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ER Stress-Related Genes EIF2AKS,
HSPAS, and DDIT3 Polymorphisms are
Associated With Risk of Lung Cancer

Yongshi Liu'", Xiaohua Liang'?, Hongpei Zhang?, Jiajia Dong?, Yan Zhang?, Juan Wang’,
Chunmei Li?, Xiangbing Xin"* and Yan Li"*
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Objective: This study aimed to evaluate the associations between endoplasmic reticulum
(ER) stress—related genes EIF2AKS/PERK, HSPA5/GRP78, and DDIT3/CHOP
polymorphisms and the risk of lung cancer.

Methods: Six single-nucleotide polymorphisms (SNPs) of EIFPAK3, HSPA5, and DDIT3
were genotyped in 620 cases and 620 controls using a MassARRAY platform.

Results: The minor allele A of rs6750998 was a protective allele against the risk of lung
cancer (p < 0.001), while the minor alleles of rs867529, rs391957, and rs697221 were all
risk alleles that may lead to multiplied risk of the disease (ro,sge7500 = 0.002; Prszgi957 =
0.015; prsso7oo1 < 0.001). Moreover, the rs6750998-TA/AA genotypes were protective
genotypes against the risk of lung cancer (p = 0.005); however, the rs867529-GC/CC,
rs391957-CC, and rs697221-GA/AA genotypes were associated with elevated lung
cancer risk (Drsge7500 = 0.003, Prszgios7 = 0.028, and pyrssa7201 = 0.0001). In addition,
EIF2AK3-rs6750998 was associated with a decreased risk of lung cancer under dominant,
recessive, and log-additive models (p < 0.05). By contrast, the EIFPAK3-rs867529 was
correlated with an increased risk of the disease under dominant and log-additive models
(o = 0.001). Moreover, HSPA5-rs391957 was related to an elevated risk of the disease
under recessive and log-additive models (p < 0.02). DDIT3-rs697221 was identified to
have a significant association with the risk of lung cancer under all three genetic models
(o < 0.01).

Conclusion: Our results provide new insights on the role of the ER stress—related genes
EIF2AK3, HSPAS, and DDIT3 polymorphisms for lung cancer risk.

Keywords: lung cancer, gene polymorphisms, single-nucleotide polymorphisms, endoplasmic reticulum stress,
case—control study

INTRODUCTION

At present, lung cancer is still a malignant tumor with the highest morbidity and mortality worldwide
and is one of the biggest enemies that threaten human health (Siegel et al., 2021; Yang et al., 2022).
The World Health Organization statistics show that there were approximately 2.2 million new cases
and 1.8 million death cases of lung cancer in 2020, the incidence and mortality rates are 11.4% and
18.0%, respectively (Mattiuzzi and Lippi, 2020). In China, due to increasing air pollution in the
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process of industrialized urbanization, the highest prevalence of
tobacco use, the gradual arrival of an aging society, and changes in
lifestyles, the incidence and mortality rates of lung cancer have
been on the rise (Cao and Chen, 2019). The treatment of lung
cancer mainly includes surgical resection, chemotherapy,
radiotherapy, and molecular targeting drugs (Hirsch et al,
2017). Although the treatment of lung cancer has made
certain progress in recent years, the overall survival is still
dissatisfactory (Patel and Weiss, 2020). Most patients progress
to the late stage of this disease at diagnosis and miss the best time
and means of treatment, leading to a low five-year survival rate.
Therefore, it is extremely important to find biomarkers that can
be used in the early diagnosis of lung cancer.

The endoplasmic reticulum (ER) is an organelle that is in
charge of the synthesis, processing, and modification of protein
and thus plays a pivotal role in maintaining proteostasis. When
the cells lack nutrition and have low oxygen, calcium imbalance,
or oxidative stress, the unfolded and misfolded protein could
accumulate, resulting in ER stress (Walter and Ron, 2011).
Accumulating evidence have shown that ER stress is deeply
involved in the growth, survival, and differentiation of tumor
cells (Chen and Cubillos-Ruiz, 2021). PRKR-like ER kinase
(PERK) is one of the main stress sensors that mediates ER
stress. Generally, PERK is bound to the molecular partner
protein causing glucose-regulated protein 78 (GRP78) to
become inactive. Under ER stress, the unfolded or misfolded
protein is bound to GRP78 competitively, resulting in the
dissociation of GRP78 to PERK and activation of the
downstream signaling pathway (Volmer et al, 2013).
Moreover, activated PERK phosphorylates elF2a and
upregulates ATF4 and CHOP, resulting in the activation of
a number of genes involved in the biosynthesis and transport
of amino acids and intracellular autophagy (B’Chir et al,
2013; Han et al., 2013). Therefore, PERK, GRP78, and CHOP
are important proteins involved in ER stress. Previous studies
have reported the crucial functions of these genes in the
occurrence and metastasis of several types of cancer (Xie
et al., 2015; Xu et al,, 2019; Zhang et al., 2019). However,
little information is found about the single-nucleotide
polymorphisms (SNPs) in EIF2AK3/PERK, HSPA5/GRP78,
and DDIT3/CHOP in cancer patients, especially those with
lung cancer.

In the present study, a total of six candidate SNPs in EIF2AK3,
HSPA5, and DDIT3 were chosen from previous association
studies. The rs6750998 and rs17037621 are intron SNPs in
EIF2AK3 and associated with insulin resistance, high BMI, and
the risk of prediabetes (Feng et al., 2014). The rs867529 is a
nonsynonymous SNP in EIF2AK3 and is correlated with the risk
of prediabetes and lower bone mineral density (Liu et al., 2012).
Moreover, rs17840761 and rs391957 are promoter SNPs in
HSPA5 and have been investigated in patients with gastric and
colorectal cancer (Winder et al., 2011). Additionally, rs697221 is a
nonsynonymous SNP in DDIT3 and has been detected in patients
with melanoma in a Brazilian population (Francisco et al., 2013).
None of these SNPs have been genotyped in patients with lung
cancer. Therefore, we genotyped these candidate SNPs in a
case—control cohort with 620 lung cancer patients and

ER Stress in Lung Cancer

620 healthy controls and evaluated these associations with the
risk of lung cancer.

MATERIALS AND METHODS

Participants

In this study, 620 lung cancer patients and 620 healthy controls
were recruited at the Tangdu Hospital. The diagnosis of lung
cancer was established by histopathological examination of
biopsy or resected tissue specimens. The patients who had
received chemo- or radiotherapy were excluded. The healthy
controls were enrolled from cancer-free individuals from the
same hospital and were matched to the cases in gender and age.
We obtained written informed consent from all subjects. The
study was approved by the Ethics Committee of Tangdu Hospital
and carried out in accordance with the World Medical
Association Declaration of Helsinki—Ethical Principles for
Medical Research Involving Human Subjects.

Genotyping

Six tag SNPs in EIF2AK3, HSPA5, and DDIT3 were selected in the
present study; these SNPs were with minor allele frequencies
(MAFs) >5% in the East Asian populations of 1000 Genomes.
The DNA was extracted from the blood samples using the
QIAamp DNA Blood Midi Kit (QIAGEN, Germany). The
primers were designed using the SEQUENOM MassARRAY
Assay Designer 3.0 software. SNP genotyping was performed
by SEQUENOM MassARRAY RS1000 (Sequenom Inc., San
Diego, CA). The primers used for this study are listed in the
Supplementary Material.

Statistical Analysis

Statistical analyses were performed with SPSS 21.0 statistical
package (SPSS, Chicago, IL, United States). The allele
frequencies in the cases and controls were tested for departure
from the Hardy-Weinberg equilibrium (HWE). HaploReg v4.1
(https://pubsbroadinstituteorg/mammals/haploreg/
haploregphp) was used to predict the potential functions of the
SNPs. Differences in the demographic variables and allele
frequencies between the cases and controls were evaluated
using chi-square tests and Welch’s t-tests. Associations
between the genotypes and lung cancer risk were evaluated by
unconditional logistic regression analysis and expressed by odds
ratios (ORs) and 95% confidence intervals (Cls) using SNPstats
(https://www.snpstats.net/start.htm). The interaction between
SNPs was analyzed by using multifactor dimensionality
reduction (MDR) software. The statistical significance was
established when p < 0.05.

RESULTS

The basic information of the participants is listed in Table 1. The
case group included 384 males and 236 females, and 381 smokers
and 239 nonsmokers, with a mean age of 57.09 years; the control
group included 381 males and 239 females, and 378 smokers and
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TABLE 1 | Basic information of the participants.

ER Stress in Lung Cancer

Characteristics Case (n = 620) Control (n = 620) X2/t p
Gender (%) 0.031 0.860
Male 384 (61.9) 381 (61.5)
Female 236 (38.1) 239 (38.5)
Age 0.282 0.563
Mean + SD 57.09 £ 10.41 56.61 + 10.64
Smoking (%) 0.031 0.860
Yes 381 (61.5) 378 (61.0)
No 239 (38.5) 242 (39.0)
Pathological types
Adenocarcinoma 294 (47.4)
Squamous cell carcinoma 188 (30.9)
Small-cell lung cancer 113 (18.2)
Others 25 (4.1)
TABLE 2 | Basic information and predicted functions of candidate SNPs.
SNP Gene Position Allele Role Predicted functions
rs6750998 EIF2AK3/PERK chr2:88583424 T>A Intron Motifs changed and eQTL hits
rs17037621 EIF2AK3/PERK chr2:88606202 T>A Intron Promoter/enhancer histone mark, motifs changed, and eQTL hits
rs867529 EIF2AKS/PERK chr2:88613755 G>C Missense variant Ser136Cys
rs17840761 HSPA5/GRP78 chr9:125241700 G>A Promoter Promoter histone mark, motifs changed, and eQTL hits
rs391957 HSPA5/GRP78 chr9:125241745 T>C Promoter Promoter histone mark, motifs changed, and eQTL hits
rs697221 DDIT3/CHOP chr12:57517377 G>A Missense variant Phe33Leu

SNP, single-nucleotide polymorphism; eQTL, expression quantitative trait locus.

TABLE 3 | The MAF and HWE of candidate SNPs between lung cancer cases and healthy controls.

SNP Gene MAF-cases MAF-controls
rs6750998 EIF2AKB/PERK 0.21 0.27
rs17037621 EIF2AKB/PERK 0.34 0.33
rs867529 EIF2AKB/PERK 0.40 0.34
rs17840761 HSPA5/GRP78 0.43 0.41
rs391957 HSPA5/GRP78 0.26 0.22
rs697221 DDIT3/CHOP 0.23 0.17

*p < 0.05 indicates statistical significance.

HWE p-cases HWE p-controls OR (95% CI) p
0.55 0.61 0.733 (0.609-0.882) <0.001*
0.21 0.99 1.075 (0.910-1.271) 0.394
0.13 0.93 1.301 (1.105-1.531) 0.002*
0.74 0.56 1.083 (0.923-1.270) 0.328
0.18 0.99 1.256 (1.045-1.510) 0.015*
0.82 0.32 1.504 (1.234-1.834) <0.001*

SNP, single-nucleotide polymorphism; MAF, minor allele frequency; HWE, Hardy-Weinberg equilibrium.

242 nonsmokers, with a mean age of 56.61 years. No significant
difference was observed in the distribution of sex, age, or smoking
status between the two groups (p > 0.05). The case group
consisted of 294 adenocarcinoma patients, 188 squamous cell
carcinoma patients, 113 small-cell lung cancer patients, and
25 other types of lung cancer patients.

The basic information for the candidate SNPs is presented in
Table 2. The predicted function according to the HaploReg
database showed that rs6750998 and rs17037621 in
EIF2AK3, and rs17840761 and rs391957 in HSPA5 were
involved in the regulation of the promoter or enhancer
histone, changed motifs, and eQTL hits. Moreover,
EIF2AK3-rs867529 and DDIT3-rs697221 were missense
variants and led to changed amino acids.

The genotyping call rate in our study was 100%. The MAFs of
SNPs in cases and controls are described in Table 3. All of the
SNPs were consistent with HWE (p > 0.05). By comparing the

MAFs of SNPs between the case and control groups, we found
that the minor allele A of rs6750998 was a protective allele against
the risk of lung cancer (OR = 0.733, 95% CI: 0.609-0.882, p <
0.001), while the minor alleles of rs867529, rs391957, and
rs697221 were all risk alleles that may lead to the multiplied
risk of the disease (rs867529: OR = 1.301, 95% CI: 1.105-1.531,
p =0.002; rs391957: OR = 1.256, 95% CI: 1.045-1.510, p = 0.015;
rs697221: OR = 1.504, 95% CI: 1.234-1.834, p < 0.001).

The genotype frequencies of SNPs in the cases and controls are
shown in Table 4. The wild genotype of each SNP was considered
as the reference genotype, and the OR and 95% CI of the
heterozygous and homozygous mutational genotypes were
evaluated. The results showed that the TA and AA genotypes
of rs6750998 were protective genotypes that were associated
against the risk of lung cancer (p = 0.005); however, the
rs867529-GC/CC,  1s391957-CC, and  rs697221-GA/AA
genotypes were all risk genotypes that associated with different
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TABLE 4 | Genotype frequency distributions between lung cancer cases and healthy controls.

ER Stress in Lung Cancer

SNP Genotype Control Case OR p
(95%Cl)
rs6750998 T 335 (54%) 388 (62.6%) 1 0.005*
TA 238 (38.4%) 202 (32.6%) 0.73 (0.58-0.93)
AA 7 (7.6%) 0 (4.8%) 0.55 (0.34-0.89)
rs17037621 T 282 (45.5%) 261 (42.1%) 1 0.440
TA 272 (43.9%) 294 (47.4%) 1.17 (0.92-1.48)
AA 66 (10.7%) 65 (10.5%) 1.06 (0.73-1.56)
rs867529 GG 268 (43.2%) 212 (34.2%) 1 0.003*
GC 281 (45.3%) 317 (61.1%) 1.44 (1.13-1.83)
CC 1(11.4%) 1 (14.7%) 1.64 (1.14-2.35)
rs17840761 GG 222 (35.8%) 202 (32.6%) 1 0.490
GA 292 (47.1%) 308 (49.7%) 1.16 (0.90-1.49)
AA 106 (17.1%) 110 (17.7%) 1.14 (0.82-1.58)
rs391957 T 374 (60.3%) 342 (55.2%) 1 0.028*
TC 216 (34.8%) 228 (36.8%) 1.16 (0.91-1.47)
CC 0 (4.8%) 0 (8.1%) 1.86 (1.15-2.99)
rs697221 GG 424 (68.4%) 364 (568.7%) 1 0.0001*
GA 182 (29.4%) 221 (35.6%) 1.42 (1.11-1.81)
AA 4 (2.3%) 5 (5.7%) 2.92 (1.564-5.51)
*p < 0.05 indicates statistical significance.
SNP, single-nucleotide polymorphism,; OR, odds ratio; Cl, confidence interval.
TABLE 5 | Association between SNPs and risk of lung cancer in genetic models.
SNP Model Genotype Control Case OR p
(95%Cl)
rs6750998 Dominant T 335 (54%) 388 (62.6%) 1 0.002*
TA-AA 285 (46%) 232 (37.4%) 0.70 (0.56-0.88)
Recessive TT-TA 573 (92.4%) 590 (95.2%) 1 0.046*
AA 7 (7.6%) ( .8%) 0.62 (0.38-1.00)
Log-additive --- --- - 0.74 (0.61-0.89) 0.001*
rs17037621 Dominant T 282 (45.5%) 261 (42.1%) 1 0.230
TA-AA 338 (54.5%) 359 (57.9%) 1.15 (0.92-1.44)
Recessive TT-TA 554 (89.3%) 555 (89.5%) 1 0.930
AA 66 (10.7%) 65 (10.5%) 0.98 (0.68-1.41)
Log-additive -- --- - 1.08 (0.91-1.28) 0.390
rs867529 Dominant GG 268 (43.2%) 212 (34.2%) 1 0.001*
GC-CC 352 (56.8%) 408 (65.8%) 1.48 (1.17-1.86)
Recessive GG-GC 549 (88.5%) 529 (85.3%) 1 0.087
CC 71 (11.4%) 91 (14.7%) 1.34 (0.96-1.86)
Log-additive - - --- 1.32 (1.12-1.56) 0.001*
rs17840761 Dominant GG 222 (35.8%) 202 (32.6%) 1 0.240
GA-AA 398 (64.2%) 418 (67.4%) 1.15 (0.91-1.46)
Recessive GG-GA 514 (82.9%) 510 (82.3%) 1 0.790
AA 106 (17.1%) 110 (17.7%) 1.04 (0.78-1.40)
Log-additive - --- --- 1.08 (0.92-1.27) 0.340
rs391957 Dominant T 374 (60.3%) 342 (55.2%) 1 0.060
TC-CC 246 (39.7%) 278 (44.8%) 1.24 (0.99-1.56)
Recessive TT-TC 590 (95.2%) 570 (91.9%) 1 0.017*
CC 30 (4.8%) 50 (8.1%) 1.76 (1.10-2.81)
Log-additive - - --- 1.26 (1.05-1.51) 0.014*
rs697221 Dominant GG 424 (68.4%) 364 (58.7%) 1 0.0004*
GA-AA 196 (31.6%) 256 (41.3%) 1.563 (1.21-1.93)
Recessive GG-GA 606 (97.7%) 585 (94.3%) 1 0.002*
AA 14 (2.3%) 35 (56.7%) 2.61 (1.39-4.90)
Log-additive - - --- 1.52 (1.24-1.86) <0.0001*
*p < 0.05 indicates statistical significance.
SNP, single-nucleotide polymorphism; OR, odds ratio; Cl, confidence interval.
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TABLE 6 | Association between SNPs and risk of lung cancer in smokers and nonsmokers.

SNP Model Genotype Smokers Nonsmokers
OR (95% CI) P OR (95% CI) p
rs6750998 Dominant T 1 0.029* 1 0.035*
TA-AA 0.72 (0.54-0.97) 0.68 (0.47-0.97)
Recessive TT-TA 1 0.450 1 0.031*
AA 0.79 (0.42-1.46) 0.45 (0.21-0.95)
Log-additive 0.78 (0.61-0.99) 0.038* 0.68 (0.51-0.92) 0.010*
rs867529 Dominant GG 1 0.150 1 0.0003*
GC-CC 1.24 (0.92-1.66) 1.98 (1.36-2.88)
Recessive GG-GC 1 0.750 1 0.023*
CC 1.07 (0.70-1.66) 1.83 (1.08-3.09)
Log-additive 1.14 (0.92-1.42) 0.230 1.66 (1.27-2.18) 0.0002*
rs391957 Dominant T 1 0.290 1 0.054
TC-CC 1.17 (0.87-1.57) 1.44 (0.99-2.09)
Recessive TT-TC 1 0.320 1 0.015*
CC 1.38 (0.73-2.58) 2.35 (1.15-4.78)
Log-additive 1.17 (0.92-1.48) 0.210 1.44 (1.08-1.92) 0.012*
rs697221 Dominant GG 1 0.009* 1 0.011*
GA-AA 1.48 (1.10-2.00) 1.65 (1.12-2.44)
Recessive GG-GA 1 0.018* 1 0.038*
AA 2.91 (1.13-7.46) 2.39 (1.02-5.60)
Log-additive 1.50 (1.15-1.96) 0.002* 1.57 (1.15-2.16) 0.004*

*p < 0.05 indicates statistical significance.
SNP, single-nucleotide polymorphism; OR, odds ratio; Cl, confidence interval.

TABLE 7 | Association between SNPs and risk of adenocarcinoma, squamous cell carcinoma, and small-cell lung cancer.

SNP Model Genotype Adenocarcinoma Squamous cell carcinoma Small cell lung cancer
OR p OR p OR P
(95%Cl) (95%Cl) (95%Cl)
rs6750998 Dominant TT 1 0.016* 1 0.130 1 0.070
TA-AA 0.70 (0.53-0.94) 0.72 (0.51-1.02) 0.68 (0.45-1.04)
Recessive TT-TA 1 0.071 1 0.060 1 0.480
AA 0.57 (0.31-1.08) 0.62 (0.28-1.36) 0.74 (0.32-1.75)
Log-additive - 0.73 (0.57-0.92) 0.008* 0.75 (0.56-1.00) 0.044* 0.74 (0.53-1.05) 0.081
rs867529 Dominant GG 1 0.003* 1 0.025* 1 0.092
GC-CC 1.55 (1.15-2.07) 1.48 (1.05-2.09) 1.43 (0.94-2.18)
Recessive GG-GC 1 0.013* 1 0.900 1 0.560
cC 1.37 (0.91-2.06) 1.03 (0.62-1.73) 1.20 (0.66-2.18)
Log-additive - 1.36 (1.10-1.67) 0.004* 1.24 (0.97-1.59) 0.088 1.26 (0.94-1.69) 0.130
rs391957 Dominant T 1 0.093 1 0.430 1 0.150
TC-CC 1.28 (0.96-1.70) 1.14 (0.82-1.61) 1.35 (0.90-2.03)
Recessive TT-TC 1 0.260 1 0.0016* 1 0.120
cC 1.41 (0.78-2.54) 2.77 (1.51-5.11) 1.85 (0.87-3.92)
Log-additive - 1.24 (0.98-1.56) 0.070 1.30 (1.00-1.70) 0.054 1.35 (0.98-1.86) 0.073
rs697221 Dominant GG 1 0.012* 1 0.030* 1 0.015*
GA-AA 1.46 (1.09-1.96) 151 (1.07-2.12) 1.68 (1.11-2.53)
Recessive GG-GA 1 0.032* 1 0.020* 1 0.012*
AA 2.25 (1.08-4.72) 2.36 (0.95-5.85) 3.45 (1.40-8.50)
Log-additive 1.45 (1.13-1.86) 0.004* 1.50 (1.11-2.02) 0.009* 1.70 (1.21-2.41) 0.003*
levels of elevated lung cancer risk (pysgs7520 = 0.003, prszo1957 = risk of the disease under dominant and log-additive models (p =
0.028, prsso7221 = 0.0001). 0.001). Moreover, rs391957 in HSPAS5 was related to an elevated risk

Based on the comparison results of allele and genotype, we further ~ of the disease under recessive and log-additive models (p < 0.02). In
assessed the associations between these SNPs and lung cancer risk ~ addition, DDIT3-rs697221 was identified to have a significant
under three genetic models (Table 5). We found that EIF2AK3-  association with the risk of lung cancer under all three genetic
16750998 polymorphism was associated with a decreased risk of lung ~~ models (p < 0.01).
cancer under dominant, recessive, and log-additive models (p < 0.05). The smoking information was obtained from all the study
By contrast, the EIF2AK3-rs867529 was correlated with an increased ~ participants. Therefore, the stratified analysis was performed
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TABLE 8 | Summary of SNP-SNP interactions on the risk of lung cancer analyzed by MDR method.

Model Training accuracy Testing accuracy Cross-validation OR p
consistency (95%Cl)

rs697221 0.5513 0.5040 5/10 1.521 (1.205-1.920) 0.0004*

rs6750998 and rs697221 0.56598 0.5218 7/10 1.974 (1.5600-2.597) <0.0001*

rs6750998, rs867529, and rs17840761 0.5791 0.4952 3/10 1.842 (1.465-2.316) <0.0001*

*p < 0.05 indicates statistical significance.

based on the smoking status (Table 6). We found that the
EIF2AK3-rs6750998 was a protective factor in both smokers
and nonsmokers (p < 0.05). In addition, DDIT3-rs697221 was
still a risk factor in both smokers and nonsmokers (p < 0.05).
However, EIF2AK3-rs867529 and HSPA5-rs391957 remained
significant only in nonsmokers (p < 0.02).

In addition, we also performed a stratification analysis based
on the pathological types (Table 7). We found that EIF2AK3-
rs6750998 was only correlated with a decreased risk of
adenocarcinoma (p < 0.0016). EIF2AK3-rs867529 was
associated with an increased risk of adenocarcinoma and
squamous cell carcinoma (p < 0.025), and HSPA5-rs391957
was only related to an elevated risk of squamous cell
carcinoma (p = 0.0016), while DDIT3-rs697221 was associated
with risk of all three pathological types (p < 0.032).

The MDR analysis was further used to evaluate the effect of
SNP-SNP interaction on the risk of lung cancer (Table 8). The
higher accuracy and cross-validation consistency means a
stronger interaction between the SNPs. We found that the
interaction model of rs6750998 and rs697221 was the best
predictor between candidate genes and lung cancer
susceptibility with a testing accuracy of 52%, CVC of 7/10,
and p < 0.0001.

DISCUSSION

Tumor cells are often in some mal-conditions such as ischemia,
low oxygen, and lack of nutrients, resulting in the accumulation
of unfolded and misfolded proteins in the ER and causing ER
stress (Clarke et al., 2014). ER stress could regulate autophagy,
mitochondrial and lysosomal dysfunction, oxidative stress, and
inflammatory responses in the tumor, thus playing a vital role in
tumorigenesis and tumor metastasis (Lin et al., 2019). In this
study, we genotyped six SNPs in ER stress-related genes
EIF2AK3/PERK, HSPA5/GRP78, and DDIT3/CHOP in lung
cancer patients and healthy individuals and found that
EIF2AK3-rs6750998 was a protective mutation against the risk
of lung cancer, and three SNPs (EIF2AK3-rs867529, HSPA5-
rs391957, and DDIT3-rs697221) were risk factors for the disease.

PERK, encoded by EIF2AK3, is a type I membrane protein
located in the ER and could be activated under ER stress caused
by malfolded proteins. The activated PERK could phosphorylate
and  inactivate the alpha subunit of eukaryotic
translation—initiation factor 2 (elF2a), resulting in an effective
reduction of translational initiation and repression of protein
synthesis (Kranz et al., 2020). In addition, PERK was gradually

proved to be involved in the regulation of mitochondrial function,
serving as a bridge between mitochondrial metabolism and ER
homeostasis (Fan and Simmen, 2019). Kiiper et al. (2021) have
reported that PERK-related phosphorylation of NRF2 is
important for the proliferation and ROS elimination of
pancreatic and lung cancer cells under constant hypoxia, and
thus the PERK-NRF2-HIF-axis contributes to cancer growth. Cai
et al. (2021) have found that the PERK-eIF2a-ERK1/2 axis could
regulate the cancer-associated fibroblasts to adopt an endothelial
cell-like phenotype and directly lead to tumor angiogenesis
in vitro and in vivo. Moreover, Lei et al. (2021) have
demonstrated that the PERK activator CCT020312 combined
with taxol could significantly reduce the tumor growth in
colorectal cancer xenograft, suggesting that promoting PERK
might be an effective way to improve colorectal cancer for
Taxol treatment. In this study, we identified that two SNPs in
EIF2AK3 were associated with the risk of lung cancer:
rs6750998 was a protective SNP against the risk of lung
cancer, while rs867529 was a susceptible SNP for the disease.
The rs867529 was a missense variant, therefore we speculated that
rs867529 may influence the ER stress of the patients with lung
cancer by altering the level or function of PERK.

HSPA5 encodes the GRP78 that localizes in the lumen of the
ER. GRP78 is a member of the HSP70 chaperone family, making
it serve as a molecular chaperone in the folding and assembly of
proteins and a regulator of ER homeostasis. Under some
conditions that may induce ER stress, such as viral infection
and tumorigenesis, GRP78 dissociates from the transmembrane
stress sensor proteins PERK, IREI, and ATF6 and acts as a
repressor of the unfolded protein response (Xia et al., 2021).
Furthermore, GRP78 also takes part in the process of cellular
apoptosis and senescence. Zhang et al. (2021) have shown that
GRP78 was upregulated during M2 macrophages polarization,
and the downregulation of GRP78 in macrophages suppressed
M2 macrophage-provoked proliferation and migration of cancer
cells. Huang et al. (2021) have identified that mitochondrial
protein ATAD3A could interact with GRP78 to enhance
protein folding and reduce ER stress for cancer cell survival in
colorectal cancer patients who received chemotherapy. In
addition, Gonzalez-Gronow et al. (2021) have reviewed the
function studies of GRP78 and concluded that abnormal
expression and atypical translocation of GRP78 to the cell
surface may be involved in viral infections and pathogenesis of
cancers and neurological disorders. Our results have shown that
HSPA5-1s391957 was related to an elevated risk of lung cancer
and rs391957 was a promoter SNP and may lead to altering
promoter histone and changed motifs. Therefore, rs391957 may
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have effects on the risk of the disease due to the altering
translocation of GRP78 in lung cancer cells.

CHOP, encoded by DDIT3, belongs to the CCAAT/enhancer-
binding protein (C/EBP) family. Under ER stress, CHOP was
activated by a series of PERK activation and phosphorylation.
CHOP could form heterodimers with other C/EBP members to
serve as a dominant-negative inhibitor, inhibiting the activity of their
binding DNA. Increasing evidence have shown that CHOP was
implicated in inflammatory response, poor prognosis, and drug
resistance in tumors. Conciatori et al. (2020) have found that the
BRAF/ERK2/CHOP axis could regulate the IL-8 transcription via
regulating the subcellular localization of CHOP and was considered a
promising therapeutic target in patients with colorectal cancer. Zhang
et al. (2018) have identified that low expression of CHOP was
associated with the poor prognosis of patients with advanced
gastric cancer, and thus CHOP could be used as a prognostic
biomarker for advanced gastric cancer. Xiao et al. (2020) have
reported that circRNA_103762 was upregulated in lung cancer
tissues, and it could target and inhibit the CHOP expression to
enhance the multidrug resistance in lung cancer cells. We identified a
missense SNP DDIT3-rs697221 that correlated with an elevated risk
of lung cancer, suggesting that the minor allele of rs697221 may lead
to the dysfunction of CHOP, while the hypothesis needs
confirmation through further studies.

Tobacco use is an important risk factor for lung cancer (Raman
et al,, 2022). We performed a stratified analysis based on smoking
status. The results have shown that EIF2AK3-rs6750998 was a
protective and DDIT3-rs697221 remained significant in both
smokers and nonsmokers. However, EIF2AK3-rs867529 and
HSPA5-1s391957 were only significant in nonsmokers. The
different results may be explained by the limited sample size and
other confounding factors such as secondhand smoke exposure,
pathological type, and other occupational exposures (de Groot
and Munden, 2012). We failed to obtain these information from
the participants, which is a main limitation of the present study.

In conclusion, we found that EIF2AK3-rs6750998 was a
protective variant against the risk of lung cancer, while

REFERENCES

B’Chir, W., Maurin, A. C,, Carraro, V., Averous, ., Jousse, C., Muranishi, Y., et al.
(2013). The elF2a/ATF4 Pathway Is Essential for Stress-Induced Autophagy
Gene Expression. Nucleic Acids Res. 41, 7683-7699. doi:10.1093/nar/gkt563

Cai, W., Sun, X,, Jin, F., Xiao, D., Li, H., Sun, H., et al. (2021). PERK-eIF2a-ERK1/
2 axis Drives Mesenchymal-Endothelial Transition of Cancer-Associated
Fibroblasts in Pancreatic Cancer. Cancer Lett. 515, 86-95. doi:10.1016/j.
canlet.2021.05.021

Cao, M., and Chen, W. (2019). Epidemiology of Lung Cancer in China. Thorac.
Cancer 10, 3-7. doi:10.1111/1759-7714.12916

Chen, X,, and Cubillos-Ruiz, J. R. (2021). Endoplasmic Reticulum Stress Signals in
the Tumour and its Microenvironment. Nat. Rev. Cancer 21, 71-88. doi:10.
1038/s41568-020-00312-2

Clarke, H. J., Chambers, J. E., Liniker, E., and Marciniak, S. J. (2014). Endoplasmic
Reticulum Stress in Malignancy. Cancer Cell. 25, 563-573. doi:10.1016/j.ccr.
2014.03.015

Conciatori, F., Bazzichetto, C., Amoreo, C. A., Sperduti, I., Donzelli, S., Diodoro, M.
G., et al. (2020). BRAF Status Modulates Interelukin-8 Expression through a
CHOP-dependent Mechanism in Colorectal Cancer. Commun. Biol. 3, 546.
doi:10.1038/542003-020-01263-y

ER Stress in Lung Cancer

EIF2AK3-rs867529, HSPA5-rs391957, and DDIT3-rs697221
were all susceptible variants for the disease. These results
provided new insights on the role of the ER stress-related gene
EIF2AK3/PERK, HSPA5/GRP78, and DDIT3/CHOP
polymorphisms for lung cancer risk.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of Tangdu Hospital. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

YL: conceptualization, investigation, data curation, and
writing—original draft; XL: investigation, data curation, and
writing—original draft; HZ: data curation; JD: data curation;
YZ: data curation; JW: formal analysis; CL: formal analysis;
XX:  writing—review and editing, supervision;  YL:
conceptualization, writing—review and editing, supervision.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.938787/
full#supplementary-material

de Groot, P., and Munden, R. F. (2012). Lung Cancer Epidemiology, Risk Factors,
and Prevention. Radiologic Clin. N. Am. 50, 863-876. d0i:10.1016/j.rc1.2012.
06.006

Fan, Y., and Simmen, T. (2019). Mechanistic Connections between Endoplasmic
Reticulum (ER) Redox Control and Mitochondrial Metabolism. Cells 8. doi:10.
3390/cells8091071

Feng, N., Ma, X., Wei, X,, Zhang, J., Dong, A., Jin, M., et al. (2014). Common
Variants in PERK, JNK, BIP and XBP1 Genes Are Associated with the Risk of
Prediabetes or Diabetes-Related Phenotypes in a Chinese Population. Chin.
Med. ]. Engl. 127, 2438-2444.

Francisco, G., Gongalves, F. T., Luiz, O. C,, Saito, R. F,, Toledo, R. A,, Sekiya,
T., et al. (2013). Polymorphisms in the P27 Kip-1 and Prohibitin Genes
Denote Novel Genes Associated with Melanoma Risk in Brazil, a High
Ultraviolet Index Region. Melanoma Res. 23, 231-236. d0i:10.1097/cmr.
0b013e3283612483

Gonzalez-Gronow, M., Gopal, U., Austin, R. C,, and Pizzo, S. V. (2021). Glucose-
regulated Protein (GRP78) Is an Important Cell Surface Receptor for Viral
Invasion, Cancers, and Neurological Disorders. [UBMB Life 73, 843-854.
doi:10.1002/iub.2502

Han, J., Back, S. H., Hur, J., Lin, Y. H., Gildersleeve, R., Shan, J., et al. (2013). ER-
stress-induced Transcriptional Regulation Increases Protein Synthesis Leading
to Cell Death. Nat. Cell. Biol. 15, 481-490. doi:10.1038/ncb2738

Frontiers in Genetics | www.frontiersin.org

12

July 2022 | Volume 13 | Article 938787


https://www.frontiersin.org/articles/10.3389/fgene.2022.938787/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.938787/full#supplementary-material
https://doi.org/10.1093/nar/gkt563
https://doi.org/10.1016/j.canlet.2021.05.021
https://doi.org/10.1016/j.canlet.2021.05.021
https://doi.org/10.1111/1759-7714.12916
https://doi.org/10.1038/s41568-020-00312-2
https://doi.org/10.1038/s41568-020-00312-2
https://doi.org/10.1016/j.ccr.2014.03.015
https://doi.org/10.1016/j.ccr.2014.03.015
https://doi.org/10.1038/s42003-020-01263-y
https://doi.org/10.1016/j.rcl.2012.06.006
https://doi.org/10.1016/j.rcl.2012.06.006
https://doi.org/10.3390/cells8091071
https://doi.org/10.3390/cells8091071
https://doi.org/10.1097/cmr.0b013e3283612483
https://doi.org/10.1097/cmr.0b013e3283612483
https://doi.org/10.1002/iub.2502
https://doi.org/10.1038/ncb2738
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Liu et al.

Hirsch, F. R, Scagliotti, G. V., Mulshine, J. L., Kwon, R,, Curran, W.J., JR.,, Wu, Y.-
L, et al. (2017). Lung Cancer: Current Therapies and New Targeted
Treatments. Lancet 389, 299-311. doi:10.1016/s0140-6736(16)30958-8

Huang, K. C. Y., Chiang, S. F,, Yang, P. C., Ke, T. W., Chen, T. W,, Lin, C. Y, et al.
(2021). ATAD3A Stabilizes GRP78 to Suppress ER Stress for Acquired
Chemoresistance in Colorectal Cancer. J. Cell. Physiology 236, 6481-6495.
doi:10.1002/jcp.30323

Kranz, P., Sanger, C, Wolf, A., Baumann, J., Metzen, E., Baumann, M., et al. (2020).
Tumor Cells Rely on the Thiol Oxidoreductase PDI for PERK Signaling in Order to
Survive ER Stress. Sci. Rep. 10, 15299. doi:10.1038/s41598-020-72259-1

Kiiper, A., Baumann, J., Gopelt, K., Baumann, M., Singer, C., Metzen, E., et al.
(2021). Overcoming Hypoxia-Induced Resistance of Pancreatic and Lung
Tumor Cells by Disrupting the PERK-NRF2-HIF-axis. Cell. Death Dis. 12,
82. doi:10.1038/s41419-020-03319-7

Lei, Y., He, L, Yan, C, Wang, Y,, and Lv, G. (2021). PERK Activation by
CCT020312 Chemosensitizes Colorectal Cancer through Inducing Apoptosis
Regulated by ER Stress. Biochem. Biophysical Res. Commun. 557, 316-322.
doi:10.1016/j.bbrc.2021.03.041

Lin, Y, Jiang, M., Chen, W., Zhao, T, and Wei, Y. (2019). Cancer and ER Stress: Mutual
Crosstalk between Autophagy, Oxidative Stress and Inflammatory Response. Biotred.
Pharmacother. 118, 109249. doi:10.1016/j.biopha.2019.109249

Liu, J., Hoppman, N., O’Connell, J. R, Wang, H,, Streeten, E. A., Mclenithan, J. C.,
et al. (2012). A Functional Haplotype inEIF2AK3, an ER Stress Sensor, Is
Associated with Lower Bone Mineral Density. J. Bone Min. Res. 27, 331-341.
doi:10.1002/jbmr.549

Mattiuzzi, C., and Lippi, G. (2020). Cancer Statistics: a Comparison between World
Health Organization (WHO) and Global Burden of Disease (GBD). Eur.
J. Public Health 30, 1026-1027. doi:10.1093/eurpub/ckz216

Patel, S. A., and Weiss, J. (2020). Advances in the Treatment of Non-small Cell
Lung Cancer. Clin. Chest Med. 41, 237-247. doi:10.1016/j.ccm.2020.02.010

Raman, V., Yong, V., Erkmen, C. P., and Tong, B. C. (2022). Social Disparities in
Lung Cancer Risk and Screening. Thorac. Surg. Clin. 32, 23-31. doi:10.1016/j.
thorsurg.2021.09.011

Siegel, R. L., Miller, K. D., Fuchs, H. E,, and Jemal, A. (2021). Cancer Statistics,
2021. CA A Cancer J. Clin. 71, 7-33. d0i:10.3322/caac.21654

Volmer, R, van der Ploeg, K., and Ron, D. (2013). Membrane Lipid Saturation
Activates Endoplasmic Reticulum Unfolded Protein Response Transducers
through Their Transmembrane Domains. Proc. Natl. Acad. Sci. U.S.A. 110,
4628-4633. doi:10.1073/pnas.1217611110

Walter, P., and Ron, D. (2011). The Unfolded Protein Response: from Stress
Pathway to Homeostatic Regulation. Science 334, 1081-1086. doi:10.1126/
science.1209038

Winder, T., Bohanes, P., Zhang, W., Yang, D., Power, D. G, Ning, Y., et al. (2011).
GRP78 Promoter Polymorphism Rs391957 as Potential Predictor for Clinical
Outcome in Gastric and Colorectal Cancer Patients. Ann. Oncol. 22,2431-2439.
doi:10.1093/annonc/mdq771

ER Stress in Lung Cancer

Xia, S., Duan, W,, Liu, W., Zhang, X., and Wang, Q. (2021). GRP78 in Lung Cancer.
J. Transl. Med. 19, 118. doi:10.1186/s12967-021-02786-6

Xiao, G., Huang, W. Zhan, Y, Li, J, and Tong, W. (2020).
CircRNA_103762 Promotes Multidrug Resistance in NSCLC by Targeting
DNA Damage Inducible Transcript 3 (CHOP). J. Clin. Lab. Anal. 34,
€23252. doi:10.1002/jcla.23252

Xie, W. Y., Zhou, X. D,, Li, Q., Chen, L. X., and Ran, D. H. (2015). Acid-induced
Autophagy Protects Human Lung Cancer Cells from Apoptosis by Activating
ER Stress. Exp. Cell. Res. 339, 270-279. doi:10.1016/j.yexcr.2015.11.005

Xu, K, Han, B, Bai, Y., Ma, X. Y,, Ji, Z. N,, Xiong, Y., et al. (2019). MiR-451a
Suppressing BAP31 Can Inhibit Proliferation and Increase Apoptosis through
Inducing ER Stress in Colorectal Cancer. Cell. Death Dis. 10, 152. doi:10.1038/
541419-019-1403-x

Yang, X., Zhang, T., Zhang, X., Chu, C., and Sang, S. (2022). Global Burden of Lung
Cancer Attributable to Ambient Fine Particulate Matter Pollution in
204 Countries and Territories, 1990-2019. Environ. Res. 204, 112023. doi:10.
1016/j.envres.2021.112023

Zhang, H., Wang, S. Q., Hang, L., Zhang, C. F., Wang, L., Duan, C. ], et al. (2021).
GRP78 Facilitates M2 Macrophage Polarization and Tumour Progression. Cell.
Mol. Life Sci. 78, 7709-7732. doi:10.1007/s00018-021-03997-2

Zhang, X., Zhou, T., Li, W, Zhang, T, Che, N, and Zu, G. (2018).
Clinicopathological and Prognostic Significance of C/EBP Homologous
Protein (CHOP) in Advanced Gastric Cancer. Pathology - Res. Pract. 214,
1105-1109. doi:10.1016/j.prp.2018.06.005

Zhang, Y., Wu, ], Jing, H., Huang, G., Sun, Z., and Xu, S. (2019). Long Noncoding
RNA MEGS3 Inhibits Breast Cancer Growth via Upregulating Endoplasmic
Reticulum Stress and Activating NF-kB and P53. ] Cell. Biochem. 120,
6789-6797. doi:10.1002/jcb.27982

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Liu, Liang, Zhang, Dong, Zhang, Wang, Li, Xin and Li. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org

13

July 2022 | Volume 13 | Article 938787


https://doi.org/10.1016/s0140-6736(16)30958-8
https://doi.org/10.1002/jcp.30323
https://doi.org/10.1038/s41598-020-72259-1
https://doi.org/10.1038/s41419-020-03319-7
https://doi.org/10.1016/j.bbrc.2021.03.041
https://doi.org/10.1016/j.biopha.2019.109249
https://doi.org/10.1002/jbmr.549
https://doi.org/10.1093/eurpub/ckz216
https://doi.org/10.1016/j.ccm.2020.02.010
https://doi.org/10.1016/j.thorsurg.2021.09.011
https://doi.org/10.1016/j.thorsurg.2021.09.011
https://doi.org/10.3322/caac.21654
https://doi.org/10.1073/pnas.1217611110
https://doi.org/10.1126/science.1209038
https://doi.org/10.1126/science.1209038
https://doi.org/10.1093/annonc/mdq771
https://doi.org/10.1186/s12967-021-02786-6
https://doi.org/10.1002/jcla.23252
https://doi.org/10.1016/j.yexcr.2015.11.005
https://doi.org/10.1038/s41419-019-1403-x
https://doi.org/10.1038/s41419-019-1403-x
https://doi.org/10.1016/j.envres.2021.112023
https://doi.org/10.1016/j.envres.2021.112023
https://doi.org/10.1007/s00018-021-03997-2
https://doi.org/10.1016/j.prp.2018.06.005
https://doi.org/10.1002/jcb.27982
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

:' frontiers | Frontiers in Genetics

‘ @ Check for updates

OPEN ACCESS

Qian Wang,
Tai'an City Central Hospital, China

Jinghai Gao,

Shanghai Changzheng Hospital, China
Qie Fan,

People’'s Hospital of Guangxi Zhuang
Autonomous Region, China

Jian Huang,
huangjian900103@163.com
Li Cai,
caili@ems.hrbmu.edu.cn

These authors have contributed equally
to this work and share first authorship

This article was submitted to Cancer
Genetics and Oncogenomics,

a section of the journal

Frontiers in Genetics

30 May 2022
06 July 2022
03 August 2022

Lan X, Zhao L, Zhang J, Shao Y, Qv Y,
Huang J and Cai L (2022),
Comprehensive analysis of karyopherin
alpha family expression in lung
adenocarcinoma: Association with
prognostic value and

immune homeostasis.

Front. Genet. 13:956314.

doi: 10.3389/fgene.2022.956314

© 2022 Lan, Zhao, Zhang, Shao, Qv,
Huang and Cai. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Genetics

Original Research
03 August 2022
10.3389/fgene.2022.956314

Comprehensive analysis of
karyopherin alpha family
expression in lung
adenocarcinoma: Association
with prognostic value and
Immune homeostasis

Xiuwen Lan™, Lin Zhao?', Jian Zhang?®, Yingchun Shao?,
Yunmeng Qv*, Jian Huang* and Li Cai*

!Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China, ?The
Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China,
*Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China,
“Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China

Background: Karyopherin alpha (KPNA), a nuclear transporter, has been
implicated in the development as well as the progression of many types of
malignancies. Immune homeostasis is a multilevel system which regulated by
multiple factors. However, the functional significance of the KPNA family in the
pathogenesis of lung adenocarcinoma (LUAD) and the impact of immune
homeostasis are not well characterized.

Methods: In this study, by integrating the TCGA-LUAD database and Masked
Somatic Mutation, we first conducted an investigation on the expression levels
and mutation status of the KPNA family in patients with LUAD. Then, we
constructed a prognostic model based on clinical features and the
expression of the KPNA family. We performed functional enrichment analysis
and constructed a regulatory network utilizing the differential genes in high-and
low-risk groups. Lastly, we performed immune infiltration analysis using
CIBERSORT.

Results: Analysis of TCGA datasets revealed differential expression of the KPNA
family in LUAD. Kaplan-Meier survival analyses indicated that the high
expression of KPNA2 and KPNA4 were predictive of inferior overall survival
(OS). In addition, we constructed a prognostic model incorporating clinical
factors and the expression level of KPNA4 and KPNA5, which accurately
predicted 1-year, 3-years, and 5-years survival outcomes. Patients in the
high-risk group showed a poor prognosis. Functional enrichment analysis
exhibited remarkable enrichment of transcriptional dysregulation in the
high-risk group. On the other hand, gene set enrichment analysis (GSEA)
displayed enrichment of cell cycle checkpoints as well as cell cycle mitotic
in the high-risk group. Finally, analysis of immune infiltration revealed significant
differences between the high-and low-risk groups. Further, the high-risk group
was more prone to immune evasion while the inflammatory response was
strongly associated with the low-risk group.
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Conclusions: the KPNA family-based prognostic model reflects many
biological aspects of LUAD and provides potential targets for precision

lung adenocarcinoma, the KPNA family, immune homeostasis, biomarker, potential
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therapy in LUAD.
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Introduction

Lung cancer is among the most prevalent tumors and
contributes to about 21% of all cancer-related fatalities (Siegel
et al,, 2022). Non-small cell lung cancer (NSCLC) is the most
common subtype of lung cancer that represents at least 85% of all
cases of lung cancer. Histologically, NSCLC can be categorized
into three types, namely, large cell carcinoma, lung squamous cell
carcinoma (LUSC), and lung adenocarcinoma (LUAD), (Ko
et al, 2018 Majem et al, 2020). Currently, the principal
treatment modalities for lung cancer include targeted therapy,
chemotherapy, radiotherapy, surgery, and immunotherapy
(Catania et al,, 2021). Due to the highly malignant nature of
lung cancer, 5-year survival rates of patients with stage I to ITIA
range from 14 to 49%, and those for stage IIIB to IV disease
are <5% (Ko et al., 2018). LUAD is the most common subtype of
lung cancer, accounting for approximately —40% of all cases (Yin
et al., 2019). The 5-years overall survival (OS) rate of patients
with LUAD is less than 20% (Wu et al,, 2021). Therefore,
exploration of the pathogenetic mechanism of LUAD and
identification of potential therapeutic targets is a key research
imperative.

Karyopherin alpha (KPNA) are nuclear transporters (NTRs)
that consist of a cluster of basic amino acids, which selectively
through the nuclear pore complex (NPC) (Hazawa et al., 2020;
Miyamoto et al., 2020). NPC is composed of 30 nucleoporin
(NUP) proteins, which is the sole channel between the nucleus
and the cytoplasm (Hazawa et al.,, 2020). Active transport of
proteins from the cytoplasm to the nucleus through NPC usually
requires a carrier molecule that identifies the transport signal on
the cargo, which is called nuclear localization signal (NLS)
(Miyamoto et al, 2016). The classical mechanism of the
passage of proteins into the nucleus is as follows: cargoes
usually possess NLS that is initially detected by KPNA and
then exhibits interaction with karyopherin bl (KPNBI1), and
the created trimeric complex diffuses into the nucleus through
NPC (Myat et al, 2018). The main role of KPNA in
nucleocytoplasmic transport is to function as adaptor
molecules that carry protein cargoes carrying NLS and
Karyopherin beta (KPNB) from the cytoplasm to the nucleus
(Miyamoto et al.,, 2016). In addition to its function in mediating
nucleocytoplasmic transport, KPNA also has non-transport
functions such as lamin polymerization, nuclear membrane
formation, spindle assembly, protein degradation, cytoplasmic
retention, cell surface function, gene expression, and mRNA-

Frontiers in Genetics

15

related function (Miyamoto et al., 2016). In addition, KPNA is
increasingly recognized to have a central in cancer growth and
progression (Wang et al., 2012; Xu et al.,, 2021).

The human type the KPNA family consists of seven subtypes,
KPNA1, KPNA2, KPNA3, KPNA4, KPNA5, KPNA6, and
KPNA7 (Miyamoto et al, 2016), and these subtypes exhibit
42-86% homology to one another (Oostdyk et al., 2019). The
KPNA family can be further divided into three subfamilies based
on sequence homology: al, a2, and a3. The al subfamily
comprises three members, KPNAI, KPNA5, and KPNAG6.
a2 subfamily comprises two members, KPNA2 and KPNA7.
a3 subfamily comprises two members, KPNA3 and KPNA4
(Miyamoto et al, 2016; Myat et al, 2018). KPNAI was the
founding member of the al subfamily. The a2 and
a3 subfamilies are known to have evolved through duplication
of the founding KPNA, and to have developed cell and tissue-
specific roles which facilitate development and differentiation in
higher eukaryotes (Oostdyk et al., 2019). Aberrant expression of
the KPNA family has been detected in multiple cancers, which
was related to poor prognosis. For example, a study identified
high KPNA1 expression in breast cancer, which was associated
with poor overall survival (OS) (Tsoi et al., 2021). High
KPNA2 expression in melanoma was linked to poor OS and
disease-free survival (DFS) (Yang et al., 2020). High expression of
KPNA2 has been identified in ovarian carcinoma and cervical
cancer, which was associated with poor prognosis (Cui et al.,
2021; Wang et al., 2021). High KPNA4 expression in liver cancer
was shown to be associated with poor OS in patients (Xu et al.,
2021).

The KPNA family plays varied roles in different types of
malignancies. For example, KPNA1 was shown to modulate the
nuclear import of NCOR2 splicing variant BQ323636.1 and thus
promote tamoxifen resistance in breast cancer (Tsoi et al., 2021).
The expression of KPNA2 in ovarian carcinoma can promote
epithelial-mesenchymal transition (EMT), migration, and
invasion. The expression of KPNA2 in colorectal cancer tissue
was correlated with stage, differentiation status, and metastasis.
Overexpression of KPNA2 indicated a poor prognosis in patients
(Han and Wang, 2020). KPNA3 was shown to confer sorafenib
resistance via TWIST-regulated EMT in advanced liver cancer
(Hu et al,, 2019). The expression of KPNA4 in prostate cancer
was shown to promote metastasis through miR-708-KPNA4-
TNF axes (Yang et al., 2017), and KPNA4 was found to enhance
cancer cell proliferation and cisplatin resistance in cutaneous
squamous cell carcinoma (Zhang et al., 2019). KPNA5, KPNA6,
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and KPNAI binding regions can promote the proliferation of
breast cancer cells (Kim et al., 2015). KPNA7 promotes cell
growth and anchorage-independent growth, and reduces
et al, 2014).
Previous studies have reported overexpression of KPNA4 in
LUAD and identified it as a potential key driver of the
malignant phenotype (Hu et al, 2020). Nonetheless, the

functional role and underlying mechanism of the KPNA

autophagy of pancreatic cancer cells (Laurila

family in LUAD are poorly understood.

In this study, we used the TCGA-LUAD database and
Masked Somatic Mutation the
mutation status, and prognostic value of the KPNA family in

to evaluate expression,
LUAD. We built a prognostic model for individuals on the basis
of the clinical features and the expression of the KPNA family
and analyzed the differences in mutational signature in the two
risk groups. Next, we did a differential expression analysis, Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis, and Gene Ontology (GO) enrichment
analysis in the two risk groups. Finally, we performed the
analysis of immune infiltration in these groups. This is the
first investigation to examine the function of the KPNA
family in LUAD, as per our best knowledge. Our findings
may avail both potential biomarkers and therapeutic targets
against LUAD.

Materials and methods
Data acquisition and pretreatment

TCGA-LUAD expression profile data were acquired from
UCSC Xena (http://xena.ucsc.edu/); the downloaded data type
was count, and the count values were transformed to transcript
per million (TPM) values in advance. Transcriptomic data from
594 patients in TCGA-LUAD, 535 tumor samples, and 59 normal
samples were included in the current analysis. In addition, we
selected “Masked Somatic Mutation” data as the somatic
mutation data (n = 561) of LUAD patients from TCGA GDC
(https://portal.gdc.cancer.gov/), processed these data using VarScan,
and performed an analysis of somatic mutation using the maftools R
package (Mayakonda et al., 2018). The copy number information
(n = 531) of patients in TCGA-LUAD was downloaded in UCSC
Xena, which assessed gene copy number variation (CNV).

In this analysis, we used the clinical information of
594 patients from TCGA-LUAD, including age, sex, survival
status, and TNM stage. We matched patient IDs in the clinical
database with the transcriptomic data as well as somatic
mutation data above and removed samples with unavailable
transcriptomic data and somatic mutation data.

The KPNA family (KPNAI, KPNA2, KPNA3, KPNA4,
KPNA5, KPNA6, and KPNA7) expression profiles, mutation
data, and CNV data were extracted via R languages for
subsequent analysis.
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Differential expression analyses

Based on information in the TCGA-LUAD datasets, we
divided the samples into tumor samples and normal samples
and screened out differentially expressed genes (DEGs) utilizing
the DESeq2 package. The screening criteria were log2 (fold
change) > 1.0 and p-value < 0.05 (Love et al, 2014).
Subsequently, differential expression analysis was performed
using the DESeq2 package to determine the expression
profiles of low-and high-risk groups. The screening criteria
were log2 (fold change) > 2.0 and adj. p-value < 0.05.
Volcano plots were plotted using package ggplot2, heat maps
were drawn using package pheatmap to demonstrate the
differential gene expression.

Establishment of the prognostic model

Kaplan-Meier method in conjunction with the log-rank test
was utilized for survival analysis to establish the link between
high/low expression of the KPNA family genes and OS.

To determine the predictive power of the KPNA family for the
prognosis of LUAD individuals, we performed univariate Cox
regression analysis, LASSO regression analysis, and multivariate
Cox regression analysis based on the TCGA-LUAD to identify
independent prognostic factors, and created a prognostic model.
First, univariate Cox proportional regression analysis was utilized
to investigate the link between the expression levels of genes in the
KPNA family and OS; genes with an adjusted p-value < 0.1 were
retained. Subsequently, to eliminate the effect of multicollinearity, we
used the LASSO algorithm to screen meaningful variables in
univariate Cox regression analysis. Then we performed a stepwise
regression analysis using multivariate Cox regression to discover
independent prognostic factors. Finally, optimized gene expression
and correlation estimated Cox regression coefficients were taken into
consideration to generate a risk score formula: risk score = (exp-
Genel*coef-Genel)  +
Gene*coef-Gene).

(exp-Gene2*coef-Gene2)+. . .. .. +(exp-

The participants were then classified into the aforementioned
two risk groups as per the given risk score. Kaplan-Meier analysis
and log-rank test were performed to compare OS in the two
groups applying the survival package. Additionally, receiver
operating characteristic (ROC) curve analysis evaluated the
survival predictive value of the risk score. The area under
ROC curves (AUC) values were derived utilizing the R
package timeROC.

After detection of independent prognostic factors, we
combined clinical information such as age, sex, stage, and
other factors to establish a nomogram for prognostic
assessment of LUAD patients. In particular, we evaluated the
prognostic outcomes at 1, 3, and 5 years, correspondingly. The
reliability of the model was assessed by plotting the calibration

curve.
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Construct functional enrichment analysis
and regulatory network

We did GO enrichment analysis as well as KEGG pathway
enrichment analysis of the differentially expressed genes of two
risk groups utilizing the clusterProfiler R package and R package
GOPlot (Ogata et al., 1999; Ashburner et al., 2000; Yu et al,
2012). GSEA was instrumental in developing the gene expression
matrix with clusterProfiler R package; “c2. cp.all.v7.0. symbols”
was chosen as a reference gene set. In addition, false discovery
rate (FDR) < 0.25 with p < 0.05 denotes substantial enrichment
(Suarez-Farinas et al., 2010). Based on the “c2. cp.all.v7.0.
symbols” gene set, we utilized the R package Gene set
variation analysis (GSVA) on the basis of the gene expression
matrix for each sample, calculated the related pathway scores,
and generated the Heat maps using the ssGSEA method
(Hanzelmann et al., 2013).

Using the STRING protein-protein interactions database, we
evaluated the link between the hub genes and their interactions
and exported the results; core genes were thoroughly screened
with the CytoHubba Plugin in Cytoscape (Chin et al., 2014).

In addition, hub genes-miRNA regulation analysis and
transcription factors-target genes regulatory network analysis
with  NetworkAnalyst
networkanalyst.ca/NetworkAnalyst). ~ Results
exported from Networkanalyst, and miRNA-hub genes and

were  performed (http://www.

were finally
transcription factors-hub genes regulatory network plotted
using Cytoscape software.

Analysis of immune cell infiltration

We performed deconvolution with transcriptome matrix
using the CIBERSORT algorithm (which is premised on the
linear support vector regression principle) and assessed the
cellular composition and the abundance of immune cells in
the mixed infiltrate (Newman et al, 2015). Gene expression
matrices data were uploaded onto the CIBERSORT, and after
filtering the outputs (p-value < 0.05), we obtained the matrix of
infiltrating immune cells. Bar graphs were plotted using R
package ggplot2 to demonstrate the distributions of 22 types
of infiltrating immune cells in every sample. In addition, we
studied the correlation of two risk groups with immune and
inflammation by extracting HLA family-related genes (MHC
class I and II) and complement-related genes.

Statistical analysis

The R software (version 4.0.2) performed all the analyses and
data processing. Between-group variations with respect to
normally distributed continuous variables were investigated
with the aid of the Student’s t-test, whereas those with respect
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to non-normally distributed variables were investigated utilizing
the Mann-Whitney U test
Additionally, for between-group differences with respect to

(Wilcoxon’s rank-sum test).
categorical variables, the Chi-squared test or Fisher exact test
was used. Correlation between different genes was assessed using
Spearman correlation analysis. Kaplan-Meier survival analyses
were done through the utilization of the R package survival and
the between-group differences in survival outcomes were
assessed using the log-rank test. Univariate as well as
multivariate Cox regression analyses were utilized to ascertain
the independent prognostic factors. Two-sided pvalues <
0.05 denoted statistical significance for all analyses.

Results

Aberration of the KPNA family in TCGA-
LUAD

First, we extracted the KPNA family from the TCGA-LUAD
datasets, which included KPNA1, KPNA2, KPNA3, KPNA4,
KPNA5, KPNA6, and KPNA7, and the details are shown in
Supplementary Table S1. We plotted the heatmaps of the
KPNA family and found a non-uniform trend in their
expression with no significant correlations between them
(Figures 1A,B). We identified differential expression of
KPNA2, KPNA3, KPNA5, KPNA6, and KPNA7. Compared
with normal tissue, KPNA2, KPNA6, and KPNA7 were highly
expressed in LUAD, while KPNA3 and KPNA5 expression were
decreased in LUAD (Figure 1C). Subsequently, we plotted ROC
curves, which clearly showed the discriminative value of these
genes in differentiating between tumor samples and non-tumor
samples. The AUC values of KPNA2, KPNA3, KPNA5, and
KPNA7 were >0.7, which
discriminating ability. In addition, we did Kaplan-Meier

indicated a promising
survival analysis to identify genes that affect the prognosis in
LUAD. The expression of KPNA2 and KPNA4 was found to
affect the OS of LUAD individuals, and the patients with high
expression of KPNA2 and KPNA4 showed a much worse
prognosis (Figures 1D-]).

The panorama of gene mutations was displayed in TCGA-
LUAD datasets; missense mutations accounted for the majority of
mutations, single-nucleotide polymorphisms (SNPs) occurred more
frequently than deletions or insertions, and C>A was most
frequently identified in single nucleotide variants (SNVs) among
patients with LUAD (Supplementary Figures S1A,B). Subsequently,
we extracted the KPNA family information and analyzed the
mutational signatures. The frequency of overall the KPNA family
mutations was low, and the mutation types were primarily missense
mutations (Figure 2A). We plotted the lollipop diagrams according
to mutational signatures (Figures 2B-G). In addition, we analyzed
CNV changes according to the information on the CNV of the
KPNA family. As shown in Figure 2H, the copy number
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FIGURE 1

Expression patterns of the KPNA family in TCGA-LUAD (A) Heat maps of gene expressions of the KPNA family (B) Heat map of gene-gene
correlations in the KPNA family (C) Boxplots of the KPNA family genes between the normal and tumor tissues (D—J) ROC curve showing group
differences and the Kapla-Meier curves showing survival differences. * represents p < 0.05; ** represents p < 0.01; *** represents p < 0.001; ns

represents no significant difference (p > 0.05).

amplifications of KPNA1, KPNA2, KPNA4, KPNA6, and KPNA7 in
total samples were higher than the copy number deletions, but the
copy number amplifications of KPNA3 and KPNA5 were lower than
the copy number deletions.

Creation of prognostic model based on
the KPNA family

We conducted a univariate Cox regression analysis to detect
the KPNA family genes linked to the prognosis of LUAD
patients. Four genes were discovered to be linked to survival.
To further screen the genes associated with prognosis, we
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screened the genes using LASSO regression analysis and Cox
regression analysis and eventually identified KPNA4 and KPNA5
as independent prognostic factors (Figures 3A-C). As per their
expression values and regression coefficients, we derived the risk
score for LUAD specimens and plotted the heatmaps to visualize
the distribution of samples in the two risk groups (Figure 3D).
We conducted a survival analysis of LUAD individuals utilizing
their risk score-based grouping; the findings affirmed that
patients in the high-risk group experienced a poor prognosis
(Figure 4A). ROC curve analysis indicated good predictive
efficacy of risk score-based grouping for 1-year, 3-years, and
5-years survival outcomes (1-year AUC = 0.615, 3-years AUC =
0.645, 5-years AUC = 0.629) (Figure 4B).
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model of the KPNA family (C) Forest plot of multivariate Cox regression analysis of the KPNA family (D) Calculated risk score and the heat maps of risk

factors based on the findings of multivariate Cox regression analysis.

Subsequently, we constructed a nomogram incorporating
age, sex, clinical stage, and the expression level of KPNA4 and
KPNAS5 for prognostic assessment of LUAD patients (Figure 4C).
Through calibration curves, we found that the prognostic model
for 1-year, 3-years, and 5-years had high reliability (Figure 4D).
Additionally, we performed risk stratification based on different
factors including age, sex, clinical stage, survival status, and
immune subtypes. The results affirmed that there were no
remarkable differences between the two risk groups with
respect to age or sex; however, there were substantial
differences between the two risk groups in terms of clinical

stage and immune subtypes (Figures 4E-TI).
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Comparison of tumor mutation burden
and microsatellite instability utilizing risk
score

We further compared the mutational signatures between
the two groups utilizing the risk score. There were no
remarkable differences in MSI scores between the two risk
groups, but the high-risk group had greater TMB scores in
contrast to the low-risk group (Figures 5A,B). Subsequently,
we analyzed the top 30 mutant genes of the two risk groups
and ascertained variations in genetic mutations between them
(Figure 5C).
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Differential expression analysis and
functional enrichment analysis of high-
and low-risk groups

According to the low-and high-risk groups, we did a
differential analysis of all genes within the expression
profiles in the TCGA cohort using the volcano plots and
heat maps (Figures 6A,B). Pathway enrichment analysis, as
well as GO enrichment analysis, were performed on DEGs
separately (Supplementary Tables S2, S3). GO enrichment
analysis included molecular function (MF), biological process
(BP), and cellular component (CC). The key DEGs enriched
the following principal biological processes: epithelium
development, cornification, tissue development, and
morphogenesis of a branching epithelium, morphogenesis
of a branching structure; the principal aggregation of
cellular components was as follows: extracellular region,

cornified envelope, and chromatin. The principal enriched
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DNA-binding
transcription factor double-
stranded DNA binding, and amino acid sodium symporter
activity (Figures 6C,D). The pathway enrichment was mainly

molecular functions were as follows:

activity, sequence-specific

enriched in Neuroactive ligand-receptor interaction, Salivary
secretion, Galactose metabolism, Vascular smooth muscle
contraction, and Transcriptional dysregulation in cancers
(Figures 6E,F).

Subsequently, we constructed PPI networks by STRING
databases to identify the hub genes and reveal their potential
interactions. First of all, we built protein interaction networks by
DEGs and the minimum score of interactions was set to 0.7
(Supplementary Figure S2A). We additionally determined the
most relevant genes in the PPI networks by the Cytohubba plugin
and 15 genes were regarded as hub genes: SPANXD, MAGEA4,
MAGECI1, SPANXC, CTAG2, MAGEA10, CT45A1, MAGEAI,
MAGEA1, MAGEC2, SPRR2D, KRT6A, KRT14, CASP14, and
SPRRZE (Supplementary Figure S2B).
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We also predicted the potential miRNAs which regulate the
15 hub genes by the Networkanalyst databases; the final
subnetwork contained 49 nodes (i.e., miRNA) and 11 seeds
(i.e, matched hub genes) (Supplementary Figure S2C).
Similarly, we obtained the transcription factors-hub genes
regulatory networks based on the JASPAR databases, the final
contained 14 seeds hub genes) and 46 nodes
(i-e., transcription factors) (Supplementary Figure S2D).

Subsequently, we carried out GSEA between the two risk
groups to identify remarkably enriched pathways (p-value <
0.05) (Supplementary Table S4). The GSEA results showed

(ie.,
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enrichment of cell cycle checkpoints, cell cycle mitotic,
retinoblastoma gene in cancer, mitotic metaphase, and
anaphase in the high-risk group. CD22 mediated BCR
regulation, heme scavenging from plasma, asthma, and
antigen activates B cell receptor BCR resulting in the
generation of second messengers were enriched in the low-
risk group (Figures 7A,B). GSVA findings ascertained that
there were variations in a total of six gene sets between the
two risk groups, according to the screening of the hallmark
gene sets, for example, angiogenesis, apical surface, and

apical junction (Figure 7C).
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Analysis of immune infiltration in the high-
and low-risk groups

the bar graphs. The infiltration scores and correlation analysis
between the 22 immune cells were obtained by the CIBERSORT
algorithm, respectively (Figures 8A,B). We further evaluated the
After ranking based on the risk score, the immune cell differences in immune cell infiltrates in the two risk groups. As

infiltration for each sample in the TCGA LUAD is shown in shown in Figure 8C, the infiltration scores for naive B cells,
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plasma cells, CD4" T cells memory resting T cells, and resting
dendritic cells were lower in the high-risk group than in the low-
risk group; however, the infiltration scores for CD8* T cells and
MO Macrophages were greater in the high-risk group. We
computed the correlation of the expression level of KPNA4
and KPNA5 and various types of immune cells by Spearman’s
correlation  analysis S3, S4).
Additionally, we combined the genes related to immunity and
inflammation (for example, HLA family and complement-
related genes), and analyzed the differences in the two risk
groups. We found that the MHC-II family was decreased in
the high-risk group, and the main function of the MHC-II gene is
antigen-presenting. This suggested that the antigen-presenting
function might be affected in the high-risk group (Figures 8D,E).

(Supplementary  Figures
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Additionally, there were variations of complement-related genes
in both groups, which illustrated a close association with
inflammation (Figures 8F,G).

Discussion

Due to its highly malignant nature and a paucity of methods
for early diagnosis, LUAD is linked to high incidence as well as
mortality rates. Therefore, recognition of particular principal
molecular pathways and extensively sensitive, reliable
biomarkers is required to improve the early diagnosis and
survival outcomes of LUAD patients. Previous investigations

have demonstrated the relationship of the KPNA family genes
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Immune infiltration in the two risk groups (A) The panorama of 22 immune cell infiltrates (B) Correlation analyses of 22 immune cell types (C)

Differences in the immune cell infiltration between high-and low-risk groups (D,E) Differential expression of HLA gene family between the two risk
groups (F,G) Differential expression of complement-related genes in the two risk groups. * represents p < 0.05; ** represents p < 0.01; *** represents
p < 0.001; ns represents no significant difference (p > 0.05).
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with tumor progression (Wang et al., 2012; Xu et al,, 2021).
However, there is a lack of in-depth characterization of the role of
the KPNA family in LUAD. This is the first investigation to
develop a prognostic model premised on the expression of the
KPNA family genes, as per our best knowledge. Enrichment
analysis revealed the involvement of the KPNA family in
transcription,  cell  cycle, immune infiltration, and
inflammatory response, which are tumor-related processes.
Thus, our findings may be useful in the development of future
investigations to determine patient prognosis and to recognize
candidate therapeutic targets in LUAD individuals.

We explored the connection between the KPNA family
expression and the OS of patients. High expression of KPNA2
and KPNA4 were predictive of inferior OS. KPNA4 has
previously been identified as a tumor promoter gene in some
cancers (Wang et al.,, 2015). For example, high expression of
KPNA4 in cutaneous squamous cell carcinoma was discovered to
enhance cancer cell proliferation as well as cisplatin resistance
(Zhang et al., 2019). Inhibition of KPNA4 attenuated prostate
cancer metastasis (Yang et al, 2017). Regulating upstream
modulators facilitates angiogenesis as well as progression in
lung cancer by targeting the miR-340-5p/KPNA4 axis (Li
et al, 2020). A previous study identified overexpression of
KPNA2 in NSCLC, and KPNA2 was identified as a potential
biomarker for NSCLC (Wang et al., 2011). These studies support
our conclusions that KPNA2 and KPNA4 may be useful
prognostic biomarkers for LUAD patients.

KEGG

dysregulation in cancers enriched with DEGs in the high-risk

enrichment  analysis showed  transcriptional
group. Transcription factors serve as a group of sequence-specific
binding proteins that can activate or suppress transcription through
transactivation or transrepression domains. Transcription factors
have been linked to the pathogenesis of a variety of human diseases
(including cancers); these account for approximately 20% of all
oncogenes identified so far (Lambert et al., 2018). Previous literature
reports have displayed the involvement of transcription factors in
regulating cell proliferation, differentiation, apoptosis, and their
remarkable function in the onset and development of tumors
2015).  Dysregulation

transcriptional modulators not only defines the cancer phenotype

(Sever and  Brugge, of  principal
but is important for its development (Gonda and Ramsay, 2015).
Our results suggest that the KPNA family may influence the
transcriptional dysregulation in LUAD. Therefore, it is important
to study the mechanism of transcriptional dysregulation of the
KPNA family in LUAD.

In this study, we found that cell cycle checkpoints and cell cycle
mitotic were enriched in the high-risk group. Cell cycle checkpoints
are biochemical signaling mechanisms that detect DNA damage or
chromosomal dysfunction and trigger a series of sophisticated
cellular repair responses (Wu et al, 2005). Typically, cell cycle
checkpoints are disrupted in most malignancies and serve a vital
function in maintaining genomic integrity and inactivating
checkpoint genes (Zheng et al, 2010). In previous research,
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impaired function of cell cycle checkpoints was found to raise
the risk of lung cancer (Wu et al, 2005). Mitosis is the critical
stage of the cell cycle, involving the passage of one of the sister
chromatids to each of the daughter cells. Therefore, precise
regulation of mitosis is essential for the maintenance of
chromosome stability in human cells (Pines, 2006). Aberrant
mitotic  progression leads to chromosomal missegregation,
contributing to carcinogenesis (Kops et al, 2005; Holland and
Cleveland, 2009; Schvartzman et al., 2010). Our study identified
significant enrichment of these two pathways in the high-risk group,
which additionally validated the accuracy of the risk prediction
model constructed in this study.

The tumor microenvironment (TME) is a heterogeneous system
consisting of immune cells, cancer cells, and an extracellular matrix
(Hoadley et al., 2014; Warrick et al., 2019). The roles for immune
homeostasis similar to a buffering system. While the immune system
is constantly stimulated and dampened, the system is maintained at
a relatively stable steady state (da Gama Duarte et al., 2018). In this
study, the infiltration scores for naive B cells, plasma cells, CD4*
T cells memory resting T cells, and resting dendritic cells were
lowered in the high-risk groups than in the low-risk groups, but the
infiltration scores for CD8" T cells, MO Macrophages were elevated
in the high-risk group. This could lead to different responses to
immunotherapies in the two risk groups. The purpose of
immunotherapy is to alter the environment, and thereby, the
equilibrium of the response. Therefore, the sensitivity of
immunotherapy in the two risk groups also remains unexplored.

Immune evasion is a significant feature of cancer, and
inhibition of HLA gene levels may lead to attenuated antigen
presentation, facilitating immune evasion (McGranahan et al.,
2017). HLA family genes were decreased in the high-risk group,
which suggests that the high-risk group was more prone to
immune evasion and thus have a worse prognosis. These
results are consistent with our survival analysis. Additionally,
we studied the expression of inflammation-related genes in the
two risk groups and captured the down-regulation of
complement-related genes in the high-risk group. These
findings suggest that inflammation was strongly associated
with the low-risk group.

This is the first-ever report on the association of the KPNA
family expression with survival outcomes of patients with LUAD.
Therefore, the KPNA family may potentially serve as a novel
prognostic biomarker in patients with LUAD and provide novel
for LUAD this
bioinformatics research and most of the findings were

targets immunotherapy. However, was
generated from public databases and bioinformatics analysis.
Further in vitro and in vivo experiments are required to validate
our findings.

In conclusion, we found that KPNA2 and KPNA4 are
potential prognostic markers. We created a prognostic model
on the basis of the expression level of the KPNA family, which
was shown to accurately predict prognosis. This prognostic
model reflects many aspects of LUAD biology and provides
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new insights into precision therapy for LUAD. In the future, a lot
of basic experiments need to be carried out to validate the
applicability and accuracy of this model.
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Lung adenocarcinoma (LUAD) has become the most prevalent histologic subset
of primary lung cancer, and effective innovative prognostic models are needed
to enhance the feasibility of targeted therapies for the disease. Programmed cell
death (PCD) performs an integral function in the origin and treatment of cancer.
Some PCD-related effective signatures for predicting prognosis in LUAD
patients could provide potential therapeutic options in LUAD. A copper-
dependent cell death referred to as cuproptosis is distinct from known PCD.
However, whether cuproptosis is associated with LUAD patients’ prognoses and
the potential roles of cuproptosis-related genes involved is still unknown. For
the prediction of LUAD prognosis, we developed a unique cuproptosis-
associated gene signature. In The Cancer Genome Atlas (TCGA) cohort, the
score derived from the risk signature on the basis of six cuproptosis-related
genes was found to independently serve as a risk factor for anticipating lung
cancer-related death. The differentially expressed genes between the high- and
low-risk groups were linked to the cilium-related function. LUAD patients’
prognoses may now be predicted by a unique gene signature identified in
this work. This discovery also provides a substantial foundation for future
research into the links between cuproptosis-associated genes and cilium-
related function in LUAD patients.
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Introduction

Lung adenocarcinoma (LUAD) is currently the most
prevalent histologic subset of primary lung cancer,
contributing to over 40% of all cases, and its relative
prevalence is growing (Barta et al, 2019). The absence of
adequate screening strategies and the challenges of performing
an early diagnosis have resulted in significantly high recurrence
and death rates for LUAD, with an overall five-year survival
probability of lower than 15% owing to local and distant
metastases (Ali et al., 2013). Despite great efforts having been
made to explore the therapeutic effect of LUAD, the clinical
outcomes of LUAD remain poor in patients (Zhang et al., 2015).
Because of the limits of current LUAD therapies, novel treatment
targets are required in order to improve the clinical result of
LUAD. As a result, robust innovative prognostic models are
needed in order to enhance the feasibility of targeted therapy
for LUAD.

Programmed cell death (PCD) is critical for the appropriate
development and maintenance of tissue homeostasis, as well as
for the removal of damaged, diseased, or defunct cells in
multicellular organisms. In the pathophysiology of different
illnesses, aberrations in PCD signaling cascades, including
ferroptosis, apoptosis, pyroptosis, necroptosis, and cell death
linked to autophagy, may be detected (Galluzzi et al., 2018;
Moujalled et al., 2021). Nowadays, several studies have
established tumor prognostic models associated with PCD
(Cai et al., 2021; Fu et al., 2021; Shao et al.,, 2021; Zhao et al.,,
2021). PCD performs an integral function in the origin and
treatment of cancer (Shao et al., 2019; Strasser and Vaux, 2020).
A few studies revealed crosstalk between distinct PCD
mechanisms and antitumor immunity (Tang et al, 2020).
Immunogenic cell death is a kind of tumor cell death that
may be induced by some chemotherapy medicines, oncolytic
viruses, physicochemical treatments, and radiotherapy (Ahmed
and Tait, 2020). The ability of cancer cells to undergo death when
subjected to anti-cancer therapy is mediated by modulated cell
death systems, which could either suppress or enhance the
immunogenic capacity of cancer cells (Garg and Agostinis, 2017).

The latest research shows that copper mediates cell death by
targeting lipoylated tricarboxylic acid (TCA) cycle proteins, and
because of this, lipoylated proteins aggregate, and corresponding
iron-sulfur cluster proteins are lost, resulting in proteotoxic stress
and eventually cell death. The authors demonstrate that copper-
dependent modulated cell death in human cells is different from
recognized cell death processes and is reliant on mitochondrial
respiration (Tsvetkov et al, 2022). Therefore, this copper-
dependent cell death was referred to as cuproptosis. There are
very few in-depth studies on cuproptosis. There is a strong
correlation between the abundance of ferredoxin 1 (FDX1)
and the level of lipoylated proteins in a variety of human
tumor cells, and cell lines with significant levels of lipoylated
proteins are susceptible to cuproptosis, suggesting that copper
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ionophore intervention ought to be targeted toward malignancies
with this metabolic landscape. Consequently, subsequent clinical
studies of copper ionophores ought to be conducted utilizing a
biomarker-driven strategy (Tsvetkov et al., 2022). According to
the above studies on cuproptosis, we obtained cuproptosis-
genes FDXI1,
dehydrogenase acid

related including dihydrolipoamide
(DLD), (LIAS),
lipoyltransferase 1 (LIPT1), ATPase copper transporting beta
(ATP7B), glycine cleavage system protein H (GCSH), ATPase
(ATP7A),

pyruvate

lipoic synthetase

copper transporting alpha
(DLAT),

El subunit beta (PDHB), pyruvate dehydrogenase E1 subunit

dihydrolipoamide
S-acetyltransferase dehydrogenase
alpha 1 (PDHAI), dihydrolipoamide S-succinyltransferase
(DLST), solute carrier family 31 members 1 (SLC31A1), and
dihydrolipoamide branched chain transacylase E2 (DBT), which
provide the preliminary basis for our next exploration and
research.

Recently, a number of studies have established ferroptosis-,
pyroptosis-, necroptosis- and autophagy-related effective
signatures for predicting prognosis in LUAD patients, which
could provide potential therapeutic options in LUAD (Chen
et al., 2020; Lin et al., 2021; Yao et al,, 2021; Lu et al.,, 2022).
Given these existing findings, we hypothesized that cuproptosis is
linked to LUAD patients’ prognoses and that cuproptosis-
associated genes may be involved in the disease process. As a
consequence, we conducted a comprehensive investigation to
determine the expression patterns of cuproptosis-associated
genes in normal lung and LUAD samples, ascertain the
prognostic significance of these genes, and conducted the
Gene Ontology (GO) and immune infiltration enrichment

analyses.

Materials and methods
Datasets

We acquired the RNA sequencing (RNA-seq) data combined
with the corresponding clinical features (phenotype and survival
data) from the Genomic Data Commons (GDC) The Cancer
Genome Atlas (TCGA) LUAD cohort, all of which were retrieved
from the University of California, Santa Cruz (UCSC) Xena
(http://xena.ucsc.edu)(Goldman et al., 2020). UCSC Xena is an
analysis and visualization platform with excellent performance
for both large public databases including TCGA (Chin et al.,
2011) and the GDC (Grossman et al., 2016), and private datasets.

The RNA-seq data normalized to fragment per kilobase
million (FPKM) values include the gene expression data of
59 normal and 526 tumor tissues samples (https://gdc-hub.s3.
us-east-1.amazonaws.com/download/TCGA-LUAD.htseq_
fpkm.tsv.gz; version 07-20-2019), the phenotype data include
clinicopathologic features of 877 LUAD patients (https://gdc-
hub.s3.us-east-1.amazonaws.com/download/TCGA-LUAD.
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GDC_phenotype.tsv.gz; version 08-07-2019) and survival data
include survival time information of 738 LUAD patients (https://
gdc-hub.s3.us-east-1.amazonaws.com/download/TCGA-LUAD.
survival.tsv; version 07-20-2019) (Supplementary File S1).

Identification of the cuproptosis-related
gene expression levels and interactions

We extracted the 13 cuproptosis-related genes from the
recent article (Tsvetkov et al., 2022). The downloaded
expression data in the TCGA dataset were presented as
FPKM values. The “limma” package (Ritchie et al., 2015)
was used to identify differentially expressed genes (DEGs)
related to cuproptosis between 59 normal and 526 tumor
tissues, and a p-value < 0.05 was defined statistically
significant difference. The “pheatmap” package was used to
present the RNA levels of these 13 cuproptosis-associated
genes. The following are the criteria for the genes linked to
cuproptosis with differential expression: *p < 0.05, **p < 0.01,
and ***p < 0.001. We employed these genes to create a protein-
protein interaction (PPI) network with the Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING), version
11.5 (https://string-db.org/), which is a repository of PPIs
that have been identified and anticipated. There are indirect
(functional) and direct (physical) linkages resulting from
computerized prediction, information transmission between
organisms, and interplay obtained from other repositories
(Szklarczyk et 2021). The
interaction value for the PPI analysis was established at 0.

al, minimum required
15 (the lowest confidence level) due to the limited number of
genes, which allowed for more interactions to be discovered.
Visualization of the correlation network of these genes was
accomplished utilizing the “igraph” package, which is a set of
network analysis tools that have a focus on portability,

efficiency, and simplicity of use.

Tumor classification premised on the
cuproptosis-related genes clusters

With the help of the R package “ConsensusClusterPlus”
(Wilkerson and Hayes, 2010), a consensus clustering analysis
of all 526 LUAD tumor tissues in the TCGA dataset was
performed to examine the links between the expression of the
13 cuproptosis-related gene and LUAD subtypes. Once the
clustering variable (k) was increased from 2 to 10, a suitable
value of k could be found and the 526 LUAD tumor tissues
were classified into suitable clusters on basis of the 13 genes,
with the highest intragroup correlations and the low
intergroup correlations. After collating the phenotype data
and survival data and removing the missing values, the data on
clustered gene expression and the clinical parameters
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encompassing the tumor, node, and metastasis (TNM)
classification, age, gender, and survival status of 486 LUAD
patients were presented via the “pheatmap” package, which
allowed for visualization of the differences between the
the
comparison was made for the overall survival (OS) time

clinical ~parameters and classified clusters. A
among the divided clusters via the Kaplan-Meier (KM)

survival analysis using the “survival” package.

Development of a cuproptosis-associated
gene prognhostic model

In total, 526 LUAD specimens were paired with the
500 matching patients whose survival data was complete. To
examine the predictive significance of the cuproptosis-
associated genes, we conducted a Cox regression analysis on
the data from the TCGA cohort to determine the relationships
between each gene and survival status. We established p <
0.3 as the cut-off value to avoid missing important genes and
identified genes associated with survival for subsequent
evaluation. The least absolute shrinkage and selection
operator (LASSO) Cox regression model was then employed
to filter out the potential genes and to create the prognostic
model, which was done with the help of the R package “glmnet”
(Tibshirani, 1997; Engebretsen and Bohlin, 2019). The final
decision was made to keep the genes along with their
coefficients being retained, and the penalty parameter (\)
was chosen based on the bare minimum requirements.
Using a linear combination for each prognostic survival-
associated gene’s standardized expression level and its
associated multivariate Cox regression coefficient (f), the
risk score in the derivation, as well as the validation sets,
were determined. The following was the equation for
calculating the risk score: Risk Score = Y(B; x gene; EXP)
(EXP: normalized expression value). After classifying patients
into low- and high-risk subgroups premised on their median
risk scores, the OS duration was evaluated between the two
subgroups utilizing the KM survival analysis method. Using the
gene signature as a starting point, principal component
analysis (PCA) was done with the help of the function
“prcomp” in the R package “stats”. The R packages
“survival” and “timeROC” were employed to execute
analyses of patients’ distribution premised on the risk score,
each patient’s survival status, KM survival curves, and receiver
operating characteristic (ROC) curves.

Assessment of the risk score's
independent prognosis

Patients with LUAD in the TCGA cohort were categorized
into two subgroups premised on their median risk scores. The
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clinical features including TNM classification, age, gender, and
survival status of LUAD patients in high- and low-risk subgroups
were analyzed in conjunction with the risk score derived from
our regression model. Univariate and multivariate Cox
regression models were utilized in the investigation. After
collating the phenotype data and survival data and removing
the missing values, the survival-related gene expression data and
the clinical parameters encompassing TNM classification, age,
gender, and survival status of LUAD patients in low- and high-
risk groupings were presented via the “pheatmap” package and
the differences in the clinical parameters across the two groups
were evaluated.

Functional enrichment and immune
infiltration analyses of the differentially
expressed genes between the low- and
high-risk subgroups

Patients with LUAD in the TCGA dataset were categorized
into two subgroups premised on their median risk scores.
Determining the DEGs that distinguished the patients at low
and high risk was done using the criteria of |log2FoldChange
(FC) | > 0.5 and adjusted p < 0.05. The “org.Hs.eg.db” program
was utilized to obtain the entrezIDs of DEGs. By incorporating
the “clusterProfiler” and the “GOplot” packages, we were able
to conduct analyses of GO functional enrichment on the basis
of these DEGs and entrezIDs (Yu et al., 2012; Walter et al,,
2015; Wuetal., 2021). GO functional analysis comprises three
classifications: biological process (BP), cellular component
(CC) and molecular function (MF). Single-sample gene set
enrichment analysis (ssGSEA) was performed with the help of
the “GSVA” and “GSEABase” packages, which were employed
to compute the infiltration scores of immune cells and to
assess the functioning of immune-associated pathways
(Hanzelmann et al., 2013).

Statistical analysis

The gene expression patterns in the normal lung and
LUAD samples were compared utilizing a single-factor
analysis of variance, whereas the categorical data were
evaluated utilizing the Pearson chi-square test. We used the
KM survival analysis approach in conjunction with a two-
sided log-rank test to assess the OS of patients across different
subgroups. We employed univariate and multivariate Cox
regression models to examine the risk model’s independent
prognostic significance. Through the use of Mann-Whitney
test, we evaluated the infiltrating levels of immune cells and
the activation of the immune pathway between the two
subgroups. RGUI 4.0.3 was employed to execute all
analyses of statistical data.
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Results

The cuproptosis-related gene expression
levels and interactions

The 13 cuproptosis-related gene expression levels were
determined after comparing 59 normal and 526 tumor
tissues in GDC TCGA LUAD cohort retrieved from UCSC
Xena. Among them, 7 genes (DLAT, DLD, GCSH, LIAS,
LIPT1, PDHAI, and PDHB) were upmodulated, whereas
(ATP7B, FDXI, SLC31A1)
downmodulated in the tumor group in contrast with the
normal group (p < 0.05). The levels of RNA for these
13 cuproptosis-related genes are displayed as a heatmap,

3 genes and were

where green and red denote low and high expression levels,
respectively (Figure 1A). We undertook a PPI study on these
cuproptosis-associated genes in order to learn more about
their interactions with one another. Once the minimum
required interaction score of the PPI analysis was adjusted
to 0.15, the top five interaction proteins/genes were DLD,
GCSH, DLAT, PDHA1, and LIAS, which could be considered
as hub genes. Figure 1B illustrates the findings of PPI
1C  depicts
encompassing all genes associated with cuproptosis, where

analysis. Figure the correlation network
red and blue denote positive and negative correlations,

correspondingly.

Characterization of tumors depending on
the genes involved in cuproptosis

The expression of the 13 cuproptosis-associated genes was
compared to the expression of LUAD subtypes utilizing a
consensus clustering analysis of all 526 LUAD tumor
specimens from the TCGA cohort in order to investigate the
relationship between the two. After adjusting the clustering
value (k) from 2 to 10, we discovered that at k = 3, the
intragroup relationships were the strongest, illustrating that
the 526 LUAD tumor tissues may be efficiently classified into
three clusters on the basis of the 13 genes (Figure 2A). The
526 LUAD tumor tissues were corresponding to 486 LUAD
patients with complete clinical features including TNM
classification (stage N: NO, N1, N2, N3 or NX; stage M: MO,
M1, or MX; stage T: TI, T2, T3, T4 or TX), age
(<60 or >60years), gender (male or female) and survival
status (dead or alive). An interactive heatmap is used to
display the gene expression patterns and clinical parameters
of 486 LUAD patients. The heatmap reveals that there are only
minor differences in clinical parameters across the three
clusters (Figure 2B). The KM survival analysis was utilized
to measure the OS duration of the 500 relevant patients who
had full survival time information among the three clusters, but
differences were not obvious (p = 0.3091) (Figure 2C).
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Development of a prognostic gene model
in the TCGA dataset

In total, 526 LUAD specimens were paired with the
500 matching patients whose information on survival time
was complete. The univariate Cox regression analysis was
utilized for the initial filtering of the genes associated with
survival. Subsequent investigations were conducted on the
6 genes (DBT, DLAT, DLD, DLST, LIPT1, and PDHA1) that
satisfied the criterion of p < 0.3. Out of these 6 genes, 2 genes
(DBT and LIPT1) were shown to have a protective function
with hazard ratios (HRs) < 1, whereas the remaining 4 genes
(DLAT, DLD, DLST, and PDHAL1) were linked to a greater
risk as demonstrated by HRs > 1. LIPT1 independently served
as an influencing factor (p < 0.05) (Figure 3A). The Cox

Frontiers in Genetics
33

regression analysis conducted using the LASSO method was
utilized to build a 6-gene signature that corresponded to the
optimal X value (Figure 3B). In the next step, we undertook a
multivariate Cox regression analysis of the six genes
(Figure 3C). The following is the equation for computing
the risk score: risk score = (-0.2733 x DBT EXP) + (0.1636 x
DLAT EXP) + (0.1974 x DLD EXP) + (0.1606 x DLST EXP) +
(-0.4600 x LIPT1 EXP) + (0.1336 x PDHA1 EXP). Five
hundred patients were separated into two groups
depending on the median score generated by the risk score
equation: low- and high-risk subgroups (Figure 3D). When
the PCA was performed, it was determined that patients with
different risks could be effectively categorized into two
clusters (Figure 3E). A higher number of fatalities and a
considerably shorter survival duration were observed among
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Tumor classification premised on the cuproptosis-associated genes. (A) Five hundred and twenty-six LUAD tumor samples were classified into
three clusters utilizing the consensus clustering matrix (k = 3). (B) The heatmap depicting the clinical and pathological parameters of the three
cuproptosis-related gene clusters. (C) Comparing OS time via KM survival analysis for the three clusters.

patients within the high-risk subgroup (displayed on the right-
hand side of the dashed line) relative to those at low risk
(Figure 3F). A notable difference (p = 0.0031) in OS duration
was discovered between the high- and low-risk groups via KM
survival analysis (Figure 3G). The prognostic model’s specificity
and sensitivity were assessed utilizing time-dependent ROC
curves. The findings indicated that the area under the ROC
curve (AUC) for OS was 0.639, 0.605, and 0.576 for 1-, 2-, and
3-year periods, respectively (Figure 3H).

The risk model’s independent prognostic
significance

In the TCGA cohort, LUAD patients were classified into two
based their The
482 corresponding patients had complete clinical features

subgroups on median risk  score.

including survival status, TNM classification, age, and gender
of LUAD patients in low- and high-risk subgroups were
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examined in combination with the risk score in the regression
model. We utilized univariate and multivariate Cox regression
analyses to ascertain the possibility of the risk score produced
from the gene signature model independently serving as a
prognostic factor. The analytical findings from the univariate
Cox regression model illustrated that the risk score (HR = 1.5483,
95% CI: 1.973-5.467) independently functions as a predictive
factor for unfavorable survival in the TCGA cohort (Figure 4A).
Furthermore, after adjusting for possible confounders in the
multivariate analysis, the risk score (HR = 1.5014, 95% CI:
1.1042-2.0414), (HR = 13345, 95% CIL
1.1170-1.5943) (HR = 1.3046, 95% CIL
1.1283-1.5086) were found to be prognostic indicators for
LUAD patients in TCGA cohort (Figure 4B). As an additional
output of our analysis, we established a heatmap of clinical
parameters for the TCGA dataset (Figure 4C), and the
findings illustrated that the survival duration, stage T, and

stage T

and stage N

stage N were diversely distributed between the low- and high-
risk subgroups.
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dotted line, respectively). (G) KM survival study of patients classified as having high or low risks. (H) ROC curves proved the risk score's predictive

effectiveness. AUC, area under the ROC curve.

Gene ontology functional analysis
premised on the risk model

To additionally examine the difference in the functions of
genes between the groups classified by the risk model, we
employed the R function “limma” to obtain the DEGs
premised on the cutoff values of adjusted p < 0.05 and |
log2FC| > 0.5. Then, 1292 DEGs were detected between high-
and low-risk subgroups in the TCGA dataset. 233 of them were
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upmodulated in the high-risk group, whereas the remaining
1,059 were downmodulated S1).
Following that, a GO functional enrichment analysis was

(Supplementary Table

carried out using these DEGs. The function enrichment
analysis of the GO BP illustrated a considerable enrichment of
DEGs in cilium movement, cilium or flagellum-dependent cell
motility, cilium-dependent cell motility, microtubule-based
movement, cilium movement involved in cell motility and
other processes. Analysis of the GO CC illustrated a

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.975185

Zhang et al. 10.3389/fgene.2022.975185

A (3 I Riskscore [}, Rskscore
A S A 540 2 5 S S ) ) BT | Svage T igh
pvale Hazard raio O 18 10 01O A 0 1A N0 O 001 10 0 DD S A Stage N Low
T 1 (1] {1 —— 1 E— RSN [ 7 B — (] (B (11 Stge
BTN ¥R RN TR AT T T AR A T TR T T TR ol
DY NISFUD G0 00 0000 W RIS (0 BT Y 01 000 VMO IR 00D BRI IR 1] Gender T
Gender 05041 taoscexs-tes)  —f— [ITON TR BT (KT KTV T AT T T AT TR TTTTATER (S T T T Kl
T3
4
| L3
Age 03889 1.1514(0.8355-1.5868) ——
oLsT pSage N
NO
Stage M 04164 09310078%-11061)  —fl— m
| | | 4B N3
NX
Stage N <00001  1.3857(12142-1.5615) E Stage M
MO
PDHA1 Mt
StgeT <0001 14960(1.2627-1.7724) e o -
<=60
Riskscore 00042 1.5483(1.1479-2.0885) —— >60
Gender
on ® 1t » Female
PTH e
Status.
Alive
Dead
B e Hazard o | A
Gender 0% 095071350  —J—
08T
e 02849 11947(08623-16551) ——
Sege M 08746 08S30ES-11TTY) - -
DLAT
SogeN 0001 13046(11263-15086) -+
SgeT 00015 1345(1.1170-1.5043) -
Risooe 00005 15014(1.1042-20414) —— DD
o
FIGURE 4
Analyses of the risk score utilizing univariate and multivariate Cox regression. (A) The TCGA dataset was subjected to a univariate analysis. (B)
The TCGA cohort was subjected to a multivariate analysis. (C) Heatmap depicting the associations between clinical and pathological parameters and
risk groups.
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FIGURE 5
GO functional enrichments. (A) The top 10 GO functional enrichments included BP, CC, and MF. The smaller the adjusted p, the more significant
the enrichment. (B) GO BP chord plot. GO terms represent the top 10 GO BP functional enrichments, and gene names with the connection represent
their enriched genes. BP, biological process; CC, cellular component; MF, molecular function.
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ssGSEA score comparison for immune cells and immune pathways. (A) Comparison of the enrichment values of 16 different kinds of immune
cells in the TCGA dataset between patients at high (red box) and low risks (green box). (B) Patients in the high-risk (red box) and low-risk (blue box)
groups in the TCGA cohort were compared on the basis of the enrichment values of 13 distinct immune-associated pathways. iDCs, immature
dendritic cells; aDCs, activated dendritic cells; TIL, tumor-infiltrating lymphocyte; DCs, dendritic cells; IFN, interferon; NK cells, natural killer
cells; MHC, major histocompatibility complex; Thl cells, type 1 T helper cells; Tfh, T follicular helper cell; Th2 cells, type 2 T helper cells; APC, antigen
processing cell; Treg, regulatory T cell; HLA, human leukocyte antigen; CCR, cytokine-cytokine receptor; pDCs, plasmacytoid dendritic cells; ns, not

significant; *p < 0.05; **p < 0.01; ***p < 0.001.

substantial enrichment of DEGs in the motile cilium, axoneme,
ciliary plasm, 9 + 2 motile cilium, sperm flagellum, and other
components. The analysis of GO MF demonstrated a
considerable  enrichment of DEGs in metal ion
transmembrane transporter activity, cation channel activity,
channel activity, passive transmembrane transporter activity,
ion channel activity, and other functions (Supplementary
Table S2). The topmost 10 GO functional enrichments
ordered by adjusted p are depicted in Figure 5A. The top
10 GO BP functional enrichments with their enriched genes
are shown as GO chord plots (Figure 5B).

Assessment of the immune activity across
the groups

With the help of the ssGSEA, we were able to additionally
evaluate the enrichment scores for 16 distinct kinds of immune
cells and the functioning of 13 immune-associated pathways
between the high- and low-risk subgroups in the TCGA dataset.
In the TCGA cohort, we ascertained that the high-risk subgroup
exhibited reduced infiltrating levels of immune cells including T
helper cells, immature dendritic cells (iDCs), mast cells, activated
dendritic cells (aDCs), and tumor-infiltrating lymphocytes
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(TILs) in contrast with the low-risk subgroup (Figure 6A).
Within the TCGA cohort, three immunological pathways were
shown to be less active in the high-risk subgroup as opposed to
the low-risk subgroup, including the human leukocyte antigen
(HLA), type I interferon (IFN) response, and type II IFN
response (Figure 6B).

Discussion

In this work, we initially evaluated the mRNA levels of
13 presently recognized cuproptosis-associated genes in LUAD
and normal specimens and discovered a differential expression
among several of them. There were interactions and correlations
among these genes. Nonetheless, the three clusters generated
from the consensus clustering assessment premised on the
cuproptosis-related genes, on the other hand, did not exhibit
any evident significant differences in clinical parameters or OS
time. We conducted univariate and LASSO Cox regression
analyses on these cuproptosis-associated genes in order to test
their prognostic significance further. We then created a 6-gene
risk signature using the results of this investigation. After that, a
risk score was established, and the patients were categorized into
two subgroups: low-risk and high-risk subgroups. Cox regression

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.975185

Zhang et al.

analyses, both univariate and multivariate, were employed to
establish if the risk score resulting from the gene signature model
independently served as a prognostic indicator. In accordance
with the functional analyses, the DEGs that distinguished the
low-risk patients from the high-risk ones were linked to cilium-
related function. The infiltration of immune cells and the
activation of signaling pathways in the low- and high-risk
subgroups were also examined. We discovered reduced
infiltrating levels of immune cells in the high-risk subgroup,
including aDCs, iDCs, T helper cells, mast cells, and TILs, as
opposed to the low-risk subgroup. HLA, type I IFN response and
type II IFN response showed lower activity in the high-risk in
contrast with the low-risk subgroup.

In recent years, PCD was identified as having a dual role in
the genesis of tumors and therapeutic processes. As a result of the
abundant supply of inflammatory mediators generated by PCD,
normal cells are activated, ultimately resulting in their transition
into cancer cells. The enhancement of tumor cell PCD, on the
other hand, may provide a novel treatment target (Lu et al., 2017;
Karki and Kanneganti, 2019; Xia et al., 2019; Al et al., 2021; Koren
and Fuchs, 2021). Cell death performs an instrumental function
in the origin and treatment of cancer, while several studies have
established tumor prognostic models associated with cell death
(Cai et al., 2021; Fu et al,, 2021; Shao et al.,, 2021; Zhao et al.,,
2021).

Cuproptosis, copper-dependent cell death presented by a
recent article, as a novel form of PCD (Tsvetkov et al., 2022).
Copper is a double-edged sword as it is required as an enzyme
cofactor, but it may also be poisonous at even modest
intracellular levels, leading to cell death (Ge et al.,, 2022). As a
consequence of cuproptosis, which targets lipoylated TCA cycle
proteins, lipoylated protein aggregation and consequent iron-
sulfur cluster protein depletion occurs, resulting in proteotoxic
stress and eventually inducing the death of cells. These new
results may also invigorate studies exploring the use of copper to
treat cancer (Kahlson and Dixon, 2022; Tsvetkov et al., 2022). At
present, the relevant mechanism research of cuproptosis and
tumors should be further deepened. Nonetheless, it may be
necessary to first investigate how cuproptosis-associated genes
interact with one another and if they are linked to the survival
time of patients with LUAD.

Our research established a signature consisting of six
cuproptosis-related genes (DBT, DLAT, DLD, DLST, LIPT1,
and PDHAI1) and discovered that it might anticipate OS
among LUAD patients using this signature. Mutation of
zebrafish DBT could result in motor dysfunction (Friedrich
et al,, 2012). DLAT is related to liver cancer metabolism and
autophagy with chemotherapeutic resistance (Huang et al,
2019). In patients with head and neck cancer, DLD has been
shown to modulate cystine deprivation-mediated ferroptosis
(Shin et al.,, 2020). DLD inhibition could have resulted in
lower levels of TCA cycle downstream metabolites, and
downmodulation of DLD promoted autophagy in melanoma
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cells, as well as inhibiting tumor growth and proliferation in vivo
(Yumnam et al., 2021). The metabolic heterogeneity in TCA
cycle utilization amongst triple-negative breast cancer patients is
dictated by DLST reliance (Shen et al., 2021). Germline DLST
variants modifications in
(Buffet et 2021).
LIPTI plays an important role in metabolic regulation (Stowe
et al,, 2018; Ni et al,, 2019). PDHA1 gene deletion in prostate
cancer cells causes metabolic remodeling, with the cells becoming
more glutamine-reliant (Li et al, 2016). When PDHAI is

downmodulated in breast cancer, the oncoprotein hepatitis B

promote epigenetic

pheochromocytoma-paraganglioma al,,

X-interacting protein may help to drive glucose metabolic
remodeling (Liu et al, 2015). These genes have some
association with the origin and treatment of cancer. However,
these genes in the prognostic model, that are cuproptosis
promoters or executors should be further studied. Although
not all of these promoters and executors were linked to an
improved prognosis among patients with LUAD in our
analysis, none was linked to a dismal prognosis. It is yet
uncertain how these genes interact with one another during
cuproptosis, and additional research is warranted.

Cuproptosis has not been thoroughly investigated up to today.
A variety of PCD strategies might coexist and interface with one
another as tumors grow and progress (Fritsch et al., 2019). For
instance, among the 6 cuproptosis-related genes, DLAT is
associated with autophagy (Xu et al., 2020); DLD is also known
as key regulator ferroptosis (Lu et al., 2017; Park et al., 2018);
PDHAI1 is closely related to apoptosis (Kwak et al., 2020; Jin et al.,
2021). It has been shown that the PCD-related gene correlated with
the prognosis of tumor patients, whose mechanism is related to
immune cell infiltration (Hong et al.,, 2021; Ye et al,, 2021). Thus,
cuproptosis-related genes are certainly associated with other PCD,
with the possibility that some genes are involved in multiple ways
of PCD. Furthermore, it is possible that low levels of antitumor
immunity are responsible for the unfavorable survival results in
high-risk patients. They may have an intact cell plasma membrane
with no release of contents, which would induce indirect
inflammatory reactions, or they could have the opposite
properties (Galluzzi et al., 2018; Khan et al., 2021). So, we also
performed the immune infiltration enrichment analyses. We
found that the infiltration levels of aDCs, iDCs, mast cells, T
helper cells and TILs, type I IFN, and type II IFN responses showed
lower activity in the high-risk group as opposed to the low-risk
group, indicating that the high-risk patients may experience
immune system dysfunction. However, no differences were
identified between the levels
infiltrating immune cells between the two groups. Unlike other

of other main anti-tumor

PCD, immune infiltration might perform a smaller function in
cuproptosis-related genes correlated with the prognosis of LUAD
patients, and other deep mechanisms may be involved.

We assessed the DEGs between distinct risk groups and
discovered that the DEGs were predominantly implicated in
such as movement based on

cilium related function,
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microtubules, cilium movement, flagellum or cilium-dependent
cell motility, cell motility that is mediated by the cilium, cell
motility mediated by cilium movement, motile cilium, 9 +
2 motile cilium, and so on. Outside the cell surface, the main
cilium is an antenna-like structure that extends beyond the cell
membrane. Cilium performs a crucial function in the modulation
of cell-signaling transduction, which has an impact on the
capacity of cells to proliferate, differentiate, and migrate.
Ciliary impairments result in ciliopathies, and ciliary
dysregulation performs a critical function in the genesis and
progression of cancer. Some cancer cells may undergo growth
suppression by restoring the cilia (Wang et al., 2021). Oncogenic
signaling pathways, as well as certain specific anticancer
treatments, may either stimulate or suppress ciliation.
Interactions between the genomic profiles of tumor cells,
and

medication therapy, ciliary

microenvironment are expected to have an impact on tumor

signaling in the tumor

progression and responsiveness to treatment (Liu et al, 2018).
Ciliary disintegration abnormalities are generally linked to the
genesis of tumors. The identification of modulators of ciliary
disassembly and mitosis is critical in the search for targeted
therapies for cancers that are related to these modulators
(Doornbos and Roepman, 2021). Ciliogenesis and Hedgehog
signaling are suppressed downstream of KRAS all through
acinar-ductal metaplasia in mice, which might be employed as a
method to limit the progression of early lesions and, therefore, the
advancement to pancreatic ductal adenocarcinoma (Bangs et al.,
2020). At present, there are still few studies on cilium and tumors,
and cilium has the potential to participate in the development of
tumors together with cuproptosis, thus affecting the prognosis. The
specific mechanisms deserve further investigation.

Cuproptosis is a topic that has received little recent attention,
particularly in terms of its mechanisms in LUAD. Our research
developed a gene signature associated with cuproptosis. Using
these cuproptosis-related genes, we were able to conduct a
preliminary analysis of their predictive significance and
establish a theoretical foundation for further investigation. We
established p < 0.3 as the cut-off value to avoid missing important
genes and identified 6 genes associated with survival for
subsequent evaluation. Therefore, further accurate verification
and large sample size verification should be studied in the future.
The absence of data, however, prevented us from concluding if
these genes also perform similar roles in various cuproptosis
pathways in LUAD, and this is an issue that warrants additional
investigation.

Conclusion

In summary, our research indicated that cuproptosis is
strongly linked to LUAD since the expression levels of most
cuproptosis-associated genes differed between normal and
LUAD specimens. Furthermore, the score derived from our
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risk signature, which was on the basis of six cuproptosis-
associated genes, was shown to independently serve as a risk
indicated for anticipating LUAD outcomes in the TCGA cohort.
The DEGs that distinguished the low-risk patients from the high-
risk ones were linked to the cilium. LUAD patients’ prognoses
may now be predicted using a unique gene signature identified in
this work. This discovery also offers a substantial foundation for
future research into the links between cuproptosis-associated
genes and cilium in LUAD patients.
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MiR-33a targets FOSL1 and
ENZ2 as a clinical prognostic
marker for sarcopenia by glioma

Wei Wang', Wei Liu', Jing Xu and Hongze Jin*

Department of Neurosurgery, Changxing People’'s Hospital, Changxing, Zhejiang, China

To determine the relationship between glioma and muscle aging and to predict
prognosis by screening for co-expressed genes, this study examined the
relationship between glioma and sarcopenia. The study identified eight co-
downregulated miRNAs, three co-upregulated miRNAs, and seven genes
associated with overall glioma survival, namely, KRAS, IFNB1, ALCAM, ERBB2,
STAT3, FOSL1, and EN2. With a multi-factor Cox regression model
incorporating FOSL1 and EN2, we obtained ROC curves of 0.702 and 0.709,
respectively, suggesting that glioma prognosis can be predicted by FOSL1 and
EN2, which are differentially expressed in both cancer and aged muscle.
FOSL1 and EN2 were analyzed using Gene Set Enrichment Analysis to
identify possible functional pathways. RT-gPCR and a dual-luciferase
reporter gene system verified that hsa-miR-33a targets FOSL1 and EN2. We
found that hsa-mir-33a co-targeting FOSL1 and EN2 has a good predictive
value for glioblastoma and skeletal muscle reduction.

KEYWORDS

FOSL1, EN2, mir-33a, glioma, sarcopenia, muscle, systemic homeostasis-related genes

Introduction

Gliomas are the most common primary tumors of the central nervous system (CNS),
arising from glial cells or supporting cells (Davis, 2018; Ostrom et al., 2018). The World
Health Organization updated their classification system for gliomas in May 2016, taking
advantage of advances in molecular genetics and epigenetic research. The revised
guidelines aim to allow oncologists to better diagnose, predict treatment outcomes,
and improve individualized treatment plans for patients (Louis et al., 2016; Wesseling and
Capper, 2018). About 49% of malignant tumors of the CNS are gliomas, which can be
found anywhere in the CNS but are most frequently in the frontal and temporal lobes
(Schmoldt et al., 1975; Aldape et al., 2015; Ostrom et al., 2018; Miller et al., 2021). Early
symptoms of glioma, similar to other benign neurological disorders, include headache,
vomiting, loss of vision, seizures, weakness, confusion, and other signs of increased
intracranial pressure (Rasmussen et al., 2017; Ozawa et al., 2019). The most common
treatment for glioma is surgical resection followed by radiotherapy and chemotherapy
(Wen et al., 2020). However, the blood-brain barrier prevents most drugs from reaching
the tumor site, so even with combination therapy, the overall survival rate of patients with
gliomas is still low (Stummer et al., 2012; Kim et al., 2019; Tan et al., 2020; Miller et al.,
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2021). Therefore, for early diagnosis and risk assessment of
of
neuroblastoma-related biomarkers is critical to facilitate early

glioma, transcriptomic and epigenomic screening
targeted interventions to improve survival.

Sarcopenia is an age-related syndrome of progressive decline
in skeletal muscle mass and function, associated with adverse
outcomes such as decreased body function, impaired quality of
life, physical disability, and death (Cruz-Jentoft et al., 2019). In
patients with chronic diseases, malnutrition, and malignancies,
sarcopenia is associated with poor prognosis, increasing the risk
of recurrence and death (Xia et al., 2020; Williams et al., 2021).
Previous studies suggested that sarcopenia and loss of temporal
muscle thickness may be associated with lower overall survival
(OS) in glioma patients (An et al.,, 2021; Guven et al., 2021; Huq
et al, 2021). There are, however, relatively few studies
investigating the association between glioma prognosis and
sarcopenia expression profiles.

Typically, sarcopenia is characterized by muscle aging and
loss of function and mass in the elderly (Larsson et al., 2019).
Muscle loss and sarcopenia are regulated by microRNAs
(miRNAs) (Wang et al, 2020; Javanmardifard et al, 2021).
MicroRNAs) are endogenous, small RNAs that have a variety
of regulatory functions in living organisms (Sun et al., 2017; Chen
et al,, 2019; Hill and Tran, 2021; Chen et al., 2022). Glioma
miRNAs are known to be potential diagnostic markers (Zhou
et al., 2018). In previous studies, miRNAs were differentially
expressed in the skeletal muscles of elderly people (Larsson et al.,
2019). MiRNA-1245a, for instance, has been identified as a
potential key molecule for treating glioma-related sarcopenia
(An and Wang, 2021). The regulation of miRNAs in the skeletal
muscle is influenced by systemic homeostasis (Kim et al., 2020;
Podkalicka et al., 2022). The development of sarcopenia and poor
outcome for glioma patients are likely to occur as a result of
gliomas  deteriorating the body’s microenvironmental
homeostasis (Magnus et al, 2014; Chen and Kang, 2015).
Gliomas may cause sarcopenia by affecting miRNA expression
in skeletal muscle.

This study examined miRNAs associated with glioma and
sarcopenia and their potentially regulated mRNAs. We screened
for co-expressed genes to determine the relationship between
glioma and sarcopenia and predict prognosis.

Methods
Data collection and processing

The Gene Expression Omnibus (GEO) database provided
glioma-derived  exosome miRNA  transcript  datasets
(GSE122488), which included 16 standard samples and
22 glioma samples. The miRNAs that did not appear in more
than 10 samples were removed. Additionally, 17 old Basal
samples and 19 young Basal samples were obtained from
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skeletal ~ muscle-derived ~ miRNA  transcript  datasets
(GSE23527). For 143 glioma samples, transcriptomic FPKM
expression data were obtained from the UCSC Xena website
(https://xenabrowser.net/). Expression data were transformed
into log, (x+1) when multiple probes corresponded to the

same gene.

Differential expression analysis

GSE122488 and GSE23527 datasets were screened for
differentially expressed miRNAs associated with GBM and
aging, respectively. Differentially expressed miRNAs were
those with p-values less than 0.05. Differentially expressed
miRNA volcanoes were mapped using the ggplot2 package
(Version 3.3.5) and the ggrepel package (Version 0.9.1), and
differentially expressed miRNA heatmaps were mapped using
the pheatmap package (Version 1.0.12).

MiRNA target gene prediction and
regulatory network mapping

The miRTarBase database contains a large number of
experimentally validated miRNA target gene regulatory pairs,
ensuring the reliability of the data (Huang et al., 2019). Based on
miRTarBase, co-differentially expressed miRNA target genes
were examined, and pairs with at least two validated results in
Western blot, qPCR, or CLIPseq were retained. Cytoscape
(Version 3.8.0) was used to map the miRNA-target regulatory
network.

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes enrichment analyses

For all target genes, the clusterProfiler (Version 4.0.5)
package and org. Hs.eg.db (Version 3.13.0) package were used
to perform GO and KEGG enrichment analyses, retaining all
enriched entries with FDR <0.05 as in previous research studies
(Fabris et al., 2020; Huang et al.,, 2021; Li et al., 2022a; Zhang
et al., 2022a; Zhang et al., 2022b; Wang et al.,, 2022).

Survival risk prediction model

Training (70%, n = 100) and validation (30%, n = 43) sets of
The Cancer Genome Atlas (TCGA) glioblastoma dataset were
randomly divided. Based on the training set samples, a survival
risk prediction model was constructed and its performance was
then validated using the validation set. To identify the miRNA
targets associated with overall survival, a univariate Cox
proportional risk regression analysis was conducted on all
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target genes of common differential miRNAs. The Least absolute
shrinkage and selection operator (LASSO) Cox model in the
glmnet package (Version 4.1-3) was further used to screen genes
with one-way Cox p < 0.05 and multicollinearity between the
genes was removed. The gene screened by the LASSO regression
analysis was then used to construct a multifactorial Cox
proportional risk regression model based on the survival
package (version 3.2-13) and the survminer package (version
0.4.9). The risk score for each patient was calculated by entering
the expression values of the characteristic genes screened by
multifactorial Cox regression analysis into the formula. Patients
in the training set were segregated into low- and high-risk groups,
the relationship between risk score levels was analyzed, and
Kaplan-Meier curves were used for prognosis. In addition, the
survivalROC (Version 1.0.3) package was used to evaluate the
time-dependent subject operating characteristic curve (ROC) of
the prediction model over multiple years.

Gene set enrichment analysis

TCGA-glioma samples were classified into high-expression
and low-expression groups by median gene expression values for
the signature genes screened. The Gene Set Enrichment Analysis
(GSEA) was performed on the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway using the clusterProfiler package
(Version 4.0.5), with the nPermSimple parameter set to 10,000.

Cell cultivation

The human glioma cell lines U251 and 293T cells were
purchased from the Institute of Cell Research, Chinese Academy
of Sciences, Shanghai, and cultured in a constant humidity incubator
with 5% CO2 in DMEM+10% FBS+1% double-antibody.

RNA extraction and real-time
quantitative PCR

The total RNA was extracted using Trizol (Beyotime, Shanghai,
China) according to the instructions and reverse-transcribed into
cDNA using the GoScript ™ Reverse Transcription Kit (Promega,
Wisconsin, United States), followed by TB Green Premix Ex Taq
(Takara, Japan) to determine the mRNA expression levels. The
mRNA expression levels were calculated as 2-AACt, and GAPDH
was used as an internal reference.

Dual-luciferase reporter assay

The pmirGLO-FOSL1-3’ UTR-WT and pmirGLO-EN2-3'
UTR-WT vector plasmids were synthesized by Shanghai Biotech,
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and the corresponding pmirGLO-FOSL1-3' UTR-MUT and
pmirGLO-EN2-3" UTR-MUT were used as controls. A total
of 500 ng of vector plasmid and 100 pmol of hsa-miR-33a
mimics were transfected into 293 T cells, and the fluorescence
was detected by using a Dual-Luciferase Assay Kit from Promega
(United States) after 24 h.

Statistical analysis

All data from at least three independent experiments are
expressed as mean * standard deviation. A t-test was used to
analyze the statistical differences between two independent
samples. p < 0.05 was considered to be statistically significant.

Results

Differentially expressed miRNAs in glioma
and muscle

The GSE122488 dataset was screened using differential
expression analysis to identify 105 downregulated miRNAs
and 62 upregulated miRNAs in glioma (Figure 1A). Aged
muscle GSE23527 was also screened for 40 downregulated and
15 upregulated miRNAs (Figure 1B). Furthermore, we obtained
eight co-downregulated miRNAs (hsa-miR-512, hsa-miR-660,
hsa-miR-1304, hsa-miR-30d, hsa-miR-33a, hsa-miR-337, hsa-
miR-1277, and hsa-miR-758) and three co-upregulated miRNAs
(hsa-miR-25, hsa-let-7b, and hsa-miR-215) (Figures 1C,D).
of the
expression patterns of differentially expressed miRNAs, as

Different subgroups samples displayed different
demonstrated by the expression heatmap (Figures 1E,F). The
development of glioma with muscle aging may be closely related

to those miRNAs.

Analysis of common differential miRNA
target genes and their functional
enrichment

To identify co-differentially expressed miRNAs, we used the
miRTarBase database to predict the target genes and screened for
miRNA-gene pairs with at least two validation records in a
reporter assay, Western blot, qPCR, and CLIPseq. The results
showed that miR-1277 and miR-1304 had no target genes; miR-
758 and miR512 both had two target genes; miR-660 had one
target gene; miR-337 had three target genes; miR-215 had eight
target genes; miR-30d had 11 target genes; miR-25 had 18 target
genes; miR-33a had 21 target genes; and let-7b had 32 target
genes (Figure 2A). The miRNA-target interaction network
showed that HMGA2, IRS2, CASP3, TP53, EZH2, and
SMAD?7 were regulated by two miRNAs, and there was no
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common target gene between most of the miRNAs (Figure 2A).
To further investigate the biological processes affected by these
differential miRNAs (hsa-let7b, hsa-miR-25, hsa-miR-30d, hsa-
miR-33a, hsa-miR-337, hsa-miR-512, hsa-miR-660, and hsa-
miR-758), GO and KEGG enrichment analyses were
performed for all common differential miRNAs, involving
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1,173 GO pathways (including 1083 BP, 12 CC, and 78 MF)
and 35 KEGG pathways. The enrichment results indicated
that these miRNAs might be involved in the cell cycle, gene
transcription, and cancer-related pathways (Figures 2B,C).
Accordingly, these miRNAs may play an essential role in
cancer development by targeting specific mRNAs.
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Prognostic value of miRNA target genes

TCGA training set samples were used to construct a model
of glioma-related survival risk prediction. KRAS, IFNBI,
ALCAM, ERBB2, STAT3, FOSL1, and EN2 were screened
by univariate Cox proportional risk regression (Figure 3A).
ALCAM was a protective factor for patient survival, whereas
the others were risk factors. The Cox regression analysis
revealed an association between high IFNB1 expression and
poor prognosis. We then used LASSO Cox regression to
further remove the multicollinearity between genes, and
LASSO regression did not reject any genes (Figure 3C).
Finally, we obtained a convergent patient survival risk
regression model using multifactorial Cox proportional risk
regression and stepwise regression with two characteristic
genes, FOSLI (hazard ratio, 1.357; 95% CI, 1.077 to 1.711;
p = 0.010), and EN2 (hazard ratio, 1.415; 95% CI, 1.090 to
1.837; p = 0.009) (Figure 3E). The formula for predicting the
survival risk is risk score = (FOSLI expression x 0.3056) +
(EN2 expression x 0.3471). FOSL1 and EN2 may affect the
The Kaplan-Meier
used to compare the

prognosis of gliomas independently.

survival analysis was survival
differences between the high- and low-risk groups based on
the median values of the risk scores of the training set samples.
The high-risk group’s prognosis was worse than the low-risk
group’s (p = 0.011) (Figure 3D). Therefore, the multifactorial
Cox model developed by FOSL1 and EN2 can better predict

glioma prognoses.
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Prognostic model construction for glioma

Based on the prediction model, we constructed a nomogram
(Figure 4A) and plotted the calibration curves for the model
predicting overall survival at 1 and 2 years (Figures 4C,D). To
evaluate the model’s predictive performance, we plotted time-
dependent ROC curves. AUCs for the training sets 1, 2, 3, 4, and
5 years were 0.678, 0.748, 0.881, 0.979, and 0.957, respectively
(Figure 4B). These results suggest that this nomogram model has
good predictive power.

Nomogram prediction model evaluation

We calculated the survival scores of the validation set samples
and compared the survival differences between the high-risk and
low-risk groups to further validate the performance of the
survival risk prediction model. The high-risk group had a
poor prognosis in the validation set (Figure 5A). Additionally,
we plotted time-dependent ROC curves of the risk model to
predict overall survival at 1 and 2 years for the validation set
samples with AUC values of 0.702 and 0.709, respectively
(Figure 5B). To investigate whether FOSL1 and EN2 are
independent prognostic factors, we divided all TCGA-glioma
samples into high- and low-expression groups based on median
gene expression values. The Kaplan-Meier survival analysis was
then used to compare the survival differences between the high-
and low-expression groups. The results showed that both the
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high-expression groups of FOSL1 and EN2 had poor prognosis
(Figures 6A,B).

Gene expression analysis of prognostic
models

In comparing high- and low-expression groups of FOSL1 and
EN2, we examined the functional pathways involved with these
proteins. FOSL1-related GSEA analysis significantly enriched
23 KEGG pathways, activated pathways
(NES >0), such as leukocyte transendothelial migration, VEGF
signaling pathway, and apoptotic cell death. FOSL1-associated

including 22

top five pathways were plotted using GSEA (Figure 6C). Based on
the EN2-related GSEA analysis, only two functional pathways
were enriched, proteasome and ribosome (Figure 6D).
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Hsa-miR-33a targets and regulates the
expression of FOSL1 and EN2

FOSL1 and EN2, which are target mRNAs of hsa-miR-
33a, can be used to predict the prognosis of glioma based on
the results of the bioinformatics analysis. As risk factors for
glioma, both FOSL1 and EN2 can be considered and further
verified to be regulated and targeted by hsa-miR-33a. Glioma
cell lines were treated with mimics of hsa-miR-33a. As shown
in Figures 7A,B RT-qPCR analysis of mimics-treated glioma
cell lines showed decreased expression of FOSL1 and EN2.
We then used the dual-luciferase reporter gene system to
detect the regulation of miRNAs and target genes
(Figure 7C,D). The results indicate that miR-33a targets
and regulates FOSL1 and EN2. In summary, miR-33a with
differential expression in glioma and sarcopenia may affect
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Constructing a nomogram prediction model. (A) Nomogram prediction model for prognostic risk. (B) Time-dependent ROC curves for the
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the overall survival of the training set at 1 and 2 years.

the prognosis of glioma by targeting and regulating
FOSL1 and EN2.

Discussion

We identified co-expressed differential miRNA genes in
glioma and skeletal muscle miRNA datasets. Target genes
were predicted using the miRTarBase database after functional
annotation according to GO and KEGG. ROC curves were
plotted to evaluate the prognostic value of the aforementioned
target genes in glioma. Multivariate Cox regression was used to
construct a model of prognosis prediction for glioma. The model
was evaluated by plotting ROC curves and K-M curves. This
model accurately predicted the prognosis for glioblastoma based
on correlation analysis, providing an exciting pathway for clinical
applications.

Glioma is the most common type of malignant tumor in the
central nervous system, and its pathogenesis is complex,
involving ~ genetic background, gene mutation, tumor
microenvironment, and other aspects (McKinnon et al., 2021).

However, most GBMs have no identifiable risk factors for tumor
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development. Some rare familial cancer syndromes such as
Lynch syndrome, neurofibromatosis type 1, and tuberous
sclerosis have increased the risk of developing glioma (Ostrom
et al., 2014; Wen et al, 2020). Glioma is characterized by
aggressiveness and poor prognosis of the disease. In addition,
the early diagnosis of glioblastoma is often tricky due to the lack
of specificity of early clinical symptoms and the lack of early
diagnostic tools. With the improvement of microsurgery
technology, the application of various new radiotherapy
techniques, and the introduction of chemotherapy and
targeted drugs, the clinical prognosis of glioma has been
improved to some extent. However, the overall survival rate of
patients is still extremely poor, with a median survival time of
only about 1year, and almost all patients tend to relapse
(Jhanwar-Uniyal et al, 2015; Kim et al, 2019). Therefore,
developing a validated risk assessment model is essential to
guide early clinical diagnosis, prognostic assessment, and
individualized treatment.

Sarcopenia is an age-related syndrome of progressive decline
in skeletal muscle mass and function, commonly seen in patients
with malignancies and associated with poor prognosis in cancer
patients (Williams et al., 2021). Several studies have shown that
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temporalis muscle thickness can be used as a surrogate marker
for sarcopenia (Huq et al.,, 2021). Temporalis muscle thickness
was also significantly associated with the expected survival of
treated glioma patients with recurrent or concomitant brain
metastases (Muglia et al, 2021). Quantifying temporalis
has
assessment of glioma (Guven et al, 2021; Mi et al, 2022).

muscle thickness clinical value in the prognostic
This study obtained co-expressed differential miRNA genes by
analyzing glioma and skeletal muscle miRNA datasets, followed
by multifactorial Cox regression analysis and stepwise regression
analysis to obtain a patient survival risk regression model, which
included FOSLI and EN2.

FOSLI belongs to the Fos gene family and encodes FOS-
associated antigen 1 (FRA1), which is involved in forming a
transcription factor complex AP-1 (Matsuo et al., 2000). In
addition, as a proto-oncogene, FOSL1 also plays a vital role in
tumorigenesis and can promote tumor cell metastasis
(EMT).
FOS1 also has prognostic value in various epithelial

through  epithelial-mesenchymal  transition

tumors, and its overexpression is associated with tumor

aggressiveness, chemotherapy resistance, tumor
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progression, and poor survival prognosis (Yu et al., 2013;
Gao et al.,, 2017; Vallejo et al., 2017; Xu et al., 2017; Sobolev
et al., 2022). It has been shown that FOSL1 can promote the
development and invasion of colorectal cancer through the
Smurfl-mediated FBXL2/Wnt/p-catenin the
migration, invasion, and proliferation of breast, head, and

axis and
neck squamous cell carcinoma, pancreatic cancer, bladder
cancer, and prostate cancer (Elangovan et al., 2018; Luo et al.,
2018; Cui et al., 2020; Dai et al., 2021; Hyakusoku et al., 2021;
Liu et al, 2021). In addition, FOSL1 also mediates the
dephosphorylation of proliferation and apoptosis bridging
15
phosphatase 7 (DUSP7), which increases drug resistance in
breast cancer (Li et al., 2022b). It is to be noted that
FOSL1 was also associated with glioma growth and

protein (PEA15) by upregulating dual-specificity

invasion and was a poor prognostic factor for GBM (Guo
et al,, 2022). Gliomas overexpress FRA1, which regulates the
malignancy of gliomas, including morphology, growth
pattern, and tumorigenic potential (Debinski and Gibo,
2005). The engrailed-2 (EN2) gene encodes a transcription
factor a cassette involved in

containing homology
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regionalization, patterning, and cellular differentiation in early
brain development. It plays an essential role during nervous
system development. In addition, disorders of EN2 regulation
can lead to abnormal cell proliferation, leading to tumorigenesis.
Studies show that EN2 plays an important role in the proliferation,
migration, and invasion of various tumor cells, including prostate
cancer, colorectal cancer, esophageal squamous cell carcinoma, lung
cancer, and bladder cancer, and is closely related to the poor
prognosis of tumor patients (Zhou et al,, 2017; Lin et al, 2018;
Cao et al, 20205 Li et al., 2020; Li et al., 2021). EN2 promotes the
proliferation and invasion of colorectal cancer cells by regulating
CCL20, thus promoting the progression of colorectal cancer.
EN2 also promotes the invasion and metastasis of esophageal
squamous cell carcinoma by upregulating SPARC expression. It
promotes the proliferation, invasion, and metastasis of bladder
cancer cells by activating the PI3K/Akt pathway and inhibiting
the PTEN gene (Cao et al., 2020; Li et al., 2020) (Li et al,, 2021). In
addition, it was found that EN2 expression levels are also correlated
with the degree of malignancy of gliomas and promoted the
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malignant progression of glioma (Zeng et al, 2020). These lines
of evidence indicate that FOSL1 and EN2, which are involved in our
risk assessment model, have prognostic value in various tumors,
including glioma.

MiR-33a plays a variety of physiological roles in tumor
microenvironments, and it has been proposed as a potential
target for cancer prevention and therapy (Gao et al,, 2020). By
inhibiting phosphorylation of JAK2 and STATS3, which are
highly activated in many malignant cells, including glioma
cells, miR-33a inhibits the growth, invasion, and EMT of
tumor cells (Feng et al., 2016; Chang et al, 2017; Liu et al.,
2019a; Liu et al, 2019b). Aside from targeting PDESA and
UVRAG, miR-33a also targets cAMP/PKA and NOTCH
signaling pathways in glioma cancer cells (Wang et al., 2014).
It is to be noted that both signaling pathways promote self-
renewal of glioma-initiating cells only when they are activated
simultaneously (Jiang et al., 2019). MiR-33a may exert oncogenic
effects by regulating JAK2/STAT3, cAMP/PKA, and NOTCH
signaling pathways in gliomas. Further investigation is needed to
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determine whether miR-33a overexpression affects glioma cell
proliferation, invasion, and other oncogenic features.

In this study, hsa-miR-33a was found to regulate FOSL1 and
EN2 and affect the prognosis of gliomas. Furthermore, hsa-miR-33a
appeared to be involved in sarcopenia and gliomas. However, a larger
sample of data is needed to validate the findings conclusively, and
further experimental studies are needed to help understand the specific
regulatory mechanisms. Because this study only has data on skeletal
muscle age, sarcopenia cannot be fully simulated. Furthermore, miR-
33a downregulation caused by glioma and muscle aging may also be
caused by sarcopenia, but this remains unclear as we did not
investigate which causes miR-33a downregulation.

Conclusion

In conclusion, this study’s risk model provides good clinical
application and predictive value for assessing the risk and
prognosis of glioblastoma and a potential therapeutic target.
Moreover, hsa-mir-33a co-targeting FOSL1 and EN2 has a
good predictive value for glioma and skeletal muscle reduction.
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Prognostic microRNAs
associated with phosphoserine
aminotransferase 1 in gastric
cancer as markers of bone
metastasis
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Muyuan Ma?, Tao Li* and Ning Zhang**

The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University,
Ningxia, China, ?College of Basic Medicine, Ningxia Medical University, Yinchuan, China, *Department
of Pathology, General Hospital of Ningxia Medical University, Ningxia, China

This study analyzed PSAT1-targeted miRNAs as a prognostic predictor for
gastric cancer. The relationship between the clinical manifestations of
gastric cancer in patients and phosphoserine aminotransferase 1 (PSAT1) was
analyzed using correlation analysis. PSAT1 was highly expressed in gastric
cancer, and its low expression was associated with a poor prognosis. By
pan-cancer analysis, PSAT1 could affect the tumor immune
microenvironment by immune infiltration analysis. Nine microRNAs targeting
PSAT1 and associated with gastric cancer were screened by miRwalk and
microRNA expression in TCGA tumor tissues. Six microRNAs were obtained
by survival curve analysis, including hsa-miR-1-3p, hsa-miR-139-5p, hsa-miR-
145-5p, hsa-miR-195-5p, hsa-miR-218-5p, and hsa-miR-497-5p. Based on the
above six microRNAs, a model for bone metastasis prediction in gastric cancer
prediction was constructed. An analysis of a decision curve was performed
based on the microRNAs obtained to predict bone metastasis from gastric
cancer. It had a positive area under the curve (AUC) value of 0.746, and the
decision curve analysis (DCA) indicated that it was clinically significant. Dual-
luciferase reporter genes indicated that hsa-miR-497-5p and PSAT1 were
targeted, and qRT-PCR results confirmed that hsa-miR-497-5p could down-
regulate PSAT1 expression. MicroRNAs targeting the regulation of
PSAT1 expression can well predict the prognosis of gastric cancer.
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Introduction

Cancer of the gastric mucosa arises from the epithelium of
the mucosa, and most of its clinical manifestations are
indigestion, abdominal pain, early satiety, or anorexia, but
it may also present as reflux, dysphagia, and gastrointestinal
bleeding (Machlowska et al., 2020). Gastric cancer is a
heterogeneous and multifactorial disease caused by a
combination of environmental and genetic factors, with a
complex pathogenesis (Oliveira et al., 2015). Infections with
H. pylori, nitrate- and nitrite-rich diets, smoking and drinking
alcohol are all risk factors for gastric cancer (Machlowska
et al, 2020; Joshi and Badgwell, 2021). Some genetic
CDH1,
syndromes, are also associated with gastric cancer
(Hansford et al., 2015; Lott and Carvajal-Carmona, 2018).
There were approximately 1.089 million new cases of gastric

syndromes, such as Lynch, and Peutz-Jegher

cancer worldwide in 2020, accounting for 5.6% of all cancers,
making it the fifth-largest malignant tumor in the world after
breast, lung, colorectal, and prostate cancers. (Sung et al,
2021). In addition, since gastric cancer exhibits insidious
symptoms in the early stages, metastases are often detected
at the time of diagnosis, making the prognosis poor and the
mortality rate high. Globally, approximately 769,000 people
will die from stomach cancer in 2020, accounting for 7.7% of
all cancer-related deaths. The most common sites of metastasis
for gastric cancer are the peritoneum, liver, lung, and lymph
nodes, while bone metastases are rare, occurring in less than
5% of patients (Park et al., 2013; Turkoz et al., 2014). However,
studies have shown that bone metastases from gastric cancer
are an independent poor prognostic factor for gastric cancer
and are significantly associated with overall patient survival.
Bone metastases from gastric cancer have a significantly lower
5-year survival rate than non-bone metastases, with a median
survival time of only about four months (Lee et al., 2007;
Xiaobin et al., 2022). Because most bone metastases do not
show significant clinical symptoms, the actual incidence of
bone metastasis may be higher than reported. There is an
urgent need for biomolecular markers that can determine the
risk factors for bone metastasis in gastric cancer, assess their
risk in patients, and detect early and accurately.

PSAT1 encodes
aminotransferase, which is associated with cell proliferation

the catalytic enzyme phosphoserine

and serine anabolism (Hart et al, 2007; Montrose et al,
2021). Researchers have found that PSATI is aberrantly
expressed in various tumor cells and promotes proliferation,
metastasis, invasion, and drug resistance in a variety of
malignancies, including breast, lung, and colorectal cancer
(Metcalf et al, 2020; Biyik-Sit et al., 2021; Montrose et al.,
2021). In addition, PSAT1 was found to promote extracellular
vesicle (EV) secretion via the serine-ceramide synthesis pathway
in multiple cancer types, affecting the tumor microenvironment.
By activating osteoclasts, it could also promote bone metastasis.
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EVs are a collective term for vesicular structures encased in lipid
bilayers released by various cells, including exosomes and
particles. Exo is a signaling vesicle involved in normal
homeostatic processes or pathological exchanges of nucleic
acids, proteins, and other components between cells (Kowal
et al, 2016). Exosomes not only play a role in regulating
normal physiological processes, such as immune response and
in the
pathophysiology of diseases, such as cancer development,

cell differentiation, but can also be involved
progression, and metastasis (Yao et al., 2021). Tumor cells can
interact with cells in the bone microenvironment through the
secretion of exosomes and transfer tumor-specific contents, such
as miRNA, to the bone microenvironment through exosomes,
thus promoting tumor bone metastasis (Rossi et al., 2018;
Tiedemann et al., 2019). Furthermore, breast cancer cells has
been suggested to promote the development of breast cancer
bone metastases by releasing exosomes containing miRNA-19a
and IBSP (Wu et al., 2021a). However, it remains to be seen
whether exosomes can regulate PSATI.

In this study, we analyzed the clinical and tumor
microenvironment of gastric cancer patients to investigate the
relationship between PSAT1 and prognosis. We screened the
PSAT1-targeting microRNAs with miRWalk, and then analyzed
their expression in gastric cancer. Diagnosis and treatment
strategies can be provided by screening marker proteins
associated with gastric cancer prognosis.

Methods
Downloading and processing of data

We downloaded PSAT1 pan-cancer data from the UCSC
Xena database for a total of 18 cancer types, including bladder
uroepithelial carcinoma (BLCA), breast invasive carcinoma
(BRCA), (CHOL),
adenocarcinoma (COAD), esophageal carcinoma (ESCA),

cholangiocarcinoma colon
glioblastoma multiforme (GBM), head and neck squamous
cell carcinoma (HNSC), kidney chromophobe (KICH), kidney
renal clear cell carcinoma (KIRC), kidney renal papillary cell
carcinoma (KIRP), liver hepatocellular carcinoma (LIHC),
lung adenocarcinoma (LUAD), lung squamous carcinoma
(LUSC), prostate (PRAD),
adenocarcinoma adenocarcinoma

adenocarcinoma rectal
(READ),
(STAD), thyroid carcinoma (THCA), and uterine corpus
endometrial carcinoma (UCEC). From the Cancer Genome
Atlas (TCGA) database (https://www.cancer.gov/about-nci/

organization/ccg/research), raw RNA sequencing data and

stomach

clinical information were downloaded from gastric cancer
patients (Wang et al, 2016; Goldman et al, 2020).
Information about survival time, survival status, age, sex,
tumor grade, clinical stage, pathological stage, TNM stage,
OS, DSS, and PFI were collected from the patients.
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Clinicopathological and survival analysis
of phosphoserine aminotransferase 1 in
gastric cancer

Patients’ clinical information included age, gender, clinical
stage, and TMN stage. To investigate the relationship between
PSAT1 expression and clinical characteristics, we selected
clinical, pathological, and TNM stages as representative
outcomes with significant differences. The gastric cancer
samples were then divided into high and low expression
groups based on their median PSATI1 expression values.
Kaplan-Meier survival curves were plotted using this method.
We analyzed the relationship between PSAT1 expression and
prognostic DSS (disease-specific survival) in gastric cancer taking
into account the possibility of non-tumor death during follow-
up. The relationship between PSATI1 expression and PFI
(progression-free interval) was also examined.

Immune infiltration analysis

CIBERSORT deconvolution algorithm is a computational
method for identifying 22 types of immune cells in tissues
(Bindea et al., 2013; Hinzelmann et al, 2013; Wu et al,
2021b). With R software, the CIBERSORT deconvolution
algorithm was used to simulate the transcriptional features
matrix of 22 immune cells, including B cells, plasma cells,
T cells, natural killer cells, monocytes, macrophages, dendritic
cells, mast cells, eosinophils, and neutrophils. Calculations were
set at 100, and data with p < 0.05 were analyzed. In order to
analyze the correlation between PSAT1 and immune cells, R
software calculated correlation coefficients between immune cells
and PSATI. Additionally, the ESTIMATE algorithm in the R
language estimation package was used to estimate the ratio of
immune to stromal components in tumor microenvironments.
Three types of scores were presented: immune, stromal, and
ESTIMATE. Based on the correlation between PSAT1 and these
three scores, we were able to analyze the correlation between
PSATI and the tumor microenvironment. The relationships
between PSAT1 expression, immune cell infiltration score,
and tumor microenvironment were assessed by Spearman
correlation analysis.

Gastric cancer microRNAs associated with
upregulation of phosphoserine
aminotransferase 1 expression

All microRNAs that may target PSAT1 were predicted using
the online miRNA target gene prediction tool miRWalk2.0 as
previous researches (http://zmf.umm.uni-heidelberg.de/apps/
zmf/mirwalk2) (Dweep et al., 2014; Sticht et al., 2018; Feng
et al, 2021; Chen et al, 2022; Zhao and Jiang, 2022).
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MiRWalk integrated with several different miRNA target gene
RNA22, miRDB,
Targetscan, etc., which can perform multiple databases of

prediction tools, including miRanda,
miRNA co-screening and find the common target genes
among them, maximizing the prediction confidence. Then, we
conducted correlation analysis of the miRNAs that correlated

negatively with PSATI.

MicroRNA expression and survival in
gastric cancer

The microRNAs obtained above were calculated as the
expression between gastric cancer tissues and normal tissues,
and the microRNAs with statistically significant differences in
expression were screened by the p < 0.05. Survival curves were
plotted by Kaplan-Meier method based on the median expression
value of each microRNA as previous researches (Rich et al., 2010;
Lacny et al,, 2015; Sun et al., 2022; Xuan et al,, 2022).

Model construction and evaluation

Using the Akaike information criterion (AIC), the optimal
logistic nomogram model was constructed. We evaluated the
expressiveness of the model using ROC curves and calibration
curves. We also performed the Hosmer-Lemeshow goodness-of-
fit test. Decision curve analysis (DCA) was used to examine the
effect of the model on net clinical benefit rates at different
positive thresholds. Threshold probability is the horizontal
coordinate of DCA. When the nomogram model assessment
value reached a certain value, bone metastasis probability was
denoted as p.

Cell culture and transfection

Chinese Academy of Sciences, Shanghai, provided 293T and
SGC-7901 cells, which were cultured at 37 °C in a constant
humidity CO, incubator with DMEM + 10% FBS + 1% double
antibody. Afterwards, we transfected 293T cells with 100 pmol
hsa-miR-497-5p, purchased from Bioindustries, for 48 h before
RNA extraction.

RNA extraction by qRT-PCR analysis

SGC-7901 cells were treated with Trizol (Sangon, China)
according to Trizol’s guidelines. In order to measure mRNA
expression levels, RNA was reverse-transcribed into cDNA using
Promega’s Reverse Transcription Kit (GoScriptTM Reverse
Transcription Kit), followed by qRT-PCR analysis using
Biotech’s qRT-PCR reagents (2X SG Fast qQPCR Master Mix).
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TABLE 1 Gastric cancer patients’ demographic characteristics and PSAT1 expression.

Characteristic

Age, n (%)
<65

>65

Gender, n (%)
Female

Male

T stage, n (%)
T1

T2

T3

T4

N stage, n (%)
NO

N1

N2

N3

M stage, n (%)
Mo

M1

Pathologic stage, n (%)
Stage 1

Stage II

Stage IIT

Stage IV
Histologic grade, n (%)
Gl

G2

G3

Primary therapy outcome, n

PD

SD

PR

CR

Race, n (%)

Asian

Black or African American
White

Histological type, n (%)
Diffuse Type

Mucinous Type

Not Otherwise Specified
Papillary Type

Signet Ring Type
Tubular Type

Residual tumor, n (%)
RO

R1

R2

Frontiers in Genetics

Low expression of
PSATI (n = 187)

93 (25.1%)
93 (25.1%)

58 (15.5%)
129 (34.4%)

10 (2.7%)
38 (10.4%)
90 (24.5%)
44 (12%)

58 (16.2%)
49 (13.7%)
35 (9.8%)
32 (9%)

168 (47.3%)
9 (2.5%)

23 (6.5%)
65 (18.5%)
69 (19.6%)
16 (4.5%)

8 (2.2%)
64 (17.5%)
112 (30.6%)

35 (11%)
9 (2.8%)
1 (0.3%)
116 (36.6%)

47 (14.6%)
4 (1.2%)
118 (36.5%)

40 (10.7%)
12 (3.2%)
103 (27.5%)
2 (0.5%)

6 (1.6%)

24 (6.4%)

144 (43.8%)

8 (2.4%)
7 (2.1%)

58

High expression of
PSATI1 (n = 188)

71 (19.1%)
114 (30.7%)

76 (20.3%)
112 (29.9%)

9 (2.5%)

42 (11.4%)
78 (21.3%)
56 (15.3%)

53 (14.8%)
48 (13.4%)
40 (11.2%)
42 (11.8%)
162 (45.6%)
16 (4.5%)
30 (8.5%)
46 (13.1%)
81 (23%)
22 (6.2%)

2 (0.5%)
73 (19.9%)
107 (29.2%)

30 (9.5%)

8 (2.5%)

3 (0.9%)
115 (36.3%)

27 (8.4%)
7 (2.2%)
120 (37.2%)

23 (6.1%)

7 (1.9%)
104 (27.8%)
3 (0.8%)

5 (1.3%)

45 (12%)

154 (46.8%)
7 (2.1%)
9 (2.7%)

10.3389/fgene.2022.959684

p value

0.032

0.073

0.471

0.638

0.219

0.112

0.112

0.769

0.062

0.028

0.867
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FIGURE 1

A correlation between PSAT1 expression levels and cancer patient prognosis. (A). Box plot showing the level of PSAT1 mRNA expression in
different cancer tissues and normal tissues; data from UCSC database; ***p < 0.001, **p < 0.01; (B). Survival analysis demonstrating the overall
survival of gastric cancer patients with high PSAT1 expression (OS, HR = 0.61, 95% Cl: 0.40-0.92, p = 0.02); (C). Survival analysis demonstrating the
relationship between PSAT1 expression levels and DSS of gastric cancer patients (DSS, HR= 0.53, 95% Cl: 0.30-0.92, p = 0.024); (D). Survival
analysis demonstrating the relationship between PSAT1 expression levels and progress-free interval of gastric cancer patients (PFI, HR = 0.48, 95% Cl:
0.30-0.78, p = 0.003); (E). Correlation analysis of PSAT1 expression with immune cell infiltration displaying that TH2 cells and NK cells are positively
correlated with PSAT1, whereas plasmacytoid dendritic cells and mast cells are negatively correlated with PSATL; (F). PSAT1 correlation analysis with
ImmuneScore, StromalScore, and ESTIMATEScore.
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2—AAC[

As an internal reference, GAPDH was used and was used

to calculate mRNA expression levels.

Dual luciferase reporter gene system

PmirGLO-PSATI-3 UTR-WT and pmirGLO-PSAT1-3’
UTR-MUT vector plasmids were purchased from Shanghai
Sangon Biotech. 500 ng of vector plasmid and 100 pmol of
hsa-miR-497-5p mimics were transfected into 293T cells and
the fluorescence situation was determined 24 h after transfection
using Dual Luciferase Assay Kit (Promega).

Statistical methods

Statistical analysis was performed using the R software
package (version 3.6.3). The Spearman correlation test was
used to determine whether the two variables were correlated.
Differences with p < 0.05 were considered statistically significant.

Results

Phosphoserine aminotransferase
1 expression and general health of gastric
cancer patients

TCGA database,
downloaded for 375 gastric cancer patients. PSATI expression

From the clinical information was
was divided into low and high groups based on median
expression. Their median ages were 65.5 and 69, respectively,
statistically significantly different (p < 0.05). In addition, there
was a statistically significant difference in pathological types
0.028)
(Table 1). PSAT1 expression was statistically significantly
different between pathological Stage IV, TNMF Stage IV, and
clinical Stage IV based on patient’s clinical data [HR = 1.70
(1.09-2.68), p = 0.021]. There
PSAT1 expression at pathological stage IV. However, there
the

between low and high expression groups (p =

was a difference in

were no significant differences in other clinical-

pathological symptoms.

Pan-cancer phosphoserine
aminotransferase 1 expression

UCSC database was used to analyze PSATI mRNA
expression levels in tumor and normal tissue samples
(Figure 1A). The results disclosed that PSAT1 was highly
expressed in ten cancer types relative to normal tissues,
including BLCA, COAD, ESCA, HNSC, LUAD, LUSC, PRAD,
READ, STAD, and UCEC. In contrast, PSAT1 expression was
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low in BRCA, CHOL, KIRC, KIRP, LIHC, and THCA.
PSAT1 expression was not significant in GBM and KICH.

Survival analysis of phosphoserine
aminotransferase 1 in gastric cancer and
immune infiltration analysis

Patients with high PSAT1 expression had significantly longer
overall survival (OS, HR= 0.61, 95% CI: 0.40-0.92, p = 0.02),
disease-specific survival (DSS, HR= 0.53, 95% CI: 0.30-0.92, p =
0.024), and progression-free interval (PFI, HR= 0.48, 95% CI:
0.30-0.78, p = 0.003) (Figures 1B-D). In gastric cancer, low
expression of PSAT1 was associated with worse OS, DSS, and
PFL Therefore, patients with gastric cancer with low expression
of PSAT1 had a poor prognosis.

The percentage of immune cell infiltration was calculated by
Cibersort software, and samples that met the requirements were
screened according to the p < 0.05 criterion. According to our
analysis, each immune cell shows a positive correlation with
PSAT1 expression, while plasmacytoid dendritic cells and mast
cells have a negative correlation with PSAT1 (Figure 1E).
Furthermore, ImmuneScore, StromalScore, and
ESTIMATEScore were calculated using the ESTIMATE
algorithm in R language estimate package. PSAT1 expression
and these three scores were negatively correlated (Figure 1F).
PSAT1 expression levels can influence the immune activity of
tumor microenvironments, according to these results.

Prognostic analysis of microRNAs
negatively associated with phosphoserine
aminotransferase 1

MiRNAs targeting and regulating PSAT1 gene expression
were identified using miRwalk database and visualized using
Cytoscope (Figure 2A). We calculated the expression of the
above 116 miRNAs in TCGA in gastric cancer. By analyzing
the their
PSAT1 expression, we found that the following were

correlation  between expression  and
negatively correlated with PSATI expression: hsa-miR-1-3p
(r=-0.3,p <0.05), hsa-miR-29¢-3p (r = —0.25, p < 0.05), hsa-
miR-101 -3p (r = -0.25, p < 0.05), hsa-miR-129-5p (r = -0.34,
p < 0.05), hsa-miR-139-5p (r = —0.29, p < 0.05), hsa-miR-145-
5p (r=-0.29, p < 0.05), hsa-miR-195-5p (r = -0.34, p < 0.05),
hsa-miR-497-5p (r = —0.36, p < 0.05), and hsa-miR-218-5p
(r=-0.36, p < 0.05) (Figure 2B). Eight miRNAs were found to
have low expression and be significantly different between
tumors and normal tissue, namely: hsa-miR-1-3p, hsa-miR-
29¢-3p, hsa-miR-129-5p, hsa-miR-139-5p, hsa-miR-145-5p,
hsa-miR-195-5p, hsa-miR-497-5 (Figure 2C). We calculated
the p-value for each miRNA in relation to patient survival

using KM survival curves of the eight differential miRNAs
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FIGURE 2
The microRNAs associated with gastric cancer expression of PSATL. (A). The miRwalk database and correlation analysis identified microRNAs

that could target PSAT1 in gastric cancer; (B). MicroRNAs negatively correlated with PSAT1 expression; (C). Gastric tumor tissues and normal tissue
samples showed negative correlations between miRNA levels and PSAT1 expression levels.

listed above. Six miRNAs were found to have significant miR-145-5p, hsa-miR-195-5p, hsa-miR-218-5p, and hsa-miR-
correlations with prognosis, including hsa-miR-1-3p, hsa- 497-5p) the expression of PSAT1 and the prognosis of
miR-139-5p, hsa-miR-145-5p, hsa-miR-195-5p, hsa-miR- patients.

218-5p (Figure 3A). Then, we constructed a regulatory

relationship map targeting PSAT1 using cytoscope software
(Figure 3B). There was a negative correlation between Construction of the nomogram predictive

these nine miRNAs (Figure 3C). Therefore, these model and clinical Utility assessment

six miRNAs (hsa-miR-1-3p, hsa-miR-139-5p, hsa-miR-145-

5p, hsa-miR-195-5p, hsa-miR-218-5p, and hsa-miR-497-5p) The six miRNAs (hsa-miR-1-3p, hsa-miR-139-5p, hsa-
may be associated with (hsa-miR-1-3p, hsa-miR-139-5p, hsa- miR-145-5p, hsa-miR-195-5p, hsa-miR-218-5p, and hsa-
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prognosis; (B). PSAT1-related microRNA regulatory network; (C). Correlation analysis circle diagram between PSAT1 and its negatively associated

microRNAs.

miR-497-5p) were built into a nomogram model (Figure 4A).
Each miRNA’s corresponding scale was determined based on
its actual situation in the patient. By projecting upward to the
top scale points, each miRNA’s score was calculated, and the
scores were summed. The risk probability of bone metastasis
in the patient was calculated by projecting downward based on
the total score. Validating the model, we found that it had a
good AUC value (AUC = 0.746), calibration, and goodness of
fit, suggesting that it could predict the risk of bone metastasis
in gastric cancer (Figures 4B,C). DCA illustrating the benefits
of using the miRNA nomogram model (Figure 4D). Overall,
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we established a predictive model for gastric cancer bone
metastasis.

Hsa-miR-497-5p targets and regulates
phosphoserine aminotransferase 1

Among the six miRNAs targeted by PSAT1, hsa-miR-1-3p,
hsa-miR-139-5p, hsa-miR-145-5p, hsa-miR-195-5p, hsa-miR-
218-5p, and hsa-miR-497-5p were most closely related to
gastric cancer prognosis. PSAT1 and hsa-miR-497-5p were
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using the miRNA nomogram model.

detected using a dual-luciferase reporter gene system and qRT- with the continuous improvement of imaging technology, related
PCR. Figure 5A shows that hsa-miR-497-5p mimics reduced the studies have found that the percentage of patients with bone
fluorescence ratio compared to the control, demonstrating a metastases from gastric cancer detected by bone scan screening
targeting relationship between hsa-miR-497-5p and PSATI. can be as high as 25-45.3% (Choi et al., 1995). Several studies
PSAT1 expression was reduced by hsa-miR-497-5p in further have demonstrated that bone metastasis, as an independent risk
qRT-PCR experiments (Figure 5B). As a result of the above factor for gastric cancer, often indicated rapid deterioration of the
findings, hsa-miR-497-5p appears to be capable of targeting clinical course, which seriously affected the treatment outcome
PSAT1 expression in order to affect gastric cancer prognosis. and prognosis of patients (Ahn et al, 2011; Qiu et al, 2018).

Moreover, patients with bone metastases may suffer from
complications such as bone pain, pathological fracture, and

Discussion spinal cord compression, which seriously affect their quality of
life (Mikami et al., 2017). Bone metastases from gastric cancer
The rapid development of precision medicine has improved were found to be lower than the actual rate because there were
the survival rate of gastric cancer by combining surgery with often no obvious clinical symptoms in the early stages, and
targeted therapy and chemotherapy, but the prognosis remains skeletal screening for gastric cancer patients was not routine
poor (Li et al, 2022). Early symptoms of gastric cancer are (Clézardin, 2017). Therefore, a predictive risk model should be
atypical, so early diagnosis is mainly based on endoscopic developed to help detect and diagnose gastric cancer bone
biopsy, which is a limited method. Distant metastases are metastases early, enabling effective treatment plans to be
often diagnosed in most patients (Dohi et al., 2017). Recently, developed.
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PSAT1 expression is regulated by has-miR-497-5p. (A). PSAT1 and has-miR-497-5p targeting relationship revealed by dual-luciferase reporter
gene system. (B). The expression of PSAT1 was lower in has-miR-497-5p-treated gastric cancer cell lines compared to control cells. *p < 0.05,

**p < 0.01.

PSAT1 regulates serine anabolism, playing an important role
in cell proliferation, and is also essential for osteoclastogenesis
(de KONING et al., 2003; Ogawa et al., 2006). Furthermore, it
was found that high PSAT1 expression was closely associated
with bone metastasis in malignant tumors. High expression of
PSAT1 has been suggested to regulate serine anabolism,
promotes osteoclast differentiation and enhances their activity,
regulates the tumor microenvironment, and thus promotes bone
(Pollari 2011).
PSAT1 expression was highly correlated with poor prognosis

metastasis in breast cancer et al,

in gastric cancer in this study based on pan-cancer analysis.
According to immune infiltration analysis, PSAT1 affects the

which that
PSAT1 plays a critical role in invasion and gastric cancer

tumor immune microenvironment, indicates
prognosis. Furthermore, we identified miRNAs targeting
PSAT1 in TCGA tumor tissues and associated them with
gastric cancer. We found that multiple miRNAs regulated
PSAT1 expression (Figure 2B). The survival curve analysis
identified six microRNAs, including hsa-miR-1-3p, hsa-miR-
139-5p, hsa-miR-145-5p, hsa-miR-195-5p, hsa-miR-218-5p,
and hsa-miR-497-5p (Figure 3A). Based on the above six
microRNAs, we constructed the prognostic prediction model
for gastric cancer.

MicroRNAs (miRNAs) belong to a family of non-coding
RNAs of 20-24 nucleotides in length. MiRNAs are significantly
associated with tumor development and metastasis (Liu et al.,
2019; Wang et al,, 2019; Chen et al,, 2021; Zhang and Liu, 2021;
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Cao et al, 2022). Compared with normal tissues, miRNA
expression is down-regulated in various cancers. They are
widely involved in tumor metastasis and invasion by
suppressing target genes and have an important role in tumor
diagnosis and prognosis assessment (Daoud et al, 2019).
Previous studies found that all six microRNAs used to
construct predictive models were associated with malignant
Hsa-miR-139-5p
expression was low in various tumor tissues, including gastric

tumorigenesis, invasion, or metastasis.
cancer, liver cancer, and thyroid cancer (Yang et al, 2013;
Montero-Conde et al., 2020; Chi et al., 2021). Bioinformatics
analysis revealed that hsa-miR-139-5p was closely associated
(Wang 2022).

Furthermore, hsa-miR-139-5p/MYB axis has been suggested

with gastric cancer prognosis et al,
to promote the proliferation, invasion, and metastasis of
gastric cancer (Xie et al., 2021). The expression of hsa-miR-
145-5p was down-regulated in various tumor cells, including
gastric cancer, and the down-regulation of hsa-miR-145-5p
expression was associated with lymph node metastasis and
distant metastasis in gastric cancer, suggesting a poor
prognosis (Hang et al, 2018). In addition, it was found that
the exosomes secreted by ovarian cancer cells also contained hsa-
miR-145-5p, and its abnormal expression was associated with
distant metastasis of cancer cells (Hang et al., 2018). Hsa-miR-
195-5p is also a suppressor of multiple tumor types, and its
dysregulated expression is involved in the development of

multiple tumors and is associated with poor tumor prognosis
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and drug resistance (Jin et al., 2018; Rezaei et al., 2019). It has
been suggested that hsa-miR-195-5p was involved in regulating
the invasion and metastasis of gastric cancer cells by binding to
PD-L1 and regulating E-calmodulin expression, which was
closely associated with poor prognosis for patients with gastric
cancer (Zou et al, 2019; Liu et al, 2020; Liu et al., 2021).
Expression of hsa-miR-218-5p is downregulated in various
malignancies, including gastric, prostate, and cervical cancers,
and is associated with tumor invasion and migration (Gao et al.,
2009). Researchers found that hsa-miR-218-5p regulated KIT
protein expression and inhibited proliferation and invasion of
gastrointestinal mesenchymal tumors (Fan et al, 2014).
Upregulation of hsa-miR-218-5p expression inhibits cancer
progression in cervical and bladder cancer, by reducing cell
migration and invasion (Chiyomaru et al, 2012; Yamamoto
et al,, 2013). Hsa-miR-497-5p expression is down-regulated in
gastric, hepatocellular, and colorectal cancers, and is also
associated with tumorigenesis, invasion, and poor prognosis
(Falzone et al., 2018; Liu et al, 2021; Tian et al., 2021). In
addition, abnormal expression of hsa-miR-1-3p is associated
with poor prognosis of malignant tumors, such as breast
cancer and small cell lung cancer (Li et al, 2020; Yan et al,
2021). Gene expression levels are closely connected to tumor
metastasis according to the prediction model obtained in this
study, which implicates genes involved in cancer development
and metastasis. Furthermore, we developed and validated a
prognostic prediction model using nine microRNAs for gastric
cancer and found that AUC value with good calibration and good
fit was 0.746 (Figures 4B,C). A good prediction of the risk of bone
metastases in patients with gastric cancer could be obtained
through this model, and it could have some application in the
assessment of gastric cancer prognoses.

Conclusion

Gastric cancers expressed high levels of PSAT1, and low
levels were associated with poor prognoses. Furthermore,
microRNAs targeting PSAT1 can predict gastric cancer
prognosis and bone metastasis risk. Based on the results of
this study, it can be concluded that the prediction model
provides good predictive value in the risk assessment of
bone metastasis in gastric cancer, in addition to showing
some clinical application in the prognosis evaluation of
gastric cancer. The study has, however, some limitations.
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Background: Insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1)
controls the cytoplasmic fate of certain mRNAs and is hypothesized to predict a
poor patient prognosis in several malignant tumors. However, the prognostic
relevance of IGF2BP1 in breast cancer remains debatable.

Methods: We interrogated large publicly available datasets from the Gene
Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and cBioportal
databases to analyze the genetic alterations in the expression levels of IGF2BP1 in
patients with invasive breast carcinoma (BRCA), and to discern the prognostic value
of IGF2BP1 in BRCA. We applied Gene Ontology (GO), the Kyoto Encyclopedia of
Genes and Genome (KEGQ), and gene set enrichment analysis (GSEA) to uncover a
functional association between IGF2BP1 and BRCA using differentially expressed
genes (DEGs), and we screened genes and proteins related to BRCA.

Results: We determined that both genetic alterations in IGF2BP1 (approximately
10%) and an increase in IGF2BP1 mRNA levels were related to certain cancer
subtypes and an unfavorable prognosis in BRCA patients, and we then
established an OS nomogram upon our multivariate regression model. The
DEGs and IGF2BP1-correlated genes/proteins that implied the involvement of
cornification, keratinization, drug/xenobiotic metabolism by cytochrome P450,
chemical carcinogenesis, cell interactions, and cell adhesion to the extracellular
matrix (ECM) pathways with respect to the prognostic relevance of IGF2BP1.

Conclusion: In summary, our results indicated that both genetic alterations in
IGF2BP1 and increased levels of IGF2BP1 mRNA and protein predict a poor
patient prognosis in BRCA patients.
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IGF2BP1, BRCA, prognosis, enrichment analysis, differentially expressed genes, genetic
correlation
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Li and Jiang

1 Introduction

Breast cancer constitutes the most prevalent form of cancer
found in women globally, and its incidence in China is rising
annually in recent years. It is firmly established that breast cancer
is a biologically heterogeneous disease, and four intrinsic
molecular subtypes (luminal A, luminal B, HER2-positive, and
basal-like) although
prediction of therapeutic has improved survival over the past

facilitate prognostication. However,
30 years relative to clinicopathologic categories, breast cancer
remains one of the leading causes of cancer death in women
principally due to recurrence, metastasis, or therapeutic failure
(e.g., with acquired drug resistance to tamoxifen). Given the
heterogeneous clinical outcomes of any one subtype, the
challenge is now to identify tumors that portend a less
favorable prognosis. Growth, metastasis, and even responses
to breast cancer therapy are closely related to deregulation,
mutation, and epigenetic mechanisms with respect to certain
genes, and the use of integrated multi-omics such as integrated
genomics, transcriptomics, and proteomics is thus critical to
providing prognostic factors and to refining clinically relevant
subtypes by data-mining (Perou et al., 2000; Sorlie et al., 2003).

IGF2BP1—also known as IMP1, ZBP1, CRDBP, and
VICKZ1—belongs to the insulin-like growth factor 2 mRNA-
binding protein family, the IGF2BPs. The proteins in this family
bind to the mRNAs of certain genes and regulate their
translation, decay, and transport, or promote the formation of
“stable” protein-mRNA complexes (Huang et al., 2018a). There
are still numerous unidentified target mRNAs for
IGF2BP1—including ACTB, CTNNBI, GLI1, IGF2, MAPK4,
MDRI1, PPPIR9B, CD44, MYC, PTEN, and BTRC which
indicate that this protein modulates multiple important
aspects of cellular function during both normal development
and cancer (Bell et al., 2013). In fact, IGF2BP1 has been found to
be frequently overexpressed in many cancers, such as head and
neck squamous cell carcinoma (HNSCC) (Paramasivam et al.,
2021), melanoma (Kim et al, 2018; Mahapatra et al., 2019),
cervical cancer (Wang et al., 2018), ovarian carcinoma (Kobel
et al., 2007; Mahapatra et al., 2017) and lung cancer (Shi et al.,
2017). Because of its strong correlation with unfavorable
prognosis and drug resistance, IGF2BP1 is also considered
one of the most promising therapeutic targets (Bell, et al,
2013; Huang et al., 2018b; Kim, et al., 2018).

A role for IGF2BP1 in breast cancer, however, remains
that
IGF2BP1 was downregulated and that it suppressed the

controversial. Some investigative groups reported
invasive phenotype of human breast carcinoma cells both
in vitro (Gu et al., 2012) and in a mouse xenograft model
through the regulation of its target mRNAs (Wang et al,
2016) or wvia an interaction with the IncRNA urethral
carcinoma-associated 1 (UCA1l) (Zhou et al, 2018).
group reported that IGF2BP1

reactivated in breast cancer cells by beta-catenin, and that this

In

contrast, another was
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interaction stabilized beta-catenin (Gu et al., 2008). To clarify this
area of focus, we analyzed the functional relationships between
IGF2BP1 and clinical values in patients with invasive breast
carcinoma (BRCA) via data mining of multiple databases and

enrichment analysis.

2 Materials and methods

2.1 Correlation between genetic
alterations in insulin-like growth factor
2 mRNA binding protein 1 and breast
cancer prognosis using cBioPortal

We analyzed the genomic profiles of IGF2BP1 using a dataset
from the Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) and retrieved an integrated genomic
and transcriptomic targeted sequencing of 2,509 primary breast
tumors and 548 matched normal tissues (Curtis et al., 2012;
Pereira et al., 2016) in cBioPortal (www.cbioportal.org) (Gao
et al.,, 2013). IGF2BP1 mRNA levels (RNA Seq V2 RSEM) were
also determined and visualized by constructing a heatmap with
cBioPortal. Comparisons of survival (overall survival [OS] or
relapse free survival [RFS]) and clinical attributes between the
genetically altered IGF2BP1 group and nonaltered group were
then executed using genome data and clinical data in cBioportal.

2.2 Insulin-like growth factor 2 mRNA
binding protein 1 expression levels in
TCGA-breast carcinoma

RNAseq TPM data were obtained from UCSC XENA
(https://xenabrowser.net/datapages/) for the TCGA and GTEx
samples using the Toil pipeline (Vivian et al., 2017), and then
the of
IGF2BP1 expression in 33 types of human cancers and
15,776), in 1,109 unmatched
BRCA tissues and 292 normal tissues, and in 112 paired

log2-transformed. We  evaluated comparisons

adjacent normal tissues (n =

BRCA tissues and adjacent normal breast issues. Gene-
expression profiles of GSE7904 were further extracted from
the GEO database to validate the of
IGF2BP1 in BRCA.

expression

2.3 Correlation analysis of insulin-like
growth factor 2 mRNA binding protein
1 expression and clinical value

The histologic information and intrinsic molecular subtype
information were retrieved from the TCGA database, and we
conducted a correlation analysis of IGF2BP1 expression and
breast cancer subtypes using ggplot2 (version 3.3.3) in R. We
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the the
nonparametric Kruskal-Wallis test on ranks, and Student’s

determined differences between groups using

t-test or paired t-test for parametric data.

2.4 Correlation analysis of insulin-like
growth factor 2 mRNA binding protein
1 expression with breast cancer prognosis

Our cohort including 1,082 patients was divided into low and
high-expression subgroups according to the median level of
IGF2BP1 mRNA. Kaplan-Meier curves for OS or/disease-
(DSS)
survminer package (version 0.4.9) with gene expression data
from TCGA-BRCA and the supplementary dataset from the
TCGA pan-cancer clinical data resource (TCGA-CDR) (Liu
et al,, 2018). We utilized log-rank test to compare survival

specific  survival rates were generated using the

curves among high- and low- expression subgroups using the
survival R package (version 3.2-10), and the differences of p <
0.05 were considered statically significant.

2.5 Creation of nomogram model

Univariate and multivariate Cox regression analyses were
used to assess the effects of selected variables on OS. Variables
that were significant upon univariate Cox regression analysis (p <
0.1) were subsequently subjected to multivariate Cox regression
analysis, and we developed nomograms using the nomogram
package in R with the independent predictors identified in the
Cox proportional hazards model. The nomogram-predicted
survival probabilities were compared with the observed
survival probabilities by Cox analysis and visualized in the
calibration curve using the rms (version 3.6.3) and survival
packages (version 3.2-10) (Liu, et al,, 2018).

2.6 Biological functional analysis and
enrichment of differentially expressed
genes

We downloaded and analyzed gene expression data of
TCGA-BRCA in HTSeq-TPM, and compared the expression
profiles (HTSeq-TPM) between the high- and low-IGF2BP1
mRNA expression groups so that to identify the DEGs with
DESeq2 (version 1.26.0) (Love et al., 2014), applying filtering
thresholds of |log2 fold-change| > 1.0 and adjusted p < 0.05. Then
DEGs with [log2 fold change| > 2.0 and adjusted p < 0.05 were
subjected to functional analysis with the clusterProfiler R package
and the org. Hs.eg.db package for biological process GO terms
and KEGG pathways (Yu et al, 2012). Gene set enrichment
analysis (GSEA) against the MSigDB category (c2. cp.v7.2.
symbols.gmt) was also performed to assess the enrichment of

Frontiers in Genetics

70

10.3389/fgene.2022.994003

gene sets between IGF2BP1 high-expression and low-expression
groups using the clusterProfiler R package (Version 3.14.3)
(Subramanian et al, 2005). A false discovery rate (FDR)
of <0.25 and p. adjust<0.05 were considered to reflect

significant enrichment.

2.7 Screening of insulin-like growth factor
2 mRNA binding protein 1 correlated
genes and proteins from different
databases for breast carcinoma

Gene expression HTSeq-FPKM data from the TCGA-BRCA
database were downloaded from TCGA, converted to TPM using
the formula TPM = (FPKM x106)/(sum of FPKM), and then
log2 transformed. The IGF2BP1-correlated genes were screened
with Pearson’s correlation coefficient (|r| >0.3 and p < 0.05) using
the stat package in R (version 3.6.3). The top 10 IGF2BP1-
correlated genes, proteins, and IncRNAs were visualized with R
ggplot2 (version 3.3.3), respectively. We also zbscreened
correlated proteins from the QExact platform proteome
datasets with LinkedOmics (Vasaikar et al.,, 2018) which is a
unique online analytical platform that provides comprehensive
multi-omics data analysis using default settings, and visualized
them with heatmaps.

2.8 Statistical methods

We employed the R package to perform statistical analysis.
Differences between groups were compared using the Student’s
t-test, paired t-test, or nonparametric Wilcoxon rank-sum test, as
appropriate. We computed correlations in R using cor with
options for Pearson or Spearman correlation tests, as
appropriate. Kaplan-Meier plots were generated and log-rank
tests were executed to identify significant differences between
survival curves, and differences of p < 0.05 were considered
statistically significant.

3 Results

3.1 Relationship between genetic
alterations in insulin-like growth factor

2 mMRNA binding protein 1 and survival and
clinical attributes in the cBioportal dataset

To elucidate the role of IGF2BP1 in breast cancer, we first
interrogated large publicly available datasets from METABRIC
cBioPortal and analyzed genetic alterations in
IGF2BP1 that included mRNA amplifaction, deletion or level
changes and their correlation with clinical values. Using a dataset

using

from the targeted sequences of 2,509 primary breast tumors and
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clinical attributes.

548 matched normal controls (Curtis, et al., 2012; Pereira, et al.,
2016), we analyzed IGF2BP1-gene alterations in 1904 patients/
samples with available mutation and CNA data and observed a
change for IGF2BP1 mRNA in breast cancer of 10% (188/1904).
Amplification and elevated mRNA levels accounted for the
majority of the genetic alterations in IGF2BP1 (Figure 1A).
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Genetically altered IGF2BP1 predicted a poor prognosis for
both OS and relapse-free status (p < 0.05, Figures 1B,C), while
alterations in IGF2BP1 demonstrated a robust relationship with
clinical attributes. Specifically, the IGF2BP1 altered group

exhibited a

greater

incidence

of HER2 mRNA gain

(Figure 1D), higher proportion of HER2 and luminal B
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Expression of IGF2BP1 in various cancers and BRCA in particular. (A), The expression of IGF2BP1 in various cancers. (B), The expression of
IGF2BP1in TCGA-GTEx-BRCA cohort samples. (C), The expression of IGF2BP1in TCGA -BRCA paired samples. (D), The expression of IGF2BP1 in the

GSE7904 cohort. *p < 0.05; **p < 0.01; ***p <.001.

subtypes by prediction analysis of microarray 50 (PAMS50)
(Figure 1E) or HER2 and ER+/HER2- with high proliferating
subtypes by three genes classifiers (Figure 1F), a tendancy to
manifest, grade-3 histology (Figure 1G), higher clinical tumor
stages (Figure 1H), and an increased probability of disease-
specific death (Figure 1I).

3.2 Insulin-like growth factor 2 mRNA
binding protein 1 expression is augmented
in breast cancer tissues using TCGA and
gene expression omnibus databases

As amplification and elevated mRNA levels accounted for
most of the genetic alterations of prognostic IGF2BP1, we
consequently analyzed mRNA levels in a large patient cohort
of 15,776 samples with 33 types of human cancer and 31 types of
adjacent normal tissues in TCGA datasets and GTEx samples
accessible through UCSC Xena. We ascertained IGF2BP1 was
significantly upregulated in most cancer types as compared with
the corresponding normal tissues, but not in adrenocortical
carcinoma (ACC), kidney, renal clear cell carcinoma (KIRC),
kidney papillary carcinoma  (KIRP),

renal cell
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pheochromocytoma and paraganglioma (PCPG), and prostate
adenocarcinoma (PRAD) (Figure 2A). We specifically noted that
IGF2BP1 was more highly expressed in BRCA tissues in both
unmatched (tumor, n = 1,109 vs. adjacent and normal, n = 292)
and paired (112 paired tumors vs. adjacent normal) comparisons
of TCGA-BRCA datasets compared to normal tissues (Figures
2B,C). A majority of paired samples also exhibited upregulation,
while a minute subset demonstrated downregulation of
IGF2BP1 in cancer tissue (Figure 2C). Our analysis of gene
expression data of the GSE7904 cohort (seven normals vs.
43 tumors) validated the overexpression of IGF2BP1 at the
mRNA level (Figure 2D).

3.3 Insulin-like growth factor 2 mRNA
binding protein 1 expression correlates
with histologic and intrinsic subtyping of
breast cancer

Using the expression and clinical data from the TCGA-
BRCA dataset, we demonstrated that the expression of
IGF2BP1 mRNA was markedly correlated with histologic type
(Figure 3A), and that molecular subtypes of breast cancer were
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Relationship between IGF2BP1 expression and histologic and molecular features in TCGA-BRCA datasets. (A), Relationship between
IGF2BP1 expression and histologic types. (B), Relationship between IGF2BP1 expression and HER2 status of breast cancer. (C), Relationship between
IGF2BP1 expression and PAM50 molecular subtypes of breast cancer. *p < 0.05; **p < 0.01; ***p <.001.

defined by HER2 status (Figure 3B) or PAM50 (Figure 3C). In
addition to discriminating cancerous from normal cells, the
mRNA levels of IGF2BP1 were found to be significantly
increased in certain subgroups of breast cancer. For example,
the highest level was found in invasive ductal carcinoma (IDC)
(n = 772) when compared to invasive lobular carcinoma (ILC)
(n = 205) and normal breast tissues (n = 111), as well as in the
HER2-positive subgroup (n = 157) when compared to the HER2-
negative group (n = 570) or normal breast tissues (n = 111). Our
data revealed IGF2BP1 at differential levels among intrinsic
subtypes of breast cancer (Normal, n = 40; LumA, n = 562;
LumB, n = 204; Basal, n = 195; Her2, n = 82: Kruskal-Wallis test,
p < 0.001), which raised the question whether IGF2BP1 was
related to breast cancer prognosis.

3.4 Relationships of insulin-like growth
factor 2 mRNA binding protein

1 expression with OS and disease-specific
survival in breast carcinoma patients in
TCGA database

We divided the cohorts into low or high-expression
subgroups according to the median expression of
IGF2BP1 mRNA to compare IGF2BP1 expression-related
outcomes of the patients. Kaplan-Meier curves for OS and
DSS that  BRCA with  high
IGF2BP1 expression possessed a generally worse prognosis
than patients with low IGF2BP1 expression (p < 0.01, Figures
4A,B). Further analysis indicated that high IGF2BP1 expression
argued an unfavorable prognosis for both OS and DSS in the

revealed patients

subgroups of IDC and women in postmenopausal status (p <
0.01, Figures 4C-F), while it was prognostic for DSS but not for
OS in the subgroup that did not undergo radiation therapy
(Figures 4G,H). The analysis of other subgroups (including
histologic ILC subgroup, peri- and pre-menopausal status,
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HER? status, ER status, and PR status) achieved no significant
prognostic relevance with respect to IGF2BP1 overexpression
(data not shown). The 5- and 10-year OS rates in the database
were higher among patients with low IGF2BPI expression
relative to those with high expression (85.95 + 2.4% vs. 77.3
2.8% and 58.2 * 5.8% vs.46.1 + 6.5%, respectively; p < 0.001).

3.5 Generation of nomogram model

Using survival data from 876 of 1,082 patient cohorts in the
TCGA database, we further implemented uni- and multivariate
survival analyses using Cox proportional hazards models for
survival-related factors; and the results showed that T stage, N
stage, and M stage of the tumor; PAMS50 subtyping, and
IGF2BP1 expression were predictors of OS upon univariate Cox
analysis. Importantly, N stage, M stage, and IGF2BP1 expression
were independent variables in our multivariate Cox analysis, with a
concordance index of 0.694 (0.661-0.726) (Table 1). When we then
constructed a nomogram for predicting overall survival at 5 years,
10 years, and 20 years based on these models (Figure 5A), we discern
that the nomogram calibration plot showed acceptable agreement
between nomogram-predicted and observed events (an example of
five-year OS is depicted in Figure 5B.

3.6 Functional-enrichment analysis of
differentially expressed genes between
high and low-insulin-like growth factor
2 mRNA binding protein 1 expression
samples

To explore the potential prognostic mechanisms underlying
IGE2BP1 action, we analyzed DEGs in the high- and low-IGF2BP1
expression groups and identified a total of 2,405 DEGs of
56,493 genes, of which 2,199 genes were upregulated and
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Relationship between IGF2BP1 expression and the prognosis

of BRCA patients in TCGA database. (A) and (B), Comparison of
Kaplan—Meier curves for OS or DSS between high- and low-
IGF2BP1 expressing groups. (C—=H), Compared Kaplan—Meier
curves for OS or DSS between high- and low-1GF2BP1 expression
in subgroups of IDC, post menopause or without radiation therapy,
respectively.

206 were downregulated. When filtering with [log2 fold-change| >
1.5, we identified 875 genes, of which 828 were upregulated and
47 downregulated, and 303 genes were identified when filtering with
|log2 fold-change| > 2.0, with 290 upregulated and 13 downregulated
(Supplementary Table S1). DEG expression is displayed in Figure 6A
in the volcano plot encompassing the top five upregulated and five
downregulated genes. Functional analysis of DEGs with a |log2 fold
change|> 2.0 revealed 81 GO terms and 13 KEGG pathways at
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p. adj<0.05 and qvalue<0.2. The top GO terms were cornification,
keratinization, keratinocyte differentiation, cornified envelope,
keratin  filament, glucuronosyltransferase activity, alcohol
dehydrogenase (NADP+) activity, aldo-keto reductase (NADP)
activity, and monocarboxylic acid binding for biological process
(BP), molecular function (MF), and cellular component (CC). The
top KEGG pathways were drug metabolism—cytochrome P450,
metabolism of xenobiotics by cytochrome P450, and chemical
carcinogenesis (Figure 6B, Supplementary Tables S2, S3). The
GSEA-enrichment  method the
enrichment analysis for the DEG set exhibited some similar
functionally networks 6C). The
28 significantly enriched categories with FDR filtering (qvalue) <

and Reactome  pathway

relevant  gene (Figure
0.25 and p. adjust<0.05 included formation of the cornified envelope
(NES = 1.959; p. adjust = 0.020; FDR = 0.019), FCGR activation
(NES = 1.942; p. adjust = 0.020; FDR = 0.019), CD22-mediated BCR
regulation (NES = 1.979; p. adjust = 0.020; FDR = 0.019), integrin
cell surface interactions (NES = 1.844; p. adjust = 0.020; FDR =
0.019), glucuronidation (NES = 1.792; p. adjust = 0.040; FDR =
0.038), and keratinization (NES = 1.788; p. adjust = 0.020; FDR =
0.019) (complete GSEA results are provided in Supplementary
Table S4).

3.7 Functional enrichment analysis of
correlated genes between high and low-
insulin-like growth factor 2 mRNA binding
protein 1 expression samples

We then analyzed IGF2BP1-correlated genes and proteins
from both the RNAseq dataset and proteome datasets to a screen
for IGF2BP1 functional partners. Using the R package, we
screened 134 genes that were positively correlated with
IGF2BP1 mRNA expression from a total of 56,493 IDs,
filtering them with Pearson’s correlation coefficient |
cor| >0.3 and p < 0.05, and the top 10 genes, genes coding
proteins, and genes for IncRNAs are displayed in our heatmaps
(Figures 7A-C). LinkedOmics is a unique online analytical
data

analysis (Vasaikar, et al, 2018), and we employed this

platform that provides comprehensive multi-omics
platform to analyze IGF2BP1 protein partners using proteome
datasets from 105 patients. We uncovered 1712 IGF2BPI1-
correlated proteins from 9,733 entries, and the most positively
and negatively correlated proteins are displayed in our heatmaps
(Figures 7D,E). We will in future investigations analyze the
correlated genes, proteins, and IncRNAs using an interaction
network and hub genes, and validate them in clinical samples.

4 Discussion

IGF2BP1 is principally expressed in embryos and in
cancerous cells in contrast with comparatively lower or
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TABLE 1 Results of Cox univariate and multivariate analyses.

10.3389/fgene.2022.994003

Characteristics Univariate analysis Multivariate analysis
Hazard p value Hazard p value
ratio (95% CI) ratio (95% CI)
T stage
T1 Reference
T2 1.332 (0.887-1.999) 0.166 1.123 (0.697-1.810) 0.634
T3&T4 1.953 (1.221-3.123) 0.005 1.448 (0.799-2.624) 0.222
N stage
NoO Reference
N1 1.956 (1.329-2.879) <0.001 1.767 (1.148-2.719) 0.010
N2 2.519 (1.482-4.281) <0.001 2.245 (1.253-4.023) 0.007
N3 4.188 (2.316-7.574) <0.001 3.467 (1.561-7.698) 0.002
M stage
Mo Reference
M1 4.254 (2.468-7.334) <0.001 2.014 (1.025-3.961) 0.042
PAMS50
LumA Reference
LumB 1.663 (1.088-2.541) 0.019 1.400 (0.887-2.208) 0.148
Her2 2.261 (1.325-3.859) 0.003 1.719 (0.933-3.167) 0.082
Basal 1.285 (0.833-1.981) 0.257 1.413 (0.874-2.285) 0.158
IGF2BP1
Low Reference
High 1.463 (1.060-2.018) 0.021 1.458 (1.003-2.119) 0.048
Bold values reprsents that the p value of less than 0.05 indicated statistical significance.
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FIGURE 5

Nomogram predicted survival probability

Nomogram model for predicting overall survival. (A), Nomogram for predicting overall survival at 5 years, 10 years and 20 years. (B), Nomogram

calibration plot for five-year OS as a representative index.

negligible levels in adult normal tissues, reflecting an ideal
biomarker for disease. The prognostic overexpression of
IGF2BP1 has been reported in over 16 cancers, whereas the
overexpression of IGF2BP1 in colon (Hamilton et al., 2015) and
breast cancer (Wang, et al, 2016) relative to normal tissues
remains controversial. Breast cancer is a highly heterogeneous
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disease that shows substantial variations in molecular and clinical
characteristics, and the discrepancy among studies regarding
IGF2BP1 expression in breast cancer might be due to this
sample heterogeneity (Huang et al., 2018b) that extends from
histologic heterogeneity to subtypes, cellular, and even molecular
include metastatic status

heterogeneity; these disparities
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Pathway-enrichment analyses of DEGs between high- and low-IGF2BP1 expression samples. (A), Volcano plot for the DEGs expression with the
top five upregulated and five down-regulated genes displayed. (B), Bubble diagram of the top enriched GO|KEGG pathway results for DEGs. (C),

GSEA of DEGs using the Reactome Pathway Database.

differences, cell types of different origins, phenotypic-functional

heterogeneity, genomic discordances, expression-pattern
changes, or genetic variations in certain molecules themselves
during cancer development. For example, significantly
augmented promoter methylation of IGF2BP1 leads to more
common silencing events with respect to IGF2BP1 in metastatic
breast tumor cells compared to methylation observed in non-
metastatic breast tumor cells (Gu, et al, 2012). Moreover,
IGF2BP1 was reported to be as a conserved ‘oncogenic’ m°A
(N6-methylation of adenosine)-reader and could enhance
mRNAs stability and translation through m°A modification
(Huang et al., 2018a; Hao et al., 2020). Therefore, it is crucial
to elucidate the detailed expression patterns of IGF2BP1 in
heterogeneous breast cancer.

In the present study, we demonstrated genetic alterations
(particularly amplification and overall upregulation) of
IGF2BP1 in invasive breast cancer using large and publicly
available datasets from METABRIC, TCGA, and GEO. We

also determined that elevated IGF2BP1 mRNA expression was
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related to histologic and molecular subtypes, especially
HER2 status in breast cancer a result not as controversial as
that noted by others in the literature, and we found a very small
subset of significantly downregulated IGF2BP1 in breast cancer
tissues in our paired analysis. What drives the heightened
expression of IGF2BP1 in the HER2-positive subtype is
unknown, and the discrepancy between relative upregulation
and downregulation of IGF2BP1 in paired analyses requires the
elucidation of large and deep data mining. The clarification of
these underlying mechanisms will facilitate the personalization of
subtyping and treatment.

IGF2BP1 is functionally considered to promote tumor growth
and invasion via the transport of certain mRNAs that play essential
roles in embryogenesis, carcinogenesis, and chemo-resistance by
affecting mRNA stability, translatability, or localization within
most cancers (Huang et al, 2018b). IGF2BPI’s potential
promotion of tumor invasiveness and progression in breast
cancer, however, remains debatable. We also herein confirmed
IGF2BP1 to be a promising prognostic indicator in overall invasive
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IGF2BP1-correlated genes and proteins from TCGA-BRCA databases and the LinkedOmics database. (A—C), Heatmaps of top 10 positive and
top 10 negative IGF2BP1-correlated genes, proteins and IncRNAs in TCGA-BRCA gene-expression database. (D-E), Heatmaps of significantly
positive and negatively IGF2BP1-correlated proteins in the proteome database using the LinkedOmics platform.

breast cancer and in certain subgroups, including histologic types
of IDC and postmenopausal subgroups and patients who did not
undergo radiotherapy. We additional analyzed the prognostic
relevance of IGF2BP1 in breast cancer by applying enrichment
analysis of DEGs, and our data revealed the involvement of
pathways such as glucuronidation, cytochrome P450 (CYP)
enzyme-related cornification, and

drug  metabolism,

keratinization. Glucuronidation is a drug clearance and
resistance mechanism (Mazerska et al, 2016) and cytochrome
P450 (CYP) enzymes are responsible for the biotransformation of
drugs involved in drug interactions and therapeutic efficacy (Stipp
and Acco, 2021) in many diseases. In addition, keratinization and
cornified envelope formation associated with proliferation and
differentiation of keratinocytes and their progenitor cells (e.g.,
multipotent stem  cells) stable

remain  generally during
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carcinogenesis and are correlated with disease aggressiveness
and clinical outcomes (Choi et al., 2014; Blommel et al., 2020).
We thereby hypothesized that an IGF2BP1-related unfavorable
prognosis might be (at least partially) attributable to cellular
differentiation as well as acquired drug resistance by altered
drug biotransformation and clearance. We also executed
correlation analysis using proteome datasets by mining the
functional partners of IGF2BP1, as it has been shown that
MMP downregulated by
IGF2BP1 silencing in ovarian carcinoma, thus reducing the

family ~ members  were
invasive nature of tumor (Davidson et al, 2014). We thus plan
to implement a systematic and exhaustive study as well as an
experimental validation of the underlying mechanisms with
respect to prognostic IGF2BP1 in breast cancer, with particular

emphasis on hub genes in IGF2BP1 regulatory networks.
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There were several limitations to the present study. First
limitation was the lack of validation of the relative expression of
IGF2BP1, its prognostic relevance in breast cancer, and the
predictive capability of our established nomogram using
external datasets such as large, multicenter cohorts. Second,
the nomogram we implemented necessitates improvement to
satisfy the requirement for convenience and accuracy using
routine clinical data and laboratory tests such as the
assessment of immune status of lymphocyte subsets. Finally,
hub genes in IGF2BPI-targeted mRNA networks need to be
identified, and our hypothesis of IGF2BP1 functional pathways
based on enrichment analysis of DEGs and genetic correlation
remains to be tested experimentally. The detailed molecular
mechanisms by which IGF2BP1 regulates target mRNAs or
vice versa warrants future investigation.

In summary, our results indicated that both genetic
IGF2BP1  and
IGF2BP1 mRNA and protein predict a poor patient prognosis

alterations  in increased  levels  of
in BRCA patients. The findings will represent a potential
therapeutic target for the treatment of BRCA.
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Objective: Lung cancer is a common malignant tumor, characterized by being
difficult to detect and lacking specific clinical manifestations. This study aimed
to find out the risk factors of mediastinal lymph node metastasis and explore the
correlation between serum tumor markers and mediastinal lymph node
metastasis and lung cancer prognosis.

Methods: A retrospective study of 3,042 lung cancer patients (330 patients with
mediastinal lymph node metastasis and 2,712 patients without mediastinal
lymph node metastasis) collected from the First Affiliated Hospital of
Nanchang University from April 1999 to July 2020. The patients were
divided into two groups, namely, mediastinal lymph node metastasis group
and non-mediastinal lymph node metastasis group. Student's t test, non-
parametric rank sum test and chi-square test were used to describe whether
there is a significant difference between the two groups. We compared the
serum biomarkers of the two groups of patients, including exploring serum
alkaline phosphatase (ALP), calcium hemoglobin (HB), alpha-fetoprotein (AFP),
carcinoembryonic antigen (CEA), CA125, CA-199, CA -153, cytokeratin
fragment 19 (CYFRA 21-1), total prostate specific antigen (TPSA), neuron-
specific enolase (NSE) levels and the incidence and prognosis of lung cancer
mediastinal lymph node metastasis. Binary logistic regression analysis was used
to determine its risk factors, and receiver operating curve (ROC) analysis was
used to evaluate its diagnostic value for mediastinal lymph node metastasis.

Abbreviations: AFP, alpha fetoprotein; ALP, alkaline phosphatase; AUC, area under the curve; CEA,
Cancer embryonic antigen; CT,Computerized tomography; CYFRA 21-1, cytokeratin fragment 19; HB,
calcium hemoglobin; MRI, magnetic resonance imaging; NSE, and neuron-specific enolase; ROC,
receiver operating curve; TPSA, total prostate specific antigen.
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Results: Binary logistic regression analysis showed that carcinoembryonic
antigen and CYFRA 21-1 were independent risk factors for mediastinal lymph
node metastasis in patients with lung cancer (p < 0.001 and p = 0.002,
respectively). The sensitivity and specificity of CEA for the diagnosis of
mediastinal lymph node metastasis were 90.2 and 7.6%, respectively; CYFRA

Conclusion: Serum CEA and CYFRA 21-1 have predictive value in the diagnosis
of mediastinal lymph node metastasis in patients with lung cancer.

lung cancer, mediastinal lymph node metastasis potential indicators, tumor blood

Tang et al.
21-1 were 0.6 and 99.0%, respectively.
KEYWORDS
markers, cancer, risk factors
Introduction

The morbidity and mortality of lung cancer remain high, and
the prognosis of lung cancer patients has not been effectively
improved. The preferred treatment for lung cancer is surgery.
Postoperative  radiotherapy, =~ chemotherapy,  biological
immunotherapy, and the advent of targeted drugs have all led
to increases in the survival time of patients. Lymph node
metastasis is one of the main metastatic pathways of lung
cancer and is an important determinant of lung cancer stage.
Lung cancer has no specific symptoms in the early stages. The
cancer cells pass through the bronchus and the lymphatic vessels
around the pulmonary blood vessels. They first invade the
adjacent lung or lymph nodes around the bronchi and then
reach the hilar or subcarinal lymph nodes. They may then spread
to the mediastinum and paratracheal lymph nodes, and further to
the clavicular or cervical lymph nodes. Immune checkpoint
inhibitors is a currently widely used tumor treatment method.
Through the development of various related clinical trials,
immune  checkpoint  inhibitors have  made
the

prediction of lung cancer (Jain et al., 2018; Bai et al., 2020).

many
breakthroughs in efficacy, prognosis and disease

Tumor marker detection has become one a routine detection
method, but there is still no ideal marker for clinical use as an
indicator of lung cancer metastasis and prognosis. Single marker
detection systems often suffer from low specificity (Weinberger
et al,, 2002). The same tumor can contain a variety of tumor
markers. Different tissue types of the same tumor can express the
same tumor markers or different tumor markers, so combined
detection of multiple tumor markers can improve the diagnostic
sensitivity of cancer.

A number of studies have identified distinct factors that are
associated with lymph node metastasis in lung cancer. Specific
substances detected in the lymph nodes or blood can predicts
tumor. In this study, the medical records of lung cancer patients
from the First Affiliated Hospital of Nanchang University were
collected. Based on serological examination of a large number of
lung cancer patients, we screened patients with lung cancer

mediastinal lymph node metastasis and analyzed their tumor
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marker content to identify risk factors. We aimed to establish a
standard by which to distinguish between mediastinal lymph
node metastasis and non-mediastinal lymph node metastasis and
to facilitate the development of further targeted anticancer
treatment strategies for lung cancer patients.

Materials and methods
Ethics statement and study design

All patients in this study volunteered to participate, and the
study was approved by the Medical Research Ethics Committee
of the First Affiliated Hospital of Nanchang University. In this
study, patients diagnosed with lung cancer between September
1999 and July 2020 were selected. Patients with mediastinal
lymph node metastasis were screened, and their medical
records and serological data were compared with those of
patients without mediastinal lymph node metastasis. A
pathological section obtained by surgical resection or biopsy
was used to accurately diagnose the lung cancer of the patient.
Computerized tomography (CT) and magnetic resonance
imaging (MRI) were used to diagnose mediastinal lymph node
metastasis in lung cancer, and data on serum tumor markers
were recorded. Patients with primary mediastinal malignancies,
benign mediastinal tumors, and secondary mediastinal cancer
were excluded. The inclusion criteria for the without mediastinal
lymph node metastasis group were patients without organ
metastases.

Data collection

We collected various clinical data, including age, gender, time
of diagnosis, lesion metastasis, and treatment, from medical
records of patients with mediastinal lymph node metastasis
and analyzed serum tumor markers, including alkaline
phosphatase, serum calcium, HB, alpha-fetoprotein (AFP),

carcinoembryonic antigen (CEA), neuron-specific enolase
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TABLE 1 The clinical characteristics of patients with lung cancer.

Patient characteristics Group with mediastinal

lymph node metastasis

(%)
(n = 330)
Gender®
Male 249 (75.5)
Female 81 (24.5)
Age®
Mean 59.6 £ 10.5
Histopathological type®
Adenocarcinoma 143 (45.2)
Squamous cell carcinoma 119 (34.2)
Small cell carcinoma 33 (10.0)
Other 35 (10.6)

*Chi-squared test.
“Student’s t-test.

10.3389/fgene.2022.1009141

Group without mediastinal p value®

lymph node metastasis
(%)

(n = 2,712)

1988 (73.3)
724 (26.7)

0.485

60.3 £ 10.8 0.553

1,128 (41.6) 0.012
1,041 (38.4)

370 (13.6)

173 (6.4)

“Comparison between the lung cancer group with brain metastasis and the lung cancer group without brain metastasis.

4p value < 0.05 was considered statistically significant.

(NSE), cytokeratin fragment 19 (CYFRA 21-1), CA-125, CA-153,
CA-199, and free prostate-specific antigen (FPSA).

Statistical analyses

We analyzed the differences between tumor markers in the
mediastinal lymph node metastasis group and the non-
mediastinal lymph node metastasis group by an independent
t-test. A binary logistic regression model was then applied to
identify independent risk factors for mediastinal lymph node
metastasis. A receiver operating curve (ROC) curve was
generated, and the area under the curve (AUC) was
calculated. Then, we used Microsoft Excel 2010 software
(Microsoft corporation,United States) to calculate the cut-off
value, sensitivity, and specificity of risk factors. All statistical
analyses were performed using SPSS 20.0 (SPSS, IBM,
United States) 2010
0.05 indicates statistical significance.

and Excel software. p values <

Results
Demographics and clinical characteristics

In this study, 330 cases of lung cancer with mediastinal
lymph node metastasis and 2,712 cases of lung cancers
without mediastinal lymph node metastasis were collected.
The mean ages of lung cancer patients with and without
10.5 and
60.3 + 10.8 years, respectively. According to the chi-squared

mediastinal lymph node metastasis were 59.6 *
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test and Student’s t-test, there were no significant differences
in gender or age between the lung cancer groups with and
without mediastinal lymph node metastasis (p > 0.05). In
contrast, significant differences were noted for the different
histopathological types between the two groups (p < 0.05).
the
pathological type between the mediastinal lymph node

There was a statistically significant difference in
metastasis group and lung cancers without mediastinal lymph
node metastasis (p = 0.012). Furthermore, the incidence of
the highest the different

histopathological types. Most patients had been treated with

adenocarcinoma was among
chemotherapy since the onset of the disease. Detailed clinical
data of all patients involved in the study are provided in Table 1
and Figures 1-3.

Clinical data and risk factors of mediastinal
lymph node metastasis in lung cancer

After comparing data on tumor biomarkers in lung cancer
patients with and without mediastinal lymph node metastasis, we
found that the concentrations of AFP, CEA, and CYFRA 21-
1 were significantly higher in patients with mediastinal lymph
node metastasis, while HB was higher in patients without
mediastinal lymph node metastasis (p < 0.05) (Table 2). There
were no significant differences in serum ALP, calcium, CA-125,
CA-199, CA-153, TPSA, NSE, between the two groups (p > 0.05)
(Table 2). Based on binary logistic regression, CEA and CYFRA
21-1 appear to be independent risk factors for mediastinal lymph
node metastasis in lung cancer. More detailed results are shown
in Table 3.
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FIGURE 1
Clinical features of the patients. (A) Geographic location of the patients. (B) Anatomical locations of metastasis and corresponding incidences.
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FIGURE 2

Cut-off value, sensitivity, and specificity of
CEA and CYFRA 21-1 for the diagnosis of
mediastinal lymph node metastasis in lung
cancer

Table 4 shows that the cut-off values for CEA and CYFRA
21-1are 1.005 ng/ml and 135.31 ng/ml, respectively, and the area

Frontiers in Genetics

Clinical features of lung cancer patients with and without mediastinal lymph node metastasis. The (A) shows lung cancer patients with
mediastinal lymph node metastasis, and the (B) shows lung cancer patients without mediastinal lymph node metastasis. Gender distribution of lung
cancer patients with and without mediastinal lymph node metastasis. Age distribution of lung cancer patients with and without mediastinal lymph
node metastasis. Pathological features of lung cancer patients with and without mediastinal lymph node metastasis.
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Without mediastinal lymph node
metastasis

= Male

= Female

Without mediastinal lymph node
metastasis
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Without mediastinal lymph node
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cell
cardnoma
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* Other

under the curve (AUC) of CYFRA 21-1 is the highest. The
sensitivity and specificity for the diagnosis of mediastinal
lymph node metastasis were CEA, 90.2 and 7.6%, respectively;
CYFRA 21-1 was 0.6 and 99.0%, respectively. Figure 4A shows
the receiver operating curve (ROC) curves for CEA and CYFRA
21-1, each as a single factor. We then tested the combination of
these two risk factors in pairs, and Figure 4B shows the ROC
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FIGURE 3

The HE staining and IHC images from lung cancer patients with mediastinal lymph node metastasis. (A) Lung cancer (HE x 200). (B) NapsinA (+)

(SP x 200). (C) TTF-1 (+) (SP x 200).

TABLE 2 Differences in tumor biomarkers between lung cancer patients with and without mediastinal lymph node metastasis.

Tumor biomarkers Mediastinal lymph node

metastasis group

ALP (U/L) 92.48 + 100.03
Calcium (nmol/L) 2.20 £ 0.22
AFP (ng/ml) 2.16 + 1.04

CEA (ng/ml) 69.12 + 340.77

CA-125 (U/ml) 76.03 + 163.6
CA-199 (U/ml) 46.72 + 199.1
CA-153 (U/ml) 21.96 + 33.6
CYFRA 21-1 (ng/ml) 113 + 26.55
TPSA (ng/L) 2.02 + 437
NSE (ug/L) 2681 + 41.57
HB (g/L) 115.75 + 19.18

Without mediastinal lymph t p value
node metastasis group

93.18 + 77.32 0.159 0.8736
229 + 15.29 0.624 0.5325
1.75 + 1.61 4.981 <0.001
4425 + 231.54 1.680 <0.001
71.44 + 191.25 0.396 0.6915
46.28 + 439.44 0.005 0.9960
20.53 + 34.54 0.694 0.4875
9.56 + 30.42 1.01 0.003
1.63 + 373 1.71 0.0871
26.12 + 42.89 0.258 0.7963
119.44 + 19.15 3.10 0.0019

Notes: Apply t-test analysis. p < 0.05 indicated statistically significant differences. Abbreviations: ALP, alkaline phosphatase; HB, calcium hemoglobin; AFP, alpha fetoprotein; CEA,Cancer
embryonic antigen; CYFRA 21-1, cytokeratin fragment 19; TPSA, total prostate specific antigen ;NSE, and neuron-specific enolase.

TABLE 3 Risk factors in lung cancer patients with mediastinal lymph
node metastasis.

Factors B Exp(B) OR (95% CI) p value
AFP 0.127 1135 1.059-1216 0.134
CEA 0.000 1.000 1.000-1.001 <0.001
CYFRA 21-1 0.001 1.001 0.998-1.004 0.002

HB (g/L) -0.009 0.991 0.985-0.997 0.068

Notes: Binary logistic regression analysis was applied. p < 0.05 indicated statistically
significant differences. Abbreviations: HB, calcium hemoglobin; AFP, alpha fetoprotein;
CEA, Cancer embryonic antigen; CYFRA 21-1, cytokeratin fragment 19.

curve for the CEA + CYFRA 21-1 combination. We found that
the combination of CEA + CYFRA 21-1 has a higher AUC value
of 0.585. The sensitivity and specificity of CEA + CYFRA 21-1 are
shown in Table 4, and results were statistically significant
(p < 0.05).
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Discussion

Studies have shown that lymphatic metastasis occurs in
papillary thyroid cancer. (Wang et al., 2019; Wen et al., 2019).
Another scholar found that (Shimazu et al., 2019) used a one-step
nucleic acid amplification test to detect lymph node metastasis of
breast cancer, and in our study, serological tests were also found
to predict lymph node metastasis of lung cancer. Studies have
shown that (Han et al., 2019) lung cancer is prone to various
types of metastasis, such as non-small cell lung cancer will occur
bone metastasis.

Marchi et al. (Marchi et al, 2008). Used proteomics
technology to screen the serum markers of lung cancer brain
metastasis and found that patients with lung cancer brain
metastasis had higher levels of ProApolipoprotein Al and
S100beta than those with lung cancer and cerebral ischemia.
Roberts et al. (Roberts et al, 2002) first discovered the
relationship between abnormal expression of retinol binding
protein (RBP) and malignant metastasis of ovarian cancer
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TABLE 4 Critical value, sensitivity, specificity and AUC of CEA and CYFRA 21-1 in lung cancer patients with mediastinal lymph node metastasis.

Factor Cut-off value

CYFRA 21-1 (ng/ml) 135.31 0.6
CEA (ng/ml) 1.005 90.2
CEA + CYFRA 21-1 1,228.6 0.3

Sensitivity (%)

Specificity (%) AUC p value
99.0 0.596 0.002

7.6 0533 <0.001
99.6 0.585 <0.001

Notes: Sensitivity and specificity were obtained at the cut-off value. p < 0.05 indicates statistically significant differences. Abbreviations: CEA, Cancer embryonic antigen; CYFRA 21-1,

cytokeratin fragment 19.
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(A)ROC curve of CEA and CYFRA 21-1 levels in lung cancer patients with mediastinal lymph node metastasis. (B)JROC curve of CEA + CYFRA 21-

1in lung cancer patients with mediastinal lymph node metastasis

epithelial cells, and speculated that due to the down-regulation
and loss of RBP expression, it destroyed the metabolism of retinol
and the production of retinoic acid. Promotes gene damage,
leading to malignant transformation of ovarian epidermal cells.

At present, most clinicians’ method of clinical staging of lung
cancer is a multidisciplinary diagnosis method based on chest CT
scan (Liam et al, 2015), but chest CT is not specific for the
diagnosis of intrapulmonary lymph node metastasis of lung
cancer, and accuracy is not accurate. Cannot be used as a
basis for surgical clearance (Zhang et al,, 2019). Xu et al. (Xu
et al., 2003) reported that the sensitivity, specificity and accuracy
of PET in the diagnosis of mediastinal lymph node metastasis
were 100, 93 and 94%, respectively, and the number and location
of positive lymph nodes were completely consistent with
pathological results.

The relationship between tumor size and invasion and lymph
node metastasis is currently reported. Li Yu et al. (Li et al., 2000)
summarized 386 cases of pathological data and thought that with
the increase of tumor and increased invasion, the chance of
lymph node metastasis increased significantly. Min Kong et al.
(Kong et al., 2017) analyzed 1,156 patients, and the test results
showed that there is some correlation between lymph node
metastasis and the size of the primary tumor.

The intrathoracic lymphatic drainage route of lung cancer is
usually performed according to a certain rule, that is, from the
near to the far side, from the top to the bottom, from the lung to
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the mediastinum to the mediastinum, (Ndiaye et al, 2016),
regardless of the location and severity, most cases are one
station. In some cases, the transfer order of each station can
change, or even jump. This situation has been reported in the
literature at home and abroad. (Yoshino et al., 1996; Celikoglu
et al.,, 2010).

According to the original location of the tumor, Watanabe
et al. (Watanabe et al., 1990) divided the mediastinal lymph
nodes into upper and lower parts according to the tracheal
bifurcation. The incidence of lung cancer in the lower lobe
was 22%, and the incidence of lung cancer in the upper lobe
was 8%. Advocate extensive mediastinal lymph node dissection.
However, extensive lymph node dissection can directly affect the
patient’s survival. Funatsu et al. (Funatsu et al., 1994) found that
the difference in survival rate may be related to the low immunity
caused by mediastinal lymph node dissection. Additionally, the
higher the Topography; Lymph Node; Metastasis (TNM)stage,
the higher the serum CEA level. Some studies have found that the
preoperative CEA level is related to non-small cell carcinoma
survival. There have reported important factors related to
independence (Okada et al., 2003; Yu et al., 2014).

CYFRA 21-1 is currently considered to be the main tumor
marker used for the diagnosis of lung cancer. It is primarily
distributed throughout the cytoplasm of the stratified tumor
epithelium. When a cell dies, CYFRA 21-1 is released into the
blood as a lysed fragment, resulting in an increase in serum levels.
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TABLE 5 The risk factors of metastases of lung cancer.

Histopathological type

Author Year

Morita et al. (Morita et al., 2019) 2019 NSCLC

Zhou et al. (Zhou et al., 2017) 2017 NS

Liu et al. (Zhang et al., 2017) 2017 Adenocarcinoma
Wu et al. (Wu et al,, 2017) 2017 NSCLC

Chu et al. (Chu et al., 2017) 2017 Adenocarcinoma
Chen et al. (Chen et al.,, 2015a) 2015 NSCLC

Chen et al. (Chen et al.,, 2015b) 2015 NS

Lee et al. (Lee et al.,, 2012) 2012 NSCLC
Cabreraalarcon (Cabreraalarcon et al., 2011) 2011 NS

Cedres (Cedrés et al., 2011) 2011 NSCLC

Oshiro et al. (Oshiro et al., 2004) 2004 Adenocarcinoma
Pollan et al. (Pollan et al., 2003) 2003 NSCLC
Niklinskij (Nikliuski et al., 1992) 1992 NSCLC

Pujol et al. reported that CYFRA 21-1 is an independent
prognostic factor in lung cancer (Pujol et al., 2004).

In our study, we collected serum and assessed ALP,
calcium, HB, AFP, CEA, CA-125, CA-199, CA-153, CYFRA
21-1, TPSA, and NSE levels. Relative to lung cancer
patients without mediastinal lymph node metastasis, the
concentrations of AFP, CEA, and CYFRA 21-1 in lung
cancer patients with mediastinal lymph node metastasis
were found to be extremely high, while HB was found to
be lower (p < 0.05). Based on previous studies, we chose CEA
and CYFRA 21-1 as independent risk factors for lung cancer
patients with mediastinal lymph node metastasis (p < 0.01 and
p = 0.002, respectively). Furthermore, we assessed the cut-off,
sensitivity, specificity, and AUC of CEA and CYFRA 21-
1 levels. Finally, we conclude that CEA, and CYFRA 21-
1 are risk factors for mediastinal lymph node metastasis in
lung cancer.

By using the final ROC curve of these serum biomarkers to
provide reliable clinical indicators, we can conclude that CEA
and CYFRA 21-1 have cut-off values of 1.005ng/ml and
135.31 ng/ml, respectively, in lung cancer patients with
mediastinal lymph node metastasis. CYFRA 21-1 had the
highest AUC, demonstrating that it had the highest accuracy
in distinguishing between lung cancer patients with and without
mediastinal lymph node metastasis. On this basis, we utilized
further detailed diagnostic techniques to diagnose or rule out
mediastinal lymph node metastasis without providing a basis for
follow-up treatment. Unlike previous studies, this study showed
that the combination of CEA + CYFRA 21-1 had a higher AUC
value of 0.585. Therefore, we believe that the combination of CEA
+ CYFRA 21-1 can also be used as a predictor of mediastinal
lymph node metastasis in lung cancer (the higher the level of
CEA + CYFRA 21-1, the greater the likelihood of mediastinal
lymph node metastasis in lung cancer patients). We also
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Metastatic sites Risk factor

Intertrabecular Vertebral CEA
Bone CA-125, ALP
Brain, Lymph node CYFRA21-1

Lymph node MicroRNA-422a

Lymph node CLSTNI, CLU, NGAL
Brain NSE

Lymph node CYFRA21-1, CEA

Brain CEA

NS CYFRA21-1

Brain CEA, CYFRA21-1, CA-125
Liver AFP

NS CA-125

Lymph node scc

summarized the risk factors for lung cancer metastasis in
previous studies (Table 5).

In summary, the high expression of serum CEA and CYFRA
21-1 may be related to the occurrence of mediastinal lymph node
metastasis in lung cancer patients. At the same time, assessment
of the combination of CEA + CYFRA 21-1 can aid in the
diagnosis of mediastinal lymph node metastasis in lung cancer
patients. The positive expression of serum CEA + and CYFRA
21-1 is associated with the prognosis of patients with mediastinal
lymph node metastasis.

However, there are some limitations, because of the large
individual differences in some patients, and the small number of
samples in this study, the statistical significance is not very
significant, and the difference between the minimum and
maximum values of CEA in patients is large, which leads to
the standard deviation is too high, also The error and statistical
difference that would cause the experiment are not significant,
and the minimum and maximum values with obvious individual
differences can be removed while ensuring the number of
samples, thereby reducing the error.
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Purpose: In this study, we analyzed the differences between hypertension
patients with ocular metastasis of liver cancer and those with metastases to
other sites, the correlation between history of HBV and liver cancer metastasis,
and independent risk factors for ocular metastasis.

Methods: We used treatment records from 488 patients with metastases of
primary liver cancer from August 2001 to May 2015, divided into two groups
based on metastatic sites: OM (ocular metastasis) and NOM (non-ocular, other
sites of metastasis) groups. The Student’s t-test and Chi-square test were used
to assess the significance of differences between the groups and define the
relationship between history of HBV and ocular metastasis of liver cancer.
Binary logistic regression analysis was used to identify indicators of ocular
metastasis of liver cancer and receiver operating curve (ROC) analyses to
estimate their diagnostic value.

Results: No significant differences in sex, age, tumor stage, pathological type, or
treatment were identified between the OM and NOM groups, while the
prevalence of HBV was higher in the former than that in latter. Binary
logistic regression demonstrated that AFP and CA-125 were independent
indicators of liver metastasis (both p < 0.001). ROC curve analyses generated
cut-off values for AFP and CA-125 of 957.2 ng/mland 114.25 U/ml, respectively,
with corresponding AUC values of 0.739 and 0.810. The specificity of the
combination of AFP and CA-125 was higher than either factor separately.

Discussion: To explore the diagnostic value of AFP and CA125 in predicting the
development of ocular metastases of hypertensive patients with liver cancer,
which will help us to diagnose the occurrence and development of the disease
more accurately and make the best clinical diagnosis and treatment measures.
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Introduction

Hypertension is a chronic disease with functional or organic
damage of heart, brain, kidney, and other organs, which brings a
huge health burden to the society. Primary liver cancer (PLC) is a
common disease worldwide, particularly in developing countries
(Zhang et al., 2015). Hepatocellular carcinoma (HCC) is the main
pathological type of PLC, and exhibits high malignancy and
strong invasiveness, resulting in poor prognosis and a heavy
economic burden of treatment (Wang et al., 2016). Worldwide,
patients with hepatitis B virus (HBV) infection exceed
300 million, and many liver diseases, including liver cancer,
can be secondary to HBV infection (Liang, 2009). Moreover,
chronic hepatitis virus infection not only affects the liver, but also
extrahepatic organs, leading to severe extrahepatic lesions such as
dry eye, Mooren’s ulcer, and retinopathy. HBV infection is
clearly linked to dry eye syndrome (Tsoumani et al, 2013).
Extrahepatic metastasis is an indicator of prognosis in patients
with PLC, and different metastatic sites are associated with
distinct survival rates (Wu et al, 2017). A survey of
419 patients with HCC who had extrahepatic metastases
found that the most common sites of extrahepatic metastases
are lung, bone, lymph node, and adrenal gland in that order
(Aino et al, 2014). The eye is a rare site of distant hepatic
metastasis of PLC, and most patients with ocular metastases also
have metastases at other sites. Hypertensive patients are prone to
arteriosclerosis, which leads to liver blood supply insufficiency
and liver function damage. Related clinical symptoms can cover
up the signs of liver cancer, and the early clinical symptoms of
HCC are not obvious; hence, patients can be completely unaware
of their disease progression and even metastasis (McMahon et al.,
2016). Once a distant metastasis occurs, treatment is extremely
difficult, and patient prognosis is poor. At present, the diagnosis
of PLC mainly depends on imaging [ultrasound and magnetic
(Cassinotto et al, 2017),
correlation,  and

resonance imaging (MRI)]
clinicopathological application  of
immunohistochemical markers (Vyas and Jain, 2018);
however, these methods are inefficient for early detection of
metastases, hence a simple and effective clinical diagnostic
indicator is needed to improve the early diagnosis rate of

ocular metastasis from PLC.

Materials and methods
Study design

This study met the requirements of the Declaration of
Helsinki and was licensed by the Medical Ethics Committee of
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the First Affiliated Hospital of Nanchang University. The
study design followed relevant regulations and guidelines.
Hypertensive patients with PLC metastases (n = 488),
admitted from August 2001 to May 2015, were enrolled in
the study. The inclusion criteria are: 1) hypertension (systolic
>140 mmHg or  diastolic  blood
pressure >90 mmHg); 2) without contraindications in MRI,

blood  pressure

CT and other imaging examinations; 3) Canceration of liver
tissue; 4) ocular metastasis of hepatocellular carcinoma
(Figure 1). Diagnosis was determined by imaging
[ultrasound, computed tomography (CT), MRI] and
histopathological biopsy. A review of the medical records
of the patients revealed that those with ocular metastases of
liver cancer also had metastases at other sites. Therefore,
patients were divided into two groups, according to the
tumor metastasis sites: OM (PLC with ocular metastasis)
and NOM group (PLC with non-ocular, but other
metastasis sites) groups. Exclusion criteria for the OM
group were: 1) primary malignant tumor of the eye; 2)
benign tumor of the eye; 3) primary liver cancer patients
with metastases in other sites (intrahepatic, portal system,
lung, bone, etc.).

Data collection

Relevant clinical data were collected retrospectively from
the medical records of each subject, including sex, age, history
of HBV, clinical stage, pathological type, treatment methods,
and other clinical features, serum markers (AFP, CEA, CA-
125, CA-199, CA-153, and CA-724), blood lipid indicators
[Lp(a)], (ApoB),
apolipoprotein Al (ApoAl), low-density lipoprotein (LDL),
high-density lipoprotein (HDL), triglycerides (TG), and total
cholesterol (TC)}, serum calcium concentration, hemoglobin

{lipoprotein a apolipoprotein B

concentration, ferritin, alkaline phosphatase (ALP), and other
serum indicators. All clinical data were collected at initial
diagnosis.

Statistical analysis

Student’s t-tests and Chi-square tests were used to evaluate
the significance of differences in clinical characteristics between
the OM and NOM groups. Binary logistic regression analysis was
used to identify indicators of ocular metastasis of liver cancer.
ROC curve analysis was conducted and the area under the curve
(AUC) used to assess the accuracy of risk factors as diagnostic
indicators. p < 0.05 was considered statistically significant. SPSS
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FIGURE 1

(A,B) Fundus fluorescein angiography in patients with primary liver cancer, (C,D) Funduscopy in patients with primary liver cancer.

25.0 (SPSS, IBM, United States), MedCalc 19.0.5 (MedCalc
Ostend, Belgium), and Excel 2019 (Microsoft Corp, Redmond,
WA, United States) software were used for statistical analyses.

Results
Demographic and clinical characteristics

In this study we reviewed data from 488 patients, including 21 in
the OM and 467 in the NOM groups. Clinical characteristics,
including sex, clinical stage, pathological type, and treatment
methods did not differ significantly between the OM and NOM
groups (Student’s t-test and Chi-square test). The OM group was
significantly older (57.7 £ 12.2 years) than the NOM group (51.5
13.8 years) (p < 0.05). There was also a significant difference in
history of HBV between the two groups (p < 0.05), confirming that
ocular metastasis of PLC is associated with history of HBV. The
clinical details of all subjects are presented in Table 1.
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Differences in clinical characteristics and
risk factors for OM

CEA, CA-199, CA-153, CA-724, TC, TG, HDL, LDL, ApoAl,
ApoB, Lp(a), calcium, Hb, ferritin, ALP, and other serological
indicators did not differ significantly between the OM and NOM
groups, while AFP and CA-125 were significantly higher in the
OM group (p < 0.001) (Table 2). Binary logistic regression
analysis determined that AFP and CA-125 were associated
with liver cancer metastasis (Table 3).

Cut-off, sensitivity, specificity, and AUC
values of AFP and CA-125 for diagnosing
ocular metastases of PLC

Figure 2 shows the ROC curves for AFP and CA-125, as

independent risk factors for ocular metastasis of liver cancer, and
their AUG, specificity, sensitivity, and cut-off values. The cut-off
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TABLE 1 The clinical characteristics of patients with metastases of primary liver cancer.

Clinical characteristics OM group (%) (n = 21) NOM group (%) (n = 467) P value®
Sex*
Male 16 (76.2) 401 (85.9) 0.219
Female 5(23.8) 66 (14.1)
Age (years)®
Mean + SD 57.7 £ 12.2 51.5 + 13.8 0.044
History of HBV*
With (+) 18 (85.7) 267 (57.2) 0.018
Without (-) 3 (14.3) 200 (42.8)
Tumor clinical stage®
Stage 2 0 (0) 15 (3.2) 0.084
Stage 3 3 (14.3) 98 (21.0)
Stage 4 5 (23.8) 33 (7.1)
Unknown 13 (61.9) 321 (68.7)
Pathological type*
Hepatocellular carcinoma (HCC) 0 (0) 38 (8.1) 0.327
Cholangiocarcinoma 0 (0) 24 (5.1)
Mixed hepatocellular carcinoma 0 (0) 2 (0.4)
Unknown 21 (0) 403 (86.4)
Treatment®
Surgery 4 (19.0) 85 (18.2) 0.261
Chemotherapy 3 (14.3) 38 (8.1)
Protect liver treatment 9 (42.8) 137 (29.3)
TACE 3 (14.3) 148 (31.6)
Radiation and chemotherapy 1 (4.8) 7 (1.5)
Refuse treatment 1 (4.8) 32 (6.8)
Other 0 (0) 21 (4.5)

“Chi-square test was used.

“Student’s t-test was used.

“Comparison between OM, group and NOM, metastases group.
Notes: p < 0.05 was considered statistically significant.

Abbreviations: OM, ocular metastasis; NOM, non-ocular, other sites of metastasis; SD, standard deviation; HBV, hepatitis B virus; TACE, transcatheter arterial chemoembolization.

values for AFP and CA-125 were 957.2 and 114.25 U/ml and
AUC values were 0.739 and 0.810, respectively. AFP had a higher
sensitivity value than CA-125, while the specificity of CA-125
was higher than that of AFP. Figure 3 shows a comparison of the
ROC curves for AFP, CA-125, and the combination of AFP and
CA-125 (AFP + CA-125). The AUG, sensitivity, specificity, and
cut-off values for AFP, CA-125, and AFP + CA-125 are presented
in Table 4. Among them, AFP + CA-125 had the largest AUC
(0.875), AFP the highest sensitivity (95.2%), and AFP + CA-125
the highest specificity (88.4%); all results were statistically
significant.
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Discussion

Liver carcinoma ranks second among the causes of cancer
mortality globally (McGlynn et al., 2015). PLC pathological
types include: intrahepatic cholangiocarcinoma (iCCA),
HCC, and other rare types (Sia et al.,, 2017). Among these,
HCC is the primary pathological type, accounting for
approximately 80% of the total (Adigun et al., 2021). Wang
of
2,172 patients with histologically confirmed PLC, among
which were 1,823 HCC and 238 iCCA patients, accounting

et al. confirmed this through statistical analysis
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TABLE 2 The serum indicators of patients with metastases of primary liver cancer.

Serum indicators OM group

Tumor markers
AFP (ng/ml)
CEA (ng/ml)
CA-125 (U/ml)
CA-199 (U/ml)

1,048.80 + 273.95
19.78 + 46.90
481.74 + 356.55
221.34 + 338.41

CA-153 (u/ml) 18.71 £ 12.76
CA-724 (U/ml) 8.60 + 9.76
Blood lipid indicators
TC (mmol/L) 4.63 £ 1.87
TG (mmol/L) 1.82 + 1.38
HDL (mmol/L) 1.57 + 1.30
LDL (mmol/L) 291 +1.97
ApoAl (g/L) 1.64 + 047
ApoB (g/L) 1.01 * 059

Lp(a) (mg/L) 14820 + 182.73
Calcium (mmol/L)

Hb (g/L)

212 +0.24
114.71 £ 36.00
Ferritin (pug/L) 235.13 + 243.46

ALP (U/L) 225.95 + 122.46

NOM group t p Value
559.00 + 553.48 7.529 <0.001
19.93 + 82.97 ~0.008 0.994
167.26 + 318.36 4.404 <0.001
156.12 + 292.84 0.992 0322
22.36 + 25.41 ~0.655 0513
6.86 £ 7.16 1.070 0.285
412 + 146 1.566 0.118
1.24 +0.88 1.895 0.072
1.37 + 0.95 0.905 0.366
240 + 127 1.148 0.265
1.55 + 0.47 0.825 0.410
0.97 £ 0.58 0299 0.765
224.15 + 238.04 -1.407 0.16
2.16 £ 0.28 ~0.665 0.506
116.02 + 24.02 -0.237 0.812
264.73 + 207.33 ~0.635 0526
199.78 + 189.18 0.628 0.530

Notes: Student’s ¢-test was uesd. p < 0.05 represented statistically significant. Abbreviations: OM, ocular metastasis; NOM, non-ocular, other sites of metastasis; TC, total cholesterol; TG,
triglycerides; HDL, high-density lipoprotein; LDL, low-density lipoprotein; ApoAl, apolipoprotein Al; ApoB, apolipoprotein B; Lp(a), lipoprotein a; Hb, hemoglobin; ALP, alkaline

phosphatase.

TABLE 3 Independent risk factors of OM in patients with primary liver
cancer.

Factor B Exp(B) OR (95%CI) P
AFP 0.001 1.001 1.001-1.002 <0.001
CA-125 0.001 1.001 1.001-1.002 <0.001

Notes: Binary logistic analysis was used. p < 0.05 represented statistically significant.
Abbreviations: B, coefficient of regression; OR, odds ratio; CI, confidence interval; OM,
ocular metastasis.

for 83.9 and 11.0%, respectively (Wang et al, 2017).
Therefore, we chosed HCC as the main research object.
The incidence and mortality of HCC are increasing. Cirrhosis
caused by HBV and hepatitis C is a significant risk factor for
HCC globally (Mittal and El-Serag, 2013); however, in most areas
of China, HBV is the most important pathogen in the context of
PLC. (Li et al, 2015; Ye et al.,, 2015; Wang et al,, 2017). The
pathogenesis of HBV is clear. The integrated viral sequence
produces different mutations in the preS/S gene, due to
replication defects, which can induce various tumorigenesis
mechanisms, thereby contributing to HCC (Li et al., 2016).
Infection with HBV can cause a variety of liver lesions and
illness; for example, fulminant cirrhosis, chronic hepatitis, hepatic
failure, acute hepatitis, and HCC (Liang, 2009). Cirrhosis is an
intermediate process, through which viral hepatitis develops into
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liver cancer. Most HCC patients with a history of viral hepatitis have
experienced cirrhosis (Ringelhan et al, 2017). Mahmood et al.
(2008) conducted a study on cirrhosis and found that, among
the 137 patients with cirrhosis who participated in the trial, the
causes of cirrhosis included: hepatitis C virus (61%), HBV (32%),
alcoholism (3%), and primary biliary cirrhosis (3%). In addition,
47% of participants had ocular complications. Martin LL et al.
(Martin et al.,, 2021) reported a case of severe multiple and recurrent
spontaneous corneal perforation in a patient with primary biliary
cirrhosis. It is clear that HBV contributes to liver cirrhosis and even
liver cancer, and the former can cause ocular complications;
therefore, there is evidence for an indirect relationship between
history of HBV and ocular lesions. The mechanism underlying this
relationship is currently unclear; however, experiments in mice
confirmed that SMAD3 mediates the majority of profibrotic
activity, since liver cirrhosis, proliferative vitreoretinopathy, and
ocular capsule injury are alleviated in SMAD3-null mice
(Flanders, 2004).

HBV can also cause eye lesions directly. A 72-year-old
chronic HBV patient was also diagnosed with orbital MALT
lymphoma, with a clinical manifestation of bilateral ocular
protrusion and slight limitation of eye movement, providing
evidence for a possible association between HBV and ocular
lesions (Lin et al., 2017). There is a risk of eye complications
during the prevention and treatment of HBV. HBV vaccine,
either alone or administered with other vaccines, appears to be
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FIGURE 2
ROC curve of independent risk factors for ocular metastasis from liver cancer. Notes: (A). ROC curve of AFP; (B). ROC curve of CA-125.
Abbreviations: AUC, area under the curve; ROC, receiver operating curve.

chronic HBV. The glaucoma symptoms were improved after

discontinuation of interferon therapy.
Source of the

Curve Liver cancer is frequently occult; 70% of patients with PLC have
s detectable metastases at initial diagnosis, while metastases account
—— AFP+CA-125 .
~— Reference Line for 90% of the total cancer-related mortality rate (Arvelo et al,, 2016).

Different distant extrahepatic metastases vary greatly in terms of
mortality rates. The lung is common metastatic site of PLC, while

Sensitivity

brain metastasis is rare, and patients with brain metastasis have the
worst prognosis (Wu et al,, 2017). Other rarer cases of HCC
metastatic sites include thyroid (Liang et al, 2007) and nodal
(Liu et al., 2017).

As there is no lymphatic system in the eye, it is rarely a site of
malignant tumor metastasis; however, malignant tumors can still be
transferred to the eye via the blood system. Therefore, blood-rich

FIGURE 3 areas, such as the posterior choroid of the uveal structure, are prone
ROC curve of respective and combination of independent

risk factors for ocular metastasis from liver cancer. Abbreviations:
AUC, area under the curve; ROC, receiver operating curve. conclusive evidence of tumor metastasis (Konstantinidis and

Damato, 2017).

0.0 0.2 04 06 08 10

1 - Specificity

to ocular metastases. The appearance of ocular metastases is also

TABLE 4 The AUC, sensitivity, specificity and cut-off value for single risk factors in predicting OM from primary liver cancer.

Factor AUC Sensitivity (%) Specificity (%) Cut-off value P
U/ml

AFP 0.739 95.2 56.8 957.2 <0.001

CA-125 0.810 90.2 64.0 14.25 <0.001

AFP + CA-125 0.875 76.2 88.4 — <0.001

Notes: Sensitivity and specificity were obtained at the point of cut-off value. p < 0.05 represented statistically significant. Abbreviations: AUC, area under the curve; OM, ocular metastasis.

the leading offender in causing uveitis (Benage and Fraunfelder, Most patients with stage 4 cancer (distal tumor metastasis),
2016). Kwon et al. (2001) reported a 15-year-old boy who including distant ocular metastases, have clear primary sites (Cohen,
developed glaucoma while using interferon alpha therapy for 2013). The most common among them for ocular metastases are
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breast and lung (Konstantinidis and Damato, 2017). Primary cancer
sites also include: pancreas (1%), thyroid (1%), prostate (2%), lung
carcinoid (2%), cutaneous melanoma (2%), gastrointestinal (GI)
tract (4%), kidney (4%), lung (26%), breast (37%), other sites (3%),
and unknown (16%) (Shields et al., 2018). All of the patients in our
study with eye metastases also had other sites of metastasis. The eye
is the terminal organ of liver cancer metastasis. Once metastasis
occurs, treatment is difficult and the prognosis poor. Therefore, we
compared patients with ocular metastasis to those with other
metastasis sites, to identify indicators of ocular metastasis of liver
cancer and improve the early diagnosis rate. We found that the OM
group was older than the NOM group (p < 0.05), likely because
elderly patients have a higher prevalence of diabetes, poorer physical
fitness, and cannot tolerate higher-intensity treatment (Guo et al,
2017). In addition, due to the association between HBV and ocular
lesions, patients with a history of HBV had higher rate of metastases
to the eye than to other sites. During clinical diagnosis of PLC,
whether the patient has a history of HBV should be determined, to
inform subsequent treatment.

Lp(a), ApoB, ApoAl, LDL, HDL, TG, TC, hemoglobin,
ferritin, and ALP are commonly used as indicators for
evaluating blood lipids and liver function. Statistical analysis
did not identify any significant differences between the above
indicators in the OM and NOM groups. The serum biomarkers,
CA-153, CA-199, CA-125, CEA, AFP, and CA-724 are tumor
markers and have clear predictive significance for a variety of
tumors (Zou et al., 2006; Zhao et al., 2015; Hogendorf et al., 2017;
Kim et al,, 2017). In patients with HBV and hepatitis C virus,
particularly combined evaluation of AFP, CEA, CA-125, CA-153,
and CA-199 have already been implemented (Assmar et al,
2016). Among them, multiple roles for AFP and CA-125 have
been confirmed. AFP is a plasma protein produced by embryonic
tissue. Healthy adult adults have very low levels of AFP, and some
primary cancers can cause significant increases in this factor;
therefore, it can be used to screen for tumors and other
pathologies in adults (Adigun and Khetarpal, 2019), including
primary HCC (Ahmed Mohammed and Roberts, 2017), and
gastric cancer (Sun et al., 2017). CA-125 levels are associated with
lymphangioleiomyomatosis (LAM), and elevated CA-125 may
indicate LAM with pleural effusion, leading to decreased lung
function (Glasgow et al., 2018). Karimi-Zarchi et al. (2016)
reported that CA-125 can be used for clinical prediction of
endometriosis, while another report showed CA-125 as useful
for surveillance in ovarian cancer (Esselen et al., 2016).

Non-invasive standard imaging methods, such as MRI, dynamic
multi-phase multi-row computed tomography, and ultrasound, are
used to diagnose HCC (Wang et al., 2015). Serum biomarker assays
are reproducible, simple, and rapid, relative to traditional diagnostic
methods. Our statistical analyses confirmed the diagnostic value of
AFP and CA-125 for liver metastasis.

Finally, we determined the value of AFP, CA-125, and AFP +
CA-125 as diagnostic indicators for ocular metastasis of liver
cancer by binary logistic regression analysis and plotting ROC
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curves. The results indicate that AFP has the highest sensitivity
and can be used for early screening of ocular metastases from
liver cancer. If AFP rises above 957.2 U/ml, the patient has a
higher probability of terminal ocular metastasis. AFP + CA-125
has the highest specificity, and is of great significance for the
diagnosis of ocular metastasis from liver cancer.

Our research has certain limitations. First, the sample size of this
small, particularly for the OM
group. Second, because all patients in the OM group had other

retrospective  study was
sites of metastases simultaneously, confounding factors were
inevitable. Furthermore, there were missing items in various
clinical statistical analyses, which will have reduced the accuracy
of the results. Finally, all subjects were diagnosed and treated in the
same hospital, and it is difficult to exclude selection bias; therefore,
the accuracy of the conclusions from the results of this study require
confirmation in investigations with large samples and multiple
centers.

Conclusion

In summary, we found that patients who had PLC metastasis
with a history of HBV were more likely to have ocular metastases
than those without. Increases in the serum biomarkers, AFP and
CA-125, are associated with an increased likelihood of ocular
metastasis. AFP, CA-125, and AFP combined with CA-125 can
be used as diagnostic indicators for ocular metastasis in patients
with PLC with metastasis.
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Objective: Lung cancer is a common malignant tumor characterized by
challenging detection and lack of specificity in clinical manifestations. To
investigate the correlation of tumor markers in the serum with liver
metastasis and prognosis of lung cancer.

Methods: A total of 3,046 elderly lung cancer patients were retrospectively
studied between September 1999 and July 2020. Divided into liver metastasis
group and non-liver metastasis group. We compared a series of serum
biomarkers between the two groups of elderly patients to predict the
prognosis in patients with lung cancer by fluorescence in situ hybridization
(FISH), advanced flow cytometry (FCM) and multi tumor marker protein chip,
including tumor markers in the serum included alkaline phosphatase (ALP),
serum calcium, hemoglobin (HB), alpha-fetoprotein (AFP), carcinoembryonic
antigen (CEA), neuron-specific enolase (NSE), cytokeratin fragment 19 (Cyfra21-
1), carbohydrate antigen-125 (CA-125), carbohydrate antigen-153 (CA-153),
carbohydrate antigen-199 (CA-199), and free prostate specific antigen (free
PSA). We used binary logistic regression analysis to determine risk factors, and
used receiver operating curve (ROC) analysis to evaluate the diagnostic value of
liver metastases in elderly patients with lung cancer.

Results: The proportion of lung cancer in the liver metastasis group was higher
than that observed in the non-liver metastases group. The expression levels of
CA-125, Cyfra21-1, and NSE in the liver metastasis group of lung cancer were
significantly higher than those reported in the non-liver metastases group (p <
0.05). ROC curve analysis shows that the area under the curve of CA-125,
Cyfra21-1, and NSE are 0.614, 0.616 and 0.608, respectively. The sensitivity and
specificity of CA-125 were 45.70% and 76.20%, the sensitivity and specificity of
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Cyfra21-1 were 60.10% and 57.10%, and the sensitivity and specificity of NSE

Conclusion: High levels of CA-125, Cyfra21-1, and NSE in the serum may be
associated with liver metastasis in elderly patients with lung cancer. CA-125 and
NSE are factors influencing the prognosis of elderly patients with liver

lung cancer, liver metastasis, risk factors, potential indicators, CA-125, CYFRA21-1, NSE

Cheng et al.
were 44.10% and 75.00%, respectively.
metastasis of lung cancer.
KEYWORDS

Introduction

The morbidity and mortality of lung cancer remain high.
This type of cancer has become one of the most important life-
threatening diseases in humans. According to studies, the
incidence and mortality of lung cancer rank first among all
types of cancer in men, accounting for 17% of the total number
of new cancer cases and 23% of the total number of cancer-
related deaths. (Jemal et al., 2011) Following the rapid
development of medical care witnessed in recent years, the
treatment of various diseases has been very successful.
However, the prognosis of elderly lung cancer patients has
not been effectively improved. The reason for this may be that
lung cancer is a very complicated tumor, and characterized by
the occurrence of metastasis. In addition, it is the main cause
of treatment failure and patient death. Liver metastasis of lung
cancer is one of the most common sites of hematogenous
metastasis of lung cancer, and It is one of the third most
common sites of liver metastasis the disease progresses rapidly
and the prognosis is poor. In all elderly patients with lung
cancer metastasis, the incidence of liver metastasis and adrenal
metastasis was 33-40% and 18-38%, respectively. (Quint et al.,
1996) Elderly patients with liver metastasis of lung cancer may
not present obvious symptoms in the early stage. Thus, the
diagnosis mainly depends on imaging. Computed tomography
(CT) is an accurate method for the diagnosis of liver
metastasis. The advantage of this approach is that the
scanning section is fixed, and can be dynamically compared
during the observation of the lesions. In addition, it is more
objective and sensitive than ultrasound. However, the
disadvantage of this method is that the specificity and
sensitivity to diffuse small nodules and small cancerous
lesions are poor. Hence, several cases may be misdiagnosed.
Traditional CT scan and magnetic resonance imaging (MRI)
cannot diagnose lung cancer in the early stage, owing to the
absence of the corresponding clinical symptoms and lesions.
This also hinders the early detection of liver metastasis.
Therefore, the discovery of factors affecting metastasis is of
great importance for the early treatment of lung cancer
metastasis to the liver. Markers in the serum are widely
used for the screening of clinical tumors. The detection of
tumor markers in human blood, body fluids, or tissue cells can
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assist in determining the presence, pathogenesis, and
prognosis of tumors.

Currently, numerous tumor markers in the serum have
been associated with lung cancer. Mal (Ma et al., 2015) found
that the levels of CEA, CA-125, and Cyfra21-1 are high in lung
cancer, and can be used for the diagnosis of lung cancer.
Moreover, previous studies have shown that CEA, Cyfra2l-1,
and CA-125 are associated with poor prognosis in non-small
cell lung cancer (Cedrés et al., 2011). In addition, tumor
markers may Dbe effective

potentially in predicting

metastasis. However, currently, there is no evidence
showing the difference between liver metastasis and non-
liver metastasis of lung cancer. Therefore, in this study, the
medical records of elderly patients with lung cancer from the
First Affiliated Hospital of Nanchang University (Nanchang,
China) were reviewed. We screened for liver metastasis based
on the serological examination of a large number of elderly
patients with lung cancer. The content of tumor markers in
the

correlation between risk factors. Furthermore, we attempted

elderly patients was also compared to study
to establish a standard for distinguishing between liver
metastasis and non-liver metastases of lung cancer, and
targeted anticancer treatment strategies for elderly patients
with this disease.

The reason for choosing these biomarkers is that there have
been related studies that have shown that these biomarkers are
related to liver metastasis of lung cancer or other tumors, but
there is no clear level indicator that when a certain biomarker
exceeds how much, lung cancer may be suspected Liver
metastases occur. Therefore, we can select these indicators
and hope to obtain relevant biomarker levels through big data

research.

Materials and methods
Study design

In this study, the clinical data of 3,046 elderly patients with
lung cancer (188 and 2,858 elderly patients with liver and non-

liver metastases, respectively) were selected in the First
Affiliated Hospital of Nanchang University (Nanchang,
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China) from September 1999 to July 2020. Elderly patients
with liver metastasis were screened, and their medical records
and serological data were compared with those without liver
metastasis. All elderly patients volunteered to participate in
this study. The study was approved by the Medical
Research  Ethics of the First Affiliated
Hospital of Nanchang University, Nanchang, China. A

Committee

pathological section, obtained through surgical resection or
biopsy, was used to clearly diagnose lung cancer. Liver
metastasis of lung cancer was diagnosed by CT and
MRI, and data related to tumor markers in the serum were
recorded.

Data collection

We collected various clinical data from the medical records of
elderly patients with liver metastasis of lung cancer, including
age, gender, time of diagnosis, lesion metastasis, and treatment.
The examined tumor markers in the serum included ALP, HB,
AFP, CEA, NSE, Cyfra21-1, CA-125, CA-153, CA-199, and
free PSA.

Statistical analyses

We analyzed the differences between tumor markers in the
liver metastasis group and the non-liver metastases group
using an independent t-test. A binary logistic regression
model was subsequently applied to identify independent
risk factors of liver metastasis. We constructed a receiver
operating characteristic (ROC) curve, and calculated the
area under the curve (AUC). Subsequently, we calculated
the cut-off value, sensitivity, and specificity of risk factors.
p < 0.05 indicated statistical significance. All statistical
analyses were performed using the SPSS 20.0 software
(SPSS, IBM, United States) and Excel 2010 software (Excel,
Microsoft, United States).

Results

Demographics and characteristics of
elderly patients

In this study, 188 cases of liver metastasis from lung cancer
and 2,858 cases of lung cancer non-liver metastases were
collected. The mean ages in the lung cancer liver metastasis
and non-liver metastases from lung groups were 60.3 + 4.9 and
60.6 * 3.2 years, respectively. According to the chi-squared test
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and Student’s t-test, there was no significant difference between
the groups in terms of gender and age (p > 0.05). In addition, the
statistical analysis showed differences in the histopathological
types between the two groups (p < 0.05). There was a statistically
significant difference in the pathological type ratio between the
liver metastasis group and non-liver metastases group (p =
0.003), and the proportion of adenocarcinoma was the
highest. The expression of small cell carcinoma in the liver
metastasis group was higher than that observed in the non-
liver metastases group. The majority of elderly patients had
received chemotherapy since the onset of the disease (Table 1;
Figure 1). More detailed clinical data of the patients are provided
in Figure 2.

Clinical data and risk factors for liver
metastasis of lung cancer

After comparing the data for tumor biomarkers in elderly
patients with lung cancer liver metastasis and lung cancer non-
liver metastases, we found that the levels of ALP, AFP, CEA, CA-
125, CA-199, CA-153, Cyfra21-1, and NSE were extremely high
compared with those measured in elderly patients lung cancer
non-liver metastases. In contrast, the level of HB was lower in the
former group (p < 0.05). There were no significant differences
between the two groups in the levels of calcium, CA-724, and
total PSA in the serum (p > 0.05) (Table 2). Through binary
logistic regression, CA-125, Cyfra21-1, and NSE were identified
as independent risk factors for the liver metastasis of lung cancer
(Table 3).

Cut-off values, sensitivity, specificity, and
AUC of CA-125, Cyfra2l-1, and NSE for the
diagnosis of lung cancer metastasis to the
liver

Table 4 shows that the cut-off values for CA-125, Cyfra21-
1, and NSE were 53.00 U/ml, 4.15U/ml, and 23.39 ng/ml,
respectively. The AUC of Cyfra2l-1 was the highest.
Figure 3A shows the ROC curves for CA-125, Cyfra21-1,
and NSE as a single factor. We subsequently tested the
possible combinations of these three risk factors and all
combinations in pairs. Figure 3B shows CA-125 + Cyfra2l-
1, CA-125 + NSE, Cyfra21-1+NSE, and CA-125 + Cyfra21-1+
NSE combinations. We found that the combination of CA-125
+ Cyfra21-1+NSE exhibited AUC value of 0.672. The
sensitivity and specificity of CA-125 + Cyfra21-1, CA-125 +
NSE, Cyfra21-1+NSE, and CA-125 + Cyfra21-1+NSE can be
observed in Table 4 (p < 0.05).
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TABLE 1 Clinical data of liver metastasis of lung cancer and elderly patients with lung cancer non-liver metastases.

Patient characteristics Lung cancer liver

metastasis group (%)

(n = 188)
Gender
Male 124 (66.0)
Female 64 (34.0)
Age
Mean 66.3 + 4.9
Histopathological type
Adenocarcinoma 76 (40.4)
Squamous cell carcinoma 60 (31.9)
Small cell carcinoma 28 (14.9)
Other 24 (12.8)
Smoking history 101 (53.1)
Other transfers 131 (69.7)
Eyes 17 (9.0)
Brain 35 (18.6)
Bone 23 (12.2)

p < 0.05 is statistically significant.

A

Lung cancer liver metastasis group

12.80%

14.90%

31.90%

= Adenocarcinoma m Squamous cell carcinoma

= Small cell carcinoma * Other

FIGURE 1

Clinical characteristics of elderly lung cancer patients with liver metastasis and without liver metastasis. The clinical characteristics of elderly
patients with lung cancer liver metastasis (A) and without liver metastasis (B).

Limitation

We performed serological experiments on elderly patients
with liver metastases from lung cancer and those without liver
metastases from lung cancer and approved the consent of the
elderly patients and their families. Environmental factors may
affect the experiment (for example, the contamination of
individual serum by the instrument) is the limitation of the
experiment. We still need more sample sizes to reduce the impact
of these changes on the experimental results.
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Lung cancer non-liver
metastasis group (%)
(n = 2,858)

p Value

1,892 (66.2)
966 (33.8)

0.214

64.6 + 32 0.220
1,195 (41.8)
1,100 (38.5)
329 (11.5)
234 (8.2)
1,495 (48.9)
538 (18.8)
45 (1.5)
216 (7.5)
250 (8.7)

0.001

B

Lung cancer non-liver metastases
group

8.20%

11.50%

41.80%
38.50%

= Adenocarcinoma u Squamous cell carcinoma

= Small cell carcinoma * Other

Discussion

Lung cancer is a common malignant tumor characterized by
challenging detection and lack of specificity in clinical
Most
metastasis or present with Late stage diseases such as pleural

manifestations. elderly patients develop distant
effusion, and the prognosis is poor. Therefore, early diagnosis
and treatment of this disease is especially important. Tumor
markers in the serum are substances that reflect the presence and

growth of tumors. They mainly include proteins, polyamines,
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FIGURE 2

The HE staining and IHC images from lung cancer patients with liver metastasis. (A) Lung cancer (HE x200). (B) CK7(+) (SP x200). (C) TTF-1 (+)

(SP x200).

TABLE 2 Differences in tumor biomarkers between liver metastasis of elderly lung cancer and non-liver metastases of elderly lung cancer.

Tumor biomarkers Lung cancer liver

metastasis group

ALP (U/L) 15030 + 11.3
Calcium (mmol/L) 2,023 + 0.02
AFP (ng/ml) 322 +0.39
CEA (ng/ml) 100.5 £ 16.57
CA-125 (U/ml) 171.2 £ 27.59
CA-199 (U/ml) 148.7 £ 51.37
CA-153 (U/ml) 3398 £ 5.51
CA-724 (U/ml) 16.60 + 7.52
CYFRA21-1 (ng/ml) 16.07 + 2.83
TPSA (ng/L) 1.83 £ 0.14
NSE (ug/L) 41.77 + 549
HB (g/L) 112.1 = 1.52

Independent sample Student’s t-test was used. p < 0.05 indicates statistical significance.

Lung cancer non-liver t P
metastasis group

89.37 £ 1.34 10.25 <0.001
2.37 £ 0.09 0.41 0.068
1.72 £ 0.03 7.85 <0.001
44.07 + 4.63 3.04 0.0024
65.30 + 3.12 7.53 <0.001
40.15 + 7.37 3.43 0.0006
19.72 + 0.96 5.48 <0.001
8.30 £ 4.13 0.51 0.55
9.43 £ 0.55 2.92 0.0035
1.66 + 0.07 0.58 0.5630
24.85 £ 0.74 6.97 <0.001
119.5 + 0.36 5.15 <0.001

Abbreviationalkaline phosphatase (ALP), serum calcium, hemoglobin (HB), alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), cytokeratin
fragment 19 (Cyfra21-1), carbohydrate antigen-125 (CA-125), carbohydrate antigen-153 (CA-153), carbohydrate antigen-199 (CA-199), carbohydrate antigen-724 (CA-724), total

prostate-specific antigen (TPSA).

hormones, enzymes, and oncogenes. They are produced by
tumor cells during tumor development or by the host. Tumor
cells are released into the bloodstream. The detection of tumor
markers is helpful in diagnosing tumors, evaluating treatment
outcomes and prognosis, and providing guidance for treatment
options. Table 5 are studies on other metastasis of lung cancer,
Table 6 is the study of liver metastasis in different cancer elderly
patients.

Currently, the mechanism involved in the metastasis of
lung cancer has not been fully elucidated. However, it is
generally thought that lung cancer tissues contain
with  different
metastatic potentials. During the metastatic process, lung

subcellular  populations invasive and
cancer cells complete a series of selections and sequential
steps. Recent studies have shown that there are numerous

similar abnormal molecules in primary tumors and brain

Frontiers in Genetics

metastases. However, these differ in terms of certain
molecular changes, such as abnormalities in human
epidermal growth factor receptor family receptors and
expression of ligands. Although several studies have shown
that CEA, CA-125, and Cyfra2l-1 are prognostic factors for
stage III-IV non-small cell lung cancer, (Zhang et al., 2015;
Chen et al.,, 2018) they did not investigate the liver metastasis
of lung cancer. Interestingly, the results of the present study
showed that CEA and Cyfra2l-1 are not independent
prognostic factors for the metastasis of lung cancer to the
liver. CEA was initially discovered in 1965 by Gold and
Freeman. (Gold and Freedman, 1965) Since then, a large
number of studies have confirmed its effectiveness as a
tumor marker. However, thus far, only few studies have
investigated the tumor markers in the sera of elderly
patients with liver metastasis of lung cancer. Numerous
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TABLE 3 Risk factors for elderly patients with liver metastasis of lung
cancer.

Factors B Exp(B) Or (95% CI) P
ALP 0.006 1.006 0.994-1.018 0316
AFP 0.409 1.505 0.930-2.436 0.096
CEA 0.007 1.007 0.996-1.018 0.0024
CA-125 -0.032 0.969 0.908-1.033 < 0.001
CA-199 ~0.001 0.999 0.961-1.039 <0.001
CA-153 0.049 1.003 0.999-1.006 <0.001
CYFRA21-1 -0.013 0.987 0.797-1.224 0.004
NSE 0.003 1.003 0.989-1.017 <0.001
HB 0.033 0.983 0.976-0.991 <0.001

Binary logistic analysis was applied. p < 0.05 indicates statistical significance.
AbbreviationsB, coefficient of regression; OR, odds ratio; CI, confidence interval,
alkaline phosphatase (ALP), serum calcium, hemoglobin (HB), alpha-fetoprotein
(AFP), carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), cytokeratin
fragment 19 (Cyfra21-1), carbohydrate antigen-125 (CA-125), carbohydrate antigen-
153 (CA-153), carbohydrate antigen-199 (CA-199).

studies have shown that the levels of CEA in the serum can be
used as a risk factor for the prognosis of lung cancer. (Arrieta
et al., 2009; Tomita et al., 2010; Grunnet and Sorensen, 2012)
In addition, studies have shown that lung cancer and brain
metastases in elderly patients with lower CEA concentration
exhibit a better prognosis versus CEA-positive elderly patients.
Moreover, the levels of CA-125 in the serum are independent
factors affecting the prognosis of elderly patients with brain
metastasis of non-small cell lung cancer. (Liu et al., 2015b)
This study showed that the positive expression of CEA in the
serum does not serve as a prognostic risk factor for elderly
patients with liver metastasis of lung cancer. The levels of
CA19-9 and CA-125 in the sera of elderly patients with liver
metastasis of colorectal cancer are independent factors
affecting prognosis. (Zhang et al., 2013; Sakamoto et al.,
2015) However, there are few studies investigating the
relationship between the levels of CA19-9 and CA-125 in
the serum and prognosis of elderly patients with lung
cancer. In recent years, studies have also shown that the
levels of NSE in the serum are independent factors
influencing the prognosis of elderly patients with lung
cancer. Cyfra2l-1 is a fragment of cytokeratin-19, which is
present in the cytoplasm of monolayer and stratified epithelial
tumor cells. It exhibits high levels in epithelial-derived tumor
tissues, and can be used for the diagnosis of non-small cell lung
cancer and lung squamous cell carcinoma with high
specificity. (Zheng et al.,, 2014) CEA is one of the earliest
markers for the diagnosis of lung cancer, and is mainly present
in the epithelial tissue of the fetal digestive tract, pancreas, and
liver. Under normal circumstances, the levels of CEA in the
serum are low. However, CEA levels are high in elderly
patients with gastrointestinal malignant tumors, breast
cancer, lung cancer, etc. Different pathological types have
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different sensitivities. NSE is a glycolytic enzyme found in
neurons and neuroendocrine tissues. It is a marker for the
diagnosis of small cell lung cancer and neuroblastoma, and its
levels are used to evaluate the diagnosis, treatment effect,
prognosis and clinical stage of small cell carcinoma. CA-
125 is a carbohydrate antigen used to diagnose epithelial
ovarian cancer and endometrial cancer. It is a broad-
spectrum tumor marker, especially in the diagnosis of lung
adenocarcinoma. In this study, the accuracy, sensitivity, and
negative predictive value of the combined detection of tumor
markers in the serum were significantly higher than those
observed with single markers. It is worth noting that serum
tumor markers can be clinically diagnosed in lung cancer,
although there is no significant difference in specificity and
positive predictive value. The combined detection of tumor
markers has a high diagnostic value, and can improve the
sensitivity and accuracy of diagnosis. The reason for this may
be that different tumor markers exhibit varied sensitivities to
the detection of lung cancer, whereas single-marker detection
cannot provide high sensitivity. Moreover, the combined
detection of different markers may offer complementary
advantages, and promote the sensitivity and accuracy of
diagnosis.

However, few studies have comprehensively analyzed the
distribution of liver metastasis in lung cancer. In the present
study, we examined the levels of ALP, calcium, HB, AFP, CEA,
CA-125, CA-199, CA-153, CA-724, Cyfra21-1, total PSA, and NSE
in the sera of elderly patients The concentrations of ALP, AFP, CEA,
CA-125, CA-199, CA-153, Cyfra21-1, and NSE were found to be
extremely high in elderly patients with liver metastasis of lung
cancer. Notably, the levels of HB were lower in elderly patients with
lung cancer non-liver metastases (p < 0.05). AFP (Gold and
Freedman, 1965; Zhang et al., 2015) has been associated with the
development of liver cancer. In addition, it has also been associated
with the concentration of CEA in a rat animal model. (Zhang et al,,
2011) CA-199 was originally found to be expressed in the pancreas
and bile ducts, and has been used as a risk factor for the diagnosis of
liver metastasis of advanced pancreatic cancer. (Dong et al., 2017)
Clinically, small cell lung cancer (Qu et al., 2019) can be diagnosed
according to the levels of Cyfra21-1. Therefore, based on the data
analyses of previous studies, we selected CEA, CA-125, and
Cyfra21l-1 (p < 0.01, p < 0.01, and p = 0.03, respectively) as
independent risk factors of liver metastasis in elderly patients
with lung cancer. In addition, by determining the levels of CA-
125, CEA, and Cyfra21-1 (including the cut-off values, sensitivity,
specificity, and AUC), we concluded that these are specific risk
factors of lung cancer metastasis.

Using the final ROC curves of these serum biomarkers, we
demonstrated that the cut-off values for CA-125, Cyfra21-1 and
NSE were 53.00 U/ml, 4.15 U/ml, and 23.39 ng/ml, respectively.
NSE concentration 53.00 U/ml is the key point for liver
metastasis in elderly patients with lung cancer. Cyfra2l-1
yielded the largest AUC, showing the highest accuracy in
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TABLE 4 Cut-off value, sensitivity, specificity, and AUC of CA-125, Cyfra21-1, and NSE for the diagnosis of liver metastasis in elderly patients with lung

cancer.

Factor Cut-off value Sensitivity (%) Specificity (%) AUC P
CA-125 (U/ml) 53.00 45.70 76.20 0.614 <0.001
Cyfra21-1 (U/ml) 415 60.10 57.10 0.616 <0.001
NSE (ng/ml) 23.39 44.10 75.00 0.608 <0.001
CA-125 + Cyfra21-1 62.36 46.80 76.70 0.631 <0.001
CA-125 + NSE 87.57 51.10 78.40 0.663 <0.001
Cyfra21-1+NSE 3201 50.50 72.80 0.633 <0.001
CA-125 + Cyfra21-1+NSE 92.44 53.20 76.80 0.672 <0.001

Sensitivity and specificity were obtained at the point of the cut-off value. p < 0.05 indicates statistical significance.
AbbreviationsAUC, area under the curve; CI, confidence interval; NSE, neuron-specific enolase, Cyfra21-1, cytokeratin fragment 19, CA-125, carbohydrate antigen-125.
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The receiver operating characteristics (ROC) curves of risk factor CA-125, CYFRA21-1, and NSE for detecting elderly lung cancer patients with
liver metastasis. ROC curve of the levels of [3CA-125, CYFRA21-1, and NSE in elderly patients with liver metastasis of lung cancer (A). ROC curve of the
CA-125+CYFRA21-1, CA-125+NSE, CYFRA21-1+NSE combination and CA-125+CYFRA21-1+NSE combinations in elderly patients with liver

metastasis of lung cancer (B).

TABLE 5 Studies on other metastasis of lung cancer.

Author Year Metastasis
Ayan,, et al. (Ayan et al., 2016) 2016 Bone
Roato L, et al. (Roato, 2014) 2014 Bone
Liu Y., et al. (Liu et al., 2015a) 2015 Bone
Yang F,, et al. (Yang et al., 2010) 2010 Lymph node
Suzuki K., et al. (Suzuki et al., 2001) 2001 Lymph node

TABLE 6 Studies on the liver cancer from different cancers.
Author
Higashins K. et al. (Higashino et al., 1975)

Willyard C. et al. (Willyard, 2007)
Marrero JA. et al. (Marrero et al., 2005)
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distinguishing elderly patients with lung cancer. On this basis, we
conducted further detailed diagnostic analysis for liver
metastasis, without providing evidence for follow-up
treatment. Unlike previous studies, this study showed that the
best diagnostic values for CA-125 + Cyfra21-1, CA-125 + NSE,
Cyfra21-1+NSE, and CA-125 + Cyfra21-1+NSE combinations
were 62.36, 87.57, 32.01, and 92.44 U/ml, respectively. We
observed that the combination of CA-125 + Cyfra21-1+NSE

exhibited the highest AUC value of 0.672. The CA-125 + NSE

Year Diseases

2012 Lung cancer

2007 Lung cancer, Breast cancer, etc.
2005 Lung cancer, Breast cancer, etc.
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group showed high specificity. In other words, the higher levels of
CA-125 and NSE are more likely to be observed in liver
metastasis of lung cancer. Therefore, we suggest that the
combination of CA-125 with NSE may be a useful risk factor
for the prediction of liver metastasis of lung cancer.

In summary, high expression of CA-125, Cyfra21-1, and NSE
in the serum may be associated with liver metastasis of lung cancer.
In addition, the combination of CA-125 + Cyfra21-1+NSE may
assist in the diagnosis of liver metastasis of lung cancer. The positive
expression of CA-125 and NSE in the serum is a factor affecting the
prognosis of elderly patients with liver metastasis of lung cancer.
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This study aimed to understand the prognosis of patients with head and neck
squamous cell carcinoma (HNSCC) and to develop and validate a prognostic
model for HNSCC based on pyroptosis-associated genes (PAGs) in
nasopharyngeal carcinoma. The Cancer Genome Atlas database was used to
identify differentially expressed PAGs. These genes were analyzed using the
Kyoto Encyclopedia of Genes and Genomes functional annotation analyses and
Gene Ontology analyses. The NLR family pyrin domain containing 1 (NLRPI)
gene, charged multivesicular body protein 7 (CHMP?) gene, and cytochrome C
(CYCS) gene were used to create a prognostic model for HNSCC. The results of
the Kaplan-Meier (K-M) and Cox regression analyses indicated that the
developed model served as an independent risk factor for HNSCC.
According to the K-M analysis, the overall survival of high-risk patients was
lower than that of low-risk patients. The hazard ratios corresponding to the risk
scores determined using the multivariate and univariate Cox regression
analyses were 1.646 (95% confidence interval (Cl): 1.189-2.278) and 1.724
(95% Cl: 1.294-2.298), respectively, and the area under the receiver
operator characteristic curve was 0.621. The potential mechanisms
associated with the functions of the identified genes were then identified,
and the tumor microenvironment and levels of immune cell infiltration
achieved were analyzed. The immune infiltration analysis revealed
differences in the distribution of Th cells, tumor-infiltrating lymphocytes,
requlatory T cells, follicular helper T cells, adipose-derived cells,
interdigitating dendritic cells, CD8* T cells, and B cells. However, validating
bioinformatics analyses through biological experiments is still recommended.
This study developed a prognostic model for HNSCC that included NLRPI,
CHMP7, and CYCS.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is a
highly heterogeneous malignancy of various anatomical sites
in the upper respiratory and digestive tracts. The sites of its
origin are the paranasal sinuses, nasal cavity, oropharynx, oral
cavity, and larynx. HNSCC accounts for 90% of all HNSCC cases
(Bray et al., 2018; Ferlay et al., 2019). Each year, approximately
450,000 deaths and 890,000 new cases of HNSCC are recorded
worldwide (Bray et al., 2018; Ferlay et al., 2019). HNSCC causes
include smoking, alcohol consumption, and viral infections
(Stein et al., 2015; Johnson et al., 2020). More than half the
patients with HNSCC are diagnosed at an advanced stage of
HNCC due to the lack of effective clinical risk assessment tools
and early-stage diagnostic resources, resulting in a low survival
rate (34.9%) (Chauhan et al., 2015). Currently, treatment options
are selected, and the overall survival (OS) of HNSCC patients is
primarily determined using the tumor-lymph node-metastasis
(TNM) staging system developed by the American Joint
Committee on Cancer (AJCC) (Amin et al,, 2017; Keung and
Gershenwald, 2018). Though this system is simple to implement
and useful in a wide range of fields, it only considers tumor-
related anatomical information and ignores Dbiological
heterogeneity. As a result, the ability to predict risk and assess
the prognosis for patients with HNSCC is limited. Therefore,
developing a novel, valid, and robust risk prediction and
prognosis-assessment model is critical to improving the risk
prediction accuracy and individualized treatment process.

Intracellular genes regulate cell death (including apoptosis,
necroptosis, ferroptosis, pyroptosis, necrosis, autophagy, and
others), which significantly impacts the process of immune
system development (Fink and Cookson, 2005; Bedoui et al.,
20205 Chen et al., 2021; Shi et al., 2021). Pyroptosis, a novel form
of caspase-1-mediated programmed cell death, is characterized
by the rapid rupture of the plasma membrane. Following the
rupture, cellular contents and pro-inflammatory substances such
as interleukins are released. This triggers an inflammatory
cascade response, resulting in cellular damage. The process
has a significant impact on tumor progression, including
tumor proliferation, metastasis, and invasion (He et al., 2016;
Tsuchiya, 2020). Pyroptosis induces the onset and progression of
various diseases, including hepatocellular carcinoma, leukemia,
lung cancer, breast cancer, gastric cancer, cervical cancer, and
colorectal cancer (He et al., 2016). The dual role of pyroptosis
significantly affects tumor pathogenesis. During pyroptosis,
multiple signals are generated, and inflammatory mediators
are released. The generation of these signals and the release of
these mediators have an impact on tumorigenesis and resistance
to chemotherapeutic agents. The high expression level of the
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pyroptosis effector gasdermin D promotes the process of tumor
metastasis. For example, it is associated with a poor prognosis in
patients with lung adenocarcinoma (Gao et al., 2018). Moreover,
the increased susceptibility of cells to caspase-3-dependent
signaling pathways that trigger pyroptosis can increase
melanoma cells’ resistance to etoposide (Lage et al., 2001).
Pyroptosis, on the other hand, may inhibit tumor onset and
progression (Fiddian-Green and Silen, 1975; Yu et al., 2021). The
expression of the pyroptosis effector gasdermin E accelerates
tumor cell phagocytosis. The action of the tumor-associated
macrophages mediates the process. As a result, the number of
CD8" T lymphocytes and tumor-infiltrating natural killer

lymphocytes increases (Ding et al, 2016). CD8" T
lymphocytes and tumor-infiltrating natural killer lymphocytes
have also shown improved function. Additionally,

downregulation of the oncogene LncRNA-XIST inhibits the
progression of non-small cell lung cancer. The activation of
the miR-335/SOD2/ROS cascade-related pyroptosis process
results in the downregulation of the oncogene (Liu et al,
2019). However, more research into the link between HNSCC
and pyroptosis is needed.

Researchers recently discovered that pyroptosis is crucial in
developing nasopharyngeal carcinoma (NPC) (Cai et al., 2021; Xia
etal, 2021). NPC arises from epithelial cells in the nasopharynx, and
squamous carcinoma is the most common type (Chen et al., 2019).
Exploring the relationship between NPC and pyroptosis-associated
genes (PAGs) could aid in the understanding of HNSCC. Basic
medical research can benefit from bioinformatics as it can provide
information at multiple levels and aspects about molecular
mechanisms of disease (Holtstriter et al., 2020; Lin et al, 2021;
Chen et al., 2022; Luo et al., 2022; Sun et al., 2022; Yan et al., 2022).
Biomarkers related to PAGs for NPC-related bioinformatics can
provide effective treatment for HNSCC. This study combined
genomic, transcriptomic,  proteomic, metabolomic, and
data the

composition of head and neck tumors and identify indicators

immunomics to explore microenvironmental
associated with patient prognosis. A prognostic model for

HNSCC was developed and validated based on PAGs in NPC.

Methods
Data download and pre-processing

Nasopharyngeal carcinoma (NPC)-related gene expression
profiles was obtained from the Gene Expression Omnibus (GEO)
database. The keyword “nasopharyngeal carcinoma” was selected
to obtain three eligible mRNA microarray datasets (GSE12452,
GSE53819, and GSE64634). GSE12452 and GSE64634 were from
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the GPL570 platform, whereas GSE53819 was based on
GPL6480. 61 NPC samples and 32 normal samples were
obtained and normalized using R 4. 0. 3 software. In cases
where a single gene was associated with multiple probes, the
value for the expression of that gene was set to the average
expression value corresponding to the multiple probes.
Additionally, a batch correction was performed using the
ComBat function in the sva package to eliminate the effect of
different biological companies, researchers, and experimental
batches the (RNA)
sequencing data also
downloaded from the TCGA database. Information on the
survival time, age, survival status, clinical stage, gender, tumor

on results. Raw ribonucleic acid

and clinical information were

grade, TNM staging, and pathological stage was obtained.

Identification of pyroptosis-related long
non-coding RNAs

A total of 52 pyroptosis-related IncRNAs were obtained from
literature reports (Broz et al., 2020; Wang et al., 2020; Zhou et al,,
2020; Tan et al., 2021). Subsequently, the co-expression for IncRNAs
and PAGs was studied using the Person correlation analysis method
and the limma package in R was used to study the pyroptosis-related
IncRNAs (correlation coefficient >0. 4; p < 0. 001).

Expression analysis of BAK1, NLRP1,
CHMP7, RIPK1

We used the Gene Expression Profiling Interactive
Analysis (GEPIA) 2. 0 (http://gepia.cancer-pku.cn/), which
integrates gene expression data from the Cancer Genome
Atlas (TCGA) database, to analyze the expression of BAKI,
NLRP1, CHMP7, and RIPKI genes (Tang et al., 2017). The
Cancer Genome Atlas (GSCA) (http://bioinfo.life.hust.edu.
cn/web/GSCALite/) was also used to analyze target gene
expression in tumors (Liu et al., 2018). UALCAN (http://
ualcan.path.uab.edu) analyzes cancer and paracancer gene
expression data in depth using TCGA data (Chandrashekar
et al,, 2017). In addition, it can be used to analyze the
between and  clinical

correlation gene

information, including age, gender, tumor clinical staging,

expression

tumor pathological staging, and other clinical data.

Mutation and correlation analysis of BAK1,
NLRP1, CHMP7, and RIPK1 genes

CbioPortal (cBio Cancer Genomics Portal) (http://www.
cbioportal.org/) was used to study gene mutation information
in tumors, and we identified BAK1, NLRP1, CHMP7, and RIPK1
gene mutations in HNSCC using the TCGA-HNSCC status (Gao
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etal, 2013). Meanwhile, GeneMANIA (http://genemania.org/), a
website for constructing gene networks
prediction, was used to study the interaction of BAKI, NLRPI,
CHMP7, and RIPKI genes (Warde-Farley et al., 2010).

and functional

Survival analysis

We used the kaplan-meier plotter (http://kmplot.com/analysis/)
to analyze the survival curves of different genes in HNSCC, where
we chose the best cutoff value for the selection, where higher than
this value is considered high expression and lower than this value is
low expression, where the vertical lines are censored data (Lanczky
and Gy®rfty, 2021). In addition to overall survival (OS), we analyzed
Disease Free Survival (DES), progression-free interval (PFI), and
progression-free interval survival data.

Combined indicator long non-coding
RNAs (IncRNAs) receiver operator
characteristic (ROC) curves for NPC
diagnosis

The diagnostic effectiveness and diagnostic value of single or
multiple combined indicators (biomarkers) were determined using
ROC curves. The pROC package (R4. 0.3 software) was used to
conduct the analysis. The area under the curve (AUC) represents the
clinical significance of the experiment. Generally, an AUC value
closer to 1.0 indicates high accuracy, and vice versa. Multiple
IncRNAs  (identified using the preceding procedures) were
subjected to the process of single or multiple combined-indicator
ROC curve analysis. The pROC package in the R4. 0.3 software was
used for analysis and determining diagnostic values.

Enrichment analysis of NPC-related PAGs

The ROC analysis method was used on 52 PAGs to screen
genes with AUC values >0.5. As in previous studies, the
eg. db” (R
4.0.3 software) were used for the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway and Gene Ontology
(GO) enrichment analyses (Lin et al., 2021; Wu et al.,, 2021;
Zhao and Jiang, 2022). In addition, the “clusterProfiler” package
was used to analyze and visualize the genes and gene clusters in
functional profiles (GO and KEGG). Biological process (BP),
molecular function (MF), and cellular component (CC) are the

“clusterProfiler” and “org. Hs. packages

three components associated with GO analyses (screening
criteria: Q-value < 0. 05; p-value < 0. 05).

We analyzed the functional enrichment of BAKI, NLRPI,
CHMP7, and RIPKI genes in the TCGA-HNSCC status and
applied the LinkedOmics database (http://www.linkedomics.org/
login.php) for analysis. We chose TCGA_HNSCC and RNA-seq
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FIGURE 1

Single- and combined-indicator receiver operating characteristic curve (ROC) curves of pyroptosis-related long non-coding RNA (IncRNAs) for
nasopharyngeal carcinoma (NPC) diagnosis. (A). Single-indicator ROC curves for DGCR5, HOTAIR, LINC00308, LINC00311, PRNT, and TMEM105 for

NPC diagnosis; (B). Six IncRNAs as co-diagnostic biomarkers.

data on this website and entered BAKI, NLRP1, CHMP7, and
RIPK1 genes using the Pearson Correlation test. Later, we
selected over-representation analysis (ORA) as an enrichment
tool, PANTHER pathway data as functional data, and rank
criteria as p-value, with <0.05 being considered statistically
significant (Vasaikar et al., 2018).

Immunomodulator analysis

We used the TISIDB database (http://cis.hku.hk/TISIDB/
index.php) to analyze the correlation between genes and

immunomodulation-related  genes in HNSCC, where
immunosuppressive markers included CD244, CD274,
CTLA4, and LGALSY, the immune activation marker was
ICOS, and major histocompatibility complex (MHC)

molecules included HLA-E (Ru et al., 2019).

Immuno-infiltration analysis

For immune infiltration analysis, we used the tumor immune
estimation resource (TIMER) database (https://cistrome.shinyapps.
io/timer/). Immune cells were selected as B cells, CD8* T cells, CD4*
T cells, macrophages, neutrophils, and dendritic cells (DCs). The
correlation between the aforementioned immune cells and the genes
BAKI, NLRP1, CHMP?, and RIPKI was analyzed (Li et al., 2016; Li
et al,, 2017). Subsequently, we used the TIMER database to analyze
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the correlation between the degrees of immune cell infiltration of
HNSCC tumors and the variation in the copy number of different
somatic cells of the gene.

Construction of the prognostic model

The survival analyses method was used to screen the genes
associated with the prognosis of patients with HNSCC. The gene
expressions were combined with the clinical prognostic information
of the patients. After the false discovery rate (FDR) is corrected for
both univariate Cox regression analysis and Kaplan-Meier (KM)
survival analysis results, we identified the other genes that affected
the prognosis of HNSCC patients using the univariate Cox
regression analysis method (criterion: p < 0. 05). Genes were
used as dependent variables for curve fitting to obtain an optimal
Cox proportional risk regression model. The model characterized by
the minimum Akaike information criterion (AIC) value was
selected. The low AIC value indicated that the model contained
few free parameters and could be used to analyze the data efficiently.

Validation of the prognostic model

Following the identification of the optimal model, the risk scores
were calculated. The risk scores were analyzed, and based on the risk
scores at the maximum of the Youden index in the ROC curve, the
patients were classified into low- and high-risk groups. The following
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methods were used to determine whether the risk scores could
influence a patient’s prognosis for hepatocellular carcinoma (Bray
et al, 2018): non-parametric tests were conducted to compare the
differences in risk scores by studying various clinicopathological factors
(sex, age, pathological stage, clinical stage, grading, and TNM stage)
(Ferlay et al., 2019); the survival curves of the prediction model for
patients with HNSCC were plotted using the survival analysis method
(Johnson et al., 2020); the prediction accuracy was studied by analyzing
the time-dependent ROC curves generated using R software; and
(Stein et al, 2015) Cox regression analysis results were used to
determine if the risk score and other clinicopathological factors
contributed to patients’ poor prognosis for HNSCC.

Nomogram construction and calibration
curve plotting

A nomogram was generated with the “rms” package in R, and
the calibration curves were plotted for 1-, 3-, and 5-years OS. The
risk score, sex, age, grading, clinical stage, and tumor stage were
analyzed to obtain the results. Additionally, the Hosmer-Lemeshow
test was employed to check whether the predicted and actual
outcomes agreed.

Analysis of the level of immune cell
infiltration and the tumor
microenvironment

Various analytical methods for detecting immune cell infiltration
are currently available. These methods include TIMER, CIBERSORT,
XCELL, QUANTISEQ, McCounter, EPIC, and CIBERSORT on
TIMER2 (Newman et al, 2015; Becht et al, 2016; Aran et al,
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2017; Li et al, 2017; Racle et al.,, 2017; Chen et al., 2018; Finotello
et al,, 2019; Deng et al,, 2021; Mei et al,, 2022; Sun et al., 2022). The
correlation coefficients for the correlation between different risk scores
(obtained using different calculation methods) and certain immune
cells can be obtained by determining the relationship between the
immune cells and risk scores. The R software packages limma,
ggplot2, scales, ggtext, ggpubr, and tidyverse were used for
analysis, and the results were visualized using bubble plots. The
scores for immune cells and immune-related functions were
obtained using the single-sample gene set enrichment analysis
(ssGSEA) technique. Additionally, using limma, ggpubr, and
reshape2 (R software) were used to determine the differences
between the immune cells and immune-related functions
corresponding to the low- and high-risk groups. Finally, the TME
was scored using the estimate package (R software) to compare the
TME between the two groups.

Statistical analysis

Statistical results were presented as mean + standard
deviation, and statistical differences between the two samples
were analyzed using two-tailed t-tests or analysis of variance.

p-value < 0.05 was considered statistically significant.

Results
Data download and pre-processing
Three NPC datasets (GSE12452, GSE53819, and GSE64634)

were downloaded from the Gene Expression Omnibus (GEO)
database, normalized, and batch corrected to form a dataset with
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FIGURE 3

Risk and prognostic analysis of the single gene. (A). Survival analysis to determine the correlation between the expressions of BAK1, NLRP1,
CHMP7, and CYCS and head and neck squamous cell carcinoma (HNSCC); (B). Kaplan-Meier survival curves present the correlation between the
prognostic risk scores of patients suffering from HNSCC and the corresponding overall survival rates; (C—D). The forest plot shows the univariate (C)
and multivariate (D) Cox regression results; and (E). Receiver operating characteristic curves are calculated for determining risk scores based on
the sensitivity and specificity of the prognosis of patients with HNSCC.
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Evaluation and development of the prognostic model. (A) Prognostic model (homogram) constructed using the “rms” R package; (B) The area
under the curves for 1-, 3-, and 5-years clinical outcomes (0.607, 0.598, and 0.612, respectively). The values indicate good predictive power; and (C)
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61 NPC samples and 32 normal samples (16,820 genes). The TCGA
database was analyzed, and the transcript data and relevant clinical
information for HNSCC patients (1 = 360) were downloaded from it.

Pyroptosis-related IncRNAs ROC curves
for NPC diagnosis

The raw dataset included 15,153 messenger RNA (mRNAs) and
199 IncRNAs. Previously reported results were analyzed to extract
52 PAGs to obtain the relevant expression profile (Supplementary
Table 1). Subsequently, six pyroptosis-related IncRNAs (DGCRS,
HOTAIR, LINC00308, LINC00311, PRNT, and TMEMI05) were
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identified (p < 0. 001; correlation coefficient >0. 4) using three NPC
datasets (GSE12452, GSE53819, and GSE64634). The IncRNAs were
analyzed using the single-indicator ROC curve analysis method. The
following results have been presented: DGCRS5: (AUC = 0.503, 95%
confidence interval (CI): 0. 371-0. 635), HOTAIR: (AUC = 0.652,
95% CI: 0.515-0.788), LINC00308: (AUC 0.516, 95% CI:
0.398-0.634), LINC00311: (AUC = 0.514, 95% CI: 0.391-0.637),
PRNT: (AUC = 0.534, 95% CI: 0.402-0.665), and TMEM105:
(AUC = 0.654, 95% CI: 0.525-0.783) (Figure 1A). Subsequently,
the combined-indicator ROC curves for the six IncRNAs were
plotted with an AUC of 0.703 and a 95% CI of 0.583-0.824
(Figure 1B). These results suggest that the six IncRNAs (DGCR5,
HOTAIR, LINC00308, LINC00311, PRNT, and TMEM105) have
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FIGURE 5

Expression of BAK1, NLRP1, CHMP7, and RIPK1 markers in tumors. (A) BAK1 expression in 33 tumor species in the Cancer Genome Atlas (TCGA)
database; (B) Expression of NLRP1 in tumor of 33 species in the TCGA database; (C) CHMP7 expression in 33 tumor species in the TCGA database; (D)
TCGA database of RIPK1 expression in 33 tumor species; (E) BAKL expression is increased in head and neck squamous cell carcinoma (HNSCC)
tissues; (F) NLRP1 expression is elevated in HNSCC tissues; (G) CHMP7 expression is elevated in HNSCC tissues; (H) RIPK1 expression was
elevated in HNSCC tissues. *p < 0.05, **p < 0.01, ***p < 0.001.
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Mutations of BAK1, NLRP1

, CHMP7, and RIPK1 genes in head and neck squamous cell carcinoma (HNSCC) and their interplay network. (A) Total

mutations of BAK1, NLRP1, CHMP7, and RIPK1 in HNSCC; (B) GeneMANIA demonstrates the gene interaction network of BAK1, NLRP1, CHMP7, and

RIPKI.

good diagnostic values
biomarkers.

Enrichment analysis of NPC-related PAGs

Analyzing the ROCs yielded NPC-related 42 genes with AUC

values >0.5 (p-value < 0.05;

GO and KEGG analyses were performed on these genes. These

Frontiers in Genetics

and can function as co-diagnostic 42 genes were enriched in BPs (positive regulation of cytokine
production; positive regulation of cysteine-type endopeptidase
activity involved in the apoptotic process; positive regulation of
interleukin-1 CCs
complex, ESCRT III complex, multivesicular body, nuclear
envelope, and others); and MFs (cysteine-type endopeptidase
activity involved in the apoptotic signaling pathway; cysteine-type
endopeptidase activator activity involved in apoptotic process;
peptidase activator activity involved in apoptotic process; cytokine

production; and others); (inflammasome

Q-value < 0.05; Supplementary Table S2).
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receptor binding; and others) (Figure 2A). The NOD-like receptor
signaling pathway was the most enriched in KEGG pathways.
lipid and
legionellosis, pathogenic Escherichia coli infection, influenza A,

Salmonella  infection, necroptosis, atherosclerosis,
pertussis, shigellosis, tuberculosis, apoptosis, Yersinia infection,
measles, C-type lectin receptor signaling pathway, apoptosis-
multiple species, cytosolic DNA-sensing pathway, inflammatory
bowel disease, hepatitis B, human cytomegalovirus infection,
platinum drug resistance, graft-versus-host disease, Kaposi sarcoma-
associated herpesvirus infection, Epstein-Barr virus infection, AGE/
RAGE signaling pathway in diabetic complications, non-alcoholic fatty
liver disease, hepatitis C, pathways of neurodegeneration-multiple
diseases, TNF signaling pathway, and non-small cell lung cancer

P53 signaling pathway respectively (Figure 2B).

Construction and evaluation of a
prognostic model

The 42 PAGs were incorporated into the TCGA database and
four genes [BAKI (p = 0.032, HR = 1.34 (1.03-1.76)], NLRPI [p =
0.022, HR = 0.73 (0.56-0.95)], CHMP7 [p = 0.005, HR = 0.68
(0.52-0.89)], and CYCS [p = 0.001, HR = 161 (1.22-2.11)]
associated with the prognosis of HNSCC patients were identified
following the process of survival analysis (Figure 3A). Subsequently,
the minimum AUC value was considered when selecting the best
model, which consisted of three genes (NLRP, CHMP7, and CYCS).
The risk score was calculated as follows: risk score = NLRPI*(—0. 067)
+ CHMP7*(-0. 044) + CYCS*(0. 111). The patients were then
classified into two groups (low-risk and high-risk) based on their
risk scores. The median risk score was used as the cut-off value.
Analyzing the K-M survival curves showed that the OS of patients in
the high-risk group was lower than that of patients in the low-risk
group (p = 4.208¢-03) (Figure 3B). This indicated that the prognosis
could be predicted using the risk scores. The multivariate and
univariate Cox regression analysis method was used to assess the
clinical prognostic factors (sex, age, stage, pathological TNM staging,
and clinical TNM staging) and risk scores to determine whether the
survival model could function as an independent prognostic factor for
HNSCC. The HR values for the risk scores obtained using the
multivariate and univariate Cox regression analyses were 1.646
(95% CIL 1.189-2.278, p = 0.003) and 1. 724 (95% CL
1.294-2.298, p < 0.001), respectively (Figures 3C,D). This indicated
that the risk model could be used as an independent prognostic factor
for HNSCC. Furthermore, the AUC value (0.621) for the risk score
was calculated to assess its predictive sensitivity and specificity
(Figure 3E). The findings suggested that the developed risk model
was a viable independent prognostic factor for HNSCC patients.
Moreover, to predict patient prognosis, “rms” (an R package) was used
to construct a nomogram based on risk score, age, sex, grade, clinical
stage, and tumor stage (Figure 4A). The survival rate for each
individual was calculated using the total score obtained by adding
all the scores corresponding to each variable. The process was used to
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obtain the 1-, 3-, and 5-years OS. The corresponding AUCs were
0.607, 0.598, and 0.612, indicating good predictive performance
(Figure 4B). The analysis of nomogram calibration plots revealed
that the predicted survival rate was in good agreement with the actual
survival rate (Figure 4C).

Expression of BAK1, NLRP1, CHMP7, and
RIPK1 in HNSCC and normal tissues

Figures 5A-D show the expression of BAKI1, NLRPI,
CHMP7, and RIPK1 markers in 33 tumors. These four
markers were overexpressed in cholangiocarcinoma (CHOL),
HNSCC, and liver hepatocellular carcinoma (LIHC), and they
were all statistically different. Figures 5E-H show that the
expression of BAK1, NLRP1, CHMP7, and RIPKI was higher
in HNSCC tumor tissues than in paraneoplastic tissues.

Mutation of BAK1, NLRP1, CHMP7, and
RIPK1 genes in HNSCC and gene
interaction network

Because all the above genes were expressed at higher levels in
HNSCC, we investigated their mutations in HNSCC using
cBioportal and found that BAKI, NLRP1, CHMP7, and RIPKI
genes were highly conserved in HNSCC (Figure 6A). The
interaction of the genes above was then investigated using
GeneMANIA (http://genemania.org). The interplay network of
the BAKI, NLRPI1, CHMP7, and RIPKI genes may include
20 potential target genes (Figure 6B).

Prognostic role of BAK1, NLRP1, CHMP?7,
and RIPK1 in HNSCC

We analyzed the relationship between BAKI, NLRPI,
CHMP7, and RIPKI mRNA and HNSCC survival. Figure 7A
demonstrates the relationship between BAK1, NLRP1, CHMP?7,
and RIPKI mRNAs and tumor survival. The Kaplan-Meier
(K-M) plotter was also used to analyze its relationship with
the prognosis of HNSCC patients. As shown in Figures 7B-D, the
higher expression of BAKI worsens the HNSCC prognosis.
Unlike BAKI, the higher expression of NLRPI1, CHMP7, and
RIPK1 improves HNSCC prognosis, as shown in Figures 7E-M.

Relationship between BAK1, NLRPI,
CHMPZ7, and RIPK1 mRNAs and clinical
characteristics in HNSCC

Because the above results showed that BAKI, NLRPI,
CHMP7, and RIPKI mRNAs and HNSCC prognosis were
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FIGURE 7

Relationship between BAK1, NLRP1, CHMP7, and RIPK1 messenger RNAs (MRNAs) and prognosis of head and neck squamous cell carcinoma
(HNSCC) patients. (A) Relationship between BAK1, NLRP1, CHMP7, and RIPK1, Bcl-2 mRNAs expression and tumor survival in the Cancer Genome
Atlas database; Kaplan-Meier (K-M) plotter showing survival curves for disease free survival (DFS); (B) Progression-free interval (PFI); (C) Overall
survival (OS); (D) For BAK1 and HNSCC; the K-M plotter shows DFS for NLRP1 and HNSCC; (E) PFI; (F) OS; (G) Survival plots; K-M plotter showing
DFS; (H) PFI; (I) OS; (J) Survival plots for CHMP7 and HNSCC; K-M plotter showing DFS; (K) PFI; (L) OS; (M) Survival plots for RIPK1 and HNSCC.
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TABLE 1 Demographic characteristics of the patients.

Variable Total
Age 60.84 + 11.85
Sex
Male 264
Female 96
Grade
Gl 43
G2 229
G3 87
G4 1
cStage
Stage I 16
Stage II 60
Stage III 81
Stage IV 203
T
T1 27
T2 85
T3 96
T4 152
cN
No 183
N1 69
N2 103
N3 5
cM
Mo 356
M1 4
pSatge
Stage I 20
Stage 1I 46
Stage III 64
Stage IV 230
pT
T1 31
T2 94
T3 82
T4 153
pN
NO 154
N1 56
N2 143
N3 7

closely related, we investigated the relationship between the
above genes and the clinical characteristics of HNSCC further.
Table 1 shows that in HNSCC, BAK1 and CHMP?7 are associated
with sex, clinical staging, and tumor histological grading,
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NLRPI is associated with sex and clinical staging, and
RIPK1 is not associated with any of these clinical characteristics.

Functional analysis of the genes BAK1,
NLRP1, CHMP7, and RIPK1 in HNSCC

The LinkedOmics database was used to further analyze the
predicted function of the above genes in HNSCC. As shown in
Figure 8A, BAKI is primarily enriched in pathways such as
metabolism,

pyrimidine androgen/estrogen/progesterone

biosynthesis, 2-arachidonoylglycerol biosynthesis, and

As
Figure 8B, NLRPI functions are mainly enriched in purine

gamma-aminobutyric acid  synthesis. shown in
metabolism, valine biosynthesis, isoleucine biosynthesis, and
alanine synthesis. As shown in Figure 8C, the functions of
CHMP7 are primarily enriched in pathways such as
P53 pathway feedback loops, tetrahydrofolate biosynthesis,
ascorbate degradation, and succinate to propionate
conversion. Similarly, the functions of RIPKI are mainly
enriched in pathways such as purine metabolism, valine
biosynthesis,  isoleucine and

biosynthesis, salvage

pyrimidine deoxyribonucleotides, as shown in Figure 8D.

Analysis of immune cell infiltration levels
and TME

The immune cells and risk scores were correlated using
different calculation methods. The findings suggested a
the
populations. The low-risk population, in particular, was

correlation  between immune cells and low-risk
associated with the CD4" T cells, immune score, and DCs
using the XCELL algorithm; CD4" T cells and CD8" T cells
using the TIMER algorithm; macrophages the
QUANTISEQ algorithm; CD8" T cells wusing the
MCPCOUNTER algorithm; B cells using the EPIC algorithm;
CD4" T cells, B cells, and CD8" T cells using the CIBERSORT-
ABS algorithm; and CD8" T and B cells using the CIBERSORT

algorithm (Figure 9A). Moreover, the ssGSEA scores for immune

using

cells and immune-related functions revealed a difference in the
distribution patterns of Th cells, regulatory T cells, tumor-
infiltrating lymphocytes, follicular helper T cells, adipose-
derived cells, interdigitating dendritic cells, CD8" T cells, and
B cells between the high- and low-risk groups. Furthermore, a
difference was observed in the immune functions (for the
antigen-presenting cells, T cells, and immune checkpoints)
associated with the two groups (Figures 9B,C). The TMEs
corresponding to the low- and high-risk groups were
analyzed, and the results indicated that the immune scores of
the high-risk patients were lower than those of the low-risk
patients (Figures 9D-F).
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Functional enrichment analysis of BAKI, NLRP1, CHMP7, and RIPK1in head and neck squamous cell carcinoma (HNSCC) from the LinkedOmics
database. (A) Functional enrichment analysis of BAK1 in HNSCC; (B) Functional enrichment analysis of NLRP1 in HNSCC; and (C) Functional
enrichment analysis of CHMP7 in HNSCC; and (D) Functional enrichment analysis of RIPK1 in HNSCC.

Correlation between BAK1, NLRP1,
CHMP7, and RIPK1 genes and
immunomodulators

Interaction network results revealed that BAKI, NLRPI,
CHMP7, and RIPKI genes could interact with immune
factors, including TNF-a, suggesting their influence on the
immune microenvironment of the HNSCC tumor. We used
the TISIDB database to investigate the relationship between
the above genes and immunomodulators. As shown in
Figure 10A, in HNSCC, BAKI has a positive correlation with
CD244, CD274, CTLA4, HLA-E, and ICOS, while having a
negative correlation with LGALS9; as shown in Figure 10B,
NLRP1 has a positive correlation with CD244, CD274,
CTLA4, HLA-E, and ICOS, while having a negative
correlation with LGALS9; as shown in Figure 10C, CHMP7
correlates positively with CD244, CTLA4, ICOS, and LGALS9,

Frontiers in Genetics

and negatively with CD274 and HLA-E; similarly, as shown in
Figure 10D, RIPKI correlates positively with CD244, CD274,
CTLA4, HLA-E, ICOS, and LGALS9.

Correlation of BAK1, NLRP1, CHMP7, and
RIPK1 genes’ expression and immune
infiltration

In HNSCC, the expression of BAK1, NLRP1, CHMP7, and
RIPK1 genes and numerous immunomodulatory markers
relationship. We used the TIMER
database to analyze the relationship between different genes
and immune infiltration. We selected B cells, CD8" T cells,
CD4" T cells, macrophages, neutrophils, and DCs for immune
cell infiltration analysis. As shown in Figure 11A, in HNSCC,
BAKI1 has a positive correlation with CD8" T cells, CD4*

showed a certain
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Analysis of tumor microenvironment and of degrees mmune cell infiltration. (A) Determination of the relationship between immune cells and
risk scores using different calculation methods; (B—C) Immune cell and immune-related function scores were obtained using the single-sample
gene set enrichment analysis technique; and (D—F) The differences between the immune cell infiltration levels in the low- and high-risk groups.
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Correlation between BAK1, NLRP1, CHMP7, and RIPK1 genes and immunomodulators. (A) Correlation between BAKI gene and CD244, CD274,
CTLA4, HLA-E, ICOS, and LGALS9 in HNSCC according to TISIDB database; (B) Correlation between NLRP1 gene and CD244, CD274, CTLA4, HLA-E,
ICOS, and LGALS9 in HNSCC according to TISIDB database; (C) Correlations between CHMP7 gene and CD244, CD274, CTLA4, HLA-E, ICOS, and
LGALS9 in HNSCC according to TISIDB database; and (D) Correlations between RIPK1 gene and CD244, CD274, CTLA4, HLA-E, ICOS, and

LGALS9 in HNSCC according to TISIDB database.

T cells, neutrophils, and DC infiltration while having a
negative correlation with B cells and macrophage cell
infiltration; as shown in Figures 11B-D, NLRPI, CHMP?7,
and RIPKI genes and immune cell infiltration all show
some positive correlation.

All the above genes can influence tumor development by
affecting immune infiltration. We used the TIMER database to
analyze the correlation between the level of immune cell infiltration
and gene copy number variation in HNSCC tumors. As shown in
Figure 12A, the levels of B cell, CD8" T cell, CD4" T cell,
macrophage, neutrophil, and DC infiltration decrease as the copy
number of the BAKI gene increases. As shown in Figure 12B, the
levels of B cell, CD4" T cell, and DC infiltration increase as the copy
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number of the NLRPI gene increases, whereas the levels of CD8"
T cell, neutrophil, and macrophage decrease, and the changes in
macrophage are not statistically significant. As shown in Figure 12C,
when the CHMP7 gene copy number is increased, B cell, CD8"
T cell, CD4* T cell, and DC infiltration levels decrease; macrophages
and neutrophils do not show statistical differences. As shown in
Figure 12D, when the RIPK1 gene copy number is increased, B cell,
CD8" T cell, CD4" T cell, macrophage, neutrophil, and DC
infiltration levels decrease.

In summary, the BAKI, CHMP7, and RIPKI genes can
reduce by  activating
immunosuppressive markers, whereas NLRPI can both reduce

immune cell infiltration

immune infiltration by activating immunosuppressive markers
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Correlation between BAKI, NLRP1, CHMP7, and RIPK1 genes' expression and immune infiltration. (A) Correlation between BAK1 expression
levels and B cell, CD8" T cell, CD4* T cell, macrophage, neutrophil, dendritic cell (DC) infiltration; (B) Correlation between NLRP1 expression levels
and B cells, CD8"* T cells, CD4" T cells, macrophages, neutrophils, and DC infiltration; (C) Correlation between CHMP7 expression levels and the
infiltration of B cells, CD8* T cells, CD4* T cells, macrophages, neutrophils, and DCs; and (D) Correlation between RIPK1 expression levels and

the infiltration of B cells, CD8" T cells, CD4" T cells, macrophages, neutrophils, and DCs.

and promote immune infiltration by activating immune
activation markers.

Discussion

HNSCC is a group of heterogeneous solid tumors originating
from upper respiratory tract epithelial cells. It tends to metastasize
and recur, increasing mortality, morbidity, and disability rates (Bray
et al, 2018). Effective clinical risk assessment and early-stage
diagnostic tools for HNSCC are scarce. Poor prognosis is
local drug
recurrence, and metastasis (Pulte and Brenner, 2010; Leemans
et al, 2011). Traditional clinicopathological indicators, such as
tumor size, vascular invasion, and TNM staging, cannot be used
to stratify patients’ risks or predict their prognosis (Cheng et al,

primarily associated ~with invasion, resistance,
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2009). As a result, transcriptionomics and epigenetics should be used
for screening potential biomarkers that aid in the early detection of
the disease. The biomarkers have the potential for risk assessment,
treatment, and monitoring of the prognosis of patients with HNSCC.

We obtained 52 PAGs by analyzing the NPC-related gene
expression profile obtained from the GEO database. Six PAG-
related IncRNAs were identified based on the correlation
coefficient (r) and p-value (>0.4 and <0.001, respectively). The
single- and combined-indicator ROC curve analysis results
suggested that the six IncRNAs had good diagnostic values
and could be used as co-diagnostic biomarkers. These were
accurate predictors of NPC. Moreover, 42 genes with AUC
values of >0.5 were screened using the ROC analysis method.
Their association with MF, CC, and BP was analyzed using the
GO and KEGG enrichment analysis methods. Subsequently, the
42 genes were incorporated into the TCGA database, and the four
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Correlation of BAKI, NLRP1, CHMP7, and RIPK1 gene copy number variation and immune infiltration. (A) Correlation between BAK1 gene copy
number variation and B cell, CD8" T cell, CD4* T cell, macrophage, neutrophil, dendritic cell (DC) infiltration; (B) Correlation between NLRP1 gene
copy number variation and B cell, CD8* T cell, CD4" T cell, macrophage, neutrophil, DC infiltration; (C) Correlation between CHMP7 gene copy
number variation and B cell, CD8* T cell, CD4* T cell, macrophage, neutrophil, and DC infiltration; and (D) Correlation between RIPK1 gene copy
number variation and B cell, CD8" T cell, CD4" T cell, macrophage, neutrophil, and DC infiltration. *p < 0.05, **p < 0.01, ***p < 0.001.
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genes (BAKI, NLRPI1, CHMP7, and CYCS) associated with the
prognosis of HNSCC patients were screened using the survival
analysis method. The obtained genes were used as dependent
variables for curve fitting to select the best Cox proportional risk
regression model, which consisted of three genes (NLRPI,
CHMP7, and CYCS). It has previously been reported that the
genes incorporated into this model regulate tumor progression
and significantly influence the process associated with the onset
of oral squamous cell carcinoma, cutaneous squamous cell
carcinoma, melanoma, breast cancer, and lung cancer (Sand
et al,, 2019; Xu et al., 2021).

NLRP1, a NOD-like receptor family protein, is widely
expressed in various cell types. It is associated with the
NLRP1 is linked to the
production of IL-1 B and IL-18 and pyroptosis and plays a

formation of inflammasomes.

crucial role in developing innate immunity and generating
inflammation. Thus, it influences the processes involved in the
onset and progression of multiple diseases, including tumors,
autoimmune diseases, neurological diseases, and metabolic
(Tupik et 2020).
NLRP1 expression promotes the progression of human

diseases al., The downregulation of
cutaneous squamous cell carcinoma (Sand et al, 2019).
NLRP1
malignancies. It has also been reported that the regulation of
TME by NLRP1 affects the prognosis of patients with lung
(Shen et al, 2021).

expression promote

is also linked to the progression of various

adenocarcinoma elevated
NLRP1

proliferation, metastasis, and invasion. These processes are

Moreover,

levels breast cancer cell
mediated by the induction of the process of epithelial-
mesenchymal transition (Wei et al., 2017). The inflammasome
is activated, and apoptotic pathways are inhibited in these
conditions, resulting in the rapid progression of melanoma
(Ehrhart et al., 1975).

As a component of the endosomal sorting complex (ESCRT
I1I), CHMP?7 significantly influences the processes of endosomal
sorting, nuclear envelope formation, and neurodevelopment
(Olmos et al, 2016; Sadoul et al., 2018). CHMP7 is also
associated with the pathogenesis of amyotrophic lateral
sclerosis. These conditions cause spinal cord damage, and
bulbar muscular atrophy is observed under these conditions
(Fairfield et al., 2019; Malik et al, 2019). A statistical
relationship was found between CHMP7 expression levels and
the clinical prognosis of cancer patients,
phosphorylation and immune cell infiltration processes were
established (Guo et al., 2021).

CYCS is a central component of the mitochondrial electron

and protein

transport chain. It is primarily associated with energy production
in normal and tumor cells (Hiittemann et al., 2011). Mutations in
this gene cause autosomal dominant thrombocytopenia, and
apoptosis in oral squamous cell carcinoma cells is also
triggered under these conditions (Ong et al., 2017; Uchiyama
et al., 2018; Sabit et al., 2021).
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To our knowledge, we are the first to report NPC-related
PAGs. HNSCC was retrieved to screen the genes associated
with the prognosis of HNSCC patients. A novel and robust
prognosis assessment model for HNSCC patients has been
developed. However, this study still has some limitations, and
the sample size is small. Due to data set restrictions, there is a
risk of racial bias in this study. In addition, bioinformatics
analysis does not provide comprehensive results and should
Further
experimental studies are needed to gain a comprehensive

be supplemented with biological experiments.

understanding.

Conclusion

In this study, NPC and PAGs were investigated in relation to
nasopharyngeal carcinoma, and indicators related to the
prognosis of HNSCC patients were identified. PAGs were
used to develop and validate a prognostic model for NPC,
and the genes incorporated into the model were closely
related to the tumor microenvironment. Therefore, this study
suggests that prognosis-related PAGs of NPC also predict the
prognosis of HNSCC, which helps to improve our understanding
of the treatment of NPC and HNSCC.
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Osteosarcoma (OS) is a common bone cancer in children and adolescents, and
metastasis and recurrence are the major causes of poor treatment outcomes. A
better understanding of the tumor microenvironment is required to develop an
effective treatment for OS. In this paper, a single-cell RNA sequencing dataset
was taken to a systematic genetic analysis, and potential signaling pathways
linked with osteosarcoma development were explored. Our findings revealed
25 clusters across 11 osteosarcoma tissues, with 11 cell types including
“Chondroblastic cells”, “Osteoblastic cells”, “Myeloid cells”, “Pericytes”,
“Fibroblasts”,  “Proliferating  osteoblastic cells”, “Osteoclasts”, "TILs",
“Endothelial cells”, “Mesenchymal stem cells”, and “Myoblasts”. The results of
Cell communication analysis showed 17 potential cellular communication
networks including "COLLAGEN signaling pathway network”, “CD99 signaling

woow woon

pathway network”, “PTN signaling pathway network”, "MIF signaling pathway
network”, “SPP1 signaling pathway network”, “FN1 signaling pathway network”,
“LAMININ signaling pathway network”, “FGF signaling pathway network”, “VEGF
signaling pathway network”, “GALECTIN signaling pathway network”,
“PERIOSTIN signaling pathway network”, “VISFATIN signaling pathway
network”, "ITGB2 signaling pathway network”, "NOTCH signaling pathway
network”, “IGF signaling pathway network”, “VWF signaling pathway
network”, "“PDGF signaling pathway network”. This research may provide

novel insights into the pathophysiology of OS's molecular processes.
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osteosarcoma, cell types, cellular communication networks, regulon activity,
ScRNA-seq
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Introduction

Osteosarcoma (OS) is a highly malignant solid bone tumor
characterized by malignant mesenchymal cells producing
pathological osteoid and/or bony matrix; it accounts for
roughly 60% of all pediatric malignancies (Bousquet et al,
2016; Guo et al,, 2022; Ho et al,, 2017), and the incidence of
OS in the overall population is two to three million per year (Shao
et al, 2022). Clinical signs of OS affect the proximal tibia,
and  distal
predominantly of local discomfort, edema, and reduced joint

proximal  humerus, femur, and consist
movement (Rothzerg et al, 2021). Currently, this cancer is
treated with surgical excision and chemotherapy with many
agents. Unfortunately, the 5-years overall survival rate for
osteosarcoma patients was just approximately 60% among
patients with localized osteosarcoma but is only 20% among
patients presenting with metastases or recurrent disease (Meltzer
and Helman, 2021). The pathophysiology of OS is characterized
by the substantial infiltration of complex cells, including
malignant mesenchymal stem cells, proliferating osteoblastic
cells, osteoblastic cells, immunological cells, and vascular
networks, indicating the existence of a highly complex tumor
microenvironment (TME) (Kansara et al.,, 2014). Nonetheless,
the potential cellular communication networks of these cells are
still not fully elucidated.

To understand cancer biology and immunology and to get
the most out of tumor immunotherapy, it is important to
figure out how this ecosystem’s cells work together and how
they might talk to each other. The ultimate unit of biological
activity is a single cell, where genetic processes interact with
the cellular environment to determine the development and
function of complex structures including tissues and organs.
Understanding the biology of virtually all living phenomena
in normal and disease states necessitates dissecting and
characterization of their composition and characterization,
as well as evaluating their interactions, dynamics, and
(Ren et al., 2018).
Technically, however, previous genomic, transcriptomic,

function at the single-cell level

and proteomic cancer investigations have been unable to
TME  due
complexity.(Liu et al., 2021). The emergence of new

comprehensively elaborate on to its
technologies based on single-cell sequencing has enabled
unparalleled resolution and scale in capturing diverse
tumor stages and understanding tumor heterogeneity
(Vegliante et al., 2022). Rapid advancements in single-cell
technology provide us with a potent approach to examine the
multiple  allosteric ~ states and  potential  cellular
communication networks of the TME at the single cell level.

This study employed scRNA-seq to investigate potential
cellular communication networks in the OS’s TME, as well as
trajectory analysis and transcription factor enrichment analysis
among mesenchymal stem cells, proliferating osteoblastic cells,

and osteoblastic cells.
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Materials and methods
Data source collection and processing

The 11 OS samples with scRNA-seq data based on the 10X
Genomics platform were downloaded from GSE152048 via the
Gene Expression Omnibus database (https://www.ncbi.nlm.nih.
gov/geo/). The Seurat package (v4.1.1) was used to load the 10X
genomics data for each individual sample into R software (v4.1.
3). We excluded cells with identified genes <300 or a percentage
of mitochondrial genes over 10% of total expressed genes. We
eliminated low-quality cells with >7,500 detected genes, as well as
genes detected in fewer than three cells. Furthermore, using the
DoubletFinder package (v2.0.3), we eliminated any doublets that
might have happened during encapsulation or as random
pairings of cells that were not separated during sample
preparation.

This research did not need ethical approval for our work
because we used data from a publicly accessible database.

Identification of cell types

For each cell, gene expression was expressed as a fraction of
the gene multiplied by 10,000, The log (x+1) method was used to
perform natural log transformation. We identified, and scaled the
top 2000 highly variable genes (HVGs) from the normalized
expression matrix before doing principal component analysis
(PCA) on these HVGs. Based on the top 50 PCA components
identified, the batch effects were removed using the R Harmony
package (version 1.0) (Zhou et al, 2020). On the basis of
harmony-corrected data, k-nearest neighbors were estimated,
and a shared nearest neighbor (SNN) graph was formed. The
modular function was then adjusted to achieve cluster
recognition based on the clustering algorithm. On the 2D
map generated with the t-distributed stochastic neighbor
embedding (tSNE) or uniform manifold approximation and
projection for dimension reduction (UMAP) approach, the
identified clusters were displayed.

Using the “FindAllMarkers” function, each cluster’s marker
genes were identified according to the following criteria: logfc.
threshold = 0.25, min. pct = 0.25, and min. diff.pct = 0.25. Using
the “DotPlot” tool in Seurat, the expression pattern of each
marker gene across clusters was shown. The cell groupings
were annotated based on the DEGs and well-known cellular
markers described in the scientific literature (Zhou et al., 2020).

Pseudotemporal ordering of single cells

The Monocle package (v2.22.0) was used to produce the
single-cell pseudotime trajectories. Using pseudotemporal

profiling of scRNA-seq data, Monocle aims to decipher
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cellular changes during differentiation. After inputting the scale
of raw UMI counts into the “newCellDataSet” function with its
clustering information, it was computed into a lower dimensional
space using the discriminative dimensionality reduction with
trees (DDRTree) method, a more recent manifold learning
algorithm. Mesenchymal stem cells, proliferating osteoblastic
cells, and osteoblastic cells were then ordered according to
pseudotime. The plot pseudotime heatmap was used to
compute and illustrate the genes whose expression varied in
tandem with pseudotime.

Cell-cell communication

The CellChat package (version 1.4.0) predicted cell-cell
communication across all cell types based on single-cell RNA
sequencing data (Jin et al, 2021). Only the ligand-receptor
interaction with a p-value 0.05 was utilized to predict cell-cell
interaction in the various cell types.

SCENIC analysis

SCENIC is a technique that uses scRNA-seq data to rebuild
gene regulation networks while also recognizing stable cell states.
Transcription factor enrichment and regulon activity were
assessed using SCENIC package (version 1.3.1) is introduced
(Aibar et al, 2017). Based on co-expression and DNA motif
analysis, the gene regulatory network was created, and the
network activity in each cell was assessed to determine the
cell state. For transcription factor regulatory network
development, two gene-motif rankings (10kb around the
transcription start site or 500 bp upstream and 100 bp
downstream of the transcription start site) were used as a
guide to set the search space around the transcription start
site. The gene-motif rankings for humans are obtained from
https://resources.aertslab.org/cistarget/. The database used was
Hallmark Gene Set from Molecular Signatures database
(MsigDB) (Liberzon et al., 2015). In addition, Gene regulation
was constructed using the R package GENIE3 (version 1.16.0),

RcisTarget (version 1.14.0) and AUCell (version 1.16.0).

Results

Quality control and removal of batch
effect

Eleven OS patients with scRNA-seq data enrolled in this
research. Using the R Harmony package (version 1.0), batch
effects between samples were eliminated based on the top 50 PCA
components. After removal of batch effect, we used the t-SNE
and UMAP techniques to decrease dimensionality, and then
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plotted the result as a 2D scatter plot (Figure 1A). In the process
of quality control, we eliminated cells with fewer than
300 identified genes or a proportion of mitochondrial genes
exceeding 10% of all expressed genes (Figure 1B). Dot plot of data
quality control in scRNA-seq data were shown in Figure 1C.

Identification of 25 cell clusters in
osteosarcoma microenvironment using
scRNA-seq data reveals high cell
heterogeneity

Following the quality control standard, 110,042 cells were
finally included in our analysis. These cells were clustered into
25 primary cell clusters (Figures 2A,B; Figures 3A,C). A value of
adjusted p value <0.01 is displayed in red, whereas a value of
adjusted p value >0.01 is displayed in black (Figure 2B). Analysis
of differential gene expression revealing up- and down-regulated
genes in all clusters. The cluster-specific markers were utilized to
label cell types (Figures 3B,D,E): chondroblastic cells (Sox9,
Acan, Pthlr), osteoblastic cells (Runx2, Collal, Cdhll, Ibsp),
myeloid cells (Cd74, Cd14, Fcgr3a), pericytes (Rgs5, Acta2),
fibroblasts (Dcn, Collal), proliferating osteoblastic ~cells
(Mki67, Top2a, Pcna), osteoclasts (ACP5, Ctsk, Mmp9), TILs
(IL7R, CD3D, NKG7), endothelial cells (Pecaml, Vwf),
mesenchymal stem cells (Mme, Thyl, Cxcll2, Sfrp2), and
myoblasts (Myll, Mylpf).

Potential cellular communication
networks in the osteosarcoma
microenvironment

To identify the potential molecular connections between
cells, CellChat package (version 1.4.0) of R was utilized to
find the potential molecular interactions between ligand-
receptor pairings and main cell types in order to build cellular
communication networks. First, CellChat was used to analyze
cellular communication among the chondroblastic cells,
pericytes,  fibroblasts,
proliferating osteoblastic cells, osteoclasts, TILs, endothelial
cells, mesenchymal stem cells, and myoblasts. The results of
the CellChat analysis revealed the numbers and weights of ligand
receptors among all cell types (Figures 4A,B). The outgoing and

osteoblastic ~ cells, myeloid cells,

incoming signaling patterns were shown in (Figures 4C,D). The
outgoing and incoming interaction strength were shown in
(Figures 4B,C) (B: all signaling pathway networks identified;
C: selected signaling pathway networks). In addition, all of
their ligand-receptor identified
(Figure 5D).

The details of all signaling pathway networks identified were

interactions have been

also shown in Figures 6A-C (A: numbers of ligand receptors
among all cell types; B: weights of ligand receptors among all cell
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FIGURE 1

The process of quality control. (A): t-SNE and UMAP plots after harmony. (B): violin plots of feature, count, percent. mt, and percent.HB. (C):
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correlation plots for count and feature, percent. mt, percent. HB.
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Expression of marker genes in the OS. (A): violin plot of marker genes. (B): columnar scatter plot of DEGs.
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types; C: chordal graph of ligand-receptor interactions among all 2014), PTN (He et al,, 2019; Qin et al.,, 2022; Sun et al., 2020),
cell types). Among the total of 57 signaling pathways, the MIF(Liu et al., 2014), SPP1(Dalla-Torre et al., 2006; Li et al.,

following signaling pathways were related to osteosarcoma: 2017), FN1(Saba etal., 2019; Zhou et al., 2019), LAMININ(Heino
COLLAGEN (Baumann and Hennet, 2016; Elenjord et al, and Massague, 1989), FGF (Kurogi et al., 1996; Laulederkind
2009; Levinson et al, 2002; Yamaguchi et al., 2005), CD99 et al., 2000; Li et al., 2019; Xu et al., 2010), VEGF (Ji et al., 2020;
(Manara et al,, 2006; Sciandra et al., 2014; Zucchini et al., Lei et al., 2018; Oda et al., 2006; Tsai et al., 2017; Zhang et al.,
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2019), GALECTIN(Gomez-Brouchet et al., 2010; Miao et al., 2019, 2016), ITGB2 (Dai et al., 2018), NOTCH(Jin et al., 2017;
2014; Park et al., 2015; Zhou et al., 2014), PERIOSTIN(Ma et al., Mu et al,, 2013; Ongaro et al,, 2016; Tanaka et al., 2009; Zhang
2020; Xu et al., 2022), VISFATIN(Cheng et al., 2015; Wang et al., et al,, 2010), IGF (Armakolas et al., 2016; Giatagana et al., 2022;
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Gvozdenovic et al., 2017; Molina et al., 2019; Tan et al., 2015),
VWE(Wang et al,, 2020), and PDGF (Chen et al., 2009; Egners
et al,, 2018; Heldin et al.,, 1986). The ligand-receptor interactions
of these signaling pathways related to osteosarcoma were shown
in Figure 6D. Furthermore, according to the results of this
research, the potential communication of mesenchymal stem
cells, proliferating osteoblastic cells, and osteoblastic cells mainly
revolved around SPP1 (Figure 7), FGF (Figure 8), NOTCH
(Figure 9).

Differentiation trajectory analysis of
mesenchymal stem cells, proliferating
osteoblastic cells, and osteoblastic cells

Cell state transmission was evaluated using pseudotime analysis
based on the Monocle package. The mesenchymal stem cells,
proliferating osteoblastic cells, and osteoblastic cells were subjected
to differentiation trajectory analysis. We performed pseudotime
analysis to explore the cell-state transitions among mesenchymal
stem cells, proliferating osteoblastic cells, and osteoblastic cells
(Figures 10A-E). Furthermore, we plotted the heatmap of the
differentiation trajectory among these cells (Figure 10F). The
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results of trajectory analysis revealed that osteoblastic cells
followed a differentiation trajectory that primarily began with
clusters of mesenchymal stem cells and proliferating osteoblastic
cells, from which they differentiated into osteoblastic cells.

Single-cell regulatory network of
mesenchymal stem cells, proliferating
osteoblastic cells, and osteoblastic cells

A SCENIC analysis was conducted to detect the TFs of
mesenchymal stem cells, proliferating osteoblastic cells, and
osteoblastic cells. The genes of TFs (XBP1(Yang et al, 2015; Yu
et al, 2022), ATF4 (Luo et al., 2017, 2019; Xian et al,, 2017), and
SOX9(Y. Chen S. et al., 2020; He et al., 2017; Wang et al., 2018)) were
significantly activated in osteoblastic cells (Figures 11A-D), and were
demonstrated to be expressed in osteosarcoma.

Discussion

Osteosarcoma is the most common malignant bone tumor in
children, teens, and young adults with a median age of 16 years. It
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accounts for approximately 56% of bone sarcomas, and
metastasis is the primary reason why treatment fails and the
prognosis is poor (Chen et al., 2021). Despite previous molecular
biology investigations having offered considerable information
on the pathogenesis of osteosarcoma, the mechanisms that
regulate its several oncogenic insults necessary for
osteosarcoma start and development remain unknown (Isakoff
etal., 2015; Kansara et al., 2014). It remains a serious concern due
to poorly characterized carcinogenesis processes and restricted
therapeutic options. So, it is essential to find important
subpopulation driver mutations that promote diversity,
expansion, invasion, and eventual colonization of other areas
of the body. In addition, the potential cellular communication
networks in osteosarcoma and the influence of tumor
heterogeneity on cell aggregation are crucial.

Single-cell RNA sequencing (scRNA-seq) can show variation
within cell populations. It could discriminate tumor cells from non-
tumor cells and examine intercellular connections within the tumor
microenvironment by analyzing transcripts inside individual cells. It
is helpful to find unique cell types, look into tumor heterogeneity and
potential networks of cell-to-cell communication, and show different
developmental paths. This can give a theoretical foundation for future
research into the molecular processes of OS growth and metastasis

(Guo et al., 2022).
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Mounting clinical and experimental data suggests that
osteosarcoma stem cells, which originate from mesenchymal
stem cells, may be the biological genesis of osteosarcomas and
demonstrate osteoblastic differentiation, producing malignant
osteoid (Brown et al, 2017; Xi et al, 2000). In addition,
osteosarcoma is strongly connected with the osteoblastic
lineage and displays osteogenic differentiation-related activities
in proliferation, extracellular matrix secretion, and induction of
ossification (Zeng et al., 2022). So, in this study, potential cellular
communication networks among mesenchymal stem cells,
proliferating osteoblastic cells, and osteoblastic cells were
identified through comprehensive analysis of osteosarcoma
single-cell RNA sequencing (scRNA-seq), illustrating the
complex regulatory network in the advanced osteosarcoma
microenvironment. Moreover, we performed transcription
factor regulatory network analysis and trajectory analysis on
these cells.

The results of cellular communication networks showed
that mesenchymal stem cells, proliferating osteoblastic cells,
and osteoblastic cells are mainly involved in SPP1, FGF, and
NOTCH signaling pathways. The SPP1 gene (osteopontin,
secreted phosphoprotein 1) encodes a protein with several
activities, including bone remodeling, adhesion, tumor
invasion, and metastasis (Dalla-Torre et al., 2006). It is
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generated by a variety of cell types, including osteoblasts,
osteoclasts, and endothelial cells (Liu et al., 2013; Wang and
Yang, 2015). SPP1 is now of interest in carcinogenesis,
(LAMP3)
enhances osteosarcoma cell invasion via SPP1 signaling (Li
et al.,, 2017). In colorectal cancer (CRC), SPP1 was highly
upregulated and increased CRC metastasis by promoting
epithelial-mesenchymal transition (EMT) (Xu et al., 2017).
In addition, previous research found inhibition of the

Lysosomal-associated membrane protein 3

SPP1 gene may have therapeutic benefits for tongue cancer
and may be a useful target for therapy (Zhang et al., 2020).
Moreover, in pancreatic tumor microenvironment factors,
the SPP1-CD44
(Nallasamy et al., 2021). In head and neck squamous cell

axis can promote cancer stemness
carcinoma (HNSCC), SPP1 overexpression is prognostic of
worse survival results (Bie and Zhang, 2021). However, some
scholars found that overexpression of SPP1 was correlated
with improved overall survival, event-free survival, and
relapse-free survival at diagnosis in osteosarcoma (Dalla-
Torre et al., 2006). The results of our study revealed that
through the SPP1-CD44 signaling pathway, myeloid cells,
pericytes, and osteoclast cells can impact on mesenchymal

stem cells and proliferating osteoblastic cells. Moreover, in
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these cellular communication networks, osteoclasts play a
role as major senders, mediators, and influencers of the
signal.

Fibroblast growth factor (FGF) signaling is essential for
embryonic organ development and the progression of tumors
(Brewer et al., 2016) and increases proliferation, invasion, and
epithelial-to-mesenchymal transformation of tumor cells. (Bono
etal,, 2013). In the majority of malignancies, numerous FGFs are
increased, and different FGF receptor (FGFR) subtypes are
activated on tumor and stromal cells. (Turner and Grose,
2010). In addition, cancer, inflammation, and the resistance of
tumor vascularization to VEGF inhibitor therapy have all been
linked to FGFR signaling. (Beenken and Mohammadi, 2009;
Casanovas et al., 2005; Fischer et al., 2007; Turner and Grose,
2010). Moreover, in the development of cancer, pathological
FGF/FGFR signaling enhances cross-talk between oncogenic
cells and its microenvironment, ultimately causing cancer cell
proliferation, angiogenesis, and migration. (Li et al., 2018). For
example, in the tumor microenvironment of esophageal cancer,
NCAM- and FGF-2-mediated FGFRI signaling modulates the
survival and migration of tumor-associated macrophages and
cancer cells (Takase et al.,, 2016). Additionally, FGFs activate
myeloid cells, macrophages linked with tumors, cancer-related
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proliferating osteoblastic cells, and osteoblastic cells. (D): Heatmap showing the top 50 TF in these cell types.

fibroblasts, and osteoclasts (Berardi et al., 1995; Collin-Osdoby
et al., 2002; Itoh, 2007). Recent studies have found that in the
evolution of osteosarcoma, FGF has emerged as a crucial
regulator. According to previous research, LHX9 is critical for
the proliferation, migration, invasion, and metastasis of OS cells
via the FGF and TGF—/—catenin signaling pathways (Li et al,
2019). Some scholars have found that through the FRS2/TGF-/
—catenin pathway, FGF-induced LHX9 controls osteosarcoma
development and migration (Li et al., 2019).

Our research found, through the FGF7-FGFRI signaling
pathway, mesenchymal stem cells, pericytes, and myoblasts
may influence mesenchymal stem cells, proliferating
osteoblastic cells, and osteoblastic cells. High quantities of
FGFR1 and FGF7 were detected in mesenchymal stem cells
and pericytes. In addition, in these cellular communication
networks, mesenchymal stem cells and pericytes serve as
important signal senders, mediators, and influencers.

The Notch pathway regulates various mechanisms that
control morphogenesis, lineage determination, apoptosis, and
proliferation in some malignancies (Bray, 2006), and has been
identified as both a tumor suppressor and an oncogene (Jin et al.,
2017; Tanaka et al., 2009; Zhang et al., 2010). The Delta-Serrate-
Lag (DSL) family of ligands (jagged 1/Jagl, Jag2, delta-like-1/
DLL1, DLL3, and DLL4) on the surface of a cell connect with a
membrane-bound Notch receptor (Notchl-4) on a different cell
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to start the Notch signaling pathway, a crucial step in normal
bone growth that is also implicated as a critical mediator in a
variety of different malignancies (Iso et al., 2003).

According to previous research, the notch pathway is
strongly related to the development of osteosarcoma. Erk
phosphorylation promotes osteosarcoma proliferation and
migration in response to Notch stimulation (Qin et al., 2019).
By activating cell division cycle 20, Notch-1 increases the
evolution of osteosarcoma to a malignant state (Gao et al,
2020). The elevated expression of Jaggedl is intimately
associated with osteosarcoma metastasis and recurrence. On
the contrary, the knockdown of Jagged! significantly reduced
osteosarcoma cell proliferation, migration, and invasion (Zhang
et al,, 2021). Additionally, Notch signaling also regulates the
immune system of the tumor microenvironment. Inhibiting the
Notch signaling system enhances the polarization of TAM
towards the M2 genotype, which in turn promotes the growth
and spread of osteosarcoma (Ren et al., 2020). Our research
found, through the DLKI1- NOTCH2 signaling pathway,
myoblasts may influence mesenchymal stem cells, proliferating
osteoblastic cells. Additionally, myoblasts serve as important
signal senders, mediators, and influencers.

One of the most prevalent issues in the development of
human cancer is the dysregulation of transcription factors,
which plays a role in the pathogenesis of the disease. The
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SCENIC analysis revealed that the regulon activity of XBP1,
ATF4, and SOX9 were down-regulation in both mesenchymal
stem cells and proliferating osteoblastic cells. X-box binding
protein (XBP1) is a significant transcriptional regulator of the
unfolded protein response. Lack of oxygen stimulated the
transcription and translation of XBP1 mRNA, resulting in
an increase in the activity of XBP1 protein (Romero-Ramirez
et al., 2004). It was initially identified as a crucial regulator of
major histocompatibility complex class II (MHC) gene
expression in B cells (S. Chen Y. et al., 2020). High
XBP1 levels were associated with advanced clinical stages, a
high malignancy index, and a poor tumor necrosis rate in OS.
XBP1 knockdown decreased OS cell growth and survival in
culture (Yang et al,, 2015). Recent studies have shown that
XBP1 increases the susceptibility of HOS osteosarcoma cells
to  pyropheophorbide- o  methyl  ester-mediated
(Yu et al, 2022).
transcription factor 4 (ATF4), a major regulator of the

photodynamic remedies Activating
integrated stress response system, activates transcription of
a group of transcriptional silencing genes that regulate cell
survival and death (Ishizawa et al., 2016). In recent years,
numerous investigations on the involvement of ATF4 in
osteosarcoma have been reported. In human osteosarcoma,
suppression of GRP78 increases ATF4-induced cell death via
deubiquitination and stability of CHOP(Luo et al., 2017).
Moreover, through endoplasmic reticulum (ER) stress-
mediated PERK/eIF2/ATF4/CHOP activation and Wnt/p-
catenin signal suppresses the development of human
osteosarcoma (Zhao et al., 2020). ATF4 devastates RET by
inhibiting nonclassical GRP78 to increase osteosarcoma
chemosensitivity to bortezomib (Luo et al., 2019). Sex-
determining region Y (SRY)- box 9 protein (SOX9) is a
crucial transcription factor in a variety of illnesses,
particularly in malignancies. Recent research has revealed
that SOX9 plays an important function in the control of
the (TME).
SOX9 signaling or SOX9 controlled signaling pathways play

tumor microenvironment Furthermore,
an important role in cancer development and metastasis
(Panda et al., 2021). Additionally, by means of a Sox9-
feedback MAFB

progression cancer

Mediated positive loop, contributes
the of

tumorogenesis in osteosarcoma (Y. Chen S. et al., 2020).

towards stemness and
Moreover, previous study has found the cFOS-SOX9 axis of

chondroblastic osteosarcoma reprograms bone marrow
derived mesenchymal stem cells into chondroblastic cells
(He et al., 2017).

In conclusion, this study uncovered the potential cellular
communication networks between several cell types in advanced
osteosarcoma. The SPP1, FGF, and NOTCH signaling pathways may
play a crucial role in osteosarcoma TME regulation. This research
may bring fresh insights into the pathophysiology of osteosarcoma’s
molecular processes. However, this paper has the following

limitations: no additional experiments were conducted to validate
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the data mining findings presented in this study; no further validation
using the bulk RNA-seq database of osteosarcoma.
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As a key copper homeostasis-related molecule, lipoyltransferase 1 (LIPT1) is an
essential enzyme for the activation of mitochondrial 2-ketoacid
dehydrogenase, participating in fatty acylation. However, the biological
significances of LIPT1 in the pan-cancer are unclear. Here, we
comprehensively analyzed the functional characteristics of LIPT1 in human
cancers and its roles in immune response. We found that LIPT1 was down-
regulated in some cancers. And LIPT1 overexpression is associated with
favorable prognosis in these patients, such as breast cancer, clear cell renal
cell carcinoma, ovarian cancer and gastric cancer. We also explored the
mutational status and methylation levels of LIPT1 in human cancers. Gene
enrichment analysis indicated that abnormally expressed LIPT1 was significantly
associated with immune cells infiltration, such as B cells, CD8" T cells and
cancer-associated fibroblast cells. The result from single cell sequencing
reflected the important roles of LIPT1 in the regulation of several biological
behaviors of cancer cells, such as DNA damage response and cell apoptosis.
Taken together, our research could provide a comprehensive overview about
the significances of LIPT1 in human pan-cancer progression, prognosis and
immune.

KEYWORDS

LIPT1, pan-cancer, biological functions, prognosis, immune

Introduction

Cancers are global health problems, affecting human health and quality of life.
According to the statistics from World Health Organization, cancers are the main
endangering cause of human life (Tao et al, 2021; Yu and Mitrofanova, 2021).
Identifying the valuable pan-cancer genes would be crucial to clarify the underlying
mechanisms for occurrence and development of different tumors (He et al., 2021; Shi
et al., 2021).
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Lipoic acid (LA), an eight-carbon fatty acid, serves as an
important cofactor for the mitochondrial glycine cleavage
system (Habarou et al., 2017). Lipoyltransferase 1 (LIPT1),
as a lipoate-specific sequential enzymes, could be used to
maintain the oxidative and reductive glutamine metabolism
(Nietal., 2019). Recent studies have established the functional
link between aberrant LIPT1expression and tumorigenesis,
including bladder cancer (Chen et al., 2021) and melanoma
(Lvetal., 2022). In melanoma patients, Lv and colleague found
that upregulated LIPT1 expression might suppress the
infiltration of regulatory T cells (Tregs), thereby enhancing
the immunotherapy efficacy (Lv et al., 2022). However, the
detailed roles of LIPTI in different tumor types remains
elusive.

In this study, by using multiple bioinformatics methods,
we explored the underlying molecular mechanisms of
LIPT1
multiple
LIPT1
comprehensively analyzed using the datasets from TCGA

in the pathogenesis and clinical prognosis of
The of
corresponding were

human cancers. expression profiles

and survival  status
and GEO. Meanwhile, gene enrichment indicated the roles
of LIPT1-related molecules in tumorigenesis. Meanwhile, the
potential implications of LIPT1 in anti-tumor immune

response were also explored.

Materials and methods
Gene expression analysis

TIMER2.0 (Li et al., 2020) was used to investigate the
different expression profiles of LIPT1 between pan-cancer and
adjacent normal tissues. The gene expression levels were
shown using a log2 (TPM + 1) scale, where TPM stands for
transcripts per million. The clinical proteomic tumor analysis
consortium (CPTAC) (Edwards et al., 2015) in UALCAN
database (Chandrashekar et al., 2022) was used to analyze
the protein expression of LIPT1 in pan-cancers. Gene
Expression Profiling Interactive Analysis 2 (GEPIA2.0)
(Tang et al., 2017) was used to analyze the relationship
between LIPT1 expression and patients’
stage in all TCGA cancers. The Human Protein
Atlas (HPA) (Colwill et al., 2011) was further used to

pathological

confirm the intensity of LIPT1 immunohistochemical
staining in several cancer tissues, including kidney
cancer, breast carcinoma, and uterus endometrium
adenocarcinoma.

Survival analysis

The expression of LIPT1 on the patients’ prognostic
values, including overall survival (OS) and disease-free
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survival (DFS), was obtained from GEPIA2.0. TCGA tumor
patients were divided into the high-expression and low-
expression cohorts based on the cut-off values (50% and
50%). The hazards ratio was calculated based on Cox PH
Model. With the log-rank test, Kaplan-Meier plotter (Lanczky
and Gyorffy, 2021) was used to perform the survival analysis in
tumors.

Genetic alteration analysis

cBioPortal (Gao et al., 2013) was used to collect the alteration
frequency, mutation type, mutation site information, and three-
dimensional (3D) structure of candidate proteins in all TCGA
tumors. In the “Comparison” module, clinical prognosis data,
including progression-free survival (PFS), disease-specific
survival (DSS), DES, and OS, for all TCGA cancer types with
or without LIPTI gene alterations were downloaded and
analyzed.

The infiltration of immune cells

Using multiple algorithms, such as TIMER, EPIC,
MCPCOUNTER, XCELL TIDE, applied
TIMER2.0 tool to evaluate the correlation of LIPT1 expression
with immune infiltration levels in different TCGA cancers.

and we

Single cell sequencing

CancerSEA (Yuan et al, 2019) is a specialized single cell
sequencing database, which can provide different functional
status of cancer cells at the single cell level. The correlation
data between LIPT1 expression and different tumor function
based on single cell sequencing data were analyzed. T-SNE
diagrams demonstrated the expression profiles of LIPT1 at
single cells in TCGA samples.

Gene enrichment analysis

BioGRID website (Oughtred et al., 2021) was used to
analysis  the  protein-protein  interaction  network.
GEPIA2.0 was used to obtain the top 100 LIPT1-correlated
genes from all TCGA tumor and normal tissues. Then we
conducted a pairwise gene-gene Pearson correlation analysis
between LIPTI and the selected genes. Gene ontology (GO)
and Kyoto encyclopedia of genes and genome (KEGG)
enrichment analyses were used to investigate the underlying
biological functions and signaling pathways affected by
LIPT1 in TCGA tumors. p-value < 0.05 was considered to
be statistically significant.
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FIGURE 1

The expression of LIPT1 in pan-cancer. (A) LIPT1 expression in different cancers from TIMER2.0. *p < 0.05; **p < 0.01; ***p < 0.001. (B) The
expression differences of LIPT1 in ACC, OV, TGCT, UCS, DLBC, LAML, LGG, and HNSC from GTEx and TCGA. ***p < 0.001. (C) The protein levels of
LIPT1 in BRCA, KIRC, UCEC, HNSC, and LIHC were analyzed using CPTAC. (D) LIPT1 expression levels and the pathological stages were analyzed

using GEPIA2.0.

Results

The different expression profiles of
lipoyltransferase 1 in human pan-cancer

Initially, we examined LIPT1 expression levels in pan-cancer
by TIMER2.0. As shown in Figure 1A, the analysis revealed that
LIPT1 expression was significantly lower in various tumors than
in the adjacent normal tissues, including breast invasive
carcinoma (BRCA), cervical squamous cell carcinoma and
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endocervical adenocarcinoma (CESC), kidney renal clear cell
carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP),
(THCA), uterine corpus endometrial
carcinoma (UCEC), kidney chromophobe (KICH). Conversely,
LIPT1 expression was significantly up-regulated in some other

thyroid carcinoma

tumors, including cholangiocarcinoma (CHOL), colon
adenocarcinoma (COAD), esophageal carcinoma (ESCA),
glioblastoma  multiforme (GBM), liver hepatocellular

carcinoma (LIHC) and stomach adenocarcinoma (STAD).
However, no significantly differential expression of LIPT
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expression of LIPT1 in tumor tissue derived from kidney, breast and endometrium.

could be found in other tumors, such as bladder urothelial
carcinoma (BLCA), head and neck squamous cell carcinoma
(HNSC), and so on. Given some data in the normal tissues were
not available, we further examined the expression differences of
LIPT1 using the TCGA and GTEx datasets. As shown in

Figure 1B, we found the down-regulated LIPT1 in
adrenocortical carcinoma (ACOQ), ovarian serous
cystadenocarcinoma (OV), testicular germ cell tumors

(TGCT) and uterine carcinosarcoma (UCS). Meanwhile, we
found the up-regulated LIPT1 in lymphoid neoplasm diffuse
large B-cell lymphoma (DLBC), acute myeloid leukemia
(LAML), brain lower grade glioma (LGG) and thymoma
(THYM).
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Then, the National Cancer Institute’s CPTAC dataset was
used to assessed LIPT1 expression at a protein level. We found
that the total protein expression of LIPT1 was significantly down-
regulated in BRCA, KIRC, UCEC, HNSC, and LIHC (Figure 1C).
We also used GEPIA2.0 to explore the correlation between
LIPT1 expression level and the pathological stages of tumors.
And we found the obvious effect of LIPT1 expression on the
patients’ stages in BRCA, TGCT, BLCA, THCA and lung
adenocarcinoma (LUAD) (Figure 1D; Supplementary Figure SI).

Meanwhile, we further confirmed the LIPT1 expression using
the IHC results provided by the HPA database. The IHC staining
of LIPT1 was mainly weakly or negatively expressed in tumor
tissue derived from kidney cancer, breast cancer and endometrial
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FIGURE 3

Prognostic values of LIPT1 expression in pan-cancer. (A,B) GEPIA2.0 was used to analyze the effects of LIPT1 gene expression on the patients’

prognosis in pan-cancer, including OS (A) and DFS (B).

cancer (Figures 2A-C). Overall, we demonstrated the decreased
LIPT1 expression in these tumors.

The prognostic values of lipoyltransferase
1 on the patients’ survival

Next, GEPIA2.0 database was used to evaluate the values of
LIPT1 on patients’ prognosis, including OS and DFS. We found
that higher LIPT1 expression was significantly associated with
increased OS in BLCA (p = 0.0061) and KIRC (p = 0.0017)
(Figure 3A). And DFS analysis data showed that high expression
LIPT1 was associated with favorable prognosis in KIRC (p =
0.011). In contrast, in KIRP patients, high expression of LIPT1 is
0.029) (Figure 3B).
Meanwhile, we also used the Kaplan-Meier plotter tool to

associated with poor prognosis (p

analyze the survival data. Correspondingly, in breast cancer,
high expression of LIPT1 was related to good PES (p = 1.9e-
06), OS (p = 3.1e-06) and distant metastasis-free survival (DMFS)
(p = 2e-07). In addition, high LIPT1 expression was significantly
associated with increased DMFS in ovarian cancer (p = 0.013)
and decreased post progression survival (PPS) in gastric cancer
(p = 0.00077) (Supplementary Figures S2A-C). Therefore, these
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results demonstrated that LIPT1 may be a potential prognostic
marker in various cancers. Especially, the expression profiles and
prognostic values indicated that LIPT1 might act as a tumor
suppressor gene in breast cancer patients.

Lipoyltransferase 1 mutation in various
tumors

To explore the gene mutation of LIPT1 in various cancers, we
analyzed its mutation status through cBioPortal platform based
on TCGA data. Pan-cancer analysis suggested the high
LIPT1 amplification in BLCA (>2%) and high mutation in
UECE (>3%). Mature B cell neoplasms had the highest
incidence of “deep deletion” with the frequency of ~2%
(Figure 4A). As shown in Figure 4B, we found that missense
and truncating were the predominant mutation styles in LIPT1.
For instance, a truncating mutation within the BPL_LplA_LipB
domain, K123sf*8 alteration, could be detected in five STAD
cases. Figure 4C displayed the K123sf*8 alteration in the 3D
structure of LIPT1 protein. In addition, we analyzed the potential
links between genetic alterations of LIPT1 and the survival
prognosis of patients in pan-cancers. However, we could not
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Promoter methylation levels of LIPT1 in cancers. The methylation values of LIPT1 between normal and primary tumor tissues were analyzed
using UALCAN tool.

find the obvious effect of LIPT1 genetic alterations on the oncogenesis (Smith et al., 2020). We compared the
patients’ prognosis (Supplementary Figures S3A-F, S4A-F). methylation values of LIPT1 between normal and tumor
These unexpected results need to be further verified with tissues. Our analysis results displayed that promoter
more clinical patient data. methylation levels of LIPT1 were significantly reduced

in several tumor tissues, including BLCA, lung
squamous cell carcinoma (LUSC), rectum adenocarcinoma
Promoter methylation of lipoyltransferase (READ), THCA, HNSC, CESC, prostate adenocarcinoma

1 in human cancers (PRAD), UCEC, LUAD, and KIRP (Figure 5). In contrast,
the promoter methylation levels of LIPTIwere not

Promoter DNA methylation has been proved to affect the significantly different in other tumors (Supplementary
transcriptional repression and participate in the tumor Figure S5). These results suggested that the transcriptional
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FIGURE 6

The correlation between immune cells and LIPT1 expression in cancers. (A—C) The relationship between LIPT1 expression and immune
infiltration of B cell (A), cancer-associated fibroblast (B) and T cell CD8" (C) was depicted by TIMER2.0 database. Several algorithms, such as TIMER,
EPIC, QUANTISEQ, XCELL, MCPCOUNTER, CIBERSORT, CIBERSORT-ABS, and TIDE, were applied to explore the correlation. Positive correlation
(0-1) are indicated with the red color, while negative correlation (-1 to 0) are indicated with the blue color. p-value < 0.05 is considered as

statistically significant. A cross indicates non-significant correlations.

expression of LIPT1 may be due to the alterations of promoter
methylation.

The roles of lipoyltransferase 1 on the
regulation of immune cell infiltration

Recent researches have shown that immune infiltration is
associated with the initiation, progression, and metastasis in
human cancers (Stenstrom et al., 2021; Ren et al.,, 2022; Shan
et al, 2022). Several algorithms, such as TIMER, EPIC,
QUANTISEQ, XCELL, MCPCOUNTER, CIBERSORT,
CIBERSORT-ABS, and TIDE, were applied to explore the
correlation between LIPTI expression and the infiltration of
different immune cells in pan-cancer. We found a positive
the of B
LIPT1 expression in BLCA, ESCA, pancreatic adenocarcinoma
(PAAD) and TGCT (Figure 6A). Meanwhile, a negative
correlation between the infiltration of cancer-associated
fibroblasts and LIPT1 expression could be found in PRAD
and TGCT (Figure 6B). In LUAD, LIPT1 expression was
correlated with CD8" T

correlation  between infiltration cells and

positively cells infiltration
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(Figure 6C). We found no significantly correlation between
LIPT1 expression and the infiltration values of dendritic cells
(DC), monocyte, regulatory T cells (Treg), natural killer cells
(NK), neutrophil and macrophage (Supplementary Figure S6).
These findings demonstrated that LIPT1 may act as a novel
immune-associated biomarkers for tumor development.

The expression pattern of
lipoyltransferase 1 at single-cell levels

Single-cell transcriptome sequencing is a key technique for
analyzing the underlying functions of candidate molecules at
single-cell levels (He et al, 2021; Li et al, 2021). In
retinoblastoma (RB), the expression of LIPT1 was negatively
associated with cell cycle, DNA repair response, EMT and
invasion. By contrast, LIPT1 expression was positively related
to angiogenesis, differentiation, inflammation and stemness.
LIPT1 expression in uveal melanoma (UM) had a negative
relationship with almost all tumor biological behaviors, such
as cell death, DNA damage response, invasion and metastasis. In
addition, the results demonstrated that LIPT1 expression was

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1038174

Liu et al.

10.3389/fgene.2022.1038174

ALL * il
AML B ke geneExp
CML &3 3 &3 *p<0.05
BRCA Correlation  Pvalue
AST = a — **p <0.01 pifferentiation 0.57 ok
GBM *  Correlatior
Glioma ** % I 1.0
oDG e = Angiogenesis 0.50 K
- = = 05 Correlation  Pvalue
HNSCC 00 DNArepair -0.59 ekt
RCC = !
LUAD -0.5
NSCLC  * * e I N DNAdamage -0.53 ok
MEL * *k * *k *k .
RB *% *%k  kk  kk k% * *k * *k
UM *k %k kk *k  kk  kk  kk *k *k *k *k *k  kk *% Apoptosis _050 .
P IR S A T T SRR SR )
$E T G O ST S
e @ & ¥ F e
QQO W o.&@ ow\?‘ 0% \QQQ’& N4 Q‘O\ ¥ & ‘ l Iy ] Correlation  Pvalue
el Q DNAdamage P T/ 1 TR Y 0.73 *rk g
c Expression distribution with t-SNE plot Expression distribution with t-SNE plot
- ; . sove
.t M . .t
FIGURE 7

The expression levels of LIPT1 at single-cell levels. (A,B) The relationship between LIPT1 expression and different functional states in tumors was
explored by the CancerSEA tool. *p < 0.05; **p < 0.01; ***p < 0.001. (C) LIPT1 expression profiles were shown at single cells from RB, UM and AML by

T-SNE diagram.

negatively related with cell cycle and DNA damage in acute
myelocytic leukemia (AML) (Figure 7A). In addition, Figure 7B
the the
LIPT1 expression and differentiation in RB, angiogenesis,
DNA damage, DNA repair, and apoptosis in UM, and DNA
damage in AML. Moreover, LIPT1 expression profiles were
shown at single cell levels from RB, UM, and AML by T-SNE
diagram (Figure 7C).

displayed significant  correlation  between

Functional enrichment analysis of
lipoyltransferase 1-related genes in
cancers

Next, we used functional enrichment analysis to evaluate the
underlying molecular mechanisms of LIPT1 in tumorigenesis
and development. As shown in Figure 8A, the 15 interacting
molecules with LIPT1 were obtained from BioGRID web tool. In
addition, we acquired the top 100 LIPT1 co-expressed genes
(Supplementary Table S1) in pan-cancer from GEPIA2.0.
Among these, testis specific 10 (TSGA10), zinc finger protein
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14 (ZNF14), enhancer of polycomb homolog 2 (EPC2),
o-sialoglycoprotein endopeptidase like 1 (OSGEPL1), cereblon
(CRBN) and wd repeat, sterile alpha motif and u-box domain
containing 1 (WDSUBI) showed high correlations with LIPT1 in
the majority of cancer types (Figures 8B,C). Meanwhile, GO and
KEGG enrichment analyses in Figure 8D indicated that the roles
of LIPT1 co-expressed genes on the regulation of herpes simplex
virus one infection and in

acetyltransferase complex

tumorigenesis and development.

Discussion

Emerging studies have shown that copper death plays an
important role in the occurrence and treatment of human tumors
(Jiang et al, 2022). In our research, we performed a
comprehensive analysis of LIPT1, the copper death-related
gene, in a total of 33 different tumors. The expression of
LIPT1 was significantly decreased in several tumor tissues,
including BRCA, CESC, KIRC, KIRP, THCA, UCEC, and
KICH. Overexpression of LIPT1 is associated with favorable
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p-value < 0.001. (C) The heatmap confirmed that LIPT1 expression was positively correlated with the six genes (TSGA10, ZNF14, EPC2, OSGEPL1,
CRBN, and WDSUBI) in pan-cancer. (D) GO and KEGG enrichment analyses of LIPT1-related genes.

prognosis in tumor patients, such as breast cancer, clear cell renal
cell carcinoma, ovarian cancer, and gastric cancer. In addition,
abnormally expressed LIPT1 was significantly associated with
immune cells infiltration, such as B cells, CD8" T cells, and cancer
associated fibroblast cells. Therefore, LIPT1 might be a potential
prognosis biomarker and immune target for tumor patients.
Copper is a co-factor for important enzymes in all organisms
(Kahlson and Dixon, 2022). Unbalanced copper homeostasis
affects tumor cell growth, causing irreversible damage (Jiang
et al., 2022). Studies showed that copper homeostasis might be
regulated by protein lipoylation (Tsvetkov et al., 2022), protein
misfolding (Gupta et al., 2022) and DNA damage response (He
et al., 2020). Abnormal accumulation of intracellular copper
induces a new mode of cell death, copper drooping (Kahlson
and Dixon, 2022). The copper homeostasis has been associated
with the development and prognosis of patients with various
tumors (Feng et al., 2022; Huang et al., 2022; Lei et al., 2022; Li
et al., 2022; Wang et al., 2022). As a copper death-related gene,
LIPT1 is required for lipoylation and activation of 2-ketoacid
dehydrogenases in humans (Tort et al., 2014). LIPT1 genetic
alterations, including mutation and deep deletion, cause a variety
of human diseases, such as Leigh disease (Soreze et al., 2013) and
nonketotic hyperglycinemia with early-onset convulsions (Mayr
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et al., 2014). However, few studies have established the functional
link between LIPT1 and tumorigenesis. Even though LIPT1 has
been proved to be upregulated in melanoma (Chen et al., 2021),
the detailed roles and underlying mechanisms of LIPT1 in
human cancers are unclear and warrant further exploration.
Our exploratory findings demonstrated that LIPT1 genetic
alterations, including mutation and deep deletion, could be
observed in a variety of cancers. At the same time, there were
significant differences in LIPT1 methylation levels between
tumor tissues and normal tissues. And single cell sequencing
and gene enrichment indicated that LIPT1-correlated gene might
regulate several cancer biological functions, such as DNA damage
response and cell death.

The infiltrating immune cells play essential roles in
regulating cancer cell recognition and tumor growth
(Shihab et al., 2020; Talty and Olino, 2021). The most well-
known function of B cells is to produce antibodies, such as
IgM, IgG, IgE, and IgA (Kim et al., 2021). The depleted effector
B and T cells could help tumor cells to evade immune
surveillance, thereby reducing overall survival in tumor
patients (Chakraborty et al., 2022). In this study, we found
that LIPT1 expression was strongly correlated with the
infiltration of immune cells, including B cell, cancer-
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associated fibroblast and CD8" T cells. These results suggested
that LIPT1 could be an effective target for immunotherapy,
and provided new hope for clinical treatment of tumor
patients. The association between LIPT1 expression and
immune checkpoints in cancer patients still needs to be
explored in more preclinical and clinical trials.

In conclusion, using comprehensive bioinformatics
analysis techniques, we explored the expression levels,
clinical prognosis, methylation values, genetic alterations,
and immunomodulatory effects of LIPT1 in pan-cancer.
The results suggested that LIPT1 may be a novel potential
prognostic and immune-associated biomarker for cancer
patients. This study lays the foundation for further research
on the specific mechanisms of LIPT1 in the development and
treatment of different tumors.
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Lung adenocarcinoma (LUAD) is a malignant tumor of the respiratory system
with poor prognosis. Recent studies have revealed that N7-methylguanosine
(Mm7G) methylation is a widespread modification occurring in RNA. But the
expression of m7G methylation—related genes in LUAD and their correlations
with prognosis are still unclear. In this study, we found 12 m7G
methylation—related regulators with differential expression between LUAD
and normal lung tissues. According to differentially expressed genes (DEGs),
all LUAD cases were separated into two subtypes. The prognostic value of each
m7G methylation—related gene for survival was evaluated to construct a
multigene signature using The Cancer Genome Atlas (TCGA) cohort. Finally,
an m7G methylation—related prognostic signature based on three genes was
built to classify LUAD patients into two risk groups. Patients in the high-risk
group showed significantly reduced overall survival (OS) when compared with
patients in the low-risk group (p < 0.05). The receiver operating characteristic
(ROC) curve analysis confirmed the predictive capacity of the signature. The
Gene Ontology (GO) functional annotation analysis disclosed that
chromosome homeostasis plays an important role in this process. The gene
set enrichment analysis (ssGSEA) implied that the immune status was decreased
in the high-risk group. To sum up, m7G methylation—related genes play a vital
role in tumor immunity and the related signature is a reliable predictor for LUAD
prognosis.

KEYWORDS

lung adenocarcinoma, m7G methylation, gene signature, chromosome homeostasis,
immune station
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Introduction

Lung adenocarcinoma (LUAD) is the most common
histological type of lung cancer. Despite advances in its
pathogenesis and therapeutic approaches, it unfortunately
remains one of the most aggressive and fatal tumors with an
overall survival (OS) of less than 5 years (Denisenko et al., 2018).
Therefore, it is important to understand the underlying
molecular mechanisms and develop an accurate prognostic
tool to improve the progression of LUAD.

To date, with a large number of RNA modifications, N7-
methylguanosine (m7G) has been found to be the most
common modification at the 5’ cap of mRNA and exert an
important part in the multicellular processes and regulation of
mRNA output, translation, transcriptional elongation, and splicing.
METTL1/WDR4 has been identified as an m7G writer of mRNA.
METTLI acts as an m7G methyltransferase to install m7G
modifications in target mRNAs, while WDR4 facilitates the
binding of heterodimeric complexes to target mRNAs (Zhang
et al, 2019a). Accumulating evidence point to the critical role of
m7G in human disease development, especially cancer, and
aberrant m7G levels are closely related to tumorigenesis and
progression by regulating the expression of multiple oncogenes
and tumor suppressor genes (Luo et al., 2022). Interestingly, various
studies to date have shown that m7G modulators play different roles
in different types of tumors. METTL1/WDR4 is the core regulator
of m7G modification and exerts a powerful oncogenic role in acute
myeloid leukemia (AML) (Orellana et al.,, 2021), bladder cancer
(BC) (Ying et al, 2021), esophageal squamous cell carcinoma
(ESCC) (Han et al, 2022), glioma (Li et al, 202la),
hepatocellular carcinoma (HCC) (Tian et al, 2019; Chen et al.,
2021; Xia et al,, 2021), head and neck squamous cell carcinoma
(HNSCC) (Chen et al, 2022), etc, promoting the malignant
phenotype and progression of tumors. However, a recent study
investigated the functions of m7G regulators WBSCR22 and
TRMTI112 in pancreatic (PC) that
WBSCR22 was downregulated in PC samples when compared
with adjacent normal pancreatic tissue and WBSCR22 cooperates

cancer and found

with TRMT112 to exert a tumor suppressor effect in PC, associated
with longer survival of patients (Khan et al., 2022).

Although evidence shows RNA modifications are critical to
the development and progression of LUAD, few researchers have
systematically the
methylation and LUAD. In this study, we systematically

explored relationship between m7G

assessed the prognostic value of m7G regulatory genes for
LUAD patients. The
information were obtained from

expression profiles and clinical
the TCGA database.
Additionally, online databases such as the R software package
were used for bioinformatics analysis to study the characteristics
of m7G regulatory factors. Besides, we assessed the association of
the prognostic model based on m7G regulatory genes with
survival outcomes, immune-related pathways, and immune
cell infiltration. We found that m7G was involved in several
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of LUAD, the
microenvironment (TME). A better understanding of m7G

aspects such as formation of tumor
modifications makes it possible to develop more effective

personalized treatment strategies for LUAD.

Materials and methods
Data sets

In this study, we downloaded the RNA sequencing
information and the corresponding clinical characteristics of
LUAD patients from the TCGA database (https://portal.gdc.
cancer.gov/), which included 535 tumors and 59 normal
tissues (Cancer Genome Atlas Research Network and others,
2014; Campbell et al,, 2016). The expression data sets could be
normalized by fragment per kilobase million (FPKM) scores.

Identifying differentially expressed m7G
methylation—related genes

We curated a total of 29 m7G methylation-related genes
(Supplementary Table S1) by reviewing previous literature
(Tomikawa, 2018; Rong et al., 2021; Wiener and Schwartz,
2021). These m7G methylation-related genes were studied
using the Search Tool for the Retrieval of Interacting Genes
(STRING). Using the “limma” R package, we identified
differentially expressed m7G methylation-related genes among
tumor and normal tissues with a false discovery rate (FDR)
within 0.05 and |logFC| > 0.5.

Development and validation of m7G
methylation—related gene signature

The consensus cluster method was adopted to construct the
consensus matrix according to the expression levels of the
differentially expressed genes (DEGs). We evaluated clustering
results with K values ranging from 2 to 9 in order to determine
the optimal clustering results. A univariate Cox study of the OS was
used to screen DEGs using prognostic values [adjusted p-value <0.05;
p-values were adjusted using Benjamini and Hochberg (BH)
correction]. Then, the DEGs with prognostic values were applied
to construct a signature in prognostic prediction. By combining
standard expressions of every gene and its relevant regression
coefficients, the risk scores were calculated as follows:

Risk Score = Z?:lCoe fi X xi.

LUAD in TCGA could be regulated as two risk groups (high/
low) based on the median value of the risk score. According to the
gene expression in this signature, the principal component
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RNA expression data of LUAD from TCGA
(Normal samples=59, Tumor samples=535)

Compare the expression of 29 m7G-related
genes in TCGA cohort
(12 m7G-related DEGs)

Screen os-related genes in TCGA cohort

3-gene signature model

Survival analysis

GO functional analysis

Analysis of immune cell infiltration

FIGURE 1
Detailed workflow of the flowchart for data analysis.

analysis (PCA) was conducted by means of the “prcomp”
function of the R statistical package. The prognostic model of
genes was assessed by the time-dependent receiver operating
characteristic (ROC) profile analyses via the “survivalROC” R
package. The nomogram was built by combining age, gender, risk
scores, and pathology stages to forecast the living possibility of
LUAD patients after 3 and 5 years. The Decision Curve Analysis
(DCA) was carried out to evaluate the clinical implications of the
prediction model.

Gene Ontology functional and immune
analysis of differentially expressed genes
among low- and high-risk groups

As aforementioned, LUAD patients were regulated as two risk
groups based on the median value. The DEGs among the high-risk
and low-risk groups could be determined with [log2FC| > 1 and
FDR <0.05. The GO annotation analysis of DEGs was achieved with
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Consensus analysis (the optimal
number of clusters was 2, labeled
as MC1 and MC2)

The correlation network of the
DEGs

an adjusted p-value < 0.05. Accumulating evidence have confirmed
that tumor infiltrating immune cells were involved in cancer
progression and correlated with the outcomes. Therefore,
sSGSEA was used to estimate the permeation values for
activity  of
Supplementary =~ Table S2

immunization-related cells and analyze the
immunization-related ~ pathways.
provides these annotated gene set files. Meanwhile, we conducted
correlation analysis between immune cells and immune functions
and between genes for signature construction and immune cells and
immune function. Furthermore, we evaluated the infiltration level of
immune cells between the high-risk and low-risk groups by using
CIBERSORT, CIBERSORT-ABS, quanTIseq, MCP-counter, xCell,

TIMER, and EPIC algorithms.
Statistical analysis

To compare the standards of gene expression among normal
and LUAD tissues, a single-factor analysis of variance was used,
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FIGURE 2
Expression and interaction of 29 m7G methylation—related genes. (A) Heatmap (green: low expression; red: high expression) of m7G
methylation—related genes between normal (N, bright blue) and tumor (T, pink) tissue in the TCGA LUAD queue. (B) PPI network shows interactions
of all m7G methylation—related genes. (C) Correlation network of all m7G methylation—related genes (red: positive relevance; blue: negative
relevance. The shade of color reflects the strength of the correlation). *p < 0.05, **p < 0.01; * * *p < 0.001.

and the Pearson’s Chi-square test was used to contrast the
classified variances. Nomogram was constructed with the
“RMS” R package. BH-adjusted Mann-Whitney tests were
conducted to compare the ssGSEA scores between the high-
and low-risk subgroups of immune cells or pathways.
Kaplan-Meier analysis using log-rank tests were used to
contrast the OS among different groups. Data analyses were
carried out using the R software (v. 4.1.2). The flowchart is shown

in Figure 1.

Results

m7G methylation—related differentially
expressed genes in The Cancer Genome
Atlas lung adenocarcinoma queue

We identified 12 m7G-related DEGs (FDR < 0.05) by
comparing  the levels of all m7G
methylation-related genes in LUAD tissues (n = 535) with
normal tissues (n = 59) in the TCGA database. The mRNA
levels of all m7G methylation-related genes are presented as
heatmaps (Figure 2A). The protein-protein interaction (PPI)
network and gene correlation network showed the interaction

expression
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relationships  of all m7G  methylation-related  genes

(Figures 2B,C).

Construction of three m7G
methylation—related prognostic model in
The Cancer Genome Atlas queue

We performed a consensus clustering analysis of all
535 LUAD from the TCGA cohort to investigate the
relationship ~ among  expressions of 12 m7G
methylation-related DEGs and the subtypes of LUAD.
Adding the clustering variable (k) from 2 to 9, when k = 2,
showed the highest intragroup relevance and the lowest
intergroup relevance, hinting that the optimal number of
clusters was two, defined as MC1 and MC2 (Figures 3A-C).
The profile of the DEG expressions and clinical features such
as age (<60 or >60 years), the degree of cancer stage (stages
1-4), and living status (alive or dead) are shown in the
heatmap (Figure 3D).
analysis identified three DEGs that were correlated with the
OS, namely, LARP1, NCBP1, and WDR4 (Figure 4A).
Therefore, these three DEGs were used to construct the risk
model. Further multivariate Cox proportional hazards

The wunivariate Cox regression
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NCBP2

LUAD classification according to m7G methylated—associated DEGs. (A—C) Consensus clustering algorithm applied to cluster LUAD samples in
the TCGA database. The best number of clusters was two, which are defined as MC1 and MC2, respectively. (D) Heatmap and clinicopathological

characteristics of two clusters.

analysis suggested that all the three DEGs were related to
increasing risk with HRs >1 (Supplementary Table S3). The
formula used for risk value calculation is risk value = (0.0113 x
LARPI exp.) + (0.0255 x NCBPI exp.) + (0.0817 x
WDR4 exp.). The LUAD patients in the TCGA were
separated into the high-risk group (n = 262) or low-risk
group (n = 248) with a middle score (Figure 4B). The PCA
showed that the different risk groups could be well divided
into two clusters (Figure 4C), and patients in the high-risk
group survived less and lived shorter than did those in the low-
risk group. Consistently, the Kaplan-Meier profile indicated
that the OS time difference between the low- and high-risk
groups was statistically significant, and the high-risk group
had worse OS than their low-risk counterparts (Figures 4D,E).
Time-dependent ROC analysis was performed, and the area
under the ROC curve (AUC) was 0.623, 0.639, and 0.607 for a
1-, 2-, and 3-year survival, respectively (Figure 4F). The
clinicopathologic features, along with the associated risk
groups, were mapped using a heatmap (Figure 4G). The
nomogram was constructed for forecasting the 3- and 5-
year living probability of LUAD patients (Figure 5A). The
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DCA for the 3- and 5-year prediction of m7G-related gene
signature nomogram is illustrated in Figures 5B,C.

Functional analysis according to risk
model

DEGs among low- and high-risk groups could be extracted by
applying the “limma” R package with standards—FDR < 0.05 and |
log2FC | > 1. In total, there were 430 DEGs identified (the data are
shown in Supplementary Table $4). The results of the GO analysis
indicated that the DEGs were mainly enriched for chromosomal
activity and homeostasis (Figure 6A). For exploring the
relationships among the risk levels and the immune status in
LUAD, the ssGSEA was used to compare the enrichment
fractions of 16 kinds of immune cells and the activities of
13 kinds of immune-related pathways in the TCGA database.
Interestingly, the low-risk subgroup had higher standards of
aDCs, DCs, and iDCs, as did the mast cells. The HLA and type-
2 IFN reaction pathway indicated higher activity in the low-risk
group, while on the contrary, the MHC class-1 pathway showed
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Risk signature establishment of the TCGA queue. (A) Single-variable Cox regression study of 12 m7G methylation—related DEGs and three genes

with p < 0.05. (B) Patient distribution on the basis of risk score. (C) PCA diagram of LUADs on the basis of risk score. (D) Living situation of every patient
(low-risk population: left dotted line; high-risk groups: right dotted line). (E) Kaplan—Meier survival analysis for patients with high- and low-risk
groups. (F) ROC profile showing the forecasting power of risk scores. (G) The relationship among clinicopathological characteristics and risk
groups is visualized with heatmaps (green: low expression; red: high expression).

higher activity in the high-risk group (Figures 6B,C). Tumor-
infiltrating lymphocytes (TILs) and plasmacytoid dendritic cells
(pDCs) had the highest correlation in the LUAD immune
microenvironment with an R value of 0.86; the mast cells and
Tth were negatively correlated with an R value of —0.04 (Figure 6D).
Immune checkpoints and T-cell coinhibition pathways showed the
highest positive correlation with an R value of 0.9 (Figure 6E).
WDR4, LARPI, and NCBPI were inversely correlated with most
immune cells and immune functions (Figure 6F). The relationship
between the signature and