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Editorial on the Research Topic

Vetinformatics: an insight for decoding livestock systems through in

silico biology

Computers have become an integral part of our daily lives, and we are dependent on

them for many things. For instance, research is almost impossible without computers. In the

early 1970s, Paulien Hogeweg and Ben Hesper coined the term “bioinformatics” (1), which

became an independent discipline after its significant role in the Human Genome Project

(HGP) (2). Decoding problems arising in the field of biological sciences via computation is

known as bioinformatics (3).

With the world’s population booming and natural resources dwindling due to human

activity, veterinary science is becoming key in research and development to meet growing

demands (4, 5). To meet the growing demand, veterinary science must integrate informatics

to manage complex data and enhance research and development activities in various areas

of veterinary sciences (4).

To enable novel discoveries, extensive use of in silico tools such as BLAST (6) and

databases i.e. Bovine Genome Database, Porcine Translational Research Database, etc are

required (6–8). Moreover, computers and information science have been integrated into

all aspects of the veterinary profession, leading to the concept of vetinformatics. While

bioinformatics is a broad field that focuses on several areas of biology, vetinformatics is

specifically concerned with addressing problems in the field of veterinary science (4).

The establishment of the Association for Veterinary Informatics took place in 1981

(https://avinformatics.org/), where it was connected veterinary with informatics, but its

focus is primarily on veterinary medicine. Some articles have also been published on

“veterinary informatics”, where informatics has been used to advance the field of veterinary

medicine (9, 10).

In 2016, Sujatha et al., published a brief review entitled “Vetinformatics: A

New Paradigm for Quality Veterinary Services”. This review attempted to highlight

applications of vetinformatics in veterinary science (11). Subsequently, in 2022 we

authored a comprehensive review on vetinformatics, entitled “Vetinformatics from

functional genomics to drug discovery: Insights into decoding complex molecular mechanisms

of livestock systems in veterinary science” in which we covered many aspects (4).
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Accordingly, vetinformatics should also be considered as

an important subject, similar to Pharmacoinformatics,

Chemoinformatics, Genomeinformatics, Agriinformatics,

Cropinformatics, Biomedical informatics and other informatics

fields are considered. Therefore, vetinformatics is new and does not

have an interesting history yet, but its approaches are important

for problem solving not only in veterinary medicine but also in

various areas of veterinary science (4).

In veterinary science, animal production is a highly intricate

process with three basic interconnected components: animal

biology, environment, and management techniques. Therefore, in

silico approaches are required to bridge the gaps between genotype

and phenotype to enhance efficiency in livestock productivity and

sustainability. With the advent of several omics platforms and

next-generation sequencing technologies, an enormous amount

of animal data has been generated. While major bioinformatics

databases and tools are available for the management and analysis

of these data, veterinarians require animal and species-specific

databases for effective management and future use. In addition,

animal-specific tools for data analysis and integration, as well

as computational and mathematical models for predicting the

behavior of animal systems in different conditions, are necessary.

Hence, vetinformatics has become an essential subject in the

discipline of veterinary sciences, as it enables the handling and

evaluation of large amounts of data and mining of important

information that can aid researchers in decoding livestock systems

to accelerate research and development.

Vetinformatics-related projects focus on the design and

development of databases for the documentation of useful

information about medicinal plants available in the literature

and public domain for use in the discovery of herbal

veterinary medicine. Animal genetic resource information

is also being documented in the form of a database, and

useful organism/species-specific databases are being created

for the management of omics data sets. There is an effort

to update the content available in veterinary databases for

better functionality and create better and faster GUI-based

data integration and analysis tools. Additionally, publicly

available software is being improved for ease of use by veterinary

biotechnologists and non-computer scientists and veterinarians.

There is also a focus on the design and development of platform-

independent software for vetinformatics research as well as

vetinformatics training of undergraduate and graduate students

and faculty in veterinary and animal science for analysis of

multi-omics data.

The current Research Topic is “Vetinformatics: An Insight

for Decoding Livestock Systems Through In Silico Biology”. Nine

out of 17 articles were accepted for publication in this special

Research Topic.

The first article in this Research Topic outlines the analysis

of the structural and functional properties of Mycoplasma

gallisepticum variable lipoprotein hemagglutin (vlhA) proteins,

which are crucial for immune evasion. The results suggest diverse

mechanisms for vlhA protein function in immune evasion, and

the predicted 3D structure can aid in understanding its interaction

with other molecules (Mugunthan and Harish). The second

article reports the impact of preweaning vaccination on gene

expression in calves. Results show that regardless of vaccination

status, there was an increase in gene expression related to

specialized proresolving mediator production, lipid metabolism,

and stimulation of immunoregulatory T cells, while vaccination

was associated with gene expression related to natural killer

cell activity and helper T-cell differentiation (Scott et al.). The

third article discusses the challenges facing the livestock industry

due to climate change and increased demand for food and

how new scientific and technological advancements can help.

It highlights the importance of vetinformatics and its potential

for improving veterinary research, breeding, disease prevention,

management, and sustainability (Pathak and Kim). The fourth

article outlines attempts to develop a multiepitope-based vaccine

candidate using major and minor capsid proteins of infectious

bursal disease virus. The proposed vaccine candidate has been

evaluated as antigenic, immunogenic, and non-allergenic with

potential to overcome the safety and protection issues of existing

live-attenuated vaccines. Further experimental studies are required

to assess the efficacy of the proposed vaccine candidate in vivo

(Gul et al.). The fifth article suggests that the uncoupling proteins

(UCPs) can be functional markers for identifying metabolic

state, thermogenesis, and oxidative stress in birds, and their

corresponding genes could be considered as candidates for use

in breeding programs aimed at balancing energy expenditure and

reactive oxygen species production (Davoodi et al.). The sixth

article in this Research Topic aims to evaluate the quality of

reference genomes and gene annotations in 114 species. The

proposed next-generation sequencing (NGS) applicability index,

which integrates 10 effective indicators, can help determine

technological boundaries and examine the direction of future

development in each species (Park et al.). The seventh article

demonstrates the consistency and variability of data produced

by reference-free de novo transcriptomes and reference-based

datasets for identifying, annotating, and analyzing genes related to

four major traits of water buffalo. The findings suggest that the

characterized genes will enrich the knowledge of genetics for use

in molecular breeding to improve the productivity of water buffalo

(Mishra et al.). Articles eight and nine in this special Research Topic

highlight the importance and application of machine-learning in

veterinary science. They focus on detection of malignancies in

canine subcutaneous and cutaneous masses (Dank et al.) and

demonstrate the automatedmonitoring of diseased chickens (Bakar

et al.).

Considering the current scenario and the increasing

demand for in silico tools and databases for use in

veterinary science, this series presents the achievements

of vetinformatics and how it will be helpful in decoding

livestock systems. This is a timely and exciting opportunity

to harness the potential of vetinformatics for animal health

and welfare.
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characterization of Mycoplasma

gallisepticum variable
lipoprotein hemagglutin
proteins

Susithra Priyadarshni Mugunthan and Mani Chandra Harish*

Department of Biotechnology, Thiruvalluvar University, Vellore, India

Mycoplasma gallisepticum variable lipoprotein hemagglutin (vlhA) proteins are

crucial for immune evasion from the host cells, permitting the persistence and

survival of the pathogen. However, the exact molecular mechanism behind

the immune evasion function is still not clear. In silico physiochemical analysis,

domain analysis, subcellular localization, and homology modeling studies

have been carried out to predict the structural and functional properties of

these proteins. The outcomes of this study provide significant preliminary data

for understanding the immune evasion by vlhA proteins. In this study, we

have reported the primary, secondary, and tertiary structural characteristics

and subcellular localization, presence of the transmembrane helix and signal

peptide, and functional characteristics of vlhA proteins from M. gallisepticum

strain R low. The results show variation between the structural and functional

components of the proteins, signifying the role and diverse molecular

mechanisms in functioning of vlhA proteins in host immune evasion. Moreover

the 3D structure predicted in this study will pave a way for understanding vlhA

protein function and its interaction with other molecules to undergo immune

evasion. This study forms the basis for future experimental studies improving

our understanding in the molecular mechanisms used by vlhA proteins.

KEYWORDS

variable lipoprotein hemagglutin, immune evasion, bioinformatics, avian

mycoplasmosis,M. gallisepticum

Introduction

The bacteria of class Mollicutes are described as simplest self–replicating life forms

due to their small cell size and complete lack of cell wall, limited metabolic pathway

and reduced genome size (1). The Mycoplasmataceae family in Mollicutes includes

majority of disease causing pathogens in medical and veterinary fields. A great number

of Mycoplasma species are pathogenic to humans and animals which cause chronic

infections consequential in infectious diseases. To adapt and survive the challenging
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and complex host environment, the mycoplasmas use

combinational genetic machinery for phase and size variation

of major surface components. Due to the lack of cell wall, the

outer surface of the mycoplasma membrane plays a crucial role

in the infection process, transport of nutrients, interaction with

host cells, and host immune defense. Thus, gaining knowledge

in the process of how and when the antigenic variation occurs

can offer important insights to the tactics used by mycoplasmas

to cause infection in host cells.

Mycoplasma gallisepticum is one of the most important

avian pathogens which causes chronic respiratory disease (CRD)

in chickens with the symptoms of cough, nasal discharge,

low appetite, reduced hatchability and chick viability, loss of

weight, and decreased egg production (1, 2). The responsible

pathogenic events are due to genes that encode cytoadhesion

and surface components with antigenic variation which involves

the immune evasion of the host (3). M. gallisepticum infection

results in infectious sinusitis in turkeys (swollen infraorbital

sinuses) and conjunctivitis in finches.

The immune evasion of M. gallisepticum is regulated by

the vlhA gene family. This family consists of 43 vlhA genes

located in five loci (Table 1). The major function of this gene

family is to engender antigenic diversity which assists in immune

evasion during infection. The vlhA gene family shows phase

variation during acute phase and immune evasion during the

chronic phase of infection (4, 5). The phase variation may occur

impulsively or by an immune attack and is crucial for survival

of M. gallisepticum in host cells (6–8). Various mechanisms for

phase variation like gene conversion, site specific recombination,

DNA slippage, and reciprocal recombination were utilized by

different species of Mycoplasma (9). The vlhA gene products

are speculated to be engaged in the attachment of host

apolipoprotein A1 (10, 11) and red blood cells (12). The phase

variation of M. gallisepticum is exclusive and has not been

studied yet. Among the other vlhA genes, vlhA 3.03, 2.02

and 4.01 genes are primarily expressed in the initial phase of

infection, whereas vlhA 1.07 and 5.13 are expressed in the later

stages of infection. The prototype followed byM. gallisepticum to

express the dominant vlhA gene during the course of infection is

stochastic and themechanism is unknown and yet to be explored

(4). This study employed computational tools to understand the

evolutionary relationship of the vlhA proteins; structural studies

which include its primary sequence analysis, and secondary and

tertiary structural analysis, functional studies like the cellular

localization, presence of the transmembrane helix and signal

peptide in vlhA proteins, and finally identification of functional

domain were performed. To date, no in silico structural and

functional studies have been reported for M. gallisepticum vlhA

proteins. The diagrammatic representation of the work flow is

presented in Figure 1. The list of bioinformatics tools and servers

employed in this study is given in Table 2.

TABLE 1 List of vlhA genes based on their group analyzed in this study.

vlhA 1 vlhA 2 vlhA 3 vlhA 4 vlhA 5

vlhA.1.01

vlhA.1.02

vlhA.1.03

vlhA.1.04

vlhA.1.05

vlhA.1.06

vlhA.1.07

vlhA.1.08

vlhA.1.08b

vlhA.2.01

vlhA.2.02

vlhA.3.01

vlhA.3.02

vlhA.3.03

vlhA.3.04

vlhA.3.05

vlhA.3.06

vlhA.3.07

vlhA.3.08

vlhA.3.09

vlhA.4.01

vlhA.4.02

vlhA.4.03

vlhA.4.04

vlhA.4.05

vlhA.4.06

vlhA.4.07

vlhA.4.07.1

vlhA.4.07.2

vlhA.4.07.4

vlhA.4.07.6

vlhA.4.08

vlhA.4.09

vlhA.4.10

vlhA.4.11

vlhA.4.12

vlhA.5.01a

vlhA.5.01b

vlhA.5.01c

vlhA.5.02

vlhA.5.03

vlhA.5.04

vlhA.5.05

vlhA.5.06

vlhA.5.07

vlhA.5.08

vlhA.5.09

vlhA.5.10a

vlhA.5.10b

vlhA.5.11

vlhA.5.12

vlhA.5.13

Understanding the structural and functional properties of

vlhA proteins of M. gallisepticum will provide the first step/lead

in the direction of understanding of underlying molecular

mechanisms involved. In this study, we used in silicomethods to

determine the physical, structural, and functional characteristics

of vlhA proteins.

Materials and methods

Sequence retrieval

The amino acid sequences of vlhA proteins from

Mycoplasma gallisepticum strain R low used in this study

were retrieved from UniProt in the FASTA format. The

protein names and their unique UniProt IDs are shown in

Supplementary Table 1.

Phylogenetic analysis

To understand the evolutionary relationships between the

vlhA proteins, a phylogenetic tree was constructed using

Phylogeny.fr, online software for phylogenetic analysis (13).

The “One Click” option was used where the alignment was

performed by MUSCLE, curation was performed by Gblocks,

phylogeny was performed by PhyML, and Tree Rendering was

performed by TreeDyn.
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FIGURE 1

Schematic representation of the workflow followed in this study.

Structural analysis

Physiochemical properties

The ExPASyProtparam tool was used to analyze the

physiochemical properties such as molecular weight (Mwt),

amino acid composition (AA), theoretical isoelectric point (pI),

number of negative residues (–R), number of positive residues

(+R), extinction coefficient (EC), half-life (h), instability index

(II),aliphatic index (AI), and grand average of hydropathy

(GRAVY) of the protein sequence (37).

Secondary structure prediction

The secondary structure of protein was predicted by using

SOPMA and GOR IV. The self-optimized prediction method

(SOPMA) describes the three states of the protein structure

(helices, turns, and coils). SOPMA predicts 90% of secondary

structural information of proteins and it works under the

homologousmethod and predicts 69.5% of amino acids for three

states of the secondary structure. SOPMA is mainly classified

into four steps. Step one involves the retrieval of homologous

protein from UniProt. In step two, alignments of sequence

compose the set of homologous proteins. Step three executes

the SOPMA method with each and every aligned sequence.

In the final step, the conformational state yielding the highest

score is attributed to the given amino acid with the averaged

conformational score (14).

GOR IV (Garnier-Osguthorpe–Robson) is another method

to predict the secondary structure. In version I, GOR has

information from the hydrophobic triplet. Hydrophobic triplet

information does not significantly improve the predictive power

(15). The method GOR IV is formed on information theory;

GOR has a mean accuracy of 64.4% for a three state prediction

when compared to another version. Version IV is more accurate.

The GOR IV method analyzes the secondary structure of the

protein and correlates it with net values of each amino acid

position and three states (helices, turns, coils) (16).

Tertiary structure prediction

The tertiary structure of vlhA genes was constructed

using the homology modeling server RaptorX (http://raptorx.

uchicago.edu/) and I-TASSER server (https://zhanglab.ccmb.

med.umich.edu/I-TASSER/) (17). Raptor X distinguishes itself

from other servers by the quality of the alignment between a

target sequence and one or multiple distantly related template
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TABLE 2 List of bioinformatics tools and servers employed in the structural and functional analyses of vlhA proteins.

S. no Characterization/

analysis

Name of the server/tool URL

1. Phylogenetic analysis Phylogeny.fr http://www.phylogeny.fr/simple_phylogeny.cgi

2. Physiochemical properties ExPASy-Protparam tool https://web.expasy.org/protparam/

3. Secondary structure SOPMA https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?

page=/NPSA/npsa_sopma.html

GOR IV https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?

page=npsa_gor4.html

4. Tertiary structure Raptor X http://raptorx.uchicago.edu/

I Tasser https://zhanglab.dcmb.med.umich.edu/I-TASSER/

5. Structure validation PROCHECK http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/

Generate.html

QMEAN https://swissmodel.expasy.org/qmean/

6. Sub cellular Localization PSLPRED http://crdd.osdd.net/raghava/pslpred/

PSORTB https://www.psort.org/psortb/

CELLO2GO http://cello.life.nctu.edu.tw/cello2go/

7. Transmembrane Helix SOSUI https://harrier.nagahama-i-bio.ac.jp/sosui/mobile/

HMMTOP http://www.enzim.hu/hmmtop/

TMHMM http://www.cbs.dtu.dk/services/TMHMM/

8. Signal peptide Signal p http://www.cbs.dtu.dk/services/SignalP/

Target p http://www.cbs.dtu.dk/services/TargetP/

9. Functional Domain CDD- BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi

HmmScan https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan

Pfam http://pfam.xfam.org/

SCANPROSITE https://prosite.expasy.org/scanprosite/

SMART http://smart.embl-heidelberg.de/

proteins and by a novel nonlinear scoring function and

a probabilistic-consistency algorithm. The predicted tertiary

models can be used for binding site and epitope prediction;

another application is found to be determining the binding

topology of small ligand molecules to putative binding sites

on the domain structure generated (54). The I-TASSER server

employs ab initiomodeling to predict 3D structures. The tertiary

structures modeled by I-TASSER were subjected to refinement

by the GalaxyRefine server (http://galaxy.seoklab.org/cgi-bin/

submit.cgi?type=REFINE) (18). This server replaces amino acids

with high-probability rotamers and applies molecular dynamic

simulation for overall structural relaxation.

Structure validation

The refined structure was validated by PROCHECK (htt

ps://servicesn.mbi.ucla.edu/PROCHECK/), which analyzes

the stereochemical quality of a protein structure by

analyzing residue-by–Residue geometry and overall structure

geometry (19).

QMEAN is used to analyze the quality of computationally

predicted proteins. It is based on two distance-dependent

interaction potentials of mean force, C-β atoms and is used to

assess long–Range interactions (secondary structure dependent

and torsion angle potential dependent). The QMEAN4 score

is a linear combination of four statistical potential terms. It is

trained to predict the IDDT (The Local Distance Difference

Test) score in the range [0, 1]. To calculate the QMEAN Z-score,

the normalized raw scores of a given model are compared with

scores obtained for a representative set of high resolution X–Ray

structures of similar size against the PDB reference set (20–22).

Functional analysis

Subcellular localization prediction

(A) PSLPRED

PSLpred is used for predicting the subcellular

localization of prokaryotic proteins with an overall

accuracy of 91.2%. It is a hybrid approach-based method.

The prediction accuracies of 90.7, 86.8, 90.3, 95.2, and

90.6% were attained for cytoplasmic, extracellular, inner

membrane, outer membrane, and periplasmic proteins,

respectively (23).
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(B) PSORTB

PSORTB is the most precise bacterial SCL (subcellular

localization) prediction software that was introduced in

2005 and has been widely used. It provides quick and

inexpensive means for gaining insight into the protein

function, verifying experimental results, annotating newly

sequenced bacterial genomes, detecting cell surface/drug

targets, and identifying biomarkers for microbes. As a

result, only ∼50% of proteins encoded in gram-negative

bacterial genomes and ∼75% of proteins encoded in

gram-positive bacterial genomes receive a prediction from

PSORTb (24).

(C) CELLO2GO

CELLO2GO is a publicly available, web-based system

for screening various properties of a targeted protein and

its subcellular localization. It shows the exact location of the

protein. CELLO2GO should be a useful tool for research

involving complex subcellular systems because it combines

CELLO and BLAST into one form (25).

Transmembrane helix prediction

(A) SOSUI

SOSUI is used for the discrimination of membrane

proteins and soluble proteins and the prediction of the

transmembrane helix, the accuracy of prediction was 99%,

and the corresponding value for the transmembrane helix

prediction was 97% (26).

(B) HMMTOP

A hidden Markov model with special architecture

was developed to search transmembrane topology

corresponding to the maximum likelihood among all

the possible topologies of a given protein. The method is

based on the hypothesis that the transmembrane segments

and the topology are determined by the difference in the

amino acid distributions in various structural parts of these

proteins (27).

(C) TMHMM

TMHMM is a widely used bioinformatics tool, based

on the hidden Markov model, which is used to predict

transmembrane helices of integral membrane proteins. It is

used to predict the number of transmembrane helices and

discriminate between soluble and membrane proteins with

a high degree of accuracy (28).

Signal peptide prediction

(A) Signal p

Signal p was the first publicly available method to

predict signal peptide and its cleavage sites. It is based

on deep neural network-based method combined with

conditional random field classification and optimized

transfer learning for improved signal peptide prediction.

The input is given in FASTA format. The server predicts

the presence of signal peptides, TAT signal peptides,

and lipoprotein signal peptides from proteins present in

Archaea, gram-positive bacteria, gram-negative bacteria,

and eukaryotes (29).

(B) Target p

The target p server is used to predict the presence

of signal peptides, and mitochondrial transit peptides and

others were predicted using the FASTA sequence of the

protein (30).

Identification of functional domain

The functional domain analysis was carried out using

five publicly available tools (CDD-BLAST, HmmScan, Pfam,

SCANPROSITE, and SMART). CDD-BLAST annotates the vlhA

proteins by generating alignment models of the representative

sequence fragment which were in agreement with domain

boundaries as observed protein models in NCBI’s Conserved

Domain Database (31). HmmScan and SMART took a query

sequence and searched it against the Pfam profile HMM library

as a target database (32–34). Pfam was used to classify vlhA

proteins functional families based on similarity (34). To predict

the protein function, SCANPROSITE detects homologs and

matches against signature from the PROSITE database (35).

Results

Phylogenetic analysis

Phylogenetic analysis was performed to examine the

differences and relatedness among the vlhA proteins. A

phylogenetic tree was constructed by using Phylogeny.fr. The

computed data indicated that the expression of vlhA proteins

during the course of infection varies greatly and vlhA from

the five loci here clustered into different groups. The bootstrap

values in the phylogenetic tree created for M. gallisepticum

vlhA proteins showed that the proteins had less evolutionary

similarity (Figure 2), and the divergence in sequence during

evolution may have developed to evade host immune response

and to adapt to each host. As a consequence, each protein has

evolved due to strain during the course of infection, thus leading

to antigenic variation (36).

Structural analysis

Physiochemical characterization

The ExPASy ProtParamwas employed to analyze the protein

primary structures and compute different parameters for their

physiochemical properties. The number of amino acid residues

in vlhA proteins varied from 77 to 795 amino acids. The
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FIGURE 2

Phylogenetic tree showing the evolutionary relationship of di�erent M. gallisepticum vlhA proteins. The numbers indicate bootstrap percentages

and the scale indicates the divergence time.

composition of amino acid residues in each vlhA protein is

presented in Figure 3. The molecular weight of these proteins

varied from 8.12 to 85.3 kDa. The pI values of these proteins

range from acidic pI 4.63 to alkaline pI 9.21. If the instability

index (II) is above 40, the protein was considered to be

unstable. As shown in Table 3, except a few vlhA (vlhA.1.08,

vlhA.2.01, vlhA.5.01c, and vlhA.5.10b) proteins, other proteins

were considerably stable. The aliphatic index (AI) of these

vlhA proteins varied from 27.86 to 95.75. The high AI values

indicated the thermal stability and hydrophobic nature of the

proteins. When a protein was found to have a greater negative

grand average of hydropathy (GRAVY) values, it indicated the

hydrophilic nature of the protein and the possibility of better

interactions between the protein and water (37). The complete

physicochemical analysis of all the vlhA proteins is listed in

Table 3.
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FIGURE 3

Graphical representation of amino acid composition of M. gallisepticum vlhA proteins. (A) vlhA 1 group, (B) vlhA 2 group, (C) vlhA 3 group, (D)

vlhA 4 group, and (E) vlhA group 5.

Secondary structure prediction

The secondary structure of vlhA proteins was predicted

using SOPMA and GOR IV servers that showed similar

results where the percentage of random coils was higher

when compared with alpha helices and extended turns

(Supplementary Table 2). Previous studies reported that the

presence of a higher percentage of random coil structures

in bacterial proteins facilitated the dimerization and/or

colocalization process and also act as adaptor proteins (38–43).

Three-dimensional structure modeling and
validation

The tertiary models of vlhA proteins were constructed using

the server called RaptorX and I Tasser. In tertiary models

predicted by Raptor X, the number of amino acids was less

compared to the input sequence, and thus the model predicted

by I-TASSER was used for further analysis. The results from

I-Tasser are consistent with the secondary structure prediction

where these proteins were predicted to have a high percentage of

random coil structures (Figure 4).

The PDBsum-PROCHECK program was used to validate

the constructed three-dimensional models of these proteins. The

Ramachandran Plot was used in the PROCHECK program to

present the backbone conformation of proteins. The predicted

models of vlhA proteins were analyzed and majority of the

amino acid residues fall in the favored and allowed regions of

the Ramachandran plot which indicates the good quality of the

predicted models (Table 4).

QMEAN z-score was used to validate the good quality

of these predicted tertiary models. This QMEAN software

determined the closeness and similarity of the computationally
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TABLE 3 Physiochemical properties like number of amino acids, molecular weight, isoelectric point, extinction coe�cient, half-life (h), instability

index, aliphatic index, and GRAVY ofM. gallisepticum vlhA proteins.

Protein name Amino acid Mol.wt PI Extinction

coefficient

half Life (h) instability

Index

Aliphatic

index

GRAVY

vlhA.1.01 686 74.02 6.23 71,280 30 26.86 67.46 −0.542

vlhA.1.02 666 71.65 5.3 61,200 30 25.89 68.83 −0.445

vlhA.1.03 682 72.83 5.54 63,260 30 28.14 71.85 −0.385

vlhA.1.04 697 74.83 6.81 65,780 30 32.57 68.75 −0.5

vlhA.1.05 730 79.70 9.08 73,690 30 36.44 36.44 −0.525

vlhA.1.06 754 80.92 6.36 62,340 30 27.55 80.44 −0.329

vlhA.1.07 728 77.55 5.49 67,730 30 30.03 69.08 −0.513

vlhA.1.08 98 10.21 9.25 1,490 30 46.91 59.9 −0.446

vlhA.1.08b 494 53.55 5.28 53,750 30 24.5 70.71 −0.414

vlhA.2.01 607 66.88 8.19 55,700 30 41.99 85.65 −0.354

vlhA.2.02 582 63.10 6.79 60,740 30 29.80 74.30 −0.430

vlhA.3.0.1 536 58.00 5.28 67,270 30 26.83 68.97 −0.442

vlhA.3.02 646 69.75 8.37 77,700 30 24.51 73.85 −0.439

vlhA.3.03 645 69.93 5.38 68,190 30 27.6 73.35 −0.389

vlhA.3.04 734 78.52 5.68 62,230 30 26.34 69.73 −0.515

vlhA.3.05 708 75.77 5.36 72,770 30 37.21 65.9 −0.531

vlhA.3.06 688 73.76 6.8 72,250 30 30.51 72.63 −0.427

vlhA.3.07 656 70.87 5.78 60,740 30 231.64 72.15 −0.426

vlhA.3.08 692 74.76 6 68,190 30 33.47 68.4 −0.537

vlhA.3.09 707 76.06 5.68 74,260 30 30.91 69.99 −0.55

vlhA.4.01 644 69.49 8.74 69,680 30 24.79 70.51 −0.415

vlhA.4.02 751 80.74 5.76 62,340 30 27.23 76.11 −0.438

vlhA.4.03a 197 20.71 9.06 13,075 30 24.19 61.57 −0.525

vlhA.4.03b 506 55.11 6.25 63,720 30 33.38 68.64 −0.523

vlhA.4.04 679 72.64 5.60 70,250 30 26.79 71.72 −0.465

vlhA.4.05 673 72.27 6.01 67,270 30 25.63 71.66 −0.466

vlhA.4.06 698 74.98 5.56 74,260 30 30.59 66.85 −0.545

vlhA.4.07 667 71.81 8.72 62,230 30 30.34 67.80 −0.501

vlhA.4.07.1 684 73.2 7.56 70,250 30 30.66 72.35 −0.424

vlhA.4.07.2 191 20.1 9.21 13,075 30 24.54 63.51 −0.493

vlhA.4.07.4 673 72.3 6.32 68,760 30 25.37 71.66 −0.463

vlhA.4.07.6 667 71.7 8.30 62,230 30 29.85 67.80 −0.496

vlhA.4.08 688 73.6 7.56 70,250 30 30.54 71.93 −0.428

vlhA.4.09 710 76 6.88 69,790 30 31.84 65.17 −0.514

vlhA.4.10 795 85.3 7.52 62,340 30 30.29 74.34 −0.479

vlhA4.11 690 74 6.40 61,770 30 28.52 65.82 −0.544

vlhA.4.12 701 75.1 5.28 63,260 30 27.86 27.86 −0.446

vlhA.5.01a 212 23.32 5.10 8,940 30 38.68 95.75 −0.456

vlhA.5.01b 309 33.93 4.80 47,330 30 31.19 59.35 −0.431

vlhA.5.01c 86 9.38 4.63 1,490 30 41.87 44.30 −0.779

vlhA.5.02 610 66.45 8.51 56,270 30 30.65 79.98 −0.407

vlhA.5.03 728 77.47 8.78 67,730 30 28.91 72.15 −0.449

vlhA.5.04 740 78.90 5.17 66,240 30 35.27 69.27 −0.467

vlhA.5.05 644 69.83 5.73 66,700 30 26.68 73.93 −0.392

(Continued)
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TABLE 3 Continued

Protein name Amino acid Mol.wt PI Extinction

coefficient

half Life (h) instability

Index

Aliphatic

index

GRAVY

vlhA.5.06 703 75.28 5.75 65,780 30 28.52 65.82 −0.544

vlhA.5.07 681 73.27 5.55 60,280 30 30.09 71.82 −0.444

vlhA.5.08 661 71.41 6.32 58,220 30 29.53 70.88 −0.460

vlhA.5.09 701 75.19 6.42 67,270 30 24.61 69.83 −0.531

vlhA.5.10a 642 70.06 9.04 68,885 30 26.23 68.69 −0.619

vlhA.5.10b 77 8.12 8.03 8,480 30 51.99 65.97 −0.619

vlhA.5.11 711 75.88 6.87 69,220 30 20.48 66.03 −0.55

vlhA.5.12 678 73.12 5.81 67,730 30 25.23 71.80 −0.483

vlhA.5.13 616 66.94 8.89 65,210 30 29.03 79.53 −0.394

predicted model with the existing PDB reference set. The

normalized QMEAN score is provided in Table 4.

Functional analysis

Localization of vlhA proteins

In this study, 3 different servers (CELLO2GO, PSORTB,

and PSLPRED) were used to predict the cellular location of

vlhA proteins. As provided in Table 4, the vlhA proteins were

predicted to be extracellular proteins which help in the host

interactions and immune evasion. The results were similar

for all the three servers. TMMHMM, HMMTOP, and SOSUI

servers were used to predict the presence of transmembrane

helices in these proteins. Except vlhA-−1.08b, 2.01, 2.02, 3.01,

3.02, 3.08, 4.01, 4.03b, 5.01a, 5.01b, 5.01c, 5.02, 5.08, 5.10b,

and 5.13, other proteins were predicted to have transmembrane

helices (Table 4). The prediction results are consistent among

the servers. Based on the prediction using SignalP and TargetP

servers, several vlhA proteins having lower values indicated the

absence of signal peptides in them. In contrast, the vlhA proteins

with higher values indicated the presence of signal peptides in

their sequence (Table 4).

Identification of the functional domain

There are a large number of proteins that have no

assigned function. For those proteins, the annotation generally

depends on the sequence homology techniques (21). Functional

domains were identified using CDD- BLAST, HmmScan,

Pfam, SCANPROSITE, and SMART publicly available tools.

After screening the vlhA proteins in the above mentioned

servers, all the proteins were grouped under the mycoplasma

hemagglutinin family by all the servers. Based on the

similarity of the sequences of these proteins with mycoplasma

hemagglutinin, these proteins were predicted to play a role in

the hemagglutination process. The mycoplasma hemagglutinin

family consists of several hemagglutinin sequences from

mycoplasma species. The major plasma membrane proteins,

vlhAs, of M. gallisepticum are cell adhesions or hemagglutinin

molecules. The hemagglutination process of mycoplasma plays

a crucial role in host immune evasion; the exact mechanism

through which the hemagglutination mediated immune evasion

occurs is yet to be explored (44, 45).

Discussion

Variable lipoprotein hemagglutinin A gene encodes

immunodominant proteins that are believed to be responsible

for M. gallisepticum’s host cell interaction, pathogenesis,

and immune evasion; however, their exact mechanism is

unknown (46). The sound knowledge about the mechanism

of immune evasion by this protein family will be valuable

in the development of drugs and vaccines against M.

gallisepticum infection in chickens. Protein structure and

function identification is an essential step for understanding its

cellular and molecular processes. In silico homology modeling

studies provide an opportunity to establish a route for the

structural modeling and analysis of vlhA proteins. With rapid

advances in bioinformatics and computational biology, the

prediction and validation of the structure and function of

proteins have become easily accessible. The importance of

functional analysis of proteins includes deeper knowledge in

molecular mechanisms of disease progression, exploration of

effective prophylactic targets, relationship, and interaction with

other proteins in the same microorganism.

This study has analyzed the vlhA proteins from M.

gallisepticum strain R low for its structural and functional

characteristics. The amino acid sequences of vlhA proteins

were retrieved in FASTA format from the UniProt database

and used for further structural and functional analyses. The

physiochemical characteristics such as amino acid composition,

isoelectric point (pI), number of negative and positive residues,
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FIGURE 4

Three-dimensional ab initio models of vlhA proteins. Visualizations of model structures were performed by UCSF Chimera.

extinction coefficient, half-life, instability index (II), aliphatic

index (AI), and grand average of hydropathy (GRAVY) of these

proteins were predicted. According to the results obtained, a

higher number of amino acids such as threonine, asparagine,

serine, and alanine were observed whereas the amino acids such

as cysteine, histidine, and tryptophan were low in amount.
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Cysteines are important for the formation of disulfide bonds

in the protein structure which cannot be easily substituted

or replaced and often acts together with histidines which

are commonly present in the active or binding sites of the

proteins (38). These vlhA proteins have the average molecular

weight of 59.28 kDa, and are hydrophilic in nature and stable.

TABLE 4 Tertiary structural validation- Qmean Score, Ramachandran plot most favored region and functional analysis-Subcellular Localization,

Transmembrane helix, Signal peptide of vlhA proteins.

S.No Protein

name

Qmean score Ramachandran

plot most

favored region

Subcellular

localization

Transmenbrane

helix

Signal peptide

1 vlhA.1.01 −10.78 68.1% Extracellular 2(44–61)(106–123) Yes

2 vlhA.1.02 −10.06 70.2% Extracellular 2(42–59)(104–121) Yes

3 vlhA.1.03 −9.32 69.3% Extracellular 2(42–59)(104–121) Yes

4 vlhA.1.04 −10.62 69.6% Extracellular 2(42–59)(104–121) Yes

5 vlhA.1.05 −11.63 66.3% Extracellular 0 Yes

6 vlhA.1.06 −7.45 82.0% Periplasmic 2(42–59)(104–121) Yes

7 vlhA.1.07 −10.65 68.4% Extracellular 2(42–59)(104–121) No

8 vlhA.1.08 −12.84 65.5% Periplasmic 2(66–83)(126–146) Yes

9 vlhA.1.08b −12.84 65.5% Extracellular 0 Yes

10 vlhA.2.01 −10.16 66.4% Extracellular 0 Yes

11 vlhA.2.02 −9.48 69.0% Extracellular 2(42–59)(104–121) No

12 vlhA.3.0.1 −14.31 52.8% Periplasmic 0 Yes

13 vlhA.3.02 −9.78 67.1% Extracellular 0 Yes

14 vlhA.3.03 −10.31 68.0% Extracellular 2(46–63)(108–125) No

15 vlhA.3.04 −10.86 66.4% Extracellular 2(46–63)(108–125) Yes

16 vlhA.3.05 −10.04 69.3% Extracellular 2(46–63)(108–125) Yes

17 vlhA.3.06 −11.47 65.8% Extracellular 1(9–26) Yes

18 vlhA.3.07 −11.57 62.5% Extracellular 1(9–26) Yes

19 vlhA.3.08 −10.78 66.5% Extracellular 1(9–26) Yes

20 vlhA.3.09 −9.09 66. 2% Extracellular 1(9–26) Yes

21 vlhA.4.01 −9.02 69.1% Extracellular 1(9–26) No

22 vlhA.4.02 −7.77 81.5% Periplasmic 1(9–26) Yes

23 vlhA.4.03a −10.23 66.1% Outermenbrane 1(9–26) Yes

24 vlhA.4.03b −12.26 66.3% Extracellular 0 Yes

25 vlhA.4.04 −12.23 60.7% Extracellular 2(44–61)(106–123) Yes

26 vlhA.4.05 −10.63 66.3% Extracellular 2(44–61)(106–123) Yes

27 vlhA.4.06 −10.28 67.5% Extracellular 2(44–61)(106–123) Yes

28 vlhA.4.07 −10.81 66.7% Extracellular 2(44–61)(106–123) Yes

29 vlhA.4.07.1 −11.19 67.6% Extracellular 2(46–63) (108–125) Yes

30 vlhA.4.07.2 −11.85 60.6% Extracellular 2(66–83) (129–146) Yes

31 vlhA.4.07.4 −9.15 68. 2% Extracellular 2(46–63) (108–125) Yes

32 vlhA.4.07.6 −10.71 67.4% Extracellular 2(46–63) (108–125) Yes

33 vlhA.4.08 −10.65 65.5% Extracellular 3(10–27) (44–61)

(106–123)

Yes

34 vlhA.4.09 −11.45 66.5% Outermenbrane 2(44–61) (106–123) Yes

35 vlhA.4.10 −7.86 81.4% Periplasmic 2(44–61) (106–123) Yes

36 vlhA4.11 −10.76 65.6% Extracellular 2(44–61) (106–123) Yes

37 vlhA.4.12 −10.43 67.9% Outermenbrane 2(44–61) (106–123) Yes

38 vlhA.5.01a −12.07 56.3% Extracellular 0 Yes

39 vlhA.5.01b −13.51 40.4% Extracellular 0 Yes

40 vlhA.5.01c −8.69 38.4% Extracellular 0 Yes

(Continued)
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TABLE 4 Continued

S.No Protein

name

Qmean score Ramachandran

plot most

favored region

Subcellular

localization

Transmenbrane

helix

Signal peptide

41 vlhA.5.02 −10.15 67.0% Extracellular 0 Yes

42 vlhA.5.03 −11.14 69.7% Extracellular 2(44–61) Yes

43 vlhA.5.04 −10.63 70.0% Extracellular 2(44–61)(106–123) Yes

44 vlhA.5.05 −9.17 69.0% Extracellular 2(44–61)(106–123) Yes

45 vlhA.5.06 −9.65 67.1% Extracellular 1 (19–38) Yes

46 vlhA.5.07 −10.58 67.1% Extracellular 2(44–61) (106–123) Yes

47 vlhA.5.08 −12.05 66.6% Extracellular 2(44–61) (106–123) Yes

48 vlhA.5.09 −11.32 66.4% Extracellular 2(44–61) (106–123) Yes

49 vlhA.5.10a −9.33 70.1% Extracellular 2(64–81)(127–144) Yes

50 vlhA.5.10b −11.02 25.4% Outermenbrane 0 Yes

51 vlhA.5.11 −11.26 67.6% Extracellular 2(44–61)(106–123) Yes

52 vlhA.5.12 −11.73 71.3% Extracellular 2(44–61)(106–123) Yes

53 vlhA.5.13 −10.82 66.4% Extracellular 0 Yes

The secondary structure of these proteins contains a higher

percentage of random coils which are believed to facilitate in

the dimerization and/or colocalization process and may also act

as adaptor proteins (39–43, 53). The tertiary structures of vlhA

proteins were predicted and validated for the good quality of

the computationally predicted protein structure. These proteins

have been predicted to be stable with the higher percentage

of amino acids present in the most favored regions (>80%).

The obtained QMEAN score indicated the good quality of

these proteins with higher QMEAN values (20). As for the

functional prediction of vlhA proteins, all of these proteins

were predicted to be extracellular which may subsequently help

in the immune evasion of the M. gallisepticum from the host

immune system. The identification of the functional domain

was performed by the sequence homology techniques. The

result obtained showed that the domains of these proteins were

similar to the mycoplasma hemagglutinin family as they consist

of hemagglutinin sequences from the mycoplasma family and

predicted to be involved in the hemagglutination process. It

has been reported that the genetic determinants that code for

the hemagglutinins are organized into a large family of genes

and that only one of these genes is predominately expressed

during the course of infection at a given time (44, 47–49).

Antigenic variation or phenotypic switching occurs due to

high frequency genetic mutations. Due to the lack of a rigid

cell wall, the lipoproteins in the mycoplasma cell membrane

function as the major elements that come into contact with

the host environment (45, 46, 50). These proteins undergo

antigenic variation through on/off switching, domain shuffling,

and size variation to modify the antigenic components on their

cell surface to produce heterotypes that allow mycoplasma to

evade recognition and clearance by host immune cells that

largely eliminate homo-types. Numerous human and animal

mycoplasma species have the ability to go through antigenic

variation so that these bacteria can evade recognition by the

host humoral immune system (51, 52). In M. gallisepticum,

the hemagglutination process may play a role in triggering the

antigenic variation cascade leading to immune evasion. Since

the exact function and machinery of these vlhA proteins are

not determined at present, the in silico structural and functional

prediction of these proteins may help in the determination

of its cellular and molecular processes. To the best of our

knowledge, this is the first study to explore the structural and

functional properties of vlhA proteins. These findings may

aid in understanding the mechanism of immune evasion by

vlhA proteins.

Conclusion

Identifying the molecular processes by which the vlhA

protein evades the host immune response is critical in

understanding the pathogenicity of M. gallisepticum and

will aid in the development of efficient infection control

measures. In silico homology modeling studies allow researchers

to build a pipeline for structural modeling and functional

analysis of any protein as part of discovering the molecular

mechanism of the protein’s function and therapeutic targets. The

physicochemical features of selected vlhA that are important

for immune evasion were given in this work. The study also

included secondary structure and tertiary model characteristics

for the vlhA proteins. Furthermore, the functional analysis
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revealed that the vlhA proteins are clustered under the

mycoplasma hemagglutinin family. For functional analysis of

vlhA proteins, multiple servers like CDD- BLAST, HmmScan,

Pfam, SCANPROSITE, and SMART were used and all the

servers grouped the vlhA proteins under the mycoplasma

hemagglutinin family; the results obtained were consistent, thus

validating the uniqueness of our findings. The significance of

this study is the analysis and exploration of unknown structural

and functional characteristics of vlhA proteins through the

application of latest bioinformatics software like Protparam,

I Tasser, PSORTB, TMMHMM, SignalP, and Pfam, thus

bridging the gap in knowledge in the role of vlhA proteins

in M. gallisepticum pathogenesis. This research will serve as a

foundation for future experimental studies aimed at clarifying

the functional molecular mechanism of immune response.
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The impact of preweaning vaccination for bovine respiratory viruses on

cattle health and subsequent bovine respiratory disease morbidity has been

widely studied yet questions remain regarding the impact of these vaccines

on host response and gene expression. Six randomly selected calves were

vaccinated twice preweaning (T1 and T3) with a modified live vaccine for

respiratory pathogens and 6 randomly selected calves were left unvaccinated.

Whole blood samples were taken at first vaccination (T1), seven days later

(T2), at revaccination and castration (T3), and at weaning (T4), and utilized

for RNA isolation and sequencing. Serum from T3 and T4 was analyzed

for antibodies to BRSV, BVDV1a, and BHV1. Sequenced RNA for all 48

samples was bioinformatically processed with a HISAT2/StringTie pipeline,

utilizing reference guided assembly with the ARS-UCD1.2 bovine genome.

Di�erentially expressed genes were identified through analyzing the impact

of time across all calves, influence of vaccination across treatment groups

at each timepoint, and the interaction of time and vaccination. Calves,

regardless of vaccine administration, demonstrated an increase in gene

expression over time related to specialized proresolving mediator production,

lipid metabolism, and stimulation of immunoregulatory T-cells. Vaccination

was associated with gene expression related to natural killer cell activity and

helper T-cell di�erentiation, enriching for an upregulation in Th17-related gene

expression, and downregulated genes involved in complement system activity

and coagulationmechanisms. Type-1 interferon production was una�ected by

the influence of vaccination nor time. To our knowledge, this is the first study

to evaluate mechanisms of vaccination and development in healthy calves

through RNA sequencing analysis.

KEYWORDS

beef calves, vaccination, preweaned calves, bovine respiratory disease, immunity, RNA

sequencing (RNA-Seq), T-cell, inflammation
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Introduction

Vaccination remains one of the most important tools for

controlling bovine respiratory disease (BRD) in beef calves (1).

Increasing adaptive immunity against known pathogens is the

goal of vaccination; however, the presentation of antigens to

the immune system elicits multiple cascading events within

an animal as part of both innate and adaptive immunity. The

most commonly measured indicators of adaptive immunity

are serum antibody titers to specific pathogens of interest.

Although useful, antibody titers have some limitations including

multiple samples must be taken for accurate diagnosis of

infection by endemic respiratory agents, and sufficient time

must pass for the immune system to respond adequately (2, 3).

One alternative to antibody titers is to evaluate differential

gene expression to identify markers that indicate immune

competency, immune responsiveness, and/or predict future

immunity to those pathogens. However, knowledge gaps remain

regarding the impact of vaccination on gene expression and

how that gene expression may correlate with the development

of adaptive immunity.

Although commercially available vaccines have been

evaluated and approved by the USDA APHIS Center for

Veterinary Biologics for purity, safety, potency, and efficacy,

the requirements for efficacy studies are often quite different

than the conditions under which the vaccine will be used

in the field. While challenge studies can be very useful

tools (4), they do not accurately model natural bovine

respiratory disease and are often done with seronegative

calves that have not been exposed to any pathogens or

stressors. Strict protocols and timing of administration are

also followed. In contrast, beef producers often use vaccines

at different intervals from the label, in animals with a variety

of backgrounds and nutritional, immune function, or passive

transfer status, and often in the face of bacterial or viral

exposure or other stressors (5). These differences can make it

difficult to achieve the efficacy seen in the tightly controlled

approval studies and raises the question whether vaccines, as

commercially employed, are influencing rates of morbidity

and performance in a consistent manner. To answer this

question, the cattle industry needs additional research on

these vaccines as they are employed in natural field conditions

and the impact they have on cattle health, performance, and

immune function.

Given this background, our objective was to explore

differences in host gene expression in calves that were vaccinated

preweaning with a modified live vaccine for respiratory

pathogens or not via time-course transcriptomics, and to pair

those data with antibody titers and health records. These

data will support exploration of associations and generation of

hypotheses regarding the immune response to vaccination that

may influence future research and use of vaccines in preweaned

beef calves.

Materials and methods

Animal use and study enrollment

All animal use and procedures were approved by the

Mississippi State University Animal Care and Use Committee

(IACUC protocol #19-169) and carried out in accordance with

relevant IACUC and agency guidelines and regulations. This

study was carried out in accordance with Animal Research:

Reporting of In Vivo Experiments (ARRIVE) guidelines (6).

Eighty-four bull calves were enrolled in a split plot design

study to evaluate the impact of different management strategies

on BRD morbidity, mortality, and performance (7). Animals

were randomly assigned to whole plot (VAX or NOVAX) which

were housed in 6 pastures during the cow-calf phase with no

nose-to-nose contact. They were also randomly assigned to split

plot level treatment of being directly transported to Texas for

backgrounding after weaning (DIRECT) or sent to an auction

market and then an order buyer facility for 3 days prior to

transport to Texas for backgrounding (AUCTION); this event

occurred after the timepoint T4, described below. All animals

were visually assessed each day for signs of BRD and/or other

disease by trained university employees and detailed health

histories were kept on each calf. The observed signs of BRDwere

assigned a severity score of 0–4, adapted from the scoring system

previously described by Holland et al. (8).

Calves were evaluated at four time points, described as T1,

T2, T3, and T4. At T1, calves were vaccinated with 2ml Pyramid

5 (Boehringer Ingelheim Animal Health) subcutaneously (VAX)

or given 2ml 0.9% saline subcutaneously (NOVAX) (median

age = 107 days). Additionally, calves were tested via ear

notch ELISA to evaluate PI status at T1; no PI positive calves

were found. At T2, or 7 days post-vaccination (median age

= 114 days), all calves were weighed and sampled. At T3

VAX calves were again administered (revaccinated with) 2ml

Pyramid 5 subcutaneously and NOVAX calves were given 2ml

0.9% saline subcutaneously (median age = 183 days); all calves

were castrated by knife with no analgesia on T3. All calves

also received 5ml of a multivalent clostridial bacterin-toxoid

(Covexin 8, Merck Animal Health) subcutaneously at time point

T1 and T3). All calves were handled so that no contact between

vaccinated and non-vaccinated calves would occur. Calves were

abruptly weaned at T4 (median age= 230 days) and entered the

next phase of the study where they were kept in their original

pastures in Mississippi for 3 days before being transported

directly fromMississippi to Texas for backgrounding (DIRECT)

or sent to an auction market where they stayed in a pen not in

contact with other cattle for approximately 6 h, and then were

transported for housing at an order buyer facility for 3 days

prior to transport to Texas (AUCTION) Non-study calves from

other sources were housed at the order buyer facility at the same

time as the study calves, but they were not mixed with the study

calves. In Texas (samples not evaluated in this study), calves were
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kept in one of 12 pens corresponding to their original random

assignment to whole and split plot treatments (n= 3 pens of each

pair of treatments). Whole blood was collected from all calves

into Tempus RNA blood tubes (Applied Biosystems) and into

serum tubes via jugular venipuncture immediately prior to first

vaccination (T1), seven days post-vaccination (T2), immediately

prior to vaccine booster administration and castration (T3), and

at time of abrupt weaning (T4; 47 days post-booster). Overall,

there were 7 days between T1 and T2, 70 days between T2 and

T3, and 47 days between T3 and T4.

Twelve calves that remained clinically unaffected by BRD

during the cow-calf and backgrounding phases of production

were selected for RNA sequencing via stratified random

sampling within the calves that remained healthy throughout

the study within each backgrounding pen which resulted in

1 calf selected per backgrounding pen (n = 3 VAX/DIRECT,

n = 3 NOVAX/DIRECT, n = 3 VAX/AUCTION, and n

= 3 NOVAX/AUCTION). A total of 48 blood samples

across the four time points were analyzed for whole blood

transcriptomes. Metadata for all selected calves are found in

Supplementary material 1.

Antibody titers

Serum collected at T3 and T4 was stored at −20◦F

before analysis at the University of Georgia’s Athens Veterinary

Diagnostic Laboratory. Serum neutralizing antibodies were

assayed for bovine herpesvirus−1 (BHV-1), bovine viral

diarrhea virus type 1a (BVDV1a), bovine respiratory syncytial

virus (BRSV), and parainfluenza-3 virus (PI-3) per SOP #

Ser013. Resulting titer levels for these antibodies are found in

Supplementary material 1 and is limited to descriptive analysis

only due to the small number of calves (n= 12).

Average daily gain

Differences in average daily gain between T1 and T4

were evaluated via generalized linear mixed effect models

estimated via restricted pseudolikelihood with the Kenward-

Rodgers adjustment for degrees of freedom in SAS 9.4. The

model included vaccination status as a fixed effect and a random

intercept for backgrounding pastures. Differences in least square

means are reported and a cutoff of p ≤ 0.05 was used to

determine significance.

Next-generation RNA sequencing and
bioinformatic data processing

Total RNA isolation, quality control, sequencing library

preparation, and sequencing was performed by the Texas

A&M University Institute for Genome Sciences and Society

(TIGSS; College Station, TX, USA). Total RNA was isolated

with Tempus Spin RNA Isolation Kit (Applied Biosystems),

based on manufacturer’s instructions. Total RNA from

each sample was analyzed for RNA concentration and

integrity with a Qubit 2.0 Fluorometer (ThermoFisher)

and an Agilent 2,200 Bioanalyzer (Agilent), respectively;

all RNA samples were of high quality (RIN: 7.8–9.5;

mean = 8.8, s.d. = 0.3) and concentrations (ng/µL: 84.1–

380.0; mean = 222.4, s.d. = 71.4). Library preparation for

mRNA was performed with the TruSeq Stranded mRNA

Library Prep Kit (Illumina), following manufacturer’s

instruction. Paired-end sequencing for 150 base pair

read fragments was performed on an Illumina NovaSeq

6000 analyzer (v1.7+; S4 reagent kit v1.5) in one flow

cell lane.

Quality assessment of reads was performed with FastQC

v0.11.91 and MultiQC v1.12 (9), and read pair trimming for

unambiguous base calls, adaptors, and retained minimum

read length of 28 bases was performed with Trimmomatic

v0.39 (10). Trimmed reads were mapped and indexed to

the bovine reference genome assembly ARS-UCD1.2 with

HISAT2 v2.2.1 (11). Sequence Alignment/Map (SAM) files

were converted to Binary Alignment Map (BAM) files,

prior to transcript assembly, with Samtools v1.14 (12).

Transcript assembly and gene-level expression estimation

for differential expression analysis was performed with

StringTie v2.1.7 (13), as described by Pertea et al. (14).

All sequencing data produced in this study are available at

the National Center for Biotechnology Information Gene

Expression Omnibus (NCBI-GEO), under the accession

number GSE205004.

Di�erential gene expression analysis

Gene-level count matrices were processed and analyzed in

RStudio, using R v4.1.2. Samples were classified by vaccination

group and time point, where raw gene counts were processed

and filtered by procedures described by Chen et al. (15).

Any gene with a minimum total count above 100 and a

count-per-million (CPM) of 0.2 in at least twelve samples

was retained for further analysis. Post filtering, the complete

dataset was considered non-sparse, and therefore normalized

for differential expression analysis with the trimmed mean of

M-values method (TMM) (16). Tagwise dispersion estimates

of gene counts were supplied into the Bioconductor package

glmmSeq v0.1.02 for negative binomial mixed effect modeling

of gene counts. The following linear mixed-effect model was

fitted to account for time points and vaccination group as

1 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

2 https://github.com/KatrionaGoldmann/glmmSeq
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fixed effects, and housing (pasture) and individual ID as

random effects:

Model : ∼ Timepoint ∗ Vaccine ∗ Timepoint :Vaccine

+ (1|Pasture) + (1|ID)

Model adaptation allowed for the assessment of differentially

expressed genes (DEGs) across timepoints, vaccine groups, and

the interactions between timepoints and vaccine group,

where p-values were adjusted for false discovery rates

(FDR) with the Benjamini-Hochberg method; genes were

considered significantly expressed with an FDR≤ 0.05. Pairwise

comparisons for DEGs between each vaccination groups at

every time point and within each vaccination group across

each time point was performed with edgeR v3.36.0 (15, 17),

fitting genes under generalized linear model (GLM) framework

and employing quasi-likelihood F-tests (QLF); pairwise

gene comparisons were considered significant with an FDR

≤ 0.10.

Dimensional reduction and unsupervised
clustering analyses

Heatmap, principal component, and clustering analyses

were performed with all filtered and log2 count-per-million

(log2CPM) values of TMM-normalized gene counts between

all 48 samples. Heatmap and exploratory clustering analysis of

samples, with respect to vaccination, time points, and individual

IDs, were performed with the Bioconductor package pheatmap

v1.0.12,3 utilizing Canberra distances and Pearson correlation

coefficients for unsupervised hierarchical clustering of samples

and DEGs, respectively. Specifically, z-scores were calculated

and utilized for heatmap analysis from log2CPM values of

normalized (TMM) expression values. Gene expression was

grouped into 48 distinct clusters with the k-means algorithm

embedded within pheatmap; the number of clusters was

determined from the Elbow method. High dimensional data

exploration and reduction via principal component analysis

(PCA) was conducted with the Bioconductor package PCAtools

v2.0.0,4 utilizing a correlation matrix; normalized gene counts

were processed through mean centering and variance scaling.

A scree plot was generated to determine the number of

principal components (PCs) to retain for analysis, utilizing

Elbow and Horn’s parallel analysis methods (18). A Spearman’s

rank correlation matrix of retained PCs was constructed

with metadata components from all samples, which included

individual identification (ID), birthweight, age of animal for

each sample (Age), housing pen at Mississippi (Pasture),

vaccination group (Vaccine), sampling time point for each

sample (Timepoint), and the slope of weight gain over time

3 https://CRAN.R-project.org/package=pheatmap

4 https://github.com/kevinblighe/PCAtools

starting at birth (i.e., growth rate; GR); correlations were

considered significant with an FDR ≤ 0.10. To determine

genes which were driving the variation seen among each

significantly correlated PC, a loadings plot was generated with

the top/bottom 2% retained variables across each component

loading range. A PCA biplot was constructed from the PCs with

significant correlation to vaccination groups; data ellipses were

calculated from multivariate t-distributions and encompassed

80% confidence levels of expressional t-distribution across each

time point.

Functional enrichment analyses of DEGs

Differentially expressed genes were analyzed for functional

enrichment of gene ontology (GO) terms, Reactome pathways,

and KEGG pathways with KOBAS-i (19) (accessedMay 2, 2022),

utilizing hypergeometric testing and Benjamini-Hockberg

adjusted p-values (FDR ≤ 0.05). Functional enrichment of

DEGs were analyzed in three separate analyses: (1) DEGs

shared between time points in both glmmSeq and QLF testing of

vaccinated and non-vaccinated calves (i.e., shared genes between

glmmSeq–timepoints, QLF Vax T1vsT2, and QLF Novax

T1vsT2), (2) DEGs identified between vaccination groups across

each time point by both glmmSeq–vaccination and QLF testing

(i.e., glmmSeq–Vaccine and Vax vs. Novax at T1), removing

DEGs identified by method #1, and (3) DEGs solely identified

in glmmSeq analysis of Timepoint: Vaccine interactions; this

approach allowed for the independent assessment of functional

enrichment influenced by calf development (i.e., time) and

vaccine administration. Enriched GO terms and pathways

were evaluated for directionality (increased or decreased)

based on log2 fold changes of associated DEGs. Clustering and

visualization of enriched KEGG terms was performed with

the embedded enrichment visualization tool within KOBAS-i,

utilizing edge (correlation) thresholds of 0.40 and top n clusters

set to 8; more information regarding the embedded enrichment

visualization tool framework is provided by Bu et al. (19).

Results

Antibody titers and average daily gain

Comparison of antibody titers indicated calves were likely

naturally infected with BRSV and PI-3, because antibody titers

to these agents increased between T3 and T4 in both vaccinated

and non-vaccinated calves. Given the small number of calves

evaluated, this somewhat clouds our ability to detect the effect

of vaccination using serology of samples collected at only two

timepoints. However, vaccinated calves appeared to respondwell

to MLV vaccination as indicated by the BVDV1a titer response

(Supplementary material 1). Average daily gain between T1 and

T4 was not significantly different (p = 0.31) between the
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VAX (model-adjusted least square mean 1.89 lbs) and NOVAX

(model-adjusted least square mean 2.13 lbs) groups.

Di�erential gene expression patterns and
enriched biological mechanisms

Read mapping and alignment of the 48 transcriptomes

to the ARS-UCD1.2 bovine reference genome resulted in

an overall mapping rate average of 95.50% (s.d. = 0.96%).

In total, gene-level alignment resulted in a total of 33,310

unique features, with a median library size of 41,089,614

(s.d.= 4,111,721) (Supplementary Figure 1). Pre-processing and

filtering of low expression values resulted in a total of 17,371

genes used for downstream analyses (Supplementary Table 2).

Analysis of genes from glmmSeq resulted in 1213, 435, and 85

DEGs when evaluating time, vaccination, and the interaction

of time and vaccination, respectively (Supplementary Table 3).

Comparative analyses for DEGs between vaccination groups

and time points was conducted with edgeR GLM-QLF testing.

Analysis of the NOVAX group over time yielded a total of

3,271 DEGs across six comparisons (Supplementary material 4).

Analysis of the VAX group over time yielded a total of

4,085 DEGs across six comparisons (Supplementary material 5).

Analysis of each time point between the VAX and NOVAX

groups yielded a total of 861 DEGs across four comparisons

(Supplementary material 6). Visualization of the number and

directionality of DEGs identified from GLM-QLF testing and

overlapping of DEGs from glmmSeq and edgeR QLF analyses,

are found in Figure 1.

Heatmap and unsupervised clustering analysis, seen in

Figure 2, demonstrated that the majority of calves (n = 7)

were highly similar in global gene expression prior to vaccine

administration (T1; right side). Time of sampling (Timepoint)

emerged as a considerable factor in determining distinction

between groups (Vaccine) and individual calves (ID), as the

majority of samples on the left side of the heatmap (i.e., furthest

from the T1 samples) were at time of vaccine boostering (T3)

and weaning (T4). Several individuals (J015, J022, J027, J053,

J109, J113, J124) demonstrated high self-similarity in global gene

expression between time points.

Multidimensionality analysis and visualization of global

gene expression patterns via PCA is found in Figure 3.

Utilizing both the elbow method and Horn’s parallel analysis,

a total of 14 principal components (PCs) were determining

as optimal for demonstrating explained variation across the

48 transcriptomes; the first 14 PCs retained 70.15% of the

variance within the data (Figure 3A). Pairwise plotting of

selective PCs (Figures 3B,C) was performed with those PCs

which demonstrated significant correlations with timepoints

and/or vaccination status (Figure 3D). The first PC, accounting

for 14.20% of the total explained variance, was positively

correlated with Age (r = 0.34, FDR < 0.10), Vaccine (r =

0.34, FDR < 0.10), and Timepoint (r = 0.44, FDR < 0.05).

Two PCs, PC3 and PC4, accounting for 7.67 and 5.94% of

total explained variance, respectively, demonstrated significant

correlations with Timepoint but not Vaccine; PC3 demonstrated

negative correlation with Timepoint (r = −0.38, FDR < 0.10)

and ID (r = −0.39, FDR < 0.10) and PC4 demonstrated

positive correlation with Timepoint (r = 0.38, FDR < 0.10)

and Age (r = 0.47, FDR < 0.05), confounded by ID (r =

−0.38, FDR < 0.10). Accounting for 5.74% of total explained

variance, PC5 possessed significant negative correlation with

Timepoint (r = −0.32, FDR < 0.10). While confounded by

Pasture (r = −0.54, FDR < 0.01), PC10, accounting for

2.72% of total explained variance, possessed significant positive

correlation with Vaccine (r = 0.36, FDR < 0.10). Notably, the

strongest correlation found within this analysis was between

PC11, accounting for 2.33% of total explained variance, and

GR (r = 0.58, FDR < 0.01). The resulting pairwise plotting of

PCs 1, 3, 4, 5, and 10 demonstrated relative overlapping of all

samples at T1, with increasing dissimilarity of samples over time

(Figure 3B). A biplot with statistical ellipses (multivariate C.I.=

80.00%) of the two PCs with significant correlation with Vaccine

(PC1 and PC10) demonstrated high dissimilarity between

timepoints T1 and T3, with relative high overlap of timepoints

T2 and T4, with T3 variation driven by vaccinated calves J009,

J022, J023, and J113 (Figure 3C). Genes driving the variation

among each PC possessing significant metadata correlations

are found in Figure 3E. Specifically, genes influencing variation

within PC1 and PC10 (i.e., correlated PCs with Vaccination)

include AP5M1, CLOCK, EIF3K, HDAC3, MKLN1, MYNN,

OCIAD1, PHIP, RACK1, RBM12B, RBM26, RPL37A, SNX17,

STK16, TMEM208, TRAPPC1, UBXN7, and ZDHHC17 in

PC1 and KIR3DL1, LOC112447728, and LOC786987 in PC10,

respectively. Those PCs having significant correlation with

Timepoint, and not Vaccine (PC3, PC4, and PC5), possessed

variance-driving genes which overlapped with glmmSeq–

timepoint findings; BATF, EXTL2, PRDX2, RNF122, TIAM1,

and TMCC3 were identified in both PC3-5 loadings plots and

glmmSeq–timepoint analysis.

Analysis of GO terms, KEGG pathways, and Reactome

pathways of genes identified between glmmSeq–timepoints and

edgeR QLF testing within both vaccination groups across time

allowed for the assessment of enriched processes and pathways

at three specific timepoint comparisons: (1) T1 vs. T3, (2) T1 vs.

T4, and (3) T2 vs. T4 (Supplementary material 7). Shared DEGs

from T1 vs. T3 comparisons enriched for 88 GO terms and 72

functional pathways. These GO terms were related to zinc ion

binding, cytokine-mediated signaling, specifically interleukin-

12, gene expression regulation, regulation to inflammatory

response, including negative regulation of I-kappaB kinase/NF-

kappaB signaling, and fatty acid metabolism and biosynthesis.

Enriched pathways included the immune system (both innate

and acquired immunity) retrograde endocannabinoid signaling,
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FIGURE 1

Visualization of di�erentially expressed genes (DEGs) identified through edgeR Quasi Likelihood F-testing and glmmSeq analyses. (A) Bar graph

depicting the number and directionality of DEGs found in each edgeR pairwise test. Directionality is based on the first testing group within each

pairwise test. For example, Vax T3vsT4 depicts 524 DEGs upregulated and 302 DEGs downregulated at T3 when compared to T4. (B) Upset plot

demonstrating the number of DEGs overlapped between all di�erential expression analyses. Novax T2vsT4 possessed the most (1356) unique

DEGs of any analysis, while Vax T1vsT3 and glmmSeq–Timepoint possessed the highest number of genes identified in multiple analyses (219).

FIGURE 2

Heatmap and unsupervised hierarchical clustering analysis of global gene expression patterns across all 48 sample libraries (n = 17,371)

following optimal k-means clustering of genes (k = 48). Gene clusters were labeled by clustering order (Cluster) and the total number of genes

embedded within each cluster (Size). Sample libraries were labeled top-to-bottom with individual identification (ID), time point for each sample

(Timepoint; T1, T2, T3, and T4), and vaccination group (Vaccine; Yes or No).

interleukin-4/13 signaling, glucose metabolism, glucagon

signaling, TP53 expressional and degradation regulation, and

the biosynthesis of specialized proresolving mediators (SPMs),

including SPMs derived from both docosahexaenoic acid

(DHA) and eicosapentaenoic acid (EPA). These GO terms

and pathways were primarily enriched by the following DEGs:

ADAMTS12, ALOX15, ALOX5, CFL1, CPT1A, FBP1, FSCN1,

IL5RA, LOC100297044 (CCL14), LOC615278 (TRIM39),

LOC789732 (CD300C), MIF, OTUD7B, PEG10, PIKFYVE,

PLP2, POLR2L, PPP2R1A, PRKCG, PYGM, TK1, and TP53.
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FIGURE 3

Principal component analysis of global gene expression patterns for all samples. (A) Scree plot[[Inline Image]] analysis depicting the maximum

number of components to retain. Horn’s parallel analysis method was ultimately utilized to retain the first 14 principal components (PCs), which

explained 70.15% of total variance across the dataset. (B) Multiple biplot analysis (pairs plot) of PCs possessing significant correlation with

timepoint and/or vaccination. Each point (vector) represents a PC score of an individual sample, in which the further from plot-center the point

is, the more variation that sample contributes to the total variation. The colors yellow, orange, violet, and blue represent the timepoints T1, T2,

T3, and T4, respectively; the shapes square or circle represent the vaccination status as no or yes, respectively. (C) Specific multivariate biplot

analysis of PC1 and PC10, as influenced by timepoint and vaccination (see 3B color and shape coding). (D) Spearman’s Rank correlation matrix

heatmap of retained PCs and corresponding metadata components. Metadata components included the slope of weight gain over time (i.e.,

growth rate; GR), weight at birth (Birthweight), age at sampling (Age), pasture assignment (Pasture), vaccination status (Vaccine), time of

sampling (Timepoint), and individual identification (ID). (E) Loading plot analysis with associated genes driving the variation explained by PCs

with a significant correlation identified by 3D. Only the top 2% of genes based on component loading scores (i.e., most responsible for explained

variation) were retained for each PC.

Shared DEGs from T1 vs. T4 comparisons enriched for 34

GO terms and 35 functional pathways. These GO terms were

related to inflammatory response, cytokine-mediated signaling,

magnesium ion binding, cellular response to oxidative stress,

positive regulation of autophagy, T-cell co-stimulation, and

actin/microtubule organization and development. Enriched

pathways included the acquired immune system, interleukin

signaling, cellular stress response, CD28 co-stimulation and

signaling, and gap junction trafficking and regulation. These GO

terms and pathways were primarily enriched by the following

DEGs: ALOX15, CD80, HMGA1, HSPB8, IL17REL, IL5RA,

LOC100297044 (CCL14), LOC533307 (LRRK2), LOC789732

(CD300LD), MAP3K8, NCF2, SLC7A11, TUBB, TUBB3, and

ZC3H12A. Shared DEGs from T2 vs. T4 comparisons enriched

for 94 GO terms and 29 functional pathways. These GO

terms were related to inflammatory and cytokine-mediated

response, specifically including interleukin-17 receptor activity,

MHC class I protein complex binding, response to mercury

and magnesium ions, antigenic stimuli and macrophage

differentiation, and fatty acid metabolism and biosynthesis.

Enriched pathways included cellular metabolism involving

fructose, mannose, pyruvate, and lipid metabolism, cytokine-

cytokine receptor interaction, and the biosynthesis of specialized

proresolving mediators (SPMs), including SPMs derived from

both docosahexaenoic acid (DHA) and eicosapentaenoic

acid (EPA). These GO terms and pathways were primarily

enriched by the following DEGs: ALOX15, CEBPE, DECR2,

FBP1, IL17REL, IL5RA, LOC100297044 (CCL14), LOC788694

(KLRC1), and SLC7A11. Visualization of the enriched KEGG

pathway terms is found in Figure 4. Expressional trends of DEGs

identified in all three timepoint comparisons between the two

vaccination groups (ALOX15, IL5RA, IL17REL, LOC100297044

(CCL14), and SCL7A11) are found in Figure 5.

A total of 435 genes were identified by glmmSeq-Vaccination

to be differentially expressed (Supplementary material 3),

with 109 unique DEGs identified by overlapping

glmmSeq–Vaccination and GLM-QLF testing results,

post-removal of DEGs identified in Timepoint evaluation

(Supplementary material 8). Specifically, a total of one, 24,

and 92 DEGs were identified between vaccination groups

at timepoints T1, T2, and T3, respectively; no genes were

found to be differentially expressed between vaccinated and

non-vaccinated calves at T4 (Supplementary material 8).

Only one DEG was identified at T1 (HEXDC; increased in

Vaccinated) between vaccinated and non-vaccinated calves,

therefore possessed no enriched GO terms nor pathways.

Shared DEGs identified at T2 between vaccinated and non-

vaccinated calves enriched for 139 GO terms and 61 functional
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FIGURE 4

Clustering of enriched KEGG pathways by term identity from KOBAS-i analysis of DEGs influenced by time in both vaccination groups. Each

node represents an enriched term, with color corresponding to the unique cluster based on term identity. Each edge (line between nodes)

represents a significant correlation between pathway terms. Bar graphs represent the pathway terms found within each pathway (by color) and

the level of enrichment (Enrich ratio). Gray nodes and bargraphed terms represent enriched pathways which did not associate within the

clustering model. (A) KEGG pathways derived from T1 vs. T3 analysis clustered into eight unique clusters. (B) KEGG pathways derived from T1 vs.

T4 analysis clustered into eight unique clusters. (C) KEGG pathways derived from T2 vs. T4 analysis clustered into seven unique clusters.
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FIGURE 5

Gene pairplots and modeled expression trends of key DEGs found in timepoint analyses. Pairplots (left side) demonstrate the log10 normalized

gene expression of each sample across all timepoints, overlapped with a violin plot (depicting numerical distributions by density).

Box-and-whisker plots represent median expression values (black line), the first (lower) and third quartiles (boxplot limits), 1.5 times the

interquartile ranges (whiskers), and outlier expression levels for each timepoint (points outside whiskers). Modeled expression trends (right side)

depict the overall di�erences between groups over each timepoint. Points represent the mean log10 normalized expression value for each

group within a timepoint, and bars represent the standard error of log10 normalized expression for each group; orange represents the

vaccinated group and black represents the non-vaccinated group. These plots depict the relative expression and glmmSeq level of significance

for (A) ALOX15, (B) IL5RA, (C) IL17REL, (D) LOC100297044 (CCL14), and (E) SLC7A11.
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FIGURE 6

Clustering of enriched KEGG pathways by term identity from KOBAS-i analysis of DEGs identified between vaccinated and non-vaccinated

calves at T2. Each node represents an enriched term, with color corresponding to the unique cluster based on term identity. Each edge (line

between nodes) represents a significant correlation between pathway terms. Bar graphs represent the pathway terms found within each

pathway (by color) and the level of enrichment (Enrich ratio). KEGG pathways identified between vaccine groups at T2 clustered into five unique

clusters. Gray nodes and bar graphed terms represent enriched pathways which did not associate within the clustering model.

pathways. These GO terms were related to immune response

and regulation (increased in Vaccinated), T-cell activation

(increased in Vaccinated), metal ion binding (increased in

Vaccinated), positive transcriptional regulation and protein

processing (increased in Vaccinated), cellular proliferation

and maintenance (increased in Vaccinated), complement

activity (decreased in Vaccinated), and apoptotic clearance and

phagocytosis (decreased in Vaccinated). Enriched pathways

included the immune system and cytokine signaling, including

interleukin-37 signaling (increased in Vaccinated), complement

and coagulation cascades (decreased in Vaccinated), enhanced

transcriptional activity, largely involving RNA polymerase

II (increased in Vaccinated), and vitamin B6 metabolism

(decreased in Vaccinated). These GO terms and pathways

were primarily enriched by the following DEGs: ARL4D, C3,

CNOT4, GTF2A1, LOC785873 (TRIM26), POU2F1, PUS10,

SMAD3, THBD, and ZBTB41. Visualization of the enriched

KEGG pathways is found in Figure 6. Expressional trends of

the aforementioned DEGs contributing to these GO terms and

pathways are found in Figure 7.

Shared DEGs identified at T3 between vaccinated and

non-vaccinated calves enriched for 71 GO terms and

25 functional pathways. These GO terms were related to

neutrophil degranulation (increased in Vaccinated), antigen

processing and presentation (increased in Vaccinated),

ubiquitin protein binding and positive regulation (increased

in Vaccinated), nuclear protein importing and response

to protein folding (increased in Vaccinated), heat shock

protein binding, specifically to Hsp70 and Hsp90 (increased

in Vaccinated), T-cell activation (increased in Vaccinated),

cellular response to interleukin-7 (increased in Vaccinated),

and the positive regulation to ATPase activity (increased

in Vaccinated). Enriched pathways included transcription

activation (increased in Vaccinated), endocytosis and antigen

processing and presentation (increased in Vaccinated),

neutrophil degranulation (increased in Vaccinated), and

cellular response to heat stress, including the regulation

of HSF1-mediated heat shock response, Hsp90 chaperone

cycle for steroid hormone receptors, and HSF1-dependent

transactivation (all increased in Vaccinated). These GO terms

and pathways were primarily enriched by the following DEGs:

AHSA2, BANP, C3, CACYBP, CCT2, DNAJA4, DNAJB1,

DNAJB4, HIST1H3G, HSP90AB1, HSPA14, HSPA1A, HSPA4,

HSPA6, HSPD1, HSPH1, KAT2A, MDM4, NUTF2, PTPRB,

RAB11FIP3, RCHY1, SMAD3, STIP1, SYMPK, TOMM34,

TRAF2, ZFAND2A, ZFP28, and ZNF473. Visualization of

the enriched KEGG pathway terms is found in Figure 8.

Expressional trends of the DEGs primarily involved in immune

mediated and heat shock response associated GO terms and

pathways (DNAJB1, DNAJB4, HSP90AB1, HSPA14, HSPA1A,

HSPA4, HSPA6, HSPD1, HSPH1, and TRAF2) are found in

Figure 9.

A total of 85 DEGs were identified by glmmSeq when

evaluating the interaction between Vaccination and Timepoints,

which enriched for 13 GO terms and six functional pathways

(Supplementary material 9). These GO terms were related to

extracellular space, actin filament organization, cytoplasmic

vesicles, copper ion binding, and natural killer cell activation

and mediated cytotoxicity. Enriched pathways included

small molecule transport, immunoregulatory interactions

between lymphoid and non-lymphoid cells, plasma lipoprotein

remodeling, natural killer cell mediated cytotoxicity, tyrosine
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FIGURE 7

Gene pairplots and modeled expression trends of key DEGs found in timepoint analyses. Pairplots (left side) demonstrate the log10 normalized

gene expression of each sample across all timepoints, overlapped with a violin plot (depicting numerical distributions by density).

Box-and-whisker plots represent median expression values (black line), the first (lower) and third quartiles (boxplot limits), 1.5 times the

interquartile ranges (whiskers), and outlier expression levels for each timepoint (points outside whiskers). Modeled expression trends (right side)

depict the overall di�erences between groups over each timepoint. Points represent the mean log10 normalized expression value for each

group within a timepoint, and bars represent the standard error of log10 normalized expression for each group; orange represents the

vaccinated group and black represents the non-vaccinated group. These plots depict the relative expression and glmmSeq level of significance

for (A) ARL4D, (B) C3, (C) CNOT4, (D) GTF2A1, (E) LOC785873 (TRIM26), (F) POU2F1, (G) PUS10, (H) SMAD3, (I) THBD, and (J) ZBTB41.

metabolism, and DAP12 interactions. Visualization of the

enriched KEGG pathway terms is found in Figure 10.

Expressional trends of the DEGs primarily involved in

immunoregulatory and natural killer cell associated GO terms

and pathways (AOC3, DCT, LOC100852061 (KIR2DS2),

LOC101905165 (NKG2D), LOC112441504 (ULBP3), and

LOXL4) is found in Figure 11.

Discussion

Use of modified live viral respiratory
vaccines in beef cattle production
systems

The use of modified live viral (MLV) vaccines in beef

cattle backgrounding and feeding operations remains one of the

leading practices in managing risk of BRD in cattle populations

(1). Multiple recent reviews have evaluated the peer-reviewed

literature regarding the use of various vaccines for respiratory

pathogens in beef cattle (20–22). However, vaccination is not

always helpful (23) and questions remain regarding which

cattle are most likely to benefit from vaccination and which

may not. Assessment of the transcriptome may reveal new

pathways that will explain why vaccination appears to prevent

disease in certain situations but not others. The significance

of some of the differences in observed gene expression

between VAX and NOVAX calves is not yet clear, but

provides a foundation for future studies to determine how

multiple components of the immune response change following

vaccination. To our knowledge, there is no comparable data

set available.

Although variable in terms of individual efficacy, several

studies suggest that vaccinating herds of cattle with MLV

vaccines reduces herd-level risk of BRD-associated morbidity

and mortality and is associated with improved weight gain

overtime (i.e., production) (24–27). Our study was limited

to a small subset of calves that remained clinically healthy
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FIGURE 8

Clustering of enriched KEGG pathways by term identity from KOBAS-i analysis of DEGs identified between vaccinated and non-vaccinated

calves at T3. Each node represents an enriched term, with color corresponding to the unique cluster based on term identity. Each edge (line

between nodes) represents a significant correlation between pathway terms. Bar graphs represent the pathway terms found within each

pathway (by color) and the level of enrichment (Enrich ratio). KEGG pathways identified between vaccine groups at T3 clustered into eight

unique clusters. Gray nodes and bar graphed terms represent enriched pathways which did not associate within the clustering model.

which may have influenced the subsequent lack of difference

in performance.

For years, responses to vaccination have been measured via

serology (4), and occasionally, cell-mediated immune responses

(20). Such studies usually describe only a small number of

outcomes of a vast and diverse network of interactions that

influence health vs. disease. While we attempted to assess serum

neutralizing titer responses to the viruses we vaccinated against,

the timing of sample collection was not optimized to find peak

titer responses. Additionally, it is important to note that in

this study the MLV was administered differently than the label

directions indicated. The current label for Pyramid 5 (28) does

not indicate a minimum age requirement or a specific interval or

requirement for revaccination of calves. However, administering

a booster vaccination, especially when the primary vaccination

was given to animals under 6months of age, is common industry

practice and according to current knowledge would be helpful

in initiating a protective immune response. Our serology results

indicated that the calves responded to our vaccination strategy

as expected but that there was likely a natural exposure to PI-3

and BRSV in the herd. The lack of differential gene expression at

T4 between VAX and NOVAX calves is further supported by the

titer data at T4. This may be due to the length of time between

sampling points T3 and T4, but our data suggest both VAX

and NOVAX individuals, across multiple pens, were exposed to

a potentially non-virulent strain of PI-3 and BRSV sometime

between T3 and T4. Furthermore, the similarities in gene

expression between the two groups at T4 may be confounded

due to this exposure and processing at T3. However, the results

of this study demonstrated that the driver of immunological

response and enhanced transcription over time, as influenced by

vaccination, was the initial (first) administration.

Development of clinically healthy cattle is
associated with increased specialized
proresolving mediator expression, fatty
acid and carbohydrate metabolism, and
cytokine-mediated immunity

When evaluating the influence of time (i.e., physiological

growth) on the gene expression of young calves, three

connected mechanisms continually increased over time across

all individuals: specialized proresolving mediator (SPM)

biosynthesis, fatty acid and carbohydrate metabolism, and

chemokine/cytokine mediated enhancement of acquired

immunity. Specialized proresolving mediators consist of

closely related classes of lipid mediators, derived from the

lipoxygenation of arachidonic acid into LXA4 (i.e., lipoxins)

(29) or from the metabolism of omega-3 and/or omega-6

essential polyunsaturated fatty acids (i.e., resolvins, protectins,

and maresins) (30–32). Collectively, six molecules (ALOX5,

ALOX15, GPX4, HPGD, LTA4H, and PTGS2) are directly

involved in the biosynthesis of SPMs,5 of which we identified

5 https://reactome.org/PathwayBrowser/#/R-HSA-9018679&DTAB=

MT
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FIGURE 9

Gene pairplots and modeled expression trends of key DEGs found in timepoint analyses. Pairplots (left side) demonstrate the log10 normalized

gene expression of each sample across all timepoints, overlapped with a violin plot (depicting numerical distributions by density).

Box-and-whisker plots represent median expression values (black line), the first (lower) and third quartiles (boxplot limits), 1.5 times the

interquartile ranges (whiskers), and outlier expression levels for each timepoint (points outside whiskers). Modeled expression trends (right side)

depict the overall di�erences between groups over each timepoint. Points represent the mean log10 normalized expression value for each

group within a timepoint, and bars represent the standard error of log10 normalized expression for each group; orange represents the

vaccinated group and black represents the non-vaccinated group. These plots depict the relative expression and glmmSeq level of significance

for (A) DNAJB1, (B) DNAJB4, (C) HSP90AB1, (D) HSPA1A, (E) HSPA4, (F) HSPA6, (G) HSPA14, (H) HSPD1, (I) HSPH1, and (J) TRAF2.

three to be differentially increased in all calves over time

(ALOX5, ALOX15, and HPGD); notably, HPGD was identified

as a differentially expressed in glmmSeq – timepoint, NOVAX

T1vT4, VAX T1vT3, and VAX T2vT3. These lipid molecules are

profound regulators of both acute and chronic inflammation

and are critical in promoting cellular clearance and tissue

remodeling in response to respiratory disease (33–36).

Recent evidence suggests that, in addition to their ability to

resolve inflammatory responses and tissue damage, SPMs

are effective modulators of the adaptive immune response,

capable of regulating Th1/Th17 differentiation and promoting

regulatory T-cell differentiation via a non-cytopathic regulatory

mechanism (37). Crucially, SPMs are shown to not have an

effect on Th2-driven immunity, but enhance antigen presenting

cell, specifically dendritic cell, development and functionality

(37–39); this aligns with our findings indicating a gradual

increase in gene expression related to SPM production and

immunoregulatory T-cells. This is additionally supported

by the enrichment of CD28 co-stimulation and signaling,

and the enhancement of CTLA4 and CD80 with associated

cytokine production (IL5RA, IL17REL) over time (40–44).

Furthermore, several of these specific genes, namely ALOX15,

LOC100297044 (CCL14), HPGD, and IL5RA, have been

identified as DEGs increased in expression at facility arrival in

cattle that remain clinical healthy within high-risk populations,

compared to cattle that develop BRD (45–49). Collectively, this

may represent immunological development and mechanisms

of immunocompetence which can serve a protective role

against BRD-induced inflammation when calves are placed in

post-weaned feeding systems.

Vaccination induces a controlled
inflammatory response linked with
Th17/natural killer cell activity

Evaluation of host expression influenced by vaccination,

excluding genes and mechanisms affected solely by time,
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FIGURE 10

Clustering of enriched KEGG pathways by term identity from KOBAS-i analysis of DEGs identified from glmmSeq evaluation of the interaction

between vaccination and time. Each node represents an enriched term, with color corresponding to the unique cluster based on term identity.

Each edge (line between nodes) represents a significant correlation between pathway terms. Bar graphs represent the pathway terms found

within each pathway (by color) and the level of enrichment (Enrich ratio). KEGG pathways identified through the interaction of vaccination and

time clustered into eight unique clusters. Gray nodes and bar graphed terms represent enriched pathways which did not associate within the

clustering model.

FIGURE 11

Gene pairplots and modeled expression trends of key DEGs found in timepoint analyses. Pairplots (left side) demonstrate the log10 normalized

gene expression of each sample across all timepoints, overlapped with a violin plot (depicting numerical distributions by density).

Box-and-whisker plots represent median expression values (black line), the first (lower) and third quartiles (boxplot limits), 1.5 times the

interquartile ranges (whiskers), and outlier expression levels for each timepoint (points outside whiskers). Modeled expression trends (right side)

depict the overall di�erences between groups over each timepoint. Points represent the mean log10 normalized expression value for each

group within a timepoint, and bars represent the standard error of log10 normalized expression for each group; orange represents the

vaccinated group and black represents the non-vaccinated group. These plots depict the relative expression and glmmSeq level of significance

for (A) AOC3, (B) DCT, (C), LOC100852061 (KIR2DS2), (D) LOC101905165 (NKG2D), (E) LOC112441504 (ULBP3), and (F) LOXL4.

demonstrated an increase in mechanisms associated with

antigen presentation, metal ion binding, molecular chaperone

activity, and lymphoid cell activity, and a decrease in

mechanisms associated with complement and apoptotic debris

clearance. First, through PCA of global expression trends,

we discovered genes driving variation in PCs with significant

correlation with vaccination. Specifically, we identified the

genes CLOCK, HDAC3, KIR3DL1, RACK1, and SNX17 to be

key drivers of differences associated with vaccination, which

are involved in regulating the activity and differentiation of
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T-cells and natural killer cells. CLOCK, in conjunction with

BMAL1, is a circadian timekeeping protein which interacts

with transcriptional regulators, which in turn upregulate genes

such as HDAC3; this transcriptional network is responsible

for the development and differentiation of Th17 cells (50–

53). KIR3DL1, an immunoglobulin-like receptor expressed by

natural killer cells and T-cells (54), is shown to be involved in

inhibiting interferon-?? secretion andmay block the progression

of chronic inflammation, seen in research involving ankylosing

spondylitis and reactive arthritis (55, 56). RACK1, which acts as

both an intracellular protein receptor for protein kinase C and as

a core ribosomal protein of the 40S subunit, is a key component

of T-cell activation and proliferation (57, 58) and loss of

RACK1 has been shown to increase T-cell apoptosis (59). SNX17

localizes with T-cell receptors and is responsible for preventing

T-cell degradation into lysosomes and transporting T-cell

receptors to the cell surface, aiding in cellular immune function

(60). These findings provide initial evidence that vaccination

in young calves influences mechanisms related to the enhanced

differentiation and survival of T-cells, natural killer cell activity,

and accompanying interleukin-17 response; this coincides with

previous research demonstrating vaccination or exposure to

viral components mediates a T-helper cell and natural killer

cell response (61, 62), which may contribute to protective cell

mediated and controlled inflammatory responses (63).

To further explore the influence of vaccination on these

calves, we identified DEGs between vaccination groups at each

time point, and those found from the interaction between

vaccination and time. At T2 (7 days post vaccination), DEGs

identified in calves which received a MLV vaccination enriched

for two major immune-related mechanisms-the downregulation

of complement and coagulation cascades (primarily driven

by C3), and the upregulation of T-cell-mediated immunity.

Complement, a well-organized and highly regulated system

of the immune system, is a critical component of host

immunity for killing or neutralizing pathogens and maintaining

immunological homeostasis (64, 65). While the complement

system features three distinct response pathways (classical,

alternative, and mannose-binding lectin), all three lead to

subsequent C3 activation (66). Interestingly, the vaccinated

group demonstrated a downregulation of C3 transcription.

While complement C3 is critical for inducing a humoral and

cell-mediated response to vaccination and viral infection (67–

70), little published information exists relating to the timing

and activity levels of induced complement cascades in cattle.

Thus, it can be hypothesized that we failed to capture the initial

immune responses associated with vaccination within the first

few days and are identifying a late feedback mechanism involved

in controlling prolonged complement activity. Additionally,

research has demonstrated that the complement system appears

to be more important for successful immunization in response

to polysaccharide-containing vaccines compared to conjugated

vaccines (71). Furthermore, we identified DEGs and enriched

mechanisms related to CD4+ T-cell activity, primarily driven

by DAPK2, POU2F1, SMAD3, and LOC785873 (TRIM26).

DAPK2 promotes cellular recruitment to sites of inflammation

(72) and is highly expressed in activated T-cells, serving

a cellular regulatory role during germinal center formation

(73). POU2F1 is a required transcription factor for T-cell

response to infection and the development of CD4+ memory

T-cells (74–76). SMAD3 transduces TGF-BR signaling and

controls the development of regulatory T-cells and Th17

cells via signaling networks involving T-cell receptors, TGF-

B, and interleukin-6 (77, 78). While not directly involved

with T-cell activity, TRIM26 is involved with modulating

host antiviral defense and inducing an inflammatory immune

response (79–81).

Evaluation of T3 (prior to booster administration;

77 days after initial vaccination) identified DEGs and

enriched immunological mechanisms involved in neutrophil

degranulation, antigen processing and interleukin-7 response,

T-cell activation, transcriptional activity, and heat shock

protein activity and binding. At this time point in vaccinated

calves compared to non-vaccinated calves, we again observed

an increase in the expression of SMAD3 and LOC785873

(TRIM26), two genes involved in T-cell development and

inflammatory defense mechanisms, respectively, and a decrease

in THBD and C3, involved in coagulation (82, 83) and

complement activity, respectively. Surprisingly, these genes

and associated mechanisms remained significantly enriched at

both seven and 77 days post-vaccinated, indicating a possible

immune-mediated mechanism or complex induced by MLV

vaccination which persists longer than anticipated (>30 days).

One unexpected finding at this timepoint was the rapid increase

in heat shock protein gene expression in vaccinated calves.

There is a great deal of research demonstrating the role of heat

shock proteins in vaccination and host immunity/inflammation.

Hsp70 enhances immunogenic antigen presentation cell

functionality and T-cell proliferation (84). Both Hsp70 and

Hsp90 proteins are shown to activate dendritic cells and direct

naïve helper T-cell priming through designated interactions

with antigen presenting cell surface receptors (85, 86) and

stimulating inflammatory cytokine production via CD14-

mediated chaperoning (87–89). HSPD1 initiates interferon-beta

production through interactions with interferon regulatory

factor 3 (IRF3) (90) and is associated with both leukocyte and

lymphocyte tissue infiltration (91). Furthermore, both Hsp70

and Hsp90 promote Th17 gene expression and proliferation

and are involved in interleukin-17-mediated inflammation

(92–94). This collectively indicates a stimulation of heat shock

protein-mediated inflammation and helper T-cell, possibly

Th17, promotion via modified live viral vaccination. However,

this mechanism was only upregulated at T3. How long and

where in time this mechanism becomes upregulated through

viral vaccination could not be fully elucidated by this study and

additional research is needed.
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Our final differential expression evaluation was to determine

genes influenced by the interaction of both time and vaccination.

Largely, the DEGs identified through this analysis were

determined to be involved with immunoregulatory functions

via natural killer cells. These mechanisms were enriched by

three key genes: LOC101905165 (NKGD2), LOC100852061

(KIR2DS2), and LOC112441504 (ULBP3). NKG2D serves as a

costimulatory transmembrane receptor on natural killer cells,

enhancing T-cell receptor activity and subsequent cytotoxic and

gamma-delta T-cell function (95–97). KIR2DS2 is an activating

receptor of natural killer cells, which binds to MHC class 1

and enhances natural killer cell-mediated cytotoxicity (98, 99).

ULBP3 is a cellular ligand of natural killer cells which binds to

NKG2D, serving an immunostimulatory role (100–102). This

indicates that the influence of both time and vaccination acts in

influencing natural killer cell and cytotoxic responses in calves.

Bassi et al. (103) demonstrated that cattle naturally infected

with and displaying clinical signs of bovine papillomavirus

possessed an increase in circulating natural killer cells and

CD4+/CD8+ ratios, with a related elevation in interleukin-17

levels, when compared to cattle without clinical papillomatosis.

Hamilton et al. (104) found that BCG vaccination in neonatal

calves induces effector natural killer cells after interactions

with dendritic cells, and stimulates their production of type-2

interferon production and interleukin-12.

Another key detail in this study is the lack of differential

expression related to type-1 interferon production and response.

Research has demonstrated that administration of recombinant

and mRNA vaccines against viral pathogens can induce type-1

interferon production, enhancing T-cell response via heighted

antigen presentation, and further promoting humoral immunity

and vaccine-induced antibody production (105–108). Previous

research in cattle has demonstrated that type-1 interferon

production is strongly induced by viral challenge and is seen

as an antiviral defense mechanism (109–112). While type-

1 interferon production in human vaccination trials is well

documented, it is relatively unknown if ungulates possess a

similar immune response. We may have failed to recognize such

a response due to the time between sampling points. Further

studies assessing additional time points post-vaccination and

booster, and focused assessment of peripheral immune cell

types and responses, are warranted to better identify and

understand the complex interaction of mechanisms related to

successful immunization.

This study is, to our knowledge, the first of its kind to

describe differential gene expression pathways in calves over

the first 7 months of life, and in relation to a commonly used

vaccination scheme, in a longitudinal fashion. Our findings

indicate that vaccination induces a controlled inflammatory

response associated with natural killer cell and, likely, Th17

cell promotion. This is most likely a normal process of antigen

presentation and immunological memory within calves, but

still constitutes an inflammatory-inducing process. It may be

hypothesized that these induced mechanisms are not effective

when calves are placed in high-risk settings, where stress and

inflammation are occurring, compared to the low-risk system in

which these calves were studied.
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Having played important roles in human growth and development, livestock

animals are regarded as integral parts of society. However, industrialization

has depleted natural resources and exacerbated climate change worldwide,

spurring the emergence of various diseases that reduce livestock productivity.

Meanwhile, a growing human population demands su�cient food to meet

their needs, necessitating innovations in veterinary sciences that increase

productivity both quantitatively and qualitatively. We have been able to address

various challenges facing veterinary and farm systems with new scientific and

technological advances, which might open new opportunities for research.

Recent breakthroughs in multi-omics platforms have produced a wealth

of genetic and genomic data for livestock that must be converted into

knowledge for breeding, disease prevention and management, productivity,

and sustainability. Vetinformatics is regarded as a new bioinformatics research

concept or approach that is revolutionizing the field of veterinary science. It

employs an interdisciplinary approach to understand the complex molecular

mechanisms of animal systems in order to expedite veterinary research,

ensuring food and nutritional security. This review article highlights the

background, recent advances, challenges, opportunities, and application of

vetinformatics for quality veterinary services.
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Introduction

Livestock animals are an essential part of our life. Science-led innovation in

veterinary research that benefits both people and animals as individuals and populations

is crucial to maintaining public health (1, 2). This encompasses research on fundamental

animal biology and animal welfare, as well as disease prevention, diagnosis, and

therapy. Such innovation offers several opportunities for improving animal and human
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health (3, 4). Currently, veterinarians face many challenges

exacerbated by climate change, including the emergence of

new diseases, as well as those of a rapidly growing human

population that requires adequate food and nutrition. Therefore,

integration of interdisciplinary approaches with veterinary

science is urgently needed to decode the complex molecular

mechanisms of livestock systems (5–7).

The functioning of livestock systems is an area of

active, ongoing research. Advancements in mathematical

science, statistical methods, computer science, and information

technology help biologists learn about biological systems

quantitatively and qualitatively (8). Computers are essential

components of these scientific advancements, as they play a

crucial role in research and development sectors and become

a major tool for researchers. In the era of “omics,” we

can easily handle big data using computers, but the term

“bioinformatics” was not introduced until the beginning of

the 1970s by Hogeweg and Ben Hesper, when DNA could

not yet be sequenced (9, 10). DNA’s role as genetic material

was also a matter of debate before 1952. Avery et al. (11)

demonstrated that a non-virulent bacterial strain could acquire

virulence by absorbing purified DNA from a virulent strain

(8). However, the scientific community did not immediately

accept their findings. Many scientists instead believed that

proteins, rather than DNA, were carriers of genetic information

(8, 12). Hershey and Chase established the role of DNA as

a genetic information–encoding molecule in 1952 when they

demonstrated that bacteriophage-infected bacterial cells ingest

and transfer DNA rather than protein (13). At this time, DNA’s

primary role was understood, but little was known about how

the DNA molecule was arranged. It was only known that

its monomers (i.e., nucleotides) were present proportionately

(14). The DNA double-helix structure was finally discovered by

Watson and Crick (15). Despite this achievement, it would still

be another 13 years before the genetic code was cracked, and

another 25 years before the first DNA sequencing techniques

were made accessible (16–18). Accordingly, DNA analysis using

computational tools lagged ∼2 decades behind the study of

proteins, whose chemical makeup was already better understood

than that of DNA (8).

Due to significant improvements in the crystallographic

determination of protein structures (19), protein analysis

was bioinformatics’ starting point in Gauthier et al. (8).

Insulin’s sequence, or the arrangement of its amino acids,

was the first protein sequence to be published (20).

Additionally, numerous improvements in determining

the structure and sequence of proteins were also reported

(10, 21). The first bioinformatician was an American

physical chemist named Margaret Dayhoff (1925–1983)

who made significant contributions and used computational

approaches in the study of biochemistry and protein

sciences. She is referred to as the mother and father of

bioinformatics (19, 20, 22).

Needleman and Wunsch created the first dynamic

programming method for pairwise protein sequence alignment

in 1978 (23). Since the early 1980s, multiple sequence

alignment (MSA) algorithms have been emerging, facilitated

by CLUSTAL software, which was introduced to MSA in 1988

(24, 25). Further, the concept of a mathematical framework

for amino acid substitution was introduced by Dayhoff with

the development of a point accepted mutation matrix (26).

In the 1970s, DNA became more actively researched than

proteins. Additionally, parallel developments in biology and

computer science took place in the 1980 and 1990. Since

the establishment of the National Center for Biotechnology

Information (NCBI) in 1988 and the start of the Human

Genome Project in 1990, bioinformatics has received significant

attention and become an integral part of the analysis of the

human genome (27–29). Further, bioinformatics emerged as a

separate interdisciplinary subject for research and development

in different areas of science and technology (10). Its approaches

are extensively utilized in biomedical and pharmaceutical

research. In recent years, the veterinary science community has

sought to use these approaches in their research. Therefore,

the concept of vetinformatics has been introduced as a branch

of bioinformatics that focuses on livestock animals for quality

veterinary services (5, 30).

In veterinary science, the livestock production system

is a complex process that has three interconnected basic

components: animal biology, the environment, and

management techniques (31). Therefore, vetinformatics

approaches are required to bridge the gaps between genotype

and phenotype in order to improve livestock productivity

and sustainability (5, 30). Large animal datasets have been

produced as a result of improvements in various omics

platforms and next-generation sequencing (NGS) technologies.

Several bioinformatics databases and tools are available for

their management and analysis, but these databases hold

information about diverse groups of organisms (7, 10), and

veterinarians require species-specific databases. Additionally,

they require animal-based vetinformatics tools for data analysis

and integration, as well as computational and mathematical

models for analyzing animal behavior (32, 33). Accordingly,

vetinformatics is required as a separate interdisciplinary subject

to handle livestock data. By analyzing these large data sets, it is

possible to accelerate research and development by extracting

crucial information that enables researchers to understand

livestock systems at molecular levels (Figure 1).

Scientific disciplines linked with
vetinformatics and their support systems

Vetinformatics is associated with the disciplines of

veterinary sciences, basic sciences, and engineering; these
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FIGURE 1

Integration of veterinary sciences, basic science disciplines, and support systems to create vetinformatics, enabling a better understanding of

livestock systems in veterinary science.

disciplines provide infrastructure and an interdisciplinary

nature to vetinformatics (5, 30, 33, 34). Several traditional

and advanced subjects are associated with vetinformatics,

such as veterinary physiology, biochemistry, anatomy,

pharmacology and toxicology, parasitology, microbiology,

pathology, epidemiology, genetics and breeding, and medicine,

as well as animal nutrition and poultry science. Mathematical

and statistical sciences also contribute to vetinformatics as

basic-science disciplines. Computer science, information

technology (IT), and computational resources serve as

the foundation and support system for vetinformatics (5, 34).

Accordingly, vetinformatics is created through the integration of

veterinary sciences, basic sciences, and supporting disciplines.

Vetinformatics uses computer science and IT to quickly

provide solutions to complex challenges related to livestock

systems (https://www.frontiersin.org/research-topics/33198/

vetinformatics-an-insight-for-decoding-livestock-systems-

through-in-silico-biology).

Needs and aims of vetinformatics

In order to better understand livestock systems,

vetinformatics is expanding and has contributed to the

growth of research initiatives involving high-throughput DNA

sequencing data analysis and other omics fields (https://www.

veterinaryirelandjournal.com/ucd-research/165-how-omics-

are-contributing-to-sustainable-animal-production; accessed

on 14/7/2022). Vetinformatics’ aim is to decode the enormous

quantity of multi-omics data produced by high-throughput

technologies, structural and functional characterizations of key

genes and proteins, and visualizations of key components linked

with livestock productivity and sustainability (7).

In general, the goals of vetinformatics include building

databases that document information on medicinal plants,

particularly for the development of herbal veterinary medicines

via screening of phytochemicals against molecular drug targets

using molecular docking (5, 6, 35). However, vetinformatics’
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aims also include collecting animal genetic resources in

databases, developing these databases for managing omics

data sets that are species- or organism-specific, and enhancing

the content of existing veterinary databases so that they can

be used more effectively (36–38). In addition, developing

platform-independent graphical user interface–based software

for integration and analysis of multi-omics data (10, 32–

34), and improving the accessibility of public software for

veterinary biotechnologists, scientists, and veterinarians would

further vetinformatics’ missions. Finally, vetinformatics also

strives to educate undergraduate students, graduate students,

and faculty of veterinary and animal sciences about the

use of vetinformatics for the analysis of multi-omics data

[(32, 34) https://www.frontiersin.org/research-topics/33198/

vetinformatics-an-insight-for-decoding-livestock-systems-

through-in-silico-biology].

Recent advances in vetinformatics

The integration of omics science and technology with

veterinary science opens exciting opportunities to decode

livestock systems (7, 36, 39). Many animal genomes have been

sequenced, and others are currently under sequencing and

analysis. Although multi-omics data are generated regularly,

more research is still needed to increase the efficiency and

standardize interpretation, analysis, and integration of these

data (7, 40). Additionally, the availability of big data in

veterinary science has helped in the design of innovative

algorithms and improved knowledge of cellular and phenotypic

mechanisms [(7) https://ivcjournal.com/ai-the-newest-tool-in-

veterinary-science/; accessed July 14, 2022]. Some animal-

specific databases have already been developed to provide

updated information to the veterinary science community (4,

37). Further, the use of machine and deep learning approaches

in livestock research is reshaping the field in unanticipated

ways. Exciting, cutting-edge models that connect genotype and

phenotype allow the field of vetinformatics to grow quickly in

the digital era and improve livestock productivity (41, 42).

Challenges in vetinformatics

Vetinformatics is connected to veterinary sciences, basic

sciences, and technology. Due to its interdisciplinary nature,

vetinformatics may include people with a background in

veterinary science or biology with little interest in computer

programming, or people with a background in computer science

who are unfamiliar with certain biological concepts. Due to

the importance and application of vetinformatics in livestock

research, many post-graduate programs in veterinary and

animal science require exposure to the subject of vetinformatics.

These programs may develop student interest in this emerging

and interdisciplinary field, filling an urgent need for more

researchers in vetinformatics. The major challenges faced by

vetinformatics include managing big data in veterinary sciences;

developing species-specific databases and tools for livestock

research; improving the accuracy of available tools; developing

novel algorithms and tools; analyzing and integrating multi-

omics data; and identifying molecules for the development of

drugs for treating livestock diseases (43, 44).

Applications of vetinformatics in
health, productivity, and
sustainability of livestock

The scientific community produces complex data daily

by using advanced molecular biology and biotechnology-

based techniques (45, 46). These techniques require statistical

approaches to quickly and accurately interpret these large-scale

data (7, 40). Computational studies are the only method for

analysis and interpretation of genome sequencing, assembly and

alignment, differentially expressed genes, biological networks,

protein modeling as well as molecular docking. The integration

of such data is made possible by statistical and mathematical

modeling approaches (5, 6, 10, 47, 48). Vetinformatics has

tremendous potential to address challenging issues in veterinary

science and related fields. Today, it is a vital tool for scientists

and is crucial to the study of livestock. The following sections

highlight the applications of vetinformatics.

Assembly and annotation of newly
sequenced genomes

Sequencing an animal’s genome is necessary to understand

the intricacy among them (49, 50). Aligning and combining

fragments of genome sequences obtained from sequencing

platforms is referred to as assembly. Depending on whether a

reference genome is available or not, assembly can be divided

into two categories: de novo assembly and reference-based

assembly (50, 51). Genome assembly is essential for determining

how gene structure and function will affect an organism’s

behavior. SPAdes is a highly cited genome assembler originally

designed for small genomes. It was tested on microorganisms

including bacteria, fungi, and other small genomes (52). Besides,

it includes various assembly pipelines such as metaSPAdes,

plasmidSPAdes, rnaSPAdes, truSPAdes, and dipSPAdes. These

pipelines are useful for metagenomic data sets, assembly

of plasmids from WGS data, de novo assembly of RNA-

Seq data, barcode assembly, and highly polymorphic diploid

genomes (https://cab.spbu.ru/files/release3.12.0/manual.html).

In the field of genomics, annotating genomes through MAKER

is convenient and easy. Genomes of eukaryotes and prokaryotes

can be annotated independently and genome databases can be

created using it. It is designed to identify repeats, align ESTs
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and proteins with the genomes, and produce ab-initio gene

predictions (53).

Using high-throughput sequencing platforms, we now have

sequenced genomes for many major animal species (54, 55).

Zimin et al. (56) used a combination of whole-genome shotgun

sequencing and hierarchical sequencing techniques to sequence

the genome of the domestic cow (Bos taurus). They assembled

the 35 million sequence reads to produce an improved assembly

of 2.86 billion base pairs. Numerous computational tools can be

used to further evaluate sequenced genomes. Several pipelines,

resources, and software are available for computational assembly

and study of the genome. Recent functional annotation of three

domestic animal genomes (cattle, chicken, and pig) provides

a useful resource for livestock research (57). The study of

the genome is pertinent to many areas of research, including

ancestry determination, genomic selection, and vaccine and

drug design (58–60).

Transcriptome and RNA-Seq data analysis for
studying gene expression

RNA-Seq has emerged as an effective approach for

transcriptome analyses that will eventually make microarrays

outdated for analysis of gene expression data (61). The field of

research on gene expression has undergone a recent revolution.

This technology has made possible the measure of simultaneous

gene expression, enabling the discovery of candidate genes

with potential biological significance (62). RNA-Seq analysis of

porcine ovaries revealed 4,414 deferentially expressed genes and

helped to discover their roles in the late metestrus and diestrus

phases of the estrous cycle (48). The findings from a separate

transcriptome analysis strongly suggested that IGF1, PGR,

ITPR1, and CHRM3 regulate oocyte maturation and smooth

muscle contraction in pigs, and provided direction for future

research involving effective animal breeding programs (63).

Non-coding RNAs such as small interfering RNAs (siRNAs)

and microRNAs (miRNA) play vital roles in gene regulation

(64). Recent investigations have demonstrated that they are

effective in treating a variety of diseases, and working as a

biomarker for effective therapies (64–66). The role of miRNAs

has been examined in several studies with respect to livestock

diseases (66). Several candidate genes and miRNAs have been

identified that could be helpful in treating mastitis disease

in cows (67, 68). Vetinformatics-based approaches are useful

in detection of siRNAs in host and their targets in pathogen

genomes, leading to the development of novel treatments against

livestock diseases (64, 69).

Metagenomic analysis for dissecting microbial
communities and their role in livestock

Metagenomics allows for direct access to genetic

information of whole communities by utilizing a variety

of genomic technologies and computational approaches (39).

It presents a considerably more comprehensive description

than phylogenetic surveys because it enables access to the

functional gene composition of microbial communities.

Metagenomics provides information on potentially novel

enzymes or biocatalysts, relationships between phylogeny and

function for uncultured organisms, and evolutionary profiles

of community structure and function (39). Kumar et al. (70)

analyzed metagenomic data of bacterial communities in pig

slurries, enhancing knowledge of how microbial abundance in

swine slurries varies over time. Another microbiome analysis

characterized changes in microbial community composition

that resulted from feeding dairy cows one of two common diets:

pasture and total mixed ration. Studies such as this one will

contribute to the management of cattle feed and the study of

rumen microbial ecology (71). On larger scales, metagenomics-

based analyses will help to improve animal health, leading to

enhanced livestock productivity and sustainability.

Sequence alignment and analysis for
identification of biologically significant regions

With the availability of the BLAST tool beginning in 1990,

sequence analysis has emerged as a key area of research (72).

The field of sequence analysis is fairly broad, but in this section,

we will focus on the analysis of nucleotide or protein sequences.

A variety of sequence-alignment tools such as BLAST, FASTA,

and Muscle are available to identify or compare two (pair-

wise alignment) or more (multiple sequence alignment; MSA)

sequences (10). Ajayi et al. (73) identified 67 genes in the

bovine genome belonging to heat shock protein families using

sequence alignment and analysis. Using in silico analysis, the

study investigated transcription start sites and promoter regions

of olfactory receptors in cattle, identifying five candidate motifs

(MOR1, MOR2, MOR3, MOR4, and MOR5) important in gene

regulation (74). It is also used to annotate recently discovered

sequences, identify conserved and regulatory regions, and

predict sequence physicochemical properties (10).

Molecular phylogeny for analyzing relationship
among organisms

Another crucial area of research in vetinformatics is

molecular phylogenetic analysis (75). Widely employed in

evolutionary biology, molecular phylogenetic analysis can

identify similarities between various animal sequences in order

to infer their evolutionary relationship (76). Additionally, it

facilitates the identification of critical elements in individual

sequences and their association with other sequences, thereby

playing an important role in drug and vaccine design (10, 76).

In the field of molecular phylogeny, the Molecular Evolutionary

Genetic Analysis (MEGA) (77) and PHYLIP (78) are well-

known software. Besides, several other web-based tools are
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also available such as Clustal Omega (https://www.ebi.ac.uk/

Tools/msa/clustalo/), MUSCLE (https://www.ebi.ac.uk/Tools/

msa/muscle/), and T-Coffee (https://www.ebi.ac.uk/Tools/msa/

tcoffee/) to perform multiple sequence alignment and building

a phylogenetic tree using different methods. There has been

increasing interest in reconstructing phylogenetic trees in

biological science, and questions are being raised regarding

the degree of confidence one should place in any given

phylogenetic tree. The concept of bootstrapping and jackknifing

was introduced to construct error-free phylogenetic tree (79).

Phylogenetic analysis software like MEGA facilitates researchers

to set a bootstrap value during phylogenetic tree reconstruction

to confirm their accuracy (https://www.megasoftware.net/web_

help_11/Bootstrap_Test_of_Phylogeny.htm). The Interactive

Tree Of Life, i.e., iTOL (https://itol.embl.de/) and Tree

View are highly cited tools facilitating phylogenetic tree

visualization (80, 81). The bovine hepacivirus (BovHepV) of

five positive samples that formed a separate branch from

other BovHepV in a phylogenetic analysis conducted by

Deng et al. based on the partial NS3 coding sequence (82).

The findings suggested that these new BovHepV represent

novel and emerging strains. Another study that conducted

a molecular characterization and phylogenetic analysis of

the lumpy skin disease virus (LSDV) that is circulating in

northern Thailand revealed a relationship with other LSDVs.

The LSDV that was isolated from northern Thailand shared

genetic traits with the LSDVs that are currently circulating

in China, Hong Kong, and Vietnam. This finding will be

instrumental in developing disease control strategies against

LSDVs (83).

Genome wide association study for
identification of important genomic
regions

Genome-wide association study, commonly known as

GWAS, is a powerful approach used to identify genetic variants

linked to increased likelihood of a certain disease or trait

(84, 85). The approach requires examining a large number

of individual genomes in search of genetic variants that

are more prevalent in individuals with a particular disease

or trait. Once such genetic variants have been discovered,

they are often utilized to look for neighboring variants that

directly contribute to the disease or trait (84, 85). An analysis

of GWAS can be conducted using single-locus, and multi-

locus models (86). The General linear model (GLM), Mixed

linear model (MLM), Logistic mixed model (LMM), and

Compressed mixed linear model (CMLM) are the single locus

models (87–89), and multi-locus model includes Multilocus

random SNP effect mixed linear models (mrMLM) and

Fast multilocus random SNP effect efficient mixed-model

association (FASTmrEMMA) (86, 90–92). The computer

programs commonly used for GWAS include PLINK (93),

GenABEL (94), GenAMap (95), and GEMMA (96). In addition,

the genomic databases and genome browsers such as NCBI

(https://www.ncbi.nlm.nih.gov/), Animal QTLdb (https://www.

animalgenome.org/cgi-bin/QTLdb/index), NAGRP (https://

www.animalgenome.org/), Ensembl (https://asia.ensembl.

org/index.html), and UCSC (https://genome.ucsc.edu/) are

valuable resources (86). Besides, the Genome Analysis Toolkit

(GATK) pipeline is an important platform for high-throughput

genomics data analysis (97). There are a variety of tools

available through GATK, most of which are focused on

discovering variants and used for genotyping (https://gatk.

broadinstitute.org/hc/en-us). Uemoto et al. identified six

significant quantitative trait loci for immune-related traits

in pigs affected by mycoplasma pneumonia of swine using

GWAS, revealing novel insights into the genomic elements

influencing pig production, respiratory illness, and immune-

related traits (98). Another GWAS-based study identified

candidate genes for milk production traits in Korean Holstein

cattle and individual birth weight traits in Korean Yorkshire

pigs (99, 100). Therefore, GWAS-based approaches have

potential to decode important and complex traits linked with

livestock productivity.

Systems biology and integration of
multi-omics data

Systems biology is a key subfield of vetinformatics

and has made great contributions to the modeling and

simulation of biological systems (101–103). The field aids

in the integration of multi-omics data, including genomics,

proteomics, metabolomics, and transcriptomics, in order

to construct models that comprehensively characterize the

behavior of biological systems under various conditions

(104). In the past, researchers were forced to focus on

single genes or proteins, but as omics technology and

systems biology have advanced, the paradigm has changed

from a reductionist approach to a holistic approach (104).

Through network modeling and analysis, systems biology

enables prediction of the behavior of whole systems

and identification of essential components involved in

various biological processes, both of which ultimately

contribute to advancements in animal welfare and livestock

productivity (101–104).

Network biology and analysis

In network analysis, networks represent relationships

among the components of a given system (104, 105).

In biological systems, these relationships have attracted
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FIGURE 2

Application of vetinformatics to analyze high-throughput sequencing data for discovery of novel drug molecule(s) for veterinary application.

significant attention in recent years, founding the new

interdisciplinary area called “network biology” (105).

In network biology, biological systems are illustrated in

the form of nodes and edges (105). Different types of

networks such as signal transduction networks, protein-

protein interaction networks, gene regulatory networks, and

metabolic networks contain complex information about

their relevant systems (104, 105). Nodes can represent genes,

proteins, or metabolites, while edges represent interactions

or relationships, according to the type of network (104).

Network biology approaches are highly useful in investigations

of hub nodes and drug targets, as well as identification of

key components involved in regulating biological systems

(47, 104, 106, 107).

Protein structure modeling, visualization,
and validation

It was once challenging to predict a protein’s 3D structure

from its amino acid sequence. Now, these predictions are

facilitated by improvements in protein structure prediction

methods as well as the development of AlphaFold, a deep

learning–based tool for protein structure modeling (108–110).

When the target protein structure cannot be elucidated by

experimental techniques, computational approaches become

extremely important (110). These approaches can be used

to predict protein structure, and the predicted structure can

be utilized in drug screening. Additionally, computational

approaches are used for predicting protein-protein interactions,
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structural comparison, and alignment (110, 111). In addition,

several tools have been developed for visualization, refinement,

and validation of the predicted 3D protein model. PyMOL

is most often used tool for visualization, while Swiss PDB

viewer, Rampage, PROCHECK, and Structural Analysis and

Verification Server are extensively used for evaluation and

model validation (109, 112, 113). With use of these tools,

we can improve the quality of predicted models for further

research (https://saves.mbi.ucla.edu/). Pan et al. predicted the

cow milk 3D structures of αs1-CA and β-CA using I-TASSER to

understand its dynamics (114). Additional research has modeled

protein structure using computational approaches for livestock

therapeutics development (115–117).

Binding site prediction

In drug discovery and design, binding site prediction

is a crucial and significant step. A protein’s 3D structure

must be understood to identify amino acid residues

present in the binding site. In order to learn more about

the binding site and other sites, such as allosteric sites,

computational tools are available to measure the area and

volume of cavities in proteins (110). In vetinformatics,

precise knowledge of the binding site is required to elucidate

receptor–ligand interactions. Some molecular modeling

and docking software packages offer the capability to

predict and define the binding site prior to the docking

simulation. Additionally, some web-based tools like

CASTp and COACH are used for binding site predictions

(118, 119).

Drug discovery and design for the
management of livestock disease

The emergence of novel diseases decreases livestock

productivity and represents a pressing challenge in the field

of veterinary science. Effective treatments are unavailable for

many diseases (6). Therefore, there is an urgent need to use

vetinformatics approaches to identify novel lead molecules

for drug development (5). In the process of developing new

drugs, computational methods act as a valuable resource

(110, 120). Finding a small molecule that can geometrically

and chemically fit in a cavity of a macromolecular target

is the aim of computer-assisted drug discovery programs

(109, 110). Recent developments in computational approaches

have facilitated the estimation of receptor–ligand binding

energy through molecular docking simulations, prediction of

pharmacokinetics and pharmacodynamics, and optimization

of lead molecules (121). Due to advancements in computer

power and algorithms, the field of drug discovery and design

has achieved significant progress. For developing models

and tools for drug discovery and design, computational

methods including the hidden markov model, artificial

neural networks, support vector machines, and genetic

algorithms are frequently employed (109, 110, 121). In

order to accelerate the drug development process, several

issues have been solved, leading to a major improvement in

these approaches and tools to reduce the time and cost of

drug discovery programs (5, 30, 109). Several approaches

and methods that play significant roles in veterinary drug

discovery programs are highlighted in the following sections

(Figure 2).

Molecular docking and virtual screening for
identification of lead compounds

Recent developments in computational approaches

have made it possible to predict molecular receptor–ligand

interactions in the bound or complex state with perfect accuracy

(110, 122, 123). To predict the interaction of small compounds

with macromolecular targets, software such as AutoDock,

AutoDock Vina, Glide, and Discovery studio are available

(109). These programs can be used to screen a wide range of

prospective compounds, look for new compounds with specific

binding properties, or test available medicines with functional

group alterations using molecular docking and virtual screening

(109, 110, 122, 124). Recently, in silico studies predicted the lead

compounds for drug development against porcine reproductive

and respiratory syndrome virus (PRRSV) via the screening

of 97,999 natural compounds from the ZINC database (6).

The compounds 7-deacetyl-7-oxogedunin, kulactone, and

nimocin were also identified as potential multi-target leads for

the inhibition of porcine CD163 scavenger receptor cysteine-

rich domain 5 (CD163-SRCR5), as well as non-structural

protein 4 (Nsp4) and Nsp10 of PRRSV (5). The inhibitors

of the imidazole glycerophosphate dehydratase protein in

Staphylococcus xylosus were also identified through virtual

screening (117).

ADMET and PAINs activity prediction of lead
compounds

The primary criteria for sorting ligands in drug discovery

programs involve its absorption, distribution, metabolism,

excretion, and toxicity prediction, or ADMET (109, 121). These

criteria act as a fundamental standard for testing candidate

molecules. It is widely believed that every drug discovery

program should consider these criteria, or Lipinski’s rule

of five, to evaluate orally active drugs (123, 125). In the

early stages of the drug discovery process, abiding by these

criteria is crucial for finding the most appropriate drug-

like compounds, and it considerably reduces the late-stage

failure of candidate molecules during preclinical or clinical

trials (109, 110). Additionally, we can filter molecules that
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are related to pan-assay interference compounds (PAINS).

Instead of directly affecting a specific target, PAINS typically

respond non-specifically with many biological targets. In order

to prevent non-specific binding and toxicity, a filter should be

used (126, 127). Therefore, it is recognized as a cost-effective

and time-saving approach in veterinary drug discovery program

(5, 109, 110).

Pharmacophore and quantitative
structure–activity relationship modeling

A pharmacophore is a molecular framework containing

essential features of a drug’s active component. Pharmacophore

modeling is extensively used in the development of novel

compounds (109, 110, 128). It can be used to represent and

distinguish molecules at a 2D or 3D level by schematically

illustrating the essential components of molecular recognition

(110, 123). Relatedly, quantitative structure–activity relationship

modeling is a widely used drug discovery approach that utilizes

a molecule’s physicochemical properties to predict its biological

activity (110, 129). Both of these approaches can be used to find

novel treatments for livestock diseases (5, 30).

Molecular dynamics simulation of proteins and
protein–ligand complexes to determine their
dynamics and behavior during interactions

Molecular dynamics simulation is used to computationally

visualize the movement and behavior of a molecular

system at the atomic level (110, 130). It offers a wealth of

knowledge regarding the interactions between proteins and

ligands and provides complex structural information on

macromolecular structures (109, 110). This knowledge is

crucial for understanding the structure–function relationship

among the target and its dynamics during protein–ligand

interactions, ultimately supporting drug discovery processes

(109). As a result, it is widely utilized to characterize protein–

ligand interactions in modern drug discovery programs (6).

Additionally, it is used to validate predicted protein models,

understand the dynamics of protein folding and unfolding and

protein–ligand dynamics, examine the effects of mutations on

structures, and understand binding dynamics at other sites

(5). A recent study described the role of DGAT1 missense

non-synonymous single nucleotide polymorphisms (SNPs)

in dairy cattle using computational approaches. The DGAT1

variants (W128R, W214R, C215G, P245R, and W459G) were

analyzed initially through sequence- and structure-based

tools, then evaluated using molecular dynamics simulation

to understand their structural and conformational dynamics

compared to wild-type structures and improve milk quality

in cattle (47).

Designing vaccines for livestock diseases

Emerging pathogens are a major threat to livestock

productivity that requires the identification of vaccine

candidates in order to ensure long-term protection of animals

(33, 131). In order to provide broad-spectrum and long-term

protection against different viral and bacterial diseases, new

approaches to vaccine development must be created (10, 132).

In the post-genome era, identifying specific antigenic regions

to activate certain arms of the immune system was a major

challenge (115, 133). To address this issue, computational

vaccine design has been a major area of interest for researchers

over the last two decades. Several tools and web-based resources

have been developed that have proven useful in vaccine design

(133, 134). Researchers can now utilize advanced vetinformatics

approaches to design vaccines that provide protection against

livestock diseases (33, 115, 131).

Machine and deep learning approaches
in livestock research

Machine and deep learning approaches have received

significant attention from veterinary scientists (135, 136).

Computers are equipped with an adaptive mechanism that

enables them to learn from examples and experiences (137).

Machine and deep learning provide information-processing

capabilities for handling various types of real-life information

(137). In order to make predictions or conclusions about target

datasets, these algorithms often build mathematical models

using sample datasets, also referred to as training datasets (137,

138). The recent advancements in artificial intelligence have

made it even easier to analyze animal behavior in videos using

machine vision and machine learning (139). The development

of predictive models such as Convolutional Neural Network

(CNN) and Long Short-Term Memory (LSTM) based on

modern machine techniques are helpful in livestock research

(139, 140). It was shown that the development of a recurrent

neural network (RNN) model with an LSTM could classify

cattle behavior in a reasonable manner (141). Recently, CNN

and Bidirectional Long Short-Term Memory (BiLSTM) were

used for video-based identification of individual cattle (140),

and C3D-ConvLSTM (Convolutional 3D- Convolutional Long

Short-Term Memory) based model was used for cow behavior

classification over 86% accuracy (142).

Enabled by advances in omics, an enormous amount of

biological data is produced every day, and these large data sets

allow researchers to build machine learning models in order

to make relevant predictions and minimize the expense and

duration of experiments (137, 138, 143). These approaches play

important roles in different areas of vetinformatics, such as gene

discovery and genome annotation, gene expression analysis,
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TABLE 1 List of important databases for research in vetinformatics.

S. No. Database Application Availability References

1 National Center for

Biotechnology

Information

(NCBI)

Offers resources for research and development in

different areas of the life sciences, including

veterinary and animal sciences

https://www.ncbi.nlm.nih.gov/ (144)

2 Uniprot Provides comprehensive resources related to

protein sequences, including relevant functional

and structural information

https://www.uniprot.org/ (145)

3 Pfam Database of protein families used for domain

analysis and related information

https://pfam.xfam.org/ (146)

4 Protein Data Bank

(PDB)

Structural database with information on

macromolecules’ three-dimensional structures,

which is useful in drug discovery and structural

bioinformatics

https://www.rcsb.org/ (147)

5 AlphaFold Protein

Structure Database

Database containing predicted 3D structures of

human proteins and other key proteins

https://alphafold.ebi.ac.uk/ (148)

6 PubChem NCBI Database of small molecules and related

information, including the structure of chemical

compounds, applicable for use in molecular

docking and virtual screening

https://pubchem.ncbi.nlm.nih.

gov/

(35)

7 ZINC Database of commercially available molecules for

use in virtual screening

https://zinc.docking.org/ (149)

8 GEO Functional genomics database hosted at NCBI

offering gene expression profiles that have been

provided by an international scientific community

https://www.ncbi.nlm.nih.gov/

geo/

(150)

9 Sequence Read

Archive (SRA)

The largest collection of publicly accessible

high-throughput sequencing data, comprising

NGS data provided by the international scientific

community for use in research and integration of

multi-omics data

https://www.ncbi.nlm.nih.gov/

sra

(151)

10 Kyoto Encyclopedia

of Genes and

Genomes (KEGG)

Database containing pathways for understanding

biological systems

https://www.genome.jp/kegg/ (152)

(Continued)
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TABLE 1 (Continued)

S. No. Database Application Availability References

11 Search Tool for the

Retrieval of

Interacting

Genes/Proteins

(STRING)

Database containing information about

protein–protein interactions derived from

experimental, computational, and text-mining

techniques

https://string-db.org/ (153)

12 BioModels Collection of mathematical models in standard file

formats for further analysis and integration of

biological systems

https://www.ebi.ac.uk/

biomodels/

(154)

13 Bovine Genome

Database

Database providing genomics resources and tools

for bovine research

https://bovinegenome.elsiklab.

missouri.edu/#:$\sim$:text=

The%20Bovine%20Genome

%20Database

%20supportsthereford%20cow

%2C%20L1%20Dominette

%2001449

(37)

14 Porcine

Translational

Research Database

Database providing genomic and proteomic

information involving pigs

https://www.ars.usda.gov/

northeast-area/beltsville-md-

bhnrc/beltsville-human-

nutrition-research-center/diet-

genomics-and-immunology-

laboratory/docs/dgil-porcine-

translational-research-database/

(36)

15 Animal-ImputeDB Database and resource for the study of animal

genotype imputation

http://gong_lab.hzau.edu.cn/

Animal_ImputeDB/#!/

(38)

16 SNPRBb Database containing trait-specific SNP resources

for Bubalus bubalis, including information on

important genomic variants

http://cabgrid.res.in:8080/

snprbb/home.php

(155)

17 BuffSatDb Water buffalo (Bubalus bubalis) genome-wide

microsatellite database

http://webapp.cabgrid.res.in/

buffsatdb/index.html

(156)

18 National Animal

Genome Research

Program

Comprehensive resource for research in livestock

genomics

https://www.animalgenome.

org/

(4)

19 Chickspress Gene expression database for chicken tissues https://geneatlas.arl.arizona.

edu/

(157)

20 Ensembl genome

browser

Genome browser containing genomic information

of several livestock animals

https://www.ensembl.org/

index.html

(158)
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TABLE 2 A list of popular computational software available for livestock research.

S. No. Software Application Availability References

1 Basic Local

Alignment Search

Tool (BLAST)

Finds homologous and paralogous sequences and

provides similarity searching

https://blast.ncbi.nlm.nih.gov/Blast.cgi (72)

2 SRA Toolkit Creating FASTQ files from SRA https://github.com/ncbi/sra-tools/

wiki/01.-Downloading-SRA-Toolkit

(162, 163)

3 FastQC Assesses the quality of raw sequencing data

produced by NGS platforms

https://www.bioinformatics.babraham.

ac.uk/projects/fastqc/

(164)

4 Trimmomatic Trims reads for Illumina NGS data http://www.usadellab.org/cms/?page=

trimmomatic

(165)

5 Cutadapt Identifies primers, adapter sequences, poly-A tails,

and other regions, and removes them from

sequencing reads

https://cutadapt.readthedocs.io/en/

stable/

(166)

6 fastp Preprocessing of FASTQ files which includes

quality control, adapter trimming, quality filtering

etc

https://github.com/OpenGene/fastp (167)

7 HISAT2 Maps next-generation sequencing reads quickly

and accurately

http://daehwankimlab.github.io/hisat2/ (168)

8 Samtools Used for post-processing of short DNA sequence

read alignments

http://www.htslib.org/ (169)

9 Bowtie 2 Aligns sequencing reads to reference sequences http://bowtie-bio.sourceforge.net/

bowtie2/index.shtml

(170)

10 BWA Mapping sequence reads to reference genome https://bio-bwa.sourceforge.net/ (171)

11 Trinity Assembles transcriptome or RNA-Seq data

produced by the Illumina NGS platform using the

de novo approach

https://github.com/trinityrnaseq/

trinityrnaseq/wiki

(172)

12 edgeR R package used to identify differentially expressed

genes using RNA-Seq data

https://bioconductor.org/packages/

release/bioc/html/edgeR.html

(173)

(Continued)
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TABLE 2 (Continued)

S. No. Software Application Availability References

13 DESeq2 Differential gene expression analysis https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

(174)

14 WGCNA Co-expression network analysis https://horvath.genetics.ucla.edu/html/

CoexpressionNetwork/Rpackages/

WGCNA/

(175)

15 GATK Identification of variants using high-throughput

sequencing data

yandell-lab.org/software/maker.html (176)

16 Molecular

Evolutionary

Genetics Analysis

(MEGA)

Creates phylogenetic trees and performs statistical

analyses of molecular evolution

https://www.megasoftware.net/ (77)

17 Velvet Handles de novo genome assembly using

short-read sequencing data

https://www.ebi.ac.uk/$\sim$zerbino/

velvet/

(177)

18 SPAdes Single-cell and multi-cell genome assembly https://cab.spbu.ru/software/spades/ (52)

19 MAKER Genome annotation https://github.com/Yandell-Lab/maker (53)

20 REVIGO Summarizes and visually represents gene ontology

terms

http://revigo.irb.hr/ (178)

21 Multi-Experiment

Viewer (WebMeV)

Creates analyses and visualizations of genomic

data

https://webmev.tm4.org/#/about (179)

22 Gene Set

Enrichment

Analysis (GSEA)

Facilitates the analysis and interpretation of gene

expression data

https://www.gsea-msigdb.org/gsea/

index.jsp

(180)

23 DIAMOND Performs comparatively rapid sequence alignment

of proteins or translated DNA sequences in order

to examine of large amounts of sequence data

https://uni-tuebingen.de/fakultaeten/

mathematisch-naturwissenschaftliche-

fakultaet/fachbereiche/informatik/

lehrstuehle/algorithms-in-

bioinformatics/software/diamond/

(181)

24 Blast2GO Used to perform genomic data annotation and

gene ontology analysis

https://www.blast2go.com/ (182)

25 Cytoscape Offers tools and plugins for visualization and

research in network science and network biology

https://cytoscape.org/ (183)

(Continued)
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https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/algorithms-in-bioinformatics/software/diamond/
https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/algorithms-in-bioinformatics/software/diamond/
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TABLE 2 (Continued)

S. No. Software Application Availability References

26 AlphaFold 2 Uses deep learning methods to predict protein

structure using amino acid sequences

https://github.com/deepmind/alphafold (108)

27 PyMOL Offers tools for the visualization and analysis of

macromolecular structures in 3D

https://pymol.org/2/ (112)

28 Swiss PDB Viewer Enables simultaneous analysis of protein

structures, including calculation of H-bonds,

angles, and atom distances as well as comparison

and alignment of macromolecular structures

https://spdbv.vital-it.ch/ (113)

29 Chimera Offers tools for visualizing and analyzing

molecular structures and creating density maps,

motions, and sequence and structural alignments,

producing high-quality images

https://www.cgl.ucsf.edu/chimera/ (184)

30 Protein Variation

Effect Analyzer

(PROVEAN)

Predicts how an amino acid substitution or indel

may affect the biological function of a protein

http://provean.jcvi.org/index.php (185)

31 MarvinSketch Offers tools for the conversion of structural file

formats as well as for drawing, editing, importing,

and exporting chemical structures and calculating

their properties

https://chemaxon.com/products/marvin (186)

32 CASTp Binding site prediction http://sts.bioe.uic.edu/castp/index.

html?2was

(119)

33 AutoDock Offers tools for molecular docking studies http://autodock.scripps.edu/ (124)

34 SwissADME Physicochemical properties, Pharmacokinetics,

Druglikeness prediction

http://www.swissadme.ch/ (187)

35 GROningen

MAchine for

Chemical

Simulations

(GROMACS)

Offers high-performance molecular dynamics

tools for simulations of proteins, lipids, and

nucleic acids

http://www.gromacs.org/ (188)
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drug target prediction, protein modeling, drug discovery, text

mining, digital image processing, and helpful in precision

livestock farming (137, 138, 143).

Development of databases and tools for
vetinformatics

Databases and tools related to veterinary science are essential

for computer-based examinations of livestock data (30, 32, 33).

Several databases and tools are available, but most databases

contain information about many organisms (10) (Table 1). Due

to recent developments in the area of vetinformatics, some

animal-specific databases have been developed in recent years,

but their availability is still insufficient (36–38). In the post-

genomic era, large multi-omics data sets about livestock animals

are urgently needed to develop species-specific databases to

support veterinary science. Species-specific databases would

help veterinary researchers easily find information about target

animals. In addition, the availability of multi-omics data will

help to improve the prediction, development, and accuracy of

new algorithms that solve problems related to animal breeding,

develop disease diagnostics, and offer solutions that increase

livestock productivity and sustainability (138, 159–161). Some of

the important software used for livestock research is highlighted

in Table 2.

Future perspectives on
vetinformatics

Since the beginning of the human genome project, the

use of computers in biology has drawn significant interest

and it is currently an essential tool in biological research.

In the twenty-first century, it is difficult to imagine a novel

discovery that does not rely on computational methods. Because

computer software has been involved in most biological studies

worldwide in the current omics era, many top research groups

believe that integration of computers with biology has immense

potential to decode complex biological systems, enabling the

discovery of novel therapeutics and other useful information

for the betterment of society. Therefore, vetinformatics will

eventually become a crucial component of every veterinary

science research lab. The management of big data in biology

and veterinary science will also demand vetinformatics experts,

who will reduce experimental work load and expense. As the

human population grows, requiring commensurate increases

in food production, it will be necessary to increase livestock

productivity, advance animal breeding programs, improve the

nutritional quality of animal products, and develop disease

prevention and management strategies for animal welfare.

This can be accomplished with the help of vetinformatics

approaches that visualize the complexity of livestock systems

in order to design solutions that meet our demands for higher

livestock productivity.

Conclusion

In recent years, vetinformatics has emerged as a vital subject

and a popular interdisciplinary research area in veterinary

sciences. The strength of vetinformatics and the ability of its

methods to tackle challenging projects in veterinary sciences

were highlighted in this review. Databases and other tools

available for livestock research, along with their applications and

availability, were also included. Vetinformatics approaches have

proven their ability to resolve a variety of problems in veterinary

science. To develop vetinformatics tools and databases that

successfully target livestock systems for quality veterinary

services, more resources need to be developed. Therefore, a

conversation is needed in the veterinary science community that

encourages the implementation of vetinformatics to understand

livestock systems for the enhancement of animal welfare and

drug discovery.
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Infectious bursal disease virus is the causative agent of infectious bursal disease

(Gumboro disease), a highly contagious immunosuppressive disease of chickenwith a

substantial economic impact on small- and large-scale poultry industries worldwide.

Currently, live attenuated vaccines are widely used to control the disease in chickens

despite their issueswith safety (immunosuppression and bursal atrophy) and e�ciency

(breaking through thematernally-derived antibody titer). To overcome the drawbacks,

the current study has, for the first time, attempted to construct a computational

model of a multiepitope based vaccine candidate against infectious bursal disease

virus, which has the potential to overcome the safety and protection issues found in

the existing live-attenuated vaccines. The current study used a reverse vaccinology

based immunoinformatics approach to construct the vaccine candidate using major

and minor capsid proteins of the virus, VP2 and VP3, respectively. The vaccine

construct was composed of four CD8+ epitopes, seven CD4+ T-cell epitopes, 11

B-cell epitopes and a Cholera Toxin B adjuvant, connected using appropriate flexible

peptide linkers. The vaccine construct was evaluated as antigenic with VaxiJen Score

of 0.6781, immunogenic with IEDB score of 2.89887 and non-allergenic. The 55.64

kDa construct was further evaluated for its physicochemical characteristics, which

revealed that it was stable with an instability index of 16.24, basic with theoretical

pI of 9.24, thermostable with aliphatic index of 86.72 and hydrophilic with GRAVY

score of −0.256. The docking and molecular dynamics simulation studies of the

vaccine construct with Toll-like receptor-3 revealed fair structural interaction (binding

a�nity of −295.94 kcal/mol) and complex stability. Further, the predicted induction

of antibodies and cytokines by the vaccine construct indicated the possible elicitation

of the host’s immune response against the virus. The work is a significant attempt to

develop next-generation vaccines against the infectious bursal disease virus though

further experimental studies are required to assess the e�cacy and protectivity of the

proposed vaccine candidate in vivo.
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GRAPHICAL ABSTRACT

Introduction

Infectious bursal disease (IBD) is an economically significant and

contagious poultry disease. IBD, also known as Gumboro disease,

is caused by the double-stranded RNA virus (dsRNA) known as

infectious bursal disease virus (IBDV). The virus belongs to the

family Birnaviridae, replicates in the bursa of Fabricius (BF) in young

chickens causing depletion of B-lymphocytes (1, 2). As a result,

young chickens with IBD have significant immunosuppression,

putting them at risk to secondary infections (3). IBDV is a non-
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enveloped virus with icosahedral symmetry and a bi-segmented

dsRNA genome (4, 5). Segment A of the genome contains two

partially overlapping larger and smaller open reading frames (ORFs).

The larger ORF produces a 110 kDa polyprotein that self-processes

into two structural capsid proteins (VP2 and VP3) and a non-

structural protease protein (VP4), with molecular weights of 48,

33–35, and 24 kDa, respectively (6, 7). The smaller ORF encodes

VP5 polypeptide (8), a non-structural protein not required for

viral replication in vitro but crucial for virus release. The VP2

polypeptide forms the major capsid of IBDV and carries the main

immune determinants for eliciting neutralizing antibodies (9). Due

to the considerable conservation of the VP2 amino acid sequence

across IBDV strains, the linear epitopes have been identified at the

residue level. However, the conformation-dependent epitopes are

characterized by the core area covering amino acid residues 206–

350, the only place where antigenic alterations have been found.

The minor capsid protein VP3 is a group-specific immunogenic

antigen, with the earliest antibodies appearing after IBDV infection

directed at VP3 (10). Segment B of the viral genome encodes for

the non-structural protein VP1 (97 kDa), the RNA-dependent RNA

polymerase (RdRp) (11). Bound to the genomic RNA, the RdRp stays

enclosed within the viral particle.

Adequate control of IBD is possible only by following

vaccination regimes as the highly contagious IBDV is a

very resilient and persistent virus that survives in poultry

houses despite stringent disinfection (12). Despite the many

advantages present-day IBD vaccinations (Live attenuated vaccines;

LAVs) provide, further improvement is warranted for various

reasons. The efficacy of LAVs has been found to decrease in

the presence of maternally derived antibodies (MAb) which

protect the young chicken during the first few weeks (13, 14).

Besides poor efficacy in the presence of MAb, they also possess

serious safety issues as they cause varying degrees of bursal

atrophy and degeneration as well, in addition to the emergence

of antigenic variants in vaccinated flocks, particularly very

virulent strains (15–17).

Multiepitope-based vaccines (MEV) are peptide-based vaccines

that consist of T cell and B cell epitopes and have the ability

to trigger efficient cellular and humoral immune responses

(18). MEV can prove a promising strategy for combating viral

infections, potentially eliciting a broad immune response due

to T cell receptor (TCR) recognized Major Histocompatibility

Complex (MHC)-restricted epitopes from target antigens. Moreover,

MEV offers improved immunogenicity and long-lasting immune

responses without any immunization-related side effects compared

to traditional vaccines (19–25). Although the MEV with such

advantages have the potential to prove powerful prophylactic and

therapeutic agents, the screening of appropriate target antigens

and their immunodominant epitopes, as well as the development

of an effective delivery system, continue to be the current

challenges of MEV design. Therefore, the development of an

effective MEV depends on selecting suitable candidate antigens

and the immunodominant epitopes associated with them (26–

28). Hence this study aimed to develop a potential MEV

against IBDV by targeting major and minor capsid proteins

through immunoinformatics, molecular modeling and reverse

vaccinology approaches.

Materials and methods

The retrieval of protein sequences

The VP2 and VP3 protein sequences from 10 distinct IBDV

strains (Supplementary Table 1) were obtained in FASTA format

from the National Center for Biotechnology Information (NCBI)

protein database (https://www.ncbi.nlm.nih.gov/protein). Multiple

sequence alignment was performed on the reference sequences

obtained from NCBI using DNA star (DNASTAR, Inc.Madison, WI,

USA) with ClustalW parameters. The antigenicity of the reference

sequences was evaluated using the VaxiJen v2.0 Server, using a

0.4 antigenicity threshold (http://www.ddg-pharmfac.net/VaxiJen/

VaxiJen/VaxiJen.html) (29).

T-cell epitopes Identification

In this study, human HLA alleles were considered instead of

chicken HLA alleles because of the unavailability of the applicable

data. Consequently, human-related data was utilized to predict the

MHC epitopes of selected sequences (30, 31). Humans and chickens

have distinct MHC alleles; however, it has been reported that MHC

haplotype anchor residue regions in both species are comparable (32).

Cytotoxic T-cell (CTL/CD8+) epitope
prediction

The sequences which were found to be antigenic were further

submitted to the NetCTL v1.2 server (https://services.healthtech.

dtu.dk/service.php?NetCTL-1.2) for the generation of nine amino

acid long fragments (33). The fragments were filtered based on

interactions with the MHC class I HLA alleles and the production

of the CD8+ T cell response. The Stabilized Matrix Base Method

(SMM) prediction method of the IEDB tool (http://tools.iedb.org/

mhci/) was used to identify the MHC-I HLA binding CTL/CD8+

epitopes out of the resulting nine amino acid long fragments (34).

The parameters were set to human as the MHC source species,

amino acid length of 9, and IC50 value <250. The screened epitopes

were evaluated for antigenicity using the VaxiJen v2.0 server with

a 0.5 antigenicity threshold. The potential antigens were further

subjected to the IEDBMHC-I immunogenicity tool (http://tools.iedb.

org/immunogenicity/) for the evaluation of immunogenicity (35).

Helper T-cell (HTL/CD4+) epitope prediction

The antigenic consensus VP2 and VP3 sequences were submitted

to the IEDB MHC-II binding tool (http://tools.iedb.org/mhcii/)

to predict HTL epitopes interacting with MHC class II HLA

alleles (36). The allele length was adjusted to 15 and the IC50

threshold to 250 to filter out probable epitopes. The screened

epitopes were subsequently evaluated for potential IFN-γ cytokine

induction using the IFN epitope tool (http://crdd.osdd.net/raghava/

ifnepitope/) with SVM (support vector machine) approach and the
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IFN vs. non-IFN predictive models (37). Moreover, the IL4 inducer

epitopes were identified using the IL4pred tool (http://crdd.osdd.net/

raghava/il4pred/) (38). The selected epitopes were then assessed for

antigenicity using immunoinformatic techniques identical to those

used to test CTL epitopes.

Linear B-cell epitope prediction

The antigenic consensus sequences were subjected to the

ABCPRED server (https://webs.iiitd.edu.in/raghava/abcpred/) to

identify antigens that can trigger the production of antibodies by

eliciting a B cell immune response. The server predicts linear B

cell epitopes using an artificial neural network (39). The potential

epitopes were screened based on the prediction parameters selected:

the window length of 16 and the threshold value of 0.51.

Conservancy and allergenicity assessment

The selected T cell and B cell epitopes determined to be

immunogenic and antigenic were evaluated for conservancy using

the IEDB conservation across antigen tool (http://tools.iedb.org/

conservancy/) (40). The AllerTop v2.0 tool (https://www.ddg-

pharmfac.net/AllerTOP/) was used to assess the allergenicity of the

conserved epitopes and identify the non-allergic epitopes (41, 42).

Vaccine design and assessment

The top candidates for CD8+, CD4+, and B cell epitopes were

identified using several immunoinformatic tools, as indicated above.

To construct the IBD-MEV, these epitopes coupled with an adjuvant

were linked with appropriate linker peptides. The CD8+/CTL

epitopes were linked using an AAY linker, and the CD4+/HTL were

connected using GPGPG linkers. The HEYGAEALERAG linker was

used to join CTL epitopes with HTL epitopes, while the B cell

epitopes were linked by KK linkers. An appropriate adjuvant, cholera

toxin subunit B (CTB), was incorporated to the N terminal of the

construct peptide using the EAAK linker. The adjuvant was included

to enhance the immunogenicity of the vaccine construct (43). The

MEV construct was assessed for antigenicity and allergenicity using

the VaxiJen v2.0 server and AllerTop v2.0 server, respectively. At

the same time, the ProtParam53 web server (https://web.expasy.org/

protparam/) determined the physical and chemical characteristics,

such as the molecular weight (kDa), the number of amino acid

residues, the theoretical isoelectric point (pI), the estimated half-

life, the instability index, the aliphatic index, the hydropathicity, and

grand average of hydropathicity (GRAVY) (44).

Secondary and Tertiary structure prediction
and validation

The primary sequence of the final construct was subjected

to the PSIPRED web tool (http://bioinf.cs.ucl.ac.uk/psipred/) for

prediction and analysis of the secondary structure (45). While

the AlphaFold2-based Colabfold was employed to predict and

generate the tertiary structure of the vaccine construct (46, 47).

To enhance the quality of the structure, the predicted tertiary

structure was subjected to molecular refinement with the aid of

the GalaxyRefine server (http://galaxy.seoklab.org/cgi-bin/submit.

cgi?type=REFINE) (48). The resulting models were screened using

the GDT-HA, RMSD, and MolProbity scores to choose the most

refined model, which was then verified using the Ramachandran plot

and ProSA-web-predicted Z-score (https://prosa.services.came.sbg.

ac.at/prosa.php) (49, 50).

Docking and molecular dynamic simulation
analysis

The vaccine construct was docked with the Toll Like Receptor

3 (TLR3; PDB ID: 1ZIW) using the HDOCK server (http://hdock.

phys.hust.edu.cn/) with default parameters (51). The server provides

10 poses for each docking run, wherein the model with the lowest

binding energy was selected and visualized by PyMOL (https://

pymol.org/) and Discovery Studio Biovia 2021 (https://discover.

3ds.com/). Molecular Dynamics Simulation by GROMACS 2021.1

was performed using OPLS-AA/L all-atom force field to study the

stability of the complex (52). The complex was placed in a unit cell,

defined as a 1-nm cube, solvated with water using a solvate model.

Ions were added according to the charge present on the vaccine

construct, and the obtained electro-neutral structure was relaxed

through energy minimization. The equilibrating of the water around

the complex was conducted under NVT and NPT conditions for 100

ps. The temperature was set to a maximum of 300K. Following the

equilibration phases, MD simulation data was collected to perform

the 50 ns final run with a time step of 2 fs at constant pressure (1 bar)

and temperature (300K). The resulting trajectories were analyzed

using the inbuilt utilities of GROMACS.

In silico cloning and optimization of vaccine
construct

Using the Java Codon Adaptation Tool (http://www.jcat.de/), the

vaccine construct was codon optimized using the Escherichia coli

K12 strain as the host organism. The JCat adaptation was defined

using the codon adaptation index (CAI) and GC content of the

optimizes sequence (53). The ideal CAI score of an edited gene

sequence is around 0.8 and 1.0, with a GC percentage of 30%−70%,

suggesting better gene expression in the associated organism with

no translation mistakes (54). To the optimized vaccine sequence,

restriction sites BamHI (GGATCC) was added to the 5
′

end while

XhoI (CTCGAG) restriction site was added to the 3′ end. SnapGene

Viewer V3.2.1 (http://www.snapgene.com/) carried out the in-silico

cloning of the optimized vaccine sequence into the pET-28a (+)

expression vector system.

In silico immune simulation of vaccine
construct

The C-ImmSim server (https://kraken.iac.rm.cnr.it/C-

IMMSIM/) was used to model and evaluate the immune response
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of the vaccine construct for the specified vaccination program (55).

A vaccination without lipopolysaccharide (LPS) was used for the

simulation, and all other parameters were left at their default values.

A single injection of the vaccine construct was administered at two

intervals; Day 7 and Day 18.

Results

Cytotoxic T-cell (CTL/CD8+) epitope
prediction

The VP2 and VP3 consensus sequences were subjected to the

NetCTL v1.2 server to predict specific immunogenic CTL epitopes.

A total of 150 and 70 nonamer epitopes were obtained from VP2

and VP3 proteins, and each of them had a considerable binding

affinity for the 12 superfamily HLA alleles. Using the IEDB MHC-

I prediction tool, the CTL epitope nonamers were scrutinized for

specific MHC-I binding affinity with the SSM-based method. The

epitopes were filtered by the IC50 value parameter (<250), yielding

86 VP2 and 37 VP3 CTL epitopes. The screened epitopes were

examined with the VaxiJen v2.0 server for antigenicity (threshold

≥0.5). Among the predicted epitopes of VP2 and VP3 proteins,

47 and 16 epitopes showed considerable antigenic potential, with

the highest antigenic score of 1.6076 and 0.8179 for VP2 epitope

“TSYDLGYVR” and VP3 epitope “EAAANVDPL.” Following the

assessment of immunogenicity using the IEDB tool, the epitopes

were filtered to 26 VP2 and 8 VP3 immunogenic epitopes. Finally,

the allergenicity and conservancy analysis was carried out using the

AllerTop v2.0 server and IEDB conservation across antigen tool,

where the allergenic and non-conserved epitopes were screened

out, and only 15 VP2 and 2 VP3 CTL epitopes were regarded as

concluding predicted epitopes (Table 1).

Helper T-cell (HTL/CD4+) epitope prediction

Overall, 616 VP2 and 206 VP3 15-mer HTL epitopes were

identified using IEDB MHC-II binding tool screening out via

filtration based on IEDB tool IC50 value (<250) and VaxiJen

tool antigenicity score (≥0.4). The 15-mer epitopes were further

examined for IFN-gamma and interleukin inducer properties using

IFN epitope and IL-4pred immunoinformatic tools. A total of 99 VP2

and 100 VP3 CD4+ T cell epitopes exhibited the property to induce

IFN-γ, while only 25 VP2 epitopes and 16 VP3 epitopes exhibited

IL-4 inducer properties. Finally, the antigenicity and allergenicity

analysis was carried out using VaxiJen and AllerTop v2.0 servers,

where the non-antigen and allergenic epitopes were screened out.

6 VP2 epitopes and 1 VP3 epitope were concluded as the most

promising HTL epitope candidates for the final vaccine construct

(Table 2).

Linear B-cell epitope prediction

An iitd.edu.in server was used to generate 46 VP2 and 24 VP3

B cell epitopes. Out of these, 28 VP2 and 10 VP3 epitopes were

revealed as antigenic by the VaxiJen server (threshold >0.5). The

Immunogenicity analysis further filtered the epitopes to 14 VP2 and

4 VP3 Immunogenic epitopes. Among the immunogenic epitopes,

only 9 VP2 and 3 VP3 B cell epitopes were assessed as non-allergenic

and selected for the final vaccine construct, omitting the allergenic

epitopes (Table 3).

Vaccine design and assessment

The epitopes were combined to construct the MEV candidate

against IBDV based on their antigenicity, immunogenicity, non-

allergenic and non-overlapping characteristics. The final IBD-MEV

design included 4 CTL, 7 HTL, 11 linear B cell epitopes, and a CTB

adjuvant, with AAY linkers connecting the CTL, GPGPG linkers

connecting the HTL, and KK linkers connecting the B cell epitopes.

The CTB adjuvant was attached in the N-terminal by an EAAK

linker to increase the immunogenicity of IBD-MEV. Moreover,

the HEYGAEALERAG linker was inserted between CTL and HTL

epitopes, and an EAAK liner was added to the C-terminal of the IBD-

MEV construct (Figure 1A). The 522-residue IBD-MEV construct

with a molecular weight of 55.64 kDa was evaluated for antigenicity,

immunogenicity, and allergenicity, in addition to physical and

chemical properties. The vaccine was demonstrated as antigenic

(VaxiJen score= 0.6781), immunogenic (score= 2.89887), and non-

allergenic. The assessment of the physicochemical properties using

the ProtParam server presented that the IBD-MEV construct has

a theoretical isoelectric point (PI) of 9.24, making it substantially

basic. The IBD-MEV construct was determined to be stable with an

instability index of 16.24, thermostable with an aliphatic index of

86.72, and hydrophilic with GRAVY scores of−0.256.

Secondary and tertiary structure prediction
and validation

The PSIPRED server examined the secondary structural

properties of the IBD-MEV. Accordingly, the construct had 22.22%

of the amino acids in the α-helix conformation and 23.56% of amino

acids in the β-strand conformation and 54.22% in coil structure

conformations (Supplementary Figure 1). The tertiary structure of

the IBD-MEV construct was predicted using the AlphaFold2-based

Colabfold, while the GalaxyRefine server was employed to refine

the structure (Figure 1B). The refined model was obtained with a

GDT-HA score of 0.8582, an RMSD value of 0.682, a MolProbity

score of 1.459 and a rotamer score of 0.7, indicating the high

quality of the model. The preferred refined model structure was

validated using the Ramachandran plot, with 96.0% residues in the

favored region (Figure 1C). The model was further validated using

ProSA-web and has a half-life of 30 h in mammalian reticulocytes

(in vitro), >20 h in yeast, and >10 h in E. coli (in vivo). Moreover,

a Z-score of −4.49 was obtained, signifying the high quality of the

structure (Figure 1D). The structural assessment of the IBD-MEV

tertiary structure is displayed in Supplementary Figures 1B–F).

Docking and molecular dynamic simulation
analysis

The docking of the IBD-MEV construct was performed with

TLR3 as a receptor using the HDOCK server. TLR3 is a significant
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TABLE 1 Final predicted cytotoxic T cells (CD8+/CTL) epitopes.

Epitopes Position HLA allele ic50 Immunogenicity Antigenicity Allergenicity

VP2 KTVWPTREY 18 HLA-A∗30:02 117.8853942 0.36421 0.6857 Non-allergen

HLA-B∗15:02 123.6602158

LKIAGAFGF 124 HLA-B∗15:02 191.9685126 0.271 0.9619 Non-allergen

VLVGEGVTV 29 HLA-A∗02:01 197.2922383 0.23442 0.5956 Non-allergen

HLA-A∗02:06 66.76517628

GIKTVWPTR 47 HLA-A∗31:01 51.8167297 0.23109 0.8973 Non-allergen

YGRFDPGAM 90 HLA-B∗15:02 114.3483757 0.19722 1.1414 Non-allergen

HLA-B∗35:01 147.4280088

RLGDPIPAI 23 HLA-A∗02:01 113.7915466 0.1613 0.7382 Non-allergen

HLA-A∗02:06 194.3345415

SYDLGYVRL 54 HLA-B∗15:02 47.44932078 0.09064 1.5198 Non-allergen

TSYDLGYVR 49 HLA-A∗31:01 16.27308901 0.06322 1.6076 Non-allergen

HLA-A∗68:01 16.92349276

HLA-A∗11:01 87.96299338

GEGVTVLSL 108 HLA-B∗40:02 133.0025599 0.02318 0.5789 Non-allergen

HLA-B∗15:02 179.982384

HLA-B∗40:01 58.1969199

VP3 KVYEVNHGR 16 HLA-A∗68:01 54.88959167 0.18076 0.773 Non-allergen

HLA-A∗11:01 110.9941271

HLA-A∗31:01 7.878980035

EAAANVDPL 29 HLA-A∗68:02 35.52957397 0.09687 0.8179 Non-allergen

HLA-B∗15:02 54.47910949

HLA-B∗35:01 125.1929866

The epitopes were predicted using NetCTL v1.2 and scrutinized using the IEDB MHC-I prediction tool.

TABLE 2 Final predicted Helper T cells (CD4+/HTL) epitopes.

Epitopes HLA allele ic50 Immunogenicity Antigenicity Allergenicity

VP2 SEITQPITSIKLEIV HLA-DRB1∗07:01 112 0.03638 0.5556 Non-allergen

HLA-DRB1∗01:01 183

LGYVRLGDPIPAIGL HLA-DRB1∗01:01 151 0.41149 1.1488 Non-allergen

DLGYVRLGDPIPAIG HLA-DRB1∗01:01 170 0.36082 1.3044 Non-allergen

YDLGYVRLGDPIPAI HLA-DRB1∗01:01 173 0.28928 1.3085 Non-allergen

TSYDLGYVRLGDPIP HLA-DRB1∗01:01 181 0.2418 1.4101 Non-allergen

SYDLGYVRLGDPIPA HLA-DRB1∗01:01 186 0.25524 1.3072 Non-allergen

VP3 ELESAVRAMEAAANV HLA-DRB1∗04:04 37 0.0635 0.4095 Non-allergen

HLA-DRB1∗04:01 172

HLA-DRB1∗01:01 37

The epitopes were predicted using IEDB MHC-II prediction tool and screened as IFN-gamma and interleukin inducers.

TLR family member recognizing viral double-stranded RNA. The

produced docked models were visualized using the PyMOL and

Discovery Studio Biovia 2021. The HDOCK returned models were

screened based on the binding affinity, and the model with 1G

value of −295.94 kcal/mol was selected (Figure 2). The interacting

residues of TLR3 and MEV reveal various types of interaction

between the two structures (Figure 2C). The complex was subjected

to MD simulations to assess the docked complex’s stability, binding

and dynamics (Supplementary Movie). The backbone RMSD and

residue-wise RMSF trajectories were analyzed throughout the 50
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TABLE 3 Final selected linear B-cell epitopes.

Epitopes Position Immunogenicity Antigenicity Allergenicity

VP2 DRLGIKTVWPTREYTD 398 0.43501 0.736 Non-allergen

GYVRLGDPIPAIGLDP 168 0.42048 0.8952 Non-allergen

NLTVGDTGSGLIVFFP 38 0.3763 0.8846 Non-allergen

GSVVTVAGVSNFELIP 352 0.35349 0.9296 Non-allergen

KNLVTEYGRFDPGAMN 373 0.34016 0.5987 Non-allergen

LILSERDRLGIKTVWP 392 0.19243 1.0791 Non-allergen

GLTAGTDNLMPFNIVI 273 0.18982 0.8909 Non-allergen

NSPLKIAGAFGFKDII 425 0.16852 0.7304 Non-allergen

TSEITQPITSIKLEIV 290 0.15834 0.5207 Non-allergen

VP3 GVEARGPTPEGAQREK 100 0.33321 0.5198 Non-allergen

TPEWVALNGHRGPSPG 132 0.30795 0.7318 non-allergen

PTPEGAQREKDTRISK 106 0.11713 0.5853 Non-allergen

The epitopes were predicted using the abcpred web tool.

FIGURE 1

Structural analysis and validation of designed vaccine. (A) Schematic design of the final vaccine construct. AAY Linkers join the CTL epitopes, HTL

epitopes are joined by GPGPG linkers and B-cell epitopes by KK linkers. The Cholera Toxin B (CTB) adjuvant is added to the N-terminus of the sequence

by an EAAK linker. An additional EAAK linker C-Terminal and HEYGAEALERAG linkers between CTL and HTL epitopes were incorporated. (B) The refined

three-dimensional structure of vaccine construct; (C) ProSA-web assessment of the vaccine tertiary structure. The evaluation revealed a Z-score of

−4.49, indicating good quality. (D) Ramachandran plot analysis of the refined structure. The evaluation revealed that 96.0% of the residues of the vaccine

are present in the favored region.

ns simulation. The comparison of RMSD fluctuation for backbone

atoms of IBD-MEV before docking andMEV-TLR3 complex signifies

the stability of the MEV system due to the binding of MEV to

the TLR3 (Figure 3A). RMSF analysis (Figure 3B) revealed slight

fluctuation in docked complex side-chain atoms, which may reflect

high interaction between the IBD-MEV and TLR3.
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FIGURE 2

The molecular interaction analysis of the designed MEV with TLR3 after protein-protein docking. (A) Interacting tertiary structure whereby interacting

residues are shown by blue (TLR3) and red (MEV); (B) The interacting residues; TLR3 (Teal) and MEV (Green); (C) Di�erent interaction between the

interacting residues of TLR3 and MEV.

FIGURE 3

Molecular dynamics simulation analysis at 50-ns MD simulation. (A) Analysis of RMSD trajectories for MEV-TLR3 complex (Black) and MEV (Red), relative

to the backbone. The RMSD plot showed structural stability of the complex with minimum deviations; (B) Analysis of RMSF trajectories for MEV-TLR3

complex (Black), MEV (Red) and MEV bound (Blue) to TLR3. The RMSF plot shows the flexibility of interacting side-chain regions.
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FIGURE 4

In silico restriction cloning of the optimized sequence of the designed MEV into the pET28a(+) expression vector. The MEV construct is labeled as

Construct, and the restriction sites are incorporated at N-terminal (XhoI) and C-terminal (BamHI) of the vaccine construct.

In silico cloning and optimization of vaccine
construct

The JCat server optimized the codon usage for maximal

expression of the IBD-MEV construct according to E. coli (strain

K12). The obtained CAI value of 0.99 and GC-content of 52.36%

imply the effectiveness of IBD-MEV expression in the selected host.

The predicted DNA sequence of the IBD-MEV construct was cloned

into the pET-28a(+) expression system using the SnapGene. BamHI

restriction sequence was incorporated at the N-terminal, and XhoI

site was incorporated at the C-terminal of the construct (Figure 4).

In silico immune simulations of vaccine
construct

Immunological simulation findings confirmed various immune

profiles created by the vaccination, with the vaccine inducing an

immune response via an increase in antibodies after delivery to the

simulation. The vaccine doses were administered in two intervals: the

first dose for a 7-day old chick and the second after 11 days of the

first dose (Day 18). The immune response was studied for 45 days.

With C-ImmSim simulation, in comparison to the primary reaction

indicated by IgM, delivery of the IBD-MEV construct resulted

in a considerable increase in the tertiary immune response. After

receiving the vaccination, the B cell population produced memory

cells that would keep the memory if the host became reinfected

(Figure 5). The existence of antibodies that successfully preserved the

likelihood of an antigenic rush was confirmed by the drop in antigen

level with each vaccination.

Discussion

IBDV is one of the top infectious issues affecting young chickens,

with a significant socio-economic impact on the poultry industry with

direct and indirect losses (5). Direct losses include morbidity and
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FIGURE 5

C-ImmSim in silico immune simulation analysis, showing immune response against IBDV-MEV construct. (A) Immunoglobin production (colored peaks)

in response to vaccine injections (black; 7 and 18 Day); (B) Amount of B lymphocytes composed of B memory (y2) and B-isotypes (IgM, IgG1, and IgG2)

(C) CD8+ T-cytotoxic lymphocytes (CTL) cell populations and (D) CD4+ T-helper lymphocytes (HTL) cell population; per state in response to antigen

injection.

mortality losses, while indirect losses owe to immunosuppression-

induced secondary infections. Since the virus targets the B cells

in the BF, chickens typically display immunosuppression, are less

responsive to vaccination campaigns, and are more vulnerable to

secondary infections. The use of a live attenuated (mild strain)

of IBDV is a frequent IBDV vaccination regimen. LAVs imitate

infection to induce host immunity and reduce clinical illness or

immunosuppression. Even though this treatment prevents clinical

indications of the disease, it produces bursal damage. Moreover,

there is a risk that the LAVs may revert to a virulent strain,

resulting in bursal injury and immunosuppression (15, 16). LAVs

are also ineffective against vvIBDV and rapidly neutralized by

MAb (30). Recently, the focus has shifted to developing epitope-

based vaccines due to their superior safety profiles and logistical

manageability. The potential benefits of epitope-based vaccination

are improved safety, time-saving, ability to focus on conserved

epitopes and specifically engineer epitope combinations for increased

potency (56). As a result, rational selections are made to isolate and

separate the ingredients needed for the intended immune response

using immuno-informatics approaches to vaccine development. The

immunoinformatics techniques can be employed to design proper

protein antigens that elicit antibody response and cell-mediated

immunity. Therefore, this study aimed to construct a potential MEV

against IBDV by focusing on the two capsid proteins of the virus, VP2

andVP3. The trimeric form of VP2makes up the IBDV virion’s major

capsid, while the dimeric VP3 subunits make up the inner minor

capsid. VP2 is preferably targeted in IBDV vaccine development

strategies because it is essential for selection, entry into target cells,

and induction of protective, neutralizing antibodies (9). VP3 has

also been identified as a putative antigen for the production of a

multiepitope vaccine (10). The MEVs would mitigate any potential

negative consequences of employing the entire virion, reducing

the likelihood of reversion to virulence and other vaccine-related

adverse effects.

T cell epitopes are antigenic peptides recognized by the TCR

when bound to MHC molecules. MHC class I presents CTL, and

MHC class II presents HTL epitopes recognized by CD8+ and CD4+

T cells, respectively. After identifying the target epitope, CD8+ T

cells mature into CTL, which can destroy malignant or infected cells.

In contrast, CD4+ T cells mature into HTL, stimulating B cells to

generate antibodies and macrophages to eliminate the target antigen.

T lymphocytes are essential immune system cells reportedly required

for complete protection and generation of protective antibodies

against virulent IBDV (57). The B cell antigenic epitopes are

identified by secretory antibodies or B cell receptors to stimulate

an immune response (57). Therefore, B cell epitopes are essential
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to induce humoral or antibody-mediated immunity, which serves as

the main line of defense against severe IBDV. This approach used

standard servers to identify and evaluate appropriate CTL, HTL and

B cell epitopes from the targeted VP2 and VP3 proteins. Based on the

evaluations, four CTL, sevenHTL and 11 B cell epitopes were selected

for the final vaccine construct.

The present investigation added CTB mucosal adjuvant to the

final IBD-MEV construct. Adjuvants have become an essential

component of most vaccines, enhancing the cell-mediated immune

responses, decreasing the antigen dosage, inducing prolonged

immune responses and acting as agonists for TLRs (58). The

non-toxic CTB has a strong affinity for the gut mucosal GM1-

ganglioside receptor (43). CTB has been used extensively in mucosal

immunization strategies as a DNA vaccine adjuvant. These strategies

have shown CTB as an effective adjuvant for developing mucosal

antibody responses and specific immunity. Additionally, CTB

activated the signaling pathways through TLR’s, which are crucial in

connecting innate and adaptive immunity.

To complete the final stage of the IBD-MEV construction, the

epitopes and CTB adjuvant were linked using suitable flexible linkers.

Linkers are crucial for improving the stability and expression of

proteins in developing MEVs. The AAY linkers joining CTL epitopes

enhance dissociation and epitope identification by preventing the

formation of junctional epitopes. The glycine-rich GPGPG linkers

that connect the HTL epitopes enhance the construct’s solubility,

accessibility, and flexibility of adjacent domains (30). The CTL

epitopes were paired with the HTL epitopes using HEYGAEALERAG

linkers, which enhance epitope presentation by creating distinct

proteasomal and lysosomal cleavage sites. The bi-lysine linker that

joined the B cell epitopes helps in the specific presentation of each

peptide to antibodies and preserves their individual immunogenic

properties (30). A rigid EAAK linker forming an alpha helix

connected the CTB adjuvant to the N-terminus of the constructs to

improve domain independence and stability (59). The overlapping

epitope sequences were scrutinized and merged into one.

In order to confirm that the IBD-MEV construct provides an

efficient immune response without eliciting allergic reactions, it is

imperative to evaluate the antigenic, immunogenic and allergenic

properties. The IBD-MEV was determined to be immunogenic,

antigenic and non-allergenic. Generally, a promising vaccine

candidate should have a molecular weight lesser than 110 kDa and

an instability index lesser than 40, which classify them as relatively

stable. The IBD-MEV had a molecular weight of 55.64 kDa and

an instability index of 16.24, which meets the criteria for a stable

vaccine. While the predicted theoretical pI of 9.24 indicates the

basic nature. This may be because IBD-MEV contains basic amino

acids such as arginine (4.2%), histidine (1.5%) and lysine (8.6%).

The aliphatic index, which is the proportional volume occupied by

the protein’s aliphatic side chains, determines the thermal stability

of a vaccine construct, with higher aliphatic index values indicating

thermostability over a wide temperature range (60, 61). The projected

aliphatic index of 86.72 for the constructed multiepitope vaccine

suggested the thermostability of the protein. A key factor used to

assess the protein’s solubility is the Grand Average of Hydrophobicity

Index (GRAVY), which represents the hydrophobicity value of a

peptide. When the GRAVY value is positive, it shows hydrophobicity;

when it is negative, it suggests hydrophilicity (61). The construct, with

a GRAVY index of−0.256, reflects the polarity and high solubility of

the IBD-MEV construct.

The IBD-MEV tertiary structure was modeled using Colabfold,

a rapid protein structure and complexes prediction tool based on

AlphaFold2 artificial intelligence (AI) system (46, 47). In order

to predict a structure close to the native system, the 3D model

needs to be refined and validated, which was achieved through the

GalaxyRefine server in the study (48). The good quality of the refined

model is indicated by the model’s global distance test-high accuracy

(GDT-HA) score, RMSD value, MolProbity score, and rotamers

score. The refinedmodel evaluated using the Ramachandran diagram

showed that most of the vaccine’s amino acids (96% residues) were

located in the favored region. While the ProSA online server’s

evaluation of a Z score supported the vaccine’s overall quality (49).

TLRs are conserved membrane-spanning proteins that function

as the body’s first line of defense and are essential to the innate

immune system. TLRs control the transcriptional expression of

cytokines by identifying pathogen-associated molecular patterns

derived from pathogens (62). The cytokines production triggers the

host’s innate immune system to mediate antimicrobial response.

Among the chicken TLRs, TLR3 tends to recognize viral dsRNA;

therefore, IBD-MEV was docked against TLR3 using the HDOCK

server (51, 63). The server predicted a robust interaction with a

negative Gibbs-free (1G) value. The Gibbs free energy is essential to

characterize the magnitude of an interaction occurring under certain

circumstances in a cell. The more negative the value of the Gibbs free

energy, the more energetically feasible the interaction is. Accordingly,

a1G value of−295.94 kcal/mol indicates stable binding of IBD-MEV

and TLR3. PDBSum revealed the existence of H-bond and salt bridge

interactions between the IBD-MEV and TLR3 (64, 65). Additional

validation of the docking results was performed using 50 nsmolecular

dynamics simulation analysis, where the root mean square deviation

(RMSD) and root mean square fluctuation (RMSF) of the complex,

bound and unbound IBD-MEV were determined. RMSD calculates

the degree of deviation for a group of atoms to the respective initial

reference structure. Thus, high RMSD values would be associated

with instability in the structure. The complex structure exhibited

lower RMSD trajectories as compared to MEV, indicating that IBD-

MEV and TLR3 were bound in a stable and confined manner. RMSF

provides more insights regarding the stability of the complex. The

bound and unbound MEV structure displayed fluctuations in RMSF

analysis, whichmay be intrinsic to the structure. These findings imply

that the IBD-MEV can efficiently activate TLR3 and enhance immune

defenses against the IBDV.

By modeling the host’s immunological response following

vaccination, immune simulations give insight into the capability

of the vaccine construct against the pathogen (66). The in silico

immune simulation results demonstrated the production of memory

B cells, T cells and elevated Immunoglobulin (Ig’s) levels. Upon the

first IBD-MEV administration, modest production of antibodies was

simulated, whereas elevated production of antibodies was observed

upon the second dose. Among the immunoglobulins, high IgG

and IgM levels were simulated, constituting the primary response

against the virus. In addition, IgG1 + IgG2, IgG1 and IgG2

comprising the secondary and tertiary response were also noted

on vaccine administration. The antigen exposure increased the B

lymphocyte count, particularly the memory B lymphocytes. The

progressive rise in memory B lymphocytes and immunoglobulins

with repeated administration of the antigen confirms the efficacy

of IBD-MEV when the host is exposed over a prolonged period of

time. The T helper (TH) response exhibited a similar response, with
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antigen exposure increase in memory cell count was predicted. In

contrast, cytotoxic T cells maintained a modest level throughout the

simulation. In this way, the IBD-MEV administration simulated an

efficient humoral and cell-mediated immune response against IBDV.

However, further research and experimental validation of the current

study’s findings are necessary to confirm and validate the safety,

protectivity and efficacy parameters.
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avian genomes
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E�at Nasre Esfahani 4 and Jacqueline Smith 5*

1Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran,
2Department of Animal Science, Faculty of Agriculture, Yasouj University, Yasouj, Iran, 3Department

of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran, 4Department of

Agriculture, Payam Noor University Tehran, Tehran, Iran, 5The Roslin Institute and Royal (Dick)

School of Veterinary Studies R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom

Introduction: The uncoupling proteins (UCPs) are involved in lipid metabolism

and belong to a family of mitochondrial anionic transporters. In poultry, only

one UCP homologue has been identified and experimentally shown to be

associated with growth, feed conversion ratio, and abdominal fat according to

its predominant expression in bird muscles. In endotherm birds, cell metabolic

e�ciency can be tuned by the rate of mitochondrial coupling. Thus, avUCP

may be a key contributor to controlling metabolic rate during particular

environmental changes.

Methods: This study aimed to perform a set of in-silico investigations

primarily focused on the structural, biological, and biomimetic functions of

avUCP. Thereby, using in silico genome analyses among 8 avian species

(chicken, turkey, swallow, manakin, sparrow, wagtail, pigeon, and mallard)

and a series of bioinformatic approaches, we provide phylogenetic inference

and comparative genomics of avUCPs and investigate whether sequence

variation can alter coding sequence characteristics, the protein structure, and

its biological features. Complementarily, a combination of literaturemining and

prediction approaches was also applied to predict the gene networks of avUCP

to identify genes, pathways, and biological crosstalk associated with avUCP

function.

Results: The results showed the evolutionary alteration of UCP proteins

in di�erent avian species. Uncoupling proteins in avian species are highly

conserved trans membrane proteins as seen by sequence alignment, physio-

chemical parameters, and predicted protein structures. Taken together,

avUCP has the potential to be considered a functional marker for the

identification of cell metabolic state, thermogenesis, and oxidative stress

caused by cold, heat, fasting, transfer, and other chemical stimuli stresses

in birds. It can also be deduced that avUCP, in migrant or domestic birds,

may increase heat stress resistance by reducing fatty acid transport/b-

oxidation and thermoregulation alongside antioxidant defense mechanisms.

The predicted gene network for avUCP highlighted a cluster of 21 genes

involved in response to stress and 28 genes related to lipid metabolism

and the proton bu�ering system. Finally, among 11 enriched pathways,

crosstalk of 5 signaling pathways including MAPK, adipocytokine, mTOR,

insulin, ErbB, and GnRH was predicted, indicating a possible combination of

positive or negative feedback among pathways to regulate avUCP functions.
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Discussion: Genetic selection for fast-growing commercial poultry has

unintentionally increased susceptibility tomany kinds of oxidative stress, and so

avUCP could be considered as a potential candidate gene for balancing energy

expenditure and reactive oxygen species production, especially in breeding

programs. In conclusion, avUCP can be introduced as a pleiotropic gene

that requires the contribution of regulatory genes, hormones, pathways, and

genetic crosstalk to allow its finely-tuned function.

KEYWORDS

avian uncoupling protein, nucleotide coding sequence, protein structure prediction,

codon usage, pathway crosstalk

1. Introduction

Generalized homeostasis of energy expenditure and energy

intake is essential for the best selection criteria in poultry,

however, the regulatory mechanisms connecting feed intake,

growth, and energy balance are still confusing. A growing body

of literature implies avian Uncoupling Protein (avUCP) plays

a key role in cell metabolism and adaptive thermogenesis. It

thus may have the potential to be considered the missing link

in the chain of whole-body energy homeostasis in chickens. The

avUCP is a homolog with more than 70% protein sequence

similarity with mammalian UCP3 and UCP2, harboring two

conserved regions of the mitochondrial carrier and ADP/ATP

transporter translocase (1, 2). The avUCP gene was first

identified in 2001 after screening a hummingbird skeletal muscle

cDNA library (3). Subsequent studies in different avian species

revealed a predominant expression of avUCP mRNA in skeletal

muscle in chicken (Gallus gallus), king penguin (Aptenodytes

patagonicus), and hummingbird (Eupetomena macroura) (1, 4–

7). The interconnection of growth, oxidative stress, reproductive

Abbreviations: ADP, Adenosine diphosphate; AI, Aliphatic index; AMPK,

AMP-activated protein kinase; ATP, Adenosine triphosphate; CAI, Codon

Adaptation Index; cDNA, Complementary DNA; CDS, Coding sequence;

CS, Citrate synthase; CU, Codon usage; FDR, False discovery rate;

GDP, Guanosine diphosphate; GO, Gene ontology; HK1, Hexokinase

1; HK2, Hexokinase 2; II, Instability index; IL-6, Interleukin 6; LDHA,

Lactate dehydrogenase A; LDHB, Lactate dehydrogenase B; mRNA,

Messenger RNA; PDHX, Pyruvate dehydrogenase complex component

X; PFK, Phosphofructokinase; PGC-1α, Peroxisome proliferator-activated

receptor γ coactivator-1α; Pi, Inorganic phosphate; PK, Protein kinase;

PPARGC1A, PPARG coactivator 1 alpha; PPARs, Peroxisome proliferator-

activated receptors; ROS, Reactive oxygen species; RSCU, Relative

Synonymous Codon Usage; SDHA, Succinate dehydrogenase complex

flavoprotein subunit A; SDHB, Succinate dehydrogenase complex iron

sulfur subunit B; SLC25A4, Solute Carrier Family 25 Member 4;

TNFα, Tumor necrosis factor alpha; TORC1, TOR complex 1; UCP,

Uncoupling Protein.

state, immunity, and feather coloration processes and their

efficacy on thermo-regulation have been suggested by several

studies (8–12).

For a long time, shivering thermogenesis has been known to

be the main thermogenic mechanism in avian species (13, 14),

although the evidence for the existence of adaptive mechanisms

of heat production and non-shivering thermogenesis are

currently growing (1). This thermogenesis mechanism can be

boosted by increasing oxidative metabolic capacity along with

the uncoupling of aerobic metabolism from ATP production.

Also, previous studies support the involvement of avUCP in

avian energy expenditure and adaptive thermogenesis (1, 15–

18). Taouis et al. showed that early thermal conditioning

in broiler chicks can instantly reduce body temperature and

avUCP expression in the pectoral muscle, which may potentially

improve the resistance to heat stress in broilers (15). In contrast,

another study showed that diet-induced thermogenesis had

no control over feed intake in layers and broilers and the

expression of avUCP was not influenced by layer and broiler

genotypes. Consequently, these findings led to the rejection of

the hypothesis of the involvement of avUCP in diet-induced

thermogenesis (19). A study in ducklings has verified that, in

proportion to the degree of cold, the increase in metabolic heat

production occurs in parallel with the upregulation of avUCP

and higher mitochondrial oxidative phosphorylation, while

no change in mitochondrial membrane conductance capacity

occurred (20).

avUCP has also been suggested to be involved in cell

metabolism. Several studies have identified polymorphism of

the avUCP gene that is associated with fat metabolism, growth,

feed intake, and exposure to abiotic stress conditions (2, 21, 22).

Additionally, it was also revealed that the upregulation of avUCP

can result in the down-regulation of reactive oxygen species

(ROS) production in the skeletal muscle of fasted chickens

(23). On the other hand, the avUCP expressed in glycolytic

muscle fibers may be a passive transporter of pyruvate for

ensuring a sustained balance between glycolysis and oxidative

phosphorylation (24). Conversely, it was demonstrated that heat
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stress stimulates mitochondrial superoxide production in broiler

skeletal muscle through the downregulation of uncoupling

protein (25, 26). Another study showed that the expression

of members of the beta-oxidation pathway and mitochondrial

fatty acid transport were upregulated upon heat stress. However,

the expression of avUCP did not control ROS production in

heat-stressed chickens (18). Heat stress, by causing oxidative

stress, impairs mitochondrial function by decreasing avUCP

expression (27) which can further impair meat quality and

increases glycolysis and intramuscular fat deposition (2, 28,

29). Additionally, the upregulation of avUCP and avPGC-

1α together can help to reduce ROS accumulation and lipid

oxidation in the skeletal muscles of birds (28, 30). Several distinct

studies of avUCP, have demonstrated the regulation of avUCP

expression and regulation of its putative function. Accordingly,

thyroid hormones were reported to increase thermogenic

capacity in the avian muscle and liver (31, 32). Moreover,

uncoupling of sarco- endoplasmic reticulum calcium ATPase

pump activity in muscle (33) and regulation of glycolysis are

involved in controlling thermogenic processes in avian species.

Some studies have implied that thermogenesis is controlled

by thyroid hormone affecting PPARGC1A and SLC25A4 gene

expression in chickens (34, 35). However, triiodothyronine (T3)

is reported to have a biphasic effect on avUCP expression (32).

Another study investigating variations in avUCP expression,

thyroid hormone metabolism, and heat production during

cold exposure has reported a significant increase in body

temperature, avUCP expression, T3 level, renal outer-ring

deiodination activity, and also increased thyroxine (T4) level,

and hepatic inner-ring deiodination activity. Meanwhile, no

significant differences in body weight and feed intake were

reported in comparison with chickens reared in normal

temperatures (36).

Moreover, it has been implied that avUCP gene expression

is down-regulated by leptin hormone and up-regulated by pro-

inflammatory cytokines IL-6 and TNFα through modulation

of avUCP-related transcription factors (PPARs and PGC-

1α) (32). Two-fold over-expression in gastrocnemius muscle,

significant down-regulation, and no significant change were

reported in avUCP mRNA expression through injection of

thyroid hormone, methimazole, and insulin respectively (16).

Additionally, selenium deficiency in broilers can cause a

reduction in avUCPmRNA levels that results in oxidative stress,

inflammation, and glyco-metabolism disorders (37).

Furthermore, in fat chickens with a higher fat diet, avUCP

was significantly up-regulated, which could be correlated

with the particular need for antioxidant pathways in muscle

(38). Previous research has provided some evidence for the

involvement of the beta-adrenergic system, PPAR transcription

factors, and the AMP-activated protein kinase (AMPK) to

control the expression of avUCP (39). Furthermore, oral use of

D-aspartate resulted in a reduction in body temperature through

the decline in avUCP mRNA expression in the breast muscle,

which may be involved in reduced mitochondrial proton leaks

and heat production (40).

There is also some evidence Oleuropein can also affect

avUCP expression as well as genes related to mitochondrial

oxidative phosphorylation and induce mitochondrial biogenesis

in avian muscle cells. Oleuropeins can suppress mitochondrial

superoxide production, through up-regulation of avUCP and

manganese superoxide dismutase (41, 42). Therefore, the

orexin system in avian muscle cells can regulate mitochondrial

dynamics without affecting ATP synthesis (43). Evidence

has also been presented that retinoic acid can activate the

thermogenic function of avUCP in birds (44). Interestingly,

“avian” is reported to be the only vertebrate lineage having

just one UCP gene (45). Thus, the avian uncoupling protein

seems to provide a unique opportunity to explore the functional

activity and regulation patterns of UCP. We aimed, therefore,

to investigate avUCPs in eight different avian species (chicken,

turkey, swallow, manakin, sparrow, wagtail, pigeon, and

mallard) through a wide range of comparative bioinformatics

analyses to better understand the details of avUCPs, from their

coding sequences to their functional consequences.

2. Methods

2.1. Coding sequence analysis

The nucleotide coding sequences and amino acid sequences

of avian uncoupling proteins were downloaded from a dataset

contained at https://figshare.com/. Sequence alignment of

coding sequences (CDS) for eight avian species including

chicken, turkey, swallow, manakin, sparrow, wagtail, pigeon,

and mallard was conducted for determining the number

of conserved, variable, parsimonious, and singleton sites in

avUCPs. Moreover, nucleotide composition, GC content, codon

frequency, and relative synonymous codon usage were obtained

using MEGA11 software (46). The Codon Adaptation Index

(CAI) for each of the studied avian species was estimated using

the Markov model with 500 replications over the avUCP DNA

sequence. As the reference set to calculate the CAI is important

for interpretation, the codon usage table for each species (if it

exists), from the codon usage database on the CAIcal server

(http://www.kazusa.or.jp/codon/) was therefore utilized (47).

The Relative Synonymous Codon Usage (RSCU) was calculated

as follows:

RSCUi,j =
nixi,j

∑ni
j=1 xi,j

(1)

Where xi is the number of times the ith codon has been

favored to be used for an amino acid, and n represents the

number of synonymous codons for that amino acid.
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2.2. Protein sequence analysis

Amino acid (a.a) composition, physio-chemical parameters

and phylogenetic analysis of eight avian protein sequences

were performed in QIAGEN CLC Genomics Workbench

(RRID: SCR_011853) (48). Physio-chemical parameters

including molecular weight, isoelectric point, extinction

coefficient, instability index, aliphatic index, and grand average

of hydropathicity, were determined for each avUCP protein

sequence. The phylogenetic analyses were performed using

the Neighbor-Joining method, Jukes-Cantor protein distance

measure, and bootstrapping over 307 a.a of protein sequences of

eight avian species in CLC Genomics Workbench (48). Entropy

analysis was then carried out using BioEdit (49) to further

determine variable and conserved sites and finally, by using the

Skylign online tool, a positional logo of amino acid variability

was constructed (50).

2.3. Protein structure prediction

The secondary structures of avUCPs were predicted

by the SOPMA predictor (51). All avUCP sequences were

submitted to the Phyre2 web portal (http://www.sbg.bio.ic.ac.

uk/$\sim$phyre2/html/page.cgi?id=index) as a batch file for

tertiary structure prediction. After that, the avUCPs were

modeled through four stages including homology detection,

fold library scanning to predict secondary structure, loop

modeling, and sidechain fitting (52). Structural evaluation and

qualification were then performed using the Swiss-Model online

tool (53).

2.4. Sequence-based gene ontology
prediction

PredictProtein was used to predict Gene Ontology (GO)

terms of cellular components, molecular function, and biological

process for avUCP protein sequences (54). In this process,

the distance between the input protein sequence and the

closest annotated protein represents the reliability of GO

prediction (54).

2.5. Interactive network prediction and
gene-based enrichment analysis

By identifying genes related to avUCP from the literature,

a list of genes was extracted according to Davoodi and Ehsani

(55) for protein-protein network prediction. The list of most

related-genes was provided through the retrospective review of

previous studies on avUCP (5, 42, 56–71). Biomolecular network

prediction and gene set enrichment analysis of networked genes

were performed in Cytoscape (72) using STRING v11.5 (73, 74).

2.6. Pathway crosstalk prediction

Crosstalk prediction was applied using XtalkDB by querying

pathways enriched for avUCP to predict which pairs of signaling

pathways may interact to reach a conclusive understanding

of biological pathways involved in the regulation of avUCP

functions from a global view (75).

2.7. Datasets

The nucleotide coding sequences (CDS) and protein

sequences of avian uncoupling protein (avUCP) from eight

different avian species (chicken, turkey, swallow, manakin,

sparrow, wagtail, pigeon, and mallard) were retrieved in FASTA

format from the NCBI database and used for in silico analyses

(Table 1).

2.8. Model of analysis

This research had an integrative pipeline but no unique

statistical model. All parts of the pipeline are explained

previously in each section.

3. Results

3.1. Coding sequence analysis

3.1.1. Nucleotide composition

The CDS sequences were analyzed for nucleotide

composition, GC content, conserved, variable, parsimony

informative, and singleton sites. The CDS length in all selected

birds consisted of 924 nucleotides. The number of conserved,

variable, parsimony informative, and singleton sites were

revealed as 684, 240, 145, and 95, respectively. Divergence

details of GC content among the eight avian species are shown

in Table 2. The “C” content in the coding sequences of avUCP

in wagtail (2.5), mallard (1.0), sparrow (0.8), and manakin (0.1)

was higher than that of “G,” however, the “G” content in turkey

(1.8), chicken (1.2), swallow (0.6), and pigeon (0.3) was higher

than that of the “C” content.

3.1.2. Codon usage analysis

The codon usage (CU) and relative synonymous codon

usage (RSCU) values of avUCP coding sequence were calculated,

then CU and RSCU patterns were obtained from the eight avian
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TABLE 1 General information for avUCP genes in eight avian species extracted from the NCBI database.

Species Gene ID Chromosome Exon number Transcript ID

Gallus gallus (chicken) 373896 1 6 NM_204107.2

Anas platyrhynchos (mallard) 101794508 1 6 XM_005025525.4

Chiroxiphia lanceolata (lance-tailed Manakin) 116781978 2 7 XM_032677900.1

Columba livia (rock pigeon) 102092157 Unknown 8 XM_021285112.1

Passer montanus (eurasian tree sparrow) 120496512 Unknown 7 XM_039697035.1

Hirundo rustica (barn swallow) 120765208 2 7 XM_040089804.1

Meleagris gallopavo (turkey) 100303663 1 6 NM_001303164.1

Motacilla alba alba (white wagtail) 119699879 1 7 XM_038133918.1

TABLE 2 GC content (%) of avUCP in eight di�erent avian species.

C G C-1 G-1 C-2 G-2 C-3 G-3 GC GC-1 GC-2 GC-3

Chicken 32.5 33.7 26.6 35.1 26.0 23.1 44.8 42.9 66.1 63.8 49.7 87.6

Mallard 35.0 34.0 26.6 37.7 26.9 23.7 51.3 40.6 68.9 66.4 51.0 91.9

Manakin 32.0 31.9 26.0 37.7 26.0 22.1 44.2 36.0 64.0 65.8 48.7 79.9

Pigeon 34.1 34.4 26.0 37.3 27.3 23.4 49.0 42.5 68.5 65.2 51.2 91.6

Sparrow 34.2 33.4 25.3 37.0 26.3 23.4 51.0 39.9 67.6 65.3 51.0 90.8

Swallow 33.8 34.4 26.0 37.0 26.6 24.4 48.7 41.9 68.2 65.8 52.2 90.5

Turkey 31.8 33.7 26.3 35.1 26.0 23.1 43.2 42.9 65.5 63.6 49.8 85.9

Wagtail 35.8 33.3 25.6 37.7 26.3 23.4 55.5 39.0 69.2 66.6 50.9 94.5

avUCPs. Generally, 64 combinations of 3-letter codons encode

20 different amino acids, thus showing codon redundancy. After

excluding the three stop codons, 25 codons in pigeon, sparrow,

turkey, wagtail, 24 codons in chicken, mallard, and swallow,

and 23 codons in manakin avUCP were observed with an

RSCU value higher than 1. Moreover, the numbers of unused

codons (RSCU = 0) were as follows: chicken−13, mallard−14,

manakin−8, pigeon−16, swallow−13, sparrow−15, turkey−11,

and wagtail−18. The RSCU value of the codon CUG, which

encodes leucine, was the highest in all selected avian species.

By looking at codons with an RSCU >1 and examining their

final bases, it was found that they ended, on average, with

C (15), G (9), and roughly one U and A in the selected

species. The highly preferred codons within avUCP, with their

corresponding CU and RSCU values are presented in Table 3.

As can be seen, all highly preferred codons, except the CAU

(only in manakin), which encodes for histidine, end with a “C”

or a “G.” In addition, these 25 highly preferred codons are

responsible for encoding around 76% (in manakin) to 89% (in

wagtail) of the total protein sequences of UCP. Moreover, the

expected codon adaptation index (CAI) for retrieved CDSs of

chicken, mallard, manakin, pigeon, sparrow, swallow, turkey,

and wagtail were 0.707, 0.691, 0.712, 0.697, 0.695, 0.692, 0.709,

and 0.696, respectively.

3.2. Protein sequence analysis

3.2.1. Amino acid compositions

The results of the protein sequence analysis of the eight

avUCPs revealed a sequence length of 307 amino acids and

the amino acid compositions in different birds are represented

in Figure 1. Alanine, leucine, valine, and glycine have been

observed at high frequency in all avUCPs, while histidine—a

positively charged, and tryptophan—an aromatic amino acid,

have been detected at the lowest frequency in all avUCPs. In

contrast to the slight variation in amino acid usage among the

eight studied avUCP sequences, tyrosine was the only completely

constant amino acid among the avUCPs in all eight birds.

3.2.2. Physio-chemical analysis

Physio-chemical parameters of uncoupling proteins

including molecular weight, isoelectric point, aliphatic index,

number of sulfur atoms, hydrophobicity, hydrophilicity, the

percentage of negatively and positively charged amino acids,

instability index, and grand average hydropathy of avian

uncoupling protein in eight avian species are summarized in

Table 4. The isoelectric point of UCPs ranged from 9.51 to 9.66.

The lowest instability index (II) and the highest aliphatic index
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TABLE 3 The codon usage and relative synonymous codon usage of highly preferred codons for avUCP in eight avian species.

Codon Chicken Mallard Manakin Pigeon Swallow Sparrow Turkey Wagtail

CU RSCU CU RSCU CU RSCU CU RSCU CU RSCU CU RSCU CU RSCU CU RSCU

AGC(S) 11 3.5 11 3.7 7 2.8 9 3.4 11 3.3 9 3.2 10 3.2 10 3.5

CGG(R) 8 2.1 6 1.6 7 2.0 8 2.1 12 3.0 6 1.6 8 2.1 9 2.4

CGC(R) 7 1.8 9 2.5 9 2.6 11 2.9 8 2.0 12 3.1 4 1.0 10 2.6

CUG(L) 25 4.4 20 3.8 20 3.2 20 3.8 22 3.9 21 3.9 24 4.4 20 3.8

CUC(L) 8 1.4 9 1.7 12 2.0 11 2.1 11 1.9 10 1.9 8 1.5 11 2.1

GCC(A) 18 2.3 22 2.4 21 2.2 20 2.3 30 3.2 28 3.0 20 2.6 31 3.4

GGG(G) 14 2.2 16 2.3 13 1.9 14 1.9 12 1.7 11 1.6 13 2.0 7 1.0

GGC(G) 9 1.4 11 1.6 9 1.3 9 1.2 11 1.6 11 1.6 7 1.1 18 2.7

GUG(V) 27 3.5 21 2.6 20 2.7 21 2.7 22 3.1 23 3.1 27 3.5 21 2.6

GUC(V) 4 0.5 10 1.3 7 0.9 9 1.2 5 0.7 6 0.8 4 0.5 10 1.3

ACC(T) 10 1.7 10 2.0 10 2.0 11 1.6 10 1.9 10 1.9 11 1.9 9 1.7

ACG(T) 9 1.6 9 1.8 3 0.6 11 1.6 7 1.3 8 1.5 10 1.7 8 1.5

CCC(P) 13 2.9 13 2.6 9 2.4 12 3.2 10 2.7 10 2.5 13 2.9 11 2.8

AUC(I) 10 2.5 11 3.0 8 2.4 10 3.0 10 3.0 10 2.7 11 2.8 8 3.0

AAG(K) 7 1.6 7 1.6 10 1.8 8 1.8 8 1.8 8 1.8 7 1.6 9 2.0

AAC(N) 8 1.8 7 2.0 6 1.3 8 2.0 6 1.7 7 1.8 6 1.3 8 1.8

CAG(Q) 11 1.8 9 1.5 13 1.9 13 2.0 11 2.0 12 2.0 12 2.0 11 1.8

CAC(H) 1 2.0 2 2.0 1 2.0 1 2.0 1 2.0 0 0.0 1 2.0 1 2.0

CAU(H) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 1 2.0 0 0.0 0 0.0

GAG(E) 10 2.0 8 1.8 8 1.8 8 1.8 9 2.0 9 2.0 10 2.0 9 2.0

GAC(D) 7 1.4 11 2.0 6 1.1 10 1.8 9 1.6 10 1.8 8 1.6 10 1.8

UAC(Y) 9 1.6 11 2.0 9 1.6 8 1.5 10 1.8 11 2.0 9 1.6 11 2.0

UGC(C) 7 1.8 7 1.8 7 1.8 7 1.8 7 1.8 8 1.8 7 1.8 7 1.8

UUC(F) 11 2.0 9 1.8 9 1.8 10 1.8 7 1.4 9 1.8 10 1.8 9 1.8

UGG(W) 2 1.0 3 1.0 2 1.0 2 1.0 2 1.0 2 1.0 2 1.0 3 1.0

AUG(M) 7 1.0 6 1.0 7 1.0 6 1.0 10 1.0 11 1.0 8 1.0 11 1.0
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FIGURE 1

Amino acid composition of avUCP in di�erent avian species.

TABLE 4 Physio-chemical parameters of uncoupling proteins from eight avian species.

Species MW
(kDa)

IP AI S H-
phobic

H-
philic

–R +R II GRAVY

Chicken 33.13 9.58 97.82 15 0.56 0.27 0.065 0.104 41.04 0.200

Mallard 32.81 9.51 96.58 14 0.58 0.25 0.065 0.101 39.74 0.209

Manakin 32.85 9.56 100.42 15 0.58 0.25 0.065 0.104 34.72 0.237

Pigeon 32.85 9.58 94.04 14 0.56 0.27 0.065 0.104 35.03 0.174

Sparrow 32.96 9.54 95.02 20 0.57 0.25 0.065 0.104 39.73 0.236

Swallow 32.84 9.66 94.72 18 0.57 0.25 0.065 0.107 38.59 0.215

Turkey 33.15 9.58 96.55 16 0.56 0.27 0.065 0.104 39.73 0.194

Wagtail 33.13 9.58 93.09 19 0.57 0.25 0.065 0.104 37.28 0.197

MW,Molecular weight; kDa, kilodalton; IP, Isoelectric point; AI, Aliphatic index; S, number of sulfur atom; H-phobic, Hydrophobic%; H-philic, Hydrophilic; –R, negatively charged;+R,

positively charged; II, instability index; GRAVY, grand average hydropathy.

(AI) were observed in UCP of manakin. The molecular weight

and the overall negatively/positively charged amino acids were

nearly similar in all avUCPs in the current study.

The atomic sulfur count varied from 14 (mallard, pigeon) to

20 (sparrow). Sulfur can be found in cysteine and methionine

amino acids. Eight cysteine residues were observed in seven of

the avUCPs but the protein sequence of sparrow contained nine

cysteine residues. Furthermore, the hydrophobic methionine

was variable among avUCPs, which could be a source of

variability in atomic sulfur count among avUCP sequences in

the studied species.

A protein with an II smaller than 40 is considered

stable, and proteins with an II above 40 can be considered

somehow unstable (76, 77) and in the current study, the

highest II was observed in UCP of chicken. Also, protein

sequences with a GRAVY index above 0 are more likely to be

hydrophobic and all studied proteins were revealed to havemore

hydrophobic regions.

3.2.3. Entropy analysis

For more evaluation of the status of amino acids in the

avUCP protein sequences, entropy measures for each position

were estimated using BioEdit (49) and visualized by the Shannon

entropy plot, as shown in Figure 2. The estimated entropies of

aligned sequences ranged from 0 to 1.56, the average entropy

was estimated as 0.133 and a total of 274 positions displayed

an entropy of 0. Seven positions revealed entropy values higher

than 1 (147, 151, 267, 306, 299, 150, and 307). Among these,

147th and 151st positions showed the highest entropy of 1.56
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FIGURE 2

The Shannon entropy plot for alignment of proteins.

FIGURE 3

Phylogenetic relationships of the avUCPs in eight avian species (the numbers below the lines represent the branch size, and the numbers above

the lines represent the bootstrap value).

and 1.39, respectively. Also, eight regions with a length of more

than 10 amino acids (1→ 11, 30→ 50, 56→ 70, 83→ 107,

133→ 146, 157→ 172, 174→ 187, 216→ 246) have represented

entropy of zero, indicating totally conserved regions in the

examined avUCP protein sequences. Moreover, any region with

more than 10 consecutive amino acids with an average entropy

of >1 was not observed. To provide a compact representation

of the most variable sites with the highest entropy in avUCP

sequences among these eight species, the Skylign online tool

(50) was used to make a positional logo showing amino acid

variability (Figure 3).

3.2.3.1. Phylogeny analysis

The phylogenetic relationship of the avUCPs in the eight

examined avian species is depicted in Figure 4. A neighbor-

joining tree was derived from the multiple protein sequence

alignment. Phylogenetically, the longest distance was detected

between chicken and wagtail, in contrast chicken and turkey
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FIGURE 4

Logo of avUCP protein alignments (most variable sites with high entropy) among eight avian species. The height of the bar of letters (amino

acids) displays the conservation at that position and the height of each letter within a bar is determined based on the frequency of that letter in

that position.

showed the closest phylogenetic relationship which is in

agreement with comparative results of amino acid component,

codon usage pattern and physio-chemical parameters among

avUCPs of mentioned birds.

3.3. Protein structure prediction

SOPMA was used to determine the percentage of α-helix,

β-sheets, turns, and random coils to predict the secondary

structure of the selected avUCP sequences through a neural

network approach (51). The schematic predicted secondary

structures of avUCPs in the eight avian species are shown in

Figure 5. Because the secondary and tertiary structures of the

protein are completely influenced by its primary structure, any

differences in amino acid sequences can potentially modify

the secondary and tertiary structures. Within the eight avUCP

proteins, slightly different percentages of α-helical and β-turn

formations were derived. The average contribution of alpha-

helices, extended-strands, beta-turns, and random coils were

calculated as 46.60 ± 1.04, 15.87 ± 0.58, 7.42 ± 0.65, and 30.08

± 0.95% among the eight avUCP proteins, respectively. The

level of alpha-helical structure was determined higher than other

secondary structures.

The protein structure was predicted by three different

software programs: phyre2, Predict Protein and SOPMA, with

the final structural evaluation performed by SWISS_MODEL for

checking the clashing score, favoured Ramachandran residues,

and rotamer outliers. By using the Phyre2web portal (52),

through the homology detection method, three-dimensional

structures of the 8 avUCPs alongside potential extracellular,

cytoplasmic, and trans membrane helices were predicted. In

the protein structure, 6 trans membrane, 4 extracellular, and 3

cytosolic regions were predicted for the avUCPs. The two C-

terminal and N-terminal segments were considered extracellular

regions. Moreover, both hydrophobic and hydrophilic regions

can be seen throughout the avUCP sequence. Accordingly,

six areas with positive hydropathy are likely to represent

transmembrane helices, which indicates avUCP can function

as a trans membrane protein (Figure 6A). Meanwhile, areas

with negative hydropathy show that these regions can form the

extracellular part of avUCP (Figure 6A).

Ultimately, among the eight avUCPs, the predicted structure

with the highest sequence identity (71%), alignment coverage

(94%), interface similarity (51%), and confidence (100%) is

illustrated in Figures 6A–C. The nuclear magnetic resonance

molecular fragment replacement approach was applied to re-

specify protein structure using the Swiss-Model web tool.

The local and global model quality was then specified from

Ramachandran analysis for the predicted tertiary structure of

avUCP (Figure 6D). The final structure evaluation resulted in a

clash score (the number of serious clashes per 1,000 atoms) of

90%, Ramachandran residues favored−88.46%, Ramachandran

outliers−3.50%, rotamer outliers−8.09%, 0.01 bad angles, and

two C-beta deviations.

3.4. Sequence-based gene ontology
prediction

Gene Ontology (GO) terms associated with avUCP

were predicted using deep learning embedding through the

PredictProtein online tool (54). For this reason, the distance

between the input avUCP protein and the closest annotated
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FIGURE 5

Comparative view of the secondary structure of avUCPs in eight avian species (Blue, Alpha helix; Purple, Random coil; Red, Extended-strand;

Green, Beta turn).

protein was represented as the reliability of GO prediction. The

GO trees of avUCP are depicted in Figure 7. Consequently, four

biological processes including “mitochondrial transmembrane

transport,” “proton transmembrane transport,” “adaptive

thermogenesis,” and “response to cold” were predicted with

57% reliability. Also, three cellular components including

“mitochondrion,” “mitochondrial inner membrane,” and

“integral component of the membrane,” along with one

molecular function of “oxidative phosphorylation uncoupler

activity” were also anticipated with 57% confidence.

3.5. Interactive network prediction and
gene set enrichment analysis

Gene network was predicted in Cytoscape software (3.9.1)

using the embedded STRING app, and clustering was performed

by the K-means method (72). A total of 49 published avUCP

related-genes were used as input for network prediction and

resulted in highly orchestrated interactions among genes.

This network is divided into two clusters with the highest

confidence: cluster one containing 21 genes involved in

response to stress, and cluster two containing 28 genes

involved in lipid metabolism and proton buffering system.

The predicted network is shown in Figure 8. GO analysis on

these networked genes highlighted several biological processes

including the fatty acid metabolic process (GO:0006631),

response to chemical (GO:0042221), cellular response to

chemical stimulus (GO:0070887), oxidation-reduction process

(GO: 0055114), fatty acid beta-oxidation (GO: 0006635), and

regulation of fatty acid metabolic process (GO:0019217) as

being enriched (FDR < 0.01). Furthermore, three cellular

components including “mitochondrion,” “TOR complex1,”

and “mitochondrial membrane,” were enriched (FDR <

0.01). The PPAR signaling pathway, adipocytokine signaling,

FoXO signaling, mTOR signaling pathway, insulin signaling

pathway, MAPK signaling pathway, fatty acid degradation,

fatty acid metabolism, GnRH signaling pathway, ErbB

signaling pathway, and oxidative phosphorylation were also

indicated as enriched KEGG pathways for the avUCP gene

network (FDR < 0.05).
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FIGURE 6

(A) Membrane helix prediction with support vector machines with Kyte-Doolittle hydropathy plot. (B) Schematic figure of predicted extracellular,

cytoplasmic, and transmembrane helices. (C) Top 3D model of avian UCP [Model dimensions (Å): X: 53.347, Y: 74.255, Z: 50.565, Image colored

by the rainbow N → C terminus]. (D) Ramachandran plot with 88.46% favored. A dihedral angle of a protein is the internal angle of polypeptide

backbone at which two adjacent planes meet. The conformation of the backbone can be described by two dihedral angles per residue, because

the backbone residing between two juxtaposing Cα atoms are all in a single plane. These angles are called φ (phi) which involves the backbone

atoms C-N-Cα-C, and ψ (psi) which involves the backbone atoms N-Cα-C-N.

3.6. Pathway crosstalk

After a query of enriched pathways, we used XtalkDB

(75) to predict which pairs of signaling pathways may

crosstalk with each other. The six enriched pathways

were predicted to be involved in a network of crosstalk

which is depicted in Figure 9. In detail, adipocytokine

signaling was revealed to have an activation effect on

MAPK, insulin, and ErbB signaling pathways, and

both activation and inhibition effects on the mTOR

signaling pathway.

The mTOR signaling pathway is predicted to act as an

inhibitor for both MAPK and insulin signaling pathways.

Among these, the MAPK showed only an activation effect on

the mTOR pathway. Moreover, the insulin signaling pathway is

anticipated to induce adipocytokine, mTOR, and ErbB signaling

pathways, alongside inhibited GnRH signaling pathway. The

GnRH signaling pathway is shown to be involved in activation of

adipocytokine and MAPK signaling pathways and both negative

and positive crosstalk with ErbB signaling pathway. In addition,

the ErbB signaling pathway can activate and silence MAPK and

insulin signaling pathways, respectively.
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FIGURE 7

(A) Molecular function ontology tree and (B) biological process ontology tree (locations of PREDICTED terms are highlighted in yellow with

respect to inferred terms).

4. Discussion

4.1. Coding sequence analysis

4.1.1. Codon usage analysis

In the investigation of codon usage, the RSCU value is

a ratio between the occurrence frequency of a certain codon

and the expected usage frequency for codons (78). Codons

encoding amino acids of avUCP with RSCU values higher than

1.0 represent positive codon usage bias and codons with RSCU

values lower than 1 display negative codon usage bias. Moreover,

codons with RSCU = 0 display unfavorable codons. According

to the results, the avUCP gene obviously prefers codons with

“C” and “G” in the third position over the other bases. It can
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FIGURE 8

Predicted network for the regulatory and collaborative genes with avUCP. Separate boxes show clusters. Blue nodes represent genes involved in

response to stress (cold and free radicals) (cluster 1). Yellow nodes represent genes involved in lipid metabolism and proton bu�ering system

(cluster 2).

FIGURE 9

Network of crosstalk among enriched pathways (blue lines show activation and red lines represent inhibition e�ect).

be concluded that almost all highly preferred codons, except the

CAU codon (only in manakin), which encodes for histidine, end

with a “C” or a “G.”

However, the mechanisms of inducing codon biases

remained an open question. It can be attributed to the

expression level of genes, selective pressure, evolutionary trend,

phylogenetic relations of organisms, and genetic drift (79–81).

Moreover, the CAI values of 1 and 0 refer to the species

in which only the most frequent codons are used, and species

using the least frequent codons. Although manakin had the
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lowest GC ratio among the studied birds, it revealed the highest

CAI, indicating that it uses 71.2% of the frequently used codons.

Manakin usesmost of the synonymous codons (53/61 codons) to

encode avUCP so that it has the lowest number of unused codons

(8). Interestingly, manakin is the only species among the selected

birds which breeds in tropical forests. Therefore, the observed

differences in manakin may be a result of adaptation to tropical

conditions. Furthermore, the use of a comparatively wide range

of synonymous codons alongside the use of frequently-used

codons can be regarded as an evolutionary variation to achieve

efficient translation in relatively important functional genes.

4.2. Protein sequence analysis

In protein sequence and physio-chemical analysis, a slight

variation in amino acids and physio-chemical parameters

among the eight studied avUCP proteins was detected. Tyrosine

was the only amino acid showing a constant level in all

avian species. The range of isoelectric points of UCPs implies

that UCPs can be membrane proteins. As the pH of the

intermembrane space and the mitochondrial matrix is about

7.0 and 8.0, respectively, thus UCPs carry an electrical charge

in that region. Additionally, since aliphatic side chains like

alanine, leucine, and valine determine the aliphatic index (AI)

of a protein, avUCP, which shows a high content of these amino

acids, could be considered thermostable. The highest AI of

100.42 was observed in manakin avUCP whichmay illustrate the

importance of avUCP stability specifically in manakin.

The variation of atomic sulfur count from 14 to 20

among the eight avUCP proteins illustrates another significant

difference among avian species. Sulfur can be found in cysteine

and methionine amino acids. Nine cysteine residues were

observed in avUCP in sparrow but the protein sequence of

the others contained eight cysteine residues. Furthermore, the

hydrophobic methionine was variable among avUCPs, which

could be the second source of variability in atomic sulfur

count among avUCP sequences in the studied species. Sulfur-

containing amino acids are responsible for stronger connections

than aliphatic and aromatic amino acids. Thus, they can

provide a more sustainable 3D structure representing functional

specificity in membrane proteins by creating a disulfide bond

(77, 82). The percentage of hydrophobic and hydrophilic amino

acids in the studied sequences were very close to each other

indicating that these chemical characteristics play important

roles in the encoded avUCP protein. The higher potential of

hydrophobicity according to GRAVY indices above 0 is another

appropriate state for transmembrane proteins. If a protein plays

an important functional role, the state of its hydrophobicity and

hydrophilicity will remain stable as much as possible, for the

conservation of its function. Also, the stability of positively and

negatively charged amino acids among all studied avUCPs may

imply the effectiveness of charged regions of this protein which

needs to be conserved among birds.

4.2.1. Entropy analysis

The positions of aligned sequences in the entropy plot

can correlate with the structural and chemical characteristics

of certain amino acids and their influence on the function of

avUCPs. Therefore, regions that contain residue positions with

low entropy are more likely to be involved in the functional

sites of avUCP (83, 84). Moreover, the absence of any region

with more than 10 consecutive amino acids with an average

entropy of >1 can be concluded as evidence of conservation

in avUCPs.

4.3. Protein structure prediction

Because of the high frequency of alanine, leucine,

valine, and glycine, and the low frequency of histidine

and tryptophan in all avUCPs, the level of alpha-helical

structure was determined higher than in other secondary

structures. In agreement with our result, it is already known

that transmembrane regions of proteins contain a high

level of alpha-helices devoid of polar amino acids, while

extracellular and cytoplasmic regions of the protein are

usually enriched with polar amino acids like tyrosine and

tryptophan (77).

The Ramachandran parameters of predicted protein

can display the statistical distribution of the combinations

of torsional Phi and Psi angles in the avUCP protein

structure (85). Moreover, rotamers in protein structure

imply conformational isomers of amino acid residues in

the sidechain of avUCP, therefore, rotamer outliers display

conformations that drop outside the reference (86). Also, C-beta

deviation can reflect misfit conformation and inconsistency

between sidechain and protein backbone that can be used for

structure validation (87). In the current structural modeling

for avUCP, the two C-beta deviations have resulted from

valine and proline amino acids in positions 56 and 50,

respectively, which were predicted to be in the cytoplasmic

region of avUCP.

Hence, in addition to regulatory hormones and elements,

different innate parameters can affect gene expression patterns

of any pleiotropic genes like avUCP, with those parameters

including, codon usage, GC content, CpG dinucleotide content,

splicing sites, CpG islands, mRNA secondary structure, coding

sequences (CDS), ribosomal binding sites, stimulators, the

expression of other genes, along with environmental conditions

(78, 88). For example, previous research has revealed cysteine

residues of UCPs can be glutathionylated (89–92). They suggest

that reactive oxygen species and glutathionylation can regulate

non-phosphorylating respiration. Mailloux et al. (93) have

identified Cys25 and Cys259 as the probable glutathionylation

sites on UCPs (93). Interestingly, in the current study Cys25

and Cys257 were determined as conserved sites and predicted

to be located in transmembrane and cytoplasmic regions of

avUCP, respectively.
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4.4. Sequence-based gene ontology
prediction

The sequence-based predicted biological processes

of “mitochondrial transmembrane transport,” “proton

transmembrane transport,” “adaptive thermogenesis,” and

“response to cold” for avUCP are congruent with results

from previous studies. In this regard, some studies support the

involvement of avUCP in avian energy expenditure and adaptive

thermogenesis (1, 15–18). Additionally, it should be mentioned

that cold acclimation can not only induce fatty acid-mediated

uncoupling of oxidative phosphorylation processes but also

increases the rate of ADP and Pi concentrations, along with

ATP synthesis in the mitochondria of chicken skeletal muscle,

which seems to be a counterproductive occurrence in response

to cold stress condition in birds (34). Moreover, Ueda et al.

reported a correlation between uncoupling and both exogenous

and endogenous fatty acids in the mitochondria of chicken

skeletal muscle during cold temperatures (94). Another study

conducted on king penguins showed that superoxide activates

the proton transport of mitochondria and GDP inhibits the

transport of the superoxide-activated-proton, demonstrating

that avUCP mediates mitochondrial proton transport but plays

no role in the basal proton leak (6). Because thermogenic

hormones have an induction effect on avUCP expression,

the involvement of avUCP in avian thermogenesis can be

concluded (16).

4.5. Interactive network prediction and
gene-based enrichment analysis

Through the network of gene-gene interactions, centralized

by avUCP and using previously recognized avUCP- related

genes (5, 34, 42, 56–71, 94), we have found two major clusters

of genes pointing to the overall functionality of response

to stress and lipid metabolism/proton buffering. Our well-

categorized findings are in agreement with the outputs of other

studies. Previously conducted studies revealed the predominant

presence of avUCP protein in skeletal muscles (pectoral,

glycolytic fibers) (90) alongside recognizing the alteration in

expression pattern during different physiological states [cold

stress (10, 12, 34, 58, 90), heat stress (12, 29, 92, 95, 96),

transfer stress (97), high fat diet, and fat (16, 38, 66, 95)],

that clearly reflect the involvement of avUCP in fatty acid β-

oxidation and cell metabolism. Moreover, one study reported

that a high concentration of chemical stimulus like ammonia can

be effective in the expression of 12 energy metabolism-related

genes (avUCP, HK1, HK2, PK, PFK, PDHX, CS, LDHA, LDHB,

SDHA, SDHB, and AMPK), in chicken liver. Otherwise, it was

reported that ammonia gas resulted in mitochondrial damage,

ATPase reduction, and ultimately reduction of energy release in

the chicken liver (98).

4.6. Pathway crosstalk

Finally, among 11 enriched pathways, interaction of five

signaling pathways including MAPK, adipocytokine, mTOR,

insulin, ErbB, and GnRH was predicted, indicating a possible

combination of positive and negative feedback among pathways

to regulate avUCP functions. In general, biological pathway

crosstalk refers to the different feedback in seemingly distinct

pathways (99). Consequently, it seems that maintaining a

delicate balance of avUCP functions such as lipid metabolism,

thermogenesis, response to cold, and response to ROS can occur

by crosstalk between involved pathways. Moreover, when a

single gene is considered in depth, within a network of genes, all

potential regulatory interferences will emerge. Additionally, it is

also known that the interaction between pathways can regulate

specific gene expression (100, 101).

A panoply of changes in the primary sequence of avUCPs

can potentially be involved in changes to protein function

and expression through alteration of the final structure of the

avUCP molecule. Accumulation of findings represents avUCP

as an essential gene for whole-body energy balance, adaptive

thermogenesis, and antioxidant defense in birds. This study

contributes to a better understanding of avUCP characterization,

function, and critical signaling pathways for evaluating how it

is regulated in avian species exposed to different conditions.

Additionally, the present study provides putative functions

for avUCPs, and indicates some of the genes, pathways, and

mechanisms that are involved in fine-tuning mitochondrial

oxidative phosphorylation.

In conclusion, we have compared the sequence, structure

and physio-chemical properties of avUCP in 8 bird species

and determine the functional pathways and networks in which

avUCP is involved. Oxidative stress in birds is known as

one of the most energy-demanding events influencing energy

expenditure, the balance of detoxification of free radicals, and

oxidative phosphorylation, so avUCP could be viewed as a

significant marker for developing heat-stress-resistant breeds in

future genomic selection programmes.
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Introduction: Early diagnosis of cancer enhances treatment planning and improves

prognosis. Many masses presenting to veterinary clinics are di�cult to diagnose

without using invasive, time-consuming, and costly tests. Our objective was to

perform a preliminary proof-of-concept for the HT Vista device, a novel artificial

intelligence-based thermal imaging system, developed and designed to di�erentiate

benign from malignant, cutaneous and subcutaneous masses in dogs.

Methods: Forty-five dogs with a total of 69 masses were recruited. Each mass was

clipped and heated by the HT Vista device. The heat emitted by the mass and its

adjacent healthy tissue was automatically recorded using a built-in thermal camera.

The thermal data from both areas were subsequently analyzed using an Artificial

Intelligence algorithm. Cytology and/or biopsy results were later compared to the

results obtained from the HT Vista system and used to train the algorithm. Validation

was done using a “Leave One Out” cross-validation to determine the algorithm’s

performance.

Results: The accuracy, sensitivity, specificity, positive predictive value, and negative

predictive value of the system were 90%, 93%, 88%, 83%, and 95%, respectively for all

masses.

Conclusion: We propose that this novel system, with further development, could be

used to provide a decision-support tool enabling clinicians to di�erentiate between

benign lesions and those requiring additional diagnostics. Our study also provides a

proof-of-concept for ongoing prospective trials for cancer diagnosis using advanced

thermodynamics and machine learning procedures in companion dogs.

KEYWORDS

dogs, oncology, machine learning, diagnosis, artificial intelligence, neoplasia, screening test

Introduction

Cancer is the leading cause of death in 45–47% of dogs over 10 years of age (1, 2). Cancer

diagnosis is of key importance in treatment planning and providing better treatment. The

ability to easily diagnose early-stage neoplasia in general practices should improve prognosis

dramatically. Currently, either fine-needle aspiration or biopsies are the recommended

diagnostic tests for subcutaneous and cutaneous masses. In many cases, these procedures are

easily performed; however, they may be highly invasive and costly, which can delay an owner’s

decision to pursue a diagnostic workup. Studies that have compared the diagnostic accuracy for

the diagnosis of neoplasia of fine-needle aspirates to histopathologic results showed a negative

predictive value (NPV) of 63.63 and 68.7% in reviewed series in dogs and cats (3, 4). These results

demonstrate the need for an alternative non-invasive procedure for early cancer detection.
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The HT Vista device is based on the differences between malignant

and normal tissue properties, primarily the fact that both tissues

display different heat transfer rates (5, 6). These thermophysical

properties are affected by the differences between the compositions,

morphology, and vascular networks of the tissues (7–10). The

calculated rate at which heat transfers throughout a material is

termed thermal diffusivity. This diffusivity is determined by three

major properties: thermal conductivity, heat capacity, and density

(11). In the case of living tissues, their metabolism and blood flow

dramatically affect their heat transfer (12, 13). In well-established

tumor tissue, characterized by increased metabolic activity, faster

growth processes, and increased blood vessel generation and usage,

an increase of roughly one degree Celsius, compared to healthy

neighboring tissue, was reported (14). This further supports the

premise that cancer cells have different thermal properties compared

to normal tissues.

In this study, we hypothesize that thermal diffusivity will differ

between malignant and benign canine subcutaneous and cutaneous

masses and that the HT Vista algorithm would be able to differentiate

these masses into either the benign or malignant categories.

Materials and methods

Study design and case collection

This is a prospective study that was approved by the ethical review

board committee (HU-NER-2020-015-A). The study population

included dogs that presented to the Veterinary Teaching Hospital

at the Koret School of Veterinary Medicine (Rishon LeZion, Israel).

Informed consent was obtained from the owners of all the dogs prior

to enrollment in the study.

The inclusion criteria included a signed owner consent, an

externally accessible subcutaneous or cutaneous mass or lymph node

that could be palpated, measured, and imaged by the device and

considered safe for the dog to undergo an aspirate or biopsy. Dogs

were excluded from the study if they had no gross disease, the mass

was inflamed or infected, or if the mass was larger than 15 cm. In

addition, the case was excluded if the cytology or biopsy did not

provide a diagnosis, or if the thermal imaging was not successful. All

dogs were monitored for adverse effects.

The data acquired by the HT Vista system did not influence any

subsequent treatment or decision-making, and the clinician and the

pathology lab were blinded to the results obtained by the system.

Demographic information, as well as tumor measurements and

location, were recorded using standard manual case reporting forms.

The device

The HT Vista system (hereafter termed “the system”) is based on

a continuous measurement of heat diffusion through the tissue. The

system is composed of a control unit which includes a mini personal

computer with internet capabilities, a touch screen, a dedicated

software application, and a handheld probe. The probe consists

of an optical camera, a high-power LED (Light-Emitting Diode)

emitter (i.e., the heating source), and an inherent LWIR (long-wave-

infra-red) thermal video camera, which records the temperature

throughout the scan.

Patient preparation and testing process

The dogs were manually restrained, and the mass area was

clipped. The probe was positioned above the examined area, which

was subsequently scanned. The scan lasted 60 s. This included both

heating of the target area by the high-power LED emitter by seven

degrees Celsius for 10 s and continuous recording of the heat emitted

by the tissue during and post-heating by the LWIR video camera.

Then, the clinician marked two areas on an optical image of the

scanned area, presented on the touch screen. The first selection

represented the mass area (i.e., “site”), while the second one, adjacent

to the mass, represented a normal tissue (i.e., “control”). If there were

areas with different pigmentation, areas with the same pigmentation

were marked. Then, unique thermal signals were produced, showing

the changes in temperature in the site and the control throughout

the test, based on the selection of healthy and suspicious sites

by the clinician. The data obtained were uploaded to the HT

Bioimaging cloud and analyzed using signal analysis techniques

and a dedicated HT machine learning algorithm. The clinician was

blinded to the results. Finally, the tested mass was aspirated and/or

biopsied, according to the clinical recommendations. The aspirates

were performed with a 25 gauge needle and submitted to an external

pathology laboratory. The biopsies were performed by the surgery

department and submitted to an external laboratory. Both the clinical

pathologists and anatomic pathologists examining the samples were

blinded to the results.

Dataset description

Both marked sites were presented as areas of 1.5 X 1.5 mm2.

Each was composed of a 25 pixels grid. The thermal signal of each

of the pixels in both sites was represented by a set of ca. 1,000

signal descriptive features (i.e., values). These extracted features were

based on mathematical, physical, and thermal properties, such as

coefficients of the Pennes equation, as well as properties derived

from signal analysis [e.g., Fourier series coefficients, used to describe

periodic signals (15)]. The features of the control site pixels were

integrated into the features of the mass site pixels, ensuring that

the differences between the tissues were considered. All features

were normalized to eliminate possible variances between patients and

anatomical areas. Next, the control site pixels were removed from the

dataset, resulting in a dataset of >1,000 normalized feature values,

for each of the 25 mass site pixels, per patient. Finally, the results

obtained from the cytology and/or histopathology of the mass were

used to label the site as malignant or benign for subsequent training

of the HT Vista algorithm.

Training and validation procedure

The final training procedure was performed on a set of the

four most important features that best differentiated between benign

and malignant lesions, including two Fourier Series coefficients

and a fitted decay function coefficient. Sites were labeled as

malignant or benign, as described above. The data were trained

using a Support Vector Machine (SVM) classifier, a widely used

AI classification algorithm. The training and validation were done
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using a “Leave-One-Out” cross-validation procedure to demonstrate

that the classifier represents a general pattern. Cross-validation is a

well-established practice in machine learning for model performance

evaluation on limited data. This procedure partitions the data into

N subsets, iteratively training the classifier on N-1 different subsets

in each iteration. Then, it uses the one left-out subset as a test set

(i.e., classifies the single subset it was not trained on as malignant

or benign). In this procedure, all instances are eventually used as

both training and test sets. Commonly, multiple iterations of cross-

validation are performed, and performance assessments are averaged

over all iterations to increase robustness and reduce variability (16–

18). Specifically, the “Leave-One-Out” cross-validation withholds in

each iteration a single set of pixels belonging to the same mass (i.e.,

the same patient), while the other masses and their pathology results

train the classifier. The trained classifier was then applied to the data

of the one mass left out, resulting in a classification of the marked

tested area as either high-risk or low-risk (i.e., malignant or benign).

After classifying all lesions, the performance of the algorithm

was assessed using a confusion matrix. The matrix summarizes

the identities and differences between the real diagnosis obtained

from cytology or histopathology and the predictions made by the

algorithm. Each cell of the matrix holds the number of correct

and incorrect classifications made by the algorithm of each of the

possible classes. That is, the matrix counts how many true-positives

(malignant lesions classified as malignant), true-negative (benign

lesions classified as benign), false-positive (benign lesions classified

as malignant), and false-negative (malignant lesions classified as

benign) cases were found in the study. The overall performance of

the HT algorithm was then assessed by calculating five measures:

(7) Accuracy–the overall fraction of correct classifications. (1)

Sensitivity- the fraction of high-risk predicted lesions within the

malignant or premalignant pathology reports. (3) Specificity–the

fraction of low-risk predicted lesions within the benign or non-

malignant pathology reports. (4) Positive predictive value (PPV)–

the fraction of true positives within the high-risk predictions. (5)

Negative predictive value (NPV)–the fraction of true negatives within

the low-risk predictions.

Results

Forty-nine dogs were initially included in the study. A total of

four dogs were excluded: one mass was not diagnosed, one was not

sufficiently clipped for the scan to be diagnostic, and two did not have

healthy areas imaged during the scan. A final group of 45 dogsmet the

inclusion criteria. Thirty-three were mixed-breed dogs, and 12 were

TABLE 1 Classification of cytology and histopathology results.

Tumor type

Benign Cytology Histopathology Total

Adenoma 1 3 4

Benign epithelial/adnexal cyst/tumor 4 1 5

Benign melanoma 1 1

Lipoma 20 1 21

Papilloma 1 1

Perineal adenoma 1 1 2

Plasmacytoma 1 1

Reactive lymph node 2 2

Sebaceous adenoma 3 3

Sebaceous hamartoma 1 1

Sebaceous hyperplasia 1 1

Benign Total 33 9 42

Malignant Cytology Histopathology Total

Adenocarcinoma 3 3

Cutaneous hemangiosarcoma 3 3

Lymphoma 10 10

Mast cell tumor 3 2 5

Metastatic lymph node (hemangiosarcoma) 1 1

Metastatic lymph node (melanoma) 1 1

Osteosarcoma 1 1

Soft tissue sarcoma 1 1

Undifferentiated neoplasia 2 2

Malignant total 14 13 27
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purebred dogs. No purebred dog was over-represented. There were

16 intact female dogs, three spayed female dogs, and 26 intact male

dogs. The median age was 11 years, ranging between four and 14.

Of the 45 dogs, 24 had one lesion sampled, 18 dogs had two

lesions sampled, and three dogs had three lesions sampled, resulting

in a total of 69 lesions. Twenty dogs were classified with 27 malignant

lesions based on their cytology or histopathological diagnosis. Forty-

eight lesions were diagnosed using cytology, and 21 lesions were

diagnosed using histopathology (Table 1).

Using the machine learning classifier, each examined site was

classified as either high-risk or low-risk for malignancy, and

results were compared to the pathology reports. These results are

shown in Table 2. In total, 62 out of 69 lesions were correctly

classified, 25 as malignant and 37 as benign, while seven were

misclassified. Five were false-positive classifications, including one

keratinous cyst, three deep lipomas, and one sebaceous gland

adenoma. The other two were false-negative cases which included

two lymphomas. The overall accuracy, sensitivity, specificity, positive

predictive value, and negative predictive value were 90, 93, 88, 83,

and 95%, respectively.

Discussion

AI-driven medical devices are becoming more and more

common in veterinary medicine. They are used to solve problems

of high logical or algorithmic complexity, ranging from diagnosis

and disease detection to making reliable predictions and reducing

medical errors (19). In this study, we introduced a novel diagnostic

AI-based imaging system, the HT Vista, which aims to provide a high

degree of accuracy in differentiating between benign and malignant,

cutaneous and subcutaneous lesions in dogs, based on the response

of a tissue to thermal excitation. Malignant tumor tissues differ from

normal tissues by their known high metabolic rate and increased

perfusion and their capability to transfer heat, which in turn shows

a different response to thermal excitation (11–14). Additional factors

that have been reported to influence thermal imaging in dogs include

inflammation, infection, trauma and temperature at the time of the

scan (20). However, our results do not appear to have been influenced

by these factors. We found that the temperatures recorded during

the thermal relaxation phase distinguished between normal and

malignant tissues. An AI-based algorithm was trained on physical

TABLE 2 Results of the HT Vista system classification for all sites.

HT classification

Benign/malignant Tumor type Benign Malignant Total

Adenoma 4 4

Benign epithelial/adnexal cyst/tumor 4 1 5

Benign melanoma 1 1

Lipoma 18 3 21

Papilloma 1 1

Perineal adenoma 2 2

Plasmacytoma 1 1

Reactive lymph node 2 2

Sebaceous adenoma 2 1 3

Sebaceous hamartoma 1 1

Sebaceous hyperplasia 1 1

Benign total 37 5 42

Benign Malignant Total

Adenocarcinoma 3 3

Cutaneous hemangiosarcoma 3 3

Lymphoma 2 8 10

Mast cell tumor 5 5

Metastatic lymph node (hemangiosarcoma) 1 1

Metastatic lymph node (melanoma) 1 1

Osteosarcoma 1 1

Soft tissue sarcoma 1 1

Undifferentiated neoplasia 2 2

Malignant total 2 25 27

Frontiers in Veterinary Science 04 frontiersin.org
97

https://doi.org/10.3389/fvets.2023.1109188
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Dank et al. 10.3389/fvets.2023.1109188

and thermal features, using samples labeled as malignant or benign

based on the blinded pathological results.

Our study included a wide range of both benign and malignant

tumors. The overall accuracy of the system was 90%, correctly

classifying 62 out of 69 masses, with only two false negatives

(lymph nodes diagnosed with lymphoma). The explanation for the

misclassification of these cases was most likely the different anatomic

structures of lymph nodes, which might have resulted in inadequate

heating to elicit a representative thermal signal.

Five were false-positive classifications, including one keratinous

cyst, three deep lipomas, and one sebaceous gland adenoma. Several

explanations for these false results include that deep inhabiting

tumors may require a change of the heat source configuration (e.g.,

the wavelength and penetration characteristics) and that the liquid

content within cysts may heat differently. In any case, positive results

should cause the clinician to continue to diagnose the mass, which

will lead the clinician to conclude that this is a benign mass in

cases of false positives. This is preferable to a higher number of false

negatives, which would cause clinicians to send home animals with

malignant tumors.

The HT Vista system’s algorithm was programmed to give a high

degree of certainty in classifying a mass as benign, thus minimizing

the risk of false-negative cases. Therefore, in high-risk cases, this

system enables the clinician to recommend continuing to work up

these masses with either an aspiration and /or a biopsy and not take

the wait-and-see approach.

Factors that influence cancer detection include inflammation and

infection, which can cause dysplasia and lead to false positive results

on the fine needle aspirates. In this study, there was one case of

sebaceous hyperplasia that was a true negative based on the classifier.

Additional causes that may influence detection include acellular

samples, as can occur in cases of lipomas and sarcomas. In this study,

the device accurately classified 18/21 lipomas and all carcinomas

and sarcomas.

In this study, the performance of the algorithm’s classifier was

assessed using a “Leave-One-Out” cross-validation method, which

is cross-validation taken to its extreme. This method is useful for

evaluating machine learning models with a limited data set, as in

our study, and provides an accurate and unbiased estimate of model

performance (21).

The limitations of the study include the low number of cases

and that the deeper tumors, including both deep lipomas and

lymph nodes, may require changing the heat source configuration,

as previously mentioned. In addition, cutaneous and epidermal

tumors do not always present the same way or have the same

disease progression as mesenchymal tumor types, which may cause

a variation in the thermal signal. Skin pigmentation was not shown

to have an effect on the thermal heating in this study, however,

should be further assessed in future studies with additional dogs with

different pigmentation. Additionally, larger studies should help give

an understanding whether these differences affect thermal diffusivity.

Future directions include an additional multi-center trial with a

larger study population to validate the system. As machine learning

accuracy improves with additional data, the HT Vista’s algorithm is

expected to improve its analytic capabilities. Therefore, it is expected

to provide more accurate results in the future.

In conclusion, in this study, we showed a proof of concept of a

novel non-invasive diagnostic method and decision support tool for

the clinical management of cutaneous and subcutaneous masses in

dogs, using dynamic heat diffusivity and analysis of the produced

signal utilizing advanced machine learning.
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Introduction: For reference genomes and gene annotations are key materials that

can determine the limits of the molecular biology research of a species; however,

systematic research on their quality assessment remains insu�cient.

Methods: We collected reference assemblies, gene annotations, and 3,420 RNA-

sequencing (RNA-seq) data from 114 species and selected e�ective indicators

to simultaneously evaluate the reference genome quality of various species,

including statistics that can be obtained empirically during the mapping process

of short reads. Furthermore, we newly presented and applied transcript diversity

and quantification success rates that can relatively evaluate the quality of gene

annotations of various species. Finally, we proposed a next-generation sequencing

(NGS) applicability index by integrating a total of 10 e�ective indicators that can

evaluate the genome and gene annotation of a specific species.

Results and discussion: Based on these e�ective evaluation indicators, we

successfully evaluated and demonstrated the relative accessibility of NGS

applications in all species, which will directly contribute to determining the

technological boundaries in each species. Simultaneously, we expect that it will

be a key indicator to examine the direction of future development through relative

quality evaluation of genomes and gene annotations in each species, including

countless organisms whose genomes and gene annotations will be constructed

in the future.

KEYWORDS

reference genome, gene annotation, quality assessment, transcript diversity, next-

generation sequencing (NGS), RNA-sequencing (RNA-seq), livestock animals, model

organisms

Introduction

Next-generation sequencing (NGS) technology is applied in many ways to identify

the biological characteristics of various organisms, including livestock, at the molecular

level (1, 2). This technology is used in virtually all biomedical fields, such as research to

find genetic variants based on DNA sequencing (3, 4) and research to discover transcripts

related to life phenomena based on RNA-sequencing (RNA-seq) (5, 6). Recently, NGS

technology has been developed for data acquisition of molecular characteristics at the

level of single cells (7) or single nuclei (8), concurrently, long-read-based technologies

are continuously being developed to improve sequencing quality (9). Various technologies

are continuously being developed to measure various levels of molecular markers more
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accurately; however, all of them are strongly dependent on the

reference genome and gene annotation corresponding to the

biological species of the targeted subject in certain studies (10). As

of 2023, the fundamental and essential data of the NGS technique,

reference genomes and gene annotations, have been established

in the Ensembl database for 314 species (11). Moreover, it is

highly likely that the number of completed reference genomes

and gene annotations for more species will increase exponentially

in the near future through the vertebrate genome project (VGP)

(12). Thus, a relative comparison of relevant essential data is

necessary to increase the reliability of various applied studies in

more diverse species. Although the accuracy of the results of

each study utilizing NGS highly depends on the completeness

of the two key underlying data, there has been no systematic

evaluation of reference genomes and gene annotations among

diverse species simultaneously. Although, species have a common

genetic background, to some extent, the genome structure, number,

and type of transcripts differ considerably between organisms,

which makes comparisons across species quite challenging (13, 14).

To date, various attempts have been made to identify the

whole-genome sequence in a particular species by selecting the

optimal assembly from a number of draft assemblies. Various

methodologies such as, KAT (15), Merqury (16), and Inspector

(17), have been developed to compare the quality of different

versions of draft assemblies for a specific target species to determine

a representative genome. However, these methodologies require

whole genome sequencing (WGS) reads and/or a reference genome

of the target species, therefore, they cannot be directly applied

for the purpose of evaluating the quality of reference genomes

for multiple species. Among these tools, BUSCO (18, 19) can be

used to compare the quality of reference genomes for multiple

species based on the orthologous genes. However, since the optimal

assembly was already determined in the direction of optimizing the

BUSCO completeness in the process of completing the reference

assembly of each species, the difference in BUSCO completeness

of the published reference genome is very small among species.

Although we currently lack systematic methodologies that can

be used to directly and simultaneously compare the quality of

reference assemblies of various species, some indicators can be used

to compare species. First, the quality of the reference genome was

compared using a contiguity index, such as the N50 value obtained

based on the relative length of contigs or scaffolds generated during

the de novo assembly process (20–22). Another quality evaluation

index for the completed genome is the number and frequency

of gaps in the genome, and various attempts have been made to

reduce them (23–25). However, gene annotation quality assessment

methods remain poorly understood, owing to their transcriptome

diversity. Recently, software has been developed that can estimate

the annotation similarity of evolutionarily adjacent species based

on the gene annotations of species known to be nearly complete,

allowing a relative comparison of the gene annotations of the

two species (26). However, there is, to date, no known systematic

approach to compare gene annotations of multiple species.

Although long-read sequencing technology is continuously

being refined, NGS application research is still mainly based

on short-read sequencing technology. RNA-seq, a representative

application of NGS based on short reads, generally involves

a two-step analysis. The first step is an alignment process to

determine where the short-read fragmented sequences originate

from the genome, for which the quality of the reference genome

is important (27, 28). If the accuracy of the sequence of the

reference genome is low, the mapping rate is directly affected. If

the frequency of repeat sequences is high, the number of multiple

mapping reads increases, adversely affecting the entire process.

The second major step for processing RNA-seq data is to quantify

the mapped reads in the genome (29). At this time, performance

greatly depends on the quality of the gene annotation, which

defines the location of the transcripts in the genome (30, 31). If

all transcripts that can occur in a specific organism are included

in gene annotation, the quantification rate will increase; however,

the probability of overlapping other transcripts at a specific genome

location will correspondingly increase, resulting in quantification

failure due to ambiguity. Concurrently, inclusion of transcripts

that are too conservative in gene annotations to address this

ambiguity exacerbates quantification failures caused by the absence

of annotations. These issues are commonly considered when

developing reference genomes and gene annotations for various

species, thus the quality of the two fundamental types of data can

be measured indirectly through the corresponding indicators at the

alignment and quantification steps.

Based on these rationales, in this study, we attempted to

evaluate the quality of reference genomes and gene annotations of

all species as much as possible, which has not yet been performed

because of technical issues. We attempted to measure the quality of

two key data essential in NGS from various angles by assessing the

effectiveness of new potential indicators along with the indicators

that have been used so far for quality evaluation. In addition, we

aimed to demonstrate a new integrated index for the simultaneous

quality evaluation of genome and gene annotation, by applying

selected quality effective indicators to RNA-seq data derived from

various species.

Materials and methods

Reference genome and gene annotation
collection

As of November 2022, the latest genome assembly (.fasta)

of each species and the corresponding gene annotation (.gtf)

were collected from the Ensembl database (Supplementary Table 1)

using Rcurl v1.98.1. Among all species, human, mouse, and

zebrafish species that had access to the primary assembly version

were used, and the toplevel version of the genome was used for the

rest of the species.

Collection of basic statistic on genome
assembly and gene annotation

Basic assembly information for all species was collected in xml

format through the API of ENA (European Nucleotide Archive)

(https://www.ebi.ac.uk/ena/browser/api/xml/Assembly accession).

The collected assembly basic statistics were tabulated using xml2
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(v1.3.3) and tidyverse (v1.3.2) R packages. We also collected

detailed information on gene annotation from Ensembl biomart

(32) using the biomaRt (v2.50.3) R package. Using the getBM

function, various information including ensemble gene id and

gene type were collected and tabulated from the gene annotation

of each species. The transcript types in gene annotation were

classified into 30 types according to the classification criteria

of Ensembl gene biotype (https://asia.ensembl.org/info/genome/

genebuild/biotypes.html) (Supplementary Table 2).

Estimation of repeat elements from
reference genomes

The Repeat Masker (v4.1.4) (33) with -pa 16 -qq options was

used to quantify repeat elements from reference genomes of various

species. RMBlast (v2.11.0) was used as the repetitive sequence

search algorithm, and the search was based on the Dfam (v3.6)

database (34). In addition, TRF (v4.09) (35) was used to find

tandem repeat sequences.

RNA-seq raw data collection

As of November 2022, among the species whose reference

genome and gene annotation are listed in the Ensembl database,

we searched for species that could secure RNA-seq data of more

than 30 samples. Using R (v4.1.2) language-based packages XML

(v3.99.0.12) and xml2 (v1.3.3), data corresponding to the following

conditions was retrieved from NCBI Esearch (https://eutils.ncbi.

nlm.nih.gov/entrez/eutils/esearch.fcgi) and 30 SRA IDs of each

species were randomly selected. In XML parsing with the GET

method, we consider the following four conditions: “biomol rna”,

“library layout paired”, “platform illumina”, and “Bulk”. After that,

we used the prefetch (v2.11.2) included in the SRAtoolkit (v2.11.3)

to import randomly selected sra files from the SRA database (36).

To convert the collected sra files into paired-end fastq format files,

parallel-fastq-dump was employed. The FastQC v.0.11.9 (37) was

used to check the quality of the collected raw sequencing data.

Preprocessing of RNA-seq data

All collected genomes were indexed using the full Hisat2-build

(v.2.2.1) (38). Paired-end RNA-seq files whose quality was checked

through FastQC (v.0.11.9) were mapped to each corresponding

genome. Alignment results were recorded in sorted bam format

through samtools view (v1.14), and mapping-related statistics

were collected through samtools stats. The mapped reads to each

genome were quantified using featureCounts (v2.0.1) (39) with the

corresponding gene annotation.

Quality evaluation indicators for reference
genome in diverse species

A total of 10 indicators used in this study are summarized

in Table 1. All indicators are scaled in the range of 0–1 for the

convenience of interpretation. Also, the closer the value is to 1,

showing the better the quality in all indicators.

As indicators for simultaneous relative evaluation of the

genomes of various species, three indicators were selected based

on the statistics derived from the assembly process. Based on the

N50 values of contig and scaffold, which are the continuity indices

of assembly, it was corrected to consider the different genome size

of various species. These corrected N50s were converted to have a

range of 0 to 1 by their percentile. Through this, two indicators,

AdjN50Contig and AdjN50Scaffold, were calculated respectively.

Next, to get the UngapRate, it was subtracted from 1 to adjust

the directionality after obtaining the ratio of spanned gaps in the

genome of each species compared to the species with the largest

spanned gaps among all species.

We selected three empirical indicators obtained through the

process of mapping actual NGS data as another measure to evaluate

the quality of the genome. First, UnimapRate is basically the

most important indicator in the mapping step, and represents

the ratio of reads uniquely mapped to a specific genomic region

among all reads. In addition, we additionally considered the

two typical causes of mapping failure: multi-region mapping

and no corresponding region. To match the direction as a

quality evaluation index,MapRate andMultiMapRate indexes were

constructed by subtracting the two failure rates from 1, respectively.

Based on these three empirical indicators, we construct a new

mapping quality evaluation index (MQI) for species i:

MQIi = (UnimapRate i + MapRate i + MultiMapRate i) / 3 (1)

The MQIi is the arithmetic mean of the three different

directional indices obtained empirically from the mapping

step, and is a relatively comparable indices across different

species. Additionally, the BUCSO completeness was calculated

using BUSCO (v5.4.2) with–auto—lineage-euk–cpu 16

options (18).

Quality evaluation indicators for gene
annotation in diverse species

To qualitatively evaluate the quality of gene annotation, the

proportion of each gene type was calculated based on the gene types

collected from Ensembl biomart (32). Based on a matrix with a

total of p gene type ratios for all species n, principal component

analysis (PCA) was applied that can secure a linear combination

of p gene type ratio random variables to convert to a nx1 vector

for comparing all species n. After examining the degree of the

variance explain based on the eigen values, the PC1 embedding

values were extracted and used as Transcript diversity. Additionally,

to further clarify the interpretation of PC1, another method of

summarizing variability, Shannon’s equability index (40, 41), was

calculated and compared.
As another criterion for evaluating the quality of the gene

model, we selected three empirical indicators obtained through
the process of quantifying reads mapped to the genome based
on actual NGS data. First, Quant.rate, which is the ratio of
reads successfully quantified as gene counts among mapped reads
derived from each sample, was selected with the highest priority.
Simultaneously, the absence and ambiguity of annotation, which
are two representative quantification failure rate factors that can
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TABLE 1 Selected 10 indicators for quality evaluation of reference genome and gene annotation in diverse species.

No. Abbreviation
of
indicators

Description Category Formula Scaling method Range of
values

1 AdjN50Contig Percentile of adjusted N50

by genome size in contig

Assembly stat. N50 value in

contigs/genome size

Percentile 0–1

2 AdjN50Scaffold Percentile of adjusted N50

by genome in scaffold

Assembly stat. N50 value in

scaffolds/genome size

Percentile 0–1

3 UngapRate Scaled non-spanned gaps

rate

Assembly stat. 1—[spanned gaps/max

(spanned gaps)]

NA 0–1

4 UnimapRate Uniquely mapped rate Mapping stat. Uniquely mapped

reads/total # of reads

NA 0–1

5 MapRate 1—unmapped reads’ rate Mapping stat. 1—(unmapped reads/total #

of reads)

NA 0–1

6 MultiMapRate 1—multiple mapped rate Mapping stat. 1—(multiple mapped

reads/total # of reads)

NA 0–1

7 Transcript

diversity

Scaled transcript diversity

calculated by PCA

Gene annotation PC1 obtained from PCA

analysis

{X—min (X)}/{max(X)—min (X)} 0–1

8 Quant.rate Quantification success rate

from the mapped reads on

the genome

Quantification stat. Quantification success

reads/total # of mapped

reads

NA 0–1

9 Quant.rate (Abs) 1—quantification failure

rate due to absence of

annotation

Quantification stat. 1—(unquantified mapped

reads due to absence of

annotation/total # of

mapped reads)

NA 0–1

10 Quant.rate (Amb) 1—quantification failure

rate due to ambiguity

Quantification stat. 1—(unquantified mapped

reads due to ambiguity /

total # of mapped reads)

NA 0–1

All indicators are scaled to have a value between 0 and 1 and the closer each index value is to 1 represents the better quality.

be determined by the gene model, were additionally considered.
To match the directionality, two indicators, Quant.rate (Abs) and
Quant.rate (Amb), were set by subtracting the two failure rates
from 1. Based on the three empirical indices obtained during
the quantification process, we constructed the comprehensive
quantification quality evaluation index (QQI) for species i:

QQIi = (Quant.ratei + Quant.rate(Abs)i+ Quant.rate(Amb)i) / 3

(2)

The QQIi is the average of the three indices obtained empirically

in the quantification stage of NGS data and is an indicator that

can simultaneously compare the general quality of gene models in

multiple species.

NGS applicability index

Based on a total of 10 effective indicators that can evaluate
the genome and gene model (Table 1), it was generalized as an
index representing the technical boundary of NGS technology in a
specific species. The formula consisting of the weighted arithmetic
mean of the 10 indicators for each species i is:

NGS applicability indexi =

w1AdjN50Contigi + w2AdjN50Scaffoldi + . . . + w10Quant.rate(Amb)i
∑10

i=1 wi

(3)

In this study, all 10 weights w1, w2, ..., w10 were considered as 1,

which means that all indicators are considered equally.

Results

Large-scale NGS data collection for quality
evaluation of reference genomes and gene
annotations of 114 species

We systematically collected data to evaluate the current

level of reference genomes and gene annotations for as many

species as possible, for which RNA-seq, among various NGS

technologies, could be directly applied (Figure 1A). There were

more than 30 publicly available RNA-seq datasets for 114 of the

314 species (Supplementary Table 1), whose reference genomes

and gene annotations are listed in the Ensemble database (11).

As a result of organizing the taxonomic categories for these

114 species compared in this study, it was confirmed that 1

fungus, 112 Metazoa, and 1 Viridiplantae were included at the

kingdom level (Supplementary Table 3). At the taxonomic level,

they were classified into 11 types, of which 47 Actinopteri, 43

Mammalia, and 12 Aves were the majority. In addition to collecting

the latest version of the reference genome and gene annotation

for these 114 species, 30 RNA-seq datasets per species were

randomly collected, resulting in a total of 3,420 RNA-seq datasets

(Supplementary Table 4). After the quality check, an average of

34 million reads and an average Phred score of 36.237 were
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observed, showing no technical issues in the collected RNA-

seq data (Supplementary Table 5). When the collected RNA-seq

data were mapped based on the reference genome representing

each species, an average overall alignment rate of 84.768% was

obtained (Supplementary Table 6). In quantification step, 55.807%

of mapped reads were successfully quantified to genes in average

(Supplementary Table 7).

To independently compare the quality of all 114 collected

reference genomes, genome assembly statistics were compiled from

the European Nucleotide Archive (42) and the corresponding

information was missing for five species. The remaining 109

available species were systematically collected, and assembly related

statistics were obtained from the collected data, resulting in an

average length of 1,689,594,967 bp and a contig average N50 of

7,154,707 bp (Supplementary Table 8). We also collected data from

Ensembl Biomart (32) to evaluate the quality of gene annotations

that indicated the location of genic regions in the reference

genome of each species; however, the information could not be

collected for 12 out of 114. For the remaining 102 species, gene

annotation was collected and classified as a total of 30 types of

RNAs, including long non-coding RNA (lncRNAs) andmicroRNAs

(miRNAs) (Supplementary Table 9). We found that an average of

22,915 protein-coding genes were annotated across all 102 species,

while a significantly small number of average 2,340 lncRNAs were

not annotated in 37 species.

Based on the collected data at various levels, an experimental

design was established that measures the quality of the genomes

and gene models in various species (Figure 1B). In this current

study, we focused on quality measures for eight species of livestock

designated according to the Food and Agriculture Organization of

the United Nations (FAO).

Comparison of assembly statistics and
frequency of repeat elements for reference
genome quality evaluation in 109 species

Officially published reference genomes of various species are

generally expected to show minimal difference in quality owing

to the robustness of DNA; however, limitations exist due to the

frequency of repetitive sequences in the genome and/or sequencing

technology based on short reads. To investigate this, we collected

and compared representative quality statistics of 109 genome

assemblies, which were largely clustered into four characteristics

(Figure 2A). While an average of 37,580.454 spanned gaps were

found in all species, only 204 and 661 spanned gaps were found

in the human and mouse genomes, respectively, which are known

to be of high quality (Figure 2B). In addition, a significantly

lower number of spanned gaps was observed in representative

model organisms such as Saccharomyces cerevisiae (S.cerevisiae),

Arabidopsis thaliana (A.thaliana), and Drosophila melanogaster

(D.melanogaster) (Figure 2B, Supplementary Figure 1).While a low

number of spanned gaps was found in most of the eight livestock

animals, it was confirmed that a relatively large number of spanned

gaps were present in the genomes of Ovis aries (125,067 gaps) and

Equus caballus (6,286 gaps).

Furthermore, we found that the number of spanned gaps was

strongly correlated with the number of contigs generated during the

de novo assembly process, which revealed that in the case of species

with many spanned gaps, relatively short contigs occurred during

the assembly process (Figure 2A, Supplementary Figure 2). In other

words, various technical issues derived from short sequence read

assembly intensify depending on the number of spanned gaps

ultimately affecting the quality of the completed genome assembly,

which suggests that the genome quality of various species can be

evaluated based on these statistics. Further evidence for this claim

can be found in the negative correlations between the number of

spanned gaps and adjusted N50, N75, and N90 values by genome

size in both contigs and scaffolds (Figure 2A). These values are

representative indicators used when evaluating the quality of the

genome completed through de novo assembly, and significantly

higher values were observed in representative model organisms at

both the scaffold and contig levels (Figures 2C, D). It was confirmed

that at least one model animal in representative species at each class

taxonomic level, such as yeast, Drosophila, chicken, and frog, has an

extremely high complete genome.

Since various types of repeat elements widely spread across

the genome are a representative cause of difficulty in the genome

assembly process, we further investigated the frequency of repeat

sequences in the genome of each species to evaluate the quality

of each reference genome. We hypothesized that genome repeat

frequencies in each species could help assess the quality of the

reference genomes; however, there was no association with various

genome quality indicators (Figure 2A). We found that one of the

primary reasons for this observation is that the genome size varies

across species, depending on the class taxonomic level, and that

genome size determines the types of repeat elements that can be

found (Figure 2E). A correlation of 0.924 was observed between

the length occupied by all repeat elements in the genome and

the length of the genome, supporting this claim. In addition, it is

further evidence that the length of the region occupied by the repeat

sequence in the entire genome is mostly dependent on long repeat

sequences such as LINE1 and LINE2 (Figure 2F). Although all

species had a consistent linear pattern in their genome size and ratio

of repeat elements, we found that species such as Leptobrachium

leishanense had a high ratio of repeat elements to genome size

(Figure 2E). However, since we cannot be sure whether these results

are due to the characteristics of the genome of the species, we

ultimately concluded that it is difficult to use the ratio of repeat

elements as an effective measure to evaluate the quality of the

genome. Additionally, we used BUSCO to compare the quality of

reference assemblies of multiple species based on the orthologous

genes. In result, all BUSCO completeness in 109 species had high

values (97.255 in average) with no significant differences, which

means that there is no value as an effective indicator for comparing

multiple species with reference genomes (Supplementary Figure 3).

Demonstration of change in the mapping
quality of RNA-seq data according to the
completeness of the reference genome

We demonstrated whether the representative indicators used

to evaluate the quality of the reference genome affect the mapping

step of RNA-seq data processing. For the remaining 108 species,

excluding Salmo trutta, for which repeat elements were not
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FIGURE 1

Collected data structure and schematic diagram for benchmarking comparison. (A) Overall structure of data collected for quality evaluation of

reference genome and gene annotation for 114 species. (B) A systematic workflow to select e�ective indexes for relative quality assessment from

collected data. The red line represents a pipeline that selects e�ective indicators from assembly statistics for relative evaluation of the reference

genome. The blue line represents the process of empirically evaluating the quality of the genome by mapping the actual NGS data in the alignment

step. The green line represents the process of calculating the transcript diversity index, and the yellow line represents the pipeline that empirically

finds e�ective indicators for quality evaluation of gene annotations in the quantification process.

identified among 109 species, 3,240 RNA-seq data were mapped

to their corresponding reference genome in a non-repeat masked

version. Although no clear linear relationship was observed

when the characteristics of different species were considered

simultaneously, we found that the mapping failure rate increased,

and the unique mapping and total alignment rates decreased as

the number of spanned gaps increased (Figure 3A). Similarly,

in another assembly contiguity index, with N50, N75, and N90

adjusted by genome size, it was demonstrated that the mapping

failure rate decreased, and the mapping success rate increased

when longer contig or scaffold values were observed. These results

provide evidence that the quality of the mapping step is directly

affected by the genome completeness.

We also demonstrated that the multiple mapping problem

intensifies depending on the ratio of the repeat elements in

the genome. It was demonstrated that the rate of multiple

mapping reads increased (r2:0.394) in genomes with a high

frequency of repetitive sequences across all species (Figures 3A, B).
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FIGURE 2

Comparison of assembly statistics for selection of e�ective indicators for genome quality evaluation of various species relatively. (A) Investigation of

correlation between various assembly statistics and repeat elements that are presumed to be related to genome quality evaluation. Pearson’s

correlation coe�cients were used to pairwise investigation. Four major types of indicators showed strong correlations. (B) The number of spanned

gaps remaining in the genomes of 109 species. (C) Comparison of adjusted N50 in sca�old level by genome size. (D) Comparison of adjusted N50 in

contig level by genome size. (E) Strong correlation between genome size and total length of repeat elements in each species. R2 and r2 represents

coe�cient of determination and correlation coe�cient, respectively. (F) Correlation between the assembly statistics and the amount of various types

of repeat elements found in the genome of 108 species. (B–E) The colors in the figure share group information separated by class taxonomic level,

except for human-mouse and eight livestock animals.

This is because the genome used in this experiment was an

unmasked version of the repeat elements. If the genome utilized

repetitive masked versions commonly used in RNA-seq, the

multiple mapping rate would not increase, but the overall mapping

rate would decrease. The average multi-mapping rate in all

species was 5.68%, whereas a multi-mapping rate of 22.512%

was observed in Xenopus tropicalis. High multi-mapping rates

were also observed in model organisms such as D. melanogaster

(15.068%) and A. thaliana (13.034%). These results demonstrate

that multi-mapping of reads intensifies according to the ratio of

repeat sequences in the genome, however this could be because

of the characteristics of the species, not the quality of the

genome (Figure 3B).

Finally, we compared all species with MQI based on valid

indicators generated in the mapping step. An average MQI of

0.829 was observed across all species, indicating that there are very

few species with genomes that perform poorly enough to affect

mapping in most publicly available reference genomes (Figure 3C).

Qualitative evaluation of gene annotations
from 102 species through comparison of
transcript diversity

Based on 30 different types of genes included in the

gene annotation collected from a total of 102 species

(Supplementary Table 9), we evaluated the relative level of

gene annotation in various species, including livestock. We

hypothesized that the gene annotations for humans and mice,

which have been frequently and continuously revised through the

efforts of many researchers, would be at the highest level. The

fact that 24 of the 30 classification criteria of the transcript types

in gene annotation were observed in human and mouse species

demonstrates that this is the most subdivided gene annotation

when compared to other species, as we hypothesized (Figure 4A).

Therefore, it was further hypothesized that by measuring the

transcript diversity of gene annotation within a specific species, it

would be possible to measure the relative level of gene annotation
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FIGURE 3

Investigation of association relationship between assembly statistics and empirical e�ective indicators obtained in the mapping step for genome

quality evaluation. (A) Pairwise correlation between selected assembly statistics and empirical e�ective indicators obtained in the mapping step for

genome quality assessment. (B) Linear relationship between the ratio of multiple mapped reads and proportion of repeat elements on the genome in

108 species. r2 represents correlation coe�cient, respectively. (C) Di�erences in newly proposed MQI values in 108 species. To evaluate the relative

quality of the genome, valid empirical indicators were integrated and configured in the mapping stage. The horizontal line represents the average

MQI value across all 108 species.

of that species compared to humans or mice, which have relatively

well-organized gene annotations.

As a result of investigating gene diversity in annotations

using a dimensionality reduction algorithm based on the ratio of

30 different types of genes derived from 102 gene annotations,

no species has yet reached the level of human or mouse

gene annotation (Figure 4B). The PC1 values obtained from

dimensionality reduction analysis explained 77.92% of the total

transcript diversity in gene annotations, and the strong correlation

with Shannon’s equitability calculated based on mouse species

supports our claim (Figure 4C). We evaluated the diversity of

transcripts in each of the 102 gene annotations and found

the highest diversity in human (Figure 4D). Based on human’s

transcriptome diversity, mouse gene annotation followed with

87.996%. In the case of mammals, the average diversity of gene

annotations was generally higher than that of other classes.

Livestock were confirmed to have approximately 39.463% diversity

compared to that of the human gene annotation. Of the eight

livestock species highlighted in this study, only 12.099% of

the human gene annotation complexity was annotated in the

mallard duck (Anas platyrhynchos; A. platyrhynchos). While gene

annotations with more than 50% transcript diversity were rare in

other classes, relatively high gene annotation diversity levels of

48.095% and 47.999% were found in D. melanogaster and Salmo

salar, respectively.

We further investigated whether the transcript diversity index

was significantly affected by which of the 30 transcript types

(Supplementary Table 10). It was found that lncRNA had a

correlation of 0.841 with the transcript diversity obtained from

the dimensionality reduction analysis. We found that lncRNAs

in 37 species, including D. melanogaster, were not classified in

the annotation (Figure 4E, Supplementary Table 9). Among the 8

livestock animals, 11,944 and 10,965 lncRNAs were annotated in

Gallus gallus and Sus scrofa, respectively. In contrast, relatively

low numbers of 1,480 and 786 lncRNAs were annotated in

Bos taurus and A. platyrhynchos. We presumed that protein-

coding genes would contribute considerably to the diversity

of gene annotation, but correlation of −0.126 with transcript

diversity was found (Supplementary Table 10). In addition, the

average proportion of protein-coding genes was 81.69% in all

102 species (Figure 4F). These results demonstrated that when

constructing gene annotations across all species, protein-coding

genes are usually annotated as primary targets; thus, they did not

significantly contribute to the classification of the 102 species based

on the diversity of transcripts within the annotations. However,

we identified relatively low proportions of protein-coding genes

in model organisms such as humans (33.041%), mice (38.538%),

chickens (56.487%), and D. melanogaster (58.365%). Concurrently,

we found that various small RNAs, such as small nuclear RNA

(snRNA), small nucleolar RNA (snoRNA), small Cajal body-

specific RNA (scaRNA), and miRNA, also play an important role

in determining the level of transcript diversity for gene annotations

in 102 species (Supplementary Figure 4). This implies that as

non-coding genes other than protein-coding genes are included
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FIGURE 4

Qualitative evaluation of gene annotation based on transcript diversity. (A) Comparison of the number of types found in each species out of a total of

30 transcript types annotated in gene annotations of 102 species. (B) Dimensional reduction results for the ratio of 30 transcript types in gene

annotation of each species through principal component analysis. About 77.92% of the total variance in the original data was explained by the first

principal component. (C) Results of correlation investigation between two methods of estimating transcript diversity: Shannon’s equitability and PC1

obtained through PCA. R2 and r2 represents coe�cient of determination and correlation coe�cient, respectively. (D) Comparison of transcript

diversity index for all 102 species. (E) Comparison of the proportion of annotated lncRNAs in the gene annotations of each species. Purple indicates

species with no lncRNA annotated at all. (F) Correlation between the proportion of lncRNAs and the proportion of protein-coding genes. R2 and r2

represents coe�cient of determination and correlation coe�cient, respectively. (G) Comparison of the proportion of annotated pseudogenes in the

gene annotations of each species. (A–E) The colors in the figure share group information separated by class taxonomic level, except for

human-mouse and eight livestock animals.

in the gene annotation, the proportion of protein-coding genes

decrease, suggesting that this can be another indicator of the

degree of development of gene annotation. Finally, we observed

a correlation of 0.545 between transcript diversity and the ratio

of pseudogenes (Supplementary Table 10). Excluding human and

mouse gene annotations, the average proportion of genes classified

as pseudogenes in the gene annotations of the remaining 100

species was only 1.523% (Figure 4G). In contrast, in humans and

mice, a significant number of annotated genes were classified

as pseudogenes, at 24.571 and 23.961%, respectively. This result

indicates that the level of gene annotation is generally higher,

as pseudogenes are additionally considered in gene annotation

beyond the level of simple classification of protein-coding genes,

lncRNAs, and some small RNAs whose functions are known or are

of common interest to scientists.

Demonstration of change in mapped reads
quantification performance according to
the quality of gene annotation in 102
species

Quantification of reads generated from RNA-seq data is a

crucial process for measuring gene expression levels and is most

frequently applied to various biomedical fields. In the process of

quantifying the reads mapped to the genome, we speculated that

the quantification success rate would be affected by the structure

and completeness of the gene annotation of various species. Based

on RNA-seq data from all 102 species, we found that the proportion

of annotated exon (r2 = 0.45) or gene (r2 = 0.473) in the genome

correlated most with the proportion successfully assigned to a
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FIGURE 5

Selection of empirical e�ective indicators in the quantification process and investigation of correlation with complexity of transcripts in annotation

for quality evaluation of gene annotation in diverse species. (A) Correlation between 12 characteristics of gene annotation and 3 quality evaluation

indicators obtained empirically in the quantification process. (B) Scatter plot between average gene length and quantification success rate. (C)

Association between the proportion of annotated genic regions in the genome and the rate of quantification failure due to ambiguity. (D) Correlation

between the percentage of annotated genic regions in the genome and the rate of quantification failure due to the absence of annotation. (E)

Independence between transcript diversity index, a proposed qualitative quality evaluation metric, and quantification rate, a quantitative quality

evaluation index. (F) Di�erences in QQI, an empirical quality index obtained at the quantification stage, in all species. (B–F) The colors in the figure

share group information separated by class taxonomic level, except for human-mouse and eight livestock animals.

specific gene during the quantification process (Figure 5A). We

found patterns clearly differentiated by average gene length in 102

species at the class taxonomic level and identified the quality of

gene annotation within each class in terms of the quantification rate

for mapped reads on the genome (Figure 5B). For example, human

(0.745) and mouse (0.738) gene models are of outstanding quality

in mammals; however, the quantification rates were significantly

low inMacaca nemestrina (0.293) and Pan troglodytes (0.279). High

quantitative success rates were observed in G. gallus (0.734) and

A. thaliana (0.722), which are representative model bird and plant

species, respectively. However, in Petromyzon marinus (0.268),

which represents the Hyperoartia class, it was confirmed that

RNA-seq application research is not yet possible in terms of the

quantification rates of mapped reads.

While genomic features were distinct for each class

taxonomic level, we found a common pattern across 102

species in two representative causes of mapped reads for which

quantification failed (Figures 5C, D). The first representative cause

of quantification failures caused by gene annotation was ambiguity

due to redundant annotations at genomic locations (Figure 5C).

We demonstrated that a higher percentage of genes annotated in

the genome of a particular species, led to increased ambiguity (r2

= 0.552) in the quantification step (Figures 5A, C). Interestingly,

it was also found that human and mouse gene annotations,

which had a high quantification success rate, were not free from

redundancy problems, suggesting that short-read-based NGS

technology continue to have difficulties in accurate quantification.

We further investigated the absence of gene annotation, which is

another representative cause of quantification failure for mapped

reads caused by gene annotation. As a result, we identified a

common pattern in which higher frequency of genes annotated in

the genome, led to the lower quantification failure rate (r2:−0.638)

due to the absence of annotation (Figure 5D). We demonstrated

that in most model organisms, including humans (0.065) and mice

(0.035), the rate of quantification failure caused by the absence

of gene annotation was relatively low compared to that in other

species. We also demonstrated that these two representative

quantification errors (Figures 5C, D), caused by the characteristics

of gene annotation, were opposed to each other in 102 species

through actual RNA-seq data. For example, human and mouse

annotations include annotations for many genes compared to

other species, reducing errors due to the absence of annotations;

however, errors due to redundancy of annotations are relatively

high. In this regard, we additionally investigated the association
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FIGURE 6

Quality evaluation results of 97 species through the proposed NGS applicability index based on the 10 quality evaluation indicators verified through

this study. (A) Heatmap for a total of 10 quality evaluation indicators selected through this study. The heatmap includes three assembly evaluation

indicators and three performance indicators derived from the mapping process, which can relatively evaluate the quality of genomes. In addition,

transcript diversity and three performance indicators derived from the quantification process are included to relatively evaluate the gene models.

Finally, all 97 species were sorted in descending order through the NGS applicability index, which is the result of the weighted sum of these 10 quality

evaluation indicators. All values have a scale of 0.0 to 1.0, and the closer to 1, the higher the quality. (B) Results of benchmarking quality evaluation of

reference genome and gene annotation for 8 livestock animals.
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FIGURE 7

Technical validation of the NGS applicability index based on the di�erent genome builds. Comparison between NGS applicability index and BUSCO

completeness for di�erent version of reference genome and gene annotation. Polygonal charts represent values for each of the 10 e�ective

indicators that make up the NGS applicability index. The larger the polygon area represent the higher the NGS applicability index.

between the diversity of annotated transcript types and the success

rate of quantification, but no association was observed (Figure 5E).

This result demonstrated that the transcript diversity index does

not affect the quantification success rate index, as it does not affect

the exon or gene structure in gene annotation. In addition, the

transcript diversity index has been demonstrated to be another

independent index that can evaluate gene annotation qualitatively

in a different direction than the quantification success rate index.

We finally compared a QQI for 102 species based on the

quantification success rate and two quantification failure rates,

which are determined by the quality of gene annotation (Figure 5F).

As a result, it was found that the average QQI was high in the

order of A. thaliana (0.89), mouse (0.887), C.variegatus (0.871),

S.cerevisiae (0.866) and chicken (0.863). This result demonstrates

that most model organisms whose gene annotations have been

frequently updated are of markedly high quality compared to other

species through the quantification process with real 3,060 RNA-

seq data from 102 species. In contrast, this suggests that there are

still practical problems with accurate quantification due to quality

problems of gene annotation in species belonging to Mammalia,

such as Camelus dromedarius (0.644), Macaca nemestrina (0.585)

and Pan troglodytes (0.557).

Application and validation of NGS
applicability index

Finally, we proposed the NGS applicability index by integrating

10 validated effective indicators that can evaluate the reference

genome and gene annotation (Figure 6A, Supplementary Table 11).

As a result, mice (0.882), chickens (0.874), humans (0.872) and

Arabidopsis (0.847) species were observed in the order of highest

scores (Figure 6A), which revealed that the NGS applicability

index is valid for relative quality assessment in diverse species.

We expected that through this NGS applicability index, we could

evaluate the boundaries of NGS application research and the

direction of development to improve the quality of the genome

and gene annotation for a specific species. For example, although

Arabidopsis and turbot showed extremely high NGS applicability

indices, transcript diversity was 0.233 and 0.46, respectively,

compared to other high-ranking species. From this, there is

no technical problem in performing applied NGS technologies,

such as whole genome resequencing or RNA-seq, but it is not

possible to study various types of transcripts, including lncRNAs

and various small ncRNAs. Simultaneously, it can be understood

that these species will improve the direction of increasing the

transcript diversity of gene annotations, such as diverse ncRNAs.

An integrated quality index of 0.751 on average was observed in

all eight livestock animals, it has not yet reached the level of other

model animals except for chickens, suggesting that it has stable

quality compared to other species (Figure 6B). Because relatively

low quantification success rates are observed in goats, yaks, and

sheep, gene annotation must be improved soon.

Generally, when an assembly build is upgraded, a significant

increase in the quality of the reference genome and/or gene

annotation is expected. Taking this into account, we additionally

compared different assembly builds from four species with a high

NGS applicability index (human, mouse, chicken, and pig) to

verify the validity of the proposed NGS applicability index. As

expected, as the genome build increased in all four species, the

NGS applicability index improved significantly (Figure 7), which

is direct evidence supporting the validity of our proposed quality

Frontiers in Veterinary Science 12 frontiersin.org111

https://doi.org/10.3389/fvets.2023.1128570
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Park et al. 10.3389/fvets.2023.1128570

indicator. The BUSCO completeness, a representativemethodology

for evaluating genome assembly, also showed a tendency to

increase as the assembly build improved, but it was observed that

the difference was relatively insignificant. In particular, the NGS

applicability index showed a clear increase in the order of 0.624,

0.745, and 0.912 for the mouse, but the BUSCO Completeness

was the same at 0.996. This result is direct evidence that the NGS

applicability index can show higher quality assessment discernment

by simultaneously considering more diverse aspects than the

BUSCO method, which focuses only on the completeness of

genome assembly (Supplementary Figure 5).

Discussion

To date, various studies have been conducted to compare

and evaluate the quality of genomes and gene annotations;

however, most have been used to compare evolutionarily close

species (10, 43) or assembly methods (44, 45). Since most

studies have aimed at comparing adjacent minority species, the

quality evaluation indicators that have been used are limited, and

discussion on the methodology to compare genomes and gene

annotations of multiple species is lacking. However, reference

genomes and gene annotations are essential data for various

NGS application technologies, including RNA-seq data, and have

been known to directly affect the performance of essential

steps, such as alignments and quantification processes (28, 31).

While the application of NGS technology in various species

is becoming increasingly common, the quality of these key

data can influence the accuracy of the research outcome itself;

therefore, it must be evaluated. In this study, genomes and

gene annotations of 114 species, including eight livestock species,

were obtained from the Ensembl database, and 3,420 RNA-

Seq data were collected to attempt diversified quality evaluation

in various species (Figure 1). We conducted research to find

novel effective indicators for quality assessment, and to select

effective indicators among existing quality assessment indexes that

can objectively evaluate the genome and gene annotation of a

specific species.

Among the indicators generated in the de novo assembly

process, which is used for quality evaluation of reference genomes,

the validity of the N50 values of contig and scaffold levels was first

examined (Figure 2). This N50 value, called the contiguity index,

refers to the length at which contigs or scaffolds are sorted in

length order and reach 50% of the target length of the complete

assembly (20). However, this value fluctuates depending on the

final target length; therefore, it is not suitable for comparing

multiple species with different genome lengths (46). Therefore, in

most studies using the N50 index, the genome size of the target

species is usually unknown, and has been used to compare the

quality of the genome assembly by estimation based on the genome

size of evolutionarily close species (21, 22). Because the genome

sizes were fixed for the purpose of our study, we converted the

N50 value to an effective index that can be compared between

multiple species by correcting it with the genome size of the species.

As a result, we identified an association with the quality index

that directly indicates the quality of the reference genome, such

as the number of gaps in the genome (Figure 2A). This gap is

the primary target in all reference genome construction studies,

and various attempts have been made to minimize it (23–25).

We additionally assumed that the repeat elements spread on the

genome could be considered as quality indicators; however, the

distribution of repeat elements is determined by the characteristics

of the species (47) and thus could not be employed as another

objective quality indicator (Figures 2E, F). Going one step further,

we demonstrated that the three selected genome quality evaluation

indicators directly affected the mapping stage of the actual NGS

application (Figure 3A). In addition, the genome quality of various

species can be evaluated from another perspective through the

MQI score, which was created by composing indicators empirically

obtained in the mapping step, such as alignment success and

failure rate, and failure rate due to multiple mapping (Figure 3C).

In conclusion, we selected adjusted N50 values in contig and

scaffold levels, number of spanned gaps, and MQI, which are

effective indicators for evaluating the quality of reference genomes

of various species.

Multiple methods exist for measuring the quality of a reference

genome, but the only way to measure the completeness of

annotated transcripts in the genome is to compare them with

the annotations of evolutionarily similar species (18, 48). In other

words, because there is no objective indicator for the quality

evaluation of gene annotation, it was not possible to evaluate

the quality of various species. In this context, we proposed a

novel metric, transcript diversity, to evaluate the completeness

of gene annotation in various species (Figure 4). We calculated

the diversity of this transcript under the assumption that gene

models frequently developed by multiple scientists, such as

humans or mice, would eventually be of the highest quality.

As evidence for this, we demonstrated that gene annotations

in humans and mice are fine-grained for lncRNAs (Figure 4E),

various small RNAs, and pseudogenes (Figure 4G). In the past,

the elucidation of protein-coding genes has been a major goal,

even in representative gene models, including humans and mice

(49). However, as it was revealed that non-coding genes such as

various types of lncRNA (50), snRNA (51), snoRNA (52), scaRNA

(53), and miRNA (54) are also involved in various functions

in living organisms, more diverse transcript types have been

included in gene annotation of human and mouse. Considering

the developmental history of this representative gene model, we

believe that our newly proposed transcript diversity has sufficient

value as a new index to measure the quality of gene annotation.

In addition, we showed that transcript diversity, a qualitative

quality indicator, was independent of QQI, a quantitative quality

indicator of gene annotation (Figure 5A). Like the MQI, an

empirical quantitative index that can evaluate the quality of the

genome in the mapping stage, we proposed QQI as a novel

indicator, which can evaluate the quality of gene annotation in the

quantification process. We demonstrated that the success rate of

quantification of mapped reads and both failure rates depended

on the complexity of each gene annotation (Figure 5). This is

strong evidence to show that the QQI, which is the sum of these

three empirical indicators, is also an indicator that can evaluate

gene annotation from a different perspective than the transcript

diversity index (Figure 5F). In conclusion, we present a novel

transcript diversity index, a qualitative index that can evaluate the

gene annotations of various species, and the QQI, a quantitative
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index that can be empirically evaluated. We also demonstrated that

they can be used to evaluate the quality of gene annotation in

diverse species.

In this study, we attempted a novel approach to compare the

quality of reference genomes and gene annotations of multiple

species; however, there were limitations. First, we limited the

number of species to those from which could collect more

than 30 samples of RNA-seq data from species listed in the

Ensembl database. If additional species are considered , there is

a possibility that the evaluation of the middle and lower ranks

may change. Second, although quality control was performed as

best as possible for the 30 RNA-seq data samples collected for

each species, the data contained random errors, as experimentally

identical tissues and environmental conditions were not controlled

across all species. This factor can affect the empirical quality

metrics. Third, only an intuitive scaling method incorporating 10

quality evaluation indicators was applied in this study. We believe

that a methodology that can efficiently integrate heterogeneous

indicators derived from these diverse species will be elucidated in

near future. Lastly, we considered only those quality evaluation

indicators that could be obtained from available data; information

that was not publicly available, such as the mis-assembly rate

or assembly depth coverage, could not be considered. However,

because the relative methodology proposed in this study is a

framework, these practical issues are expected to be automatically

resolved as reference genomes and gene annotations for various

organisms are revealed. Concurrently, the relative index will

become more accurate.
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Himanshu Avashthi1, Poonam Sikka2, Andonissamy Jerome2,

Ashok Kumar Balhara2, Inderjeet Singh2, Anil Rai1 and

Krishna Kumar Chaturvedi1

1ICAR-Indian Agricultural Statistics Research Institute, Indian Council of Agricultural Research (ICAR),

PUSA, New Delhi, India, 2ICAR-Central Institute for Research on Bu�aloes, Indian Council of Agricultural

Research (ICAR), Hisar, India

The milk, meat, skins, and draft power of domestic water bu�alo (Bubalus bubalis)

provide substantial contributions to the global agricultural economy. The world’s

water bu�alo population is primarily found in Asia, and the bu�alo supports

more people per capita than any other livestock species. For evaluating the

workflow, output rate, and completeness of transcriptome assemblies within

and between reference-free (RF) de novo transcriptome and reference-based

(RB) datasets, abundant bioinformatics studies have been carried out to date.

However, comprehensive documentation of the degree of consistency and

variability of the data produced by comparing gene expression levels using these

two separate techniques is lacking. In the present study, we assessed the variations

in the number of di�erentially expressed genes (DEGs) attained with RF and RB

approaches. In light of this, we conducted a study to identify, annotate, and

analyze the genes associated with four economically important traits of bu�alo,

viz., milk volume, age at first calving, post-partum cyclicity, and feed conversion

e�ciency. A total of 14,201 and 279 DEGs were identified in RF and RB assemblies.

Gene ontology (GO) terms associated with the identified genes were allocated

to traits under study. Identified genes improve the knowledge of the underlying

mechanism of trait expression in water bu�alo which may support improved

breeding plans for higher productivity. The empirical findings of this study using

RNA-seq data-based assemblymay improve the understanding of genetic diversity

in relation to bu�alo productivity and provide important contributions to answer

biological issues regarding the transcriptome of non-model organisms.

KEYWORDS

water bu�alo, transcriptome, annotation, GO terms, SSRs

Introduction

The domestic water buffalo (Bubalus bubalis) marks a key impact on the global

agricultural economy through milk, meat, and draft power. The world’s water buffalo

population is largely found in Asia, andmost people consider it the most promising livestock

species for their livelihood (1, 2). Asia accounts for 97% of the total buffalo production with

the largest population in India (>100 million) (2). More than half of the milk produced in
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India comes from buffaloes, which also produce milk with higher

levels of fat, particularly saturated fatty acids, than cattle (2).

Buffaloes are resilient to the harsher environment and resistant

to several bovine tropical diseases (1), thus may have better feed

convergence while surviving on poor-quality roughage than cattle.

Recent studies cataloging differentially expressed genes (DEGs) and

variants (3, 4) with respect to important performance traits in

water buffalo corroborate with the functional genetic diversity in

this species.

Milk volume, age at first calving, post-partum cyclicity, and

feed conversion efficiency traits define the overall productivity

of buffaloes. Buffalo milk has the significance of having higher

concentrations of fat, lactose, protein, ash, calcium, and vitamins

A and C while having lower concentrations of cholesterol and

the blue-green pigment (biliverdin) (5). Additionally, buffalo milk

has bioactive pentasaccharides and gangliosides, which are absent

in cow milk (6). Therefore, the study of genes related to milk

volume is very important. The age at first calving can be used to

determine a buffalo’s fertility and productivity. Buffalo productivity

is affected by delayed puberty onset and inadequate consecutive

estrus detection (7). Reproductive efficiency is the primary factor

affecting the productivity of buffaloes, which comprise early age

at first calving (AFC) and optimum service period between

the calvings (post-partum cyclicity) throughout the reproductive

span in life. Thus, the identification of genes and the variants

associated with these traits may support selective breeding for

genetic improvement. Improved immunity is equally significant

to propagate uterine cleansing to facilitate an early resumption

of ovarian cyclicity (8, 9). Feed conversion efficiency (FCE) is

defined as a dry matter intake (DMI) per unit body weight (g/day)

gain determined as residual feed intake (RFI). It represents the

difference in actual and predicted DMI of each individual heifer

(10). Feed conversion efficiency is a heritable trait governed by

common biomolecules as growth hormones are associated with

milk volume, age at first calving, and post-partum cyclicity (11,

12).

Several studies have confirmed the discovery of differentially

expressed as well as novel genes in mammals such as humans,

buffaloes, sheep, goats, and pigs (3, 13–17). The genetic link

and diversity among various buffalo breeds have primarily been

studied using restriction fragment length polymorphism (RFLP)

(18), random amplified polymorphic DNA (RAPD) (19), single

nucleotide polymorphism (SNP) (4, 20), and simple sequence

repeat (SSR) (21) markers. SSR markers have proven to be

an incredibly powerful tool for researching genetic divergence

and/or genetic resource conservation (22). Identification and

characterization of genome-wide DEGs related to reproduction and

production traits can be widely used for selective breeding, which

may enhance productivity in buffaloes (23, 24).

Considering this, an attempt was made to identify the

variants related to important traits, i.e., milk volume, age at

first calving, post-partum cyclicity, and feed conversion efficiency,

using transcriptomic data to improve breeding plans in water

buffaloes. DEGs were identified, characterized, and annotated, in

order to accelerate performance in buffaloes through molecular

breeding. This is a unique study identifying the functional

classifications of genes, variants, and SSRs related to desired traits

in B. bubalis.

Materials and methods

Milk volume, age at first calving, post-partum cyclicity, and

feed conversion efficiency were the four different traits for which

datasets were collected. Four samples were selected for each trait

(two each of low and high expression). The complete workflow of

the study is presented in Figure 1.

Ethics statement

Animals (n = 16) were selected as per the referred design

for selective genotyping of buffaloes, based on performance

phenotype recorded at ICAR-Central Institute for Research on

Buffaloes (ICAR-CIRB), Hisar, Haryana, India. Genotype data

were generated for selected genotypes through outsourced services

hired by the institute. Animals were maintained under farm

management at the institute, and the experiment design was

approved by the Institute Animal Ethics Committee (IAEC) with

ethics approval number−406/GO/RBI/L/01/CPCSEA.

Animals and tissue collection

Whole blood tissues of individual animals were selected from

unrelated pedigrees having extreme performance levels for complex

traits as follows: milk volume, age at first calving, post-partum

cyclicity, and feed conversion efficiency. Each trait had four samples

comprising two each of low and high expressions.

RNA extraction, library preparation, and
sequencing

For the transcriptome analyses of expression patterns in low-

and high-performingMurrah buffaloes, cDNAwas generated using

a routine RNA library preparation HiSeq protocol developed by

Illumina Technologies (San Diego, CA), using 1 µg of total RNA

as input. Using the High-Capacity cDNA Reverse Transcription kit

(Life Technologies, Frederick, Maryland, USA), mRNA was first

isolated from total RNA by performing a polyA selection step,

followed by the construction of paired-end sequencing libraries

with an insert size of ∼300 bp. In brief, polyA selected RNA

was cleaved as per Illumina protocol, and the cleaved fragments

were used to generate first-strand cDNA using Super Script II

reverse transcriptase and random hexamers. Subsequently, the

second strand cDNA was synthesized with RNaseH and DNA

polymerase enzyme, followed by adapter ligation and end-repair

steps. The resulting products were amplified via PCR, and cDNA

libraries were then purified and validated using the Agilent

2200 Tape Station system (Agilent Technologies Brasil Ltda, São

Paulo, SP, Brazil). Paired-end sequencing was performed using

the Illumina HiScanSQ platform. Samples were multiplexed with

unique hexamer barcodes and run on multiple lanes to obtain 2 ×

100 bp reads. Paired-end FASTQ files were subjected to standard

quality control based on Phred scores of >20, using the NGSQC

Tool kit v2.2 (25) to obtain high-quality (HQ) filtered reads.
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Transcriptome assembly and optimization

Raw reads from the four sets generated from the animal

samples using Illumina HiSeq were filtered to generate clean data

to remove adaptor sequences, reads with ambiguous sequences “N,”

low-quality reads, and reads that were mostly repeated bases, such

as polyT tracts using Trimmomatic 0.39 (26). The trimmed reads

are evaluated with FastQC (27), a Java-based, quality control tool

for high-throughput sequence data.

After obtaining clean reads and quality checks, RF

transcriptome assembly was conducted with Trinity software

v2.8.6 with default parameters (28, 29). Only assembled transcripts

with lengths of >300 bp were included in further analysis.

Simultaneously, the raw reads were mapped to the B. bubalis

genome (UOA_WB_1 accessed from https://www.ncbi.nlm.nih.

gov/assembly/GCF_003121395.1/) with TopHat2 v2.0.13 (30),

using Bowtie2 v2.2.6 (31) as the underlying aligner. Reads aligning

to the UOA_WB_1 build were quantified, which disregarded any

read/read pair that aligned to more than one location or more than

one gene at a single location.

Di�erential expression analysis

For the RF assembly results, differential transcript expression

for different datasets was calculated using an exact test in the

Bioconductor R package (32) edgeR [Empirical Analysis of Digital

Gene Expression Data in R (33)]. We used RSEM [RNA-Seq by

Expectation-Maximization (34)] to generate read counts for the

optimized assembled transcriptome to input into edgeR. EdgeR

normalizes raw input data using a trimmed mean of M-values

(TMM), and transcripts with artificially low counts (<1 count

across all samples) after normalization were excluded before

differential expression analysis was completed. The transcript level

was quantified in terms of Fragments Per Kilobase of transcript per

Million mapped reads (FPKM). Differential expression (DE) was

detected using the edgeR Bioconductor package with a log2 fold

change threshold of 2.

Differential expression analysis for the B. bubalis RB assembly

was conducted using the Cufflink analysis tool between different

samples of the same traits in pairs (high and low yielding). DE genes

with log2 fold change of≥2.0, an adjusted p-value (padj) of < 0.05,

and an adjusted FDR of <0.05 were subjected to further analyses.

Functional annotation of genes

Functional analysis of the DEGs was performed using Blast2GO

v 2.5 (35). Blast2GO is a gene ontology-based annotation tool

and found to be effective in the functional characterization of

sequence data. The DEGs homologous with annotated proteins in

the nr database were selected for functional characterization based

on the maximum E-value (1E-3) and the minimum alignment

size (HSP length 33) using BLASTX. The DEG sequences were

then categorized according to the GO vocabularies into three

categories, i.e., molecular function, biological process, and cellular

component. The distribution of GO terms was analyzed at level 2

of the Directed Acyclic Graphs. Annotated DEGs were analyzed for

pathway identification using KEGG.

SSR mining

Simple sequence repeats were identified using the MISA

tool from the DEGs. The chromosome-wise distribution of

DEGs, SSRs, and SNPs [extracted from DDRAD sequence data

(4)] was graphically mapped using the CIRCOS (version 0.69)

visualization tool.

Results

Analysis of our data with both cattle and water buffalo

reference assemblies gave varied results for differential expression

and annotation among different traits, viz., milk volume, age at first

calving, post-partum cyclicity, and feed conversion efficiency.

Assembly benchmarking

A total of 857 million raw reads were generated (428,671,371

paired-end reads) by Illumina sequencing of the 16 B. bubalis

samples for four traits, viz., milk volume, age at first calving, post-

partum cyclicity, and feed conversion efficiency, with an average of

∼26.7 million reads per sample. From these, ∼773 million reads

(90.7%) were attained after removing the adapters and trimming

for quality. These post-cleaning reads passed the minimum quality

standards of FastQC.

After read filtering, clean reads were assembled into 488,811,

86,054, 451,596, and 451,596 contigs, reaching a total length of

482,785,524 bp, 81,971,386 bp, 431,765,546 bp, and 529,684,800 bp

for “milk volume,” “age at first calving,” “post-partum cyclicity,” and

“feed conversion efficiency” traits, respectively. The average length

of assembled contigs was 406, 383, 390, and 405 bp and N50 of

1,606, 1,728, 1,588, and 1,588 bp for “milk volume,” “age at first

calving,” “post-partum cyclicity,” and “feed conversion efficiency”

traits, respectively.

During the course of the abovementioned analysis, the B.

bubalis genome was sequenced in 2019, and we proceeded with

the RB assembly to compare the two assembly results. To evaluate

the assembly quality, we mapped the Illumina clean reads on

the water buffalo reference genome (UOA_WB_1, Accession

GCA_003121395.1). Approximately 91.22% of the paired-end

reads were mapped properly.

Di�erential expression analysis

A total of 14,201 and 279 DEGs were identified corresponding

to RF and RB assembly, respectively, in four traits. The DEGs

identified through RF assembly were more as compared to RB

assembly. The number of upregulated genes was 7,190 and 126

while the downregulated genes were 7,011 and 153, respectively,

expressed in RF and RB assembly (Table 1).
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FIGURE 1

Workflow of the RNAseq data analysis.

TABLE 1 Number of di�erentially expressed genes in reference-free (RF) assembly and reference-based (RB) assembly.

Traits/genes Reference-free (RF) assembly Reference-based (RB) assembly

Up-regulated Down-regulated Up-regulated Down-regulated

Milk volume (trait 1) 2,020 2,206 29 25

Age at first calving (trait 2) 726 525 37 62

Post-partum cyclicity (trait 3) 2,970 2,498 15 22

Feed conversion efficiency (trait 4) 1,474 1,782 45 44

Whilemaking the comparison among the RF upregulated genes

across all four traits, only two common DEGs were common

between “milk volume” and “feed conversion efficiency,” and two

DEGs were common between “post-partum cyclicity” and “feed

conversion efficiency”. A single gene was common between “age

at first calving” and “post-partum cyclicity” (Figure 2A). One DEG

was found to be common among “milk volume,” “post-partum

cyclicity,” and “feed conversion efficiency” traits (Figure 2B).

No common genes were identified among the four traits. A

higher number of common DEGs were found in upregulated and

downregulated categories through RB assembly. In total, 3.8% of

all DEGs were upregulated in “milk volume,” “age at first calving,”

and “feed conversion efficiency” traits, which were maximum. For

traits, viz., “milk volume,” “age at first calving,” and “post-partum

cyclicity,” only two common upregulated DEGs were identified

in the RB approach (Figure 2C). There were eight downregulated

DEGs (7.3%) common in “age at first calving” and “post-partum

cyclicity” (Figure 2D), fairly indicating the level of epigenetic

regulation with respect to different traits either through DNA

methylation and low expression of mRNA or demethylation.

Gene annotation

Gene ontology (GO) terms of identified genes (RF) were

obtained using the BLAST2Go v 2.5 tool. The study revealed that

one or more GO terms, viz., 30,290, 4,228, 43,142, and 17,097, were

assigned to genes for milk volume, age at first calving, post-partum

cyclicity, and feed conversion efficiency traits, respectively. GO
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FIGURE 2

Venn diagram representing the number of upregulated and downregulated genes for di�erent traits: (A) upregulated genes in RF assembly, (B)

downregulated genes in RF assembly, (C) upregulated genes in RB assembly, and (D) downregulated genes in RB assembly.

enrichment analysis classifies gene ontology terms into three broad

categories, namely, cellular component, molecular function, and

biological process (Figure 3). The binding function (GO: 0005488)

was the most represented GO term in the molecular function

category followed by cell and its part (GO: 0005623, GO: 0044464)

and organelle and its part (GO: 0043226, GO:0044422) as cellular

component terms for all the traits. Prominent GO terms that

emerged from the RF assembly were similar to the classified terms

that emerged from the RB assembly as 2,620 for milk volume, 440

for age at first calving, 3,644 for post-partum cyclicity, and 1,545 for

feed conversion efficiency traits (Figure 4).

Variant distribution

Trait-wise distribution of three identified elements as DEGs,

SSRs, and SNPs was mapped on the Bos taurus genome (Figure 5)

and B. bubalis genome (Figure 6) using the CIRCOS tool. This

depicts the comparative view of the chromosomal-wise distribution

of identified elements in various traits, viz., milk volume, age at

first calving, post-partum cyclicity, and feed conversion efficiency.

In the RB approach, there are 10,114 SSRs across all four

traits, viz., milk volume (3,185), age at first calving (529), post-

partum cyclicity (3,828), and feed conversion efficiency (2,572).

Mononucleotide SSRs are 6,061 followed by 1,779 for dinucleotide

SSRs, 1,417 for trinucleotide SSRs, 55 for tetranucleotide SSRs, 25

for pentanucleotide SSRs, and only two hexanucleotide SSRs. These

identified SSRs were further filtered based on their chromosomal

locations within the identified DEGs and SNPs. Figure 6 shows the

mapping of these resulted in 161 SSRs.

Discussion

The selection programs of domestic animals will be

strengthened by a detailed grasp of the genetic variation underlying

Frontiers in Veterinary Science 05 frontiersin.org119

https://doi.org/10.3389/fvets.2023.1160486
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Mishra et al. 10.3389/fvets.2023.1160486

FIGURE 3

Classification of gene ontology terms in reference-free assembly.

FIGURE 4

Classification of gene ontology terms in reference-based assembly.

complex phenotypes (36) as analyzed in this study. The current

study compared the DEGs identified through RF and RB assembly

approaches and shows their association with the buffalo traits

considered in this study. An attempt was also made to show the

chromosomal distribution of DEGs, SNPs, and SSRs in respect of

all four considered traits, viz., milk volume, age at first calving,

post-partum cyclicity, and feed conversion efficiency of buffalo

using the CIRCOS tool (Figures 5, 6). These maps depict that the

maximum number of DEGs are found in post-partum cyclicity,

followed by milk volume and feed conversion efficiency in the RF
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FIGURE 5

Trait-wise distribution of DEGs, corresponding SNPs, and SSRs mapped on the Bos taurus chromosomes using CIRCOS [(A) milk volume; (B) age at

first calving; (C) post-partum cyclicity; (D) feed conversion e�ciency].

approach, and age at first calving has the maximum number of

DEGs, followed by feed conversion efficiency and milk volume in

the RB approach (Table 1).

Phosphatidylinositol 3,4,5 trisphosphate five phosphatase was

identified as a common gene that was deregulated for functional

diversity in two traits i.e., age at first calving and post-partum

cyclicity, indicating the importance of the cell cycle progression

in these traits and perhaps regulating the development of embryos

(37, 38) (Supplementary Table S1). The FKBP4 gene is responsible

for reproductive traits (39, 40). The presence of calcium channel,

voltage-dependent, alpha-2/delta subunit 1 (CACNA2D1) gene

variant in respect of post-partum cyclicity and feed conversion

efficiency traits in our study is crucial for its role in excitation–

contraction coupling in neurons, glial cells, and muscle cells (41)

(Supplementary Table S1).

The key genes, inositol 1,4,5-triphosphate receptor (ITPR),

branched-chain amino acid transaminase (BCAT), and other

immunity-related genes, such as T-cell surface glycoprotein and

AP-1 transcription factor, are identified as differential genes in our

study that are mainly associated with all traits (42). Our study

also shows that the identified candidate genes such as growth and

hormone receptors, ribosomal proteins, sterol regulatory protein,
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FIGURE 6

Trait-wise distribution of DEGs, corresponding SNPs, and SSRs mapped on the Bubalus bubalis chromosomes using CIRCOS [(A)milk volume; (B) age

at first calving; (C) post-partum cyclicity; (D) feed conversion e�ciency].

and GTPase are associated with milk volume as reported earlier by

Surya et al. (43), Crisa et al. (44), Wickramasinghe et al. (45), Ma

and Corl (46), and Lemay et al. (47), respectively, because of their

involvement in histone modification, epidermal differentiation,

cell adhesion, and cytoskeletal architecture (48). RNA binding

FOX, transmembrane proteins, RNA binding proteins, cytosolic

peptidase, and cell adhesion receptor genes were pertinent to age at

first calving. These genes are primarily involved in cell proliferation,

differentiation, adhesion, the mitotic cycle, DNA replication, RNA

transcription, and apoptosis (49) (Supplementary Table S1).

As compared with RF, the RB assembly showed more

common genes among the traits. There were a total of

28 genes that were common between different traits in RB

compared to RF with only seven common genes (Figure 2).

The genes, namely, sphingosine-1-phosphate (SIP), somatostatin

(50, 51), BOLA class 1 histocompatibility antigen (52–54),

interferon-stimulated/induced protein, and SRY-box transcription

factor (55) have maximum homology when aligned with B.

bubalis genome (UOA_WB_1, Accession GCA_003121395.1;

Supplementary Table S2). The gene S1P is a bioactive lipid that

acts through cell-surface receptors to promote cell signaling and

causes a variety of cellular responses to help in developing

immunity against diseases (50, 51). The major histocompatibility

complex, such as BOLA class 1 histocompatibility antigen,
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present in all mammalian species, is crucial for the immune

system’s development (54). This BOLA histocompatibility complex

shows resistance to infectious diseases along with governing

the milk volume (52, 53) (Supplementary Table S2). The genes

governing disease resistance or susceptibility will positively affect

milk productivity.

An immediate defense against viral infection identified in our

study is provided by interferon-stimulated genes (ISGs) whose

expression is induced by interferon signaling (56). These ISGs

also act as potential biomarkers to avoid the occurrence of certain

diseases in mammals and eliminate the incidence of adverse

reactions to avoid the risk of further damage to the animals (57).

This will help in increasing overall productivity that may be either

due to an increase in milk volume or due to the application of feed

conversion efficiency (Supplementary Table S2).

Post-partum cyclicity-related genes are myosin-related

proteins, ribosylhydrolases, and cell adhesion receptors (58) that

play a significant role in the growth and immunity of the bovine

family. Furthermore, this study also identifies some vital genes

(ligand-dependent nuclear receptors such as carboxylase and

DLG2) related to feed conversion efficiency for regulating energy

homeostasis, apoptosis, immune response, and cell growth in

young heifers (59–61) (Supplementary Table S2).

In this study, the enriched GO terms revealed were related

to milk production, reproduction, immunological response, and

susceptibility/resistance to diseases. GO terms related to milk

volume are associated with the biosynthesis of glycoproteins, fatty

acids, glycerolipids, sterols, and other biological processes,

such as oxidative stress, metabolic processes, transporter

activity, divalent metal ion transport, calcium channel activity,

acetyltransferase activity, and mRNA processing (Figures 3, 4).

This confirms the importance of these processes in lactogenesis

(62). The GO terms related to cellular component organization

(GO:0071840), cell enzyme activity, or gene expression in response

to stimulus (GO:0050896), regulation of biological functions

(GO:0050789, GO:0048518, and GO:0048519), single-organism

process (GO:0044699), and cell death (GO:0001906) govern

physiological processes in animals. These terms are related to

age at first calving and feed conversion efficiency (22). Important

GO terms stimuli (GO:0050896), regulation of biological quality

(GO:0065008), and molecular function (GO:0065009) are related

to milk volume and feed conversion efficiency. Genes categorized

under cell and cell-part localization (GO:0005623, GO:0030054,

and GO:0044464) are prominent in all the considered four traits

and are found to regulate different biological processes, viz.,

trans-membrane transport, regulation of signal transduction, milk

production, and chemical transmission (49, 63) (Figures 3, 4). The

gene condensing complex subunit 2 (Q3MHQ) encoded by GO

term GO:0065007 is linked with the feed efficiency trait. The gene

Q3MHQ regulates cell division and improves growth development

in an animal by converting interphase chromatin into mitotic

chromosomal condensation and is interestingly linked to metabolic

pathways involved in feed conversion efficiency (64, 65).

Conclusion

In this study, an attempt has been made to compare

reference-free and reference-based approaches to identify and

annotate differentially expressed genes in B. bubalis for four

important traits, viz., milk volume, age at first calving, post-

partum cyclicity, and feed conversion efficiency. Reference-free

(RF) de novo transcriptome assembly approach is commonly

used due to the non-availability of a complete reference genome

with the high-quality genetic information of particular species.

In this study, the RF approach identified 7,190 upregulated

genes and 7,011 downregulated genes, whereas the RB approach

identified 126 and 153 genes, respectively. The number of gene

ontology terms associated with identified DEGs for the traits

under consideration—milk volume, age at first calving, post-

partum cyclicity, and feed conversion efficiency—were 30,290,

4,228, 43,142, and 17,097 for the RF approach, compared to 2,620,

440, 3,644, and 1,545 terms for the RB approach. The identified

genes and GO terms will establish a sound base for biological

postulates which will further improve future animal breeding

programs to enhance animal productivity.
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on chicken comb color into 
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Bacteria- or virus-infected chicken is conventionally detected by manual 
observation and confirmed by a laboratory test, which may lead to late 
detection, significant economic loss, and threaten human health. This paper 
reports on the development of an innovative technique to detect bacteria- or 
virus-infected chickens based on the optical chromaticity of the chicken comb. 
The chromaticity of the infected and healthy chicken comb was extracted and 
analyzed with International Commission on Illumination (CIE) XYZ color space. 
Logistic Regression, Support Vector Machines (SVMs), K-Nearest Neighbors (KNN), 
and Decision Trees have been developed to detect infected chickens using the 
chromaticity data. Based on the X and Z chromaticity data from the chromaticity 
analysis, the color of the infected chicken’s comb converged from red to green 
and yellow to blue. The development of the algorithms shows that Logistic 
Regression, SVM with Linear and Polynomial kernels performed the best with 95% 
accuracy, followed by SVM-RBF kernel, and KNN with 93% accuracy, Decision 
Tree with 90% accuracy, and lastly, SVM-Sigmoidal kernel with 83% accuracy. The 
iteration of the probability threshold parameter for Logistic Regression models 
has shown that the model can detect all infected chickens with 100% sensitivity 
and 95% accuracy at the probability threshold of 0.54. These works have shown 
that, despite using only the optical chromaticity of the chicken comb as the 
input data, the developed models (95% accuracy) have performed exceptionally 
well, compared to other reported results (99.469% accuracy) which utilize more 
sophisticated input data such as morphological and mobility features. This work 
has demonstrated a new feature for bacteria- or virus-infected chicken detection 
and contributes to the development of modern technology in agriculture 
applications.

KEYWORDS

machine learning, classification model, chromaticity, agriculture, chicken comb, image 
processing, diseases-infected chicken, energy
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1. Introduction

The increase in human population has forced poultry meat 
production to increase (1). However, mass production in the poultry 
industry may be  more vulnerable to disease outbreaks in farmed 
animals due to the increased number of animals per area and 
prolonged usage of antibiotics (2). The World Bank reported a direct 
cost of $20 billion for disease outbreak events between 1988 to 2006 
(3), including public and animal health costs, compensation, 
production, and revenue costs. Plus, indirect losses, including animal 
product chain, trade, and tourism, were estimated to be more than 
$200 billion worldwide (3). For instance, the United States and China’s 
poultry industry recorded huge economic losses and threats to human 
health due to several poultry-related diseases such as the H7N9 avian 
influenza virus outbreak in 2013 (4), multistate foodborne outbreak 
of Salmonella Typhimurium (5), avian influenza outbreaks in 2022 (6, 
7), foodborne pathogens such as Campylobacter, Escherichia coli, 
Salmonella, and Norovirus (8), severe respiratory illness among 
poultry slaughter plant workers due to Chlamydia psittaci (9), and 
human infection with the influenza A (H5N6) virus of avian origin 
(10). Although the viruses are preventable, curable, and controllable, 
there is still a continuous threat that they could start a pandemic if the 
viruses develop the ability to spread among humans effectively. 
Therefore, early detection of diseases in poultry production is a 
primary concern to prevent a major outbreak that would affect the 
economy and human health.

Numerous disease detection methods have been proposed, 
developed, and widely applied to give early detection to prevent this 
catastrophe. The conventional method of detecting infected chicken 
was using physical examination and laboratory tests. The physical 
examination is a way of seeing infected chicken through observation 
of clinical signs or changes in behavior and physical appearance of the 
chicken individually. The suspected chicken will be evicted from the 
flocks and undergo laboratory tests such as culture (11–13), 
polymerase chain reaction (PCR) (14, 15), enzyme-linked 
immunosorbent assay (ELISA) (16, 17) and lateral flow assay (LFA) 
(18, 19). Biological samples such as blood, cloacal swabs, organs, and 
feces were collected from the suspected chicken for the test. Apart 
from the requirement of trained personnel to conduct the tests, these 
methods are considered costly due to the equipment needed, such as 
a thermocycler, ELISA reader, PCR buffer, syringe, swab kit, and petri 
dish for sampling and detecting the pathogen (20). Overall, these 
methods can detect infected chickens with high precision and 
specificity. However, many other factors, such as cost and time taken 
for detection, were compromised, which makes it almost impossible 
to be implemented, especially for large-scale poultry producers.

The rapid development of modern technology has introduced the 
development of biosensors to detect infections with consideration of 
other factors such as sensitivity, cost, efficiency, and time taken for 
detection (21–23). Although biosensors can detect infected chickens 
faster than laboratory tests with good sensitivity and accuracy, each 
method was considered intrusive due to the biological sample needed 
for the test. Non-intrusive and non-invasive techniques in giving an 
early warning for detecting infected chickens based on their 
vocalization, video, and image have been introduced with the aid of 
advanced information technologies, especially machine learning. 
Several researchers have successfully detected infected chickens based 
on their abnormal sounds like rales, sneezing, and coughing (24–26). 
However, it was challenging to detect infected chickens individually 

based on vocalization because more than one chicken may sneeze or 
cough simultaneously. Computer vision, like digital images and video, 
can detect and classify infected chickens in real-time, and many 
different methods have been proposed (27–31). However, these works 
carried out the classification based on locomotor and mobility of the 
chicken (27), differences in morphological features (28), differences 
in posture and feather images (29), using an abnormal swelling image 
(30), and the correlation of the optical flow parameters with the 
occurrence of hockburn in chicken (31).

In conventional understanding, the infected chicken can 
be detected based on the biological change in the appearance of the 
chicken itself, especially its comb. For example, the Newcastle disease 
infection would show clinical signs such as swollen comb (32), 
nodular lesions on its comb characterized by fowl pox disease 
infection (33), and fatty liver hemorrhagic syndrome would show 
clinical signs of a pale comb (34). Previous studies have reported on 
the relationship between comb color and size with the immunity 
system of birds using spectrophotometry (35, 36). However, these 
results were based upon data from red grouse (bird) combs and it is 
still unclear on the correlation between the comb’s chromaticity and 
bacteria- or virus-infection, since these works were investigating only 
the immunity system of the birds. To the best of our knowledge, there 
is no specific research work that correlates the optical chromaticity of 
the chicken comb with infectious diseases using image processing. 
Therefore, this work investigates on the effectiveness of utilizing image 
processing techniques incorporated with machine learning algorithms 
to correlate the color of the chicken comb with bacteria- or virus-
infected chicken. The difference between infected and healthy chicken 
comb is analyzed based on chromaticity data. Since computer is a 
low-cost, non-invasive and non-intrusive method for detecting 
infected chicken, digital image colorimetry was adopted in this work. 
Using the chromaticity data, machine learning algorithms such as 
Logistic Regression, Support Vector Machine (SVM), K-Nearest 
Neighbors, and Decision Tree, were developed to classify the infected 
and healthy chickens. Each model’s performance, advantages, and 
disadvantages for this current application were analyzed in this study.

2. Image processing and machine 
learning algorithms

A digital image is a combination of color space data, and many 
researchers had performed colorimetry studies based on digital image 
color space data for a few applications and areas (37–41). Since digital 
image colorimetry is a well-known method for describing perceived 
color, this technique was used to extract the color component of the 
chicken comb at pixel level and the average pixel color component 
bounded on the comb area. The Red Green Blue triplets, RGB values 
were extracted, normalized, and linearly transformed into CIE XYZ 
color space using the developed Python program and ImageJ software. 
Normalized CIE XYZ, named the CIE xyz component, was studied 
and analyzed incorporated with the machine learning model, Logistic 
Regression. The supervised machine learning classification algorithms, 
Logistic Regression, SVM with different types of kernels, KNN, and 
Decision Tree model were used to classify the chicken health based on 
the color component. The models were trained and validated to 
analyze the performance parameter in this current application. 
Figure 1 shows the workflow of this study, from the RGB color data 
extraction methods to the chromaticity data analysis and the 
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development of machine learning models to classify chicken health. 
The details for the major stage of the method, which are image 
acquisition, data organization, image processing and data labeling, 
CIE XYZ color space, supervised machine learning algorithms, and 
performance parameter, are discussed in the following subsections.

2.1. Image acquisition

Digital image data were manually collected from various sources 
such as journals, short communications, articles, veterinary websites, 
and blogs through the open-source Google Search engine because no 
specified image dataset related to this work could be obtained. A total 
of 122 images were downloaded and classified into two groups, 
healthy and infected chickens, with 61 images in each group without 
considering any specific quality such as resolution, lighting condition, 
the pixel value of the image, the distance between the camera and the 
chicken, and the angle view of the chicken. The images were labeled 
as healthy and infected based on the source’s justification. All the 
image data including masked chicken comb images and sources have 

been uploaded to a GitHub repository.1 All chickens were assumed to 
be alive based on general observation. Images were selected based on 
the feather color to indicate a type of chicken, and the current work 
considered chickens with white feathers only. However, the chicken 
husbandry care such as the diet, age, temperature, humidity of 
surroundings, and severity of the diseases were not considered in this 
work. As presented in Figure 2, most of the chickens in the infected 
class dataset were infected with Newcastle disease (25%), followed by 
infectious bronchitis (10%) and avian influenza (8%).

2.2. Data organization

The image data was split into training and validation sets to reduce 
bias in training the model. Eighty images were randomly picked as a 
training dataset for fitting the models, and the remaining images were 

1  https://github.com/anifakhmal/Infected-vs-Healthy-chick.git
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FIGURE 1

Workflow of the RGB color data extraction methods, data analysis and development of machine learning models.
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used as the validation set. The models were validated by 42 healthy 
and infected chickens, which were randomly distributed but properly 
structured to represent all diseases. For infected chicken with a total 
of only 2 or 3 images, such as chronic respiratory diseases, fowl 
cholera, infectious coryza, swollen head syndrome, aflatoxicosis, 
E. coli, avian infectious laryngotracheitis, and pullorosis typhoid, one 
image was randomly picked from each group for validation. Two 
photos were selected for validation from each disease group containing 
4 to 8 images representing Marek, avian influenza, infectious 
bronchitis, and unspecified diseases. The most considerable portion 
of the validation dataset belongs to Newcastle disease, with 23.81% (5 
images out of 21 total) due to overall image acquisition. However, 
infectious bursal disease, Mycoplasma gallisepticum, heart failure, 
fowlpox, corneal ulcers, and green muscle disease were not included 
in the validation dataset, due to a lack of image data. Overall, the 
training dataset consists of 40 healthy and 40 infected chicken images, 
while the validation set consists of 21 healthy and 21 infected 
chicken images.

2.3. Image processing and data labeling

The raw image data were not uniform in size and resolution. The 
image of the chicken head was cropped manually to analyze its comb 
color within the comb area excluding the region that has overlayed 
text. This work used two methods to extract the RGB value of the 
chicken comb. The first method was by extracting 3 RGB sample 
points within the area of the chicken comb, as shown in 
Figure 3A. The second method was by extracting the average RGB 
value of all pixels within the chicken comb, as shown in 

Figure 3B. Throughout this paper, the first method will be named the 
pixel-level method, and the second method will be named the pixel-
averaging method.

Figure 3A shows that three sample points were taken from the 
image at coordinates (70.36), (127.34), and (167.56). The image 
coordinate was specified based on the chicken comb using the 
convention of width and height. Figure 3B shows that the chicken 
comb was manually selected to calculate the average value of all the 
extracted RGB values within the selected region. The RGB data was 
normalized and transformed into CIE XYZ color space which was 
discussed theoretically in the next subsection. The collected RGB and 
CIE XYZ color space data were saved in Macintosh (.csv) format for 
further analysis. The infected chicken was labeled as 0 for the true 
positive event, and the healthy chicken was labeled as 1 for the true 
negative event as described in the literature (42).

2.4. CIE XYZ color space

In this work, the CIE XYZ color space (43) was utilized to analyze 
the chromaticity of the infected and healthy chicken combs. The 
extracted RGB data were normalized and converted to CIE XYZ color 
space using the linear matrix transformation as shown in Equation 1. 
The formula was directly adopted from (43) the Rec. 709 RGB 
standards with its reference D65 white point for all images.

	

X
Y
Z
















=
0 4124564 0 3575761 0 1804375

0 2126729 0 715152

. . .

. . 22 0 0721750

0 0193339 0 1191920 0 9503041

.

. . .





























R
G
B





	

(1)

3%

25%

13%

3%
8%5%

7%

2%

5%

2%

3%

2%

3%

2%

3%
2%

3%
2%

8%

Chronic respiratory disease Newcastle disease Infec�ous bronchi�s

Fowl cholera Avian influenza Escherichia coli

Marek Heart failure Avian infec�ous laryngotrachei�s

Infec�ous bursal diseases Swollen head syndrome Corneal ulcers

Infec�ous coryza Fowl pox Pullorosis typhoid

Mycoplasma gallisep�cum Aflatoxicosis Green muscle disease

Unspecified

FIGURE 2

Percentage distribution of different diseases for the infected chicken image dataset.
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The XYZ values were normalized to restrict the range from 0 to 1 
and denoted as x, y, and z values. The formulas used in normalizing 
the value were expressed in Equations (2)–(4).

	
x X

X Y Z
=

+ + 	
(2)

	
y Y

X Y Z
=

+ + 	
(3)

	
z Z

X Y Z
=

+ + 	
(4)

The scatter plots of xy, yz, and xz values were analyzed to 
determine the differences between the healthy and infected chickens.

2.5. Supervised machine learning 
algorithms

This research work utilized four different classifier algorithms, 
namely Logistic Regression, SVM, KNN, and Decision Tree. Scikit 
Learn library was used for pre-processing the data and training 
the models as specified in the package (44). The x and y 
chromaticity data were utilized as the features for the classifier. 
The chromaticity data features were standardized using the 
StandardScaler module from the Scikit library for faster 
convergence and better results. Further fundamental, theoretical, 
and mathematical theories of these models were well discussed in 
the library documentation. Hyperparameters of each model were 
adjusted and the best model was selected and discussed based on 
the confusion matrix, which was discussed in the performance 
parameter subsection. The advantages and disadvantages of 
deploying each model were also addressed for this current 
application in section 3.2.

2.5.1. Logistic regression
The logistic regression model is a supervised machine learning 

model to predict the class probability, which ranges from 0 to 1 in 

our application. The model predicts 0 for probability ranging from 
0 to 0.5, and the class belongs to the positive event or infected 
chicken. The theory of the logistic regression model was explained 
in literature (45). The logistic function was used to restrict the 
linear regression model’s output to a range from 0 to 1. The general 
logistic equation is given in Equation 5. Note that, p y( )  is the 
function for the probability value, and variable y in the equation 
corresponds to the input function for the logistic equation.

	
p y

e y( ) =
+ −

1
1 	

(5)

Since the logistic regression was restricting the linear regression 
model, the final equation for the model is stated in Equation 6.

	
p f x x

e B B x B x1 2

1

1
0 1 1 2 2

,( )( ) =
+ − + +( )

	
(6)

where f x x1 2,( )  is the sigmoid input function for the logistic 
equation, x1 and x2 correspond to the predictor or chromaticity data 
for the classifier, and B0, B1, and B2 correspond to the coefficient of the 
predictors. Current work will utilize the sigmoid input function 
f x x1 2,( ) , to analyze and correlate the chromaticity data and the 
health status of the chickens. The general function is stated in 
Equation 7.

	
f x x B B x B x1 2 0 1 1 2 2,( ) = + +

	 (7)

The iteration of the cost function, C parameter, was carried out 
and the highest accuracy performance was analyzed.

2.5.2. Support vector machine
SVMs are a popular supervised learning technique for outliers’ 

detection, regression, and classification. SVM algorithms take data as 
input and transform it into the desired form using a set of 
mathematical functions referred to as the kernel. Given that the 
ScikitLearn library offers four distinct kernel functions (44)—Linear, 
Polynomial, Radial Basis Function (RBF), and Sigmoid—the current 

FIGURE 3

Data extraction using (A) pixel-level method and (B) pixel-averaging method.
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work will develop the models across all four kernels. The Linear, 
Polynomial, RBF, and Sigmoid kernel functions are given in Equations 
(8)–(11), respectively.

	
K x x x x1 2 1 2,( ) = .

	
(8)

	
K x x x x r d1 2 1 2,( ) = +( )γ .

	 (9)

	
K x x e x x

1 2
1 2

2

,( ) = − −γ
	

(10)

	
K x x x x r1 2 1 2,( ) = +( )tanh .γ

	 (11)

where x1 and x2 are chromaticity data features in vectors form, d  
is the degree, γ  is gamma, and r  is the parameter of the kernel 
projection. Hyperparameters for tuning each model, were iterated, 
and the model that produced the best accuracy performance were 
selected and compared.

2.5.3. K-nearest neighbor
KNN algorithm is a non-parametric classifier that uses positional 

information to categorize or forecast how a single data point will 
be grouped. The general matric for calculating the distance between 
data points is Minkowski and for the current application, we used the 
Euclidean distance formula. The general equation is stated in 
Equation 12.

	
d i j x x x xi j i j,( ) = − + −1 1

2

2 2

2

	
(12)

where d i j,( ) is the function for calculating the distance between 
training point i and data point j . xi1 and xi2 are the chromaticity data 
of the training set, while x j1 and x j2 correspond to the chromaticity 
data of the predictor or validation data.

For model training purpose, the k-value represents the number of 
closest neighbors and is the primary hyperparameter value for 
KNN. Since the k-value needed to be established appropriately (46), 
the value was iterated from 1 to 20, and the k-value with the best 
performance was discussed.

2.5.4. Decision tree
Decision Tree is a non-parametric supervised learning method for 

classification and regression to create a model that predicts the value 
or class of a target variable by learning simple decision rules concluded 
from the data features. The library provided two criteria settings, 
“Gini” and “Entropy,” to measure the quality of the split in decision 
rules. The corresponding formulas are stated in Equations (13) 
and (14).

	
Gini D p

i

k
i( ) = −

=
∑1

1

2

	
(13)
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i

k
i i( ) = − ( )

=
∑
1

2
2log

	
(14)

D corresponds to the dataset, k  is the number of classes in the 
dataset, and pi  is the ratio of the class. Both “Gini” and “Entropy” as 
provided in the library were utilized for the criterion setting to 
measure the quality of the split, and the best model was chosen for 
further analysis and comparison.

2.6. Performance parameter

The model’s performance was analyzed using the confusion 
matrix method based on five parameters: sensitivity, specificity, 
precision, negative predictive value (NPV), and accuracy (42). The 
performance of the classification model was evaluated based on the 
convention stated in the literature. Seven models were trained and 
validated: Logistic Regression, SVM with Linear, Polynomial, RBF and 
Sigmoid kernels, KNN, and Decision Tree. The performance of each 
model was investigated, compared, and analyzed. The implementation 
of the models in practical applications was also discussed in the 
present study based on the current application.

3. Results and discussion

This section was organized according to three main subsections; 
chromaticity analysis, supervised machine learning results, and 
comparison with other related works. The first phase of analysis 
revealed the impact of infection on the chromaticity of the chicken 
comb, and the correlation between chromaticity and health status is 
discussed. Next, the performance of each developed model is 
discussed, analyzed, and compared accordingly. Lastly, the 
performances of all the models are comprehensively compared with 
reported machine-learning algorithms related to this current 
application for classifying infected chickens.

3.1. Chromaticity analysis

The difference between healthy and infected chicken comb was 
illustrated in Figures  4A,B, respectively, using masked images. 
According to Figure 4, the healthy and infected chicken can be clearly 
separated based on the chromaticity of the chicken comb, and the 
impact of infection on the chromaticity value will be further discussed.

The first set of analyses examines the impact of infection on the 
three-color space parameter and the correlation between each variable 
parameter. The 3D scatter plot of x, y, and z data for the pixel-level 
method and pixel-averaging method are shown in Figures 5A,B.

The scatter plot of the pixel-level method (Figure 5A) appeared to 
be more complex because of the total data; three sample points from 
61 images resulted in 183 points for each class plotted on the graph. 
However, Figures 5A,B show that both methods have resulted in the 
same pattern and no significant difference in the distribution of the 
scatter plot. It can be seen that the infected and healthy chickens were 
well separated based on the 3D plot. The results were further analyzed 
by plotting each component in a 2D plot; xy, xz, and yz. Figures 6A,B 
present the chromaticity plot of xy chromaticity data for pixel-level 
and pixel-averaging methods, respectively.

Figure 6 shows that the infected and healthy chickens was well 
separated by x chromaticity for both methods. According to 
Figures 6A,B, the most infected chicken was scattered below x = 0.375, 
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while the healthy chicken was scattered above. The y chromaticity 
value of infected and healthy chickens overlapped, and no specific 
threshold value can be  hypothetically assigned based on the y 
chromaticity variable. However, by combining the x and y variables, 
the infected and healthy chickens can be separated more distinctly. 
Since the scatter plots of healthy and infected chicken were linearly 
separated, a magenta line was drawn as an indicator line to differentiate 
between both groups.

Based on the indication line on the pixel-averaging method, it can 
be observed that only one infected chicken was scattered in the healthy 
chicken region. On the contrary, 14 infected chickens were spread in 
the healthy area for the pixel-level method. False classification may 
occur due to an error in the sampling process. For example, the color 
of the chicken comb only changes on the front side, and through 
conventional understanding, the chicken was infected based on that 
indication. False classification may occur if the sample was taken at 

FIGURE 4

(A) Masked images of healthy chicken comb and (B) masked images of infected chicken comb.

FIGURE 5

3D plots for chromaticity values x, y, and z using (A) pixel-level method and (B) pixel-averaging method.
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the back side of the chicken comb without significant color change. 
Apart from that, the pixel-averaging method considered all the color 
data bound in the selected region. Instead of better results in 
classification, the error and false detection can be reduced. This view 
was proven by Cao et al. (47), which proposed a new method for water 
quality detection by considering the average RGB value for the 
detection (47). Srinivasan et al. (48) also used the average RGB value 
of each pixel in the image to indicate hemoglobin in human blood for 
diagnosing anemia.

Since the pixel-averaging method was relevant and gave better 
results in classifying healthy and infected chickens as shown in 
Figure 6B, further results and discussion on the impact and correlation 
between the variables and health status will focus on the pixel-
averaging method only. Figures  7A,B show the pixel-averaging 
methods’ results of xz and yz plots, respectively. Table 1 presents the 
Logistic Regression’s sigmoid input function (referring to Equation 7) 
according to the pixel-averaging method dataset.

The scatter plot of xz (Figure 7A) shows that the infected and 
healthy chickens can be  separated based on the threshold value of 
below z = 0.25 for the z chromaticity value. When combining the x and 
z chromaticity values, the infected and healthy chicken can be separated 
based on the magenta line as the hypothetical threshold line. Similarly, 
by combining y and z (Figure 7B), the infected and healthy chickens 
can be classified based on the magenta line drawn. Both plots showed 
that one chicken could be falsely classified as healthy chicken.

The x chromaticity variable was the most dominant variable, 
followed by z and y variables based on the linear regression sigmoid 
input function results. It can be  observed that the x chromaticity 
variable results in a more significant positive classifier coefficient than 
the y variable with 1.5284 higher by referring to the xy model 
(Table 1). The results show the same trend as in the xz model when 
compared with the z chromaticity variable, with 2.2821 higher in the 
classifier coefficient. Therefore, we can conclude that any small change 
in the x chromaticity variable would significantly contribute to the 
classification of the chicken. Since the classifier coefficient of x 
chromaticity variable results in a positive sign, the increments of x 

value would increase the value of the sigmoid input function; thus, the 
results of the sigmoid function would converge to 1. Theoretically, the 
chroma or actual perceived color was indicated by the x and z values 
(43). The x chromaticity value can be approximately described as 
green to red part. So, based on our results in Figures  6B, 7A 
we conclude that the infected chickens were more converging to green 
because most of the infected chicken points were scattered below 
healthy chicken in terms of x chromaticity value.

Moving on to the z chromaticity variable, the classifier coefficient 
for the z variable was 2.2821 lower when referring to the xz model. 
So, any change in the z chromaticity value does not significantly 
contribute to the classifier predicting the chicken’s health. However, 
according to yz model, the z chromaticity variable was more 
dominant than the y variable, with 0.6226 higher in the classifier 
coefficient. Since the coefficient carries a negative sign (yz model), 
increasing the z chromaticity value would encourage the classifier 
model to predict the chicken to be infected. The z chromaticity value 
can be  approximately described as a yellow to blue part for any 
increment in value (43). Therefore, we conclude that the infected 
chickens converged more to the blue region according to 
Figures 7A,B. The weakest variable, y chromaticity, has a weaker 
negative coefficient of 0.8202 compared to the x chromaticity variable 
in the xy model. Similarly, in comparison with z chromaticity by 
referring to the yz model, the y variable resulted in a smaller negative 
coefficient of 1.5996, while that of the z variable was 2.2222. The 
negative sign indicates that the increased value of y would lower the 
value of the sigmoid input function; thus, the sigmoid function 
would converge to 0. The small coefficient of the y chromaticity 
variable was expected based on the xy and yz plots in Figures 6B, 
7B. The scattered point of infected and healthy chicken mostly 
overlapped in terms of y chromaticity value, making the classification 
nearly impossible. The image data chromaticity’s brightness, 
luminosity, or lightness were represented by the y value (43). 
According to the results, the y value was considered the weakest 
variable that correlated to chicken health due to no significant 
difference between healthy and infected chickens, and the 
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FIGURE 6

(A) xy scatter plot for pixel-level method and (B) xy scatter plot for pixel-averaging method.
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classification was nearly impossible. Therefore, a possible explanation 
for this might be that our data comes from different sources with 
different illuminants. This finding corroborated with previous 
research, which found that the redder comb had more excellent cell-
mediated immunity or better health condition (35). Moreover, 
Martínez-Padilla et al. (49) concluded that comb redness or plasma 
carotenoids were negatively correlated with Trichostrongylus tenuis 
abundance. Plasma carotenoids are pigments responsible for the 
vivid color red in the chicken comb, while T. tenuis is a nematode in 
birds that cause diseases.

These findings further support the idea of separating chroma and 
brightness for the detection method proposed in the literature (47), 
which uses chromaticity values to measure dissolved water content. 
However, combining the chromaticity value with the brightness makes 
the classification viable. The present findings were consistent with 
previous work (41), which considered intensity and chromaticity 
features in their algorithm to classify daytime and night images. 
Furthermore, a study on the correlation between comb color and the 
immunity system of the chicken was performed based on the red 
chroma, represented by 600–700 nm, relative to brightness (35).

3.2. Supervised machine learning results

This subsection discusses the performance parameter, advantages, 
disadvantages, and limitations of all the developed classifiers. Since the 
Logistic Regression model is the only model that can provide a 

probability value, the current work will iterate the probability 
threshold from 0.40 to 0.60, and the expected performance of the 
model is presented in Figure 8.

The model performance can be categorized into three categories; 
over-, optimum-, and under-predict the positive event or infected 
chicken. The first category is over-predicted, which can be seen for the 
probability threshold of more than 0.53. The model starts to over-
predict positive events, resulting in the highest possible sensitivity and 
NPV of 100% with zero false negative events detected. Secondly, the 
model can be  tuned to get optimum performances which can 
be indicated by a probability threshold ranging from 0.43 to 0.47. The 
model was expected to predict 95% for all five performance parameters 
due to the same amount of false positive and false negative events. 
Lastly, the proposed model was expected to be  under-predicted 
infected chicken when the probability threshold was below 0.43. The 
present findings seem consistent with other researchers’ views that 
precision and sensitivity are proportional to actual positive value but 
have an inverse mutual relationship (50).

Table 2 compares all the supervised machine learning models and 
notes that the performance of the Logistic Regression was based on an 
optimum probability threshold of 0.47 and C = 1 for comparison with 
other models. For SVM models, Linear kernel with C = 1, Polynomial 
kernel with C = 1 and d  = 1, RBF kernel with C = 1 and γ  = 0.1, and 
Sigmoid kernel with C = 1 and γ = 3 were presented. KNN showed the 
best performance when the K-value was set more than 5, while for the 
decision tree model, the Gini criterion was better compared to 
the Entropy.
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FIGURE 7

(A) xz and (B) yz scatter plot for the pixel-averaging method.

TABLE 1  Sigmoid input function of the Logistic Regression.

Trained variables/Model Sigmoid input function, f x x1 2,( )

xy f x y x y,( ) = + ( ) + −( )0 29337105 2 34857535 0 8202156. . .

xz f x z x z,( ) = + ( ) + ( )0 29103932 2 65420658 0 37211062. . .

yz f y z y z,( ) = + −( ) + −( )0 26176678 1 59957638 2 22224727. . .
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Logistic Regression, SVM-Linear and Polynomial kernel perform 
the best in terms of specificity, precision, NPV, and accuracy, followed 
by SVM-RBF kernel, KNN, Decision Tree, and lastly, SVM-Sigmoidal, 
in this present study. Logistic Regression, SVM-Linear, and 
Polynomial kernel perform the best compared to other models 
because our chromaticity feature data for healthy and infected chicken 
were linearly separated (Figure  6B). Supporting these statements, 
researchers in the literature (28) also reported better accuracy using 
SVM Linear and Polynomial kernel model compared to RBF for their 
linearly separated dataset.

Incremental learning to extend the model’s knowledge while 
implementing it in practical applications was possible for all models. 
However, each model has its advantages and disadvantages during 
implementation. According to the results, the Logistic Regression, 
SVM Linear and Polynomial kernels perform the best, with a 95% 
score for all parameters. Compared with other models, logistic 
regression can output the results in probability values from 0 to 1, and 
the classification threshold can be assigned. Thus, the performance of 
the model can be adjusted. However, instead of tunable performance, 
the stability of the performance itself was an issue during incremental 
learning (51). Moving on to SVMs models, the storage cost was a 
significant drawback for these algorithms due to continuous data 
learning (52, 53). In addition, kernel selection in developing SVM 
models is essential as it affects the performance of the model. For 
instance, the SVM-Sigmoid kernel performed at 76% sensitivity, 90% 
specificity, 88% precision, 79% NPV, and 83% accuracy, which can 
be considered the lowest among others.

Next, the KNN model has performed similarly to SVM-RBF. KNN 
model is much simpler than logistic regression and SVM models 
because it does not need any data training since its algorithms rely on 
the number of neighbors or K-value for classification. This model’s 
primary limitation is the calculation speed during incremental 
training (54). False detections may also occur when the data becomes 
more extensive and no change or update makes for the K-value (55). 
Another non-parametric model, the decision tree, performed with 
86% sensitivity, 95% specificity, 95% precision, and 87% NPV, and 
90% accuracy. The Decision Tree is easy to train due to no 
normalization and data scaling are needed. The algorithms for 
separating the infected and healthy are intuitive and easy to explain. 

However, the models may become complex due to the number of 
depths specified in the training process, and any small change may 
cause significant changes in the tree’s structure (56). Plus, 
implementing an incremental learning algorithm can variate the 
stability of the model due to continuous data updates.

In summary, all the models discussed in this subsection can 
be considered acceptable and successful in classifying health status. 
Even though current works do not use any specific experimental 
dataset, all the models have shown to be well developed by just using 
the randomly well-distributed training and validation image dataset. 
However, models with high sensitivity, such as Logistic Regression, 
KNN, SVM-Linear, and SVM-Polynomial, should be considered for 
current application in providing early warning to prevent major 
outbreaks. Hicks et  al. (50) stated that the consideration of the 
specificity and precision was based on applications; for medical 
applications, it is better to over-predict than underestimate the degree 
of severity. Therefore, current work would consider a model with high 
sensitivity even though it has a low precision value to over-predict the 
positive event to prevent significant outbreaks that can cause economic 
loss and threaten human health.

3.3. Comparison with other reported work

The results reported in this work are compared with other related 
works which predict the chicken health status. Table  3 shows the 
summary of the related works. Zhuang et  al. (28) utilized an 
SVM-Polynomial model with 99.469% accuracy to classify infected 
chicken (bird flu) based on all extracted morphological features: 
concavity, skeleton altitude angle, shape features, linear area rate, 
elongation, and circularity. Similarly, other works proposed SVM-RBF 
models with an accuracy of 97.8% based on extracted locomotor 
features such as circle variance, elongation, convexity, complexity, 
eccentricity, and mobility features of walk speed (27). These works 
(27) were compared with the results reported in this work because 
they used image processing techniques to extract features as predictors 
to predict infected chicken. Both works extracted all the 
morphological, locomotor, and mobility features from the chicken 
images, and the proposed supervised machine learning classifier 
model’s achieved accuracies >97%. In contrast to these reported 
works, the results of our work demonstrated that despite only one 
feature (chicken comb’s chromaticity) being used, prediction accuracy 
as high as 95% can be  achieved. This scenario indicates that the 
chicken comb chromaticity is a very distinctive feature that can 
be used to predict the bacteria- or virus-infected chickens, as well as 
confirming the effectiveness of the machine learning models used in 
this work. It can also be concluded that high prediction accuracy can 
be  achieved with simpler feature extraction and easier image 
processing technique, if the accurate and distinctive feature is selected.

This reported work is also compared with the deep learning-based 
algorithms for detecting infected chicken applications. Zhang and 
Chen (30) have developed a ResNet algorithm with 94% accuracy to 
detect infected chickens using abnormal swelling images for their 
training datasets. Other researchers used different textures of chicken-
dropping image datasets to classify healthy and infected chickens 
using XceptionNet with 94% (57) and 98.24% (58) accuracy after fine-
tuned. Compared to our works, both of the works (30, 57) have 
reported lower accuracy. Similar to our work, these works also utilized 
only one feature, but our reported work utilized a much simpler image 
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The performance parameter of the Logistic Regression model at 
varying probability threshold.
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TABLE 2  Comparative analysis of different types of machine learning algorithms.

Model
Confusion 

matrix
Performance (%)

Model 
parameters

Data 
linearity

Incremental 
learning

Data 
fitting

Probability 
output

Performance 
tuning

Limitation

Logistic 

Regression 20 1

1 20











Sensitivity 95 C = 1

Threshold =0.47

Linear Yes Yes Yes Before and after training Stability of performance during 

Incremental training (51)Specificity 95

Precision 95

NPV 95

Accuracy 95

SVM-Linear
20 1

1 20











Sensitivity 95 C = 1 Linear Yes Yes No During training Storage cost from continuous 

data learning for non-linear 

SVM (52, 53)
Specificity 95

Precision 95

NPV 95

Accuracy 95

SVM-

Polynomial 20 1

1 20











Sensitivity 95 C = 1

d  = 1

Linear/Non-

linear

Yes

Specificity 95

Precision 95

NPV 95

Accuracy 95

SVM-RBF
20 1

2 19











Sensitivity 95 C = 1

γ  = 0.1

Non-linear Yes

Specificity 90

Precision 91

NPV 95

Accuracy 93

SVM-Sigmoid
16 5

2 19











Sensitivity 76 C = 1

γ  = 3

Non-linear Yes

Specificity 90

Precision 89

NPV 79

Accuracy 83

KNN
20 1

2 19











Sensitivity 95 k-value = 5 Not applicable Yes No No Before training Speed of calculation

Data update may deviate (54, 

55)
Specificity 90

Precision 91

NPV 95

Accuracy 93

Decision tree
18 3

1 20











Sensitivity 86 Criterion = Gini Not applicable Yes No No Before training Can cause instability for any 

data change (56)Specificity 95

Precision 95

NPV 87

Accuracy 90
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processing technique and lower computational power for training the 
classifier models. Besides that, Zhuang and Zhang (29) successfully 
developed algorithms to detect infected chickens with a precision of 
up to 99.7% by combining image processing and deep learning. To 
develop these algorithms, authors have utilized the difference in the 
chicken posture and feather images to train their classifier model. The 
proposed algorithms were more computationally complex than our 
work. However, the result performance of the model or classifier was 
promising. Therefore, it can be  proposed that to achieve >99% 
accuracy, future work will explore on the deep learning algorithms to 
hybridize with our works to provide early detection algorithms for the 
prevention of disease outbreaks in poultry farms that can benefit the 
farmers and improve food safety.

This current work has proven the ability of utilizing the 
chromaticity of the chicken combs features can be used to detect 
bacterial- or virus-infected chickens with the help of machine learning 
models. However, for an implementation in a large-scale chicken 
farm, a more realistic approach such as capturing the images directly 
from the chicken cages may be carried out. Further illustration of the 
accuracy of the model to work in a large -scale poultry farm, by 
implementing real images dataset, and validation of the model is still 
needed. Furthermore, hybridization of the chicken comb feature with 
other established features such as morphological (28), locomotor (27), 
mobility (27), and optical flow (31), would be future works that need 
to be considered. The multi-features approach may lead to another 
breakthrough that would contribute to improved food safety and 
automation in poultry farm industries.

4. Conclusion

This study presents an early prediction algorithm for detecting 
bacteria- or virus-infected chickens based on the chromaticity of the 
chicken comb feature. The algorithm extracted the RGB color data at 
the area of the chicken comb and converted it into the CIE XYZ color 
space to analyze the effect of bacteria or virus infection on the 
chromaticity of the chicken combs. The chromaticity data features of 
healthy and infected chickens were plotted, and the impact of infection 
on the chromaticity of the chicken comb was analyzed. Machine 
learning methods were used to predict the chicken’s health status 
based on the chromaticity feature. The performance analysis of the 
developed machine learning models proved that the classification of 
healthy and infected chicken is viable based on the chromaticity of the 
chicken comb features. All the developed models have excellent 
generalization to recognize the infected chicken. The results suggest 

that the chicken comb chromaticity-based algorithm can provide 
prediction and detection of infected chicken. This algorithm can 
be applied as a disease monitoring system for the chicken on the farm. 
In addition, this algorithm can be integrated with other morphological, 
locomotor, and mobility-based algorithms for detecting infected 
chickens. Thus, the risk of significant diseases outbreak on the farm 
could be minimized.
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TABLE 3  Summary of related works.

References Features/Input data Technique Model/Algorithms Performance

Zhuang et al. (28)
Concavity, skeleton altitude angle, shape features, 

linear area rate, elongation, and circularity
Image processing SVM Polynomial kernel 99.469% accuracy

Okinda et al. (27)
Circle variance, elongation, convexity, complexity, 

eccentricity, and walk speed
Image processing SVM RBF kernel 97.800% accuracy

Zhang and Changxi (30) Abnormal swelling detection Deep learning ResNet
95% accuracy

90% sensitivity

Mbelwa et al. (57) Abnormal dropping Deep learning XceptionNet 94% accuracy

Mbelwa et al. (58) Abnormal dropping Deep learning XceptionNet 98.24% accuracy

Zhuang and Zhang (29) Chicken images, feather texture, posture Image processing and deep learning CNN 99.7% precision
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