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Editorial on the Research Topic

Radiomics-based theranostics in cancer precision medicine
Cancer is the second-leading cause of death worldwide and represents a large barrier to

prolonging life expectancy. Cancer incidence and cancer-related mortality are rising. Lung

cancer is the leading cause of cancer-related death, with approximately 1.8 million deaths

worldwide (representing 18% of all cancer deaths), and breast cancer is the most commonly

diagnosed cancer, with an estimated 2.3 million new cases globally in 2020 (representing

11.7% of cancer cases) (1). The management of cancer includes traditional surgery,

precision/minimally invasive surgery, molecular imaging support, and, more recently,

robot- or artificial intelligence (AI)-assisted surgical procedures (2). Combination therapy

has been widely used to improve survival rates and reduce the side effects of treatment.

Over the past few decades, cancer diagnosis and treatment strategies have been

revolutionized. Medical imaging plays a pivotal role in the diagnosis and treatment of

cancer because it can comprehensively assess the tumor and its environment. A wide

variety of imaging modalities are used for theranostics, including optical (fluorescence or

bioluminescence), nuclear (positron emission tomography [PET] or single-photon

emission computerized tomography [SPECT]), ultrasound, photoacoustic, computed

tomography (CT), and magnetic resonance (MR) imaging techniques.

Radiomics is an emerging tool in personalized medicine that mines features of medical

images and translates high-throughput imaging features to quantitative data for predictive

or prognostic purposes (3). As a bridge between medical imaging and personalized

medicine, radiomics is becoming increasingly important in tumor diagnosis, treatment

decisions, and prognosis prediction. Therefore, radiomics may provide quantitative and

objective support for decisions surrounding cancer detection and treatment. Recently,

research efforts have focused on the normalization and verification of radiomics algorithms

to demonstrate their usefulness and robustness.

In this Research Topic, we focus on the most recent research on radiomics features

extracted from CT, MRI, and ultrasound images to predict cancer biomarkers, treatment

effectiveness, cancer progression, and cancer differential diagnoses. Through internal and

external validation, one study evaluated the ability of peritumoral, intratumoral, and

combined CT radiomics features to predict chemotherapy response in non-small cell lung
frontiersin.org015
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cancer (NSCLC). The authors concluded that noncontrast CT

radiomics features from both the peri- and intratumoral regions

could predict the chemotherapy response in NSCLC through

machine learning models; furthermore, the 0–3 mm peritumoral

region presented better performance than the peri- and

intratumoral regions (Chang et al.). An accurate and reproducible

model was constructed to predict the response of anti-PD-1 therapy

for advanced NSCLC, which demonstrated the robustness of

combining radiomics and deep learning features with machine

learning methodologies (Ren et al.). A retrospective study

analyzed the pretreatment CT images and clinical information of

692 patients with lung adenocarcinomas to predict their epidermal

growth factor receptor (EGFR) mutation status and response to

first-line tyrosine kinase inhibitors (TKIs) (Jiang et al.). For patients

with small cell lung cancer (SCLC), CT-based radiomics integrated

with CA125 and CA72-4 provided individualized pretreatment

prediction of the response to platinum treatment (Su et al.). An

accurate, rapid, and noninvasive indicator is needed to predict the

efficacy of anti-angiogenic therapy in patients with advanced

colorectal liver metastases (CRLMs); therefore, dynamic

radiomics features from different sequences in the same patient

were applied to predict treatment efficacy (Qu et al.). Considering

the distinct phenotypic and biological characteristics of different

pathological subtypes of lung cancer, it is important to differentiate

between the pathological subtypes of NSCLC before clinical

management. Nomograms combined with clinical parameters and

radiomic features from pretherapy dual-energy computed

tomography images presented suitable performance in

distinguishing between adenocarcinoma (ADC) and squamous

cell carcinoma (SCC), with an area under the curve (AUC) of

0.93 in the training set (Chen et al.). To better understand the

significance of vascular endothelial growth factor (VEGF) and p53

in patients with spinal giant cell tumor of the bone (GCTB), a

multiparametric model based on CT-based radiomics was

constructed. The results indicated that p53 and VEGF are

associated with poor prognosis in patients with spinal GCTB.

Since T2-weighted imaging (T2WI) and the dynamic enhanced

portal venous phase (PVP) of MRI can portray the biological

characteristics of pancreatic lesions, another study verified the

ability of MRI-based radiomics nomograms to evaluate lymph

node metastasis (LNM) in patients with pancreatic ductal

adenocarcinoma (PDAC) (Shi et al.). Ultrasound is a repeatable,

cost-effective, and routinely used modality. A multicenter

retrospective analysis developed an ultrasound radiomics-based

nomogram to assess the prognosis of patients with nodal diffuse
Frontiers in Oncology 026
large B-cell lymphoma; the results demonstrated that this tool could

be helpful to further individualize therapy (Deng et al.). Ultrasound

radiomics has been employed in clinical practice for the

management of breast cancer, with applications in lymph node

status evaluation, differential diagnosis, cancer staging, neoadjuvant

chemotherapy response prediction, and survival prediction (Gu

and Jiang).

In conclusion, with the development of state-of-the-art AI

techniques, the underlying information of oncology images can be

excavated to assist clinical decision-making. This Research Topic

discussed and verified the usefulness of radiomics-based prediction

models. For example, CT-derived radiomics models have been

established to assess treatment response, MRI-based radiomics

parameters have been applied to predict lymph node metastasis,

and ultrasound-based radiomics can be used to personalize breast

cancer management and predict the overall survival of patients with

nodal diffuse large B-cell lymphoma. Overall, radiomics features

derived from medical images can translate qualitative information

to quantitative data, broadening the applicability of medical images

in cancer theranostics.
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A Multiparametric Method Based on
Clinical and CT-Based Radiomics to
Predict the Expression of p53 and
VEGF in Patients With Spinal Giant
Cell Tumor of Bone
Qizheng Wang1, Yang Zhang2,3, Enlong Zhang4, Xiaoying Xing1, Yongye Chen1, Ke Nie3,
Huishu Yuan1, Min-Ying Su2,5*† and Ning Lang1*†

1 Department of Radiology, Peking University Third Hospital, Beijing, China, 2 Department of Radiological Sciences, University
of California Irvine, Irvine, CA, United States, 3 Department of Radiation Oncology, Robert Wood Johnson Medical School,
New Brunswick, NJ, United States, 4 Department of Radiology, Peking University International Hospital, Beijing, China,
5 Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan

Purpose: This project aimed to assess the significance of vascular endothelial growth
factor (VEGF) and p53 for predicting progression-free survival (PFS) in patients with spinal
giant cell tumor of bone (GCTB) and to construct models for predicting these two
biomarkers based on clinical and computer tomography (CT) radiomics to identify high-
risk patients for improving treatment.

Material andMethods: A retrospective study was performed from April 2009 to January
2019. A total of 80 patients with spinal GCTB who underwent surgery in our institution
were identified. VEGF and p53 expression and clinical and general imaging information
were collected. Multivariate Cox regression models were used to verify the prognostic
factors. The radiomics features were extracted from the regions of interest (ROIs) in
preoperative CT, and then important features were selected by the SVM to build
classification models, evaluated by 10-fold crossvalidation. The clinical variables were
processed using the same method to build a conventional model for comparison.

Results: The immunohistochemistry of 80 patients was obtained: 49 with high-VEGF and
31 with low-VEGF, 68 with wild-type p53, and 12 with mutant p53. p53 and VEGF were
independent prognostic factors affecting PFS found in multivariate Cox regression
analysis. For VEGF, the Spinal Instability Neoplastic Score (SINS) was greater in the
high than low groups, p < 0.001. For p53, SINS (p = 0.030) and Enneking stage
(p = 0.017) were higher in mutant than wild-type groups. The VEGF radiomics model
built using 3 features achieved an area under the curve (AUC) of 0.88, and the p53
radiomics model built using 4 features had an AUC of 0.79. The conventional model built
using SINS, and the Enneking stage had a slightly lower AUC of 0.81 for VEGF and 0.72
for p53.
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Conclusion: p53 and VEGF are associated with prognosis in patients with spinal GCTB,
and the radiomics analysis based on preoperative CT provides a feasible method for the
evaluation of these two biomarkers, which may aid in choosing better management
strategies.
Keywords: tomography, quantitative imaging, giant cell tumor of bone, immunohistochemistry, tumor suppressor
protein p53, vascular endothelial growth factors
INTRODUCTION

Giant cell tumor of bone (GCTB) is one of the most common
intermediate bone tumors, which occurs in young adults 20–
40 years old with a high recurrence rate (20%–50%) (1) and a
potential for aggressive behavior (2). Even if patients undergo the
same surgical procedure and remove the tumor as completely as
possible, the postoperative recurrence rate varies substantially.
Many studies have suggested that this may be related to the
aggressiveness of the tumor that each patient has, and thus,
personalized stratified management is very important (3). For
GCTB in the spine, postoperative recurrence is more common
compared to GCTB in other bones, and it is also associated with
a higher risk of malignant transformation (4, 5). During the
surgery, it is necessary to protect the spinal cord and peripheral
nerve function to minimize the postoperative complications
caused by the resection damage; therefore, the tumor may not
be completely resected to remain in a good quality of life (6).
Given all these, it is important to characterize the aggressiveness
of the spinal GCTB to choose an optimized personalized
treatment. The genomics analysis and imaging may provide
valuable information for treatment planning, postoperative
monitoring, and prognosis assessment.

In 2020, the WHO updated the classification for primary
musculoskeletal tumors, which reflects the knowledge generated
from extensive research in the identification of novel gene
alterations in many bone neoplasms (7). The change further
emphasized that the assessment of bone tumors should be more
thorough and personalized. We reviewed previous studies on
prognostic-related molecular markers and found that the
vascular endothelial growth factor (VEGF) and p53 mutation
were two important biomarkers related to the evaluation of the
biological aggressiveness of osteosarcoma and GCTB (3, 8–15).
Angiogenesis occurs in numerous biological processes, which is
essential for the growth of tumors and metastases. VEGF is one
of the most important growth factors for the regulation of
vascular development and angiogenesis (16, 17), which plays
an important role in osteogenesis, bone repair, tumor cell
development, and metastasis by stimulating angiogenesis (18).
p53 is an important tumor suppressor gene in many carcinomas,
and there are also extensive research studies for bone tumors
(19). Mutation in p53 will lose this function and lead to
tumorigenesis, which can also promote angiogenesis by
regulating the expression of VEGF (20). For GCTB, high
expression of VEGF (21–23) and mutant p53 (24–26) have
been shown as risk factors for local recurrence and malignant
transformation. However, the long-term follow-up studies
28
focusing on these two biomarkers in spinal GCTB after total
en bloc spondylectomy (TES), the current mainstream surgical
method, were rarely reported.

The current assessment of preoperative spinal GCTB relies
mainly on pathological and immunohistochemical examination
of tissues taken by puncture biopsy. However, it is known that
the analysis is not reliable in some cases because only a small
amount of tissue in a large tumor is obtained. While this is
sufficient for making a diagnosis, further characterization of
molecular biomarkers may be limited by tumor heterogeneity.
In addition, an invasive needle biopsy may lead to complications
such as bleeding, fractures, and tumor metastasis. At present,
surgeons also use some clinical scoring systems for preoperative
assessment, such as the Spinal Instability Neoplastic Score (SINS)
(27), the Visual Analog Scale (VAS) (28), and the Enneking stage
(29). However, there is no research reporting how these scoring
systems are related to the tumor biomarker status.

In recent years, “radiomics”has emerged as awidely usedmethod
to characterize diseases for molecular diagnosis, prognosis, and
treatment monitoring by analyzing the spatial and temporal
heterogeneity of tumors from medical images (30–35). As the full
spatial extent of the tumor was considered, the computational
techniques may provide a complimentary assessment of the whole
tumor, thus overcoming the limitations of tissue sampling (36–38).
Computed tomography (CT) is a cost-effective imaging method
commonly used in the clinical examination of spinal tumors. The
CT-based radiomics features may provide a new approach to reflect
the heterogeneity of tumors related to theVEGF and p53 expression,
whichmaymake up for the limitations of preoperative puncture and
provide supplemental information.

There are two main objectives in this study. The first aim is to
evaluate the prognostic difference according to the status of
VEGF and P53 using the progression-free survival (PFS) in a
cohort of spinal GCTB patients with long-term follow-up. The
second aim is then to build models based on preoperative CT to
differentiate high vs. low VEGF and wild-type vs. mutant p53 to
assist in preoperative tumor evaluation. Other information such
as the clinically applied scoring system and traditional imaging
evaluation results is included in the analysis, and the
performance of the developed models is compared.
MATERIALS AND METHODS

Patients
The study was approved by the Medical Science Research Ethics
Committee, and the written informed consent was waived. We
June 2022 | Volume 12 | Article 894696
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identified 105 consecutive patients with spinal GCTB at the
orthopedics department between April 1, 2009, and January 1,
2019. The inclusion criteria were as follows (1) patients who had
pathologically confirmed spinal GCTB; (2) preoperative CT was
performed; and (3) the qualified postoperative pathological
specimens were stored in the tissue bank.

The exclusion criteria were as follows: (1) radiotherapy,
preoperative neoadjuvant chemotherapy, or other interventions
for lesions were performed before CT or surgery; (2) poor image
quality due to susceptibility artifacts decided by radiologists; (3)
the opera t ion method was not TES ; and (4) the
immunohistochemical evaluation result of H3F3A was negative
(37). Finally, a total of 80 patients were included, and their
clinical and CT imaging data were collected. The subject
identification flowchart is shown in Figure 1.

Clinical and Imaging Characteristics
The clinical information for the preoperative evaluation of spinal
tumors was obtained through the medical record system,
including the symptom duration before surgery (months),
SINS, VAS, and the Enneking stage. The instability was further
defined based on the SINS into two categories: scores of 7 to 12 as
indeterminate (possibly impending) instability and 13 to 18 as
instability (39). The scoring methods are explained and shown in
Supplementary Part 1.

CT Imaging
CT imaging was performed using a GE Lightspeed 64-slice spiral
CT (GE Medical System, Chalfont St Giles, UK) or a Siemens
Somatom Definition Flash dual-source CT (Siemens, Erlangen,
Germany). The parameters were 120 kVp, 200–300 mAs;
collimator width of 0.625 or 0.60 mm; pitch of 1.0; slice
thickness of 2 mm; and interlayer distance of 3 mm.
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For each case, 8 imaging features were determined: lesion
location, position, vertebral compression, boundary, residual
bone crest, “soap bubble sign”, largest diameter, and CT value.
These were evaluated by 3 musculoskeletal radiologists, and the
consensus results were used. The location of the lesion included
the cervical, thoracic, lumbar, and sacral spine. The position was
classified according to whether the lesion was located in the
vertebral body or vertebral arch. The boundary was classified as
clear or unclear. The “soap bubble sign” was defined as the bone
cortex having obvious expansive changes compared with the
normal vertebra. Figure 2 shows the axial and sagittal images
from 4 cases to illustrate the evaluation of imaging features.

Evaluation of VEGF and p53 Expression
The paraffin-embedded tissue block of the patient’s postoperative
specimen was requested from the pathology department, and
immunohistochemical staining of VEGF and p53 was performed
by following the protocol (40). The expression levels of VEGF and
p53 were independently evaluated by two experienced pathologists
using a scoring system. The expression level of VEGF was divided
into four grades according to the percentage of positively stained
cells: ≤15% (grade 0), 15%–50% (grade 1), 50%–75% (grade 2), and
≥75% (grade 3). Since there were few cases of grades 0 and 3, grades
0–1 were classified into a low-VEGF group and grades 2–3 into a
high-VEGF group. For p53, the tissue was considered positive when
the proportion of nuclei positively stained for mutant p53 was
>10%, otherwise negative. Examples of the immunohistochemical
slides are illustrated in Figure 3.

Tumor Segmentation on CT
For each case, the range of axial CT slices containing the tumor
was first determined. The ROI of the tumor was manually
delineated using the Image J software (National Institute of
FIGURE 1 | The subject identification flowchart. A total of 80 spinal GCTB cases with VEGF and p53 immunohistochemical staining results are included.
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Health, Bethesda, USA) by a musculoskeletal radiologist (with
15 years of experience) and then validated by an experienced
radiologist (with 25 years of experience in skeletal radiology).
Discrepancies between the two radiologists were resolved by
consensus. The two radiologists were not involved in the clinical
and imaging characteristics evaluation and were blinded to other
information about patients. The outlined ROIs on all imaging
slices of a tumor were combined into a 3D tumor mask.
Frontiers in Oncology | www.frontiersin.org 410
Radiomics Analysis to Build Classification
Model
The radiomics analysis procedures are illustrated in Figure 4.
The feature extraction was done using PyRadiomics, an open-
source Python package platform (http://www.radiomics.io/
pyradiomics.html). For each patient, a total of 107 features,
including shape, first-order statistics, and texture, were
extracted. The list of features and how each feature is
A B

FIGURE 3 | (A) Immunohistochemical staining of p53 and VEGF in spinal GCTB. (B) The Cox proportional hazards regression analysis of the p53 and VEGF groups.
FIGURE 2 | Spinal GCTB case examples from 4 patients. The boundary of the lesion can be clearly observed on the transverse images, which are used for tumor
ROI drawing. The sagittal images show vertebral compression, spinal canal compression, and spinal stability, which are used to determine additional imaging
features. The biomarker results of these patients: (A) mutant p53 and high VEGF; (B) mutant p53 and low VEGF; (C) wild-type p53 and high VEGF; and (D) wild-
type p53 and low VEGF. The SINS of these 4 patients were 18, 11, 11, and 7.
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calculated is included in Supplementary Material Part 2. The
segmented lesions on all 2D slices were rendered into a 3D space
with isotropic voxel resolution for extracting the 3D texture
features. Although using different quantization methods or
wavelet transformation may generate many times features, they
were highly correlated with the original features, so we only
analyzed the original 107 features.

After the features were extracted, they were normalized to
mean = 0 and standard deviation = 1. To evaluate the importance
of these features in classification, the sequential feature selection
process was done via the construction of multiple support vector
machine (SVM) classifiers. In this process, we used SVM with a
Gaussian kernel as the objective function to test the performance of
models built with a subset of features. In the beginning, an empty
candidate set was presented, and features were sequentially added. A
10-fold crossvalidation was applied to test the model performance.
In each iteration, the training process was repeated 1,000 times to
explore the robustness of each feature. After each iteration, the
feature that led to the best performance was added to the candidate
set. When the addition of features no longer met the criterion, the
selection process stopped. Here, we used 10−6 as termination
tolerance for the objective function value. The number of mutant
p53 cases was much smaller than the wild-type p53, so we assigned
different class weights according to the number of cases to address
the issue of unbalanced classes. For the high vs. low VEGF, the case
number was approximately equal.

The selected features were used to build the final SVM
classification model with a Gaussian kernel to classify the high vs.
low VEGF and wild-type vs. mutant p53 groups. The output of the
model was a radiomics score (that is, a probability) for a case. The
diagnostic performance was tested using 10-fold crossvalidation.
Each case had only one chance to be included in the validation set.
The probability of all cases in the validation set was combined to
perform the receiver operating characteristic curve (ROC) analysis,
and the area under the curve (AUC) was calculated.

In addition to the radiomics analysis, we also built models
using the clinical characteristics and the imaging features
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determined by visual reading, by following a similar process
for feature selection and 10-fold crossvalidation. All clinical/
imaging parameters were evaluated using a random forest
algorithm. Then the features with the highest significance were
selected to build the classification model. Random forest
algorithms were utilized via Bootstrap-aggregated decision
trees to evaluate the importance of these features in
differentiating the high vs. low VEGF and wild-type vs. mutant
p53 groups. A measurement of the feature significance can be
assessed as the loss of accuracy after this feature was removed.
The features were sorted based on their importance scores, and
then, according to the ranking, the top 1, 2, 3,… features were
selected to build the diagnostic model by using logistic
regression. The discrimination accuracy was evaluated by the
ROC analysis using 10-fold stratified crossvalidation. This
process was repeated many times using a different combination
of selected imaging or clinical features (1, 2, 3,…), and the results
were used to find the best model according to the highest AUC.
After the features included in the best model were decided, they
were used to build a final diagnostic classifier with logistic
regression, and the accuracy was evaluated in the entire dataset.

Lastly, a combined logistic regression model was built by
using the selected clinical/imaging variables and the radiomics
scores, which were evaluated using ROC.

Statistical Analysis
For multivariate analysis of the importance of the two
biomarkers for survival outcomes, we used a Cox regression
model, which was performed using R 3.6.3 software (The R
Foundation for Statistical Computing, Vienna, Austria) based on
the patient’s outcome data, including PFS and p53/VEGF
expression results. PFS was defined as the time between the
date of surgery and the date of confirmed disease progression or
death. PFS was censored at the date of death from other causes or
the date of the last follow-up visit for progression-free patients.
Progression was determined by the imaging evidence of the
postoperative follow-up that showed an emerging soft tissue
FIGURE 4 | The radiomics analysis procedures to build the classification model. Step1: The lesion ROI is outlined on each slice and then combined into a 3D tumor
mask. Step 2: PyRadiomics is applied to extract 107 features, including shape, first-order statistics, and texture from each tumor mask (GLCM is an example of a feature
processing). Step 3: The sequential feature selection is performed by using SVM, and finally, Step 4: The SVM algorithm is applied to build the classification model.
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mass in the operation area, and pathological puncture was
performed if necessary. Results were reported as hazard ratios
(HR) with 95% confidence intervals (95% CI). Other statistical
analyses were performed using SPSS version 18.0 (SPSS, Chicago,
IL, USA). For clinical characteristics and general imaging
features between different biomarker groups, the significance of
each variable was tested by using the independent samples t-test,
c2 test, or Mann–Whitney U test, depending on the data type.
The ROC analysis was used to evaluate the performance of three
different models, and the AUC was calculated and compared
using the DeLong test. A 2-sided p-value of <0.05 was regarded
as statistically significant.
RESULTS

Patient Characteristics
The present study included 80 patients, of whom 43.75% (35
patients) were men and 56.25% were women (45 patients). Based
on the IHC results, 31 had grades 0–1 (low VEGF) and 49 had
grades 2–3 (high VEGF) expression; 68 had wild-type p53 and 12
Frontiers in Oncology | www.frontiersin.org 612
had mutant p53. The clinical and imaging characteristics of
patients in different VEGF and p53 groups are listed in Table 1.

Multivariate Analysis of Prognostic Factors
for PFS
As shown in Figure 3, the multivariable Cox regression analysis
showed that p53 and VEGF were significantly associated with
PFS (p < 0.001). The results showed that the mutant p53 group
had a significantly poorer PFS than the wild-type group (HR:
4.231; 95% CI: 1.663–10.768; p < 0.01). Patients with high VEGF
expression also had a worse PFS than patients with low VEGF
expression (HR: 2.891; 95% CI: 1.053–7.935; p = 0.039). The Cox
proportional risk regression model confirmed that p53 and
VEGF are independent prognostic factors for spinal GCTB.

Relationship Between p53/VEGF
Expression and Clinical Characteristics
and General Imaging Features
The SINS score, or the dichotomized spinal stability, showed
significant differences between high and low VEGF groups, all
with p < 0.001 in univariate analysis. When using the single
TABLE 1 | Clinical and imaging characteristics in high vs. low VEGF groups and wild-type vs. mutant p53 groups.

Parameter High VEGF (N = 49) Low VEGF (N = 31) p-value Wild-type p53 (N = 68) Mutant p53 (N = 12) p-value

Clinical characteristics
Age 33.3 ± 13.3 32.2 ± 10.7 0.701 32.6 ± 12.0 34.3 ± 14.0 0.694
VAS score 5.9 ± 1.6 6.4 ± 1.4 0.126 6.1 ± 1.6 6.1 ± 1.2 0.962
SINS score 12.2 ± 2.0 9.9 ± 2.0 <0.001* 11.0 ± 2.2 12.8 ± 2.4 0.030*
Symptom duration (months) 12.9 ± 6.8 12.6 ± 4.1 0.769 12.0 ± 4.9 17.4 ± 8.4 0.05
Intraoperative bleeding vol (ml) 1125 ± 565 574 ± 303 <0.001* 843 ± 452 1,300 ± 854 0.095
Spinal stability <0.001* 0.013*
0: Stable 24 (49.0%) 28 (90.3%) 48 (70.6%) 4 (33.3%)
1: Unstable 25 (51.0%) 3 (9.7%) 20 (29.4%) 8 (66.7%)
Enneking stage 0.910 0.017*
1 31 (63.3%) 20 (64.5%) 47 (69.1%) 4 (33.3%)
2 18 (36.7%) 11 (35.5%) 21 (30.9%) 8 (66.7%)
Imaging characteristics
Lesion location 0.242 0.642
Cervical 18 (36.7%) 8 (25.8%) 22 (32.4%) 4(33.3%)
Thoracic 20 (40.8%) 13 (41.9%) 27 (39.7%) 6 (50.0%)
Lumbar 5 (10.2%) 8 (25.8%) 11 (16.2%) 2 (16.7%)
Sacral 6 (12.3%) 2 (6.5%) 8 (11.7%) 0 (0.0%)
Position 0.386 0.861
Vertebral body 43 (87.8%) 25 (80.6%) 58 (85.3%) 10 (83.3%)
Vertebral arch 6 (12.2%) 6 (19.4%) 10 (14.7%) 2 (16.7%)
Vertebral compression 0.981 0.741
0% 15 (30.6%) 10 (32.3%) 22 (32.4%) 3 (25.0%)
≤50% 20 (40.8%) 12 (38.7%) 26 (38.2%) 6 (50.0%)
>50% 14 (28.6%) 9 (29.0%) 20 (29.4%) 3 (25.0%)
Lesion boundary 0.636 0.044*
Clear 47 (95.9%) 29 (93.5%) 66 (97.1%) 10 (83.3%)
Unclear 2 (4.1%) 2 (6.5%) 2 (2.9%) 2 (16.7%)
Residual bone crest 0.779 0.443
Yes 19 (38.8%) 13 (41.9%) 26 (38.2%) 6 (50.0%)
No 30 (61.2%) 18 (58.1%) 42 (61.8%) 6 (50.0%)
“Soap bubble-like” sign 0.815 0.292
Yes 45 (91.8%) 28 (90.3%) 63 (92.6%) 10 (83.3%)
No 4 (8.2%) 3 (9.7%) 5 (7.4%) 2 (16.7%)
CT Hounsfield value 48.1 ± 9.5 47.5 ± 10.0 0.795 47.8 ± 9.9 48.2 ± 8.3 0.905
Largest diameter 4.9 ± 1.7 5.3 ± 2.1 0.310 5.1 ± 1.9 4.8 ± 1.1 0.428
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parameter to construct ROC, the AUC was 0.781 (95% CI:
0.676–0.886) for the SINS score. The SINS score (or the
dichotomized stability) and the Enneking stage were
significantly different between patients with wild-type and
mutant p53. The AUC was 0.737 (95% CI: 0.562–0.913) for the
SINS score and 0.679 (95% CI: 0.511–0.847) for the Enneking
stage. For the general imaging features, none was significantly
different between the two VEGF groups, and only one variable,
the boundary of the lesion, showed a marginal difference between
wild-type and mutant p53 (p = 0.044).

Development of Radiomics, Clinical, and
Combined Models
The radiomics model was built using features selected by the
sequential SVM method. For high vs. low VEGF, 4 features were
selected: major axis length, GLCM_contrast, GLCM_IDMN, and
GLRLM_gray level variance. The best model had an AUC of 0.88
and an accuracy of 89% when using the radiomics score of 0.5 as
the classification threshold. For wild-type vs. mutant p53, three
features were selected: GLCM_entropy, GLDM_small
dependence emphasis, and the surface-to-volume ratio. The
best model had an AUC of 0.79 and an accuracy of 95%. The
radiomics scores calculated from the models built for VEGF
and p53 are shown in Figure 5. The ROC curves are shown
in Figure 6. Abbreviations for features are shown in
Supplementary Part 3.

The best conventional model built by considering the clinical
and imaging variables yielded an AUC of 0.81 for VEGF and 0.72
for p53. The selected features, in sequence, were SINS and VAS
for VEGF and SINS and Enneking stage for p53. The radiomics
score and the selected clinical/imaging variables were then
combined to build another model by using logistic regression.
When using the radiomics score with SINS and VAS for VEGF,
the achieved AUC was 0.88. When using the radiomics score
with SINS and Enneking stage for p53, the achieved AUC was
0.77. The AUC for these models was not significantly different
Frontiers in Oncology | www.frontiersin.org 713
using the DeLong test. The classification sensitivity, specificity,
accuracy, and AUC are summarized in Table 2.
DISCUSSION

There were two objectives in this study: first to evaluate the
prognostic value of two tumor markers, p53 and VEGF, in
the PFS of spinal GCTB, and second to build models based on
the pre-perative CT radiomics features and clinical variables
for the classification of the VEGF and p53 status. The Cox
proportional hazards regression model confirmed the prognostic
role of p53 and VEGF. The models may help to predict the
biological behavior of the tumor and provide preoperative risk
stratification information to aid in the selection of appropriate
treatments. The analysis based on imaging of the entire tumor
may help overcome the limitations of preoperative tissue
sampling. Three models were built using (1) radiomics
features, (2) clinical + conventional imaging variables, and (3)
combined radiomics scores and selected clinical variables. The
AUC of the three models for classifying high vs. low VEGF were
0.88, 0.81, and 0.88, respectively, and for wild-type vs. mutant
p53 were 0.79, 0.72, and 0.77, respectively. The results support
that the clinical variables and radiomics features contained in
preoperative CT were related to IHC biomarkers.

In the era of precision medicine, molecular markers have been
established as important diagnostic and prognostic markers in
clinical decision-making (41). Our study found that high VEGF
status was associated with worse postoperative survival of
patients. Several studies have shown that high levels of p53/
VEGF expression are associated with high recurrence rates (14,
15, 42), and therapies targeting these two biomarkers are under
research or in clinical trials (13, 43–45). VEGF is one of the most
important growth factors for the regulation of vascular
development and angiogenesis (18). The interaction between
endothelial cells and bone cells is essential for bone formation
A B

FIGURE 5 | The radiomics scores were calculated using the developed radiomics models for all cases, classified using 0.5 as the threshold. (A) For prediction of
low vs. high VEGF groups, showing 27 true low VEGF, 4 false low VEGF, 44 true high VEGF, and 5 false high VEGF. (B) For wild-type vs. mutant p53 groups,
showing 68 true WT-p53, 0 false WT-p53, 7 true mutant p53, and 5 false mutant p53.
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during bone remodeling and repair (46, 47). According to this
mechanism, interferon is used for the treatment of GCTB and
has shown some promising efficacy (42, 43, 45). The
pharmacologic treatment using interferon may provide an
option for unresectable, recurring, and metastatic GCTB that
failed the bisphosphonates or denosumab or could not be
continued due to complications.

As for p53, mutant p53 is a well-known poor prognostic
indicator for many tumors, including sarcoma (11, 12). Previous
studies in GCTB have also shown that p53 is an important
prognostic marker for predicting local recurrence and lung
metastasis in GCTB (48–50). Yalcinkaya et al. reported a
significant relationship between p53 expression and local
recurrence (p = 0.022) (49). In patients with lung metastases,
weakly positive staining was found in GCTB of the tibia and
vertebra. However, there are currently no long-term follow-up
survival studies after receiving the same surgical procedure using
the TES for spinal GCTB to evaluate the specific correlation between
p53 status and the prognosis of patients. Our findings provide
evidence for this patient cohort through longer-term clinical follow-
up. Although many of the potential therapies are at the preclinical
testing stage, they may offer a new approach for osteosarcoma
treatment based on p53 targeting in the future (44).

Although the IHC biomarkers are known to be important, the
assessment will require high-quality tissue specimens for
immunohistochemical staining. For preoperative evaluation,
biopsy needle puncture may not provide a sufficient amount of
tumorous tissue for analysis, and the results might also be
affected by the tumor heterogeneity. As shown in our results,
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imaging may provide information associated with the IHC
biomarkers, which can be acquired noninvasively and with a
very high spatial resolution covering the entire tumor.

Several clinical variables were considered in the analysis.
Among them, the intraoperative bleeding volume and the SINS
score were found to be significantly different between the high
VEGF and low VEGF groups. SINS was also significantly different
between wild-type and mutant p53. The results showed that the
spinal instability was associated with the expression of VEGF and
p53 as a poor prognostic indicator. This is consistent with the role
of SINS related to survival time reported in the literature (51). The
amount of bleeding during surgery was greater in the high VEGF
group, which was anticipated with the association between VEGF
and the abundance of blood supply. The VEGF results may help
the orthopedic surgeon estimate the degree of bleeding before
surgery and, if necessary, to perform preoperative embolization.
However, as a parameter that can only be obtained after surgery,
the amount of bleeding is not included in our prediction model.
We also found that the Enneking staging was significantly related
to the p53 status, which was consistent with previous reports about
the role of Enneking staging in planning surgery and adjuvant
therapy for bone tumors and tumor-like bone lesions (52).

Imaging has always been an important examination for
preoperative tumor evaluation, but most of the previous studies on
GCTB focused on tumors of the extremities (53–56), which led to
many findings of indicators not applicable to the spinal tumors, such
as the distance between the edge of the tumor and joint surface,
“paintbrush borders” sign, destruction of posterior cortical bone, and
depth of local tumor cell infiltration. Although themajority ofGCTB
TABLE 2 | The classification results of three models built using radiomics analysis, clinical and imaging characteristics, and the combined model (high VEGF and mutant
p53 as positive).

Sensitivity Specificity Accuracy AUC

High vs. low VEGF* Radiomics analysis 44/49 (90%) 27/31 (87%) 71/80 (89%) 0.88
Clinical + imaging 44/49 (90%) 15/31 (48%) 64/80 (80%) 0.81
Combined model 41/49 (84%) 27/31 (87%) 68/80 (85%) 0.88

Mutant vs. Wild-type p53 Radiomics analysis 7/12 (58%) 68/68 (100%) 75/80 (94%) 0.79
Clinical + imaging 5/12 (42%) 61/68 (90%) 66/80 (83%) 0.72
Combined model 7/12 (58%) 64/68 (94%) 71/80 (89%) 0.77
June 20
22 | Volume 12 | Article 89
*VEGF, vascular endothelial growth factor. Low group includes grades 0 and 1 and high group includes grades 2 and 3.
A B C

FIGURE 6 | The ROC curves were constructed by using the best models developed using (A) radiomics analysis; (B) clinical and imaging variables; and (C)
combined radiomics scores and clinical/imaging variables.
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lesionsare located in themetaphysis andepiphysesof the long tubular
bones, approximately one-third of tumors are located in the axial
skeleton. Our study included some features of spinal GCTB for
evaluation but did not find the significance of specific imaging
indicators. In this study, the unclear boundary of the lesion was the
only feature related to mutant p53, which was consistent with the
finding of other MRI studies showing that lesions with unclear
boundaries had more aggressive biological behaviors (56, 57).

Radiomics analysis is a high-throughput method to extract a
large number of features from radiographic images, which has
been shown as a promising method for the diagnosis and further
characterization of tumors (58). In this study, we used the SVM
with Gaussian kernel for selecting important radiomics features
and for building the classification models (59). The kernel in
SVM works as a transformation that maps input parameters into
a different feature space where the transformed data can be
divided more obviously to reach a higher accuracy (60, 61).
Other classification models, such as logistic regression and
decision trees, work in the original feature space, so less
flexible. Meanwhile, the cost function of SVM allows defining
margins between different groups. This can improve the
robustness of the model and avoid overfitting during the
training process. For studies with a limited case number, SVM
is considered the best option to balance the variance and bias of
the input data (60, 61). In this study, CT imaging was analyzed
because it was cost-effective and considered the most commonly
used for the management of bone tumors in clinical practice.

Radiomics analysis has also been applied to predict the status
of VEGF (angiogenesis) and p53 in various cancers in the
literature. Wang et al. investigated the value of a radiomics
model based on dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI) and diffusion-weighted
imaging (DWI) in estimating the isocitrate dehydrogenase 1
(IDH1) mutation and angiogenesis in gliomas, which suggested
that the SVM model showed good performance for predicting
the VEGF expression (validation group, AUC = 0.919) (62). Sun
et al. developed a machine-learning model for predicting VEGF
status in patients with diffuse gliomas, and the AUC was 74.1% in
the training group and 70.2% in the validation group (63). Other
studies have also applied radiomics based on different imaging
techniques to predict the expression status of p53 in epithelial
ovarian cancer (64), endometrial carcinoma (65), esophageal
squamous cell carcinoma (66), and breast ductal carcinoma (67).

The major limitation was the small sample size identified from a
retrospective clinical database. GCTB in the spine was rare, and
even in our tertiary hospital specializing in bone diseases, we had to
review the records over 10 years to find these cases. Also, to control
for the confounding factors of different surgical methods on the
progression-free survival, only patients receiving the TES were
eligible for this study, which further limited the case number and
the difficulty to identify an independent dataset for validation. In
our analysis, we applied the 10-fold crossvalidation, so the final
model has gone through rigorous validations. Another inherent
limitation was the unbalanced dataset for p53 because the mutant
p53 was rare. Therefore, in the analysis, we were focusing on the
ROC, not the accuracy (68/80 = 85% accuracy, if assuming all cases
were wild-type). In addition, some important variables were not
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detailed in this study, such as age, SINS, Enneking stage, etc. To
further refine the description, we performed a Cox regression
analysis based on these factors, which is shown in Supplementary
Part 4. Nonetheless, we believe the results from this difficult-to-
obtain dataset can contribute new knowledge to the management of
spinal GCTB. The developed models can be applied to prospective
patients for further validation.

In summary, our study demonstrates that VEGF and p53 are
potential biomarkers for progression-free survival prediction of
spinal GCTB patients. Meanwhile, we have shown that radiomics
features extracted from preoperative CT imaging can be used to
build models for the classification of VEGF and p53 status in
spinal GCTB. The capability to predict the aggressive biological
phenotype in spinal GCTB based on preoperative information
may help to improve management, including choosing optimal
treatment strategies and better surveillance protocols.
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Lin Shi1†, Ling Wang1†, Cuiyun Wu1, Yuguo Wei2, Yang Zhang1 and Junfa Chen1*

1 Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou
Medical College), Hangzhou, China, 2 Precision Health Institution, General Electric Healthcare, Hangzhou, China

Purpose: This study aims to uncover and validate an MRI-based radiomics nomogram for
detecting lymph node metastasis (LNM) in pancreatic ductal adenocarcinoma (PDAC)
patients prior to surgery.

Materials and Methods: We retrospectively collected 141 patients with pathologically
confirmed PDAC who underwent preoperative T2-weighted imaging (T2WI) and portal
venous phase (PVP) contrast-enhanced T1-weighted imaging (T1WI) scans between
January 2017 and December 2021. The patients were randomly divided into training (n =
98) and validation (n = 43) cohorts at a ratio of 7:3. For each sequence, 1037 radiomics
features were extracted and analyzed. After applying the gradient-boosting decision tree
(GBDT), the key MRI radiomics features were selected. Three radiomics scores (rad-score
1 for PVP, rad-score 2 for T2WI, and rad-score 3 for T2WI combined with PVP) were
calculated. Rad-score 3 and clinical independent risk factors were combined to construct
a nomogram for the prediction of LNM of PDAC by multivariable logistic regression
analysis. The predictive performances of the rad-scores and the nomogram were
assessed by the area under the operating characteristic curve (AUC), and the clinical
utility of the radiomics nomogram was assessed by decision curve analysis (DCA).

Results: Six radiomics features of T2WI, eight radiomics features of PVP and ten
radiomics features of T2WI combined with PVP were found to be associated with LNM.
Multivariate logistic regression analysis showed that rad-score 3 and MRI-reported LN
status were independent predictors. In the training and validation cohorts, the AUCs of
rad-score 1, rad-score 2 and rad-score 3 were 0.769 and 0.751, 0.807 and 0.784, and
0.834 and 0.807, respectively. The predictive value of rad-score 3 was similar to that of
rad-score 1 and rad-score 2 in both the training and validation cohorts (P > 0.05). The
radiomics nomogram constructed by rad-score 3 and MRI-reported LN status showed
encouraging clinical benefit, with an AUC of 0.845 for the training cohort and 0.816 for the
validation cohort.
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Conclusions: The radiomics nomogram derived from the rad-score based on MRI
features and MRI-reported lymph status showed outstanding performance for the
preoperative prediction of LNM of PDAC.
Keywords: pancreatic ductal adenocarcinoma, magnetic resonance imaging, radiomics, lymph node
metastasis, nomogram
Pancreatic cancer, as a highly malignant gastrointestinal tumor,
has a five-year mortality rate close to its morbidity rate (1, 2).
Pancreatic ductal adenocarcinoma (PDAC) is the predominant
histological subtype, accounting for 85% of all pancreatic cancer
cases (3). Schwarz et al. (4) conducted a retrospective analysis of
2787 patients who underwent surgical resection (SR) for
pancreatic cancer in the United States and found that 54% of
patients had lymph node metastasis (LNM), suggesting that
LNM is a potential key to assess the state of the disease, as it
influences the formulation of surgical procedures and patient
prognosis (5). Different preoperative noninvasive examinations,
including computed tomography (CT), magnetic resonance
imaging (MRI) and positron emission tomography (PET), are
commonly used to identify LNM of pancreatic cancer (6–11).
Unfortunately, all of these technologies are still inadequate for
assessing LNM status because enlarged lymph nodes are often
caused by nonspecific inflammation (12). In addition, although
endoscopic ultrasonography (EUS) has high sensitivity for the
diagnosis of pancreatic primary lesions and LNM and sufficient
histological information can be obtained from a small sample of
tissue, it is an invasive method (13, 14). Its use is also limited by
several other factors, such as the focal size and surrounding
anatomical environment, yielding an accuracy of 41-86% for
lymph node staging of pancreatic adenocarcinoma (14). Recent
studies have shown that Ki-67 and serum MMP7 have the
potential to predict LNM, but their sensitivities remain
insufficient (15, 16).

Radiomics approaches allow for the quantitative analysis of
images and can reflect heterogeneity in the region of interest
(ROI), providing more information through feature analysis
than can be recognized by the naked eye, making it helpful for
clarifying the nature of lesions (17). T2-weighted imaging
(T2WI) and the dynamic enhanced portal venous phase (PVP)
of MRI can better depict the biological characteristics of
pancreatic lesions and have therefore been applied to
radiomics studies of pancreatic cancer (18–20), including for
differential diagnosis, prognosis evaluations, and treatment
response predictions. Although studies have shown that
radiomics can be used for the preoperative prediction of LNM
of malignant tumors (21–24), few radiomics studies based on
MRI image texture analysis have been conducted for the
preoperative prediction of LNM of PDAC. Therefore, this
study aimed to explore whether the use of T2WI and PVP
features was feasible for predicting LNM of PDAC. We sought
to develop and validate a radiomics nomogram as a noninvasive
and feasible approach for the preoperative detection of LNM in
PDAC patients.
219
MATERIALS AND METHODS

Patients
This study was approved by the Ethics Committee of the
Zhejiang Provincial People’s Hospital, Affiliated People’s
Hospital of Hangzhou Medical College. The requirement for
informed consent was waived due to the retrospective nature of
this study. Clinical and MRI databases of patients were
retrospectively reviewed to identify candidate patients who
were treated between January 2017 and December 2021. The
inclusion criteria were as follows: (1) patients who received
radical resection and regional lymph node dissection for
PDAC diagnosed by postoperative pathology and (2) patients
with PDAC who underwent dynamic enhancement MRI
scanning within two weeks before SR. The exclusion criteria
were as follows: (1) images with artifacts that affected lesion
observation; (2) patients who received any treatment for PDAC
before SR, such as neoadjuvant chemoradiotherapy; and (3)
patients with PDAC and other malignant tumors. Among the
141 patients who met these criteria, 58 were diagnosed with
LNM. All patients were randomly divided into training (n = 98)
and validation (n = 43) cohorts at a ratio of 7:3. Clinical data of
the patients were collected, including sex, age, primary tumor
site, the maximum diameter of the tumor, MRI tumor stage
(mTs), MRI-reported lymph node status, and the levels of
carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 125
(CA125) and carcinoma embryonic antigen (CEA). A positive
lymph node on MRI was defined as a nodule at least 10 mm in
the short-axis diameter or a nodule with a round shape,
heterogeneous enhancement and low ADC value (25). The
patient selection flowchart is shown in Figure 1.

MRI Protocol
MRI was performed with a 3.0 T Discovery MR 750 scanner (GE
Healthcare, Waukesha, WI, United States). (1) The following
parameters were used for fat-suppressed fast spin-echo T2-
weighted imaging (T2WI): repetition time (TR)/echo time
(TE), 12000/72 ms; matrix size, 320 × 320; field of view (FOV),
360 × 360 mm2; slice thickness, 3 mm; spacing between slices, 0.6
mm; number of excitation (NEX), 2; and bandwidth, 83.3 kHz.
(2) Gd-diethylenetriamine pentaacetic acid (Gd-DTPA) was
injected at a dose of 0.1 mmol/kg through the median cubital
vein at an injection rate of 2.0 mL/s, followed by 15 ml of saline at
the same flow rate. A fat-suppressed T1-weighted three-
dimensional (3D) gradient-recalled-echo sequence was used to
collect dynamic enhanced images with the following parameters:
TR/TE, 4.1/1.2 ms; matrix size, 260 × 240; FOV, 360 × 360 mm2;
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slice thickness, 3 mm; spacing between slices, 0 mm; NEX, 1; and
bandwidth, 142.8 kHz. The late arterial phase (LAP), portal
venous phase (PVP), and delayed phase (DP) were acquired at 25
seconds, 45 seconds, and 80 seconds. Other scanning sequence
conditions not used for radiomics are not listed in this study.

Tumor Segmentation and
Feature Extraction
Using ITK-SNAP software (26) (Figure 2), segmentation of the
regions of interest (ROIs) was performed by two independent
radiologists with 5 and 15 years of experience in abdominal
radiology, named reader 1 and reader 2, respectively. With
reference to diffusion weighted imaging (DWI) and dynamic
enhanced images, 3D ROIs based on T2WI and PVP were drawn
manually. Features of ROIs were extracted by PHIgo software
Frontiers in Oncology | www.frontiersin.org 320
(GE Healthcare, V1.2.0, China), which is based on pyradiomics,
and complies with the image biomarker standardization
initiative (IBSI) (27). Prior to this, all images underwent
standardized preprocessing, including image resampling at the
same resolution (1*1*1 mm3) and dividing the gray level into
grades 1-10. A total of 1037 features were obtained, including
first-order features, shape features, gray level cooccurrence
matrix (GLCM) features, gray level size zone matrix (GLSZM)
features, gray level run length matrix (GLRLM) features,
neighboring gray tone difference matrix (NGTDM) features
and gray level dependence matrix (GLDM) features. The
stability and reliability were evaluated using intraclass
correlation coefficients (ICCs) by comparing 30 random
patients’ ROIs drawn by reader 1 and reader 2. Features with
ICC values > 0.8 were interpreted as almost perfect and recorded.
FIGURE 2 | Radiomics and model construction workflow.
FIGURE 1 | Patient selection flowchart.
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Dimensionality Reduction and Radiomics
Score Calculation
Dimensionality reduction for T2WI and PVP was performed
using analysis of variance and the Mann–Whitney U test,
Spearman’s correlation, and gradient boosting decision tree
(GBDT) in sequence. Combining the selected features from
T2WI and PVP, GBDT was again used to select significant
features. Radiomics scores (rad-score 1, rad-score 2 and rad-
score 3) were calculated based on the remaining features from
T2WI, PVP and T2WI combined with PVP by multivariate
logistic regression.

Radiomics Nomogram Development
and Evaluation
Univariate logistic regression analysis and multivariate logistic
regression analysis were performed with the clinical
characteristics and rad-score 3 to identify potential and
independent predictors of LNM, respectively (28). Finally, a
radiomics nomogram was constructed with the identified
predictors of LNM. The Hosmer–Lemeshow test and
calibration curves were used to assess the goodness-of-fit and
calibration of the nomogram (29). The predictive performances
of the clinical model, three rad-scores, and the nomogram for
LNM were evaluated by receiver operator characteristic (ROC)
curve analysis, and the areas under the curve (AUCs) were
calculated. Decision curve analysis (DCA) was performed to
determine the clinical efficiency of the nomogram.

Statistical Analysis
The data were analyzed by SPSS 22.0 (IBM Corporation),
MedCalc (Version 14.10.20) and Microsoft R Open (version
3.3.1) software. Univariate analysis was used to assess the
correlations between the clinical characteristics and LNM, with
the chi-square test used for categorical variables and the two-
sample t test used for continuous variables. Normality was
assessed by the Kolmogorov–Smirnov test. The variables that
followed a normal distribution are expressed as the mean ±
standard deviation, and nonnormally distributed variables are
expressed as the median (interquartile range). The De-Long test
was used for statistical comparison of the AUCs of the models.
Calibration plots and DCA were performed using the “rms” and
“dca” packages in R (Microsoft R Open; version 3.3.1),
respectively. All statistical tests were two-tailed, and
significance was set at P<0.05.
RESULTS

Clinical Characteristics
There were no significant differences in any of the clinical
characteristics between the training and validation cohorts
(Table 1), and the LN positivity rate was not significantly
different between the two cohorts (40.8% (40/98) vs. 41.9%
(18/43), respectively; P=0.908). The only significant difference
among the clinical characteristics was in the MRI-reported LNM
status between patients with LNM and those with non-lymph
Frontiers in Oncology | www.frontiersin.org 421
node metastasis (nLNM) in both the training and validation
cohorts (P<0.05) (Table 1).

Radiomics Signature Development and
Rad-Score Calculation
The ICC values for feature extraction between reader 1 and reader
2 ranged from 0.773 to 0.934, suggesting high agreement. A total
of 1791 features were proven to have high consistency (ICCs:
0.8003-0.934). For the T2WI and PVP sequences, analysis of
variance and the Mann-Whitney U test identified 480 and 478
important features, respectively. Following Spearman correlation
analysis, the number of important features was reduced to 14 and
19. Finally, 6 and 8 features were ultimately identified by further
GBDT dimensionality reduction. The corresponding rad-scores (1
and 2) were calculated based on the retained features included in
the multivariable logistic regression. After merging the 14 features
and using GBDT again, 10 features were obtained to calculate rad-
score 3. Various features and coefficients of rad-score 3 are shown
in Table 2, which are all wavelet features. The three rad-scores
were significantly different between LNM and nLNM patients in
both the training and validation cohorts (P <0.01), but there was
no difference between the cohorts (Table 1).

Rad-Score Evaluation
The ROC curve demonstrates the predictive performance of the
clinical model, rad-score 1, rad-score 2, and rad-score 3, as
shown in Figure 3. In the training and validation cohorts, the
AUCs of the clinical model, rad-score 1, rad-score 2 and rad-
score 3 were 0.648, 0.642; 0.769, 0.751; 0.807, 0.784 and 0.834,
0.807, respectively. The thresholds for predicting LNM using
rad-score 1, rad-score 2, and rad-score 3 were -0.441, -0.696, and
-0.807, respectively, in the training cohort. Although the AUC
value of rad-score 3 was the largest among the rad-scores in both
the training and validation cohorts, the difference was not
significant. Rad-score 2 and rad-score 3 had higher predictive
efficacy than the clinical model in the training cohort (P<0.05),
while rad-score 3 showed better performance than the clinical
model in the validation cohort (P <0.05). Detailed results are
shown in Table 3.

Radiomics Nomogram Construction
and Evaluation
The results of the univariate and multivariate logistic regression
analyses are presented in Table 4. Univariate analysis revealed
significant differences in the MRI-reported lymph node status
and rad-score 3 between LNM and nLNM patients in the
training cohort, and they were identified as independent
predictors of LNM by multivariate logistic regression analysis.
The radiomics nomogram constructed by incorporating
independent predictors is shown in Figure 4. The Hosmer–
Lemeshow test showed good calibration of the nomogram in
both the training and validation cohorts (P=0.938 and 0.924),
and the calibration curves exhibited good calibration ability
(Figure 5). The AUC values of the nomogram for predicting
LNM of PDAC in the training and validation cohorts were 0.845
[95% confidence interval (CI), 0.777-0.907] and 0.816 (95% CI,
July 2022 | Volume 12 | Article 927077
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0.698-0.914), with AUCs of 0.828 and 0.680 for specificity and
AUCs of 0.700 and 0.722 for sensitivity, respectively. ROC curves
are shown in Figure 6. The DCA results for the validation cohort
are shown in Figure 7. We found that the nomogram can obtain
better net benefits than the “treat-all” or “treat-none” strategies
under a wide probability threshold.
DISCUSSION

PDAC is a gastrointestinal tumor with extremely high
malignancy and poor prognosis, which is largely attributed to
difficulties in early diagnosis and the limited number of
treatment options available for this disease (1). Lymph node
status is the key factor in developing appropriate treatment
strategies and improving the prognosis of patients (30, 31).
However, traditional MRI can only make a preoperative
Frontiers in Oncology | www.frontiersin.org 522
diagnosis of LNM according to the lymph node size,
morphology and signal characteristics, which can be subjective,
leading to low diagnostic sensitivity (11, 12, 32). In our study, we
obtained a sensitivity of 40%, similar to the literature. Moreover,
logistic regression analysis showed that MRI-reported lymph
node status was the only independent risk factor among all the
clinical characteristics analyzed. A previous study reported that
CT-reported lymph node status was the only independent risk
factor, but it had relatively low predictive efficacy (AUC=0.63)
(33). Although the CA19-9 level may predict the prognosis of
patients with pancreatic cancer (20, 34, 35), it could not be
confirmed as a risk factor for preoperative LNM in our study,
which warrants further investigation.

Radiomics is an advanced method for quantitative analysis
that can reveal information from microscopic features that are
not easily observable by the naked eye in medical imaging (17,
36). In recent years, various studies have attempted to predict
TABLE 2 | Radiomics features selected by GBDT.

Characteristic b OR 95% CI

PVP_wavelet-LLH_firstorder_Minimum 0.012 1.012 0.589,1.710
PVP_wavelet-LLH_glszm_SizeZoneNonUniformity 0.231 1.260 0.685,2.316
PVP_wavelet-LHH_glcm_MaximumProbability 0.790 2.203 1.132,4.289
PVP_wavelet-HHL_glcm_ClusterTendency -0.519 0.595 0.343,1.034
PVP_wavelet-HHH_glszm_SmallAreaEmphasis 0.791 2.205 0.256,3.872
T2WI_wavelet-LLH_firstorder_Mean 0.971 2.640 1.276,5.462
T2WI_wavelet-HLH_glcm_ClusterShade 0.921 2.513 1.152,5.484
T2WI_wavelet-HHL_glcm_Correlation 0.473 1.604 0.903,2.852
T2WI_wavelet-HHH_gldm_DependenceNonUniformityNormalized 0.542 1.719 0.958,3.086
T2WI_wavelet-LLL_firstorder_Kurtosis -0.641 0.527 0.273,1.016
July 2022 | Volume 12 | A
OR, odds ratio; CI, confidence interval.
TABLE 1 | Patients’ clinical characteristics and rad-scores in the training and validation cohorts.

Characteristic Training P Validation P P

nLNM LNM nLNM LNM

Age, mean ± SD 64.9 ± 9.60 64.65 ± 9.55 0.873 65.84 ± 6.79 64.28 ± 9.11 0.523 0.833
Sex
Female, n (%) 19 (51.4%) 39 (63.9%) 0.219 9 (69.2%) 16 (53.3%) 0.332 0.390
Male, n (%) 18 (48.6%) 22 (36.1%) 4 (30.8%) 14 (46.7%)

Location
Head/neck, n (%) 30 (52.6%) 28 (68.3%) 0.120 13 (56.5%) 12 (60%) 0.818 0.606
Body/tail, n (%) 27 (47.4%) 13 (31.7%) 10 (43.5%) 8 (40%)

Size (mm), median (IQR) 33.0 (25.0, 40.0) 33.0 (25.0, 41.5) 0.876 27.0 (20.0, 37.5) 34.0 (26.5, 41.3) 0.113 0.368
CA19-9 (U/ml), median (IQR) 116.80 (55.35, 366.85) 207.05 (75.58, 853.40) 0.120 86.3 (23.5, 214.75) 271.85 (63.03, 879.38) 0.028 0.478
CA125 (U/ml), median (IQR) 17.95 (10.70, 27.33) 16.90 (9.95, 31.9) 0.680 14.5 (7.2, 19.55) 22.25 (10.65, 45.83) 0.402 0.389
CEA (mg/ml), median (IQR) 3.35 (2.08, 5.95) 4.15 (2.28, 7.73) 0.278 3.30 (2.40, 5.35) 3.90 (2.58, 5.95) 0.076 0.846
mTs
T1-2, n (%) 40 (59.7%) 18 (58.1%) 0.878 15 (60%) 10 (55.6%) 0.771 0.240
T3-4, n (%) 27 (40.3%) 13 (41.9%) 10 (40%) 8 (44.4%)

MRI-reported LN status
Negative, n (%) 51 (89.5%) 24 (60.0%) 0.001 21 (84.0%) 4 (55.6%) 0.04 0.439
Positive, n (%) 6 (10.5%) 16 (40.0%) 10 (16.0%) 8 (44.4%)

Rad-score 1, mean ± SD -0.921 ± 1.048 0.316 ± 1.424 0.000 -0.890 ± 0.946 0.035 ± 1.134 0.008 0.713
Rad-score 2, mean ± SD -1.268 ± 1.626 0.611 ± 2.498 0.000 -1.364 ± 1.946 0.516 ± 2.498 0.006 0.841
Rad-score 3, mean ± SD -1.351 ± 1.439 0.693 ± 1.579 0.000 -1.932 ± 1.573 -0.463 ± 1.654 0.005 0.722
rticle 9
SD, standard deviation; mTs, MRI tumor stage; IQR, interquartile range; LNM, lymph node metastasis; nLNM, non-lymph node metastasis.
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LNM based onMRI radiomic analysis of primary lesions (22, 37–
43). To the best of our knowledge, only one study has analyzed
the predictive efficacy of radiomics based on MRI for LNM of
PDAC (43), but only the arterial phase of the T1WI enhanced
sequence was used. T2WI can reflect the signal intensity of the
tumor tissue and its structure, and the enhanced sequence can
better reflect tumor-related information such as internal
heterogeneity and vascular regeneration (18–20, 24, 44). Based
on the two sequences and by incorporating the independent
predictor of MRI-reported lymph node status, we constructed a
Frontiers in Oncology | www.frontiersin.org 623
model with good predictive efficacy, with an AUC of 0.845 in the
training cohort. This result is similar to findings reported in
previous studies on multiparametric MRI-based radiomics
nomograms for predicting LNM of lung adenocarcinoma,
bladder cancer, and cervical cancer, with AUCs ranging from
0.820 to 0.856 in the training cohort (37–39).

We delineated a 3D ROI containing comprehensive
information (45), and 1037 features were extracted, including
high-order features. After dimensionality reduction, we found
that rad-score 1 and rad-score 2 mainly consisted of wavelet
TABLE 3 | Comparison of AUCs among models.

Cohorts Model Rad-score 1 Rad-score 2 Rad-score 3 MRI- LN

Training Rad-score 1 / 0.553 0.300 0.062
Rad-score 2 0.553 / 0.654 0.011
Rad-score 3 0.300 0.654 / 0.001
MRI- LN 0.062 0.011 0.001 /

Validation Rad-score 1 / 0.672 0.571 0.257
Rad-score 2 0.672 / 0.814 0.127
Rad-score 3 0.571 0.814 / 0.037
MRI- LN 0.257 0.127 0.037 /
July 2022 | Volume 12 | Artic
MR-LN: MRI-reported LNM status.
A B

FIGURE 3 | Comparisons of the ROC curves for MRI-reported LN status and the three rad-scores in the training cohort (A) and validation cohort (B). MRI-LN, MRI-
reported LN status.
TABLE 4 | Univariate and multivariate logistic regression analyses of the clinical parameters and rad-scores.

Characteristic Univariate analysis P Multivariate analysis P

OR 95% CI OR 95% CI

Age 0.991 0.955-1.029 0.651
Sex 0.833 0.414-1.676 0.608
Location 0.610 0.307-1.213 0.159
Size 1.090 0.875-1.357 0.441
CA19-9 1.000 1.000-1.000 0.874
CA125 0.998 0.992-1.004 0.509
CEA 1.001 0.999-1.003 0.535
mTs 1.115 0.552-2.251 0.762
MRI-reported LN status 5.153 2.219-11.966 0.000 4.251 1.309-13.808 0.016
Rad-score 3 2.471 1.756-3.477 0.000 2.448 1.571-3.814 0.000
le 9
mTs, MRI tumor stage.
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features (7/8, 5/6), and rad-score 3 consisted only of wavelet
features, indicating that wavelet features better reflect the
biological characteristics and heterogeneity of tumors. Wavelet
filters can help to sharpen the image and eliminate noise (46),
and the features of wavelet filters can represent the signal
intensity distribution or grayscale distribution in the tissue
(47) . For example, among the first-order features ,
“LLH_firstorder_Minimum” and “LLH_firstorder_Mean”
describe the minimum and mean gray intensity of the tumor
region, respectively, and the difference in the grayscale intensity
distribution is shown by “LLL_firstorder_Kurtosis”. In addition,
“LLH_glszm_SizeZoneNonUniformity” and “HHH_gldm_
DependenceNonUniformityNormalized” represent the
heterogene i ty of the tumor t i s sue . “HHH_glszm_
SmallAreaEmphasis” is expressed as a greater value with
smaller size zones and more fine textures. This study
confirmed that “MaximumProbability”, “MaximumProbability”
and “MaximumProbability” were the most meaningful among all
Frontiers in Oncology | www.frontiersin.org 724
the GLCM features, showing differences in the regional signal
intensity distribution, gray level skewness, uniformity and linear
dependency within PDAC tissues with LNM or nLNM tendency
(47). The value of some of the wavelet features we obtained has
also been confirmed in recent studies on LNM of rectal cancer
and cervical cancer, especially the features based on T2WI (21,
24, 48). We also found that only six features from T2WI were
retained—fewer than those retained from PVP (eight features).
However, the former had a larger AUC score, although the
difference was not statistically significant. This may be related to
the higher tissue resolution provided by T2WI and greater
influence of upper abdominal respiratory artifacts in dynamic
enhanced scanning, which requires further studies
with histopathology.

There were several limitations to this study. First, the sample
size was small, so selection bias may exist. Because this was a
single-center study, the application of the radiomics nomogram
was limited as well; more data from multicenter and multiple
FIGURE 4 | Radiomics nomogram incorporating the MRI-reported LN status and rad-score 3. MRI-LN, MRI-reported LN status.
A B

FIGURE 5 | Calibration curves of the radiomics nomogram in the training cohort (A) and validation cohort (B).
July 2022 | Volume 12 | Article 927077
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MRI scanners are needed to verify the accuracy and stability of
our radiomics model. Second, volume effects and respiratory
motion artifacts could not be completely avoided when
delineating the tumor boundaries. Third, only the portal vein
phase of the multiphase enhancement sequences was analyzed,
analyses and comparisons of each phase could be performed to
determine their predictive value in future work, DWI sequence
could be studied as well.

In conclusion, the results of our study demonstrated that a
radiomics nomogram based on dual-parametricMRI imaging could
successfully predict LNM and nLNM of PDAC. This method shows
higher specificity and sensitivity than traditional MRI can provide,
allowing clinicians to be able to prepare more thoroughly before
performing surgical procedures. In addition, the use of this
nomogram can ultimately improve the prognosis of patients.
Frontiers in Oncology | www.frontiersin.org 825
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represent the net benefit of the nomogram, treat-all strategy, and treat-none strategy, respectively.
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FIGURE 6 | The ROC curves for the radiomics nomogram in the training group (A) and validation cohort (B).
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Assessing the robustness of
radiomics/deep learning
approach in the identification of
efficacy of anti–PD-1 treatment
in advanced or metastatic
non-small cell lung
carcinoma patients

Qianqian Ren1,2†, Fu Xiong1,2†, Peng Zhu3†, Xiaona Chang4,
Guobin Wang5, Nan He6* and Qianna Jin1,2*

1Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China, 2Hubei Province Key Laboratory of Molecular Imaging, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan, China, 3Department of
Hepatobiliary Surgery, Wuhan No.1 Hospital, Wuhan, China, 4Department of Pathology, Union
Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
5Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong
University of Science and Technology, Wuhan, China, 6Cancer Center, Department of
Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China
Administration of anti–PD-1 is now a standard therapy in advanced non-small

cell lung carcinoma (NSCLC) patients. The clinical application of biomarkers

reflecting tumor immune microenvironment is hurdled by the invasiveness of

obtaining tissues despite its importance in immunotherapy. This study aimed to

develop a robust and non-invasive radiomics/deep learning machine

biomarker for predicting the response to immunotherapy in NSCLC patients.

Radiomics/deep learning features were exacted from computed tomography

(CT) images of NSCLC patients treated with Nivolumab or Pembrolizumab. The

robustness of radiomics/deep learning features was assessed against various

perturbations, then robust features were selected based on the Intraclass

Correlation Coefficient (ICC). Radiomics/deep learning machine-learning

classifiers were constructed by combining seven feature exactors, 13 feature

selection methods, and 12 classifiers. The optimal model was selected using

the mean area under the curve (AUC) and relative standard deviation (RSD). The

consistency of image features against various perturbations was high (the range

of median ICC: 0.78–0.97), but the consistency was poor in test–retest testing

( the range of med ian ICC: 0 .42–0.67 ) . The opt ima l mode l ,

InceptionV3_RELF_Nearest Neighbors classifiers, had the highest prediction

efficacy (AUC: 0.96 and RSD: 0.50) for anti–PD-1/PD-L1 treatment. Accuracy

(ACC), sensitivity, specificity, precision, and F1 score were 95.24%, 95.00%,
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95.50%, 91.67%, and 95.30%, respectively. For successful model robustification,

tailoring perturbations for robustness testing to the target dataset is key. Robust

radiomics/deep learning features, when paired with machine-learning

methodologies, will work on the exactness and the repeatability of

anticipating immunotherapy adequacy.
KEYWORDS

NSCLC, radiomics, deep learning, robustness, immunotherapy
Introduction

The introduction of programmed death 1 receptor (PD-1)/

programmed death ligand 1 (PD-L1) blocking antibodies and

targeted agents have substantially changed the therapeutic

strategies for advanced lung cancer. In the setting of pre-treated

patients with advanced non-small cell lung carcinoma (NSCLC),

Nivolumab and Pembrolizumab monotherapy showed

significantly better overall survival (OS), compared with

traditional chemotherapy (1–3). Several predictive biomarkers

based on cellular phenotypes, immunohistochemical, mutational

tests, and expression-based approaches have been proposed to

predict response to immune checkpoint inhibition. However, the

predictive power of these methods was far from perfect. For

example, only 44.8% of PD-L1–positive NSCLCs were

responsive to Pembrolizumab in a first-line setting (4).

Furthermore, it is difficult to identify the current status of

immune profiles from an archival sample due to the dynamical

evolution of the immune-escape mechanism during anti-cancer

treatment (5, 6). Therefore, non-invasive methods, understanding

the dynamics of the tumors in clinical practice, and assessing the

immune landscape of tumors are critical.
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Radiomics/deep learning (DL) image features are becoming

a promising non-invasive method to obtain quantitative

measurements for tumor classification and assessment for

therapy response in oncological research (7–9). An imaging

biomarker should be reproducible, robust, and accurate.

However, image features are susceptible to several factors, such

as imaging protocol variability, different vendors, image

reconstruction processes, inter-rater tumor segmentation

variability, patient motion artifact, overall image quality, and

tumor phenotype (10–13). Ideally, only features that are robust

to these variations would be incorporated into a predictive

model for good generalizability (14).

We hypothesized that the combination of machine learning

(ML) technologies and high-dimensional radiomics/DL features

would facilitate the prediction of immunotherapy efficacy.

Therefore, we investigated the robustness of radiomics/DL

features against different perturbations and then determined

the optimal model by combining feature extractors, feature

selectors, and ML classifiers.
Materials and methods

Whuh (Wuhan Union Hospital) data

The medical records of patients with advanced NSCLC who

had received Nivolumab (3 mg/kg every 2 weeks) or

Pembrolizumab (200 mg every 3 weeks) monotherapy between

January 2019 and January 2021 were retrospectively reviewed at

Union Hospital, Tongji Medical College, Huazhong University

of Science and Technology. Treatments were provided until

disease progression, intolerable side effects, or consent to the

withdrawal. The retrospective study was approved by the Ethics

Committee of Union Hospital, which also waived the written

informed consent, because the data were analyzed anonymously.

Patient inclusion criteria were (1) pathologically confirmed

NSCLC, (2) enhanced computed tomography (CT) performed

fewer than 15 days before treatment, and (3) availability of

clinical data. The exclusion criteria were (1) missing or low-
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quality treatment CT, (2) suffering from other tumor diseases at

the same time, (3) combining other treatments while using

immunotherapy, (4) Patients with no measurable lesion by

Immune-Modified Response Evaluation Criteria In Solid

Tumors (imRECIST) or no available response evaluation (15).

Tumor response to Nivolumab or Pembrolizumab monotherapy

was objectively assessed by experienced radiologists (QQ. R, QN.

J) using imRECIST in the third month. The details regarding the

response assessment were described in the supplemental. The

data pertaining to demographics, smoking history, histology

type, TNM stage, and molecular testing and the number of

prior lines of therapy were extracted from electronic medical

records (Table 1).
Test–retest cohorts

The test–retest cohort with 31 NSCLC patients was available

from the Cancer Imaging Archive (16, 17). Images in the test–

retest cohort using the same scanner and acquisition protocol

were acquired every 15 min. Informed consent was waived.
Computed tomography acquisition
and segmentation

CT scans were acquired using a multi-slice spiral CT system

(Philips Healthcare, General Electric Health Care, and Siemens

Healthcare) with a tube voltage of 100–120 kVp, slice thickness

(spacing) of 1–5mm, and in-plane resolution of 0.75 mm × 0.75

mm. All scans were acquired using the facilities’ CT chest

protocol and standard image reconstruction.
Pre-processing and tumor segmentation

The tumor regions of interest (ROIs), which corresponded to

the biggest target lesion, were manually performed using three-

dimensional Slicer software, which was based on a consensus

reached by two experienced radiologists (one with 5 years of

experience, another with 10 years of experience). For those cases

with a blurred edge around the lesion, the maximum range was

drawn and regarded as the border. Large vessels, adjacent

organs, and air cavities were excluded. On contrast-enhanced

CT, difficult-to-identify lesions were labeled with reference to the

corresponding nuclear positron emission tomography (PET)

image (some patients had PET scans) or with the permission

of two physicians. The two readers repeated the same procedures

2 weeks later and any disagreement was resolved

through consultation.
Frontiers in Oncology 03
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Feature extraction

To be consistent with DL features, three consecutive slices

with the maximum cross-sectional area of the tumor lesion were

selected. Radiomic feature calculations were automatically done

using the PyRadiomics package implemented in Python (18).

Radiomics features with or without wavelet filtration included

three groups: (1) first-order statistics, (2) shape features, and (3)

second-order features: gray-level co-occurrence matrix (GLCM),

gray-level size zone matrix (GLSZM), gray-level run-length
TABLE 1 Demographic and clinical characteristics of patient
populations.

Characteristic Responsive to
Immunotherapy

(n=124)

Unresponsive to
Immunotherapy

(n=33)

p

Age (mean±SD
[years])

59.69±8.19 58.42±8.89

Gender 0.336

Male 103 25

Female 21 8

Smoking History 0.140

Yes 89 19

No 35 14

HistoType 0.108

A 85 19

S 36 10

U 2 3

AS 1 1

Clinical Stage 0.378

IIIB 25 9

IV 99 24

The expression of
EGFR

0.267

Positive 16 1

Negative 28 8

Unknown 80 24

The expression of
ALK

0.556

Positive 1 1

Negative 35 8

Unknown 88 24

The level of PD-
Ll

0.235

High 36 6

Low 20 9

Unknown 68 18

Chemotherapy 0.194

1 course 21 10

2 courses 43 8

3 courses 60 15
frontiersi
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matrix (GLRLM), neighborhood gray-tone difference matrix

(NGTDM), and gray-level dependence matrix (GLDM)

features (18).

ImageNet, which has numerous object categories and

manually annotated training photos, was used to pre-train

InceptionResnetV2, InceptionV3, Resnet50, VGG16, VGG19,

and Xception (19). The six pre-trained CNNs were used as an

arbitrary feature extractor while executing DL feature

extraction, allowing the input picture to propagate forward,

halting at the penultimate layer, and using the outputs of that

layer as our features. We used global max pooling to extract the

feature map’s maximum value before converting it to its

original value.
Image normalization

An image interpolation procedure was needed to standardize

the images after CT image acquisition and segmentation. The

image brightness was adjusted through the adaptive window

level. The histogram equalization method was applied to CT

images to get better visualization. The size of the three axial slices

was adjusted to 224 mm × 224 mm, consistent with the input

layer size of the pre-trained CNN models. The Gaussian filter

was used to remove noise in images since CT images were

mainly affected by quantum noise, which would be caused by the

variability of the electron density of tissue voxels, and

represented by random Gaussian process statistics (20).
Robust features for test–retest imaging
and image perturbations

We tested feature robustness against various perturbations

in Whuh data, then feature robustness was verified in the test–

retest cohort.

According to the imaging guidelines (21) and the

radiologist’s visual inspection, we defined the expected

perturbations in a multicenter setting.
Fron
(1) Axial slice spacing (S): CT images were reconstructed

contiguously at 1, 2, 3, and 5 mm section thicknesses.

(2) Rotation (R): The depicted tumor rotation would be

affected by the patient’s position. Therefore, we

generated a set angle q [−30°, −15°, 15° 30°] and

rotated the image, and segmented tumor in the axial

(x, y) plane.

(3) ROI variation (Seg): The depicted tumor edge might be

affected by the patient’s respiratory motion artifact and

the variability of intra- and inter-observer ROI

segmentation. Therefore, ROI enlargement and
tiers in Oncology 04
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shrinking were considered (enlargement and shrinking

were shown in Figure 1) (14, 22).
Robust features evaluation: ICC (2,1) for each feature was

calculated and only those that reach the cutoff (ICC > 0.75) for all

tested perturbations were entered following the feature selection

and modeling process. Raw feature vectors were further

standardized by being centered to the mean and scaled to unit

variance. Features with zero median absolute deviation (MAD),

regarded as nonpredictive features, were further removed.
Feature selectors and machine learning
methods

The feature selection methods included chi-square score

(CHSQ), ReliefF(RELF), mutual information maximization

(MIM), Fischer Score (FSCR), mutual information feature

selection (MIFS), Gini index (GINI), interaction capping

(ICAP), joint mutual information (JMI), conditional infomax

feature extraction (CIFE), conditional mutual information

maximization (CMIM), double input symmetric relevance

(DISR), minimum redundancy maximum relevance (MRMR),

and test score (TSCR).

The 12 ML classifiers included logistic regression, k-nearest

neighbors, quadratic discriminant analysis (QDA), Support

Vector Classifiers (SVCs) with linear and radial basis function

(RBF) kernels, XGBoost, multilayer perceptrons, Gaussian

processes, decision trees, naive Bayes, random forests, and

AdaBoost. These classifiers were all imported from a Python

(version 3.6.4) ML library named scikit-learn (version 19.0)

(23). Further details about the feature selection methods were in

Supplementary S2, and the parameter settings and tuning range of

ML classifiers were detailed in the Supplementary Materials.
Machine learning and model
performance evaluation

Seven feature extractors, 13 feature selectors, and 12

classifiers were combined, then 1,092 (7 × 13 × 12 = 1092) ML

models were generated. The nomenclature of each model

combined the feature exactor, the names of the feature

selector, and the classification method. For example, Rnest50_

RELF _ nearest neighbors was a model trained by a k-nearest

neighbors classifier with features selected by the ReliefF and

extracted from Rnest50.

Each of the 1,092 models was trained during the 10-fold

stratified cross-validation using the StratifiedKFold iterator in

scikit-learn, which is a variation of kfold cross-validation that

ensured each set contained approximately the same percentage

of samples of each target class as the whole training dataset.
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Synthetic minority over-sampling technique was adopted to

handle the imbalanced data.

The best performing model was selected based on AUC and

relative standard deviation (RSD). RSD was defined as the ratio

between the standard deviation and mean of the 10-fold cross-

validated AUC values: RSD = (sdAUC/mean AUC) ×100. The

lower the RSD value, the higher the stability of the predicting

model. The model with the highest AUC value and the lowest

RSD was considered the best performing model. The

performance of the best performing model was further

measured by accuracy (ACC), sensitivity, specificity, F1 score,

and precision.
Statistical analysis

Continuous variables were presented by using median with

mean + SD and the statistic difference was compared by

Wilcoxon signed-rank test. For differences in categorical

variables, Fisher’s exact test was adopted, and the results were

shown as the number of events followed by relative frequencies
Frontiers in Oncology 05
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(%). A two-sided p < 0.05 was used as the criterion to indicate a

statistically significant difference.
Results

The study flowchart was presented in Figure 1.
Patient characteristics

Of 157 patients with advanced NSCLC (128 men, 29

women), 109 patients underwent nivolumab monotherapy and

48 underwent pembrolizumab monotherapy during the study

period. The median age was 59 (range: 29–78) years. One

hund r ed f ou r ( 6 6%) we r e d i a gno s ed a s ha v i ng

adenocarcinoma, 46 (29.3%) were squamous cell carcinoma,

five (3.2%) were undifferentiated large cell carcinoma, and two

(1.3%) were adenosquamous carcinoma. Mutations in epidermal

growth factor receptors were present in 17 patients (10.8%).

Thirty-one patients (19.7%) had received one course of
FIGURE 1

The study flowchart. After pre-processing and tumor segmentation, the images were artificially perturbed. Robust features were evaluated by
machine learning (ML) models.
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chemotherapy, 51 patients (32.5%) had received two courses,

and 75 patients (47.8%) had received three or more courses. The

expression of PD-L1 was abundant (tumor proportion score

[TPS] ≥ 50%) in 42 patients (26.8%), at low levels (1% ≤ TPS <

50%) in 29 patients (18.5%), and unknown in the remaining 86

(54.8%). According to Response Evaluation Criteria in Solid

Tumors, version 1.1, after anti–PD-1 immunotherapy, 65

patients (41.4%) had a partial response, 59 patients (37.6%)

had stable disease, and 33 patients (21.0%) had progressive

disease (Table 1).
Feature robustness

One hundred seven original features and 744 wavelet

features were extracted concerning radiomics features.

Radiomics features included 14 shape parameters, 162 first-

order parameters, 216 GLCM parameters, 144 GLRLM

parameters, 144 GLSZM parameters, 126 GLDM features, and

45 NGTDM parameters. The number of features for DL models

was InceptionResNetV2 1536, InceptionV3 2048, Xception

2048, and Resnet50 2048, VGG16 512 and VGG19 512. The

representative feature heatmaps of features generated from

InceptionV3 were presented in Figure 2.

In DL and radiomics features, ICCs ranging from 0.80 to

0.90 demonstrated favorable feature reproducibility for S (axial

slice spacing). The features from InceptionResnetV2 and
Frontiers in Oncology 06
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InceptionV3 were robust against R(rotation) but have a lower

agreement if the ROI changed. For features from Resnet50 and

Xception, robustness against S and Seg (ROI variation) were

comparable. The features from VGG16 and VGG19 were robust

against Seg but had a lower ICC for R. Radiomics features were

robust against each perturbation, especially against Seg. The

percentage of robust features against all perturbations for each

feature extractor was presented in Figure 3 (The performance of

each feature extractor against each image perturbation was

reported in Supplementary Table 1 with median and the

interquartile range (IQR)). The number of robust features for

different ICC threshold settings was reported in the

Supplementary Material Figure 1.

Compared with the consistency test for various

perturbations, the repeatability in the test–retest group was

much worse. The ICC of the best radiomic features in

the above robustness testing was 0.6 in the test–retest group.

The performance of each feature extractor regarding the

test_retesting images was reported in Supplementary Table 2

with median and IQR.

We then reduced the number of features by removing

features with zero MAD across the two cohorts. With the ICC

threshold set to 0.75, the numbers of features remaining after

robustness testing were radiomics 233, InceptionResNetV2 25,

InceptionV3 74, Resnet50 109, VGG16 30, VGG19 73, and

Xception 50. These features were first screened by the 13

feature selectors mentioned, and then the best combination
FIGURE 2

The heatmap of features generated from InceptionV3 for representative patients.
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was further screened by the wrapper feature selection method

based on the recursive feature addition algorithm.
Feature selection and machine
learning models

The optimal model InceptionV3_RELF_ Nearest Neighbors

was selected with the AUC value 0.96 and RSD 0.50 among

the 1,092 machine-learning models (list of all feature selectors

were in Supplementary Table 3, and the parameter settings

and tuning range of ML methods were presented in

Supplementary Material). Analysis of the confusion matrix-

related classification metrics of InceptionV3_RELF_ Nearest

Neighbors showed that the ACC, sensitivity, specificity,

precision, and F1 score were 95.24%, 95.00%, 95.50%, 91.67%,

and 95.30%, respectively. The illustration of the 10-fold cross-

validated AUC for InceptionV3 features was presented in

Figure 4A. Interestingly, the radiomics models had equal

performance. The AUC value of Radiomics_CIFE_Nearest

Neighbors, Radiomics_CIFE_QDA, Radiomics_CMIM_Nearest

Neighbors, and Radiomics_CMIM_Multilayer Perceptron) was

0.96 in each model, and the RSD was 0.61, 0.67, 0.61, and 0.67.

The heatmap of the 10-fold cross-validated AUC concerning

radiomics features were presented in Figure 4B. Regarding the
Frontiers in Oncology 07
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ML classifiers, the Nearest Neighbors classification outperformed

other classifications, with the median AUC 0.79 (IQR 0.75–0.85).

Supplementary Figure 2 reported the mean AUC of the Nearest

Neighbors classification.
Discussion

In this study, by utilizing quantitative image analysis to

extract features in conjunction with a ML classifier, we

constructed accurate and reproducible models to predict

immunotherapy response for advanced NSCLC. Importantly,

these efficient models were obtained using cross-validation, and

the inputs of the models were robust.

PD-L1 immunohistochemistry (IHC) expression, tumor

mutation burden, and tumor-infiltrating lymphocytes have

been suggested to predict the response to immunotherapy (24,

25). However, tissue-based biomarkers rely on individual tumor

samples from accessible lesions in clinic practice and may not

truly reflect the complexity of inter-tumoral heterogeneity.

Furthermore, it is difficult to determine the current status of

immune profiles from archival samples, as immune-escape

mechanisms evolve dynamically during anti-cancer treatment

(5, 6).
FIGURE 3

Overall percentage of robust features against image perturbations.
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A

B

FIGURE 4

The predictive performance (area under the curve, AUC) of different combinations of feature selection methods (rows) and classification
algorithms (columns) were presented in the heatmap. (A) Cross-validated AUC values of 156 models with InceptionV3 features. (B) Cross-
validated AUC values of 156 models with radiomics features.
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The main idea of DL is to employ a deep neural network,

which provides a unique set of novel tools to improve NSCLC

detection (26), characterization (27), survival prediction, and

treatment outcome (28). However, compared with statistical ML

models, DL models typically required a much larger amount of

data to train for optimal results. To overcome the limitations of

small datasets, transfer learning patterns (29) facilitate DL

models as powerful extractors of useful feature sets.

Radiomic features have been used to predict the benefit of

adjuvant chemotherapy, disease risk in early stage lung cancer

(30), treatment response to concurrent chemoradiation in locally

advanced lung cancer (31), and response to immune checkpoint

inhibition in advanced NSCLC (32, 33). Most studies focused on

the AUC of predictive models on a given dataset without

considering the robustness of imaging features.

Our model is reliable and reproducible, because it uses

robust features following the standardization of the model’s

input images and can be applied to CT data of various

institutions. This model can minimize possible differences

between different medical centers, inspection machines, and

image reconstruction methods.

The evaluation of the robustness feature is based on the

assumption that test–retest images and perturbations do not

have consistent bias. We tested the robustness of features against

perturbations, such as slice thickness spacing(S), rotation(R),

and ROI variation (Seg). Both DL and radiomic features show

excellent robustness to S perturbation and have a modest

performance to Seg perturbation. The Seg perturbation

captured the range of variability that occurred with human

inter-observer variability and patient respiratory motion

artifact. It is better to underestimate rather than overestimate

the ROI when segmenting.

Several major limitations remained in the present study. First,

our data were relatively small, and baseline characteristics maybe

not in accordance with the population-based dataset. For example,

the objective response rate was higher than in the previous study

(34, 35). Thirty-two patients chose immunotherapy, because they

could not tolerate chemotherapy toxicity rather than disease

progression, which partly explained the high efficiency. Second,

three consecutive slices of the tumor were sampled for the

analysis, and volumetric assessments were not performed. In a

previous study, data from a single slice were found to be sufficient

for this type of analysis (36). Third, whether our algorithm model

for predicting immunotherapy response can be applied to cancer

types other than NSCLC is another potential research question to

be solved. Fourth, our model lacks external verification.

Compared with the DL model, the characteristic stability of

radiomics model was higher; however, the prediction

capabilities of the DL and radiomics model were comparable.

Which model is better requires further verification. Fifth, the

factors involved with image features, such as histogram

equalization approaches, noise removal methods, and image

reconstruction methods, require more in-depth study. Sixth,
Frontiers in Oncology 09
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more study is required to determine whether transfer learning

may take the role of the specifically created model for NSCLC due

to the heterogeneity between the source and destination databases.

In addition, PD-L1 expression data were unavailable for a

majority of patients in our cohort. The correlation between PD-

L1 expression, which was a clinically validated biomarker of

benefit from PD1/PD-L1 blockade, and the instructed model,

was not involved in our study.

To the best of our knowledge, this is the first work assessing

the robustness of image features in CT imaging of NSCLC

patients. In addition, we perform a comparative analysis to

select the best machine-learning methods with favorable

predictive AUC and stability. Inception V3_RELF_Nearest

Neighbors classifiers provided a robust, non-invasive way to

identify NSCLC patients who may benefit from immunotherapy.

We believe that combining machine-learning methods and

radiomics/DL features will improve the AUC in predicting

immunotherapy efficacy.

Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and

approved by the Ethics Committee of Union Hospital. Written

informed consent for participation was not required for this

study in accordance with the national legislation and the

institutional requirements.

Author contributions

The study was designed by NH, QJ, and QR with the help of

the others. QR, PZ, FX, XC, NH, and QJ analyzed and

interpreted the data. QR developed a model. QR, QJ, FX, and

PZ performed the main computational works. NH, XC, and GW

collected surgical data and supported transcriptome analyses.

QR, FX, PZ, XC, NH, and QJ collected and analyzed the clinical

data. QR, FX, PZ, and QJ performed image analysis and

interpretation. GW and NH acquired funding for this study.

QR, FX, PZ, NH, and QJ mainly wrote the manuscript, and all

authors edited the manuscript. All authors contributed to the

article and approved the submitted version.
Funding

This study was supported by the National Natural Science

Foundation of China (No. 82172755) and Wuhan Knowledge

Innovation Special (Item Number: 2022020801020532).
frontiersin.org

https://doi.org/10.3389/fonc.2022.952749
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ren et al. 10.3389/fonc.2022.952749
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated
Frontiers in Oncology 10
37
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.952749/full#supplementary-material
References

1. Borghaei H, Gettinger S, Vokes EE, Chow LQM, Burgio MA, de Castro
Carpeno J, et al. Five-year outcomes from the randomized, phase III trials
CheckMate 017 and 057: Nivolumab versus docetaxel in previously treated non-
Small-Cell lung cancer. J Clin Oncol (2021) 39:723–33. doi: 10.1200/JCO.20.01605

2. Herbst RS, Baas P, Kim D-W, Felip E, Pérez-Gracia JL, Han J-Y, et al.
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Predicting chemotherapy
response in non-small-cell
lung cancer via computed
tomography radiomic features:
Peritumoral, intratumoral,
or combined?

Runsheng Chang1, Shouliang Qi 1,2*, Yifan Zuo1, Yong Yue3,
Xiaoye Zhang4, Yubao Guan5 and Wei Qian1

1College of Medicine and Biological Information Engineering, Northeastern University,
Shenyang, China, 2Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education,
Northeastern University, Shenyang, China, 3Department of Radiology, Shengjing Hospital of China
Medical University, Shenyang, China, 4Department of Oncology, Shengjing Hospital of China
Medical University, Shenyang, China, 5Department of Radiology, The Fifth Affiliated Hospital of
Guangzhou Medical University, Guangzhou, China
Purpose: This study aims to evaluate the ability of peritumoral, intratumoral, or

combined computed tomography (CT) radiomic features to predict

chemotherapy response in non-small cell lung cancer (NSCLC).

Methods: After excluding subjects with incomplete data or other types of

treatments, 272 (Dataset 1) and 43 (Dataset 2, external validation) NSCLC

patients who were only treated with chemotherapy as the first-line treatment

were enrolled between 2015 and 2019. All patients were divided into response

and nonresponse based on the response evaluation criteria in solid tumors,

version 1.1. By using 3D slicer and morphological operations in python, the

intra- and peritumoral regions of lung tumors were segmented from pre-

treatment CT images (unenhanced) and confirmed by two experienced

radiologists. Then radiomic features (the first order, texture, shape, et al.)

were extracted from the above regions of interest. The models were trained

and tested in Dataset 1 and further validated in Dataset 2. The performance of

models was compared using the area under curve (AUC), confusion matrix,

accuracy, precision, recall, and F1-score.

Results: The radiomicmodel using features from the peritumoral region of 0–3

mm outperformed that using features from 3–6, 6–9, 9–12 mm peritumoral

region, and intratumoral region (AUC: 0.95 versus 0.87, 0.86, 0.85, and 0.88).

By the fusion of features from 0–3 and 3–6 mm peritumoral regions, the

logistic regression model achieved the best performance, with an AUC of 0.97.

This model achieved an AUC of 0.85 in the external cohort. Moreover, among

the 20 selected features, seven features differed significantly between the two

groups (p < 0.05).
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Conclusions: CT radiomic features from both the peri- and intratumoral

regions can predict chemotherapy response in NSCLC using machine

learning models. Combined features from two peritumoral regions yielded

better predictions.
KEYWORDS

non-small cell lung cancer, Computed Tomography (CT), chemotherapy response,
radiomics, peritumoral features, area under curve
Introduction

Lung cancer remains the leading cause of cancer-related

deaths, with a 2-year relative survival rate of 36% (1).

Histologically, non-small cell lung cancer (NSCLC) is the most

common type of lung cancer, and locally advanced NSCLC

patients comprise approximately 30% of newly diagnosed

patients (2–4). Clinically, patients received surgery,

chemotherapy, radiation, or targeted drug therapies as the

first-line treatment according to related clinical guidelines. As

the standard first-line treatment of advanced-stage NSCLC

patients with no specific gene mutations, chemotherapy has

been and will still be a cornerstone in the near future (5).

However, owing to the heterogeneity of tumors, different

patients may have extremely different therapeutic effects on

chemotherapy, and the adverse reaction may even have a

significant impact on the survival rate of NSCLC patients (6–10).

Radiomic features, extracted from computed tomography

(CT) images, can quantitatively express crucial information

regarding the physiology of the entire tumor, including the

intra-tumor and its surroundings (11–13). Owing to the

spatially and temporally heterogeneous nature of tumors, these

features can quantify the phenotypic differences from a high-

dimensional space that cannot be distinguished by the naked

eye. Therefore, these features and the resulting radiomic models

are of important guiding significance for precision oncology and

can improve decision support in prognosis and therapeutic

response prediction at a low cost (14, 15).

Recently, many studies have begun investigating the role of

radiomics features of the surrounding area of the lesion

(peritumoral region) in disease screening, prediction of

treatment response, and prognosis. The microenvironment

and habitat surrounding the tumor may play an extremely

important role in predicting prognosis. Many studies have

found that the pathogenesis and progression of lung cancer

are closely related to tumor-infiltrating lymphocytes and tumor-

associated macrophages all over the tumor microenvironment

(Maeda et al) (16–18). Algohary et al. studied 231 prostate

cancer patients and extracted radiomic features from the intra-
02
40
and peri-tumoral region of interest (ROI) to distinguish prostate

cancer risk categories as defined by the D’Amico Risk

Classification System, with an area under the receiver

operating characteristic curve (AUC) of 0.84 (19). Shan et al.

constructed a model based on peritumoral radiomic signatures

from CT images of 156 patients to predict the early recurrence of

hepatocellular carcinoma after curative treatment and obtained

an AUC of 0.80 (20).

Many radiomics studies have also been applied to the

treatment of NSCLC. Khorrami et al. collected 125 NSCLC

patients to identify the role of radiomics texture features from

regions both within and outside the nodule in predicting

response to chemotherapy and overall survival; they obtained

an AUC of 0.82 (21). Braman et al. analyzed intra- and

peritumoral regions of 117 patients with breast cancer to

predict pathological complete response to neoadjuvant

chemotherapy and obtained an AUC of 0.78 (22).

However, the ability of peritumoral, intratumoral, or

combined CT radiomic features to predict chemotherapy

response in NSCLC has not been well studied. In this study,

we established different CT radiomic models using features from

different peritumoral, intratumoral, or combined regions and

evaluated their performance in predicting chemotherapy

response in NSCLC.
Materials and methods

Patient characteristics

This study was approved by the ethics committee of

Shengjing Hospital of China Medical University and the Fifth

Affiliated Hospital of Guangzhou Medical University, and the

requirement for informed consent was waived because this was a

retrospective study. A total of 605 patients with NSCLC were

enrolled between 2015 and 2019 at Shengjing Hospital of China

Medical University. Of these 605 patients, 272 NSCLC patients

who were treated with chemotherapy alone as first-line

treatment were included in this study (Dataset 1).
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Supplemental Figure S1 shows the two steps of the exclusion

criteria. Using the same criteria, 43 patients from the Fifth

Affiliated Hospital of Guangzhou Medical University were

selected and used as the external validation cohort (Dataset 2).

The clinical characteristics of the patients are presented in

Table 1. Pathologic stage was characterized according to the

seventh edition of the American Joint Committee on Cancer

TNM staging system. For each patient, non-contrast CT images

were acquired before and after chemotherapy. The parameters

used for CT image acquisition are listed in Supplemental

Table S1.

According to the response evaluation criteria in solid tumors

(RECIST, version 1.1) (23), clinical responses were categorized

into four parts by comparing CT images collected before and

after chemotherapy: (I) complete response (CR): all target

lesions disappeared; (II) partial response (PR): the target

lesions decreased by at least 30% in the sum of the diameters;

(III) progressive disease (PD): the target lesions increased by at

least 20% in the sum of the diameters; (IV) stable disease (SD):

neither sufficient shrinkage to qualify for PR nor sufficient

increase to qualify for PD. The interval between CT scans

before and after chemotherapy was 4.56 ± 1.41 and 3.87 ±

2.04 treatment courses in response and nonresponse groups

(each treatment course takes three weeks) of Dataset 1. The

interval was 3.87± 1.58 and 3.24± 1.06 treatment courses in the

two groups of Dataset 2.

In this study, clinical response was defined as “response” and

“nonresponse” based on the radiologist’s evaluation via RECIST

and clinical manifestations. The response group included

patients with CR and PR, while the non-response group

included patients with PD and SD.
Frontiers in Oncology 03
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Overview of the study procedure

Figure 1 shows a brief procedure of this study. First, the 272

NSCLC patients (148 responses and 124 nonresponses) were

randomly divided into a training cohort of 189 patients (105

responses and 84 nonresponses) and an independent test cohort

of 83 patients (44 responses and 39 nonresponses). Second, all

lesions were segmented from the pre-treatment CT images, and

then the peritumoral regions (0–3 mm, 3–6 mm, 6–9 mm, and

9–12 mm) around the lesion. Third, radiomics features were

extracted from the segmented regions, and discriminative

features were selected. Finally, different models were trained

using radiomic features, validated, and compared.
Segmentation of intra- and
peritumoral regions

First, to eliminate interference factors, all pre-treatment

CT images of the NSCLC patients were interpolated into

voxels of 1×1×1 mm. Thereafter, intratumoral regions were

semi-automatically segmented from these CT images by two

radiologists with more than 15 years of experience using 3D

Slicer software (24). By adding seed points and applying the fast

marching method, the lesions could be quickly segmented

automatically. If necessary, the errors were corrected by

radiologists manually. To compare the segmentation by the

two radiologists, the Dice coefficient and over– and under–

lesion segmentation errors were calculated.

Next, four morphological dilation operations were applied

with the number of pixels of 3, 6, 9, and 12, respectively. These
TABLE 1 Clinical characteristics of NSCLC patients.

Dataset 1 Dataset 2

Characteristics Response
group

Non response
group

p-
value

Response
group

Non response
group

p-
value

No. of patients 148 124 – 24 19 –

Gender Male 81 69 3.843a 22 15 4.987a

Female 67 55 2 4

Age, median (SD), y 63.76 (11.30) 64.86 (10.65) 0.453b 66.42 (9.86) 62.36 (14.58) 0.629b

Smoking status Ever 50 69 1.021a 17 12 1.235a

Never 98 55 7 7

Histological
type

Adenocarcinoma 121 101 2.241a 13 11 3.244a

Squamous cell
carcinoma

27 23 11 8

TNM Stage II 22 16 1.232a 1 2 2.065a

III 118 103 0.863a 20 15 0.983a

IV 8 5 1.528a 3 2 1.024a

Courses, median (SD) 4.56 ± 1.41 3.87 ± 2.04 0.002b 3.87± 1.58 3.24± 1.06 0.688a
fronti
ap value of Chi-square test; bp value of two-sample t-test.
SD, standard deviation; TNM, tumor node metastasis classification.
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operations were based on a 3D morphology algorithm in the

skimage package (https://scikit-image.org). After subtraction,

four peritumoral regions of 0–3 mm, 3–6 mm, 6–9 mm, and

9–12 mm were obtained. Supplemental Figure S2 shows the

details of these regions.
Radiomic features extraction
and selection

First, an open-source PyRadiomics Python package was

applied to extract 1688 radiomic features from each

segmented region. To establish a reference standard for

radiomics analysis, PyRadiomics provides an open-source

platform for easy and reproducible radiomic feature

extraction (25). The original CT images and derived 19

categories of images (LoG with five sigma levels, one level

of wavelet decompositions yielding eight derived images and
Frontiers in Oncology 04
42
images derived using square, square root, logarithm,

exponential, gradient, and local binary pattern filters) were

utilized to extract the features. 1896 radiomics features

including the first order (380), shape-based (16), gray-level

co-occurrence matrix (480), gray level run length matrix

(320), gray level size zone matrix (320), neighboring gray

tone difference matrix (100), and gray level dependence

matrix (280) were obtained. After removing the unusable

ones, 1688 features were retained.

Next, for each intra- or peritumoral region, 20

discriminative radiomics features were selected using the least

absolute shrinkage and selection operator (LASSO) algorithm.

The LASSO algorithm adds a penalty term (l) to the loss

function (optimization target); therefore, l is considered in the

process of training and solving parameters. As shown in

Supplemental Figure S3, with an increase in l, the mean

square error decreases gradually to the lowest point. This

point corresponds to the optimal parameter of l. Meanwhile,
FIGURE 1

Overview of the whole study procedure.
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the coefficient of the less influential feature will decrease to 0,

and finally, only the most important features are retained (26).

At the optimal l, features with non-zero coefficients will be

retained and ranked by the absolute value of the coefficient. To

decrease the overfitting risk and avoid the dimensionality curse,

only the top 20 features are finally selected as the discriminative

features according to the rule of thumb that each feature

corresponds to 10 samples in a binary classifier (27).
Model construction, validation,
and comparison

To clarify the performance of models using features from

different peri- and intratumoral regions, four groups of

comparative experiments were conducted.
Fron
I. To investigate features from which peritumoral

regions perform best, the four models corresponding

to 0–3 mm, 3–6 mm, 6–9 mm, and 9–12 mm are

compared.

II. To investigate whether the fusion of peritumoral

features and images improves the performance,

models using the feature and image fusion of 0–3

mm and 3–6 mm were compared (28–30).

III. To consider whether peritumoral features outperform

intratumoral features, a model using features from the

intratumoral region was studied.

IV. To explore whether the fusion of peri- and

intratumoral features and images improves the

performance, the models using the feature and image

fusion of intratumoral and 0–3 mm peritumoral

regions were compared.
Feature fusion implies that 1688 features from each region

are combined into 3376 features, and the top 20 features are

selected according to the same method described previously.

Image fusion implies that the two regions are combined, 1688

features are extracted, and the top 20 are maintained in the

same way.

Different models were constructed using three

representative machine-learning classifiers: random forest

(RF), support vector machine (SVM), and logistic regression

(LR). Each optimal hyper-parameter of the models was

calculated using a grid search algorithm and 10-fold cross-

validation. This implies that every grid of hyper-parameters is

evaluated by the average of 10-fold cross-validation, and a

combination of optimal hyper-parameters is obtained after

traversing all grids. The model with optimal hyper-

parameters was retrained using all training data (n=189), and

then the generated model was evaluated in an independent test

cohort (n=83). The aim of dividing Dataset 1 into a training
tiers in Oncology 05
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cohort and a test cohort is to obtain the optimal hyper-

p a r ame t e r s i n mach in e - l e a rn i n g c l a s s ifi e r s and

simultaneously avoid information leakage. Dataset 2 was

used as an external validation cohort to know the

generalizability of the model developed in Dataset 2. The two

datasets were collected from different hospitals and by different

CT scanners.

Specifically, we used a grid search with cross-validation

(GridSearchCV) to traverse the hyper-parameters within a

certain range and with a specific interval. In SVM, the kernel

parameter was set as “linear” or radial basis function (“rbf”); the

parameter C was set as 0.001, 0.01, 0.1, 1, 10, 100 or 1000; the

gamma parameter was set as 0.0001, 0.001, 0.005, 0.01, 0.1, 0.5, 1,

3, 5, 10 or 100. In RF, n_estimators parameter ranged from 20 to

2000 with an interval of 10, max_features parameter was set as 2

or 3, min_sample_leaf ranged from 1 to 50 with an interval of 1

and ranged from 100 to 500 with an interval of 50. In LR, the C

parameter was set as 0.001, 0.01, 0.1, 1, 10, or 100; the penalty

item was set as L1 or L2.
Model evaluation and statistical analysis

For each model, the performance was evaluated by the area

under the receiver operating characteristic curve (AUC) with

95% confidence interval (CI), confusion matrix, accuracy,

precision, recall, and F1-score. The cut-off was determined

using Youden’s index and the shortest distance from the

coordinate (0, 1) on the ROC curve.

A two-sample t-test was used to compare the age and

number of treatment courses between the response and non-

response groups. The chi-square test was used to compare the

gender, histological type, and smoking status of the two groups.

The ROC curves of the different models were compared using

the Delong test. If p<0.05, a significant difference was considered

to be statistically significant.
Results

Performance of features from different
peritumoral regions

In the independent test cohort, the predictive performance

of the three machine-learning models in each peritumoral region

is shown in Figure 2. It was found that among the three machine

learning classifiers, the LRmodel presented the highest AUC and

performed best in every peritumoral region (Figure 2A). The

ROC curve and confusion matrix of LR models using features

from four peritumoral regions are summarized in Figures 2B, C,

respectively. The AUC of 0–3, 3–6, 6–9, and 9–12 mm

peritumoral regions were 0.95, 0.87, 0.86, and 0.85,
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respectively. The peritumoral region of 0–3 mm had the

highest AUC.

The other performance measures are listed in Table 2. For

the 0–3 mm peritumoral region, the accuracy, precision, recall,

and F1-score were 87.9%, 0.89, 0.85, and 0.87, respectively, while

the cut-off value was 0.83. For the 3–6 mm peritumoral region,

the measures were 79.5%, 0.82, 0.72, and 0.77, while the cut-off

value was 0.69. For the 6–9 mm peritumoral region, the

measures were 84.3%, 0.86, 0.80, and 0.83, while the cut-off

value was 0.70. For the 9–12 mm peritumoral region, the
Frontiers in Oncology 06
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measures were 75.9%, 0.76, 0.72, and 0.74, respectively, while

the cut-off value was 0.67.
Performance of different methods of
fusing peritumoral regions

In the independent tes t cohort , the predict ive

performance of models using the feature and image fusion

of 0–3 mm and 3–6 mm peritumoral regions were compared
B C

A

FIGURE 2

Comparison of models using different peritumoral regions in the independent test cohort: (A) ROC curves of models using different peritumoral
regions and machine learning methods; (B) ROC curve of models using different peritumoral regions and logistic regression; (C) Confusion
matrix of models using different peritumoral regions and logistic regression.
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(Figure 3). As shown in Figure 3A, the LR model

outperformed the SVM and RF models in both feature

fusion and image fusion. For the LR model, the feature

fusion and image fusion were compared using the ROC

curve and confusion matrix (Figures 3B, C). The AUC of

feature fusion of 0–3 and 3–6 mm peritumoral regions was

0.97, higher than that of image fusion (AUC of 0.89). The LR

model using feature fusion of 0–3 and 3–6 mm peritumoral
Frontiers in Oncology 07
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regions can correctly predict 36 of 39 nonresponse patients

and 41 of 44 response patients.

The other performance measures of these two models are

listed in Table 2. The model of feature fusion achieved an

accuracy of 92.7%, precision of 0.92, recall of 0.92, an F1-score

of 0.92, and a cut-off value of 0.88. For the image fusion model,

the four measures were 80.7%, 0.85, 0.72, and 0.78, respectively,

while the cut-off value was 0.69.
B

C

A

FIGURE 3

Comparison of models with different fusion methods of 0–3 and 3–6 mm peritumoral regions in the independent test cohort: (A) ROC curves
of models of two fusion methods and three machine learning methods; (B) ROC curves of models of two fusion methods and logistic
regression; (C) Confusion matrix of models of two fusion methods and logistic regression.
TABLE 2 Predictive performance of different regions in the independent test cohort.

ROI AUC Accuracy Precision Recall F-score

0-3 mm 0.95 87.9% 0.89 0.85 0.87

3-6 mm 0.87 79.5% 0.82 0.72 0.77

6-9 mm 0.86 84.3% 0.86 0.80 0.83

9-12 mm 0.85 75.9% 0.76 0.72 0.74

Image fusion (0–3 and 3–6 mm) 0.89 80.7% 0.85 0.72 0.78

Feature fusion (0–3 and 3–6 mm) 0.97 92.7% 0.922 0.92 0.92

Intratumoral region 0.88 81.9% 0.85 0.74 0.80

Image fusion (Intra and 0–3 mm) 0.88 81.9% 0.82 0.80 0.81

Feature fusion (Intra and 0–3 mm) 0.92 91.5% 0.94 0.87 0.91
fronti
ROI, region of interest; AUC, area under the curve.
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Performance of intratumoral region

The ROC curve and confusion matrix of models using CT

radiomic features from the intratumoral region are shown in

Supplemental Figure S4. Among the three models, the LR model

performed the best, with an AUC of 0.88. In the independent test

cohort, 29 of 39 non-response patients and 39 of 44 response

patients were correctly predicted by the LR model. The cut-off

value was 0.71, and the accuracy, precision, recall, and F-score

were 81.9%, 0.85, 0.74, and 0.80, respectively (Table 2).
Performance of different methods of
fusing intra and peritumoral regions

Supplemental Figure S5 shows the performance of radiomic

models using different methods of fusing intra and 0–3 mm

peritumoral regions. Similar to the previous results, the LR model

outperformed the SVM and RF models for both fusion methods

(image and feature) (Supplemental Figure S5A); the AUC was 0.88

for the LR model using the image fusion method and it was 0.92

using the feature fusion (Supplemental Figures S5B, C). Feature

fusion yields better performance than image fusion. For the LR

model using the image fusion method, the accuracy, precision, recall,

and F-score were 81.9%, 0.82, 0.80, 0.81, and 0.67, respectively, while

the cut-off value was 0.83. For the LRmodel using the imagemethod,

it was 91.5%, 0.94, 0.87, and 0.91, while the cut-off value was 0.83.

The p values in the Delong test of ROC curves of nine

different models are shown in Figure 4. The AUC of the LR
Frontiers in Oncology 08
46
model using the 0–3 mm peritumoral region was significantly

higher than that of the three models using the 3–6, 6–9, and

9–12 mm peritumoral regions and that of the model using the

intratumoral region (Delong test, p<0.05). Feature fusion of

0–3 and 3–6 mm peritumoral regions produced an AUC

significantly higher than that in the six cases of 3–6, 6–9,

and 9–12 mm peritumoral regions, intratumoral regions,

image fusion of 0–3 and 3–6 mm peritumoral regions, and

image fusion of intratumoral and 0–3 mm peritumoral

regions (Delong test, p<0.05). Although the AUC of the

model using feature fusion of 0–3 and 3–6 mm peritumoral

regions was higher than that of the other two cases of 0–3 mm

peritumoral region and feature fusion of intratumoral and 0–

3 mm peritumoral regions, no significant difference was

observed (Delong test, p>0.05).
Radiomic features over traditional
clinical features

Supplemental Figure S6 shows the performance of models

with radiomics features and clinical features (gender, age,

histological type, TNM stage, smoking status and the number

of treatment courses). The AUC of the model with only clinical

features was 0.55. While using both radiomics and clinical

features, the model achieved an AUC of 0.96, even lower than

that only using radiomic features (0.97). It demonstrates that

clinical features had no improvement in predicting

chemotherapy in this research.
FIGURE 4

p values of Delong test between ROC curves of different models.
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Performance in the external
validation dataset

Figure 5 shows the performance of the model using 0-3 and 3-6

peri-tumoral features in the external validation dataset. The AUC

was 0.85 (95% CI: 0.81-0.89) and 13 of 19 non-response patients and

23 of 24 response patients were correctly predicted by the LR model.
Segmentation agreement and
characteristics of radiomic features

For the segmentation agreement by two radiologists, the

Dice coefficient is 0.85 ± 0.06, and the over- and under-

segmentation errors of segmented tumor volume are 0.22 ±

0.14, 0.28 ± 0.03, respectively.

Feature fusion of 0–3 and 3–6 mm peritumoral regions had

the highest AUC in all nine cases. In this case, the 20

discriminative radiomic features (13 from 0–3 mm, 7 from 3–

6 mm) included five first-order features, one shape feature, and

14 texture features. Seven radiomic features were significantly

different between the response and nonresponse groups [two

features with p<0.001(★★) and five features with p<0.05(★)].

Figure 6 shows the unsupervised hierarchal clustering of

radiomic features in the training set, where the x-axis

represents the training cohort of patients (n = 189) and the y-

axis represents the 20 radiomic features.
Discussions

In this study, the ability of peritumoral, intratumoral, or

combined CT radiomic features to predict chemotherapy

response in NSCLC was evaluated. It was found that the

radiomic model using features from 0–3 mm peritumoral
Frontiers in Oncology 09
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region outperforms that using features from 3–6 mm, 6–9

mm, 9–12 mm peritumoral region, and intratumoral region,

with the highest AUC of 0.95. By fusing features from 0–3 mm

and 3–6 mm peritumoral regions, the AUC can be further 0.97.

Two over-represented features in the response group indicated

higher heterogeneity of NSCLC tumors.
Is the peritumoral region predictive?

Our results demonstrated that CT radiomic features from

peritumor regions are predictive of chemotherapy response in

NSCLC. The prognosis of lung cancer is not only reflected in the

lesion but also the surrounding normal tissues; thus, the

microbial environment also has great predictive potential for

the response to clinical treatment (31). The microenvironment

of the peritumoral region of breast malignancy is related to

aggressiveness (22). The capillaries and various cells around the

tumor border might be more active than those inside the tumor;

thus, their immune response to cancer and response to the

prognosis, such as chemotherapy, is probably more severe.

Algohary et al. studied the density of stromal macrophages,

epithelial cells, and lymphocytes in the peritumoral region and

found it to be related to metastasis of prostate cancer risk.19

Matsumura et al. collected 1069 resected NSCLC patients with

lymphatic permeation located in intra-, peritumoral, or absent to

determine the survival impact, and found that lymphatic canals

present in peritumoral regions have a significantly higher overall

survival rate than the other two groups (32).
Which peritumoral region is optimal?

Similar to the recommended negative surgical margin in the

clinic, the different ranges of the peritumoral region contribute
BA

FIGURE 5

Performance of the model using 0-3 and 3-6 peri-tumoral features in the external validation dataset: (A) ROC curve; (B) Confusion matrix.
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significantly to the prediction of prognostic response. We have

found that the features from the 0–3 mm peritumoral region are

more predictive of the chemotherapy response of NSCLC than

those from 3–6 mm, 6–9 mm, and 9–12 mm peritumoral

regions. Some previous studies have indicated that the region

beyond 15 mm around the lung tumor lesion has no

contribution to predicting the recurrence or remission (21,

33). Beig et al. showed that low and middle frequencies of

Gabor filters had a higher response at 5 mm around the

adenocarcinomas lesion (23). Braman et al. found that features

from the 2.5–5.0 mm region surrounding the breast tumor are

predictive of the pathological complete response to neoadjuvant

chemotherapy (22). Algohary et al. have found that Haralick

from 3–6 and 6–9 mm peritumoral rings and CoLlAGe texture

features from 6–9 mm ring were over- and under-expressed,

respectively, in high-risk prostate cancer lesions (19).
Is the peritumoral region superior to the
intratumoral region?

Our study has shown that the peritumoral region is superior

to the intratumoral region in predicting chemotherapy response

in NSCLC. A growing number of studies have proven that the

tissues and microenvironment around the tumor can provide

unique effects on radiomic analysis, sometimes exceeding the
Frontiers in Oncology frontiersin.or10
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intratumoral region (34). Braman et al. analyzed the tumor and

its surroundings of breast cancer and found that the peritumoral

region performed better in estimating the response to HER2-

targeted neoadjuvant therapy (35).
Does the combination of regions
improve prediction?

In this study, we investigated models using different

methods of fusing two peritumoral regions. The model

using feature fusion of 0–3 and 3–6 mm peritumoral

regions achieves an AUC of 0.97, which is higher than that

of the model using the 0–3 mm peritumoral region (0.95),

although there was no significant difference (Delong test,

p=0.19). The feature fusion of the 0–3 mm peritumoral

region and intratumoral region even decrease the AUC

from 0.95 (only using features from 0–3 peritumoral

region) to 0.92. However, Jiang et al. have reported that a

combination of intra- and peritumoral features of gastric

cancer can improve the prediction of chemotherapy

response (36). Chen et al. also found that incorporating

peritumoral radiomic analysis of hepatocellular cancer with

intratumoral features can improve the immunoscore

estimation of hepatocellular cancer (37). Hu et al. have

shown that the combination of intra- and peritumoral
FIGURE 6

Heat map and dendrogram of the top 20 radiomic features in response and nonresponse groups of the training set (★ indicates p < 0.05, ★★
indicates p < 0.001).
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features can improve the performance in estimating

pathologica l complete response af ter neoadjuvant

chemoradiation in patients with oesophagal squamous cell

carcinoma (38). Therefore, we thought that whether the

combination of regions improves prediction might depend

on two aspects: discriminative and supplementary. If the

features from different regions are both discriminative and

supplementary, the combination will improve the prediction.

Otherwise, the results of the combination are uncertain.

Moreover, we found that feature fusion was better than

image fusion for prediction. This might be because each feature

extraction method might have an upper limit of capability. After

the combination of images from different regions, the 1688

extracted features are representative of the entire region.

However, the feature fusion method combines features

extracted from two regions into a set of 3376 features and

then uses feature selection methods to obtain the

discriminative features. Therefore, complementary features

from two different regions can remain. This might be the

reason why most previous studies have adopted feature fusion

methods (36–38).
Does higher heterogeneity in the
peritumoral region correspond
to response?

In the response group, run length non-uniformity

normalized (RLNN) and size zone nonuniformity normalized

(SZNN) features were overrepresented (i.e., higher than that in

the nonresponse group). The RLNN measures the similarity of

run lengths throughout the image, with a lower value indicating

greater homogeneity among run lengths in the image. SZNN

measures the variability of size zone volumes throughout the

image, with a lower value indicating greater homogeneity among

the zone size volumes in the image.

One constructive finding of this research is that in the

peritumoral region of NSCLC lesions, the response group had

higher heterogeneity than the nonresponse group. Specifically,

SZNN and RLNN were overrepresented. This finding provides

further evidence that the heterogeneity of the microenvironment

in both the tumor and the area around the tumor is predictive of

the prognosis of lung cancer. This heterogeneity might be

reflective of genomic and genetic heterogeneity and be

reflected in pretreatment CT images (6, 39, 40). Some findings

have shown that tumor heterogeneity is a predictor of survival in

patients with NSCLC (6, 41).
Limitations and further works

There are some limitations to this study. First, the

sample size was small. This made the extensive stratified
Frontiers in Oncology 11
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analysis unfeasible, such as investigating the difference

between adenocarcinoma and squamous cell carcinoma.

Second, the segmentation of intra-and peritumoral regions

is semi-automatic, and some features might be dependent on

segmentation results. Automatic segmentation by deep

learning and extraction of features from the bounding box

may address this problem (42). Third, only machine

learning methods are employed. Deep learning can be

utilized as a powerful end-to-end solution or classifier

(43–46).
Conclusion

Non-contrast CT radiomic features from both the peri-

and intratumoral regions can predict chemotherapy response

in NSCLC via machine learning models. The 0–3 mm

peritumoral region presented better performance than the

peri- and intratumoral regions. The combined features from

the two peritumoral regions may further improve the

prediction. With the further evaluation of generalizability,

the developed model and identified features may help

improve the management of patients with NSCLC in

precision medicine.
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et al. Introduction to radiomics. J Nucl Med (2020) 61(4):488–95. doi: 10.2967/
jnumed.118.222893

14. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P,
Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a
quantitative radiomics approach. Nat Commun (2014) 5:4006. doi: 10.1038/
ncomms5006

15. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL. Machine
learning methods for quantitative radiomic biomarkers. Sci Rep (2015) 5:13087.
doi: 10.1038/srep13087

16. Maeda R, Yoshida J, Ishii G, Hishida T, Nishimura M, Nagai K. Prognostic
impact of intratumoral vascular invasion in non-small cell lung cancer patients.
Thorax (2010) 65(12):1092–8. doi: 10.1136/thx.2010.141861

17. Gabor S, Renner H, Popper H, Anegg U, Sankin O, Matzi V, et al. Invasion
of blood vessels as significant prognostic factor in radically resected T1-3N0M0
non-small-cell lung cancer. Eur J Cardiothorac Surg (2004) 25(3):439–42.
doi: 10.1016/j.ejcts.2003.11.033

18. Morita R, Sato K, Nakano M, Miura H, Odaka H, Nobori K, et al.
Endothelial progenitor cells are associated with response to chemotherapy in
human non-small-cell lung cancer. J Cancer Res Clin Oncol (2011) 137
(12):1849–57. doi: 10.1007/s00432-011-1043-8

19. Algohary A, Shiradkar R, Pahwa S, Purysko A, Verma S, Moses D, et al.
Combination of peri-tumoral and intra-tumoral radiomic features on bi-
parametric mri accurately stratifies prostate cancer risk: a multi-site study.
Cancers (Basel) (2020) 12(8):2200. doi: 10.3390/cancers12082200

20. Shan QY, Hu HT, Feng ST, Peng ZP, Chen SL, Zhou Q, et al. CT-based
peritumoral radiomics signatures to predict early recurrence in hepatocellular
carcinoma after curative tumor resection or ablation. Cancer Imaging (2019) 19
(1):11. doi: 10.1186/s40644-019-0197-5

21. Khorrami M, Khunger M, Zagouras A, Patil P, Thawani R, Bera K, et al.
Combination of peri- and intratumoral radiomic features on baseline ct scans
predicts response to chemotherapy in lung adenocarcinoma. Radiol Artif Intell
(2019) 1(2):e180012. doi: 10.1148/ryai.2019180012
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.915835/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.915835/full#supplementary-material
https://doi.org/10.3322/caac.21654
https://doi.org/10.1371/journal.pone.0206108
https://doi.org/10.1371/journal.pone.0206108
https://doi.org/10.1586/14737140.2016.1170596
https://doi.org/10.1016/j.mayocp.2019.01.013
https://doi.org/10.1097/CCO.0000000000000592
https://doi.org/10.1097/CCO.0000000000000592
https://doi.org/10.1158/1078-0432.CCR-12-1307
https://doi.org/10.1038/nature12626
https://doi.org/10.1158/1078-0432.CCR-14-0990
https://doi.org/10.1158/1078-0432.CCR-14-0990
https://doi.org/10.2214/AJR.15.15864
https://doi.org/10.1016/j.semcdb.2016.10.001
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1038/srep13087
https://doi.org/10.1136/thx.2010.141861
https://doi.org/10.1016/j.ejcts.2003.11.033
https://doi.org/10.1007/s00432-011-1043-8
https://doi.org/10.3390/cancers12082200
https://doi.org/10.1186/s40644-019-0197-5
https://doi.org/10.1148/ryai.2019180012
https://doi.org/10.3389/fonc.2022.915835
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chang et al. 10.3389/fonc.2022.915835
22. Braman NM, Etesami M, Prasanna P, Dubchuk C, Gilmore H, Tiwari P,
et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of
pathological complete response to neoadjuvant chemotherapy based on breast
DCE-MRI. Breast Cancer Res (2017) 19(1):57. doi: 10.1186/s13058-017-0846-1

23. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R,
et al. New response evaluation criteria in solid tumours: revised RECIST guideline
(version 1. 1) Eur J Cancer (2009) 45(2):228–47. doi: 10.1016/j.ejca.2008.10.026

24. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S,
et al. 3D slicer as an image computing platform for 432 the quantitative imaging
network. Magn Reson Imaging (2012) 30(9):1323–41. doi: 10.1016/j.mri.2012.05.001

25. van Griethuysen J, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V,
et al. Computational radiomics system to decode 435 the radiographic phenotype.
Cancer Res (2017) 77(21):e104–7. doi: 10.1158/0008-5472.CAN-43617-0339

26. Tibshirani R. Regression shrinkage and selection via the lasso: a
retrospective. J R Stat Soc Ser B Stat Methodol (2011) 73:273–82. doi: 10.1111/
j.1467-9868.2011.00771.x

27. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,
they are data. Radiology (2016) 278(2):563–77. doi: 10.1148/radiol.2015151169

28. Antropova N, Huynh BQ, Giger ML. A deep feature fusion methodology for
breast cancer diagnosis demonstrated on three imaging modality datasets. Med
Phys (2017) 44(10):5162–71. doi: 10.1002/mp.12453

29. Avanzo M, Stancanello J, El Naqa I. Beyond imaging: the promise of
radiomics. Phys Med (2017) 38:122–39. doi: 10.1016/j.ejmp.2017.05.071

30. Hatt M, Le Rest CC, Tixier F, Badic B, Schick U, Visvikis D. Radiomics: data
are also images. J Nucl Med (2019) 60(Supplement 2):38S–44S. doi: 10.2967/
jnumed.118.220582

31. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev
Cancer (2009) 9(4):239–52. doi: 10.1038/nrc2618

32. Matsumura Y, Hishida T, Shimada Y, Ishii G, Aokage K, Yoshida J, et al.
Impact of extratumoral lymphatic permeation on postoperative survival of non-
small-cell lung cancer patients. J Thorac Oncol (2014) 9(3):337–44. doi: 10.1097/
JTO.0000000000000073

33. Mohiuddin K, Haneuse S, Sofer T, Gill R, Jaklitsch MT, Colson YL, et al.
Relationship between margin distance and local recurrence among patients
undergoing wedge resection for small (≤2 cm) non-small cell lung cancer. J
Thorac Cardiovasc Surg (2014) 147(4):1169–77. doi: 10.1016/j.jtcvs.2013.11.056

34. Wu J, Li B, Sun X, Cao G, Rubin DL, Napel S, et al. Heterogeneous
enhancement patterns of tumor-adjacent parenchyma at MR imaging are
associated with dysregulated signaling pathways and poor survival in breast
cancer. Radiology (2017) 285(2):401–13. doi: 10.1148/radiol.2017162823

35. Braman N, Prasanna P, Whitney J, Singh S, Beig N, Etesami M, et al.
Association of peritumoral radiomics with tumor biology and pathologic response
Frontiers in Oncology 13
51
to preoperative targeted therapy for her2 (erbb2)-positive breast cancer. JAMA
Netw Open (2019) 2(4):e192561. doi: 10.1001/jamanetworkopen.2019.2561

36. Jiang Y, Wang H, Wu J, Chen C, Yuan Q, Huang W, et al. Noninvasive
imaging evaluation of tumor immune microenvironment to predictoutcomes in
gastric cancer. Ann Oncol (2020) 31(6):760–8. doi: 10.1016/j.annonc.2020.03.295

37. Chen S, Feng S, Wei J, Liu F, Li B, Li X, et al. Pretreatment prediction of
immunoscore in hepatocellular cancer: a radiomicsbased clinical model based on
gd-EOB-DTPA-enhanced MRI imaging. Eur Radiol (2019) 29(8):4177–87.
doi: 10.1007/s00330-018-5986-x

38. Hu Y, Xie C, Yang H, Ho J, Wen J, Han L, et al. Assessment of intratumoral
and peritumoral computed tomography radiomics for predicting pathological
complete response to neoadjuvant chemoradiation in patients with esophageal
squamous cell carcinoma. JAMA Netw Open (2020) 3(9):e2015927. doi: 10.1001/
jamanetworkopen.2020.15927

39. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, et al.
Intratumor heterogeneity and branched evolution revealed by multiregion
sequencing [published correction appears in n engl J med. N Engl J Med (2012)
366(10):883–92. doi: 10.1056/NEJMoa1113205

40. Burrell RA, Swanton C. Tumour heterogeneity and the evolution of
polyclonal drug resistance. Mol Oncol (2014) 8(6):1095–111. doi: 10.1016/
j.molonc.2014.06.005

41. Oikonomou A, Khalvati F, Tyrrell PN, Haider MA, Tarique U, Jimenez-
Juan L, et al. Radiomics analysis at PET/CT contributes to prognosis of recurrence
and survival in lung cancer treated with stereotactic body radiotherapy. Sci Rep
(2018) 8(1):4003. doi: 10.1038/s41598-018-22357-y

42. Chang R, Qi S, Yue Y, Zhang X, Song J, Qian W. Predictive radiomic models
for the chemotherapy response in non-small-cell lung cancer based on
computerized-tomography images. Front Oncol (2021) 11:646190. doi: 10.3389/
fonc.2021.646190

43. Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, et al. The applications of
radiomics in precision diagnosis and treatment of oncology: opportunities and
challenges. Theranostics (2019) 9(5):1303–22. doi: 10.7150/thno.30309

44. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end
lung cancer screening with three-dimensional deep learning on low-dose chest
computed tomography. Nat Med (2019) 25:954–61. doi: 10.1038/s41591-019-0447-x

45. Dong D, Fang MJ, Tang L, Shan XH, Gao JB, Giganti F, et al. Deep learning
radiomic nomogram can predict the number of lymph node metastasis in locally
advanced gastric cancer: an international multicenter study. Ann Oncol (2020) 31
(7):912–20. doi: 10.1016/j.annonc.2020.04.003

46. Zhang B, Qi S, Pan X, Li C, Yao Y, Qian W, et al. Deep cnn model using
ct radiomics feature mapping recognizes egfr gene mutation status of lung
adenocarcinoma. Front Oncol (2021) 10:598721. doi: 10.3389/fonc.
2020.598721
frontiersin.org

https://doi.org/10.1186/s13058-017-0846-1
https://doi.org/10.1016/j.ejca.2008.10.026
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1158/0008-5472.CAN-43617-0339
https://doi.org/10.1111/j.1467-9868.2011.00771.x
https://doi.org/10.1111/j.1467-9868.2011.00771.x
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1002/mp.12453
https://doi.org/10.1016/j.ejmp.2017.05.071
https://doi.org/10.2967/jnumed.118.220582
https://doi.org/10.2967/jnumed.118.220582
https://doi.org/10.1038/nrc2618
https://doi.org/10.1097/JTO.0000000000000073
https://doi.org/10.1097/JTO.0000000000000073
https://doi.org/10.1016/j.jtcvs.2013.11.056
https://doi.org/10.1148/radiol.2017162823
https://doi.org/10.1001/jamanetworkopen.2019.2561
https://doi.org/10.1016/j.annonc.2020.03.295
https://doi.org/10.1007/s00330-018-5986-x
https://doi.org/10.1001/jamanetworkopen.2020.15927
https://doi.org/10.1001/jamanetworkopen.2020.15927
https://doi.org/10.1056/NEJMoa1113205
https://doi.org/10.1016/j.molonc.2014.06.005
https://doi.org/10.1016/j.molonc.2014.06.005
https://doi.org/10.1038/s41598-018-22357-y
https://doi.org/10.3389/fonc.2021.646190
https://doi.org/10.3389/fonc.2021.646190
https://doi.org/10.7150/thno.30309
https://doi.org/10.1038/s41591-019-0447-x
https://doi.org/10.1016/j.annonc.2020.04.003
https://doi.org/10.3389/fonc.2020.598721
https://doi.org/10.3389/fonc.2020.598721
https://doi.org/10.3389/fonc.2022.915835
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Jiansong Ji,
Lishui Central Hospital, China

REVIEWED BY

Fu Xiong,
Huazhong University of Science and
Technology, China
Chunli Kong,
Lishui Central Hospital, China

*CORRESPONDENCE

Lin Wu
wulin-calf@yeah.net

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Cancer Imaging and
Image-directed Interventions,
a section of the journal
Frontiers in Oncology

RECEIVED 03 July 2022
ACCEPTED 25 July 2022

PUBLISHED 16 August 2022

CITATION

Jiang M, Yang P, Li J, Peng W, Pu X,
Chen B, Li J, Wang J and Wu L (2022)
Computed tomography-based
radiomics quantification predicts
epidermal growth factor receptor
mutation status and efficacy of first-
line targeted therapy in lung
adenocarcinoma.
Front. Oncol. 12:985284.
doi: 10.3389/fonc.2022.985284

COPYRIGHT

© 2022 Jiang, Yang, Li, Peng, Pu, Chen,
Li, Wang and Wu. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 16 August 2022

DOI 10.3389/fonc.2022.985284
Computed tomography-based
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targeted therapy in lung
adenocarcinoma
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Xingxiang Pu1, Bolin Chen1, Jia Li1, Jingyi Wang1 and Lin Wu1*
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Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha,
China, 5The Second Department of Oncology, Yunnan Cancer Hospital, The Third Affiliated
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Background: Biomarkers that predict the efficacy of first-line tyrosine kinase

inhibitors (TKIs) are pivotal in epidermal growth factor receptor (EGFR) mutant

advanced lung adenocarcinoma. Imaging-based biomarkers have attracted

much attention in anticancer therapy. This study aims to use the machine

learning method to distinguish EGFR mutation status and further explores the

predictive role of EGFR mutation-related radiomics features in response to

first-line TKIs.

Methods: We retrospectively analyzed pretreatment CT images and clinical

information from a cohort of lung adenocarcinomas. We entered the top-

ranked features into a support vector machine (SVM) classifier to establish a

radiomics signature that predicted EGFR mutation status. Furthermore, we

identified the best response-related features based on EGFR mutant-related

features in first-line TKI therapy patients. Then we test and validate the

predictive effect of the best response-related features for progression-free

survival (PFS).

Results: Six hundred ninety-two patients were enrolled in building radiomics

signatures. The 13 top-ranked features were input into an SVM classifier to

establish the radiomics signature of the training cohort (n = 514), and the

predictive score of the radiomics signature was assessed on an independent

validation group with 178 patients and obtained an area under the curve (AUC)

of 74.13%, an F1 score of 68.29%, a specificity of 79.55%, an accuracy of 70.79%,
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and a sensitivity of 62.22%. More importantly, the skewness-Low (≤0.882) or

10th percentile-Low group (≤21.132) had a superior partial response (PR) rate

than the skewness-High or 10th percentile-High group (p < 0.01). Higher

skewness (hazard ratio (HR) = 1.722, p = 0.001) was also found to be

significantly associated with worse PFS.

Conclusions: The radiomics signature can be used to predict EGFR mutation

status. Skewness may contribute to the stratification of disease progression in

lung cancer patients treated with first-line TKIs.
KEYWORDS

lung adenocarcinoma, computed tomography, radiomic response biomarker,
epidermal growth factor receptor mutation status, machine learning
Introduction

Lung cancer is the most prevalent cancer worldwide, causing

the highest cancer-related death rate of all malignancies (1).

Adenocarcinoma comprises 80% of non-small cell lung cancer

(NSCLC), and epidermal growth factor receptor (EGFR)

mutations mostly appear in this subtype (2, 3). With the

discovery and development of tyrosine kinase inhibitors

(TKIs), the clinical treatment strategy for advanced activating

EGFR mutation lung adenocarcinoma has evolved into a

personalized approach (4, 5). Based on the National

Comprehensive Cancer Network (NCCN) and Chinese Society

of Clinical Oncology (CSCO) guidelines, EGFR TKIs have been

approved as first-line standard therapy for driver mutation-

positive metastatic adenocarcinoma based on studies that have

shown better survival than chemotherapy (3, 6–9).

Nowadays, the individual diagnosis and treatment of EGFR-

mutant lung adenocarcinoma depend on invasive biopsy testing.

However, low DNA quality and testing methods can limit the

reliability of results and sequencing applications (10–14).

Furthermore, the EGFR mutation result was only determined

by a part of tumor tissue, ignoring the heterogeneity of the entire

tumor, which might be the reason for the inconsistent treatment

outcome. When patients preliminarily elect for EGFR-TKI

therapy only based on EGFR mutation, their response will not

last long and varies so markedly after treatment (4, 9, 15). In

sum, it is crucial and urgent to use the whole picture of the

tumor to predict the potential resistance or the likelihood of

rapid progression comprehensively before patients receive

EGFR TKIs.

Radiomics is a non-invasive and high-throughput image

assessment approach based on medical imaging (16, 17). A

correlation between radiomics features and underlying

intertumoral heterogeneity of lung cancer has been observed
02
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(18–26). Furthermore, molecular images have been used to

identify patients with different therapeutic outcomes of EGFR-

TKI therapy (27–30). Tian et al. built a signature to discriminate

lung cancer patients with rapid and slow progression to EGFR-

TKI therapy using the least absolute shrinkage and selection

operator (LASSO) Cox regression model based on two-direction

imaging data. Cook et al. found the association between features

and survival by Cox regression analyses. However, compared to

the predictive model that was made of an ‘unknown process’,

oncologists tend to identify some specific image features and link

them to the medical explanation.

Hence, our study aimed to locate some specific image

features that were highly related to the survival outcome and

could be linked to clinical practice. We proposed a radiomics

signature based on all three computed tomography (CT) image

dimensions for predicting EGFR mutation status. We further

explored in-depth the relevance between EGFRmutation-related

features and risk stratification of progression-free survival (PFS)

in EGFR mutant advanced adenocarcinoma.
Materials and methods

Patients

The institutional research board of Hunan Cancer Hospital

(Changsha, China) approved this retrospective study. A total of

1,219 lung adenocarcinoma patients at Hunan Cancer Hospital

were initially collected between July 2013 and September 2019.

Patients were included in this research based on the following

inclusion criteria: 1) pathologically confirmed primary

pulmonary adenocarcinoma in our institute, 2) there are

measurable target lesions under the Response Evaluation

Criteria in Solid Tumors version 1.1 (RECIST v 1.1), 3) next-
frontiersin.org
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generation sequencing-proven EGFR mutational status by

tumor tissue sample, and 4) available patient characteristic

clinical data. Finally, 692 patients were included in our study.

Furthermore, clinical data were collected, including therapy

protocol, response evaluation, and follow-up material. In the

process of building the predictive radiomics signature, patients
Frontiers in Oncology 03
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confirmed between 1 July 2013 and 1 May 2018 were enrolled in

a training cohort, and those confirmed between 1 June 2018 and

1 September 2019 were enrolled in a test cohort (Figure 1).

Response assessment routinely took place 4–6 weeks after

treatment completion by diagnostic CT scans and laboratory

tests according to the RECIST v 1.1. PFS is the study endpoint
FIGURE 1

Images show study processing of radiomics. Computed tomography (CT) data were retrospectively collected. Region of interest was manually
segmented in axial view by a clinical doctor using imaging biomarker explorer software. Eight categories of radiomics features were extracted
from region of interest (ROI) in CT images and next, the top 13 features to train support vector machine classifier and validate it on independent
set (n = 178). Experiment 1 is for developing radiomics signature for epidermal growth factor receptor (EGFR) mutational status in lung
adenocarcinoma. Experiment 2 is for analyzing the relationship between progression-free survival and the top 13 features.
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considered the time from the initiation of therapy to

confirmation of progression or death.
CT scanning protocol

All thoracic CT examinations were performed at Hunan

Cancer Hospital. CT images of all patients were acquired on CT-

on-rails (Brilliance CT 16, Hunan Tumor Hospital, Changsha)

with the following parameters: a 5.0-mm slice thickness

reconstruction, 313-mA tube current, and 120-kV peak voltage.
Tumor imaging segmentation and
feature extraction

In this study, all nodules were identified by a radiologist

with more than 10 years of experience, and the clinician

manually annotated the regions of interest (ROIs) on axial

view piece by piece using imaging biomarker explorer (IBEX)

software (31, 32). In the end, each ROI of the subject was

reviewed by a radiologist. Imaging features were extracted by

the PyRadiomics toolbox (33), which is an open-source

python software package. To mine rich radiomics, each

original image was processed by eight image filters. 1)

Wavelet filter: yields eight decompositions per level (all

possible combinations of applying either a high- or low-

pass filter in each of the three dimensions). 2) Laplacian of

Gaussian filter: edge enhancement filter, emphasizes areas of

gray-level change, where sigma defines how coarse the

emphasized texture should be. A low sigma emphasis on

fine textures (change over a short distance), where a high

sigma value emphasizes coarse textures (gray-level change

over a large distance). 3) Square: takes the square of the image

intensities and linearly scales them back to the original range.

4) SquareRoot: takes the square root of the absolute image

intensities and scales them back to the original range. 5)

Logarithm: takes the logarithm of the absolute intensity + 1.

6) Exponential: takes the exponential, where filtered intensity

is e^(absolute intensity). 7) Gradient: returns the magnitude

of the local gradient. 8) Local Binary Pattern: computes the

Local Binary Pattern in a by-slice operation (two-dimensional

(2D)) and three-dimensional (3D) using spherical harmonics

(34). Then, the features were quantified by the following eight

categories of imaging features: 1) first-order statistics with 19

features, 2) 3D shape-based with 16 features, 3) 2D shape-

based with 10 features, 4) gray-level co-occurrence matrix

(GLCM) with 24 features, 5) gray-level run length matrix

(GLRLM) with 16 features, 6) gray-level size zone matrix

(GLSZM) with 16 features, 7) neighboring gray-tone

difference matrix (NGTDM) with five features, and 8) gray-

level dependence matrix (GLDM) with 14 features. In the end,
Frontiers in Oncology 04
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2,153 quantitative radiological features from each ROI

were obtained.
Feature selection and signature building

The Mann–Whitney statistical test (13) was first

conducted to distinguish the redundant features. Each

feature with a p-value >0.05 was redundant and eliminated.

After redundant features were removed, the residual

parameters were normalized by the z-score method, which

is widely used in machine learning. Then, the feature where

the variance is equal to zero was removed again. To further

decrease the dimension, the minimum redundancy maximum

relevance (mRMR) method was used to determine the most

remarkable radiomics features.

Finally, the top-ranked radiomics features were entered into

a support vector machine (SVM) classifier to establish a

radiomics signature that predicts EGFR mutation status. The

parameters of the classifier were optimized by a grid searching

technology on the training cohort using 10-fold cross-validation.

The radiomics signature with the best accuracy was confirmed.

Previous studies have shown that clinical features are associated

with the outcome of lymph node metastasis (35). In this study,

we found a radiomics signature based on the top-ranked features

and then added critical clinical features to explore the predictive

score of EGFR mutation status.
Evaluation of radiomics signature

The performance of the radiomics signature in predicting

EGFR mutation status was estimated by the area under the curve

(AUC) of the receiver operating characteristic (ROC) curve. In

addition, accuracy, sensitivity, specificity, and an F1 score were

also used to measure the signature.
Statistical analysis

Statistical analysis was performed with SPSS version 22.

The independent-samples t-test was used to evaluate the

difference in median age between the EGFR-positive and

EGFR-negative groups. The chi-square test was used for

statistical analysis of gender, tumor stage, smoking history,

family history, and tumor position. In the EGFR mutational

advanced patients, the cutoff points of statistically significant

features were defined by the AUC value of the ROC curve.

Survival analysis included patients with disease progression

treated with first-line EGFR TKIs. Based on the cutoff points,

the chi-square test was used to identify the relationship

between radiomics features and the best response. Cox

regression analysis was used to explore the predictive
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capability of the best response-related features for PFS.

Parameters with a p-value <0.1 in univariate analysis were

selected in multivariate Cox proportional hazards regression

analysis. The results were presented as hazard ratio (HR) and

95% CI. The reported statistical remarkable levels were all

two-sided, and p-values <0.05 were significant.
Results

Patient characteristics

The clinicopathologic features of patients are shown in

Table 1. In all patients, 355 patients with confirmed EGFR-

positive type were enrolled, while 337 patients were EGFR

wild type. Most patients were diagnosed with inoperable stage
Frontiers in Oncology 05
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III or IV disease (677/692, 97.8%), and 50.4% of 692 patients

were former or act ive smokers (Table 1) . Pat ient

characteristics including age, gender, and smoking history

were demonstrated to be different between EGFR-positive

and EGFR-negative type cohorts, which is consistent with a

previous clinical study (Table 1).

Two hundred twenty-five patients with EGFR mutation

who experienced disease progression following first-line TKI

therapy were included in the efficacy analysis presented in

Table 2. The median follow-up time was 1 year (range, 0.7–

37.7 months). In the training and validation cohorts (187 and

38 cases, respectively), the results showed no significant

difference in PFS (median PFS: training cohort, 12 months;

validation cohort, 11.8 months; Mann–Whitney, p = 0.304).

Moreover, there were also no significant differences (p > 0.05)

regarding age, gender, smoking history, family history, tumor

stage, and position between the two cohorts (Table 2).
TABLE 1 Clinical characteristics of all patients included in the study.

Factors Training cohort p-Value Validation cohort p-Value

EGFR-wild EGFR-mutant EGFR-wild EGFR-mutant

Subject (N) 514 178

Age (years) 57 ± 9 55 ± 4 <0.001b 57 ± 11 59 ± 9 <0.001b

Gender <0.001b <0.001b

Male 171 136 76 40

Female 78 129 12 50

Smoking history <0.001b <0.001b

Yes 158 95 67 29

No 91 170 21 61

Family history 0.417 0.565

Yes 31 26 11 15

No 218 239 77 75

TNM stagea 0.717 0.076

I 2 2 0 1

II 5 3 2 0

III 42 38 11 4

IV 200 222 75 85

Tumor position 0.853 0.116

RUL 81 87 18 27

RML 20 27 12 16

RLL 45 52 14 16

LUL 66 63 17 18

LLL 37 36 27 13

EGFR mutation type 0 265 0 90

Wild type 249 0 88 0

Exon 19 deletion 0 167 0 58

Exon 21 insertion 0 89 0 31

Other types 0 9 0 1
front
EGFR, epidermal growth factor receptor; RUL, right upper lung; RML, right middle lung; RLL, right lower lung; LUL, left upper lung; LLL, left lower lung.
aBased on American Joint Committee on Cancer (AJCC) 8th edition.
bOnly statistically significant (p < 0.05) results are reported for analysis.
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Building and validating the predictive
radiomics signature for epidermal
growth factor receptor mutation status

The feature with a p-value >0.05 was excluded using the

Mann–Whitney statistical test. Thus, the number of radiomics

features was reduced from 2,153 to 1,545. Then, 13 normalized

features with variance equal to zero were removed. The

residual 1,532 features were sorted using mRMR algorithm to

pick the 13 top-ranked features (34), including six (skewness,

minimum, kurtosis, variance, minimum, and 10th percentile)

in the Firstorder features that describe the distribution of voxel

intensities within the image region defined by the mask

through commonly used and bas i c met r i c s , one

(SumSquares) in the gray-level co-occurrence matrix features

that describe the second-order joint probability function of an

image region constrained by the mask and is defined, three
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(SizeZoneNonUniformity, HighGrayLevelZoneEmphasis, and

ZoneVariance) in the gray-level size zone matrix features that

quantify the number of connected voxels sharing the same

gray-level intensity in an image, and three (LargeDependence

HighGrayLevelEmphasis, LargeDependenceHighGrayLevel

Emphasis, and DependenceEntropy) in the gray-level

dependence matrix features that quantify the number of

connected voxels within distance, which are dependent on

the center voxel in an image. Then, the top-ranked features

and four clinical features (age, gender, smoking, and tumor

family history) were input into the SVM classifier to establish a

radiomics signature that predicts EGFR mutation status in the

training group (n = 514). The predictive score of the radiomics

signature was assessed on an independent validation group

with 178 patients and obtained an AUC of 74.13%, an F1 score

of 68.29%, a specificity of 79.55%, an accuracy of 70.79%, and a

sensitivity of 62.22% (Figure 2).
TABLE 2 Clinical characteristics of patients included in treatment response analysis.

Factors Training cohort Validation cohort p-Value
N (%) N (%)

Subject(N) 187 (100) 38 (100)

Age(years) 0.114

Median 55 57

Range 29–80 37–75

Gender 0.707

Male 80 (42.8) 15 (39.5)

Female 107 (57.2) 23 (60.5)

Smoking history 0.894

Yes 57 (30.5) 12 (31.6)

No 130 (69.5) 26 (68.4)

Family history 0.469

Yes 19 (10.2) 6 (15.8)

No 168 (89.8) 32 (84.2)

TNM stagea 0.083

III 19 (10.2) 0 (0)

IV 168 (89.8) 38 (100)

Tumor position 0.466

RUL 57 (30.5) 9 (23.7)

RML 17 (9.1) 9 (23.7)

RLL 33 (17.7) 9 (23.7)

LUL 53 (28.3) 7 (18.4)

LLL 27 (14.4) 4 (10.5)

EGFR-TKI therapy 0.718

Gefitinib 66 13

Erlotinib 62 15

Icotinib 59 10

Median PFS (months) 12 11.8 0.304
front
PFS, progression-free survival; RUL, right upper lung; RML, right middle lung; RLL, right lower lung; LUL, left upper lung; LLL, left lower lung; EGFR, epidermal growth factor receptor;
TKI, tyrosine kinase inhibitor.
aBased on American Joint Committee on Cancer (AJCC) 8th edition.
iersin.org
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Identification of the best response-
related features based on 13 epidermal
growth factor receptor mutant-
associated features in epidermal growth
factor receptor tyrosine kinase inhibitor
therapy patients

To identify the imaging biomarkers candidates for the

best response of EGFR TKI first-line treatment, the 13 top-

rank radiomics features associated with EGFR mutation were

further used to explore by logistic analysis. The two features

that significantly negatively correlated with the best response

were skewness (p = 0.004) and 10th percentile (p = 0.002)

(Table S1). Skewness and 10th percentile were divided into

two groups based on predicting the best response. ROC curve

was applied to confirm the optimal cutoff points of significant

features. For skewness and 10th percentile, the AUC values

were 0.832 (p = 0.004, Youden’s index = 0.614) and 0.653 (p =

0.002, Youden’s index =0.289), respectively. The best cutoff

points of skewness and 10th percentile, as confirmed by the

AUC value, were 0.882 and 21.132, respectively.

Among the results from skewness, the skewness-L (≤0.882)

group had a superior partial response (PR) rate than had the

skewness-H (>0.882) group (89/117, 76.1% vs 27/108, 25.0%, HR

= 9.536, 95% CI: 5.189–17.52, p < 0.0001) (Figure 3, Table S2). For

the 10th percentile, the SD/PD rate was inferior in the 10th

percentile-H group (>21.132) than in the 10th percentile-L group

(≤21.132) (76/130, 58.5% vs 33/95, 34.7%, HR = 2.644, 95% CI:
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1.529–4.574, p = 0.0005) (Figure 3, Table S2). In conclusion, we

suggest that skewness and 10th percentile may be better predictive

markers for differentiating response to first-line EGFR TKIs.
Testing the correlation between the best
response-associated features and
progression-free survival

To explore whether advanced lung cancer patients with a

good curative outcome can be distinct, we tested the defined

cutoff points of the skewness of first-orders (≤0.882 versus

>0.882) and the 10th percentile of first-orders (≤21.132 versus

>21.132) in the training cohort (n = 187). Univariate analysis

revealed that the skewness > 0.882 (p = 0.001) and the 10th

percentile > 21.132 (p = 0.015) before treatment were associated

with a significantly worse PFS. We then carried out a

multivariate Cox proportional regression analysis containing

these covariates to ensure independent factors. The

relationship between two features and PFS was obvious in

multivariate analysis; for the skewness, HR = 1.722, 95% CI:

1.261–2.352, p = 0.001 (Figure 4A, Table 3); for the 10th

percentile, HR = 1.466, 95% CI: 1.085–1.981, p = 0.013

(Figure 4B, Table 3). Therefore, the skewness and 10th

percentile of first-order features at baseline level could be used

to predict the efficacy in EGFR-mutant advanced lung

adenocarcinoma following standard first-line EGFR-

TKI therapy.
FIGURE 2

The performance of epidermal growth factor receptor (EGFR) status-related radiomics signature was evaluated by the area under the curve
(AUC) of the receiver operating characteristic (ROC) curve.
frontiersin.org

https://doi.org/10.3389/fonc.2022.985284
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiang et al. 10.3389/fonc.2022.985284
Validation of the predictive effect of
skewness and 10th percentile features
for progression-free survival

Next, we intended to validate the clinical effect of the

skewness and 10th percentile of first-order features in the

validation cohort (n = 38). Here, we used the aforesaid cutoff

value in the training group: high skewness value (>0.882) versus

low (≤0.882) and high 10th percentile value (>21.132) versus low

(≤21.132). The correlation between the skewness of first-order

and PFS is consistent with the training cohort (Figure 4C,

Table 3). Probably due to the limited number of samples, we

did not observe a statistical difference between the 10th

percentile of first-order before treatment and PFS in the

validation cohort (Table 3). However, the skewness of first-

order is an effective biomarker that could better indicate the

response of first-line EGFR-TKI therapy.
Discussion

Therapeutic opportunities for EGFR mutant lung

adenocarcinoma patients have radically changed because of

the application of EGFR-TKI therapy. The response varies

markedly, and more objective markers are needed to identify

patients best suited for certain targeted therapies (4, 9, 15). EGFR

mutation types are a well-studied biomarker of response to TKI

therapy (6, 7, 36–41). Next-generation sequencing of tissue

samples is the standard technique of EGFR status detection.

Nevertheless, a biopsy is an invasive procedure of locating tissue

that ignores organizational heterogeneity of tumor and

microenvironment where distinct bioactive molecules can

drive tumor development and progression.
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Radiomics is a non-invasive technology that collects routine

clinical medical images to assess the tumor phenotype (16, 17).

Previous studies used clinical and radiomics models to predict

EGFR mutation status (13, 14, 21–26). The radiomics features

combined with the clinical factors had a greater prediction effect

(13, 14, 22). For example, Aerts et al. found that homogeneity,

inverse variance, sum entropy, short-run emphasis, maximum

diameter, and tumor volume radiomics features had important

roles in discriminating EGFR mutant status in lung

adenocarcinoma (14). These features belong to GLCM,

GLRLM, and shape features that reveal that EGFR mutation is

more likely to be heterogeneous. Similarly, Ye et al., in a single

group association study of lung adenocarcinomas, showed that

CT imaging characteristics including bubble-like lucency and

homogeneous enhancement were remarkably independent

predictive factors for EGFR-activating mutation (22). The deep

learning model also revealed that the deep learning features such

as circle or arch shapes and horizontal and diagonal edges had a

significant correlation between high-dimensional CT image

characteristics and EGFR genotype (26). Based on previous

research progress, we carried out new research for further

exploration in this study, and we confirmed a radiomics

signature by the SVM classifier combined with four clinical

factors to forecast EGFR status in advanced lung

adenocarcinoma using preoperative three-dimensional CT

images. The radiomics signature showed strong predictive

performance in the test group (AUC, 0.7413; specificity,

79.55%; accuracy, 70.79%). We found 13 radiological features

that were remarkably associated with EGFR mutations; the first-

order category had six features such as skewness, minimum,

kurtosis, variance, and 10th percentile, which describes the

distribution of voxel intensities within the image region

defined by the mask through commonly used and basic
FIGURE 3

Analysis of epidermal growth factor receptor (EGFR) mutation-associated features from computed tomography (CT) imaging before treatment
and the best clinical response to tyrosine kinase inhibitor (TKI) first-line therapy. All patients were divided into two groups according to the
cutoff of skewness and 10th percentile.
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B

C

A

FIGURE 4

Kaplan–Maier survival curves of progression-free survival under biomarker-defined subgroups. In the tyrosine kinase inhibitor (TKI) therapy
training cohort, (A) stratification by the skewness of first-order category (low ≤ 0.882 versus high > 0.882); (B) stratification by the 10th
percentile of first-order category (low ≤ 21.132 versus high > 21.132). In the TKI therapy validation cohort, (C) stratification by the skewness of
first-order category (low ≤ 0.882 versus high > 0.882). p-Values are calculated with multivariate Cox models adjusted by age, gender, smoking
history, family history, TNM stage, and tumor position.
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metrics (34). The GLSZM and GLDM categories had three

features each. The GLSZM is defined as the gray-level zone

quantization of connected voxel numbers that share the same

gray-level intensity in an image, while GLDM quantifies gray-

level dependencies defined as the number of connected voxels

within a distance that are dependent on the center voxel in an

image. Together, the representation of these features indicates

tumor heterogeneous related to EGFR mutation phenotype,

which provides an alternative non-invasive way easily to

forecast EGFR status in routine CT diagnosis and supply a

good supplement to biopsy in real clinical practice.

Radiomics markers that can predict the efficacy of first-line

EGFR-TKI therapy are now more needed; we also have found

two CT features for progression risk stratification to first-line

EGFR-TKI remedy in advanced lung adenocarcinoma. The

skewness and 10th percentile of first-order features included in

ROI preprocessed by gradient and exponential filter,

respectively, were significantly negatively correlated with the

best response and PFS of EGFR TKI therapy. Few studies used

radiomics to explore the response of targeted therapy. For

example, Jie Tian et al. extracted features from two-directional

CT images and used the LASSO Cox regression analysis to select

12 CT features for discriminating between patients with rapid

and slow progression to EGFR TKI therapy. The 12 CT features

are part of GLCM, GLRLM, and first-order features (30).

However, our study retrospectively obtained more

comprehensive data of the tumors in 3D from CT images and

was the first to further explore the relationship between EGFR

mutation-related features and the response of EGFR TKI
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therapy in advanced lung adenocarcinoma. To date, several

studies have found the first-order features with response and

prognosis of EGFR TKI therapy, including energy, standard

deviation, uniformity, and entropy (26, 30), but we are the first

to find the predictive value of other first-order features for the

best response and PFS. The skewness feature assesses the

asymmetry of the distribution of values about the mean value,

while the 10th percentile represents the first 10% proportion of

voxels with positive order of susceptibility. The two features

indicated the whole tumor heterogeneity and the asymmetry

distribution of tumor parenchyma, which corresponds to the

inhomogeneity of gross findings in CT images checked by the

radiologist. It could explain why radiomics characteristics reveal

treatment outcomes, while further work is needed to explore the

potential mechanisms of the above features and predict the

efficacy of lung cancer.

There are several limitations that could not be ignored. First,

this was a retrospective study and CT images were acquired with

5-mm slice thicknesses, which is indeed used in hospitals.

Although we may ignore some tumor information, our results

are certainly closer to practice. Second, given that this was a

single-center study, the study lacks an external validation group

of patients, which is a key component of radiological analyses,

and required validation in a larger patient population study.

Third, our investigation only concentrated on EGFR mutation

status. The interrelationship among radiomics features, EGFR,

and other driver mutations (i.e., ROS-1, ALK, and c-Met) is

unknown but could be studied in future research. Nonetheless,

the study still had significant positive results. Further assessment
TABLE 3 Multivariate analysis of the categorization of two features and PFS.

Factors Categorization Training cohort (N=187) Validation cohort (N=38)

HR (95% CI) p-Value HR (95% CI) p-Value

Age Continuous 0.992 (0.976–1.009) 0.368 1.015 (0.976–1.055) 0.461

Gender Female vs male 1.181 (0.751–1.856) 0.471 0.719 (0.154–3.360) 0.675

Smoking history No vs yes 0.994 (0.609–1.621) 0.98 0.822 (0.180–3.744) 0.8

Family history No vs yes 1.246 (0.764–2.031) 0.378 1.019 (0.357–2.907) 0.972

TNM stagea III vs IV 0.854 (0.517–1.413) 0.54 0 0

Tumor position RUL vs RML vs RLL vs LUL vs LLL 0.980 (0.887–1.083) 0.695 0.879 (0.671–1.153) 0.352

Skewness ≤Cutoff1c vs >cutoff1c 1.722 (1.261–2.352) 0.001b 3.343 (1.337–8.361) 0.01b

Age Male vs female 0.995 (0.979–1.012) 0.579 0.998 (0.961–1.036) 0.905

Gender Continuous 1.154 (0.740–1.800) 0.528 1.694 (0.425–6.748) 0.455

Smoking history 0 or 1 vs 2 0.870 (0.534–1.416) 0.575 0.437 (0.109–1.751) 0.243

Family history No vs yes 1.128 (0.694–1.833) 0.628 0.638 (0.237–1.718) 0.374

TNM stagea First vs second 0.682 (0.418–1.111) 0.124 0 0

Tumor position RUL vs RML vs RLL vs LUL vs LLL 0.996 (0.902–1.101) 0.943 1.013 (0.798–1.285) 0.919

10th percentile ≤Cutoff2c vs >cut0ff2c 1.466 (1.085–1.981) 0.013b 1.122 (0.492–2.561) 0.784
fron
PFS, progression-free survival; EGFR, epidermal growth factor receptor; TKI, tyrosine kinase inhibitor; RUL, right upper lung; RML, right middle lung; RLL, right lower lung; LUL, left
upper lung; LLL, left lower lung; HR, hazard ratio; CI, confidence interval.
aBased on American Joint Committee on Cancer (AJCC) 8th edition.
bOnly statistically significant (p < 0.05) results are reported for analysis.
cCutoff1 = 0.882; Cutoff2 = 21.132.
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of two indicators could be contained together with other

predictive biomarkers in the evaluation of lung and other solid

tumor patients who are candidates for treatment efficacy.
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Breast cancer is the most common cancer in women worldwide. Providing

accurate and efficient diagnosis, risk stratification and timely adjustment of

treatment strategies are essential steps in achieving precision medicine before,

during and after treatment. Radiomics provides image information that cannot

be recognized by the naked eye through deep mining of medical images.

Several studies have shown that radiomics, as a second reader of medical

images, can assist physicians not only in the detection and diagnosis of breast

lesions but also in the assessment of risk stratification and prediction of

treatment response. Recently, more and more studies have focused on the

application of ultrasound radiomics in breast management. We summarized

recent research advances in ultrasound radiomics for the diagnosis of benign

and malignant breast lesions, prediction of molecular subtype, assessment of

lymph node status, prediction of neoadjuvant chemotherapy response, and

prediction of survival. In addition, we discuss the current challenges and future

prospects of ultrasound radiomics.

KEYWORDS

ultrasound, radiomics, breast, personalized medicine, artificial intelligence
Introduction

Breast cancer (BC) has become the most commonly diagnosed malignancy among

women worldwide, with approximately 2.3 millions new cases diagnosed and 680,000

deaths in 2020, which indicates that effective clinical strategies are urgently needed to

manage BC patients (1). With the increasing advocacy of precision medicine, it is

important to perform accurate and efficient diagnosis, risk stratification, and timely

adjustment of treatment strategies before, during, and after treatment. Breast ultrasound

(US) is one of the most important imaging technology and is used in clinical practice,

which aims to monitor neoadjuvant chemotherapy (NAC) treatment and characterize
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breast lesions and axillary lymph nodes (2, 3). Various new US

imaging techniques and quantitative analysis methods have been

proposed, including US elastography and contrast-enhanced

ultrasound (CEUS), to improve the sensitivity of conventional

US and increase the accuracy of monitoring and prognostic

prediction (4). However, it is difficult for radiologists to perform

a comprehensive analysis of tumors with the information

obtained by looking at various ultrasound images (5, 6).

Radiologists face great challenges in achieving stable and

reliable interpretation and efficacy prediction of such multi-

modal US images.

New opportunities have emerged with the advent of

radiomics, a technique for extracting high-throughput

quantitative features from medical images In recent years,

radiomics based on X-ray, US, magnetic resonance imaging

(MRI) and positron emission tomography-computed

tomography (PET-CT) has proved to be useful for extracting a

large number of image features that cannot be observed with the

naked eye (7–10). In some tasks, it matches or exceeds human

perception (11, 12). Ultrasound has the characteristics of large

data size, multiple data types, and frequent examination, which

makes ultrasound radiomics uniquely advantageous in clinical

applications. Therefore, the application of ultrasound radiomics

in BC is being explored positively.

In this review, we aimed to briefly introduce ultrasound

radiomics and summarize its potential clinical applications in

the diagnosis of benign and malignant breast lesions, prediction

of molecular staging, assessment of lymph node status,

prediction of NAC response, and the prediction of survival.

Moreover, we discuss the current challenges of ultrasound

radiomics and how it can be more quickly applied to clinical

practice, and then to achieve precise personalized medical

management for BC patients based on US images and

clinicopathological information.
Workflows of radiomics

Radiomics is an effective combination of big data analysis

technology and medical images, which utilizes a large number

of data characterization algorithms based on artificial

intelligence to extract high-throughput quantitative image

features from massive medical images and build a data

information bank (13, 14). Then, radiomics performs deep

learning analysis and information mining from these

quantified image features and link them with clinical

macroscopic information and pathological and/or genetic

microscopic information, which holds potential in disease

detection, diagnosis, prognosis, and treatment (13). At

present, radiomics strategies mainly include two methods

(13, 15). One is the classic approach based on extracting pre-

designed (also referred to as hand-crafted or engineered)
Frontiers in Oncology 02
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features using conventional machine learning (ML)

(Figure 1). The other is the recently developed approach

based on deep learning (DL), it can autonomously learn and

extract complex and abstract features related to disease from a

large number of medical images by constructing a multi-layer

neural network, without any prior design (Figure 1).

The radiomics process based on engineered features can be

divided into five steps: 1) Medical image acquisition, which can

be various types of medical images, such as X-ray, computed

tomography (CT), MRI, PET-CT, US, or even images of H&E-

stained biopsy sections. 2) Region of interest (ROI)

segmentation, which is to extract only the information related

to the lesion. The current segmentation of ROI mainly includes

manual segmentation, semi-automatic segmentation and

automatic segmentation. Different segmentation algorithms

have their applicable scope and conditions. There is no

universal segmentation algorithm with high recognition yet. 3)

Feature extraction: Radiomics features are extracted from ROI,

including signal intensity, shape, size, and first-order, second-

order and higher-order texture features. 4) Feature selection:

Although radiomics extracts many features, some features are

spurious and redundant for a specific task. Therefore, it is

necessary to select features with good repeatability, high

stability and independence according to feature selection

methods, which is conducive to the construction of robust

models. At present, the main methods include least absolute

shrinkage and selection operator (LASSO), recursive feature

elimination, principal component analysis, and max-relevance

and min-redundancy, etc. 5) Model building and validation:

This mainly refers to model building and testing independent

samples, which can be done by a variety of methods, from

statistics to advanced machine learning strategies. The common

methods include linear regression, logistic regression, support

vector machine, random forest, Cox regression, artificial neural

network and so on.

In recent years, with the exponential increase of GPU

computing power and the development of medical big data,

DL has become one of the most popular analysis methods in

radiomics (16). DL-based radiomics (DLR) is an end-to-end

model that does not require human involvement. The feature

extraction and analysis parts of DLR are coupled. While hand-

crafted feature-based radiomics requires pre-determination

along with expert knowledge, DLR does not require the

preparation of pre-defined features, which reduces the

subjectivity and uncertainty of hand-crafted feature design

and selection.
Radiomics in the ultrasound

Compared with other imaging techniques, US has the

advantages of simple, no radiation and real-time, and is one of
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the most important methods for monitoring breast lesions. In

recent years, with the continuous development of ultrasound

instruments, various new ultrasound techniques such as color

doppler imaging, contrast-enhanced ultrasound (CEUS) and US

elastography have also been used as complementary techniques

for breast examination. Radiologists’ demand for efficient and

objective assessment of US images in routine clinical work is

increasing, and AI-assisted ultrasound image analysis has

attracted attention.

The traditional radiomics based on feature engineering

requires manual segmentation of target regions and manual

definition of features on images. However, it is difficult to

perform manual segmentation of US images due to low

resolution and vague boundary definition. Additionally, the

repeatability of US examinations is easily affected by different

operators, patients and instruments. Therefore, the application

of machine learning based on feature engineering in US image

analysis has certain limitations. However, the DLR approach

supports a simple end-to-end training or learning process that

can create a fully automated workflow. Moreover, deep

learning networks can learn specific features from the data

itself. Therefore, DLR can better enable the analytical

processing of US images and improve the dependence of US

images on various operators, patients and machines. DLR is

expected to achieve robust and scalable ultrasound radiomics

models to assist in disease detection, diagnosis, prognosis,

and treatment.
Frontiers in Oncology 03
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Ultrasound radiomics in
the breast diagnosis
Although ultrasonography is the one of most common

imaging technique used to detect and distinguish benign and

malignant breast lesions, it is difficult to accurately and stably

identify some lesions with the naked eye. Recently, many

studies have explored the potential of ultrasound radiomics

to aid in the detection and differentiation of lesions (9, 17–

20) (Table 1).

Earlier, Fujioka et al. (24) began to use the DLR model based

on US images to identify benign and malignant breast lesions.

This study confirmed that the DLR model had equal or better

diagnostic performance compared to radiologists on a test

dataset with 120 breast lesions (AUC = 0.913 vs 0.728-0.845,

p = 0.01-0.14). Subsequently, several studies have shown that

ultrasound radiomics based on 2D-US images has good

performance in identifying benign from malignant breast

lesion, with AUCs ranging from 0.817-0.943 (9, 17–19).

Additionally, studies have shown that the classification

performance of the AI model may be affected by adjusting the

ROI as different inputs of the model. Dong et al. (25) proposed

that the performance of the DLR model with coarse ROI is

slightly better than the DLR model with fine ROI. Therefore, we

can conclude that peripheral tissue is also an important factor in

the classification of breast lesions.
FIGURE 1

Radiomics workflows based on hand-crafted features or deep learning. CEUS, contrast-enhanced ultrasound; ROI, region of interest; MIC,
mutual information and maximal information coefficient; SVM, support vector machine; KNN, k nearest neighbor; NAC, neoadjuvant
chemotherapy.
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Since breast ultrasonography has a high rate of false positives

(FP), how to reduce the rate of FP with artificial intelligence (AI)

has attracted extensive attention by researchers. Chen et al. (21)

established an AI model with 288,767 US examinations in a

retrospective study and demonstrated that with the assistance of

AI, radiologists reduced the FP rate by 37.3% and unnecessary

biopsies by 27.8% without sacrificing sensitivity. And several

other studies have also confirmed this finding (33, 34). Recent

studies have challenged the use of ultrasound radiomics for

specific breast lesions that are difficult to diagnose in clinical

practice, particularly for BI-RADS 4A lesions. Niu et al. (35)

analyzed 206 patients with a US score of BI-RADS 4A and

concluded that AI can reveal more subtle differences associated

with benign-malignant differentiation in BI-RADS 4A lesions

compared to the naked eye. Thus, with the morphological and

textural information provided by AI, physicians can make more

accurate judgments about such atypical lesions. In addition, a

study by Zhang et al. (27) confirmed a positive predictive value

was 9.3% when using the AI model to analyze BI-RADS 4A

lesions. Although this result was not significant, it was superior

to radiologists.

Studies have shown that radiomic features extracted from

multimodal US images can improve the ability of lesion

diagnosis. A recent study by Zhan et al. (30) showed that
Frontiers in Oncology 04
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dual-mode image features from 2D and shear wave

elastography (SWE) achieved accurate differentiation for

malignant and benign breast tumors with an AUC of 0.961,

which employed a framework for feature learning and

classification with the deep polynomial network. Several

studies have further confirmed the superior performance of

ultrasound radiomics based on bimodal US images in

classifying over quantitative elastography parameters (22, 29,

31, 32, 36, 37). As known, the blood supply characteristics of

breast masses are important features to determine the

malignancy of the lesion. Moustafa et al. (23) extracted

radiomics features from 2D-US and color doppler images,

respectively, to establish DLR models to help determine the

possibility of malignant. CEUS can provide more detailed blood

supply characteristics, which can be used to establish an AI

model for the differential diagnosis of breast cancer (28). The

interpretability and clinical applicability of the DLR model have

always been two major challenges in the field of AI. Notably, an

interpretable and clinically applicable DLR system was recently

proposed and validated by Qian et al. (26). The study used

10,815 and 912 multi-modal (B mode, color doppler and

elastography) multi-view (transverse and longitudinal) breast

US images for training and prospective testing, respectively, and

had an AUC of 0.955 finally. Such a clinically applicable AI
TABLE 1 Summary of ultrasound radiomics studies in breast diagnosis.

Study Task Data size Imaging data Radiomics results

Fleury et al. (17) 2020 benign vs malignant 207 lesions 2D-US AUC: 0.817

Li et al. (18) 2021 benign vs malignant 256 lesions 2D-US AUC: 0.943

Romeo et al. (9) 2021 benign vs malignant 201 lesions 2D-US AUC: 0.820

Shen et al. (21) 2021 benign vs malignant 143203 2D-US + Color Doppler AUC: 0.962

Fujioka et al. (22) 2020 benign vs malignant 377 lesions SWE-US AUC: 0.898

Ciritsis et al. (20) 2019 Task A: BI-RADS 2 vs
BI-RADS 3-5;
Task B: BI-RADS 2-3
vs BI-RADS 4-5

582 lesions 2D-US + radiological report ACC: 0.930 for task A;
ACC: 0.953 for task B

Mango et al. (19) 2020 benign vs malignant 900 lesions 2D-US AUC: 0.870

Moustafa et al. (23) 2020 benign vs malignant 159 lesions 2D-US + Color Doppler AUC: 0.958

Fujioka et al. (24) 2019 benign vs malignant 360 lesions 2D-US AUC: 0.913

Dong et al. (25) 2021 benign vs malignant 367 lesions 2D-US AUC: 0.899 with coarse ROIs
AUC: 0.869 with fine ROIs

Qian et al. (26) 2021 benign vs malignant 873 lesions 2D-US + Color Doppler + elastography AUC: 0.922 (2D-US + Color
Doppler)
AUC: 0.955 (2D-US + Color
Doppler + elastography)

Zhang et al. (27) 2021 benign vs malignant 1311 lesions 2D-US AUC: 0.846
PPV:9.3% for BI-RADS 4A

Chen et al. (28) 2021 benign vs malignant 221 lesions CEUS ACC: 0.863

Jiang et al. (29) 2021 benign vs malignant 401 lesions 2D-US + SWE AUC: 0.920

Zhang et al. (30) 2019 benign vs malignant 227 lesions 2D-US + SWE AUC: 0.961

Misra et al. (31) 2022 benign vs malignant 85 lesions 2D-US + SE ACC: 0.900

Zhang et al. (32)2020 benign vs malignant 291 lesions 2D-US + SWE ACC: 1.000
US: ultrasound, SWE: shear wave elastography, SE: strain elastography, AUC: area under the curve, ACC: accuracy, PPV: positive predictive value
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system may be incorporated into future breast cancer US

screening, as well as workflows that support ancillary or

secondary readings.
Ultrasound radiomics in the
evaluation of molecular subtype

BC is a highly heterogeneous tumor, and the molecular

expression status is one of the key factors indicating the

prognosis and guiding the choice of treatment options. At

present, molecular subtypes of BC are mainly determined by

genetic or immunohistochemistry analysis. However, there are

false negatives for biopsy results of individual tissues. The

ultrasound radiomics is based on the assumption that

microstructural discrepancies in different molecular subtypes

of breast cancer result in different gray-scale patterns, margins,

or any other features on US images that can be identified by AI

models. Currently, researchers are attempting to use ultrasound

imaging histology to non-invasively and comprehensively

analyze the molecular status of the entire tumor tissue to

provide personalized management for BC patients (Table 2).

Studies have shown that ultrasound radiomics is expected to

be a new imaging label for identifying molecular subtypes (HER2

+, triple-negative, Luminal A and Luminal B) of BC patients

because of its good performance (38, 39). In addition, Jiang et al.

(38) confirmed that the DLR model could distinguish the

luminal type and non-luminal type satisfactorily with AUCs of

0.87 and 0.83 in two independent test cohort. However, Wu et al.

(40) extracted quantitative radiomics features of tumors in raw

US images and showed a general performance in predicting

molecular biomarker expression. The radiomics models showed

predictive performance with AUC greater than 0.7 in the test

cohort, and the AUCs are 0.84, 0.78, 0.74, 0.86, 0.78, and 0.74 for

ER, PR, HER2, Ki67, p16, and p53, respectively. The treatment
Frontiers in Oncology 05
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of triple-negative BC has been a challenge due to the absence of

effective drugs for specific molecular targets. Whereas the

expression of ki67 is a prognostic indicator and p53 is

considered a tumor suppressor. Cui et a.l (41) and Li et al.

(42) found that ultrasound radiomics models enabled

preoperative classification of ki67 and p53 status. Furthermore,

it is noteworthy that recent studies have shown that ultrasound

radiomics features are not only a potential imaging biomarker

for disease-free survival risk stratification, but also can predict

the risk of postoperative recurrence in patients with triple-

negative BC (43, 44). At present, the ultrasound radiomics in

predicting molecular subtype and survival recurrence of BC

needs further research.
Ultrasound radiomics in the
assessment of lymph node status

Accurate identification of axillary lymph node (ALN) status

is important in determining tumor stage, developing appropriate

axillary treatment plans, and predicting prognosis for BC

patients with or without NAC treatment (2, 3). Sentinel lymph

node (SLN) biopsy and axillary lymph node dissection (ALND)

are two main methods for determining ALN status. It is worth

mentioning that there are varying degrees of complications with

both sentinel lymph node dissection and ALND (45, 46). Thus,

the development of noninvasive biomarkers to identify ALN

status is of great significance for the accurate management of BC

patients. At present, researchers are challenging the radiomics

approach based on primary breast tumors on US images in

predicting the status of ALN and SLN (Table 3).

The majority of the earliest studies using ultrasound

radiomics to predict lymph node status were based on 2D

grayscale US images. Several studies have confirmed that DLR

combined with clinicopathological features has a satisfactory
TABLE 2 Summary of ultrasound radiomics studies in classifying breast cancer subtypes.

Study Task Data
size

Imaging
data

Radiomics results

Jiang
et al. (38)
2021

assessment of four breast cancer molecular
subtypes: luminal A, luminal B, HER2+,
triple-negative

2120
lesions

2D-US ACC: form 0.8007 to 0.9702 for the test cohort A; and 0.8794 to 0.9883 for the test
cohort B for each sub-category

Guo
et al. (39)
2018

distinguish between HR+/HER2- and triple-
negative

215
lesions

2D-US AUC: 0.760

Wu et al.
(40) 2021

predicting the expression of ER, PR, HER2,
Ki67, P16, and P53

116
lesions

2D-US AUC: ER (0.940 and 0.840), PR (0.900 and 0.780), HER2 (0.940 and 0.740), Ki67
(0.950 and 0.860), P16 (0.960 and 0.780), and P53 (0.95 and 0.74) in training and test
cohort, respectively.

Cui et al.
(41) 2021

predicting the expression of Ki67 and P53 263
lesions

2D-US AUC: 0.780 for Ki67; 0.710 for P53

Li et al.
(42) 2021

predicting the expression of Ki67 and HER2 252
lesions

2D-US AUC: 0.680 for Ki67; 0.651 for HER2
US, ultrasound; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; ER, estrogen receptor; PR, progesterone receptor; AUC, area under the curve; ACC, accuracy.
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performance in predicting ALN metastasis, with an AUC

between 0.75 and 0.85 (47–50). Guo et al. (51) proposed a

DLR ultrasonography (DLRU) model for comprehensive

evaluation of SLN and non-sentinel lymph node (NSLN)

status. And DLRU achieved a sensitivity of 98.4% in

identifying SLN+ and 98.4%in identifying NLSN+. In addition,

Lee et al. (52) innovatively explored the performance of

peritumoral region combined with tumor region in predicting

lymph node metastasis (LNM) with method of ultrasound

radiomics. They found that DLR model with 3mm thick

peritumoral tissue tumor area had the best predictive

performance, achieving an accuracy of 81.05% (124/153).

Therefore, combining tumor and peri-tumor tissues

contributes to the prediction of LNM, which is consistent with

the results of previous study (53). SWE is an elastographic

technique that integrates B-mode US with a color-coded map

to allow better characterization of breast lesions. Jiang et al. (54)

developed and validated a nomogram containing radiomics

features of SWE for assessing the risk level of LNM in early

BC, then the result confirmed that ultrasound radiomics model

showed good predictive power for LNM risk staging in early-

stage BC patients, which can provide incremental information

for decision making. Moreover, recent studies have shown that

clinical characteristics combined with DLR model based on

multimodal US images (B mode and SWE) can provide a

noninvasive and practical tool for preoperative prediction of

ALN status, and achieve an AUC of 0.905 in the test cohort (55).

Compared with the DLR model based on grayscale US images

alone, the performance of the DLR model based on multimodal

US images for tumor load of ALN achieved a significant

improvement (56). As clinical practice proposes greater

demands on precision treatment, studies with larger data size

and more multimodal fusion are needed to confirm the validity

of the DLR model.
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Ultrasound radiomics in the
prediction of NAC response

NAC has become one of the most important treatment

methods for BC patients. Normally, if the efficacy of NAC is

unresponsive or unsatisfactory, further treatment should be

changed accordingly. Therefore, early discontinuation of

ineffective treatment or adjustment of treatment strategy is

essential to avoid unnecessary toxicities and optimize overall

benefits. However, owing to the heterogeneity and complexity of

the tumor, individual responses of BC patients to NAC exhibit

vast differences and tumors and axillary response to NAC are

not parallel (57–60). Histopathological examination of surgical

specimens is the gold standard for evaluating response and can

only be performed after NAC treatment. Accurate assessment

and prediction of response are of particular significance for the

precise management of breast cancer patients who underwent

NAC. AlthoughMRI is currently the most important method for

assessing NAC response (61–63), it still cannot predict

pathologic complete response (PCR) with sufficient accuracy

(64). MRI is not suitable for frequent monitoring during NAC

treatment due to its high cost and time-consuming. Ultrasound

is the most suitable examination method to be used repeatedly in

the process of NAC. Several studies have shown that DLR based

on US images has good performance in predicting the efficacy of

NAC for BC patients (Table 4).

Quiaoit et al. (65) attempted to explore the performance of

quantitative ultrasound radiomics in monitoring the response to

NAC on a dataset of 59 patients, and the results were generally

consistent with those of other previous studies (66, 67, 71). The

usefulness of quantitative ultrasound radiomics for NAC

response assessment remained relatively limited. Recently, the

emergence of DLR has greatly enhanced the image analysis

capabilities of radiomics, which relies on deep neural network
frontiersin.org
TABLE 3 Summary of ultrasound radiomics studies in predicting axillary lymph node status.

Study Task Data size Imaging data Radiomics results

Lee et al. (47) 2021 Predicting ALN metastasis 496 patients 2D-US AUC: 0.810

Qiu et al. (48) 2020 Predicting ALN metastasis 196 patients 2D-US AUC: 0.759

Zhou et al. (49) 2021 Predicting ALN metastasis 192 patients 2D-US AUC: 0.650

Yu et al. (50) 2019 Predicting ALN metastasis 426 patients 2D-US AUC: 0.810

Guo et al. (51) 2020 Predicting SLN metastasis and NSLN metastasis 937 patients 2D-US AUC: 0.848 for SLN metastasis;
AUC: 0.812 for NSLN metastasis

Lee et al. (52) 2021 Predicting ALN metastasis 153 patients 2D-US AUC: 0.805

Sun et al. (53) 2020 Predicting ALN metastasis 479 patients 2D-US AUC: 0.950

Jiang et al. (54)2021 Predicting ALN burden 433 patients 2D-US+SWE C-index: 0.817 for N0 and N+(≥ 1)
C-index: 0.810 for N+(1-2) and N+(≥ 3)

Zheng et al. (55) 2020 Predicting ALN metastasis 584 patients 2D-US+SWE AUC: 0.905

Gao et al. (56) 2021 Predicting ALN burden 343 patients 2D-US AUC: 0.733 for N+(<3) and N+(≥ 3)
US, ultrasound; SWE, shear wave elastography; ALN, axillary lymph node; SLN, sentinel lymph node; NSLN, non-sentinel lymph node; AUC, area under the curve
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and data-driven learning to achieve automatic feature extraction

and is promising in US images analysis. Jiang et al. (68) proposed

an integrated ultrasound radiomics model based on a

multicenter dataset of 592 individuals that combined deep

learning and machine learning to predict PCR to NAC for BC

patients. The deep learning radiomics nomogram model

achieved an AUC of 0.94 in the validation cohort, with a

significant improvement in predictive accuracy compared to

two radiologists (p < 0.01). In addition to assessing the tumor

status of patients at the end of NAC, predicting response early in

NAC appears critical for early treatment change and avoiding

unnecessary treatment. Byra et al. (69) and Gu et al. (70)

proposed the Siamese convolutional neural network for

predicting response at an early stage of NAC and achieved

accurate and personalized prediction. Gu et al. also developed

a deep learning radiomics pipeline using cascading models

constructed at different courses of NAC treatment. Although,

various studies have confirmed that the ultrasound radiomics

can provide physicians with a valid and feasible tool to predict

the response to NAC and determine further personalized

treatment protocols. However, no large clinical trial has yet

shown that ultrasound radiomics predictions can fully

determine whether a patient should be discontinued from

NAC. Clinicians must consider treatment strategies in

combination with various resources and patients’ demands.
Ultrasound radiomics and
personalized management of BC

The personalized treatment plan for BC patients includes the

timing and specific implementation of surgery, the timing and

protocol of radiotherapy and chemotherapy, and other

treatment strategies, all of which require comprehensive

consideration of molecular subtypes, lymph node status, the

efficacy of neoadjuvant therapy and other factors. However, BC

is a heterogeneous disease with a high degree of diversity in
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biochemistry, histopathology and morphology, all of which

affect treatment and clinical outcomes. In addition, most gold

standards need to be obtained after surgery. Therefore,

preoperative noninvasive assessment and prediction is the

most important clinical issue in the realization of personalized

management of BC patients, which has not been addressed by

imaging methods at present. Ultrasound radiomics aims to

extract a large number of high-throughput features to obtain

more useful information about tissue lesions and treatment

response information for personalized medicine. The solution

by ultrasound radiomics is highly expected.
Future challenges

Ultrasound radiomics transforms medical images into high-

dimensional quantitative data, which help physicians

understand the characteristics of tumor phenotypes (including

the macroscopic phenotype of the tumor, and the cellular and

molecular characteristics of the tumor tissue), and achieved

impressive results in both diagnosis and prediction (13, 72). In

addition, ultrasound radiomics, as a complement to biopsy

an a l y s i s , c a n s imu l t a n e ou s l y a s s e s s t h e t umo r

microenvironment, characterize tumor spatial heterogeneity,

and assess disease progression longitudinally with the

advantage of non-invasive. However, it is still a long way to

transfer ultrasound radiomics from scientific research to clinical

practice, given some of the current limitations and challenges.

First, ultrasound with handheld technology lacks reproducibility

compared to other techniques such as mammography or MRI.

Compared with radiomics based on ML, DLR can overcome this

drawback to a certain extent. However, most of the previous

studies were small sample single-center retrospective studies,

which leads to the robustness of ultrasound radiomics models is

not stable enough. Future internationalized multi-center data

with larger sample sizes are needed to validate and improve the

robustness of the models. In addition, due to the differences in
TABLE 4 Summary of ultrasound radiomics studies in predicting response of NAC.

Study Task Data size Imaging data Radiomics results

Quiaoit et al. (65) 2020 Predicting the response to NAC before surgery 59 patients 2D-US AUC: 0.870

DiCenzo et al. (66) 2020 Predicting the response to NAC before treatment 82 patients 2D-US ACC: 0.870

Sannachi et al. (67) 2019 Predicting the response to NAC 100 patients 2D-US ACC: 0.780 at 1 week after the start of treatment
ACC: 0.900 at 4 weeks after the start of treatment
ACC: 0.920 at 8 week after the start of treatment

Jiang et al. (68) 2021 Predicting the response to NAC before surgery 592 patients 2D-US AUC: 0.940

Byra et al. (69) 2021 Predicting the response to NAC 38 patients 2D-US AUC: 0.844 (Pre NAC)
AUC: 0.827 (after first course of NAC)
AUC: 0.828 (after second course of NAC)

Gu et al. (70) 2021 Predicting the response to NAC 168 patients 2D-US AUC: 0.812 (after second course of NAC)
AUC: 0.937 (after fourth course of NAC)
NAC: neoadjuvant chemotherapy; US, ultrasound; AUC, area under the curve; ACC, accuracy.
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imaging acquisition and the diversity of reconstruction

algorithms, an exhaustive data management and coordination

process is needed to obtain multi-center data. Second, there is a

lack of effective methods to fuse multi-modal US data (such as B

mode, color doppler, CEUS, and elastography) to perform a

multi-scale and all-around assessment of tumor biological

behavior (73). Finally, DLR is a “black box” technology, that

lacks transparency and biological interpretability for algorithms

(74). Therefore, how correlating DLR image features with

biological information, and quantifying the key molecular

information in the development of BC using tumor images,

which are major challenges for future research. We believe this is

important because radiomics plays a supporting role in the

foreseeable future by providing physicians with more

interpretative and understandable information.

Additionally, multi-omics studies have become a hot topic

for characterizing the molecular biology of tumors, including

genomics, transcriptomics, proteomics, and metabolomics (72,

75). Thus, multi-omics studies are accelerating BC research and

making precision medicine possible. In the future, ultrasound

radiomics should be combined with clinical data and

microscopic genetic data to develop multi-omics studies,

which may accelerate BC research in precision diagnosis,

decision making and prediction. Although most DLR is still in

the technology development stage, the development of genomics

and deep learning technologies may facilitate the extraction of

deep features and explore new possibilities in BC radiomics or

radio-genomics.
Conclusion

In conclusion, radiomics has emerged rapidly as one of the

most interesting research topics in breast ultrasonography, with

promising results for the clinical management of BC. This article

has outlined the application of ultrasound radiomics in the

clinical practice for the management of BC patients, including

the diagnosis of benign and malignant lesions, prediction of

molecular staging, assessment of lymph node status, prediction

of NAC response and prediction of survival. Ultrasound

radiomics is a promising tool for personalized precision

medicine by virtue of its noninvasive nature. We also identify

the limitations of radiomics that currently hinder its translation
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into clinical practice and strategies to overcome these

limitations. In the future, the establishment of multi-omics

studies including radiomics will hopefully connect the

information extracted from breast US images to the tumor

microenvironment, and provide precise and personalized

treatment decisions for BC patients.
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Development and validation of a
radiomic nomogram based on
pretherapy dual-energy CT for
distinguishing adenocarcinoma
from squamous cell carcinoma
of the lung

Zhiyong Chen1†, Li Yi1†, Zhiwei Peng1, Jianzhong Zhou2,
Zhaotao Zhang1, Yahong Tao1, Ze Lin1, Anjing He1,
Mengni Jin1 and Minjing Zuo1*

1Department of Radiology, The Second Affiliated Hospital of Nanchang University,
Nanchang, China, 2Department of Radiology, The Quzhou City People’s Hospital,
Quzhou, Zhejiang, China
Objective: Based on pretherapy dual-energy computed tomography (DECT)

images, we developed and validated a nomogram combined with clinical

parameters and radiomic features to predict the pathologic subtypes of non-

small cell lung cancer (NSCLC) — adenocarcinoma (ADC) and squamous cell

carcinoma (SCC).

Methods: A total of 129 pathologically confirmed NSCLC patients treated at the

Second Affiliated Hospital of Nanchang University from October 2017 to

October 2021 were retrospectively analyzed. Patients were randomly divided

in a ratio of 7:3 (n=90) into training and validation cohorts (n=39). Patients’

pretherapy clinical parameters were recorded. Radiomics features of the

primary lesion were extracted from two sets of monoenergetic images (40

keV and 100 keV) in arterial phases (AP) and venous phases (VP). Features were

selected successively through the intra-class correlation coefficient (ICC) and

the least absolute shrinkage and selection operator (LASSO). Multivariate

logistic regression analysis was then performed to establish predictive

models. The prediction performance between models was evaluated and

compared using the receiver operating characteristic (ROC) curve, DeLong

test, and Akaike information criterion (AIC). A nomogram was developed based

on the model with the best predictive performance to evaluate its calibration

and clinical utility.

Results: A total of 87 ADC and 42 SCC patients were enrolled in this study.

Among the five constructed models, the integrative model (AUC: Model 4 =

0.92, Model 5 = 0.93) combining clinical parameters and radiomic features had

a higher AUC than the individual clinical models or radiomic models (AUC:

Model 1 = 0.84, Model 2 = 0.79, Model 3 = 0.84). The combined clinical-venous
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phase radiomics model had the best predictive performance, goodness of fit,

and parsimony; the area under the ROC curve (AUC) of the training and

validation cohorts was 0.93 and 0.90, respectively, and the AIC value was

60.16. Then, this model was visualized as a nomogram. The calibration curves

demonstrated it’s good calibration, and decision curve analysis (DCA) proved its

clinical utility.

Conclusion: The combined clinical-radiomics model based on pretherapy

DECT showed good performance in distinguishing ADC and SCC of the lung.

The nomogram constructed based on the best-performing combined clinical-

venous phase radiomics model provides a relatively accurate, convenient and

noninvasive method for predicting the pathological subtypes of ADC and SCC

in NSCLC.
KEYWORDS

dual-energy CT, dual-energy CT quantitative parameters, radiomics, lung
adenocarcinoma, lung squamous cell carcinoma
1 Introduction

Lung cancer is the second most common cancer worldwide

and the leading cause of cancer death (1). Non-small cell lung

cancer (NSCLC) accounts for approximately 85% of lung

cancers, with adenocarcinoma (ADC) and squamous cell

carcinoma (SCC) being the most common subtypes (2, 3). In

recent years, the prognosis of some lung cancer patients has

improved thanks to the rapid development of individualized

medicine and precise therapy, such as targeted therapies and

immunotherapy (4–6). However, different pathological subtypes

have distinct phenotypic and biological characteristics, which

directly affect clinical treatment and outcomes (6–8). For

example, bevacizumab has good effects in the treatment of

lung adenocarcinoma, but it may lead to a lung squamous cell

carcinoma patient bleeding profusely (9). Therefore, it is

important to accurately predict pathological subtypes before

treatment to establish better therapeutic strategies for NSCLC.

Currently, invasive biopsy for histological confirmation is

usually performed before the treatment of NSCLC (9, 10).

However, it is difficult to obtain a biopsy for several reasons.

First, lung cancer is a heterogeneous tumor, and the tissue

obtained from the biopsy of the lung tumor may contain only

a few tumor cells and may not reflect the complete biological

information (5, 9). Then, tumor samples are difficult to obtain in

some patients, ang biopsy is contraindicated, and so on. In

addition, biopsy may also increase the potential risk of cancer

transmission (11). Therefore, it is necessary to develop a reliable,

non-invasive, safe and economical approach to help pretherapy

predict the pathological subtypes in NSCLC for treatment

decision-making and prognosis estimation in NSCLC patients.
02
75
Dual-energy computed tomography (DECT) is a new

technology in the field of CT imaging in recent years. It not

only shows the morphological features of tumors, but also

provides extensive quantitative information (12). Many studies

have used DECT for tumor diagnosis and prediction. Zhang

et al. (13) found that quantitative parameters based on venous

phase DECT, including iodine concentration (IC), normalized

iodine concentration (NIC), and slope of the curve (lHU), can

effectively distinguish ADC and SCC of the lung. Radiomics

analyzes medical images in an automated high-throughput

manner and aims to extract quantitative and reproducible

tumor information that the human eye cannot distinguish,

quanti fy tumor heterogeneity , and monitor tumor

development, progression, and even prognosis (14–17). Many

studies have explored the role of radiomics in the pathological

classification of NSCLC. Zhu et al. (18) enrolled 129 NSCLC

patients for retrospective studies, and the LASSO regression

model was constructed by screening 5 radiomic features. The

result was that the radiomic features could be used as a

diagnostic factor to distinguish the histological subtypes

of NSCLC.

To further explore the additional value of the DECT image,

some studies combine DECT with radiomics. Liu et al. (19) built

and evaluated a pretherapy dual-energy CT-based clinical-

radiomics model that can effectively predict the clinical

response to systemic chemotherapy in patients with advanced

gastric cancer (AGC). However, to our knowledge, the

application and potential advantages of DECT-based

radiomics in predicting the pathological subtypes of NSCLC

have not been explored. Theoretically, DECT contains more

information than single-energy CT. Radiomic analysis of DECT
frontiersin.org
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images may extract more features relevant to tumor

heterogeneity and biology.

Therefore, the aim of this study was to establish an

independent predictive model for predicting the pathological

subtypes of NSCLC by combining clinical parameters and

DECT-based radiomic features. In addition, we provide a

visually quantitative nomogram in clinical practice, as an

additional predictive method for patients who cannot obtain

pathological subtypes before treatment.
2 Materials and methods

2.1 Patients

Eligible patients with NSCLC treated at the Second Affiliated

Hospital of Nanchang University between October 2017 and

October 2021 were retrospectively analyzed. This single-center

retrospective study was approved by the Ethics Committee of

Second Affiliated Hospital of Nanchang University (Ethics

Number: 2017061), and the requirement of informed consent

was exempted due to the retrospective study design. The

inclusion criteria were as follows: 1) all patients had standard

DECT plain scan and enhanced scan images; 2) all lesions were

examined by DECT within two weeks, and pathological results

were confirmed by puncture biopsy, fiberoptic bronchoscopy or
Frontiers in Oncology 03
76
surgical resection; 3) lesion diameter >10 mm, and the boundary

was clear; and 4) all patients had detailed clinical data, including

age, sex, smoking history, etc. Exclusion criteria included the

following: 1) patients who have been or are being treated for

oncological disease; 2) dense metal or implants interference in

the scanning area; and 3) patients who cannot cooperate during

scanning and who experience respiratory motion artifacts.

The patient recruitment process is presented in Figure 1. A

total of 129 patients were randomly divided at a ratio of 7:3 into

training and validation cohorts. The training cohort consisted of

90 patients (ADC 61, SCC 29), whereas the validation cohort

consisted of 39 patients (ADC 26, SCC 13).
2.2 Clinical features

The following pretherapy clinical features of each patient

were recorded from the medical system: age, sex, smoking status

(never, ever/always), carcinoembryonic antigen (CEA) level, and

distant metastasis (with/without).
2.3 Dual-energy CT image acquisition

The patient was in the supine position. After breath holding

at the end of inhalation, the dual-energy plain scan and dual-
FIGURE 1

Flow chart showing the patient selection and exclusion.
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energy enhanced scan in AP and VP were performed from the

thoracic inlet to the bottom of the lung.

CT scans were performed in DE mode on a second-generation

dual-source CT scanner (SOMATOM Definition FLASH, Siemens

Healthcare, Germany). After unenhanced CT was performed, 350

mg I/mL of nonionic iodinated contrast agent (Ioversol) at a dose of

1.2 mL/kg weight was injected into an antecubital vein together with

20 mL of saline at rates of 3 mL/s and 4 mL/s, respectively. AP and

VP dual-energy contrast-enhanced CT images were obtained after

post-injection delays of 30 and 60 s, respectively. The scan

parameters for the DECT mode were summarized as follows. The

tube voltages of A and B were set at 100 kVp and 140 kVp,

respectively, with a real-time adjustable variable tube current.

Collimation was 128 × 0.6 mm; rotation speed was 0.28 s/r;

gantry rotation was 330 ms; slice thickness was 5 mm. Finally,

100 kVp and 140 kVp images were acquired in the arterial and

venous phases, respectively, and 120 kVp equivalent mixed images

were generated (linear fusion coefficient, 0.4). These images were

reconstructed with a slice thickness of 1 mm and an interval of 1

mm using iterative reconstruction software (SAFIRE, Siemens

Healthcare, Germany).
2.4 Dual energy-CT image analysis

CT Semantic Feature Acquisition: Two radiologists (with

five and fifteen years of experience in diagnostic thoracic

imaging), blinded to the patient’s pathologic data, viewed and

analyzed the 120 kVp equivalent hybrid images and obtained CT

semantic features of each lesion. Six CT semantic features for

each mass were included (1): spiculation sign (2), lobulation sign

(3), null vacuole sign (4), tumor location (central/peripheral

type) (5), pleural effusion on the tumor side (yes/no), and (6)

pericardial effusion (yes/no). If any disagreements arose, final

consensus was reached through group discussions.

DECT Quantitative Parameter Acquisition: Data from AP and

VP DECT were loaded and postprocessed using specific software

(Siemens Healthcare, Germany). The iodine diagram was obtained

by the Liver VNC program. Manually, the region of interest (ROI)

was drawn as large as possible on the solid part of the primary

lesion, avoiding tumor margins, necrosis, cavities, calcifications and

large vessels. Then, the iodine concentration (IC, mean value, units

of 100 mg/ml) of the lesion was recorded in the ROI.

Simultaneously, ROIs were placed in the same slice to obtain the

ICs of the aorta. Finally, the normalized iodine concentration (NIC)

was calculated according to the following formula: NIC = IC

(lesion)/IC (artery). Then, through the Monogenetic program, the

CT values of 40 keV and 100 keV single energy images of the solid

part of the lesion were recorded. The slope of the spectrum

attenuation curves (lHU) was calculated using the following

formula: lHU=((CT40KeV-CT100keV)/60). All data were

measured three times and averaged.
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2.5 Radiomic analysis

2.5.1 Tumor segmentation
The 40-keV and 100-keV monoenergetic images (NIFTI

format) reconstructed in AP and VP were imported into the

open source software ITK-snap (version 3.8.0, University of

Pennsylvania, USA, http://www.itksnap.org). A radiologist (with

five years of experience in diagnostic thoracic imaging)

performed semi-automatic or manual combined semi-

automatic layer-by-layer segmentation of the lung window.

2.5.2 Feature extraction
Artificial Intelligence Kit software (A.K. Software; GE

Healthcare, China) was used to extract the radiomics features

from each ROI. A total of 107 features were extracted including

first-order statistical features, shape features, and texture

features. In addition, the software provides a variety of options

to standardize image preprocessing before feature extraction.

The extracted features were reproducible and based on the

benchmarks of the image biomarker standardization

initiative (IBSI).

2.5.3 Feature selection
To assess segmentation variability, 20 patients were

randomly selected and re-segmented after one month by the

same two radiologists. The inter- and intra-observer

reproducibility of tumor segmentation was assessed by

intraclass correlation coefficients (ICCs). The features with an

ICC greater than 0.75 are defined as having good repeatability.

After selecting the repeatable features based on ICC, the LASSO

algorithm was applied to select the most useful predictive

features in the training cohort.

2.5.4 Radiomics model establishment
Radiomics models were established by multivariable logistic

regression analysis of radiomic features selected in the images

from AP and VP DECT. Radiomic signatures, also called the

radiomic score (Rad-score), were calculated separately for the

training and validation cohorts in the AP and VP via a linear

combination of selected features weighted by their respective

coefficients in the model.
2.6 Clinical model and nomogram
establishment

Clinical features, CT semantic features, and DECT

quantification parameters are collectively referred to as clinical

parameters in this study.

Univariate analysis was performed for candidate clinical

parameters. The significant variables (p value < 0.05) in the

univariable analysis were then introduced into stepwise logistic
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regression analyses. The independent clinical predictors were

determined and the clinical model was established. Then, the

selected clinical predictors were combined with the radiomic

signatures of the arterial and venous phases to establish two

combination models. To visualize the prediction results of the

model for ADC and SCC, the nomogram was developed based

on the model with the best performance.
2.7 Evaluation and comparison of model
performance

Evaluation of the model included discrimination,

calibration, and clinical uti l i ty. Receiver operating

characteristic (ROC) curve analysis was used to evaluate the

predictive performance of each model. The Delong test was used

to compare the difference in the area under the curve (AUC)

between different models. The Akaike information criterion

(AIC) is used to compare the goodness of fit and parsimony

between models. Calibration curves were constructed to describe

calibration performance based on the agreement between

predicted and actual response probabilities. Decision curve

analysis (DCA) was used to determine the value of the

predictive model for clinical application and to determine the

net benefit to patients at each threshold probability.
2.8 Statistical analysis

IBM SPSS 25.0 (IBM, Armonk, NY, USA) software was used

for statistical analysis of clinical parameters: Normality of

distribution of continuous variables was tested using a

Kolmogorov–Smirnov test; independent samples t-test (or

Mann-Whitney U-test) for continuous variables and chi-

square test for categorical variables.

Other statistical analyses were conducted with R (version

4.1.2, http://www.r-project.org) software. The “MASS” package

was used for stepwise logistic regression to further filter clinical

features. The “glmnet” package was used for lasso logistic

regression to filter radiomic features and multiple logistic

regression to build models. The “pROC” package was used for

plotting ROC curves and calculating AUC values and related

indicators. And the “rms” package was used for drawing

nomograms and calibration curves. The Delong test was used

for comparison between models, and the Akaike information

criterion (AIC) was used for model ranking and selection. Two-

sided p values < 0.05 indicate statistical significance.
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3 Results

3.1 Clinical parameters

A total of 129 NSCLC patients, including 87 ADC patients

and 42 SCC patients, were enrolled in this study. After

univariate analysis, eight clinical parameters, including age,

sex, smoking status, spiculation sign, tumor location (central/

peripheral type), distant metastasis (with/without), NIC and l
HU in the VP, were significantly associated with the

pathological subtypes of NSCLC (p < 0.05; the results of

univariate analysis of patients’ clinical parameters are shown

in Table 1). Subsequently, three of these parameters (sex,

distant metastasis, and NIC in the VP) were selected using

stepwise logistic analysis to form the clinical model (related

data in eTable 1 in the Supplementary Materials).
3.2 Radiomic features selection and
radiomic signature building

The workflow of tumor segmentation, feature extraction and

selection, model establishment and evaluation is illustrated in

Figure 2. A total of 107 features were extracted from the

reconstructed 40 keV and 100 keV monoenergetic images

from AP and VP DECT for each patient, respectively.

Excluding features with low reproducibility according to ICC

(intra- and inter-observer ICC <0.75, ICC results are shown in

eTable 2 in the Supplementary Materials). Thus, the numbers of

40 keV and 100 keV in the AP (AP40 keV, AP100 keV), and 40

keV and 100 keV in the VP (VP40 keV, VP100 keV) features

were reduced to 76, 78, 86 and 84 respectively. Then, the LASSO

algorithm was used to exclude redundant features. This left 2, 3,

5, and 5 features at AP 40 keV, AP 100 keV, VP 40 keV, and VP

100 keV respectively (eTable 3 in the Supplementary Materials).

Finally, the five features selected from 40-keV and 100-keV

DECT images in AP were combined, and the radiomic signature

based on AP (rad-score AP) was established by multivariate

logistic regression analysis in the training cohort. The same

method was used to establish the radiomic signature based on

VP (rad-scoreVP). The radiomic score calculation formula is

presented in eTable 1 in the Supplementary Materials.
3.3 Prediction model establishment and
evaluation of model performance

All models were established by multivariate logistic

regression analysis.
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Clinical model: The clinical model (Model 1) consisted of

three clinical parameters (sex, distant metastasis, and NIC in the

VP). The AUCs of the training and validation cohorts were 0.84

(95% CI 0.75-0.93) and 0.87 (95% CI 0.77-0.98) respectively.

Radiomics model: The AUCs for the radiomics model in AP

(Model 2) and the radiomics model in VP (Model 3) in the

training cohort were 0.79 (95% CI 0.69-0.89) and 0.84 (95% CI

0.75-0.93), respectively; in the validation cohort, they were 0.78
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(95% CI 0.63-0.93) and 0.80 (95% CI 0.64-0.95), respectively.

Compared with AP, the AUC of the VP radiomics model was

higher, but there was no significant difference between the 2

AUCs (Delong test, P = 0.067).

Combined model: The combined clinical-arterial phase

radiomics model (Model 4) and the combined clinical-venous

phase radiomics model (Model 5) were established by

combining the clinical parameters with the radiomic features
frontiersin.org
TABLE 1 Clinical parameters of patients.

Variables Training cohort (n =90) P Validation cohort (n = 39) P

ADC (n=61) SCC (n=29) ADC (n=26) SCC (n=13)

Age (year) 62.03 ± 9.06 66.27 ± 8.97 0.040 60.08 ± 9.96 63.62 ± 9.81 0.300

Gender <0.001* 0.022*

Male 30 28 11 12

Female 31 1 15 1

Smoking <0.001* 0.029*

Never 15 15 7 9

Ever/Always 46 10 19 4

Spiculation 0.004* 0.307

Yes 48 13 16 5

No 13 14 10 8

lobulation 0.930 0.397

Yes 53 25 24 10

No 8 4 2 3

null Vacuole 0.628 0.687

Yes 12 7 7 2

No 49 22 19 11

tumor location 0.030* 0.687

Peripheral 53 25 24 10

Central 8 4 2 3

pleural effusion on the tumor side 0.738 0.852

Yes 5 3 2 2

No 56 26 24 11

pericardial effusion 0.274 0.608

Yes 5 0 1 1

No 56 29 25 12

distant metastasis 0.016* 0.420

Yes 21 3 7 2

No 40 26 19 11

CEA(ug/L) 3.18
(1.76,9.90)

2.60
(2.02,5.20)

0.610 2.33
(1.63,5.50)

3.28
(1.37,4.37)

0.532

NICAP 0.09
(0.04,0.18)

0.08
(0.01,0.14)

0.223 0.12
(0.05,0.20)

0.05
(0.03,0.12)

0.136

lHUAP 1.39 ± 1.03 1.14 ± 1.02 0.267 1.86 ± 1.40 1.01 ± 0.65 0.044*

NICVP 0.28
(0.16,0.46)

0.19
(0.08,0.33)

0.019* 0.37
(0.21,0.47)

0.17
(0.03,0.23)

0.003*

lHUVP 1.88 ± 1.07 1.21 ± 0.82 0.004* 2.17 ± 1.13 0.96 ± 0.69 0.001*
Data are the proportion of sample size, mean value ± SD or median (interquartile range). P values were the results of univariate analysis of each parameter, *p < 0.05.
AP, arterial phase; VP, venous phase.
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of AP and VP, respectively. The AUC values were 0.92 (0.86-

0.98) and 0.93 (0.88-0.98) in the training cohort and 0.90 (0.81-

0.99) and 0.90 (0.81-0.99) in the validation cohort.

The results showed that the predictive performance of the

combined model was significantly higher than that of the single

radiomic or clinical model (DeLong test, p > 0.05 for each

comparison). The combined clinical-venous phase radiomics

model (Model 5) had the best predictive performance (AUC:

training cohort 0.93, validation cohort 0.90), but there was no

significant difference in AUC between Model 5 and Model 4

(DeLong test, p=0.384). In addition, the Akaike information

criterion (AIC) was introduced to evaluate the goodness and

parsimony of fit of the model, and Model 5 achieved the lowest

AIC value at 60.16 among all prediction models. Based on the

overall consideration of ROC curves and AIC, Model 5 was

proven to have the best predictive performance, good goodness

offit and parsimony. The ROC curves, detailed performance and

AIC values of the five models are illustrated in Figure 3 and

Table 2. The result of the DeLong test is given in Table 3.
3.4 Development and performance
evaluation of the nomogram

Based on the above results, Model 5 with the best prediction

efficiency was selected and visualized as a nomogram for
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individualized patient prediction. Multivariate logistic

regression analysis showed that the clinical signature (odds

ratio (OR) = 1.11; 95% CI, 1.07 to 1.16; p < 0.001) and

radiomic signature (odds ratio (OR) = 2.21; 95% CI, 1.68 to

2.90; p < 0.001) represented independent predictors in the

nomogram (eTable 4 in the Supplementary Materials).

As shown in the nomogram (Figure 4), the radiological

signature accounted for the largest proportion compared with

the clinical signature, making it the most important biomarker

for distinguishing ADC from SCC. In clinical practice, based on

the obtained features, the clinical signature and radiomic

signature can be calculated using the formula. Then, the

probability of the predictive variable was converted into a

fraction corresponding to the first scale “point” at the top of

the nomogram. After adding up the corresponding prediction

probability, the risk of ADC was at the bottom of the nomogram.

The calibration curves (Figure 5A) of the nomogram

demonstrated good agreement between the nomogram

prediction and the actual observation. A nonsignificant

difference in the accompanied Hosmer–Lemeshow test

(p=0.384) indicated that the nomogram was adequately

calibrated without departure from the ideal fit. DCAs

(Figure 5B) were used to evaluate the clinical utility of the five

predictive models by calculating the net benefit at various

probability thresholds. According to the decision curves,

Model 5 was the most reliable clinical treatment tool for
frontiersin.org
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FIGURE 2

Work flow of tumor segmentation, feature extraction and signature building. ICC, intra-class correlation coefficient; LASSO, the least absolute
shrinkage and selection operator; ROC, receiver operating characteristic; DCA, decision curve analysis.

https://doi.org/10.3389/fonc.2022.949111
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2022.949111
predicting pathologic subtypes in NSCLC when the probability

threshold was above 0.25 in a patient’s or physician’s

clinical decision.
4 Discussion

In this study, we successfully developed and validated a

combined clinical-radiomics model based on DECT, which has

excellent performance in noninvasively stratifying the

pathological subtypes of NSCLC patients. Furthermore, we

visualized this model as a nomogram and demonstrated the

excellent performance of the nomogram by high AUC and low

AIC. DCAs indicated that the nomogram is a reliable clinical

treatment decision support tool for personalized prediction of

the pathological subtypes of NSCLC patients.
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Different pathological subtypes lead to different clinical

treatment strategies and prognoses for NSCLC patients (20–

22). Dual-energy imaging improves image quality to some

degree, expands the capabilities of traditional CT, and has the

potential to improve lesion detection and characterization (23–

25).Several previous studies have combined DECT with

radiomics or texture analysis (26–29). However, most feature

extractions are based on virtual monoenergetic, 120 kV

equivalent hybrid images or iodine images. Recently, some

researchers have demonstrated in their studies that radiomic

models based on multi-energy images can more effectively

support the diagnosis and prediction of tumors compared with

clinical and monoenergetic models As demonstrated by Liu et al.

(19), the radiomics model based on multi-energy images can

better predict the clinical response of systemic chemotherapy in

advanced gastric cancer (AGC) compared to clinical and
A B

FIGURE 3

ROC curve of model 1-5: (A) training cohort, (B) validation cohort.
TABLE 2 Prediction performance of model 1-5.

Cohort Model AUC (95%CI) SEN SPE ACC PPV NPV AIC

Training cohort Model 1 0.84(0.75-0.93) 0.78 0.83 0.80 0.93 0.66 88.87

Model 2 0.79(0.69-0.89) 0.66 0.83 0.72 0.88 0.65 90.81

Model 3 0.84(0.75-0.93) 0.80 0.80 0.79 0.88 0.66 83.36

Model 4 0.92(0.86-0.98) 0.93 0.83 0.90 0.91 0.86 64.06

Model 5 0.93(0.88-0.98) 0.96 0.76 0.90 0.89 0.92 60.14

Validation cohort Model 1 0.87 (0.77-0.98) 0.66 1.00 0.82 1.00 0.63 —

Model 2 0.78 (0.63-0.93) 0.81 0.66 0.76 0.84 0.61 —

Model 3 0.80(0.64-0.95) 0.85 0.66 0.79 0.85 0.66 —

Model 4 0.90(0.81-0.99) 0.81 1.00 0.87 1.00 0.70 —

Model 5 0.91(0.81-0.99) 0.70 1.00 0.79 1.00 0.60 —
frontiers
AUC, area under the curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value; AIC, Akaike
information criterion.
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monoenergetic models. This study extracts the radiomics

features from DECT multi-energy images and jointly

constructs the model, which proves that the image radiomics

features extracted from DECT multi-energy images can reflect

the heterogeneity of NSCLC. Radiomics may serve as a

promising technique to predict the pathological subtypes

of NSCLC.

Among the clinical features selected in the combined model,

SCC is more common in males, and this sex difference among

NSCLC patients has been widely reported (30, 31). Distant

metastasis is more common in patients with ADC than in

those with SCC, which is also consistent with the biological

characteristics that lung adenocarcinoma is prone to early

hematogenous metastasis. In addition, the results of univariate

and multivariate analyses in this study showed that NICVP was

also an important clinical predictor. In enhanced DECT, IC

represents iodine deposition in tissue. The quantification of IC

can reflect the microvessel density (MVD) and perfusion of the

tumor (32–34). In this study, the NIC of adenocarcinoma was

higher than that of squamous cell carcinoma, indicating that the

MVD of adenocarcinoma was greater, which is consistent with

the results of previous pathological studies (35, 36). Moreover,

this result was significantly different in the venous phase but not
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in the arterial phase. This may be due to the different microvessel

densities and vascular permeabilities of different subtypes of

tumors, resulting in different times of iodine contrast agent

penetration into the intercellular space. This is consistent with

the results of a previous study by Zhang et al (13).

In terms of image selection, in DECT scanning, due to the

high X-ray attenuation at lower energy levels, when the photon

energy gradually decreases from 100 keV to 40 keV, the contrast

of the iodized structure gradually increases, but it is also

accompanied by an increase in image noise at lower energy

levels (37). Therefore, we selected 120 kV equivalent hybrid

images with both high contrast and low background noise in

evaluating the semantic features of CT lesions (38). In terms of

monoenergetic selection for radiomics model establishment, we

chose a 100 KeV image with fine detail but low contrast, and a 40

KeV image with higher contrast but more noise. As a result, the

AUC of the multi-energy image-based radiomics model was 0.79

and 0.84 in the AP and VP, respectively. This shows that the

combination of different energy images can deeply mine tumor

information and effectively distinguish ADC from SCC.

In terms of radiomic features, three types of radiomic

features were extracted: 1) “First-order statistics: Energy”,

describing the overall density of the tumor volume; 2) “Shape:

Compactness”, quantifying the compactness of the tumor

volume relative to that of a sphere (i.e., the most compact

shape); and 3) “texture features: spatial arrangement

relationship between voxel gray levels”, describing intra-tumor

heterogeneity (39, 40). Among the features we selected,

compared with the AP, the VP increased the first-order

statistics features (original first-order kurtosis, original first-

order skewness), and the first-order statistics features reflected

the overall density of the tumor. We believe that this is also

related to the different MVD and vascular permeability of
TABLE 3 Delong test between models 1-5.

Model 1 1

Model 2 0.500 1

Model 3 0.945 0.067 1

Model 4 0.035* 0.003* 0.036* 1

Model 5 0.016* 0.001* 0.009* 0.348 1

Model 1 Model 2 Model 3 Model 4 Model 5
*P<0.05.
FIGURE 4

Nomogram based on the clinical signature and radiomic signature in venous phase to predict the pathological subtypes of NSCLC patients.
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different subtypes of tumors, which may also lead to the slightly

lower AUC in the AP-based model than VP.

Our study had some limitations. First, it is a retrospective

study at a single center, which may lead to patient selection bias,

and the number of samples is limited. Future plans include

collaboration with other dual-energy CT centers to reduce bias

and expand the sample size. Second, the previous radiomics

model developed by He et al. (41) for the differential diagnosis of

solitary pulmonary nodules showed better differential diagnosis

performance based on the radiomics features of plain CT images

than those of contrast-enhanced CT images. This study lacks a

radiomics model based on plain CT. In the future, it is expected

to build a radiomics model based on DECT plain scans to mine

tumor features more comprehensively and improve the

performance of the model. Finally, semi-automatic or

semiautomatic and manual combined segmentation of lesions

is time-consuming and variable. In the future, it is expected to

combine radiomics with machine learning or deep learning to

create better models.
5 Conclusion

In this study, we developed and validated a combined

clinical-radiomics model based on pretherapy DECT to
Frontiers in Oncology 10
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reliably predict ADC and SCC. Compared with the traditional

single clinical model, the combined model significantly

improved the prediction performance of ADC and SCC. The

combined clinical-venous phase radiomics model was visualized

as a nomogram, which could provide a relatively accurate,

convenient, and noninvasive method for the individualized

discrimination of ADC from SCC in NSCLC patients and

assist in clinical decision-making.
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treatment. The Y-axis represented the net benefit. The purple line represents the hypothesis that all patients are ADC, and the red line
represents the hypothesis that all patients are SCC. Other curves are shown in the figure, representing models 1-5 in turn.
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35. Zieliński KW, Kulig A. Morphology of the microvascular bed in primary
human carcinomas of lung. part I: Three–dimensional pattern of microvascular
network. Pathol Res Pract (1984) 178(3):243–50. doi: 10.1016/S0344-0338(84)
80106-5

36. Yuan A, Yu CJ, Kuo SH, Chen WJ, Lin FY, Luh KT, et al. Vascular
endothelial growth factor 189 mRNA isoform expression specifically correlates
with tumor angiogenesis, patient survival, and postoperative relapse in non-small-
cell lung cancer. J Clin Oncol (2001) 19(2):432–41. doi: 10.1200/JCO.2001.19.2.432

37. Kaza RK, Caoili EM, Cohan RH, Platt JF. Distinguishing enhancing from
nonenhancing renal lesions with fast kilovoltage-switching dual-energy CT. AJR
Am J Roentgenol. (2011) 197(6):1375–81. doi: 10.2214/AJR.11.6812

38. Li Q, Tan H, Lv F. Molecular characterization of solitary pulmonary nodules
in dual-energy CT nonlinear image fusion technology. J Recept Signal Transduct
Res (2022) 42(1):95–9. doi: 10.1080/10799893.2020.1853158

39. Leijenaar RT, Carvalho S, Hoebers FJ, Aerts HJ, van Elmpt WJ, Huang SH,
et al. External validation of a prognostic CT-based radiomic signature in
oropharyngeal squamous cell carcinoma. Acta Oncol (2015) 54(9):1423–9. doi:
10.3109/0284186X.2015.1061214

40. de Jong EEC, van Elmpt W, Rizzo S, Colarieti A, Spitaleri G, Leijenaar RTH,
et al. Applicability of a prognostic CT-based radiomic signature model trained on
stage I-III non-small cell lung cancer in stage IV non-small cell lung cancer. Lung
Cancer. (2018) 124:6–11. doi: 10.1016/j.lungcan.2018.07.023

41. He L, Huang Y, Ma Z, Liang C, Liang C, Liu Z. Effects of contrast-
enhancement, reconstruction slice thickness and convolution kernel on the
diagnostic performance of radiomics signature in solitary pulmonary nodule. Sci
Rep (2016) 6:34921. doi: 10.1038/srep34921
frontiersin.org

https://doi.org/10.1002/jso.25308
https://doi.org/10.1016/j.lungcan.2018.12.022
https://doi.org/10.1007/s00261-017-1151-2
https://doi.org/10.1148/rg.314105159
https://doi.org/10.1016/j.ejrad.2011.03.030
https://doi.org/10.1016/j.ejrad.2020.109214
https://doi.org/10.1016/j.acra.2021.06.014
https://doi.org/10.3389/fonc.2020.562945
https://doi.org/10.1007/s00330-020-06866-x
https://doi.org/10.1053/j.seminoncol.2009.10.007
https://doi.org/10.1016/j.ejso.2007.01.001
https://doi.org/10.1007/s00330-020-07195-9
https://doi.org/10.1007/s00330-020-07195-9
https://doi.org/10.1097/RCT.0000000000000734
https://doi.org/10.1016/j.ejrad.2017.08.035
https://doi.org/10.1016/S0344-0338(84)80106-5
https://doi.org/10.1016/S0344-0338(84)80106-5
https://doi.org/10.1200/JCO.2001.19.2.432
https://doi.org/10.2214/AJR.11.6812
https://doi.org/10.1080/10799893.2020.1853158
https://doi.org/10.3109/0284186X.2015.1061214
https://doi.org/10.1016/j.lungcan.2018.07.023
https://doi.org/10.1038/srep34921
https://doi.org/10.3389/fonc.2022.949111
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Jiansong Ji,
Lishui Central Hospital, China

REVIEWED BY

Ming Xu,
The First Affiliated Hospital of Sun Yat-
sen University, China
Lian-Ming Wu,
Shanghai Jiao Tong University, China

*CORRESPONDENCE

Xinhua Ye
ultrasoundye@163.com
Pingyang Zhang
zhpy28@126.com

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Cancer Imaging and
Image-directed Interventions,
a section of the journal
Frontiers in Oncology

RECEIVED 12 July 2022

ACCEPTED 14 November 2022

PUBLISHED 07 December 2022

CITATION

Deng H, Zhou Y, Lu W, Chen W,
Yuan Y, Li L, Shu H, Zhang P and Ye X
(2022) Development and validation of
nomograms by radiomic features on
ultrasound imaging for predicting
overall survival in patients with primary
nodal diffuse large B-cell lymphoma.
Front. Oncol. 12:991948.
doi: 10.3389/fonc.2022.991948

COPYRIGHT

© 2022 Deng, Zhou, Lu, Chen, Yuan, Li,
Shu, Zhang and Ye. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 07 December 2022

DOI 10.3389/fonc.2022.991948
Development and validation of
nomograms by radiomic
features on ultrasound imaging
for predicting overall survival in
patients with primary nodal
diffuse large B-cell lymphoma

Hongyan Deng1†, Yasu Zhou1†, Wenjuan Lu1, Wenqin Chen1,
Ya Yuan1, Lu Li1, Hua Shu1, Pingyang Zhang2* and Xinhua Ye1*

1Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
Jiangsu, China, 2Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical
University, Nanjing, Jiangsu, China
Objectives: To develop and validate a nomogram to predict the overall survival

(OS) of patients with primary nodal diffuse large B-cell lymphoma(N-DLBCL)

based on radiomic features and clinical features.

Materials and methods: A retrospective analysis was performed on 145

patients confirmed with N-DLBCL and they were randomly assigned to

training set(n=78), internal validation set(n=33), external validation set(n=34).

First, a clinical model (model 1) was established according to clinical features

and ultrasound (US) results. Then, based on the radiomics features extracted

from conventional ultrasound images, a radiomic signature was constructed

(model 2), and the radiomics score (Rad-Score) was calculated. Finally, a

comprehensive model was established (model 3) combined with Rad-score

and clinical features. Receiver operating characteristic (ROC) curves were

employed to evaluate the performance of model 1, model 2 and model 3.

Based on model 3, we plotted a nomogram. Calibration curves were used to

test the effectiveness of the nomogram, and decision curve analysis (DCA) was

used to asset the nomogram in clinical use.

Results: According to multivariate analysis, 3 clinical features and Rad-score

were finally selected to construct the model 3, which showed better predictive

value for OS in patients with N-DLBCL than mode 1 and model 2 in training

(AUC,0. 891 vs. 0.779 vs.0.756), internal validation (AUC, 0.868 vs. 0.713,

vs.0.756) and external validation (AUC, 914 vs. 0.866, vs.0.789) sets. Decision

curve analysis demonstrated that the nomogram based on model 3 was more

clinically useful than the other two models.
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Conclusion: The developed nomogram is a useful tool for precisely analyzing

the prognosis of N-DLBCL patients, which could help clinicians in making

personalized survival predictions and assessing individualized clinical options.
KEYWORDS

diffuse large B-cell lymphoma, overall survival, radiomic, nomograms, predict
Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most

common subtype of lymphoma, accounting for about 30% to

40% of the total incidence of all non-Hodgkin’s lymphomas

(NHL) (1, 2). According to the site of origin, DLBCL can be

divided into primary nodal diffuse large B-cell lymphoma (N-

DLBCL) and primary extranodal diffuse large B-cell lymphoma

(EN-DLBCL) (3). DLBCL has obvious heterogeneity in

morphology, immunophenotype, genetics and clinical

manifestations (4). Nowadays, the treatment of DLBCL has

made great progress, immunochemical therapy of rituximab,

cyclophosphamide, doxorubicin, vincristine and prednisone (R-

CHOP) is the preferred treatment regimen for DLBCL (5). The

application of rituximab increased the 5-year survival rate of

DLBCL by at least 15% and the cure rate significantly, but there

were still more than 30% of patients with primary drug

resistance or relapse (6). These recurrent or refractory patients

had a poor prognosis and high mortality (7). How to identify

these patients as early as possible, accurately predict their efficacy

and prognosis, and carry out individualized treatment? It has

been an urgent clinical problem to be solved.

At present, 18F-deoxyglucose (FDG) positron emission

tomography/computed tomography (PET/CT) has been widely

used in evaluating the prognosis of DLBCL (8). Several studies

(9, 10) have tested the use of metabolic intensity to predict

Progression-Free Survival (PFS) and overall survival (OS) in

patients with lymphoma. The most used parameter is the

maximum standard uptake value (SUVmax) because it

provides a method of measurement independent of the

observer (11). However, the reliability of SUVmax may be

affected by many factors, such as the attenuation of injection

dose, the time between injection and imaging acquisition, partial

volume effect and technical characteristics and parameters (12).

Recently, new indicators for estimating the overall tumor load

based on PET/CT staging, such as metabolic tumor volume

(MTV) or total lesion glycolysis (TLG), have been used to

predict PFS and OS in patients with lymphoma (13). In

addition, international prognostic index (IPI) is currently used

for estimating pretreatment risk, while IPI only comes from the

clinicopathological features before treatment, which lacks the
02
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information to reflect the functional and metabolic

characteristics of the tumor. Hence, the IPI often does not

reliably predict the individual patient outcome (14).Therefore,

the above evaluation indicators fail to capture the heterogeneity

of tumors, which is a key prognostic factor for the progression,

recurrence, and drug resistance of DLBCL, and closely related to

tumor invasiveness, metastasis, and molecular characteristics.

This limitation is a major challenge in DLBCL treatment.

Therefore, we need to find a new imaging method, which can

not only evaluate the treatment effect of patients in real time and

dynamically, but capture the heterogeneity of metabolism in the

tumor, to help clinicians modify the treatment plan in time and

accurately predict the clinical outcome of DLBCL.

Ultrasound (US) can evaluate the shape, size, echo texture

and blood flow pattern of lymph nodes in real time and

dynamically (15). Radiomic is a method that uses complex

computer algorithms to extract a large amount of data from

images routinely obtained in the clinical environment, revealing

hidden features of tumor from various imaging modes (16, 17),

which can assist doctors to make the most accurate diagnosis by

means of deeper mining and analysis of massive image data (18,

19). Hence, heterogeneity-related parameters provided by

images could contribute to more personalized treatment and

reduce the occurrence of toxicity. In this way, the possibility of

favorable outcomes is increased, and intensive treatment

programs can be provided for high-risk patients (20).

Radiomic of 18F-FDG PET/CT have been demonstrated to be

useful in predicting the outcomes of DLBCL and Hodgkin’s

lymphoma (21, 22). Radiomic based on ultrasound has a good

application prospect in the evaluation of curative effect and

prognosis of other malignant tumors such as breast and

gastrointestinal tumors (23–25). In lymphoma, radiomic

shows hope in the differential diagnosis of lymphoma from

other Lymph node diseases (26). To our knowledge, no previous

study has associated radiomic signatures based on ultrasound

with the outcome of patients with N-DLBCL.

This study was aimed at developing and validating the

nomogram by radiomic features on ultrasound imaging to

predict OS of patients with N-DLBCL more accurately and

provide new ideas for personalized clinical treatment and

visual evaluation of N-DLBCL.
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Patients

Patients newly confirmed with DLBCL and treated in our

medical central from August 2009 to October 2021 were

retrospectively analyzed. Exclusion criteria: ①Patients with other

malignant tumors; ②Patients with Ann arbor IE staging; ③Patients

treated in other hospitals or relapsed patients; ④Patients without

complete US and clinical data. Inclusion criteria: ①Patients who

underwent PET-CT; ②Lymph nodes with a maximum SUV value;

③Lymph nodes with core needle biopsy or resection biopsy. Finally,

111 patients with a total of 111 lymph nodes were included in this

study. They were randomly assigned to training set(n=78) and

internal validation set(n=33) (7:3 ratio). Besides, the independent

external validation set consists of 34 patients from the other two

institutions who meet the above exclusion and inclusion criteria.

Histopathological diagnosis was based on the result of core needle

biopsy or lymphnode excision (excisionbiopsy is required only if the

ultrasound-guided biopsy results are uncertain). Clinical variables of

each patient were recorded, including gender, age at diagnosis, Bulky

disease, B symptoms, Ann Arbor stage, Eastern Cooperative

Oncology Group (ECOG), lactate dehydrogenase (LDH) level,

serum b2-microglobulin (b2-MG) level, serum hemoglobin (HB)

level, extra-nodal involvement, international prognostic index (IPI),

state after first-line standardized chemotherapy, POD24, BCL6,

BCL2 and treatment regimens. Disease staging was conducted in

accordancewith theAnnArbor system. Bulky diseasewas defined as

a nodal mass larger than 10 cm in diameter. State after first-line

standardized chemotherapy were separated into two response

categories as complete response(CR) and incomplete response

(ICR, including partial response, stable and progression) (27).

The study was approved by the Institutional Ethics

Committee of our hospital [Ethical number 2022-SR-058], and

because it is a retrospective analysis, the requirement of written

informed consent was waived.
US image acquisition

The LogiqE9 ultrasound machine (GE Healthcare), with a 15–4

MHz linear probe (Super Linear™ SL15-4) was employed in

ultrasonic examination. Two experienced radiologists used

standardized institutional protocols to independently record and

review all preoperative US features. If the radiologist had a different

opinionon theconclusion, thefinal decisionwasmadebetween them

after a discussion. The patient was taken in a comfortable posture to

fully expose the site of examination. The lymphnode that underwent

biopsy at the site of onset was selected as the target lymph node. The

following parameters of lymph nodes were observed and measured,

including size (cross-section, longitudinal-section), the ratio of the

longitudinal diameter to the short axis (Solbiati index, SI>2, SI<2),

sharp (regular, irregular), visibility of the hilum (present, absent),

border (clear, unclear), Adler grade of blood flow (grades 0-3) (28).
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ROI segmentation and radiomics
features extraction

The US images of all DLBCL patients were export from the

Ultrasonic instrument. The maximum longitudinal-section area

of images was manually segmented by two ultrasound experts

(more than 5 years of experience) using open-source software

(ITK-SNAP 3.8.0; http://www.itksnap.org) to generate a region

of interest (ROI) containing all the segmented lesions. A total of

464 radiomics features were extracted from the US images,

including 90 first-order features and 374 texture features. The

first-order features include shape, size, and strength features and

texture feature extraction is based on four texture matrices,

including grey level cooccurrence matrix (GLCM), grey level

run-length matrix (GLRLM), grey level size zone matrix

(GLSZM) and gray level dependence matrix (GLDM). All

radiomics features were analyzed and mined by PyRadiomic

open-source software package.
Radiomics features selection and
signature calculation

One radiologist randomly selected 20 lesions from the

training cohort to draw ROI again, and the other radiologist

repeated it independently within three weeks. The stability of the

feature is determined by calculating the inter-observe correlation

coefficient (ICC). Radiomics features with ICC lower than 0.75

were excluded from the final feature data set (18).

To obtain the optimal subset of radiomics features, minimal

redundancy maximum relevancy (mRMR) and the least absolute

shrinkage selection operator (LASSO) with 10-fold cross-

validation (the criteria as maximum area under the ROC

curve) was further used to select most candidate radiomic

features. Finally, 10 radiomics features were screened out.

Therefore, the radiomics “Radcore” is calculated according to

formula (1) (29).

Radscore  =  b0  +  b1c1  + b2c2  +  …   +  bn cn (1)

where b0 is the constant term in the regression, bi is logistic
regression coefficient, and ci the value of selected features.
Construction of clinical model, radiomics
model, and combined model

Univariate and multivariate COX regression analysis were

used to analyze the influence of clinical variables, US

characteristics. Then the characteristics of p< 0.05 in

multivariate analysis were used to establish the model 1

(clinical and US characteristics) of the training set. The

optimal radiomics feature subset obtained by LASSO Logistic
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regression method was used to construct model 2 (radiomics

features) in the training set. ROC curves were used to determine

the cut-off value of each group feature, and the continuous

variables were transformed into classified variables. The

radiological signals constructed were mixed with clinical

factors, and the univariate analysis and minimum Akaike

information criterion (AIC) criterion COX regression analysis

were obtained in turn. Model 3 (combined features) was

constructed based on COX regression coefficient.
Model performance assessment

Three established models were validated using independent

internal and external datasets. The discriminant ability of each

model was analyzed by receiver operating characteristic curve

(ROC), and area under curve (AUC), sensitivity, specificity of

them were obtained.
Development and validation
of the nomogram

According to the model 3, a nomogram, convenient for

clinical application, was plotted. The model correction was

evaluated by correction curve analysis and Hosmer-Lemeshow

test. Decision curve analysis (DCA) was used to evaluate the

clinical usefulness and net benefit of the predictive model in

validation set. Delong test was used to compare the AUC of each

pair of models.
Patients’ treatment and follow-up

Patients diagnosed with N-DLBCL received standardized R-

CHOP chemotherapy (n=105) or approved clinical drug

verification(n=40). The follow-up data were obtained by

electronic medical records and telephone interviews. Overall

survival (OS) refers to the time from diagnosis until death due to

any cause.
Statistical analysis

The classification variables were expressed by the number of

cases, using chi-square test (c2) or Fisher exact test. A SPSS software

(version 25.0) was used for univariate analysis and multivariate

analysis. R software (version 3.6.1, R Project for Statistical

Computing, www.r-project.org) was used for radiomic features

analysis. The LASSO logistic regression method was implemented

using the glmnet package in R software. Two-sided p value less than

0.05 was assumed to indicate statistical significance.
Frontiers in Oncology 04
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Result

Patient characteristics

Onehundred and forty-five patients with 145 lymphnodeswere

enrolled in this study, including 78 males and 67 females, ranging

fromtheageof 21 to85 (meanage, 58±12).The researchflowchart is

shown inFigure1.Themedian follow-up timewas36months (range,

3–137months). By the date of the last follow-up, a total of 41patients

had died, with a total survival rate of 71.7%. 1-year survival rate, 3-

year survival rate and 5-year survival rate were 88.3%, 80.6% and

73.8%respectively.The clinical andultrasonic features of the training

set and verification set were summarized in Table 1. All the

characteristics were not statistically significant between the two sets.
Model 1: Clinical features and
US features

In the training set, univariate analysis in Table 2 showed that

five variables were related to OS. Multivariate analysis showed

that hilus, extra-nodal involvement, state after first-line

standardized chemotherapy were independent predictors of OS

(p<0.05) (Table 3). The diagnostic performance of this model

was moderate with an AUC of 0.779 (95% CI, 0.660-0.897). The

sensitivity and specificity were 73.6% and 81.4%, respectively.
Model 2: Radiomics signature

After intra-observer and inter-observer reliability analysis, 340

stable features with ICC score larger than 0.75 were retained for

follow-up analysis, and finally 10 radiomics features were selected

into the LASSO Logistic regression model (Figures 2, 3). ICC values

are provided in the supplementary information. Table 4 displays

that variables A to J represent 10 selected radiomic features, Rad-

score=−1.317+0.403×A+0.094×B+(−0.349) ×C+(−0.081) ×D+

0.005×E+(−0.0.310) ×F+0.682×G+0.036×H+(−0.161) ×I+0.005×J.

The discriminative ability of radiomics model was low with an

AUC of 0.756 (95% CI, 0.622-0.889). The sensitivity and specificity

are 93.2%, 52.6% respectively.
Model 3: Comprehensive model

A comprehensive model was constructed based on

multivariate Cox analysis of significant risk factors. The risk

factors included Rad-score(p=0.012) and hilus (p=0.020), Extra-

nodal involvement (p=0.027), state after first-line (p=0.023). The

diagnostic efficiency of combined model is significantly

improved, with an AUC of 0.891 (95% CI, 0.807-0.975). The

sensitivity and specificity were 89.8% and 73.7% respectively.
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FIGURE 1

Flow chart of patients’recruitment pathway. DLBCL, Diffuse large B-cell lymphoma; PET-CT, Positron emission tomography/computed
tomography. According to the inclusion and exclusion criteria, 145 patients with a total of 145 lymph nodes were included in this study. The
patients of our institutions were randomly assigned to training set(n=78) and internal validation set(n=33) (7:3 ratio). The independent external
validation set(n=34) from the other two institutions.
TABLE 1 Clinic and ultrasound features of training and validation sets.

Univariate
analysis

Features Training set
(n=78)

Internal validation set
(n=33)

p value External validation set
(n=33)

p value

Gender 0.946 0.509

Male 42(53.8) 18(54.5) 18(52.9)

Female 36(46.2) 15(45.5) 16(47.1)

age 0.982 0.681

<60 41(52.5) 17(51.5) 16(47.1)

≥60 37(47.4) 16(48.5) 18(52.9)

Bulky 0.546 0.927

<7.5cm 12(15.4) 3(9.1) 5(14.7)

≥7.6cm 66(84.6) 30(90.9) 29(85.3)

Extra-nodal
involvement

0.285 0.235

Yes 48(61.5) 18(54.5) 11(32.3)

No 30(38.5) 15(45.5) 23(67.6)

IPI 0.729 0.805

0 37(47.4) 17(51.5) 15(44.1)

1-2 1(1.3) 1(3.0) 1(2.9)

3-5 40(51.3) 15(45.5) 18(52.9)

ECOG 0.946 0.235

0-1 61(70.1) 25(75.8) 23(67.6)

≥2 16(29.9) 8(24.2) 11(32.4)

Stage 0.423 0.958

I-II 18(23.1) 10(30.3) 8(23.5)

(Continued)
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Validation and diagnostic performance
comparison of three models

Three established models were validated using independent

datasets. In the internal validation set, the AUC, sensitivity, and

specificity of model 1 were 0.713(95%CI,0.532-0.894), 59.1%,

81.8%. The AUC, sensitivity, specificity of model 2 were 0.756
Frontiers in Oncology 06
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(95%CI,0.593-0.919), 54.5%, 73.2%; The AUC, sensitivity,

specificity of model 3 were 0.868(95%CI,0.746-0.990), 81.8%,

81.8%. In the external validation set, the AUC, sensitivity, and

specificity of model 1 were 0.866(95%CI,0.808-0.925), 87.7%,

80.8%. The AUC, sensitivity, specificity of model 2 were 0.789

(95%CI,0.714-0.863), 92.7%, 60.6%; The AUC, sensitivity,

specificity of model 3 were 0.914(95%CI,0.868-0.960), 95.1%,
TABLE 1 Continued

Univariate
analysis

Features Training set
(n=78)

Internal validation set
(n=33)

p value External validation set
(n=33)

p value

III-IV 60(76.9) 23(69.7) 26(76.5)

State of first 0.053 0.285

CR 54(69.2) 16(48.5) 20(58.8)

ICR 24(30.8) 17(51.5) 14(41.2)

POD24 0.436 0.726

No 62(79.5) 24(72.7) 28(82.4)

Yes 16(20.5) 9(27.3) 6(17/6)

LDH 0.577 0.656

<271 31(39.7) 9(27.3) 6(18.2)

≥271 47(60.3) 24(72.7) 28(84.8)

b2mg 0.329 0.411

<2.53 41(52.6) 14(42.4) 15(44.1)

≥2.53 37(47.4) 19(57.6) 19(55.9)

HB 0.628 0.592

<120 37(47.4) 14(42.4) 12(35.3)

≥120 41(52.6) 19(57.6) 22(64.7)

BCL6 0.442 0.590

− 17(21.8) 5(15.2) 9(26.5)

+ 61(78.2) 28(84.8) 25(73.5)

BCL2 0.113 0.520

− 18(23.1) 3(9.1) 6(17.6)

+ 60(76.9) 30(90.9) 28(82.4)

SI 0.713 0.637

SI≥2 51(65.4) 9(27.3) 12(35.3)

SI<2 27(34.6) 24(72.7) 22(64.7)

Hilus 0.215 0.745

Absence 55(70.5) 25(75.8) 21(61.8)

Presence 23(29.5) 8(24.2) 13(38.2)

Border 0.886 0.631

Clear 67(85.9) 24(72.7) 28(82.4)

Unclear 11(14.1) 9(27.3) 6(17.6)

Sharp 0.436 0.713

Regular 51(65.4) 19(57.6) 21(61.8)

Irregular 27(34.6) 14(42.4) 13(38.2)

Alder 0.996 0.982

0 20(25.6) 9(27.3) 8(23.5)

1 29(37.2) 13(39.4) 14(41.2)

2 15(19.2) 5(15.2) 6(17.6)

3 14(17.9) 6(18.2) 6(17.6)
fronti
IPI, International Prognostic Index; ECOG, Eastern Cooperative Oncology Group; CR, Complete response; ICR, Incomplete response; LDH, Lactate dehydrogenase; HB, Hemoglobin;
SI, Solbiati index, the ratio of the longitudinal diameter to the short axis.
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TABLE 2 Clinic and ultrasound features between survival group and death group.

Univariate
analysis

Features Training set
(59/19)

p Internal validation set
(22/11)

p External validation set
(23/11)

p

Gender 0.684 0.266 0.180

Male 31(52.5)/11
(57.9)

10(45.5)/8(72.7) 14(60.9)/4(36.4)

Female 28(47.5)/8(42.1) 12(54.5)/3(27.3) 9(39.1)/7(63.6)

age 0.695 0.325 0.897

<60 31(52.5)/10
(52.6)

10(45.5)/7(63.6) 11(47.8)/5(45.5)

≥60 28(47.5)/9(47.4) 12(54.5)/4(36.4) 12(52.2)/6(54.5)

Bulky 0.720 1.000 0.692

<10cm 10(16.9)/2(10.5) 2(9.1)/1(9.1) 3(13.0)/2(18.2)

≥10cm 49(83.1)/17
(89.5)

20(90.9)/10(90.9) 20(87.0)/9(81.8)

Extra-nodal
involvement

0.006 0.034 0.016

Yes 31(52.5)/17
(89.5)

9(40.9)/9(81.8) 12(52.2)/1(9.1)

No 28(47.5)/2(10.5) 13(59.1)/2(18.2) 11(47.8)/10(90.9)

IPI 0.076 0.338 0.256

0 32(54.2)/5(26.3) 15(68.1)/2(18.2) 12(52.2)/3(27.3)

1-2 1(1.7)/0(0.0) 1(4.5)/0(0.0) 1(4.3)/0(0.0)

3-5 26(44.1)/14
(73.7)

6(27.2)/9(81.8) 10(43.5)/8(72.7)

ECOG 0.583 0.774 0.222

0-1 47(79.7)/14
(73.7)

17(77.3)/8(72.7) 14(60.9)/9(81.8)

≥2 12(20.3)/5(26.3) 5(22.7)/3(27.3) 9(39.1)/2(18.2)

Stage 0.211 0.430 0.611

I-II 16(27.1)/2(10.5) 8(36.4)/2(18.2) 6(26.1)/2(18.2)

III-IV 43(72.9)/17
(89.5)

14(63.6)/9(81.8) 17(73.9)/9(81.8)

State of first 0.001 0.002 0.023

CR 47(79.7)/7(36.8) 15(68.2)/1(9.1) 17(73.9)/3(27.3)

ICR 12(20.3)/12
(63.2)

7(31.8)/10(90.9) 6(26.1)/8(72.7)

POD24 0.043 0.002 0.048

No 50(84.7)/12
(63.2)

20(90.9)/4(36.4) 21(91.3)/7(63.6)

Yes 9(15.3)/7(36.8) 2(9.1)/7(63.6) 2(8.7)/4(36.4)

LDH 0.065 0.681 0.053

<271 27(45.8)/4(21.1) 7(31.8)/2(18.2) 21(91.3)/7(63.6)

≥271 32(54.2)/15
(78.9)

15(68.2)/9 (81.8) 2(8.7)/4(36.4)

b2mg 0.429 0.719 0.387

<2.53 33(55.9)/8(42.1) 10(45.5)/4(36.4) 9(39.1)/6(54.5)

≥2.53 26(44.1)/11
(57.9)

12(54.5)/7(63.6) 14(60.9)/5(45.5)

HB 0.186 0.136 0.245

<120 25(42.4)/12
(63.2)

7(31.8)/7(63.6) 6(26.0)/6(54.5)

≥120 34(57.6)/7(36.8) 15(68.2)/4(36.4) 17(73.9)/5(45.5)

BCL6 0.750 0.304 1.000

(Continued)
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81.7%. Figure 4 shows the ROC curves of each model for both

the training and validation sets, Table 5 shows the cut-off value,

sensitivity, specificity, and AUC of each mode. The AUC of the

comprehensive model was significantly higher than that of

model 1 or model 2 in both the training and validation sets.
Frontiers in Oncology 08
93
Development and performance
of the nomogram

A nomogram (Figure 5A) was conducted based on the

comprehensive model, and favorable calibrations of the
TABLE 2 Continued

Univariate
analysis

Features Training set
(59/19)

p Internal validation set
(22/11)

p External validation set
(23/11)

p

− 12(20.3)/5(26.3) 2(9.1)/3(27.3) 6(26.1)/3(27.3)

+ 47(79.7)/14
(73.7)

20(90.9)/8(72.7) 17(73.9)/8(72.7)

BCL2 0.536 0.252 1.000

− 15(25.4)/3(15.8) 1(4.5)/2(18.2) 4(17.4)/2(18.2)

+ 44(74.6)/16
(84.2)

21(95.5)/9(81.8) 19(82.6)/9(81.8)

SI 0.179 0.681 0.705

SI≥2 41(69.5)/10
(52.6)

7(31.8)/2(18.2) 9(39.1)/3(27.3)

SI<2 18(30.5)/9(47.4) 15(68.2)/9(81.8) 14(60.9)/8(72.7)

Hilus 0.045 0.012 0.016

Absence 38(64.4)/17
(89.5)

16(72.7)/9(81.8) 11(47.8)/10(90.9)

Presence 21(35.6)/2(10.5) 6(27.3)/2(18.2) 12(52.2)/1(9.1)

Border 0.012 0.033 0.048

Clear 54(91.5)/13
(68.4)

19(86.4)/5(45.5) 21(91.3)/7(63.6)

Unclear 5(8.5)/6(31.6) 3(13.6)/6(54.5) 2(8.7)/4(36.4)

Sharp 0.179 0.618 0.176

Regular 41(69.5)/10
(52.6)

12(54.5)/7(63.6) 15(69.6)/5(45.5)

Irregular 18(30.5)/9(47.4) 10(45.5)/4(36.4) 7(30.4)/6(54.5)

Alder 0.154 0.391 0.542

0 13(22.0)/7(36.8) 7(31.8)/2(18.2) 5(21.7)/3(27.3)

1 20(33.9)/9(47.4) 8(36.4)/5(45.5) 8(34.8)/6(54.5)

2 14(23.7)/1(5.3) 2(9.1)/3(27.3) 5(21.7)/1(9.1)

3 12(20.3)/2(10.5) 5(22.7)/1(9.1) 5(21.7)/1(9.1)
frontiersi
IPI, International Prognostic Index; ECOG, Eastern Cooperative Oncology Group; CR, Complete response; ICR, Incomplete response; LDH, Lactate dehydrogenase; HB, Hemoglobin;
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TABLE 3 Multivariate analysis of clinical and ultrasonic features.

Multivariate analysis Features Estimate Std.Error Z value p

Training set Hilus -2.369 1.161 -2.039 0.041

Extra-nodal involvement 2.712 1.078 2.516 0.012

State of first 0.986 0.482 2.045 0.041

Internal validation set Hilus -1.975 0.926 -2.132 <0.000

Extra-nodal involvement 2.317 0.867 2.671 0.007

State of first 1.201 0.404 2.973 0.003

External validation set Hilus -1.211 0.646 0.298 0.042

Extra-nodal involvement 1.759 0.620 5.890 0.005

State of first 1.454 0.491 4.28 0.003
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nomogram were confirmed both in the training (Figure 5B), the

internal validation set (Figure 5C), the internal validation set

(Figure 5D). Hosmer–Lemeshow test possessed a p value of

0.334, 0.738 and 0.679, respectively. The DCA (Figures 6A, B)

indicated that the nomogram had a higher diagnostic efficiency

than model 1 or model 2.
Discussion

This study established three models for predicting the

prognosis of patients with N-DLBCL, and it was found that

the model with the combination of radiomic and clinical features

had good predictive value. On this basis, we developed a

nomogram based on the combined model, and verified the

nomogram. The results showed that the nomogram could well

predict the OS of patients with N-DLBCL. Thus, nomograms

can be used by clinicians to make precise and individualized

medical decisions.

All N-DLBCL patients in our study were adults, which was

in line with that reported in the literature for Chinese studies,

Sun et al. (30)showed that the mean age of DLBCL patients was

51.6 years. Besides, consistent with the previous study (30, 31),

most of the DLBCL cohort in this study was male patients, who

accounted for 53.7% (78/145). The 5-year survival rate of

145patients in this study was 73.8% (107/145), which was

almost the same as the report (74.8%) of Xia et al. (32), but

higher than previous reports (43%-52%) (33). The reason is that

the subjects in this study and Xia et al. are all primary intranodal

DLBCL. Moo-Kon Song et al. (34) reported EN- DLBCL, such as
Frontiers in Oncology 09
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originating from the gastric, intestinal tract and so on are even

worse, especially in the non-GCB type. Some studies (3, 35) also

have demonstrated that the involvement of the extranodal tissue

may lead to a worse prognosis for patients with nodal lesions.

The results of univariate and multivariate analysis showed state

after the 6 cycles standardized treatment was the prediction

factors of OS. After 6 cycles of standardized treatment, according

to the results of PET-CT assessment, the CR rate of patients was

62.1% (90/145) in our study, which was lower than that reported

by Ivan et al (36). At present, the effect of BCL-6 gene

translocation on the prognosis of DLBCL patients is still

controversial. Most scholars believe that the prognosis of BCL-

6 positive expression is better, but some scholars hold the

opposite view. Akyurek et al. (37) found that BCL-6 gene

translocation can affect the OS of DLBCL patients(p=0.04), but

there is no significant effect on PFS. This phenomenon is more

significant in non-GCB DLBCL patients. In addition, foreign

studies (38, 39) conclude that MYC/BCL2 co-expression in

DLBCL is associated with an aggressive clinical course, which

is more common in the ABC subtype, and contributes to the

overall inferior prognosis of patients with ABC-DLBCL.

However, in this study, probably due to the small sample size,

BCL2 and BCL6 were not predictors of OS. For the same reason,

the results of multivariate analysis showed that the other clinical

features reported in the literature, including IPI score, LDH

level, HB level, b2-MG level, Bulky disease, ECOG, Arbor stage,

POD 24, were not associated with OS in the training group and

the verification group.

US is also a commonly used diagnostic imaging technique,

which possess a higher sensitivity in the detection of superficial
FIGURE 2

N-DLBCL in a 58-year-old man. (A) Gray-scale ultrasonic image. (B) CDFI image. (C) Radiomic ROI segmentation segmentation of the mass. (D)
Ultrasound-guided core needle biopsy.
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A

B

FIGURE 3

(A) The least absolute shrinkage andselection operator (LASSO) logistic regression for radiomics features selection and signature construction.
(B) On the basis of minimum criteria for the least cross-validation binominal deviance, a tuning parameter (l) was selected via 10-fold cross
validation.according to 10-fold cross-validation, 10 radiomic features were obtained.
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enlarged lymph nodes. The feature of lymph nodes can be

evaluated according to the hilum, shape, border, size, echo

texture and blood flow pattern of lymph nodes (40). In this

study, univariate analysis found that the lymphatic hilum

structure and boundary is related to OS, while multivariate

study found that the absence of lymphatic hilum is an

independent predictor of OS. B lymphocytes mainly settle in

the superficial cortex of the lymph nodes, some studies

demonstrated that the abnormal lymphocytes of DLBLC in the

early stage grew locally and did not invade the whole lymph

node, but in the late stage, the abnormal lymphocytes infiltrated

into the whole lymph node, resulting in the disappearance of the

lymphatic hilum or eccentric and thin stripe under pressure (41).

At the same time, studies have shown that patients with stage III-

IV have a poor prognosis (3, 34). Therefore, in model 1, the

absence of lymphatic hilum is a predictor of OS (training set,

p=0.045; internal validation set, p=0.012; external validation set,

p=0.016). From the previous literatures, in lymphoma, the

disease frequently arises inside the lymph node, and

(depending on the aggressiveness and natural history of the

tumor) it may never reach the subcapsular area, or it may
Frontiers in Oncology 11
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progress in a centrifugal fashion to invade the whole lymph

node; in high-grade aggressive lymphomas, the neoplastic cells

may even reach the lymph node from outside (as with

metastasis) when the disease originates in another lymph node

of the group and subsequently infiltrates the remaining nodes,

the lesions fused with each other and the boundary was not clear

(42), which may explain why in univariate analysis, the

boundary is related to OS (training set, p=0.012; internal

validation set, p=0.033; external validation set, p=0.048). The

univariate and multivariate analysis showed that other ultrasonic

features were not related to OS (p≥0.05).

18F-FDG PET/CT has been widely used for diagnosis,

staging and response assessment in DLBCL (43). In recent

years, there are also many literatures (12, 14, 44) to predict the

prognosis of DLBCL based on 18F-FDG PET/CT baseline

radiomic features. However, we have not seen a specific

explanation about which target lymph nodes should be

selected as the object of study, nor the criteria for selection.

In this study, the target lymph nodes with the highest SUV

value on PET-CT and ultrasound-guided pathological biopsy

(Figure 2) were selected as the objects of study to reduce false
TABLE 4 Radiomics feature selection results.

Variables Radiomics features name Coef

A original_glrlm_LowGrayLevelRunEmphasis 0.403277408

B wavelet.LH_firstorder_Median 0.094560940

C wavelet.LH_firstorder_Skewness -0.349875709

D wavelet.LH_glszm_LargeAreaHighGrayLevelEmphasis -0.081542829

E wavelet.LH_glszm_LargeAreaLowGrayLevelEmphasis 0.005653936

F wavelet.HL_glcm_ClusterShad -0.310516391

G wavelet.HL_glszm_ZoneVariance 0.682458423

H wavelet.HH_glcm_Idmn 0.035780343

I wavelet.HH_glszm_GrayLevelNonUniformity -0.161635402

J wavelet.LL_ngtdm_Busyness 0.004573644
fro
TABLE 5 Diagnostic performance of three models.

Model Cut-off value AUC (95%CI) Sensitivity % Specificity %

Training set(n=78)

Model 1 0.908 0.779(0.660-0.897) 73.6 81.4

Model 2 0.598 0.756(0.662-0.889) 93.2 52.6

Model 3 0.729 0.891(0.807-0.975) 89.8 73.3

Internal validation set (n=33)

Model 1 0.891 0.713(0.532-0.894) 59.1 81.8

Model 2 0.932 0.756(0.593-0.919) 54.5 73.2

Model 3 0.843 0.868(0.746-0.990) 81.8 81.8

External validation set (n=34)

Model 1 0.775 0.866(0.808-0.925) 87.7 80.8

Model 2 0.757 0.789(0.714-0.863) 92.7 60.6

Model 3 0.770 0.914(0.868-0.960) 95.1 81.7
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FIGURE 4

The ROC of the three model from (A) the training cohorts, (B) the internal validation cohort, (C) the external validation cohort.
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positive and false negative and improve accuracy. As far as we

know, there have been no radiomics based on ultrasound

images to predict the prognosis of DLBCL, and the

literatures on molecular imaging radiomics of DLBCL are

also very limited. Parvez et al. (45) found that GLNGLSZM

correlated with disease free survival, and that kurtosis

correlated with OS. Aide et al. (4, 46) found that skewness of

skeletal heterogeneity was a prognostic factor for PFS, and

long-zone high gray level emphasis from GLSZM was a

prognostic parameter for 2-year event-free survival.

Meanwhile, Cottereau et al. (47) reported that the radiomic

feature characterizing lesion dissemination was associated with

PFS and OS. Our study found that radiomic features related to

OS included two first-order features, two GLCM, four GLSZM,

a GLSZM and a GLRLM, which is consistent with the above

literature reports. In addition, Wang et al. (39) reported that

radiomics are not superior to traditional imaging parameters.

In our study, the diagnostic efficacy of radiomic signature

(tra ining set , AUC=0.756; internal val idat ion set ,
Frontiers in Oncology 13
98
AUC=0.756; external validation set, AUC=0.789) is lower

than that of clinical model (training set, AUC=0.779; internal

validation set , AUC=0.713; external validation set ,

AUC=0.866), but it can be used as a supplementary index of

clinical model, and the diagnostic efficacy of combined model

(training set, AUC=0.891; internal validation set, AUC=0.868;

external validation set, AUC=0.914) is higher than radiomic

signature or clinical model.

Still, there are some limitations in our study. First, this was a

retrospective study, and the sample size was relatively small. But

we have been collecting more cases and collaborating with other

medical centers to expand the sample size, using external

verification sets to further validate the nomogram. Second, the

radiomic features were only extracted from gray-scale

ultrasound images, and hopefully in the future, we can extract

them from multimode ultrasound images such as elastography

and contrast-enhanced ultrasound.

In conclusion, based on clinic and radiomic features, we

have developed and validated a nomogram to predict OS of
A B

DC

FIGURE 5

(A) The nomogram base on the model 3 and the calibration curve from (B) the training cohorts, (C) the internal validation cohort, (D) the
internal validation cohort.
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patients with N-DLBCL. The established nomograms can

provide a visualized estimation of risk for each prognostic

factor, to assist clinicians take personalized treatment for N-

DLBCL patients and improve their prognosis.
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Background and objective: For patients with advanced colorectal liver metastases

(CRLMs) receiving first-line anti-angiogenic therapy, an accurate, rapid and

noninvasive indicator is urgently needed to predict its efficacy. In previous

studies, dynamic radiomics predicted more accurately than conventional

radiomics. Therefore, it is necessary to establish a dynamic radiomics efficacy

prediction model for antiangiogenic therapy to provide more accurate guidance

for clinical diagnosis and treatment decisions.

Methods: In this study, we use dynamic radiomics feature extraction method that

extracts static features using tomographic images of different sequences of the

same patient and then quantifies them into new dynamic features for the

prediction of treatmentefficacy. In this retrospective study, we collected 76

patients who were diagnosed with unresectable CRLM between June 2016 and

June 2021 in the First Hospital of China Medical University. All patients received

standard treatment regimen of bevacizumab combined with chemotherapy in the

first-line treatment, and contrast-enhanced abdominal CT (CECT) scans were

performed before treatment. Patients with multiple primary lesions as well as

missing clinical or imaging information were excluded. Area Under Curve (AUC)

and accuracy were used to evaluate model performance. Regions of interest (ROIs)

were independently delineated by two radiologists to extract radiomics features.

Three machine learning algorithms were used to construct two scores based on

the best response and progression-free survival (PFS).

Results: For the task that predict the best response patients will achieve after

treatment, by using ROC curve analysis, it can be seen that the relative change rate

(RCR) feature performed best among all features and best in linear discriminantanalysis

(AUC: 0.945 and accuracy: 0.855). In terms of predicting PFS, the Kaplan–Meier plots

suggested that the score constructed using the RCR features could significantly

distinguish patients with good response from those with poor response (Two-sided

P<0.0001 for survival analysis).
frontiersin.org01102

https://www.frontiersin.org/articles/10.3389/fonc.2023.992096/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.992096/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.992096/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.992096/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.992096&domain=pdf&date_stamp=2023-02-06
mailto:cuixy@bmie.neu.edu.cn
mailto:hszhong@cmu.edu.cn
https://doi.org/10.3389/fonc.2023.992096
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.992096
https://www.frontiersin.org/journals/oncology


Qu et al. 10.3389/fonc.2023.992096

Frontiers in Oncology
Conclusions: This study demonstrates that the application of dynamic radiomics

features can better predict the efficacy of CRLM patients receiving antiangiogenic

therapy compared with conventional radiomics features. It allows patients to have

a more accurate assessment of the effect of medical treatment before receiving

treatment, and this assessment method is noninvasive, rapid, and less expensive.

Dynamic radiomics model provides stronger guidance for the selection of

treatment options and precision medicine.
KEYWORDS

colorectal cancer liver metastases, radiomics, dynamic radiomics, antiangiogenic therapy,
efficacy prediction
1 Introduction

Colorectal cancer (CRC) is the fourth most common malignancy

worldwide, with approximately 800,000 newly diagnosed cases each

year (1). CRC accounts for approximately 10% of all tumors (2). The

liver is the most common metastatic site for CRC, and approximately

a quarter of all patients with CRC have liver metastases (3, 4). Surgery

is the best treatment for colorectal cancer liver metastases (CRLMs).

At present, judging whether CRLM patients can undergo surgery is

mainly based on two aspects: “technical” and “oncological”. For the

“technical” definition of resectable CRLM, the current consensus is

that complete macroscopic resection is feasible while maintaining at

least 30% of future liver remnants (FLRs) or a residual liver to body

weight ratio >0.5. The “oncological” criteria for resectable CRLM

mainly consider that patients can achieve higher disease-free survival

and cure rate, and based on the number of this lesion ≥ 5,

concomitant unresectable extrahepatic lesions and tumor

progression are contraindications for surgery in patients with

CRLM (5). Under these criteria surgical resection can only be

applied to a limited number of cases, and the probability of

postoperative recurrence of the liver is extremely high (6).

Inhibition of angiogenesis during tumor growth is the standard

treatment for unresectable CRLM. Antiangiogenic drugs (e.g.,

bevacizumab) are currently used in combination with

chemotherapy in patients with CRLM (7). However, the patient

response to this treatment varies, and there are currently no good

indicators for predicting the efficacy of treatment (8). Therefore, it is

important to accurately and noninvasively predict the response of

CRLM patients to the initial treatment.

Radiomics is a promising and noninvasive method that analyzes

traditional medical images to extract quantifiable data, which show

the biological characteristics of pathological processes at the

microscopic level (9, 10). These data can be converted into image-

based signatures to improve the accuracy of diagnosis, prognosis and

prediction of cancer patients. Computed tomography (CT) has the

advantages of repeatability, standardization, and extraction of

quantitative data. It is indispensable in diagnosis and follow-up

(11). Although some PET and MRI based radiomics studies have

achieved remarkable results in the field of metastatic colorectal cancer

(12, 13), CT based imaging criteria are still the preferred criteria for
02103
evaluation of tumor drug response in clinical trials so far. CT-based

radiomics has been shown to help predict therapy response and

outcome in multiple cancers, including CRC (14–16). Ligero et al.

verified that their established CT-based radiomics signature is

associated with the response of a variety of advanced solid tumors

to immune checkpoint inhibitors (17). Jain et al. predicted the overall

survival (OS) and response to chemotherapy of small cell lung cancer

(SCLC) patients based on the radiomic features within and around

lung tumors extracted from CT images (18). In predicting the efficacy

and prognosis of CRLM after treatment, Wei et al. constructed a deep

learning-based radiomics model using CT images to predict the

response of CRLM to advanced first-line chemotherapy, with an

AUC of 0.935 in the validation cohort (19); Liu et al. constructed a

CT-based radiomics model to predict the survival of unresectable

colorectal liver metastases treated with hepatic arterial infusion

chemotherapy, and the c-index of the test group reached 0.743 (20).

On the other hand, although various imaging modalities such as

ultrasound (US), computed tomography (CT), magnetic resonance

imaging (MRI), and positron emission tomography/computed

tomography (PET/CT) can be used for the diagnosis and evaluation

of CRLM, CT is still the current method of choice for the diagnosis

and treatment of CRLM (21, 22). Previous studies have shown that

the sensitivity and specificity of CT for the diagnosis of CRLM are

82.1% and 73.5%, respectively (23).

Existing radiomics features were mainly analyzed based on static

medical images at one time point. However, the occurrence and

development of tumors is a dynamic process, and static image

features cannot contain more dynamic information. For this reason,

Carvalho et al. proposed “delta radiomics”, which can represent the

change in radiomics characteristics over time (24). This approach can

provide additional information to identify, quantify, and potentially

predict treatment-induced changes during treatment and has been

shown to have potential for predicting treatment efficacy and

prognosis in colorectal (25) esophageal (26), pancreatic (27), and

lung (28) cancers. To improve the workflow and specific techniques of

radiomics related to time series, Qu et al. proposed a feature

extraction method called dynamic radiomics (29, 30). This method

can use multiple series of images from the same type of imaging

examination to jointly extract features to delineate the changes in

features over time.
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For antiangiogenic therapy, the number of blood vessels in the

tumor is a common indicator used to evaluate its efficacy (31). In the

process of contrast-enhanced CT (CECT), after intravenous injection

of contrast medium, tumor vascularity can be effectively observed by

comparing the images acquired at different vascular phases (32), while

dynamic radiomics features can reflect the changes in the scanned

images at different periods and then indirectly evaluate the vascularity

of tumors. Therefore, this method is suitable for assessing the efficacy

of antiangiogenic therapy. In this retrospective study, dynamic

radiomics was applied to predict the efficacy of antiangiogenic

therapy for the first time. Compared with conventional radiomics,

the model constructed by this method can more accurately predict

patient response to treatment and progression-free survival (PFS).

Achieve more efficient and precise assessment of patients before they

receive treatment. It is helpful for clinicians to make clinical decisions

and stratify patients’ prognosis.
2 Materials and methods

2.1 Patients

The entire cohort was enrolled from June 2016 to June 2021 by

reviewing records of the institutional Picture Archiving and

Communication System (PACS, Philips) for the identification of

patients with histologically confirmed CRLM. A total of 76 patients

were confirmed to meet the criteria and all included patients were

from single center. The inclusion criteria for this study were as

follows: (1) patients were older than 18 years; (2) colorectal

adenocarcinoma with liver metastasis was confirmed by

histopathological examination; (3) no surgery or other therapy

prior to first-line treatment; (4) advanced first-line treatment with

bevacizumab combined with a standard chemotherapy regimen

(FOLFOX/XELOX/FOLFIRI) was used; (5) first-line treatment

evaluation information based on Response Evaluation Criteria in

Solid Tumors (RECIST) was available; (6) baseline images of

abdominal CECT before first-line treatment were available, which

needed to include images in the precontrast phase (PP), arterial phase

(AP), portal venous phase (PVP) and delay phase (DP); and (7) the

interval between abdominal CT examination and histopathological

diagnosis was less than 31 days (range 4–30 days). The exclusion

criteria were as follows: (1) the patient had more than one primary

tumor site; (2) the CT image quality was poor due to patient

respiration or motion artifacts; (3) the patient’s margin was too

blurred to delineate; (4) the patient’s clinical data were missing; and

(5) the patient’s advanced first-linetreatment had not been completed

or the best efficacy had not been reached. Clinical information

included age, sex, primary tumor location (left-sided, right-sided

and rectum), primary tumor size, and serum carcinoembryonic

antigen (CEA) and alpha-fetoprotein (AFP) results at baseline.

This retrospective study was conducted in accordance with the

principles of the Declaration of Helsinki and approved by the Ethics

Committee of the First Affiliated Hospital of China Medical

University, with a waiver of the requirement for informed consent

based on its retrospective design.
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2.2 CT protocol

The contrast administration of abdomen CT scans are patient

specific and based on clinical guidelines (33). Sixty-four-slice spiral

CT scanners were used to collect the image data of the patients

according to a standardized scanning protocol (34). The CT

manufacturers used included GE, Phillips, Siemens and Toshiba.

The acquisition methods of each CT phase are as follows: Routine

plain scan was performed to obtain PP, then 1.2-1.5 mL/kg body

weight iohexol was injected intravenously with a high-pressure

syringe at a flow rate of 2.5 mL/s, followed by a 20-30 mL saline

flush. Patients were imaged in the supine position at full inspiration.

AP was obtained 30-35 s after intravenous injection of contrast, PVP

was obtained 60-75 s after intravenous injection of contrast, and DP

was obtained 100-120 s after intravenous injection of contrast. As

shown in Table 1, the scanning parameters were as follows: tube

voltage 120 kVp (range 100-140 kVp), layer thickness 2 mm, matrix

512 × 512, tube current 333 mA (range 100-752 mA), exposure time

751 ms (range 500-1782 ms), and standardreconstruction algorithm.

All steps were in accordance with the Image Biomarker

Standardization Initiative (IBSI) standards. The CT images were

stored in DICOM format. Prior to radiographic analysis, each

image was examined to ensure that the images collected were

suitable for analysis (35).
2.3 Lesion segmentation

The CT images were anonymized for all personal and institutional

data and labeled with random numbers. For each patient, metastatic liver

lesion with the largest cross-sectional area and well-defined margin was

selected as target lesion for segmentation, and lesions were segmented

separately at different phases. The specific process wasas follows: First, all

CT images (PP, AP, PVP and DP) of 76 lesions were contoured slice by

slice using a soft tissue window (window width: 350 HU, window level:

40 HU) for selected liver lesions using a semiautomatic fast marching

segmentation algorithm. Then, the images were manually modified and

segmented using open-source 3D-Slicer software (www.slicer.org) by two

radiologists with 10 years of work experience to remove adjacent normal

tissues or surrounding bile ducts. In case of contradiction, othersenior

radiologists (over 20 years of work experience) would assess the tumor

mask again for agreement. CT images in DICOM format were imported

into 3D-Slicer software, and regions of interest (ROIs) were subsequently

exported into Nearly Raw Raster Data (NRRD) and Medical Reality

Markup Language (MRML) formats for storage and further analysis.
TABLE 1 Equipment parameters of this study.

Manufacturers: Toshiba, GE, Phillips and Siemen

Tube voltage: 120 kVp (range 100−140kVp)

Slice thickness: 2.0 mm

Matrix: 512×512

Tube current: 333 mA (range 100–752 mA)

Exposure time: 751 ms (range 500–1782 ms)
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2.4 Feature extraction

The radiomics features of the ROIs were extracted using the

“PyRadiomics” package in the Python environment. The extracted

radiomics features could be divided into the following categories:

first-order features, shape-based features, texture features and wavelet

features. First-order features describe the distribution of the ROI’s

endogenous intensities (36). Shape-based features capture the

intuitive features of the ROI into two-dimensional and three-

dimensional sizes and shapes. These features are independent of the

grayscale intensity distribution in the ROI. Texture features were

extracted based on five texture matrices: (1) gray level co-occurrence

matrix (GLCM), (2) gray level size zone matrix (GLSZM), (3) gray

level running length matrix (GLRLM), (4) neighboring gray level

difference matrix (NGTDM) and (5) gray level dependence matrix

(GLDM) (37). Wavelet features refer to the characteristics of different

frequency bands extracted from the wavelet decomposition of the

image (38). Based on the suggestions of Pyradiomics developers, we

used the following initial settings for feature extraction: ‘binWidth’ =

25; ‘Interpolator’ = sitk.sitkBSpline; ‘resampledPixelSpacing’ = [1, 1,

1]; ‘voxelArrayShift’ = 1000; ‘normalize’= True; ‘normalizeScale’

= 100.
2.5 Dynamic feature construction

Dynamic radiomics features use the static feature changes of

different series of the same imaging examination or different imaging

examinations to construct new features that can describe the change

rule, which can be expressed as:

f(y (x(t1)),y (x(t2)),⋯,y (x(tk))) (1)

where f(·) represents the conversion from static radiomic features

to dynamic radiomic features, y(·) represents the process of

extracting static features from images, and x(tk) represents a series

of medical images.

According to the number of series collected and the feature

extraction method, 5 construction methods of dynamic features

are proposed:

(1) Standard discrete (SD) feature:

SD(y (x(t))) =
1
ko

k

i=1
y (x(ti)) − y (x(t))j j (2)

(2) Discrete change (DC) feature:

DC(y (x(t))) = (
1
ko

k

i=1
y (x(ti)) − y (x(t))j j)=y (x(t)) (3)

(3) Relative change rate (RCR):

RCR(y (x(t))) =
y (x(tj)) − y (x(ti))
�� ��

y (x(ti))
, 1 ≤ j ≤ i ≤ k (4)

(4) Relative average change rate (RACR):

RACR(y (x(t))) =
y (x(tj)) − y (x(ti))
�� ��

y (x(t))
, 1 ≤ j ≤ i ≤ k (5)
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(5) Ploy (P) feature:

q̂ = argminok
i=1(y (x(ti)) −m(ti, q))

m(ti, q) =ok
i=1ai · ti, q = (a1, a2 ⋯ a7)

T

(
(6)

where the set q of P features is calculated based on the least-

squares estimation model.
2.6 Evaluation

The patients were divided into two groups according to the best

response to first-line treatment: those who achieved objective response

(OR) and those who did not achieve objective response (NOR).

Objective response was defined as achievement of complete response

(CR) or partial response (PR) according to Response Evaluation

Criteria in Solid Tumors (RECIST) criteria version 1.1 (39). Due to

the small number of samples included, we employed leave-one-out

cross-validation to measure the prediction performance of different

features in different algorithms. We used the t test to screen the features

that differed between the OR and NOR groups and then used the least

absolute shrinkage and selection operator (Lasso) to reduce the

dimensionality of the training set to obtain the required features for

the training model. For comparison with traditional radiomics, in

addition to the five constructed dynamic features, we included the

static features of different series and the collection of static features for

modeling. In the training cohort, three machine learning methods were

used to construct the scores for the prediction of the efficacy of

chemotherapy + bevacizumab, including support vector machine

(SVM), linear discriminant analysis (LDA) and random forest (RF).

Among all kinds of features, the one with the best predictive

performance was selected.

The features with the best performance in the classification task

were used for univariate Cox regression analysis to select the features

related to Progression-free survival (PFS) (P <0.05), and a PFS-based

efficacy prediction score was constructed using a random survival

forest model. PFS was defined as the time from randomization to the

first occurrence of disease progression or death from any cause.
2.7 Statistical analysis

The area under the receiver operating characteristic (ROC) curve

(AUC) in the validation dataset was analyzed using the “pROC” package

in R, and the performance of different prediction scores was compared

using the AUC and accuracy. Time-dependent ROC curves were plotted

using the ßurvivalROC” package in R, and the predictive performance of

the model at 90, 180, 270 and 360 days was evaluated using AUCs. We

used the “rms” package to draw nomograms, and calibration curves were

used to assess the discriminability of the nomograms. Kaplan–Meier

plots were constructed to analyze potential differences in PFS between the

high-risk and low-risk groups. All statistical analyses were performed

using R (version 4.1.1). Fisher’s exact test was used to determine whether

there were significant differences in clinical variables between the OR and

NOR groups. Two-sided p values<0.05 were considered

statistically significant.
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3 Results

3.1 Patient characteristics

A total of 76 patients (40 males and 36 females, median age of 60

years, age range between 36 and 76 years) diagnosed with CRLM at the

First Affiliated Hospital of China Medical University were enrolled in

this study. Figure 1 shows the patient recruitment process. Based on the

best response, the patients were divided into an OR group (33 patients)

and an NOR group (43 patients). As shown in Table 2, no significant

differences in other clinical variables were found between these two

groups. Our work flow diagram is shown in Figure 2.
3.2 Construction and validation of
classification prediction scores

After excluding features with the same values in all patients (40),

we obtained 1329 radiomic features and constructed dynamic features

using static features from four different vascular phases. After

performing a t test (P s 0.05), we further screened features on the

training set using Lasso. Table 3 and Table 4 show the performance of

different features in test samples after cross-validation based on the

leave-one-out method.

Of the three machine learning methods, all five dynamic features

showed their best predictive performance in LDA (Figures 3A–C).

Compared with other dynamic features, RCR features showed the best

classification performance in all three machinelearning methods. As

shown in Table 5, after lasso processing, the RCR features constructed

from each of the 16 radiomics features were selected for constructing

machine learning models. In the LDA model, the RCR AUC and

accuracy in the validation data reached 0.945 and 0.855, respectively.

It also had the best performance compared to all static features

(Figures 3D-F).

Previous studies have shown that age, sex, and CEA and AFP

levels are also factors predicting the efficacy of bevacizumab (41, 42),

so we used these variables and our best predictive score (the result of

RCR features in the LDA model) to construct a nomogram

(Figure 4A). The calibration curves of the nomogram showed good

agreement between the classification results predicted by the

nomogram and the actual observations (Figure 4C).
3.3 Efficacy prediction model based on PFS

We selected the RCR features with the best performance in the

classification task, constructed a PFS-based efficacy prediction model

using leave-one-out cross-validation + random survival forest, and

divided the patients into high- and low-risk groups according to the

median risk score. Kaplan–Meier plots demonstrated a significant

difference (P <0.0001) in PFS between the two groups (Figure 5A).

The time-dependent ROC curve indicated that the PFS-based

prediction score had good predictive power at different time points

(Figure 5B). We also constructed a nomogram (Figure 4B), and

survival calibration plots showed that the survival probabilities
Frontiers in Oncology 05106
predicted by the nomogram also had good agreement with the

actual observations (Figure 4D).
4 Discussion

In this study, we use a new dynamic radiomics feature extraction

method and workflow based on multiple series. The extraction of all

dynamic features is based on static feature extraction, which describes

the variation of static features at different times. In the study by Qu

et al., it had been confirmed that dynamic radiomics had better

predictive performance compared with traditional radiomics in the
FIGURE 1

Flow chart of the enrolled patients in the study.
TABLE 2 Baseline clinical characteristics of the patients.

NOR,n(%) OR,n(%) P value

Total 43 33

Sex

male 20 (46.5) 20 (60.6) 0.323

female 23 (53.5) 13 (39.4)

Tumor site

left 11 (25.6) 12 (36.4) 0.597

rectum 17 (39.5) 11 (33.3)

right 15 (34.9) 10 (30.3)

Tumor size (mean (SD)) 4.28 (2.55) 3.50 (2.15) 0.165

CEA

normal 4 (9.3) 5 (15.2) 0.671

high 39 (90.7) (84.8)

AFP

normal 41 (95.3) 31 (93.9) 1

high 2 (4.7) 2 (6.1)

Age

≤55 11 (25.6) 11 (33.3) 0.629

>55 32 (74.4) 22 (66.7)
fron
P values were derived from Fisher’s exact test.
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tasks of tumor diagnosis prediction, tumor patient gene mutation

status prediction and patient prognosis prediction (29). We used this

method to predict both the response to antiangiogenic therapy and

PFS in patients with CRLM. Compared with traditional radiomics,

the prediction performance of dynamic features is greatly improved

and superior to that of clinical predictors (36, 37) (Figure S1,

Figure S2).

In the field of CRC, radiomics has been widely used for diagnosis

and predicting prognosis and the efficacy of drugs (43–45). In recent

years, the analysis of CRLM using image features extracted by deep

learning has also been common in radiology. Shi et al. used an

artificial neural network (ANN) model to predict the mutation status

of RAS and BRAF genes in CRLM patients (35). Zhu et al. used deep
Frontiers in Oncology 06107
learning-assisted magnetic resonance imaging to predict tumor

response to chemotherapy in CRLM patients (46). Starmans et al.

used deep learning to differentiate the pure histopathological growth

patterns of CRLM on CT (47). Compared with deep learning and

traditional radiomic features, dynamic features have the following

advantages. (1) Compared with traditional radiomic features,

dynamic features can reflect changes in the static features of all

sequences, so this method can extract more features and

information for model construction. (2) Dynamic features calculate

the relative changes in static features. Therefore, dynamic features are

less affected by image quality differences between different series of

the same patient or between different patients. (3) Compared with

deep learning features, dynamic features are easier to interpret and
FIGURE 2

Workflow of the necessary steps in this study.
TABLE 3 Prediction AUCs based on various dimensions of LDA, RF
and SVM.

LDA RF SVM

RACR 0.867 0.780 0.822

RCR 0.945 0.841 0.908

SD 0.689 0.623 0.662

DC 0.724 0.615 0.716

P 0.651 0.631 0.671

AP 0.675 0.574 0.618

DP 0.787 0.666 0.749

PP 0.604 0.635 0.548

PVP 0.693 0.768 0.591

Multi_static 0.853 0.642 0.817
Multi_static refers to the feature set analysis of multiple series.
TABLE 4 Prediction accuracies based on various dimensions of LDA, RF
and SVM.

LDA RF SVM

RACR 0.737 0.684 0.737

RCR 0.855 0.803 0.803

SD 0.658 0.605 0.632

DC 0.645 0.592 0.618

P 0.605 0.645 0.618

AP 0.605 0.540 0.553

DP 0.737 0.658 0.645

PP 0.592 0.526 0.526

PVP 0.618 0.763 0.526

Multi_static 0.763 0.592 0.724
frontie
Where Multi_static refers to the feature set analysis of multiple series.
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B C

D E F

A

FIGURE 3

ROC curves for LDA (A), RF (B) and SVM (C) models with different dynamic features when using leave-one-out cross-validation. ROC curves for LDA (D),
RF (E), and SVM (F) models with static features of different series and RCR features when using leave-one-out cross-validation, where Multi_static refers
to the feature set analysis of multiple series.
B

C D

A

FIGURE 4

The nomogram (A) predicts the best response in patients with CRLM. The total score is calculated by summing the points for each factor. The total score
corresponds to the patient’s best response prediction. (C) is the calibration curve corresponding to the nomogram. The nomogram (B) predicts 1-year,
3-year and 5-year PFS in patients with CRLM. Total points are calculated by summing the points for each factor. The total score corresponds to the 1-,
3-, and 5-year PFS probabilities of the patients. (D) Calibration plots to predict 1-year progression-free survival (PFS).
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T
a

therefore more acceptable to doctors (48). (4) Compared with deep

learning, it is suitable for small sample research and more suitable for

medical (49). (5) Different sequences of medical images are

considered, which is more consistent with the actual image

diagnostic process of doctors (21).

In this study, the RCR feature had the best prediction

performance among all models, which may be because it contains

the relationship between any two sequences, contains the most

features and has less information about the whole population.

Further research is needed on how to optimize other dynamic

features and explore how to select features for different tasks.
Frontiers in Oncology 08109
Lesion segmentation is a critical task for both radiomics and

dynamic radiomics. Stefano et al. discussed the impact of manual

segmentation and semi-automated segmentation on radiomics

studies in their study (50), and the authors concluded that manual

flexible delineation of targets allows highly accurate segmentation.

However, manual segmentation is labor-intensive and time-

consuming and is less feasible due to tasks with large data.

Moreover, manual segmentation results are easily influenced by

observer subjectivity. Therefore, many semi-automatic delineation

algorithms are applied in practice, such as region growing or

thresholding. But the result of semi-automatic segmentation is not

as precise as manual segmentation. In this paper, we used manual

segmentation to delineate ROIs for the following reasons: (1) the data

volume in this study was small, which requires us to minimize bias as

much as possible in the operation, while the results of manual

segmentation are more accurate; (2) the additional workload due to

the use of manual segmentation in this study is acceptable; (3) in

order to reduce the influence of subjective factors on the segmentation

results, each lesion was segmented independently by two radiologists.

Once their segmentedresults were quite different, a senior physician

would adjudicate the results to ensure the accuracy of the results.

As Pasini et al. reported in their study (51), due to the use of four

different CT scanners, some analysis is necessary to assess whether

there is a batch effect. For this reason, we performed principal

component analysis (PCA) on the RCR features finally adopted in

this paper, and the results are shown in Figure S3. No significant batch

effects was observed among the data collected by different scanners.

Therefore, we did not use any statistical harmonization methods such

as ComBat to calibrate the data.

Despite the good results achieved by dynamic features, our study still

has some limitations. First, the data in this study were collected

retrospectively. Secondly, although omitted leave-one-out cross-

validation was used to test the performance of models, the insufficient

sample size may still lead to the bias of the results, requiring very large

datasets and multicenter data for prospective investigation to further

verify the robustness and reproducibility of our conclusions. Despite

these limitations, we believe that the results obtained in this study are

credible and can be extended to a larger patient population.
BA

FIGURE 5

Kaplan–Meier plots (A) obtained by dividing patients into high-risk and low-risk groups using the median predictive score of the random survival forest
model; (B) shows ROC curves estimated at 90, 180, 270, and 360 days using the predictive scores.
ABLE 5 Radiomics features used to construct RCR features obtained
fter lasso selecting.
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5 Conclusion

In this study, dynamic radiomic feature extraction and workflow

were used to predict the efficacy of advanced first-line chemotherapy

combined with antiangiogenic therapy in patients with CRLM. While

retaining the advantages of traditional radiomics, such as non-invasive,

rapid and inexpensive, the dynamic radiomics model achieved higher

accuracy than radiomics in predicting both optimal efficacy and PFS. The

application of dynamic radiomics to predict the efficacy of antiangiogenic

therapy has strong clinical significance and broad development prospect.
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Precise prediction of the
sensitivity of platinum
chemotherapy in SCLC:
Establishing and verifying the
feasibility of a CT-based
radiomics nomogram

Yanping Su1,2,3,4†, Chenying Lu1,4†, Shenfei Zheng1,4, Hao Zou1,4,
Lin Shen1,4, Junchao Yu1,4, Qiaoyou Weng1,4, Zufei Wang1,4,
Minjiang Chen1,4, Ran Zhang5, Jiansong Ji1,4*

and Meihao Wang2,3*

1Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of
Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of
Wenzhou Medical University, Lishui, Zhejiang, China, 2Department of Radiology, Key Laboratory of
Intelligent Medical Imaging of Wenzhou, Institute of Aging, The First Affiliated Hospital of Wenzhou
Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China, 3Key Laboratory of
Alzheimer’s Disease of Zhejiang, Wenzhou, Zhejiang, China, 4Clinical College of The Affiliated Central
Hospital, School of Medicine, Lishui University, Lishui, Zhejiang, China, 5AI Research Department,
Huiying Medical Technology Co., Ltd, Beijing, China
Objectives: To develop and validate a CT-based radiomics nomogram that can

provide individualized pretreatment prediction of the response to platinum

treatment in small cell lung cancer (SCLC).

Materials: A total of 134 SCLC patients who were treated with platinum as a first-

line therapy were eligible for this study, including 51 patients with platinum

resistance (PR) and 83 patients with platinum sensitivity (PS). The variance

threshold, SelectKBest, and least absolute shrinkage and selection operator

(LASSO) were applied for feature selection and model construction. The

selected texture features were calculated to obtain the radiomics score (Rad-

score), and the predictive nomogram model was composed of the Rad-score

and the clinical features selected by multivariate analysis. Receiver operating

characteristic (ROC) curves, calibration curves, and decision curves were used to

assess the performance of the nomogram.

Results: The Rad-score was calculated using 10 radiomic features, and the resulting

radiomics signature demonstrated good discrimination in both the training set (area

under the curve [AUC], 0.727; 95% confidence interval [CI], 0.627–0.809) and the

validation set (AUC, 0.723; 95% CI, 0.562–0.799). To improve diagnostic

effectiveness, the Rad-score created a novel prediction nomogram by combining

CA125 and CA72-4. The radiomics nomogram showed good calibration and

discrimination in the training set (AUC, 0.900; 95% CI, 0.844-0.947) and the

validation set (AUC, 0.838; 95% CI, 0.534-0.735). The radiomics nomogram

proved to be clinically beneficial based on decision curve analysis.
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Conclusion: We developed and validated a radiomics nomogram model for

predicting the response to platinum in SCLC patients. The outcomes of this

model can provide useful suggestions for the development of tailored and

customized second-line chemotherapy regimens.
KEYWORDS

radiomics, computed tomography, small cell lung cancer, chemotherapy, platinum
1 Introduction

Small cell lung cancer (SCLC), the most aggressive kind of lung

cancer, accounts for approximately 14% of all lung cancer types and

has a 5-year overall survival (OS) rate of just 6.7%. Due to its strong

invasiveness, medication resistance, and the fact that no new,

effective treatments have been developed in recent years (1, 2).

Etoposide and platinum (EP) chemotherapy are the standard first-

line therapies for SCLC, with initial response rates of 70–80% and

high chemotherapeutic sensitivity. However, almost all patients will

experience progression (3, 4). According to current studies,

platinum-sensitive (PS) patients have a 15% to 20% better

response rate to conventional second-line platinum chemotherapy

than platinum-resistant (PR) patients, and their OS can be

increased by 2-3 months (2, 5–7). For PS patients, the median

PFS from the time of EP rechallenge as second-line treatment was

5.5 months, but PR patients had limited efficacy. Therefore,

platinum reactivation is recommended for PS patients as second-

line treatment, while PR patients are recommended to undergo

topotecan treatment and other clinical trials. Thus, individualized

second-line therapy based on an evaluation of platinum sensitivity

is essential for improving the overall survival of SCLC patients

(8–12).

Several studies have sought to use serum indicators and genetic

tissue features to predict the responses to platinum in SCLC. SCLC is

composed of four distinct subtypes, each of which reacts differently to

platinum-based chemotherapy. The percentage of each subtype in the

tumor influences how sensitive it is to platinum-based chemotherapy

as a whole. However, the majority of SCLC tissue test samples are

collected using needle biopsy, which unavoidably results in test

variance and instability of prediction results (13). Other studies have

attempted to use peripheral blood indices such as LDH and the

systemic immune-inflammation index to predict the OS and PFS of

SCLC (14, 15). However, the basic peripheral blood information is

unconvincing, and these studies do not account for the tumor’s size,

shape, location, or other relevant factors. Compared with the above

methods, radiomics nomograms can be combined with radiomic and

clinical features for noninvasive diagnosis, prognosis evaluation, and

treatment response prediction. Previous studies have demonstrated

that features based on radiomics are inextricably linked to underlying

genomic patterns across a range of cancer types (16–18). Several studies

using radiomics to predict platinum resistance in non-small cell lung
02113
cancer have been reported, and their radiomics models have shown

excellent diagnostic efficacy (19–23). Nonetheless, there is no radiomics

model for predicting platinum resistance in SCLC.

In this study, we aimed to develop and validate a CT-based

radiomics nomogram that can provide individualized pretreatment

prediction of the response to platinum treatment in SCLC, while

effectively integrating image texture features and clinical factors.

Using this nomogram, clinicians can enhance the treatment plan

before initiating platinum-based chemotherapy and direct second-

line therapy, optimize existing treatment combinations, and

increase patient survival.
2 Materials and methods

2.1 Patients

The study was approved by the Institutional Review Board and

Human Ethics Committee of the Fifth Affiliated Hospital of

Wenzhou Medical University, and the requirement for informed

consent was waived. Patients who were diagnosed with

pathologically confirmed SCLC from February 2014 to November

2021 were enrolled. A total of 134 patients were included according

to the following inclusion criteria: (1) they underwent a CT

examination before treatment; (2) they used platinum derivatives

on a regular basis in first-line chemotherapy and had never received

any other treatment before; (3) dynamic CT follow-up was

performed during treatment; and (4) endpoint events occurred. A

total of 133 patients were excluded due to the following factors: (1)

they were not treated in our hospital (n = 74); (2) they underwent

other chemotherapy regimens or treatments (n = 30); (3) they

underwent surgical resection (n = 16); (4) there was no follow-up

after treatment (n = 9); and (5) no endpoint events occurred during

follow-up (n = 4). Finally, 134 patients were selected for the present

study. The flow of the case identification process is shown

in Figure 1.
2.2 Endpoints

We evaluated the tumor response of SCLC patients who

received CT examinations during platinum chemotherapy based
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on the modified Response Evaluation Criteria in Solid Tumors

(mRECIST). The corresponding mRECIST responses were as

follows: (1) complete response (CR): complete tumor

disappearance; (2) partial response (PR): a minimum of 30%

decrease in the sum of target lesion diameters; (3) progressive

disease (PD): a minimum of 20% increase in the sum of target

lesion diameters; and (4) stable disease (SD): neither PR nor PD. In

this study, all patients underwent CT before and after platinum

treatment, and the endpoint event was defined as the occurrence of

PD. The patients were divided into PR and PS groups according to

whether the time from platinum chemotherapy to the first PD was
Frontiers in Oncology 03114
within 6 months. Representative CT images for PR and PS patients

are shown in Figure 2.
2.3 CT image acquisition and interpretation

The patients underwent nonenhanced CT scans with a 256-slice

Philips Brilliance iCT system prior to treatment (Philips Medical

Systems). The following are the detailed acquisition parameter

settings: tube voltage 120 kV, reference tube current 113 mAs,

automatic millisecond technology, scanning field of view (SFOV)

15-20 cm, tube rotation time 0.75 s/circle, collimation width 80 mm

(128×0.625 mm), reconstruction thickness 0.9 mm, reconstruction

interval 0.45 mm, reconstruction matrix 1024× 1024, using the

iDose3 iterative reconstruction algorithm.

Two thoracic radiologists with 5 and 15 years of experience (Y.S.

and C.L.) independently conducted retrospective reviews.

Disagreements were settled by a third radiologist who had 25 years

of experience (J.J.). The image features included the following: (1)

number of lesions and (2) volume, measured using the Extended

Brilliance Workspace and Lung Nodule Assessment software (Philips);

(3) location: central or peripheral; (4) morphology: regular or irregular;

(5) shape: regular or irregular; (6) lobulation (present/absent); (7)

necrosis (present/absent); (8) hydrothorax (present/absent); (9)

intratumoral calcification (present/absent); (10) staging (limited-

stage/extensive-stage); and (11) metastasis (lymph den/bone/

parenchyma organ/cardiovascular/pleural and pericardium).
B

A

FIGURE 2

Representative CT images for PR and PS of SCLC patients according to the mRECIST criteria. (A) A 65-year-old female SCLC patient with a lesion
diameter of 71 mm underwent CT scanning 1 week before EP chemotherapy, followed by CT scanning 2 months later. The lesion diameter
increased to 97 mm, and the results showed that the patient presented with PR. (B) A 54-year-old male SCLC patient with a lesion diameter of
95 mm. CT scanning was performed 1 week before EP chemotherapy, and follow-up CT examinations were performed regularly after EP
chemotherapy. Ten months later, the lesion diameter decreased to 56 mm, and the results showed that the patient presented with PS.
FIGURE 1

Flowchart of study enrollment.
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2.4 Tumor segmentation of volumes of
interest and extraction of radiomic features

The radiomics workflow is shown in Figure 3. Tumors and

mediastinal lymph nodes fused with tumors in the mediastinal

window were included in the volume of interest (VOI). First, a

radiologist (reader 1, Y. S, a radiologist with five years of chest

imaging experience) manually annotated 3D tumor VOIs around

the largest lesion using the Radcloud platform (Huiying Medical

Technology Co., Ltd, http://mics.radcloud.cn). To evaluate the

reproducibility of the extracted features, reader 2 (C. L, a

radiologist with 15 years of chest imaging experience)

independently segmented 10% of lesions randomly selected from

both the PR and PS groups.

For each VOI on our CT images, 1,409 radiomic features

were extracted using a tool from the Radcloud platform, which

extracted radiomic features from medical image data with a large

panel of engineered hard-coded feature algorithms (https://

pyradiomics.readthedocs.io/en/latest/features.html). The 1,409

features obtained were divided into four main categories: first-

order statistics, shape, texture [gray-level cooccurrence (GLCM),

gray-level run length (GLRLM), gray-level size zone (GLSZM),

neighboring gray tone difference (NGTDM), gray-level

dependence (GLDM), Matrices], and higher-order statistics

(Laplacian of Gaussian, wavelet, square, square root, logarithm,

exponential, gradient, and local binary pattern filters) features.

The intraclass correlation coefficient (ICC) was used to validate

the reproducibility of extracted features from the two radiologists.

Radiomic features with intra-ICCs >0.75 were selected for the

subsequent statistical analysis.
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2.5 Construction of a radiomics signature
and assessment of performance

In the imaging and storage of medical images, to make the

intensity information consistent, the following formula was used to

normalize all the radiomic features of CT images.

f (x) =
s(x − ux)

sx

Where f(x) is the normalized intensity, x is the original

intensity, µ and s are the mean value and variance, respectively,

and s represents an optional scaling whose default is 1.

The samples were randomly divided into a training cohort

(n=58, 70%) and a validation cohort (n=25, 30%). To reduce the

redundant features, the feature selection methods included the

variance threshold, SelectKBest, and the least absolute shrinkage

and selection operator (LASSO). For the variance threshold

method, the threshold is 0.8, so that the eigenvalues of the

variance smaller than 0.8 are removed. The SelectKBest method,

which is a single-variable feature selection method, uses the p value

to analyze the relationship between the features and the

classification results; all the features with a p value smaller than

0.05 are used. For the LASSO model, L1 regularization is used as the

cost function, the error value of cross-validation is 10, and the

maximum number of iterations is 1,000. Subsequently, the radiomic

parameters with nonzero coefficients in the LASSO model

generated by the entire training cohort with the optimal a were

selected. The radiomics signature (i.e., Rad-score) was computed for

each lesion by a linear combination of the selected features as

weighted by their respective quotient.
FIGURE 3

Flowchart of the study.
frontiersin.org

http://mics.radcloud.cn
https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
https://doi.org/10.3389/fonc.2023.1006172
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Su et al. 10.3389/fonc.2023.1006172
2.6 Construction and internal validation of
the nomogram model

The variables, including clinical factors, conventional CT

findings, and Rad-scores between the samples of platinum-

resistant groups and platinum-sensitive groups with significant

differences, were analyzed via multivariate logistic regression to

build the radiomics nomogram. The performance of the nomogram

was evaluated by plotting receiver operating characteristic curves.

The Hosmer−Lemeshow test was used to evaluate the goodness-

of-fit of the nomogram. The classification accuracy between the

predicted probability and the observed results was evaluated using

calibration curves. The diagnostic performance of the nomogram

was assessed by evaluating the AUC, sensitivity, specificity, and

accuracy. The AUC between the optimized signature and the

nomogram was evaluated by using the DeLong test. Decision

curve analysis (DCA) was performed to evaluate the clinical

utility of the nomogram.
2.7 Statistical analysis

All quantitative features were analyzed with SPSS 25. P<0.05

was considered as statistically significant.

Categorical variables are shown as frequencies, and continuous

variables are presented as the mean and standard deviation or
Frontiers in Oncology 05116
median and interquartile range. The c2 test was used to analyze the

categorical variables, the t test was applied to analyze the

continuous variables with a normal distribution, and the Mann

−Whitney U test was used for variables with an abnormal or

unknown distribution. Multivariable logistic regression analysis

was used to select the independent prognostic factors. The

performance of the model was assessed in the primary and

validation cohorts. The discrimination of the signature was

measured by the area under the curve (AUC).

The ICC was graded as follows: poor (<0.20), moderate (0.20–

0.40), fair (0.40–0.60), good (0.60–0.80), or very good (0.80–1.00).

Statistical analyses were performed using SPSS software (Ver.

25, IBM, Armonk, New York), SigmaPlot (Ver. 14.0), R software

package (Ver. 3.5.2, R Development Core Team: https://www.r-

project.org/), and the Python scikit-learn package (Ver. 3.7, scikit-

learn Ver. 0.21, http://scikit-learn.org/).
3 Results

3.1 Clinical factors of the patients and
construction of the clinical factor model

The baseline clinical characteristics of the patients are

summarized in Table 1. A total of 134 patients were enrolled in

this study: 51 patients with PR and 83 patients with PS. The mean
TABLE 1 Baseline characteristics of the patients in the PR and PS groups.

Variables PR (51) PS (83) t/c2/U P

Sex 0.063 0.802

Male 45 (88%) 72 (87%)

Female 6 (12%) 11 (13%)

Age 62.71 ± 9.38 61.28 ± 7.33 0.983 0.327

BMI/kg·m-2 22.06 (20.20, 25.00) 22.53 (20.57, 24.61) 0.472 0.637

Smoking 38 (75%) 62 (75%) <0.001 0.981

Superior vena cava syndrome 3 (6%) 5 (6%) <0.001 1.000

Spinal cord compression 3 (6%) 5 (6%) <0.001 1.000

Ki67 80% (70%, 85%) 80% (70%, 85%) 0.576 0.565

Tumor number 0.737 0.692

1 41 (80%) 69 (83%)

2 1 (2%) 3 (4%)

≥3 9 (18%) 11 (13%)

Tumor volume 115.06 (14.50, 247.30) 65.99 (18.72, 160.40) 1.191 0.233

Intratumoral calcification 3 (6%) 2 (2%) 0.314 0.575

Tumor location <0.001 0.987

Central 40 (78%) 65 (78%)

Peripheral 11 (22%) 18 (22%)

(Continued)
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ages were 62.71 ± 9.38 and 61.28 ± 7.33, respectively. Univariate

analysis showed that NSE, CEA, CA125, CA72-4, CA199, and TG

were significantly different between the two groups. Subsequently,

multivariate analysis suggested that CA125 (OR: 0.98, 95% CI:
Frontiers in Oncology 06117
0.977-0.998, P =0.022) and CA72-4 (OR: 1.172, 95% CI: 1.023-

1.341, P =0.022) were independent predictors of SCLC with PS

(Table 2). The ROC curves of CA125, CA72-4 and the clinical

model are shown in Figure S1.
TABLE 1 Continued

Variables PR (51) PS (83) t/c2/U P

Tumor morphology 1.615 0.532

Regular 16 (31%) 25 (30%)

Irregular 35 (69%) 58 (70%)

Lobulated <0.001 1.000

Absent 2 (4%) 4 (5%)

Present 49 (96%) 79 (95%)

Necrosis 0.285 0.594

Absent 27 (53%) 41 (48%)

Present 24 (47%) 43 (52%)

Hydrothorax 1.941 0.164

Absent 27 (53%) 55 (65%)

Present 24 (47%) 29 (35%)

Staging 0.202 0.653

LS 25 (49%) 45 (53%)

ES 26 (51%) 39 (47%)

Metastasis

Lymph den 49 (96%) 73 (88%) 1.659 0.198

Bone 9 (18%) 6 (7%) 3.449 0.063

Parenchyma organ 12 (24%) 14 (17%) 0.897 0.344

Cardiovascular 12 (24%) 16 (19%) 0.346 0.557

Pleural and pericardium 7 (14%) 8 (10%) 0.531 0.466

NSE 37.30 (22.20, 103.60) 31.80 (18.20, 55.90) 1.991 0.046

CEA 7.30 (2.90, 18.60) 3.80 (2.20, 6.50) 2.390 0.017

Pro-GRP 714.9 (129.90, 3212.20) 597.80 (156.90, 1953.10) 0.660 0.509

CYFRA-211 3.20 (2.30, 5.20) 2.90 (2.00, 4.40) 1.407 0.159

CA125 33.40 (18.20, 66.60) 17.30 (13.10, 31.10) 4.443 <0.001

CA72-4 1.60 (1.00, 2.60) 2.50 (1.20, 5.60) 2.726 0.006

CA199 23.40 (5.60, 48.80) 12.10 (4.80, 23.20) 2.809 0.005

FER 249.70 (156.00, 491.80) 280.50 (188.30, 387.90) 0.332 0.740

SCC 0.90 (0.50, 1.10) 0.70 (0.60, 1.00) 0.600 0.549

ApoB/ApoA 0.76 (0.63, 0.82) 0.67 (0.60, 0.80) 1.241 0.215

HDL 1.12 (0.90, 1.32) 1.12 (0.97, 1.27) 0.133 0.894

LDL 2.47 (2.12, 3.10) 2.37 (2.12, 3.10) 0.500 0.617

TG 0.98 (0.77, 1.43) 1.40 (1.12, 2.01) 4.015 <0.001
frontie
NSE, neuron-specific enolase; CEA, carcinoembryonic antigen; pro-GRP, progastrin-releasing peptide; CA125, carbohydrate antigen 125; CA72-4, carbohydrate antigen 72-4; CA199,
carbohydrate antigen 199; FER, ferroprotein; SCC, squamous cell carcinoma; ApoB, apolipoprotein B; ApoA, apolipoprotein A; HDL, high-density lipoprotein; LDL, low-density lipoprotein;
TG, triglyceride.
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3.2 Feature extraction, selection, and
radiomic signature building

Of the 1409 radiomic features extracted from CT images, 1186

were demonstrated to have good interobserver agreement, with

intra-ICCs >0.75. A total of 1107 radiomic features by variance

threshold were enrolled in SelectKBest to select the most valuable 60

features. Finally, 10 features were screened out by LASSO to build

the radiomic signature model. The optimal parameter l of each fold

and the selected features of the corresponding fold are shown in

Figure 4. The ROC curves of the 10 radiomic features and radiomics

model are shown in Figure 5.

Based on these 10 features and their regression coefficients, the

radiomics score (Rad-score) formula was constructed as follows:

Rad-score = feature * coefficient (Table 3).
Frontiers in Oncology 07118
3.3 Radiomics nomogram building and
assessment of the performance of
different models

The ROC and decision curves of the nomogram model are

shown in Figures 6A–D. The CA125, CA72-4, and Rad-score were

incorporated into the construction of the radiomics nomogram

(Figure 6E). Figures 6F, G shows the calibration curve of the

nomogram. The Nomo-scores for each patient are shown in

Figure S2. The AUC of the clinical model was higher than that of

the radiomics model in the training cohort, whereas the AUC value

of the radiomics model was higher than that of the clinical model in

the validation cohort. The AUC value of the nomogram model was

significantly higher than that of the clinical and radiomics models in

the training cohort and verification cohort. The calibration curve
TABLE 2 Univariate and multivariate analyses of clinical factors.

Characteristic Univariate Multivariate

OR 95% CI P OR 95% CI P

NSE 0.994 0.988-0.999 0.024 0.994 0.987-1.000 0.063

CEA 0.982 0.962-1.002 0.078

CA125 0.986 0.975-0.997 0.014 0.987 0.977-0.998 0.022

CA72-4 1.187 1.037-1.359 0.013 1.172 1.023-1.341 0.022

CA199 0.995 0.987-1.003 0.212

TG 1.043 0.913-1.190 0.538
frontier
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FIGURE 4

Radiomic feature selection using the variance threshold, SelectKBest and selection operator (LASSO) regression model. LASSO regression model on
CT images. The mean square error on each fold in the tenfold cross-validation method and the optimal value of the lasso tuning parameter (-log (a)
=1.574,a= 2.978) were found (A). The vertical line was plotted with 10 selected radiomic features (B). The 10 radiomic features were selected after
dimension reduction (C, D).
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showed good calibration in the training cohort and validation

cohort (Figure S3). The radiomics nomogram showed the highest

net benefit of the three models.

The radiomics signatures based on the nomogram model

showed high performance in differentiating between platinum-

resistant groups and platinum-sensitive groups, with an AUC of

0.900 (95% CI, 0.844-0.947; sensitivity, 83.61%; specificity, 78.13%;

accuracy, 81.72%) in the training cohort and 0.838 (95% CI, 0.534-

0.735; sensitivity, 68.57%; specificity, 83.33%; accuracy, 70.73%) in

the validation cohort. The AUC of the CT image model was 0.727

(95% CI, 0.627-0.809; sensitivity, 73.85%; specificity, 64.29%;

accuracy, 70.97%) in the training cohort and 0.723 (95% CI,

0.562-0.799; sensitivity, 71.88%; specificity, 77.78%; accuracy,

73.17%) in the validation dataset. The AUC of the clinical model

was 0.734 (95% CI, 0.637–0.814; sensitivity, 65.82%; specificity,

57.14%; accuracy, 64.52%) in the training cohort and 0.715 (95% CI,

0.514–0.756; sensitivity, 70.00%; specificity, 63.64%; accuracy,

68.29%) in the test dataset. For the combined radiomics

signature, the Hosmer−Lemeshow test yielded P values of 0.219

and 0.308 in the training and validation cohorts, respectively,

indicating no departure from a good fit.
Frontiers in Oncology 08119
4 Discussion

The standard first-line therapy for SCLC is platinum-based

chemotherapy, which has a 70–80% success rate and often a very

pronounced early effect (3, 4). However, the disease will progress

quickly, on average, six months after the first treatment has been

administered (2). Current management advice is that PR patients

should try clinical trial medication such as topotecan or

lurbinectedin because they would gain little from an EP regimen,

whereas PS patients should be restimulated with an EP regimen (6).

To increase the overall survival rate, it is crucial to evaluate the

tumor’s response to platinum chemotherapy and choose a suitable

second-line treatment prior to first-line therapy (24, 25). In this

study, we established a CT-based, noninvasive radiomics

nomogram model that incorporates the radiomics signature and

clinical factors to predict a customized platinum response in SCLC

patients. Overall, our study serves as an example of precision

medicine and can influence treatment options.

In our study, mediastinal window texture characteristics in

patients with SCLC were extracted using radiological methods,

and 1409 potential radiological features were chosen for further
BA

FIGURE 5

ROC curves of the radiomics model. The ROC curves of the radiomics model in the training (A) and validation (B) cohorts.
TABLE 3 Description of the selected radiomic features with their associated feature group and filter.

Radiomic feature Radiomic class Filter Coefficient

Skewness firstorder wavelet-HLL -0.0778821372989

Kurtosis firstorder wavelet-LLH -0.048467472885

LongRunLowGrayLevelEmphasis glrlm original -0.0168388737795

Imc2 glcm wavelet-HHL -0.0243113156389

10Percentile firstorder square 0.0276043499311

MCC glcm wavelet-LHH -0.00170586466044

RunPercentage glrlm wavelet-HLL -0.0129710574977

ShortRunHighGrayLevelEmphasis glrlm wavelet-HLH -0.0156495283052

RootMeanSquared firstorder wavelet-LLL 0.0201114297855

RootMeanSquared firstorder original 0.0190099678839
Imc2, Informational Measure of Correlation 2; MCC, Maximal Correlation Coefficient; glrlm, gray level tun length matrix; glcm, gray-level cooccurrence matrix.
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investigation. We were able to greatly enhance the number of

texture characteristics by utilizing 3D annotation, which allowed

us to avoid missing any crucial aspects altogether. Wavelet-based

characteristics have been proposed as a tool for illness diagnosis and

predicting therapy response (26, 27). GLCM and GLRLM are both

matrix-based features: GLCM describes the pairwise arrangement

of voxels with the same gray value and is used to highlight local

heterogeneity information; GLRLM is used to measure the

distribution of high gray values, and the GrayLevelEmphasis value

is expected to be larger for images with higher gray values. Our Rad-

score includes two GLSZM features, MCC and GLCM. The MCC

represents the complexity of the texture, and the lower the value, the

more complex the texture. In this study, the MCC value of the

sensitive group was lower, indicating that the lesion heterogeneity

in the sensitive group was higher, and thus, the probability of a

response to the treatment outcome was higher.

Meanwhile, the potential 1409 candidate radiomic features were

finally reduced to 10 potential predictors by shrinking the regression

coefficients with the LASSOmethod for further integration to form the

Rad-score, which contains effective biological information and could

reflect the heterogeneity of the tumor. The radiomics signature

demonstrated good discrimination in both the training set (AUC,

0.727; 95% CI, 0.627-0.809) and the validation set (AUC, 0.723; 95%

CI, 0.562-0.799). Several previous studies have demonstrated that the

Rad-score can effectively predict the prognosis of patients due to its

high correlation with tumor biological characteristics (28). Several

radiomic model prediction algorithms have been developed in the

past to predict tumor response to medications, including platinum-

based chemotherapeutics, in a variety of cancers (16, 17, 19, 20). A

recent study showed that the computed tomography-based radiomics

signature was closely associated with the PFS of SCLC; however, this

study primarily concentrated on PFS prediction and made no
Frontiers in Oncology 09120
recommendations to enhance PFS, which only offered minimal

clinical support (23). These preliminary studies have further

confirmed that the texture feature-based radiomics method of SCLC

is feasible for predicting platinum responsiveness. Additionally, our

study expands on these findings to achieve more significant outcomes

with regard to clinical requirements and increased patient survival.

To improve the prediction efficacy, predictors beyond

radiomics should also be incorporated with the radiomics

signature to further increase the power of the decision support

model. In previous studies, patient prognosis was influenced by

characteristics such as patient sex, smoking history, tumor stage,

and other variables; however, in our study, these variables had no

impact on the tumor’s sensitivity to platinum-based chemotherapy.

NSE, Pro-GRP, and CYFRA 21-1 are all linked to the prognosis of

SCLC; however, they also cannot predict platinum resistance. As a

result, CA125 and CA72-4 with corresponding odds ratios of 0.987

and 1.172 were selected by multivariable logistic regression analysis.

The ORs suggest that the higher the CA125 and CA72-4 levels are,

the greater the probability of a favorable response to platinum

treatment in SCLC. The clinical phases of SCLC were linked to

CA125 (29). According to the literature, a higher level of CA125 can

indicate a better impact of first-line treatment (30). Although Ca72-

4 can predict the degree of differentiation in gastric cancer (31–33),

no studies have found a link between it and small cell lung cancer.

The baseline expression of CA 125 and CA72-4 in SCLC can predict

platinum resistance, according to our findings.

After selecting candidate predictors using multivariate logistic

regression analysis, a nomogram model was built that included

radiomics signatures, CA125, and CA72-4. Of note, our radiomics

nomogram showed favorable discrimination (AUC 0.900) in the

training cohort, which was further validated in the internal validation

cohorts (AUC 0.834). Furthermore, DCA showed a higher overall net
B

C D

E

F G

A

FIGURE 6

ROC and curve decision curve analysis of the nomogram model. The radiomics nomogram and calibration curves for the radiomics nomogram.
The ROC curves of the nomogram model in the training (A) and validation (B) sets and the decision curve analysis for the nomogram model in the
training (C) and validation (D) sets. The radiomics nomogram, combining CA125, CA72-4, and Rad-score, was developed in the training cohort
(E). Calibration curves for the radiomics nomogram in the training (F) and validation (G) cohorts. Calibration curves indicate the goodness-of-fit of
the nomogram. The 45° gray line represents the ideal prediction, and the blue lines and red lines represent the performance of the corrected and
apparent bias, respectively. The closer the line approaches the ideal prediction line, the better the predictive efficacy of the nomogram.
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benefit of the radiomics model, thus highlighting its value as a better

tool for assisting in clinical decision-making. Using the radiomics

nomogrammodel, if a patient is predicted to have a favorable response

to platinum, second-line platinum chemotherapy should be

recommended; if not, immune checkpoint inhibitors are a good

alternative (11, 34, 35). This is particularly important for those with

PR, since doctors can choose other treatment options at an earlier stage

to prevent tumor progression due to drug resistance and improve

recurrence-free survival. However, our study has several limitations.

First, given the retrospective nature of this study, selection bias may

exist. Second, the training/testing cohort is tiny. Due to morbidity, the

sample size is smaller than other tumor type radiomics research

samples but similar to those in SCLC radiomics studies. Larger

datasets are needed to verify and improve our results, and external

validation of our model’s performance with an independent cohort

from other institutions is necessary.

In summary, we developed and validated a radiomics model that

incorporates the pretreatment CT-based radiomics signature and

clinical variables for the prediction of the response to platinum

treatment in patients with SCLC. This study can assist patients in

customizing second-line chemotherapy, improve clinical decision-

making, and increase patient survival. Additionally, this research

could be utilized to forecast second-line therapy responsiveness and

support the development of third-line treatment approaches. It offers a

wide range of potential applications and is also applicable to different

tumor types.
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