also highly recruited to the iAC membranes (Supplementary Figures S11E, S15). Since AP2 acts at the PM in concert with EHD2 protein, the finding of high recruitment of EHD2 at the iAC (data not shown) suggest more extensive dysregulation of membrane flow within the iAC. These data, together with over-recruitment of the ARF system, indicate that many membranes within the iAC are tubular with delayed maturation of tubular extensions and prolonged recruitment of tubulation machinery.

Dynamin-2, WASH1, and EHD1, three host-cell systems that control the scission of tubular elements at EEs and the ERC, were also highly recruited at iAC membranes (Figure 4H and Supplementary Figure S11E) indicating also prolonged budding at the EE and ERC membranes within the iAC. Dynamin 2, known to act also at the TGN, highly colocalized with M55 (Figure 4A). Although the function of WASH1 has been reported to be strictly linked to the retromer complexes, our analysis in MCMV infected cells suggests that retromer function, as shown by visualization of its component Vps35 (Supplementary Figures S11E, S15) is not always associated with WASH1. These data indicate that delayed maturation of tubular elements within the iAC is associated with dysregulated scission.

Altogether, our analysis suggests that MCMV infection strongly affects the maturation of tubular domains within the iAC.



Contribution of the Golgi and TGN in the AC

In uninfected Balb 3T3 cells, the Golgi system is organized in cisternal stacks around the nucleus (Supplementary Figure S16). In MCMV infected cells, the cis-, medial-, and trans-Golgi were vacuolized, fragmented and displaced from the nucleus to form the outer ring of the AC, as demonstrated by the cis-Golgi marker GM130 (Figure 3A), the medial and trans-Golgi marker GS15 (Figure 5A), and the trans-Golgi and trans-Golgi-TGN interface marker Golgin 97 (Figure 5A). GM130- and GS15- labeled cisternae, highly intertwined with distinct M55/M74-loaded compartments, as demonstrated by moderate colocalization (Figures 3B, 5B, respectively). In contrast, a substantial fraction of M74 colocalized with Golgin 97 (Figure 5B) but also localized in intertwining Golgin 97-negative cisternae (Figure 5A), indicating that viral glycoproteins load the trans-Golgi. Thus, cis-, medial-, and trans-Golgi cisternae (C2-C6 cisternae) form the oAC.

As already demonstrated in Figure 3, viral glycoproteins highly colocalized with the TGN marker Rab6, indicating that TGN cisternae also contribute to the oAC. However, a substantial fraction of Rab6-positive membranes was also found in the iAC (Figure 3A and Supplementary Figure S8), suggesting that MCMV infection reorients a part of the TGN toward the cell center. To analyze this observation further, we analyzed the distribution of STX6 and Vti1a, two type B markers that form the tSNARE complex involved in the post-TGN transport toward EEs and the ERC, and thereby display TGN-derived membranes at the EE-RE-TGN interface (Glick and Nakano, 2009). As demonstrated in Figure 5, membranes enriched in these markers highly colocalized with M55/M74 at the oAC but also a substantial fraction of these membranes accumulated at the iAC devoid of M55/M74, indicating that MCMV infection redistributes and expands membrane intermediates of the EE-ERC-TGN interface at the iAC area.

Given that the EE-ERC-TGN interface is derived from C7 Golgi cisternae (Mogelsvang et al., 2004), we further examined three markers that can display exit events at the late TGN. TGN38, a type-A marker known to circulate through the TGN-PM-RE-TGN route, localized at the vacuolar structures adjacent to M55/74-loaded cisternae, enlarged subplasmalemmal structures and in discrete tubular structures at the iAC (Figure 5A and Supplementary Figure S16). Furin, another type-A marker that circulates the TGN-PM- EE/LE route (Thomas, 2002) and loads different domains of C7 cisternae than TGN38 (Nokes et al., 2008; Boal and Stephens, 2010), was highly enriched in M55/M/74-loaded compartments but also in membrane compartments that build iAC (Figure 5 and Supplementary Figure S16). The distribution of furin in the oAC is consistent with the known role of furin in the posttranslational processing of HCMV gB (Vey et al., 1995). Rab31, a small GTPase known to control anterograde exit from the TGN toward PM was highly recruited to the peripheral membrane system and did not redistribute into the iAC (Figure 5 and Supplementary Figure S16). These data, together with the accumulation of STX6 and Vti1a at the iAC, indicate that MCMV infection does not affect anterograde trafficking exit from C7 but rather retrograde entry into C7 cisternae, resulting in accumulation of EE-ERC-TGN intermediates in the iAC.

In addition to the expansion of intermediates of the late Golgi membrane flow in the iAC area, MCMV infection also reorganizes another side of the Golgi interface. Namely, Rab41 (Rab6d) which is known to organize membrane movements at the interface between the intermediate compartment (IC) and the cis-Golgi (Goud et al., 2018) was also highly recruited at membranes within the iAC (Figure 5 and Supplementary Figure S16) and did not colocalize with viral glycoproteins (Figure 5B).

Altogether, the analysis of the Golgi system demonstrates that oAC is mainly build by the C2-C7 Golgi cisternae, whereas the iAC is composed of membrane intermediates derived at the interface the Golgi and post-Golgi linker compartments (EE-ERC-TGN and cis-Golgi-IC; Saraste and Prydz, 2019) that are reoriented toward the cell center.



The Architecture of the AC Is Established in the Early Phase of MCMV Infection

To set up a temporal analysis of the AC development, we examined whether the basic architecture of the AC is established in the absence of viral structural envelope and tegument proteins, before their expression. The study of the expression pattern of M25, M55, and M74 (Figure 2) demonstrated that only 30–40% of cells develop full AC architecture, and our previous study (Karleuša et al., 2018) demonstrated several landmarks of the endosomal system reorganization in the E-phase of infection. Given that reorganized cis/medial-Golgi was a prominent feature of the oAC (Figure 3), we explored what the earliest time point in the MCMV replication cycle in which the primary form of the AC (pre-AC, PrAC) is developed. We analyzed the development of the primary AC form using GM130 as a marker of oAC and Rab10 as a marker of EE-ERC interface reorganization within the iAC.

At 6 hpi, we identified three patterns of expression: A, infected cells with the Golgi stacks around the nucleus without recruitment of Rab10 similar to uninfected cells; B, infected cells with displaced Golgi and a small aggregate of Rab10 vesicles; and C, infected cells with an expanded perinuclear aggregate of Rab10 surrounded by vacuolized and fragmented Golgi cisternae (Figure 6A). These changes did not involve LEs, as demonstrated by the simultaneous staining of GM1 and Rab10 (Figure 6C). Roughly, each pattern was present in 1/3 of infected cells (Figure 6B). Pattern B was detected in a small number of cells at 4 hpi (Figure 6B), suggesting that these perturbations are initiated 4–5 h after infection. The development of the pattern C progressed through the E phase of infection (at 8 hpi almost 60% of cells with pattern C), and at the end of the E phase (16 hpi), 90% of infected cells (expressing IE1) demonstrated pattern C (Figure 6B). The same proportion is maintained at 30 hpi (Figure 6B), the time when the AC is fully developed.
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FIGURE 6. The earliest landmarks of membranous organelle rearrangements in the course of MCMV infection. The cells were infected with Δm138-MCMV (MOI 5), and intracellular distribution of the cis-Golgi marker (GM130), LE marker (GM1), EE/ERC marker (Rab10), and MCMV immediate-early protein (IE1) was analyzed by triple immunofluorescence and confocal microscopy. (A) Three patterns of GM130 and Rab10 staining were detectable at 6 h p.i.: A, represents a typical distribution of the Golgi stacks close to the nucleus and weak or almost undetectable recruitment of Rab10; B, represents recruitment of Rab10 with a displacement of the GM130-positive membranes: and C, represents fully developed reorganization of juxtanuclear organelles with a ring-like redistribution of the GM130-positive membranes surrounding large juxtanuclear accumulation of membranes that recruit Rab10. (B) Percentage of cells demonstrating the three patterns in the course of MCMV infection. (C) Relation of the juxtanuclear Rab10-positive membranes to LEs at 6 h p.i. Cell borders are indicated by fine dotted lines and nuclei by fine dashed lines. Insert represents the boxed area acquired at higher magnification. Bars, 10 μm. 2-column fitting image.


This analysis suggests that the unlinking of the Golgi ribbon associated with the reorganization of the post-Golgi linker compartments (Saraste and Prydz, 2019) is the earliest event in the biogenesis of the AC. The basic architecture of the AC is established in the E phase of infection (4–5 hpi), indicating that it is driven by MCMV-encoded E genes and does not require L gene expression, including loading with viral tegument and envelope proteins.



The AC Is Initiated in the Early Phase of Infection by a Reorganization of the EE-RE-TGN Interface

Using the established landmarks of the PrAC and the AC, we continued a spatial and temporal analysis of membranous system rearrangements with 64 markers during the E-phase of infection. Although the intracellular distribution demonstrated a higher degree of complexity, we categorized all the markers according to the major sites of expression within the infected cell: inner (iPrAC and iAC), outer (oPrAC and oAC), and out of (Out) the area confined by the GM130 in the PrAC and M55/M74 in the AC (Figure 7). Of particular interest was the analysis of type B and C markers that do not recruit at the abundant steady-state organelles in uninfected cells (marked as gray boxes in the column 0 hpi in Figure 7). These markers display domains or membranous intermediates that are either small in size or short-lived, and their presence in uninfected cells was confirmed by Western-blot (see Figure 10) and, in some cases, by the enhancement of immunofluorescence signal (data not shown).
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FIGURE 7. Spatial distribution of membrane markers in the reorganized membranous organelles of the Pre-Assembly Compartment (PrAC) and Assembly Compartment (AC) of MCMV infected cells. (A) Membrane markers are sorted according to the reported localization in the membranous system of the uninfected cell (Supplementary Table S2). The column Reported localization represents the approximate relative distribution of the markers in membranous organelles published in the literature (represented by different colors in the legend on the right). Column 0 hpi (±) represents the absence (–) or the presence (+) of the expression pattern at the distinguishable steady-state organelles of uninfected Balb 3T3 cells (Supplementary Figures S8–S10, S12, S13, S15, S16). Columns 6 and 16 hpi, as well as column > 30, represents the presence and primary (major) distribution of markers at reorganized membranous structures of the infected cells classified as inner and outer PrAC or AC, respectively (legend MCMV-infected). The primary distribution of markers was based on the simultaneous immunofluorescence staining of markers with either GM130 in the E phase of infection (6 and 16 hpi) or viral structural glycoproteins (M55 and M74) in the late phase of infection (>30 hpi). (B) Primary localization of MCMV proteins in the course of MCMV infection determined by immunofluorescence analysis. 2-column fitting image.


At the end of the E phase of infection (16 hpi), a similar but not identical pattern was established as at 30 and 48 hpi (Figure 7A). Markers of the EE, ERC, and some markers of the TGN displayed membranous structures in the iPrAC, markers of the Golgi and TGN in the oPrAC, and markers of ER, LEs, LROs, mitochondria, and peripheral endomembrane system localized outside the PrAC (Figure 7A). This analysis demonstrates that a majority of membranous organelle reorganization present in the AC is achieved during the E phase of infection. However, TGN-derived elements, at least those controlled by ARF3 and Rab6, appear to continue to change in the L phase of infection, after expression of L-phase genes and viral structural proteins. ARF3, which mainly localized at the cell periphery at 30–48 hpi, at 16 hpi mainly localized at the iPrAC (Figure 7A). TGN markers, Golgin 97 and Rab6, which mainly localized at the oAC at 30–48 hpi, at 16 hpi mainly localized at iPrAC (Figure 7). Also, ARF6-associated membranous organelle functions undergo significant changes at later stages of infection. Nuclear accumulation of ARF6 and its GEF BRAG2 observed at 48 hpi (Supplementary Figure S11D) was rarely observed at earlier stages of infection.

In contrast to the composition of PrAC established at 16 hpi, which mostly mirrors the one established in the AC, analysis at 6 hpi displays the earliest set of membranous organelle reorganization. In addition to the displacement of the cis/medial Golgi stacks, as demonstrated by the pattern of GM130 staining (Figure 6), displacement to oPrAC was observed for GS15, Vti1a, and ARF3, but not for TGN38, Golgin97, Rab6, and STX6, all of which mainly remained in the iPrAC (Figure 7A).

Given that all of these Golgi/TGN markers are associated with well-defined organelle structures in uninfected cells, perturbation of their localization indicates the reorganization of the existing steady-state organelles. A more indicative of the extensity of reorganization was an analysis of type B and C marker that did not associate with distinct membranous structures in uninfected cells, such as Rab10, EHBP1, ACAP1, ARF6, Epi64, Evectin-2, and Rab36. All of them were highly recruited to membranes of the iPrAC at 6 hpi (Figure 7A), and together with increased recruitment of Rab11a and Rab8a (Figure 7A), suggest an alteration of membrane flow at the entire ERC. High recruitment of ACAP1 and EHBP is consistent with the over-activation of Rab10 since these two proteins are well-known effectors of Rab10. Similarly, high recruitment of ARF6-effector Epi64 and the absence of Rab35, MICAL-L1, and ACAP2 in the iPrAC is consistent with over-activation of ARF6 (Figure 7).

Enhanced recruitment of Rab5a and the lack of accumulation of EEA1, WASH1, and Vps35 at 6 hpi (Figure 7A) suggests an alteration of EE dynamics at the later stages of EE maturation. Over-recruitment of Rab10, but not Rab14 and Rab15, at the iPrAC (Figure 7) suggests a delay in maturation or transition of EEs toward the ERC, whereas over-recruitment of Rab9a (Figure 7A) suggests the delay in EE maturation toward the TGN. Enhanced recruitment of Hrs/HGS, PIKfyve, and Vps24 (Figure 7A), three host-cell proteins displaying the VPS pathway, suggest that the delay is in the maturation of EE vacuolar domain. These data indicate that the alterations of the terminal stages of EE maturation are among the earliest alterations during CMV infection.

Consistent with the perturbation of membrane organization at the EE-ERC-TGN interface was also enhanced recruitment of BIG2, ARF1, and ARF5 to the inner PrAC at 6 hpi (Figure 7A), followed by enhanced activation of BIG1, ARF3, and ARF4 at later stages of the E phase (16 hpi, Figure 7A). These changes indicate stepwise over-activation of the entire ARF system within the PrAC and expansion of ARF-dependent tubular domains in the early phase of infection.

Altogether, analysis of MCMV infected cells at 6 hpi demonstrates that unlinking the Golgi ribbon from the post-Golgi linker compartments, delay in maturation of EEs, and delay in membrane flow at the EE-ERC-TGN interface are the earliest events in the AC biogenesis. The expansion of EEs and EE-ERC-TGN intermediates and displacemet of the Golgi ribbon in the PrAC establishes the topology that is also maintained in the fully formed AC. Relocation of pre-Golgi linker compartments, as indicated by a location of Rab41 outside the PrAC at 6 hpi and its relocation to the iPrAC at 16 hpi (Figure 7A), occurs later with the progression of the E-phase.



The PrAC Phenotype Is Not a Side Effect of Cell Contraction in the Early Phase of Infection

It is possible that several markers do not display distinct structures in uninfected cells by immunofluorescence microscopy (Figure 7, column 0 hpi) because they are dispersed in the diffuse cytosolic pool of subvisible membranous intermediates. After infection, which is associated with the well-known cytopathogenic effect of cell rounding and contraction (Figure 3C), these markers may be concentrated in a smaller volume and thereby may appear as perinuclear aggregate within PrAc and AC. Although the images and fluorescence intensity profiles in Figures 3–5 demonstrate that several markers associate with sufficiently large membranous entities; still, a substantial number of markers within the iAC display enlarged amorphous structure at immunofluorescence images (Figure 3–5 and Supplementary Figures S11, S12, S14, S15). To resolve this issue, we performed analysis after infection with Δ9-MCMV, a recombinant virus with a deletion of M23-M26 genes that do not develop significant cell rounding after infection. Cells infected with Δ9-MCMV did not establish round shape at 16 and 30 hpi (Figure 8) but displayed juxtanuclear accumulation of Arf6 and Rab10 at 16 hpi (Figure 8A), and Rab36, Evectin-2, Epi64, Vps24, and BIG2 at 30 hpi (Figure 8B and Supplementary Figure S17). These markers did not display sufficiently large structures in the juxtanuclear area of uninfected cells (Supplementary Figure S13) and may be considered as landmarks of membranous organelle reorganization during MCMV infection. All these markers were present at distinct punctate structures and tubular elements in the juxtanuclear area of Δ9-MCMV infected cells (Figure 8 and Supplementary Figure S17). Therefore, the phenotype characteristic for PrAC and AC is not the side effect of cell rounding and contraction, which appears early in the infection.
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FIGURE 8. Membranous organelle reorganization in cells infected with the recombinant MCMV with deleted genes that mediate cell rounding. Balb 3T3 cells were infected with Δ9-MCMV (with deleted M23-M26 genes) and analyzed at 16 (A) and 30 hpi (B) for subcellular localization of selected ERC markers and IE1 and M55 proteins. M55* staining indicates subcellular localization of the M55 gene product and FcR binding by m138/fcr1 gene product, which was not deleted in Δ9-MCMV. Note that fcr1 binds murine IgG2a but not rabbit IgG. Cell borders are indicated by fine dashed lines. Lower panel images in (B) represent the boxed area acquired at higher magnification. Bars, 10 μm. 2-column fitting image.




MCMV Does Not Reorganize the EE-ERC-TGN Interface by Alteration of Host-Cell Transcriptional Activity

The over-recruitment within PrAC of several small GTPases that endogenously do not display clear membranous organelles suggests either reorganization of existing intermediates of the EE-ERC-TGN interface or their upregulation and expansion of membranous domains into a new organelle structure. Although the quantitative relations between membrane-associated and cytoplasmic pools of these proteins have not been precisely established, many studies suggest that the cytoplasmic pool is rather small (Supplementary Table S2). A recent study demonstrates that the cell limits the size of the cytoplasmic pool of GDP-bound Rab proteins (inactive) by continuous ubiquitin-mediated degradation (Takahashi et al., 2019). Thus, the size of the membrane-associated pool is maintained by the rate of their recruitment, degradation, and gene expression.

Given that the cytoplasmic pool of regulatory elements is small and is limiting factor in organelle growth (Goehring and Hyman, 2012), over-recruitment of small GTPases to membranes of the PrAC may be associated with rapid depletion of their limiting pool and the compensatory enhancement of their gene expression. Thus, we analyzed transcriptional activity of all cellular genes that encode markers used in this study at 3 hpi, before the onset of membranous organelle rearrangements, and 18 hpi, at the end of E phase of infection before the intracellular accumulation of viral structural proteins (Figure 9A and Supplementary Figure S19). The host-cell transcriptome was analyzed on DC2.4 cells that displayed a similar pattern of membranous organelle rearrangement (Supplementary Figure S19) and compared with the previously available transcriptome data (Marcinowski et al., 2012; Juranić Lisnić et al., 2013).
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FIGURE 9. Effect of MCMV infection on the expression of the genes encoding membranous organelle markers and regulatory proteins (GEFs and GAPs) that control membrane flow at the EE-ERC-TGN interface. (A) Genes encoding type B and C markers. (B) Genes encoding GEFs and GAPs that regulate small GTPases at the EE-ERC-TGN interface. The data represent the fold change (log2) of gene expression at the beginning (3 hpi) and the end (18 hpi) of the early phase of MCMV infection relative to the mock-infected cells. Statistically significant genes are designated with an asterisk (*). 2-column fitting image.


Although transcriptome analysis demonstrated consistent upregulation and downregulation trends during the E phase of infection (Figure 9A), almost all these alterations were not significant. This observation is particularly important for those EE-RE-TGN interface host-cell factors that significantly increased membrane-associated pool (over-recruitment) and demonstrated the trend of transcriptional downregulation in MCMV infected cells. The only observed exception was Rab9a, which was rapidly upregulated after MCMV infection, and Rab31, which was downregulated at 18 hpi (Figure 9A). The rapid increase in Rab9a transcription may be associated with the increase in the membrane-associated pool within the inner PrAC (Figure 7). Therefore, we concluded that the transcriptional upregulation of small GTPases of the EE-ERC-TGN interface is not a significant mechanism whereby MCMV remodels the membranous system.

The increased membrane-associated pool of small GTPases that regulate the EE-ERC-TGN interface may be a result of an alteration of the membrane-associated pools of regulatory proteins that determine the extent of their recruitment. To explore this option, we analyzed transcriptional activities of all known genes encoding GEFs and GAPs for small GTPases that act at the EE-ERC-TGN interface. Among all analyzed genes, we observed significant upregulation of the only Rabin8 and Cytohesin-2 at 18 hpi (Figure 9B). Rabin8 is known GEF for Rab8, and its upregulation may be associated with the increased recruitment of Rab8 to the inner PrAC, which is present at 16 hpi but not at 6 hpi (Figure 9). Cytohesin-2 is a GEF for ARF1 and ARF6 that act at the cell periphery and, thus, its overexpression at 18 hpi cannot explain the increase in the membrane-associated pools of ARF proteins within the inner PrAC at 6 hpi (Figure 7). Significant downregulation of Rin1 and Rin2 gene expression (Figure 9B) may suggest an alteration of EE maturation at the cell periphery but not at the inner PrAC since their products act as GEFs for Rab5 and Rab31/22b at peripheral endosomes. Similarly, observed downregulation Rab9a GEF-encoding genes, DENND2a and DENND2b, in the E phase of infection (Figure 9B) does not correlate with the increase of Rab9a membrane-associated pool within the inner PrAC.

Altogether, alteration of expression of genes encoding key host-cell factors that control membrane flow at the EE-ERC-TGN interface cannot explain the membranous organelle perturbation that leads to the development of PrAC in the E-phase of infection.



MCMV Does Not Reorganize the EE-ERC-TGN Interface by Alteration of Intracellular Level of Small GTPases

The membrane-associated pool of small GTPases may be dysregulated by alteration of their degradation during MCMV infection. Thus, we analyzed the intracellular amount of several small GTPases that act at the EE-ERC-TGN interface, especially those that are not recruited to distinct membranous organelles in uninfected cells. Although Rab8A, Rab10, ARF6, Rab15, and Rab36 showed weak immunofluorescence staining in uninfected cells (Supplementary Figure S13) and strong immunofluorescence signal in the inner PrAC (images not shown, summary results in Figure 7) and the AC (Figure 4D and Supplementary Figures S11B, S14A,B), their amount did not significantly change during the early phase of MCMV infection (Figure 10). Similarly, the amount of Rab14, which is not highly recruited to membranous structures within the PrAC or AC (Supplementary Figure S11B), was even increased in infected cells (Figure 10). These data confirm that MCMV infection does not upregulate Rab proteins of the EE-ERC-TGN interface to increase their membrane-associated pool, neither by increased transcription nor by inhibited degradation.
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FIGURE 10. The expression level of host-cell small GTPases that act at the EE-ERC-TGN interface. Western-blot analysis was performed using lysates of uninfected (0 hpi) and MCMV-infected (Δm138-MCMV, MOI 10) Balb 3T3 cells at various stages of infection (2–24 hpi). The kinetic expression of each small GTPase was determined by simultaneous analysis of MCMV IE1 protein (shown is a representative image) and β-actin at the same membrane. Shown are images of representative experiments out of 3–5 experiments. 1-column fitting image.


Together, immunofluorescence studies of host-cell factors recruitment (Figures 3–7 and Supplementary Figures S8–S18), quantitative analysis of host-cell transcriptome (Figure 9 and Supplementary Figure S19) and protein expression (Figure 10) indicate that MCMV infection uses a mechanism which alters recruitment/de-recruitment dynamics of host-cell regulatory factors at membranous intermediates of the EE-ERC-TGN interface in order to initiate the development of the AC.



DISCUSSION

In this study, we present spatio-temporal phenotyping of the AC of beta-herpesvirus infected cells and demonstrate that MCMV infection reorganizes the interface between EEs, endosomal recycling compartment (ERC), and the trans-Golgi network (TGN). The reorganization was initiated very early in the infection, indicating that MCMV encoded early genes drive the establishment of the new organelle structure (PrAC), which evolves into a sizeable cytoplasmic structure known as the AC. The profound effect of MCMV infection on the membranous system was displayed as over-recruitment of several host-cell factors that regulate membrane flow at the EE-ERC-TGN interface without significant alteration of their gene expression, indicating that early-gene products of MCMV target recruitment mechanisms and regulatory cascades of membrane-shaping host-cell factors. The phenotyping of the new organelle structure represents a basis for further studies of beta-herpesvirus assembly as well as unclear physiological interactions at the EE-ERC-TGN interface.


CMV Infection Expands Tubular Domains and Membrane Intermediates

Our study demonstrates that MCMV induces similar set membranous organelle reorganizations as human CMV (Das et al., 2007; Krzyzaniak et al., 2009; Cepeda et al., 2010; Das and Pellett, 2011; Close et al., 2018a; Taisne et al., 2019). As in HCMV studies, a cluster of reorganized membranous organelles confined by reorganized Golgi stacks and membranous elements loaded with viral envelope glycoproteins was denoted the AC (rev. in Tandon and Mocarski, 2012), and the cluster confined by the reorganized Golgi stacks in the early phase of infection was denoted the PrAC (Taisne et al., 2019). The inner area of the PrAC and AC in MCMV infected cell, which occupies a volume of 63–523 μm3, is filled with a large number of vesicular and tubular membranous elements (Maninger et al., 2011). These membranous elements bear host-cell factors that regulate membrane domain dynamics at EEs, ERC, and TGN. Most of these host-cell factors are poorly recruited to membranes in uninfected cells, indicating that MCMV infection expands membrane domains that are intermediates at the EE-ERC-TGN interface. For example, over-recruitment of Rab10 and Rab15 indicates the expansion of EE-to-ERC intermediates, over-recruitment of ARF6, Epi64, Rab13, Rab36, and Evt2 suggests an expansion of ERC-to-TGN intermediates, and over-recruitment of Stx6 and Vti1a suggests an expansion of TGN-to-EE/ERC intermediates (for references see Supplementary Table S2).

The inner PrAC and AC membrane domains are highly tubular, as demonstrated by over-recruitment of several host-cell factors that regulate membrane budding at EEs (i.e., WASH1, dynamin, AP1, EHD1, and EHBP1), ERC (i.e., Rab8a, Rab10, BIG2, ARF1, ARF4, ARF5, and ARF6), and TGN (i.e., BIG1, ARF1, ARF3, and AP1). Vacuolar elements within the inner AC and PrAC are derived mainly by dysregulation of EE maturation, as demonstrated by the accumulation of Hrs/HGS, PikFYVE, and Vps24. These alterations are associated with inhibited endosomal recycling and EE maturation (Ilić Tomaš et al., 2010; Karleuša et al., 2018; Lučin et al., 2018), with several functional consequences, including immune evasion (Lučin et al., 2015). Similar alterations were also recently described in HCMV infection (Hook et al., 2014; Zeltzer et al., 2018). It appears that expanded membranous elements of the inner AC and PrAC extrude the Golgi stacks from the cell center to form the outer ring of the AC and PrAC.

The reorganization of the EE-RE-TGN interface indicates that CMV infection affects multiple pathways and regulatory cascades that regulate membrane flow between these steady-state organelles. Although it is believed that EE cargo is sorted and transported by membrane intermediates to the ERC, it is still not clear whether ERC is just a terminal stage of maturation of EEs after sorting of recycling domains (Naslavsky and Caplan, 2018). Similarly, both EEs and ERC can deliver membranes with cargo to TGN, and TGN to EEs and ERC (Glick and Nakano, 2009). Many host-cell factors that regulate ERC have also been reported to associate with the TGN (Supplementary Table S2). An increasing number of examples suggest that there is no clear boundary between these steady-state organelles and that membranous intermediates create a continuum between these compartments (Glick and Nakano, 2009). For example, Rab11a, a conventional marker of the ERC, has been found in association with the TGN membranes and post-Golgi vesicles (Ullrich et al., 1996), whereas TGN38 and Stx6, conventional markers of the TGN (Bock et al., 1997; Reverter et al., 2014), can be identified in EEs and the ERC (Simonsen et al., 1999). Even more, perturbation of trafficking at the EE-ERC-TGN interface or alteration of cholesterol level in the TGN can result in translocation of these markers to EEs or ERC (Reverter et al., 2014). Almost all the machinery that builds ARF system, including ARF-GEFs (BIG1 and BIG2) and ARF proteins (ARF1, ARF3, ARF4, and ARF5), has been reported to associate with the functions of the ERC (Kondo et al., 2012; Nakai et al., 2013) and the TGN (Ishizaki et al., 2008; Boal and Stephens, 2010). All these recruitments occur around the cell center between highly intertwined, steady-state compartments that communicate with each other. Thus, it is challenging to create experimental settings with physiological expression levels of regulatory host-cell factors that can distinguish interface between these organelles, especially when organelle typing is based on migrating markers such as TfR, furin, M6PR, or TGN38. Obviously, better resolution of membranous organelles around the cell center is essential for the characterization of their interface. For example, the use of PC12 (Kobayashi and Fukuda, 2013; Homma and Fukuda, 2016) and COS-1 (Matsudaira et al., 2015) cell lines in several studies provided significant insights into the function of the ERC. Therefore, in addition to a better understanding of the AC biogenesis, MCMV infection could represent a useful model for studying the EE-ERC-TGN interface under the physiological expression level of regulatory host-cell factors.



The Golgi Reorganization Seems to Be First

The Golgi fragmentation and displacement, as also demonstrated in our previous study (Karleuša et al., 2018), is one of the earliest landmarks of membranous system reorganization during MCMV infection, evident already 4–5 h after infection. The Golgi fragmentation is also apparent in HCMV infected cells approx. 2 days after infection (Rebmann et al., 2016; Taisne et al., 2019) and may be an initial step in the formation of the AC, as suggested by Rebmann et al. (2016). It may result in unlinking the Golgi non-compact region and dysregulation of linker compartments (the ERC and the IC), as it occurs during mitosis and cell migration (Saraste and Prydz, 2019). Although our study was focused on EE-ERC-TGN interface markers, over-recruitment of Rab41 at membranes of the inner AC, a small GTPase that acts at the IC-Golgi interface (Liu et al., 2016), suggests that both linker compartments could be sequentially reorganized during CMV infection. In accordance with this could be the observation of enhanced recruitment of LC3, which correlates with increased recruitment of Rab41 in the inner AC, in MCMV (this study), and HCMV infected cells (Taisne et al., 2019).



LE/LRO System Is Out of the AC in MCMV Infected Cells

In contrast to the observations in HCMV infected cells (Cepeda et al., 2010; Fraile-Ramos et al., 2010; Das and Pellett, 2011; Jean Beltran et al., 2016Taisne et al., 2019), MCMV infection does not relocate CD63 and Lamp1, LE and LRO markers, to AC and PrAC. In this study, we also tested several markers that may define LE subsets, and none of them was found at the inner AC and PrAC area, indicating that MCMV infection segregates EE-ERC-TGN from the LE/LRO system. This was demonstrated by the segregation of Rab9a-positive membranes into two subsets, one within the inner AC and one outside the AC. Rab9a has been shown to act at the EE-TGN interface (Kucera et al., 2016) and to define a subset of LEs (Barbero et al., 2002).



A Mixture of Membrane Intermediates May Be Required for Secondary Envelopment

Heterogeneous membrane domains of the AC derived at the EE-ERC-TGN interface may ensure a proper environment for the final stage in CMV assembly, the secondary envelopment. Lessons from alpha-herpesviruses suggest that the secondary envelopment does not occur at the site of a high concentration of viral glycoproteins but rather at an endosomal compartment (Johns et al., 2014). The existing knowledge about beta-herpesvirus composition suggests that membranous compartment appropriate for secondary envelopment should ensure several properties. First, membranes should provide a proper biophysical environment and machinery required for budding membrane away from the cytoplasm and fission of the membrane into the virion envelope. This “reverse topology” mechanism (Schöneberg et al., 2017) requires PI3P domains, conversion of PI3P into the PI(3,5)P2 by PIKFyve, activation of the ESCRT pathway, and termination by recruitment of Vps24 (Votteler and Sundquist, 2013). All of these requirements are the property of EE membranes, which are highly enriched within the PrAC/AC and appear to be significantly retarded, as indicated by the over-recruitment of Hrs/HGS, PIKFyve, and Vps24, suggesting that PrAC/AC accumulate reverse-topology permissive membranes. Second, CMV envelope proteins should be sorted by cargo-sorting mechanisms and transported via the TGN-to-EE route from PI4P-rich TGN membranes (Marcelić et al., unpublished) toward reverse-topology permissive membranes to meet a proper environment, as described for alpha-herpesviruses (Johns et al., 2014). Third, topological features of a membranous compartment for successful envelopment could require large membrane surface-area-to-volume ratio and association with microtubule and actin tracks that ensure forces for scission required for virion egress. These are properties of tubular domains that characterize ERC and TGN. Fourth, membranes for envelopment should provide an appropriate lipid composition. It is reasonable to believe that MCMV will build a similar lipidome composition of infectious virions as HCMV, including threefold reduction of PS and twofold enrichment in PE (Liu et al., 2011) and that development of the secondary envelopment foci will also include lipidome remodeling. Therefore, the envelopment may be expected at membranes capable of concentrating PS decarboxylase, known to be enriched at TGN (Schuiki and Daum, 2009).

Altogether, none of the EE-, ERC-, and TGN-derived membranous compartments can provide a proper composition for envelopment. Thus, it is possible that, through inhibition of membrane flow at the EE-ERC-TGN interface, CMV infection generates a mixture of membranous intermediates and CMV capsids associate with membranes until they create a proper environment for the envelopment. Alternatively, the diverse tubular membrane domains formed at the EE-ERC-TGN interface that undergo slow transition within the inner AC could include intermediary forms that can mix cargo and molecular machinery, and some of these intermediary forms could have an adequate composition for the secondary envelopment. Studies with tagged beta-herpesvirus capsids are essential to address this issue.



Targeting the General Mechanism of Host-Cell Factors Membrane Recruitment

Host-cell transcriptome (Hertel and Mocarski, 2004; Marcinowski et al., 2012; Juranic Lisnic et al., 2013; Jean Beltran et al., 2016) and proteome (Weekes et al., 2014) analyses demonstrate that CMVs alter the expression of a large number of host-cell factors that regulate membrane flow. These alterations are associated with systemic virus infection-induced effect on host-cell protein translation (McKinney et al., 2014; Weekes et al., 2014), their targeted degradation (Tirosh et al., 2015), and specific targeting by virus-encoded miRNAs (Hook et al., 2014). Our study demonstrates that CMVs could also target membrane recruitment of host-cell factors that build regulatory cascade at the EE-ERC-TGN interface. Although the cascades can be disrupted by targeting the expression level of host cell-factors, our analysis (Figure 9) did not identify significant alterations of host-cell factors used in this study as markers sufficient to cause extensive reorganization. Thus, it is reasonable to believe that MCMV encodes functions that target a general mechanism involved in fine-tuning of membrane flow by affecting membrane recruitment of host-cell factors, such as host-cell factor phosphorylation (Rebmann et al., 2016) or membrane cholesterol (Gudleski-O’Regan et al., 2012) or host-cell factor ubiquitination balance.

The ubiquitination of the endosomal system machinery has emerged as a mechanism that modulates the dynamics and maturation of the EE system (Ramanathan et al., 2013; Hao et al., 2015). The molecular rheostat function based on the fine titration of the ubiquitination by the cooperative action of a ubiquitin (Ub) ligase and a deubiquitinating enzyme (DUB) has been demonstrated in the actin-assembly function of the WASH complex at EEs (Hao et al., 2015). A recent study demonstrated that ubiquitination by multiple Ub ligases and interaction with several DUBs also regulates ERC dynamics (Sakai et al., 2019). Inhibition of an Ub ligase that acts at the ERC (Sakai et al., 2019) or its over-expression (Coumailleau et al., 2004) impairs the segregation of EEs and the ERC, inhibits ERC-to-TGN trafficking, and redistributes a TGN resident protein (TGN46) into the ERC. Spatiotemporal regulation of ubiquitination of host-cell factors that control endosomal tubulation (i.e., EHD1 and MICAL-L1) has been proposed to be essential for segregation of EE and the ERC (Sakai et al., 2019). Thus, the membrane flow at the ERC interface could be regulated by Ub-based molecular rheostats, and CMVs may reshape the EE-ERC-TGN interface by dysregulation of the coordinated function of ERC-associated Ub ligases and DUBs. This can be achieved by modulation of Ub-ligases and DUBs expression or by viral coding proteins with Ub-ligase or DUB function. In the host-cell transcriptome of MCMV infected cells, we did not identify significant alterations of host-cell transcripts that build the Ub-ligation and DUB network (data not shown). On the other hand, both HCMV and MCMV encode at least one protein with DUB activity (UL48 and M48, respectively). Both proteins are expressed in the early phase of infection (Marcinowski et al., 2012; Weekes et al., 2014) and are essential for virus growth (Das et al., 2014; Hilterbrand et al., 2017). Therefore, M48, through its DUB function, could be an MCMV-encoded tool for disruption of the molecular rheostat functions and initiation of EE-ERC-TGN interface reorganization in the early phase of infection. To test this hypothesis, it would be essential to develop a recombinant MCMV with mutated DUB domain of the M48 since the virus without M48 is not viable (data not shown; Hilterbrand et al., 2017).

In conclusion, our study demonstrates that AC of murine and human CMV has a similar organizational structure and that studies on MCMV can contribute to a better understanding of the AC of beta-herpesviruses. The MCMV model is characterized by the short time required for the onset of the AC (6–8 h), which may be advantageous in the host-cell factor perturbation studies. The set of landmarks of the PrAC and AC presented in our study could improve understanding the biogenesis of the AC, and could contribute to the identification of the secondary envelopment site, host-cell factors that are essential for secondary envelopment and virion egress, as well as virus-encoded functions that drive these processes.
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Acid-sensing ion channels (ASICs) are members of the degenerin/epithelial sodium channel superfamily. They are extracellular pH sensors that are activated by protons. Among all ASICs, ASIC1a is one of the most intensively studied isoforms because of its unique ability to be permeable to Ca2+. In addition, it is considered to contribute to various pathophysiological conditions. As a membrane proton receptor, the number of ASIC1a present on the cell surface determines its physiological and pathological functions, and this number partially depends on protein synthesis, degradation, and membrane trafficking processes. Recently, several studies have shown that various factors affect these processes. Therefore, this review elucidated the major factors and underlying molecular mechanisms affecting ASIC1a protein expression and membrane trafficking.
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INTRODUCTION

As a member of the degenerin/epithelial sodium channel (DEG/ENaC) superfamily, acid-sensing ion channel 1a (ASIC1a) senses pH changes and has an extensive distribution pattern and function in the peripheral tissues and central nervous system (Radu et al., 2016). ASIC1a is sensitive to extracellular acidification and is involved in several acidosis-related pathophysiological processes, including inflammation (Duan et al., 2007), hypoxia (Tan et al., 2011), and pain (Deval et al., 2010). Plasma membrane expression is critical to the function of ASICs that act as extracellular proton sensors (Waldmann and Lazdunski, 1998). Protein synthesis and degradation, as well as dynamic trafficking processes partially determine the number and function of receptors present on the plasma membrane (Zeng et al., 2014). Therefore, elucidating the factors and the underlying molecular mechanisms that affect ASIC1a expression and membrane trafficking will improve our understanding of its pathophysiological functions in multiple diseases.



FACTORS AND MOLECULAR MECHANISMS INFLUENCING PROTEIN SYNTHESIS, DEGRADATION, AND MEMBRANE TRAFFICKING OF ASIC1a

Several studies have demonstrated that protein synthesis, degradation, and membrane trafficking of ASIC1a are affected by various factors. Since the number of ASIC1a present on the cell surface correlates with its total expression (Wu et al., 2016), the presence of the channel in the cytoplasm can be used as a pool for supplying to the membrane. Therefore, it is of great significance to explore the factors that influence both the total expression and membrane trafficking of ASIC1a. These factors are highlighted in Table 1.


TABLE 1. The factors that regulate the total expression and membrane trafficking of ASIC1a.

[image: Table 1]The number of receptors present on the plasma membrane partly depends on protein synthesis, degradation, and dynamic trafficking processes. Among them, dynamic trafficking processes mainly include sorting and forward trafficking of the surface receptors from the endoplasmic reticulum through the Golgi apparatus to the plasma membrane via endocytosis and exocytosis (Zeng et al., 2014). An in-depth understanding of the mechanisms that affect the cell surface expression of ASIC1a is essential for a better understanding of cell signal transduction under acidic conditions (Yang et al., 2012). Therefore, we have provided the details of the underlying molecular mechanisms that govern ASIC1a protein synthesis, degradation, and dynamic trafficking (Figure 1).
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FIGURE 1. A schematic representation of the underlying molecular mechanisms influencing the protein synthesis, degradation, and dynamic trafficking processes of ASIC1a. The NF-κB pathway: inflammatory cytokines including IL-6, IL-1β, TNF-α, and NGF and their receptor interactions activate the NF-κB pathways, leading to the translocation of NF-κB p65 into the nucleus and enhancing the ASIC1a gene promoter activity, thereby upregulating ASIC1a expression; The PI3K/Akt pathway: BDNF/TrkB or PDGF activates the intracellular PI3K/Akt pathway, and then, induces ASIC1a phosphorylation in vesicle and forward targeting to the plasma membrane; The endocytic pathway: downregulation of ASIC1a surface expression in a clathrin- and dynamin-dependent endocytosis; Autophagy-lysosome pathway: β-estradiol/ERα or acute ethanol exposure enhances ASIC1a protein degradation via the autophagy-lysosome pathway.



Acidosis and Hypoxia

ASIC1a has been characterized as a potent proton sensor for detecting extracellular acidification in the peripheral tissues and brain (Cheng et al., 2018). Our previous studies have indicated that extracellular acidosis increases protein expression of ASIC1a in a pH- and time-dependent manner in rat articular chondrocytes (Dai et al., 2017; Gao et al., 2019; Zu et al., 2020). Moreover, it has been reported that ASIC1a expression is significantly increased in the articular cartilage of adjuvant arthritis (AA) rats (Zhou et al., 2015), the articular synovial fluid of which showed a low pH value compared to that of the non-arthritic rat synovial fluid (Zhou et al., 2018). Furthermore, blocking ASIC1a expression through pretreatment with the ASIC1a-specific blocker such as psalmotoxinf (PcTx1) or ASIC1a RNA interference (RNAi) reversed the promoting effect of extracellular acidification on the protein and mRNA expression levels of ASIC1a and decreased cell death induced by extracellular acidosis (Gao et al., 2019). Similarly, after PcTx1 treatment, both the severity of disease in AA rats and the protein expression of ASIC1a in the synovial tissue decreased in vivo (Qian et al., 2020). These results suggest that the injury caused by extracellular acidification might be related to the upregulation of ASIC1a expression.

Hypoxia triggers pathological processes by producing an acidic microenvironment in multiple diseases (Damgaci et al., 2018). Additionally, an increasing number of studies suggest that pathological hypoxia can alter the activity of ASICs. This might provide a progressive understanding of the hypoxic effects in cancer, arthritis, and ischemic brain injury (Yingjun and Xun, 2013). The expression and function of ASIC1a were upregulated after hypoxia in cultured retinal ganglion cells, and PcTx1 was able to reduce cell death in vitro (Tan et al., 2011). These results indicate that ASIC1a activation plays a role in cell death induced by hypoxia. Additionally, exposure to chronic hypoxia upregulated ASIC1 protein expression in pulmonary arterial smooth muscle. Furthermore, PcTx1 prevented enhanced store-operated Ca2+ entry in pulmonary vascular smooth muscle (Jernigan et al., 2012), suggesting that upregulation of ASIC1 expression might play a role in vasoconstriction during pulmonary hypertension.



Inflammatory Cytokines

Our recent studies have concentrated on determining the relationship between inflammatory cytokines and ASIC1a expression in rheumatoid arthritis (RA). The results showed that several pro-inflammatory cytokines, including interleukin-6 (IL-6) (Zhou et al., 2015), IL-1β (Zhou et al., 2018), and tumor necrosis factor-α (TNF-α) (Zhou et al., 2018) upregulate the levels of ASIC1a in a time- and dose-dependent manner in articular chondrocytes. Moreover, this effect was partially reversed by pretreating the cells with pyrrolidine dithiocarbamate (PDTC), an inhibitor of nuclear factor kappa B (NF-κB), indicating that pro-inflammatory cytokines induced the upregulation of ASIC1a in articular chondrocytes mainly through the NF-κB signaling pathway.

NF-κB is an evolutionarily conserved transcription factor involved in the expression of genes that play a critical role in various biological processes, including immune response, inflammation, proliferation, and apoptosis (Mitchell and Carmody, 2018). For instance, IL-1β and TNF-α play a role in ASIC1a protein synthesis through the NF-κB signaling pathway in the following ways (Zhou et al., 2018): (1) Co-expression of ASIC1a and NF-κB p65 was high in articular cartilage tissues, especially in AA rats, an experimental animal model of RA; (2) IL-1β or TNF-α increased the translocation of NF-κB p65 to the nucleus in a time-dependent manner; (3) IL-1β- or TNF-α-induced ASIC1a expression was partially abrogated by PDTC; (4) IL-1β or TNF-α enhanced the activity of the ASIC1a gene promoter by increasing the DNA-binding activities of NF-κB, which could be inhibited by PDTC. These results demonstrate that NF-κB activation is involved in the synthesis of the ASIC1a protein induced by IL-1β or TNF-α.



Neurotrophins

Nerve growth factor (NGF), which regulates cell development and proliferation, has recently been identified as a mediator of the inflammatory response (Rocco et al., 2018). Similar to the regulatory effect of the pro-inflammatory cytokines on ASIC1a expression, NGF was also observed to increase mRNA and protein expression of ASIC1a in a dose- and time-dependent manner in chondrocytes (Wei et al., 2020). The NF-κB signaling pathway was also found to be involved in NGF governing the expression of ASIC1a (Wei et al., 2020).

Brain-derived neurotrophic factor (BDNF) and its neurotrophin receptor, TrkB, play important roles in neuronal plasticity and in the pathophysiology of various brain disorders. It has been recently proposed that BDNF/TrkB signaling is involved in regulation of the ASIC1a membrane trafficking process (Duan et al., 2012). Activation of phosphoinositide 3-kinase (PI3K) has been reported to promote the membrane trafficking of voltage-dependent Ca2+ channels (Viard et al., 2004). Moreover, activation of the PI3K/Akt signaling pathway promotes both the total expression and the number of ENaCs present in the membrane (Qi et al., 2014). The PI3K/Akt signaling pathway is also involved in the membrane trafficking process of ASIC1a, similar to its effect on ENaCs. Specifically, activation of TrkB by BDNF stimulated the intracellular PI3K-protein kinase B/Akt pathway, induced ASIC1a phosphorylation, and targeted the neuronal surface in both rat spinal dorsal horn neurons and heterologous cell cultures. However, the co-administration of PI3K and Akt inhibitors attenuated the process, indicating a critical role of the PI3K/Akt pathway in BDNF-mediated upregulation of ASIC1a membrane trafficking. Further research confirmed the stimulatory effect of BDNF on the cell surface expression of ASIC1a, which was eliminated by mutation of the ASIC1a cytoplasmic residue Ser-25 (Duan et al., 2012), suggesting that Ser-25 is a functionally relevant phosphorylation site.

A similar signaling pathway is also involved in the process of platelet-derived growth factor (PDGF), regulating the expression and membrane trafficking of ASIC1a (Zuo et al., 2019). The expression and membrane trafficking of ASIC1a protein were remarkably increased in PDGF-stimulated hepatic stellate cells. However, these effects could be prevented by inhibiting activation of the PI3K/Akt signaling pathway with the inhibitor LY294002 (Zuo et al., 2019), revealing that PDGF stimulated the expression and membrane trafficking of ASIC1a via the PI3K/Akt pathway.



Hormones

Experimental and clinical data support a pathogenic role of estrogen metabolism and deficiency in RA (Islander et al., 2011; Dupuis et al., 2018). Our recent study demonstrated that ASIC1a is involved in the mechanism underlying estrogen replacement therapy in RA. It has been shown that the viability of chondrocytes was improved by pretreating the cells with PcTx1, an inhibitor of ASIC1a. Similar to the effect of PcTx1, pretreatment with β-estradiol also improved cell viability. The combined effect of β-estradiol and PcTx1 on the cells did not show an additive effect. Moreover, the effect was similar to that observed when PcTx1 was administered alone, suggesting that inhibiting ASIC1a is likely to involve β-estradiol-mediated protection. Furthermore, β-estradiol was able to downregulate the expression of ASIC1a protein through estrogen receptor α (ERα) and protect the chondrocytes from acid-induced damage and apoptosis (Song et al., 2020). Further studies indicate that downregulation of ASIC1a protein expression can be attributed to β-estradiol, which promotes the degradation of ASIC1a protein through the autophagy-lysosomal pathway (Song et al., 2020). These findings suggest that β-estradiol has the potential to be developed as a novel strategy for the treatment of RA by downregulating ASIC1a protein expression. Activation of ASIC1a induced by tissue acidification, a salient feature of cerebral ischemia, plays a vital role in the progression of ischemia (Xiong et al., 2004; Li et al., 2016a). Recent in vitro and in vivo studies suggested that β-estradiol can protect neurons against the acidosis-mediated neurotoxicity and ischemic brain injury, possibly by suppressing ASIC1a protein expression (Zhou et al., 2019a). β-estradiol reduced the protein expression of ASIC1a in cerebral ischemia by promoting protein degradation through ERα, similar to its effect on ASIC1a protein expression in RA (Zhou et al., 2019a). These results highlight a novel mechanism underlying the protective effect of β-estradiol in tissue acidification-related diseases.

Insulin participates in the neuronal function by modulating expression of the various ion channels and neurotransmitter receptors on the cell surface (Wan et al., 1997; Skeberdis et al., 2001). Additionally, insulin was recently identified as a regulator of the ASIC1a membrane trafficking (Chai et al., 2010) and can maintain a low level of ASIC1a on the plasma membrane. In contrast, intracellular ASIC1a was transported to the cell surface during insulin deficiency, leading to an increase in ASIC1a expression on the membrane (Chai et al., 2010).



Drugs

Non-steroidal anti-inflammatory drugs (NSAIDs) are used to treat the inflammation- and pain-related disorders. Accumulating evidence links certain aspects of NSAID pharmacology with ASICs (Voilley et al., 2001; Sun et al., 2014). ASIC1 expression was upregulated in the nucleus pulposus cells due to chronic degeneration induced by the acidic conditions, and this effect was attenuated by treating the cells with ibuprofen, a widely used NSAID (Sun et al., 2014). Similarly, aspirin, another classic NSAID, was reported to inhibit the upregulation of ASIC1a mRNA and protein expression in the chondrocytes of AA rats (Wu et al., 2019).

Amiloride, a non-specific blocker of ASICs, is used to study the functions of ASICs (Leng and Xiong, 2013). Our previous study demonstrated that protein expression of ASIC1a was upregulated in the chondrocytes of AA rats, which was reversed by treating the cells with amiloride (Wu et al., 2019). Another study revealed that the increased expression of ASIC1 in the nucleus pulposus cells of the human intervertebral disc during degeneration was inhibited by amiloride treatment at a concentration of 1 mmol/L (Sun et al., 2014). Further research is needed to explore the effect of amiloride on the expression of ASIC1a at lower concentrations, since 1 mmol/L is an extremely high concentration for in vitro experiments.

PcTx1, the peptide toxin obtained from spiders, is a gating modifier of ASIC1a and has been widely used to explore the functions of ASIC1a (Leng and Xiong, 2013). Our previous studies have confirmed that PcTx1 reversed the enhancing effect of extracellular acidification on ASIC1a protein and mRNA expression in articular chondrocytes (Gao et al., 2019; Wu et al., 2019). Similarly, the increased expression and membrane trafficking of ASIC1a induced by PDGF stimulation were inhibited by PcTx1 (Zuo et al., 2019).

Omeprazole, a well-known proton-pump inhibitor, is frequently prescribed for the treatment of peptic ulcers through the anti-gastric mechanism mediated by acid secretion. Thongon et al. (2014) recently demonstrated that omeprazole enhanced ASIC1a expression in Caco-2 cells, leading to the inhibition of paracellular Mg2+ absorption via a Ca2+-dependent pathway.

Ginsenoside (GS)-Rd, the major active compound present in Panax ginseng, has neuroprotective effects against ischemic stroke (Nabavi et al., 2015; Zhang et al., 2016). A possible link between the neuroprotective effect of GS-Rd and ASIC1a activity has been hypothesized, since the pH of brain tissue can usually drop below 6.0 during severe ischemia (Wang et al., 2015). The rat middle cerebral artery occlusion (MCAO) model was used to investigate the effects of GS-Rd on the expression of ASICs in ischemic stroke. The results showed that the mRNA and protein expression levels of ASIC1a and ASIC2a were remarkably increased after stimulation with GS-Rd in the MCAO model. Pretreatment with GS-Rd not only attenuated ASIC1a upregulation, but also promoted ASIC2a expression (Zhang et al., 2012). These results indicate the neuroprotective effects of GS-Rd following cerebral ischemia may be related to its differential regulation in ASIC1a and ASIC2a expression.



MicroRNAs

Over the past decade, microRNA has emerged as an important group of regulatory molecules in controlling ion channels (Gross and Tiwari, 2018). A recent study by Zha et al. explored the effects of several miRNAs on the expression of ASIC1a, and they found that miR-144 and -149 reduced ASIC1a expression while let-7 increased ASIC1a protein expression (Jiang and Zha, 2017). In a subsequent study, it was confirmed that miR-149 targets the 3′-untranslated region of ASIC1a to regulate protein expression (Jiang and Zha, 2017). Collectively, further studies may provide an alternative to manipulate the expression of ASIC1a in acidosis-related diseases.



Effector Proteins

Annexin II light chain p11, a member of the S100 family of small and dimeric EF-hand Ca2+-binding proteins, has been demonstrated to control the number of ENaCs present in the membrane via the exocytic pathway (Cheung et al., 2019). Considering that ASICs and ENaCs are both members of the DEG/ENaC gene family (Boscardin et al., 2016), it is rational to assume that p11 may have a regulatory effect on ASICs. Therefore, it was not surprising that p11 physically interacted with the N-terminus of ASIC1a (Donier et al., 2005). Moreover, an interaction between p11 and ASIC1a was demonstrated by immunoprecipitation in rat dorsal root ganglion in vivo (Donier et al., 2005). Furthermore, the co-expression of p11 and ASIC1a in CHO-K1 cells led to a twofold increase in ASIC1a expression on the plasma membrane (Donier et al., 2005). These results indicated that p11 might have a role in regulating ASIC1a expression on the plasma membrane. Additionally, further research is required to confirm whether the underlying mechanism by which p11 regulates ASIC1a expression on the plasma membrane is similar to that of regulating ENaC expression through the exocytic pathway.

Protein interacting with C kinase 1 (PICK1) is a peripheral membrane protein that regulates trafficking of diverse membrane proteins (Li et al., 2016b). Several studies have indicated a close connection between PICK1 and ASIC1a. First, ASIC1a has been shown to interact with the PDZ domain of PICK1 through its C-terminus, and this interaction changes the subcellular distribution of ASIC1a (Duggan et al., 2002; Hruska-Hageman et al., 2002). Second, PICK1 overexpression increases the expression of ASIC1a on the cell surface, which depends on the BAR domain of PICK1 (Jin et al., 2010). Third, knockout of the gene PICK1 is attributed to the decreased expression of ASIC1a and ASIC2a proteins on the plasma membrane (Hu et al., 2010). Fourth, the link between PICK1 and ASIC1a is regulated by protein kinases, including protein kinase (PK) A and PKC (Leonard et al., 2003; Hu et al., 2010). These findings provide compelling evidence that blocking the link between ASIC1a and PICK1 can be used as a treatment for ASIC1a-mediated diseases.

RhoA, a small G protein of the Rho family, has been demonstrated to promote ENaC trafficking to the plasma membrane, thereby increasing its activity (Staruschenko et al., 2004; Pochynyuk et al., 2007). Similarly, activation of RhoA increased ASIC1a expression on the plasma membrane and enhanced store-operated Ca2+ entry in the pulmonary arterial smooth muscle cells (Herbert et al., 2018), which might help improve our understanding of the vital role of RhoA in the pathogenesis of pulmonary hypertension.

Serum- and glucocorticoid-inducedkinase-1 (SGK1) plays an important role in the modulation of ion channels and regulation of ENaCs (Lang and Pearce, 2016). Recently, SGK1.1, a spliced isoform of SGK1, has been found to downregulate the activity of neuronal ASIC1, at least in part, by decreasing the expression of the channels on the plasma membrane (Arteaga et al., 2008).

There is extensive amount of evidence that suggests both ENaCs and ASICs are regulated by clathrin-dependent endocytosis (Wang et al., 2006; Zeng et al., 2014). Clathrin adapter protein 2 (AP2), a heterotetrameric complex containing αβ2μ2σ2 subunits, links membrane proteins to clathrin, which initiates clathrin assembly at the cell surface (McMahon and Boucrot, 2011). Tyrphostin A23, a pharmacological clathrin-mediated endocytosis inhibitor, reduced the association of clathrin with AP2 in the membrane (Wang et al., 2016), and increased the expression level of ASIC1a on the membrane in both mouse cortical neurons and heterologous cells, indicating a regulative role of clathrin-mediated endocytosis in the surface density of ASIC1a (Zeng et al., 2013). Moreover, knockdown of AP2μ2 (a core subunit of the AP2 complex) also enhanced the surface density of ASIC1a, indicating a critical role of the AP2 complex in ASIC1a internalization.

Dynamin is a large GTP are responsible for diverse cellular processes, including endocytosis, and plays a crucial role in vesicle scission after cargo internalization (Antonny et al., 2016). Blocking the constitutive endocytosis of ASIC1a with the dominant-negative dynamin1 K44A or dynasore, a small-molecule dynamin inhibitor, increased the surface density of ASIC1a protein (Zeng et al., 2013). These results indicate that ASIC1a undergoes constitutive clathrin- and dynamin-dependent endocytosis, resulting in downregulation of ASIC1a expression at the cell surface.



Chemicals

It is now widely known that acute ethanol administration has neuroprotective effects during cerebral ischemia (Wang et al., 2012). Tissue acidification and its associated activation of ASIC1a are common features of cerebral ischemia (Xiong et al., 2004). Our recent study showed that the neuroprotective effect of ethanol might be related to the regulation of ASIC1a expression in neurons against acidosis-induced neurotoxicity (Zhou et al., 2019b). It has been indicated that acute treatment of neurons with ethanol decreased ASIC1a protein expression and acid-induced [Ca2+] elevation (Zhou et al., 2019b). Further evidence suggests that the downregulation of ASIC1a protein was mediated by degradation of the protein via the autophagy-lysosome pathway (Zhou et al., 2019b).

Hydrogen peroxide (H2O2) is an endogenous reactive oxygen species that contributes to oxidative stress (Murphy and Friedman, 2019). A previous study showed that the application of oxidants inhibited ASIC1a currents in cultured mouse cortical neurons (Chu et al., 2006). More importantly, H2O2 has been reported to affect the links between the three subunits of ASIC1a (Zha et al., 2009). Previous studies have demonstrated that inter-subunit disulfide bonds could form intracellularly between ion channel subunits, including ASIC1a. Inter-subunit disulfide bonds can produce ASIC1a complexes that are larger than the trimers (Zha et al., 2009). Given that ASIC1a presents on the cell membrane as a trimer, these cytoplasmic ASIC1a complexes that are larger than the trimers combine by disulfide bonds to affect the transport of ASIC1a to the cell membrane, leading to a decrease in their cell surface expression. By targeting the C-terminal cysteines, H2O2 increases the inter-subunit disulfide bond formation, leading to the reduced expression of ASIC1a located on the cell membrane and reduced H+-gated current (Zha et al., 2009).

Nitric oxide (NO) is a free radical signaling molecule that regulates numerous physiological and pathological conditions. NO signaling has been shown to increase the expression of transient receptor potential vanilloid type 2, a calcium channel, and its trafficking to the plasma membrane via a PI3K dependent pathway (Maksoud et al., 2019), suggesting that NO signaling has the potential to regulate the expression of membrane proteins. Recently, differential regulatory effects of NO signaling on ASIC1a expression in the prefrontal cortex (PFC) and hippocampus have been confirmed. Microinjection of S-nitroso-N-acetyl-D, L-penicillamine, an NO donor, upregulated the expression of ASIC1a in the PFC and downregulated its expression in the hippocampus. In contrast, 7-nitroindazole, an nNOS inhibitor, showed the opposite effect on the regulation of ASIC1a expression in the PFC and hippocampus (Li et al., 2019).



N-Glycosylation

N-glycosylation, a ubiquitous protein modification, alters the molecular and functional features of glycoproteins and is involved in various physiological processes and diseases. A large number of studies have demonstrated that N-glycosylation of the extracellular domains of some membrane proteins is important for maturation and apical location of these proteins (Vagin et al., 2009; Moremen et al., 2012). A close relationship between N-glycosylation and ASIC1a membrane expression has been observed in several studies: (1) there was a high proportion of glycosylated ASIC1a on the surface of CHO cells and hippocampal neurons, indicating that mature ASIC1a was preferentially transported to the cell surface (Jing et al., 2012); (2) inhibition of glycosylation with tunicamycin reduced ASIC1a surface transport (Jing et al., 2012); (3) disrupting the interaction between the first transmembrane domain and the thumb of ASIC1a altered ASIC1a folding, inhibited its glycosylation, and reduced its surface trafficking (Jing et al., 2011).



CONCLUSION

Recent studies have demonstrated that ASIC1a plays a crucial role in the occurrence and development of diseases related to the central and peripheral nervous system, and it is considered to be a potential therapeutic target. Elucidating the factors and the underlying molecular mechanisms affecting ASIC1a protein expression and membrane trafficking is necessary to better understand the role of ASIC1a in various pathophysiological conditions. This review focused on these topics and summarized the currently known factors that affect ASIC1a expression and membrane transfer and the possible underlying mechanism of ASIC1a synthesis and degradation, as well as membrane trafficking. Several studies suggest that ASIC1a is a promising therapeutic target in acidosis-related diseases.

In order to explore whether ASIC1a can be a potential therapeutic target, several questions remain to be answered. These questions are related to (1) the dynamic changes in ASIC1a expression and membrane transfer during disease progression; (2) the contribution of ASIC1a synthesis, membrane transfer, and degradation in the pathogenesis of diseases; (3) the identification of novel drugs that specifically block ASIC1a and have fewer side effects than the conventional drugs (for example, amiloride can be structurally modified to improve the specific blocking of ASIC1a); and (4) isoform-specific membrane trafficking motifs and the related accessory proteins of ASIC1a. All of these require further confirmation.

In conclusion, although multiple lines of evidence suggest that ASIC1a is an important contributor to multiple acidosis-related diseases and various factors affect its expression and membrane transfer, additional clinical studies are needed to confirm its therapeutic efficacy and safety.
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The coat protein complex II (COPII) mediates forward trafficking of protein and lipid cargoes from the endoplasmic reticulum. COPII is an ancient and essential pathway in all eukaryotes and COPII dysfunction underlies a range of human diseases. Despite this broad significance, major aspects of COPII trafficking remain incompletely understood. For example, while the biochemical features of COPII vesicle formation are relatively well characterized, much less is known about how the COPII system dynamically adjusts its activity to changing physiologic cues or stresses. Recently, post-transcriptional mechanisms have emerged as a major mode of COPII regulation. Here, we review the current literature on how post-transcriptional events, and especially post-translational modifications, govern the COPII pathway.
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BACKGROUND AND COPII OVERVIEW

A complex endomembrane network is a defining feature of eukaryotic cells. Although not connected directly, compartments such as the endoplasmic reticulum (ER), the Golgi apparatus, lysosomes and the plasma membrane exchange materials bidirectionally through vesicles and tubules (Kirchhausen, 2000). Maintaining the protein and lipid compositions of these distinct organelles is essential for their functions and is thus a carefully orchestrated process, critical for cell and tissue physiology. The coat protein complex II (COPII), which mediates anterograde trafficking from the ER, is a highly conserved, key control point for protein sorting (Baker et al., 1988; Ruohola et al., 1988; Barlowe et al., 1994; Routledge et al., 2010; Brandizzi and Barlowe, 2013; Miller and Schekman, 2013; Schlacht and Dacks, 2015).

The COPII system was discovered and characterized through pioneering studies by Schekman and colleagues beginning 25 years ago (Kaiser and Schekman, 1990; Barlowe et al., 1994; Barlowe, 2020). Our current understanding of the biochemical and structural details of COPII trafficking has been reviewed extensively in several excellent recent articles (Gomez-Navarro and Miller, 2016; Aridor, 2018; Bethune and Wieland, 2018; Brandizzi, 2018; Hutchings and Zanetti, 2019; Peotter et al., 2019). Briefly, COPII vesicle formation begins when the cytosolic GTPase Sar1 binds GTP and inserts an α-terminal N-helix into the ER membrane, a process facilitated by the ER-anchored guanine nucleotide exchange factor (GEF) Sec12 (Figure 1; Gomez-Navarro and Miller, 2016; Aridor, 2018; Bethune and Wieland, 2018; Brandizzi, 2018; Hutchings and Zanetti, 2019; Peotter et al., 2019). Active Sar1-GTP recruits Sec23/Sec24 heterodimers to the ER, which promote Sar1 GTPase activity (Sec23) and mediate carrier loading via direct interactions with cargo and adaptor proteins (Sec24) (Fromme et al., 2008; Routledge et al., 2010; Brandizzi and Barlowe, 2013; Miller and Schekman, 2013; Paczkowski et al., 2015). Then, heterotetramers of Sec13/Sec31 assemble over the Sar1/Sec23/Sec24 pre-budding complex, forming the outer layer of a polyhedral cage that promotes further curvature and Sar1 GTPase-dependent scission (Gomez-Navarro and Miller, 2016; Aridor, 2018; Bethune and Wieland, 2018; Brandizzi, 2018; Hutchings and Zanetti, 2019; Peotter et al., 2019). This complex series of protein and lipid interactions culminates in a mature COPII transport vesicle, typically 60–80 nm in diameter (Gomez-Navarro and Miller, 2016; Aridor, 2018; Bethune and Wieland, 2018; Brandizzi, 2018; Hutchings and Zanetti, 2019; Peotter et al., 2019).
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FIGURE 1. Overview of COPII vesicle formation. COPII vesicle formation proceeds through a series of steps: (1) Sar1 is recruited to the ER membrane at ER exit sites (ERES), marked by Sec16. Using the GEF Sec12, Sar1 exchanges GDP for GTP and inserts an α-helix into the ER membrane, promoting curvature. (2) Sec23 and Sec24 heterodimers are recruited to ERES, binding Sar1 to form the pre-budding complex. Cargo is loaded into the forming vesicle through direct interaction with Sec24, interaction with a Sec24-binding adaptor protein or bulk flow. (3) Lastly, Sec13 and Sec31 heterotetramers assemble around the forming vesicle, promoting further membrane curvature and scission.


In budding yeast, as well as metazoans, COPII vesicle biogenesis occurs at discrete sites on the transitional ER, called ER exit sites (ERES) (Bannykh et al., 1996; Hammond and Glick, 2000; Bevis et al., 2002; Shindiapina and Barlowe, 2010). ERES are free of ribosomes and marked by Sec16, an ER membrane-associated protein thought to serve as an essential scaffold for COPII assembly in vivo (Connerly et al., 2005; Watson et al., 2006). Metazoan ERES are located near the ER-Golgi intermediate compartment (ERGIC) (Schweizer et al., 1990), a cluster of vesicles and tubules containing the mannose-specific cargo receptor ERGIC-53 (Schweizer et al., 1988; Appenzeller et al., 1999), which is distinct from both the ER and Golgi (Schweizer et al., 1991). Unlike COPII vesicles in budding yeast, which fuse directly with the Golgi (Barlowe et al., 1994), mammalian COPII vesicles typically traffic to the ERGIC, and cargoes are subsequently transported to the Golgi by the distinct coat protein I system (Aridor et al., 1995).

The COPII pathway is essential for protein sorting and cell viability in a wide range of organisms (Gomez-Navarro and Miller, 2016; Aridor, 2018; Bethune and Wieland, 2018; Brandizzi, 2018; Hutchings and Zanetti, 2019; Peotter et al., 2019). In humans, genetic defects in COPII impair cargo trafficking and cause a variety of diseases, including skeletal dysplasias, hematologic abnormalities and neurological disorders (Jones et al., 2003; Zhang et al., 2003; Boyadjiev et al., 2006; Lang et al., 2006; Fromme et al., 2007; Schwarz et al., 2009; Merte et al., 2010; Routledge et al., 2010; Wansleeben et al., 2010; Khoriaty et al., 2012; Beetz et al., 2013; Brandizzi and Barlowe, 2013; Miller and Schekman, 2013; Garbes et al., 2015; Moosa et al., 2015; Wang et al., 2020). These examples demonstrate that COPII function is required for tissue and organismal health.

Despite its broad pathophysiological importance and decades of elegant research, significant aspects of COPII trafficking remain obscure. In particular, while the fundamental steps of vesicle assembly are relatively well understood, much less is known about how cells spatiotemporally modulate COPII activity in response to varying cargo sizes, developmental cues, fluctuating signals, metabolic demands or stress (Gomez-Navarro and Miller, 2016; Aridor, 2018; Bethune and Wieland, 2018; Brandizzi, 2018; Hutchings and Zanetti, 2019; Peotter et al., 2019). Flux through the COPII system can change significantly during normal physiological processes, stress and disease states (Harding et al., 1999; Travers et al., 2000; Shaffer et al., 2004; Ron and Walter, 2007; Farhan et al., 2008; Wang and Kaufman, 2012; Hetz et al., 2013; Liu et al., 2019). However, the mechanisms by which COPII responds to these changes are poorly understood, amounting to a significant knowledge gap in the field. There is ample evidence that COPII components are transcriptionally upregulated in response to such cues as differentiation or ER stress (Melville et al., 2011; Izumi et al., 2012; Fang et al., 2015; Ishikawa et al., 2017; Liu et al., 2019), but it is increasingly clear that faster, transcription-independent modes of regulation can also tune COPII activity. Greater knowledge of dynamic COPII regulation will improve our understanding of fundamental eukaryotic cell biology and may reveal new opportunities to treat diseases of aberrant vesicle trafficking in the future. Here, we review the current literature on post-transcriptional regulation of the COPII pathway, with a particular emphasis on post-translational modifications (PTMs) of the coat proteins themselves.


Sar1

Humans express two paralogous Sar1 proteins, Sar1A and Sar1B, that are ∼90% identical and yet functionally non-redundant in vivo (Fromme et al., 2007; Georges et al., 2011). As with other COPII proteins, the distinct functions of ostensibly similar Sar1 paralogs has been puzzling. Tissue-specific expression of each protein is likely part of the explanation. Another, mutually compatible possibility is that Sar1A and Sar1B (and paralogs of other COPII proteins) are differentially regulated by PTMs, affording a greater range of combinatorial control of cargo trafficking. Perhaps consistent with this hypothesis, several studies have reported regulation of Sar1 isoforms by PTMs. (Please see Table 1 for a compilation of the modes of COPII regulation mentioned in this review).


TABLE 1. Compendium of COPII relevant post-transcriptional modifications.

[image: Table 1]Sar1 regulation by phosphorylation was proposed at least 20 years ago, when it was reported that Sar1 membrane recruitment required not only GTP but also ATP (Aridor and Balch, 2000). Although direct Sar1 phosphorylation was not observed at this time, the kinase inhibitor H89 prevented Sar1 membrane recruitment and the budding of vesicular stomatitis virus glycoprotein (VSVG, a well-characterized COPII model cargo) from microsomes, suggesting kinase regulation of early stage COPII assembly (Aridor and Balch, 2000). Although PKA is a well-known H89 target, the relatively high doses used and the promiscuity of H89 suggested that PKA may not be the relevant kinase (Aridor and Balch, 2000). To investigate this further, the authors also used a PKA peptide inhibitor, and found no inhibition of COPII (Aridor and Balch, 2000). Indeed, other studies confirmed that H89 blocks COPII trafficking at an early biochemical step but indicated that PKA and protein kinase C (PKC) were not the responsible kinases in this case (Lee and Linstedt, 2000). The molecular mechanisms underlying these observations remain unclear.

Later, Sar1B phosphorylation was found to govern the release of pre-chylomicron transport vesicles (PCTV) from the ER (Siddiqi and Mansbach, 2012). Chylomicrons are lipoprotein particles secreted in a COPII- and Sar1B-dependent manner by intestinal enterocytes to transport triglycerides, phospholipids, cholesterol and other cargoes to distant tissues (Siddiqi et al., 2003, 2010). Interestingly, mutations in Sar1B, but not Sar1A, disrupt the secretion of PCTVs and cause chylomicron retention disease in humans (Jones et al., 2003; Georges et al., 2011; Fryer et al., 2014). Although these patients exhibit higher levels of Sar1A, this increase cannot fully compensate for lack of Sar1B (Georges et al., 2011). Isoform-specific regulation of Sar1 may play a role in these unique functions. Siddiqi and Mansbach demonstrated that phosphorylation of Sar1B, but not Sar1A, allowed for the generation of PCTVs in vitro (Siddiqi and Mansbach, 2012). The authors showed that fatty acid binding protein 1 (FABP1), which alone can produce PCTVs (Neeli et al., 2007), is sequestered in a cytosolic complex with Sar1B, Sec13 and small VCP/p97-interactive protein (SVIP) (Siddiqi and Mansbach, 2012). Phosphorylation of Sar1B by PKCζ disrupts this complex, freeing FABP1 to bind intestinal membrane and initiate PCTV release (Siddiqi and Mansbach, 2012). Because PCTVs are far larger than typical COPII cargoes, these results may imply a role for Sar1B PTMs in adapting COPII trafficking to specialized physiological functions.

Sar1A has also been identified as the target of miR-34C, a microRNA involved in the development of insulin-producing cells (IPCs) (Bai et al., 2017). Proinsulin secretion from the ER had previously been shown to require Sar1A (Taneja et al., 2009; Fang et al., 2015). More recently, Bai et al. (2017) reported that miR-34C is transiently upregulated to lower Sar1A levels during the differentiation of IPCs from mesenchymal stem cells, but that continued miR-34C expression reduces insulin secretion through downregulation of Sar1A and other targets. Whether these results extend to pancreatic β-cell differentiation in vivo remains to be determined.

While studies of Sar1 PTMs have mainly focused on phosphorylation, other modifications have been detected in proteomics screens, such as the ubiquitination of K166 on Sar1A and Sar1B [PhosphositePlus database, www.phosphosite.org (Hornbeck et al., 2015)]. At present, the upstream regulators and downstream functional consequences of these modifications are uncertain.



Sec12

As the GEF for Sar1, the transmembrane protein Sec12 is essential for COPII vesicle biogenesis in vivo (d’Enfert et al., 1991). Early studies of Sec12 revealed that it is both N-glycosylated and O-mannosylated on its ER lumenal domain (Nakano et al., 1988; d’Enfert et al., 1991; Sato et al., 1996). Whether glycosylation impacts the activity of mature Sec12 in COPII trafficking, separate from generic protein folding and ER quality control functions, has not been explored. Sec12 is also phosphorylated by multiple kinases. For example, an early report in yeast indicated that phosphorylation by Hrr25, an ortholog of mammalian CK1δ, negatively regulates COPII vesicle budding at least in part by inhibiting Sec12 function (Murakami et al., 1999). In particular, the growth defects of temperature-sensitive sec12 mutant strains were partially suppressed by loss-of-function hrr25 alleles, though the influence of Hrr25 on Sec12 activity in wild type COPII vesicle biogenesis remains unclear (Murakami et al., 1999).

More recently, the Farhan group reported that mammalian Sec12 is a direct target of the leukocyte tyrosine kinase (LTK) (Centonze et al., 2019). Previously, LTK had been identified in two separate functional genetic screens as a regulator of ERES (Farhan et al., 2010; Simpson et al., 2012). Consistent with these observations, the authors showed that LTK phosphorylation of Sec12 regulates the ER export of various COPII cargoes, including mannosidase-II and collagen X (Centonze et al., 2019). Interestingly, LTK also interacts with several COPII cargo receptors, suggesting that it might somehow couple COPII client protein load to Sec12 GEF activity, but this hypothesis remains to be confirmed (Centonze et al., 2019).



Sec23

Among all COPII proteins, the post-transcriptional regulation of Sec23 is perhaps the best documented, revealing regulation by a range of mechanisms. For example, the Ferro-Novick group showed that budding yeast Sec23 is phosphorylated on T555, S742, T747 by a Golgi-localized pool of Hrr25, the same kinase that targets Sec12 (Lord et al., 2011). Phosphomimetic mutations at S742 and/or T747 indicated that phosphorylation inhibits Sar1 binding to Sec23, and in vitro experiments showed that vesicle budding was blocked by Hrr25 in a kinase activity-dependent manner (Figure 2A; Lord et al., 2011). These data indicate a role for Sec23 dephosphorylation in vesicle budding. Conversely, inhibiting Hrr25 via the small molecule IC261 resulted in an accumulation of COPII vesicles docked at the Golgi, suggesting that Hrr25 phosphorylation of Sec23 mediates COPII vesicle uncoating and target membrane fusion, but not tethering, in vivo (Figure 2B; Lord et al., 2011). The authors also demonstrate similar effects of IC261 treatment on VSVG trafficking in mammalian cells, but whether this occurs through analogous phosphorylation of the paralogs Sec23A and/or Sec23B by CK1δ remains to be demonstrated (Lord et al., 2011). Taken together, these results suggest that spatially and temporally regulated phosphorylation of Sec23 may be a conserved mechanism to ensure the unidirectionality of COPII trafficking, deterring unproductive back-fusion with the ER (Lord et al., 2011).
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FIGURE 2. Spatiotemporal control of COPII budding and fusion by Sec23 phosphorylation. (A) Phosphorylation of Sec23 by Hrr25 in yeast and CK1δ in mammalian cells prevents interaction with Sar1, inhibiting budding. The phosphatases Sit4/PP6 dephosphorylate Sec23, allowing for COPII vesicle formation. (B) Golgi/ERGIC membrane-localized pools of Hrr25/CK1δ phosphorylate Sec23, promoting vesicle uncoating and subsequent fusion with the target membrane. Addition of IC261, an Hrr25/CK1δ inhibitor, prevents COPII uncoating and fusion.


Phosphorylation has also been implicated in non-canonical functions of Sec23 in the autophagy pathway. Recently, numerous reports have revealed a role for COPII components, including Sec23, in autophagy, likely serving to traffic membrane and perhaps cargo proteins to the nascent autophagosome for macroautophagy or ER-phagy (Graef et al., 2013; Lemus et al., 2016; Jeong et al., 2018; Cui et al., 2019). PTMs are thought to govern this process. For example, the kinase ULK1, a master regulator of autophagy, phosphorylates Sec23A on S207, S312, and T405, inhibiting trafficking from the ER (Gan et al., 2017). S207 is required for Sec23A binding to Sec31 and vesicle assembly, and a phosphomimetic Sec23A S207D mutant reduced interaction with Sec31A and association with the ERGIC marker ERGIC-53, implying that ULK1 blocks outer coat assembly and trafficking (Gan et al., 2017). In a subsequent study, Sec23B, the second mammalian paralog, was reported to be phosphorylated on S186 by ULK1 upon starvation (Jeong et al., 2018). Interestingly, S186 lies within the interaction motif for both Sec24A and Sec24B (two of four mammalian Sec24 paralogs) and the ubiquitin E3 ligase adaptor F-box protein FBXW5 (Jeong et al., 2018). The authors showed that FBXW5 mediates Sec23B ubiquitination and degradation under nutrient-replete conditions (Jeong et al., 2018). However, upon starvation, ULK1 phosphorylation of S186 inhibited FBXW5 binding to Sec23B, thereby reducing Sec23B ubiquitination and stabilizing the protein (Jeong et al., 2018). Furthermore, starvation resulted in the localization of S186-phosphorylated Sec23B-containing vesicles to the ERGIC, where they promoted autophagic flux (Jeong et al., 2018). Based on these results, the authors proposed that ULK1 phosphorylation enlists Sec23B into autophagosome biogenesis (Jeong et al., 2018). In the future, it will be interesting to determine whether coordinated PTMs differentially regulate Sec23A and Sec23B to balance their roles in canonical COPII trafficking and autophagy, and to test whether these mechanisms are conserved across mammalian tissue types, given the varying ratio of Sec23A:Sec23B expression in different organs (Tao et al., 2012; An et al., 2014; Pishesha et al., 2014; Ulirsch et al., 2014; Khoriaty et al., 2018).

Distinct forms of Sec23 ubiquitination are reported to govern core COPII trafficking functions as well. For example, the Dargemont group showed that the E1 enzyme Uba1, the E2 conjugating enzyme Ubc4 and the E3 ligase Rsp5 are required for ubiquitination of Sec23 in yeast, whereas the ubiquitin protease Ubp3 and the adaptor protein Bre5 mediate the removal of this modification (Cohen et al., 2003). The authors demonstrated that monoubiquitinated Sec23 can be either polyubiquitinated and degraded by the proteasome or deubiquitinated, sparing Sec23 function (Cohen et al., 2003). The single modification may regulate the COPII pathway, because biochemical data revealed that Sec23 monoubiquitination reduced its interaction with Sec24 and altered its partitioning between cytosolic and membrane-bound pools, and genetic experiments showed that mutations in bre5 or ubp3 caused defects in ER-to-Golgi trafficking (Cohen et al., 2003). In subsequent work, the same group demonstrated that Cdc48, a chaperone-like protein, acts as a Ubp3/Bre5 partner to control the proteasome-mediated degradation of Sec23, underlining the elaborate regulation of Sec23 and COPII activity through this PTM (Ossareh-Nazari et al., 2010). Ubiquitination may also regulate mammalian Sec23. Recently, the Remondelli group reported the unusual monoubiquitination of human Sec23A on two cysteine residues, C432 and C449 (Amodio et al., 2017). These residues may be functionally important for COPII trafficking, as the authors report that a C→A mutation at either site reduces Sec23A occupancy at ERES in cultured mammalian cells, though the mechanisms and consequences of these proposed PTMs remain to be confirmed in trafficking assays (Amodio et al., 2017).

We and others have reported that mammalian Sec23 is also modified by O-linked β-N-acetylglucosamine (O-GlcNAc), an essential, intracellular, monosaccharide modification of serine and threonine residues (Teo et al., 2010; Zachara et al., 2011; Cox et al., 2018). Despite the apparent prevalence of Sec23 O-GlcNAcylation, its functional implications long remained unclear. Using mass spectrometry (MS)-based site-mapping, we detected at least 26 O-GlcNAc modifications across multiple domains of human Sec23A (Cox et al., 2018). Sec23A glycosylation is likely dynamic and functionally important, as a small molecule inhibitor of O-GlcNAcase, which removes O-GlcNAc, potentiated Sec23A glycosylation and increased its cytosolic (vs. membrane-bound) localization, compared to vehicle controls (Cox et al., 2018). Moreover, we demonstrated that point-mutations in conserved Sec23A O-GlcNAc sites impaired endogenous collagen transport in human chondrosarcoma cells and failed to fully rescue the collagen trafficking defect and skeletal dysplasia in developing sec23a loss-of-function zebrafish (Cox et al., 2018). Together, these results suggest that O-GlcNAcylation is an important mode of vertebrate Sec23A regulation in vivo, though the biochemical mechanism through which O-GlcNAc affects Sec23A function has yet to be fully elucidated (Cox et al., 2018).

Finally, many studies have demonstrated that both mammalian Sec23 paralogs can be regulated post-transcriptionally through micro-RNAs, particularly in cancer cell lines and tumors. For example, in colorectal cancer cells, miR-21 downregulates Sec23A protein expression and promotes proliferation, migration and invasion (Li et al., 2016). Sec23A is also downregulated by miR-200 in prostate (Szczyrba et al., 2011; Hart et al., 2014) and breast cancer cells (Luo et al., 2013; Bracken et al., 2014), and may participate in metastasis (Sun et al., 2018). However, the impact of Sec23A regulation by miR-200 may vary by tumor type. In a breast cancer model, miR-200s reduced Sec23A-mediated secretion of metastasis-suppressive proteins, such as insulin-like growth factor binding protein 4 and tubulointerstitial nephritis antigen-like 1, whereas overexpression of miR-200 reduced Sec23A expression, trafficking and metastatic behavior (Korpal et al., 2011). Sec23A expression is also regulated in prostate and breast cancer cells by miR-375 (Szczyrba et al., 2011; Luo et al., 2013; Bracken et al., 2014; Hart et al., 2014; Eckstein et al., 2019). These observations might be functionally important in tumor biology and treatment, because miR-375 overexpression inhibited cell growth and caused apoptosis in prostate cancer cells, but also reduced sensitivity to docetaxel treatment in vitro and in in vivo xenograft models (Wang et al., 2016). Similarly, in human medullary thyroid cancer, overexpression of miR-375 caused a decrease in cell proliferation and increased sensitivity to the receptor tyrosine kinase inhibitor vandertanib, effects that were attributed to decreased Sec23A expression by siRNA-mediated knockdown experiments (Lassalle et al., 2016). Less is known about the role of micro-RNAs in Sec23B regulation, but a recent study reported that miR-130a suppressed Sec23B mRNA levels in PC3 prostate cancer cells, leading to apoptosis, possibly through the induction of ER stress (Ramalho-Carvalho et al., 2017). In future work, it will be important to determine whether these phenotypic effects of various micro-RNAs are mediated primarily by Sec23-dependent cargo trafficking or autophagy functions in tumors, and to delineate the physiological role (if any) for these micro-RNAs in the COPII pathway in healthy tissue.



Sec24

Many types of PTMs have been identified on Sec24 proteins, the cargo-selecting subunit of the COPII system, but in most cases the functions of these modifications remain unknown. The Ferro-Novick group reported that Sec24, like Sec23, is phosphorylated by Hrr25 in yeast, but the significance of this observation is not yet clear (Lord et al., 2011). Interestingly, Hrr25 is also found in a complex with the phosphatase Sit4, which itself acts on multiple COPII components, including the Sec24 paralog Lst1, implying a dynamic cycling of phosphorylation on Sec24 (Bhandari et al., 2013). Loss of Sit4 increases the phosphorylation and cytosolic pools of Sec24, Lst1, Sec23, and Sec31 (Roberg et al., 1999; Bhandari et al., 2013). Accordingly, loss of Sit4 or its mammalian ortholog PP6 also delayed the COPII-dependent trafficking of model cargoes, but whether this is mediated by Sec24 phosphorylation in particular, in addition to or instead of the above-mentioned regulation of Sec23, was not clearly defined (Bhandari et al., 2013).

Some evidence suggests that phosphorylation may regulate Sec24 by modulating its interaction with Sec23 or the ER membrane. In mammalian systems, the serine/threonine kinase Akt was shown to phosphorylate the paralogs Sec24C and Sec24D in vitro and in vivo (Sharpe et al., 2011). On Sec24C, Akt phosphorylation was localized to the C-terminal 294 amino acids and may reside on S888, which lies in a partial Akt consensus sequence and caused a 40% reduction in phosphorylation when mutated to alanine (Sharpe et al., 2011). Importantly, Sec24C and Sec24D binding to Sec23 was enhanced when cells were treated with insulin-like growth factor-1 (IGF-1) to activate Akt, and this enhancement was suppressed by simultaneous treatment with an Akt inhibitor (Sharpe et al., 2011). These results suggest that Sec24 phosphorylation by Akt or another, Akt-activated kinase may promote COPII trafficking, but this hypothesis has not been rigorously tested in functional assays. Conversely, other phosphorylation events may inhibit Sec24 membrane binding and function. For example, Dudognon et al. (2004) showed that Sec24C is phosphorylated during mitosis (Figure 3). It has long been known that ERES assembly and COPII trafficking are suspended during cell division (Farmaki et al., 1999; Prescott et al., 2001). Intriguingly, Dudognon et al. (2004) showed that phosphorylated Sec24C from mitotic cells could not be recruited to microsomes, indicating that PTMs may modulate COPII traffic through different cell cycle phases. The responsible kinase(s) were not identified, but a subsequent study detected the phosphorylation of Sec24C at S773 and T776 in a proteomic study of Aurora and Polo-like kinase (PLK) signaling, two kinases with crucial roles during mitosis (Kettenbach et al., 2011). It will be interesting to determine in future work whether Aurora, PLK or other kinases are required to suspend COPII trafficking during mitosis through Sec24 phosphorylation.
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FIGURE 3. Reciprocal modification of Sec24 by O-GlcNAcylation and phosphorylation. During interphase, Sec24C is O-GlcNAc-modified. As the cell enters mitosis, Sec24C is deglycosylated and phosphorylated. Phosphorylated Sec24C is deficient in membrane association. Phosphoproteomics results suggest that Aurora and/or Polo-like kinase (PLK) may be responsible for phosphorylating Sec24C during mitosis, but this remains speculative.


Intriguingly, Dudognon et al. (2004) also suggested that Sec24 phosphorylation might be regulated reciprocally with O-GlcNAcylation (Figure 3). The authors noted that Sec24C was O-GlcNAc-modified during interphase and deglycosylated during mitosis, when phosphorylation was observed. Many studies have demonstrated that phosphorylation and O-GlcNAcylation compete reciprocally for identical or nearby serine and threonine residues on a wide variety of substrates (Cheng and Hart, 2001; Comer and Hart, 2001; Du et al., 2001; Butkinaree et al., 2010; Wang et al., 2012; Zhong et al., 2015; Leney et al., 2017). Recently, we have extended these observations in the case of Sec24C. Our MS analysis of purified human Sec24C revealed O-GlcNAc sites on S773, T775, and T776 (Cox et al., 2018). According to crystal structures of Sec24C, these residues lie at its juxtamembrane surface, suggesting that bulky glycosylation at these sites could alter membrane binding (Mancias and Goldberg, 2008). Moreover, as noted above, S773 and T776 are reported to be phosphorylated by Aurora, Plk or another kinase (Kettenbach et al., 2011), leading to the intriguing hypothesis that reciprocal, site-specific O-GlcNAcylation and phosphorylation might regulate recruitment of Sec24C to the ER (Figure 3). Additionally, O-GlcNAcylation of Sec24 and other COPII components may mediate their protein-protein interactions. We treated human cells with a photocrosslinking GlcNAc analog and observed the crosslinking of Sec24B, Sec24C, and Sec23A to as-yet unidentified partner proteins, indicating that O-GlcNAc residues on COPII proteins can directly contact other interactors (Cox et al., 2018). Experiments to determine the functional effects of Sec24 O-GlcNAcylation are underway.

Like other COPII proteins, Sec24 expression is regulated post-transcriptionally by microRNAs. Sec24A is a target of miR-101-3p (Lu et al., 2018), which suppresses invasion and metastasis in multiple cancers, including hepatocellular carcinoma (Su et al., 2009), adenoid cystic carcinomas (Liu et al., 2015), and gastric cancer (Lu et al., 2018). Sec24D is a target of miR-605, a micro-RNA found only in primates (Lee et al., 2009). Like miR-101-3p, miR-605 suppresses tumor growth in a melanoma model (Chen et al., 2017). Finally, miR-576 is encoded within an intron of the sec24b gene, is induced during viral infections and is thought to inhibit excess inflammation by targeting STING (stimulator of interferon genes), MAVS (mitochondrial antiviral-signaling protein), and TRAF3 (TNF receptor-associated factor 3) (Yarbrough et al., 2014). miR-576 is also down-regulated in non-melanoma skin cancer (Balci et al., 2016), early T-cell precursor acute lymphoblastic leukemia (Coskun et al., 2013), and bladder cancer (Liang et al., 2015). Overexpression of miR-576 in bladder cancer significantly reduced proliferation, although this may be due partly to targeting of cyclin D1, rather than Sec24 (Liang et al., 2015). As with Sec23, it will be interesting to determine the physiological functions of Sec24-targeting mi-RNAs in healthy cells, as well as in tumors.



Sec13

The outer coat protein Sec13 is the only core COPII component with a single homolog in mammalian cells. Although it is likely to be subject to dynamic regulation, almost nothing is known about PTMs of Sec13. Public repositories [PhosphositePlus, (Hornbeck et al., 2015)] indicate that Sec13 phosphorylation at S309 has been detected in nearly a dozen separate datasets from high-throughput phosphoproteomics experiments, but these observations have not been validated through independent methods and the functional significance of Sec13 phosphorylation remains unexplored.



Sec31

Experiments in yeast, protists and mammalian cells indicate that the outer coat protein Sec31 is regulated by phosphorylation, ubiquitination, and O-GlcNAcylation, but the functional consequences remain incompletely understood in most cases (Salama et al., 1997; Jin et al., 2012; Koreishi et al., 2013; Hu et al., 2016; McGourty et al., 2016; Cho and Mook-Jung, 2018). While large-scale MS studies have detected phosphorylation on more than 30 sites on human Sec31A (one of two paralogs) (Olsen et al., 2006; Dephoure et al., 2008; Hornbeck et al., 2015), only four of those sites (S527, S799, S1163, T1165) have been independently verified by a biochemical approach (Koreishi et al., 2013). Similarly, many reported sites of ubiquitination still await validation (Lumpkin et al., 2017; Akimov et al., 2018).

Sec31 PTMs were discovered when the protein itself was first identified in yeast, when it was shown to be phosphorylated via ATP (γ–32P) labeling and immunoprecipitation (IP) (Salama et al., 1997). The functional significance of phosphorylation was supported by the observation that alkaline phosphatase treatment of Sec31 reduced vesicle budding by 50% in an in vitro assay (Salama et al., 1997). When mammalian Sec31 was discovered, potential phosphorylation sites for PKC, calmodulin-dependent protein kinase II and tyrosine kinases were noted, but no experiments were performed to confirm modification (Shugrue et al., 1999). Later, Koreishi et al. (2013) analyzed Sec31A purified from human cells and identified four phosphorylated residues (S527, S799, S1163, T1165). Sec31A with S/T→A mutations at all four sites (4A) localized more strongly to ER membranes and co-IP-ed more efficiently with Sec23 than did wild type Sec31, suggesting a functional impact of phosphorylation on efficient ER recruitment (Koreishi et al., 2013). Importantly, the 4A mutant also demonstrated defective trafficking of COPII cargoes, further supporting a functional effect of phosphorylation (Koreishi et al., 2013). Residual Sec31 phosphorylation was detected on the 4A mutant, however, suggesting that other regulatory phosphorylation sites might remain to be discovered (Koreishi et al., 2013). Regulation of Sec31 by phosphorylation also appears to be broadly conserved across evolution. Hu et al. mutated seven putative phosphorylation sites on the Trypanosoma brucei Sec31 ortholog and found that this 7A mutant caused growth defects that phenocopied an RNAi knockdown of the gene (Hu et al., 2016). Trafficking of a model COPII cargo was blocked by Sec31 knockdown but could be rescued by re-expression of wild type Sec31 or a phosphomimetic mutant at all seven sites (7D), but not with the 7A mutant (Hu et al., 2016). Collectively, these studies indicate that phosphorylation functionally regulates Sec31, but future studies would benefit from determining the impact of phosphorylation at individual sites.

Evidence of Sec31 monoubiquitination arose from the discovery of an interaction between Sec31 and Kelch-like family member 12 (KLHL12), a substrate adaptor for Cullin-3 (Cul3)-containing ubiquitin ligase complexes (Jin et al., 2012). Jin et al. (2012) observed in vitro binding and monoubiquitination of Sec31 by KLHL12-Cul3, and subsequently confirmed these interactions in cells, as dominant-negative Cul3 or genetic knockdown of KLHL12 strongly diminished Sec31 ubiquitination. Similarly, Scott et al. (2016) reported that Sec31 may also be ubiquitinated by Ariadne RBR E3 ubiquitin protein ligase 1 (ARIH1), because ARIH1 knockdown in mammalian cells also reduced Sec31 ubiquitination. Polyubiquitination of Sec31 has not been observed, and proteasome inhibition does not impact Sec31 levels, suggesting mono-, not poly-, ubiquitination of Sec31 is regulatory (Jin et al., 2012; Scott et al., 2016). Interestingly, overexpression of KLHL12 stimulated COPII vesicle enlargement from 70 nm up to 500 nm in diameter and revealed that these carriers contained collagen, a large COPII cargo (Jin et al., 2012). Overexpression of a KLHL12 mutant that cannot bind Sec31 or a Cul3 mutant that blocks Sec31 ubiquitination did not cause vesicle enlargement, and knockdown of KLHL12 or Cul3 resulted in ER retention of collagen in various mammalian cell models (Jin et al., 2012). These data suggest that monoubiquitination of Sec31 by KLHL12-Cul3 stimulates the enlargement of COPII vesicles required for collagen trafficking (Jin et al., 2012). This model is complemented by work investigating ubiquitin-specific protease 8 (USP8), which deubiquitinates Sec31 in mammalian cells (Kawaguchi et al., 2018). Sec31 and USP8 co-IP-ed, and siRNA knockdown of USP8 increased Sec31 ubiquitination and stimulated collagen secretion (Kawaguchi et al., 2018). Importantly, large COPII vesicles induced by KLHL12 overexpression were suppressed by USP8 overexpression, resulting in collagen retention in the ER (Kawaguchi et al., 2018). Together, these studies provide evidence that the export of collagen and perhaps other large cargoes depends on the reversible monoubiquitination of Sec31. In the future, it will be important to confirm the functional role of the endogenous KLHL12, Cul3, and USP8 machinery in collagen trafficking in vivo.

Some evidence suggests the monoubiquitination of Sec31 may respond to calcium signaling (McGourty et al., 2016). In mammalian cells, Sec31 co-IPs and co-localizes at ERES with the calcium binding protein α-1,3/1,6-mannosyltransferase (ALG-2) in a calcium-dependent manner (Yamasaki et al., 2006; Shibata et al., 2007; la Cour et al., 2013; McGourty et al., 2016). In an in vitro COPII vesicle formation assay, ALG-2 reduced budding in the presence of calcium in a dose-dependent fashion (la Cour et al., 2013). Thus, calcium-stimulated ALG-2 binding of Sec31 may delay COPII vesicle budding, providing the time needed for vesicles to enlarge sufficiently to encapsulate massive cargoes, such as collagen (la Cour et al., 2013). In addition to binding Sec31, ALG-2 also co-IP-ed with KLHL12, suggesting that ALG-2 might modulate the ubiquitination of Sec31 by Cul3-containing E3 ligase complexes (McGourty et al., 2016). Consistent with this notion, a rise in cytoplasmic calcium levels stimulated Sec31 monoubiquitination and potentiated the formation of enlarged, collagen-containing COPII vesicles, but not when ALG-2 was siRNA-depleted (McGourty et al., 2016). In the absence of ALG-2, no enlarged COPII vesicles were observed, and collagen accumulated in the ER (McGourty et al., 2016). In contrast, Yamasaki et al. (2006) observed that the trafficking of VSVG, a small cargo, is not affected by ALG-2 depletion. These data support the notion that COPII trafficking of massive cargoes may require calcium signaling and Sec31 monoubiquitination for cage enlargement, but that this is dispensable for smaller cargoes.

We and others have also found that Sec31A is O-GlcNAcylated (Wells et al., 2002; Dudognon et al., 2004; Zachara et al., 2004; Cox et al., 2018), though the functional impact of this modification is as-yet unclear. Recently, Cho et al. reported that Sec31 O-GlcNAcylation on S964 regulates its subcellular localization and function (Cho and Mook-Jung, 2018). However, the authors did not provide direct evidence of O-GlcNAcylation at any site (e.g., by MS) and instead relied on indirect pulldowns with wheat-germ-agglutinin, a low-affinity GlcNAc-binding lectin (Cho and Mook-Jung, 2018). Therefore, the proposed O-GlcNAcylation of S964 remains unverified. In separate work, we used MS site-mapping to identify four specific sites of O-GlcNAcylation on Sec31A, S451, T658, S666, and T674, all of which reside in the α-solenoid domain (Cox et al., 2018). This region of Sec31A is known to mediate its protein-protein interactions in the outer coat lattice and is thought to form a flexible hinge, allowing for coat expansion to accommodate collagen and other large cargoes (Stagg et al., 2006, 2008; Fath et al., 2007; Hutchings and Zanetti, 2019). Therefore, it is tempting to speculate that Sec31A O-GlcNAcylation, like monoubiquitination, may influence COPII coat geometry and dimensions. Experiments are underway to delineate the functional effects of site-specific O-GlcNAc modification of human Sec31.



Sec16

Sec16 is a large, evolutionarily conserved, membrane-associated protein that interacts with several COPII components at ERES. Although dispensable for in vitro vesicle formation, Sec16 is thought to facilitate COPII carrier assembly in vivo and is required for cell viability (Espenshade et al., 1995; Supek et al., 2002; Watson et al., 2006). As might be expected from this essential role, Sec16 is also subject to several types of post-transcriptional control. In an early example, Farhan et al. (2010) found evidence of Sec16 phosphorylation in a functional genetics screening for siRNAs that perturbed the trafficking of an ERGIC-53 model cargo in HeLa cells. Pursuing hits in the mitogen-active kinase (MAPK) cascade, the authors showed that ERK2 knockdown reduced the number of ERES and trafficking of the COPII client α1-antitrypsin by approximately one-third (Farhan et al., 2010). Conversely, in vitro assays revealed that ERK2 potentiated vesicle budding, implicating an early step in the COPII pathway (Farhan et al., 2010). Subsequent biochemical experiments revealed that ERK2 phosphorylates Sec16 on T415, and an unphosphorylatable T415I mutant supported less ERES assembly than did wild type Sec16 (Figure 4A; Farhan et al., 2010). ERK2 phosphorylation of Sec16 may connect growth factor signaling to COPII activity, because expression of active Ras kinase increased Sec16 phosphorylation and ERES number, and later work showed that mitogen stimulation requires Sec16 T415 in order to increase ERES number as well (Farhan et al., 2010; Tillmann et al., 2015).
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FIGURE 4. Multi-modal regulation of the ERES scaffolding protein Sec16. (A) ERK2 phosphorylates Sec16 on T415 and promotes ERES assembly. (B) ULK1 and ULK2 phosphorylate Sec16A and Sec16B. Sec16 phosphorylation promotes Sec16-Sec24 interaction. (C) Upon starvation, dPARP16 promotes MARylation of Sec16, which leads to the formation of Sec bodies, composed of Sec16, Sec23, Sec24, and Sec31.


Remarkably, a second functional genetics screen suggested a role for Sec16 in MAPK signaling in a separate system. Zacharogianni et al. (2011) used an RNAi screen in Drosophila cells to identify kinases required for the proper trafficking of Fringe, a COPII client protein. In this case, the activity of ERK7 or its human homolog, MAPK15, was shown to promote dispersal of Sec16 from ERES (Zacharogianni et al., 2011). Serum starvation produced similar effects on Sec16 localization, and this effect was ERK7-dependent as well (Zacharogianni et al., 2011). Interestingly, the authors showed that T415, the ERK2 phosphorylation site mentioned above, is not needed for these ERK7-driven effects on Sec16, and instead amino acids 1741-1880 of Sec16 were required (Zacharogianni et al., 2011). Although positive evidence of Sec16 phosphorylation by ERK7 (e.g., MS data) is lacking, these results nevertheless indicate a complex role for Sec16 in linking growth factor and MAPK signaling to COPII trafficking (Zacharogianni et al., 2011).

Sec16 phosphorylation may also connect the COPII pathway to the autophagy machinery. Using an MS proteomics approach, the Kundu group demonstrated that the autophagy kinases ULK1 and ULK2 interact directly with and phosphorylate Sec16A and Sec16B (two mammalian paralogs) (Joo et al., 2016). Intriguingly, the authors showed that the ULK1/2-Sec16 interaction impacts COPII trafficking, rather than autophagy, as ULK-deficient murine cells or C. elegans exhibit lower ERES numbers, reduced Sec16-Sec24C colocalization and decreased trafficking of serotonin transporter (SERT), an obligate Sec24C client cargo (Joo et al., 2016). The authors identified S846 as the crucial ULK phosphorylation site on Sec16, demonstrating that the unphosphorylatable mutant S846A supported fewer ERES and less SERT trafficking, as compared to wild type or an S846D phosphomimetic mutant allele (Figure 4B; Joo et al., 2016). Given the above-mentioned role of ULK in directing Sec23 function away from canonical COPII trafficking and toward autophagosome formation (Gan et al., 2017; Jeong et al., 2018), it will be important for future studies to determine how and when ULK-mediated Sec16 and Sec23 phosphorylation are integrated to balance the COPII and autophagy pathways.

As a counterpoint to these results, a recent study by the Sato lab indicated that Sec16 phosphorylation may play little or no role in controlling ER transport or autophagy in budding yeast, suggesting a possible evolutionary divergence in this mode of COPII regulation (Yorimitsu and Sato, 2020). The authors showed that deletion of the N-terminal 565 amino acids of Sec16 led to accumulation of COPII client cargoes in the ER and a marked decrease in autophagy (Yorimitsu and Sato, 2020). However, unphosphorylatable Sec16 mutants, in which either the N-terminal, C-terminal or all expected Sec16 phosphorylation sites were mutated to alanine, showed no change in ER export or autophagy, relative to wild type (Yorimitsu and Sato, 2020). Interestingly, the authors observed that when all Sec16 phosphorylation sites were mutated to alanine, Sec16 showed a nearly twofold increase in interaction with Sec23 (Yorimitsu and Sato, 2020). This finding is reminiscent of the Kundu lab’s observation in metazoans that Sec16 phosphorylation by ULK affects its ability to interact with the Sec23/24 complex, specifically modulating transport of Sec24C client cargoes (Joo et al., 2016).

Sec16 activity may also be regulated by mono-ADP-ribosylation (MARylation), a reversible PTM that influences a wide range of biological processes (Krishnakumar and Kraus, 2010; Fujimori et al., 2012; Hu et al., 2013; Watanabe et al., 2016; Cohen and Chang, 2018). Aguilera-Gomez et al. (2016) developed fluorescent probes to monitor MARylation in Drosophila cells and observed that this modification was induced in response to amino acid starvation. Previous work had suggested that amino acid starvation induced the sequestration of COPII proteins into “Sec bodies” in Drosophila cells, thought to be a way to suspend trafficking during nutrient deprivation while maintaining the COPII machinery in reserve (Amodio et al., 2009; Zacharogianni et al., 2014). However, the mechanisms governing Sec body formation remained largely unknown. Aguilera-Gomez et al. (2016) found that the ribosyltransferase dPARP16 is required for both starvation-induced MARylation and Sec body formation, suggesting a direct regulatory role (Figure 4C). The authors observed MARylation signal near ERES, and found that C-terminal residues 1805–1848 of Sec16 (but not certain other COPII proteins, such as Sec23) were required for this signal and could induce Sec body formation when overexpressed in the absence of stress (Aguilera-Gomez et al., 2016). These results suggest that Sec16 may receive nutrient cues through MARylation to tune COPII activity. It will be interesting to determine whether Sec16 is directly MARylated in fly and mammalian cells, and to define the mechanism that connects amino acid sensing to ribosyltransferase activity.



CARGOES, CARGO RECEPTORS, AND ACCESSORY PROTEINS

One under-explored question in the COPII field is whether the export of specific cargoes is regulated by modification of the cargoes themselves, their receptors or accessory proteins, as opposed to changes on the core COPII machinery. A few examples indicate that this mode of regulation may be more widespread than is currently appreciated. For instance, Yellaturu et al. (2009) reported that phosphorylation of the COPII cargoes sterol regulatory element binding proteins (SREBPs) regulates their interaction with COPII components (Figure 5A). SREBPs are transmembrane transcription factors that govern the expression of genes controlling cholesterol homeostasis and de novo fatty acid biosynthesis, with SREBP-1c as the major isoform in liver and fat (Shimano and Sato, 2017; Brown et al., 2018; DeBose-Boyd and Ye, 2018). Previously, insulin stimulation was known to induce SREBP-1c mRNA and protein in hepatocytes, but whether it affected trafficking or other post-translational aspects of SREBP-1c function was not fully clear (Hegarty et al., 2005). Yellaturu et al. (2009) used a Sar1-glutathione S-transferase pulldown assay and an in vitro microsome system to discover that insulin stimulation induces the phosphorylation of SREBP-1c at the ER (Figure 5A). This, in turn, enhances the affinity of the SREBP-1c cleavage-activating protein (SCAP)-SREBP-1c complex for Sec23/Sec24, and its subsequent trafficking to the Golgi for site-1 and site-2 protease processing, requisite steps in SREBP signaling (Yellaturu et al., 2009). This phosphorylation event is likely functionally important because alkaline phosphatase treatment of membranes from hepatoma cells abolished the insulin-induced enhancement of SREBP-1c/SCAP binding to Sec23/Sec24 (Yellaturu et al., 2009). The phosphoinositide 3-kinase (PI3K)-Akt pathway, which is induced by insulin, was required for these effects on trafficking, as chemical or genetic inhibition of PI3K/Akt blocked insulin-induced SREBP-1c phosphorylation in the hepatoma system (Yellaturu et al., 2009). Finally, the authors demonstrated that Akt can phosphorylate SREBP-1c in vitro (Yellaturu et al., 2009), suggesting that the PI3K/Akt pathway may govern COPII trafficking at both the level of Sec24 phosphorylation, noted above (Sharpe et al., 2011), and cargo phosphorylation. These results may also explain prior observations that the PI3K inhibitor LY294002 disrupts COPII-dependent transport of SCAP, while activation of PI3K/Akt by insulin-life growth factor-1 treatment increases SCAP transport (Du et al., 2006).
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FIGURE 5. Regulation of COPII trafficking by cargo PTMs. (A) Insulin stimulation, which activates the PI3K pathway, induces the phosphorylation of sterol regulatory element binding proteins (SREBP) by Akt. Phosphorylation increases the affinity of the SREBP-1c/SREBP cleavage-activating protein (SCAP) complex for Sec23/Sec24 and promotes COPII-dependent trafficking to the Golgi. (B) The acyltransferase Porcupine is necessary for the palmitoylation of Wnt, which enhances its binding to preformed Wntless/Sec12 complexes and facilitates Wnt secretion by COPII.


A second example of trafficking control through cargo PTMs is provided by Sun et al. (2017) in their study of Wnts (Figure 5B). Wnts are an important class of cell surface receptors that are required for embryonic development in animals and are dysregulated in human cancers (Steinhart and Angers, 2018; Patel et al., 2019). Wnt secretion requires the transmembrane protein Wntless, which binds Wnts directly, but the mechanisms controlling Wnt/Wntless vesicle assembly and trafficking are incompletely understood. Here, the authors used an IP/MS approach to show that Wntless binds to Sec12 and several other COPII proteins (Sun et al., 2017). Interestingly, they further demonstrated that the Wntless/Sec12 interaction promotes Wnt secretion, and PTMs are required for this effect (Sun et al., 2017). Wnts are known to be acylated as part of their maturation (Steinhart and Angers, 2018; Patel et al., 2019). Sun et al. (2017) showed that palmitoylation of Wnts promotes the Wntless/Sec12 interaction, thereby enhancing the interaction (presumably indirect) between Wntless and Sar1, and potentiating subsequent COPII-mediated trafficking. This signaling is likely required for optimal Wnt secretion, as an inhibitor of the acyltransferase Porcupine prevented Wnt palmitoylation and reduced the Wnt/Wntless/Sar1 interactions, although the Wntless/Sec12 interaction persisted (Sun et al., 2017). The authors propose that Wnt maturation (including palmitoylation) and subsequent binding to pre-formed Wntless/Sec12 complexes facilitate Sar1 recruitment and COPII vesicle assembly and export (Sun et al., 2017). In this model, Wnt palmitoylation could be understood as a licensing PTM, serving as a prerequisite for a properly liganded cargo to be efficiently loaded into and secreted by COPII carriers.

Another interesting example is provided by transport and Golgi organization 1 (TANGO1), an ERES-localized transmembrane protein that acts as a cargo receptor for collagen (Bard et al., 2006; Saito et al., 2009; Raote et al., 2018). TANGO1 recruits ERGIC membranes to ERES in order to generate the carrier sizes necessary for collagen and other large cargo (Bard et al., 2006; Saito et al., 2009; Raote et al., 2018). TANGO1 has also been shown to form rings around ERES (Raote et al., 2017) and interact with another ER-membrane resident protein, cutaneous T-cell lymphoma-associated antigen 5 (cTAGE5), to localize Sec12 and Sec23 to ERES as well (Saito et al., 2009, 2011, 2014). The case for its importance in ERES formation is further strengthened by a study indicating that TANGO1 recruits and coordinates with Sec16 to properly organize ERES (Maeda et al., 2017). Moreover, PTMs of TANGO1 have been implicated in modulating its role as an ERES assembler and organizer. Recently, Maeda et al. demonstrated that TANGO1 is a substrate of the kinase CK1 and the phosphatase PP1, and that TANGO1 phosphorylation by CK1 reduces its interaction with Sec16, leading to a mitosis-linked dissolution of ERES (Maeda et al., 2020). Another study in Drosophila showed that loss of PGANT4, an O-GalNAc transferase, resulted in TANGO1 cleavage and subsequent loss of secretory granules and apical secretion (Zhang et al., 2014). However, more work is needed to identify the specific residues modified by these PTMs. Indeed, many TANGO1 phosphorylation sites have been reported, but the regulatory roles of these remain to be explored (Chen et al., 2009; Grimsrud et al., 2012; Wilson-Grady et al., 2013; Mertins et al., 2014; Parker et al., 2015; Pinto et al., 2015; Minard et al., 2016; Sacco et al., 2016; Williams et al., 2016; Robles et al., 2017; Degryse et al., 2018).

In a final example, phosphorylation of the transmembrane v-SNARE machinery, which is responsible for COPII vesicle fusion with its target membrane, has profound effects on endomembrane structure within S. cerevisiae (Weinberger et al., 2005). Studies have focused on Sed5, an essential SNARE that interacts with several other SNAREs in distinct complexes to mediate COPII vesicle-ERGIC fusion and COPI-dependent retrograde fusion (Holthuis et al., 1998; Mossessova et al., 2003; Weinberger et al., 2005). Weinberger and colleagues demonstrated that aspartate substitution of S317 of Sed5, a PKA phosphorylation site, resulted in elongation of the ER, accumulation of vesicles in the cytoplasm, aberrant retrograde trafficking, and growth defects (Weinberger et al., 2005). Conversely, substitution of S317 with alanine resulted in a stacked, ordered Golgi atypical of S. cerevisiae, but no defects in endomembrane function (Weinberger et al., 2005). The authors suggest a model in which phosphorylation of Sed5 at S317 leads to dispersal of Golgi membrane, whereas dephosphorylation leads to mammalian-like Golgi stacks (Weinberger et al., 2005). More recent work has also implicated Sed5 PTMs in COPII-dependent protein quality control (Babazadeh et al., 2019). Researchers observed that phosphorylation of Sed5 in S. cerevisiae led to an increase in COPII association with heat-shock protein 104 and an increase in ER-to-Golgi trafficking, promoting protein disaggregation (Babazadeh et al., 2019). It will be interesting to determine whether phosphorylation of syntaxin-5, the mammalian ortholog of Sed5, exerts similar effects on trafficking or organelle morphology.



UNKNOWN TARGETS—NEW BIOLOGY AWAITING DISCOVERY

As the examples above illustrate, PTMs regulate many, if not all, components of the COPII pathway. A range of other studies also implicates PTM signaling in COPII trafficking, but without identifying the relevant targets, highlighting the considerable amount of interesting biology that remains to be characterized. Indeed, as noted previously, functional genetic screens showed that dozens of kinases and phosphatases are required for normal COPII trafficking (Farhan et al., 2010; Simpson et al., 2012). The discovery of Sec12 as an important target of LTK, which emerged as a hit in both screens (Farhan et al., 2010; Simpson et al., 2012), demonstrates the promise of functional genomics methods to reveal new aspects of COPII regulation.

Directed experiments with chemical inhibitors have also implicated PTM signaling in COPII trafficking. In an early example, Pryde et al. (1998) discovered a link between serine/threonine phosphatases and vesicle assembly. It has long been known that the Golgi fragments in regulated fashion during mitosis in order to partition to daughter cells (Nelson, 2000; Valente and Colanzi, 2015). This process involves the suspension of trafficking pathways, but how that is accomplished remains incompletely understood. Because the PP1/PP2A inhibitor okadaic acid (OA) also causes reversible Golgi fragmentation, Pryde et al. (1998) used it as a tool to investigate the mechanisms behind this phenomenon. The authors showed that OA treatment arrests the trafficking of a model COPII cargo, and that ERGIC-53 co-fractionated with Sec13 in control cells but accumulated in the rough ER fraction, away from Sec13, in OA-treated cells (Pryde et al., 1998). Sec13 was not displaced from the membrane by OA treatment, indicating that the inhibitor may act by blocking cargo entry into COPII vesicles (Pryde et al., 1998). Unfortunately, no specific phosphoprotein substrate of PP1/PP2A was implicated in these observations.

In a similar vein, Wang and Lucocq (2007) used a semi-permeabilized cell system and the microtubule poison nocodazole, which arrests cells in mitosis by disrupting the spindle, to examine the regulated suspension of COPII trafficking. Consistent with Pryde et al. (1998), the authors found that a cocktail of phosphatase inhibitors prevented COPII cargo loading into vesicles (Wang and Lucocq, 2007). They then tested candidate kinases to determine which may account for this effect and found that inhibition or immunodepletion of p38 MAPK restored trafficking even in the presence of nocodazole (Wang and Lucocq, 2007). Conversely, nocodazole treatment activated p38, supporting the specificity of these results, although no p38 substrates were identified to explain the apparent effects on COPII function (Wang and Lucocq, 2007). In addition, the authors were unable to detect p38 activation in the same cell system using a mitotic shake-off method, suggesting that p38’s role in COPII regulation may be due to microtubule disruption, rather than a natural feature of mitosis, at least in this case (Wang and Lucocq, 2007).

Chemical kinase inhibitors have also provided tantalizing clues to as-yet uncharacterized COPII regulation. As described above, H89, an ATP-competitive isoquinolinesulfonamide, has been a useful tool in several contexts (Aridor and Balch, 2000; Lee and Linstedt, 2000). In another example, Jamora et al. (1999) used H89 to inhibit PKCμ in rat kidney epithelial NRK cells, observing that it prevented Golgi fragmentation induced by Gβγ, a heterotrimeric G protein that may interact with PKCμ. VSVG reporter assays confirmed that H89 arrests COPII-dependent trafficking from the ER in this system (Jamora et al., 1999). However, subsequent work with other inhibitors cast doubt on whether PKC isoforms are truly the relevant H89 target in this case (Lee and Linstedt, 2000).

More recently, contemporary MS phosphoproteomics has revealed new modes of COPII regulation. For example, the Luini group used engineered cell systems that experience a sudden surge in folded model COPII cargoes (e.g., VSVG, procollagen I) to examine phosphorylation changes occurring downstream (Subramanian et al., 2019). The authors reported the intriguing observation that Sec24, when engaged with folded cargo at ERES, appears to serve as a GEF for the heterotrimeric G protein Gα12, leading to Gα12 activation and subsequent adenylate cyclase 7 (ADCY7) and PKA signaling at ERES (Subramanian et al., 2019). These results suggest a new self-regulatory signaling circuit at the ER, where Sec24 senses cargo load by engaging directly with folded client proteins and then potentiates ER exit via a Gα12/ADCY7/PKA cascade (Subramanian et al., 2019). The authors dubbed this process “autoregulation of ER export,” or AREX (Subramanian et al., 2019). Phosphoproteomics results suggested cargo-induced changes in the MAPK and PI3K/Akt pathways, in addition to Gα12/ADCY7/PKA, and indeed targeted inhibition of ERK, Akt or PKA blocked AREX-driven trafficking of VSVG and procollagen model cargoes, though not that of a human growth hormone reporter, also a COPII client (Subramanian et al., 2019). In future work, it will be important to determine both the biophysical basis of Gα12 activation by Sec24 and the substrate(s) of the Gα12/ADCY7/PKA, MAPK, and PI3K/Akt pathways most directly relevant to AREX and COPII trafficking, especially since these pleiotropic signaling cascades undoubtedly have many indirect effects, beyond regulating anterograde secretion.



CONCLUSION AND FUTURE DIRECTIONS

A quarter-century of pathbreaking COPII research has revealed fascinating detail on the foundational aspects of this essential cell biological process. Despite this progress, we still have much to learn. For example, our understanding of ERES organization, the control of vesicle size and scission, and the dynamic regulation of COPII trafficking flux all remain incomplete (Barlowe, 2020). In particular, we believe that the continued study of post-transcriptional regulation will shed new light on how COPII trafficking is integrated into eukaryotic cell biology, both by responding rapidly to changes in upstream signals, nutrient cues or stress, and by relaying information from the ER to other organelles to maintain cellular homeostasis. We envision that recent advances in quantitative PTM characterization by MS, single-cell analytic methods, CRISPR-based functional genetic screens and new super-resolution optical and cryo-electron microscopy imaging modalities in particular will empower future studies of COPII regulation. Exciting advances on these fronts promise that the next 25 years of COPII research will vastly increase our understanding of this ancient and fundamental aspect of eukaryotic biology.
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Proper targeting of the urate and xenobiotic transporter ATP-binding transporter subfamily G member 2 (ABCG2) to the plasma membrane (PM) is essential for its normal function. The naturally occurring Q141K and M71V polymorphisms in ABCG2, associated with gout and hyperuricemia, affect the cellular routing of the transporter, rather than its transport function. The cellular localization of ABCG2 variants was formerly studied by immunolabeling, which provides information only on the steady-state distribution of the protein, leaving the dynamics of its cellular routing unexplored. In the present study, we assessed in detail the trafficking of the wild-type, M71V-, and Q141K-ABCG2 variants from the endoplasmic reticulum (ER) to the cell surface using a dynamic approach, the so-called Retention Using Selective Hooks (RUSH) system. This method also allowed us to study the kinetics of glycosylation of these variants. We found that the fraction of Q141K- and M71V-ABCG2 that passes the ER quality control system is only partially targeted to the PM; a subfraction is immobile and retained in the ER. Surprisingly, the transit of these variants through the Golgi apparatus (either the appearance or the exit) was unaffected; however, their PM delivery beyond the Golgi was delayed. In addition to identifying the specific defects in the trafficking of these ABCG2 variants, our study provides a novel experimental tool for studying the effect of drugs that potentially promote the cell surface delivery of mutant or polymorphic ABCG2 variants with impaired trafficking.
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INTRODUCTION

The human ATP-binding transporter subfamily G member 2 (ABCG2) [breast cancer resistance protein (BCRP)], a member of the ATP-binding cassette (ABC) transporter superfamily, mediates the transport of numerous metabolites and xenobiotics at various physiological barriers. Among others, it facilitates urate excretion in the kidney and the gastrointestinal tract (Borst and Elferink, 2002; van Herwaarden and Schinkel, 2006; Giacomini et al., 2010). This transporter with its broad substrate recognition is also implicated in multidrug resistance of cancer cells. ABCG2 is localized in the plasma membrane (PM) and resides predominantly in the apical domain when expressed in polarized cells. Since the primary task of this transporter is the extrusion of substances from the cell, correct trafficking to the proper membrane compartment is crucial for its function.

Following biosynthesis on the surface of the endoplasmic reticulum (ER), ABC proteins, like other membrane proteins, get folded and inserted into the ER membrane. Several PM-resident ABC proteins then get glycosylated. This process is initiated in the ER and completed in the Golgi apparatus. ABCG2 has been reported to be glycosylated on asparagine 596 (Diop and Hrycyna, 2005). Some early studies reported that mutations at this residue do not affect the expression and trafficking of ABCG2 (Diop and Hrycyna, 2005; Mohrmann et al., 2005); however, a more sensitive assay subsequently demonstrated a partial proteasomal degradation of ABCG2 when N-linked glycosylation was pharmacologically disrupted or N596 was mutated (Nakagawa et al., 2009). After maturation, PM-resident ABC proteins are directed from the Golgi apparatus to the cell surface. Certain ABC proteins, exemplified by ABCC2/MRP2, are delivered directly to the PM (Zeigerer et al., 2012), whereas others, such as ABCB11/BSEP, traffic to an endosomal pool first and subsequently get delivered to the cell surface (Kipp et al., 2001; Wakabayashi et al., 2005). ABCB1/MDR1 has been reported to take both direct and endosomal routes (Sai et al., 1999; Kipp and Arias, 2000; De Rosa et al., 2004; Wakabayashi et al., 2005; Fu et al., 2007). Moreover, under certain conditions, non-glycosylated ABCC7/cystic fibrosis transmembrane conductance regulator (CFTR) traffics directly from the ER to the PM, bypassing the Golgi apparatus, via a Golgi reassembly stacking protein (GRASP)-dependent pathway (Gee et al., 2011). The particular trafficking routes, taken by ABCG2 on its journey from the ER to the cell surface, remain to be elucidated.

Some mutations or polymorphisms in the genes encoding for ABC transporters do not affect the proteins’ transport activity, but rather their cellular trafficking. The most widely known of these is the ΔF508 mutation in CFTR, which is the most frequent genetic determinant of the hereditary disease, cystic fibrosis (Lukacs et al., 1993). Several other mutations in various ABC transporters have been reported to cause trafficking impairment. When the function is more or less preserved, these defects can at least partially be restored by small molecules called pharmacological chaperones or correctors. Corr-4a and Lumacaftor (VX-809) have been specifically developed to improve the trafficking of CFTR mutants (Ren et al., 2013), whereas a histone deacetylase inhibitor, 4-phenylbutyric acid (4-PBA), has proven to be effective in ameliorating cell surface delivery of numerous ABC transporter variants with impaired trafficking. These include mutants of CFTR, ABCB4/MDR3, ABCB11/BSEP, ABCC6/MRP6, as well as ABCG2 (Rubenstein et al., 1997; Hayashi and Sugiyama, 2007; Woodward et al., 2013; Gordo-Gilart et al., 2016; Pomozi et al., 2017).

Numerous mutations or polymorphic variations in ABCG2 have been reported (Heyes et al., 2018). Of these, several result in diminished trafficking of the transporter (recently reviewed in Mozner et al., 2019). The most well-studied polymorphism in ABCG2 is a glutamine-to-lysine substitution at residue 141 (Q141K) (Imai et al., 2002). The allele frequency of this polymorphism is the highest in the Asian population (17%), but it is also close to 10% in the Caucasian population. A strong link between the Q141K-ABCG2 and the development of gout has been established (Woodward et al., 2013). Recently, we have identified and characterized a novel polymorphic variant (M71V) of ABCG2 (Zambo et al., 2018). In that previous study, a group of healthy volunteers and patients with clinically verified gout or hyperuricemia was screened for low ABCG2 expression levels. In individuals with markedly reduced ABCG2 expression, the ABCG2 gene was sequenced, leading to the identification of the M71V variant. The frequency of this variant in the general cohort was about 1%. The relatively small group size of patients did not allow us to draw any conclusions regarding whether M71V is more frequent in individuals with gout or hyperuricemia. A systematic screening involving more patients is still required to clarify this issue.

A detailed characterization of this novel ABCG2 variant revealed that M71V-ABCG2 is similar to the well-characterized Q141K variant in several aspects (Zambo et al., 2018). Both Q141K and M71V exhibit a somewhat reduced transport activity, but predominantly, they have major folding and trafficking defects. Their expression levels are reduced as a consequence of increased degradation. Interestingly, inhibition of either proteasomal or lysosomal degradation leads to an increased expression of Q141K-ABCG2, demonstrating the involvement of both of these mechanisms in the degradation of this variant (Nakagawa et al., 2009; Basseville et al., 2012). The accumulation of Q141K in perinuclear compartments, identified as aggresomes, has also been demonstrated (Basseville et al., 2012). The expression level of M71V is also increased upon proteasome inhibition (Zambo et al., 2020). As regards cellular distribution, the majority of both Q141K and M71V are localized intracellularly, but a small fraction of both variants can reach the PM (Zambo et al., 2018, 2020). Although substantial information on the Q141K variant has been accumulated, it is still not fully understood how this or the M71V polymorphism actually affects the cellular trafficking of ABCG2.

For studying cellular trafficking, the most commonly used method is immunostaining combined with microscopy. However, this approach gives information only on the steady-state distribution of the cellular component of interest. Direct labeling of proteins with genetically encoded fluorescent tags, such as fluorescent proteins, reinvigorated the trafficking studies of proteins. Studying the dynamics of cellular routing also requires a sort of synchronization, which is analogous to the “pulse” in a pulse-chase experiment in biochemistry. Synchronization can be performed by photoactivation, photoconversion, thermal block, or using trapping tags, such as conditional aggregation domains or thermosensitive viral glycoprotein (VSVGts). Recently, a novel method, named the Retention Using Selective Hooks (RUSH) system, also relying on the use of trapping tags, has been reported (Boncompain and Perez, 2012). This synchronization method is based on the interaction of streptavidin with streptavidin-binding peptide (SBP) and biotin.

In the present study, we have investigated the cellular routing of the wild type (wt) ABCG2, as well as the Q141K and M71V polymorphic variants, focusing on their delivery from the site of synthesis (ER) to the business end, i.e., the PM. To explore the trafficking kinetics of the ABCG2 variants, we employed the RUSH system. This method allowed us to dissect the various stages of cellular routing, as well as to identify the particular trafficking events that are impaired by the Q141K and M71V variations. Besides deciphering the specific routing defects of the ABCG2 variants, our study also provides a novel experimental tool for studying ABCG2 trafficking and screening drugs that may facilitate the cell surface delivery of mutant/polymorphic variants with trafficking defects.



MATERIALS AND METHODS


Materials

Biotin (Sigma-Aldrich, cat. B4501) and 4-PBA (Sigma-Aldrich, cat. P21005) were dissolved in distilled water and used at 100 μM and 1 mM final concentrations, respectively. MG132 (Sigma-Aldrich, cat. M7449), Bafilomycin A1 (BAF) (Sigma-Aldrich, cat. B1793), and Ko143 (Sigma-Aldrich, cat. K2144) were dissolved in dimethyl sulfoxide (DMSO) (Sigma-Aldrich, cat. 276855) and applied at 2 μM, 10 nM, and 1 μM final concentrations, respectively. For solvent controls, distilled water and DMSO were used accordingly.



DNA Constructs

Sequences of the M71V and Q141K ABCG2 variants were recloned from other vectors previously generated in laboratory (Zambo et al., 2018 and Zs. Bartos unpublished) into the pcDNA_3.1-EGFP-ABCG2 plasmid (Orban et al., 2008). The various RUSH-ABCG2 expression vectors (wt, M71V, Q141K) were generated from the ER hook-containing Str-Ii_SBP-EGFP-Golgin84 plasmid (Addgene # 65303), in which the EGFP-Golgin84 sequence was replaced with various EGFP-ABCG2 sequences by cloning them with the following primers: atggacgagctgtacaagggactcagatctcgag (forward) and ggctgattatgatcagttatcagttatctagatccggtggatc (reverse) using the Gibson assembly method (New England BioLabs, NEBuilder HiFi DNA Assembly Master Mix, cat. E2621). The sequences of all plasmid constructs were confirmed by Sanger sequencing (Microsynth AG). In certain experiments, a plasmid containing the sequence of untagged wt ABCG2 (pcDNA_3.2-ABCG2) was also used (Orban et al., 2008).



Cell Culture and Transfection

HeLa cells were maintained in Dulbecco’s Modified Eagle’s medium (D-MEM)/high glucose/GlutaMAX (Gibco, cat. 10569010), completed with 10% FBS (Gibco, cat. 1640071) and 1% penicillin–streptomycin (Gibco, cat. 15070063) at 37°C (5% CO2). Transient transfection of HeLa cells was carried out with Lipofectamine 2000 (Invitrogen, cat. 11668019) in Opti-MEM (Gibco, cat. 31985070) according to the manufacturer’s protocol. Cells for qPCR and Western blotting were grown on 12-well plates (Greiner, cat. M8687), whereas those used for microscopy were seeded onto ibi-Treat μ-Slide eight well chambers (Ibidi, cat. 80826). HeLa cell line stably expressing wt ABCG2 has been previously generated in our laboratory (Zambo et al., 2020).



RNA Extraction and Real-Time PCR

mRNA samples from cells expressing RUSH-ABCG2 were isolated and purified 24 h after transfection using a PureLink MiniKit (Thermo Fisher Scientific, cat. 12183018A) according to the manufacturer’s instructions. After cDNA conversion (Thermo Fisher Scientific, High-capacity cDNA reverse transcription kit, cat. 4368814), PCR reactions were run on a StepOnePlusTM platform (Thermo Fisher Scientific) using qPCR probes for ABCG2 (Thermo Fisher Scientific, cat. 00184979) and RPLP0 (Thermo Fisher Scientific, cat. 99999902). ABCG2 mRNA levels were normalized first to RPLP0 and then to ABCG2-wt mRNA levels using the ΔΔCt method.



Western Blotting and Glycosidase Digestions

Protein from the untreated cells (0 h) as well as from those subjected to 100 μM biotin for the indicated times was extracted by the addition of TE buffer (0.1 M TRIS-PO4, 4% SDS, 4 mM Na-EDTA, 40% glycerol, 0.04% bromophenol blue, and 0.04% β-mercaptoethanol; materials from Sigma-Aldrich), and then the samples were sonicated. In certain experiments, when indicated, the cells were pre-treated with 1 mM 4-PBA, 2 μm MG132, or 10 nM BAF overnight prior to biotin addition. Equal amounts of the protein samples were loaded onto 7.5% polyacrylamide gels. For glycosidase treatments, cell lysates containing 20 μg of protein were subjected to 20 U Endoglycosidase H (Endo H) (Sigma, cat.11088726001) or 20 U PNGase F (Roche, cat.11365185001) according to the manufacturer’s protocols. Blots were probed with anti-ABCG2 (Bxp-21, Abcam, cat. ab3380) or anti-β-actin (Sigma, cat. A1978) primary antibodies, and subsequently developed with HRP-conjugated goat anti-mouse IgG (H + L) secondary antibody (Abcam, cat. ab97023). Detection was performed by luminography using Clarity Western ECL Substrate (Bio-Rad, cat. 1705060). For quantification, densitometry was carried out by the ImageJ software.



Immunostaining of Fixed Cells

HeLa cells, previously seeded onto an eight-well chamber at 2 × 104 cells/well density and grown for 24 h, were transfected with the RUSH-ABCG2 variants as described above. Twenty-four hours after transfection, the cells were subjected to 100 μM biotin for the indicated times (or remained untreated–0 h). Following this, the samples were gently washed with PBS and then fixed with 4% PFA for 10 min at room temperature. After several washing steps, the cells were blocked for 1 h at room temperature in Dulbecco’s modified phosphate buffer saline (DPBS) containing 2% bovine serum albumin, 1% fish gelatine, 0.1% Triton X-100, and 5% goat serum (blocking buffer). Next, the samples were incubated with anti-Giantin primary antibody (1:1000 in blocking buffer, BioLegend, cat. 924302) at 4°C overnight. After being washed with PBS, the cells were incubated with Alexa Fluor-594 conjugated anti-rabbit secondary antibody (1:250 in blocking buffer, Thermo Fisher Scientific, cat. A11012) for 1 h at room temperature.



Labeling ER and Cell Surface Expression of ABCG2 in Live Cells

For ER labeling, 24 h after transfection and following biotin treatment (when applicable), the cells expressing the RUSH-ABCG2 variants were subjected to ER-Tracker Red (1:1000 in Hanks’ Balanced Salt solution, Thermo Fisher Scientific, cat. E34251) for 30 min at 37°C. Next, the samples were gently washed with PBS, fixed with 4% PFA for 10 min at room temperature, and washed again three times with PBS. For a better understanding of the labeling procedure, see Supplementary Figure 1A. To label ABCG2 on the cell surface, 24 h after transfection, the cells expressing the RUSH-ABCG2 variants were co-incubated with Alexa Fluor 647 conjugated 5D3 antibody (1 μg/ml, Novus Biological and Biotech, cat. FAB995R), 1 μM Ko143 (Sigma-Aldrich, cat. K2144), and 100 μM biotin in D-MEM for various lengths of time ranging 1–8 h. For time zero, biotin was omitted from the medium (Supplementary Figure 1C). Subsequently, the samples were gently washed with PBS, fixed with 1% PFA for 5 min at room temperature and washed again three times with PBS.



Confocal Microscopy Imaging and Colocalization Analysis

Cells were imaged by a Zeiss LSM 710 laser scanning fluorescence confocal microscope using a Plan-Apochromat 40 × (N.A. = 1.4) oil immersion objective. For each condition, six images were acquired at each time point. Each field of view contained 15–20 transfected cells identified by the green fluorescent protein (GFP) fluorescence. The green fluorescence of GFP was acquired between 500 and 540 nm at 488 nm excitation. When applicable, the far-red fluorescence over 640 nm was acquired sequentially with the green signal at 633 nm excitation. The images were analyzed by the ZEN 2012 software. Colocalization was expressed by the colocalization coefficient (CC) as follows:

[image: image]

where NG,colocalized denotes the number of colocalized (green and red) pixels and NG,total refers to the total number of pixels in the green channel. It is important to note that unlike Pearson’s or Manders’ coefficients, CC avoids using pixel intensities but is based on numbers of pixels, thus demonstrating overlapping. For determining CC values, the automatic Costes threshold method was used in the ZEN software. In some experiments, when indicated, not CC but the integrated far-red fluorescence (single channel) was determined.



Kinetic and Statistical Analyses

After determining the kinetics of the appearance of the ABCG2 variants in various compartments, the time courses of the CC were fitted with different equations using the least square method. For release from the ER, a single exponential decay was applied as follows:

[image: image]

where t and CCER are the independent and dependent variable, respectively; CC0, CC∞, and kout are free parameters. CC0 gives the initial value (t = 0), whereas CC∞ indicates the limit of the function (t = ∞), and kout is the time constant. For the transit through the Golgi apparatus, two exponential decay functions embedded in one another was employed:

[image: image]

The designations are similar to that above, with the difference that there are four free parameters here: CC0, CC∞, kin, and kout. The two time constants (kin and kout) refer to the inward and outward transport, respectively. Delivery to the PM was described with a sigmoidal function:
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where A, B, and Δt are free parameters. The initial value and the convergence can be calculated from these parameters as follows:

[image: image]
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For studying surface delivery, not only CCPM but also the integrated far-red fluorescence was fitted. For curve fitting, Microsoft Excel Solver, a part of the Analysis ToolPak Add-in, was used applying the GRG Non-linear engine, which is applicable for solving smooth non-linear problems. The variables were altered until the sum of squared differences between the measured and fitted points reached the minimum. Fitting was performed with three independent experiments involving 100–120 cells each.

For statistical analyses, Student’s t test was used. Differences were considered significant, when p < 0.05.



RESULTS AND DISCUSSION


Generation and Characterization of ABCG2-RUSH Expression Vectors

Certain polymorphisms in ABCG2, such as the M71V and Q141K substitutions, impair cellular trafficking of the transporter, but leave its transport function more or less unaffected (Zambo et al., 2018). Our aim was studying how these two polymorphisms affect the most crucial part of cellular trafficking of a PM resident protein: the delivery from the ER to the cell surface. To analyze the trafficking of the ABCG2 variants in detail, we employed the dynamic RUSH system (Boncompain and Perez, 2012). In this synchronization method, the so-called hook protein, resident of a specific cellular compartment (donor compartment), is tagged with streptavidin, whereas the protein of interest (reporter) is tagged with SBP. Besides, the reporter is fused to a fluorescent protein, e.g., GFP. Because of the strong interaction between streptavidin and SBP, the reporter is retained in the donor compartment by the hook when they are co-expressed. In turn, the protein of interest can be released by the addition of biotin, which has higher affinity to streptavidin than SBP has. This way, the protein of interest can be tracked from the donor compartment to its final destination.

For our studies, we used an ER hook, the invariant chain (Ii) of major histocompatibility complex (MHC) class II, and three variants of the ABCG2 as reporters: the wt, M71V-, or Q141K-ABCG2 (Figure 1A). In the bicistronic plasmid construct, the sequences of the hook and the reporter are under the control of cytomegalovirus (CMV) promoter and separated by an internal ribosome entry site (IRES) as well as a synthetic intron [intervening sequence (IVS)]. It is important to note that in our construct, the hook precedes the ABGG2 reporter. This consideration is based on the fact that the first sequence is translated more efficiently than the one following IRES (Mizuguchi et al., 2000); thus, this arrangement can minimize the leak from the donor compartment. The scheme in Figure 1B depicts the process to be studied: the synchronized release of ABCG2 from the ER and its delivery to the PM.
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FIGURE 1. Characterization of the RUSH vectors containing sequences for ABCG2 variants. (A) Scheme of the expression vector encoding for the ER-hook (invariant chain, Ii) fused with a streptavidin (Str) tag, as well as for the ABCG2 N-terminally tagged with streptavidin-binding peptide (SBP) and GFP. (B) Principle of the RUSH system: in the absence of 100 μM biotin, the reporter is retained in the ER by the Str–SBP interaction. Upon the addition of biotin (marked with a red star), the SBP-EGFP-ABCG2 reporter is released from the ER, passes through the Golgi apparatus, and ultimately traffics to the plasma membrane. Panel (B) was prepared using image vectors from Servier Medical Art (www.servier.com). (C) Representative images of HeLa cells transiently expressing various RUSH-ABCG2 variants (wild type–wt, M71V, and Q141K) in the absence of biotin (0 h), as well as 1 and 2 h after biotin was added. The green fluorescence of GFP was acquired by confocal microscopy. Scale bars represent 20 μm.


To validate the applicability of our RUSH vectors, we transiently transfected HeLa cells with the constructs containing the sequences of the ABCG2 variants and monitored their expression and cellular localization by means of the GFP fluorescence using confocal microscopy. As documented in Figure 1C, the SBP-tagged ABCG2 variants are efficiently retained in the ER without biotin (0 h). Upon addition of 100 μM biotin, the wt ABCG2 rapidly trafficked to the cell surface. One hour after treatment, it was predominantly localized perinuclearly (presumably in the Golgi compartment), and after an additional hour, it was mainly observed at the cell periphery (presumably in the PM). Two hours after biotin addition, about 40% of the total wt ABCG2 was localized to the cell periphery, whereas roughly 30% was perinuclear. In contrast, the M71V and Q141K variants were predominantly found intracellularly 2 h after biotin addition (about 25% of total perinuclearly), and only minor fractions of those were observed at the cell periphery (∼10 and ∼20%, respectively). A more detailed, quantitative analysis on the cellular distribution of ABCG2 variants is performed in subsequent experiments. These observations indicate impaired trafficking of the polymorphic variants as compared to that of the wt ABCG2.

It is noteworthy that the polymorphic variants exhibited lower fluorescence intensities (Figure 1C), suggesting lower expression levels. Therefore, we next assessed the mRNA and protein expression levels by real-time PCR and Western blotting, respectively. As expected, no significant difference in the mRNA expression of the ABCG2 variants was seen (Figure 2A). This finding demonstrates that neither the transcription of the plasmids, nor the mRNA stability is affected. In contrast, marked differences in the protein expression levels were found (Figures 2C,E). The polymorphic variants exhibited considerably lower protein levels as compared to the wt. This observation is in line with previous findings demonstrating lower protein expression levels in cell lines transiently or stably expressing these ABCG2 variants (Zambo et al., 2018, 2020). Also, the ABCG2 protein levels were lower in the red blood cell membrane of individuals carrying these polymorphisms (Zambo et al., 2018). As mentioned earlier, the M71V and Q141K variants are subjected to proteasomal degradation. Co-expression with an ER hook could theoretically prevent these variants from entering the degradative pathway, but our recent finding suggests that the studied polymorphic variants get at least partially degraded before reaching the hook protein in the ER.
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FIGURE 2. Expression and glycosylation of the ABCG2 variants before and after ER release. (A) The mRNA expression of RUSH-ABCG2 variants 24 h after transfection of HeLa cells. The expression levels were normalized to a reference gene (ribosomal protein P0) and to the level of wild-type ABCG2. Values depict mean ± SEM (n = 3). (B) Representative Western blot of RUSH-ABCG2-wt expressed in HeLa cells 4 h after biotin addition. (C) Deglycosylation of the ABCG2 variants by Endo H (H) and PNGase F (F) glycosidases in the absence of biotin and 4 h after biotin was added. (D) The fraction of the upper bands with or without glycosidase treatment. The intensities were determined by densitometry and expressed as % of total ± SEM (n = 2). (E) Western blot analysis of the ABCG2 variants retained in the ER (0 h) or 1, 2, and 4 h after synchronized release from the ER. (F) The kinetics of protein maturations of the ABCG2 variants. The fraction of the upper bands were determined by densitometry and expressed as % of total ± SEM (n = 3).




Assessment of Maturation of the ABCG2 Variants

Western blot analysis revealed that ABCG2 appeared in three individual bands following biotin treatment (Figure 2B). It seems plausible that the lower band (band 1) on the Western blot corresponds to the non-glycosylated form of the transporter, whereas the middle (band 2) and upper (band 3) bands are the core and fully glycosylated forms, respectively. To explore this assumption, the ABCG2-containing samples were subjected to Endo H or PNGase F glycosidase treatment. No change in the apparent molecular weights was observed upon Endo H digestion, whereas only the two lower bands remained visible after the PNGase F treatment (Figure 2C). Endo H cleaves between N-acetylglucosamine residues of high mannose and some hybrid types of N-linked glycans, while PNGase F removes the entire carbohydrate tree from all types of N-linked glycoproteins. Therefore, our observations suggest that band 3 is indeed the fully glycosylated form of ABCG2. Western analysis of the wt ABCG2 alone revealed a small, but definite downward shift in the apparent molecular weight of band 2 upon PNGase F treatment (Supplementary Figure 2A), which is not visible in Western blots with longer exposures. It implies that band 2 contains both the core and non-glycosylated forms. Nevertheless, the identity of band 1 remains elusive. In previous studies, when ABCG2 was subjected to Western blot analysis, usually only two bands were reported. However, in some studies, a faint band can be observed below the two dominant bands, when cropping of the Western blot allows seeing this (Nakagawa et al., 2008; Basseville et al., 2012). Some other reports also demonstrated that treatment with PNGase F or tunicamycin resulted in three bands in Western blots assessing ABCG2 (Ozvegy et al., 2001; Hou et al., 2013). It can be assumed that this third, lower band is identical to our band 1, and likely is a degradation product. In subsequent quantitative assessments, the level of glycosylation of the ABCG2 variants was determined by the ratio of the upper band intensity over the total intensities of all three bands. The changes in the fraction of the fully glycosylated forms upon glycosidase treatments are shown in Figure 2D.

Next, we examined the kinetics of glycosylation of the different ABCG2 variants following release from the ER. At time zero (in the absence of biotin), the two lower bands were prevalent, although a faint upper band was also observed, especially for the wt (Figure 2E). It is most likely due to the minor basal leak from the donor compartment. Upon the addition of biotin, band 3 got gradually augmented and became comparable with band 2 in the case of the wt and the Q141K variant, whereas the maturation of the M71V variant was slower and less pronounced (see Supplementary Figure 2B). Interestingly, the total expression of wt ABCG2 exhibited a transient increase upon biotin addition, which eventually returned to the baseline (Supplementary Figure 2C). It is plausible that this transient alteration in the total protein level is a consequence of perturbation of the steady state of protein translation, folding, processing, and degradation. This transient was not observed with the polymorphic variants (Supplementary Figure 2C), implying that one or more of the cellular processes listed above differ from that seen with wt ABCG2, resulting in a different steady state without biotin.

Quantitative analysis of several Western blots similar to that shown in Figure 2E revealed delayed and confined glycosylation kinetics for the polymorphic variants as compared to that observed with the wt (Figure 2F). A detailed analysis of the kinetics of all three bands is shown in Supplementary Figure 2B. Four hours after biotin addition, the fully glycosylated fraction of the wt ABCG2 reached 42.7 ± 4.3%, whereas the share of band 2 per total declined from 63.6 ± 9.5 to 47.2 ± 3.1%. Similarly, the fraction of band 3 of the Q141K variant increased to 33.9 ± 3.5%, while the share of band 2 declined to 53.6 ± 3.8% after 4 h. The rise of the fully glycosylated form (band 3) was less pronounced for the M71V variant, reaching only 25.7 ± 2.1%, whereas band 2 declined to 62.8 ± 4.0% in this case. Since the glycosylation of membrane proteins is initiated in the ER and finalized in the Golgi apparatus, the observed glycosylation kinetics suggests that a substantial fraction of the ABCG2 variants (even that of the Q141K and M71V) is released from the ER and reaches the Golgi apparatus. In addition, our results also revealed a somewhat deferred and restricted maturation of the polymorphic ABCG2 variants.



Dissection of ABCG2 Trafficking From the ER to the Cell Surface

To analyze the movement of ABCG2 from the ER to the cell surface, we expressed RUSH-ABCG2-wt in HeLa cells and labeled them with various cellular markers in the absence or presence of biotin. To monitor the release of ABCG2 from the ER, ER-Tracker Red was used (Supplementary Figure 1A), whereas to follow its transfer through the Golgi apparatus, immunostaining with anti-Giantin was performed (Supplementary Figure 1B). To assess the PM delivery of ABCG2, we employed Alexa Flour 647 conjugated 5D3 antibody, which recognizes extracellular epitopes of ABCG2. Since 5D3 labeling is conformation sensitive (Özvegy-Laczka et al., 2005), the cells were incubated with the antibody in the presence of 1 μM Ko143, a specific inhibitor of ABCG2 (Supplementary Figure 1C). Since labeling was preserved even after internalization (see Supplementary Figures 3A,B), all the ABCG2 that once reached the cell surface was detected, allowing us to monitor cell surface delivery by itself.

As demonstrated in Figure 3A, the GFP signal initially colocalized with the fluorescence of ER-Tracker Red, but got eventually separated, demonstrating the gradual release of wt ABCG2 from the ER. At time zero, the GFP-tagged ABCG2 did not colocalize with the Golgi marker, but exhibited an overlap with that 1 h after biotin addition (Figure 3B). Later, the two signals diverged again, indicating the transient appearance of wt ABCG2 in the Golgi apparatus. No wt ABCG2 was observed in the PM at time zero, but a small fraction of that appeared there 1 h after release from the ER, and the majority of the transporter reached the cell surface within 4 h (Figure 3C). To evaluate the trafficking events quantitatively, we performed a colocalization analysis using a series of images similar to those shown in Figures 3A–C. Instead of using the usual Pearson’s correlation coefficient, we employed the CC, as this measure expresses what fraction of ABCG2 is localized to the particular compartment designated by the specific cellular marker, independently of how many non-transfected cells are present in the studied field of view. This analysis revealed a rapid release of ABCG2 from the ER, its transient appearance in the Golgi apparatus, and its continuous delivery to the cell surface (Figure 3D). Over 60% of the wt ABCG2 reached the PM within 4 h. When the cells were incubated with biotin and 5D3 for a longer period of time, only a slight further increase was observed, indicating that PM delivery was essentially completed within 4 h (Supplementary Figure 3A). To verify that the 5D3-containing solution is not depleted of the antibody and is still able to detect ABCG2 on the cell surface even after longer incubation times, the supernatant was removed after 6 h and transferred to HeLa cells previously transfected with GFP-ABCG2 harbored in a regular (non-RUSH) plasmid. As demonstrated in Supplementary Figure 3B, the used supernatant is still applicable. It should, however, be noted that longer incubation times resulted in the internalization of ABCG2 as demonstrated in Supplementary Figure 3C. Internalization occurs normally at a certain speed, but 5D3 is known to accelerate endocytosis of ABCG2 (Studzian et al., 2015). In long-term experiments, de novo synthesis also feeds the pool of the studied protein; therefore, the system eventually converges to the steady-state arrangement. To avoid that, protein synthesis can be blocked by cyclohexamide. However, in our hand, cyclohexamide was found to exert no substantial effect in the short-term experiments, while it was detrimental to the cells upon extended treatment. Considering all these aspects, we focused on the first 4 h of ABCG2 trafficking in further experiments.
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FIGURE 3. Tracking down ABCG2 from the ER to the cell surface. HeLa cells transfected with RUSH-ABCG2-wt were labeled with various cellular markers in the absence (0 h) and after the addition of biotin (1–4 h) as indicated. Representative confocal images depict the cellular localization of ABCG2 (green) and the marker (red). Intensity profiles on the right indicate the green and red fluorescence signals along a representative line (marked with a blue arrow) through a single cell. (A) The endoplasmic reticulum was labeled with ER-Tracker Red. (B) The Golgi apparatus was immunostained with anti-Giantin antibody. (C) Alexa Fluor 647 conjugated ABCG2-specific antibody (5D3) was used to detect ABCG2 on the cell surface. The detailed labeling protocols are shown in Supplementary Figure 1. Scale bars represent 10 μm. (D) Quantitative evaluation of the trafficking of ABCG2 from the ER to the PM. The fractions of ABCG2 present in various cellular compartments (ER, Golgi, and PM) were determined at different time points by the colocalization coefficient (the number of colocalized pixels over the number of all green pixels) in a series of confocal images similar to those shown in Panels (A–C). The colocalization coefficients are plotted versus time (mean ± SEM of three independent experiments involving ∼120 cells each).




Trafficking of the Polymorphic ABCG2 Variants

Similar to that shown with the wt ABCG2 in Figure 3, the various stages of ER to PM trafficking of the M71V and Q141K variants were also studied. Interestingly, after the addition of biotin, a large portion of the polymorphic variants was retained in the ER, as indicated by their colocalization with the ER tracker (Figures 4A,B, left columns). A smaller fraction, however, reached the Golgi apparatus, and eventually the PM (middle and right columns, respectively). The PM localization of these variants is clearly indicated by the intensity profile analysis of GFP and 5D3 labeling shown in Supplementary Figure 4.
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FIGURE 4. Trafficking of the ABCG2 variants from the ER to the cell surface. HeLa cells expressing the M71V-ABCG2 (A) or Q141K-ABCG2 (B) variants were labeled with various cellular markers in the absence (0 h) and after the addition of biotin (1–4 h). Representative confocal images show the cellular localization of the ABCG2 variant (green) and the marker (red). For more details, see the legend of Figure 3. Scale bars represent 10 μm.


The kinetics of the various stages of ER to PM trafficking was determined by colocalization analysis using the CC as discussed above. To generate data suitable for function fitting, higher time resolution was applied. We found that the release of the polymorphic variants from the ER was restricted as compared to that of the wt (Figure 5A). When the kinetic curves were fitted with an exponential decay, the initial values were alike and close to 1, as expected (Figure 5B). Surprisingly, the time constants did not differ either (Figure 5C), indicating that the rates of ER exit are similar for the wt and the polymorphic variants. In contrast, the limit of the function, the value to which the CC values converge, was close to zero in the case of the wt, whereas this figure was about 40% for the M71V and Q141K variants (Figure 5B), suggesting that a substantial fraction of the polymorphic variants is immobile. Colocalization study using the Golgi marker demonstrated that the transit of the polymorphic variants through the Golgi apparatus is similar to that of the wt (Figure 5D). The quantitative analysis of the kinetic curves revealed that neither the initial values, nor the entry and exit rates, nor the convergences differed (Figures 5E,F).
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FIGURE 5. Kinetic analysis of ER to cell surface trafficking of the ABCG2 variants. Colocalization coefficients at various time points were calculated in HeLa cells expressing ABCG2 wt, M71V, or Q141K variants using ER Tracker (A–C), Giantin (D–F), or cell surface labeling with 5D3 (G–I) as cellular markers. The kinetic curves shown in Panels (A,D,G) were fitted; and the initial values (CC0), the limits of function (CC∞) (B,E,F), as well as the time constants (C,F,I) were determined. kin and kout represent the time constants for entering and exiting the given compartment, respectively. Data represent mean ± SEM of three independent experiments involving 100–120 cells each. Asterisks indicate statistically significant differences (p < 0.05).


Cell surface labeling of ABCG2 with 5D3 allowed us to determine the kinetics of PM delivery (Figure 5G). Interestingly, the rate of delivery was significantly lower for the polymorphic variants, whereas the initial values and the limits of the function remained unchanged (Figures 5H,I). Unlike using ER or Golgi markers, cell surface labeling with Alexa Four 647 conjugated 5D3 allows us to follow the PM delivery of ABCG2 directly. Accumulation of far-red fluorescence reflects the appearance of ABCG2 on the cell surface. The kinetics of this signal, shown in Supplementary Figure 5, was found to be similar to that seen with the CC. Again, the time constants for the cell surface delivery of the polymorphic variants were significantly lower than that for the wt (Supplementary Figure 5C). It can be hypothesized that the half-life of the polymorphic variants in the PM is so short that the antibody is unable to bind to the protein, causing an apparent reduction in the delivery rates. This scenario cannot completely be excluded, but is highly unlikely. Considering that the association constants of the antibodies used for labeling fall into the 0.5–5 × 106 M–1 s–1 range, labeling of ABCG2 with 1 μg/ml 5D3 is expected to take place within a few minutes, whereas the half-life of the wt ABCG2 in the PM is over 60 h (Peng et al., 2010). Nevertheless, no data on the internalization rates or the PM half-lives of the M71V and Q141K variants are available.

In summary, our data demonstrate that the M71V and Q141K ABCG2 variants have a trafficking deficiency. Specifically, our results suggest that the trafficking of the polymorphic variants is affected at two points, namely, (i) a large fraction of these variants is immobile and retained in the ER, as well as (ii) their PM delivery beyond the Golgi apparatus is delayed. What happens to the ABCG2 variants between the Golgi and the PM remains elusive. One of the possibilities is that a portion of the polymorphic variants gets degraded post-Golgi. It is also conceivable that the variants are retained in an intracellular pool, e.g., in endosomes. Other ABC transporters, such as ABCB11/BSEP and ABCB1/MDR1, have been reported to get delivered to the PM through a large endosomal reservoir (Sai et al., 1999; Kipp and Arias, 2000; Kipp et al., 2001; De Rosa et al., 2004; Wakabayashi et al., 2005; Fu et al., 2007). It is also possible that a fraction of the variants is sequestered intracellularly. Disposal of Q141K-ABCG2 to aggresomes has previously been demonstrated (Basseville et al., 2012). Which one of these processes (or conceivably a combination of these) is responsible for the diminished delivery of the polymorphic ABCG2 variants is yet to be studied. Nonetheless, a fraction of both studied variants unambiguously traffics to the cell surface, although their delivery rate is smaller than that of the wt.



Effect of Pharmacological Agents on RUSH-ABCG2 Trafficking

To characterize the RUSH-ABCG2 system further, we employed various drugs that influence protein folding and degradation, such as 4-PBA, a chemical corrector, MG132, a proteasome inhibitor, and BAF, a lysosome inhibitor. HeLa cells were pre-treated with these drugs for 24 h following transfection, and then the ER-retained ABCG2 variants were released by biotin. The protein levels in the absence (0 h) and 4 h after the addition of biotin (4 h) were determined by Western blot analysis (Figure 6A). Neither 4-PBA nor BAF affected the levels of any of the three ABCG2 variants significantly (Figures 6A,B). MG132 treatment had no effect on wt ABCG2 expression but increased the protein levels of the polymorphic variants. Normally, when the ABCG2 variants are released from the ER by biotin, an upper band, reflecting the glycosylated form of the protein, appears on the Western blot (see Figures 2E,F). However, following MG132 treatment neither wt ABCG2, nor the polymorphic variants undergo glycosylation (Figures 6A,C). This finding is unexpected, since in previous studies on HeLa cells stably expressing wt and M71V-ABCG2, MG132 treatment resulted in an increase in the general expression of both variants (Zambo et al., 2020). Importantly, the elevation of ABCG2 expression in these cell lines was predominantly due to the increase of the non-glycosylated form, whereas the amount of the glycosylated form remained unaltered. Similar results were obtained with other ABCG2 mutants, such as the F208S and S441N variants when they were treated with MG132 (Nakagawa et al., 2008). Along with these observations, our findings suggest that MG132 blocks ABCG2 routing prior to reaching the Golgi apparatus.
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FIGURE 6. Effect of pharmacological treatments on the RUSH-ABCG2 system. (A) Western blot analysis of wt, M71V, and Q141K ABCG2 variants following treatment with 1 mM 4-phenylbutyric acid (4-PBA), 2 μm MG132, or 10 nM Bafilomycin A1 (BAF), compared to the untreated samples (ut). Samples were collected before (0 h) and 4 h after biotin addition (4 h). (B) Quantitative analysis of Western blots similar to that shown in Panel (A). The densities were normalized either to the untreated wt sample (0 h), or to the untreated polymorphic variant forms (0 h) as indicated. Data are mean ± SEM of three independent experiments. Asterisks indicate statistically significant differences (p < 0.05). (C) The fraction of the upper bands were determined by densitometry and expressed as % of total. Data are mean ± SEM. (D) Representative confocal microscopy images of HeLa cells expressing the ABCG2 variants pretreated with 4-PBA, MG132, or BAF before (0 h) and 4 h after (4 h) biotin addition. Scale bars represent 10 μm.


To examine the effect of the abovementioned pharmacological agents on the cellular trafficking of the ABCG2 variants, we imaged both the untreated and the pre-treated cells in the absence or presence of biotin by confocal microscopy. We found that 4-PBA did not substantially alter the trafficking of either the wt or the polymorphic variant ABCG2 constructs within the studied time frame (Figure 6D). Similarly, BAF did not alter their subcellular localization, suggesting that the ABCG2 variants do not undergo lysosomal degradation within 4 h after their release from the ER. Nevertheless, following MG132 treatment, the wt ABCG2, as well as the polymorphic variants were retained intracellularly, even 4 h after biotin addition, as demonstrated by the GFP signal distribution. This explains why MG132 prevented glycosylation of all ABCG2 variants in our previous experiment. If trafficking is blocked and the transporter cannot enter the Golgi apparatus, its glycosylation cannot be completed. Why and how MG132 impedes the release of proteins from the ER remain to be revealed.

Similar to our recent observations using the RUSH constructs, previous studies also demonstrated increased expression levels of the wt and Q141K ABCG2 variants upon MG132 treatment (Furukawa et al., 2009; Basseville et al., 2012), and we also reported the same for M71V-ABCG2 (Zambo et al., 2020). Based on cell surface labeling with 5D3 and confocal microscopy, Furukawa et al. (2009) suggested that inhibition of proteasomal degradation has no effect on the cell surface delivery of the wt ABCG2, while it facilitates the trafficking of the Q141K variant. It should, however, be noted that all of these previous studies employed stable cell lines, which are not suitable for exploring trafficking events, since only the steady-state distribution of the protein can be elucidated in these cells. Transient expression or, even better, synchronous release systems have the potential to reveal the intracellular movements of a protein of interest. To compare stably expressing and transiently transfected cell lines with the cells transfected with RUSH vector in terms of the effect of MG132, we explored the expression and localization of wt ABCG2 in these three cellular models using immunostaining and/or confocal imaging, as well as Western blotting (Supplementary Figure 6). We found that the core/non-glycosylated form of ABCG2 was hardly detectable in the stable cell line, and most of the protein was localized to the PM. Upon MG132 treatment, some extra intracellular staining was observed, and a marked band appeared on the Western blot at the level of the core/non-glycosylated form (middle panels and lanes). The cell surface localization, as well as the intensity of the upper band reflecting the glycosylated form, remained basically unaltered. In contrast, in cells transiently transfected with ABCG2, the level of the glycosylated form markedly decreased following MG132 treatment, and the majority of ABCG2 was localized intracellularly (left panels and lanes). The effect of MG132 in the RUSH system was even more pronounced: no glycosylated band and no PM localized ABCG2 could be observed after the inhibition of proteasomal degradation (right panels and lanes). These experiments indicate that MG132 has no substantial effect on the fraction of ABCG2 that has already reached the PM, but it blocks its release from the ER (or alternatively facilitates its retrograde transport from the Golgi to the ER). Our results also draw attention to the point that steady-state systems, such as cell lines stably expressing the protein of interest, are not suitable for studying dynamic events like protein trafficking, since the distributed protein levels can obscure the observation of transient changes.



CONCLUSION

In summary, we have adapted the RUSH system for studying the cellular routing of various ABCG2 variants. This dynamic approach, based on the retention and synchronous release of the protein of interest, allowed us to study the release from the ER, the transfer through the Golgi apparatus and the delivery to the PM separately. In accordance with previous observations, we found that the M71V and Q141K polymorphic variants were expressed at a lower level than wt ABCG2, most likely as a consequence of protein instability and proteasomal degradation. We demonstrated that the trafficking of both the M71V and the Q141K variants are substantially impaired, and the characteristics of their defect are similar. The assay we developed, capable of determining the spatiotemporal distribution of ABCG2 among various cellular compartments, allowed us to identify the particular trafficking steps affected by these polymorphisms. A large portion (about 40%) of the polymorphic variants is immobile, which cannot leave the ER. Also, the delivery of Q141K and M71V to the PM is deferred. Other trafficking parameters, at least those that are involved in the ER to PM routing, remained unaltered. To understand what exactly happens to the polymorphic variants between the Golgi apparatus and the PM requires further investigations. In addition to identifying the specific trafficking defects of various ABCG2 variants, we demonstrated how this system can be used for testing pharmacological agents that potentially influence cellular distributions of these variants. Specifically, the experimental tool we developed in this study is applicable for screening drugs that promote PM delivery of ABCG2 variants with impaired trafficking; thus, it has the potential to support the development of more effective and personalized therapies for gout patients.
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Supplementary Figure 1 | Labeling protocols for tracking ABCG2 in various cellular compartments. (A) Timeline of ER-Tracker labeling of HeLa cells transfected with RUSH-ABCG2. Red arrow indicates when the cells were subjected to ER-Tracker Red in the absence of biotin. Addition of biotin alone is marked with dark blue arrows, whereas incubation with biotin and ER-Tracker Red is shown in light blue. Yellow flashes mark the time of fixation with 4% paraformaldehyde. (B) Timeline of Golgi marker labeling. After fixation, the cells were subjected to immunostaining with an anti-Giantin antibody. (C) Timeline of 5D3 labeling. The red arrow here indicates incubation with Alexa Fluor 647 conjugated 5D3 antibody in the presence of Ko143, whereas light blue arrows designate when this mixture was supplemented with biotin. Purple flashes indicate a gentle, 5-min fixation with 1% paraformaldehyde.

Supplementary Figure 2 | Maturation of the ABCG2 variants. The RUSH-ABCG2 constructs were expressed in HeLa cells and subjected to biotin. (A) Lysates from wt ABCG2-expressing cells without biotin treatment (0 h), as well as 4 and 24 h after biotin addition were subjected to PNGase F digestion. Western blot analysis depicts the comparison between glycosidase-treated and untreated samples. (B) Western blots of cell lysates, containing the ABCG2 variants and collected before (0 h), as well as 1, 2, and 4 h after the addition of biotin, were quantitatively analyzed. The fractions of the three bands were determined by densitometry and are expressed as % of total ± SEM (n = 3). (C) Quantitative analysis of total protein expression of ABCG2 variants before (0 h), as well as 1, 2, and 4 h after biotin addition. Data depict mean ± SEM (n = 3).

Supplementary Figure 3 | Cell surface labeling of ABCG2 with 5D3 for an extended time. (A) Kinetics of cell surface delivery of ABCG2 monitored for 8 h. Experimental conditions are identical to those shown in Figure 3C (also see Supplementary Figure 2C). Briefly, HeLa cells transfected withRUSH-ABCG2-wt were subjected to 5D3 antibody in the presence of Ko143 and biotin (except for time 0, when biotin was omitted). (B) Confocal microscopy images of HeLa cells expressing RUSH-ABCG2-wt (green) were labeled with 5D3 antibody (red), and subjected to biotin for 6 and 8 h. An extensive internalization of ABCG2 can be observed. In addition, 5D3 labeling seems to be stable even intracellularly. (C) Testing for 5D3 antibody depletion from the labeling medium. Supernatant from cells shown in Panel (B) (6 h) were transferred to GFP-ABCG2-expressing HeLa cells. The used supernatant was still able to detect ABCG2 on the cell surface. Scale bars represent 10 μm.

Supplementary Figure 4 | Cell surface appearance of the M71V- and Q141K-ABCG2 polymorphic variants. HeLa cells transfected with RUSH-ABCG2-M71V or RUSH-ABCG2-Q141K were cell surface labeled with Alexa Fluor 647 conjugated 5D3 antibody 4 h following biotin addition. The representative confocal fluorescence images of M71V (A) and Q141K (B) (the same as shown in Figures 4A,B, respectively) were evaluated by intensity profile analysis along the blue lines indicated. The lower panels depict the intensity profiles for GFP (ABCG2–green) and 5D3 labeling (red). Scale bars represent 10 μm.

Supplementary Figure 5 | Kinetic analysis of cell surface appearance of the ABCG2 variants using far red fluorescence signal. Integrated far red signals at various time points were determined in the experiments exploring the plasma membrane delivery of the ABCG2. The kinetic curves shown in Panel (A) were then fitted with sigmoidal functions. The parameters of the fits, such as the initial values (F0), the limits of function (F∞), and the time constants (kin) are presented in Panels (B,C). Data are obtained from three independent experiments involving 100–120 cells each. Error bars represent ± SEM. Asterisks indicate statistically significant differences (p < 0.05).

Supplementary Figure 6 | Effect of the proteasome inhibitor MG132 on the localization and glycosylation of ABCG2 in stable and transient cell lines. HeLa cells transiently transfected with ABCG2-wt (Orban et al., 2008) or RUSH-ABCG2-wt, and HeLa cells stably expressing ABCG2 (Zambo et al., 2020) were subjected to 2 μM MG132 overnight. (A) Representative confocal microscopy images depict untreated (upper panels) and MG132 treated cells (lower panels) of the various cellular models. Scale bars represent 20 μm. (B) Western blot analysis of lysates of untreated and MG132 treated cells. Each sample contains 50 μg protein. The molecular weight of mature ABCG2 is 72 kDa, while that of its GFP-tagged counterpart is about100 kDa.


ABBREVIATIONS

4-PBA, 4-phenylbutyric acid; ABCG2, ATP-binding transporter subfamily G member 2; BAF, Bafilomycin A1; BCRP, breast cancer resistance protein; CC, colocalization coefficient; CFTR, cystic fibrosis transmembrane conductance regulator; CMV, cytomegalovirus; DMSO, dimethyl sulfoxide; Endo H, endoglycosidase H; ER, endoplasmic reticulum; GFP, green fluorescent protein; Ii, invariant chain; IRES, internal ribosomal entry site; IVS, intervening sequence; MHC, major histocompatibility complex; PM, plasma membrane; PNGase F, N-glycosidase F; RUSH, retention using selective hooks; SBP, streptavidin-binding peptide; Str, streptavidin; wt, wild type.
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Activity of the SNARE Protein SNAP29 at the Endoplasmic Reticulum and Golgi Apparatus
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Snap29 is a conserved regulator of membrane fusion essential to complete autophagy and to support other cellular processes, including cell division. In humans, inactivating SNAP29 mutations causes CEDNIK syndrome, a rare multi-systemic disorder characterized by congenital neuro-cutaneous alterations. The fibroblasts of CEDNIK patients show alterations of the Golgi apparatus (GA). However, whether and how Snap29 acts at the GA is unclear. Here we investigate SNAP29 function at the GA and endoplasmic reticulum (ER). As part of the elongated structures in proximity to these membrane compartments, a pool of SNAP29 forms a complex with Syntaxin18, or with Syntaxin5, which we find is required to engage SEC22B-loaded vesicles. Consistent with this, in HeLa cells, in neuroepithelial stem cells, and in vivo, decreased SNAP29 activity alters GA architecture and reduces ER to GA trafficking. Our data reveal a new regulatory function of Snap29 in promoting secretory trafficking.
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INTRODUCTION

Efficient intracellular logistics rely on factors that ensure targeting of the trafficking machinery to membrane compartments. During membrane fusion, long-range delivery is orchestrated by proteins associated to the microtubule cytoskeleton, while docking and tethering factors ensure unambiguous and processive homing at medium range, in hundreds of nanometers away from the destination, as extensively documented during trafficking of vesicles to the endoplasmic reticulum (ER) or within the Golgi apparatus (GA). Finally, a large number of SNARE (Soluble NSF Attachment Receptor) proteins mediate interactions at a short range in association with a multitude of other regulatory factors (for a review, Malsam and Söllner, 2011).

The conserved SNARE protein Snap29 (Soluble NSF Attachment Protein 29) is characterized by the presence of two Q-SNARE domains through which it mediates membrane fusion in association with other Q- and R-SNARE-containing proteins (Steegmaier et al., 1998; Wong et al., 1999; Hohenstein and Roche, 2001). Indeed Snap29 promotes fusion with lysosomes carrying the R-SNARE protein Vamp7 (VAMP8 in humans) (Itakura et al., 2012; Takáts and Juhász, 2013; Morelli et al., 2014). In this process, Snap29 associates first with Syx17 on the surface of the ER or on autophagosomes, likely acting as a Qb-Qc-SNARE, similar to the paralog Snap25. Then, at least in humans, it engages with ATG14 oligomers that act as tethering factors to prime fusion (Itakura et al., 2012; Diao et al., 2015). A number of other less characterized membrane fusion events have been found to involve Snap29, including those occurring during endocytosis and recycling, synaptic transmission, cytokine release, and turnover of secretory granules [for a review, see Mastrodonato et al. (2018)]. Human and Drosophila Snap29 also contribute to the formation of the outer part of the kinetochore (KT), which is required to stabilize the plus ends of the microtubule cytoskeleton at the onset of mitosis, ultimately preventing segregation errors and formation of micronuclei (Morelli et al., 2016).

Mutations in SNAP29 are associated in humans with CEDNIK (cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma), a rare neuro-cutaneous syndrome whose pathogenesis is unclear (Sprecher et al., 2005; Fuchs-Telem et al., 2011). In fibroblasts of CEDNIK patients and in Snap29 mutant Drosophila tissues, the morphology of the GA is altered, suggesting that Snap29 might also play a key role in secretory trafficking (Rapaport et al., 2010; Morelli et al., 2014). Despite a multitude of animal models (Kang et al., 2011; Sato et al., 2011; Schiller et al., 2016; Mastrodonato et al., 2019), the role of Snap29 at the GA and its possible relation to the neuroepithelial traits of CEDNIK have not been elucidated.

Here we explore ER and GA morphology and trafficking upon modulation of Snap9 activity. We show that human SNAP29 forms elongated structures contacting these trafficking compartments and reveals new conserved interactions with the ER and GA Qa-SNAREs Syntaxin 18 (STX18) and Syntaxin 5 (STX5) as well as with the vesicle-associated R-SNARE SEC22B. Interaction with SEC22B, but not with STX18 or STX5, is markedly reduced in a dominant negative SNAP29 mutant that prevents SNARE complex disassembly, suggesting that SNAP29 might initially form a SNARE pre-fusion complex with Qa-SNAREs. Finally, we show that loss of SNAP29 causes defects in GA morphology in human neocortical neuroepithelial stem (NES) cells, an in vitro model relevant to neurodevelopmental disorders (Onorati et al., 2016).



RESULTS


SNAP29 Supports ER and GA Integrity

Because mutations of SNAP29 result in alteration of the GA architecture in the fibroblasts of CEDNIK patients and in Drosophila Snap29 mutants (Rapaport et al., 2010; Morelli et al., 2014), we aimed at characterizing in detail the role of SNAP29 at the Golgi apparatus. Compared to mock-treated cells, upon efficient SNAP29 knock-down (KD) in HeLa cells (Figure 1A), the Golgi apparatus marked by Golgin97 appears round, rather than elongated, and dispersed on a wider area of the cell (Figure 1B, quantified in Figure 1B’). We counted the number of Golgin97-positive objects per cell and found that it increased in SNAP29 KD relative to mock-treated cells (Figure 1B, quantified in Supplementary Figure S1E), suggesting that the GA is fragmented. A similar phenotype is observed by quantifying the number of objects positive for Giantin, a second GA marker (Figures 1C,D, quantified in Figure 1G). Correct GA morphology is restored upon ectopic expression of a functional RNAi-resistant GFP-tagged form of SNAP29 (GFP–SNAP29; Morelli et al., 2016), which is found enriched at the GA, but not upon expression of GFP alone (Figures 1C–F, quantified in Figure 1G), indicating that SNAP29 is required to support GA architecture. The enrichment of GFP–SNAP29 at the GA recapitulates the earliest Snap29 localization observed (Wong et al., 1999) as well as the in vivo localization of a major cellular pool of Snap29 in different tissues of the fruit fly Drosophila melanogaster (Morelli et al., 2014; Supplementary Figure S2A), suggesting that SNAP29 might regulate membrane fusion at the GA.
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FIGURE 1. SNAP29 is required to support correct Golgi apparatus (GA) architecture. (A) Immunoblotting of total proteins from mock and SNAP29-depleted (KD) HeLa cell protein with the indicated antibodies. The asterisk indicates the presence of a non-specific band recognized by anti-SNAP29. Snap29 is efficiently depleted upon KD. (B) Max Projections of mock and SNAP29 KD HeLa cells, stained as indicated. (B’) Measurement of the Golgin97-positive area of cells as in panel (B). The area of each measured GA is shown on the x-axis, while the ratio of the length of the major axis over the minor axis of the GA is shown on the y-axis. Depleted cells display a larger and rounder GA. (C–F) Max Projections of mock (C,E) and SNAP29 KD HeLa cells (D,F) or, in addition, over-expressing the indicated transgene (E,F), stained as indicated. (G) Quantification of the number of Giantin-positive objects. The mean with standard error of the mean is shown, and the p-value is obtained by one-way ANOVA with Tukey’s multiple-comparisons analysis. GA alterations upon SNAP29 depletion are rescued expression of GFP–SNAP29, which per se does not alter GA architecture. (H–J) Electron microscopy sections of mock (H) and SNAP29-depleted HeLa cells (I,J). 3D tomographic reconstruction of encompassing sections is shown below. In addition to the indicated pseudo-coloring, COPI-coated vesicles are in white, and COPII-coated buds and tubules are in light brown. Clathrin-dependent vesicles are in light blue. SNAP29 depletion leads to GA vesiculation, endoplasmic reticulum (ER)–Golgi intermediate compartment tabulation, and ER enlargement.


To assess whether the role of SNAP29 in supporting GA architecture is conserved, we also expressed in HeLa cells a CFP-tagged form of Drosophila Snap29 (CFP-Snap29), capable of rescuing the loss of Drosophila Snap29 (Morelli et al., 2014), which also displays localization to GA in vivo (Supplementary Figure S2B). Similar to GFP–SNAP29, the expression of CFP-Snap29 in SNAP29 KD HeLa cells rescues GA morphology (Supplementary Figures S1A–D, quantified in Supplementary Figure S1E). Importantly, the expression of GFP–SNAP29 or CFP-Snap29 for a short time (see “MATERIALS AND METHODS”), per se, does not alter GA morphology (Figure 1E, quantified in Figure 1G and Supplementary Figures S1A,C, quantified in Supplementary Figure S1E). As in SNAP29 KD HeLa cells, GA disruption is also observed in a fibroblast cell line depleted with the same siRNA used for HeLa experiments (Supplementary Figures S2C,D).

To better characterize the morphology of the GA in the absence of SNAP29, we performed electron microscopy (EM) and 3D tomography reconstruction (Figures 1H–J). Consistent with immunofluorescence data, compared to mock-treated control (Figure 1H), SNAP29 KD cells display multiple alterations. The GA cisternae are deformed, enlarged, and often replaced by anastomosed tubular structures surrounded by COPI- and COPII-coated vesicles, and the ER–Golgi intermediate compartment (ERGIC) as well as the ER surrounding the GA area are enlarged (Figures 1I,J; quantification of the cisternal width is shown in Supplementary Figure S1F). In extreme cases, the cisternae are in part replaced by vesicles of different sizes surrounded by an aberrantly expanded and reticulated ER (Figure 1J). These data indicate that SNAP29 is required to maintain the integrity of GA, ERGIC, and ER and suggest that SNAP29 might regulate vesicle trafficking and membrane fusion between these compartments.

Overall, our evidence indicates that the localization of SNAP29 to the GA and its role supporting GA architecture are conserved and not cell-type specific.



A Pool of GFP–SNAP29 Localizes in Elongated Structures Close to Golgi Cisternae and ERGIC Compartments

To understand how SNAP29 might act to maintain the structure of the GA, ERGIC, and ER, we next studied the localization of GFP–SNAP29 in proximity of the GA by stimulated emission depletion (STED) microscopy in HeLa cells. Intriguingly, in single sections of super-resolution images, we find that GFP–SNAP29 forms of elongated and often branched structures, 100 to 500 nm in length, in proximity of the GA cisternae marked by Giantin (Figure 2A). The extremities of such GFP–SNAP29 structures partially overlap with Giantin, with GM130, a marker of the cis-Golgi compartment, or with Golgin97 (Figures 2A–C). The partial co-localization of the extremities of GFP–SNAP29 structures is also observed with ERGIC53, a component of the ERGIC compartment (Figure 2D), or the ER component ZW10 (Hirose et al., 2004; Figure 2E). Some limited proximity is observed with the vesicle-associated membrane protein (VAMP)-associated protein B (VAPB), which anchors the ER membranes to microtubules for stability (Amarilio et al., 2005; Figure 2F). These data suggest that GFP–SNAP29 structures contact the area comprised between the ER and the GA.
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FIGURE 2. GFP–SNAP29 partially colocalizes with endoplasmic reticulum (ER) and Golgi apparatus (GA) markers. (A–I) Single sections of HeLa cells over-expressing GFP–SNAP29 for 6 h stained as indicated and acquired by stimulated emission depletion microscopy. The dashed and the continuous lines delimit the nucleus and the plasma membrane, respectively. The boxed GA area is magnified in the insets. Yellow arrows point to an example of co-localization between GFP–SNAP29 and ER or GA markers. (J,K) Cryo-immuno-EM sections of HeLa cells stably transfected to express GFP–SNAP29, stained, and revealed as indicated. Some GFP–SNAP29 localize to the ERGIC area and colocalizes with a COPI marker.


To investigate the relationship between SNAP29 and ER–GA trafficking, we next assessed the colocalization of GFP–SNAP29 trafficking markers. To this end, we stained cells for βCOP, a component of COPI membrane coats, and for SEC31, a marker of COPII coats, which initiate retrograde and anterograde transport between ER and GA, respectively. Interestingly, we observed that portions of the GFP–SNAP29 structures often co-localize with both βCOP and SEC31 (Figures 2G,H) and with the ER recycling receptor KDELR (Figure 2I). In agreement with super-resolution data by Cryo-EM, we observed GFP localization at the ERGIC compartment, in proximity of the Golgi cisternae (Figure 2J), and colocalization with membranes marked with βCOP (Figure 2K), indicating that SNAP29 might participate in membrane fusion at the ER and GA.



SNAP29 Depletion Delays Cargo Trafficking Between the ER and GA

To test whether trafficking is affected by depletion of SNAP29, we followed transport from the ER to the GA of a GFP-tagged form of the reporter Mannosidase II fused with streptavidin binding protein (SBP) (ManII–SBP–GFP) in HeLa cells. As part of the RUSH system, ManII–SBP–GFP is retained in the ER until biotin is added to allow trafficking of the reporter to the GA (Boncompain et al., 2012). Consistent with this, in mock-treated cells, ManII–SBP–GFP poorly localizes to Golgin97- or Giantin-positive perinuclear Golgi area, and most of the EGFP signal is dispersed (Supplementary Figure S3A, no biotin; Figure 3A, no biotin, quantified in Figure 3F). In contrast, at 20 min after biotin addition, most ManII–SBP–GFP colocalized with Golgin97 or Giantin, indicating that a significant portion of the reporter has reached the GA (Supplementary Figure S3A, no biotin; Figure 3A, 20 min biotin, quantified in Figure 3F). While in HeLa cells efficiently depleted of SNAP29 the number of Golgin97- or Giantin-positive objects is increased due to GA fragmentation, in the absence of biotin, ManII–SBP–GFP poorly colocalizes with Golgin97 or Giantin, similar to what we observed in mock-treated controls (Supplementary Figure S3B, no biotin; Figure 3B, no biotin, quantified in Figure 3F). However, in contrast to mock-treated controls, in SNAP29 KD cells, ManII–SBP–GFP colocalization with Golgin97 or Giantin is not significantly increased 20 min after addition of biotin, indicating that a large portion is unable to reach the GA (Supplementary Figure S3B, 20 min biotin; Figure 3B, 20 min biotin, quantified in Figure 3F). Despite this, in both mock-treated and SNAP29 KD cells, we observed full colocalization of ManII–SBP–GFP with Golgin97 at 1 h after addition of biotin, suggesting that trafficking from ER to GA is delayed in the presence of reduced amounts of SNAP29 (Supplementary Figures S3A,B, 60’ biotin). A similar delay is visible upon downregulation of the SNARE Syntaxin18 (STX18; Figure 3C, 20 min biotin, quantified in Figure 3F), which regulates fusion of the incoming vesicles at the ER and cis-GA (Hatsuzawa et al., 2000) as well as by depleting SEC22B (Figure 3D, 20 min biotin, quantified in Figure 3F), which is carried by retrograde and anterograde trafficking vesicles (Aoki et al., 2008) or STX5 (Figure 3E, 20 min biotin, quantified in Figure 3F), which is required for fusion of anterograde cargoes on the surface of GA cisternae (Hay et al., 1997; Xu et al., 2000). The levels of depletion for each SNARE protein are shown in Supplementary Figure S3C, while Supplementary Figure S3D reports the observed disruption of GA architecture upon depletion of each SNARE. Overall, these data indicate that SNAP29 activity might contribute to vesicle transport between the ER and the GA.
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FIGURE 3. SNAP29 contributes to ManII–SBP–GFP trafficking to the Golgi apparatus (GA). (A–E) Single confocal sections of HeLa cells stably expressing ManII–SBP–GFP, treated and stained as indicated. The EGFP pattern has been imaged before addition of biotin (no biotin) and 20 min after addition of biotin (20 min biotin). The insets show close-ups of the GA and surrounding areas. (F) Quantification of the ratio of the Giantin-positive EGFP signal over total, relative to the experiment in panel (A–E). SNAP29, as well as the endoplasmic reticulum and GA SNAREs STX18, STX5, and SEC22B, appears to support ManII–SBP–GFP trafficking to the GA. The median with interquartile range is shown, and the p-value is obtained by Dunn’s multiple-comparisons test.




SNAP29 Interacts With SNAREs at GA and ER Membranes

To identify the steps at which SNAP29 might act in ER–GA trafficking, we immunoprecipitated endogenous SNAP29 from HeLa cell total protein extract and tested whether STX5, STX18, and SEC22B are found as co-precipitants. Interestingly, we found STX5, STX18, and SEC22B in complex with SNAP29 (Figure 4A), and we confirmed the interactions by precipitating GFP–SNAP29 from expressing cells using the GFP–Trap system (Figure 4B). As expected, we did not find an interaction between STX5 and STX18, and we confirmed known interactions between STX5 and SEC22B and between STX18 and SEC22B (Figures 4A,B). Consistent with protein–protein interaction results, by super-resolution microscopy, we observed that GFP–SNAP29 structures partially overlap with STX5, STX18, and SEC22B (Supplementary Figure S4A). Interaction and colocalization of endogenous Snap29 with HA-tagged Syx18 or Sec22 can also be observed in Drosophila S2 cells (Figures 4C,D). Overall, these data indicate that SNAP29 possess a conserved ability to associate with known GA and ER SNAREs.


[image: image]

FIGURE 4. SNAP29 interacts with the endoplasmic reticulum (ER) and the Golgi apparatus (GA) SNAREs. (A) Immunoblotting of proteins immunoprecipitated from HeLa protein extracts with the indicated antibodies and related inputs. Endogenous SNAP29 interacts with the ER and GA SNAREs STX18, STX5, and SEC22B. (B) Immunoblotting of proteins immunoprecipitated using GFP Trap from protein extracts of HeLa cells expressing GFP–SNAP29 or GFP as a control and related inputs and supernatants. GFP–SNAP29 interacts with the ER and GA SNAREs. (C) Immunoblotting of protein extracts from Drosophila S2 cells over-expressing the indicated transgenes immunoprecipitated with the indicated antibody and related controls. Endogenous Drosophila Snap29 interacts with HA-Syx18 and HA-Sec22. (D) Drosophila S2 cells over-expressing the indicated transgenes and stained as indicated. Endogenous Drosophila Snap29 colocalizes with HA-Syx18 and HA-Sec22.




SNAP29 Regulates Membrane Fusion by Forming a Precomplex With Qa-SNAREs

To uncover the mechanism by which SNAP29 regulates membrane fusion, we studied HeLa cells expressing GFP–SNAP29Q1Q2, a SNAP29 in which we mutated to Ala (A) each of the two central Gln (Q) of the SNARE domains (Morelli et al., 2016). GFP–SNAP29Q1Q2 localizes and acts radically different from GFP–SNAP29. In fact, GFP–SNAP29Q1Q2 is not localized close to the GA area but rather accumulates in large bodies at the cell periphery, and it causes GA fragmentation per se (Figures 5A,A’).
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FIGURE 5. SNAP29 interacts primarily with STX18 and is required to stabilize interactions with SEC22B. (A) HeLa cells expressing GFP–SNAP29Q1Q2. Cells stained with anti-Golgin97 to mark the Golgi apparatus (GA) show that GFP–SNAP29Q1Q2 forms enlarged bodies at the cell periphery and that the GA is fragmented. (A’) Quantification of Golgin97-positive GA object upon expression of the indicated transgenes reveals that GFP–SNAP29Q1Q2 induces GA fragmentation, thereby acting as a dominant negative SNAP29 form. The mean with standard error of the mean is shown, and the p-value is obtained by one-way ANOVA with Tukey’s multiple-comparisons analysis. (B) Representative images of a CLEM analysis of a HeLa cell expressing GFP–SNAP29Q1Q2. Single sections of HeLa cells expressing GFP–SNAP29Q1Q2 collected at phase contrast (bright field) and by confocal microscopy (GFP) to visualize the cell morphology and GFP–positive bodies. (B’) Electron microscopy image of the cell indicated by the arrow in panel (B). The GFP–SNAP29Q1Q2 bodies are composed of vesicular material and fragmented GA cisternae as highlighted in a close-up of the cytoplasmic portion boxed in panel (B’). (C,D) Single sections of HeLa cells over-expressing the indicated SNAP29 forms stained as indicated and acquired by stimulated emission depletion microscopy. The dashed and the continuous lines delimit the nucleus and the plasma membrane, respectively. High magnifications of the boxed areas are shown in the insets. The GFP–SNAP29Q1Q2 bodies are highly decorated with N-ethylmaleimide-sensitive fusion. (E) Immunoblotting (IB) with the indicated antibodies of proteins immunoprecipitated using GFP Trap from protein extracts of HeLa cells expressing the indicated transgenes and related control. Interactions with Qb, Qc, and R-SNAREs, but not with Qa-SNARE STX18, are weakened by the expression of GFP–SNAP29Q1Q2. (F,G) IB with the indicated antibodies of protein extracts from HeLa cells over-expressing the indicated transgenes (F) or treated as indicated (G) and immunoprecipitated with anti-SEC22B and related controls. The asterisk indicates a non-specific band recognized by anti-SNAP29. GFP–SNAP29Q1Q2 is not included in SEC22B immunoprecipitations, and SNAP29 depletion impairs the interaction of SEC22B with STX18.


To determine the morphology of the large bodies induced by the expression of GFP–SNAP29Q1Q2, we performed correlative light electron microscopy (CLEM; Figure 5B). We observed that GFP–SNAP29Q1Q2 bodies appear constituted by clusters of vesicles of different sizes (Figure 5B’). Such organization replaces entirely ER and GA structures and is similar to extreme cases of SNAP29 depletion. Consistent with a possible vesiculation of the ER, ERGIC, and GA membranes, GFP–SNAP29Q1Q2 bodies are positive for βCOP, SEC31, and ZW10 (Supplementary Figure S5A).

Q to A mutations in SNARE proteins have been reported to prevent cis-SNARE complex disassembly by N-ethylmaleimide sensitive fusion (NSF) after membrane fusion (Scales et al., 2001). Consistent with this, a super-resolution analysis also reveals that the large GFP–SNAP29Q1Q2 bodies are enriched in the SNARE disassembly factor NSF when compared with the occasional colocalization observed in GFP–SNAP29-expressing cells (Figures 5C,D). Because by preventing disassembly by NSF GFP–SNAP29Q1Q2 might stabilize four-helix bundles containing SNAP29, we next compared GFP–SNAP29 and GFP–SNAP29Q1Q2 immunoprecipitations using the GFP–Trap assay. Remarkably, we found that in GFP–SNAP29Q1Q2 immunoprecipitations the interaction with SEC22B is almost completely lost, while the binding with STX18 or STX5 is maintained (Figure 5E and Supplementary Figure S5B). Importantly, while GFP–SNAP29 immunoprecipitants also include the SNAREs USE1 and BNIP, which are known to associate with SEC22B and SXT18 for fusion of vesicles to the ER (Hirose et al., 2004; Nakajima et al., 2004), the levels of these are strongly reduced in GFP–SNAP29Q1Q2 immunoprecipitations (Figure 5E). These data indicate that SNAP29 might initially form complexes that only include STX18 or STX5. Importantly, SEC22B immunoprecipitates STX18 and GFP–SNAP29 in GFP–SNAP29-expressing cells, while less STX18 and no GFP–SNAP29Q1Q2 can be immunoprecipitated by SEC22B in GFP–SNAP29Q1Q2-expressing cells (Figure 5F). These data are consistent with the possibility that a complex might form between SNAP29 and STX18 and that SNAP29 is required to enhance the formation of a fusion complex containing SEC22B. Indeed when SNAP29 is depleted, SEC22B immunoprecipitates very low amounts of STX18 when compared with control cells (Figure 5G).



Loss of SNAP29 in a Model of Human Neural Development

To model the pathogenesis of CEDNIK in the developing neuro-epithelium, we took advantage of human NES cells. Upon depletion of SNAP29 in NES, we observed alteration of the GA morphology (Figures 6A,B and Supplementary Figure S6A). In addition, SNAP29-depleted NES cells displayed spindle alterations (Figure 6C) and a mild impairment in mitotic progression (Supplementary Figure S6B). Furthermore, SNAP29 KD NES cells often formed micronuclei, compared to mock-treated controls (Figures 6D,E). This evidence suggests that most cellular phenotypes associated with loss of SNAP29, including fragmentation of the GA, are likely to occur during neuro-epithelial development of CEDNIK patients.
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FIGURE 6. SNAP29 depletion in neuroepithelial stem (NES) cells causes Golgi apparatus (GA) and spindle alteration and formation of micronuclei. (A) Maximal confocal projections of NES cells treated and stained as indicated. Depleted NES cells display GA fragmentation. (B) Quantification of the number of Giantin-positive objects. The median with interquartile range is shown, and the p-value is obtained by Mann–Whitney test. (C) Maximal confocal projections of NES cells treated and stained to detect α-tubulin and p-Histone3. The depleted NES cells in metaphase show an altered mitotic spindle. The arrows indicate spindle poles. (D) Maximal confocal projections of NES cells treated and stained as indicated. The depleted NES cells possess several micronuclei (arrows). (E) Quantification of the percentage of cells with at least one micronucleus. The median with interquartile range is shown, and the p-value is obtained by Mann–Whitney test.




DISCUSSION

While the observed morphologic and functional GA alterations might be due to the indirect effects of SNAP29 depletion on endocytic, autophagic, or recycling trafficking, our localization and interaction data strongly suggest that SNAP29 acts directly with other SNAREs during GA trafficking. SNARE-mediated membrane fusion involves docking of R-SNAREs to receptor Q-SNAREs on target membranes with the formation of a highly structured four-helix bundle SNARE complex (Sutton et al., 1998). The paradigmatic model of SNARE complex formation is the one including combinations of a R-SNARE with a Qa-SNARE, a Qb-SNARE, and a Qc-SNARE [for a review, see Hong (2005)]. At the ER, such complex in HeLa cells is composed of the Qa-SNARE STX18, the R-SNARE SEC22B, and the Qb- and Qc-SNAREs USE1 and BNIP (Hatsuzawa et al., 2000; Hirose et al., 2004; Nakajima et al., 2004; Aoki et al., 2008). Our data indicate that an additional STX18 complex might include SNAP29. A similar complex containing STX5 in place of STX18 might be formed at the GA. Our super-resolution data, showing that exogenously expressed GFP–SNAP29 forms elongated and branched structures, suggest that these complexes might also include multimers of SNAP29. Based on Q to A changes in the 0-layer of GFP–SNAP29 resulting in the exclusion of SEC22B and the heavy recruitment of NSF, the ATPase that solubilizes cis-SNARE complexes (Weber et al., 2000), one possibility to be addressed in future studies is that elongated SNAP29 complexes might initially contact STX18 or STX5 and that their rearrangement, perhaps by NSF, might be required to engage COPI vesicles carrying SEC22B (Figure 7). Whether in such scenario SNAP29 acts as an unconventional tether or as a competitor of SEC22B for binding to STX18 or STX5 remains to be determined. SNAP29 might be uniquely suited to form elongated cytoplasmic structures because it is not stably associated with membranes and possesses a linker region between the SNARE domains that is distinct from that of paralogs SNAP25 and SNAP23. Thus, efforts should now focus on understanding whether such region allows a single SNAP29 molecule to be incorporated into two separate four-helix bundles, a prerequisite to form multimers. Consistent with this, impairment of NSF dissociation in yeast occurs only by Q to A mutations of Qa-SNAREs, but not of Qb-, Qc-, or R-SNAREs (Scales et al., 2001), suggesting that SNAP29 might behave in a four-helix bundle (also) as a Qa-SNARE.
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FIGURE 7. A model of SNAP29 activity at the endoplasmic reticulum (ER) and Golgi apparatus (GA). SNAP29 forms elongated structures that could assist the tethering of vesicles and/or that could regulate STX5/18 fusion competence. Some of SNAP29 are re-localized from the ER–GA area to form the outer kinetochore of mitotic chromosomes in prophase.


Irrespective of the structure of Snap29-containing complexes, previous findings support the possibility that Snap29 might act to modulate the function of ER and GA SNARE complexes rather than solely engaging in fusion complexes. In fact, at the plasma membrane of neuronal cells, Snap29 has been reported to inhibit, rather than promote, membrane fusion (Su et al., 2001). Snap29 also does not rescue the loss of paralog Snap25 and possesses low propensity to form SNARE complexes or to be incorporated in stable SDS-resistant SNARE complexes (Steegmaier et al., 1998; Xu et al., 2014; Arora et al., 2017). Interestingly, Snap29 has been recently proposed to take part in a regulatory complex acting alongside the HOPS tethering complex in autophagosome–lysosome fusion (Matsui et al., 2018; Takáts et al., 2018). Future work is required to determine whether Snap29 acts in association with ER and GA tethers, for instance, the NRZ (Nag, Rint-1, Zw10) complex (Sönnichsen et al., 1998; Ren et al., 2009; Tripathi et al., 2009).

The impact of molecular perturbation of SNAP29 functions on human development are demonstrated by CEDNIK syndrome, characterized by a unique constellation of clinical manifestations including microcephaly, severe neurologic impairment, psychomotor retardation, failure to thrive, and facial dysmorphism as well as palmoplantar keratoderma and late-onset ichthyosis (Sprecher et al., 2005; Fuchs-Telem et al., 2011). Brain magnetic resonance imaging shows various degrees of cerebral dysgenesis, including absence of corpus callosum and cortical dysplasia. To test whether the cellular alterations are associated with the lack of SNAP29 relevant to early human neurodevelopment, we employed human NES cells, an in vitro model of long-term, self-renewing neuropotent stem cells (Onorati et al., 2016; Dell’Anno et al., 2018). Other forms of microcephaly have been successfully modeled in NES, such as that induced by mitotic impairment, centrosomal aberrations, and cell death upon ZIKV infection (Onorati et al., 2016). Thus, our data showing that depletion of SNAP29 in NES cells produces GA fragmentation, spindle alterations, and impairment in mitotic progression with formation of micronuclei pave the way for generation of NES cells derived from induced pluripotent stem cells (iPSCs), which have been already used for mechanistic dissection of human genetic diseases of the CNS (Koch et al., 2011; Mertens et al., 2013). We envision that future analysis of phenotypes from CEDINK patient-derived NES might further elucidate the link between SNAP29 activity and neuroectodermal development.



MATERIALS AND METHODS


Cell Cultures and Treatments

Drosophila Schneider-2 (S2) cells were cultured in Schneider medium (Thermo Fisher Scientific) supplemented with 10% fetal bovine serum (FBS) at 28°C. The mycoplasma-free HeLa cell line and the HeLa cell lines stably expressing ManII–SBP–GFP (Boncompain et al., 2012) were cultured in DMEM (Gibco) supplemented with 2 mM L-glutamine and 10% FBS at 37°C with 5% CO2. The HeLa cell line stably expressing E GFP–SNAP29 is a monoclonal line obtained after the transfection of pEGFPSNAP29 and clonal selection on 0.5 mg/ml G418. The stable GFP–SNAP29 HeLa cell line was cultured in DMEM (Gibco) supplemented with 2 mM L-glutamine, 10% FBS, and with the addition of 0.5 mg/ml G418 at 37°C with 5% CO2. For ManII–SBP–GFP trafficking from ER to GA, the cells were treated for 20 min in the presence of Biotin according to Boncompain et al. (2012).

The NES cells were derived from human iPSCs after a neural induction process via dual SMAD inhibition (Sousa et al., 2017). The NES cells were cultured, as previously described (Onorati et al., 2016; Dell’Anno et al., 2018), in NES medium including DMEM/F12 (Gibco #11330-032), with addition of B27 supplement (1:1,000, Invitrogen, #175040-44), N2 supplement (1:100, Gibco, #17502-048), 20 ng/ml FGF-2 (Gibco, #13256-029), 20 ng/ml EGF (Gibco, #PHG0311), 1.6 g/l glucose, 20 μg/ml insulin (Sigma, # I9278), and 5 ng/ml BDNF (R&D Systems Inc., #248-BD-01M). The cells were plated into dishes coated with poly-L-ornithine (0.01%, Sigma, #P4957), laminin (5 μg/ml, Invitrogen #23017-015), and fibronectin (1 μg/ml, Corning, #354008). Routinely, the NES cells were kept in proliferation until reaching confluency (0.5–1 × 105 cells/cm2). The cells were expanded in NES medium and split 1:2–1:3 approximately every 5–7 days with 0.25% trypsin, adding 10 μM rock inhibitor (Y-27632, Stemgent, #04-0012) into the NES medium to increase cell viability. Half of the media was changed every 2 to 3 days to allow culture conditioning. All NES works were performed according to the NIH guidelines for the acquisition and distribution of human tissue for bio-medical research purposes and with approval by the human investigation committee and institutional ethics committee of each institute from which the samples were obtained. De-identified human specimens were provided by the Joint MRC/Wellcome Trust (grant #099175/Z/12/Z) Human Developmental Biology Resource1. Appropriate informed consent was obtained, and all available non-identifying information was recorded for each specimen. The tissue was handled in accordance with the ethical guidelines and regulations for the research use of human brain tissue set forth by the NIH2 and the WMA Declaration of Helsinki3.



Fly Husbandry and Experiments

The flies were reared at 25°C in standard cornmeal food. The traffic-jam-Gal4 line to over-express in Drosophila follicle cells was provided by Veit Riechmann (University of Heidelberg). The UAS CFP-Snap29 was generated in Morelli et al. (2014). The list of genotypes for the experiment is in Supplementary Table 1.



Immunostainings

The cells were fixed and stained as in Kobia et al. (2014). The following primary antibodies were used: chicken anti-GFP 1:1,000 (Abcam), mouse anti-Golgin97 1:100 (Invitrogen), rabbit anti-Giantin 1:1,000 (Bio Legend), rabbit anti-GM130 1:1,000 (cell signaling), rabbit anti-βCOP 1:1,000 (Invitrogen), mouse anti-SEC31 1:100 (BD Biosciences), rabbit anti-VAPB 1:1,000, rabbit anti-KDEL receptor (KDELR) 1:200 (a gift from A. DeMatteis), mouse anti-ERGIC53 1:1,000, rabbit anti-SEC22B 1:1,000 (SYSY), rabbit anti-STX5 1:1,000 (SYSY), mouse anti-STX18 (Santacruz); rabbit anti-NSF 1:1,000 (SYSY), DAPI 1:1,000 (Sigma); mouse anti-p-Histone3 1:2,000 (Abcam), rat anti-α-tubulin 1:100 (AbD Serotec), and mouse anti-Nestin 1:200 (R&D Systems Inc., #MAB1259). Drosophila wing discs, ovaries, and S2 cells were fixed and stained as in Morelli et al. (2016). The cells, disks, and ovaries were mounted on slides using Mowiol Mounting Medium. The following primary antibodies were used: chicken anti-GFP 1:1,000, rabbit (Abcam), anti-GM130 1:1,000 (Abcam), rabbit anti-Snap29 1:1,000 (Morelli et al., 2014), and mouse anti-Golgin84 1:20 (DSHB). Alexa-conjugated secondary antibodies (Invitrogen), rabbit Atto594 (Sigma), chicken Alexa488, rabbit Alexa 546, mouse Alexa647, and Phalloidin-TRITC (Sigma) were used. For all confocal imaging, we used a Leica microscope with × 40/NA 1.25 or × 63/NA 1.4 oil lenses and a Nikon A1 two-photon confocal microscope with × 40 or × 60 lenses. Super-resolution images were collected on a Leica TCS SP8 STED 3X microscope equipped with three depletion laser lines (592, 660, and 775 nm) and using a HCPL APO 100X/1.40 oil immersion objective. Images were acquired through the Software Leica LAS X and deconvolved with SVI Huygens Professional software. The images were edited with ImageJ and assembled with Adobe Illustrator.



Electron Microscopy

Electron microscopic examination, EM tomography, and immune EM gold-labeling based on pre-embedding were performed as previously described (Beznoussenko and Mironov, 2015). In particular, for immune EM gold-labeling, cryosections were stained with the anti-β COP antibody 1:100 (Abcam ab2899) and anti-GFP (Abcam ab6556) for 2 h, washed six times with 0.1% bovine serum albumin in phosphate-buffered saline (PBS), and then incubated with 1:50 protein-A gold 5 and 10 nm (PAG10, CMC, Utrecht, The Netherlands) in blocking solution for 20 min at room temperature.

For CLEM, 00.5 × 105 growing GFPSNAP29-HeLa cells were plated on Matek previously coated with poly-D-Lysine (Sigma-Aldrich) and let adhere for 24 h. The cells were fixed with 4% PFA + 0.05% glutaraldehyde in Hepes (0.15 M) adjusted to pH 7.2–7.4 for 5 min and then fixed again with 4% PFA in Hepes (0.15 M) adjusted to pH 7.2–7.4 three times for 10 min. The cells were quickly washed three times with Hepes (0.2 M) and imaged. Imaging was performed on a Leica TCS SP5 laser confocal scanner mounted on a Leica DMI 6000B inverted microscope equipped with a HC PL FLUOTAR × 20/0.5NA and a HCX PL APO × 63/1.4 NA oil-immersion objective and driven by Leica LAS AF software. The images were edited with ImageJ.



Protein Extraction, Western Blots, and Immunoprecipitations

The cells were collected, homogenized, and incubated for 20 min on ice in 1 mM Tris–HCl, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 1% deoxycholate, 0.1% SDS, and protease inhibitors 1:200 (Cal-biochem). The lysates were cleared by centrifugation. The supernatants were recovered and quantified, separated by SDS–PAGE, and transferred to nitrocellulose by standard methods. The primary antibodies used were rabbit anti-SNAP29 1:500 (Morelli et al., 2016), chicken anti-GFP 1:1,000 (Abcam), mouse anti-Vinculin (1:10,000), mouse anti-STX18 1:500 (Santa Cruz), and mouse anti-αtubulin 1:8,000 (Cell Signaling #3873), rabbit anti-STX5 1:1,000, rabbit anti-SEC22B 1:1,000, rabbit anti-USE1 1:500, rabbit anti-BNIP 1:500, and rabbit anti-STX18 1:500 (all from SYSY), rabbit anti-Snap29 1:1,000 (Morelli et al., 2014), and mouse anti-HA 1:500 (Covance). The secondary antibodies used were anti-rabbit and anti-mouse 10,000 (Amersham), anti-chicken 1:1,000 (Invitrogen), and anti-mouse Trueblot 1:1,000 (Roche). Immunoblots were visualized with SuperSignal West Pico/Femto Chemiluminescent Substrate (Bio-Rad) using Chemidoc (Bio-Rad). HeLa and S2 cell immunoprecipitations were performed in high salt JS buffer (Tris–HCl pH 7.6, NaCl 150 mM, glycerol 20%, 0.5% NP-40, MgCl2 2 mM, Na pyrophosphate 0.1 M pH 7.5, PMSF 0.1 M in ethanol, Na vanadate 0.5 M pH 7.5 in Hepes, NaF 0.5 M) with addition of protease inhibitors 1:200 (Calbiochem). The antibodies used were rabbit anti-SNAP29 (Morelli et al., 2016), mouse anti-STX18 1:500, rabbit anti-STX5 1:1,000, rabbit anti-SEC22b 1:1,000 all from SYSY, rabbit anti-Snap29 (Morelli et al., 2014), and mouse anti-HA (Covance). Then, 2 ug of antibodies was used for 200 ug of protein extract. Immunoprecipitation was performed using Sepharose ProteinG (Invitrogen), and precipitation of GFP tagged protein was performed using the GFPTrap system (Chromotek).



siRNA Silencing

For SNAP29, STX5, STX18, and SEC22B knockdown, we performed a reverse transfection with Lipofectamine RNAi Max (Thermo Fisher) according to the manufacturer’s instruction. We used SNAP29 (D-011935-04-0005) and STX18 (E-020624-00-0005) siRNA (Dharmacon). To evaluate ManII–SBP–GFP trafficking, we used SEC22B (EMU019661), STX18 (EHU025321), and STX5 (EHU012041) EasyRNA (Sigma). Cells were collected at different time points (mostly 48 and 72 h) after transfection and processed for further analysis. The control transfections are mock transfections performed with the same procedure as detailed above in the absence of siRNA.

For reverse transfection of NES cells, RNAi duplex-LipofectamineTM RNAiMAX (Invitrogen) was prepared as follows: for each six-well plate sample, 150 μl of Opti-MEM Medium, 6 μl of RNAiMAX, and 9 μl of 10 μM siRNA for SNAP29 were directly added into the wells, while only the optimum and RNAiMAX reagent were added in the control wells. The plate was incubated for 10 min at room temperature. Meanwhile, cells were trypsinized, and 500,000 cells were diluted in 2 ml of NES medium without antibiotics. After the incubation, 2 ml of cell suspension was added in each well. The cells were incubated for 72 and 96 h at 37°C in a CO2 incubator before analysis. For Western blotting, wells were washed with PBS, 80 μl of RIPA buffer + inhibitor was added directly in the well, and the cells were scraped. The plate was kept rocking at 4°C for 30 min. Then, the cells were spun down, and the supernatant was used to perform the Bradford protein assay and Western blot.



Transfection of GFP-Tagged SNAP29 Forms

The human SNAP29 cDNA encoding a siRNA-resistant RNA and the mutant SNAP29Q1Q2 forms were generated as described in Morelli et al. (2016). SNAP29 and SNAP29Q1Q2 were then inserted into pEGFP-C1 within EcoRI/BamHI restriction enzyme sites. For rescue or over-expression experiments, a mix composed of the relevant vector alone or mixed with the siRNA specific for SNAP29 and Lipofectamine 2000 was prepared following the manufacturer’s instruction (Invitrogen). Cells were collected at 6 or 24 h after transfection.



Measurements and Statistics

Quantification of the GA major/minor axis was performed using the ImageJ plugin Fit Ellipse, which splits binary objects which could be approximated by an ellipse, giving the measurement of a major and a minor axis, respectively. Quantification of cisternal width has been performed using ImageJ by drawing a line across each cisterna in the central part of the GA and by recording the length of the line relative to the scale bar. Quantification of Golgi objects and Golgi area was performed with ImageJ by drawing a mask around the Golgi signal (Golgin97 or Giantin) and counting the number of identified objects. Quantification of MannII-SBP-EGFP was performed with ImageJ by drawing a region of interest (ROI) around the Giantin signal to identify the Golgi units. A second ROI identified the whole cell using the cortical phalloidin signal (not shown in the figure). The fluorescence intensity of the MannII-SBP-EGFP signal within the Golgi area was measured using the first ROI (labeled Giantin-positive GFP in the quantification), while the total fluorescence intensity of the MannII-SBP-EGFP was measured using the second ROI (labeled total GFP in the quantification). All experiments have been repeated at least three times, and for each experiment, at least 20 cells from each sample have been analyzed. Statistical analysis of each quantification (indicated in the figure legends) was performed with Prism.
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Supplementary Figure 1 | (A–D) Single confocal sections of mock and SNAP29 KD HeLa cells or, in addition, over-expressing the indicated transgenes, stained as indicated. (E) Quantification of the number of Golgin97-positive objects. The mean with standard error of the mean is shown, and the p-value is obtained by one-way ANOVA with Tukey’s multiple-comparisons analysis. The Golgi apparatus (GA) alterations upon SNAP29 depletion are rescued expression of GFP–SNAP29. (F) Quantification of the width of GA cisternae of EM sections such as those shown in Figures 1H–J. The median with interquartile range is shown, and the p-value is obtained by Mann–Whitney test.

Supplementary Figure 2 | (A,B) Single section of a portion of Drosophila egg chamber stained to reveal endogenous Snap29 (A) or over-expressing CFP-Snap29 (B), stained as indicated. (C) Immunoblotting of total proteins from CCD-1109 fibroblast protein extracts with the indicated antibody and related input. (D) Maximal confocal projections of CCD-1109 fibroblast treated and stained as indicated. Depleted cells show Golgi apparatus alteration.

Supplementary Figure 3 | (A,B) Single confocal sections of HeLa cells stably expressing ManII–SBP–GFP, treated and stained as indicated. The EGFP pattern has been imaged before the addition of biotin (no biotin), 20 min after addition of biotin (20 min biotin), or 1 h after the addition of biotin (60’ biotin). SNAP29 depletion delays trafficking from the endoplasmic reticulum to the Golgi apparatus. (C) Immunoblotting of total protein extracts with antibodies recognizing the indicated proteins. HeLa cells were depleted as indicated. The asterisk indicates an unspecific band recognized by the anti-SNAP29 antibody. (D) Quantification of the number of Giantin-positive objects in the indicated sample. The mean with standard error of the mean is shown, and the p-value is obtained by one-way ANOVA with Tukey’s multiple-comparisons analysis.

Supplementary Figure 4 | (A) Single sections of HeLa cells over-expressing GFP–SNAP29 for 6 h stained as indicated and acquired by stimulated emission depletion microscopy. The dashed and the continuous lines delimit the nucleus and the plasma membrane, respectively. The yellow arrows indicate points of co-localization between GFPSNAP29 and endoplasmic reticulum and Golgi apparatus SNAREs.

Supplementary Figure 5 | (A) Single sections of HeLa cells over-expressing GFP–SNAP29 for 6 h stained as indicated and acquired by stimulated emission depletion microscopy. The dashed and the continuous lines delimit the nucleus and the plasma membrane, respectively. (B) Immunoblotting with the indicated antibodies of proteins immunoprecipitated using GFP Trap from protein extracts of HeLa cells expressing the indicated transgenes and related inputs and supernatants.

Supplementary Figure 6 | (A) Immunoblotting of total proteins from neuroepithelial stem (NES) cell protein extracts to detect α-tubulin and p-Histone3. (B) Maximal confocal projections of NES cells treated and stained as indicated. SNAP29-depleted NES cells display a slightly increased mitotic index at 72 h.
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IFT20 is a subunit of the intraflagellar transport (IFT) system essential for the formation and function of cilia. Besides predominant research in the cilia field, some IFT subunits perform extraciliary roles in non-ciliated cancer cells. However, the specific roles of IFT subunits in tumorigenesis remain unknown. Here, we found that knockout of IFT20 in mouse breast cancer cells lacking primary cilia promoted epithelial mesenchymal transitions (EMTs), active lamellipodia formation, and cell migration. IFT20 localized at the trans-Golgi and trans-Golgi network (TGN), and displayed vesicular co-distributions with Rab8a, the marker of TGN-to-plasma membrane vesicular trafficking. Proximity-dependent biotin identification (BioID) and colocalization analyzes showed that Numb and Ctnnal1, whose depletion promoted cell migration, co-localized with IFT20 at the trans-Golgi/TGN or intracellular transport vesicles. Furthermore, Strep-Tactin pulldown assays revealed an interaction between IFT20 and Ctnnal1 or Numb. Loss of IFT20 lowered the expression of actin-associated Tagln2, whose knockdown promoted cell migration. Thus, the extraciliary function of ITF20 in breast cancer cell was associated with the negative regulation of migration.

Keywords: IFT20, breast cancer cell, migration, vesicular transport, tumor suppressor


INTRODUCTION

Intraflagellar transport (IFT) is an active bi-directional transport system in cilia that comprises of motor proteins (kinesin 2 and cytoplasmic dynein 2) and IFT complexes, which transport the ciliary assembly blocks and signaling molecules between cilia and cell bodies (Kozminski et al., 1993; Rosenbaum and Witman, 2002; Nakayama and Katoh, 2020). The IFT complexes serve as adaptors or bridges between the ciliary cargoes and motor proteins, and are composed of at least 22 subunits (Lechtreck, 2015). Besides the known transport roles in cilia, some IFT subunits have been reported to possess extraciliary/cilia-independent functions in non-ciliated cells. For example, IFT20, IFT57, and IFT88 are required for polarized recycling of T cell receptors (TCRs) to immune synapses (Finetti et al., 2009). IFT20 controls lysosome maturation by regulating the retrograde transport of cation-independent mannose-6-phosphate receptors (CI-M6PR) (Finetti et al., 2020); additionally, it affects osteosarcoma cell migration by regulating the dynamics of Golgi-associated microtubules (Nishita et al., 2017). Previous work has also reported that depleting IFT88 perturbs cell migration by reducing the number of microtubules at the leading edge, which is independent of cilia (Boehlke et al., 2015). These extraciliary functions of IFT subunits have greatly deepened our understanding of IFT proteins. However, whether these extraciliary functions of IFT proteins are derived or different from their cilia-associated transport roles have not been fully elucidated especially in non-ciliated cancer cells.

Recent studies have indicated that IFT20, a subunit of the IFT complex and crucial for ciliogenesis (Follit et al., 2006), may have additional extraciliary functions. Different from other IFT components localized at the basal body and cilium, IFT20 is also distributed at the Golgi in ciliated cells, corresponding to its unique role in transporting the ciliary membrane proteins polycystin-2 or opsins from the Golgi to the cilia (Follit et al., 2006; Jonassen et al., 2008; Keady et al., 2011). In addition to its cilia-associated roles, IFT20 also performs several extraciliary functions, such as transporting TCRs and linkers for activation of T cell to immune synapses (Finetti et al., 2009; Vivar et al., 2016), and interacting with dynein in the retrograde vesicular traffic from the late endosome to the TGN (Finetti et al., 2020). IFT20 also participates in the vesicular transport targeted to post-synaptic dendritic terminals in neurons (Sedmak and Wolfrum, 2010) and modulates β1-integrin recycling to focal adhesions in epidermal cells (Su et al., 2020). These studies imply that cell-type-specific extraciliary functions of IFT20 exist in different cell lines.

During breast cancer progression, the occurrence of primary cilia decreases with the increasing degree of transformation (Yuan et al., 2010), which suggests that breast cancer cells without cilia might be an appropriate model for investigating the extraciliary functions of IFT20. Here, we demonstrate that knockout of IFT20 promoted non-ciliated breast cancer cell migration. Using proximity-dependent biotin identification (BioID) and Strep-Tactin pulldown assays, IFT20 was found to participate in the vesicular transport of Numb and Ctnnal1 from the trans-Golgi/TGN to the plasma membrane; moreover, both IFT20 interactors inhibited breast cancer cell migration. Interestingly, knockout of IFT20 lowered the expression of Tagln2, which took part in the dynamic regulation of F-actin. Taken together, our study has unveiled a repressor role of IFT20 in breast cancer cell migration through the cilia-independent vesicular trafficking pathway.



MATERIALS AND METHODS


Cells, Plasmids, and Transfections

Human breast cancer cell lines (MCF-7 and MDA-MB-231), the immortalized human breast epithelial cell line HBL-100, mouse breast cancer cell lines 4T1 and IFT20 knockout 4T1 cell lines, HEK293T, mouse embryo fibroblast (MEF), and HeLa cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% (V/V) fetal bovine serum (FBS), 100 U/mL penicillin, and 100 μg/mL streptomycin in a humidified 37°C atmosphere containing 5% CO2.

The px330-mCherry plasmid (98750; Addgene) was a gift of Dr. Guoliang Xu (Institute of Biochemistry and Cell Biology, Shanghai). The Golgi marker plasmid pGT-mCherry (55052; Addgene) and F-actin marker plasmid pEGFP-C1 Lifeact-EGFP (58470; Addgene) have been previously described (Efimov et al., 2007; Riedl et al., 2008). IFT20 was amplified via polymerase chain reaction (PCR) by using the cDNA from 4T1 cells. The PCR products were digested and inserted into pHAGE-6× Tag (a gift of Dr. Yongan Zhang; Institute of Hydrobiology, Wuhan), pEGFP-N1, or pcDNA3.1-BirA*-Myc.

pGT-EGFP was created by digesting pGT-mCherry and pEGFP-N1 with NheI and BamHI. The pGT-EGFP-mCherry construct was created by NheI and KpnI digestion of the products of PCR-amplified GT-EGFP and pmCherry-N1 with 12 amino acid between EGFP and mCherry. Rab8a was amplified using PCR from the cDNA of 4T1 cells and then digested and inserted into pmCherry-N1. pCS2(+)-Rab5a-mCherry was a gift of Dr. Yonghua Sun (Institute of Hydrobiology, Wuhan). Rab10, Rab11a, Rab11b, Rab7, Rab9, and Rab31 were amplified via PCR using the cDNA from 4T1 cells, and products were then digested and inserted into pEGFP-C1. Numb, Ctnnal1, Wwox, and Talgn2 were amplified by PCR from the cDNA of 4T1 cells and then digested and inserted into pmCherry-N1 or pEGFP-N1. pLKO.1-TRC, psPAX2, and pMD2.G were purchased from Addgene. The relevant primers used for CDS (Coding DNA Sequence) amplification are listed in Supplementary Table 1.

To generate the pcDNA3.1(-)-IFT20-Strep construct, DNA encoding a Strep-Tag II (5′-ggatccTCTGCTTGGAGCCACCCACAGTTCGAGAAAGGGGGCGGCTCCGGAGGAGGTTCCGGGGGCAGCGCCTGGAGCCATCCTCAGTTCGAGAAGTAGaagctt-3′) that also contained BamHI and HindIII restriction sites was synthesized by the Shanghai ShengGong Company and then digested with BamHI and HindIII to insert the tag at the C-terminal in the pcDNA3.1(-)-IFT20 construct.

The transient transfections of expression plasmids were carried out by using Lipofectamine 2000 reagents (Invitrogen). For lentivirus production, HEK293T cells were transfected with pHAGE or pLKO.1 and the packing vectors psPAX2 and pMD2.G. Virus-containing medium was collected 60 h after transfection and filtered with a 0.45-μm filter. Viral supernatant mixed with 8 μg/mL polybrene was used to infect the target cells over a period of 12 h, and the viral supernatant was then replaced with fresh medium. The stable cell lines were selected through treatment with 2 μg/mL (4T1 cells) or 4 μg/mL (IFT20 knockout cells, B13) puromycin for 72 h after infection. For cell lines stably expressing IFT20-Flag (B13+IFT20-Flag), following puromycin selection for 72 h, a single clone was further isolated by placing one cell per well using a fluorescent-assisted cell sorting (FACS) system and screening in the presence of 4 μg/mL puromycin. The efficiency in different cells was determined via Western blot (WB) or quantitative PCR (qPCR) method. The relevant primers used for knockdown or qPCR are listed in Supplementary Table 1.



Antibodies and Staining Reagents

Primary antibodies used included anti-tubulin (Abcam; 1:8,000 for WB), anti-IFT20 [gift of G. Pazour; 1:2,000 for WB; 1:200 for immunofluorescence (IF)], anti-Ac-α-tubulin and anti-γ-tubulin (Sigma; 1:1,000 for IF), anti-vimentin and anti-E-cadherin (Cell Signaling Technology; 1:1,000 for WB; 1:100 for IF), anti-Flag (Abcam; 1:6,000 for WB; 1:600 for IF), anti-Myc (Earthox; 1:6,000 for WB; 1:600 for IF), anti-Numb (Proteintech; 1:1,000 for WB); anti-Strep tag (GenScript; 1:3,000 for WB), anti-mCherry (Earthox; 1:2,500 for WB); anti-GFP (Roche; 1:1,000 for WB); anti-GMAP210 (Novus; 1:100 for IF); and anti-golgin97 (ebioscience; 1 μg/mL for IF). Protein or fixed samples were incubated with primary antibodies overnight at 4°C or for 1 h at room temperature. Secondary antibodies used included horseradish peroxidase (HRP) against mouse or rabbit IgG (Abcam), HRP-conjugated streptavidin (Invitrogen), Alexa Fluor 488- and 555-labeled secondary antibodies (Invitrogen), and Alexa Fluor 568-conjugated streptavidin (Invitrogen). Other staining reagents included DAPI (4′,6-diamidino-2-phenylindole) (Beyotime), Golgi Tracker (Beyotime), and rhodamine phalloidin (Sigma).



Generation of 4T1 Knockout Cell Lines With the CRISPR/Cas9 System

Single-guide RNAs (sgRNAs) targeting mIFT20 were selected and cloned in the px330-mCherry plasmid. 4T1 cells were transfected with the px330-mCherry plasmid expressing sgRNA of mIFT20. The transduced red fluorescent protein-positive cells were selected via FACS after 36–48 h transfection. Monoclonal cells were separated by placing one cell per well in the FACS system and screened via PCR for homozygous disruption of targeted alleles. Two different IFT20-knockout cell lines were used in subsequent experiments. Sequences for the sgRNA and the primers used for cloning and screening are listed in Supplementary Table 1.



RNA Extraction and qPCR

Total RNA was extracted from cells using the TRIzol Reagent (Thermo Fisher Scientific) according to the manufacturer's instructions. For first-strand cDNA synthesis, 1 μg of total RNA was reverse-transcribed by using random primers and a ReverAid RT Reverse Transcription Kit (Thermo Fisher Scientific). qPCR was performed in a 7900HT Fast Real-time PCR system by mixing 2 μL of the synthesized cDNA products with SYBR Green and a primer mix to a final volume of 20 μL (TOYOBO). The mean relative gene expression was normalized to glyceraldehyde 3-phosphate dehydrogenase (Gapdh) mRNA using the ΔΔCt method.



Protein Extracts and Western Blots

Cells were collected, washed with phosphate buffered saline (PBS), and resuspended on ice in radioimmunoprecipitation assay (RIPA) buffer (Beyotime) for 10 min with a protease inhibitor cocktail (Sigma) to prevent the degradation of proteins, and then centrifuged at 12,000 rpm at 4°C for 10 min. Supernatants were collected and protein concentrations of whole-cell lysates were determined using amido black 10B. The cell lysates were boiled in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer and separated using SDS-PAGE. Then proteins were blotted onto a nitrocellulose membrane, probed with specific antibodies, and visualized with enhanced chemiluminescence (ECL, Millipore) on film. All Western blot experiments were repeated three times.



BioID Assay

Cells were incubated for 12 h with the transfection complex containing pcDNA3.1(-)-IFT20-BirA*-Myc, and then, the solution was replaced with media supplemented with 50 μM biotin or equivalent amounts of dimethyl sulfoxide (DMSO). Cells were further cultured for 36 h. After three washes with PBS, the cells (for small-scale analysis, <107; for large scale analysis, ~3 × 107 cells) were lysed using a mixture of RIPA buffer and protease inhibitors. Supernatants were incubated with 600 μL Dynabeads (MyOne streptavadin C1; Invitrogen) overnight at 4°C. Subsequent elution steps were performed as previously described (Roux et al., 2012).



Strep-Tactin Pulldown Assay

After transfecting for 24 h with expression vectors, HEK293T cells were washed with PBS, collected with a cell scraper, and lysed using the lysis buffer (10 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5 mM EDTA, and 0.5% NP-40) containing a protease inhibitors cocktail for 10 min on ice. Lysates were centrifuged at 12,000 × g for 10 min at 4°C, and supernatants were incubated with Strep-Tactin XT suspension resin beads (IBA Lifesciences) packed in columns with gaskets. The beads were washed five times with the wash buffer (100 mM Tris-HCl pH 8.0, 150 mM NaCl, and 1 mM EDTA), and the bead-bound proteins (pulldown products) were eluted using the elution buffer (100 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM EDTA, and 50 mM biotin) and analyzed by Western blots.



Immunofluorescence Microscopy and Image Acquisition

Cells were seeded onto coverslips and cultured in complete medium, medium without serum for starvation, or medium with 50 μM biotin for the BioID assay. When growth reached to 60–70% confluence, the cells were washed twice with PBS, fixed with either 4% paraformaldehyde for 15 min or cold methanol for 5 min, and permeabilized with 1% Triton X-100/PBS for 10 min. For F-actin staining, the fixed cells were incubated with rhodamine-phalloidin. For IF staining, the cells were first incubated with primary antibodies diluted in 0.3% Triton X-100, 3% bovine serum albumin (BSA), and 0.1% NaN3 in PBS at 4°C overnight. After thorough washing with PBS, the cells were incubated for 1 h with Alexa-Fluor-488- and Alexa-Fluor-555-labeled secondary antibodies (Thermo Fisher Scientific) in 1% BSA and 10 μg/mL DAPI in PBS at room temperature. All immunostaining experiments were performed two or three times.

For fluorescent images, confocal microscopy was performed using a Leica TCS SP8 with a 63× oil objective. The image format was 1,024 × 1,024 pixels using an one Airy unit (AU) pinhole and processed with LAS AF Lite software. The z-axis series of optical sections were performed at 0.8 μm-thick sections. Except for the third line images of Figure 6D with a “max” note (z projection), the other images are showed in optical sections. 4T1 cells co-expressing fluorescently-tagged IFT20 and Rab were quantitatively analyzed for colocalization using images of whole cells from three different optical sections (n = 21 cells). Image J software (National Institute of Health) was used to determine the Pearson's coefficient, a measurement representing the percentage of pixels from fluorescent IFT20 that overlap with pixels of fluorescent Rab.



Live Cell Imaging

4T1 cells were seeded onto glass-bottom dishes and allowed to grow to 60% confluence. Next, pEGFP-N1-IFT20 was transfected into 4T1 cells. After 24 h of transfection, the medium was changed to a phenol red-free version of the growth medium, and the cells were visualized with the DeltaVision Elite imaging system (Applied Precision) that contained a stage and objective heater to maintain the cells at 5% CO2 and 37°C. Cells with IFT20-EGFP signals were identified and then photographed at 1 s intervals. The images were deconvolved and then converted to a movie displayed at five frames per second with Softworx software (Applied Precision).



Wound-Healing Assay

The cells were seeded into six-well tissue culture plates and allowed to grow to 90–100% confluence in complete medium. A wound was created by scraping the confluent cell cultures with a 10 μL pipette tip. The floating cells were carefully removed before the medium containing 2% FBS was added. The cells were incubated at 37°C for 12 h. The wound healing process was monitored under an inverted light microscope (Nikon). All wound-healing assays were performed three times.



Transwell Assay

This cell migration assay was performed by using a Transwell Assay Chamber (PET track-etched membrane; Corning). The cells maintained in serum-free DMEM were seeded in the top chamber and DMEM supplemented with 10% FBS was added to the bottom chamber. Cells can migrate through the transwell membrane. After incubation for 24 h at 37°C, the cells on the top side of the membranes were removed using cotton swabs, whereas those on the bottom side were fixed and stained with crystal violet. Six randomly selected fields per well were photographed, and the number of migrated cells was counted. The migration index of the experimental cells was calculated with the following formula: migration index (%) = (number of cells that migrated through the membrane in the experimental group)/(number of cells that migrated through the membrane in the control group) × 100. All Transwell assays were performed three times.



Cell Proliferation Assays

Cells were seeded in triplicate in a 96-well plate at ~1,000 cells per well and cultured for 4 d, and cell proliferation was assessed by using the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay according to the manufacturer's protocols (CellTiter 96® AQueous One Solution Cell Proliferation Assay kit; Promega). Briefly, complete DMEM (100 μL) was supplemented with MTS solution 20 μL/well, incubated for 1–4 h, and then the absorbance was recorded at 490 nm with a 96-well plate reader (BioTek). For the colony formation assay, cells were plated in a 6 cm dish at a density of 500 cells per well and cultured for 7 d before being stained with 0.5% crystal violet. The colonies with more than 50 cells were manually counted. All plate colony formation and MTS assays were performed three times.



Statistical Analysis

Two-tailed Student's t-tests were performed to calculate P-values unless specified otherwise. All of the experiments were independently performed in triplicate. Error bars represent standard deviations (S.D.). P-values ≤0.05 were considered to be statistically significant.




RESULTS


The Expression Level of IFT20 Negatively Correlates With the Malignancy of Breast Cancer Cells

To determine the expression of IFT20 in breast cancer cells, two human breast cancer cell lines, MCF-7 and MDA-MB-231, as well as one immortalized human breast epithelial cell line, HBL-100, were chosen for the analyzes (Soule et al., 1973; Cailleau et al., 1974; Chandrasekaran and Davidson, 1979). After these three cell lines were treated with serum starvation for 36 h or not, we stained these samples with antibodies against Ac-α-tubulin, which is the main component of ciliary axonemes and widely used as a marker for cilia (Follit et al., 2006). Immunofluorescence analyzes indicated that no cilia were observed in these three cell lines, although the mitotic spindles and stabilized cytoplasmic microtubules around the nucleus were recognized by this antibody (Figure 1A). Therefore, these three cell lines were suitable for exploring the cilia-independent functions of IFT subunits.


[image: Figure 1]
FIGURE 1. The expression level of IFT20 negatively correlates with the malignancy of breast cancer cells. (A) Representative immunostaining of Ac-α-tubulin (green) in HBL-100, MCF-7, and MDA-MB-231 cells from two independent experiments showed that no cilia were formed in these three cell lines when treated with serum starvation for 36 h; Ac-α-tubulin represents acetylated-α-tubulin as the primary cilia marker (green); the nucleus is stained by DAPI (blue). Scale bar, 10 μm. (B) Western blots of cell lysates from HBL-100, MCF-7, and MDA-MB-231 cells probed with antibodies raised against IFT20, IFT52, IFT81, and IFT88. β-tubulin was used as the loading control.


MDA-MB-231 cells have been reported to be more malignant than MCF-7 cells (Silva et al., 2016). Therefore, we compared the expression levels of several IFT subunits between the normal breast epithelial cell line and the breast cancer cells with different malignancy potentials. Western blot analyzes showed that the expression level of IFT20 in HBL-100 cells was higher than that in MCF-7 cells, and the expression of IFT20 was barely detectable in MDA-MB-231 cells (Figure 1B and Supplementary Figure 1A). However, the expression of IFT52 and IFT81 was upregulated in the breast cancer cells, and the expression of IFT88 showed an undetectable difference between HBL-100 and MCF-7 cells (Figure 1B and Supplementary Figures 1B–D). The consistent downregulation of IFT20 in the breast cancer cells with a manner corresponding to the malignancy potential suggests that the expression of IFT20 may be negatively correlated with breast cancer progression; this association was independent of both cilia and the classical IFT complex.



Knockout of IFT20 Induces Lamellipodia Formation and Epithelial Mesenchymal Transitions (EMTs)

To elucidate the function of IFT20 in breast cancer cell lines, the mouse breast cancer epithelial cell line, 4T1, was used since the expression level of IFT20 in 4T1 cells was comparable to that in ciliated MEF cells (Supplementary Figure 2A) and no cilia were formed in 4T1 cells treated with or without serum starvation for 36 h (Figure 2A and Supplementary Figure 2B). Using the CRISPR/Cas9 system (Supplementary Figure 2C), several IFT20-KO monoclonal cell lines were obtained. The genotyping analyzes showed that in the two IFT20-KO cell lines (B13 and A24), the translation of IFT20 was terminated early (Supplementary Figure 2D), which was further confirmed by Western blot probed with the IFT20 antibodies (Figure 2B). Interestingly, both B13 and A24 cells can be easily distinguished from 4T1 cells in terms of the morphology. As shown in Figure 2C, 4T1 cells formed a tightly-connected epithelial monolayer with a cobblestone-like appearance. In contrast, B13 and A24 cells did not form a cobblestone-like layer but displayed an elongated, spindle-like, fibroblastic morphology. Occasionally IFT20-KO cells even formed a network-like lattice with long and thin membrane extensions, which indicated the loss of contact inhibition. The actin filaments stained using rhodamine B-conjugated phalloidin revealed that IFT20-KO cells formed more actin bundles under the plasma membrane and more lamellipodia compared with those in 4T1 cells (Figures 2D,E). The change in cell morphology and formation of lamellipodia strongly indicate that loss of IFT20 might induce an EMT, an important early step in the conversion of a tumor into a migratory population capable of undergoing systemic metastasis that occurs by losing epithelial characteristics and acquiring mesenchymal properties (Thiery, 2002).


[image: Figure 2]
FIGURE 2. Loss of IFT20 in mouse breast cancer cells 4T1 induces lamellipodia formation and epithelial mesenchymal transitions (EMTs). (A) Representative immunostaining of 4T1 and mouse embryo fibroblast (MEF) cells with Ac-α-tubulin antibodies showed that no cilia were formed in 4T1 cells, unlike cilia-positive MEF cells, when treated with serum starvation for 36 h. (B) Western blots of cell lysates from 4T1 and IFT20-knockout mutants (B13 and A24) probed with IFT20 antibodies. (C) Phase-contrast photographs of 4T1 and IFT20-KO cells showed that loss of IFT20 resulted in cell morphology changes from a cobblestone appearance into spindle-like shapes. The lower panels showed the higher magnification photographs of the insets in the top panels, respectively. (D) Representative fluorescent images of F-actin stained with rhodamine B-conjugated phalloidin showed that the loss of IFT20 induced the formation of more lamellipodia. The white arrows indicate the lamellipodia. The nucleus is stained by DAPI. (E) Quantification of the cells with lamellipodia in 30 randomly selected cells in each group of (D). Results are representative of three independent experiments. (F) Representative immunostaining images of 4T1 and IFT20-KO cells stained with the epithelial marker (E-cadherin) and mesenchymal marker (vimentin) showed that the loss of IFT20 induced EMTs. (G) Western blots of cell lysates from 4T1 and IFT20-KO cells probed with epithelial and mesenchymal markers showed that the loss of IFT20 resulted in the down-regulation of E-cadherin but the up-regulation of vimentin. β-tubulin was used as the loading control. All immunostaining experiments were performed three times. The nucleus is stained by DAPI (blue). Scale bar, 5 μm (A); 50 μm (C top panel); 10 μm (C lower panel, D,F). Error bars represent standard deviations. The p-values indicated were calculated by Student's t-tests (unpaired). n.s. (not significant) p > 0.05; *p ≤ 0.05; **p ≤ 0.01.


To address this hypothesis, we examined the expression of epithelial and mesenchymal markers, such as E-cadherin and vimentin, respectively, via Western blots and immunostaining. As shown in Figure 2G, the expression level of E-cadherin was significantly reduced, whereas the expression of vimentin was dramatically increased in IFT20-KO cells compared with those in 4T1 cells (Supplementary Figures 2E,F). Consistent with the Western blots results, up-regulated vimentin and down-regulated E-cadherin were also observed in B13 and A24 cells by immunostaining (Figure 2F). In 4T1 cells, E-cadherin was distributed along the plasma membrane at cell-cell borders, whereas the adhesion junction localization of E-cadherin was lost in B13 and A24 cells. In addition, vimentin showed substantial cytoplasmic staining in B13 and A24 cells. Collectively, we concluded that loss of IFT20 caused active lamellipodia formation and induced an EMT in breast cancer cells.



Loss of IFT20 Enhances the Migration of Breast Cancer Cells

To confirm the accuracy of the CRISPR/Cas9 knockout, we reconstituted IFT20 expression in B13 cells through a lentivirus expression system and monoclonal cell lines were screened using puromycin. The re-expression of IFT20 in one of monoclonal cell lines, named B13+IFT20-Flag, was validated via Western blot, and the fusion protein was recognized by both IFT20 and Flag antibodies (Figure 3A). As expected, the altered cell morphology owing to the deletion of IFT20 was rescued in B13+IFT20-Flag cells (Figure 3B).


[image: Figure 3]
FIGURE 3. Loss of IFT20 enhances the migration of breast cancer cells. (A) Western blots of lysates from 4T1, B13 (IFT20-KO), and B13+IFT20-Flag cells (B13 cells stably expressing IFT20-Flag) probed with IFT20 antibodies. β-tubulin was used as the loading control. (B) Phase-contrast images of 4T1, B13, and B13+IFT20-Flag cells. (C) Representative pictures of cell migration in 4T1, B13, and B13+IFT20-Flag cells as evaluated by the wound healing assay. (D) Quantification of the wound healing distance in (C) after 12h showed that the loss of IFT20 enhanced horizontal migration. n = 24 fields of view in three independent experiments. (E) Representative pictures of cell migration in 4T1, B13, and B13+IFT20-Flag cells as evaluated by the transwell assay. (F) Quantification of migrated cell numbers in (E) showed that the loss of IFT20 significantly enhanced cell migration. n = 18 fields of view in three independent experiments. Represented data are the mean ± SD in three biological replicates. n.s. (not significant) p > 0.05; *p ≤ 0.05; **p ≤ 0.01. Scale bar, 50 μm.


Owing to the morphological change observed in B13 and A24 cells, loose cell-cell junctions and active lamellipodia formation, are preconditions for cell migration. Therefore, we investigated whether loss of IFT20 influenced the migratory ability of breast cancer cells. As shown in Figure 3C, B13 cells exhibited significantly faster wound closure than 4T1 cells, and the migration distance of B13 cells was approximately twice that of 4T1 cells after 12 h in the monolayer wound healing assay (Figure 3D). B13+IFT20-Flag cells showed no evident migration difference compared with 4T1 cells, indicating that loss of IFT20 markedly enhanced horizontal migration. Similar results were also obtained in the Transwell assay, where the migrated cell number from the upper chamber in B13 cells was twice compared with 4T1 or B13+IFT20-Flag cells (Figures 3E,F). All data indicated that loss of IFT20 enhanced the migration of breast cancer cells.

As highly proliferative cells may influence the results from wound healing and Transwell assays by increasing the number of cells, to rule out this possibility, we determined the effects of IFT20 deficiency on cell proliferation using plate clone formation and MTS assays. In the plate clone assay, the number of clones in B13 and A24 cells was significantly fewer and the shape of clones was smaller than that in 4T1 cells (Supplementary Figures 3A,B). Additionally, in the MTS assay, B13 and A24 also showed delayed proliferation (Supplementary Figure 3C). These results indicated that depleting IFT20 in 4T1 cells exerted an inhibitory effect on cell proliferation. The enhanced migration was not due to excessive proliferation, which was similar to the reported early behavior for breast cancer cell metastasis, including inhibition of proliferation and stimulation of migration (Kedrin et al., 2008). Taken together, IFT20 might participate in the early metastasis of breast cancer cells, and the deletion of IFT20 enhanced the cell migratory potential.



IFT20 Localizes at the Trans-Golgi/TGN and in the Post-Golgi Vesicles

To further dissect the role of IFT20 in 4T1 cells, the localization of IFT20 was determined by immunostaining with IFT20 antibodies and the Golgi marker plasmid GT-mCherry. An evident overlap between IFT20 and GT-mCherry was observed in Figure 4A, which suggests that IFT20 localized at the Golgi in 4T1 cells. To determine the exact localization of IFT20 at the cis-Golgi, middle-Golgi, or trans-Golgi, two fluorescent proteins were used to selectively label these Golgi sub-regions.
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FIGURE 4. IFT20 localizes at the trans-Golgi, TGN, and in the post-Golgi vesicles. (A) Representative fluorescent images of 4T1 cells expressing GT-mCherry and stained with IFT20 antibodies showed that IFT20 localized at the Golgi. (B) Representative fluorescent images of 4T1 cells expressing GT-EGFP and GT-mCherry showed that GT-EGFP labels the middle-Golgi and GT-mCherry labels the middle-Golgi, trans-Golgi, and some dot signals; arrow indicates the dot signal of GT-mCherry in cell protrusion. (C) Schematic illustrating the markers used to distinguish the middle-Golgi and trans-Golgi based on their sensitivity to pH. EGFP and mCherry fluorophores were directed to the lumen of the middle-Golgi and trans-Golgi by fusing with the Golgi targeting domain of β-1,4-galactosyltransferase (GT). The fluorescence of EGFP disappeared as a result of the lower pH at the lumen of the trans-Golgi compared with middle-Golgi, whereas mCherry fluorescence was stable. In 4T1 cells, GT-mCherry was also found at the TGN and in the post-Golgi vesicles. (D) Representative fluorescent images of 4T1 cells expressing GT-EGFP and IFT20-mCherry showed that IFT20 did not localize at the middle-Golgi; arrow indicates the dot signal of IFT20-mCherry in cell protrusion. (E) Representative fluorescent images of 4T1 cells expressing IFT20-EGFP and GT-mCherry showed that IFT20 colocalized with GT-mCherry not only at the trans-Golgi/TGN, but also in the post-Golgi vesicles. (F,G) Magnified views of the indicated insets in (E) showing complete colocalization (F) or no-colocalization (G) between IFT20-EGFP and GT-mCherry post-Golgi vesicles. The white dotted lines mark the entire cell profile. (H) Representative time-lapse images showing dynamic transport of IFT20-EGFP in cell protrusion. S, second. (I) The kymograph from a representative dot signal of IFT20-EGFP indicated by the arrows in (H). Yellow dashed lines indicate the track of IFT20-EGFP. Horizontal scale bar is 5 μm; vertical bar is 10 s. All fluorescent experiments were performed two (A,H) or three times (B,D,E). The nucleus was stained by DAPI (blue). Scale bar, 5 μm.


Specifically, GT-mCherry and GT-EGFP, which contained the same Golgi-localized sequence (GT) but were coupled with different pH-sensitive fluorescent proteins, were exploited to distinguish the middle-Golgi and trans-Golgi, and this technique was feasible because of the gradually reduced pH gradient from the cis- to trans-side lumen of the Golgi (Mellman and Simons, 1992). The GT motif was a N-terminal Golgi-targeted sequence of β-1,4-galactosyltransferase 1 (B4GALT1), which displayed a middle- and trans-Golgi distribution (Shaper et al., 1988). When GT-EGFP was expressed in 4T1 cells, signals from the fusion proteins were only observed at the middle-Golgi. A signal in the trans-Golgi was not observed because of the sensitivity of EGFP to the acidic environment in the trans-Golgi lumen. When GT-mCherry was expressed, the fluorescent signal was observed at both the middle- and trans-Golgi because mCherry is not sensitive to acidic environments. As shown in Figure 4B, 4T1 cells expressing both GT-mCherry and GT-EGFP showed a limited merged yellow signal at the middle-Golgi and a separate red signal at the trans-Golgi. The EGFP signal of GT-EGFP-mCherry was also only detected at the middle-Golgi (Supplementary Figure 4A).

When 4T1 cells expressing GT-EGFP were stained by the red Golgi tracker, the signal of GT-EGFP was restricted to a partial reticulum-like structure, accompanying the colocalization with the red Golgi Tracker (Supplementary Figure 4B). Meanwhile, GT-EGFP and GT-mCherry both showed a near but not overlapping distribution with the cis-Golgi marker GMAP210 (Supplementary Figures 4C,D). Collectively, these data indicated that GT-EGFP was a reliable marker for the middle-Golgi and that GT-mCherry could be used to monitor the localization at both the middle- and trans-Golgi, where the pH value of the lumenal environment of the trans-Golgi in 4T1 cells was between 4.5 and 6.0 based on the pKa of EGFP and mCherry. Notably, in addition to the middle- and trans-Golgi localization, we also observed dot signals of GT-mCherry in cell protrusions (arrow in Figure 4B). As an unusual glycosyltransferase, particularly in defined cell types, such as fibroblasts and HepG2 cells, B4GALT1 follows the Golgi-secretory pathway from the trans-most cisterna, TGN, to the plasma membrane (Shur, 1993; Schaub et al., 2006). Additionally, GT-mCherry partially colocalized with golgin97, one marker of trans-Golgi network in HeLa cells (Supplementary Figure 4E). Therefore, the GT-mCherry-labeled dots were mostly a certain type of TGN-derived vesicles (Figure 4C).

Then, IFT20-mCherry and GT-EGFP were co-expressed in 4T1 cells. As shown in Figure 4D, GT-EGFP showed cisternae-like and compact signals around the nucleus. IFT20-mCherry showed no colocalization with GT-EGFP but was perfectly juxtaposed to it, demonstrating that IFT20 did not localize at the middle-Golgi. Notably, some dot signals of IFT20-mCherry were observed in cellular protrusions as well (arrow in Figure 4D). Next, we compared the distribution pattern of IFT20-EGFP and GT-mCherry. The perinuclear distribution of GT-mCherry was large and compact, along with some smaller dot signals, while IFT20-EGFP colocalized with GT-mCherry at this stack region (Figure 4E). Since IFT20 had no transmembrane motif and did not enter into the lumen of the Golgi, the lumenal environment of the Golgi had no effect on the fluorescence of IFT20-EGFP. In addition to their predominant Golgi colocalization, some (but not all) of the dot signals of these two proteins also overlapped (Figures 4F,G). To determine the dynamics of IFT20, a live-cell imaging time-lapse at 1 s intervals was used to observe the movement of IFT20-EGFP. The movies showed anterograde transport of IFT20-associated vesicles from the cell body to cell projections (Figures 4H,I and Supplementary Video 1). Taken together, IFT20 localized at the trans-Golgi/TGN and may transport specific post-Golgi vesicles to the plasma membrane in breast cancer cells.



IFT20 Mediates the Vesicle Transport From the TGN to the Plasma Membrane

The TGN is a tubular network that sorts proteins toward different destinations, such as the plasma membrane, early endosome, recycling endosome, late endosome, or earlier Golgi compartments, in which an unique set of Rab proteins and their effectors coordinate consecutive stages to mediate specific vesicle transport pathways. Therefore, highly compartmentalized Rabs are suitable markers to determine and label the specificity of transport pathways. Six classes of Rab proteins were selected to determine the specificity of IFT20-associated vesicle transport pathways, and brief descriptions of these Rab GTPases are provided in Supplementary Figure 5A (Stenmark, 2009).

Rab8a and Rab10 mainly participated in the Golgi-to-plasma membrane transport pathways. In 4T1 cells expressing both IFT20-EGFP and Rab8a-mCherry, IFT20-EGFP was highly enriched on Rab8a-positive structures not only at the perinuclear TGN, but also within intracellular vesicles, with a colocalization indicator (Pearson's R value) >80% [Figures 5A(a),F]. To show the weaker cytosolic vesicle signal, the detectors were enhanced, which might cause some signal to saturate. To rule out an artifact owing to these saturated signals at the perinuclear regions, multiple images taken along the z-axis were used to evaluate the spatial relationship of IFT20 and Rab proteins (as represented in Supplementary Figure 5B). In contrast to Rab8a, IFT20 showed less perinuclear co-distribution with Rab10 [Figure 5A(b)]. Based on these two results, we theorized that IFT20 may participate in the vesicle transport targeting to the plasma membrane, which was selectively associated with Rab8a.
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FIGURE 5. IFT20 mediates the vesicle transport from the TGN to the plasma membrane. (A) Fluorescent images of 4T1 cells co-expressing the Golgi-to-plasma membrane Rab markers Rab8a-mCherry (a) or EGFP-Rab10 (b) with IFT20-EGFP/mCherry. (B) The localization pattern of the early endosome Rab marker mCherry-Rab5a with IFT20-EGFP in 4T1 cells. (C) Representative fluorescent images of 4T1 cells co-expressing the recycle endosome Rab markers EGFP-Rab11a (a) and EGFP-Rab11b (b) with IFT20-mCherry. (D) The localization of the late endosome-associated Rab markers EGFP-Rab7 (a) or EGFP-Rab9 (b) with IFT20-mCherry in 4T1 cells. (E) Fluorescent images of 4T1 cells co-expressing the Golgi-to-early endosome Rab marker EGFP-Rab31 with IFT20-mCherry. (F) The localization quantification (Pearson's R value) of IFT20 and Rab proteins in (A–E). Data are recorded in Supplementary Table 2 and represented as the mean ± SD with three different optical sections on 21 cells co-expressing fluorescent proteins in three independent experiments. (G–I) Strep-pulldown assay of IFT20-Strep and Rab8a-mCherry (G), EGFP-Rab7 (H), or EGFP-Rab9 (I). HEK293T cells were transfected with plasmids that express Rab8a-mCherry (G), EGFP-Rab7 (H), or EGFP-Rab9 (I) combined with or without IFT20-Strep expression plasmid. After 24 h, the cells were lysed and centrifuged. The supernatants (input) were incubated with Strep-Tactin beads, and the proteins bound to the beads (pulldown) were analyzed by Western blot using anti-Strep tag or anti-mCherry/EGFP antibodies. The white dotted lines mark the entire cell profile. The nucleus is stained by DAPI (blue). Scale bar, 5 μm.


Besides exocytosis vesicular pathways, we also determined whether IFT20 was involved in endocytic-associated (plasma membrane-to-endosome or endosome-to-TGN) pathways. Rab5a, an early endosome marker, showed a slight colocalization with IFT20 at the perinuclear region. The vesicle-like signal of IFT20-EGFP near the plasma membrane was adjacent to but excluded from the structure positive for Rab5a (Figure 5B). IFT20 also partially colocalized with Rab11a or Rab11b-associated recycle endosomes, which typically accumulated around the centrosome and in close vicinity to the Golgi (Figure 5C). Conversely, although lysosomes were also generally concentrated around the perinuclear region (Matteoni and Kreis, 1987), there was no colocalization between IFT20-mCherry and EGFP-Rab7, a late endosome/lysosome marker [Figure 5D(a)].

Rab31 is responsible for the vesicle transport from the TGN to the early endosome, while Rab9 is responsible for the vesicle recycling from the late endosome to the TGN (Stenmark, 2009). The bulk of EGFP-Rab9 colocalized with IFT20-mCherry [Figure 5D(b)], whose colocalization indicator was more than 70% (Figure 5F). On the other hand, we did not observe vesicle-like colocalization of Rab31 and IFT20 except for the TGN partial colocalization or neighboring distribution at the cytoplasm (Figure 5E). These results suggested that IFT20 might engage in retrograde transport from the late endosome to the TGN.

To further evaluate their potential interaction, we next performed Strep-Tactin pulldown assay with lysates from HEK293T cells that overexpressed strep-tagged IFT20 and EGFP/mCherry-tagged Rab proteins. These pulldowns revealed an association between IFT20-strep and Rab8a-mCherry (Figure 5G). However, interaction was not observed between IFT20-strep and EGFP-Rab7 or -Rab9 (Figures 5H,I).

Collectively, although we readily observed the perinuclear colocalization of IFT20 and several Rab proteins, such as Rab10, Rab11a, Rab11b, and Rab31, there was no observed vesicular colocalization between these Rabs and IFT20. Clearly, IFT20 was particularly present in Rab8a- and Rab9-positive vesicles/structures, demonstrating that IFT20 mostly participated in the plasma membrane-targeted vesicle transport from the TGN and the retrograde transport from the late endosome to the TGN. Moreover, we detected an interaction between IFT20 and Rab8a using Strep-Tactin pulldown assay. Further elucidating the involvement of IFT20 in vesicle trafficking from TGN to plasma membrane will help us to better understand the role of IFT20 in breast cancer cell migration.



Identification of IFT20 Interactors Using the BioID Method

To further determine the role of IFT20 in breast cancer cells, it was necessary to identify the cargoes transported through the IFT20-associated vesicles. We took advantage of the proximity-dependent BioID and mass spectrometry (MS) to detect the interacting proteins of IFT20. The key component of BioID is BirA*, an engineered enzyme from Escherichia coli that promiscuously biotinylates proteins in a proximity-dependent fashion. In mammalian cells, BirA* is diffused throughout the cell, unless it is fused to a target protein with specific localization tendencies. In the presence of exogenous biotin, BirA* pronouncedly biotinylates proteins that are in proximity to BirA* or fusion proteins (Roux et al., 2012).

The main procedures of IFT20-BioID are illustrated in Supplementary Figure 6A. The expression of the fusion protein BirA*-Myc or IFT20-BirA*-Myc was confirmed as shown in Figure 6A. Without biotin addition, the amount of endogenous biotinylated proteins in cells expressing BirA*-Myc or IFT20-BirA*-Myc was similar (Figure 6B, lane 1 and lane 3). When 50 μM biotin was added to the culture medium, massive accumulations of biotinylated proteins were detected in both cell lines. In addition, some bands specifically appeared in the cells expressing IFT20-BirA*-Myc (Figure 6B, lane 4) and might represent the putative IFT20-interacting proteins.
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FIGURE 6. Identification of IFT20 interactors using the BioID method. (A) Western blots from lysates of 4T1 cells expressing IFT20-BirA*-Myc or BirA*-Myc probed with IFT20 and Myc antibodies. The arrow points to the anticipated band of IFT20-BirA*-Myc. The arrowhead points to the band of slight truncation of IFT20-BirA*-Myc. (B) Western blots from lysates of 4T1 cells expressing IFT20-BirA*-Myc or BirA*-Myc probed with HRP-streptavidin with/without biotin addition; the results showed that the amount of biotinylated proteins increased when biotin was added. The asterisks indicate the specified bands with IFT20-BirA*-Myc in the presence of biotin. The numbers below represent different columns. (C) Representative immunofluorescence of 4T1 cells expressing BirA*-Myc in the presence of biotin probed with Myc antibodies to show the cytosol localization of BirA*-Myc and probed with streptavidin 568 to show the biotinylated proteins. (D) Representative immunofluorescence images of 4T1 expressing IFT20-BirA*-Myc in the presence of biotin probed with Myc antibodies to show the localization of fusion proteins and probed with streptavidin 568 to show the localization of biotinylated proteins. The top panels show the Golgi localization, while the lower two panels (representing the single Z-stack and max projection with five Z-stacks) show the vesicle-like localization of IFT20-BirA*-Myc and biotinylated proteins. The white dotted lines mark the entire cell profile. The white arrows indicate the vesicle-like distribution near the plasma membrane of IFT20-BirA*-Myc. The z-axis series of optical sections were performed at 0.8 μm-thick sections. The β-tubulin was used as the loading control in the Western blots. All immunostaining experiments were performed two times. The nucleus is stained by DAPI (blue); scale bar, 5 μm.


The localizations of BirA*-Myc and IFT20-BirA*-Myc were also compared. BirA*-Myc was randomly distributed in the cytoplasm. Accordingly, proteins biotinylated via BirA*-Myc also showed a diffuse cytoplasmic distribution when biotin was added (Figure 6C). In contrast, IFT20-BirA*-Myc fusion proteins and corresponding biotinylated proteins predominantly localized at the Golgi, similar to the distribution of endogenous IFT20 and IFT20-GFP (Figure 6D, pattern 1). Notably, IFT20-BirA*-Myc fusion proteins also showed vesicle-like localization, in which the Myc antibodies labeled the vesicular boundaries and the streptavidin-568 labeled the intra-vesicular biotinylated proteins. When several z-axis images were projected into one max image, an accumulation of IFT20-associated vesicles at the cell margin was observed (arrow in Figure 6D, pattern 2). Then, the biotinylated proteins were purified using streptavidin-coupled magnetic beads, which can be validated by the obvious enrichment of the Myc signal in the elution of IFT20-BirA*-Myc group, which was not seen in the supernatant (Supplementary Figure 6B). The purified proteins from IFT20-biotin (4T1 cells expressing IFT20-BirA*-Myc with biotin) and another two control groups (parental 4T1 cells and 4T1 cells expressing IFT20-BirA*-Myc with DMSO) were subjected to MS identification (Supplementary Table 3).

The proteins identified in the IFT20-biotin and IFT20-DMSO groups were ranked according to their fold-change values, which were mostly <2 (with one exception for IFT20 itself) (Supplementary Table 4). Proteins unique to IFT20-biotin and not detected in the other two controls were ranked by the spectral counts adjusted to the protein length (Supplementary Table 5) (Roux et al., 2012).



IFT20 Is Involved in Transporting Numb and Ctnnal1 From the TGN to the Plasma Membrane

To confirm the interactions between IFT20 and candidate proteins identified in BioID, the localizations of these proteins were studied. A considerable colocalization between IFT20 and Numb was observed at the perinuclear Golgi region (Figure 7A). Numb was also detected in small vesicles around the middle-Golgi, but did not overlap with GT-EGFP, which suggested that Numb was localized at the trans-Golgi/TGN. Moreover, Numb also showed a discrete distribution at the substratum of the plasma membrane (Figures 7A,B), which might be one of its functional sites for the mediation of the endocytosis of Notch1 receptors (Colaluca et al., 2008). Different from Numb, the actual degree of overlap between IFT20-mCherry and Wwox-EGFP was limited, despite the close spatial apposition (Figure 7A). Additionally, Wwox, a WW domain-containing oxidoreductase without a transmembrane domain (Ludes-Meyers et al., 2004), scarcely colocalized with GT-mCherry (Figure 7B), which indicated that Wwox resided at the cis-Golgi.


[image: Figure 7]
FIGURE 7. IFT20 is involved in transport Numb and Ctnnal1 from the TGN to the plasma membrane. (A) Representative fluorescent images of 4T1 cells co-expressing IFT20-EGFP/mCherry and Numb-mCherry or Wwox-EGFP showing that IFT20 colocalized with Numb and scarcely colocalized with Wwox at the perinuclear region. (B) The respective distribution of GT-EGFP/GT-mCherry and Numb-mCherry or Wwox-EGFP showed that the perinuclear localization of Numb was trans-Golgi/TGN and Wwox localized at the cis-Golgi. (C) Representative fluorescent images of 4T1 cells co-expressing IFT20-EGFP and Ctnnal1-mCherry showed that IFT20 colocalized with Ctnnal1 not only at the Golgi, but also in the intracellular vesicles. The white dotted line marks the entire cell profile. The white dashed rectangular box marks the zoomed images on the bottom. (D–F) Strep-pulldown assay of IFT20-Strep and Numb-mCherry (D), EGFP-Wwox (E), or Ctnnal1-mCherry (F). HEK293T cells were transfected with plasmids that express Numb-mCherry (D), EGFP-Wwox (E), or Ctnnal1-mCherry (F) combined with or without IFT20-Strep expression plasmid. After 24 h, the cells were lysed and centrifuged. The supernatants (input) were incubated with Strep-Tactin beads, and the proteins bound to the beads (pulldown) were analyzed by Western blot using anti-Strep tag or anti-mCherry/EGFP antibodies. (G,H) Quantification of the migration efficiency in the wound healing assay (G) and transwell assay (H); results showed that knockdown of Numb and Ctnnal1 enhanced breast cancer cell migration. All quantifications were carried out in three independent experiments, and data are expressed as the mean ± S.D.; n.s. (not significant) p > 0.05; *p ≤ 0.05; **p ≤ 0.01. All fluorescent experiments were performed three times. The nucleus is stained by DAPI (blue); scale bar, 5 μm.


Ctnnal1 (catenin-alpha-like 1), a cytoskeletal linker protein under the plasma membrane (Park et al., 2002), colocalized with IFT20 not only at the perinuclear Golgi but also in the intracellular vesicles at cell projections (Figure 7C), suggesting that IFT20 was associated with the transport of Ctnnal1 from the Golgi to the plasma membrane. We also found that strep-tagged IFT20 pulled down Ctnnal1-mCherry and Numb-mCherry but not Wwox-EGFP expressed in lysates from HEK293T cells (Figures 7D–F). Given the colocalization and interaction of IFT20 with Numb and Ctnnal1, we generated 4T1 cell lines stably expressing sh-Numb or sh-Ctnnal1 (Supplementary Figures 7A,B). As shown in Figure 7G, Numb-KD1, Numb-KD2, and Ctnnal1-KD2 cells exhibited faster wound closure than that in negative control (NC) cells, indicating that down-regulated Numb and Ctnnal1 enhanced breast cancer cell migration. Similar results were also obtained in the Transwell assay that knockdown of Numb and Ctnnal1 promoted breast cancer cell migration even for Ctnnal1-KD1 cells whose downregulation may not have been as strong as that in the Ctnnal1-KD2 cells (Figure 7H). Therefore, we speculated that IFT20 was involved in transporting Numb and Ctnnal1 from the TGN to the plasma membrane. When IFT20 was depleted, these proteins could not be efficiently transported to the plasma membrane, which promoted breast cancer cell migration.



Interactions of IFT20 With the F-Actin Associated Protein Tagln2 Regulates the Migration of Breast Cancer Cells

Efficient vesicular trafficking from the stage of vesicle budding to the fusion with the target membrane all depends on the dynamic regulation of the cytoskeleton. Tagln2 (transgelin2) is an actin-binding protein according to the Blast2GO Gene Ontology annotation database. When the cells were not fully stretched, Tagln2 colocalized with IFT20 around the nucleus along with accumulations in the cellular protrusions (indicated by the arrow in Figure 8A). The F-actin-like fiber localization at the cell periphery of Talgn2-mCherry was confirmed when the cells were fully stretched and co-transfected with Lifeact-EGFP, a marker of F-actin (Figure 8B). Meanwhile, Talgn2 also displayed perinuclear haze-shaped signals near the distribution of GT-EGFP (Figure 8C). Mostly, two localization patterns of Tagln2-mCherry were observed. One was a lamellipodia-localized pattern at the cell boundary, and the other was an invadopodia-localized pattern on the ventral side (Supplementary Figure 8A). Both are specialized structures used in cell migration with differences in their spatial distribution and function. Lamellipodia were generally localized at the cell front primarily for the purpose of long-distance cell migration, whereas invadopodia were localized at the cell-substratum contact points for the degradation of the extracellular matrix and promotion of cell invasion, shown as dot- or ring-shaped structures below or around the nucleus in a two-dimensional plane (Weaver, 2006). Using Strep-Tactin pulldown assays, we also detected an interaction between IFT20-strep and Tagln2-mCherry (Figure 8D). In IFT20-KO cells (B13 and A24), we detected the evident downregulation of Tagln2 (Figure 8E and Supplementary Figure 8B). Then, we generated two 4T1 cell lines stably expressing sh-Tagln2 (Supplementary Figure 8C). Tagln2-KD cells exhibited significantly faster wound closure than NC cells in the wound healing assay (Figure 8F). The number of migrating Tagln2-KD cells from the upper chamber was 3–4 times more than that of NC cells (Figure 8G). Both results implied that downregulation of Tagln2 promoted 4T1 cell migration. Taken together, we concluded that the loss of IFT20 promoted breast cancer cell migration partially by decreasing the expression of Tagln2.
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FIGURE 8. Interactions of IFT20 with the F-actin associated protein Tagln2 regulates the migration of breast cancer cells. (A) Representative fluorescent images of 4T1 cells co-expressing IFT20-EGFP and Tagln2-mCherry showed that IFT20 co-localizes with Tagln2. Arrow indicates the signal of Tagln2-mCherry at the cell projection. (B) Representative fluorescent images of 4T1 cells expressing Tagln2-mCherry and Lifeact-EGFP showing the F-actin localization of Tagln2. (C) Representative fluorescent images of 4T1 cells co-expressing GT-EGFP and Tagln2-mCherry showing the adjacent localization of Tagln2-mCherry to GT-EGFP. (D) Strep-pulldown assay of IFT20-Strep and Tagln2-mCherry. HEK293T cells were transfected with plasmids that express Tagln2-mCherry combined with or without IFT20-Strep expression plasmid. After 24 h, the cells were lysed and centrifuged. The supernatants (input) were incubated with Strep-Tactin beads, and the proteins bound to the beads (pulldown) were analyzed by Western blot using anti-Strep tag or anti-mCherry antibodies. (E) Western blots of cell lysates from 4T1 and IFT20-knockout mutants (B13 and A24) probed with Tagln2 antibodies showing the downregulation of Tagln2 in IFT20-KO cells. β-tubulin was used as the loading control. (F,G) Quantification of the migration efficiency in the wound healing (F) and transwell (G) assays showed that the downregulation of Tagln2 significantly enhanced cell migration. (H) A working model of IFT20-associated vesicles transporting Numb and Ctnnal1 to the plasma membrane in breast cancer cells. (a) Trans-Golgi/TGN localized IFT20 is involved in the vesicle transport of Numb and Ctnnal1 from the Golgi to the plasma membrane, which is overlapped with the Rab8a-positive trafficking pathway. (b) The amount of Numb and Ctnnal1 decreased at the plasma membrane because of the loss of IFT20, which enhances the migration of 4T1 cells. (c) IFT20 interacts with F-actin-associated protein Tagln2; loss of IFT20 causes the downregulation of Tagln2, which enhances the migration of 4T1 cells. (d) A key showing the shapes used in the illustration and their corresponding cellular components. All quantitative graphs were constructed with data from three independent experiments and date are expressed as the mean ± S.D.; n.s. (not significant) p > 0.05; *p ≤ 0.05; **p ≤ 0.01. All fluorescent experiments were performed three times. The nucleus was stained by DAPI (blue); scale bar, 5 μm.





DISCUSSION

Using non-ciliated breast cancer epithelial cells, we discovered an important cilia-independent role of IFT20, in which it functions as a negative regulator of cell migration. IFT20 not only mediates the transport of migration suppressors Numb and Ctnnal1 from the TGN to the plasma membrane, but also is associated with the dynamic regulation of F-actin through Tagln2 (Figure 8H). These results provide novel insights that can be used to understand the cell-type-specific roles of IFT20 in breast cancer cells.

The vesicle trafficking function of IFT20 was originally identified in ciliated cells based on its unique localization at the Golgi, the center of vesicle trafficking (Follit et al., 2006). GMAP210, one member of the golgins residing at the Golgi, is found to be responsible for the recruitment of cytosolic IFT20 to the cis-Golgi membrane (Follit et al., 2008). However, we did not identify this known interactor of IFT20 in our BioID results, possibly because of the varied distribution of IFT20 at the trans-Golgi/TGN in 4T1 cells, which is similar to the distribution pattern observed in photoreceptor cells (Sedmak and Wolfrum, 2010). To better understand the different sub-localizations at the Golgi with cell-cell variations, the determination of which proteins are responsible for the recruitment of IFT20 at the trans-Golgi/TGN will be an important focus of future work.

Based on the reported interplay between IFT20 and Rab-based regulatory machinery (Omori et al., 2008; Finetti et al., 2014; Su et al., 2020), we found that IFT20 participated in at least two intracellular trafficking routes—TGN-to-plasma membrane and late endosome-to-TGN—through the observable colocalization with Rab8a or Rab9. An interaction of IFT20-strep and Rab8a-mCherry was also detected in Strep-Tactin pulldown assays. It was reported that over-activated Rab8a can promote the formation of actin filaments and cell protrusions (Peranen et al., 1996; Hattula et al., 2002), similar to the phenotypes observed in our IFT20-KO cells, indicating that IFT20 and Rab8a participated in the same pathway in 4T1 cells. The co-distribution of IFT20 and Rab9 was reminiscent of the recently published results that IFT20 regulated the retrograde traffic of mannose-6-phosphate receptors (M6PRs) from the late endosomes to the TGN (Finetti et al., 2020).

Numb and Ctnnal1 are two IFT20-associated cargo proteins that were identified in the BioID method and verified through colocalization and Strep-Tactin pulldown analyses. Ctnnal1 is a scaffold protein located under the cortical actin network and functions in RhoA signaling pathway (Park et al., 2002). It has been identified in the ciliary membrane-associated proteome as an actin-binding protein (Kohli et al., 2017). Ctnnal1 on the cytoplasmic surface of IFT20-associated transport vesicles may be used to link the actin machinery, which would occur when IFT20-associated vesicles are close to the plasma membrane. Cell-type specific effect of Ctnnal1 on cell migration was reported. On one hand, Ctnnal1 could inhibit ozone-induced EMTs in bronchial epithelial cells (Tan et al., 2018). On the other hand, Ctnnal1 played a positive role in EMT and cell migration in melanoma cells (Kreiseder et al., 2013). In our study, knockdown of Ctnnal1 in 4T1 cells enhanced breast cancer cell migration, which was consistent with the effect of IFT20 depletion.

Numb is a tumor suppressor, and loss of Numb not only results in enhanced oncogenic Notch signaling but also reduced anti-oncogenic p53 expression levels (Colaluca et al., 2008). Besides the endocytic-associated function, Numb can directly bind E-cadherin. Knockdown of Numb caused a basolateral-to-apicolateral translocation of E-cadherin, a decrease in cell-cell adhesion, and an increase in cell migration in MDCK cells (Wang et al., 2009). Interestingly, despite at least four Numb mRNA splicing isoforms with different functional sites exist in mammalian cells (Dho et al., 1999; Wang et al., 2019), sequence analysis of 7 PCR-amplified products all revealed the existence of a transcript without an insert of the phosphotyrosine-binding domain in 4T1 cells, whose corresponding isoform has been reported to be not localized at the plasma membrane in MDCK cells (Dho et al., 1999). However, in our study, we observed the plasma membrane localization of this transcript, thus suggesting that some cell-type specific mechanisms (with the aid of IFT20) facilitated the transport of this Numb isoform from the TGN to the plasma membrane. This leads us to conclude that it will be necessary to identify the cell-type specific cargoes of IFT20 in different cell lines for a better understanding of its roles. Moreover, knockdown of Numb also enhanced breast cancer cell migration, which partially explained the diverse effects of IFT20 on cell migration in these cells, particularly when compared with the results in osteosarcoma and keratinocyte cells (Nishita et al., 2017; Aoki et al., 2019; Su et al., 2020).

Besides the cargoes of the IFT20-positive trafficking vesicles, we also identified a F-actin-binding protein Tagln2 in our BioID results, whose knockdown promoted 4T1 cell migration. There are two different views about the roles of Tagln2 on F-actin: depolymerizing F-actin (Leung et al., 2011) or competing with the actin-severing protein cofilin to stabilize F-actin (Na et al., 2015). In any case, Tagln2 was involved in the dynamic regulation of F-actin. Therefore, the reduced expression level of Talgn2 in IFT20-KO cells might be partially responsible for the enhanced migration.

In summary, we demonstrated an extraciliary and IFT-complex-independent role of IFT20, and established its function as a negative regulator of cell migration in breast cancer cells.
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Exosomes are extracellular vesicles, delivering signal molecules from donor cells to recipient cells. The cargo of exosomes, including proteins, DNA and RNA, can target the recipient tissues and organs, which have an important role in disease development. Insulin resistance is a kind of pathological state, which is important in the pathogeneses of type 2 diabetes mellitus (T2DM), gestational diabetes mellitus and Alzheimer’s disease. Furthermore, obesity is a kind of inducement of insulin resistance. In this review, we summarized recent research advances on exosomes and insulin resistance, especially focusing on obesity-related insulin resistance. These studies suggest that exosomes have great importance in the development of insulin resistance in obesity and have great potential for use in the diagnosis and therapy of insulin resistance.
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EXOSOME

Exosomes, which are considered extracellular vesicles (EVs), are cup-shaped structures with a diameter of 30–150 nm and a lipid bilayer membrane (Wortzel et al., 2019). The information molecules carried by exosomes include lipids (Carayon et al., 2011), proteins (Li et al., 2017) and nucleic acids (Kamalden et al., 2017), and these types of cargo are protected from degradation by the lipid bilayer membrane and can be transported from donor cells to recipient cells (Figure 1). There are many marker molecules to determine exosomes, including CD81, CD9, CD63, heat-shock proteins (HSP60, HSP70, and HSP90), ALG-2 (apoptosis-linked gene 2)-interacting protein X (ALIX), and tumor susceptibility gene 101 (TSG101) (Lou et al., 2017), and glucose-regulated protein 94 (Grp94) as a negative marker (Gemel et al., 2019). As the new carrier of information exchange between cells, exosomes can be secreted by different types of cells, such as hepatocytes (Fang et al., 2018), adipocytes (Yu et al., 2018), skeletal muscle cells (Nie et al., 2019), vascular smooth muscle cells (Kapustin et al., 2015) and stem cells (Willis et al., 2018). Exosomes have been detected in various bodily fluids, including plasma, saliva, breast milk, sweat, tears, and urine (Lasser et al., 2011; McKiernan et al., 2018; Wu and Liu, 2018; Inubushi et al., 2020). What’s the precise function of exosomes? Initially, exosomes were described as “garbage dumpsters,” which took the useless or harmful intracellular substances out of cells. Recently, exosomes were defined as “signal boxes,” which delivered messages between the cells or organs (Xie et al., 2019). Now, more and more studies have elucidated the functions of exosomes. Exosomes can participate in both pathological and physiological processes, including angiogenesis (Zeng et al., 2018), vascular calcification (Xu F. et al., 2020), immune inflammation (Pan et al., 2019), apoptosis (Guay et al., 2019), fibrosis (Seo et al., 2016), tumor development (Xue et al., 2017), senescence (Zhang et al., 2017; Xu F. et al., 2020), tissue repair (Dinh et al., 2020) and insulin resistance (Yu et al., 2018). Our present review will focus on the exosome’s effect on insulin resistance.


[image: image]

FIGURE 1. The formation of exosomes and intercellular interaction. Exosomes originate as intraluminal vesicles (ILVs) that form by inward budding of the limiting membrane of early endosomes. The endosomes mature into multivesicular bodies (MVBs) which fuse with the plasma membrane to release exosomes. Other MVBs fuse with lysosome, and the ILVs are degraded by lysosomes. Exosomes contain nucleic acid, protein, and lipid, the membrane of exosomes also include membrane proteins of endosomes. CD63, CD81, and CD9 are common surface biomarkers of exosomes. Exosomes target recipient cells through three ways, including direct fusion, endocytosis, and receptor-ligand interaction.




INSULIN PHYSIOLOGY AND INSULIN RESISTANCE

As a key regulatory factor of glucose metabolism, insulin is secreted by pancreatic β cells following elevations in blood glucose (Halperin et al., 2012). Indeed, the actions of insulin mainly contribute to glucose uptake by skeletal muscle and adipose tissue and reduce liver gluconeogenesis and glycogenolysis (Titchenell et al., 2017; Tokarz et al., 2018). Insulin also participates in protein metabolism in skeletal metabolism and lipid storage in adipose tissue (Fu et al., 2015). Recently, scientists have found that the brain was also a target tissue of insulin (Honkala et al., 2018). Insulin signaling has many complex branches, and each branch can present a kind of physiologic function. The phosphorylation of Akt takes part in most of the insulin signaling pathways, so we usually regard the level of p-AKT as a marker of insulin sensibility (Friedrichsen et al., 2010).

Insulin resistance is one of the important pathogenetic mechanisms of type 2 diabetes mellitus (T2DM) (Stenvers et al., 2018). Insulin resistance also takes a part in the development of gestational diabetes mellitus (GDM) and Alzheimer’s disease (Benhalima et al., 2019; Wakabayashi et al., 2019). Insulin resistance refers to an impairment in the biological effects of insulin on target tissues, such as the ability to promote glucose uptake and inhibit the breakdown of glycogen in adipocytes and skeletal muscle cells. In addition to glucose metabolism, insulin is also involved in protein and lipid metabolism. In fact, we usually define the impairment of insulin effect on glucose metabolism as insulin resistance. When insulin resistance occurs in the body, the compensatory secretion of insulin will cause hyperinsulinaemia, resulting in a series of pathophysiological changes, such as pancreatic islet function impairment, increasing nutrient consumption and hyperlipidemia, cardiovascular damage, and finally leading to a variety of metabolic diseases, such as diabetes mellitus, obesity (Templeman et al., 2017) and diabetic cardiomyopathy (Jia et al., 2016). There are several methods to determine insulin resistance, such as the hyperinsulinaemic euglycaemic clamp, oral glucose tolerance test (OGTT) and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR).

Among all the reasons leading to insulin resistance, obesity is one of the most significant causes of insulin resistance (Day et al., 2017). The sign of obesity is the expansion of adipose tissue, which is mainly reflected in the increase of subcutaneous adipose tissue. Subcutaneous adipose tissue is the largest warehouse of adipose tissue in humans and the preferred place for storing excess fat. However, the expanding ability of subcutaneous adipose tissue is limited. When its storage capacity is exceeded, lipids are stored in other metabolically more harmful ectopic tissues, such as the liver and skeletal muscle (Gustafson et al., 2015). Adipose tissues can store triglycerides and set free fatty acids and glycerol (Mundi et al., 2014). Free fatty acids can contribute to insulin insensitivity (Vlavcheski and Tsiani, 2018). White adipose tissue plays the most important role in storing fatty acids. By enhancing lipid synthesis or limiting lipolysis, white adipocytes store lipids to prevent toxic lipid accumulation in the liver and skeletal muscle (Czech, 2020). One study showed that the percentage of fat stored in the white adipose tissue of obese people decreased significantly, because the storage of lipids in non-adipose tissues were promoted (McQuaid et al., 2011). In contrast, brown/beige adipocytes were active in the direct uptake of glucose in response to β-adrenergic signaling and insulin, increasing energy consumption (Czech, 2020). Obesity has a detrimental effect on the function of each type of adipocyte, leading to insulin resistance (Czech, 2020). In addition to its function of storing fat, adipose tissue is also a very important endocrine organ. Adipokines, a general term for hormones secreted by adipocytes, are divided into two groups, which promote insulin actions or inhibit insulin actions, respectively (Guo et al., 2017). Leptin and adiponectin are adipokines that increase insulin sensitivity (Ayina et al., 2016). Adipose tissues can release tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) as inhibitory adipokines, which inhibit insulin action. In the process of adipose tissue expansion in obese people, adipose tissue produces chronic inflammation, and many M1 macrophages are recruited into adipose tissue and produce inflammatory factors. These inflammatory factors lead to insulin resistance in adipose tissues and act on other tissues to induce insulin resistance (Olefsky and Glass, 2010). All in all, adipose organ dysfunction is a key cause in the development of insulin resistance.



EXOSOMES IN OBESITY-RELATED INSULIN RESISTANCE

Obesity is the most significant risk factor for insulin resistance, but the specific pathogenesis of insulin resistance needs further study. Recently, exosomes have been proven to act as communicators between cells, which have attracted the attention of many scientists. Exosomes contain many kinds of cargo, which can influence the function of recipient cells. Researchers have revealed that exosomes participate in many kinds of disease development processes, such as liver and kidney diseases (Babuta et al., 2019; Liu et al., 2020). At the same time, the role of exosomes in insulin resistance has been studied, with many studies focusing on the effect of exosomes in obesity-related insulin resistance.


The Role of Exosomes From Adipose Tissues in Obesity-Related Insulin Resistance

Since adipose tissue plays a key role in insulin resistance, exosomes secreted from adipose tissue may be a kind of media in this process. The chronic inflammation of adipose tissue is an especially significant inducing factor in the development of insulin resistance, and the chronic inflammation manifests as macrophage infiltration. In recent years, interest has been emerging in the research of adipocyte-derived exosomes of chronic inflammation in adipose tissue (Figure 2). Deng et al. found exosomes secreted by the adipose tissue of ob/ob mice (obese model) induced the activation of macrophages through the TLR4/TRIF pathway, and the retinol-binding protein-4 (RBP4) in these exosomes played a role in the induction of macrophage activation. Furthermore, the obesity-related exosomes homed the macrophage to the liver and adipose tissues, in which macrophages secreted TNF-α and IL-6 to result in insulin resistance. They also confirmed the exosome-mediated macrophage impaired insulin action of myocytes. This is the first research discovering the role of exosomes in obesity-related macrophage-mediated insulin resistance (Deng et al., 2009). Song and co-workers confirmed that Sonic hedgehog (Shh) from insulin resistance adipocyte-derived exosomes (IRADEs) was the key regulator mediating M1 macrophage polarization through Ptch/PI3K signaling. They uncovered the exosomes from the IRADE-treated macrophages could contribute to insulin resistance in adipose tissues by decreasing the expression of insulin receptor substrate-1 (IRS-1) and hormone-sensitive lipase (HSL) expression. The authors gave us a new target, Shh, to inhibit the development of insulin resistance (Song et al., 2018). Adipose tissue macrophage (ATM)-derived exosomes from obese mice induced insulin resistance. However, the exosomes from lean ATMs mitigated the insulin resistance in obese mice without changing the weight of the mice. The authors revealed the key point of the effect of ATM-derived exosomes in modulating insulin sensitivity was miR-155 by targeting peroxisome proliferator-activated receptor γ (PPARγ). Furthermore, miR-155 knockout mice were much more insulin sensitive than their obese wildtype mice control counterparts (Ying et al., 2017). Similarly, Liu et al. (2019) found that exosomal miR-29a from ATMs was highly expressed in obese mice and could be transferred to adipocytes, myocytes and hepatocytes to induce insulin insistence by targeting PPARδ. A study showed exosomes from lipopolysaccharide (LPS)-activated macrophages could change the adipocyte gene expression associated with inflammation. However, the exosomes could not influence insulin-dependent glucose uptake (De Silva et al., 2018). Likewise, Pan and colleagues also confirmed that adipose tissue-related macrophage polarization was of great importance in insulin resistance. Exosomal miR-34a secreted by adipocytes inhibited M2 macrophage polarization by targeting Krüppel-like factor 4 (Klf4), which promoted M2 macrophage polarization and monocyte differentiation. The authors also verified that the altered miR-34a/Klf4 axis in visceral fat was closely associated with insulin resistance in obese subjects (Pan et al., 2019). In short, exosomes from adipocytes can increase the M1 macrophage, which secretes inflammatory cytokines, leading to insulin resistance. Apart from the inflammatory factors, ATMs also secrete exosomes to regulate insulin sensitivity. Furthermore, exosomes from macrophages can modulate adipocyte metabolism. Adipocyte-derived exosomes also decrease M2 macrophage levels, which is a kind of cell that inhibits inflammation.
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FIGURE 2. Exosome-mediated intercellular communication in obesity-related insulin resistance. Chronic inflammation exits in adipose tissue in obesity. Adipocyte-derived exosomes promote the polarization of M1 macrophages which secretes pro-inflammatory cytokines and exosomes, and the adipose tissue macrophage-derived exosomes can promote insulin resistance in adipocytes. In obesity, exosomes from adipose tissue, liver, pancreas, and muscle, mediating intra-organ cross talks or inter-organ cross talks by blood circulation. In obesity, these organs or tissues increase the secretion of exosomes that promote insulin resistance or decrease the secretion of exosomes that ameliorate insulin resistance.


Apart from participating in inflammation-induced insulin resistance in adipose tissues, exosomes from adipocytes also have crosstalk with other organs, inducing obesity-related insulin resistance (Figure 2). A previous study revealed crosstalk between adipose tissue and skeletal muscle tissue in obesity-related insulin resistance, and authors found that adipocyte-derived exosomal miR-27a decreased the expressions of IRS-1 and glucose transporter GLUT4 in skeletal muscle tissue by targeting PPARγ. The authors confirmed exosomal miR-27a was derived from adipocytes, not macrophages and skeletal muscle cells (Yu et al., 2018). Dang et al. revealed that exosomes derived from adipocytes in ob/ob mice and B6 (C57BL/6j) mice fed with a high-fat diet (HFD) could decrease insulin sensitivity by affecting phosphorylation levels of AKT and glucose uptake of AML12 cells. Furthermore, the inhibition of insulin function was mainly caused by obesity in the adipose tissue of ob/ob mice, which secreted miR-141-3p deficiency exosomes taken up by hepatocytes. The author confirmed that miR-141-3p could target phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a negative regulator of the PI3K/AKT signaling pathway (Dang et al., 2019). In a previous study, human adipose tissue-derived EVs were revealed to inhibit hepatic insulin signaling by reducing the p-AKT levels. However, the adipose tissue-derived EVs did not have a significant effect on skeletal muscle cells compared to hepatocytes. Authors found that the level of monocyte chemoattractant protein-1 in subcutaneous adipose tissue-derived EVs and levels of IL-6 and macrophage migration inhibitory factor of omental adipose tissue-derived EVs were associated with AKT phosphorylation in hepatocytes (Kranendonk et al., 2014). Li et al. showed adipose-specific knockdown of Sirtuin 1 (Sirt1) contributed to obesity and insulin resistance by stimulating exosomes secretion in an autophagy-dependent manner, and adipose Sirt1 deficiency-induced exosomes affected insulin sensitivity via the TLR4/NF-κB signaling pathway in adipose tissues (Li F. et al., 2019). As adipose tissue expansion could lead to local tissue hypoxia and inflammation in obesity, Mleczko et al. revealed that the exosomes from hypoxic adipocytes impaired insulin-stimulated glucose uptake by reducing the phosphorylation of AKT. The authors also confirmed exosomes from plasma obtained from obese women could reduce insulin-stimulated glucose transport. Interestingly, the inhibiting effect of the exosomes could be restored by heating the hypoxic exosomes preparation to 40°C for 30 min prior to the treatment of cells. Since the effect of hypoxic EVs on glucose transport was thermolabile, the authors guessed enzymatic activity might be responsible for this effect. Then, they found PTEN, a protein phosphatase that reduced phosphorylation of AKT existed in EVs from hypoxic 3T3L1 adipocytes. However, they did not find the precise molecular mechanisms (Mleczko et al., 2018). Hubal et al. (2017) found that gastric bypass bariatric surgery could not only reduce weight and insulin resistance but also change the microRNA content of circulating adipocyte-derived exosomes isolated from the peripheral blood. Among the altered microRNAs of exosomes, 29 microRNAs associated with insulin resistance changed after surgery; likewise, 48 microRNAs targeting 78 mRNAs were significantly correlated to branched-chain amino acid levels, which are linked to insulin dysregulation (Hubal et al., 2017). These studies suggested that exosomes from adipocytes could have a function in distant organs and take part in obesity-related insulin resistance.



The Role of Exosomes Derived From Tissues Other Than Adipose Tissue in Obesity-Related Insulin Resistance

In obesity, other organs could also produce exosomes that are associated with insulin resistance (Figure 2). A study by Wu et al. (2020) revealed that hepatic exosome-derived miR-130a-3p participated in lipid and glucose metabolism by targeting adipocytes. In HFD-induced mice, miR-130a-3p knockout mice had the highest blood lipid index and a higher blood glucose level compared to those in miR-130a-3p overexpressed and wild-type mice. Authors found hepatic exosome-derived miR-130a-3p suppressed adipogenesis mainly by downregulating the expression of fatty acid synthetase (FASN) and PPARγ at the protein level. Besides, the authors revealed that miR-130a-3p could target PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2), increase the levels of p-AKT and p-AS160, and finally promote GLUT4 transportation (Wu et al., 2020). In a previous study, the authors confirmed the effect of skeletal muscle-derived exosomes during lipid-induced insulin resistance. In addition to insulin resistance, lipid treatment led skeletal muscle to produce more exosomes, which could increase the AKT content of recipient muscle cells, and regulate the expression of genes having to do with the cell cycle and muscle differentiation in recipient myotubes. The exosomes from lipid-treated skeletal muscle also induced myoblast proliferation. Authors also revealed that exosomes transferred lipids between muscle cells (Aswad et al., 2014). As the insulin-secreting organ, the islets are also involved in regulating insulin sensitivity. Xu et al. revealed that pancreatic β cell miR-26a improved insulin sensitivity and preserved β cell function. After confirming exosomal miR-26a was reduced in obese humans and mice, especially in the islets, the authors generated conditional transgenic mice expressing miR-26a under the control of the rat insulin promoter to increase expression of miR-26a in β cells. The results showed that the exosomal miR-26a secreted from β cells could increase insulin sensitivity in peripheral tissues by regulating metabolism-related gene expression, and the miR-26a could also decrease glucose-stimulated insulin secretion (GSIS) by impairing actin cytoskeleton remodeling. In addition, miR-26a ameliorated compensatory β cell hyperplasia by decreasing β cell replication induced by excess nutrition (Xu H. et al., 2020). In an interesting study, Wang et al. found pancreatic cancer-derived exosomes also inhibited glucose intake in C2C12 myotube cells through the PI3K/AKT/FoxO1 pathway. The increase of FoxO1 caused by pancreatic cancer-derived exosomes contributed to inhibiting the translocation of GLUT4 to the plasma membrane. Although the authors showed exosomal miRNA might be involved in this process through microRNA microarray analysis, they did not confirm the concrete molecular mechanism (Wang et al., 2017). A study by Choi et al. (2015) confirmed that EVs from gut microbes induced by a high fat diet (HFD) could impair insulin signaling and glucose metabolism both in vitro and in vivo. They observed that the HFD changed the bacteria in the gut. However, the gut bacteria did not infiltrate through the gut to other organs, but the gut microbe-derived EVs caused insulin resistance by infiltrating the gut barrier and targeting other organs (Choi et al., 2015). In a previous study, researchers determined the circulating exosome miRNA profile in diet-induced central obesity mice and found an increase in miR-122, miR-192, miR-27a-3p, and miR-27b-3p. As the exosomes from obese mice could induce insulin resistance, authors used exosomes transfected with obesity-associated miRNA mimic injected into lean mice to exclude other sources of variation. The results showed that mimic treatment targeted PPARγ to induce inflammation and hepatic steatosis in epididymal white adipose tissue (eWAT), both of which are known to participate in glucose intolerance and dyslipidemia, and the effects of mimic treatment could be reverted by the lipolysis inhibitor acipimox or the PPARα agonist fenofibrate (Castaño et al., 2018). Likewise, a clinical study showed that the number of circulating EVs was strongly associated with obesity and lipid and glucose metabolism. Furthermore, some EVs were confirmed from adipocytes and hepatocytes, which are major metabolic cells (Kobayashi et al., 2018).

Above all, insulin resistance is a complicated pathological state, which affects various organs. Furthermore, exosomes play a pivotal role in the development of obesity-related insulin resistance. Above all, the function of exosomal contents can be seen in Table 1.


TABLE 1. Role of exosomes in obesity-related insulin resistance.
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EXOSOMES AS BIOMARKERS FOR INSULIN RESISTANCE

The OGTT and HOMA-IR are useful to test for insulin resistance, although the hyperinsulinaemic euglycaemic clamp is regarded as the gold standard for the diagnosis of insulin resistance diagnosis. However, it can’t be used as a routine test. Recently, many biomarkers for insulin resistance have been revealed. Adipokines could be regarded as biomarkers for insulin resistance, including adiponectin, RBP4, chemerin, and adipocyte fatty acid-binding protein (A-FABP) (Huang et al., 2013; Li et al., 2018; Li X. et al., 2019; Frithioff-Bojsoe et al., 2020). Fibroblast growth factor 21 and fetuin-A have been found as biomarkers for insulin resistance (Shim et al., 2017; Xu et al., 2018). Many studies have shown that myokines, such as IL-6, irisin and myostatin, serve as biomarkers for insulin resistance (Mauer et al., 2014; Steculorum et al., 2016; Mazur-Bialy, 2019).

The release of exosomes depends on the state of the human body. What’s more, exosomes can protect the cargo from degradation by the lipid bilayer membrane. Therefore, collecting exosomes is a potential promising diagnostic method for diseases. Exosomes were found in various bodily fluids, such as plasma, saliva, breast milk, sweat, tears, and urine. Therefore, exosomes can easily be obtained from bodily fluids. It has been reported that exosomes are of great significance for fluid biopsy in many kinds of diseases, such as breast cancer (Hannafon et al., 2016), hepatocellular carcinoma (Sohn et al., 2015), prostate cancer (Bhagirath et al., 2018), osteoarthritis (Zhao and Xu, 2018) and atherosclerosis (Lu et al., 2019). Likewise, using exosomes for the early diagnosis of insulin resistance is a promising method. Sharma et al. reported that the phosphoenolpyruvate carboxykinase in urine exosomes reflected gluconeogenesis of the kidney. By determining phosphoenolpyruvate carboxykinase, urine exosomes, as a non-invasive marker, contribute to discovering impairment in gluconeogenesis and early insulin resistance in humans (Sharma et al., 2020). A clinical study showed that circulating miRNAs in the EVs of human plasma could be biomarkers for insulin resistance phenotypes in obesity. Authors found that four miRNAs (let-7b, miR-144-5p, miR-34a, and miR-532-5p) were strongly predictive of insulin resistance (Jones et al., 2017). Another study by Katayama et al. (2019) revealed that miRNA expression profiles in exosomes, rather than in serum, had a significant difference between normal glucose tolerance and patients with T2DM. The increase in circulating exosomal miR-20b-5p was confirmed to impair insulin signaling in human skeletal muscle by targeting AKTIP and STAT3 (Katayama et al., 2019). Brain insulin resistance exists in Alzheimer’s disease. A study showed neurally derived blood exosomes were used to track the dysfunctional phosphorylation type 1 insulin receptor, which could happen in preclinical Alzheimer’s disease (Kapogiannis et al., 2015). Mullins et al. (2017) found that neural origin plasma exosomes labeled by L1CAM contained higher pSer312-IRS-1 (ineffective insulin signaling) and lower p-panTyr-IRS-1 (effective insulin signaling) in Alzheimer’s disease. Furthermore, they revealed that higher pSer312-IRS-1 levels were positively related to greater brain atrophy in Alzheimer’s disease and p-panTyr-IRS-1 levels had the opposite effect (Mullins et al., 2017). In a word, exosomes will be the most promising bodily fluid biopsy. As shown in Table 2, some potential exosomal biomarkers can be used to track insulin resistance.


TABLE 2. Potential biomarkers of exosomes in insulin resistance.
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MESENCHYMAL STEM CELLS-DERIVED EXOSOMES IN INSULIN RESISTANCE

Mesenchymal stem cells (MSCs) are multipotent cells that can be self-renewing, including human umbilical cord mesenchymal stem cells, bone marrow mesenchymal stem cells and adipose-derived stem cells. Recently, stem cell therapy has been a promising strategy for diseases, such as liver disease (Zhao L. et al., 2018), multiple sclerosis (Muraro et al., 2017; Atkins, 2019), leukemia (Shem-Tov et al., 2020) and diabetic retinopathy (Gaddam et al., 2019). However, whether stem cell transplantation contributes to the emergence of tumors remains unknown. It has been found that stem cells have an effect on tissue-resident recipient cells by paracrine mechanisms (Liang et al., 2014). It has been reported that exosomes secreted by mesenchymal stem cells have the properties of their parent cells, such as regulation of cell migration and proliferation (McBride et al., 2017; Chew et al., 2019), immunomodulation (Willis et al., 2018), tissue regeneration (Chew et al., 2019) and anti-inflammatory (Xia et al., 2019) effects.

Several researchers investigated the effect of mesenchymal stem cell-derived exosomes in insulin resistance. Sun et al. showed that exosomes from human umbilical cord mesenchymal stem cells (hucMSC-ex) could have a therapeutic effect on T2DM. They found that injection of hucMSC-ex significantly ameliorated hyperglycemia in rats with T2DM. HucMSC-ex could increase insulin sensitivity by increasing the activation of p-IRS-1 and p-AKT and inhibiting the secretion of pro-inflammatory cytokines, which could inhibit the activation of the insulin signaling pathway. These exosomes could promote glucose uptake and glycolysis in skeletal muscle by affecting membrane translocation of GLUT4 and glucose metabolism-related enzymes. Activating insulin signaling, hucMSC-ex increased expression of p-GSK3β and glycogen synthase to improve glycogen synthesis in the liver. Furthermore, hucMSC-ex could not only promote the secretion of insulin but also inhibit STZ-induced β cell apoptosis (Sun et al., 2018). However, this research didn’t explain which kind of substance contained in hucMSC-ex played a role in the process. In a previous study, Su et al. (2019) found exosomes from bone marrow mesenchymal stem cells (BM-MSCs) of aged mice impaired insulin sensitivity both in vitro and in vivo. After a miRNA microarray analysis, the authors paid attention to miR-29b-3p, which was significantly higher in exosomes secreted by the BM-MSCs of aged mice compared to that released by the BM-MSCs of young mice. They revealed that Sirt1 was downstream of miR-29b-3p and regulated insulin sensitivity. Injection of the BM-MSC-specific nanocomplex/aptamer-agomiR-29b-3p to the bone marrow cavity could impair insulin sensitivity in young mice. On the contrary, BM-MSC-specific nanocomplex/aptamer-antagomiR-29b-3p mitigated aging-associated resistance in old mice. However, they did not find strong evidence showing BM-MSC-derived exosomes affect aging-associated degeneration of pancreatic function (Su et al., 2019). Zhao et al. found that exosomes from adipose-derived stem cells (ADSCs) were taken up by macrophages. Furthermore, these exosomes carried active STAT3, which could promote arginase-1 expression in macrophages to induce anti-inflammatory M2 phenotypes. ADSC-derived exosomes mitigated diet-induced obesity and improved glucose tolerance and insulin sensitivity. Besides, the authors found that ADSC-derived exosomes could inhibit adipocyte hypertrophy and promote the occurrence of brown-like fats. More interestingly, the results showed that macrophages treated by ADSC-derived exosomes could induce ADSC proliferation by secreting lactate (Zhao H. et al., 2018). Taken together, stem cell-derived exosomes could increase insulin sensitivity by promoting insulin signaling and decreasing adipose tissue-related inflammation (Figure 3).
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FIGURE 3. MSC-derived exosomes ameliorate insulin resistance. MSC-derived exosomes down regulate blood glucose through reverse insulin resistance in insulin target tissue and relieve β cell destruction. MSC-derived exosomes also ameliorate insulin resistance by promoting M2 macrophage polarization and inhibiting M1 macrophage polarization.




SUMMARY AND PERSPECTIVES

Obesity is of great importance in the development of insulin resistance. The chronic inflammation in adipose tissues is the main cause of insulin resistance in obesity, and great importance in the development of inflammation has been attached to macrophages. Exosomes, as the mediators, delivering the contents from parent cells to recipient cells, affect the pathophysiology of human beings. In this review, we summarized a lot of exosome-associated research, which mainly focuses on obesity-related insulin resistance. Adipocyte-derived exosomes participate in the activation of macrophages by promoting M1 macrophage polarization and inhibiting M2 macrophage polarization and subsequently stimulating insulin resistance. Exosomes from activated macrophages also induce insulin resistance. Furthermore, exosomes derived from tissues other than adipose tissue also play a role in obesity-related insulin resistance.

Exosomes could be potential diagnostic and therapeutic tools for insulin resistance. Liquid biopsy is a very valuable test, and it reflects the overall physical condition. Bodily fluids contain a variety of substances, so it is important to choose suitable and specific biomarkers. The exosome is a potential biomarker for insulin resistance, since it can be changed by the body’s pathophysiological state. As the exosome is a membrane structure that can protect the internal molecules from degradation, we can use exosomes to detect changes in the nucleic acid levels of patients. Although the application of exosomes as a detection method is not very common at present, with in-depth research on exosomes, people will better understand the superiority of exosomes as a tool for liquid biopsy. The application of exosomes from mesenchymal stem cells has been studied for many years. The effect of MSC-exosome treatment on insulin resistance has been confirmed in several studies. Exosomes have great advantages for the treatment of insulin resistance. Firstly, exosomes have the physiological activity of their parent cells and can replace the parent cells to play a therapeutic role. Secondly, exosomes are less immunogenic and do not cause immunologic rejection in patients. Thirdly, exosomes are vesicle structures that do not pose a tumorigenic risk to organisms. Fourthly, exosomes can treat insulin resistance by loading some drugs. Although the current research on the diagnosis and treatment of insulin resistance with exosomes is only the tip of the iceberg. In the future, using advanced technology and methods, we will skilfully use exosomes to diagnose and treat insulin resistance.



AUTHOR CONTRIBUTIONS

L-QY: manuscript writing and approving the final version of manuscript. L-ML: study conduct, data analysis, and manuscript writing. XL, FX, S-KS, BG, F-X-ZL, M-HZ, YW, and Q-SX: data analysis. All authors: reviewed the manuscript.



FUNDING

This work was supported by funding from the National Natural Science Foundation of China (Nos. 81770881 and 82070910) and Key R&D Plan of Hunan Province (2020SK2078).

ABBREVIATIONS
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Although the largely positive intramembrane dipole potential (DP) may substantially influence the function of transmembrane proteins, its investigation is deeply hampered by the lack of measurement techniques suitable for high-throughput examination of living cells. Here, we describe a novel emission ratiometric flow cytometry method based on F66, a 3-hydroxiflavon derivative, and demonstrate that 6-ketocholestanol, cholesterol and 7-dehydrocholesterol, saturated stearic acid (SA) and ω-6 γ-linolenic acid (GLA) increase, while ω-3 α-linolenic acid (ALA) decreases the DP. These changes do not correlate with alterations in cell viability or membrane fluidity. Pretreatment with ALA counteracts, while SA or GLA enhances cholesterol-induced DP elevations. Furthermore, ALA (but not SA or GLA) increases endo-lysosomal escape of penetratin, a cell-penetrating peptide. In summary, we have developed a novel method to measure DP in large quantities of individual living cells and propose ALA as a physiological DP lowering agent facilitating cytoplasmic entry of penetratin.
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INTRODUCTION

An ever-increasing amount of evidence supports the active role of the cell membrane, and its lipid components in particular, in the regulation of the structure and function of transmembrane proteins and consequently a wide array of cellular functions. In general, lipids are thought to influence proteins through direct ligand-like interactions and/or indirect mechanisms that include changes in bulk membrane biophysical parameters (Corradi et al., 2019; Zakany et al., 2020). Among the latter, dipole potential (DP) is the most enigmatic factor, which originates from the non-random alignment of dipolar segments of carbonyl groups, cholesterol and membrane-associated water molecules. This preferential arrangement results in the generation of a large positive intramembrane electrostatic potential with an estimated magnitude of 150–450 mV, which is associated with a dipole electric field much stronger than that of the transmembrane or surface potentials (108–109 vs. 2.5 × 107 and 106 V/m, respectively) (O’Shea, 2003, 2005; Wang, 2012). The most important determinant of the magnitude of DP is the lipid composition of the membrane, i.e., the chemical types and amounts of phospholipids (Starke-Peterkovic and Clarke, 2009) and sterols (Simon et al., 1992; Haldar et al., 2012; Sarkar et al., 2017). Consistently, we have recently shown that the magnitude of DP shows lateral heterogeneity with higher values in lipid raft microdomains in the cell membrane (Kovacs et al., 2017). Experimentally, DP is most commonly increased by incorporating a sterol derivative, 6-ketocholestanol (6KC), into the membrane, which results in large alterations in the value of DP (Gross et al., 1994; Clarke and Kane, 1997; Kovacs et al., 2016, 2017). On the other hand, it is usually lowered experimentally with phloretin, however, the magnitude of changes induced by this natural phenol is relatively low (Gross et al., 1994; Clarke and Kane, 1997; Kovacs et al., 2016, 2017). Although reduction in cellular cholesterol levels by statin treatment is capable of reducing the DP (Sarkar et al., 2017; Batta et al., 2020), an efficient and non-pharmacological way of lowering DP has not been described yet. ω-3 and ω-6 polyunsaturated fatty acids, such as α-linolenic acid (ALA) (and its derivatives eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA)) and γ-linolenic acid (GLA) [and its derivative arachidonic acid (AA)] generally exert opposing effects on membrane biophysical parameters when compared to sterols. These include increased membrane fluidity (Calder et al., 1994; Leifert et al., 1999; Rajamoorthi et al., 2005), higher degree of hydration (Huster et al., 1997), decreased thickness and increased bending elasticity of lipid bilayers (Rawicz et al., 2000; Rajamoorthi et al., 2005). Consistent with these effects, it can be assumed that polyunsaturated fatty acids (PUFAs) might influence the magnitude of DP as well, however, to our knowledge, this hypothesis has not been examined in living cells yet.

Due to the mostly non-uniform charge distribution of proteins, the immense DP-associated electric field can be essential in the regulation of the conformational stability and consequently the functional activity of membrane proteins (O’Shea, 2003; Richens et al., 2015; Zakany et al., 2020). Consistently, DP was suggested to influence the function of bacterial ionophores (Ostroumova et al., 2012), voltage-gated ion channels (Pearlstein et al., 2017; Zakany et al., 2019), Na+/K+ ATPase (Clarke, 2015), P-glycoprotein (Davis et al., 2015) serotonin receptors (Bandari et al., 2014) and ErbB proteins (Kovacs et al., 2016). The DP can also modify membrane binding of drugs (Asawakarn et al., 2001), β-amyloid (Hertel et al., 1997) and other peptides (Cladera and O’Shea, 1998; Zhan and Lazaridis, 2012). Cell-penetrating peptides are promising therapeutic tools for the non-toxic delivery of cell-impermeable agents (Guidotti et al., 2017), however, their applicability is limited by low bioavailability (Wang et al., 2014). These peptides can enter the cytoplasm, i.e., the site of their action, through direct plasma membrane translocation or endocytosis followed by endo-lysosomal release (Futaki, 2006; Guidotti et al., 2017). Since both mechanisms involve interactions with the membrane, the DP-associated electric field might influence their cellular uptake, especially in the cases of charged cell-penetrating peptides, such as the cationic penetratin. Consistently, we have shown recently that decreases in DP in response to phloretin or atorvastatin-induced reduced cholesterol levels result in increased cellular uptake and endo-lysosomal escape of penetratin (Batta et al., 2020).

Despite its presumable biological relevance, studies examining DP are scarcely documented mainly due to difficulties in its quantification. The applicability of most DP measurement techniques, including cryoelectron microscopy (Wang et al., 2006), molecular dynamics simulations (Harder et al., 2009; Ding et al., 2015), atomic force microscopy (Yang et al., 2008) and vibrational Stark effect spectroscopy (Shrestha et al., 2017), is limited for the examination of living cells. Investigation of DP in living cells is mainly carried out with di-8-ANEPPS, an electrochromic dye using an excitation ratiometric assay in spectrofluorometry (Gross et al., 1994; Clarke and Kane, 1997) or microscopy (Kovacs et al., 2016, 2017). Alternatively, certain 3-hydroxyflavone derivatives, such as F66 can be used via an emission ratiometric assay due to their excited-state intramolecular proton transfer (ESIPT) reaction resulting in normal (N∗) and tautomer (T∗) excited states with well-separated bands in their emission spectra. This reaction is modulated by the strength of the local electric field, thus, the magnitude of DP. Consistently, these dyes were used to examine DP in spectrofluorometric (Klymchenko et al., 2003; Shynkar et al., 2005; Darwich et al., 2013) and microscopic assays (Shynkar et al., 2005; Darwich et al., 2013; Kovacs et al., 2017). While fluorescence microscopy provides single cell resolution with low throughput, spectrophotometry can measure a large number of cells without discrimination between live and dead cells. Flow cytometry combines the advantages of the two techniques, i.e., to measure DP in large quantities of individual living cells, however, to our knowledge, no such method has been published.

Here, we report on a novel flow cytometry method for the measurement of DP in individual living cells using F66, a 3-hydroxiflavon derivative and an emission ratiometric assay. Using this new technique, we show that sterols, stearic acid or γ-linolenic acid dose-dependently increased, while α-linolenic acid decreased DP, which did not result from changes induced in cell viability or membrane fluidity. Alterations in DP showed good correlation with changes in membrane hydration. Modifications in DP in response to fatty acids strongly correlated with their effects on endo-lysosomal escape of penetratin. Since membrane crossing of penetratin has been shown to correlate with the DP (Batta et al., 2020), these results confirm the biological relevance of our findings. Furthermore, we identified α-linolenic acid as a physiological DP lowering agent, which can be used in future studies examining the biological importance of DP.



RESULTS


Effects of Phloretin and 6-Ketocholestanol on the Magnitude of Membrane Dipole Potential

In order to provide a reference for a new, flow cytometry method for measuring DP, we employed a widely used voltage-sensitive fluorophore, di-8-ANEPPS in spectrofluorometry to follow changes in DP in response to the most commonly applied DP modifying agents, phloretin and 6-ketocholestanol (6KC), which were incorporated into the cell membrane with the help of Pluronic-F-127, a hydrophilic non-ionic surfactant (Gross et al., 1994; Clarke and Kane, 1997; Kovacs et al., 2016, 2017). Consistent with previous reports, 6KC dose-dependently increased the ratio of fluorescence intensities integrated in the blue edge (410–440 nm) and the red edge (490–520 nm) of the excitation spectrum of the dye (Rexc, di–8–ANEPPS) positively correlating with the magnitude of DP in two model cell lines, THP-1 and JY (Figures 1A,B). Maximal changes were observed at the maximal examined dose of 200 μM. On the other hand, phloretin dose-dependently decreased the excitation ratio, however, changes were rather modest (but statistically significant) even at the maximal applied concentration of 200 μM. The blue-shift of di-8-ANEPPS excitation spectrum in response to 6KC and its slight red-shift after phloretin were also demonstrated by representative spectra shown in Figure 1C.
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FIGURE 1. Effects of phloretin and 6-ketocholestanol (6KC) on the magnitude of dipole potential. THP-1 (A) or JY cells (B) were treated with phloretin or 6KC at various concentrations between 20 and 200 μM and labeled with di-8-ANEPPS followed by determination of the dipole potential-sensitive excitation ratio (Rexc, di–8–ANEPPS) using spectrofluorometry. Rexc, di–8–ANEPPS values were calculated from fluorescence intensities integrated between excitation wavelengths 410–440 nm and 490–520 nm and the mean (± SD) values of five independent experiments were plotted as a function of the applied concentrations of phloretin (dark blue) and 6KC (red). Representative excitation spectra display shifts induced by phloretin and 6KC compared to controls (black) (C). Alternatively, control THP-1 (D) or JY (E) cells and those treated with phloretin or 6KC were labeled with F66 and the emitted fluorescence intensities of individual cells were measured in the wavelength ranges 470–490 nm and 564–606 nm and the mean intensity ratio (Rem, F66) was calculated from data of at least 20,000 living cells per sample. The average values of five independent measurements (± SD) were plotted as a function of the applied concentrations of phloretin and 6KC. Representative histograms containing data of individual cells display the shifts in Rem, F66 values in response to phloretin and 6KC compared to controls (F). Asterisks (*) indicate significant differences obtained at maximal treatment concentrations compared to control samples (p < 0.05, ANOVA followed by Tukey’s HSD test).


Since certain 3-hydroxiflavon derivatives exhibit a spectral change in their emission in response to alterations in the intramembrane electric field (Klymchenko et al., 2003; Shynkar et al., 2005; Darwich et al., 2013; Kovacs et al., 2017), these fluorophores are theoretically suitable for flow cytometric examination of the magnitude of DP. To test this hypothesis, we repeated our experiments with THP-1 and JY cells treated with different concentrations of phloretin and 6KC using flow cytometry and F66, a 3-hydroxiflavon fluorophore, and determined the ratio of fluorescence intensities of the dye (Rem, F66) corresponding to its normal (N∗) and tautomeric (T∗) excited form measured in the ranges of 470–490 nm and 564–606 nm, respectively, which negatively correlates with the magnitude of DP (Darwich et al., 2013; Kovacs et al., 2017). In good keeping with our results obtained with di-8-ANEPPS, 6KC resulted in dose-dependent decreases in the Rem, F66 (Figures 1D,E), referring to increased DP. Although phloretin led to increased Rem, F66 values implying lower magnitudes of DP, this change did not reach the level of significance in one of the cell lines. The alterations induced by these treatments were also demonstrated by representative histograms based on Rem, F66 values of individual cells, since the curves were shifted to lower and higher values in response to 6KC and phloretin, respectively (Figure 1F).



Effects of Different Sterols on the Magnitude of Membrane Dipole Potential

Since the magnitude of DP is very efficiently modulated by the sterol content of the membrane (Simon et al., 1992; Haldar et al., 2012; Sarkar et al., 2017), we validated our novel method using cells exogenously treated with different sterols including 7-dehydrocholesterol (7DHC), cholesterol and 6KC complexed with methyl-beta-cyclodextrin (MβCD). In these experiments, 6KC was used in complex with MβCD to ensure the comparability of the effects of different sterols. It was shown previously that all of them are capable of elevating DP with 6KC being the most efficient and 7DHC being the weakest (Simon et al., 1992; Smondyrev and Berkowitz, 2001; Starke-Peterkovic et al., 2006; Haldar et al., 2012). Consistent with these findings, we observed with spectrofluorometry that all of the sterols resulted in significantly increased Rexc, di–8–ANEPPS values, i.e., elevated DP levels, in a dose-dependent manner. At the maximal applied concentration of 200 μM, Rexc, di–8–ANEPPS was slightly raised after 7DHC, moderately increased by cholesterol and robustly elevated in response to 6KC in both THP-1 and JY cells (Figures 2A,B). All of these changes were found statistically significant. The blue-shifts of different degrees induced by sterols were also obviously visible in the excitation spectra of di-8-ANEPPS in response to these compounds (Figure 2C).
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FIGURE 2. Effects of 7-dehydrocholesterol (7DHC), cholesterol and 6-ketocholestanol (6KC) on the magnitude of dipole potential. THP-1 (A) or JY cells (B) were treated with 7DHC, cholesterol or 6KC at various concentrations between 12.5 and 200 μM and labeled with di-8-ANEPPS, which was followed by determination of the dipole potential-sensitive excitation ratio (Rexc, di–8–ANEPPS) using spectrofluorometry. Rexc, di–8–ANEPPS values were calculated from fluorescence intensities integrated between excitation wavelengths 410–440 nm and 490–520 nm and the mean (± SD) values of five independent experiments were plotted as a function of the applied concentrations of 7DHC (yellow), cholesterol (orange) and 6KC (red). Representative excitation spectra display shifts induced by the various sterols compared to controls (black) (C). Alternatively, control THP-1 (D) or JY (E) cells and those treated with 7DHC, cholesterol or 6KC were labeled with F66 and the emitted fluorescence intensities of individual cells were measured in the wavelength ranges 470–490 nm and 564–606 nm and the mean intensity ratio (Rem, F66) was calculated from data of at least 20,000 living cells per sample. The average values of five independent measurements (± SD) were plotted as a function of the applied concentrations of 7DHC, cholesterol and 6KC. Representative histograms containing data of individual cells display the shifts in Rem, F66 values in response to the different sterols compared to controls (F). Asterisks (*) indicate significant differences obtained at maximal treatment concentrations compared to control samples (p < 0.05, ANOVA followed by Tukey’s HSD test).


The experiments repeated using F66-stained THP-1 cells in flow cytometry showed that Rem, F66 of control cells was significantly and dose-dependently decreased by all of the three examined sterols in magnitudes correlating perfectly with those observed with di-8-ANEPPS (Figure 2D). Alterations of Rem, F66 in F66-labeled JY cells were similar to those measured in THP-1 cells and correlated with the results obtained with di-8-ANEPPS staining (Figure 2E). All of these changes were found statistically significant. These alterations were also obvious in Rem, F66 histograms of individual cells, as sterols shifted the curve to lower values to a different extent (Figure 2F).



Effects of Different Fatty Acids on the Magnitude of Dipole Potential

Although sterols are thought to be the most important determinants of DP, other lipids might also influence its magnitude (Starke-Peterkovic and Clarke, 2009). Therefore, we next examined the effects of various fatty acids including the polyunsaturated ω-3 α-linolenic acid (ALA) and ω-6 γ-linolenic acid (GLA), and their fully saturated counterpart, stearic acid (SA) at different concentrations. When cells were incubated in the presence of 12.5 to 50 μM of these fatty acids for 48 h, we observed dose-dependent changes in the magnitude of DP. Remarkably, ALA lowered DP, as evidenced by the significantly decreased Rexc, di–8–ANEPPS values obtained in response to the maximal applied concentration of 50 μM in both THP-1 and JY cells (Figures 3A,B). On the other hand, SA resulted in slightly higher Rexc, di–8–ANEPPS values that might refer to an elevated DP, however, these changes did not reach the level of significance. To our surprise, GLA induced significant increases in Rexc, di–8–ANEPPS showing higher DP (Figures 3A,B). These relatively slight changes in response to fatty acids were visible in di-8-ANEPPS excitation spectra as well (Figure 3C).
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FIGURE 3. Effects of α-linolenic acid (ALA), γ-linolenic acid (GLA) and stearic acid (SA) on the magnitude of dipole potential. THP-1 (A) or JY cells (B) were treated with ω-3 ALA, ω-6 GLA or fully saturated SA at various concentrations ranging from 12.5 to 50 μM and labeled with di-8-ANEPPS, which was followed by determination of the dipole potential-sensitive excitation ratio (Rexc, di–8–ANEPPS) using spectrofluorometry. Rexc, di–8–ANEPPS values were calculated from fluorescence intensities integrated between excitation wavelengths 410–440 nm and 490–520 nm and the mean (± SD) values of five independent experiments were plotted as a function of the applied concentrations of ALA (blue), GLA (cyan) and SA (green). Representative excitation spectra display shifts induced by the various fatty acids compared to controls (black) (C). Alternatively, control THP-1 (D) or JY (E) cells and those treated with ALA, GLA or SA were labeled with F66 and the emitted fluorescence intensities of individual cells were measured in the wavelength ranges 470–490 nm and 564–606 nm and the mean intensity ratio (Rem, F66) was calculated from data of at least 20,000 living cells per sample. The average values of five independent measurements (± SD) were plotted as a function of the applied concentrations of ALA, GLA, and SA. Representative histograms containing data of individual cells display the shifts in Rem, F66 values in response to the different fatty acids compared to controls (F). Asterisks (*) indicate significant differences obtained at maximal treatment concentrations compared to control samples (p < 0.05, ANOVA followed by Tukey’s HSD test).


We tested the effects of these fatty acids using our novel flow cytometry technique as well. Strongly consistent results were found further corroborating the applicability of our method. In THP-1 cells, Rem, F66 of untreated cells was dose-dependently and significantly increased by ALA referring to lowered DP, while opposite changes were observed in response to SA or GLA with the former not reaching the level of significance (Figure 3D). The fatty acid-induced alterations in F66-labeled JY cells coincided in their magnitude and statistical significance with those obtained with THP-1 cells (Figure 3E). Shifts in Rem, F66 values were demonstrated by representative histograms showing cell-by-cell data as well (Figure 3F).



Effects of Different Sterols and Fatty Acids on Cell Viability, Membrane Fluidity and Membrane Hydration

Environment-sensitive fluorophores, such as F66, can be influenced by membrane-related parameters other than DP. For example, spectral properties of F66 were previously shown to be largely altered when cells undergo apoptosis (Darwich et al., 2013). To rule out the possibility that the observed changes were modified by alterations in the viability of cells, cells treated with the different lipids were labeled with the necrosis marker Sytox Green and the apoptosis marker AlexaFluor 647-conjugated annexin V. We observed no significant changes in the fraction of double negative, viable cells in response to treatments even at the maximal concentrations applied in any of the two examined cell types (Figure 4A).
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FIGURE 4. Effects of sterols and fatty acids on cell viability, membrane fluidity and hydration. (A) THP-1 or JY cells were treated with 200 μM 7DHC (yellow), cholesterol (orange) or 6KC (red) for 1 h, or 50 μM ALA (blue), GLA (cyan) or SA (green) for 48 h, and subsequently labeled with the necrosis marker Sytox Green and the apoptosis marker AlexaFluor647-conjugated annexin V. Fluorescence intensities of individual cells were measured using a flow cytometer and the fraction of Sytox Green and annexin V negative living cells was calculated for each sample containing at least 20,000 cells. Fractions of living cells obtained in five independent experiments and their average values (± SD) are plotted for the different treatments. (B) THP-1 and JY cells treated as above were labeled with TMA-DPH and the fluorescence anisotropy of the fluorophore was determined with spectrofluorometry. Anisotropy values obtained in six independent experiments and their average values (± SD) are plotted for the different treatments. (C) THP-1 and JY cells treated as above were labeled with PY3174 and the generalized polarization of the dye localized in the cell membrane was determined using confocal microscopy and quantitative image analysis. Mean generalized polarization values of 20 individual images obtained in five independent experiments and their average values (± SD) are plotted for the different treatments. Each image contained data of 10–15 cells of normal morphology with a total number of 200–300 cells per treatment. Asterisks (*) indicate significant differences compared to control samples (p < 0.05, ANOVA followed by Tukey’s HSD test).


Next, we tested if the observed changes in Rem, F66 were related to alterations in membrane fluidity. We labeled control and treated cells with TMA-DPH, and determined its fluorescence anisotropy using spectrofluorometry, which inversely correlates with membrane fluidity (Batta et al., 2018). In both cell lines, the anisotropy of controls was significantly elevated by 200 μM of cholesterol and 7DHC, whereas the effect of 6KC did not reach statistical significance (Figure 4B). This efficacy order was different from their effect on the DP. From among the fatty acids, ALA significantly decreased TMA-DPH anisotropy, while the effect of SA and GLA did not reach statistical significance.

Since one of the major origins of DP is the arrangement of membrane-associated water molecules, we tested if membrane hydration is changed in response to treatments with sterols or fatty acids. We labeled control and treated cells with PY3174, a fluorophore related to the widely used Laurdan, followed by confocal microscopy and quantitative image analysis to determine the average value of generalized polarization from data corresponding to cell membrane pixels. Generalized polarization of the dye was previously shown to correlate with the hydrophobicity of its environment, i.e., it inversely correlates with the degree of membrane hydration (Kwiatek et al., 2013). In both cell lines, the generalized polarization of controls was shifted toward the positive direction in the following efficacy order: 6KC > cholesterol ≥ 7DHC (Figure 4C). Furthermore, while SA also increased the generalized polarization, albeit to a miniscule extent, both GLA and ALA reduced it implying increased membrane hydration. All of these alterations were found statistically significant except for the effects of 7DHC and SA in JY cells.



Correlation Between Changes in Dipole Potential Revealed by Flow Cytometry and Spectrofluorometry, and Alterations Induced in Membrane Fluidity or Membrane Hydration

To further validate the applicability of the novel flow cytometry method described in this study, we compared our results obtained with F66 after treatments with the different sterols and fatty acids and those reported by reference measurements with di-8-ANEPPS quantitatively. R2 and p values determined during linear regression analysis showed excellent correlation between di-8-ANEPPS and F66 ratios in both cell types (Figures 5A,D) strongly supporting the utility of our novel approach for DP measurement. Then, we determined the correlation between F66 ratios and TMA-DPH fluorescence anisotropy values reporting membrane fluidity after lipid treatments. No significant correlation was found between the two parameters arguing against a large contribution of membrane fluidity to changes induced in F66 spectrum (Figures 5B,E). On the other hand, when comparing F66 ratios with PY3174 generalized polarization values, we found a significant positive correlation between the two implying strong association between the magnitude of DP and membrane hydration (Figures 5C,F).


[image: image]

FIGURE 5. Correlations between F66 emission ratio and di-8-ANEPPS excitation ratio, TMA-DPH fluorescence anisotropy and PY3174 generalized polarization. THP-1 (A–C) or JY (D–F) cells were treated with 200 μM 7DHC (yellow), cholesterol (orange) or 6KC (red) for 1 h, or 50 μM ALA (blue), GLA (cyan) or SA (green) for 48 h, which was followed by labeling and determination of F66 emission ratio, di-8-ANEPPS excitation ratio, TMA-DPH fluorescence anisotropy and PY3174 generalized polarization, as described previously in detail. Average values (± SD) of the F66 excitation ratio were plotted as function of di-8-ANEPPS excitation ratios (A,D), TMA-DPH fluorescence anisotropy (B,E) or PY3174 generalized polarization values (C,F). R2 and p values determined with linear regression analysis are shown in the panels.




α-Linolenic Acid (But Not γ-Linolenic Acid or Stearic Acid) Counteracted Cholesterol-Induced Increases in Membrane Dipole Potential

We next examined the combined effects of cholesterol and fatty acids on the magnitude of DP using the flow cytometric method described in the manuscript. We pretreated cells with 50 μM ALA, GLA or SA for 48 h followed by a 1 h incubation in the presence of 50 or 200 μM cholesterol. Treatment of cells with cholesterol or any of the fatty acids as a single agent resulted in DP changes similar to those described in the previous sections with cholesterol significantly increasing DP, while the DP-enhancing effect of GLA and SA, and the DP-reducing effect of ALA were less marked (Figures 5A,B). Pretreatment of either cell type with ALA significantly decreased the DP-elevating effect of cholesterol, while a tendency to augment the cholesterol-induced DP changes by SA and GLA was observed, although these changes usually did not reach the level of significance (Figures 6A,B).
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FIGURE 6. Combined effects of α-linolenic acid (ALA), γ-linolenic acid (GLA) and stearic acid (SA) on the magnitude of dipole potential. THP-1 (A) or JY cells (B) were pretreated with 50 μM ω-3 ALA, ω-6 GLA or fully saturated SA followed by treatment with 50 or 200 μM cholesterol, labeling with F66, measurement of the emitted fluorescence intensities of individual cells in the wavelength ranges 470–490 nm and 564–606 nm and calculation of the mean intensity ratio (Rem, F66) from data of at least 20,000 living cells per sample. The average values of five independent measurements (± SD) were plotted as a function of the applied concentrations of cholesterol after pretreatment with ALA (blue), GLA (cyan) and SA (green). Asterisks (*) indicate significant differences compared to samples without pretreatment (p < 0.05, ANOVA followed by Tukey’s HSD test).




α-Linolenic Acid (But Not γ-Linolenic Acid or Stearic Acid) Resulted in Increased Endo-Lysosomal Escape of Penetratin

To test the biological relevance of alterations in the magnitude of DP by fatty acids, we next examined the effects of SA, GLA, and ALA on the cellular uptake and endo-lysosomal release of penetratin, a positively charged cell-penetrating peptide. We have recently shown that a reduced magnitude of DP resulting from phloretin treatment or cholesterol depletion by atorvastatin leads to significantly increased cytoplasmic entry of penetratin mainly through facilitation of its endo-lysosomal escape (Batta et al., 2020). Here, we treated cells with 50 μM ALA, GLA or SA for 48 h, then incubated them in the continuous presence of an equimolar mixture of AFDye532- and naphthofluorescein (NF)-labeled penetratin at 37°C and we measured the fluorescence intensities of individual living cells, excluding DAPI-positive ones, in a time-correlated manner. AFDye532 exhibits pH-independent fluorescence, thus its signal is proportional to the total cellular uptake of penetratin. On the contrary, the fluorescence of NF is quenched at acidic pH, therefore, its intensity characterizes the amount of penetratin in non-acidic compartments (mainly the cytosol). The ratio of NF and AFDye532 fluorescence signals gives information about the fractional escape of penetratin from acidic compartments, i.e., the endo-lysosomal system. When studying the kinetics of total cellular uptake and endo-lysosomal release of the cationic cell-penetrating peptide in THP-1 and JY cells, we observed results similar to those reported previously for other cell lines. The signal of AFDye532 corresponding to the total cellular penetratin concentration showed saturation at 120–180 s (Figures 7A,D), while the increase in NF signal referring to the endo-lysosomal escape of penetratin was significantly delayed with a fast increase in the first 180–240 s and a slower continuous rising phase afterward (Figures 7B,E). The ratio of NF and AFDye532 characterizing the fraction of penetratin in the cytosol initially declined due to the presence of penetratin in endo-lysosomes, which was followed by a continuous gradual increase (Figures 7C,F). When examining the effects of fatty acids on AFDye532 fluorescence, i.e., total cellular penetratin uptake, no changes were observed in normalized fluorescence intensities after SA, GLA or ALA compared to untreated samples. On the other hand, NF intensity was significantly elevated in response to ALA when compared to controls, while no significant differences were observed after SA or GLA. Consistent with the previous data, the ratio of NF and AFDye532 intensities was significantly increased by ALA, while SA or GLA exerted no significant changes when compared to controls. These data suggested that the endo-lysosomal release of penetratin was significantly enhanced by ALA (but not SA or GLA) in both THP-1 and JY cells without any significant alterations in its total cellular uptake.
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FIGURE 7. Effects of α-linolenic acid (ALA), γ-linolenic acid (GLA) and stearic acid (SA) on the cellular uptake and endo-lysosomal escape of penetratin. Control THP-1 (A–C) or JY cells (D–F) (black) or those treated with 50 μM ALA (blue), GLA (cyan) or SA (green) for 48 h were incubated at 37°C in the continuous presence of 5 μM of AFDye532- and 5 μM of NF-labeled penetratin. Fluorescence intensities of individual cells were measured using time-correlated flow cytometry. After gating out debris and non-viable cells, the average fluorescence intensities of AFDye532 (A,D), NF (B,E) and their ratios (C,F) were calculated in 10 s-periods and normalized to minimal values using data from five independent experiments per sample. Every 6th data point (± SD) was plotted as a function of time. Asterisks (*) indicate significant differences compared to control samples at 900 s (p < 0.05, ANOVA followed by Tukey’s HSD test).


These contrasting effects of ALA and GLA exerted on the endo-lysosomal penetratin escape might originate from (i) opposite alterations induced by these fatty acids in the magnitude of DP; or (ii) the fact that GLA treatment does not reach endo-lysosomal membranes. However, the latter was ruled out by confocal microscopy experiments demonstrating that both ALA and GLA decreased generalized polarization of PY3174 in the lysosomal membranes of THP-1 and JY cells, visualized by LysoTracker Deep Red, to similar extents as observed previously in the cell membrane (Supplementary Figure 1). These observations strongly argue against differences in ALA and GLA effects on penetratin escape resulting from substantial variations in their efficiencies to modify endo-lysosomal membranes.



DISCUSSION

Despite the logical assumption that the dipole potential (DP) can substantially mediate the indirect effects of lipids on transmembrane proteins, effects of DP on membrane proteins are scarcely documented (O’Shea, 2003, 2005; Wang, 2012; Zakany et al., 2020). Such studies are mainly hampered by the lack of (i) a method suitable for high-throughput measurement of DP in living cells; and (ii) a physiological and easy-to-use DP lowering agent. Our study was mainly motivated by these shortcomings and led to the following major conclusions: (i) flow cytometric detection of the spectral shift in the emission spectrum of F66 is suitable for sensitive, high-throughput measurement of DP in living cells; (ii) α-linolenic acid, an ω-3 polyunsaturated fatty acid, is a physiological compound for decreasing DP; and (iii) reduction of DP induced by α-linolenic acid is sufficient for significantly enhancing the cytoplasmic entry of penetratin.

The fact that the DP is localized in the membrane makes its measurement difficult, especially in living cells. DP of living cells can be determined with voltage-sensitive fluorophores. The application of these dyes is based on electrochromism, i.e., changes in their spectral properties in response to the local electric field. The excitation spectrum of di-8-ANEPPS is specifically sensitive to DP due to the localization of its chromophore group in the interfacial region (Gross et al., 1994; Clarke and Kane, 1997; Haldar et al., 2012; Kovacs et al., 2016, 2017). Therefore, excitation ratiometric methods can examine living cells in spectrofluorometry or microscopy. However, the former cannot give information about individual cells and includes data of dead cells, while the latter is not suitable for high-throughput techniques. A flow cytometric assay combines the beneficial properties of both approaches, but a dye shifting its emission spectrum in a DP-sensitive manner is preferred since it could be detected by simultaneous measurement of fluorescence intensities in two spectral ranges. Since di-8-ANEPPS was found to be inappropriate for such a method (Vitha and Clarke, 2007), we used F66, a 3-hydrixyflavone derivative, exhibiting DP-dependent changes in its emission spectrum due to excited-state intramolecular proton transfer (ESIPT). The interconversion and equilibrium between two excited states, the normal (N∗) and the tautomer (T∗) states, are largely modulated by DP leading to changes in the emission spectrum (Klymchenko et al., 2003; Shynkar et al., 2005; Darwich et al., 2013; Kovacs et al., 2017).

In the present study, we described and validated an emission ratiometric flow cytometry assay to determine alterations in the magnitude of DP. The reliability of the described method is supported by several lines of evidence: (i) 6KC and phloretin, two compounds most widely used to increase and decrease DP, respectively (Gross et al., 1994; Clarke and Kane, 1997; Kovacs et al., 2016, 2017), altered the emission characteristics of F66 measured by flow cytometry in two different cell lines as expected; (ii) three different sterols, 6KC, cholesterol and 7DHC, modified the flow cytometric emission ratio of F66 in accordance with their reported effects on DP; and (iii) the correlation coefficient between the intensity ratio of di-8-ANEPPS excited at two different wavelengths and the intensity ratio of F66 detected in two different wavelength ranges was close to one. Although all of the applied sterols were previously shown to increase DP, the extents of their effect are different, which may result from differences between their molecular structure, intrinsic dipole moment, localization in the membrane and their effects on water penetration and on the dielectric constant of the membrane. As a result, 6KC elevates DP more extensively than cholesterol (Simon et al., 1992; Smondyrev and Berkowitz, 2001; Starke-Peterkovic et al., 2006), while 7DHC induces much smaller changes in its magnitude (Haldar et al., 2012).

Having established the reliability of the new flow cytometric DP-measuring approach, we tested the effects of fatty acids on DP. We showed that ω-3 polyunsaturated ALA significantly decreased DP, while saturated SA and, to our surprise, ω-6 polyunsaturated GLA exerted an opposite effect as they slightly increased it. In addition, ALA counteracted, while SA and GLA slightly enhanced the DP elevating effect of cholesterol. ω-3 and ω-6 PUFAs are generally thought to exert quantitatively similar effects on membrane biophysical parameters, such as increased membrane fluidity (Calder et al., 1994; Leifert et al., 1999; Rajamoorthi et al., 2005), higher degree of hydration (Huster et al., 1997), decreased thickness and increased bending elasticity of lipid bilayers (Rawicz et al., 2000; Rajamoorthi et al., 2005). Similarly, both ω-3 and ω-6 PUFAs are characterized by beneficial effects on the prevalence of ischemic heart disease, which is partially attributed to their effects on serum lipid levels (Bang et al., 1980; Mensink et al., 2003; Harris et al., 2009; Del Gobbo et al., 2016; O’Mahoney et al., 2018; Li et al., 2020; Watanabe and Tatsuno, 2020). On the other hand, there are reports suggesting that ω-3 and ω-6 PUFAs are not created equal in all respects since some studies reported that ω-6, but not ω-3 PUFAs might in fact increase the risk of cardiovascular disorders (Simopoulos, 2008; Ramsden et al., 2013; Hamley, 2017; Nishizaki et al., 2020), while ω-3 and ω-6 PUFAs were generally shown to exert opposing effects on the incidence of malignant tumors (Cockbain et al., 2012; de Lorgeril and Salen, 2012; Fabian et al., 2015) with the former selectively inducing the apoptosis of tumor cells (D’Eliseo and Velotti, 2016). Although the aforementioned contrasting consequences of ω-6 and ω-3 PUFAs are generally thought to be mainly mediated by their soluble derivatives acting on signaling pathways and gene expression, several recent studies showed that changes in membrane biophysical parameters induced by these fatty acids can contribute to their effects on transmembrane proteins (Bruno et al., 2007; Caires et al., 2017; Romero et al., 2019). Since DP is closely linked to membrane structure, our results revealing different effects of ω-3 and ω-6 PUFAs on the DP suggest that these fatty acids exert slightly different effects on the biophysical properties of the membrane. Due to their unsaturated nature both of them “loosen” the hydrophobic core of the membrane (Calder et al., 1994; Leifert et al., 1999; Rajamoorthi et al., 2005), but differences in their conformation suggest that they have distinct effects on the lipid-water interface. The hydrophobic hydrocarbon chain of ALA (Pubchem ID: 5280934) folds back toward the hydrophilic head group very significantly, while the same tendency of GLA (Pubchem ID: 5280933) is much less pronounced. The tendency of the hydrophobic chain in ALA to approach the lipid-water interface has also been demonstrated by molecular dynamics simulations (Gawrisch et al., 2008). Therefore, we propose that the high probability of the hydrophobic hydrocarbon chain of ALA to be close to the lipid-water interface subverts the orderly arrangement of lipid head groups and interfacial water molecules leading to reduced DP. The lower tendency of the hydrophobic part of GLA to approach the lipid-water interface abolishes its DP-reducing effect. Consistent with our hypothesis, a recent MD simulation study demonstrated that besides dose-dependently inducing lateral expansion, thinning and decreased order in model bilayers, membrane incorporation of ω-3 PUFAs led to a significantly increased entry of water molecules into the hydrophobic regions represented by reduced distances between water-lipid interfaces, which were accompanied by a significantly altered cholesterol distribution. In the absence of ω-3 PUFAs, cholesterol molecules were mainly localized just below the phospholipid headgroups with their hydrated hydroxyl groups participating in a hydrogen bond with glycerol backbones of phospholipids. On the contrary, in the presence of ω-3 PUFAs, cholesterol is distributed in a more diffuse manner throughout the hydrophobic core of the bilayer resulting in reduced ordering, which might be associated with its hydroxyl group being hydrated even in deeper membrane regions due to increased water permeation (Ayee et al., 2020). Since ω-6 PUFAs are expected to localize differently in the membrane based on their slightly different molecular structures, these fatty acids might affect cholesterol and water distribution in an altered manner. This hypothesis could be confirmed by MD simulations revealing the intramembrane molecular organization of ω-6 PUFAs.

In our experiments, we tested the potential contribution of parameters other than DP to alterations in the emission ratio of F66 induced by sterols and fatty acids. It was shown previously that changes in the membrane during apoptosis may significantly alter spectral characteristics of F66 (Darwich et al., 2013). However, we could rule out this confounding effect since treatment conditions did not result in any significant change in cell viability (Figure 4A). Given the intimate relationship between DP, membrane fluidity and hydration (O’Shea, 2003, 2005; Wang, 2012; Zakany et al., 2020), we also examined the correlation between alterations in these parameters induced by the lipids used in our measurements. While the observed changes in membrane fluidity were in agreement with previously published data (Leifert et al., 1999; Chattopadhyay et al., 2007; Shrivastava et al., 2008), they did not show significant correlations with the determined F66 emission ratios arguing against a large contribution of membrane fluidity to changes induced in F66 spectrum (Figure 5). In these experiments, we measured the steady-state fluorescence anisotropy of TMA-DPH since this parameter reports on the fluidity in the membrane close to the lipid-water interface, i.e., the region of the DP, as opposed to its parent compound, DPH, whose signal averages the entire depth of the hydrophobic membrane interior (Prendergast et al., 1981; do Canto et al., 2016). Although the steady-state fluorescence anisotropy of TMA-DPH might be influenced by several factors related to dynamic and static aspects of fluidity, and therefore linking it to membrane order or fluidity is problematic, depolarization of TMA-DPH fluorescence does indeed correlate with membrane disorder (Engel and Prendergast, 1981; do Canto et al., 2016). Furthermore, TMA-DPH shows relatively slow internalization (Kubina et al., 1986), therefore its fluorescence originates almost exclusively from the cell membrane, similarly to F66 that we demonstrated previously to remain in the plasma membrane of cells under our experimental conditions (Kovacs et al., 2017). On the other hand, significant positive correlations were found between PY3174 generalized polarization and F66 emission ratios (Figure 5), which must be due to the proposed strong relationship between the organization of membrane-associated water molecules and the magnitude of DP (Simon et al., 1992; Smondyrev and Berkowitz, 2001; O’Shea, 2003, 2005; Starke-Peterkovic et al., 2006; Wang, 2012; Zakany et al., 2020).

One of the most widely studied cellular functions influenced by the magnitude of DP is the cellular binding and uptake of certain substances including drugs (Asawakarn et al., 2001), β-amyloid (Hertel et al., 1997) and other peptides (Cladera and O’Shea, 1998; Zhan and Lazaridis, 2012). We have also shown recently that lowering DP with phloretin or atorvastatin resulted in increased cellular uptake and, in particular, endo-lysosomal escape of penetratin, a cationic cell-penetrating peptide (Batta et al., 2020). Although cell-penetrating peptides are promising therapeutic tools for delivering cell-impermeable agents (Guidotti et al., 2017), their clinical potential is limited by low bioavailability (Wang et al., 2014). Therefore, any treatment enhancing their capability to reach the cytosol is of potential medical relevance. Both mechanisms of cellular entry of cell-penetrating peptides, direct plasma membrane translocation (Guidotti et al., 2017) and endocytosis followed by endo-lysosomal release (Futaki, 2006), involve electrostatic interactions with the membrane (Thoren et al., 2004; Poon and Gariepy, 2007). Therefore, both pathways might be modified by the intramembrane electric field associated with DP. Consistent with this hypothesis we found that the endo-lysosomal escape of penetratin was significantly enhanced by ω-3 polyunsaturated ALA and the concomitant decrease in DP. Since ALA-induced increased endo-lysosomal release of penetratin increases its bioavailability in the cytosol, the therapeutic effectiveness of drugs conjugated to penetratin is expected to increase. On the other hand, fully saturated SA or ω-6 polyunsaturated GLA, which rather elevate DP, failed to influence cytoplasmic penetratin entry (Figure 7). These findings corroborate the effects of DP on the uptake of cell-penetrating peptides and emphasize the physiological importance of ω-3 PUFA mediated decreases in DP. In our experiments we applied flow cytometry with fluorophore-conjugated penetratins to quantify DP-mediated effects on the cellular uptake and endo-lysosomal release of these cell-penetrating peptides. While the presence of fluorescent labels might influence the membrane binding of these peptides (Christensen et al., 2019), and this can be overcome by the use of label-free techniques such as NMR spectroscopy (Christensen et al., 2019), measurement of intrinsic fluorescence of these molecules (Jobin and Alves, 2016) or mass spectrometry (Burlina et al., 2005), fluorescence-based approaches still remain the most commonly used techniques due to their unique advantages, including suitability for high-throughput examinations, easy-to-use application and ability to estimate penetratin levels in various intracellular compartments and to discriminate between live and dead cells. The latter is particularly crucial in these experiments in light of our recent observations that damaged cells are characterized by larger instantaneous binding of penetratin with much smaller increases in its time-dependent uptake when compared with intact cells (Batta et al., 2020). Nevertheless, care has to be taken in the interpretation of results obtained with methods applying fluorescently labeled penetratins. The potential biological relevance of our findings is also supported by the concentrations applied in the treatments. Membrane cholesterol levels achieved by the treatments applied were comparable to those found in patients with hypercholesterolemia (Somodi et al., 2013). Since loading of cells with 7DHC and cholesterol is equally efficient (Singh et al., 2007), the levels of 7DHC and cholesterol of cells treated with the MβCD complexes of these compounds is expected to be comparable. The fact that membrane 7DHC levels of lymphocytes obtained from Smith-Lemli-Opitz syndrome patients were comparable to cholesterol levels of lymphocytes from control individuals (Balajthy et al., 2016) argues for the relevance of the 7DHC concentrations applied. Fatty acid concentrations used in our experiments were also in the range of serum levels usually obtained in studies examining effects of dietary supplementation of ω-3 PUFAs (Conquer and Holub, 1998; Kuriki et al., 2002).

Potential limitations of the DP determination method described here might arise from the fact that being a flow cytometry-based ensemble approach it might mask heterogeneous changes in the magnitude of DP hidden within the determined average values. However, as opposed to the conventional spectrofluorometric assays based on di-8-ANEPPS, it provides the possibility to identify subpopulations of cells based on combinations of forward and side scatter parameters and fluorescence intensities of various labels. Furthermore, besides solely focusing on average values, other statistical parameters such as SD or SEM should be taken into account since these might carry relevant biological information. For example, a largely increased variance might refer to remarkable heterogeneity in the examined cell population. On the other hand, as we demonstrated previously (Kovacs et al., 2017), lateral heterogeneity of DP can be a functionally relevant property of biological membranes, which cannot be easily investigated with a flow cytometry-based approach. Nevertheless, the emission ratio of the F66 fluorophore can also be used to examine the spatial heterogeneity of DP in the cell membrane in confocal microscopy, as we showed recently (Kovacs et al., 2017). Based on these considerations, a multimodal approach applying both flow cytometry and confocal microscopy could provide the most detailed information about changes in the magnitude of DP in response to alterations in membrane composition.

In conclusion, in this study we have developed and optimized a flow cytometric DP measurement technique suitable for high-throughput examination of large quantities of living cells. Furthermore, we have identified ω-3 polyunsaturated ALA as a physiological tool to lower the magnitude of DP and demonstrated the biological relevance of this effect by showing enhanced cellular uptake and endo-lysosomal escape of a cell-penetrating peptide. Our novel method and the applicability of a physiological DP lowering agent could provide a boost for the examination of DP, an enigmatic and proposedly substantial membrane biophysical parameter.



MATERIALS AND METHODS


Cell Culture and Treatments to Induce Changes in the Magnitude of Dipole Potential

The human acute monocytic leukemia-derived cell line THP-1 and the human Epstein-Barr virus (EBV) transformed lymphoblastoid cell line JY were obtained from the American Type Culture Collection (Manassas, VA, United States) and cultivated according to their specifications. To induce changes in the magnitude of DP, cells were treated with phloretin (3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl) propan-1-one) (Sigma Aldrich, St. Louis, MO, United States) or 6-ketocholestanol (3β-hydroxy-5α-cholestan-6-one, 6KC) (Sigma Aldrich) at various concentrations between 20 and 200 μM for 10 min at room temperature in the presence of 0.05% (v/v) Pluronic F-127. Alternatively, cells were loaded with 6KC, cholesterol (Sigma-Aldrich) or 7-dehydrocholesterol (7DHC) (Sigma-Aldrich) using custom synthetized sterol-methyl-beta-cyclodextrin (MβCD) complexes (CycloLab Cyclodextrin R&D Laboratory, Budapest, Hungary) at various sterol concentrations ranging from 12.5 to 200 μM for 60 min at room temperature. As controls, cells were treated with the corresponding amounts of native MβCD complexes not containing sterols. To study the effects of fatty acids, cells were incubated for 48 h in medium supplemented with saturated stearic acid (SA, Sigma Aldrich), ω-3 polyunsaturated α-linolenic acid (ALA, Sigma Aldrich) or ω-6 polyunsaturated γ-linolenic acid (GLA, Sigma Aldrich) at various concentrations ranging from 12.5 to 50 μM.



Membrane Dipole Potential Measurement With Spectrofluorometry

Following treatment with different concentrations of DP-modifying agents, cells were labeled with di-8-ANEPPS (4-(2-[6-(dioctylamino)-2-naphthalenyl]ethenyl)-1-(3-sulfopropyl) pyridinium inner salt, Thermo Fisher Scientific, Waltham, MA, United States) at a final concentration of 2 μM on ice for 20 min. After washing, cells were kept on ice and samples were subsequently warmed to 37°C right before measurements carried out with a Fluorolog-3 spectrofluorometer (Horiba Jobin Yvon, Edison, NJ, United States). During measurements, the cuvette holder was kept at 37°C using a circulating water bath. Excitation spectra were recorded between 380 and 550 nm with the detected emission wavelength set to 660 nm in order to minimize effects of possible changes in membrane fluidity (Clarke and Kane, 1997). The ratio of fluorescence intensities integrated between excitation wavelengths 410–440 nm and 490–520 nm was calculated for each sample, which positively correlates with the magnitude of DP (Clarke and Kane, 1997; Kovacs et al., 2017; Batta et al., 2020).



Measuring the Dipole Potential Using Flow Cytometry

Cells treated with different DP-modifying agents were incubated in the presence of 10 nM F66 (N-[3-(40-di hexylamino-3-hydroxy-flavonyl-6-oxy)-propyl] N,N-dimethyl-N-(3-sulfopropyl)-ammonium inner salt, a kind gift from Andrey Klymchenko, Université de Strasbourg, Strasbourg, France) for 20 min on ice. After washing, the fluorescence intensities of cells were determined with a FACS Aria III flow cytometer (Becton Dickinson, Mountain View, CA, United States) at 37°C. The dye was excited at 405 nm and its emission was measured using band pass filters of 480/20 nm and 585/42 nm, corresponding to the normal (N∗) and tautomer (T∗) excited states of the flavone chromophore, respectively. Data analysis was carried out in FCS Express (De Novo Software, Los Angeles, CA, United States). The ratio of emitted intensities in the two wavelength ranges (N∗/T∗) was determined for each cell and the average value was calculated for each sample from the data of living cells gated on FSC-SSC dot plots. The value of N∗/T∗ ratio negatively correlates with the magnitude of DP (Kovacs et al., 2017).



Measurement of Cell Viability

Treated or control THP-1 or JY cells seeded into 24-well plates were labeled with Sytox Green Dead Cell Stain (Thermo Fisher Scientific) and AlexaFluor647-conjugated annexin V (Thermo Fisher Scientific) at dilutions of 1:1,000 and 1:20, respectively, in annexin binding buffer for 15 min at room temperature. Fluorescence intensities of individual cells were subsequently measured using a NovoCyte 3000RYB flow cytometer (ACEA Biosciences, San Diego, CA, United States). Sytox Green and AlexaFluor647 fluorophores were excited at 488 and 640 nm, respectively, and emitted intensities were measured using 530/30 and 660/20 emission filters, respectively. During data analysis, the fraction of Sytox Green and annexin V negative living cells was calculated for each sample using FCS Express.



Measurement of Membrane Fluidity With Spectrofluorometry

4′-(trimethylammonio)-diphenylhexatriene (TMA-DPH) was purchased from Sigma-Aldrich, dissolved in tetrahydrofuran and used for determination of membrane fluidity as described previously (Batta et al., 2018). Briefly, control and treated cells were washed and resuspended in Hank’s buffer followed by labeling with 10 μM TMA-DPH for 20 min at room temperature. Fluorescence intensities were measured without washing using a Fluorolog-3 spectrofluorometer (Horiba Jobin Yvon, Edison, NJ, United States) with the temperature of the cuvette holder adjusted to 37°C by a circulating water bath. The fluorescence anisotropy (r) of TMA-DPH was determined in the L-format after excitation at 352 nm and measurement of fluorescence intensities at 430 nm according to the formula:

[image: image]

where Ivv and Ivh are the vertical and horizontal components, respectively, of the fluorescence excited by vertically polarized light, and G is an instrument-specific correction factor characterizing the different sensitivity of the detection system for vertically and horizontally polarized light:

[image: image]

where Ihv and Ihh are the vertical and horizontal components, respectively, of the fluorescence excited by horizontally polarized light.



Measurement of Membrane Hydration With Fluorescence Microscopy

The PY3174 fluorophore capable of providing information about the hydration of the cell membrane via an emission ratiometric fluorescence microscopy assay was a kind gift from Leslie M. Loew (University of Connecticut, CT, United States) (Kwiatek et al., 2013). For these measurements, cells were labeled with 10 μM PY3174 for 20 min at room temperature. After staining, cells were placed onto an 8-well chambered coverglass and images were taken at the midplane of cells using an LSM880 confocal laser-scanning microscope (Carl Zeiss AG, Jena, Germany). PY3174 was excited at 488 nm and emitted intensities were measured in two wavelength ranges between 500 and 540 nm (Iblue) and 630 and 735 nm (Ired). During processing, segmentation of images into membrane and non-membrane pixels was carried out with the manually seeded watershed algorithm using a custom-written MATLAB program as described previously (Kovacs et al., 2017). The average value of general polarization correlating with the degree of membrane compactness (Kwiatek et al., 2013) was calculated from the data of cell membrane pixels after background subtraction using

[image: image]



Synthesis and Fluorescence Labeling of Penetratin

Penetratin (RQIKIWFQNRRMKWKK-amide, molecular weight 2245.75 g/mol) was synthesized manually on TentaGel R RAM (Rapp Polymere, Tübingen, Germany), a low crosslinked polystyrene PEG copolymer resin by the solid-phase method of Merrifield with standard Fmoc chemistry, as described in detail in our recent study (Batta et al., 2020). After coupling the last arginine, one half of the penetratin was reacted with AFDye532 N-hydroxysuccinimide ester (molecular weight 723.77 g/mol, Fluoroprobes, Scottsdale, AZ, United States), while the other half with 5(6)-carboxynaphthofluorescein N-succinimidyl ester (molecular weight 573.51 g/mol, Darmstadt, Germany). Completion of the coupling was assessed by Kaiser test, which was followed by deprotection and release from the resin. After filtration and precipitation with cold diethyl ether, the crude products were purified by preparative reversed-phase HPLC (JASCO, Victoria, BC, Canada) on a C18 column and lyophilized. The purity of the products (>95%) was assessed by reversed-phase HPLC (JASCO) equipped with an analytical C18 column. The presence of labeled peptides was validated with Bruker electrospray ionization mass spectrometry that showed the molecular mass of the (M+H)+ form of AFDye532- and NF-labeled penetratin as 2983.548 and 2832.5, respectively. These values well correlated with the predicted masses of the labeled peptides (2983.59 and 2833.33, respectively).



Flow Cytometric Measurement of Penetratin Uptake and Endo-Lysosomal Escape

Total cellular penetratin uptake and endo-lysosomal escape was determined as described previously (Batta et al., 2020). Briefly, control THP-1 or JY cells and those treated with 50 μM ALA, GLA or SA for 48 h at 37°C were incubated in the continuous presence of 5 μM AFDye532-penetratin, 5 μM NF-penetratin and 0.25 μg/ml DAPI at 37°C in the thermostated sample holder of a FACS Aria III flow cytometer. The fluorescence intensity of DAPI was measured using an excitation at 405 nm and an emission filter 450/20 nm. AFDye532 and NF were excited at 488 and 561 nm, respectively, and their fluorescence was determined using emission filters 530/30 and 670/14 nm, respectively. Measurements started immediately after addition of DAPI and penetratin and continued for 20 min at 37°C. Experimental data were analyzed first in FCS Express. Time-correlated fluorescence intensity values of DAPI-negative living cells were exported after spectral compensation and the moving averages of samples were calculated with a window size of 10 s. While the AFDye532 is not sensitive to pH and shows total cellular penetratin uptake, the intensity of NF is quenched at acidic pH, thus the ratio of NF-penetratin to AFDye532-penetratin signal refers to the endo-lysosomal escape (Qian et al., 2015). During analysis, fluorescence intensity values were first normalized to the average intensity in the first time window, which was followed by calculation of the fluorescence ratio from the normalized values.



Statistical Analysis

Measured data are generally represented as mean ± SD obtained from at least five different experiments (n). In measurements carried out with a flow cytometer, at least 20,000 cells per sample were analyzed in each independent experiment. In experiments with sterol-MβCD complexes, values were normalized to samples treated with equivalent amounts of native MβCD, while in the cases of fatty acids to the values obtained with ethanol controls. P values were calculated based on ANOVA followed by Tukey’s HSD test. Differences were considered significant (∗) when p < 0.05.
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Aberrant ceramide build-up in preeclampsia, a serious disorder of pregnancy, causes exuberant autophagy-mediated trophoblast cell death. The significance of ceramide accumulation for lysosomal biogenesis in preeclampsia is unknown. Here we report that lysosome formation is markedly increased in trophoblast cells of early-onset preeclamptic placentae, in particular in syncytiotrophoblasts. This is accompanied by augmented levels of transcription factor EB (TFEB). In vitro and in vivo experiments demonstrate that ceramide increases TFEB expression and nuclear translocation and induces lysosomal formation and exocytosis. Further, we show that TFEB directly regulates the expression of lysosomal sphingomyelin phosphodiesterase (L-SMPD1) that degrades sphingomyelin to ceramide. In early-onset preeclampsia, ceramide-induced lysosomal exocytosis carries L-SMPD1 to the apical membrane of the syncytial epithelium, resulting in ceramide accumulation in lipid rafts and release of active L-SMPD1 via ceramide-enriched exosomes into the maternal circulation. The SMPD1-containing exosomes promote endothelial activation and impair endothelial tubule formation in vitro. Both exosome-induced processes are attenuated by SMPD1 inhibitors. These findings suggest that ceramide-induced lysosomal biogenesis and exocytosis in preeclamptic placentae contributes to maternal endothelial dysfunction, characteristic of this pathology.
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INTRODUCTION

Lysosomes are acidic organelles that degrade and recycle unwanted material and damaged intracellular components, including membranes, lipids and proteins (Mizushima et al., 2008; Luzio et al., 2009). Lysosomes are also subjected to lysosomal exocytosis (Medina et al., 2011). In the latter process, lysosomes are targeted to the plasma membrane where they fuse and release their contents outside the cells (Chieregatti and Meldolesi, 2005), thereby contributing to plasma membrane repair, cell signaling and immune responses (Rodriguez et al., 1997; Andrews, 2000; Bossi and Griffiths, 2005).

A gene network termed coordinated lysosomal expression and regulation (CLEAR) regulates lysosomal biogenesis and function (Sardiello et al., 2009). The master regulator of this network, Transcription Factor EB (TFEB), belongs to a class of transcription factors comprising the MiTF/TFE family (Palmieri et al., 2011). TFEB subcellular localization and function are tightly controlled by its phosphorylation status at specific serine residues, including S142 and S211 that are targets of rapamycin (mTOR). Phosphorylated TFEB is bound to 14-3-3 proteins that retain TFEB in the cytoplasm. Under stress conditions, cytosolic TFEB is dephosphorylated via inhibition of mTOR and concomitant activation of calcineurin phosphatase (Medina et al., 2015). Dephosphorylated TFEB translocates to the nucleus, where it binds to the palindromic motif (TCACGTGA) of CLEAR elements thereby inducing the transcription of an array of genes involved in lysosomal biogenesis and autophagy (Settembre et al., 2013; Martina and Puertollano, 2017). Disruption of TFEB function characterizes several neurodegenerative storage disorders and pharmacological induction of endogenous TFEB has been reported to be beneficial in correcting the disease’s phenotype (Dehay and Bezard, 2011; Medina et al., 2011; Spampanato et al., 2013; Polito et al., 2014; Xiao et al., 2014; Chauhan et al., 2015; Kilpatrick et al., 2016). TFEB’s action is not only limited to homeostasis and clearance of cells. Osteoclasts undergo a profound reorganization of their endo-lysosomal system during skeletal formation and remodeling that is mediated by TFEB (Ferron et al., 2013). Other studies have highlighted the contribution of TFEB in the transcriptional regulation of immune responses in macrophages (Pastore et al., 2016) and T lymphocytes (Huan et al., 2006; Samie and Cresswell, 2015). Moreover, dysregulation of members of the MiTF/TFE family can lead to different types of cancers (Slade and Pulinilkunnil, 2017). Thus, TFEB’s modulation of transcriptional networks is cell-type and context dependent.

Sphingolipids are an important class of bioactive lipids that include sphingosine, sphingosine-1-phosphate, ceramide, and sphingomyelin. We recently reported that preeclampsia (PE), a serious hypertensive disorder that complicates 5–8% of all pregnancies, can be regarded as a sphingolipid storage disorder (Melland-Smith et al., 2015). In PE, reduced acid ceramidase content and activity in conjunction with elevated ceramide de novo synthesis result in a build-up of ceramides in lysosomes of trophoblast cells, leading to increased autophagy, mitochondrial fission rates and necroptosis (Melland-Smith et al., 2015; Bailey et al., 2017; Ausman et al., 2018). Ceramides are important signal effector molecules in the cellular response to stress (Hannun, 1996); however, to date, their importance for lysosomal biogenesis during human placental development and disease remains to be established.

Herein, we examined the role of ceramide in lysosome formation and function in preeclamptic placentae. We show that ceramide is a powerful inducer of TFEB and consequently lysosomal biogenesis and exocytosis in trophoblast cells. Furthermore, we demonstrate that the increase of lysosomes in trophoblast cells from PE placentae is accompanied by augmented lysosomal exocytosis in the syncytium, the trophoblast layer where ceramide accumulates. Exuberant lysosomal exocytosis in PE causes lysosomal sphingomyelin phosphodiesterase 1 (L-SMPD1) to accumulate in syncytial plasma membrane lipid rafts. Subsequent release of active L-SMPD1 via exosomes by the syncytial cells into the maternal circulation contributes to the ceramide-induced endothelial dysfunction seen in PE women.



MATERIALS AND METHODS


Placental Tissue Collection

The study was approved by the Mount Sinai Hospital Research Ethics Board (REB number: 11-0287-E). Informed consent was obtained from all subjects, and placentae and maternal plasma were collected by the Research Centre for Women’s and Infants’ Health (RCWIH) Biobank. Severe early-onset PE subjects (n = 54) were selected based upon the American College of Obstetrics and Gynecology (ACOG) criteria (American College of Obstetricians et al., 2013). Typically, in the early-onset preeclamptic (E-PE) cases clinical manifestations occurred within 2 weeks prior to delivery. Only singleton pregnancies were included in the study. Pregnancies affected by fetal malformations, chromosomal abnormalities, chorioamnionitis and from smokers and substance abusers were excluded. Placental samples from normotensive gestational age-matched pre-term control (PTC, n = 48) and term control (TC, n = 14) deliveries from healthy pregnancies that did not exhibit clinical symptoms of PE or other pregnancy-associated disorders, were included as controls. Cervical incompetence, idiopathic labor, and preterm premature rupture of membranes were causative for preterm deliveries. Clinical parameters of subjects are listed in Table 1.


TABLE 1. Clinical parameters of the study population.
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Ceranib-2 Mice

Animal studies were approved by the Animal Care Committee of the Hospital for Sick Children (Toronto, Canada). CD1 mice were obtained from Charles River (St. Constant, QC, Canada). During pregnancy, mice were injected intraperitoneally daily (from E7.5 till E13.5) with Ceranib-2 suspended in dimethyl sulfoxide (DMSO) (20 mg/kg; Cayman Chemical, 11092) as previously reported (Melland-Smith et al., 2015). Mice injected with DMSO alone were used as controls. Placentae were obtained at E13.5 and snap frozen for WB analysis or processed for histochemical analyses.



Cell Lines and Primary Cultures


Primary Cytotrophoblast Cells Isolation

Term placentae (n = 3) obtained from uncomplicated pregnancies undergoing elective cesarean sections were processed for primary trophoblast cells isolation as previously described (Bailey et al., 2017; Ausman et al., 2018). In brief, placental tissue was cut into small pieces and digested in Dulbecco’s modified Eagle’s medium (DMEM, GIBCO-BRL, 11039-021) containing 0.05 mM trypsin (GIBCO 27250-018; Invitrogen) and 0.008 mM DNase I (SIGMA DN25; Sigma-Aldrich Corp. St. Louis, MO, United States) at 37°C. The cell suspension was then filtered through a 70 μM nylon sieve (Becton, Dickson and Company, Franklin Lakes, NJ, United States) and subjected to centrifugation on a discontinuous 5–70% Percoll gradient (GE Healthcare, Little Chalfont, United Kingdom). The layer corresponding to 35–45% of Percoll was collected and washed with DMEM. Isolated cells were counted and plated at a density of 1 × 107 cells in six-well plates in DMEM media containing 10% (v/v) fetal bovine serum (FBS) and 1% (v/v) penicillin–streptomycin (Wisent Inc., St Bruno, Canada). Primary isolated trophoblast cells were maintained at their normoxic conditions of 8% O2/% CO2/, 87% N2.



Human Microvascular Endothelial Cells

Human Microvascular Endothelial Cells (HMVEC), immortalized with human telomerase catalytic protein (Shao and Guo, 2004), were a gift from Dr. ON (Sunnybrook Health Sciences Centre, Toronto, ON, Canada). HMVECs from passage 20–40 were cultured in 6-well plates in Endothelial Cell Growth Base Media containing Endothelial Cell Growth Supplement (RD systems, Oakville, Canada) in standard (ambient air and 37°C) culture conditions.



Choriocarcinoma JEG3 Cells

Choriocarcinoma JEG3 cells (ATCC® HTB-36TM, ATCC), authenticated by short tandem repeat genotyping, were cultured in ambient air at 37°C in Eagle’s Minimum Essential Medium (EMEM) (ATCC, 30-2003) containing 10% (v/v) FBS and 1% (v/v) penicillin–streptomycin (Wisent Inc., St Bruno, Canada). Upon reaching 80% confluency in six-well plates, cells were washed and then cultured in EMEM for 6 h with either 20 μM CER 16:0 (Enzo Life Sciences, BML-SL115), a treatment that triggers autophagy in JEG3 cells (Melland-Smith et al., 2015), 25 μM 2-oleoylethanolamine (2-OE; Invitrogen, 0383), an acid ceramidase inhibitor that increases ceramide content in these cells thereby inducing autophagy (Melland-Smith et al., 2015) or EtOH and DMSO, respectively, as vehicles. JEG3 cells were treated for 24 h with and without 2.5 mM sodium nitroprusside (SNP), a nitric oxide donor known to activate the Fenton reaction thereby inducing oxidative stress via reactive oxygen species production (Myatt and Cui, 2004). Concentrations for CER 16:0, 2-OE, and SNP were based on our previous published studies (Melland-Smith et al., 2015; Ausman et al., 2018). Cell were either collected for Western blot (WB) analysis or fixed with 4% (v/v) paraformaldehyde for immunofluorescence (IF) analysis.

For Fluorescein isothiocyanate–dextran incorporation, JEG3 cells cultured on coverslips in six-well plates were incubated with 2.5 mg/ml of fluorescein isothiocyanate (FITC)–dextran (Millipore Sigma®, 46945, Toronto, Canada) at standard conditions. After 6 h of incubation (optimal time for FITC-dextran loading), cells were washed and cultured in EMEM for 6 h with 20 μM CER 16:0 or vehicle EtOH. Cells were fixed with 4% (v/v) paraformaldehyde for IF while conditioned media was collected for luminometric analysis (Tecan Life Sciences).

For silencing experiments, JEG3 cells (60–80% confluency) were transfected with either 60 nM of Silencer® select siRNA targeted against TFEB (ThermoFisher Scientific®, Ottawa, Canada), or scrambled control siRNA sequences using a jetPRIME® transfection protocol (Polyplus Transfection®, 89129-922, New York, United States). Cells were cultured in EMEM at ambient air and 37°C and collected 24 h later for WB analysis.

Measurement of the intracellular calcium variation with Fura-2 (ThermoFisher Scientific®, Ottawa, Canada; Catalog: F1201) on JEG3 cells treated with CER 16:0 or ethanol was performed as described by Martinez (Martinez et al., 2016).




Gene Reporter Assay

Choriocarcinoma JEG3 cells were plated at a density of 2 × 105 cells/well, cultured for 24 h at 37°C in ambient air and then transiently transfected with SMPD1-Luciferase, in combination with empty vector (EV) pcDNA3.1 or pcDNA-TFEB wild type (WT). Renilla luciferase was used as a non-TFEB-responsive plasmid for normalizing transfection efficiencies and monitoring cell viability. The total amount of plasmid DNA was normalized to 1.0 μg/well using empty pcDNA3.1 vector. After 24 h of treatment, cells were harvested and processed according to the manufacturer protocol LightSwitch Luciferase® Assay System kit (SWITCHGEAR Genomics, Carlsbad, CA, United States). Luciferase activity was measured using a luminometer (Tecan Life Sciences, Männedorf, Switzerland). SMPD1-Luciferase activity was normalized to constitutive RenSp-driven promoter Renilla-luciferase. Experiments were repeated three times in triplicate.



Chromatin Immunoprecipitation Assay

Chromatin immunoprecipitation (ChIP) of TFEB was performed in E-PE (N = 4) and PTC (N = 4) placentae and in JEG3 cells exposed to 20 μM CER 16:0 or control vehicle, using the EpiQuik Tissue ChIP Kit (EpiGentek, Farmingdale, NY, United States) according to the manufacturer’s instructions. Briefly, ∼50 mg of placental tissue was homogenized using a Dounce homogenizer and cross-linked. JEG3 cells were lysed and DNA was sheared by sonication prior to cross-linking. Samples were then incubated with 2 μg anti-goat ChIP-grade TFEB antibody per 25 μg chromatin to immunoprecipitate the protein-DNA complexes. Non-immune mouse IgG was used as a negative control, while RNA Polymerase II enrichment at the GAPDH promoter was used as positive control. Protein-DNA complexes were purified, and DNA was extracted. The purified DNA was quantified by qPCR using the Sybr Green® qPCR mastermix (Applied Biosystems (ABI), Foster City, CA, United States), employing primers targeting two distinct sites along the SMPD1 promoter (Table 2 depicts primer sequences).


TABLE 2. Oligonucleotide sequence for primers used in ChIP-qPCR analysis for TFEB binding to SMPD1 promoter.
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Exosome Isolation and Uptake

Exosome isolation and characterization from maternal plasma and from conditioned media of JEG3 cells treated with either CER 16:0 or EtOH were performed as reported previously (Ermini et al., 2017). See detailed procedures in Supplemental Methods. Total and placental exosomes were subjected to lipid and WB analyses. Placental exosomes were then isolated by selective immunoprecipitation using anti-human PLAP. Exosome purity was verified by particle size (NanoSight particle analyzer; Malvern Instruments Ltd., Malvern, United Kingdom), and immunoblotting for CD63 (generic marker for exosomes) and placental alkaline phosphatase (PLAP, marker for placental-derived exosomes) (Ermini et al., 2017; Salomon et al., 2017).

Sphingomyelin phosphodiesterase 1 activity in exosomes isolated from conditioned media of JEG3 cells treated with 20 μM CER 16:0 (ExoCer) or EtOH (ExoV) for 6 h was measured using an Echelon SMPD1 assay kit according to the manufacturer’s protocol (Echelon Bioscience, K-3200) as previously reported (Melland-Smith et al., 2015).

To examine exosome uptake by HMVECs, exosomes were labeled in the dark for 5 h with PKH67, a green fluorescent dye with a long aliphatic tail that incorporates into the exosome lipid membrane, using the PKH67 Fluorescent Cell linker Kit (Sigma, PKH67GL-1KT). The staining reaction was ended by adding an equal volume of 1% (w/v) bovine serum albumin to bind excess dye. Labeled exosomes were subsequently pelleted (120,000g for 60 min) and resuspended in PBS. Spin and wash cycles were performed at least three times. At 60–70% confluency, HMVECs were incubated with the labeled exosomes for 30 min, 1, 3, and 6 h, respectively. After the optimal uptake time for exosomes was established using a Leica SD6000 spinning disk confocal microscope (Leica Camera, Wetzlar, Germany), HMVECs were exposed for 3 h to 2.0 × 106 ExoCer and ExoV exosomes isolated from conditioned media of JEG3 cells treated for 6 h with 20 μM CER 16:0 or vehicle EtOH, respectively. Cells were then collected for WB analysis, or fixed with 4% (v/v) paraformaldehyde for IF analysis.



Tubule Formation Assay

For the tubule formation assay, 24-well plates were coated with 200 μl (concentration 10 mg/ml) of Matrigel (Corning® Matrigel® Matrix, 354234). The matrix was allowed to solidify in the incubator for 30 min following which 1 × 105 HMVECs/well were seeded. Cells were then exposed to either 20 μM CER 16:0, 25 μM2-OE or respective vehicle EtOH or DMSO. HMVEC were also exposed to 2.0 × 106 ExoCer and ExoV exosomes that were isolated from conditioned media of JEG3 cells treated for 6 h with 20 μM CER 16:0 or vehicle EtOH, respectively. The exosome exposure occurred in presence and absence of 25 μM of Imipramine (Sigma-Aldrich, St. Louis, United States, #) or 10 μM Fluoxetine (Sigma-Aldrich, St. Louis, United States, #F132), inhibitors of SMPD1 activity (Justice et al., 2018). Images of tubule structures were acquired and the Angiogenesis Analyzer plugin of ImageJ was used for quantification of number of branches and the total length of the tubular network (DeCicco-Skinner et al., 2014).



Transmission Electron Microscopy

PE (n = 5) and PTC (n = 4) placental tissues and primary isolated cytotrophoblasts exposed for 6 h to 20 μM CER 16:0 or vehicle EtOH at 8% O2 were processed for transmission electron microscopy (TEM) analysis as previously described (Ausman et al., 2018). Placental tissue and primary isolated cytotrophoblast cells fixed in 2% (v/v) glutaraldehyde in 0.1 M cacodylate buffer (pH 7.3) were processed by the Nanoscale Biomedical Imaging Facility, The Hospital for Sick Children, Toronto. Imaging was conducted on a FEI Technai 20 Transmission Electron Microscope. Primary and secondary lysosomes were identified and counted by two individuals, blinded to the study, independently.



Immunofluorescence Analysis

Immunofluorescence staining and quantification were performed as previously described (Bailey et al., 2017). Lysosomal activity was monitor using LysoTracker® Red (Invitrogen®, L7528) as previously reported (Melland-Smith et al., 2015). For placental tissue sections, 10 mM sodium citrate, pH 6.0 was used for antigen retrieval, followed by treatment with Sudan Black (Sigma, 199664; 0.3% Sudan Black in 70% ethanol) to quench endogenous fluorescence. Following experimental treatments, 4% (v/v) paraformaldehyde (Sigma®, F8775) was used to fix cells for 15 min at 37 °C. Cells and tissue were permeabilized with 0.2% (v/v) Triton X-100 for 5 min, rinsed with phosphate-buffered saline (PBS) and treated with 5% (w/v) normal horse serum (NHS) (Sigma®, H0146) diluted in PBS for 1 h at room temperature to block non-specific binding. Primary antibodies were diluted in antibody diluent (0.4% sodium azide, 0.625% gelatin) and 5% (w/v) NHS, and added to samples for incubation overnight at 4°C. For negative controls, the primary antibody was replaced with non-immune rabbit IgG (Santa Cruz Biotechnology®, sc-2027). FITC-conjugated secondary antibodies, diluted in antibody diluent at a concentration of 1:200, were added for 1 h, followed by three additional PBS washes. Prior to mounting on glass slides with Immuno-MountTM (Thermo Fisher Scientific®), samples were treated with 4’,6-diamino-2-phenylindole (DAPI; Sigma, D9542) to detect nuclei. Lysosomal activity was monitor using LysoTracker® Red (Invitrogen®, L7528) as previously reported (Melland-Smith et al., 2015). The lysotracker probe was dissolved in DMSO. After 2-OE or CER C16:0 treatments, cells were incubated with either 50 nM LysoTracker solution or equivalent volume of vehicle DMSO for 1 h at 37°C and fixed with 4% (v/v) formaldehyde. Cells were then washed in PBS and nuclei were subsequently counterstained with DAPI.

Immunofluorescence images were viewed and captured using a Quorum (Guelph, Ontario, Canada) WaveFX Spinning Disc Confocal System with optimized Yokogawa CSU X1, Hamamatsu EM-CCD digital camera Image EM (C9100-13), and Leica DMI6000B inverted research grade motorized microscope run by Volocity 6.3 Acquisition software (Improvision/PerkinElmer, Waltham, MA, United States). IF quantification was performed using Volocity Software to determine Mean Fluorescent Intensity.



Flow Cytometry Analysis

To measure endothelial activation, HMVECs were harvested, resuspended in staining buffer (HBSS supplemented with 2% (v/v) FBS and 10 mM HEPES) and incubated for 30 min with antibodies validated for flow cytometry at a 1:100 dilution. Anti-human CD54-BV421 and CD146-PE were purchased from BD Biosciences. Stained cells were washed, resuspended in fresh staining buffer followed by flow cytometry analysis and analyzed using a Beckman Coulter Galios flow cytometer with data analysis completed using Kaluza software (Beckman Coulter, Mississauga, ON, Canada).

To quantify lysosomal volume changes, JEG3 cells were incubated with either vehicle EtOH, 20 μM of CER16:0, or 100 nM of Bafilomycin A (Millipore Sigma®, 46945, Toronto, Canada) for 6 h. Cells were then treated with 1 μM Lysotracker Red DND-99 (ThermoFisher Scientific®, Ottawa, Canada) for 45 min or 1 μg/ml acridine orange (ThermoFisher Scientific®, Ottawa, Canada) for 15 min, respectively. Cells were harvested, centrifuged at 300 g for 5 min and resuspended in staining buffer (PBS supplemented with 2% (v/v) FBS) with 1 μg/ml DAPI (viability dye control; Sigma, D9452) for 5 min. Stained cells were then washed, and resuspended in fresh staining buffer followed by flow cytometry analysis as described above. In all experiments, unstained cells were used as negative controls for proper gating and voltage setting as per manufacturer’s recommendations.



Isolation of Lysosomes, Placental Apical Microvillous and Detergent-Resistant Membranes

Lysosomes, apical microvillous and detergent-resistant membranes (PE = 8, PTC = 7, TC = 7) were prepared from fresh human placentae as previously reported (Ermini et al., 2017). Villous tissue (0.5 g) was dissected into small pieces, washed with saline and homogenized in three volumes of ice-cold buffer A (250 mM sucrose, 0.7 × 10–3 mM pepstatin, 1.1 × 10–3 mM leupeptin, 0.8 × 10–3 mM antipain, 80 × 10–6 mM aprotinin and 10 mM Tris-HEPES, pH 7.4). The homogenate was spun at 5,860g for 15 min and the collected supernatant was centrifuged at 10,000 g for another 15 min. Lysosomes were then pelleted at 25,000g for 15 min. The remaining supernatant was centrifuged at 124,000 g for 30 min in a Beckman TL-100 ultracentrifuge and the membrane-enriched pellet was suspended in buffer A using a glass-teflon homogenizer. Magnesium chloride was added to separate the apical microvillous membranes from the basal membranes (Jimenez et al., 2004). The suspension was centrifuged at 2,500 g for 10 min and the apical microvillous membranes were pelleted at 12,100g for 70 min. The lysosomal and apical membrane pellets were resuspended in 300 mM sucrose, 20 mM Tris-maleate, pH 7.4.



Lipid Mass Spectral Analysis

Soluble and insoluble apical membranes and exosomes from PE, PTC, and TC placentae were processed for lipid analysis (Melland-Smith et al., 2015; Ermini et al., 2017). Following lipid extraction, ceramides and cholesterol were quantified using high performance liquid chromatography and tandem mass spectrometry (LC-MS/MS) at the Analytical Facility for Bioactive Molecules of the Hospital for Sick Children, Toronto, ON, Canada.



Immunohistochemistry and Western Blot Analysis

IHC staining and WB analyses in placental tissue and cell lines were performed as previously described (Melland-Smith et al., 2015; Bailey et al., 2017).

PE and PTC snap-frozen tissues were crushed in liquid nitrogen and homogenized in RIPA buffer (150 mM NaCl, 50 mM Tris, 1% NP-40, pH 7.5). Cultured cells were lysed in RIPA buffer and placed on ice for 1 h. The tissue homogenate and cell lysates were centrifuged and supernatant subjected to protein quantification prior to WB using the Bradford protein assay (BioRad®, 500-0006). Fifty μg of proteins were subjected to sodium dodecyl sulfate–polyacrylamide gel electrophoresis and then transferred onto methanol-hydrated polyvinylidene fluoride membranes. The membranes were pre-incubated in 5% (w/v) non-fat milk dissolved in tris-buffered saline (TBST) for 1 h and left overnight in primary antibody at 4°C. Secondary antibody conjugated to horseradish peroxidase (HRP) was added for 1 h at room temperature. Blots were imaged using chemiluminescence ECL-plus reagent (PerkinElmer Inc., NEL103001EA) and X-ray film (GE Healthcare). Densitometric analysis of WB was performed using ImageLab® software (Bio-Rad, Hercules, CA, United States). Samples were normalized to either ACTB, GAPDH or Stain Free Blot (SFB).



Antibodies

Anti-LAMP1 (rabbit, WB 1:3000, IF 1:500; ab2971) was acquired from Millipore Sigma® (Toronto, Canada). Anti-TFEB antibody (rabbit, WB 1:2000, IF 1:500; ab174745) was purchased from Abcam® (Toronto, Canada) and ChIP-grade TFEB antibody (goat, ChIP 1:10; NB-100-1030) was from Novus Biologicals® (Littleton, United States). Antibodies against ICAM-1 (mouse, IF 1:200 WB: 1:500; sc-18853), ACTB (mouse, WB 1:2000; sc-47778), SMPD1 (rabbit, IF 1:200, WB 1:350; sc-11352), CD63 (mouse, WB 1:100; sc-5275) and CD34 (mouse, IHC 1:100) were obtained from Santa Cruz Biotechnology® (Dallas, TX, United States). Anti-PLAP (rabbit, WB 1:2000, IP 1:40; ab198388) was acquired by Abcam®. Anti-ceramide IgM (IF 1:200, MAB-0013) was purchased from Glycobiotech® (Seekoppel, Germany). Anti-CD31 (rabbit, IHC 1:50) was from Cell Signalling Technology (Beverley, MA, United States) and anti-TSG101 (rabbit, WB 1:500) from Thermo Fisher (Carlsbad, CA, United States). Secondary antibodies included goat anti-rabbit IgG-HRP (WB 1:3000; 111-035-144) and goat anti-mouse IgG-HRP (WB 1:2000, #1706516) and were purchased from Jackson ImmunoResearch Laboratories® (West Grove, PA, United States) and BioRad® (Hercules, CA, United States), respectively. For IF, Alexa Fluor® 488 donkey anti-rabbit IgG (A21206), Alexa Fluor® 594 donkey anti-mouse IgG (A21203), were purchased from ThermoFisher Scientific® (ThermoFisher Scientific®, Ottawa, Canada).



Statistical Analysis

All data are expressed as mean ± SEM. Statistical analysis was performed using GraphPad Prism 5 software. Comparison of data between two groups was done using two-tailed unpaired Student t-test. For comparison between multiple groups, Kruskal-Wallis test with a post hoc Dunn’s Multiple Comparison Test was performed. Significance was denoted as ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001.




RESULTS


Preeclamptic Placentae Exhibit Heightened Lysosome Biogenesis and TFEB Expression

Ultrastructural analysis revealed a significant increase in the total number of lysosomes in the syncytiotrophoblast layer of E-PE compared to both PTC and TC placentae (Figures 1A,B). Lysosomes are typically distinguished as primary (electron-dense organelles) and secondary lysosomes (less electron-dense vacuoles). The increased number of total lysosomes in E-PE syncytiotrophoblasts relative to both PTC and TC was largely due to an increase in secondary lysosomes (Figures 1A,B). We also found a significant rise in secondary lysosomes in E-PE cytotrophoblasts (Supplementary Figure 1A), although markedly less than seen in E-PE syncytiotrophoblasts. Next, we examined the expression of TFEB, the master regulator of lysosomal biogenesis and function (Palmieri et al., 2011; Settembre et al., 2013). Western blotting (WB) showed a significant increase in TFEB (predicted MW is 53 kDa) in E-PE compared to PTC and TC placentae (Figure 2A). RNA silencing of TFEB in trophoblastic JEG3 cells and subsequent WB for TFEB verified the 53 kDa band as TFEB (Figure 5A). Immunoblotting for lysosomal-associated membrane protein 1 (LAMP-1), a specific lysosomal marker, demonstrated a significant increase in LAMP-1 levels in E-PE compared to PTC and TC placentae (Figure 2A), in line with the ultrastructural data. Immunofluorescence confocal (IF) analysis confirmed strong immune-positive staining for LAMP-1 in the syncytium (Supplementary Figure 1B). IF analysis showed that TFEB primarily localized to the syncytium where it was markedly increased in PE placentae (Supplementary Figure 1C). Furthermore, WB for TFEB of isolated nuclear, cytoplasmic and lysosomal fractions showed an increase of TFEB in E-PE placentae (Figure 2B). In addition to the lysosomal pathway, TFEB regulates the transcription of a number of autophagy-related genes (Palmieri et al., 2011; Settembre et al., 2011). Hence, we investigated levels of downstream TFEB target, Beclin-1 (BECN1) (Palmieri et al., 2011) and confirmed its upregulation in E-PE versus PTC placentae (Figure 2C). Since TFEB localized mainly to the syncytium (Supplementary Figure 1C), we isolated that layer and probed it for ATG9b, another well-known TFEB autophagy target (Palmieri et al., 2011; Settembre et al., 2011). Indeed, ATG9b levels were increased in the syncytial layer of E-PE compared to TC placentae (Figure 2D).
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FIGURE 1. Lysosome morphology in E-PE and control placentae. (A) Representative TEM images of syncytiotrophoblast cells from TC, PTC and PE placental sections. L, lysosomes; 1 primary lysosome; 2 secondary lysosome. CT, cytotrophoblast; ST, syncytiotrophoblast. (B) Number of total and secondary lysosomes in syncytiotrophoblast cells from PCT and PE placentae (PE, N = 4; PTC, N = 4; **P < 0.01 compared to PTC).
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FIGURE 2. Lysosome biogenesis is increased in E-PE placentae. (A) Representative WB and corresponding densitometry of TFEB and LAMP-1 in E-PE, PTC, and TC placentae normalized to total protein in stain free gel (SFG) (TFEB: E-PE N = 18, PTC N = 16, TC N = 6, ***P < 0.001 E-PE compared to PTC and TC); LAMP-1: E-PE N = 19, PTC N = 12, TC N = 14, ***P < 0.001 E-PE compared to PTC and TC). (B, left panel) WB for TFEB and Lamin A in nuclear (Nu) and cytoplasm (Cy) enriched fractions; (B, right panel) WB for LAMP1 in lysosomal lysates from PTC and E-PE placentae. (C) WB of Beclin-1 (BECN1) in PTC and E-PE placentae (PE, N = 7; PTC, N = 7). (D) Representative WB for ATG9b and corresponding densitometry in lysates of syncytial cells isolated from term and PE placentae. PLAP was used as a syncytial marker and loading control. (PE, N = 3; TC, N = 3; *P < 0.05 compared to TC). Dotted line: lanes were run on the same gel but were non-contiguous. Data are expressed as mean ± SEM.




Ceramide Promotes TFEB-Induced Lysosomal Biogenesis and SMPD1 Expression

We next investigated whether heightened ceramide levels, typical of PE (Melland-Smith et al., 2015), affected lysosomal biogenesis. Treatment of primary isolated trophoblast cells with CER 16:0 significantly increased the total number of lysosomes compared to vehicle treated cells (Figure 3A). To further examine the effect of ceramide on lysosomal biogenesis, we employed trophoblastic JEG3 cells. Pilot titration experiments showed that exposure to 20 μM of CER 16:0 was enough to elicit robust LAMP-1 expression in JEG3 cells (Supplementary Figure 1D). Exposure of JEG3 cells to CER 16:0 and 2-OE (an acid ceramidase inhibitor that increases ceramide levels (Melland-Smith et al., 2015) significantly increased lysotracker signal (Figure 3B). This was accompanied by an increase in TFEB and LAMP-1 proteins (Figure 3C). Furthermore, ceramide treatment induced nuclear localization of TFEB in JEG3 (Figure 3D) and HeLa (Supplementary Figure 2B) cells. Additionally, flow cytometry for Lysotracker® Red and acridine orange corroborated the TEM and lysotracker IF findings. CER 16:0 treatment of JEG3 cells resulted in a much larger population (48.6 vs 6%) of Lysotracker® Red positive cells compared to EtOH vehicle treated cells (Figure 3E, top panels). This was associated with a marked increase in lysosomal volume (Figure 3E, bottom panel). Lysosomal staining with acridine orange corroborated the increased lysosomal volume after CER 16:0 treatment (Supplementary Figure 2A). Negligible shifts in the cell population for both Lysotracker® Red and acridine orange signals were found for Bafilomycin A1-treated JEG3 cells (negative control) and unstained JEG3 cells following CER 16:0 exposure. To confirm the relevance of ceramide on placental lysosomal biogenesis, we used pregnant mice that were injected with Ceranib-2, an inhibitor of acid ceramidase activity. We have previously reported that Ceranib-2 treated mice have increased placental ceramide levels (Melland-Smith et al., 2015), underscoring the utility of this model for examining the impact of elevated ceramide on placental lysosomal biogenesis in vivo. WB analysis revealed significant increases in LAMP-1 and TFEB expression in placentae from E13.5 mice injected with Ceranib-2 versus vehicle DMSO (Figure 4A). Haematoxylin and eosin staining showed alterations in the labyrinth layer of the Ceranib-2 injected mice as evident from compaction and decreased vascular branching (Figure 4B-upper panels). This was corroborated by immunohistochemistry for vascular endothelial markers CD34 and CD31 (Figure 4B-middle and bottom panels). In line with human E-PE findings of increased expression in the syncytium (Supplementary Figure 1B,C), LAMP-1 and TFEB levels were elevated in the corresponding labyrinth layer of Ceranib-2 versus vehicle DMSO injected mice (Figure 4C).


[image: image]

FIGURE 3. Ceramide induces lysosome biogenesis. (A) Representative TEM images and corresponding number of total lysosomes in primary isolated trophoblast cells treated with 20 μM CER 16:0 or EtOH vehicle (N = 3 experiments with freshly isolated cells; *P < 0.05). L: lysosomes. (B) LysoTracker® Red IF of JEG3 cells cultured in the presence or absence of 20 μM CER 16:0 or 25 μM 2-OE and corresponding fold change in fluorescence intensity (N = 3 separate experiments; *P < 0.05, **P < 0.01 compared to vehicle control). Arrow: LysoTracker® Red reactivity. (C) Representative WB for TFEB and LAMP1 in JEG3 cells treated with 20 μM CER 16:0 or vehicle. ACTB used as loading control. (D) IF analysis of TFEB (green) in JEG3 cells following exposure to 20 μM CER 16:0 or EtOH vehicle. Nuclei were visualized with DAPI (blue). Data are expressed as mean ± SEM. (E) Representative flow cytometry density and volume plots of Lysotracker® Red stained JEG3 cells exposed for 6 h to either EtOH vehicle, 100 nM Bafilomycin (Baf A1) or 20 mM CER 16:0. Unstained cells were used for gating. Note that DAPI staining, used to mark viability of live cells, indicate no significant shifts between either unstained cells or cells exposed to vehicle EtOH, CER16:0 or Baf A1.
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FIGURE 4. Inhibition of acid ceramidase with Ceranib-2 in pregnant mice increases placental lysosomal biogenesis (A) Representative WB for LAMP-1 and TFEB and corresponding densitometry in placental lysates from CD1 mice injected with ceranib-2 or DMSO vehicle (data are expressed as mean ± SEM; DMSO, N = 3; Ceranib-2, N = 5 for LAMP-1 and 4 for TFEB; ***P < 0.001 and *P < 0.05 compared to DMSO vehicle control). (B) Hematoxylin and Eosin (H&E) staining (upper panel) and immunohistochemistry for CD34 (middle panel) and CD31 (lower panel) in placental sections from Ceranib-2 and DMSO-treated mice. S, spongiotrophoblast layer. L, labyrinthine layer. (C) Representative IF images for LAMP-1 (green) and TFEB (green) in placentae of mice injected with either ceranib-2 or DMSO. Nuclei were visualized with DAPI (blue). (–) Non-immune IgG negative control.


Evidence suggests that specific lysosomal hydrolases are under transcriptional regulation of TFEB (Palmieri et al., 2011); however, sphingomyelin phosphodiesterase 1 (SMPD1), a lysosomal enzyme that breaks down sphingomyelin into ceramide (Schuchman and Wasserstein, 2015), has not been examined. In silico analysis revealed two putative TFEB binding sites in the SMPD1 promoter, indicative of its potential regulation by TFEB. RNAi knockdown of TFEB in JEG3 cells decreased TFEB, LAMP-1 (established target of TFEB) (Palmieri et al., 2011) and SMPD1 protein levels compared to cells treated with scrambled control RNA (Figure 5A). Using a SMPD1 promoter-driven luciferase reporter construct, we found that concurrent overexpression of TFEB with the SMPD1-luciferase reporter distinctly increased luciferase activity compared to EV control (Figure 5B). To establish TFEB binding to SMPD1 in PTC and PE placentae, we performed ChIP for TFEB and subsequently examined TFEB-bound SMPD1 DNA by qPCR. Our data show that TFEB associates with the SMPD1 promoter at predicted binding site 1 (between −200 to −300 bp) but not at the second binding site (between −900 to −1000 bp) in both PTC and E-PE placentae (Figure 5C). TFEB binding to SMPD1 promoter was greater in E-PE vs PTC placentae (Figure 5C). Lastly, ChIP analysis confirmed increased TFEB binding to SMPD1 promoter in JEG3 cells exposed to CER 16:0 (Figure 5D).
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FIGURE 5. SMPD1 is a direct target gene for TFEB. (A) Western blots and densitometric analysis of TFEB, LAMP-1 and SMPD1 in JEG3 cells following transient transfection with TFEB siRNA or a control (ss) scrambled sequence (N = 3 separate experiments run in duplicate; *P < 0.05 compared to ss control). (B) Luciferase reporter assay showing SMPD1 expression in JEG3 cells following overexpression of TFEB (OE TFEB) or empty vector (OE EV). (N = 3 separate experiments; *P < 0.05 compared to empty vector control). (C) qPCR of SMPD1 promoter regions –200 to 300 bp and –900 to 1,000 bp after chromatin immunoprecipitation with TFEB in E-PE and PTC placentae (N = 4 for each group). (D) qPCR of SMPD1 promoter region –200 to 300 bp after chromatin immunoprecipitation with TFEB in JEG3 cells exposed to 20 μM CER16:0 or EtOH vehicle.




Ceramide Augments TFEB-Induced Lysosomal Exocytosis

Immunofluorescence for LAMP-1 and SMPD1 following ceramide treatment revealed increased signals for both proteins in the perinuclear lysosomal compartment and a marked redistribution to the membrane boundaries of the cells treated with ceramide (Figure 6A), indicative of an increased shuttling of lysosomes to the plasma membrane. To investigate the contribution of ceramide to lysosomal exocytosis, we loaded JEG3 cells with FITC-Dextran and measured the release of this saccharide upon ceramide exposure. IF demonstrated a significant decrease of fluorescence in ceramide versus vehicle-treated cells (Figures 6B,C). Furthermore, luminometry revealed a marked increase of fluorescence in the media of ceramide- versus vehicle-treated cells (Figure 6D). Moreover, ceramide increased the intracellular Ca2+ content in JEG3 cells (Figure 6E), a potential trigger for exocytosis (Chakrabarti et al., 2003). Together, these observations support the idea that ceramide induces lysosomal exocytosis.
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FIGURE 6. Ceramide triggers lysosomal exocytosis in JEG3 cells. (A) IF images for LAMP-1 and SMPD1 in JEG3 cells following exposure to 20 μM CER 16:0 or EtOH vehicle. (B) IF images of FITC-dextran (green) loaded JEG3 cells following exposure to 20 μM CER 16:0 or EtOH vehicle. Nuclei: DAPI (blue). (C) Fold change in fluorescence intensity of FITC-dextran in JEG3 cells treated with 20 μM CER 16:0 or EtOH vehicle (N = 3 separate experiments; *P < 0.05 compared to vehicle). (D) Fold change in fluorescence intensity of released FITC-dextran in media of JEG3 cells treated with 20 μM CER 16:0 or EtOH vehicle (N = 3 separate experiments; **P < 0.01 compared to vehicle). (E) Fold change variation of intracellular Ca2+ content of JEG3 cells treated with 20 μM CER 16:0 versus EtOH vehicle. Data are expressed as mean ± SEM.




Accumulation of Ceramide and SMPD1 in Syncytial Apical Villous Membranes

Immunofluorescence revealed an enrichment of ceramide and LAMP-1 in the syncytiotrophoblast layer of E-PE placentae (Figure 7A). To investigate the occurrence of lysosomal exocytosis in the syncytium, PTC and E-PE placentae were subjected to subcellular fractionation to isolate syncytial apical microvillous membranes (AM), which then were analyzed for the presence of SMPD1. This enzyme is present as a 65 kDa lysosomal form (L-SMPD1) and a 75–80 kDa secreted extracellular form (S-SMPD1) (Jenkins et al., 2010). WB analysis showed the existence of L-SMPD1 in the syncytial AM of E-PE placentae that was significantly increased relative to the syncytial AM of PTC placentae (Figure 7B). To verify that L-SMPD1 was active, we quantified the ceramide content in syncytial AM isolated from E-PE and PTC placentae using tandem mass spectrometry. A significant build-up in ceramide was observed in the syncytial AM of E-PE placentae (Figure 7C). Specifically, we found significant increases in CER 16:0, CER 18:0, and CER 20:0 (Supplementary Figure 3A). Lipid microdomains, termed lipid rafts, are typically enriched in sphingomyelin (Simons and Sampaio, 2011). Hence, we isolated the lipid rafts (detergent-insoluble lipid domains) from the syncytial AM and analyzed them for L-SMPD1 and ceramide content. L-SMPD1 was primarily detected in the placental alkaline phosphatase [PLAP (Ermini et al., 2017)]-positive lipid rafts (insoluble fractions; Ins.) of syncytial AM from E-PE placentae (Figure 7D-left panel). The presence of L-SMPD1 in the lipid rafts was accompanied by heightened ceramide content (Figure 7D-right panel). No differences were found for ceramide content in lipid rafts of TC and PTC AM, suggesting that ceramide enrichment of lipid rafts is independent of gestation (Supplementary Figure 3B,C).
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FIGURE 7. L-SMPD1 localizes to lipid rafts of apical syncytial membranes in E-PE placentae and is released into the maternal circulation via exosomes. (A) IF images depicting LAMP-1 and ceramide localization in E-PE and PTC placentae. LAMP-1 (green); Ceramide (red); nuclear DAPI (blue). ST, syncytiotrophoblast. (B) WB and associated densitometry for L-SMPD1 in lysates of apical syncytial membranes (AM) of PTC and E-PE placentae (PTC, N = 3; PE, N = 5; **P < 0.01 vs. PTC). PLAP was used as AM marker. (C) Total ceramide levels, measured by LC-MS/MS, in syncytial membranes extracts of TC and E-PE placentae (N = 3 placentae per group; *P < 0.05 compared to control). (D-left panel) Distribution of L-SMPD1 in detergent insoluble (Ins) and soluble (Sol) fractions of AM from TC and E-PE placentae. PLAP was used as lipid raft (detergent insoluble fraction) marker. (D-right panel) Total ceramide levels measured by LC-MS/MS in extracts of AM Ins and Sol fractions of TC and E-PE placentae (N = 3 samples per group; *P < 0.05 compared to TC). (E) WB for L-SMPD1, CD63 and PLAP of exosomes isolated from PTC (N = 3) and E-PE (N = 3) maternal plasma. (F) WB for L-SMPD1 in PLAP-precipitated exosomes from PTC (N = 3) and E-PE (N = 3) maternal plasma. (F-right panel) LC-MS/MS quantification of total ceramide in PTC and E-PE PLAP-precipitated exosomes (E-PE, N = 4; PTC, N = 3; *P < 0.05 vs. to PTC). Data are expressed as mean ± SEM. Dotted line: non-contiguous lanes run on the same gel.




Ceramide Triggers the Release of L-SMPD1-Enriched Exosomes

We next investigated whether placental L-SMPD1 in E-PE is released into the maternal circulation encapsulated in small nano-sized vesicles. Total and placental exosomes were isolated from maternal plasma of E-PE and normotensive PTC pregnancies (Ermini et al., 2017). WB analysis of L-SMPD1 in total (Figure 7E) and placental (Figure 7F-left panel) exosomes of maternal plasma from E-PE and PTC pregnancies demonstrated a marked enrichment of L-SMPD1 in circulating placental exosomes from E-PE pregnancies. Lipid mass spectrometry showed an increase in ceramides in circulating placental exosomes of PE compared to PTC women (Figure 7F-right panel). Purity of exosome isolation was confirmed by immunoblotting for CD63 and TSG101 (Figures 7E,F). Since ceramide was increased in PE syncytiotrophoblasts, we next investigated if heightened ceramide triggers the exosomal release of L-SMPD1. Exosomes were isolated from media conditioned by JEG3 cells following treatment with CER16:0 or vehicle EtOH. Nanoparticle tracking analysis revealed a significant increase in the number of exosomes (average size of 120 nm) in the conditioned media of JEG3 cells treated with CER16:0 (Supplementary Figure 4A). Consistent with our circulating exosome data from early-onset preeclamptic women (Figures 7E,F), WB showed a significant increase in L-SMPD1 in exosomes isolated from JEG3 cells after ceramide treatment (Figure 8A). The activity of L-SMPD1, indicative of its function, was also significantly greater in exosomes derived from JEG3 cells exposed to ceramide versus vehicle control (Figure 8B). RNAi knockdown of TFEB in JEG3 cells markedly decreased L-SMPD1 content in exosomes from cells treated with CER16:0 (Figure 8C), suggesting that the effect of CER 16:0 on exosome L-SMPD1 content is primarily due to TFEB upregulation and activation.
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FIGURE 8. SMPD1 enriched exosomes induces endothelial cells activation. (A) WB for L-SMPD1, CD63 and corresponding densitometry of exosomes isolated from conditioned media of JEG3 cells treated with 20 mM CER 16:0 or EtOH (N = 3 separate experiments). (B) SMPD1 enzyme activity of exosomes from conditioned media of JEG3 cells treated with CER 16:0 or EtOH (N = 4 separate experiments). RFU, relative fluorescence units. (C) Representative WB for L-SMPD1 of exosomes from JEG3 cells treated with CER 16:0 or EtOH vehicle in conjunction with TFEB siRNA or control (ss) scrambled sequence treatment (N = 3 separate experiments). (D) WB and densitometry of ICAM-1 in lysates of HMVEC cells treated for 3 h with ExoCer or ExoV (N = 3 separate experiments). (E) IF images and mean fluorescence intensity quantification of ICAM-1 (Green) in HMVEC cells treated with ExoCer or ExoV (N = 3 separate experiments). Nuclei: DAPI (blue). (F-left panels) Representative flow cytometry density plots of CD54 (ICAM-1) and CD146 of HMVEC cells exposed for 3 h to either 2 × 106 ExoV or ExoCer, or 20 mM CER 16:0. (F-right panel) Quantification of CD54+/CD146+ HMVEC cells after treatments (N = 4 experiments). (G) Densitometry of WB for ICAM-1 normalized to stain free gel in HMVEC lysates treated for 3 h with ExoV or ExoCer in presence or absence of 25 μM Imipramine (I) (N = 3 separate experiments).




Exosomal L-SMPD1 Prompts Endothelial Activation and Impairs Angiogenesis

The role of exosomal L-SMPD1 in the development of endothelial dysfunction in preeclamptic women is unknown. Hence, we investigated the effect of SMPD1-enriched exosomes on human microvascular endothelial cells (HMVECs). In pilot experiments, using PKH67 dye-labeled exosomes, we found that exosomal uptake was rapid and peaked between 30–60 min after start of incubation (Supplementary Figure 4B). We then examined whether exosomes derived from JEG3 cells treated with CER 16:0 would affect endothelial activation. HMVECs were treated for 3 h with 2 × 106 exosomes isolated from ceramide (ExoCer) or vehicle (ExoV) treated JEG3 cells. Exposed cells were analyzed for expression of Intercellular Adhesion Molecule 1 (ICAM-1), a marker of endothelial activation (Hunt and Jurd, 1998). Immunoblotting showed a significant increase of ICAM-1 in HMVECs treated with ExoCer compared to those treated with ExoV (Figure 8D). IF for ICAM-1 and relative fluorescence intensity quantification substantiated increased endothelial activation after treatment with ExoCer (Figure 8E). Additionally, flow cytometry for CD54 (I-CAM) and CD146 corroborated the WB and IF findings (Figure 8F). We next examined if treatment of HMVECs with ExoCer disrupted their ability to form tubular endothelial networks in Matrigel. Exposure of HMVECs to ExoCer resulted in a marked reduction of both number of branches and total length of tubules in the endothelial network after 3 h of treatment compared to cells treated with ExoV (Figure 9A). A potential role of L-SMPD1 present in ExoCer on the activation and angiogenesis of HMVECs was investigated using imipramine and fluoxetine, inhibitors of SMPD1 activity (Justice et al., 2018). ExoCer-induced endothelial activation (ICAM-1 expression) was efficiently inhibited by imipramine treatment (Figure 8G). The inhibitory effect of ExoCer on angiogenesis was also attenuated in HMVECs treated simultaneously with either imipramine or fluoxetine (Figures 9B,C). Inhibitors alone had no effect on tube formation of HMVECs (Supplementary Figure 4C). Together, these observations suggest that L-SMPD1 in ExoCer contributes to endothelial dysfunction most likely via ceramide generation. In support of this concept, exposure of HMVECs to CER 16:0 and 2-OE (increases intracellular ceramide) resulted in decreased tube formation (Supplementary Figure 4D).


[image: image]

FIGURE 9. Active SMPD1 in exosomes from JEG3 cells exposed to ceramide affect endothelial angiogenesis. (A) Angiogenesis assay of HMVEC treated with 2 × 106 ExoV or ExoCer (N = 4 separate experiments). Tube formation was documented after 3 h of treatment by quantification of number of branches and the total length of the segments of the network. Arrows indicates the main branches. Data are expressed as mean ± SEM (N = 4 separate experiments). (B) Tube formation assay of HMVEC cells treated for 3 h with ExoV or ExoCer in presence or absence of 25 μM Imipramine (I) or 10 μM Fluoxetine (F) and accompanying quantification (C) of tubular branches. Data are expressed as mean ± SEM (N ≥ 3 separate experiments).





DISCUSSION

Herein, we demonstrate exuberant lysosomal biogenesis in the syncytium of early-onset preeclamptic placentae that is due to the elevated ceramide build-up in this layer (Melland-Smith et al., 2015). We show that lysosomal SMPD1, a key enzyme for ceramide synthesis, is directly regulated by TFEB. In addition, we report that lysosomal exocytosis is prominent in PE. It enriches the apical membranes of the syncytial layer with lysosomal SMPD1. The presence of this enzyme in the lipid rafts of apical syncytial membranes from E-PE placentae increases the ceramide content in these membrane domains leading to the release of ceramide-enriched placental exosomes containing active lysosomal SMPD1 into the maternal circulation. L-SMPD1 in the released exosomes promotes endothelial activation and impairs angiogenesis, thereby contributing to the endothelial dysfunction in E-PE women.

In the present study, we show increased number of lysosomes in trophoblast cells of E-PE placentae mostly due to a striking increase in secondary lysosomes. This pool of lysosomes is central to the degradation and recycling of macromolecules delivered by endocytosis and autophagy. This increase in lysosomes in E-PE agrees with numerous reports of elevated autophagy in preeclamptic placentae (Oh et al., 2008; Kalkat et al., 2013; Akaishi et al., 2014; Gao et al., 2015; Melland-Smith et al., 2015; Akcora Yildiz et al., 2017; Hutabarat et al., 2017; Ausman et al., 2018; Zhao et al., 2020). Lysosome biogenesis is regulated by a lysosome-to-nucleus signaling mechanism that involves TFEB. Under stress conditions, TFEB translocates to the nucleus, where it promotes its own expression as well as that of genes involved in lysosomal biogenesis and autophagy (Roczniak-Ferguson et al., 2012; Martina and Puertollano, 2017). Here, using siRNA knockdown, reporter gene assay and ChIP analysis, we show that the SMPD1 gene is a direct target of TFEB. In support of TFEB stimulating autophagy in E-PE placentae, we demonstrate increased expression of autophagy genes BECN1 and ATG9b. Both are established TFEB targets (Palmieri et al., 2011; Zhang et al., 2019). Mice lacking TFEB die in utero between E9.5 and E10.5 days and exhibit severe defects in placental vascularization, underscoring the significance of this transcription factor for placental development (Steingrimsson et al., 1998). In the present study, we show that TFEB and LAMP1 expression is increased in human E-PE placentae compared to TC and PTC placentae, in line with the observed increase in number of lysosomes. In contrast, Nakashima et al. (2020) reported that autophagolysosomal degradation is defective in preeclamptic placentae due to reduced TFEB and LAMP1 expression. Although their finding may explain the build up of protein aggregates in preeclamptic placentae, it clashes with the generally accepted view of elevated autophagy flux in preeclamptic placentae (Oh et al., 2008; Kalkat et al., 2013; Akaishi et al., 2014; Gao et al., 2015; Melland-Smith et al., 2015; Akcora Yildiz et al., 2017; Hutabarat et al., 2017; Ausman et al., 2018; Zhao et al., 2020). Unfortunately, the authors did not verify their findings at the ultrastructural level (TEM is the gold standard for surveillance of organelles and autophagy) and mainly focused on extravillous trophoblasts while we surveyed the villous trophoblast layers. Moreover, they employed a limited number of cases for both late-onset and, particularly, early-onset preeclamptic placentae, whereas we used a large number (n = 54) of strictly early-onset preeclamptic placentae.

We have reported lysosomal accumulation of ceramide in PE syncytium (Melland-Smith et al., 2015). Studies in retinal epithelial cells have shown that ceramide induces TFEB translocation to the nucleus (Martina and Puertollano, 2018). Treatment of pre-osteoblastic cells with the ceramide analog PDMP, indirectly activated TFEB, thereby triggering autophagy (Ode et al., 2017). Our findings of heightened levels of TFEB in ceramide-treated JEG3 cells and in placentae of Ceranib-2 injected mice, agree with these observations. Ensuing increased lysosome biogenesis was corroborated by markedly augmented lysosome number, lysosomal volume and lysosomal marker expression in primary isolated trophoblast cells and JEG3 cells following ceramide and 2-OE treatments.

Transcription factor EB functions as a key regulator of lysosomal exocytosis by increasing the pool of lysosomes in proximity of the plasma membrane (Medina et al., 2011). In the present study, we demonstrated that ceramide, besides increasing nuclear TFEB, also stimulated the redistribution of lysosomal proteins (LAMP-1 and L-SMPD1) to the membrane boundary of JEG3 cells. An increase of LAMP-1 in the plasma membrane has also been reported for fibroblasts following sucrose challenge (Samarani et al., 2018). Our findings confirm that lysosomal exocytosis in JEG3 cells is activated upon ceramide treatment. Increased exocytosis is supported by an increase in intracellular calcium (Chakrabarti et al., 2003). In PE placentae, we found lysosomal SMPD1 in the syncytial AM, suggesting active lysosomal exocytosis in this layer in situ. Hence, it is plausible that high ceramide content in E-PE lysosomes triggers their biogenesis to clear ceramide via exocytosis.

Sphingomyelins are uniquely enriched in membrane subdomains named lipid rafts (Simons and Sampaio, 2011). Our finding of lysosomal SMPD1 in lipid rafts of syncytial AM from E-PE placentae suggest that this enzyme is likely responsible for the increase of ceramides in these microdomains. Accumulation of ceramide within syncytial lipid rafts plausibly contributes to the heightened autophagy of the syncytium, a characteristic of E-PE pathology (Kalkat et al., 2013; Melland-Smith et al., 2015; Ausman et al., 2018). Ceramide build-up in lipid rafts has been reported to induce internal curvature of the membranes thereby facilitating endocytosis and consequently fusion with lysosomes leading to increased rates of autophagy (Cremesti et al., 2002; Tam et al., 2010). The majority of studies have linked heightened autophagy in trophoblast layers (i.e., syncytium) of preeclamptic placentae to accelerated cell death (Oh et al., 2008; Kalkat et al., 2013; Akaishi et al., 2014; Gao et al., 2015; Melland-Smith et al., 2015). However, one opposing report suggests that autophagy is needed for extravillous trophoblast invasion and migration into the myometrium (Nakashima et al., 2013, 2017). Thus, it is possible that lysosome biogenesis and exocytosis may differ in different subpopulations of trophoblast cells.

Recent proteomic studies have found SMPD1 in exosomes isolated from prostatic secretions in urine (Wang et al., 2012; Principe et al., 2013). In the present study, we provide evidence that active L-SMPD1 is present in placental exosomes isolated from maternal plasma of E-PE women and from JEG3 cells following ceramide exposure. It is likely that L-SMPD1 in lipid rafts of the syncytial plasma membrane of PE placentae degrades sphingomyelin to ceramide, thereby enriching these membrane microdomains with ceramide. These ceramide-enriched lipid rafts can easily bud from the inner plasma membrane to form early endosomes that when cholesterol-rich are routed via the multivesicular bodies (MVB) pathway (Raposo and Stoorvogel, 2013) for secretion of exosomes containing active L-SMPD1.

It is well known that extracellular vesicles are involved in cell-to-cell communication by delivering proteins, lipids and RNA that can alter the physiological status of recipient cells (Maas et al., 2017). In vitro studies have indicated that microvesicles circulating in maternal blood of women with PE affect angiogenesis and function of HUVECs (Shomer et al., 2013; Escudero et al., 2016). However, the exact cargo affecting endothelial function remains to be established. Herein, we show that L-SMPD1 is present and active in circulating placenta-derived exosomes of preeclamptic women. Additionally, we show that lysosomal SMPD1-containg exosomes alter endothelial function in vitro. Interestingly, secretory SMPD1 activity has been reported to be elevated in first trimester plasma of women that later develop late-onset PE (Rodriguez-Sureda et al., 2016).

Various reports suggest that ceramide impairs vascular reactivity (Alewijnse and Peters, 2008; Spijkers et al., 2010). Endogenous formation of ceramide due to increased SMPD1 activity has been shown to trigger pro-inflammatory responses (Modur et al., 1996). Evidence also indicates that SMPD1 activity is required to facilitate T cell adhesion mediated by ICAM-1 and consequently transmigration across brain endothelial cells (Lopes Pinheiro et al., 2016). In the present study, we found a significant increase of ICAM-1 in HMVECs treated with SMPD1-enriched exosomes derived from ceramide-treated trophoblastic JEG3 cells. The exosome-induced endothelial (ICAM-1) activation was blocked by the SMPD1 inhibitor Imipramine, suggesting a role for exosomal L-SMPD1 in this process. Exosomes isolated from the maternal circulation of preeclamptic women have been shown to reduce angiogenesis of HUVEC cells (Chang et al., 2018) but the exosomal cargo causing this effect remains unknown. Treatment of HUVEC cells with synthetic CER 2:0 and 6:0 have been reported to alter their tubule formation ability (Bansode et al., 2011; Mehra et al., 2014). Our present finding of limited tubule formation of HMVECs in the presence of CER 16:0 and acid ceramidase inhibitor 2-OE agree with the latter observation. Lysosomal SMPD1-containing exosomes derived from ceramide-treated trophoblast cells also reduced the angiogenesis of HMVEC, an effect that was abrogated by SPMPD1 inhibitors Imipramine and Fluoxetine. Based on these observations, we postulate that ceramide provokes L-SMPD1 accumulation as cargo in circulating placental exosomes of preeclamptic women thereby triggering maternal endothelial dysfunction. A hallmark of endothelial dysfunction is reduced nitric oxide (NO) bioavailability. Ceramide has been shown to reduce NO synthesis and bioavailability (Li et al., 2002; Symons and Abel, 2013). Thus, it is plausible that fusion of circulating placental exosomes containing active L-SMPD1 with maternal vascular cells in PE women leads to aberrant ceramide generation that reduces NO availability, culminating in endothelial dysfunction. Considering the importance of ceramide for exosomal formation, secretion and signaling, future studies aimed at targeting ceramide homeostasis may prove valuable to ameliorate maternal systemic endothelial dysfunction characterizing PE.

In summary, we postulate that oxidative stress conditions, typical of early-onset PE leads to ceramide build up (Melland-Smith et al., 2015) that, in turn, triggers TFEB expression. Preliminary findings suggest that oxidative stress may directly affect TFEB expression and activation in trophoblast cells (Supplementary Figure 2C) but involved signaling pathways need further investigation. Thus, it is plausible that both oxidative stress and its downstream mediator ceramide contribute to the heightened lysosomal biogenesis and exocytosis found in E-PE. The latter causes lysosomal SMPD1 to transfer to the syncytial plasma membrane resulting in the formation of ceramide-enriched lipid microdomains, which are more prone to membrane budding and exosome biogenesis leading to the release of SMPD1 into the maternal circulation.
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Tumor progression involves invasion, migration, metabolism, autophagy, exosome secretion, and drug resistance. Cargos transported by membrane vesicle trafficking underlie all of these processes. Rab GTPases, which, through coordinated and dynamic intracellular membrane trafficking alongside cytoskeletal pathways, determine the maintenance of homeostasis and a series of cellular functions. The mechanism of vesicle movement regulated by Rab GTPases plays essential roles in cancers. Therefore, targeting Rab GTPases to adjust membrane trafficking has the potential to become a novel way to adjust cancer treatment. In this review, we describe the characteristics of Rab GTPases; in particular, we discuss the role of their activation in the regulation of membrane transport and provide examples of Rab GTPases regulating membrane transport in tumor progression. Finally, we discuss the clinical implications and the potential as a cancer therapeutic target of Rab GTPases.
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KEY POINTS:


1. There are 66 Rab GTPases associated with vesicular transport in the human genome.

2. The GEFs and GDPs make Rab GTPases act as molecular switches.

3. Based on membrane trafficking function, Rab GTPases are important to cancer progression.

4. Targeting Rab GTPases provides possibilities for cancer treatment strategies.





INTRODUCTION

Although many studies have strongly supported the notion that the dysregulation of invasion, migration, metabolism, autophagy, exosome secretion and drug resistance mediate cancer progression, few studies have focused on intracellular membrane trafficking, which regulates these processes (Prasad et al., 2016). Membrane trafficking enables the distribution of cellular proteins and the secretion of extracellular vesicles (Kajiho et al., 2018). Notably, the transport of membrane along the cytoskeleton regulates various biological functions in the cell. Membrane trafficking in cancer is crucial to these processes, in which membrane dynamics mediate their physical requirements (Stenmark, 2009). Indeed, variations in the presentation and degradation of important membrane proteins and imbalance in dynamic vesicle trafficking processes are known to be critical in tumor progression (Cho et al., 2018; Drizyte-Miller et al., 2020; Yousaf and Ali, 2020). Thus, membrane trafficking is a focal point for targeting cancer. Membrane trafficking can “drive” cancer progression and enable invasion, migration, metabolism, autophagy, exosome secretion and drug resistance.

Rab GTPases are highly conserved regulators of vesicular transport, and 66 members of this family in the human genome have been described (Li and Marlin, 2015). They switch between an active and inactive state, which is modulated by guanine nucleotide exchange factor (GEF) and GTPase activating protein (GAP), and function via downstream molecules, such as coat proteins and motor proteins, to trigger downstream membrane trafficking (Lamber et al., 2019). Each Rab GTPase is localized to a different membrane compartment, where it controls the specificity and direction of membrane transport (Stenmark, 2009). Rab GTPases regulate different trafficking routes and perform specific tasks in a series of membrane trafficking steps (Minamino and Ueda, 2019). Indeed, Rab GTPases ensure that cargos are transported to the correct target. Through transient interactions with downstream molecules, they control the formation of membrane buds, vesicular transport along the cytoskeleton, and membrane fusion to the target compartment (Cernochova et al., 2016; Burk and Pasterkamp, 2019).

As cancer cells live in changing microenvironments, they need a class of checkpoints that regulate the balance among endocytosis, recycling, degradation and exocytosis to face external stresses (Yang T. et al., 2020). Rab GTPases play a specific and predominant role in vesicle trafficking (Homma et al., 2020). Research has traditionally been mainly focused on regulation of the transcription or translation of Rab GTPases. Changes in Rab GTPase expression are associated with invasion, migration, metabolism, autophagy, exosome secretion and drug resistance in cancer (Table 1). A number of these changes are caused by changes in vesicular transport pathways, which influences cargo delivery to the cellular membrane and cargo endocytosis, recycling, degradation in lysosomes and exocytosis (Lamber et al., 2019). The checkpoint between recycling and degradation can significantly affect the cell biological function (Cullis et al., 2002; Ceresa and Bahr, 2006). Increases in endocytosis and endocytosed proteins transported to the lysosomes can decrease cell surface proteins (Drizyte-Miller et al., 2020). Indeed, error in the delivery of proteins to the cell surface or lysosomes causes abnormalities in polarity and membrane protein function, which can significantly affect cell invasion, migration and drug resistance. In addition, the overexpression or knockdown of Rab GTPases to reduce exosome transmission affected cancer progression (Hendrix and De Wever, 2013; Li et al., 2013; Huang and Feng, 2017; Chen et al., 2018; Guo et al., 2019). In addition, changes in internal trafficking decisions, including decisions to recycle and degrade through regulating ubiquitinylation and autophagy, can regulate receptor signaling and related protein function (Dong et al., 2019; Drizyte-Miller et al., 2020). In conclusion, the regulation of vesicle trafficking by Rab GTPases can affect receptor recycling and trafficking, which can affect tumor invasion, migration, metabolism, autophagy, exosome secretion and drug resistance. These roles and the subcellular localization of b GTPases are briefly summarized in Figure 1. This review seeks to highlight the potential contributions of Rab GTPase-mediated membrane trafficking to tumor progression, the clinical implications of Rab GTPases and the therapeutic potential of targeting Rab GTPases.


TABLE 1. The role of vesicle trafficking medicated by Rab GTPases in cancer research.
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FIGURE 1. Subcellular localization and relative function of Rab GTPases in cancer.


Active Rab GTPases locate in specific membrane compartments and function in cancer by membrane trafficking, according to Table 1. In the early endosome, Rab5 and Rab21 regulate the endocytosis of integrins and ABCG2 in cell surface. In the recycling endosome, Rab4, Rab8, Rab10, Rab11b, Rab13, Rab25, and Rab35 recycle endosomal integrins, MMPs, EGFR, and TNFRSF10B to the cell surface. In the late endosome, Rab2a control the endocytic recycling of MMT1-MMP; Rab7a affects resistance by increasing the secretion of extracellular vesicle. In the LDs, Rab7 and Rab10 induces the selective autophagy of LDs (lipophagy). In the autophagosome, Rab7 and Rab10 regulate lipophagy; Rab1a and Rab10 control the formation of autophagosome; Rab2 and Rab7 regulate the maturation of autophagosome. In the lysosome, Rab2a functions in autophagosome clearance; Rab7 regulate lipophagy; Rab32 regulate the transport of mTOR signaling protein into lysosome. In Golgi apparatus, Rab1b regulate the secretion of MMP1 from Golgi apparatus; Rab2a control the transport of E-cadherin to the Golgi apparatus. In the secretory vesicle, Rab27, Rab37 and Rab40 control the exocytosis of MMP1, TIMP1, or TIMP2; Rab8 increases the secretion of TMP. In the MVB, Rab11, Rab27, and Rab35 control exosome biogenesis and secretion process.



RAB GTPase FUNCTION IN MEMBRANE TRAFFICKING

Many studies have indicated that different Rab GTPases function closely in arranging membrane transport (Stenmark, 2009). These classes of Rab GTPases can define distinct types of membranes and regulate membrane tethering, movement and fate. Rab GTPases are present in an active or inactive state. Their nucleotide-dependent conformational transformation makes Rab GTPases act as molecular switches. The guanine nucleotide-bound state of Rab GTPases is regulated by GAPs or GEFs (Lamber et al., 2019). Rab GTPase contains two switch regions affected by GTP/GDP binding state (Goud et al., 2018). Through specific binding to the two switch regions, GAPs and GEFs control the GTP/GDP cycle (Figure 2). Every GTP/GDP cycle represents an opportunity to adjust the transport direction: to recruit a tether protein or a motor protein and promote traffic, or to adjust downstream proteins from actin filaments to microtubules, or to hand off the regulation of trafficking between Rab-dependent regulators (Malia et al., 2018; Baba et al., 2019; Dolce et al., 2020).
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FIGURE 2. The activation of Rab GTPases.


Hence, GAP/GEF determine the quantities of active Rab GTPases. Impairment of GAPs or overexpression of GEFs can cause an increase in active Rab GTPases, influencing the recruitment of downstream effectors regulated by active Rab GTPases, then may regulate cancer progression (Novick, 2016). For example, the eco tropic viral integration site 5 (EVI5), which belongs to a small subfamily of Tre-2/Bub2/Cdc16 (TBC) domain-containing proteins, is an oncogene that regulates the proliferation and metastasis in lung cancer (Cai et al., 2020). And there has been a promising prognosis predicting model for melanoma based on TBC family protein (Tang D. et al., 2020). Furthermore, Rab8 and Rabin8 (the GEF of Rab8) promote tumor formation (Choi et al., 2020).

In addition to GAPs and GEFs, Rab GDP dissociation inhibitors (GDIs) and Rab escort proteins (REPs) also functions in the adjustment of the Rab GTPases activity (Stenmark, 2009; Müller and Goody, 2018). GDIs were initially identified as factors preventing the release of GDP from the Rab GTPases and stabilizing the inactive state of Rab GTPases. And GDIs and GEFs also function as chaperones of Rab GTPases in the cytoplasm. RabIF, one of the GEFs, could stabilize the protein expression of Rab10 (Gulbranson et al., 2017). And two GDIs (GDI1 and GDI2) could regulate the geranylgeranylation of Rab GTPases and thus regulate their delivery and recycle. REPs also modulate the geranylgeranylation of Rab GTPases and affect their targeting in the membrane trafficking.

Some studies indicate that one Rab GTPase can interact with the GEFs or GAPs specific for other Rab GTPases, a critical discovery for their ordered activation in the membrane transport process (Tang L. et al., 2020). After activation, Rab GTPases can interact with multiple effectors in time and space to selectively regulate cargos into vesicles, exert vesicle movement along actin and microtubule cables, and tether vesicles for membrane fusion. For example, Rab GTPase adaptor proteins and lipid kinases and phosphatases assist Rab GTPases in cargo selection and membrane remodeling (Malia et al., 2018; Baba et al., 2019). In addition, Rab GTPases bind motor proteins to regulate vesicular transport along the cytoskeleton and function with tethering proteins in membrane fused with the target compartment (Dolce et al., 2020).

Rab GTPases switch between active and inactive conformations in a GTP-dependent mode. GEF catalyzes GDP-bound to GTP-bound, while GAP promotes the opposite process. The GTP/GDP cycle affects the state of Rab GTPases, and the activated Rab GTPases can bind to downstream effectors and function in regulating membrane trafficking.



RAB GTPases AND CANCER PROGRESSION


Migration and Invasion

Tumor metastasis is inseparable from abnormal cell invasion, proliferation, migration and angiogenesis, among which cell migration and invasion are the most important markers (Gkretsi and Stylianopoulos, 2018). Cell migration and invasion require a class of cell processes, including the intracellular vesicular transport of cell adhesion receptor molecules (such as integrins, cadherin-catenin) and proteases (Castro-Castro et al., 2016; LaFlamme et al., 2018). It has also been determined that ligand-growth factor receptor interactions through membrane transport pathways are associated with two important stages of cancer metastasis: cell invasion and migration. There is no doubt that vesicle trafficking medicated by Rab GTPases plays an important role in these processes.

Knowledge of the Rab GTPases functions in vesicular transport is crucial to understand the mechanisms of migration and invasion. Specifically, cell migration and invasion require the redistribution of adhesive components and the directional delivery of matrix-degrading enzymes.


Migration

In the former, integrins trafficked to the cell surface regulate the formation of filopodia and actin-matrix interactions, which can significantly affect cell adhesion and migration. Rab5 and Rab21 regulate the endosomal trafficking of integrin β1 and their overexpression increases the ability of cell migration and adhesion (Pellinen et al., 2006). Rab5a also promotes the formation of filopodia that promote migration in pancreatic cancer cells by activating integrin β1 (Yuan and Wei, 2021). The Rab11 protein family (Rab11b and Rab25) have played a key role in cancer cell migration by regulating integrin recirculation at the migration front. Regulation of integrin β1 surface expression by Rab11b plays a crucial role in cell adhesion, activating Erk signaling and promoting the adaptation and growth of breast cancer brain metastases (Howe et al., 2020). Rab25 can act as a tumor suppressor or tumor promoter in different tumors. Rab25 plays a tumor suppressive role in colorectal cancer and cutaneous squamous cell carcinoma. Rab25 deficiency induced the impairment of integrin β1, β4, and α6 recycling, causing the improper expression of integrins in skin squamous cell carcinoma (Jeong et al., 2019). Besides, loss of Rab25 prominent reductions in integrin β1 and promotes integrin β1 away from the lateral membranes in colon cancer (Nam et al., 2010). By contrast, Rab25 promotes integrin β1 trafficking to the cytoplasmic membrane in non-small-cell lung cancer and ovarian cancer and acts as a tumor promoter (Jeong et al., 2018; Wang et al., 2019). In ovarian cancer, Rab25-medicated integrin β1 activates EGFR/VEGF/Snail axis and then promote cell invasion. And in non-small-cell lung cancer, Rab25-medicated integrin β1 activates AKT/β-catenin pathway. Integrin recycling is also mediated by Rab10 and Rab13. Rab10 and Rab13 interact with Golgi-localized gamma ear-containing Arf-binding protein 2 and facilitate the recycling of active integrin β1 to the cell surface in cervical cancer (Sahgal et al., 2019). Another Rab GTPase controlling the recycling of integrin is Rab35. Rab35 can increase the expression of integrin β1 in cervical and breast cancer and promote cell migration (Argenzio et al., 2014).



Invasion

In the latter, tumor cells secrete a variety of proteases, such as MMP, that help cells break through the basement membrane and ECM. Some Rab GTPases have been described in the context of MMP secretion or activation vesicular transport regulates the delivery of MMPs and other proteins to change the extracellular matrix and thereby affect cell invasion. MT1-MMP (Membrane-type 1-matrix metalloproteinase) and other MMPs are essential for matrix remodeling and invasion. For example, Rab1b can regulate metastasis by increasing the secretion of MMP1 (Halberg et al., 2016). Rab2a regulates MT1-MMP endocytic recycling and the transport of E-cadherin to the Golgi to promote cell invasion in breast cancer (Kajiho et al., 2016). Rab5/Rab4 promotes invasion by MT1-MMP in invasive breast cancer (Frittoli et al., 2014). Rab8 controls the exocytosis of MT1-MMP in breast cancer (Bravo-Cordero et al., 2007). Rab11 promotes the trafficking of the integrin α6β4 under hypoxic conditions, which leads to increased cell invasion of breast cancer cells (Yoon et al., 2005). Rab25 promote cell invasion into the 3D ECM by integrin α5β1 and β1 (Caswell et al., 2007). Additionally, Rab40b functions as a regulator in the transport of MMP2/9 during invadopodia formation in breast cancer (Jacob et al., 2013).

Indeed, Rab GTPases could also affect MMP inhibitors to suppress tumor invasion. For example, Rab37 controls the exocytosis of TIMP1 to inhibit inactivated MMP9 and thereby suppresses lung cancer metastasis and controls the exocytosis of TIMP2 to inhibit inactivated MMP2 in nasopharyngeal carcinoma (Li et al., 2018; Wang et al., 2018). Another protease important for the cell invasion is procathepsin L, whose secretion is regulated by Rab4a (Barbarin and Frade, 2011).

In addition, some Rab GTPases play a dual role in the regulation of cell invasion. For example, Rab7 knockdown is associated with MT1-MMP secretion and promotion of cell migration and invasion in colorectal cancer cells (Steffan et al., 2014). On the other hand, high Rab7 expression is an indicator of a higher risk of metastasis in early melanoma patient (Alonso-Curbelo et al., 2014). Another example is Rab27. Rab27a controls the secretion of MMP9 that degrades extracellular matrix proteins to promote invasion and migration (Bobrie et al., 2012). In the ER + breast cancer, Rab27b activates MMP2 secretion and stimulates breast cancer cell invasion (Hendrix et al., 2010). By contrast, Rab27a overexpressed cell-derived exosomes has been shown to suppress tumor formation in vivo in a mouse model, which is related to cytokines (Li et al., 2013). The opposite effect of Rab7 and Rab27 may be attributable to cancer type, stage and specific growth factor stimulation.



Growth Factor Driven Signaling of Migration and Invasion

The involvement of growth factor driven signaling is also essential for tumor cell invasion and migration. Rab GTPases regulate early endocytic transport of several growth factors that promote tumor cell invasion and metastasis, including epithelial growth factor (EGFR) and hepatocyte growth factor (HGF) (Porther and Barbieri, 2015). The activation of EGFR signaling and HGF signaling can activate mitogen-activated protein kinases (MAPK) signaling pathway that promote the transcription and secretion of metalloproteinases MMP2 and MMP9, actin aggregation and integrin distribution, and thus promote migration and invasion (Porther and Barbieri, 2015). In the triple-negative breast cancer, Rab5 regulate EGFR vesicular recycling to promote migration (Stallaert et al., 2018). Interestingly, Rab11a regulates EGFR circulation and promotes proliferation, but inhibits the movement in breast cancer (Yamori et al., 1981). Rab7 shRNA expressing cells were found to be more invasive, and increased invasiveness was accompanied by high activation level of HGF signaling (Steffan et al., 2014). Rab10 silencing inhibits the HGF pathway, while Rab10 overexpression indicates poor prognosis of hepatocellular carcinoma (Wang W. et al., 2017). High expression of Rab11 was closely correlated with nodal metastasis in gastric cancer tissues (Dong et al., 2016). The expression level of Rab11 was significantly increased and associated with HGF pathway. In colon cancer, increased Rab31 expression may promote tumor progression by regulating HGF secretion in the tumor stroma (Yang Y. et al., 2020). These studies suggest that vesicle trafficking modulated by Rab GTPases is involved in multiple cell invasion and migration pathways.



Metabolism

Vesicular transport pathway and metabolic signaling pathway both involve moving substances (or signals) around the cell surface and within the cell (Chua and Tang, 2015). There is a chain of evidence to suggest that the transport and metabolic signaling pathways intersect—vesicular transport can affect the regulation of metabolic signals (Cheng et al., 2012; Wu et al., 2014; Drizyte-Miller et al., 2020). Considering Rab GTPases modulate the specificity and direction of vesicular transport, there are no doubt that they can decide the points at which vesicular transport and metabolism interact.

Rab GTPases mainly regulate the trafficking of GLUT (glucose transporter) and the formation of lipid droplet (LD) in glucose and lipid metabolism of cancer cells. GLUT1 is responsible for maintaining the basic uptake of glucose for the basic respiratory process in all cells, and responds to low levels of glucose, which increase in the cell membrane (Yang et al., 2021). Rab25 increases glycogen reserve and ATP levels in ovarian cancer cells through regulating the transport of GLUT1 to the cell surface and thus enhancing glucose uptake (Cheng et al., 2012). Although glucose metabolism is an important part of cell function, another critical aspect of cell metabolism involves lipids. A particularly salient aspect of metabolic reprogramming in tumor cells involves lipid storage and mobilization. LDs function in intracellular lipid storage, maintaining the cellular level of free lipids and energy homeostasis (Jackson, 2019). And Rab8a is reported to control lipid droplet fusion and growth in hepatocellular carcinoma (Wu et al., 2014).

The role of membrane transport in metabolic downstream events is another aspect of the regulation of metabolism by Rab GTPases, which involve mechanistic/mammalian target of rapamycin (mTOR) complex 1 (mTORC1) in downstream cascades. mTORC1 is a conserved serine/threonine kinase that regulates cell growth and metabolism in response to extracellular environmental stressors, such as aberrant nutrients, hormones, and energy (Nie et al., 2019). Rab32 knockdown increases lysosome biogenesis in hepatocellular carcinoma and cervical cancer and reduces the association of mTOR pathway proteins with lysosomes, which suggests that Rab32 regulates lysosomal mTORC1 trafficking and thereby controls metabolism (Drizyte-Miller et al., 2020). And Rab35 functions upstream of mTORC2. Oncogenic RAB35 transport PDGFRα to LAMP2-positive endomembrane without the involvement of endosomes, suggesting its oncogenic potential (Wheeler et al., 2015). Besides, other Rab GTPases, such Rab1a and Rab31 have also been reported to affect mTOR pathway in tumor, but it is unclear whether these effects are achieved by the membrane transport of Rab GTPases (Li et al., 2020a; Yang L. et al., 2020).



Autophagy

Autophagy is a crucial cellular homeostatic process induced by nutrient deprivation that promotes the recycling of molecules from unnecessary organelles and proteins that are then employed for the synthesis of functional organelles and proteins or the energy requirement during times of need (Mele et al., 2020). The formation of autophagosomes requires vesicular trafficking from the subcellular compartment to the site of autophagosome formation (Onorati et al., 2018). Therefore, a series of Rab GTPases play crucial roles in this process (Szatmari and Sass, 2014). For example, the Optineurin-Rab1a complexes modulate autophagosome formation through regulating the translocation of LC3-EGFP to autophagosomes (Song et al., 2018). Both Rab2 and Rab7 are important to autophagosome maturation and autolysosome fusion, which indicates that Rab2 and Rab7 are key regulators in the delivery and degradation of autophagic cargos (Lorincz et al., 2017). In addition, RAB2 regulates the activity of ULK1 kinase, thus promotes autophagosome formation (Ding et al., 2019).

Indeed, the selective autophagic degradation of LDs is called lipophagy (Singh et al., 2009; Galluzzi et al., 2014). Thus, lipophagy represents the intersection of fat metabolism and autophagy. In this process, LDs bind autophagosomes and are moved into lysosomes, and Rab GTPases function in membrane trafficking. Rab10 could induce the recruitment of autophagosomes at the LD surface in hepatocellular carcinoma (Li et al., 2016, 2020b). In addition, Rab7 regulates the transport of multivesicular bodies and lysosomes to LDs in hepatocellular carcinoma (Schroeder et al., 2015).

Autophagy plays a dual role in cancer, depending on the cellular context and the extracellular environment of the tumor (Onorati et al., 2018). Notably, specific Rab GTPases also have dual functions in different types or subtypes of cancer. For example, in ovarian cancer cells, Rab25 knockdown increases autophagy levels and induces apoptosis. Rab25 promotes cancer in ovarian cancer by inhibiting autophagy (Liu et al., 2012). However, increased expression of Rab25 inhibited the FAK/Akt pathway, promoted autophagy, and inhibited the malignancy of renal carcinoma cells (Tringali et al., 2012). The above results suggest that autophagy may be involved in the mechanism of the dual roles of Rab GTPases in different tumors.



Exosome Biogenesis and Secretion

In our previous studies, we discussed the characteristics and mechanism of exosome secretion in cancer (Fan et al., 2018; Yang et al., 2019). Exosomes, nanoscale extracellular vesicles 40–100 nm in size, have attracted increasing attention because of their involvement in intracellular communication. Exosomes are derived from multivesicular bodies (MVBs). MVBs are late endosomal structures containing luminal vesicles. After the fusion of MVBs with the plasma membrane, exosomes are released.

The Rab GTPases have been observed to significantly promote exosome biogenesis and secretion. Reduced activity of RAB11 in K562 cells is associated with reduced exosome release (Savina et al., 2002). Rab11 is also involved in the interaction between MVB and autophagosomes in K562 cells. Rab11 co-locates with LC3 during autophagy, which is associated with reduced exosome release. Further studies showed that Rab11 is involved in the docking of Ca2 + dependent MVB to the plasma membrane (Savina et al., 2005). Rab11-mediated secretion of exosomal TMPRSS2 promoted cell migration in breast cancer (Chi et al., 2020).

Although Rab11 is critical for exosome release in K562 cells and breast cancer cells, Rab11 does not affect exosome secretion in HeLa cells. In HeLa cells, the silencing of Rab27a and Rab27b reduces exosome secretion (Ostrowski et al., 2010). Rab27a regulates the size of MVB, while Rab27b controls their cell localization.

Invadopodia are an important site of Rab27a-regulated exosome secretion (Hoshino et al., 2013). So the secretion of Rab27a and exosomes is intrinsically related to the invasion of cancer cells. Rab27a knockdown in invasive cancer cell lines decreased exosome secretion, and Rab27a-mediated exosomes increased cell migration, chemotaxis, and invasion (Hendrix and De Wever, 2013; Chen et al., 2018; Guo et al., 2019). Furthermore, the transfer of mRNA into recipient cells was demonstrated to occur via exosome secretion by Rab27 regulation. Rab27-mediated secretion of exosomal miR-23b was shown to be connected with invasion and metastasis in bladder carcinoma (Ostenfeld et al., 2014). Rab27b-regulated exosomal miR-34c-5p was demonstrated to be related to the senescence of leukemia stem cells (Peng et al., 2018). Although Rab35 are also reported, the function of Rab35-regulated exosomes in cancer remains unclear (Yang et al., 2019).

In addition to regulating tumor cells, Rab27a/b also participates in exosome exchange between different cells in the tumor microenvironment. Rab27a-induced exosomes derived from hypoxic colorectal cancer cells affected the growth and invasion of endothelial cells (Huang and Feng, 2017). Both Rab27a/b gene deletions in head and neck squamous cell carcinoma cells reduce exosomal-mediated innervation induction (Madeo et al., 2018). Similarly, exosomes derived from Rab27a-overexpressing cancer cells elicited the efficient induction of antitumor immunity (Li et al., 2013). Rab27a/b also regulates macrophage exosome secretion (Binenbaum et al., 2018). Co-secretion of Rab27a-dependent exosomes contributes to the mobilization of tumor-promoting neutrophils and supports the growth of mouse breast tumors and their metastasis to the lung (Bobrie et al., 2012). It is worth noting that the role of Rab11 and Rab27a/b in exosome secretion is mainly based on in vitro experiments, and it is unclear whether Rab11 and Rab27a/b have similar functions in vivo.



Drug Resistance

Rab GTPases function in tumor drug resistance mainly from the following four aspects: (i) Rab7a affects drug efflux by the extracellular vesicle (Guerra et al., 2019). The exposure of cancer cells to hypoxia increased their exosome-medicated cisplatin efflux by upregulation of Rab27a (Dorayappan et al., 2018). These findings indicated the close relationship between Rab-regulated exosome secretion and tumor drug resistance. (ii) Rab8 can cooperate with transmembrane transport protein to promote drug resistance. Human epidermoid carcinoma resistant to cisplatin exhibits high Rab8 level. Rab8 colocalize with the TMEM205 and increase the secretion of cisplatin (Shen and Gottesman, 2012). (iii) Some Rab GTPases promote drug resistance by transporting membrane surface specific receptors. TNFRSF10B expression levels and cell surface levels are increased after treatment with certain chemotherapeutic agents, such as pemetrexet, which plays a key role in induction of apoptosis. Rab8 suppresses pemetrexet effect by regulating the TNFRSF10B transport to the cytoplasm (Wang et al., 2020). Besides, Rab13 affect the sensitization of gastric cancer to 5-fluorouracil treatment by regulating the EGFR transport to the cell membrane (Chen et al., 2019). (iv) Rab5a and Rab21 function through recycling multidrug resistance (MDR) relative protein. ABCG2 (ATP-binding cassette transporter of subfamily G) is a half-transporter involved in drug efflux and the development of MDR in cancer cells (Pasello et al., 2020). Ectopically expressed ABCG2 was shown to be located in cell surface and function in drug efflux (Kapoor et al., 2018). Active Rab5a-Q79L in breast cancer cells reduced the expression of ABCG2 in the plasma membrane, decreasing ABCG2-mediated drug efflux. Moreover, a reduction in the Rab21 expression level promoted the surface localization of ABCG2. Rab5a and Rab21 function in ABCG2 surface localization and turnover and may be targets to overcome MDR (Yousaf and Ali, 2020).



CLINICAL IMPLICATIONS OF RAB GTPases IN CANCER

Many clinicopathological studies note that Rab GTPases function in several cancers (Goldenring, 2013). Here, we discuss the clinical significance of the Rab GTPases mentioned above (Table 2). Rab1a expression is associated with tumor size, differentiation, lymph node metastasis, TNM stage and poor prognosis in patients with tongue squamous carcinoma, hepatocellular carcinomas and breast, prostate, lung, gastric, colorectal cancer (Cheng et al., 2019; Shao et al., 2019a,b). Thus, low Rab1b expression correlates with poor prognosis of breast cancer patients (Jiang et al., 2015). Rab2 is associated with poor prognosis of pancreatic and breast cancer patients (Luo et al., 2015; Jin et al., 2018). Rab5a is essential for the formation of vesicles that are specifically degraded by the extracellular matrix. Therefore, Rab5a was necessary to promote the local invasion and long-distance transmission of tumor cell lines, and this metastatic ability was associated with increased cellular motility. Therefore, high Rab5 expression correlates with poor prognosis in several cancers, including lung, liver, breast, ovarian cancer and glioma (Frittoli et al., 2014; Jian et al., 2020). Rab7 is an early-induced melanoma driver (Alonso-Curbelo et al., 2014). In addition, lung cancer and gastric cancer patients with high Rab7 expression show decreased survival rates (Liu et al., 2020; Xiao and Schmid, 2020). High Rab10 expression levels are associated with poor prognosis in HCC patients (Wang W. et al., 2017). In addition, colorectal carcinoma patients with high expression of both E-cadherin and Rab11 show a poor prognosis (Chung et al., 2016). Furthermore, Rab11a is associated with advanced TNM stage, positive nodal status and poor prognosis (Dong et al., 2017). Rab13 can induce chemotherapeutic resistance and indicates poor overall survival and progression-free survival (Chen et al., 2019). Rab21 is also highly expressed and associated with poor prognosis in pancreatic cancer (Anand et al., 2020). Low Rab37 protein expression levels in lung cancer indicate poor prognosis in patients with lung cancer at different stages and lymph node metastasis (Tsai et al., 2014). Additionally, Rab40b correlated with the prognosis, invasion classification, lymph node metastasis, and pathological stage (Li et al., 2015).


TABLE 2. Clinical implications of Rab GTPases in cancer.

[image: Table 2]Sometimes, the role of Rab GTPases is different according to tumor type. The role of Rab GTPases is sometimes influenced by tumor type. Elevated expression of Rab27b is correlated with reduced survival times, lymph node metastasis and pathological grade (Hendrix et al., 2010; Zhang et al., 2012; Ostenfeld et al., 2014). Rab27a and Rab27b was associated with poor patient prognosis and advanced TNM stage (Dong et al., 2012). Although Rab27 seems oncogenic, it also functions as a cancer inhibitor. Rab27a is downregulated and correlated with poor patient prognosis, advanced TNM stage, distant metastasis, and local recurrence (Dong et al., 2015). Low expression of Rab27a and Rab27b is also correlated with poor prostate cancer patient prognosis (Worst et al., 2017). Another example is Rab25, which functions as a prognostic indicator for breast, ovarian, kidney and other cancers. However, low expression of Rab25 is correlated with a poor prognosis in colon cancer, suggesting its role in tumor inhibition (Nam et al., 2010). The significant conflict between the functions of Rab25 in promoting or inhibiting cancer progression in different cancer types might be due to the involvement CLIC3, which is needed for RAB25-regulated integrin transport (Wang S. et al., 2017).



TARGETING RAB GTPases AS A CANCER THERAPEUTIC STRATEGY

Rab GTPases are widely expressed and function as prognostic markers in various human cancers. Therefore, targeting Rab GTPases is undoubtedly a highly attractive strategy for drug discovery, and some efforts to target Rab GTPases have already been made. For example, ML282 can inhibit Rab7 with high efficacy (Hong et al., 2010). In addition, the use of competitive inhibitors that bind nucleotides is a feasible method to target Rab GTPases. Some small-molecule pan-GTPase inhibitors, such as CID1067700, were discovered by high-throughput screening experiments. CID1067700 could inhibit Rab7 in biochemical, cellular protein and downstream protein interaction assays, and cellular functional assays (Hong et al., 2015). Although CID1067700 and ML282 also inhibit other GTPases, pan-GTPase inhibitors could serve as templates from which to develop specific Rab GTPase inhibitors with drug potential.

Gene therapeutics targeting Rab GTPase have recently been utilized. Once the Rab GTPases that are crucial for progression were established, their expression could be affected by small interfering RNA as well as non-coding RNA (ncRNA), such as long non-coding RNA (lncRNA) and microRNA (miRNA). For example, lncRNA HOTAIR could regulate Rab35 expression and localization, and thereby affect the exosome secretion in hepatocellular carcinoma (Yang et al., 2019). LINC00152 function as a sponge for miR-107 that targets Rab10 directly to promote tumor progression (Zhou and Huang, 2019). LncRNA SNHG3 also functions as a sponge in the regulation of miRNA-151a-3p/Rab22a to modulate migration of osteosarcoma (Zheng et al., 2019). Although these studies have suggested that the suppression of oncogenic ncRNAs and overexpression of tumor-inhibited ncRNAs might serve as attractive methods for therapeutic schedule, improving ncRNAs delivery systems, ncRNAs stability and off-target effects remains a challenge. If we want to successfully achieve the translation of gene therapeutics from the bench to the bedside, these questions must be addressed.



CONCLUSION

Vesicle trafficking functions in invasion, migration, metabolism, autophagy, exosome secretion and drug resistance. Rab GTPases are central coordinators of membrane trafficking and act as critical checkpoints for vesicular transport. Furthermore, small alterations in Rab GTPases may cause significant changes in net trafficking. Because membrane recycling is tremendously dynamic, one cycle of protein recycling might take only a few minutes or even less time. Therefore, the abnormal expression of Rab GTPases can markedly affect vesicle trafficking. A small change in the expression or active state of Rab GTPases might cause large changes in cell processes over days and thereby might promote invasion, migration, metabolism, autophagy, exosome secretion and drug resistance. Overall, Rab GTPases are essential to cancer progression, and selective targeting of particular Rab GTPases might be an attractive therapeutic schedule. Strategies to change membrane trafficking through targeting Rab GTPases might help to provide therapeutic approaches to reverse tumor invasion, migration, metabolism, autophagy, exosome secretion and drug resistance.
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Intervertebral disc degeneration (IDD) is the primary cause of low back pain. Stress-induced DNA damage is closely relevant to the pathogenesis of IDD; however, the underlying mechanisms remain unclear. This study investigated the role of the absent in melanoma 2 (AIM2) inflammasome as a DNA damage sensor in nucleus pulposus (NP) cells. We found that the level of AIM2 increased in degenerated discs and was correlated to the degree of IDD. Knockdown of AIM2 ameliorated H2O2-induced DNA damage and apoptosis in NP cells in vitro, and retarded the progression of IDD in vivo. Furthermore, the induction of autophagy protected against cellular DNA damage via the unconventional secretion of AIM2. We further identified the Golgi re-assembly and stacking protein 55 (GRASP55) as mediator of the transport and secretion of AIM2 via an autophagic pathway. Taken together, our researches illustrate the role and regulatory mechanism of the AIM2 inflammasome during IDD. Targeting the AIM2 inflammasome may offer a promising therapeutic strategy for patients with IDD.
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INTRODUCTION

Low back pain (LBP) is the leading cause of chronic disability and contributes greatly to the global health burden (Dowdell et al., 2017). Intervertebral disc degeneration (IDD) characterized by diminishing resident cells and progressive loss of the extracellular matrix (ECM) is a critical risk factor for LBP (Vergroesen et al., 2015). The nucleus pulposus (NP) is located in central disc and is surrounded by an annulus fibrosus composed of collagen lamellae. NP cells produce and maintain diverse ECM components that provide the swelling properties and pressure buffering function of the disc (Risbud and Shapiro, 2014). It is commonly considered that injury and death of NP cells contributes significantly to the pathogenesis of IDD (Lan et al., 2020). However, the pathogenesis of NP cell damage is multifactorial, and the underlying mechanisms of IDD remain unclear.

DNA damage, including nuclear and mitochondrial DNA damage, can lead to cellular dysfunction and result in cell death or senescence, which tightly links to degenerative diseases (Madabhushi et al., 2014). The occurrence and progression of IDD are closely associated with oxidative stress and DNA damage (Nasto et al., 2014). The absent in melanoma 2 (AIM2) inflammasome is a recognized cellular DNA sensor that serves as the monitor and reactor of cellular DNA damage (Lugrin and Martinon, 2018). AIM2 activation initiates the assembly of inflammasome complex and leads to the inflammatory cascades, which induce the release of inflammatory cytokines (Kumari et al., 2020). It has been reported that inflammatory stimuli and activated inflammatory responses facilitate the progression of IDD; however, the role of AIM2 inflammasome activation in IDD is still unknown.

Autophagy is a conserved cellular process responsible for the degradation and recycling of damaged organelles and proteins (Mizushima and Komatsu, 2011). Moderately active autophagy is cytoprotective and protects against IDD progression, and the inhibition of autophagy promotes the degradation of ECM components and cell apoptosis (Zhang et al., 2016). During the progression of IDD, autophagy may play a protective role via regulating the level of oxidative stress and the activation of inflammasomes (Feng et al., 2017). In a typical autophagy process, fusion of autophagosome with lysosome facilitates the degradation of autophagic cargoes (Ponpuak et al., 2015). In addition to regular degradation in autolysosomes, autophagic cargoes also rely on the autophagy-dependent secretion to eliminate harmful proteins or aggregates (Ponpuak et al., 2015). Autophagy-dependent secretion can release a plethora of factors which lack a secretion signal sequence, including interleukins, damage response mediators, and some extracellular matrix components (New and Thomas, 2019). Several studies have reported the extracellular distribution of the AIM2 inflammasome, which contributes greatly to the development of diseases (He et al., 2020; Lammert et al., 2020; Yuan et al., 2020). It is unclear if the secretion of the AIM2 inflammasome is autophagy-dependent.

In this study, we investigated the role of the AIM2 inflammasome in IDD progression. We measured the expression of the AIM2 inflammasome in non-degenerative and degenerative disc tissues. The activation of AIM2 inflammasome contributed to the release of inflammatory cytokines and cell death in the H2O2-induced DNA damage model of NP cells. On the other hand, activation of autophagy exerted a protective effect on DNA damage and apoptosis in NP cells, which partly depends on the secretory of AIM2. AIM2 colocalized with autophagic marker, LC3, and release to extracellular region upon the autophagy activation. In the rat disc IDD model, we determined the role of AIM2 during the progression of IDD in vivo. Therefore, this study provides a novel understanding of DNA damage and autophagy activity in NP cells and offers new therapeutic target for IDD.



MATERIALS AND METHODS


Tissues Collection

Human NP tissues were collected from patients who underwent disc fusion surgery due to lumbar fracture or degenerative disc diseases. Informed consent was obtained from all patients who donated samples. The degree of IDD was assessed based on the Pfirrmann MRI-grade system (Liao et al., 2019b). Discs categorized as Pfirrmann grade I or II was considered as non-degenerative discs, while those categorized as grade III, IV, or V was degenerative discs. For the histological analysis, NP tissues were fixed in 4% formaldehyde and embedded in paraffin. Some samples were directly frozen in liquid nitrogen for protein and RNA extraction. All experimental protocols were approved by the Ethics Committee of Tongji Medical College, Huazhong University of Science and Technology.



Cell Culture

NP cells were isolated using a previously described protocol (Wu et al., 2019). Briefly, NP tissues were cut into pieces and enzymatically digested in 0.2% type II collagenase for 4 h. After washed with PBS and centrifuged, these isolated cells were cultured in Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F-12) containing 15% fetal bovine serum in a 5% CO2 incubator. The culture medium was replaced twice per week. NP cells from the third passage were used for the subsequent experiments. For starvation culture, NP cells were cultured in Hanks Balanced Salt Solution (HBSS) for 4 h and then the autophagy levels were detected.



Western Blot

Cells were collected and lysed in RIPA lysis buffer (Beyotime, China) with a protease inhibitor PMSF (Beyotime, China). The proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto a PVDF membrane. The membranes were blocked with 5% milk for 1 h. The primary antibodies used were as follows: AIM2 (Proteintech, 1:2,000), ASC (Proteintech, 1:2,000), Caspase-1 (CST, 1:1,000), LC3 (Abcam, 1:1,000), GRASP55 (Proteintech, 1:1,000), GRASP65 (Proteintech, 1:1,000), CD63 (Proteintech, 1:500), TSG101 (Proteintech, 1:1,000), and Calnexin (Proteintech, 1:5,000). Horseradish peroxidase-conjugated secondary antibodies (Boster, China) were incubated with bands for 1 h, and bands were visualized and detected using the enhanced chemiluminescence system. The band intensity values of proteins were calculated using ImageJ 1.52a software (National Institutes of Health, United States).



Enzyme-Linked Immunosorbent Assay

The cell supernatant was collected and centrifuged, then measured the level of IL-1β, IL-18, and AIM2 using the corresponding ELISA kit (Elabscience Biotechnology, China) according to the manufacturer’s protocol. The experiment was performed in triplicate.



TUNEL Staining

TUNEL staining was used to assess cell apoptosis. Cells were fixed in 4% paraformaldehyde for 30 min and treated with 0.5% TritonX-100 for 10 min. After washed with PBS, cells were incubated with the TUNEL staining kit (Beyotime, China) according to the manufacturer’s instructions. Images were captured using a fluorescence microscope (Olympus, BX53, United States).



Immunofluorescence Staining

NP cells were fixed with 4% paraformaldehyde and permeabilized with 0.2% Triton X-100 for 30 min. The cells in the slides were washed in PBS twice, and blocked with 2% goat serum for 1 h, and then incubated with primary antibodies. Nuclei were stained for 5 min with DAPI (Beyotime). Immunofluorescent images were captured using a fluorescence microscope (Olympus, BX53, United States) or a confocal microscope (Nikon A1R SI Confocal, Japan).



Immunoprecipitation

Cell lysates were treated with 50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, and 1% NP-40 with protease inhibitor cocktail (Beyotime). The sample (500 μg) was added with 10 μL of the following antibodies: AIM2 (Abcam), or LC3 (Abcam), and was incubated overnight at 4°C with magnetic beads. Then, the magnetic separated immunoprecipitates were conducted with Western blot assays.



Transmission Electron Microscopy

NP cells were fixed in 2.5% glutaraldehyde overnight, post-fixed in 2% osmium tetroxide for 1 h and stained with 2% uranyl acetate for 1 h. After dehydration in an ascending series of acetone, the samples were embedded into Araldite. Samples were cut into ultrathin sections, and then stained with toluidine blue. Finally, sections were observed using a transmission electron microscope (TEM) (Tecnai G2 20 TWIN, FEI, United States). Randomized fields were captured and the autophagosomes in the field were counted.



Knockdown Experiments

Knockdown of ATG5, AIM2, or GRASP55 in NP cells was achieved by transfection with small interfering RNA (siRNA). Target siRNA and scrambled siRNA (si-scr) were synthesized by RiboBio company (Guangzhou, China): ATG5-siRNA sequence 5′-GCUAUAUCAGGAUGAGAUATT-3′, AIM2-siRNA sequence 5′-GUCCCGCUGAACAUUAUCATT-3′, GRASP55-siRNA sequence 5′-GGUGGAAUCAAAUUCUC CUTT-3′. NP cells were transfected with Lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocol. Transgenic efficacy in NP cells was detected using quantitative real-time polymerase chain reaction at 48 h after transfection.



Quantitative Real-Time Polymerase Chain Reaction

RNA extracted with Trizol reagent (Invitrogen) from NP cells, was reverse-transcribed and amplified by Quantitative real-time polymerase chain reaction (qRT-PCR) according to the standard protocols. The qRT-PCR was performed to quantify mRNA expression levels. The primer sequences were listed below: Homo ATG5, forward 5′-AAAGATGTGCTT CGAGATGTGTGGT-3′, reverse 5′-GCAAATAGTATGGTTC TGCTTCCCT-3′; Homo AIM2, forward 5′-CAGAAGGT AACAGAAAAGAAGA-3′, reverse 5′-ACAGTGTGAAGAATG TAAGTC-3′; Homo GRASP55, forward 5′-CTGCGAGAGA CCTCAGTCACACCAA-3′, reverse 5′-ACCTCCAGCACAT GCCAAACATTTT-3′; Homo GAPDH, forward 5′-TCAAGAA GGTGGTGAAGCAGG-3′, reverse 5′-TCAAAGGTGGAGGAG TGGGT-3′. GAPDH was used for normalization. All data were tested in triplicate.



Animal Experiments

Animal experiments were performed following protocols approved by the Animal Experimentation Committee of Huazhong University of Science and Technology. Sprague-Dawley (SD, male, 3 months) rats were purchased from the Experimental Animal Center of Tongji Medical College, Huazhong University of Science and Technology. A model of IDD was established by needle puncture (Chen et al., 2016; Liao et al., 2019b; Zheng et al., 2019). After the rats were anesthetized with 2% (w/v) pentobarbital (40 mg/kg), the IVD of rats (Co 8/9) was punctured with a 20-gauge needle from the dorsal side. Some rats remained intact as the control group. These rats were randomly divided into three groups and injected with: PBS (2 μL), in vivo AIM2-siRNA (2 μL, 100 μM) or scrambled siRNA (2 μL, 100 μM) using a 33-gauge needle (Hamilton, Benade, Switzerland). The injection procedure was repeated weekly for 2 months.



Histologic Analysis

Animals were euthanized and the discs were harvested. The specimens were decalcified and fixed in formaldehyde, dehydrated and embedded in paraffin. The slides of each disc were stained with hematoxylin-eosin (HE) staining, safranin O (S-O) staining, and Sirius red (S-R) staining. The histological grades were evaluated based on histological staining as previously described (Liao et al., 2019a). For immunochemistry, the specimen sections were deparaffinized and rehydrated, and then microwaved in sodium citrate for 15 min. Next, 3% hydrogen peroxide was used to block endogenous peroxidase activity for 10 min, and 5% BSA was used to block non-specific binding sites for 30 min. The sections were then incubated with primary antibodies overnight at 4°C. Finally, the sections were incubated with a secondary antibody and counterstained with hematoxylin.



Statistical Analysis

Data are presented as mean ± standard deviation (SD). Student’s t-test and one-way or two-way analysis of variance (ANOVA) with Tukey’s post hoc test were used to assess the changes in the effects for groups. Statistical significance was set at P < 0.05 (∗P or #P < 0.05; ∗∗P or ##P < 0.01; ∗∗∗P or ###P < 0.001; P > 0.05, ns, no significant difference) and calculated using GraphPad Prism 8 software (La Jolla, CA, United States).



RESULTS


Expression of AIM2 and DNA Damage Marker During Intervertebral Disc Degeneration

We measured the transcriptional level of AIM2 in non-degenerative and degenerative NP tissues (Figure 1A). The correlation analysis between AIM2 level and disc degenerative degree indicated the increased AIM2 expression in IDD tissues (Figure 1B). We also assessed the protein levels of AIM2 in NP tissues (Figure 1C). The expression of AIM2 and γ-H2AX, an identified marker of DNA damage that accumulates in cells containing DNA damage (Lammert et al., 2020) was measured in non-degenerative and degenerative tissues via immunochemistry (Figure 1D). Higher levels of AIM2 and γ-H2AX were detected in the IDD tissues compared with the non-degenerative tissues (Figure 1E). These results indicated that expression level of AIM2 and degree of cellular DNA damage were elevated during IDD.
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FIGURE 1. AIM2 expression in human intervertebral disc tissues. (A) AIM2 mRNA level measured by qRT-PCR in non-degenerative NP tissues (NDC) and degenerative NP tissues (IDD), n = 15. (B) Correlation analysis between the mean AIM2 mRNA level and Pfirrmann grades of NDC and IDD tissues. (C) Represent western blot image and quantification of AIM2 protein expression in human NDC and IDD tissues. GAPDH was used as an internal control. (D) HE staining and immunochemistry staining of γ-H2AX and AIM2 in human NDC and IDD tissues. (E) Quantification rate of AIM2 and γ-H2AX positive cells. Data were presented as the means ± SD, n = 3. 0.05, **P < 0.01, ***P < 0.001 vs. NDC group.




AIM2 Inflammasome Contributes to Cellular DNA Damage in H2O2-Induced NP Cells

Hydrogen peroxide (H2O2) could initiate a DNA damage response (Benkafadar et al., 2019), and was used to create a DNA damage model of NP cells. The expression levels of AIM2, the apoptosis associated speck-like protein containing a CARD (ASC), and cleaved caspase-1 were increased significantly in H2O2-treated NP cells (Figure 2A). Besides, the secretion of inflammatory cytokines IL-1β and IL-18 was also increased (Figure 2B). TUNEL analysis revealed an increased apoptotic rate of NP cells in the H2O2 group (Figures 2C,D). Immunostaining of γ-H2AX showed an accumulation in the cell nuclei (Figure 2E). Moreover, siRNA transfection was used to decrease the AIM2 expression, resulting in decreased level of ASC and cleaved caspase-1, and decreased secretion of IL-1β and IL-18 (Figures 2F,G). The knockdown of AIM2 inhibited NP cell apoptosis in the H2O2 group (Figures 2H,I). Besides, immunostaining of γ-H2AX revealed that H2O2-induced cellular DNA damage was ameliorated in the AIM2 knockdown group (Figure 2J). These results demonstrated that AIM2 plays a role in cellular DNA damage and AIM2 knockdown attenuates H2O2-induced DNA damage in vitro.
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FIGURE 2. Silencing of AIM2 ameliorates DNA damage in NP cells in vitro. (A) Protein levels and quantification of AIM2, ASC, pro-caspase-1, and cleaved caspase-1 in H2O2-treated (200 μM, 8 h) NP cells. NP cells in the control group were treated with equivalent solvent. (B) Extracellular level of IL-1β and IL-18 measured by ELISA. (C,D) TUNEL analysis of H2O2-treated NP cells (C) and corresponding quantification of cell apoptosis (D). (E) Immunostaining of γ-H2AX in H2O2-treated NP cells. Data were presented as the means ± SD. *P < 0.05, **P < 0.01, ***P < 0.001 vs. control group. (F) Protein levels and quantification of AIM2, ASC, pro-caspase-1, and cleaved caspase-1 in H2O2-treated NP cells co-treated with si-AIM2 or si-scr. (G) Extracellular level of IL-1β and IL-18 measured by ELISA. (H,I) Represent images of TUNEL analysis (H) and evaluation of cell apoptotic rates (I). (J) Immunostaining of γ-H2AX in H2O2-treated NP cells co-treated with si-AIM2 or si-scr. *P < 0.05, **P < 0.01, ***P < 0.001 vs. control-si-scr group, n = 3.




Autophagy Regulates AIM2 Inflammasome Activation and Promotes AIM2 Secretion

Autophagy is closely related with inflammation response and cell apoptosis (Li et al., 2018). Here, we investigated the role of autophagy in AIM2 inflammasome activation. Starvation or rapamycin treatment induced autophagy activation and decreased the expression level of AIM2 in NP cells (Figure 3A). The morphology and number of autophagosomes in H2O2-treated NP cells was shown in transmission electron microscope (TEM) images (Figures 3B,C). Starvation or rapamycin treatment led to a decreased apoptotic rate (Figures 3D,E). Besides, γ-H2AX staining revealed that autophagy induction ameliorated H2O2-induced DNA damage (Figures 3F,G). Interestingly, the extracellular AIM2 levels increased upon autophagy activation (Figure 3H).
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FIGURE 3. Induction of autophagy reduces DNA damage and NP cell apoptosis, and facilitates AIM2 secretion. (A) Protein levels and quantification of AIM2, LC3 and p62 in H2O2-treated NP cells pre-treated with starvation (8 h) or rapamycin (10 μM, 8 h). (B,C) TEM images of NP cells indicated the number and morphology of autophagosomes (red arrows), and quantification of autophagosomes numbers (C). (D,E) TUNEL images of NP cells in different groups (D) and corresponding quantification of cell apoptosis (E). (F,G) Immunostaining of γ-H2AX (F) and mean fluorescence intensity of NP cells in different groups (G). (H) Secretion of AIM2 measured by ELISA analysis. Data were presented as the means ± SD, n = 3. *P < 0.05, **P < 0.01, ***P < 0.001 vs. control group; #P < 0.05, ##P < 0.01 vs. H2O2 group; ns, P > 0.05, no significant difference.


On the other hand, the protein levels of AIM2 were increased significantly in NP cells treated with si-ATG5 or 3-MA (an autophagy inhibitor) (Figure 4A). More irregular vesicles and fewer autophagosomes were found in the si-ATG5 or 3-MA group than in the control group (Figures 4B,C). Inhibition of autophagy also promoted H2O2-induced NP cell apoptosis (Figures 4D,E). Immunofluorescence analysis revealed that autophagy inhibition facilitated the accumulation of γ-H2AX in the cell nuclei (Figures 4F,G). Accordingly, we found the extracellular level of AIM2 decreased in the si-ATG5 or 3-MA group (Figure 4H). These results indicated that autophagy regulates AIM2 inflammasome activation and plays a role in the secretion of AIM2.
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FIGURE 4. Inhibition of autophagy aggravates DNA damage and NP cell apoptosis, and decreases AIM2 secretion. (A) Protein levels and quantification of AIM2, LC3, and p62 in H2O2-treated NP cells co-treated with si-scr, si-ATG5, or 3-MA (20 mM, 8 h). (B,C) TEM images of NP cells indicated the number of autophagosomes (red arrows) and irregular intracellular vesicles (blue arrows), and quantification of autophagosomes numbers (C). (D,E) TUNEL images of NP cells in different groups (D) and corresponding quantification of cell apoptosis (E). (F,G) Immunostaining of γ-H2AX (F) and mean fluorescence intensity of NP cells in different groups (G). (H) Extracellular levels of AIM2 measured by ELISA analysis. Data were presented as the means ± SD, n = 3. *P < 0.05, **P < 0.01, ***P < 0.001 vs. control group; #P < 0.05, ##P < 0.01 vs. H2O2-si-scr group; ns, P > 0.05, no significant difference.




AIM2 Secretion Is Unconventional Pathway and Independent of Extracellular Vesicles

To further confirm the role of autophagy in AIM2 secretion, NP cells were treated with 3-MA or Brefeldin A (an ER-Golgi transport inhibitor). The protein level of cellular AIM2 was increased in the 3-MA group (Figure 5A). Secretion of AIM2 was decreased in the 3-MA group while it did not have a significant change in the Brefeldin A group, indicating that AIM2 was secreted via an unconventional pathway (Figure 5B). Immunoprecipitation analysis of autophagic protein LC3 showed the integration between cellular AIM2 and LC3 (Figure 5C). Besides, we observed an overlap between LC3 positive puncta and AIM2 in H2O2-treated NP cells (Figures 5D,E). To further validate the secretory pathway of AIM2, we separated different secretome fractions from the NP cell culture medium, including large and small extracellular vesicles (Figure 5F). Western blot analysis showed that AIM2 was not detected in the extracellular vesicle fractions (Figure 5G). These results revealed that AIM2 secretion depends on the autophagy-based unconventional secretory pathway and its release is independent of extracellular vesicles.
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FIGURE 5. Autophagic secretory of AIM2 is independent of extracellular vesicles. (A) Protein levels and quantification of AIM2 in H2O2-treated NP cells co-treated with Brefeldin A (1 μg/ml, 8 h) or 3-MA. (B) Secretion of AIM2 measured by ELISA analysis in different groups. (C) Immunoprecipitation for LC3 was conducted to detect the integration of AIM2. IgG was as a negative control. WCL, whole cell lysate. (D) Confocal images of AIM2 (green) and LC3B (red) and fluorescence intensity results. (E) Overlap coefficient based on immunofluorescence images showed the colocalization between AIM2 and LC3B. Data were presented as the means ± SD, n = 3. **P < 0.01, ***P < 0.001 vs. control group; #P < 0.05, ##P < 0.01, ###P < 0.001 vs. H2O2 group. (F) Workflow showed the isolation protocols and definition of extracellular vesicle fractions. LEVs, large extracellular vesicles; SEVs, small extracellular vesicles; CM, culture medium without extracellular vesicles. (G) Western blot analysis of extracellular vesicle markers and AIM2 in the different fractions. Annexin A1, a marker of LEVs; TSG101, a marker of SEVs; WCL, whole cell lysate.




GRASP55 Mediates AIM2 Unconventional Secretion by Modulating Autophagy Activity

Several studies have reported the critical role of Golgi re-assembly and stacking proteins in the autophagic secretory pathway, including GRASP55 and GRASP65 (Dupont et al., 2011; Nuchel et al., 2018). We then investigated whether GRASP55 or GRASP65 were involved in AIM2 secretion. The immunoprecipitation of AIM2 detected the integration with GRASP55 and not GRASP65 (Figure 6A). Besides, we observed that AIM2 colocalized with GRASP55 and the overlap coefficient was increased in H2O2-treated NP cells (Figures 6B,C). Knockdown of GRASP55 promoted the accumulation of cytoplasmic AIM2 (Figures 6D,E). The extracellular level of AIM2 was decreased significantly in the si-GRASP55 group (Figure 6F). Moreover, the level of LC3-II was reduced in the si-GRASP55 group, indicating a decreased autophagic activity (Figures 6G,H). TEM images revealed several irregular vesicles and few autophagosomes in the si-GRASP55 group (Figure 6I). These results demonstrated that GRASP55 is indispensable for AIM2 secretion and regulates the secretory pathway via modulating autophagy activity.
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FIGURE 6. GRASP55 regulates AIM2 unconventional secretion and autophagy activity. (A) Immunoprecipitation for AIM2 was conducted to detect the integration of GRASP55 or GRASP65. (B,C) Confocal images of AIM2 (green) and GRASP55 (red) (B) and overlap coefficient (C) in H2O2-treated NP cells. (D) Knockdown of GRASP55 in NP cells and corresponding western blot images of GRASP55 and AIM2. (E) Quantification of AIM2 and GRASP55 in H2O2-treated NP cells with si-GRASP55 or si-scr. (F) Extracellular levels of AIM2 measured by ELISA analysis. (G,H) Protein levels (G) and quantification (H) of GRASP55, LC3 and p62 in H2O2-treated NP cells with si-GRASP55 or si-scr. Data were presented as the means ± SD, n = 3. *P < 0.05, **P < 0.01, ***P < 0.001 vs. control group. (I) TEM images of NP cells showed the autophagosomes (red arrows) and other irregular intracellular vesicles (blue arrows).




Knockdown of AIM2 Ameliorates Rat Disc Degeneration Progression in vivo

To further investigate the role of AIM2 in IDD, we constructed a rat disc model of IDD. Histological results showed that the nucleus pulposus was nearly diminished in the IDD and the si-scr group (Figure 7A). Besides, increased proteoglycans and fewer fibrosus tissues were detected in the si-AIM2 group than in the IDD group via safranin O and Sirius red staining, indicating a less degenerative profile (Figure 7A). Histological grades based on histological staining revealed that knockdown of AIM2 in vivo delays the progression of IDD (Figure 7B). Immunochemistry analysis showed that the rate of γ-H2AX positive staining cells was significantly decreased in the si-AIM2 group compared to the IDD group (Figures 7C,D). These results indicated that knockdown of AIM2 ameliorates cellular DNA damage and retards the progression of IDD in vivo.
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FIGURE 7. Inhibition of AIM2 retards IDD progression in vivo. (A) Histological staining, including hematoxylin-eosin (HE), safranin O (S-O), and Sirius red (S-R) staining, showed the morphology of rat disc tissues. The IDD, si-AIM2, and si-scr group were conducted with needle puncture. (B) Histological grades to evaluate the degree of disc degeneration in different group. (C,D) Immunochemistry results of γ-H2AX in rat dis tissues (C) and quantification of cγ-H2AX-positive cell rate (D). Data were presented as the means ± SD, n = 6. **P < 0.01, ***P < 0.001 vs. control group; ##P < 0.01 vs. IDD group.




DISCUSSION

Cellular DNA damage and inflammasome activation contribute greatly to the progression of IDD (Nasto et al., 2014; Cazzanelli and Wuertz-Kozak, 2020). The AIM2 inflammasome is a DNA damage sensor that activates the cleavage of caspase-1 and the release of inflammatory cytokines, resulting in cell apoptosis or pyroptosis (Sharma et al., 2019). Here, we evaluated the relationship between AIM2 inflammasome expression and IDD in human disc tissue samples. AIM2 knockdown significantly ameliorated cellular DNA damage and cell death induced by H2O2 in vitro. Especially, we investigated the secretory mechanism of AIM2 in adaption to cellular DNA damage (Figure 8). AIM2 was found to be colocalized with LC3 upon autophagy activation and cooperated with GRASP55, which assisted the extracellularly release of AIM2. In the in vivo experiments, AIM2 knockdown delayed disc degeneration, confirming the detrimental role of AIM2 in the progression of IDD.
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FIGURE 8. Schematic model illustrates the autophagic secretory pathway of AIM2 in NP cells. Oxidative stress-induced DNA damage activates the AIM2 inflammasome and elicits the downstream inflammation cascade. During this process, autophagy activation ameliorates DNA damage via an unconventional secretion of AIM2. AIM2, Absent in melanoma 2; ASC, Apoptosis-associated speck-like protein containing a CARD; NP, Nucleus pulposus; ROS, Reactive oxygen species; IL-1β, Interleukin-1b; IL-18, Interleukin 18; GRASP55, Golgi re-assembly and stacking protein 55.


The major components of intervertebral disc (IVD) are water and ECM proteins, such as proteoglycans and collagens (Tendulkar et al., 2019). NP cells are distributed in the central of IVD and surrounded by ECM components. Several studies have indicated that damaged or aging NP cells accelerates the degradation of ECM components, and diminishing of resident cells decreased the synthesis of proteoglycans and collagens (Dimozi et al., 2015; Wang et al., 2016). Oxidative stress and DNA damage contribute significantly to NP cell injury, which plays a vital role in the progression of IDD (Nasto et al., 2014; Feng et al., 2017). Oxidative stress causes irreversible DNA damage, which is closely related to mitochondrial dysfunction and cell senescence (Hyttinen et al., 2017). In addition, DNA damage can induce the activation of the AIM2 inflammasome, resulting in a pro-inflammatory phenotype, or programmed cell death, such as apoptosis and pyroptosis (Benkafadar et al., 2019; Sharma et al., 2019). Both disordered inflammation and programmed cell death are critical culprits in IDD. H2O2-induced DNA damage activates the AIM2 inflammasome and elicits inflammatory cascades, ultimately promoting the degeneration of NP cells. Knockdown of AIM2 significantly reduces the production of inflammatory cytokines and ameliorates NP cell death.

Autophagy, especially macroautophagy, has been implicated in various cellular physiological and pathological processes (Mizushima et al., 2010). Several studies have indicated that autophagy activation in NP cells attenuates cell apoptosis (Li et al., 2018; Tang et al., 2019); however, the effects of autophagy are complicated, as higher or lower levels may induce a detrimental effect on different types of cells. Although well understood as a degradative way, autophagy also promotes the transport and secretion of specific substrates (Jiang et al., 2013). Some proteins are secreted through a secretory autophagy route, which is mediated by secretory autophagosome trafficking (Ponpuak et al., 2015). A previous study revealed that extracellular delivery of IL-1β depends on the autophagy-based unconventional secretory pathway rather than the typical endoplasmic reticulum-Golgi pathway (Dupont et al., 2011). Some cytokines, immune mediators, and ECM molecules also rely on the autophagy-based unconventional secretory pathway (Thorburn et al., 2008; Endo et al., 2017; Nuchel et al., 2018). Unlike degrative autophagy aimed at protein degradation and recycling, secretory autophagy could eliminate intracellular harmful proteins or aggregates by selective recruitment and trafficking (Urano et al., 2018). A research found that level of extracellular AIM2 was increased in a disease model, while the secretory mechanism of AIM2 was not investigated yet (Yuan et al., 2020). In our study, it demonstrated that AIM2 secretion was closely related with secretory autophagy. We found that intracellular level of AIM2 decreased while extracellular AIM2 increased upon autophagy activation. The autophagy-based unconventional secretory pathway may serve as a protective mechanism for cells adapting AIM2-activatied inflammatory cascades. However, it was also reasonable to assume the degradative mechanism of AIM2 upon autophagy activation, which may be another adjustive mechanism of NP cells.

Autophagy-dependent secretion is a kind of unconventional protein secretion (UPS). Diverse types of intracellular membrane structures are involved in UPS, and are responsible for cargo recruitment and transportation, including autophagosomes, late endosomes, and lysosomes (New and Thomas, 2019). Golgi Re-Assembly and Stacking Proteins (GRASPs) which have been implicated in the unconventional secretion of IL-1β and TGF-β, are important participants in secretory autophagy, mediating the protein trafficking (Dupont et al., 2011; Giuliani et al., 2011; Nuchel et al., 2018). Especially, GRASPs are required for stress-induced unconventional secretion, such as under conditions of inflammation, starvation, or mechanical stress (Duran et al., 2010; Giuliani et al., 2011; Kim et al., 2016). Before the fusion with plasma membrane, autophagosomes loaded with specific proteins are decorated by some Soluble NSF Attachment Protein Receptors (SNARE). Mediated by a SNARE complex, the secretory autophagosomes mix with the plasma membrane and facilitate the protein secretion (Cruz-Garcia et al., 2018; New and Thomas, 2019; Wang et al., 2020). Our results showed that AIM2 colocalized with LC3-positive vesicles and the secretion of AIM2 was increased upon autophagy activation. The GRASP protein was also colocalized with AIM2, and was required for AIM2 secretion. Besides autophagosomes, exosomes and other extracellular vesicles were also possibly involved in AIM2 secretion. However, our results found that AIM2 was not detected in the extracellular vesicles fraction. The activation of autophagy could reduce intracellular AIM2 levels by promoting secretory autophagy, and this discovery may serve as a potential therapeutic target for inflammation-related IDD.

Our research innovatively illustrates the role of the AIM2 inflammasome in IDD, and reveals the effect of AIM2 inflammasome activation on the progression of IDD. Oxidative stress-induced DNA damage activates the AIM2 inflammasome and elicits the inflammatory cascades. Our study also demonstrates that autophagy protects against the activation of the AIM2 inflammasome via an unconventional secretory pathway. However, there still are several limitations in our research. Firstly, the knockdown of AIM2 was realized by siRNA while a gene knock-out technique may provide more reliable results. Secondly, the regulatory mechanism of autophagy on AIM2 may not be restricted to secretory autophagy. The involved mechanisms may be diverse and multifaceted. Thirdly, in addition to GRASP proteins, many proteins and signaling pathways were participated in unconventional secretion, which may also play a role in this process. Hence, further researches on the role of autophagy in the AIM2 inflammasome activation are required, especially in the field of musculoskeletal degenerative diseases.

In conclusion, the present study represents the first demonstration of the role of AIM2 inflammasome in IDD. We investigated the detrimental role of AIM2 in mediating DNA damage-associated NP cell inflammation and apoptosis. During IDD progression, autophagy regulates the secretion of AIM2 and serves as a protective mechanism. Moreover, knockdown of AIM2 ameliorates cellular DNA damage and disc degeneration in vitro and in vivo. Thus, our study illustrates the relationship between the AIM2 inflammasome and IDD, which may provide a potential therapeutical target for IDD treatment.
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Transmembrane proteins are involved in many essential cell processes such as signal transduction, transport, and protein trafficking, and hence many are implicated in different disease pathways. Further, as the structure and function of proteins are correlated, investigating a group of proteins with the same tertiary structure, i.e., the same number of transmembrane regions, may give understanding about their functional roles and potential as therapeutic targets. This analysis investigates the previously unstudied group of proteins with five transmembrane-spanning regions (5TM). More than half of the 58 proteins identified with the 5TM architecture belong to 12 families with two or more members. Interestingly, more than half the proteins in the dataset function in localization activities through movement or tethering of cell components and more than one-third are involved in transport activities, particularly in the mitochondria. Surprisingly, no receptor activity was identified within this dataset in large contrast with other TM groups. The three major 5TM families, which comprise nearly 30% of the dataset, include the tweety family, the sideroflexin family and the Yip1 domain (YIPF) family. We also analyzed the evolutionary origin of these three families. The YIPF family appears to be the most ancient with presence in bacteria and archaea, while the tweety and sideroflexin families are first found in eukaryotes. We found no evidence of common decent for these three families. About 30% of the 5TM proteins have prominent expression in the brain, liver, or testis. Importantly, 60% of these proteins are identified as cancer prognostic markers, where they are associated with clinical outcomes of various tumor types. Nearly 10% of the 5TMs are still not fully characterized and further investigation of their functional activities and expression is warranted. This study provides the first comprehensive analysis of proteins with the 5TM architecture, providing details of their unique characteristics.
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INTRODUCTION

Approximately 25–30% of the ∼20,000 protein coding genes in Homo sapiens code for alpha-helical transmembrane proteins (Almén et al., 2009; Fagerberg et al., 2010; Attwood et al., 2017). The ∼5,500 transmembrane proteins have amino (N)- or carboxyl (C)-terminal domains that reside in either the cytoplasmic environment or non-cytoplasmic/lumen/extra-cellular environment and contribute to the functional activities of the protein. Transmembrane (TM) proteins are involved in many crucial cell processes including receptor and signaling transduction pathways, transport of ions and molecules across impermeable membranes, protein targeting and intracellular transport, as well as membrane trafficking (Müller et al., 2008). Additionally, subcellular compartments within cells are maintained by membranes and organelle-specific activities are based on the distribution and function of different transmembrane proteins. For example, vesicle formation and trafficking at the Golgi apparatus, protein targeting and trafficking at the endoplasmic reticulum (ER), or receptor signaling at the plasma membrane. Further, the development of organelles has been aided by the evolutionary retargeting of membrane proteins to shared or different subcellular compartments, and the ultimate protein destinations can vary depending on physiological conditions, cell types, developmental expression, and lineages (Gabaldón and Pittis, 2015). Moreover, since membrane proteins are involved in essential cellular pathways, they are often recognized in the pathophysiology of many diseases and are major targets for pharmaceutical agents, with more than 60% of drug targets being membrane proteins (Overington et al., 2006). Hence, investigating the topology, localization, and expression of homologous protein families can provide insight in their different functional activities and identify potential candidates for further studies on drug targets.

The membrane proteome can be categorized based on the number of alpha-helices that span the membrane, with several studies pointing to a correlation between the tertiary structure and functional activities. For example, many receptors are members of the largest human protein family—the 7 TM G protein-coupled receptors (GPCR) that are key drug targets with important roles in mediation of various signals (Lagerström and Schiöth, 2008). Transporters are another well-researched group and tend to have six or more transmembrane helices, such as the solute carriers that contain 10–14 TM regions (Schlessinger et al., 2013) or the major facilitator superfamily that contains 12 TMs (Reddy et al., 2012). Our previous studies have indicated that the group of proteins that contain five transmembrane helices (5TM) include diverse and important families, yet an in-depth analysis of this small class of proteins has not been published.

In this study, we perform comprehensive bioinformatic analyses to identify and characterize the 5TM proteins in the human genome. We collate information on enzyme and transporter classifications, topology, localization, expression, and disease associations to describe the predominant functional activities and possible investigative drug targets with this group of proteins. Further, we examine the major 5TM families and present a new phylogenetic analysis of the sideroflexin family.



ANALYSIS RESULTS

The 5TM dataset consists of an interesting mix of 58 proteins; ∼60% (35 proteins) are members of 12 families that contain two or more proteins that are predicted to have five transmembrane regions while the other 40% are singlets. Further, 10 of the families (31 proteins) and nine of the singlets appear to be unique protein families with the 5TM architecture without homologues in humans. The inference that the 5TM group contains unrelated protein families comes from literature and database sources as we did not perform phylogenetic analysis on the entire 5TM group (only the sideroflexin family). The other two families and 14 singlets contain Pfam domains or belong to protein families that contain additional members that do not have five membrane regions predicted. Thus the majority of this compact dataset is comprised of complete small families and unique single proteins that contain five membrane-spanning regions, as opposed to say the 7 TM architecture that is primarily comprised of the large homologous GPCR superfamily with 800+ proteins.

The original Homo sapiens protein sequences file contained 33,420 total entries including isoforms. The sequences were pre-processed and any predicted signal peptides were removed and the sequences were then evaluated with multiple resources that predict transmembrane alpha-helices. Ambiguous entries, incorrectly predicted proteins, and isoforms were removed while some proteins were manually added through literature research and additional transmembrane prediction resources. The 5TM group tends to be small, with a recent prediction of 93 transmembrane proteins (Dobson et al., 2015), which is comparable to our initial assessment of 106 proteins after removing isoforms of sequences and before manual curation. Our dataset lends toward a conservative estimate of the 5TM group as we sought agreement with multiple transmembrane prediction resources (Fagerberg et al., 2010; Dobson et al., 2015) regarding the accuracy of individual and protein family predictions, particularly if the 3D structure (Berman et al., 2000) has not yet been experimentally determined. While homologous protein families are generally assumed to share similar structures, there is not always prediction agreement on the transmembrane regions in families and we chose the best estimate by comparing different resources. Functional annotations and localization information were compiled through Gene Ontology (GO) descriptions (Binns et al., 2009; The Gene Ontology Consortium., 2019), the Human Protein Atlas (Thul et al., 2017), and the PANTHER classification database (Mi et al., 2019). See Methods for details and Supplementary Figure 1 for an overview of the bioinformatic tools used in the analysis.


Classification

The dataset is classified into three main functional groups: enzymes, transporters, and proteins that engage in varied functional activities. However, nearly 10% of the proteins are still not fully characterized and their function remains obscure, such as transmembrane protein with metallophosphoesterase domain (TMPPE), solute carrier family 66 member 3 (SLC66A3), and transmembrane protein 41A (TMEM41A).

The enzymes contain 17 proteins with Enzyme Commission (EC) identifiers plus another three proteins are identified with enzymatic activity or members of enzyme families that do not have an associated EC number (Table 1). The enzymes include one protein acting as an oxidoreductase (EC:1); seven acting as transferases (EC:2) including five acyltransferases and two phosphotransferases; seven hydrolases (EC:3) with the majority of them esterases and one dolichyldiphosphatase; and also one lyase (EC:4) and one isomerase (EC:5).


TABLE 1. Proteins involved in enzymatic activities.

[image: Table 1]The transporters include 16 proteins that have Transporter Classification Database numbers (TCDB) and also an additional nine proteins that function in transport activities but do not have an associated TCDB number (Table 2). The transporter class includes four channels and pores (1.-.-) with three represented by the anion channel tweety family; five electrochemical potential-driven transporters (2.A.-) including three members of the sideroflexin (SFXN) family and the two members of the membrane protein insertase family; one protein is identified as an auxiliary transport protein (8.A.-); and six transporters are involved in incompletely characterized transport systems (9.A/B.-) including three members of the Yip1 domain family (YIPF). One acyltransferase enzyme also acts as a primary active transporter (3.A.-) from the ER retrotranslocon family and one esterase is identified in an incompletely characterized transport system (9B); however, both are labeled as enzymes to prevent redundancy. Additionally, one transporter, TSPO, has also been identified previously as the peripheral benzodiazepine receptor but subsequent studies showed that it is expressed throughout the body and its primary function appears to be involved in cholesterol transport. This was the only protein identified as a receptor. Transporters described with a TCDB identifier may be under-represented as recent work has been published on the sideroflexin (Kory et al., 2018; Rivell et al., 2019) as well as YIPF (Shaik et al., 2019) family members.


TABLE 2. Proteins involved in transport activities.

[image: Table 2]The third major class is engaged in varied functional activities which includes 25 proteins (Table 3). This class includes two complete families that contain the 5TM architecture: Dual oxidase maturation factor 1 and 2 (DUOXA) and also the Prominin-1 and –2 (PROM) families. Four single proteins with 5TM regions were identified that do not have any homologous family members in humans: TEX261, TMEM79, UNC50, and the fusion protein CHRNA7-FAM7A. And five more single proteins were identified that are members of families that contain proteins with varying number of TM regions predicted.


TABLE 3. Proteins with the 5TM architecture that perform varied functional activities.
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Topology

We analyzed if there were any associations between functional activities and membrane topology, meaning if the amino (N)-terminal laid in the cytoplasmic environment (also known as in) and hence the carboxylic (C)- terminal in the lumen or non-cytoplasmic region, or if the N-terminal was found in the non-cytoplasmic region (out) with the C-terminal in the cytoplasmic environment (Figure 1). The results from TOPCONS2 and experimental evidence yielded 30 proteins with the N-terminal in the cytoplasmic region and 28 proteins with the N-terminal in the lumen or non-cytoplasmic region. Of the 17 enzymes, only the six carboxylic ester hydrolases have an N-terminal within the cytoplasmic environment with the C-terminal inside the lumen. The 16 transporters have 11 N-terminals in the cytoplasmic environment and five N-terminals in the lumen region. The tweety, sideroflexin, and YIPF families, whether identified with a TCDB number or not, have their N-terminals in the cytoplasmic region while the membrane protein insertase family have N-terminals in the non-cytoplasmic environment. The 25 proteins with varied functions have a relatively even split with 13 N-terminals in (including eight from the aforementioned sideroflexin and YIPF members) and 12 N-terminals out.
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FIGURE 1. The five transmembrane architecture. (A) The basic topology of the 5TM dataset. More than half the proteins in the dataset have the amino (N)-terminal region in the cytoplasmic environment and the carboxyl (C)-terminal in the luminal region. Many of the proteins are expected to contain targeting signals embedded in the first transmembrane region along with possibly amino acid residues in the N-terminus. (B) The domain structures and important residue modifications affecting localizations of the three major 5TM families. The description of the tweety family includes estimates of four possible glycosylation sites in purple; the important pore-forming amino acid (R165) in TTYH1 indicated in yellow (Han et al., 2019); and the Pfam tweety domain (PF04906) in light orange. The Sideroflexin family is annotated with a possible acetylation site at residue one or two and colored orange; the conserved HPDT residues are the red symbol; and the sideroflexin Pfam domain (PF03820) is in light orange. Many of the YIPF proteins have an acetylation site at residue one or two that is colored orange; three conserved motifs are indicated in red; and the YIPF Pfam domains (PF03878 and PF04893) are shown in light orange.




Localization

Only 12% (7 proteins) in the dataset are predicted to contain an amino-terminal signal sequence using SignalP v5.0 (Armenteros et al., 2019b), which is not unusual as many membrane proteins use the first hydrophobic transmembrane sequence to direct protein translocation (Rapoport, 2007). In contrast to soluble proteins that use a signal sequence and subsequently have their N-terminus in the cytosol, the N-terminus of a transmembrane proteins can reside on either side of the membrane depending on the amino acid composition of the first transmembrane segment (Rapoport, 2007). Furthermore, protein modifications such as glycosylation and acetylation can also affect subcellular targeting (Ree et al., 2018) and topogenesis (Goder et al., 1999), although they may not be the sole determining factor for protein targeting (He et al., 2008). N-GlyDE (Pitti et al., 2019), an N-linked glycosylation site prediction resource, was used to assess possible glycosylation sites in the 5TM dataset. Nearly one-third (19 proteins) were predicted to contain N-linked glycosylation sites, and 12 of the proteins had multiple sites predicted. Thirteen proteins were identified with having N-terminal acetylation sites at position one or two from UniProt (UniProt Consortium, 2019). TargetP v2.0 (Armenteros et al., 2019a) was used to assess if N-terminal pre-sequences such as mitochondrial transit peptides existed in our proteins, although except for one borderline case, there were not any mitochondrial targeting peptide sequences found in the dataset. Instead it appears that the targeting signal might be embedded in various regions of the protein, for example in the first transmembrane domain along with amino acid residues in the N-terminus, as found in SFXN2 (Mon et al., 2019).

The Cell Atlas (Thul et al., 2017), which uses antibody-based profiling by immunofluorescence confocal microscopy and currently covers 12,390 genes, as well as the PANTHER Classification System (Mi et al., 2019) was used to assess the localization of the 58 proteins in the dataset (Figure 2). The most common area the proteins were localized to was the nucleus and associated structures (20 proteins) including the nuclear membrane, nucleoli, and nucleoplasm. There is evidence that nine proteins localize to the Golgi apparatus; additionally, Gene Ontology (GO) annotation, which is based on different types of evidences (see “Materials and Methods” for details), describes 10 additional proteins that localize there. There is also evidence from the Cell Atlas that nine proteins are found in vesicles with an additional 11 GO annotated that localize to vesicles. Eight proteins have evidence from Cell Atlas they localize to mitochondria with an additional three annotated to be found there. While only six proteins have evidence of localizing to the endoplasmic reticulum (ER), an additional 12 are GO annotated to be found there and a further fourteen are predicted to localize there according to DeepLoc—v1.0 (Almagro Armenteros et al., 2017). And six proteins also have evidence from Cell Atlas that they localize to the plasma membrane while GO annotation notes another fourteen.
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FIGURE 2. The major cellular localizations of the 5TM proteins. Localization information and analysis for with the number of proteins identified for each locale is in parenthesis and compartments that are overrepresented in comparison to the human transmembrane proteome are indicated in italics. Proteins that localize to the nuclear outer membrane-endoplasmic reticulum network, the inner and outer membrane of the mitochondria, the Golgi trans cisterna, vacuoles, the plasma membrane, and COPII-coated ER to Golgi vesicles are over-represented. Data for this figure is solely from the PANTHER Classification System and the overrepresentation analysis is from the PANTHER Overrepresentation Test (v14.1) (Mi et al., 2019) with the Gene Ontology (GO) Annotation database released on 2019-07-03. Fisher’s Exact test was performed and the False Discovery Rate was calculated with p < 0.05. The human transmembrane protein identities are from Attwood et al. (2017). 5,725 out of 5,779 proteins were successfully mapped while 55 of 58 proteins from the 5TM dataset were successfully mapped using GO annotation.




THE THREE MAJOR 5TM FAMILIES

Nearly one-third of the 5TM dataset consists of three main families: the sideroflexin, tweety and YIP1 domain family (YIPF) proteins. Hence, with such a heavy influence on possible functional activities and localization preferences associated with the 5TM architecture, we performed more comprehensive analysis of these families. Additionally, we performed phylogenetic analysis on the sideroflexin family as we were not able to find a current wide ranging evolutionary study on this family while investigations have been published on the tweety and YIPF families (Matthews et al., 2007; Han et al., 2019; Shaik et al., 2019).


The Sideroflexin Family

The sideroflexin (SFXN) protein family contains five homologues in humans: SFXN1, SFXN2, SFXN3, SFXN4, and SFXN5. Interest in this family is burgeoning as SFXN1 and SFXN3 (and perhaps SFXN2) have been recently identified as the main mitochondrial serine transporters required for one-carbon metabolism needed for biosynthesis (Kory et al., 2018). Sideroflexin members contain the mitochondrial tricarboxylate/iron carrier conserved domain (PF03820/IPR004686). All members of this family share the same N- and C-terminal topology with the N-terminal inside the cytoplasmic region and the C-terminal outside the cytoplasmic region in the lumen. Additionally, SFXN1-4 have post-translational acetylation at either N-terminal position one or two (UniProt Consortium, 2019), which can affect translocation as well as protein stability and degradation (Arnesen, 2011). From studies in Xenopus embryos, sideroflexin homologs are found throughout the body and have both overlapping and non-overlapping expression in different tissues (Li et al., 2010). Furthermore, as the sequences and structures of the sideroflexin homologues are similar, there are some functional redundancies among them. Notably, each of the sideroflexin homologues has been shown to be involved in different disease pathologies, making them possible therapeutic targets.

A representative phylogenetic tree of the sideroflexin family is shown in Figure 3 and includes 67 sequences from 30 taxa throughout Eukaryota including Metazoa (18 species); Holomycota (8) including Ascomycota, Basidiomycota, Mucoromycota, and Chytridiomycota fungi; and Archaeplastida (4 species). Homologues of SFXN1–5 were identified using BLASTp searches in NCBI databases and then sequences were downloaded. The BLASTp results show that sideroflexin homologues have ancient evolutionary origins in eukaryotes and are found in heterokonta, excavata, archaeplastida, uniconta including amebozoa and opisthokonta, as well as metazoan lineages (not all species shown on figure). While there was one significant hit identified in an archaeon lineage (phyllosphere metagenome), exhaustive searches in other archaeon lineages did not yield any other hits and also this genome was not yet assembled, so it is possible that this hit is an artifact, perhaps due to contamination. Our results corroborate previous studies (Miotto et al., 2007; Li et al., 2010) that SFXN1 and SFXN3 are more closely related to each other than to the other sideroflexins, with SFXN2 being the next most closely related. The sequences from archaeplastida appear to resolve between the SFXN1/SFXN3/SFXN2 and SFXN5/SFXN4 clades, although support values are low for this placement. The fungi lineages form more distant groups basal to the other groups.
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FIGURE 3. Phylogenetic analysis of Sideroflexin family. Phylogenetic reconstruction is the result of Bayesian inference posterior probabilities and bootstrapping analysis with the best-scoring maximum likelihood tree using RAxML (v8.2.10) (Minjarez et al., 2016) on 30 taxa with 67 sequences. Support values are given in percent at the nodes of the major clades differentiating the sideroflexin gene families. The protein sequences were aligned using Mafft (v6) (Fang et al., 2018) with E-INSI-I algorithm and JTT substitution model. MrBayes was used with amino acid mixed model run for 1,000,000 generations. The PROTGAMMAAUTO model in RAxML was used with 500 bootstrap replicates.



SFXN1

SFXN1 localizes to the inner mitochondrial membrane (Kory et al., 2018) and is expressed ubiquitously throughout tissues, with the highest amount found in the liver, blood, and kidneys (Fleming et al., 2001; Uhlén et al., 2015). SFXN1 is one of the primary transporters of serine into mitochondria, where it is converted into glycine and formate that are needed for use in one-carbon metabolism (Kory et al., 2018). In dividing mammalian cells, the mitochondrial metabolism of serine is the primary supplier of the one-carbon units needed for biosynthesis of, for example, nucleotides and lipids (Kory et al., 2018). SFXN1 may also transport other amino acids including alanine, glycine, and in particular cysteine. One-carbon metabolism also generates purine synthesis which contributes to proliferation of cancer cells, and SFXN1 has been found to be expressed in many cancers. SFXN1 as well as SFXN2 and SFXN3 are regulated by the Myc transcription factor and may be involved in cancer cell growth in not yet investigated ways. Additionally, SFXN1 has been found to be sub-expressed in brains with Alzheimer’s disease; however, the role of this protein in this neurodegenerative disease remains unknown (Minjarez et al., 2016). Studies in surgical menopause rat models showed changes in brain regions related to depression and dementia also had decreased levels of SFXN1 (Fang et al., 2018).



SFXN2

Unlike SFXN1 and SFXN3, SFXN2 localizes to the outer mitochondrial membrane (Mon et al., 2019). It is expressed in the liver and kidney and lowly expressed in other tissues (Fleming et al., 2001; Uhlén et al., 2015) and has been found to be expressed in the developing pancreas in studies of the developmental expression of sideroflexin family genes in Xenopus (Li et al., 2010). It is involved in mitochondrial iron homeostasis by regulating heme biosynthesis, however, it is not involved in iron-sulfur cluster assembly like SFXN4 (Mon et al., 2019). Additionally, it may function as a mitochondrial serine transporter, or perhaps provide redundancy for SFXN1 or SFXN3 in this capacity (Kory et al., 2018). As mentioned previously, it may also play not yet investigated roles in cancer cell growth.



SFXN3

SFXN3 is localized exclusively in the mitochondria, and in particular the inner mitochondrial membrane (Amorim et al., 2017). It is highly enriched in the brain and is also present in liver, kidney and placenta (Uhlén et al., 2015; Amorim et al., 2017). It is developmentally expressed in neurons, with initial low protein levels in the cortex and hippocampus at birth but then increases as neurons mature and sustains high levels in mature brains (Rivell et al., 2019). SFXN3 is a downstream target of α-synuclein in synapses and is involved in the regulation of synaptic morphology (Amorim et al., 2017). Additionally, it is also one of the main mitochondrial serine transporters involved in one-carbon metabolism (Kory et al., 2018). A study on the roles of the sideroflexin family in pancreatic islets resulted in upregulation of SFXN3, SFXN2, and SFXN5 in diabetic islets, which suggests their function may be related to the regeneration of pancreatic endocrine cells (Yoshikumi et al., 2005). SFXN3 may be implicated in several pathologies. Serine transport may support cancer cell proliferation through the synthesis of nucleotides and one-carbon metabolism (Labuschagne et al., 2014), hence SFXN3 may be critical for cancer growth. And in fact, a patent application was filed in 2017 for a therapeutic antibody that targets SFXN3, which has been shown to be present in tumor-associated macrophages, and strongly reduces the leukemic B cells number (Poupot et al., 2020).



SFXN4

As with all sideroflexins, this protein localizes to the mitochondria, with evidence it is expressed specifically in the mitochondrial inner membrane (Hildick-Smith et al., 2013; Paul et al., 2019). It has high protein expression in muscles (Uhlén et al., 2015) and the highest mRNA expression particularly in kidney, brain and heart tissues (Fleming et al., 2001). SFXN4 has unique functional activities including iron-sulfur cluster biogenesis that are components of electron transfer proteins, cellular iron homeostasis, and mitochondrial respiration (Paul et al., 2019). It is implicated in mitochondrial disorders, and mutations in it cause severe complex I deficiency, macrocytic anemia, and optic nerve hypoplasia (Sofou et al., 2019).



SFXN5

This protein is also detected in mitochondria, presumably the inner mitochondrial membrane (Miyake et al., 2002), and also the nucleoplasm (Uhlén et al., 2015) and expresses low levels in fetal brain, liver, and kidney tissues with ubiquitous expression at higher levels in all regions of the adult brain (Lockhart et al., 2002). SFXN shows citrate transport activity in rats, where it is specifically expressed in the brain and localizes to the inner mitochondrial membrane of Bergmann glial cells (Miyake et al., 2002). And due to the specialized expression in the brain, it is possible that SFXN5 has undergone neo-functionalization and performs a specific, yet undetermined, task in the cerebral cortex.



The Tweety Family

The Tweety-homologue Family contains three members: TTYH1, TTHY2, and TTHY3 that have also been the focus of recent investigations. These transmembrane proteins were recently found to be the pore-forming subunits of the swelling-dependent volume-regulated anion channel (VRACswell) in astrocytes (Han et al., 2019). Volume regulation in the brain is critical for the proper function and health of the nervous system and is regulated by astrocytes as they have high and exclusive expression of the aquaporin-4 (AQP4) water channel (Han et al., 2019). VRACswell is activated by AQP4-dependent swelling and hence the tweety homologues are crucial components in maintaining nervous system health. Consequently, VRACswell has been associated with several pathophysiological conditions such as cerebral edema following excessive oxidative stress, ischemia, traumatic brain injury, and glioma (Han et al., 2019). As might be expected due to their functional activities in astrocytes, both TTYH1 And TTYH2 have tissue enriched mRNA expression in the cerebral cortex (Uhlén et al., 2015). Furthermore, expression of TTYH2 is upregulated in renal cell carcinoma (Rae et al., 2001) and also significantly upregulated in colon cancer cell lines (Toiyama et al., 2007).

The precise topology of each of the tweety homologues has varied including 6 TM with the N- and C-terminals on the same side of the membrane (Suzuki and Mizuno, 2004); 5TM with the N-terminus extracellularly and C-terminus within the cytoplasm (Campbell et al., 2000; Rae et al., 2001); and most recently 4 TM (although possibly 5TM; TTYH1) and 5TM (TTYH2 and TTYH3) with the N-terminal in the cytoplasmic region and the C-terminal also cytoplasmic (TTYH1) or extracellularly (the other two) (Han et al., 2019). All three tweety homologues in our dataset had 5TMs predicted with the N-terminals in the extracellular environment, although due to this latest evidence we categorized them as laying in the cytosolic region. Four glycosylation sites are also described on several tweety homologues (Figure 1B).



The YIP1 Domain Family (YIPF) Proteins

Nine human members make up this family including YIF1A, YIF1B, YIPF1, YIPF2, YIPF3, YIPF4, YIPF5, YIPF6, and YIPF7. These proteins form complexes with each other in specific partner pairs to form oligomers with 20 transmembrane segments (Shaik et al., 2019). All of the proteins except YIPF7 and YIF1A appear to have low tissue specificity and are detected in all the investigated tissues, while YIPF7 is enriched in skeletal muscles and tongue and YIF1A is tissue enhanced in the liver and both are detected in some other tissues. All of the YIPF members are expected to localize to the early, middle or late compartments of the Golgi apparatus, depending on the protein complexes that are formed, and transport to and from between other compartments (Shaik et al., 2019). Hence, additional annotations describe YIF1B, YIPF4, YIPF5, and YIPF6 to be found in vesicles, while YIPF1, YIPF3, and YIPF5 have also been found in the nucleoplasm. A recent review summarized that the proteins appear to have overlapping functions, including ER to Golgi transport as well as intra-Golgi transport at the vesicle docking/fusion stage (Yang et al., 1998; Matern et al., 2000) and roles in the membrane trafficking pathway, although the exact functions of several of the specific complexes are still in debate (Shaik et al., 2019). YIPF proteins are implicated in various disease pathways as well: YIPF4 interacts with several different types of human papillomaviruses (HPV), however, its relationship with HPV is inconclusive and further studies are needed to examine the change in YIPF4 expression during keratinocyte differentiation and the presence of viral proteins (Shaik et al., 2019). Increased expression of YIPF6 in prostate cancer cells that showed bone metastasis and castration resistance has also been reported (Djusberg et al., 2017), although if or how this may contribute to the malignant phenotype of the cancer cells is not clear. YIF1A and possibly YIF1B interact with VAPB and its mutant VAPB-P56S, which has been linked to motor neuron degeneration in amyotrophic lateral scleroses type 8, indicating the interactions of the YIPF proteins with VAPB may have a significant role in the pathology of the mutant VAPB (Kuijpers et al., 2013).



Proteins Associated With Diseases

In addition to the tweety, sideroflexin, and YIPF families’ associations with diseases just discussed, six proteins in the dataset had strong associations with diseases using the DisGeNET resource (Piñero et al., 2017; see Supplementary Table 1). Both ARV1 and EBP are associated with intellectual disabilities as well as epilepsy in the former and cataracts in the latter. DAGLA was associated with neurodegenerative disorders while DUOXA2 is associated with thyroid issues, which is discussed below. The sideroflexin family and OXA1L from the mitochondrial inner membrane protein family, which localize to the mitochondria, also have proteins associated with mitochondrial diseases.



DISCUSSION


Primary Functional Activities

While the different groups of the 5TM do not share common descent, there are two overarching functional themes. These are the establishment of localization, where many of these proteins are involved in different processes that localize a substance or cellular component through movement, tethering, or selective degradation. The other main function is transporter activity in which proteins are described as enabling the directed movement of substances into, out of or within a cell or between cells (The Gene Ontology Consortium., 2019). More than half of the dataset (30 proteins) are annotated with establishing localization of other substances or proteins, although this may be an underestimate of the number of proteins involved as some members of the YIPF family, for example, are predicted to be involved in ER-to-Golgi as well as intra-Golgi transport at the vesicle docking/fusion step and are not described with this GO term. The two members of the DUOXA family are an interesting example of localization activity; DUOXA2 (and presumably DUOXA1) are ER-resident proteins that allow ER-to-Golgi transition, maturation, and translocation to the plasma membrane of functional DUOXA2 (and DUOXA1), which are essential components in generating thyroid hydrogen peroxide for hormone synthesis at the apical membrane (Grasberger and Refetoff, 2006). And DUOXA2 is also associated with thyroid disorders, including congenital hypothyroidism and thyroid agenesis (Piñero et al., 2017). Six of the singlet proteins without apparent paralogues in humans are also described with localization activities: ARV1, CD47, CHRFAM7A, TEX261, TMEM79, and UNC50 function in sterol distribution from ER to the plasma membrane, cell migration and adhesion, exocytosis, and vesicle transport among other activities.

An interesting aspect of the 5TM group is that it is polyphyletic, i.e., composed of multiple small protein families as well as singlet protein families (without human homologues) that do not appear to share a recent common single ancestor, yet many of these protein families perform similar functional activities. How exactly the 5TM architecture contributes to the ubiquitous functional activities of this group was not able to fully elucidated, as factors such as the topology of the N- and C- terminals, which contribute to activities, were evenly divided between the cytoplasm and non-cytoplasmic environments. Within the human transmembrane proteome, transmembrane groups categorized by their number of transmembrane regions can be comprised of differing numbers of evolutionarily related (or unrelated) protein families. For example, the 1 and 2 TM groups are two of the largest classes and encompass many unrelated protein families that range in size from 1 to ∼150 proteins that often participate in varied functional activities (Almén et al., 2009; Sällman Almén et al., 2012). This is in contrast to, for example, the 10 and 12 TM groups that contain the large (∼400 proteins) solute carrier (SLC) transporter family (Almén et al., 2009; Perland and Fredriksson, 2017) or the well-known 7 TM receptor group that contain the ∼800 proteins of the GPCR family (Lagerström and Schiöth, 2008). Hence the 5TM group, while being composed of multiple unrelated protein families that do not share the same topology, is unique in that the described localization and transporter activities are prevalent for this group. When we collate GO annotations, experimental evidence, and TCDB descriptions, there are approximately 20 5TM proteins that are characterized as being involved in transport activities and nearly half of them localized to mitochondria. Proteins involved in mitochondrial transport (8 proteins) and in particular proteins that are integral components of the mitochondrial inner membrane are overrepresented in comparison to the entire Homo sapiens transmembrane proteome (Fold Enrichment (FE) = 9.72; FDR = 2.71e-02 and FE = 12.23; FDR = 3.70e-04, respectively). This includes the five members of the sideroflexin family, the two members of the mitochondrial inner membrane protein family (COX18 and OXA1L) as well as TSPO. The important sideroflexin family that acts in amino acid transport into the mitochondria was described previously. OXA1L and COX18 (OXA1L2) act as membrane insertases: OXA1L functions in the biogenesis of membrane proteins and the insertion of integral membrane proteins into the mitochondrial inner membrane (Haque et al., 2010) and COX18 facilitates the translocation of COX2 across the mitochondrial inner membrane (Bourens and Barrientos, 2017). TSPO is engaged in mitochondrial cholesterol trafficking (Taylor et al., 2014). And this category may be underestimated as well, for example TSPO2, homologue to TSPO and not annotated as involved in transporter activity, is suggested to have become sub-functionalized and is involved with cholesterol trafficking and redistribution during erythropoiesis with ER and nuclear membrane localization (Fan et al., 2009).

An interesting aspect to the 5TM dataset is that only the three members of the tweety family are annotated to form homo and/or heteromeric subunits to create an actual pore for solutes to cross membranes (Han et al., 2019), while virtually all other transport activity involves membrane trafficking, vesicle-mediated transport, or protein translocation across membranes. However, while three members of the YIPF family are identified in the TCDB with vesicle-mediated transport activities, all nine members are hypothesized to function as channels, transporters, or possibly even transmembrane receptors as at least four YIPF molecules associate to form higher order oligomers with 20 transmembrane regions, which is highly suggestive of transport activity (Shaik et al., 2019). With the exception of these two families, the 5TM architecture appears to facilitate transport mechanisms, for example vesicle budding and trafficking or insertase activities that allow movement across membranes, rather than forming oligomeric complexes that create a pore or channel for the transport of substances.



Localization Destinations Associated With Functions

Nearly 30% of the 5TMs (16 proteins) localize to vesicles, including five proteins that function in COPII-coated ER to Golgi transport vesicles, which is also over-represented in our 5TM dataset in comparison to the human membrane proteome (FE = 9.22; FDR = 1.70e-02). This includes four members of YIPF including YIF1A, YIF1B, YIPF5, YIPF6, and TEX261, which is a unique 5TM singlet family without any other human homologues identified. And in fact, TEX261 plus YIF1A, YIF1B, and UNC50, also a 5TM singlet family, are integral components of the Golgi membrane, which is also over-represented (FE = 13.28; FDR = 2.90e-02).

More than 40%—24 proteins—localize to the nuclear outer membrane-endoplasmic reticulum membrane network and are also over-represented in comparison to the human transmembrane proteome (FE = 2.84; FDR = 1.80e-04). This might be expected due to the predominant activities such as protein transport and membrane trafficking. In fact, more than half of these proteins are also found to localize to other sub-compartments as well, including the Golgi apparatus, vesicles, and vacuoles. The varied 17 proteins that localize to vacuoles are over-represented as well (Fe = 2.93; FDR = 7.12e-03). Vacuoles have a variety of different functions such as storage, structural support, exocytosis, growth, and isolation of various substances. Included in the dataset is ATP6V0B, which is a subunit in an enzyme complex that mediates acidification of intracellular compartments, including vacuoles.



Phylogenetic Analysis

We analyzed the evolutionary origins of the three major families. A recent comprehensive analysis of YIPF proteins concluded that homologues of YIPF proteins have deep evolutionary origins and can be found in bacteria, archaea, and also throughout eukaryotic species including excavate, SAR, archaeplastida, uniconta and metazoan lineages (Shaik et al., 2019). In comparison, the tweety family shows evolutionary origins within eukaryotes with homologues found in amoebozoa, archaeplastida, and in different metazoan lineages (Matthews et al., 2007). Our phylogenetic analysis of the sideroflexin family also shows evolutionary roots within eukaryotes, while there were not any homologues identified in bacteria or archaea. Hence, it appears that the YIPF proteins are the most ancient of the three major families identified in the 5TM dataset. Further, we did not find any evidence of common decent of these families even though they all contain the rather rare 5TM architecture.



Important Roles as Cancer Prognostic Markers

While less than 10 proteins are identified in gene-disease associations, roughly 60% are identified as cancer prognostic markers according to The Pathology Atlas, where candidate prognostic genes are associated with clinical outcome of different tumor types (Uhlen et al., 2017). Of these 35 proteins, 21 of them are prognostic for several different types of cancers and 14 were associated with just one tumor type (Figure 4). Renal, gynecological, and liver cancers were the most common types of cancers associated with this dataset. While there were not any overarching patterns in protein families with cancer prognosis, two of the three tweety family as well as two of the five sideroflexin members were prognostic in renal cancer.


[image: image]

FIGURE 4. (A) Enhanced tissue expression of 5TM dataset. The enhanced or enriched expression of proteins in the 5TM dataset with the different types of tissues on the bottom part of the figure and associated proteins on the top part. Data are from The Tissue Atlas (Amorim et al., 2017). More than 35% of the proteins have enhanced or enriched expression in the cerebral cortex, liver, testis and blood tissues. The category Varied tissues includes intestine, breast, thyroid, parathyroid, gall bladder, prostate, and pancreas tissues. The category All Other 5TM includes thirty proteins in the dataset that have low tissue specificity. (B) 5TM proteins as prognostic markers for cancer. The nine different tumor types are on the bottom part of the figure while the 35 prognostic proteins associated with them are on the top half. Approximately 60% of the genes in the dataset are identified in the Pathology Atlas as candidate prognostic genes that are associated with the clinical outcome of different tumor types. The genes are identified from correlation analyses of gene expression and clinical outcome where Kaplan-Meier plots with high significance (p < 0.001) were considered prognostic (Pujar et al., 2018). Of the 35 proteins identified, 21 are associated with several different types of cancers. Gynecologic cancer includes cervical, endometrial, ovarian, and urothelial cancers. Proteins not identified as prognostic are not included in the figure.




CONCLUSION

This analysis characterizes the 58 proteins, including the 10 unique families and nine singlet proteins, that contain the five transmembrane alpha-helical architecture from the human proteome. Proteins that localize to the nuclear outer membrane-endoplasmic reticulum network, the inner and outer membrane of the mitochondria, the Golgi trans cisterna, vacuoles, the plasma membrane, and COPII-coated ER to Golgi vesicles are over-represented in comparison to the human transmembrane proteome. Furthermore, this group of proteins is predominantly involved in localization activities through movement or tethering of cell components and transport mechanisms including protein targeting and transport, and membrane trafficking. The three larger families including the tweety, sideroflexin, and YIPF families, which comprise almost 30% of the dataset, are heavily engaged in these activities. Furthermore, interest in these three families is currently piqued due to recent discoveries into their important functional activities. Nearly 30% of the proteins in the 5TM dataset show enhanced expression in the cerebral cortex, liver, or testis. Notably, ∼60% of the proteins are identified as cancer prognostic genes that are associated with different clinical outcomes of different cancer types, indicating the value in continued investigation in 5TM families. As up to 10% of the 5TMs are still not fully described, much work is still needed to clarify the functional properties of several of the 5TM members, for example TMPPE, SLC66A3, and TMEM41A. Overall, this work provides an overview of the functional properties of the 5TM proteins and adds to the understanding of the global diversity among transmembrane proteins.



MATERIALS AND METHODS


Homo Sapiens Proteome

The Homo sapiens protein sequences with Consensus Coding Sequence (CCDS) annotations of the GRCh38p12 assembly were downloaded from the National Center for Biotechnology Information (NCBI) (Pujar et al., 2018). The CCDS annotations were used as coordinated manual reviews and updates by expert curators are used to annotate the gene set. The Havana group at EMBL-EBI and the RefSeq team at NCBI reconcile the main manual curation while the automatic methods are coordinated by the Ensembl group and NCBI genome annotation computational pipeline. The dataset originally contained 33,420 entries which included alternatively spliced sequences from the same gene.



Transmembrane Topology Prediction

Similar to alpha-helical transmembrane helices, cleavable signal peptides (SP) share common hydrophobic compositions that can make discernment between the two elements difficult for transmembrane prediction algorithms. Hence, the software SignalP v5.0 was used to predict the presence of signal peptides in the dataset. The default parameters were used with the organism group as eukarya. The mature sequences with the signal peptides removed were collated with the rest of the dataset. TOPCONS-single webserver was used to predict membrane protein topology as it is appropriate to use for full proteome scans (Hennerdal and Elofsson, 2011). To achieve greater accuracy, a consensus or majority decision method using several different algorithms is recommended. This software incorporates four default multiple transmembrane prediction methods into a hidden-Markov model that estimates the consensus topology for a predicted transmembrane protein (Hennerdal and Elofsson, 2011). The default software includes: SCAMPI-single (Bernsel et al., 2008); S-TMHMM (Viklund and Elofsson, 2004); HMMTOP (Tusnády and Simon, 2001); and MEMSAT (Jones et al., 1994). The resulting proteins identified as 4, 5, and 6 TM were retrieved, which included 1,529 sequences that constituted both canonical sequences as well as alternative spliced gene products. These sequences were then assessed with TOPCONS2, which is another consensus transmembrane prediction software that contains a different set of methods: OCTOPUS (Bernsel et al., 2008); Philius (Reynolds et al., 2008); PolyPhobius (Käll et al., 2005); SCAMPI (Bernsel et al., 2008); SPOCTOPUS (Viklund et al., 2008), and ΔG-scale (Hessa et al., 2007). TOPCONS2 incorporates scans of homology-based databases such as Pfam (El-Gebali et al., 2019) and the Conserved Domain Database (CDD) (Marchler-Bauer et al., 2017) to help determine hits more accurately and faster. As the performance for the best prediction methods for eukaryotic membrane proteins has been estimated to be between 60 and 70% (Tsirigos et al., 2012), the 211 sequences that were predicted to contain five transmembrane regions were then further manually curated. The sequences were assessed as either canonical or alternatively spliced using UniProt, where the canonical sequence is determined as the most prevalent, the most similar to orthologous sequences, the composition of the amino acids in the sequence, or typically the longest sequence (UniProt Consortium, 2019). The canonical sequences were chosen to remain in the dataset for further evaluation. As protein families are generally assumed to share similar structures, if one or more members of a family were identified to contain 5TM then other members of that family were also evaluated. To achieve as accurate a dataset as possible, we sought prediction agreement using literature searches that describe experiments that help determine membrane topology, databases that contain experimentally determined structures (Berman et al., 2000), and multiple transmembrane prediction resources (Fagerberg et al., 2010; Dobson et al., 2015).

We compared the sequences in our dataset to the Human Transmembrane Proteome (HTP) database and also evaluated their 92 proteins predicted to be 5TM (Dobson et al., 2015). HTP uses consensus methods with homology scans of different experimentally determined and predicted structures to increase the accuracy of their results. We also compared our sequences to the majority-decision based transmembrane predictions in the Human Protein Atlas1 (Fagerberg et al., 2010). Literature searches also aided in confirming (or not) and identifying possibly missed proteins with 5TM topology. The final dataset consists of 58 proteins.



Annotation, Localization, and Enrichment Analyses

Universal Protein resource, UniProt, was used to provide protein annotations for the dataset and included: review status, Transporter Classification number, Enzyme Commission number, Gene Ontology annotation terms, subunit interactions, post-translational residue modification information, and protein family information (UniProt Consortium, 2019). The DisGeNET drug encyclopedia was also utilized to assess gene-disease associations and the evidence metric strong were used to identify relevant associations (Piñero et al., 2017).

The Cell Atlas (Thul et al., 2017) uses antibody-based profiling by immunofluorescence confocal microscopy to assess main localization data of more than 12,000 genes. We used this resource to ascertain the which cellular and organelle structures the proteins in our dataset localized to. GO annotations using the QuickGO website (Binns et al., 2009) and also the PANTHER classification system (Mi et al., 2019) were also used to elucidate the cellular localizations as well as describe additional functional activities of the proteins. GO annotations are based on evidence-based statements about a particular gene and are derived from experimental, phylogenetic, and computational evidences as well as author and curatorial statements and also automatically generated annotations.

Gene enrichment in the 5TM dataset in comparison to the Homo sapiens transmembrane proteome was analyzed with the PANTHER Classification System (version 14.1; released 11 July 2019) (Mi et al., 2019). Fisher’s exact test was chosen for the PANTHER Overrepresentation Test, which assumes a hypergeometric distribution that is more accurate for smaller gene lists, as well as the Benjamini-Hochberg False Discovery Rate (FDR) correction (p < 0.05) to control the false positive rate in the statistical test results. The annotation datasets included PANTHER GO-Slim Molecular Functions, Biological Processes, and Cellular Components, as well as the GO complete sets. The reference protein list for the Homo sapiens membrane proteome was obtained from (Attwood et al., 2017).



Phylogenetic Analysis

To obtain homologues of the sideroflexin family, the Homo sapiens SFXN1-5 protein sequences were used at NCBI BLASTp suite against specific species. Default parameters were used. The following sequences were obtained from NCBI: M. polymorpha (OAE21648.1); P. patens (XP_024391321.1); S. moellendorffii (XP_002960929.2); S. punctatus (XP_016610 670.1); M. verticillata (KFH62263.1); U. maydis (XP_011390 020.1); C. neoformans var. grubii (OWZ51622.1); N. crassa (XP_9 57698.1); P. grisea (XP_030977476.1); A. fumigatus (XP_75 3043.1); Y. lipolytica (XP_500957.1); S. cerevisiae (NP_014914.1); S. pombe (NP_594262.2); D. discoideum (XP_64000 8.1); A. queenslandica (XP_003383899.1, XP_003383928.1); T. adhaerens (XP_002116694.1, XP_002117399.1); H. vulgaris (XP_012564924.1, XP_002162432.1, XP_012557207.1); L. gigantea (XP_009052487.1, XP_009050598.1, XP_0090 64188.1); C. gigas (XP_011424610.1, XP_019925797.1, XP_011414570.1); C. elegans (NP_509949.1, NP_509341.2, NP_001309542.1); D. pulex (EFX72259.1, EFX71151.1); A. pisum (NP_001156182.1, XP_008186264.1); A mellifera (XP_623312.2, XP_392085.2); D. melanogaster (NP_649460.3, NP_649086.2); S. purpuratus (XP_030841332.1, XP_030842117.1, XP_0308 42111.1); P. caudata (XP_014665525.1, XP_014672932.1, XP_014673935.1); D. rerio (XP_005169684.1, XP_005169 528.1, NP_001074133.1, NP_001070130.1, XP_021336710.1); X. tropicalis (NP_001016244.1, XP_012821950.1, NP_001135 699.1, XP_017951466.1, NP_001004915.1); G. gallus (XP_02 5010610.1, XP_421731.1, XP_015144246.1, XP_001234861.3, XP_420891.4); M. musculus (NP_081600.1, NP_444426.3, NP_001349310.1, NP_444428.3, XP_006506879.1); and H. sapiens (NP_001309906, XP_024303560.1, NP_112233.2, XP_005269582.1, NP_653180.1). S. fallax (Sphfalx0019s0101.1) was obtained from the JGI Phytozome resource (Nordberg et al., 2014). A multiple sequence alignment was obtained using MAFFT with the E-INS-i iterative refinement method and JTT substitution matrix. The alignment was manually curated. Phylogenetic topology was constructed using Bayesian inference with MrBayes version 3.2.7a to generate tree support using posterior probabilities (Huelsenbeck and Ronquist, 2001). The number of substitution sites was 6, the mixed amino acid model was used, and the simulation was run for 1,000,000 generations, with sampling every 100 and burnin fraction was 0.25. The PROTGAMMAAUTO model in RAxML was used with 500 bootstrap replicates.

All analysis and classifications were performed using local Python and Perl scripts and SQL databases (sqlite3). Adobe Illustrator CS6 was used for the figures.
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Cation-coupled chloride cotransporters play a key role in generating the Cl– electrochemical gradient on the cell membrane, which is important for regulation of many cellular processes. However, a quantitative analysis of the interplay between numerous membrane transporters and channels in maintaining cell ionic homeostasis is still undeveloped. Here, we demonstrate a recently developed approach on how to predict cell ionic homeostasis dynamics when stopping the sodium pump in human lymphoid cells U937. The results demonstrate the reliability of the approach and provide the first quantitative description of unidirectional monovalent ion fluxes through the plasma membrane of an animal cell, considering all the main types of cation-coupled chloride cotransporters operating in a system with the sodium pump and electroconductive K+, Na+, and Cl– channels. The same approach was used to study ionic and water balance changes associated with regulatory volume decrease (RVD), a well-known cellular response underlying the adaptation of animal cells to a hypoosmolar environment. A computational analysis of cell as an electrochemical system demonstrates that RVD may happen without any changes in the properties of membrane transporters and channels due to time-dependent changes in electrochemical ion gradients. The proposed approach is applicable when studying truly active regulatory processes mediated by the intracellular signaling network. The developed software can be useful for calculation of the balance of the unidirectional fluxes of monovalent ions across the cell membrane of various cells under various conditions.

Keywords: cell ion homeostasis computation, cotransporters, ion channels, sodium pump, cell volume regulation, regulatory volume decrease, sodium potassium chloride fluxes


INTRODUCTION

The role of Cl– channels and transporters in cellular processes attracts much attention at present (Hoffmann et al., 2015; Jentsch, 2016; Pedersen et al., 2016; Jentsch and Pusch, 2018; Currin et al., 2020; Murillo-de-Ozores et al., 2020). Cation-coupled chloride cotransporters of the SLC12 family play a key role in generating the Cl– electrochemical potential difference on the cell membrane, which is mandatory for Cl– and Cl– channels to be a regulator of cell volume, intracellular pH, and cell signaling (Gamba, 2005, 2009). The progress in molecular studies of cation-coupled chloride cotransporters and Cl– channels is impressive. However, the current studies in this area focus mostly on the regulation of channels and transporters but not an analysis of their interactions in maintaining the entire ionic homeostasis of cell, regulation of the cell water balance, and generation of electrochemical gradients of ions on the cell membrane (Hoffmann and Pedersen, 2011; Cruz-Rangel et al., 2012; Kaila et al., 2014; Zhang et al., 2016; Shekarabi et al., 2017; de Los Heros et al., 2018; Wilson and Mongin, 2018; Dmitriev et al., 2019; Okada et al., 2019; Song et al., 2019; Bortner and Cidlowski, 2020; Kittl et al., 2020; Murillo-de-Ozores et al., 2020; Pacheco-Alvarez et al., 2020). We believe that this is partly due to the lack of a suitable computational modeling tool for a rather complex system. The software for calculating the balance of unidirectional fluxes of monovalent ions via the main ion pathways in the cell membrane has been developed by the authors in recent years (Vereninov et al., 2014, 2016; Yurinskaya et al., 2019). The software was supplied by a simple executable file that allowed, based on the minimum necessary experimental data, to find all the characteristics of ion homeostasis and a list of all unidirectional fluxes of monovalent ions through the main pathways in the cell membrane. Until now, we tested our tool in prediction of rearrangement of ion homeostasis in U937 cells caused by stopping the Na/K pump using the incomplete model with only NC cotransporter (Vereninov et al., 2014; Yurinskaya et al., 2019). The model with all major types of cotransporters for apoptotic U937 cells was considered in our recent study (Yurinskaya et al., 2020), which showed that the effects of KC and NKCC (well-known cotransporters K-Cl and Na-K-2Cl) are small. The first goal of the present study was to find out whether a model with a full set of cotransporters would be successful in predictions of changes in ion homeostasis after stopping the pump. The data obtained allow us to conclude that the tool and model are reliable. It was also interesting to apply the same approach to the analysis of changes in the ionic homeostasis of cells placed in a hypoosmolar medium, when, as a rule, a regulatory volume decrease (RVD) occurs after rapid swelling. The RVD phenomenon has attracted a lot of attention for more than half a century (Hoffmann et al., 2009; Koivusalo et al., 2009; Hoffmann and Pedersen, 2011). However, no mathematical modeling of RVD, considering all the main cotransporters and based on the real parameters of the cells, has yet been carried out. A study of RVD in the U937 cell model presented below reveals many interesting effects in changing the unidirectional fluxes of Na+, K+, Cl–, and in the whole ionic homeostasis during RVD that occur without any changes in properties of channels and transporters of the cell membrane. The effects that can be qualified as a “physical” RVD mask truly active regulatory processes mediated by the intracellular signaling network, cell kinases, etc. Using our software allows to separate the effects of changing external osmolarity, cell water balance, and electrochemical potential differences driving ions across the cell membrane from the effects caused by changes in properties of the membrane channels and transporters. The modeling helps to quantify the effects caused by alteration of each ion pathway separately and in combination more rigorously than using specific inhibitors or mutation analysis.



MATERIALS AND METHODS


Cell Cultures and Solutions

Human histiocytic lymphoma U937 cells, myeloid leukemia K562 cells, and T lymphocyte Jurkat cells were obtained from the Russian Collection of Cell Cultures (Institute of Cytology, Russian Academy of Sciences). The cells were cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS) at 37°C and 5% CO2 and subcultured every 2–3 days. Cells, with a culture density of approximately 1 × 106 cells/ml, were treated with 10 μM ouabain or a hypotonic 160-mOsm solution. A stock solution of 1 mM ouabain in PBS was used. A hypoosmotic solution was prepared from an isoosmolar medium by decreasing the NaCl concentration by 75 mM, namely, by mixing a standard medium with a medium of the same composition only without NaCl. An isoosmolar medium replacing 75 mM NaCl with 150 mM sucrose was prepared using a stock solution of 2 M sucrose in PBS. The osmolarity of all solutions was verified with the Micro-Osmometer Model 3320 (Advanced Instruments, United States). All the incubations were done at 37°C.



Reagents

RPMI 1640 medium and FBS (HyClone Standard) were purchased from Biolot (Russia). Ouabain was from Sigma-Aldrich (Germany), and Percoll was purchased from Pharmacia (Sweden). The isotope 36Cl– was from “Isotope” (Russia). Salts and sucrose were of analytical grade and were from Reachem (Russia).



Cellular Ion and Water Content Determination

The analysis of intracellular ion and water content is described in detail in our previous studies (Yurinskaya et al., 2005, 2011; Vereninov et al., 2007, 2008). Briefly, intracellular K+, Na+, and Rb+ were determined by flame emission using a Perkin-Elmer AA 306 spectrophotometer, and intracellular Cl– was determined using a 36Cl– radiotracer. Cell water content was estimated by the buoyant density of the cells in continuous Percoll gradient, as vprot. = (1 - ρ / ρdry) / [0.72(ρ - 1)], where vprot. is water content per gram of protein and ρ is the measured buoyant density of the cells and ρdry is the cell dry mass density, which was given as 1.38 g ml–1. The share of protein in dry mass was given as 72%. Note that the relative changes in the water content in cells do not depend on the accepted values of the density of the dry mass of cells and the proportion of protein in it. The content of ions in the cell was calculated in micromoles per gram of protein, and the content of water in milliliters per gram of protein.



Statistical Analysis

Data are presented as the mean ± SEM. P < 0.05 (Student’s t-test) was considered statistically significant. Statistical analysis for calculated data is not applicable.



The Mathematical Background of the Modeling

The mathematical model of the movement of monovalent ions across the cell membrane was like that used by Jakobsson (1980), Lew and Bookchin (1986), and Lew et al. (1991), as well as in our previous works (Vereninov et al., 2014, 2016; Yurinskaya et al., 2019, 2020). It accounts for the Na/K pump; electroconductive channels; and cotransporters NC, KC, and NKCC. In this approach, the entire set of ion transport systems is replaced by a reduced number of ion pathways, determined thermodynamically, but not by their molecular structure. All the major pathways are subdivided into five subtypes by ion-driving force: ion channels, where the driving force is the transmembrane electrochemical potential difference for a single ion species; NKCC, NC, and KC cotransporters, where the driving force is the sum of the electrochemical potential differences for all partners; and the Na/K ATPase pump, where ion movement against electrochemical gradient is energized by ATP hydrolysis. This makes it possible to characterize the intrinsic properties of each pathway using a single rate coefficient. The following abbreviations are used to designate ion transporters: NKCC indicates the known cotransporters of the SLC12 family carrying monovalent ions with stoichiometry 1Na+:1K+:2Cl–, and KC and NC stand for cotransporters with stoichiometry 1K+:1Cl– or 1Na+:1Cl–. The latter can be represented by a single protein, the thiazide-sensitive Na-Cl cotransporter (SLC12 family), or by coordinated operation of the exchangers Na/H, SLC9 and Cl/HCO3, SLC26 (Garcia-Soto and Grinstein, 1990). Using the model with single parameters for characterization of each ion pathway is quite sufficient for successful description of the homeostasis in real cells at a real accuracy of the current experimental data. Some readers of our previous publications have expressed doubt that it is possible to obtain a unique set of parameters that provides an agreement between experimental and calculated data by using our tool. Our mathematical comments on this matter can be found in Yurinskaya et al. (2019) (Notes Added in Response to Some Readers …).

The basic equations are presented below. Symbols and definitions used are shown in Table 1.


TABLE 1. Symbols and definitions.
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Two mandatory conditions of macroscopic electroneutrality and osmotic balance are as follows:
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The flux equations are as follows:
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The left-hand sides of these three equations represent the rates of change of cell ion content. The right-hand sides express fluxes, where u is the dimensionless membrane potential related to the absolute values of membrane potential U (mV), as U = uRT/F = 26.7u for 37°C and g = 1−exp⁡(u). The rate coefficients pNa, pK, and pCl characterizing channel ion transfer are similar to the Goldman’s coefficients. Fluxes JNC, JKC, and JNKCC depend on internal and external ion concentrations as
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Here inc, ikc, and inkcc are the rate coefficients for cotransporters.

Transmembrane electrochemical potential differences for Na+, K+, and Cl– were calculated as follows: ΔμNa = 26.7 ⋅ ln([Na]i / [Na]o) + U, ΔμK = 26.7 ⋅ ln([K]i / [K]o) + U and ΔμCl = 26.7 ⋅ ln([Cl]i / [Cl]o) - U, respectively. The algorithm of the numerical solution of the system of these equations is considered in detail in Vereninov et al. (2014), and the use of the executable file is illustrated more in Yurinskaya et al. (2019). The problems in the determination of the multiple parameters in a system with multiple variables like cell ionic homeostasis are discussed in more detail in Yurinskaya et al. (2019, 2020). To use the executable file for the BEZ02BC software, you must open Supplementary Datasheet 1 and execute it according to its text. The name and extension of the other two files must be changed before use and they must be processed as specified in Supplementary Datasheet 1.

The parameters of channels and transporters used in this study for blocking the pump and RVD were derived as necessary and sufficient for the monovalent ion flux balance in cells like U937 under normal physiological conditions at the real experimental value of ion and water content and assigned cotransporters (see details in Vereninov et al., 2014; Yurinskaya et al., 2019).




RESULTS


Observed and Predicted Changes in Ionic Homeostasis of U937 Cells After Stopping the Na/K Pump, Calculated for a System With Cotransporters NC, KC, and NKCC and Parameters Like in U937 Cells Under a Normal Balanced State

The Na/K pump of the cell membrane is a key element of the cellular apparatus for holding the water balance of the animal cell, the dynamic balance in continuous movement of K+, Na+, and Cl– between the exterior and cytoplasm, and in the maintenance of electrochemical gradients of these ions on the cell membrane and cell membrane potential (Blaustein et al., 2012, 337 p). The dynamics of changes in the ionic homeostasis of the cell after stopping the pump has so far been studied using models with a limited list of cotransporters and without proper connection with experimental data. Our previous studies showed that a computation based on the simplest model of cell ionic homeostasis including only the pump; Na+, K+, and Cl– channels; and cotransport NC predicts well the real-time dynamics of changes in ion concentrations and cell water content after blocking the pump even if the constant parameters of channels and NC cotransporter found for normal resting cells were used in calculations (Vereninov et al., 2014, 2016). However, we did not consider then other cation-chloride cotransporters. Now, the calculations were carried out considering a various set of cotransporters.

The electrochemical system of a cell is mathematically described by a multidimensional and multiparameter function. The same values of the balanced intracellular concentrations of Na+, K+, and Cl–, the content of cellular water, and the coefficient of the pumping rate, corresponding to those found in the experiment, can be obtained using several sets of cotransporters. The number of possible mathematical solutions for each set was discussed in a previous paper (Yurinskaya et al., 2019). It turns out that solutions to real physiological problems can be achieved using additional data on the action of inhibitors and some others. Here, it is important that when a single cotransporter is assigned, the parameters of all other pathways must also be changed to achieve a balance of monovalent fluxes at a given content of ions and water and the measured pump rate coefficient. Table 2 shows the interrelationships between membrane parameters at the balance of fluxes and the given characteristics of cell ionic homeostasis.


TABLE 2. Basic characteristics of ion distribution measured for two examples of normal resting U937 cells (A and B), equilibrated with standard RPMI medium, and calculated for cells with different set of cotransporters.
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The calculations carried out with a wide list of cotransporters confirm that our computational approach allows us to quantitatively predict in real-time the dynamics of changes in the cellular ion and water homeostasis caused by stopping the pump. The accuracy of this prediction is at the level of the accuracy of the currently available experimental data. The match for the ion content is better than that for the cell water (Figures 1A,B). This may be due to problems in the experimental evaluation of cell water or some other unknown causes. There have been certain differences revealed in the behavior of the model only with the NC cotransporter, which is required for most cells, and with a set of NC + NKCC, NC + KC, and NC + NKCC + KC cotransporters (Figure 1). The most significant differences appear with the addition of the NKCC cotransporter. A decrease in the water content in cells with the NKCC occurs with an extremum of 2 h. The possible delay in cell swelling, in this case, is caused by an increase in driving force moving Na+, K+, and Cl– via NKCC cotransporter at the stage when Nai is increased significantly while Ki drops (Figures 1A,E). Unfortunately, the discussed decrease is too small to be verified using the current methods of analysis of cell water.
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FIGURE 1. Disturbance of cell ionic homeostasis after stopping the pump in the real U937 cells (large symbols) and in U937 cell model with different set of cotransporters at the unchanged over time parameters as in U937 cells, equilibrated with the standard RPMI medium (lines with or without small symbols). Large symbols show means ± SE for n = 4, small SE values are masked by symbols. The pump was blocked by ouabain at t = 0, corresponding to a change in beta from 0.039 to 0. The other parameters were unchanged and are shown in Table 2, cells A. Water in ml/g protein was obtained by multiplying the calculated V/A by the content of impermeant osmolytes A in mol/g protein.


A good agreement between the predicted and the real behaviors of cells under stopping of the pump shows that the approach used in the calculations is trustworthy. It should be emphasized that there was no fitting of parameters in this case, as is often in modeling simulations. All parameters used were determined outside the studied area and correspond to the normal unaltered cells. The general conclusion is that any variation in the parameters of KC and NKCC cotransporters does not affect within the accuracy of experimental data the dynamics or rearrangement of cell ionic homeostasis due to blocking of the pump.

Cell swelling after blocking the pump deserves additional remarks. It is known that a cell with a membrane permeable to water and external ions and impermeable to some intracellular ions behaves like a Donnan system (Hoffmann et al., 2009; Jentsch, 2016; Delpire and Gagnon, 2018). The water balance between solutions separated by a membrane cannot physically be achieved in such a system if the external medium contains only ions freely penetrating through the membrane. The concentration of anions inside the real cells, impermeant through the plasma membrane and represented mostly by proteins, nucleic acids, and organic and inorganic phosphates, is equal to the difference between the concentrations of intracellular Cl– and the sum of intracellular K+ and Na+, i.e., significant. In an environment with ions and uncharged osmolytes that freely penetrate the membrane, the cells, after stopping the pump, must infinitely swell until the membrane ruptures. The first function of the Na/K pump is preventing the Donnan’s water disbalance. Pumping sodium out of the cell makes the membrane virtually impermeable to sodium, and this ion behaves as an impermeant external cation. The Donnan effect due to the quasi-impermeant extracellular sodium balances the Donnan effect caused by the impermeant intracellular anions. Hence, cell behaves as a double-Donnan system (see using the term in Freedman and Hoffman, 1979; Fraser and Huang, 2007). A quantitative study of changes in ionic and water homeostasis in U937 cells after blocking the pump with ouabain and mathematical modeling of these changes in real experiments shows that the system eventually comes to a new balanced state if the medium contains at least a small concentration of impermeant osmolytes. In our calculation in case of the RPMI medium B0 is equal to 48 mM (Table 3 and Figure 2), the final water level in U937 cells in a standard RPMI medium with ouabain is 1.4 times higher than the initial level and fully meets the balance criteria (Figure 2). Hence, the 48 mM concentration of impermeant charged osmolyte B in the real physiological media is sufficient to prevent unlimited cell swelling in our case, but the system degradation is significant. The question “Why real cells do not swell infinitely after blocking the pump?” has many answers. It is not only due to a parallel alteration of electroconductive channels, as we wrote earlier (Yurinskaya et al., 2011, 2020). The swelling is highly retarded because of the decreasing driving forces for all ion pathways (Figures 1D,E). Finally, some external impermeant osmolyte is always present in experiments with real cells. This is not an idle question, because it is the Donnan effect that leads to an extremely dangerous cerebral edema in brain ischemia when the sodium pump stops due to the ATP deficiency (Dijkstra et al., 2016; Okada et al., 2019). Osmolysis of human RBC infected by the malaria Plasmodium plays a significant role in the pathology of this disease (Mauritz et al., 2009; Waldecker et al., 2017).


TABLE 3. Dynamics of the net and unidirectional K+, Na+, and Cl– fluxes after stopping the pump calculated for the model with all main cotransporters at the unchanged-over-time parameters as in U937 cells, equilibrated with the standard RPMI medium: [Na]o 140, [K]o 5.8, [Cl]o 116 mM, and [B]o 48.2 mM.
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FIGURE 2. Effect of impermeant external osmolytes Bo on cell swelling caused by blocking the pump calculated for the U937 cell model with a full set of cotransporters (NC+KC+NKCC) at the unchanged over time parameters as in U937 cells, equilibrated with standard RPMI medium. The calculation was carried out for Bo = 0 (solid lines, [Na]o 149.2, [K]o 5.8, [Cl]o 155 mM) or for standard medium (dashed lines, [Na]o 140, [K]o 5.8; [Cl]o 116 mM, [B]o 48.2 mM). The pump was blocked at t = 0 by changing the beta from 0.039 to 0 (“No pump” in the figure). The other parameters remain constant and are shown in Table 2, cells A with a full set of cotransporters.




Cotransporters in Rearrangement of Ionic Homeostasis in Cells Transferred Into Hypoosmolar Media


Regulatory Volume Decrease in the Model With All Main Cotransporters at the Unchanged-Over-Time Parameters Like in U937 Cells Equilibrated With Standard RPMI Medium

Water penetrates through the cell membrane more easily than ions, and after replacing the normal medium with a hypoosmolar solution, the water content in the cell increases sharply according to the well-known law of the water–osmotic balance of the cell. Changes in intracellular ion concentration, membrane potential, and electrochemical ion gradients across the cell membrane also occur rapidly, while changes in ion content take time. The phenomenon with the abbreviation RVD (regulatory volume decrease), observed in most cells as a response to a decrease in osmolarity of the medium, has long attracted the attention of many researchers. However, the calculation of the behavior of such a complex multi-parameter system as the electrochemical system of a cell still presents significant difficulties. We believe that our software can be useful for studying the physical basis of ion flux balance rearrangement during RVD. An analysis of RVD is demonstrated here on U937 cells because we have a set of necessary parameters for these cells that were obtained in our own experiments (Table 2).

First, the calculation shows that a balanced state in the distribution of monovalent ions is established in cells placed in a hypoosmolar medium over time (Figure 3). The calculation of fluxes confirms that this is a truly balanced state and that the total net fluxes of each species of ions decline with time to zero, even though the ionic electrochemical gradients remain non-zero (Table 4). Due to zero net fluxes, the ion content in the cell ceases to change, and a water balance is established. The influx and efflux via each individual pathway remain in this case unbalanced, but the integral net flux via all pathways becomes zero. The next important point is that in the cases under consideration, there is a time-dependent decrease in the volume of cells by the type of the physiological RVD without any specific “regulatory” changes in membrane channels and transporters (Figure 3). Therefore, changes in ionic homeostasis and fluxes observed in real cells during the transition to a hypoosmolar medium, even those affected by specific inhibitors, cannot serve as evidence that specific regulatory changes are triggered in the corresponding pathway in a hypoosmolar medium, as it is usually assumed.
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FIGURE 3. Rearrangement of ionic homeostasis during the Iso-Hypo transition, calculated for a system with different sets of cotransporters at the unchanged over time parameters like in U937 cells, equilibrated with the standard RPMI medium. The parameters for the calculation are given in Table 2, cells B. The arrows at t = 0 show the replacement of a standard medium of 310 mOsm with a hypoosmolar medium of 160 mOsm, obtained by decreasing the NaCl concentration by 75 mM.



TABLE 4. Dynamics of the net and unidirectional fluxes of K+, Na+, and Cl– during transition from a normal medium of 310 mOsm to the hypoosmolar solution of 160 mOsm, calculated for the system with the complete set of cotransporters at the unchanged-over-time parameters as in U937 cells equilibrated with standard RPMI medium.
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Variations in the types of cotransporters in the cell membrane have no significant effect on the time course of changes in cell water during the iso–hypo transition (Figure 3). Consequently, the type of cotransporters cannot be identified by studying changes in V/A. The dynamics of U is more dependent on carriers, even though they are “electroneutral.” This is a good example of the fact that the electroneutrality of the coupled transport of ions in a cotransporter does not mean that the cotransporter is electroneutral when operating in a complex system. Unfortunately, it is difficult to measure the difference of about 10 mV in the membrane potential of cells in a population with sufficient accuracy to identify cotransporters by this way. The difference in the early increase in net K+ flux and intracellular K+ content depending on cotransporters is also small and difficult to accurately measure.

A hypoosmolar medium is usually prepared by diluting the normal medium or excluding some of the NaCl from it. A decrease in external NaCl concentration is the essential factor that changes the forces driving ions through the plasma membrane and leads to the disturbance of the balance of ion fluxes across the cell membrane. To separate the roles of a decrease in the external concentration of NaCl and a decrease in the osmolarity of the medium, three schemes were calculated (Figure 4): (1) a simple decrease in NaCl (curve 1), (2) a decrease in external NaCl by 75 mM compensated by the addition of equimolar 150 mM sucrose, and (3) a variant when a hypoosmolar solution is prepared by excluding 150 mM of sucrose from a medium of 310 mOsm, initially containing 75 mM NaCl and 150 mM sucrose (curve 3). No change in external NaCl concentration occurs in the last case. Thus, in our modeling, two cellular responses, to a decrease in NaCl concentration and to a change in osmolarity, are generated independently. A decrease in the NaCl concentration is followed by RVD in both iso- and in hypoosmolar solutions (Figure 4, curves 1 and 2). A decrease in extracellular osmolarity due to the exclusion of 150 mM external sucrose without changing the extracellular NaCl concentration is not accompanied by RVD (Figure 4, curve 3).
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FIGURE 4. Rearrangement of ionic homeostasis during transition to hypotonic medium with and without a decrease in NaCl concentration, calculated for a system with a full set of cotransporters (NC+KC+NKCC) at the unchanged over time parameters as in U937 cells, equilibrated with standard RPMI medium. The standard medium was replaced at t = 0 by (1) hypoosmolar medium of 160 mOsm obtained by removing 75 mM NaCl from standard isoosmolar medium, (2) isoosmolar medium of 310 mOsm, prepared by removing 75 mM NaCl and adding 150 mM sucrose instead, (3) a medium of 160 mOsm obtained by removing 150 mM sucrose from an isoosmolar medium without a decrease in NaCl concentration. The concentrations of Na+ and Cl– in media (2) and (3) were 65 and 41 mM, respectively.
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FIGURE 5. K+ fluxes during the Iso-Hypo transition, calculated for a system with different sets of cotransporters at the unchanged over time parameters as in U937 cells, equilibrated with standard RPMI medium. The arrows at t = 0 show the replacement of the standard 310 mOsm medium with a 160 mOsm hypoosmolar medium, obtained by decreasing the NaCl concentration by 75 mM.


An unexpected and interesting effect observed during the iso–hypo transition is an increase in the net flux of K+ into the cell at the initial stage of rearrangement of homeostasis, which then decreases, and transforms into an outgoing net flux, which decreases to zero when the cell comes to a new balanced state (Figures 3–5 and Table 4). This effect, like the initial increase in intracellular K+ content, was intuitively impossible to expect. It can be explained by the different dependence of unidirectional fluxes via different pathways on changes in the intracellular concentration of ions in cells placed in a hypoosmolar medium and the asynchrony of changes in partial fluxes. This example shows that non-monotonic changes in ion fluxes and, consequently, ion concentration during rearrangement of such a complex system as ionic homeostasis of the cell can occur without specific changes in the channels and transporters of the cell membrane.

The rearrangement of ionic homeostasis caused by the hypoosmolar medium is reversible and is followed by an increase in volume during the reverse hypo–iso transition, which resembles the so-called regulatory volume increase (RVI) after RVD (Hoffmann et al., 2009). No specific alterations of channels and transporters are required for the model RVI at the hypo–iso transition. Changes in cell volume, in this case, are practically independent of the type of cotransporter, as in the direct iso–hypo transition, while the recovery curves of U, net K+ flux, and K+ content are dependent, although not strongly (Figure 6). It will be shown below that decreasing the NC rate coefficient simultaneously with the iso–hypo or hypo–iso transition changes RVD and RVI (Figure 7).
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FIGURE 6. Rearrangement of ionic homeostasis during the Iso-Hypo transition and the reverse transition to a normal medium, calculated for a system with different sets of cotransporters at the unchanged over time parameters as in U937 cells, equilibrated with standard RPMI medium. A hypoosmolar medium of 160 mOsm was obtained by decreasing the NaCl concentration by 75 mM. The parameters for the calculation are given in Table 2, cells B.
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FIGURE 7. The effect of NC rate constant on the rearrangement of ionic homeostasis during the Iso-Hypo-Iso transitions (A–C) and in a normal 310 mOsm medium without changes in external osmolarity (D–F), calculated for a system with a full set of cotransporters (NC+KC+NKCC). Changes in the inc coefficient are displayed on the graphs. (A–C) inc was changed either simultaneously with the transition to a hypotonic medium (at t = 0) or upon a return to a normal isotonic (at t = 48 min). Other parameters remain unchanged.




Rearrangement of Ionic Homeostasis in the U937 Cell Model Due to Changing Membrane Parameters in Normal and Hypoosmolar Media

Although a response resembling physiological RVD can be seen in the physical system without changes in the properties of channels and cotransporters, many experimental data show that these changes occur in living cells placed in a hypoosmolar environment (Hoffmann et al., 2009; Koivusalo et al., 2009; Kaila et al., 2014; Jentsch, 2016; Pasantes-Morales, 2016; Delpire and Gagnon, 2018). Modeling can help to quantify the relationship between RVD and the alteration of channels and transporters in a hypoosmolar environment. When the properties of channels and carriers change simultaneously with the transition to a hypoosmolar medium, two effects are summed up: one is associated with the iso–hypo transition and the other is associated with a change in channels and transporters. They can be distinguished only by a simulation that shows that the effects of changes in membrane parameters without changes in external osmolarity are significant.


Increasing the rate coefficients pK, pCl, and ikc enhances regulatory volume decrease in a hypoosmolar medium

The activation of the K+ and Cl– channels in cells placed into hypoosmolar media is believed to be important in reducing the intracellular levels of K+ and Cl–, which underlie RVD. Indeed, an increase in pK and pCl results in a time-dependent decrease in cell volume (Figure 8A). A similar decrease can be caused by a decrease in the NC rate coefficient (Figure 8E). Changes in the ion content in these cases differ significantly, as well as the changes in the membrane potential U. Modeling shows that the considered effects of channel permeability and NC depend on the basic set of cotransporters in the membrane and that there may be unpredictable phenomena in the behavior of the system, for example, the K+ content may decrease monotonically or initially pass through a maximum or minimum, depending on the conditions (Figure 8). A simultaneous change in pK and pCl can reduce the amount of water in cells more than their change separately, but the cell volume is restored even in this case by only half. A variation in the KC rate coefficients (ikc) affects the ionic homeostasis of the cell in almost the same way as the change in pK (data not shown).
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FIGURE 8. The effect of pK, pCl, NC, and KC rate constant on the rearrangement of ionic homeostasis in the Iso-Hypo transition, calculated for the U937 cell model with a full set of cotransporters and for the model with only NC. The parameters of membrane transport changed simultaneously with the transition to a hypotonic medium. Changes in one of the parameters are indicated on the graphs. The rest of the parameters remain unchanged.




Decreasing the NC rate coefficient enhances regulatory volume decrease

Decreasing the NC rate coefficient (inc) in a hypoosmolar medium with a decreased NaCl enhances RVD (Figures 7A, 8E–L). It should be noted here that under isoosmolar conditions, NC affects the ionic homeostasis of the cell in the same way as in the hypoosmolar medium (Figure 7D). Interestingly, decreasing inc declines RVI observed at the transfer of cells from a hypoosmolar to isoosmolar medium (so-called RVI after RVD).



Changes in partial fluxes underlying changes in ionic homeostasis due to variations in membrane parameters in a hypoosmolar and normal media

The effects of decreasing and increasing membrane parameters by a factor 10 on the intracellular water content and ion fluxes via different pathways under the balanced state in normal medium and hypoosmolar medium of 160 mOsm with NaCl reduced by 75 mM are collected in Figure 9. The most important conclusion here is that even rather strong variations in membrane parameters do not significantly affect the water content in the cell under the balanced state in a hypoosmolar medium. They mainly affect the dynamics of the transition. Other steady-state characteristics such as K/Na, OSOR, and U vary more significantly. It is the study of these characteristics that can help to distinguish the possible mechanisms of RVD.
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FIGURE 9. The effects of a 10-fold decreasing or increasing membrane parameters on the main characteristics of ionic homeostasis and unidirectional fluxes via different ways under the balanced state in normal 310 mOsm medium and in the hypoosmolar medium of 160 mOsm with NaCl reduced by 75 mM. The calculation was carried out for the U937 cell model with a full set of cotransporters. The changed parameters are shown in the figure, the others remain unchanged and are presented in Table 2, cells B, NC+KC+NKCC. Unidirectional flows via NKCC are not shown because they are small (see Table 4).


In accordance with the primary flux equations underlying the model, changes in partial ion fluxes are directly proportional to changes in parameters characterizing the permeability of ion channels and rate constants for ion transfer through cotransporters (pk, pna, pcl, inc, ikc, and inkcc). Modeling shows which fluxes change more significantly and can be used for identification of the RVD mechanism using specific markers or inhibitors (Figure 9). Evidently, measuring K+ influx using Rb+ as its closest analog is most appropriate here.

The modeling reveals two main points. First, a change in the parameter of one ionic pathway always leads to more or fewer changes in fluxes through other pathways. This is because all channels and transporters carry ions into the common intracellular medium, and the same electrical and electrochemical gradients determine the movement of ions via channels and transporters operating in parallel. Multiple feedbacks cause multiple relationships between fluxes. Secondly, the integral characteristics of the system change much less than the parameters and fluxes in the corresponding pathways. An increase or decrease in parameters by a factor of 10 causes a decrease in cell volume only by about 20–25% both in normal and hypoosmolar media (Figure 9 and Table 5). A further change in the parameters does not lead to a significant increase in this value. Similar variations in other parameters show that a cell cannot change its volume in a hypoosmolar medium in any range, changing the properties of channels and transporters of the cell membrane, even with a wide list of them in our model. Here, there appears a hint that there must be other ways of regulating the ionic homeostasis of cells, in addition to changing the channels and transporters of monovalent ions in the cell membrane.


TABLE 5. The effect of changes in membrane parameters on the main characteristics of ionic homeostasis under the balanced state in the U937 cell model in a standard medium of 310 mOsm and in a hypoosmolar medium of 160 mOsm with a decrease in NaCl by 75 mM.
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Regulatory Volume Decrease in Living Cells in the Light of the U937 Cell Model Analysis

Our experimental data relating to U937 cells were sufficient to obtain the basic parameters corresponding to the homeostasis of monovalent ions in these cells under normal conditions. The use of the developed software and these parameters led us to unexpectedly excellent prediction of the real-time dynamics of changes in ionic homeostasis in living cells after blocking the pump. The adaptation of cells to hypoosmolar media turned out to be a more complex phenomenon in comparison with the change in ionic homeostasis after stopping the pump. Figure 10 and Table 6 illustrate the changes in water and ion content in living lymphoid cells of three types (K562, Jurkat, and U937) for the first 30 min and after 4 h incubation of cells in hypotonic (160 mOsm) or hypertonic (510 mOsm) media, which were observed in our previous study (unpublished data).
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FIGURE 10. Changes in water, K+ and Na+ content in K562, Jurkat, and U937 cells after 30 min or 4 h incubation in hypoosmolar medium obtained by a 75 mM NaCl reduction in standard RPMI medium. Means ± SE for at least 3 independent experiments are shown, small SE values are masked by symbols. The broad colored lines show the level of the initial values for 30 min incubation in a hypoosmolar medium. (A–C) The water content in ml/g protein, obtained by measuring the cell buoyant density, is given relative to cell water in a standard RPMI medium.



TABLE 6. Changes in the buoyant density and the K+ and Na+ content in K562, Jurkat, and U937 cells after transfer to a hypoosmolar medium (160 mOsm).
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Since cell water was assayed by measurement of the cell buoyant density, we could see that the dispersion of cells by water content when they were adapting to anisoosmolar media, both hypo- and hyperosmolar, was remarkably higher than that under standard conditions. The cell population turned out to be heterogeneous in its ability to adapt to anisoosmolar media. Therefore, the cells from the upper and lower parts of the band in the Percoll gradient were taken for ion assay separately. It turned out that the heavier part of the cell population consisted of 40–77% by a protein dependent on cell species and was adapted to hypotony, while the residual part did not (Figures 10A–C). The cells adapted to the hypotonic medium contained less water and Na+ + K+ than at the first moment, demonstrating RVD. The restoration of cell water in the adapted cells was nearly complete and was associated with the release of ions from the cells. However, the content of K+ + Na+ did not return to the level of cells in the medium of 310 mOsm, since the external, as well as intracellular, osmolarity became 160 instead of 310 mOsm.

The relationship between changes in cell volume and the K+, Na+, and Cl– content has been considered already in pioneering studies (Roti-Roti and Rothstein, 1973; Hendil and Hoffmann, 1974; Cala, 1977; Grinstein et al., 1982, 1983; Grinstein and Foskett, 1990). Since then, it has been clear that the amount of intracellular osmolytes that do not penetrate the cell membrane under normal conditions and their charge z, in addition to changes in the membrane parameters, are essential players in RVD (Hoffmann et al., 2009). It has been found that the redistribution of three groups of organic intracellular osmolytes is essential for RVD in many cases, although their involvement in cell volume regulation is highly dependent on cell species and conditions (Kirk, 1997). Studying the pathways passing ions and intracellular organic osmolytes through the cell membrane during RVD turns out in the focus. Changes in the overall osmotic balance of a cell caused by the movement of organic osmolytes during RVD are usually not quantified. Our computation of ionic homeostasis can help to understand the possible impact of K+, Na+, and Cl– in RVD.

The first question is, what amount of decrease in the content of monovalent ions should be sufficient to completely restore the water content in cells in a hypoosmolar medium? Here, we need to go beyond modeling the flux balance and move on to some basic formulas. According to generally accepted concepts, two basic Equations (1) and (2) determine the relationship between the content of intracellular water (V), the intracellular concentration of monovalent ions (Na+, K+, and Cl–), other intracellular osmolytes (A), impermeant through the plasma membrane, and their integral charge, which is always negative (Jakobsson, 1980; Lew et al., 1991; Hoffmann et al., 2009, p. 195–196).
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Compliance with Equations (1) and (2) means water–osmotic balance (water equilibrates much faster than ions) and integral electroneutrality of the cytoplasm. These equations underlie our calculations and are carried out not only under the balanced state in ionic homeostasis but also at any moment of the redistribution of the monovalent ions during transition from one balanced state to another, irrespective of the mechanism of ion movement across the cell membrane. A and z remain constant in our calculations. However, they can be obtained rigorously for any time point using Equations (1) and (2) if the water content in cells and intracellular concentrations of Na+, K+, and Cl– are known for this moment.

It follows from Equations (1) and (2) that a ratio of the volume of cells in the hypoosmolar medium to the volume of cells balanced with the normal medium is determined by Equation (3):
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After rewriting, [image: image]

The value 2[Cl]i,hypo can be found by direct measurement or by calculation for a given model. When all intracellular chloride is exhausted and [Cl]i,hypo = 0, the limit is achieved.

In the limit, [image: image]

For our example of U937 cell (Table 2, cell B), [image: image]

Consequently, the cell volume after RVD, caused by the maximum loss of monovalent ions at a given initial intracellular Cl– content, should remain 37.5% higher than in a normal medium of 310 mOsm. The volume of cells in a medium of 160 mOsm in a simple osmometer without RVD should be 1.94 times higher than normal (310/160). Thus, the swelling by 94% can be reduced due to RVD in the considered example to swelling by 37.5%.

Our experimental data for U937, K562, and Jurkat cells show that some subpopulations of these cells restore volume in the 160 mOsm medium to almost the level in the normal medium (Figure 10). This is an indicator that these cells can go beyond the limits described above and use a mechanism for this, other than the changes in the membrane parameters regulating the movement of K+, Na+, and Cl–. This can be the changes in the amount of the osmolytes considered as impermeant across the plasma membrane under normal conditions or changes in their charge. There are many direct experimental indications that the cells placed into the hypoosmolar medium can lose a significant amount of organic intracellular osmolytes. These osmolytes and the pathways of their transfer across the cell membrane haven been studied intensively over the past decades. Here, we show that the impact of these mechanisms in RVD can be quantified using data on changes in intracellular water, K+, Na+, and Cl– if obtained with appropriate accuracy.





DISCUSSION

Despite the impressive progress in cell biology associated with advances in molecular biology, the fundamental cellular system that determines not only the water and ionic balance of animal cells but also the electrochemical gradients of inorganic ions on the cell membrane, the membrane potential and the ion flux balance remain in the shadows. However, this system is incredibly important for the functioning of the entire cell. The term “ionic homeostasis,” sometimes used to denote this system, seems too weak to refer to the apparatus that plays a key role in the cell physiome, which is, in the complex of physiological processes inherent in the cell, usually not considered in areas called cellular proteome and metabolome. The electrochemical system of the cell, which includes many ion channels and carriers in the cell membrane, as well as charged intracellular osmolytes, is complex and requires computations for its analysis.

Our previous computation of the change in ionic homeostasis after stopping the pump and due to apoptosis (Yurinskaya et al., 2019) considered only the NC cotransport because of the difficulties in analyzing a system with many parameters, which must be linked to experimental data. A more complex system with all main types of cotransporters NC, KC, and NKCC was computed in a previous study for U937 apoptotic cells (Yurinskaya et al., 2020). We considered how difficulties due to increasing the number of parameters can be overcome using the cotransporter inhibitors and which uncertainties remain because of inaccuracy of the primary experimental data. Here, the system with all main cotransporters is used to study changes in ionic homeostasis after blocking the Na/K pump and during RVD.

In general, new calculations carried out with a wider list of cotransporters confirm that our computational approach allows us to quantitatively predict the real-time dynamics of changes in the cellular ion and water homeostasis caused by stopping the pump. Importantly, this prediction is based on the use of invariable parameters obtained for resting cells under normal conditions, without any adjustment or fit. The accuracy of the prediction is limited mostly by the accuracy of the available experimental data.

Certain differences have been found between the behavior of the model with only NC cotransporter, which is required for most cells, and the model with several cotransporters, NC+NKCC, NC+KC, and NC+NKCC+KC. The most significant difference in the dynamics of changes in cell water content after stopping the pump for U937 cell model appears with the addition of the NKCC cotransporter. The decrease in water content in the NKCC model occurs with an extremum at a 2 h time point, although this effect is too small to be compared with experimental data at the present accuracy of water analysis. More detailed calculations of the significance of the small amounts of impermeant osmolytes in cell environment in the reduction of cell swelling after stopping the pump led us to the correction of our previous views on the limited swelling of living cell under the real physiological conditions (Yurinskaya et al., 2011; Vereninov et al., 2014). The most significant result of a successful prediction of the real dynamics of ion homeostatic changes after stopping the pump by calculating a model with all major cotransporters is the conclusion that the model is trustworthy.

The study of changes in ionic homeostasis caused by changes in external osmolarity is another important approach to understanding its nature and testing existing concepts and models. According to the general concept, there is some “set point” in the regulation of cell volume or cell water content. By changing the properties of channels and transporters of the plasma membrane, as well as the content of intracellular osmolytes, cells reach this set point. Our computational modeling shows that there is a “physical” RVD during the transition of cells to a hypoosmolar medium with decreasing NaCl concentration, resembling the RVD observed in living cells. This physical RVD arises with unchanged cell membrane properties due to simple changes in electrochemical ionic gradients caused by changes in the composition of the medium, rapid increase in intracellular water content, and the time-dependent changes in intracellular ionic composition. The physical RVD masks truly active regulatory processes mediated by the intracellular signaling network. Using our software allows to separate the effects of changing external osmolarity, ion composition, and the properties of various kind of channels and transporters. It can be seen how the changes in the balance of the monovalent ion fluxes across the cell membrane in hypoosmolar medium may depend on the initial state of the cell. The computation of the unidirectional fluxes, as it is done in the current paper for U937 cells, allows to find the conditions when fluxes via certain species of channels or transporters monitored by ion markers or inhibitors will be minimally masked by the fluxes via parallel pathways.

We believe that the executable file of our software is universal and can be used to calculate ion homeostasis and the balance of unidirectional flows of monovalent ions in different cells under different conditions. However, a minimal set of experimental data is required to determine the intrinsic parameters used in computation. These data include the intracellular content of cell water, Na+, K+, and Cl–; and ouabain-sensitive and -resistant components of the Rb+(K+) influx, as well as components sensitive to inhibitors of NKCC and KC cotransporters if one needs to consider cotransporters NKCC and KC. Of course, it is not easy to obtain these data with the required accuracy, especially data on the content of water and Cl–, but a quantitative description of ionic homeostasis and balance of fluxes, as in our approach, is impossible without these data.



SUMMARY

A successful prediction of changes in ion homeostasis in real-time after stopping the pump using a model with all major cotransporters and parameters obtained for normal cells indicates the reliability of the developed computational model. The use of this model for the analysis of RVD has shown that there is a “physical” RVD associated with time-dependent changes in electrochemical ion gradients, but not with changes in channels and transporters of the plasma membrane, which should be considered in studies of truly active regulatory processes mediated by the intracellular signaling network. The developed computational model can be useful for calculating the balance of partial unidirectional fluxes of monovalent ions via all major pathways in the cell membrane of various cells under various conditions.
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Negative reguiation of vesicle budding
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Source

Urine exosomes

Plasma exosomes

Serum exosomes

Neural origin plasma exosomes

Potential biomarker

Phosphoenolpyruvate carboxykinase

Let-7b, miR-144-5p, miR-34a, and miR-532-5p
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Express level
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Source Contents Functions Level References

Adipocytes RBP4 Activation of macrophage impairing glucose uptake and the Overexpress Deng et al., 2009
insulin response depending on the TLR4 pathway and
inducing TNF-a and IL-6

Insulin resistance adipocytes Sonic Hedgehog Mediating M1 macrophage polarization through Ptch/PI3K Overexpress Song et al., 2018

(Shh) signaling and educating macrophage which produces

exosomes causing insulin resistance by decreasing the
expression of IRS-1 and HSL expression

Adipocytes microRNA-34a Inhibiting M2 macrophage polarization by targeting Kif4 Overexpress Panetal., 2019

Adipose tissue macrophages miR-155 Impairing insulin sensitivity by targeting PPARy Overexpress Ying et al., 2017

Adipose tissue macrophages miR-29a Transferring to adipocytes, myocytes, and hepatocytes to Overexpress Liu et al., 2019
induce insulin insistence by targeting PPAR-3

Adipocytes miR-27a Decreasing the expressions of IRS-1 and GLUT4 in skeletal Overexpress Yuetal, 2018
muscle tissue by targeting PPARy

Adipocytes miR-141-3p Increasing PISK/AKT signaling pathway by targeting PTEN Downexpress Dang et al., 2019
in hepatocytes

Adipocytes Sirt1 Decreasing insulin resistance by reducing TLR4/NF-kB Downexpress LiF etal, 2019
signaling pathway

Hypoxic adipocytes - Impairing insulin-stimulated glucose uptake by reducing - Mileczko et al., 2018
AKT phosphorylation

Hepatocytes miR-130a-3p Suppressing adipogenesis by downregulating the Downexpress Wu et al., 2020
expression of FASN and PPARYy at the protein level and
increasing the level of P-AKT and P-AS160 by targeting
PHLPP2

Pancreatic p cells microRNA-26a Increasing insulin sensitivity in peripheral tissues, decreasing Downexpress Xu H. etal., 2020
glucose-stimulated insulin secretion (GSIS) by impairing
actin cytoskeleton remodeling and preserving p cell function

Gut microbes = Inducing insulin resistance by infiltrating the gut barrier and — Choi et al., 2015
targeting other organs

Serum miR-122, miR-192, Targeting Pparg to induce e WAT Inflammation and hepatic Overexpress Castaro et al., 2018

miR-27a-3p, and
miR-27b-3p

steatosis
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E-PE (54) PTC (48) TC (14)

Mean GA at delivery 29.28 + 0.40 30.58 + 0.95 38.83 + 0.36
(weeks)

Blood Pressure

Systolic 166.22 £4.87 113.00 + 4.47 113.50 £ 9.19
Diastolic 101.53 £ 3.1 73.25 +3.20 71.00 + 1.41
Proteinuria 3.80 £ 0.10 Absent Absent
Fetal Weight (g) 1084.22 £ 71.80 1493.33 + 54.73 3272.14 £ 171.15
Fetal Sex (%) M: 75* M: 50 M: 28.5
F: 25t F: 50 F:71.5
Mode of Delivery (%) CS 93.00* CS 40 CS71.5
VD 7.00° VD 60 VD 28.5

Data are presented as mean =+ standard deviation. *M: Male. TF: Female. ¥CS:
Caesarian section. SVD: Vaginal delivery. PE, preeclampsia; PTC, preterm control:
TC, term control.
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names)
Dual oxidase maturation Transport of DUOX1/2 from ER ER, PM
factor family (DUOXA1, to PM
DUOXA2)
Prominin family (PROM1, Cholesterol binding PM, Vesicle,
PROM2) Nucleoplasm
ATP6VOB Proton-conducting pore Vacuole
forming subunit of vacuolar
ATPase
BFAR Apoptosis regulator ER, PM
CLPTM1 May play arole in T-cell ER, PM
development
CHRFAMT7A Transmembrane signaling PM
receptor activity, regulation of
membrane potential
DNAH3 Cilium-dependent cell motility Plastid
SLC66A3 Possible transport of amino ER
acids across the lysosomal
membrane
TEX261 COPIl-coated ER to Golgi Vesicle,
transport vesicle Vacuole
Nucleoplasm
TMEM79 Regulated exocytosis, Golgi apparatus
cornification
UNC50 Protein transport Vacuole, Golgi
apparatus

ER, endoplasmic reticulum,; PM, plasma membrane.
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Protein family (gene name)

Tweety family YH1, TTYH2, TTYH3)
OXA1/ALB3/YidC family (OXA1L, COX18)

Sideroflexin family* (SFXN1, SFXN2, SFXN3,
SFXN4, SFXN5)

TspO/BZRP family* (TSPO, TSPO2)
YIF1/YIP1 family* (YIF1A, YIF1B, YIPF1-7)

CD47
STIMATE
ARV1
TMEM41A

TCDB

1.A.48.-.-

2.A9.-.-

2.A.54.-.-

9.A.24.-.-

9.B.135.-.-

1.N.1.-.-
8.A.65.-.-
9.A19.-.-
9:-B.27 -~

Functional activity

Swelling-dependent volume-regulated anion channel in
astrocytes

Insertases: translocation of COX2 and integral membrane
proteins

Amino acid transport

Transmembrane signaling Mitochondrial respiration
Cholesterol transport

COPII-coated ER to Golgi transport vesicle-mediated
transport

Cell adhesion, membrane transport

Calcium channel regulator activity

Cholesterol transport

Putative transport protein; metastasis via modulation of
E-cadherin

Localization

PM

Mitochondria IM

Mitochondria IM

ER, Vesicle, Vacuole Mitochondria OM

Golgi apparatus, ER

PM, Vesicle
ER, Vacuole
ER, Vesicle,
ER, Golgi apparatus

Asterisk (*) indicates a family member is presumably involved in transport activity although it does not have an TCDB identifier associated with it.
ER, endoplasmic reticulum, IM, inner membrane; OM, outer membrane; PM, plasma membrane; TCDB, Transporter Classification Database.





OPS/images/fcell-09-708754/fcell-09-708754-t001.jpg
Protein family (gene name)

TLC domain (TLCD4*, TLCD3A)

AB hydrolase superfamily, Lipase family (DAGLA,
DAGLB)

Dual specificity phosphatase catalytic domain
(TPTE, TPTE2)

Metallophosphoesterase domain (TMPPE,
TMEM62%)

Emopamil-binding protein family (EBP, EBPL*)

CH25H

ZDHHC4

AGPAT4
RNFT1
SYVN1
CDIPT
TAOK2
AIG1
DOLPP1
HACD2

Functional activity

Ceramide synthesis, possibly involved in lipid trafficking,
metabolism, or sensing

Hydrolase activity

Phosphatase activity

Hydrolase activity

Cholesterol biosynthesis Lipoprotein internalization N.B:
EBPL function is undetermined but not involved in
cholesterol biosynthesis

Catalyzes the formation of 25-hydroxycholesterol from
cholesterol

Protein-cysteine S-palmitoyltransferase activity, protein
targeting to membrane

Transferase activity, transferring acyl groups
ES3 ubiquitin-protein ligase

ES3 ubiquitin-protein ligase
CDP-diacylglycerol metabolic process
Serine/threonine-protein kinase

Hydrolase activity: Long-chain fatty acid catabolic process

Hydrolyzes dolichyl pyrophosphate and monophosphate

Catalyzes reaction in long-chain fatty acids elongation cycle

Localization

ER, Nucleus

PM

Golgi apparatus, ER

Nucleoplasm, Mitochondria

ER, PM, Vesicle, Vacuole

ER, Vacuole

Golgi apparatus, ER, Vacuole

Golgi apparatus, ER, Nucleoli, Vesicles
ER, Nucleoli

ER, PM, Nucleoplasm, Vacuole

PM, Nuclear membrane

CM, Nucleoli, Nucleoplasm

Golgi apparatus, ER

ER, Vesicle, Vacuole

ER

Asterisk (*) indicates protein is involved in enzymatic activity or member of enzyme family, but does not have an Enzyme Commission (EC) identifier. Families with italic font
indicates additional homologous proteins were identified but a different number of transmembrane regions predicted (i.e., more or less than 5TM regions).
CM, cell membrane; ER, endoplasmic reticulum,; PM, plasma membrane.
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A Membranous organelle association of host-cell markers

Marker Reported
localization

AP2
CD44
MHC-I
Rae1
Dynamin 2
APPL1
Rab22a
Rab4
Rab5a
Rabenosyn-5
EEA1
Hrs/Hgs
PIKFyve
Vps24
WASH 1
Vps35
TR
Rab15
ARF6
BRAG2
Epi64
Rab35
MICAL-L1
ACAP2
EHD1
ACAP1
EHBP1
Rab10
Rab14
Rab11a
Rab8a
Rab13
Rab36
Ewvt-2
Rab31
ARF3
BIG1
BIG2
TGN38
Golgin 97
STX6
Rab6
Furin
M6PR
Vtita
AP1
ARF1
ARF4
ARF5
GS15
GM130
Rab41
Rab%a
CD63
Lamp1
NPC1
Rab7a
GM1
Rab27a
Rab27b
Rab18
LC3

p62
AIFM1
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Protein name Gene UniProt Rab28WT Rab28972L Rab28T26N Statistical

name ID fold change fold change fold change significance
Phosphodiesterase subunit 63 pde6d F1Qz52 27.3322 28.9509 25.0361
Green-sensitive opsin-1/2 opnimwi; QOWBAS; 27.1691 27.4838 26.0533

opnimw2 QBAYMS8
Phosphodiesterase subunit 6C pde6c AOAOR4IUY2 26.6219 26.6937 27.1257 WT
Mitochondrial slc25a11 FIR319 26.3657 26.0985 265398 QraL
2-oxoglutarate/malate carrier T26N
protein
ATP synthase peripheral atp5f1 B8JIS1 25.3337 25.0249 24.7418
stalk-membrane subunit b
Synaptic vesicle glycoprotein 2A sv2a E7F622 24.93 24.6194 25.0224
Opsin-1, short-wave-sensitive 2 opnisw2 QIWBA8 18.2745 27.8295 27.0179
Protein SREK1IP1 srek1ip1 Q3B7G7 15.9747 24.5876 24.3266
Retinal G-protein coupled rgra Q567Y2 16.3406 24.2236 23.4819
receptor a
Thioredoxin 29c:56493 Q7zUl4 16.0079 23.9897 23.4402 QraL
Sideroflexin sfn3 B8JJ32 15.9322 23.9228 24,5768 T26N
N-ethylmaleimide sensitive factor nsfa/b B72v6e2; 15.5498 23.7333 23.0887
a/b AOCAOR4IGS4
Sodium/potassium-transporting atplal; Q9DGLG; 16.4131 24.4676 24.6676
ATPase subunit atplala.4 B8JKS7
Guanine nucleotide-binding protein  gnb3b 13ISK4 16.1292 25.3125 16.3794 QraL
beta polypeptide 3b
Guanylate cyclase gucy2d F1QSL9 8.02401 16.1627 26.3006
Erlin-1;Erlin-2 erlin;erlin2 B7zD02; 7.27904 7.32804 23.0652

FENPB1

Cox7a2l protein cox7a3 Q78X 7.78141 7.69661 22.7206 T26N
Dolichyl- ont F1QQMS; 16.317 14.9566 22.8419
diphosphooligosaccharide—protein F1QTB5
glycosyltransferase subunit 1
BetaA1c-crystallin 7 cryball2 B5M4A 14.4859 15.3575 22.151

Shown are those proteins with a logo fold change relative to the eGFP only control > 20 for at least one of the eGFP-Rab28 variants.
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Functions

Depletion of HRS can reduce the exosome secretion

Depletion of STAM1 can reduce exosome secretion

Knockdown of TSG101 results in reduced exosome secretion

unclear

Knockdown of the ESCRT-l component CHMP4 can decrease exosome secretion

Silencing of ALIX does not affect the number of exosomes secreted, but changes the protein composition
‘of exosomes, increasing the number of MCH dlass Il molecules in cels and exosomes

Silencing of AUIX reduced exosomes containing MHC class Il, CDG3, and CDB1 in approximately half of the.
cells

‘The syndecan-syntenin-ALIX interaction was necessary for biogenesis of exosomes.
Inhibition of VPS48 led to increased exosome secretion
‘Simuitaneously infibition of VSP4A and VSP4B reduced exosome secretion

Inhibition of sphingomyeinase can impair the synthesis of ceramide, thus disupting the secretion of
exosomes

Inhibition of PLD2 can impar the syrthesis of PA, thus disrupting the secretion of exosomes
Accumulation of cholesterol in MVBs can induce secretion of exosomes expressing CD63, ALK, and
Flotiin-2, from oigodendrogia cells

CD9 has boen shown to increase exosome secretion

In the CDO knockout mouse, secretion of exosomes expressing flotin-1 s decreased from bone marrow
denditic cels.

D63 has been shown to sort the melanosomal protein PMEL into ILVs

CDB1 ligands are transported to exosomes for secretion

CDB2 has been shown to increase exosome secretion

Overexpression of TSPANS changed the mRNA and protein constituents in exosomes, without affecting the.
‘amount of exosome secretion

Hsc70 was shown to recnit transferrin receptor (TFR)in mature reticulocytes.

knockdown of Rab28, RabSA, and Rab9A can reduce the secretion of exosomes.

Knockdown of Rab7 dis not influence exosome secretion
Rab is involved in the refease of exosomes containing syntenin and ALIX
Knockdown of Rab1 1A id not influence exosome secretion

Rab11 was linked to the exosome secretion involving TFR and Hsc70
Rab11 isinvolved in the release of exosomes containing anthrax toxin
Depletion of Rab27A or Rab278, located in late endosomes and lysosome-related organeles, strikingly decreased the

‘amount of exosome secretion

Knockdown of Rabd5 interferes with the processing of PLP-expressing exosomes in oli-neu cells and primary.

oigodendrocytes

Molecules Cell lines
ESCRT-dependent pathway
ESCRT-0
HRS Hela celis, HEK293 cells, Head and
neck squamous cell carcinoma, Mouse
dendtc cells
STAM Hela cells
ESCRTI
T8G101 Hela cells, MCF-7 cells
ESCRT-I Hela cells
ESCRT-I
CHMP4 MCF-7 cells
Accessory proteins
AUX Hela cells
Mouse denditic cells
MCF-7 cells
VPS4 Hela cells
MCF-7 cells
ESCRT-independent pathway
Lipids
Cenamide Oligodendrogia cells
Phosphoipase D2(PLDZ)  RBL-2H3 cells
Cholesterol Oligodendrogia cells
Tetraspanin family
co9 HEK293 cells
Dendiic cells
coss Melanoma cells
cost Lymphobiasts
cos2 HEK293 cells
TsPANS Rat adenocarcinoma cells
Chaperone
Hsc70 Reticulocytes
Rab GTPase family
Rab2B, RabSA, Rab9A  Hela cells
Rab7 Hela cells
MCF-7 cells
Rabi1 Hela cells
K562 cells
RPE1 cells
Rab27Aor Rab278  HeLa cells
Rabds Oigodendroga celis, Ofineu cells
RPE1 cels
SNARES family
VAMPT K562 erythvoleukemia cells
MOCK cells
YKT6 HEK293 cells

Rab35 is involved in the release of exosomes containing anthrax toxin

Exosome secretion depends on v-SNARE protein VAMP
Inhibition of VAMP? disrupted release oflysosomes but not secretion of exosomes

V-SNARE protein YKT6 is essential for release of exosomes containing the WNT3A morphogen

References.
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2012; Colombo et al, 2013;
Hoshino et al, 2013
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EVs (including
exosomes) sources

Potential biomarkers

Findings

ROC analysis

References

CSF

Plasma

Serum

Saliva

Urine

a-syn
miR-153, miR-409-3p,
miR-10a-5p, and let-7g-3p
miR-1 and miR-19b-3p
CNS-derived EV a-syn

CNS-derived EV tau

CNS-derived EV DJ-1 and EV
DJ-1/total DJ-1 ratio

Clusterin, apolipoprotein Af,
complement C1r subcomponent

miR-331-5p

miR-505

Afamin, apolipoprotein D and J,
pigmented epithelium-derived
factor

Complement C1q, Immunoglobulin
Lambda Variable 1-33 (IGLV1-33)
Cluster -33

miR-24 and miR-195

miR-19b

phosphorylated a-syn
a-syn oligomers and a-syn
oligomers/total a-syn ratio

DJ-1

SerP-1292 LRRK2/total LRRK2
ratio

SerP-1292 LRRK2

Lower in PD patients
Prominently increased in PD patients

Prominently decreased in PD patients
Significantly higher in PD patients, and
related to the severity

Higher in PD patients compared with AD
patients

Significantly higher in PD patients

Significantly lower in HY stage Il and PD lI
patients, apolipoprotein A1 is related to
PD’s severity

Prominently increased in PD patients
Prominently decreased in PD patients
Significantly higher in PD patients

Significantly lower in PD patients

Prominently increased in PD patients

Prominently decreased in PD patients

Significantly higher in PD patients
Higher in PD patients

Significantly higher in men in PD patients
and increased in an age-dependent manner
Predicted LRRK2 mutation status, higher in
PD patients with LRRK2 mutation

Higher in men than women and increased
in idiopathic PD patients, related to the
severity of cognitive impairment

AUC = 0.780;

AUC = 0.970; AUC = 0.900
AUC = 0.920; AUC = 0.705
AUC = 0.654,

sensitivity = 70.1%,
specificity = 52.9%

AUC = 0.607,
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specificity = 65.1%
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specificity = 82.5%
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Medium, mOsm Incubation time Cells Density, g/ml Water, ml/g prot. K+ Nat n
r mol/g prot.
K562 cells
310 4h 1.045 + 0.001 7.49 1031 £53 281 + 25 17 (16)
160 15 min 1.032 + 0.001 10.95 951 £ 93 287 + 54 7
4h H 1.043 £ 0.002 7.89 595 + 69 335 + 57 17 (13)
L 1.031 + 0.001 11.33 808 + 84 257 £ 42 11
Jurkat cells
310 4h 1.048 £ 0.001 6.96 973 + 64 326 + 34 9
160 15 min 1.032 + 0.002 10.95 823 + 86 383 + 46 6
4h H 1.045 £ 0.002 7.49 584 + 64 286 + 40 8
L 1.033 + 0.002 10.68 730 + 106 254 +13 5(4)
U937 cells
310 4h 1.046 + 0.001 7.81 861 + 122 307 + 58 5
160 15 min 1.032 £ 0.001 10.95 730 +£133 378 + 62 5(4)
4h 1.045 + 0.003 7.49 539 +110 368 +113 4
L 1.032 £ 0.001 10.95 392 + 111 430 + 124 2

The osmolarity of the medium was changed by decreasing the external NaCl concentration. H cells—adapted and L cells—not adapted to the hypoosmolar medium.
Means + SE of n density measurements are given, the number of measurements of ion content is the same or as indicated in parentheses. Water is calculated as
described in section “Materials and Methods.”
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Parameters U na k cl VIA VIVo-iso V/Vo-pypo mucl naC kC clC K/Na

mV mM ml/mmol~1 mmol mol~!

Characteristics under the balanced state in a normal medium of 310 mOsm

Standard for balance in 310 mOsm 45.0 38.0 147.0 45.0 12.5 1.0 19.8 475 1,837 562 3.87
Changed parameters Characteristics under the balanced state in a normal medium of 310 mOsm
pk 0.115; pcl 0.11, both x 10 —731 477 1465 112 9.56 0.77 10.6 456 1,401 107 3.07
pk 0.575; pcl 0.55, both x 50 —-82.8 50.3 1454 59 9.22 0.74 34 464 1,341 547 2.89
inc 0.0000035 (:20) —-5681 183 1748 153 9.84 0.79 4.1 180 1,721 151 957
inc 0.000014 (:5) -56.6 218 1699 20.2 10.20 0.82 8.9 223 1,734 207 7.78
ikc 0.0008 (x 10) —-67.9 464 1471 139 9.75 0.78 1.3 452 1,434 136 3.17
ikc 0.00024 (x 3) —56.8 424 1474 275 10.78 0.86 17.4 457 1,590 296 3.48
pk 0.115; pcl 0.11 (both x 10); —-84.6 237 1722 5.1 9.17 0.73 1.0 218 1,579 464 7.26
inc 0.0000035; ikc 0.0008
Standard for balance in 310 mOsm Characteristics in hypoosmolar medium of 160 mosM, Na* 65, K* 5.8, and CI~ 41 mM
Initial —-40.2 196 759 232 24.20 1.94 1.0 25.0 475 1,836 562 3.87
balanced -482 106 879 119 20.17 1.61 0.83 156.0 214 1,774 239 8.28
Changed parameters Characteristics under the balanced state in hypoosmolar medium 160 mOsm
pk0.115; pcl 0.11, both x 10 -68.4 126 882 38 18.03 1.44 0.75 4.7 227 1,590 68.1 7.02
pk0.575; pcl 0.55, both x 50 -712 140 870 30 17.85 1.43 0.74 1.6 250 1,653 541 6.22
inc 0.0000035 (:20) -65.0 7.0 934 52 18.37 1.47 0.76 -0.2 128 1,716 955 134
inc 0.000014 (:5) -538 76 925 62 18.62 1.49 0.77 3.5 141 1,723 116 122
ikc 0.0008 (x 10) -56.6 125 876 62 18.61 1.49 0.77 6.1 233 1630 115 6.9
ikc 0.00024 (x 3) -627 111 884 84 19.19 1.54 0.79 10.3 213 1,697 161 7.97
pk 0.115; pcl 0.11 (both x 10); -703 95 914 32 17.89 1.43 0.74 1.9 169 1,636 56.7 9.66

inc 0.0000035; ikc 0.0008

Standard parameters corresponding to the balanced state of U937 cells in the normal medium of 310 mOsm, Na* 140, K* 5.8, and CI~ [Naj, 140, [K], 5.8, [Cl]o 116 mM
are as follows: pna 0.0017; pk 0.0115; pcl 0.011; inc 0.00007; ikc 0.00008; inkcc 0.000000008; Vo —iso @nd Vo pypo ———initial cell volumes in isotonic and hypotonic
medium, respectively. Stronger NC effects are marked in red.
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1.1368
0.1866
0.1866
0.1866
0.1866
0.1866
0.1866
0.1866

INC

1.1368
0.1866
0.1866
0.1866
0.1866
0.1866
0.1866
0.1866

IKC

0.0538
0.0190
0.0190
0.0190
0.0190
0.0190
0.0190
0.0190

PUMP

L= S = N = Y o T o f = S o B = |

IKC

0.0538
0.0190
0.0190
0.0190
0.0190
0.0190
0.0190
0.0190

Unidirectional fluxes

INKCC  EChannel

0.0874 —0.6477
0.0051 —0.3759
0.0051 —-0.3924
0.0051 —0.3906
0.0051 -0.3873
0.0051 -0.3710
0.0051 —0.3609
0.0051 —0.3596

INKCC PUMP

0.0874 —1.4820
0.0051 -0.7515
0.0051 —0.5496
0.0051 —0.4632
0.0051 —0.4425
0.0051 —0.4138
0.0051 —0.4135
0.0051 —0.4139

INKCC  EChannel

0.1748 —1.0246

0.0101 —0.4906
0.0101 -0.4216
0.0101 —0.3736
0.0101 —0.3560
0.0101 —0.3065
0.0101 —0.2843
0.0101 —-0.2818

Effluxes

PUMP EKC
0 —0.5291
0 —0.1405
0 —-0.1278
0 —0.1145
0 —0.1090
0 —0.0922
0 —0.0843
0 —0.0834
ENC EChannel
—0.1197 —0.0248
—0.0311 —0.0140
—0.0191 —0.0099
—0.0139 —0.0080
—0.0126 —0.0075
—0.0098 —0.0066
—0.0089 —0.0064
—0.0088 —0.0064

ENC EKC
—0.1197 —0.5291
—0.0311 —0.1405
—0.0191 -0.1278
—0.0139 —0.1145
—0.0126 —0.1090
—0.0098 —0.0922
—0.0089 —0.0843
—0.0088 —0.0834

ENKCC

—0.09056
—0.0062
—0.0035
—0.0023
—0.0020
—0.0013
—0.0011
—0.0011

ENKCC

—0.0905
—0.0062
—0.0035
—0.0023
—0.0020
—0.0013
—0.0011
—0.0011

ENKCC

—0.1809
—0.0125
—0.0070
—0.0046
—0.0039
—0.0026
—0.0021
—0.0021

Parameters are shown in Table 2 for cells B, variant NC + KC + NKCC. Fluxes are given in wmol min~" (ml cell water)~. An initial increase and following decrease in the

K* net flux with a local extremum at 24 min are marked in red.
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Measured characteristics, concentrations in mM

A. Cells used in pump blocking experiments

B. Cells used in study of RVD

[K]; [Na]; [Cll; A [KI; [Na]; [Clli A
156 35 70 49 147 38 45 80
Beta 0.039, z-2.47, OSOR 3.06 Beta 0.039, z -1.75, OSOR 3.89
Supposed cotransporters and their parameters required for the balanced state
Parameters NC + KC + NKCC NC + NKCC NC + KC NC NC + KC + NKCC NC + NKCC NC + KC NC
inc 7E-5 4.7E-5 5E-5 3E-5 7E-5 3E-5 4.87E-5 3E-5
ikc 3E-5 - 3E-5 - 8E-5 - 6E-5 =
inkcc 8E-9 8E-9 - - 8E-9 7E9 - -
Channel parameters required for the selected cotransporters
pna 0.0019 0.0032 0.0021 0.00317 0.0017 0.0043 0.00263 0.00382
pk 0.01 0.0149 0.0185 0.023 0.0115 0.0175 0.0165 0.022
pcl 0.004 0.00433 0.0029 0.00354 0.011 0.0139 0.006 0.0091
Computed homeostasis characteristics for the selected cotransporters, mV
u —45.2 —42.0 —56.5 —50.5 —45.0 —-37.6 —49.3 —44.7
mucl +31.7 +28.6 +42.0 +37.0 +19.8 +12.3 +24.0 +19.4
mun —82.2 —7941 -92.5 -87.5 -79.9 —724 —84.1 —79.5
muk +42.7 +45.8 +32.4 +37.4 +41.3 +48.7 +37.0 +41.6
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Symbols in software

Na, K, and Cl

NC, NKCC, and KC

na, k, cl, na0, kO, and clO
naC, kC, and cIC

BO

A

\

AN*1,000

V/A

z

pna, pk, and pcl
Beta

gamma

u

NC, KC, and NKCC

PUMP

PUMP

Channel

IChannel, INC, IKC, and INKCC

EChannel, ENC, EKC, and ENKCC

inc and ikc
inkcc
kv

hp

mun, muk, and mucl
OSOR

kb

Symbols in text

Nat, K+, CI=, and Rb™

[Nal;, [KJ, [Cll;, Nalo, [Klo, and [Cllo
Naj, K;, and CJ;
Blo

A

v

£
PNa, pK, pCl, pna, Pk, and pcy
i

¥
u

u

JIne, Inkee, and Jke
-B[Naj;

BINali/y

inc and ikc
inkcc

Apna, Apk, and Apg
OSOR

Definitions and units

lon species

Types of cotransporters

Concentration of ions in cell water or external medium, mM
Content of ions in cell per unit of A, mmol mol~!

External concentrations of membrane-impermeant non-electrolytes such as mannitol
introduced sometimes in artificial media, mM

Intracellular content of membrane-impermeant osmolytes, mmol, may be related to g
cell protein or cell number, etc.

Cell water volume, ml, may be related to g cell protein or cell number, etc.
Membrane-impermeant osmolyte concentration in cell water, mM
Cell water content per unit of A, ml mmol~"

Mean valence of membrane-impermeant osmolytes A, dimensionless
Permeability coefficients, min—"

Pump rate coefficient, min="

Na/K pump flux stoichiometry, dimensionless

Membrane potential, MP, mV

Dimensionless membrane potential U = uRT / F, dimensionless

Net fluxes mediated by cotransport, wmol min~="! (ml cell water)~"

Na efflux via the pump, wmol min~" (ml cell water)~!

K influx via the pump, wmol min=" (mi cell water)~"

Net fluxes mediated by channels, umol min=" (ml cell water)~"

Unidirectional influxes of Na, K, or Cl via channels or cotransport, jmol min=" (mi cell
water)~ !

Unidirectional effluxes of Na, K, or Cl via channels or cotransport, jumol min—" (ml cell
water)~!

NC and KC cotransport rate coefficients, ml wmol~" min~"
NKCC cotransport rate coefficients, mi® umol=3 min=1

Ratio of “new” to “old” media osmolarity when the external osmolarity is changed,
dimensionless

Number of time points between output of results, dimensionless
Transmembrane electrochemical potential difference for Nat, K, or CI=, mV
Ratio of ouabain-sensitive to ouabain-resistant Rb* (K*) influx, dimensionless

Parameter characterizing a linear decrease of the pump rate coefficient g with time,
in—1
min
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lon Time, min

30
48
240
480
1,200
3,600

Na*+ 0
30
48
240
480
1,200
3,600

CI- 0
30
48
240
480
1,200
3,600

w,mvV

42.7
52.0
50.0
17.5
1.3
0.0
0.0

-82.2
—48.9
—41.2
-6.6
-1.0
-0.0
-0.0

31.7
16.0
13.7
-04
-0.5
-0.0
-0.0

Net fluxes, total

0.0000
—1.0538
—0.9646
—0.1247
—0.0016

0.0000

0.0000

0.0000
0.9363
0.8156
0.2934
0.0749
0.0020
0.0000

0.0000
-0.1178
—0.1494

0.1686

0.0733

0.0020

0.0000

Unidirectional fluxes

Influxes Effluxes
IChannel PUMP IKC INKCC EChannel PUMP EKC ENKCC
0.1203 0.9098 0.0202 0.0874 —0.5956 0 —-0.3278 —0.2142
0.0959 0 0.0202 0.0874 —0.6733 0 —0.2580 —0.3259
0.0934 0 0.0202 0.0874 —0.6069 0 —0.2193 —0.3393
0.0722 0 0.0202 0.0874 —-0.1387 0 —0.0382 -0.1275
0.0660 0 0.0202 0.0874 —0.0693 0 —0.0208 —0.0851
0.0646 0 0.0202 0.0874 —0.0646 0 —0.0202 —0.0873
0.0645 0 0.0202 0.0874 —0.0645 0 —0.0202 —0.0874
IChannel INC IKC INKCC EChannel ENC PUMP ENKCC
0.5517 1.1368 0 0.0874 —0.0254 -0.1716 —1.3647 —0.2142
0.4400 1.1368 0 0.0874 —0.0704 —-0.3315 0 —0.3259
0.4283 1.1368 0 0.0874 —0.0915 —0.4061 0 —0.3393
0.3309 1.1368 0 0.0874 —0.2587 -0.8755 0 -0.1275
0.3026 1.1368 0 0.0874 -0.2917 —1.0751 0 —0.0851
0.2960 1.1368 0 0.0874 —0.2958 —1.1352 0 —0.0873
0.2959 1.1368 0 0.0874 —0.2959 —1.1368 0 —0.0874
IChannel INC IKC INKCC EChannel ENC EKC ENKCC
0.1772 1.1368 0.0202 0.1748 —0.5811 -0.1716 —0.3278 —0.4285
0.2535 1.1368 0.0202 0.1748 —0.4618 —-0.3315 —0.2580 —0.6517
0.2635 1.1368 0.0202 0.1748 —0.4406 —0.4061 -0.2193 —0.6786
0.3666 1.1368 0.0202 0.1748 —0.3611 —0.8755 —0.0382 —0.2550
0.4055 1.1368 0.0202 0.1748 —0.3978 —1.0751 —0.0208 —0.1703
0.4153 1.1368 0.0202 0.1748 —0.4151 —1.1352 —0.0202 —0.1747
0.4155 1.1368 0.0202 0.1748 —0.4155 —1.1368 —0.0202 —0.1748

Fluxes are given in wmol min~" (ml cell water)~ . Calculation is performed with parameters shown in Table 2 for cells in A as described in section “Materials and Methods.”
Initial beta 0.039 changes to 0 at t > 0. Extremum in ENKCC is marked in red.
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