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Editorial on the Research Topic 
AI-based prediction of high-impact weather and climate extremes under global warming: a perspective from the large-scale circulations and teleconnections


2021 has proven to be a tough year for the entire human beings on the planet. With the COVID-19 pandemic raging on, various record-breaking weather and climate extremes also swept through many countries of the world. In February, severe winter storms caused the most expensive power crisis in Texas’s history, affecting 4.5 million homes with more than 200 people killed. In June, a record-breaking heatwave scorched the Pacific Northwest United States and Canada, which led to the death toll exceeding 1,400 people. A few weeks later, Germany and China experienced record-breaking rainfall and flooding. In July 2021, severe flooding occurred across Europe due to dangerous thunderstorms and rain. Germany experienced the 100-year flood with 173 deaths. During the period from July 17 to 21, 2021, Zhengzhou in Henan Province, China, was smashed by record rainstorms, causing severe waterlogging, traffic interruptions, and power outages. The local government has upgraded the flooding emergency response level to its highest, and 380 people were killed during the extraordinary heavy rainstorm event. In December, a series of devastating tornadoes attacked nine states in the United States, producing severe to catastrophic damage in many towns with more than 100 deaths and numerous injuries. Following that, the super typhoon Rai displaced hundreds of thousands of people with more than 400 deaths.
The frequent outbreaks of high-impact weather and climate extremes have raised the global concern that the current state-of-the-art physics-based numerical models may not be able to make skillful prediction and projection of future climate, especially for the climate anomalies and extremes that bring tremendous natural hazards. The thriving development of Artificial Intelligence (AI) has greatly advanced weather forecasting, climate monitoring and prediction through the reduction of human effort and more efficient use of computing power. However, the thorough understanding and representation of physical processes that modulate the weather and climate extremes are still lacking. Therefore, this Research Topic has been convened, hoping to shed light on the AI applications in better prediction of high-impact weather and climate extremes. A total of 20 manuscripts were received for this Research Topic, covering a wide range of frontiers in AI applications.
• Understanding precipitation anomalies
Wang et al. investigated the impact of rapid urbanization on the amount, frequency, and intensity of extreme summer precipitation over Sichuan-Chongqing area of China, and concluded that the increase in urban-scale land surface temperature, moist convection, and changes in wind speeds were essential drivers that led to the intensification of extreme precipitation.
By using the empirical orthogonal function (EOF), Xia et al. revealed the linkage between preceding August Asian-Pacific Oscillation (APO) and September precipitation over Southeast China (SC). In addition to the sea surface temperature (SST) that had been widely recognized as a precursory factor for predicting precipitation variation over SC, the preceding temperature anomalies at the middle and upper troposphere also played noteworthy roles.
In a case study conducted by Ji L. et al., the high-resolution ensemble prediction system COSMO (Consortium for Small Scale) EPS was used to predict the extreme rainstorm that occurred from 27 to 31 August 2018 in Guangdong Province, China. Although the coverage and intensity of the rainstorm in eastern Guangdong were not realistically predicted, COSMO EPS still exhibited relatively higher performance than some other models by object-based spatial evaluations.
Chen et al. used FC-ZSM method to conduct the spatiotemporal downscaling of radar-based precipitation estimate. They borrowed the concept of image super-resolution in computer vision and adapted it to radar meteorology, and successfully solved the precipitation downscaling problem by deep learning.
Zang et al. diagnosed the interdecadal increase in summertime extreme precipitation over East China, and found the sensible heat changes in the Tibetan Plateau in spring and the tropical SST zonal gradient jointly affected summer extreme precipitation over East China, which subsequently led to the interdecadal increase of extreme precipitation in the late 1990s.
Based on the observational precipitation data and the ERA5 reanalysis datasets, the short-term forecasts of the warm-sector heavy rainfall with warm-type shear line (WRWS) events over the coastal areas of the Yangtze–Huaihe River (YHR) were investigated in the regional operational model Precision Weather Analysis and Forecasting System (PWAFS) by Zhang L. et al.
Lyu et al. explored the subseasonal predictability of precipitation by comparing ECMWF and CMA models. Results show ECMWF had superior forecast performance than CMA. Although both models well captured ENSO signals, their forecast of BSISO related precipitation anomalies decreased with growing lead times, which highlighted an opportunity window for further model improvement.
The application of deep learning in probabilistic precipitation forecasting was investigated by Ji et al. By comparing the forecasting results obtained from a convolutional neural network (CNN) model with the conventional ensemble prediction products, the authors showed deep-learning CNN can serve as a promising approach to the statistical post-processing of probabilistic precipitation forecasting.
Zhang et al. revisited the different responses of the following Indian summer monsoon rainfall to the diversity of El Niño events. They suggested that, in addition to the key role of the warming of the northern Indian Ocean SST, cooling of the SST over the western tropical Indian Ocean during central Pacific El Niño events should be considered carefully in understanding the El Niño–Indian summer monsoon rainfall relationship.
To answer why SC was extremely wet during January–February 2022 despite La Niña, Ma et al. employed the observational and reanalysis data to explore the main driver of the SC precipitation anomaly. They found that two factors, namely 1) the wave train propagating along the South Asian jet that intensifies the India–Burma trough and 2) the positive geopotential height anomaly over eastern Siberia that prompts southward cold air intrusion and convergence over the SC region, can account for approximately 75% of the observed SC precipitation anomaly in 2022 winter.
Xiao et al. assessed the impact of persistent anomalous precipitation in Southwest China caused by low-frequency atmospheric disturbances in different latitudes. The configuration relationship of low-frequency systems in three-dimensional space and its influence on the persistent extreme precipitation in southwest China were shown, which provided a theoretical basis for the forecast of the extended period of persistent abnormal precipitation in southwest China.
Chen et al. investigated the response of North Pacific storm tracks to spatial multiscale (large-scale and mesoscale) SST anomalies (SSTAs) in stable state of Kuroshio Extension (KE-related SSTAs) system. The results showed that storm tracks were significantly strengthened with local enhanced rainfall in the central North Pacific and near the west coast of the North American continent in response to KE-related large-scale SSTAs, while they shifted to the north and were significantly strengthened in the central-eastern North Pacific and Gulf of Alaska with remote impact on precipitation along west coast of North America continent in response to KE-related mesoscale SSTAs.
Jin et al. answered the question ‘to what extent horizontal resolution improves the simulation of precipitation in CMIP6 HighResMIP models over Southwest China?’ Based on their analyses, the atmospheric circulation and moisture conditions could be simulated more realistically in climate models with a finer resolution, further improving precipitation simulation performance.
• Understanding temperature anomalies
Li et al. made the future projection of extreme temperature events in Southwest China using CMIP6 (Coupled Model Intercomparison Project Phase 6) outputs under various SSP (Shared Socio-economic Pathway) scenarios, and unraveled 1) an overall warming trend, 2) a decreasing trend in diurnal temperature range, and 3) a decreasing trend in extreme cold events.
Focusing on the 2-m surface temperature forecasting over Xinjiang, Aihaiti et al. demonstrated that multi-model ensemble based on Bayesian model averaging (BMA) can best match the observation regarding the spatial distribution, providing a feasible method to correct the accuracy of the 2-m temperature forecast in Xinjiang.
Using the canonical zonal deviation algorithm, Zhang Y. et al. characterized the flows around the Tibetan Plateau (FAT) and linked the FAT anomalies to the winter climate extreme events in China.
To explore the climatic responses to short-lived climate pollutants (SLCPs) changes from the pre-industrial era to the present, Xie et al. conducted a simulation study using an online aerosol–climate model. Their results suggested that SLCPs-induced warming should not be underestimated, which was equivalent to half of the global warming effect of CO2, even much larger in the regions with more coal consuming (e.g., China).
• Understanding tropical cyclones
Wang Z. et al. analyzed the existing problems in forecasting tropical cyclones (TCs), provided a comprehensive review of current AI-based application in TC forecasting, and discussed the future challenges and further development directions of such applications.
By developing a typhoon vortex identification model based on deep image target detection, Zhou et al. demonstrated the potential of AI-based image recognition in improving the operational techniques for typhoon monitoring and forecasting.
• Understanding wind hazards
By using an AI-based clustering method, Zhao et al. characterized the large-scale atmospheric circulation patterns conducive to severe spring and winter wind events over Beijing in China. The results found in that study with the usage of an AI-based algorithm will benefit the operational forecasting for extreme wind events over Beijing.
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Understanding the spatiotemporal variation of autumn precipitation and its relationship with the large-scale circulation is important for planning industrial and agricultural production, economic development, and ecological protection. This study investigated the relationship between the August Asian–Pacific Oscillation (APO) and September precipitation over Southeast China (SC) during the period 1961–2020. Results showed that the August APO can exert considerable control on September precipitation over SC and that a significant positive correlation exists between them. With a strong (weak) August APO, the anomalous southerly (northerly) winds are observed in the north (south) of SC at the upper level, and the deep trough over East Asia and ridge over North Pacific at 500hPa are both reinforced (weakened). This leads to anomalous northward (southward) lower-tropospheric winds over the East Asian coast, accompanied by enhanced convergence (divergence) of warm and cold air masses and anomalous ascent (descent) motion which results in more (less) precipitation over SC. The underlying mechanism can be explained as thermal anomalies induced by the APO that can persist from August to September, which modulates the atmospheric circulation anomalies in September and eventually causes more (less) precipitation over SC. Therefore, in addition to the role of sea surface temperature forcing on precipitation variations, our analyses suggest that the preceding temperature anomalies at the middle and upper troposphere also should be considered as an important precursory factor for the following precipitation over SC.
Keywords: Asian–Pacific oscillation, tropospheric temperature, precursory signal, Southeast China, precipitation
INTRODUCTION
In China, September is considered the period in which the atmospheric circulation of summer gradually transitions into that of winter, and it is usually a period of abundant precipitation, accounting for more than 50% of the total autumn precipitation over China (Yang and Chen, 2021). Previous studies revealed that anomalies in autumn precipitation have substantial impacts on agricultural production, economic development, and the daily life of the population (Niu and Li, 2008; Barriopedro et al., 2012; Qiang Zhang et al., 2013; Li et al., 2015; Zhang et al., 2016), particularly in Southeast China (SC), which is recognized as the most developed region in the country. Revealing the underlying physical mechanisms of autumn precipitation, especially those affecting the variability of September precipitation over SC, could help improve seasonal climate prediction and water resource management.
Previous studies showed that autumn precipitation in China is highly variable and controlled by low-latitude atmospheric circulations, for instance, the El Niño–Southern Oscillation (ENSO) (Wenjun Zhang et al., 2013; Wenjun Zhang et al., 2014), western Pacific subtropical high (Niu and Li, 2008), and Indian sea surface temperature (SST) (Niu and Li, 2008; Xiao et al., 2015). Some studies also suggested that climatic factors over mid-high latitudes such as the North Atlantic Oscillation (Xu et al., 2013), Silk Road pattern (Hu et al., 2020; Liu and Zhou, 2021), and southern hemispheric sea ice (Zhou et al., 2021) could directly influence autumn precipitation by modulating the Asian monsoon circulation. Although these earlier studies revealed that multiple factors could better explain the mechanism of autumn precipitation anomalies over SC to a certain extent, the underlying mechanism responsible for such variability remains unclear because the influencing factors are complex and vary on a wide range of temporal and spatial scales. Thus, for a more precise and deeper understanding of the causes of the September precipitation variability over SC, it is necessary to investigate other potential controlling factors.
The Asian–Pacific Oscillation (APO), characterized by a dipole mode of summer tropospheric eddy temperatures over the Asian–North Pacific region, was proposed by Zhao et al. (2007). During summer, when the mid-upper troposphere is warmer over Asia, the troposphere above the North Pacific will be colder, and vice versa. The APO can exert substantial impacts on regional–global climatic change via the monsoon circulations and precipitation (Zhao et al., 2007, 2012a; Zhou et al., 2009; Zhou and Zhao, 2010; Liu et al., 2011; Zou et al., 2015; Hua et al., 2019; Lin et al., 2019, 2021), tropical cyclone activity (Zhou et al., 2008; Zou and Zhao, 2010), and variations in SST (Zhao et al., 2010, 2011, 2012b; Zhou et al., 2010). Furthermore, the APO occurs throughout the year, not just in the summertime (Zhou and Zhao, 2010; Lin et al., 2019). In light of the findings of previous related studies, it has been suggested that the APO could be regarded as a crucial contributor to engendering climate change on regional–global scales. However, in comparison with studies investigating the connection between the APO and East Asian summer monsoon precipitation, less emphasis has been placed on the influence of the preceding summer APO on autumn precipitation over SC. Although a previous study has investigated the impact of summer APO on autumn precipitation over central–eastern China (Lin et al., 2021), the effect of summer APO on variations of precipitation in different autumn months is still unclear. Additionally, as the previous study has also shown (Zhao et al., 2011), the APO is correlated to ENSO variability, but it does not mean that the APO teleconnection pattern is mainly forced by the Pacific SST anomaly. Hence, the objectives of the current study were to elucidate the probable mechanisms by which the precursory APO affects September precipitation in SC without considering the ENSO.
The remaining part of this study is composed of three main components. The Data and Methods section describes the data and methodology. Detailed information is presented in the Result section about the linkages between the preceding August APO and both September SC precipitation and correlative atmospheric circulation anomalies. Finally, the Conclusions and Discussion section concludes with a discussion and the derived findings.
DATA AND METHODS
Data
Monthly precipitation data with a horizontal resolution of 0.25 ° × 0.25 ° were extracted from the CN05.1 data set provided by the National Climate Center of China (Wu and Gao, 2013).
The monthly reanalysis data utilized in this study were from the National Centers for Environmental Prediction/National Center for Atmospheric Research with a resolution of 2.5 × 2.5 (Kalnay et al., 1996), and variables employed to analyze the atmospheric circulation characteristics include air temperature, geopotential height, zonal and meridional wind component, vertical velocity, sea level pressure (SLP), and specific humidity.
Provided by the Climate Prediction Center (https://psl.noaa.gov/data/climateindices/list/), the September Niño3.4 Index (SNI) was introduced to characterize the external impacts of ENSO.
Note that the period of analysis in this study was 1961–2020.
Methods
Eddy temperatures over the Asian–Pacific region during August were analyzed using an empirical orthogonal function (EOF) approach (Lorenz, 1956). To assess the relationships of the September SC precipitation with the August APO and atmospheric circulations, regression and correlation analyses were adopted. The two-tailed Student’s t-test was engaged to determine statistical significance.
The developing autumn ENSO signal has a significant impact on simultaneous precipitation over South China (Zhang et al., 1999; Yuan and Wang, 2019). To eliminate the effect of ENSO, we applied conditional maximum covariance analysis (An, 2003) to isolate the August APO influences on September SC precipitation from ENSO based on the following equation:
[image: image]
in which cov denotes the temporal covariance between the original geophysical variable time series [image: image] and SNI, var denotes the variance of SNI, and [image: image] indicates the geophysical variable time series uncorrelated to the SNI.
In our study, linear trends in the data were removed before analysis using linear regression analysis to examine the interannual variations. All variables and indices involved in correlation and regression were completely uncorrelated with the ENSO signal using the method of conditional maximum covariance analysis described above.
Definition of the August APO
Referring to the previous work (Zhao et al., 2007), we calculated the August upper-tropospheric eddy temperature [image: image] for the Asian–Pacific region during 1961–2020 with an EOF analysis conducted over the domain 0°–60°N and 0°E–60°W. Here, [image: image] is defined as [image: image], in which [image: image] represents the vertically averaged (500–200 hPa) air temperature and [image: image] is the zonal mean [image: image]. The first EOF mode of the upper-tropospheric [image: image] accounts for 20.2% of the total explained variance (not shown), representing a quasi-hemispheric-scale dipole pattern of upper-tropospheric eddy temperature, with positive (negative) values over Eurasia (midlatitudes of the central–eastern North Pacific). A similar pattern can be seen in the climatology map of the upper-tropospheric [image: image] (Figure 1A), showing that positive/negative values of [image: image] are also located in the Asian–Pacific region. Figure 1B depicts the climatological August [image: image] longitude–pressure section along 30°N latitude. It also displays a distinct APO pattern on the vertical component, with positive (negative) [image: image] anomalies centered over Asia (central–eastern North Pacific), indicating an out-of-phase link between the two regions.
[image: Figure 1]FIGURE 1 | (A) Climatology (°C) of the August mean [image: image] over the Asian–Pacific region and (B) longitude–pressure section of August [image: image] (°C) along 30°N during 1961–2020 (the black area represents the mountains).
According to Zhao et al. (2007), the arithmetic difference between the regional and vertical mean August [image: image] over (15°–45°N, 50°–120°E, 500–200 hPa) and (15°–45°N, 170°E–120°W, 500–200 hPa) is defined as the August APO index (APOI) in this study, that is, APOI = [image: image] 50–120°E,15–45°N − [image: image] 170°E-120°W,15–45°N.
RESULTS
August APO and September Precipitation Over Southeast China
Since the summer APO has a significant impact on simultaneous precipitation over China (Zhao et al., 2007), there is an important need to investigate whether September precipitation over China is associated with the preceding APO signals in the summer months. As depicted in Figures 2A–D, the August APO shows the largest and most significant correlation with the September precipitation anomalies over SC; therefore, we focus on exploring the impact of the August APO on September SC precipitation in the following analysis.
[image: Figure 2]FIGURE 2 | Correlation coefficients of the September precipitation anomalies over China and the (A) summer mean, (B) June, (C) July, and (D) August APOI. Stippled regions indicate statistical significance above the 95% confidence level.
The relationship between the August APOI (hereafter referred to as APOI) and precipitation anomalies over China in September after the removal of the ENSO signal is shown in Figure 3. It can be seen that when the ENSO signal is taken into account (Figure 2D), a significant positive correlation exists over SC (the central value exceeds 0.49), suggesting that more (less) September SC precipitation is probable in association with a stronger (weaker) August APO. Positive correlations are observed over SC, consistent with Figure 2D, but the region with significant positive correlation is slightly smaller (Figure 3). A comparison of Figure 2D with Figure 3 reveals that the significant positive correlation between the August APO and September SC precipitation is not significantly affected by ENSO. Regardless of whether the ENSO signal is removed, a significant positive correlation exists in the relationship between the August APO and September SC precipitation. Therefore, the main focus of the subsequent analysis is on the reasons for the relationship between August APO and September SC precipitation after the removal of the ENSO signal.
[image: Figure 3]FIGURE 3 | Correlation coefficients between the APOI and September precipitation anomalies over China after the removal of the ENSO signal (stippled regions indicate statistical significance above the 95% confidence level).
We further defined the Southeast China September precipitation index (SCPI) by averaging September SC precipitation from 24°N to 29°N and from 110°E to 118°E to investigate the impact of the August APO on September SC precipitation. The normalized SCPI and the APOI, displayed in Figure 4, show that the fluctuation of SCPI is significantly linked to the August APO with the correlation coefficient reaching 0.45, significant at the 99% confidence level, indicating their significant in-phase relationship.
[image: Figure 4]FIGURE 4 | Time series of the normalized SCPI (blue line) and APOI (red line).
We also defined extreme precipitation in September over SC with precipitation anomalies exceeding one standard deviation to examine the connection between September SC precipitation and the August APO. It can be seen in Figure 4 that there are 19 years with extremely precipitation throughout the analysis period, and the same sign rate between the SCPI and the APOI reached approximately 74% (it was 63% for the remaining 41 normal years), implying that the August APO might act as a potential predictor for both normal and extreme precipitation in September over SC.
Atmospheric Circulation Anomalies Linked to the August APO and September SC Precipitation
To further verify the relationship between the SCPI and the APOI, the August APO-induced atmospheric circulation anomalies were investigated. Figure 5 presents regressed SLP, 850 hPa wind field, 500 hPa geopotential height, 200 hPa meridional wind, and latitude–pressure section of the vertical circulation averaged along 110°–118°E against the SCPI and the APOI. It is evident from Figure 5A that negative SLP is located over Asia, while significant positive SLP is centered over the East China Sea and its adjacent region and the North Pacific. This spatial distribution will conduce to significantly anomalous lower-tropospheric southerlies over the East Asia coast. The regression pattern of geopotential height against the SCPI (Figure 5B) shows that significant negative (positive) geopotential height anomalies exist over the midlatitudes of Asia (the North Pacific), indicating that the strengthened (weakened) East Asian trough and North Pacific high are the likely causes of the observed increase (decrease) in September precipitation over SC. Furthermore, as shown in Figure 5C, the upper-level atmospheric circulation associated with increased September SC precipitation is characterized by significant anomalous southerlies (northerlies) over Northeast China (South China). This helps to enhance the divergence in the upper level over SC, thereby inducing a stronger trough over SC, and is conducive to anomalous upward motion. Moreover, the regressed vertical circulation (averaged along 110°–118°E) against the SCPI (Figure 5D) also shows anomalous southerlies with warm and humid air moving from lower latitudes toward SC, facilitating ascent and moisture convergence and thereby increasing precipitation over SC. It is important to note that the regressed patterns derived from the APOI (Figures 5E–H) are very similar to the patterns presented in Figures 5A–D, demonstrating that the August APO could be regarded as a crucial modulating factor of September SC precipitation through modification of the atmospheric circulation over the Asian–Pacific region.
[image: Figure 5]FIGURE 5 | Regressed (A) SLP (unit: hPa; contours) and 850 hPa wind (unit: m s−1; vectors), (B) 500 hPa geopotential height (unit: m; contours), (C) 200 hPa meridional wind (unit: m s−1; contours), and (D) latitude–pressure section of 110°–118°E mean vertical circulation (unit: meridional wind ms−1, vertical velocity −0.01 Pa·s−1; vectors) against the SCPI, (E–H) same as (A–D) but for the APOI (dark (light) shadows represent the 95% (90%) confidence level).
Precipitation variation over the region is attributable mainly to strong moisture convergence and divergence associated with atmospheric circulation changes. Diagnosis of the climatological September vertically integrated moisture transport (Figure 6A) illustrates two chief channels of moisture flow toward SC: one originates from the Arabian Sea and the other from the Western Pacific. The regressed pattern of the SCPI onto moisture transport, shown in Figure 6B, reveals an anticyclonic circulation centered near the East China Sea and the western Pacific, which favors moisture transport toward SC. Moreover, the movement of moisture from the Arabian Sea toward SC is also reinforced. The alterations in water vapor transportation associated with the APO are illustrated in Figure 6C, in which the water vapor flux is regressed against the APOI. It can be seen that a strong August APO induces anomalous anticyclonic circulation over the western Pacific, which is close to the climatological distribution, thereby enhancing the transport of moisture from the western Pacific toward SC. Moreover, owing to the strengthening of the westerlies, the transport of moist air from the Arabian Sea increases the moisture flux toward SC. Consequently, the August APO could be expected to increase September SC precipitation by increasing the regional moisture availability.
[image: Figure 6]FIGURE 6 | (A) Climatology of September vertically integrated moisture transport for 1961–2020 and regressed September vertically integrated moisture transport (unit: kg·m−1 s−1; vectors) onto (B) the SCPI and (C) the APOI (shading indicates areas significant at the 95% (dark) and 90% (light) confidence level).
Possible Mechanisms Linking the August APO to September SC Precipitation
The analyses above indicate that the preceding August APO could be regarded as an important indicator of September SC precipitation through later effects on the atmospheric circulation. This raises questions regarding the underlying atmospheric circulation variations behind the linkage between August APO and September SC precipitation. To tackle this issue, we analyzed the 500–200 hPa [image: image] for September related to the APOI and SCPI (Figure 7). As shown in Figure 7A, the correlation between the APOI and mean September 500–200 hPa [image: image] shows a significant positive correlation over Tibetan Plateau (TP), while a significant negative correlation appears over the midlatitude Pacific, forming an obvious APO-like pattern. This finding implies that upper-tropospheric thermal anomalies over the Asian–Pacific region, as characterized by the APO, can be maintained from August to September and then induce the atmospheric circulation anomalies that lead to corresponding precipitation anomalies in the following September. As displayed in Figure 7B, the upper-tropospheric eddy temperature associated with the SCPI demonstrates a similar seesaw vibration between Asia and the North Pacific, implying the preceding upper-tropospheric thermal contrast over the Asian–Pacific region might modulate the following September SC precipitation.
[image: Figure 7]FIGURE 7 | Correlation between the mean September 500–200 hPa [image: image] and (A) the APOI and (B) the SCPI for 1961–2020 (shading indicates areas significant at the 95% (dark) and 90% (light) confidence level).
To address the atmospheric circulation changes behind the August APO–September SC precipitation relationship, we further calculated the regressed eddy geopotential height ([image: image], which is defined as the geopotential height deviation from its zonal mean) and wind at 850hPa onto the APOI (Figure 8). One can see from the figure that when the August APO is stronger (weaker) than normal, the tropospheric temperature over Asia (North Pacific) tended to be higher (lower), and significant negative (positive) [image: image] anomalies appear mainly over Asia (North Pacific) domain in the lower tropospheric level. This relationship between air temperature and geopotential height conforms to the static equilibrium relationship. According to the static equilibrium equation, the warm (cold) air column is associated with expansion (contraction), which results in a significant increase (reduction) in geopotential height at its top and decreasing (increasing) at its bottom. Consequently, the anomalous August APO results in anomalies of circulation, which strengthen the Asian low and North Pacific subtropical high at lower levels. Consistent with the significant changes of lower tropospheric geopotential height induced by the August APO, the 850hPa horizontal winds exhibit large variations with anomalous cyclonic circulation dominating over Asia, while pronounced anomalous anticyclonic circulations appear over the western and eastern regions of the North Pacific. Therefore, anomalous southerly winds are reinforced over the SC, which strengthens the moist transport to this region and favors enhanced precipitation.
[image: Figure 8]FIGURE 8 | Regressed September 850 hPa (A) [image: image] (unit: m; contours) and (B) wind field (unit: m s−1; vectors) onto the APOI for 1961–2020. Dark (light) shadows represent the 95% (90%) confidence level. Anomalous cyclones and anticyclones are marked with blue ″C″ and red ″A,″ respectively.
To investigate the August APO-related atmospheric anomalies further, the regressed velocity potential and divergent winds at lower atmosphere (850 hPa) and vertical velocity against the APOI in September are displayed in Figure 9. From Figure 9A, it can be seen that the strengthened convergence wind with significant positive velocity potential over SC can strengthen ascending motion, leading to an increase in precipitation correspondingly. The same conclusions can be drawn as in vertical velocity that significant negative anomalies cover most areas of SC (Figure 9B), indicating a pronounced ascent motion over this region. This means the strengthened August APO caused the large ascent velocity and convection enhancement and consequently increases the precipitation in this area.
[image: Figure 9]FIGURE 9 | Regressed September (A) velocity potential (unit: 105 m2 s−1; contours) and divergent winds (unit: m s−1; vectors) at 850 hPa and (B) longitude–pressure section of 20°–40°N mean vertical velocity (unit: 0.01 Pa·s−1; contours) against the APOI for 1961–2020. Yellow (green) shading indicates the 95% (90%) confidence level. Topography with elevations higher than 1,500 m has been masked in (A).
CONCLUSIONS AND DISCUSSION
Using observations and reanalysis, this study investigated the linkage between the preceding August APO and following September SC precipitation during 1961–2020, and the underlying physical mechanisms were explored.
The correlation coefficient between the August APO and September SC precipitation was statistically significant, with a value of 0.45 that passed the 99% confidence level, indicating their pronounced in-phase relationship. Further analyses revealed that atmospheric circulation anomalies in September associated with the August APO are conducive to increasing September SC precipitation.
The intrinsic mechanism that gave rise to the linkage between the August APO and September SC precipitation was further investigated. The anomalous [image: image] signal of the August APO in the mid- and upper-tropospheric level, which can persist until September, can affect the atmospheric circulation anomalies in September. Additionally, the anomalous variability of August APO may alter geopotential height at the lower level, leading to anomalous wind field and inducing drastic changes in precipitation pattern over SC. In the positive (negative) phase of August APO, negative (positive) geopotential height anomalies in the lower level were observed over Asia (the North Pacific), and the Asian low (the North Pacific subtropical high) was reinforced as well which significantly increased anomalous cyclonic (anticyclonic) circulation over Asia (North Pacific). Such a circulation pattern leads to anomalous southerlies and ascending motions prevailing over SC, which alters water vapor transport and ultimately creates favorable conditions for precipitation over SC.
This study analyzed the linkage between the August APO and September SC precipitation and proposed an underlying candidate mechanism, suggesting that, in addition to SST forcing, the temperature anomalies at the middle and upper troposphere may be regarded as a considerable precursory predictor. However, we mainly focus on the linkage between the APO and precipitation on the interannual time scale. Many studies reported that the interdecadal variations in precipitation over China are affected by multiple factors like atmospheric teleconnections and SST forcing (Huang et al., 2013; Ling Zhang et al., 2014; Yuan and Wang, 2019). Since the APO exhibits pronounced interannual and interdecadal variations (Zhao et al., 2007), a question arises: whether the interdecadal variation in the preceding or simultaneous APO can have an impact on the interdecadal autumn precipitation variation over China? In addition, the mechanism that governs the interaction between the APO and the East Asian climate is complex, and certain issues remain unclear. For instance, previous studies have revealed that the snow cover over the TP can have profound impacts on the simultaneous and subsequent precipitation over China (Liu et al., 2014; Zhang et al., 2021), and the APO was also found closely associated with the thermal condition of TP (Liu et al., 2017), so it is natural to question whether the TP snow can significantly influence the APO and further alter autumn precipitation over China? This is a topic that will require further discussion in the future.
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This work studies the application of deep learning methods in the spatiotemporal downscaling of meteorological elements. Aiming at solving the problems of the single network structure, single input data feature type, and single fusion mode in the existing downscaling problem’s deep learning methods, a Feature Constrained Zooming Slow-Mo network is proposed. In this method, a feature fuser based on the deformable convolution is added to fully fuse dynamic and static data. Tested on the public rain radar dataset, we found that the benchmark network without feature fusion is better than the mainstream U-Net series networks and traditional interpolation methods in various performance indexes. After fully integrating various data features, the performance can be further improved.
Keywords: deep learning, spatiotemporal downscaling, deformable convolution, rain radar dataset, feature fuser
INTRODUCTION
Downscaling forecasting is an important means for refined forecasting of meteorological elements in space or time dimensions. Commonly, the downscaling technology refers to the conversion which turns meteorological low-resolution data (large-scaled numerical matrix) into high-resolution information (small-scaled numerical matrix) under the same region. Downscaling can be divided into two dimensions: space and time. Spatial downscaling is the most extensive behavior of refined forecasting, while the method of temporal downscaling still needs to be studied (Maraun et al., 2010; Lee and Jeong, 2014; Monjo, 2016; Sahour et al., 2020). Early spatial downscaling techniques are implemented by using interpolation algorithms (Lanza et al., 2001) or statistical models. Interpolation algorithms contain linear interpolation, bilinear interpolation, nearest neighbor interpolation, and trilinear interpolation. The value of each pixel on the image is calculated by building the distance relationship of several pixels around it. The statistical model learns a corresponding function from data pairs which include low-resolution and high-resolution precipitation to observe a particular distribution. However, meteorological observation data are a kind of structural information (Berg et al., 2013; Yao et al., 2016). It means that meteorological data are time-series data; the data from different regions have diverse latitude and longitude coordinates, and these kinds of data can be influenced by associated meteorological element data. These factors make downscaling behavior susceptible to the influence of meteorological observations in their vicinity (Beck et al., 2019). Because of this, early interpolation methods do not make good use of this information; statistical methods are limited by empirical knowledge of time stationarity assumptions, control theory, and prediction theory.
In recent years, deep learning has become increasingly popular in climate science as the demand for high-resolution climate data from emerging climate studies have increased (Prein et al., 2015). Since the problem of downscaling meteorological data is similar to the image super-resolution problem of computer vision, the networks in the field of vision have been often seen as the main architecture to deal with the downscaling problem. However, the meteorological downscaling problem is different from the simple image super-resolution problem. For example, as a kind of structural information, the downscaling of meteorological data will be constrained by the implicit rules of static data such as terrain, vegetation, longitude, and latitude (Vandal et al., 2017; Serifi et al., 2021). Dynamic data which include air pressure, temperature, and humidity often have corrective effects on downscaling results. The threshold range of meteorological values is distinguished from the image’s pixel intensity threshold range. Meteorological data are usually not integer data. They have strong randomness which makes their upper and lower thresholds difficult to determine. These problems are obviously not needed to be considered in image problems, and it makes the problem of meteorological downscaling seem more complex.
In the field of image super-resolution, early networks are dominated by lightweight convolutional neural networks such as the super-resolution convolutional neural network (SRCNN) (Ward et al., 2017), fast super-resolution convolutional neural network (FSRCNN) (Zhang and Huang, 2019), and very deep convolutional network for super-resolution (VDSR) (Lee et al., 2019). The effect of these networks reconstructing the original image is generally better than that of ordinary interpolation methods. Although the lightweight models make the frame rate of this type of network operation faster, they still limit the reconstruction effect of the image. To solve this problem, the U-shaped structural neural network (U-Net) is used, and a GAN structure is then applied to the task. Structural variants that use low-resolution images as inputs were proposed by Mao et al. (2016) and Lu et al. (2021), and their network structures are built on the classic network which is called the U-Net (Ronneberger et al., 2015). Their data are reconstructed from different resolutions by taking advantage of the multi-scale characteristics of the network, and finally, their results are great. In addition, since the use of generative adversarial networks (GANs) proposed by Wang et al. (2018), a variant of the GAN structure SSR-TVD (Han et al., 2020) has been proposed to solve spatial super-resolution problems. The GAN is a self-supervised learning method. It takes the form of modeling data distribution to generate a possible interpretation which uses a generative network for sampling and then generates fuzzy compromises by discriminating networks. This structure can produce some specious details which can be seen truly as the ground truth. From the indicator, the effect is wonderful, but whether there exists false information is still worth discussing.
In the field of meteorological downscaling, the DeepSD network (a generalized stacked SRCNN) was proposed by Vandal et al. (2017). In this work, to take structural information into consideration, they made additional variables spliced with input features in a channel dimension before convolution. Then, they used convolution to aggregate structural relationships. The additional variables included geopotential height and forecast surface roughness. Finally, they achieved improvements in the task of downscaling. Rodrigues et al. used a CNN (convolutional neural network) to combine and downscale multiple ensemble runs spatially, and their approach can make a standard CNN give blurry results (Rodrigues et al., 2018). Pan used the convolution layer and full connection layer to connect the input and output with a network to predict the value of each grid point (Pan et al., 2019) without considering regional issues. These lightweight neural network methods verify that deep learning downscaling is feasible. Compared with the traditional methods, the deep learning method can get better results in a limited research area. In our work, we do not adopt a lightweight network. Since a lightweight network can get a great effect in spatial downscaling, it cannot deal with temporal downscaling. A common reason for it being unfit is that there does not exist a sequence processing module which can deal with the interpolation of temporal information. Methods like DeepSD, VDSR, and FSRCNN are designed for dealing with single data super-resolution, and most of these structures which are designed with a residual network cannot be adapted to the temporal downscaling problem. Their performances are correspondingly weak without the help of timing information. But the idea of taking additional variables into consideration is desirable, and we followed and further improved this method.
Commonly, the update frame rate of meteorological data is usually much lower than the video frame rate, and the meteorological early warning has higher requirements for numerical accuracy. Therefore, the index performance of the network should be placed in the first place. Höhlein studied a variety of structures for spatial downscaling of wind speed data, including U-Net architecture and U-Net with a residual structure which yielded better results (Höhlein et al., 2020). Adewoyin proposed TRU-NET (a U-Net variant structure) to downscale high-resolution images of precipitation spatially (Adewoyin et al., 2021). Sha proposed the Nest-UNet structure to downscale the daily precipitation image (Sha et al.,2020). The network is more densely connected based on the U-Net structure and has achieved good results. Serifi tested the low-frequency temperature data and high-frequency precipitation data by using the U-Net architecture based on the three-dimensional convolution. To take structural information into consideration, Serifi put values which include time, latitude and longitude coordinates, and terrain data into a network from a different scale. The way of fusion is the same as DeepSD. The results showed that an RPN (a U-shaped structure with a residual structure) is more suitable for the downscaling of low-frequency data, and a DCN (the network without a residual structure) is more suitable for the downscaling of high-frequency data. It can be seen that the mainstream networks adopted to deal with downscaling problems in recent years are almost using the U-Net as the basic architecture. Only a small number of solutions are based on the GAN and long short-term memory network (LSTM) structures (Tran Anh et al., 2019; Stengel et al., 2020; Accarino et al., 2021). It means that the U-Net is the mainstream supervised learning method for deep learning to solve the problem of meteorological downscaling. The U-Net structure has the advantages of a symmetrical network structure, moderate size, diverse improvement methods, and multi-scale feature analysis characteristics. But there are still some problems which are as follows:
1) The processing of time-series characteristics in the U-Net network adopts the method of spatializing the time dimension. This processing method conforms to the principle of image optical flow, but the time-series relationship in the real environment is different from the spatial relationship, which is more similar to the iterative relationship of a complex system.
2) The network input data feature types and the fusion methods are single. There is no difference between fusion methods for different types of data.
To address the aforementioned issues, in this study, we proposed a Feature Constrained Zooming Slow-Mo network, which has four modules: the feature extraction module, frame feature time interpolation module, deformable ConvLSTM module, and high-resolution frame reconstruction module. Compared with the U-Net series network, our network can extend channel dimensions. This feature makes it possible to take dynamic parallel data into channel dimensions as a factor, and the time information is delivered to the ConvLSTM. Furthermore, we considered a new strategy to extract static data features by deformable convolution. These strategies make our networks perform more scientifically in a multi-feature fusion.
The contributions of this study to the downscaling problem are as follows:
1) A deep learning downscaling method based on the convolutional LSTM (Xingjian et al., 2015) structure which can simultaneously solve both temporal and spatial downscaling problems is given.
2) Static data and dynamic data are introduced as influence characteristics, and the types of feature fusions are enriched.
3) This study proposes a method for constructing a feature blender using the deformable convolution, which enriches the feature fusion method.
PRELIMINARIES
Formulation of the Downscaling Problem
The downscaling problem of meteorological elements is usually divided into two parts: spatial downscaling and temporal downscaling. Spatial downscaling problems can be regarded as follows:
Given the three-dimensional grid data [image: image] and the magnification factors [image: image], using algorithms to fill the grid data to [image: image] by taking advantage of the relevance of spatiotemporal data information.
The temporal downscaling problem is roughly similar to the spatial downscaling problem. It needs to set a time scale magnification factor [image: image] to enlarge the raster data to [image: image]. Different from the spatial downscaling problem, when dealing with data like precipitation, high-frequency data will be aggregated. As a result, in the process of downscaling, there are problems such as data block’s position transformation and numerical dynamic changes. Therefore, the optical flow needs to be considered (Sun et al., 2021).
Commonly, the downscaling problem can be understood as the inverse process of data coarsening, which is shown in Eq. 1, where [image: image] is low-resolution data, [image: image] is high-resolution data, and [image: image] is the data coarsening function. The data coarsening operation is usually achieved by interpolation, pooling operation, or acquisition from the real environment.
[image: image]
Zooming Slow-Mo Network
One-stage Zooming Slow-Mo (Xiang et al., 2020) is a network combined with ConvLSTM and deformable convolution networks (Dai et al., 2017), which is designed to generate high-resolution slow-motion video sequences. The structure of the network is shown in Figure 1. It consists of four parts: the feature extraction module, frame feature time interpolation module, deformable ConvLSTM module, and high-resolution frame reconstruction module. First of all, a feature extractor with one convolution layer and [image: image] residual blocks is used to extract features. Then, the frame feature time interpolation module with deformable convolution is used to synthesize the low-resolution feature map of the intermediate frame by taking the feature map as the input. Afterward, to make better use of the time information, the deformable ConvLSTM module is used to process the continuous feature map, and this operation makes the feature images aligned and aggregated at the same time. Finally, the high-resolution reconstruction module is used to reconstruct the aggregated feature images.
[image: Figure 1]FIGURE 1 | One-stage Zooming Slow-Mo network.
Different from other networks only for spatial downscaling and U-Net, the structure of our network constructs modules separately for each super-resolution step. The most important change is that our network has a frame feature time interpolation module and deformable ConvLSTM module because it is common to see similar structures like a feature extraction module and high-resolution reconstruction module in most networks for spatial downscaling. These two modules provide a new view of generating a middle frame and applying ConvLSTM, which is a popular scheme for deep learning timing problems. The frame feature time interpolation module changed the use of stacked convolutions singly to solve the frame interpolation problem. With deformable convolution’s help, the middle frame can be generated more precisely. The deformable ConvLSTM module changed the use of stacked convolutions singly to solve the timing problem; hence, every downscaling array can completely fuse temporal sequence information by the mechanism of long short-term memory.
Frame Feature Time Interpolation Module
As shown in Figure 2, after feature extraction, the feature maps [image: image] and [image: image] are obtained. The traditional method performs interpolation on the time scale of pixel-level frames, but such an operation will make the front and back network structures be separated into two neural networks. Different from this method, Zooming Slow-Mo is designed to train a time interpolation function [image: image] by using convolution to directly synthesize an intermediate feature map [image: image]. The general expression of this interpolation function is as follows:
[image: image]
[image: Figure 2]FIGURE 2 | Frame feature time interpolation module.
Among them, [image: image] and [image: image] are two sampling functions. [image: image] and [image: image] are the corresponding sampling parameters. [image: image] is a hybrid function for aggregating the sampling features.
To precisely generate [image: image], [image: image] needs to capture forward motion information between [image: image] and [image: image], and [image: image] needs to capture the backward motion information between [image: image] and [image: image]. Since [image: image] does not exist in the input data, the forward and backward motion information cannot be obtained directly. The motion information between [image: image] and [image: image] is used to approximate the forward and backward motion information. Furthermore, deformable convolution is used to capture the motion information of the frame feature time interpolation module from the position relationship and mapping relationship. The sampling method based on deformable convolution can explore more abundant local time content and motion relationship.
[image: image] and [image: image] have the same network design structure, but their network weights are different. Taking [image: image] as an example, it maps the low-resolution frame features [image: image] and [image: image] as input to predict the sampling offset of [image: image]:
[image: image]
In this formula, [image: image] is a learnable offset and also refers to the sampling parameters [image: image]. [image: image] represents a general function of several convolution layers. [image: image] represents the connected channels. With a learnable offset, deformable convolution can be used:
[image: image]
Applying the same method, we can obtain [image: image] and the sampled features [image: image] by deformable convolution.
To mix two sampling features, the network uses the simple linear mixing function [image: image]:
[image: image]
In this formula, [image: image] and [image: image] are two learnable [image: image] convolutional kernels. [image: image] is a convolutional operator. Since the composite low-resolution feature map [image: image] will be used to predict the intermediate high-resolution frame [image: image], it will enforce the synthesized LR feature map to be close to the real intermediate low-resolution feature map. Therefore, the two offsets [image: image] and [image: image] will implicitly learn to capture the forward and backward motion information, respectively.
Deformable ConvLSTM
ConvLSTM is a two-dimensional sequence data modeling method that is used here for aggregation on the temporal dimension. At the time point [image: image], ConvLSTM updates the hidden layer [image: image] and the cell layer [image: image], and the formula is as follows:
[image: image]
As is seen from the state update mechanism here, ConvLSTM can only implicitly capture the state of motion between previous states: [image: image], [image: image] and input feature maps with small convolutional receptive fields. Therefore, if there is a large change between consecutive frames, the previous state will not match the time scale that [image: image] produces seriously. Then, the mismatched noise information that will be propagated by [image: image] and [image: image] is not the global information on the useful time scale. As a result, the reconstructed high-resolution image will produce artifacts with probability.
To solve this problem and effectively obtain global time scale information, the network adds a deformable convolution operation to the state update process of [image: image] and [image: image] in ConvLSTM. As shown in Figure 3, the update mechanism of ConvLSTM becomes
[image: image]
[image: Figure 3]FIGURE 3 | Deformable ConvLSTM.
Among them, [image: image] and [image: image] are the general functions with the stacked convolutional layers, [image: image] and [image: image] are the predicted offsets, [image: image] and [image: image] are the aligned hidden and cell states, respectively. Compared with the normal ConvLSTM, the hidden layer [image: image] and the cell layer [image: image] are forced to align with the input features [image: image] in the deformable ConvLSTM, which enables it to handle motion in the video. In addition, the ConvLSTM here uses a bidirectional structure, which can fully obtain the information transmitted forward and backward. Finally, the hidden layer [image: image] is used as the output, and the frame reconstruction module is used as the input.
Frame Reconstruction
To reconstruct high-resolution video frames, a synthetic network shared on a time scale is used. It takes a single hidden state [image: image] as input and outputs the corresponding high-resolution frame. The network first uses [image: image]-stacked residual blocks to learn the depth features and finally uses a sub-pixel upscaling module (Shi et al., 2016), as shown in Figure 4 to reconstruct high-resolution frames.
[image: Figure 4]FIGURE 4 | Sub-pixel upscaling module.
THE MODEL
The model presented in this article uses the Zooming Slow-Mo network as the infrastructure. Although the network has proven to be quite powerful in image super-resolution missions, the data complexity of meteorological downscaling missions and the multiple input data sources make the original architecture unable to be directly adapted. To address this issue, we classified the input data and reconstructed the Feature Constrained Zooming Slow-Mo network, which is shown in Figure 5, by using the characteristics of deformable convolution.
[image: Figure 5]FIGURE 5 | Feature constrained Zooming Slow-Mo network. Dynamic data use the situation from southeast of France as an example just for showing three kinds of dynamic data, and we used data from northwest of France in our experiment. Static data are the real data from northwest of France.
Selection of Dynamic and Static Data
Different from video super-resolution or simple image super-resolution, the problem of actual data association is usually considered in the meteorological downscaling behavior. When it comes to precipitation, it is natural to be associated with factors of precipitation conditions. For example, the probability of precipitation is a factor which can be taken into consideration. To enrich the dynamic data, we also added the element of reflectivity measurement height. In addition to these dynamic data, static data are always considered as influencing factors which include latitude and longitude coordinates, terrain height, and vegetation information (Ceccherini et al., 2015). Since the adopted data set is obtained in the northwest of France, there is a difference between sea and land. We believe that geometrical height information and sea-land mask are the main and easily available static influence factors. Therefore, we selected the geometrical height and land–sea mask as static influence factors.
Feature Blender
The fusion of data is a problem worth considering for Zooming Slow-Mo. The reasons are as follows:
1) Jumping out of the U-Net framework and lacking the support of symmetrical structure, it is no longer applicable to integrate information into small-scale features.
2) There are two types of data in the existing data: static data and dynamic data. If the violent channel superposition method is adopted, the effect of integration will naturally get a big discount.
As we can see from the aforementioned reasons, the application of a new network structure leads to the difficulty of designing a feature blender. The most important factor is that static data and dynamic data are two types of data. It means that it is unreasonable to fuse two kinds of data in the same way. Therefore, the question as to how to design the feature blender remains unexplored.
In the network structure of Zooming Slow-Mo, there exists an important component which is called deformable convolution. Deformable convolution improves its performance by resetting the position information compared to common convolution. The process of resetting position information can be seen as a shift of the convolutional kernel scope. In fact, the behavior of the shift is before the convolution mapping. Since this behavior does not belong to the convolution process, we can interpret it as a process of making a position rule. Different from dynamic data, static data are fixed values. When it comes to dynamic data, we expect these data can make effect on correcting the downscaling value. Therefore, the question as to what kind of information can be extracted from a fixed value is yet to be explored. In our opinion, static data are the key to making the position rule.
According to the idea that dynamic data help correct results and static data help make position rules, we made some structural changes to the network, which is shown in Figure 6. Since reflectivity itself is dynamic data, we put three kinds of dynamic data into the feature extractor in the form of channel stacking. Then, we added a new static data feature extractor on the basis of the original network, which forms a parallel relationship with the dynamic data feature extractor. Considering that putting a full static data feature map into the offset leads to the position rule being fixed, we spliced equal amounts of the static feature map and dynamic feature map together in a channel dimension. Therefore, the acquisition method of offset [image: image] becomes ([image: image] is a feature map of static data)
[image: image]
[image: Figure 6]FIGURE 6 | Way of the feature blender.
EXPERIMENTS
For the first time, we tested the model performance and data fusion performance of an FC-FSM network and a U-Net series network on the public precipitation reflectance dataset provided by METEO FRANCE. The results of the experiments conducted on these two networks lead to the following findings:
1) A Zooming Slow-Mo basic network has better performance than a UNet3D network in the processing of downscaling data.
2) Using deformable convolution to scramble the feature location information of static data is a feasible method to improve the network performance.
3) The dynamic data used in this article have a positive gain on the improvement of network performance, but the yield is low.
In the actual training, we set the parameters [image: image], applied the Adam optimizer (Kingma and Ba, 2014), set the learning rate as fixed [image: image], and trained on a single NVIDIA Tesla V100 device.
Data Sources
The new reflectivity product provided by METEO FRANCE (Larvor et al., 2020) contains precipitation reflectivity data, precipitation rate data, and reflection measurement height data every 5 min from February to December 2018. The reflectivity data’s unit is [image: image]. The precipitation rate’s unit is percent. The reflectivity measurement height’s unit is m. The effective interval of reflectance data is [−9, 70]. The unit step of measurement is 0.5 [image: image]. The valid interval of precipitation rate data is [0, 100]. The valid interval for reflectance measurement height data is [0, 20000] in m. The undetected data value is −100, and the missing data value is −200. In addition, the raw data also provide land-sea mask data and geometrical height data.
Dataset Preprocessing
The data provided by the product cannot be used directly for three reasons:
1) There are missing and undetected values in the product, which will affect the output of the training model if not excluded.
2) The numerical range provided by precipitation reflection data is not all valid data, so it is necessary to filter out some weak impact data by high-pass filtering.
3) For the downscaling problem, the data do not provide direct input and target data, which need secondary processing.
For the aforementioned reasons, we removed the original data and removed the missing values at the edge of the data. The data below 0.5 mm/h described in this study (Xingjian et al., 2015) indicate that there is no rain, and according to the documentation provided by METEO FRANCE, the Marshall–Palmer relationship is [image: image]. We put 0.5 mm/h into [image: image] and used the relationship [image: image] to get the threshold value which refers to no rain. The value is about 18 [image: image]. To provide a judgment space for no rain and simplify data processing, we filtered the data below 15 [image: image], so the precipitation rate data interval can be standardized within [15, 70].
Furthermore, on the time scale, we did not perform additional operations on the data. Instead, we used the data with an interval of 10 min as the input and the data with an interval of 5 min as the output. After the aforementioned preprocessing steps, the final dataset input data size was 2, 200, 200, and the label data size was 3, 400, 400. It means that data are interpolated in the middle frame. In addition, the low-resolution data are downscaled to twice the scale of the original data.
As precipitation is not a daily phenomenon, to ensure the quality of the training effect, we filtered out the data with an effective reflectance area of less than 20%. Finally, we randomly selected 7,000 sets of data, including 6,000 groups as the training dataset and 1,000 groups as the test dataset.
Score
To quantify the effect of the networks, we calculated the mean squared error (MSE) and structural similarity (SSIM). Let [image: image] be the index of n grid points of a space-time patch, then the MSE is defined as follows:
[image: image]
where [image: image] is the downscaled result, and [image: image] is the observation. Before calculating the SSIM, we should calculate luminance, contrast, and structure:
[image: image]
where [image: image] is the mean of [image: image], [image: image] is the mean of [image: image], [image: image] is the variance of [image: image], [image: image] is the variance of [image: image], and [image: image] is the covariance of [image: image] and [image: image]. [image: image], [image: image], and [image: image] is the interval range of value. It was observed that [image: image], [image: image], and [image: image]. Then, SSIM is defined as follows:
[image: image]
Along with the quantitative measures, we visualized the downscaled fields to show the amount of detail that is reconstructed visually.
Model Performance Analysis
To test the performance of the Zooming Slow-Mo network in downscaling problems, we prepared a trilinear interpolation, UNet, UNet3D, and Zooming Slow-Mo networks without considering the influencing factors of dynamic static data to conduct comparative experiments. In the training process of the deep learning method, we used the mean squared error (MSE) between the output result and the target value as the loss function. We traversed the data 40 times and then obtained the following training curve. In the training environment, we obtained the descent curve of the loss function, as shown in Figure 7. It can be seen that the Zooming Slow-Mo network is much better than UNet and UNet3D in convergence speed. Zooming Slow-Mo is slightly better than UNet3D in the final convergence value, while UNet3D is much better than U-Net.
[image: Figure 7]FIGURE 7 | Loss function curve of three different deep learning methods.
Furthermore, the performance results shown in Table 1 are obtained by testing on the test dataset. The MSE (total) refers to the mean square error index of the whole output. MSE (t2) refers to the mean square error index of the reflectivity data of the intermediate time point (with spatiotemporal downscaling at the same time). MSE (t1+t3) refers to the mean square error of reflectivity data at both time points (spatial downscaling only). From the indicator results, it can be seen that the deep learning method has a significant performance improvement compared with the traditional trilinear interpolation. In the deep learning methods, the Zooming Slow-Mo network exceeds UNet and UNet3D in various indicators, especially in the problem of temporal downscaling.
TABLE 1 | Test set evaluation indicator.
[image: Table 1]To compare the actual downscaling effect, we plotted the downscaling radar reflectance images (Figure 8) and the difference between the reflectance images predicted by the downscaling algorithm and the true high-resolution image (Figure 9). First of all, according to the difference image effects shown in Figure 8, it can be found that the performance of the three deep learning downscaling algorithms provided in this study is much better than the traditional trilinear interpolation method. Furthermore, it can be found that when t1 and t3 generate downscaling images, three networks have obtained good results in the spatial downscaling data reconstruction effect because of the provision of raw low-resolution data. It can be found from Figure 9 that the colored scatter points of the Zooming Slow-Mo network in the interpolated image are sparse compared with Unet and UNet3D. Therefore, in the spatial downscaling task, the results obtained by Zooming Slow-Mo are closer to the real data effect. The time downscaling of t2 does not provide the original low-resolution data, so the prediction results obtained lack edge details compared with t1 and t3. However, according to Figure 8, it can be found that Zooming Slow-Mo is richer in shape details on the edge of data color stratification than the image drawn by UNet3D. It indicates that the generated data results will be more likely to obtain the simulated image high-resolution results for the complexity of the structure of the neural network and the diversification of operation behavior. The difference image of t2 data in Figure 9 indicates that the data scatter obtained by the Zooming Slow-Mo network is sparser than the first two networks. Therefore, the prediction results obtained by Zooming Slow-Mo are better than those of UNet and UNet3D in the spatiotemporal downscaling task. This situation shows that convolution LSTM seems a better solution to deal with temporal downscaling than convolution in the UNet series network. The mechanism of LSTM for processing timing information allows Zooming Slow-Mo extract information better which makes a faster convergence for the model.
[image: Figure 8]FIGURE 8 | Precipitation reflectance image.
[image: Figure 9]FIGURE 9 | Image of the difference between the prediction and the real situation.
Data Fusion Performance Analysis
In this section, we tested a model separately with static data added alone (Zooming Slow-Mo-S), a model with static–dynamic data added alone (Zooming Slow-Mo-D), and the complete improved structure (Zooming Slow-Mo-DS), respectively. Finally, we got the loss function curve, as shown in Figure 10. As is seen from this figure, Zooming Slow-Mo has a stable curve and got the highest loss. Zooming Slow-Mo-D has a wave curve and the second highest loss. Zooming Slow-Mo-S and Zooming Slow-Mo-DS have a similar final loss which is the minimum value, but the former seems to have a curve that goes down faster than the latter. These phenomena indicate that Zooming Slow-Mo-S helps loss fall more smoothly and Zooming Slow-Mo-D makes the loss fall more unstably. In this experiment, the addition of static data performs better than the addition of dynamic data. However, there was no significant performance improvement in Zooming Slow-Mo-DS in the training process. It means that there is still room for improvement in the fusion of multiple types of data.
[image: Figure 10]FIGURE 10 | Loss function curve.
Further, the performance results shown in Table 2 are obtained by testing on the test dataset. From the MSE (total) indicator, Zooming Slow-Mo-DS got the best result, Zooming Slow-Mo-S became the second, and Zooming Slow-Mo-D became the third. It means that despite adding static data or dynamic data, the indicators will be improved. The method of using static data to affect the convolution position offset of the feature map got a better performance improvement. But the performance gain was not noticeable when the two improvement methods were combined. From the MSE (t2) indicator, Zooming Slow-Mo-DS still got the best result, Zooming Slow-Mo-S became the second, and Zooming Slow-Mo-D became the third. It showed that adding dynamic data to Zooming Slow-Mo-S will make the performance of the network better in temporal downscaling problems. From the MSE (t1+t3) indicator, it makes some difference; Zooming Slow-Mo-S got the best result, Zooming Slow-Mo-DS became the second, and Zooming Slow-Mo-D became the third. It indicates that adding dynamic data to Zooming Slow-Mo-S will make the performance of the network worse in spatial downscaling problems. From the SSIM indicator, three kinds of improvements got the same effect.
TABLE 2 | Test set evaluation indicator.
[image: Table 2]The images of reflectivity and difference plotted in Figures 11, 12 are then analyzed. In the spatial downscaling of t1 and t3, the effect of the image is similar because the index improvement is not very obvious. The temporal and spatial downscaling of t2 is different. According to the generated reflectivity image, it can be found that the addition of dynamic data will inhibit the filling of high-frequency data. From the prediction results of t2, it can be found that Zooming Slow-Mo-S can better recover the data between the 45-dB and 50-dB range in the upper half of the data. The data processing effect of Zooming Slow-Mo-DS in the range of 30dB–40dB is weaker than Zooming Slow-Mo-S and Zooming Slow-Mo-D. Furthermore, it can still be found from the difference image that the amount of large difference data generated by Zooming Slow-Mo-DS is relatively less. Overall, the image effect obtained by Zooming Slow-Mo-S is more in line with the real situation.
[image: Figure 11]FIGURE 11 | Precipitation reflectance image.
[image: Figure 12]FIGURE 12 | Image of the difference between the prediction and the real situation.
These results verify that the strategy of fusion works. With the help of deformable convolution, static data can make a greater position rule than the rule which is affected by dynamic data alone. It means that static data are more fit for dealing with affecting inherent rules. Dynamic data can also affect the model, but the effect is extremely weak. It is obvious that the feature fusion method based on splicing has little effect. The problem of how to use dynamic data efficiently is still worth thinking.
CONCLUSION
In this work, we studied the applicability of deep learning in spatial and temporal downscaling problems. Therefore, we mainly focused on the radar precipitation reflectivity data. At the same time, trilinear interpolation, UNet, UNet3D, and one-stage Zooming Slow-Mo network structures are selected for data testing. According to the data results, Zooming Slow-Mo can get better results. Furthermore, we have made appropriate improvements for Zooming Slow-Mo: one method is to use static data to affect the position offset features of deformable convolution, and the other way is to use dynamic data as input to affect convolution mapping. These two methods improve the training indicators, while the former is relatively better. In the end, we combined the two improvements, although Zooming Slow-Mo-DS has a slight improvement in the data on the indicator relative to Zooming Slow-Mo-S, and the actual output of the image effect is not as good as Zooming Slow-Mo-S.
To verify these conclusions, we drew each network’s training curve, as shown in Figures 7, 10. We provided the test indexes of each network under the test set, as shown in Tables 1, 2. Furthermore, we drew heat graphs and difference graphs of actual precipitation reflectance; the heat graphs are shown in Figures 8, 11 and the difference graphs are shown in Figures 9, 12. From the training curves, we found that the Zooming Slow-Mo network exceeds UNet and UNet3D in various indicators, especially in the problem of temporal downscaling. The addition of static data performs better than the addition of dynamic data on the convergence of the loss function. From the test indexes, we can find that deep learning methods outperform trilinear interpolation by a wide margin. In addition, Zooming Slow-Mo gets the best performance because of deformable convolution and LSTM. The addition of dynamic and static data enables the network to obtain varying performance benefits. Finally, from the heat graphs and difference graphs, we observed a real downscaling image effect. Because of this, we get the view that the problem of how to use dynamic data efficiently is still worth thinking about.
To verify the authenticity of performance improvement, we compared the results with the DCN network (Serifi et al., 2021). The author of DCN also carried out downscaling in rainfall, but the unit of the source data is [image: image]. In our work, the unit is based on the reflectivity which is called [image: image]. These two units are both common units, and they can be converted under the condition that we know some local constants. Without compromising the reliability of the values, we decided to compare the reduction indicator. The author of DCN chose trilinear interpolation as the baseline and calculated the decrease rate of the MSE index. The decrease rate is the reduction indicator. The indicator of DCN and other networks in our experiment are shown in Table 3.
TABLE 3 | Performance comparison with DCN.
[image: Table 3]As we can see from Table 3, the DCN got a reduction of −62.70%. We tested the same network in our dataset, and it got a reduction of −65.13%. It means that the DCN really gets improvements, and it can be applied to different datasets. But Zooming Slow-Mo seems great, and it got a 5% performance improvement. With the help of stable and dynamic data, it can even get more performance improvement.
It is worth mentioning that Zooming Slow-Mo can also be adapted to other meteorological elements. Elements like snowfall and rainfall can be directly adapted because they have a transformation of high-frequency information and fast change rate. However, elements like air pressure and temperature cannot be adapted. These elements have more low-frequency information and a slower rate of change. In some articles, authors prefer to use residual convolution to handle elements like temperature and remove residual convolution to handle elements like rainfall. These strategies truly make sense. Therefore, before dealing with elements like temperature, we still need to add more residual convolution as a strategy. Furthermore, the dynamic data which are used to affect the original data should also be considered. These plans will be further tested and improved in our subsequent experiments.
To solve the downscaling problem by deep learning, the work we have carried out is only the basic part of the algorithm test. There are still many problems that need to be studied on this basis.
1) As an unexplainable model, deep learning makes the low-resolution data reconstructed into high-resolution data in a data-driven way, and this method lacks the constraints of physical factors. Therefore, the appropriate use of dynamic models (such as adding regularization factors to the loss function and improving the weight update strategy) will be a promising performance optimization scheme (Chen et al., 2020).
2) The study we have completed is only the basic algorithm function of the downscaling of precipitation reflectance elements. In the actual situation, the function needs to be applied to different tasks or different areas, and it is known that meteorological observations vary from year to year due to climate change. In view of the way of using a single model to adapt to a variety of situations cannot get good test results, we believed that each meteorological element or each regional scope needs a separate network or unique weight to test necessarily. Therefore, using a deep learning network to solve the scaling problem needs to build a complete network selection system. It is necessary for the system to configure the latest data in real time to update the model weight and prepare a special model weight for a special environment.
3) The deep learning network in this study is only suitable for a regular meteorological element grid. However, the unstructured or irregular network topology is the more real state of meteorological data (Kipf and Welling, 2016; Qi et al., 2017). Therefore, the downscaling solution for any grid topology is worth studying.
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At present, there is still a bottleneck in tropical cyclone (TC) forecasting due to its complex dynamical mechanisms and various impact factors. Machine learning (ML) methods have substantial advantages in data processing and image recognition, and the potential of satellite, radar and surface observation data in TC forecasting has been deeply explored in recent ML studies, which provides a new strategy to solve the difficulties in TC forecasting. In this paper, through analyzing the existing problems of TC forecasting, the current application of ML methods in TC forecasting is reviewed. In addition, the various predictors and advanced algorithm models are comprehensively summarized. Moreover, a preliminary discussion on the challenges of applying ML methods in TC forecasting is presented. Overall, the ML methods with higher interpretation, intervention and precision are needed in the future to improve the skill of TC prediction.
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INTRODUCTION
Tropical cyclone generates over the tropical or subtropical oceans, and it is a kind of extreme weather regime that can cause tremendous loss of human lives and social property through excessive torrential rainfall, flash flood, huge waves and storm surges. Genesis, track, intensity and disastrous weather are the key issues in TC operational weather forecast. At present, the numerical model is still the dominant way to forecast TC, and its ability mainly depends on the parameterization of physical processes within TCs. However, the performance of TC prediction is restricted by the complex dynamical mechanisms and the diverse influence factors, and still needs to be improved (Ma, 2014).
In recent years, major advances in TC forecasting have been made in TC track prediction. But, there still exist challenges in predicting anomalous motions (Dong, 2021) and making long-term track forecasting (Emanuel, 2018). In order to solve such problems, the application of ML methods has gradually become a hot spot. For example, they are used to explore the values of satellite data (Hu et al., 2017; Zhang et al., 2017; Chen et al., 2018; Pradhan et al., 2018; Kim M. et al., 2019; Qian et al., 2021), radar data (Chen X. P. et al., 2020; Huang et al., 2021) and surface observation data (Mercer and Grimes, 2015) in TC forecasting.
As the core technology of Artificial Intelligence (AI), the basic principle of ML is to give data to computers and let them infer rules from it, so that machines can explore the potential values of data and automatically improve their performances (Zhou, 2006). The ML can be divided into supervised learning and reinforcement learning according to whether the assignment needs to obtain experience through the interaction with environment (Cui et al., 2019). ML methods can be used to realize the feature selection (Kim and Choi, 2007), clustering (Melnykov et al., 2020), and regression/classification (Suykens and Vandewalle, 1999), which are thought to be beneficial to TC forecasting (Chen R. et al., 2020).
In this study, we will review the current applications of ML methods in the forecasting of TC genesis, track, intensity and disastrous weather and summarize the existing problems. Then, various predictors and advanced algorithm models are comprehensively summarized (Figure 1). The remainder of this paper is organized as follows. The application of ML methods in the forecasting of TC genesis, track and intensity is reviewed in sections 2–4, respectively. Section 5 reviews the forecasting on TC disastrous weather and its impact. Finally, the conclusions and discussion are given in section 6.
[image: Figure 1]FIGURE 1 | Overview of the application of machine learning methods in TC forecasting.
TC GENESIS FORECASTING
TC genesis is referred to as a process through which a tropical disturbance rapidly develops into a warm-core, cyclonic system with sustained winds (Gray, 1968, 1998). The TC can be identified and tracked through the criteria of co-located high values of low-level vorticity, low surface pressure values, elevated temperatures aloft, and high 10-m wind speed maintained for a specified duration of time (Knutson et al., 2007; Ullrich and Zarzycki, 2017). Traditionally, the forecasting procedures are based on a multi-variable set of physical conditions based on known properties of TCs. The physical conditions can be predicted by numerical models. Recently, more advanced numerical models, such as the Global Environmental Multi-Scale Model, Global Forecast System, Navy Operational Global Atmospheric Prediction System and United Kingdom Met Office global model, have been applied in operational forecasting of TC genesis (Halperin et al., 2013). Although this prediction method is based on physical interpretations, it has some limitations, such as poor understanding of TC genesis and huge computational costs (Chen R. et al., 2020). The used statistical relationship between the probability of TC genesis and large-scale environmental predictors is too simple to describe the actual situation accurately (Chaudhuri et al., 2017). At present, TC genesis forecasting can be carried out by combining ML methods with traditional methods. According to the forecast leading time, the TC genesis forecasting can be divided into short-term forecasting and long-term forecasting (Table 1). Aimed at predicting seasonal generation frequency of TC, long-term forecasting usually uses large-scale environmental field information to establish the statistical relationship between environmental factors and the active frequency of TCs, and further constructs the genesis potential index (GPI) (Chen, 2018). The selection of large-scale environmental factors, such as low-level vorticity, convective instability, ocean mixed layer depth/temperature, vertical wind shear, absolute vorticity, relative humidity, etc. (Gray, 1968; Emanuel and Nolan, 2004; Camargo et al., 2007; Zhao et al., 2012), plays a key role in long-term forecasting. For short-term forecasting, there are preconditions of tropical disturbances or tropical cloud clusters existing over tropical ocean surface, and then an algorithm is used to determine whether they will develop into a TC (Chen, 2018). The existence of tropical disturbances or tropical cloud clusters is often identified according to the state of atmospheric variables (wind field, vorticity field, etc.) (Fu et al., 2012; Peng et al., 2012) and the brightness temperature data of satellite cloud images (Hennon and Hobgood, 2003; Hennon et al., 2011).
TABLE 1 | Machine learning in TC genesis forecasting.
[image: Table 1]Short-Term Forecasting
To forecast whether the tropical disturbance can develop into a TC, many studies have devoted to finding the optimal predictors and algorithms. For example, Zhang et al. (2015) built a decision tree (DT) model (Safavian and Landgrebe, 1991) based on the C4.5 algorithm to classify tropical disturbances in the Northwest Pacific. They found that the maximum relative vorticity, sea surface temperature, precipitation rate at 800 hPa, the average divergence at 1,000–500 hPa and temperature anomaly at 300 hPa are essential predictors to distinguish whether the tropical disturbance can develop or not. Compared with the numerical methods with a hit rate of less than 50% (Halperin et al., 2013), the DT method with a higher hit rate (64%) has excellent performance in the short-term (24–48 h) TC genesis forecasting. Wijnands et al. (2016) used the logistic regression prediction model to select the short-term predictors for TC genesis. The results showed that 600 hPa potential vorticity, 925 hPa relative vorticity and 200–700 hPa vertical wind shear are key predictors.
In addition to reanalysis data and simulation data, satellite data has been used in several studies to forecast TC genesis. With the aid of the circular variance and a spatial pattern analysis program tool, Park et al. (2016) used the WindSat remote sensing images of ocean surface wind and precipitation to quantify the predictors in the DT algorithm, and then they established a new forecast model of TC genesis. Moreover, they further pointed out that the symmetry and intensity of circulations are the most important parameters that characterize the development of tropical disturbance.
In recent years, significant advances in prediction algorithms have also been made. For example, Ahijevych et al. (2016) used the Random Forest (RF) algorithm to make the probability forecast of the genesis of mesoscale convective systems. Zhang et al. (2019) evaluated the performance of the linear, non-linear and non-linear ensemble classification algorithms on TC genesis forecasting, and they found that the AdaBoost, a non-linear ensemble classification algorithm, has significant higher forecast accuracy than the traditional methods based on the genesis potential index (Figure 2). Similar to Park et al. (2016), Kim M. et al. (2019) adopted eight predictors from the WindSat observed ocean surface wind and precipitation in the Northwest Pacific, and compared the detection skill for TC genesis using the models based on three different ML algorithms i.e., DT, RF and support vector machines (SVM) (Suykens and Vandewalle, 1999), and a model based on linear discriminant analysis. They highlight that ML approaches can provide an improved skill for detecting TC genesis compared with conventional linear approaches.
[image: Figure 2]FIGURE 2 | Flow diagram of TC genesis prediction by using machine learning (Zhang et al., 2019).
Long-Term Forecasting
The long-term forecast aims to predict the seasonal genesis frequency of TCs. The traditional methods use a set of interrelated predictors through linear statistics to predict the TC frequency in the next quarter. However, the relationship between predictors and TC genesis does not satisfy the assumption of standard prediction technique. Therefore, scholars regarded seasonal-scale TC forecasting as a regression problem and tried to use ML methods to build some newer model. In particular, the Support Vector Regression (SVR) algorithm has been widely used. Richman and Leslie (2012) extended the traditional multiple linear regression method and introduced the quasi-biennial oscillation (QBO) into the SVR model to predict the genesis frequency, spatial distribution and seasonal intensity variation of TCs. The results showed that the prediction accuracy of the improved SVR model was 40% higher than that of the traditional multiple linear regression model and 121% higher than that of the SVR without QBO. On this basis, Wijnands et al. (2014) and Richman et al. (2017) further improved the SVR model with reduced the seasonal forecasting errors of TCs. Nath et al. (2016) selected five large-scale climate variables, namely 500 hPa geopotential height, 500 hPa relative humidity, sea level pressure, and 700 hPa and 200 hPa zonal wind in the previous month, as potential predictors of TC activities. Also, they used the multilayer perceptron, radial basis function (RBF) and generalized regression neural network algorithm to predict the seasonal TC activities over the North Indian Ocean. The results showed that all three algorithms performed well, and the performance of the multilayer perceptron model is better than that of the RBF and the generalized regression neural network model.
TC TRACK FORECASTING
Although there have been decent advances in TC track forecasting in recent years, difficulties still exist in predicting anomalous tracks and making longer-term forecasting (Dong, 2021). In early studies, the models for predicting TC tracks were mainly built by comprehensively using thermal-dynamic knowledge and analyzing the characteristics of complex terrain and coastlines in coastal areas. However, these characteristics were often extracted subjectively, so the methods are less efficient and objective, depending on forecasters’ experience. With the development of ML methods and the enrichment of computing resources, automatic extraction of the temporal and spatial characteristics from big data has been realized, and efficient and accurate prediction of TC track may be achieved (Table 2).
TABLE 2 | Machine learning algorithms used in TC track forecasting.
[image: Table 2]TC Track Forecasting Based on Time Series Data
The historical TC best track data are typical time series data. As early as in 1972, for the TC track forecasting in the Atlantic, Neumann and Hope (1972) used linear regression algorithms to construct regression equations and built a TC track forecast model named “Climatology and Persistence” (CLIPER). Chen et al. (1999) used the stepwise regression algorithm instead of linear regression algorithm to eliminate independent variables that are not significant to regression equations. Due to the complexity and nonlinearity of the physical processes affecting TC tracks and the interactions among these processes, besides linear regression and stepwise regression algorithms, many studies adopted nonlinear algorithms such as the neural network, SVM and artificial neural network to predict TC tracks. For instance, Shao et al. (2009) established a TC track forecast model by selecting the factors with high correlation as the independent variables of the model based on the forward feedback back propagation (BP) learning algorithm. The mean absolute errors of predicted moving distance in BP neural network model at 24, 48 and 72 h are respectively 40.8, 8.1 and 16.9 km lower than those of the CLIPER model. Wang et al. (2011) broke the bottleneck of subjectively-constructed predictors and used the nonlinear characteristics of the artificial neural network to automatically construct predictors for TC track forecasting. On this basis, Huang and Jin (2013) further integrated the Principal Component Analysis (PCA), genetic algorithm and neural network algorithm to establish a regional TC track ensemble forecast model, which has good promotion and application values. Due to fewer predictors and shorter leading time of TC track forecasting, the SVM algorithm, which excels in dealing with small samples, high-dimensional pattern recognition and nonlinear complexity, performs better than traditional numerical predictions and nonlinear regression algorithms (Song et al., 2005; Lv et al., 2009). As a new statistical regression/classification technique, ensemble learning is more effective than single learning in non-linear regression and multi-scale approximation problem, and is widely applied in many fields (e.g., Tian et al., 2012; Huang et al., 2018; Pradhan et al., 2018). Aiming to improve the level of TC track forecasting, a novel ensemble learning method based on DT and boosting skill, called gradient boosting decision tree, was proposed (Tan et al., 2021). Compared with the CLIPER model, the TC track predicted by the new model is more robust and accurate.
TC track forecasting can also be regarded as a classification issue. In the Northwest Pacific, Camargo et al. (2007) used the shape and movement parameters of TC tracks to conduct the K-means cluster analysis (Krishna and Narasimha, 1999), and they pointed out that TC tracks in this region are mainly “westward” and “turning” types. Similarly, Yu et al. (2017) and Wang et al. (2019) also used the K-means cluster analysis to study the TC recurvature tracks. Their results showed that frequency of TCs with “western recurvature” tracks had an increasing trend in the past 2 decades. Before recurvating, the right-turning TCs tend to move northwestward, while the left-turning TCs mainly move northward. Li et al. (2008) adopted a dynamic fuzzy clustering method to investigate the TC tracks in the South China Sea from 1960 to 2002. Also, they surveyed the TC-related factors, namely circulation, physical factors and motion characteristics, and then they established a forecast model for summer TC tracks in this region based on the multiple regression algorithm.
Deep Learning (DL) methods, which can efficiently extract the nonlinear features, are used to investigate the highly nonlinear atmospheric systems such as TC. For example, the recurrent neural network (RNN) (Dorffner, 1996) can effectively extract the temporal features from continuous data, so it has been widely used in TC track forecasting (Dong and Zhang, 2016; Alemany et al., 2018). Kordmahalleh et al. (2016) employed a sparse recurrent neural network based on the dynamic time warping to forecast TC tracks in the Caribbean Sea and indicated this network is particularly suitable for modeling of hurricanes which have complex systems with unknown dynamics. The dynamic time warping can be used to recognize similar TCs so that the RNN can extract common features. However, this method is not suitable for non-single-track TCs. Alemany et al. (2018) considered all types of TC tracks and used the RNN to forecast them. Unlike traditional methods which directly predict latitudes and longitudes, Alemany et al. (2018) divided the Atlantic Ocean into 1 ° × 1 ° grids and numbered the grid points. The wind speed, latitudes, longitudes, travel angles and TC grid numbers were used as inputs, which can effectively reduce the recursive error transfer caused by direct prediction. The RNN performs better in short-term forecasting but not very good for long-term forecasting. Another important method, long short-term memory neural network (LSTM) (Hochreiter et al., 1997) was developed in 1997. Gao et al. (2018) used the TC best track data to train and optimize the LSTM-based deep neural network (DNN), and the results showed that the LSTM has a better performance in TC track forecasting with the leading time of 6–24 h.
TC Track Forecasting Based on Remote Sensing Images
Forecasting TC tracks using ML methods are not only affected by the characteristics of historical TCs, but also by spatial factors. Compared with time-series data, remote sensing images contain more rich spatial information. Early in 2000, Lee and Liu (2000) proposed a TC automatic identification and track mining system based on the neural network, and the forecast errors of this system were reduced by 30% and 18% compared with the one-way interactive TC model and track forecast system, respectively. Thereafter, Kovordá and Roy (2009) extracted Dvorak features (Dovorak, 1975) from remote sensing images of meteorological satellites and input the data, such as TC locations and maximum wind speed, into the neural network to predict TC tracks. This method improved the forecast accuracy by about 30% compared with the numerical model in Guam. In addition, the neural network represented by the convolutional neural networks (CNN) (Lecun et al., 1989; Ji et al., 2013) can effectively extract the spatial features from the data. Sophie et al. (2020) fused the extracted nonlinear features with latitudes and longitudes of TCs, wind speed and air pressure based on the CNN algorithm. The results indicated that the method better predicted the TC tracks over the Eastern Pacific and the Atlantic Ocean and well retained the TC three-dimensional features. Moreover, this method can forecast the genesis of a TC in a few seconds, which is an important asset for real-time forecasts compared to traditional forecasts.
TC Track Forecasting Based on Fusion of Time Series Data and Remote Sensing Images
Some studies have shown that the TC track sequence is not a fixed-length vector but the time series data with indefinite length (Jia et al., 2007). However, the CNN (Zeiler and Fergus, 2014), which is good at image processing, is unable to characterize the spatial information in the temporal dimension. Additionally, LSTMs perform well in time series forecasting (Staudemeyer and Morris, 2019). However, TC track forecasting requires too many prediction factors and relies on a long period of past states, resulting in that the LSTM is also hard to achieve the desired predictions in terms of temporal-spatial issues (Wang, 2020). Shi et al. (2015) added convolution operations to extract spatial features while ensuring the extraction of temporal features, and they proposed a convolutional long short-term memory network (ConvLSTM), which successfully combined the time series analysis capability of the LSTM and the image recognition capability of the CNN. After that, ConvLSTM was combined with atmospheric reanalysis data for TC track forecasting and achieved relatively better performance (Kim S. et al., 2019). By fusing past trajectory data and reanalysis atmospheric images (wind and pressure 3D fields), a neural network model was proposed by Giffard-Roisin et al. (2020) to estimate the longitude and latitude displacement of TCs (Figure 3), which is an important asset for real-time forecasts compared to traditional forecasts. At present, in order to solve the problems in anomalous track prediction, such as sudden changes in moving speed, turning and even stagnation, Dong (2021) built an integrated neural network prediction model for TC tracks by using TC data with multiple modes.
[image: Figure 3]FIGURE 3 | General architecture: a neural network model fusing past trajectory data and reanalysis atmospheric images (Giffard-Roisin et al., 2020).
TC INTENSITY FORECASTING
Limited by the available observations and technologies, it has been a long-standing challenge in tropical meteorology to make accurate estimates of TC intensity (e.g., Landsea and Franklin, 2013; Knaff and Sampson, 2015). As early as in the 1970s, Dvorak (1975) established a TC intensity prediction technology based on statistical estimation by using satellite cloud images to identify and detect TCs, which has become a common TC intensity estimation method used by official meteorological agencies (Xu et al., 2015). However, it is highly subjective in determining the cloud feature indexes, so its forecast accuracy depends on forecasters’ experience. To increase the objectivity and automation of infrared-based TC intensity analysis, advanced versions of the Dvorak technique (e.g., Olander and Velden, 2007, 2019) and many other algorithms (e.g., Kossin et al., 2007; Ritchie et al., 2012; Fetanat et al., 2013) have been introduced. However, most of these algorithms have been proven to be less reliable than the Dvorak technique due to the limited availability of effective features extracted from satellite data by these traditional algorithm-based techniques (e.g., Demuth et al., 2004, 2006; Jiang et al., 2019; Zhou and Tan, 2021). At present, Satellite Consensus technology, a weighted consensus algorithm, which is designed to optimize the strengths of multiple infrared-based and microwave-based technique, is the most accurate method in TC intensity estimation (Velden and Herndon, 2020). More and more studies have taken advantages of ML methods in image recognition and classification to conduct TC intensity estimation (Girshick et al., 2014; Krizhevsky et al., 2017; Zhong et al., 2017). These studies mainly focus on three aspects: TC grade judgment, TC intensity forecasting and TC rapid change forecasting (Table 3).
TABLE 3 | Machine learning in TC intensity forecasting.
[image: Table 3]TC Grade Judgment
ML algorithms mainly use satellite data to judge the grade of TCs. As early as in 2003, an ML algorithm was applied in the cloud classification using GOES images, and TC intensity estimations (Richardson et al., 2003). Chen (2018) treated the prediction of TC grade as a classification issue. In addition, by using the multiple logistic regression, SVM and back-propagation neural network as classifiers, they performed predictions with the multispectral images captured by the Fengyun-4 meteorological satellite. Wimmers et al. (2019) explored the possibility of estimating TC intensity from satellite images by using the CNN-DeepMicroNet. Two-dimensional and three-dimensional CNNs were used by Lee et al. (2019) to analyze the relationship between multispectral geosynchronous satellite images and TC intensity, and this method had better performance than the existing CNN-based models and the models with single-channel images. Based on the advanced geosynchronous radiation imager data from the second-generation geostationary meteorological satellite (Fengyun-4A), Pradhan et al. (2018) and Cui et al. (2020) established a multi-layer deep CNN model with multidimensional nonlinear processing ability and algorithm stability to conduct TC intensity estimation. Their results showed higher accuracy and lower root-mean-square errors.
TC Intensity Forecasting
In 2000, Baik and Paek (2000) used the back-propagation neural network algorithm to forecast TC intensity based on various data, such as the TC location and intensity, and NCEP/NCAR reanalysis data. Zhou (2014) developed a forecast model to improve the prediction of TC intensity over the Northwestern Pacific based on the partial least squares regression, which considers multiple factors such as climate background, water vapor, environmental airflow and TC structure. Gu et al. (2011) built an SVM-based TC intensity forecast model and used a genetic algorithm to optimize the model parameters in order to achieve desired results at the leading time of 12, 24 and 48 h. Gao et al. (2016) introduced the averaged ocean temperature from the surface down to 100 m to improve the model performance on TC intensity forecasting at the leading time of 24 h based on the DT algorithm. The results indicated that such method performed well in predicting TCs with a rapid intensification (RI) process.
In addition to above regression algorithms, classification algorithms can be well applied in the operational forecast of TC intensity. The National Hurricane Center of the United States used the Statistical Hurricane Intensity Prediction Scheme dataset to analyze the environment around TCs and their satellite inversion characteristics based on the linear discriminant analysis. This method solved the probability of TC sudden change based on the logistic regression and Bayesian network algorithms to predict TC intensity (Rozoff and Kossin, 2011). Pradhan et al. (2018) and Qian et al. (2021) developed a deep CNN and ResNet DL-based TC intensity prediction model using satellite cloud images, which could objectively predict the intensity of TCs with various intensities at different development stages. The root mean square errors (RMSEs) of these two models are 5.5 m s−1 and 5.84 m s−1, respectively. Compared with the traditional statistical method for TC intensity prediction using cloud images (Lu et al., 2014), whose RMSE is 7.7 m s−1, the deep CNN and ResNet models have obvious advantages. The TC intensity prediction is not only a temporal issue but also a spatial issue. Therefore, numerous studies have been conducted based on integrated models, such as the CNN-LSTM (Chen R. et al., 2019) and DNN-LSTM (Zahera et al., 2019), which can more comprehensively consider the temporal-spatial relationships of the features of TC formation and can improve the TC intensity forecast.
To improve TC intensity forecast, we should better resolve the heat and momentum exchange at the TC-ocean interface. The major challenge is how to accurately include the effects of ocean in TC forecast models, which requires information not only from historical data but also more importantly from the target TC itself. Two algorithms based on ML neural networks are proposed—the shallow learning and DL algorithms—that can potentially be used in atmosphere-only TC forecasting models to provide flow-dependent TC-induced sea surface temperature cooling for improving TC forecast (Jiang et al., 2018). Furthermore, due to the successful applications of DL in pattern detection, physical parameterization and state prediction (e.g., Rasp et al., 2018; Ham et al., 2019; Reichstein et al., 2019), it is considered to provide insights into TC intensity forecasting. Pradhan et al. (2018) applied DL to estimate TC intensity from infrared imagery. Then, Chen B.-F. et al. (2019) used a larger dataset than Pradhan et al. (2018) and utilized infrared images and passive microwave-retrieved precipitation to train DL models. Wimmers et al. (2019) constructed a DL convolutional neural network model called “DeepMicroNet” to explore the possibility of estimating TC intensity from satellite imagery. However, an independent dataset for evaluation was not used in Pradhan et al. (2018). The optimal estimates of Chen B.-F. et al. (2019) are not available in real time due to the intermittent microwave rain-rate data and post-analysis smoothing required. Therefore, Zhou and Tan (2021) proposed a DL-based method augmented by prior physical knowledge of TC, called “DeepTCNet” (Figure 4), to estimate TC intensity from satellite infrared imagery. Compared with the unaugmented model, DeepTCNet with auxiliary information of TC fullness yields a 12% performance improvement in estimating TC intensity. The evaluation results showed that the DeepTCNet is in-line with the Satellite Consensus technique but systematically outperforms the advanced Dvorak technique at all intensity scales with an averaged 39% enhancement in TC intensity estimation.
[image: Figure 4]FIGURE 4 | The configuration of DeepTCNet in both single-task and multitask learning frameworks (Zhou and Tan, 2021).
Forecasting of the Rapid Change in TC Intensity
Due to the difficulties in directly forecasting the accurate intensity values, the evolutionary algorithm, particle swarm optimization and DT algorithms (such as the Classification and Regression Trees and the C4.5 algorithm) were used in lots of studies to forecast the change of TC intensity (Zhang et al., 2013; Geng et al., 2015, 2016). However, cases such as the RI process exist during the TC development, making the forecasting of intensity change into a much more challenging task.
Zhang et al. (2013) and Chandra and Dayal (2015) applied the C4.5 and RNN algorithms to classify the TC intensity changes over the Northwestern Pacific and the Southern Pacific, respectively. Their studies strongly contributed to the development of operational forecast of TC intensity change. Similarly, Mercer and Grimes (2015) used the SVM as the classification algorithm and took the geopotential height, temperature, u- and v-wind components, vertical velocity and relative humidity as the predictors to construct a model. The results suggested that this model was able to distinguish the RI and non-RI cases. In addition, Gao et al. (2016) believed that the sea surface temperature is the key factor for predicting RI cases. Also, they introduced the ocean coupling potential intensity index into the DT algorithm to improve the RI prediction, and this method can effectively reduce the intensity overestimation in the traditional DT model. By combining satellite products and conventional predictors, Su et al. (2020) presented a ML framework to demonstrate the prediction capability of satellite observations of storm internal structures for TC RI forecasting.
FORECASTING OF TC-INDUCED DISASTROUS WEATHER AND ITS IMPACT
Given changing climate and continued escalation of coastal population density, the situation of TC inflicting severe economic losses and casualties through strong winds and torrential rain may be further complicated (Czajkowski et al., 2011; Rappaport, 2014). The accurate simulation and forecasting of TC-induced wind and precipitation, as well as disaster assessment (Table 4), can provide important guidance for disaster prevention and mitigation (Lonfat et al., 2007; Needham et al., 2015).
TABLE 4 | Application of machine learning in the forecasting of TC-induced disastrous weather and its impact.
[image: Table 4]Forecasting of TC-Induced Wind
In 1987, the Joint Typhoon Warning Center (JTWC) used satellite images, remote sensing data and the Dvorak technology (Dvorak, 1975) to retrieve the TC low-level wind field, while the mid-level and upper-level wind fields were retrieved by the cloud motion wind (Xu and Zhang, 2006). However, since it is difficult to specify the height of cloud motion wind, and the satellite microwave scatterometers are only suitable for low wind speed and gentle wind-speed changes, there are great challenges in the observation and forecast of TC wind field. To forecast the hourly wind speed over offshore islands during TC processes, Wei (2015) developed four kernel-based SVR models, including the RBF, linear, polynomial and Pearson Ⅶ universal kernel models, which was proved to be the most accurate one among the kernel-based SVR models. Considering that traditional models based on simple parametric formulations strongly underestimate the full range of TC wind field variability (Uhlhorn et al., 2014; Klotz and Jiang, 2016), Loridan et al. (2017) explored the potential of ML algorithms (RF and quantile regression) as alternatives to simulate the trajectory, intensity and spatial distribution of TC-induced wind.
In particular, with a theorem stating that an artificial neural networks (ANN) with a single layer of enough hidden units can approximate any multivariate continuous function with arbitrary accuracy (Hornik et al., 1989), ANN has been widely utilized in simulating the wind field inside TCs (Snaiki and Wu, 2019). By integrating TC wind field model, Monte Carlo simulation technique, computational fluid dynamics (CFD) simulation and ANN, a numerical simulation procedure for predicting directional TC-induced wind speed and profiles for sites over complex terrain was proposed (Huang and Xu, 2013). However, limited by the high demand of high-fidelity training datasets for the classical neural networks, the ANN model developed by Huang and Xu (2013) is not comprehensive enough (Snaiki and Wu, 2019). Snaiki and Wu (2019) developed a more general knowledge-enhanced DL algorithm to simulate the spatial distribution of TC-induced wind fields (Figure 5). This algorithm not only efficiently captures the complex dynamics using small datasets, but also accurately predicts TC-induced wind. Moreover, ML methods were used to correct the wind forecasting of numerical weather models. For example, Deng et al. (2018) used the PCA-RBF algorithm to further correct the forecasted wind speed by using the simulated meteorological factors such as temperature, pressure and wind direction. The results showed that, compared with the back-propagation algorithm and the least squares SVM algorithm, the PCA-RBF algorithm effectively improved the accuracy of wind speed forecast. Based on the least absolute shrinkage and selection operator regression, RF and DL algorithms, Sun et al. (2019) corrected the 10 m wind speed in North China predicted by the European Centre for Medium-Range Weather Forecasts. The results indicated that the correction effect of these 3 ML algorithms is better than that of the model output statistics method, especially for the future 8–15 days and the 10 m wind speed in the sea areas and coastal areas.
[image: Figure 5]FIGURE 5 | Schematic of knowledge-enhanced deep learning and algorithm (Snaiki and Wu, 2019).
Forecasting of TC-Induced Rainfall
Early in 2005, Lin and Chen (2005) applied the neural network to forecast TC-induced rainfall. They took TC features and spatial rainfall information as the input of the model and gave reasonable predictions at the leading time of 1–2 h. To break the limitations of single algorithm, Lin and Wu (2009) proposed a hybrid neural network model for TC-induced rainfall forecasting. The model was composed of the self-organizing map and the multilayer perception network, and it is proven higher prediction accuracy than the traditional neural network method (Lin and Chen, 2005). One of the most important steps in neural network modeling of the TC-induced rainfall forecast is to identify important input variables. The capabilities of multi-objective genetic algorithm (MOGA) to explore and discover Pareto-optimal fronts on multi-objective optimization problems have been well recognized and increasingly applied (Deb et al., 2002; Liu, 2009). Meanwhile, by comparing the hourly TC-induced rainfall forecasting models of back-propagation network (BPN) and SVM, Lin et al. (2009) pointed out that the SVM-based model is more accurate, robust and effective and proved that the SVM has faster training speed and better generalization ability. Based on the above research, several hybrid methods, especially a combination between MOGA and SVM, have been implemented to optimize parameters in TC-induced rainfall forecasting fields (Lin et al., 2013b; Lin and Jhong, 2015). By integrating MOGA and SVM, the biggest advantage of this model is that it can automatically determine the optimal combination of input variables including precipitation. Specifically, by integrating MOGA and SVM, Lin et al. (2013b) and Lin and Jhong (2015) proposed two models to yield accurate forecasts of the spatial distribution of TC-induced rainfall, and to improve the hourly forecast and long lead-time forecast. Furthermore, a large number of scholars have combined physical-conceptual models with ML methods to improve the forecasting of TC-induced rainfall. For example, Loukas and Vasiliades (2014), Young and Liu (2015) successively simulated and predicted rainfall-runoff during TC events by combining physically-based models and ANNs. Then, Humphrey et al. (2016) explored a hybrid approach using simulated soil moisture from a conceptual rainfall-runoff model and a Bayesian ANN statistical model for monthly streamflow forecasting.
In addition, considering the close relationship between TC-induced rainfall and flood hazards, Lin et al. (2013b) established an SVM-based model to forecast the rainfall and runoff at the leading time of 1–6 h, and it significantly improved the flood forecasting at the leading time of 4–6 h (Lin et al., 2013b). On this basis (Lin and Jhong, 2015), a new type of inundation forecasting model (Figure 6) with effective TC characteristics was constructed by Jhong et al. (2016). They compared the model with existing models based on BPN and the SVM-based model without TC characteristics to highlight the important role of TC characteristics on the improvement in inundation forecasting performance. Accurate prediction of suspended sediment concentration to reduce reservoir deposition for maintaining the reservoir storage capacity also plays an important role in reservoir management and flood disaster prevention (Halbe et al., 2013). The reservoir sedimentation issue is regarded as the urgent subject in the forecasting of TC-induced rainfall (Wisser et al., 2013). Observing the operation of most reservoirs for decades, the deposition rate was confirmed to be higher than the original estimation because climate change caused the yielded sediment to increase during TC periods (Huang et al., 2019). As attractive method for integrating various sources of information (Babovic, 2000), neural networks have been widely used in real-time forecasting of suspended sediment concentration in the past few years (Zounemat-Kermani et al., 2016; Alizadeh et al., 2017; Malik et al., 2017), e.g., ANN-based or neuro-fuzzy models (Lohani et al., 2007; Cobaner et al., 2009; Liu et al., 2013; Kumar et al., 2016; Ghose and Samantaray, 2018). Huang et al. (2019) proposed a two-stage forecasting approach integrating numerical and ML-based models (Figure 7) to provide accurate real-time forecasting of half-hourly suspended sediment concentration during TC periods.
[image: Figure 6]FIGURE 6 | Flowchart of the inundation forecasting model integrating the support vector machines with multi-objective genetic algorithm (Jhong et al., 2016).
[image: Figure 7]FIGURE 7 | Flowchart of the two-stage forecasting approach integrating numerical and machine-learning-based models (Huang et al., 2019).
Disaster Impact Assessment
Recently, ML classification algorithms have also been applied to the impact assessment of TC disasters. Most studies used historical TC information and the disaster information in the early stages of TC to train models and reasonably estimate the grade of current disaster. Chen and Liu (2011) and Lou et al. (2012) established the prediction model of TC disaster grade based on the Hopfield neural network and SVM algorithms, respectively. In addition, Pham et al. (2016) constructed an assessment model of landslide vulnerability based on the SVM and DT classification algorithms. In this model, the geographic location, slope gradient and aspect, curvature and other landslide factors were taken into account, and the assessment accuracy was more than 80%.
CONCLUSION AND DISCUSSIONS
Conclusion
Forecasting the genesis, tracks, intensity and disastrous impact of TCs is a key issue to be addressed in TC early warning and forecasting, and even disaster prevention and mitigation. Traditional statistical methods use a set of interrelated predictors to predict TC through linear statistics. However, the currently used simple statistical relationship cannot handle the complex and nonlinear relationship between the TC-related predictors. Therefore, the actual situation cannot be accurately described. Advanced numerical models based on a physical interpretation have been applied to the operational TC forecast. Although they are the main tools for predicting TC, they have some limitations. Issues such as insufficient description of complex physical processes, inaccurate vortex initialization and coarse resolution degrade the performance of the models. The numerical model combining kinetics and statistics, as one of the current TC prediction techniques, not only retains the basic kinetic mechanism described by the physical equations, but also uses statistical means to deal with the uncertainties in the kinetic process, playing an increasingly important role in TC forecast. The predictors of this model are often extracted subjectively, so the efficiency and objectivity are low, and the accuracy depends on the experience of the forecaster. With the explosive growth of satellite data, surface observation data and reanalysis data, the ML algorithm with high portability and significant advantages in data processing and image recognition, has provided a brand-new method for overcoming the bottleneck in traditional of TC prediction. Its application in TC forecasting was reviewed in this paper, and main conclusions were shown as follows.
(1) The DT, logistic regression, RF, AdaBoost and SVM algorithms have shown significant advantages in predicting whether tropical disturbances can develop into TCs. And the SVR and multi-layer perceptron algorithms have been widely used in predicting the occurrence frequency of TCs in TC-prone areas in different seasons.
(2) Using the best track data with temporal information, the neural network, SVM, artificial neural network algorithms, cluster analysis and ensemble learning can be used to predict TC tracks. Using remote sensing image data with spatial information, the neural network and CNN can effectively extract three-dimensional spatial features of TCs and improve TC track forecasting.
(3) For TC intensity forecasting, the CNN algorithm has a bright application prospect in the judgment of TC grade. By using the regression algorithms such as the back-propagation neural network algorithm, partial least squares regression, SVM and DT algorithm, and the classification algorithms such as the deep CNN, logistic regression and Bayesian Network, the objective forecast accuracy of TC intensity can be improved. The application of DL models based on infrared images, passive microwave-retrieved precipitation and prior physical knowledge augmentation has also greatly improved the level of TC intensity forecasting.
(4) More refined forecasting of TC wind field can be realized through correcting the numerical weather forecasting by the algorithms such as RNN, SVM, PCA-RBF, least absolute shrinkage and selection operator regression, RF and DL. In particular, ANN has been widely utilized in simulating the wind field inside TCs. The application of single algorithm (neural network) and hybrid algorithm (such as the hybrid neural network model, MOGA and the SVM hybrid model) has greatly improved the prediction of rainfall and runoff. Furthermore, the fusion of physical conceptual models and ML methods also provides new horizons for improving the level of TC-induced rainfall forecast. The algorithms, such as neural network, SVM and DT, had mature application in the assessment of TC disaster impact.
Discussions
With the rapid development of satellite remote sensing data and numerical weather models, it is still challenging to use the ML for mining efficient, accurate and intelligent meteorological data to achieve TC forecasting. Firstly, ML algorithms tend to solve data science problems of optimizing specific target functions and mining the statistical laws and evolution trends of various factors only in mathematical expressions, but the ML algorithms lack a reasonable explanation for the physical mechanisms of TCs. Secondly, to obtain an excellent prediction model, a large amount of training data and high-performance computing equipment are required. However, the TC observation data are sparse, irregular and uncertain in some areas, and the observations usually cannot be extracted from heterogeneous instruments used to compare with the model data. Thirdly, the parameter optimization of the ML training process has a greater impact on the simulation results, and there are interactions and constraints among parameters in some algorithms. Further research on the ML algorithms, with more complex structure, higher prediction accuracy, stronger generalization ability and wider suitability, is needed. It is imperative to establish a ML method for TC prediction with higher interpretation, intervention and precision.
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China has undergone rapid urbanization over the past few decades, and accordingly, changes have occurred in the extreme precipitation events. However, few studies have focused on the relationships between rapid urbanization and extreme precipitation events in southwest China, particularly in the Sichuan–Chongqing area, which has a complex topography and has experienced rapid urbanization over the past few decades. This is the first study to analyze the impact of urbanization on the amount, frequency, and intensity of extreme summer (June–August) precipitation events over the past 30 years. Our results indicate that extreme precipitation events primarily occurred in the urban-dominated Sichuan basin, particularly during the fast urbanization development stage (FUDS) of 1994–2015. Extreme precipitation amounts and intensities increased during the FUDS, implying the greater probability of individual precipitation events developing into heavy or extreme events in a particular area. In addition, the probability distribution functions of the occurrence and volume of strong convective events significantly increased during the FUDS. Finally, the annual increase in urban-scale land surface air temperature, increase in wet convection, and changes in wind speed are identified as essential factors leading to extreme precipitation events in this region.
Keywords: urbanization, fast development, extreme precipitation event, meteorological factors, Sichuan basin
1 INTRODUCTION
Increasing evidence reveals that the urbanization can remarkably affect the composition of the Earth’s surface as well as the thermal properties of the overlying atmosphere, thereby changing the local climate (Huff and Changnon, 1972; Changnon, 1979; Changnon et al., 1991; Zhang, 2020). Numerous observations and numerical simulations reveal that extreme precipitation events have become increasingly frequent with global warming (Madsen et al., 2014) to which the urban heat island (UHI) effect is a contributor (Baik et al., 2006). In urban areas, the feedback effect of local surface processes on precipitation is crucial. Regional land use and land cover changes can alter mesoscale convection, thereby affecting the occurrence and development of precipitation (Pielke et al., 2007; Niyogi et al., 2017). Previous studies have revealed that the UHI effect can result in the instability of atmospheric stratification (Baik, 2006; Su et al., 2019), thereby triggering thunderstorms under favorable thermodynamic conditions (Schroeder et al., 2016) and leading to significantly higher downwind precipitation amounts and frequencies than in surrounding areas (Ackerman et al., 1978; Zahrani, 2018). Simultaneously, urbanization changes the ground roughness, which triggers turbulence and uplift, enhances wind convergence, and, consequently, increases the amount and frequency of precipitation in urban areas (Su et al., 2019; Yan et al., 2020; Xiao et al., 2021). Moreover, abundant condensation nuclei in urban areas can promote water vapor condensation and precipitation formation (Zhong et al., 2015).
Relationships between urbanization and precipitation in megacity agglomerations have been recently studied in China, such as Beijing (Zhang et al., 2013; Li et al., 2015), Shanghai (Liang and Ding, 2017), and Guangzhou (Yin et al., 2020). Most of these studies have revealed that urbanization increases precipitation in urban areas; however, variations may occur among urban agglomerations due to variable local circulation feedback effects, topography, and underlying surface conditions. As the leading economic development area in western China, the Sichuan–Chongqing area (97–110°E, 26–34°N) is a critical geographical link between the east and the west, as well as the driver for the north and the south of China (Figure 1). In the past 30 years, the Sichuan–Chongqing area has experienced rapid urbanization, with rapid increases in the developed land area since the beginning of the fast urbanization development stage (FUDS) in 1994 (Figure 2); this area is now considered the fourth megacity agglomeration in China.
[image: Figure 1]FIGURE 1 | Geographical location of the Sichuan–Chongqing area in China and its elevation (m). The area surrounded by the blue border is the Sichuan basin.
[image: Figure 2]FIGURE 2 | Changes in the developed land area of the Sichuan–Chongqing area (1989–2018). The data are from the statistical yearbooks of Sichuan Province and Chongqing Municipality. The yellow column (1994) indicates the beginning of the fast urbanization development stage (FUDS).
Urban agglomerations in the Sichuan–Chongqing area are primarily concentrated in the Sichuan basin (Figure 3). This area has a humid subtropical monsoon climate, which experiences an annual precipitation of ≥1,000 mm, with more than 50% of the precipitation occurring in summer. Because this region is located in the transition zone between the eastern China monsoon region and the Qinghai–Tibet Plateau alpine region, the climate is affected by both the plateau climate and the humid subtropical monsoon climate. Consequently, extreme precipitation events have a high likelihood of occurring in this area (Huang et al., 2012; Wang et al., 2013; Wang and He, 2017). Recent records show that heavy precipitation events have occurred more frequently, particularly in urban areas, where the cumulative precipitation amount and intensity have typically exceeded historical extremes. For example, during August 10–18, 2020, a continuous regional rainstorm occurred in the Sichuan basin during which the hourly precipitation intensity (HPI) recorded at most stations reached or exceeded the historical extreme, with the maximum HPI exceeding 150 mm/h, resulting in severe urban waterlogging.
[image: Figure 3]FIGURE 3 | Spatial expansion of Sichuan–Chongqing urban areas at four representative stages in 1993, 2000, 2008, and 2015.
Many recent studies have been conducted on extreme heavy precipitation in eastern and southern China; however, studies on the western region, particularly the Sichuan–Chongqing area, with its complex topography and climatic conditions, are relatively rare. Moreover, studies in this area are more typically focused on analyzing the sources of perceptible water vapor (Wang et al., 2013, 2020) and the evolutionary trends (Hu et al., 2009), formation mechanisms (Luo et al., 2019; Liu. et al., 2020), and other aspects of individual events. In comparison, the distribution of extreme precipitation events, their evolutionary characteristics, and the influences of rapid urbanization have rarely been discussed. Thus, to the best of our knowledge, this is the first study to quantitatively explore the development and evolutionary trends of extreme precipitation events in urban and non-urban areas in this region during slow and fast stages of urbanization and at various spatiotemporal scales. In addition, we comprehensively analyzed the correlation between extreme summer precipitation and rapid urbanization based on a range of meteorological factors. The remainder of this article is organized as follows: Section 2 (Data and Methods) introduces the research datasets, evaluation indices, and research methods; Section 3 (Results and Discussion) discusses the spatial distribution, temporal evolution, probability, and causal analysis of extreme summer precipitation events in the Sichuan–Chongqing area; finally, the last section (Conclusions and Future Research) summarizes the study and provides our research outlook.
2 DATA AND METHODS
2.1 Datasets
2.1.1 Meteorological Dataset
Meteorological data were obtained from the China Meteorological Forcing Dataset (CMFD) (1979–2015), which is the first land surface meteorological dataset with a temporal resolution of 3 h and a spatial resolution of 0.1° developed for studying land surface processes in China. The high-resolution temporal and spatial coverage of this dataset has made it one of China’s most widely used climate datasets (He et al., 2020). We also merged meteorological observation data from the China Meteorological Administration with the Princeton reanalysis dataset (Sahoo et al., 2015), the Global Land Data Assimilation System forcing dataset (Rodell et al., 2004), the Global Energy and Water Cycle Experiment–Surface Radiation Budget forcing dataset (Pinker et al., 1992), and precipitation data from the Tropical Rainfall Measuring Mission (Rosenfeld, 1999; Chen et al., 2020). These data contained reanalysis datasets for seven major land surface meteorological elements. Comparing the accuracies of the observation results of independent stations, the CMFD provides superior data quality than the Global Land Data Assimilation System, particularly in areas with sparse weather stations (He et al., 2020). Therefore, the CMFD enables accurate analysis of meteorological elements under the complex topography of the Sichuan–Chongqing area.
2.1.2 Urbanization Dataset
The urbanization data for the Sichuan–Chongqing area are based on land cover types from the Land Cover Classification System (LCCS) of the United Nations Food and Agriculture Organization (Hansen et al., 1998, 2000), which we used to determine the urban and non-urban areas of the region for each year between 1992 and 2015. To consider data quality in terms of reliability and continuity, we compared the annual LCCS data with the land cover data released by the European Space Agency’s Climate Change Initiative (Poulter et al., 2015). Because this dataset covers 22 different land types, exhibits long-term consistency, is updated annually, and has a global horizontal resolution as high as 300 m, it has been widely applied in land assessments, forest and desertification monitoring, and many other fields. However, notably, as LCCS data prior to 1992 are not available, the 1979–1991 LCCS data range was considered equivalent to that of 1992 for land cover type during the slow urbanization development stage (SUDS, 1979–1993).
2.2 Methodology
Six precipitation indices recommended by the Expert Team on Climate Change Detection and Indices (Table 1) (Zhao et al., 2014) were adopted to quantitatively evaluate the precipitation amount and frequency as well as the intensity of summer precipitation and extreme precipitation events in the Sichuan–Chongqing area during the period 1979–2015. The specific procedures for calculating the extreme precipitation indices are as follows. For each of the 5,384 meteorological grid points in the Sichuan–Chongqing area, precipitation events with a daily precipitation amount of ≥1 mm during the 1979–2015 period were sorted in the ascending order (Zhai et al., 2005; Zhang et al., 2013; Wu et al., 2019), and the 95th percentile was estimated as the extreme precipitation threshold. When the precipitation amount of a given day exceeded this threshold, an extreme precipitation event was considered to have occurred. Accordingly, we defined “PRCPTOT95” as the extreme precipitation amount, “RD95” as the extreme precipitation frequency, and “SDII95” as the extreme precipitation intensity.
TABLE 1 | Precipitation indices and definitions recommended by the Expert Team on Climate Change Detection and Indices.
[image: Table 1]Sen’s slope estimation method (Sen, 1968) was employed to evaluate the linear trends of all grid points in the Sichuan–Chongqing area during the study period that passed the Mann–Kendall trend test (Mann, 1945; Kendall, 1975; Yue and Pilon, 2004). When the calculated Z-score of each grid point was greater than the critical value of the standard normal distribution at the 90% confidence level, a statistically significant positive or negative trend in the data series was identified (Da Silva et al., 2015; Zhang et al., 2016; Gu et al., 2017a, 2017b).
3 RESULTS AND DISCUSSION
3.1 Spatial Distribution of Extreme Precipitation Events
Figure 4 shows the annual average distribution of all precipitation events and extreme precipitation events in the Sichuan–Chongqing area. These events are consistent in the high-value areas of precipitation amount, frequency, and intensity, indicating that extreme precipitation events are affected to some extent by the long-term climate background. Moreover, the high-value areas of PRCPTOT, PRCPTOT95, SDII, and SDII95 are all located on the west side of the basin where cold air and warm air mix in the transitioning mountainous area between the plateau and basin. This region is a prominent rainy area in China (Wang et al., 2013; Wang and He, 2017). The areas with high precipitation frequency are primarily located on the western edge of the basin, whereas plateau areas occur at relatively high altitudes. This characteristic is consistent with typical plateau summer precipitation (Liu and Yin, 2001). By analyzing the ratios of PRCPTOT95: PRCPTOT, RD95: RD, and SDII95: SDII (Figures 4C,F,I), we found that the Sichuan basin is primarily dominated by extreme precipitation events in terms of precipitation amount, frequency, and intensity. Notably, strong convection events in the basin are more common in most urbanized areas.
[image: Figure 4]FIGURE 4 | Annual average distribution of all precipitation and extreme precipitation events in the Sichuan–Chongqing area: (A,D, and G) show all precipitation events; (B,E, and H) show extreme precipitation events; and (C,F, and I) show the ratios of extreme precipitation events to all precipitation events.
We divided urbanization into the SUDS (1979–1993) and FUDS (1994–2015) stages for comparison. During these two stages, the high-value areas of the three precipitation indices exhibited no significant differences (Figure 5). However, after calculating the differences in each grid between the two stages, we observed that during the FUDS, the means of PRCPTOT95, RD95, and SDII95 in the basin area increased by ∼120 mm, 5 days, and more than 4 mm/d, respectively.
[image: Figure 5]FIGURE 5 | Distribution of average annual extreme precipitation amount (PRCTOT95), extreme precipitation frequency (RD95), and extreme precipitation intensity (SDII95) in the Sichuan–Chongqing area: (A,D, and G) show the slow urbanization development stage (SUDS, 1979–1993); (B,E, and H) show the fast urbanization development stage (FUDS, 1994–2015); and (C,F, and I) show the differences in each grid between these two stages.
Based on our analysis, extreme precipitation events in the Sichuan–Chongqing area were primarily concentrated in the Sichuan basin, which is dominated by urban areas. Furthermore, urban areas were more likely to experience extreme precipitation during the FUDS.
3.2 Temporal Evolution of Extreme Precipitation Events
Because the CMFD and LCCS have different spatial resolutions, we adopted the processing method of Su et al. (2019) to evaluate the temporal evolution of extreme precipitation events. On a CMFD grid, if the LCCS urban grids occupy more than 50% of its area, the land cover type is defined as urban; otherwise, it is defined as non-urban. For the statistical analysis of the urban and non-urban grids, only those with a significant trend that passed the MK test at the 90% confidence level were considered. The proportions of grid points that passed the MK test for the PRCPTOT95, RD95, and SDII95 thresholds were 22.55, 18.93, and 46.92%, respectively. To avoid the influence of climate and topography on the comparative analysis between urban and non-urban areas, we used the precipitation anomaly percentage difference (PAP-DIFF) to account for the influence of extreme precipitation (Nazeri et al., 2020). It should be noted, however, that the urbanized and non-urbanized grid points were not fixed in each year.
Figures 6A,C,E show the trends in the precipitation anomaly percentage difference (PAP-DIFF) for PRCPTOT95, RD95, and SDII95, respectively, in urban and non-urban areas during the period 1979–2015. The PAP-DIFF for both PRCPTOT95 and SDII95 exhibited an overall increasing trend, and the difference between urban and non-urban areas began to increase after 1994 when urbanization became more intense. However, the PAP-DIFF of RD95 showed no significant trend, indicating that the extreme precipitation frequencies in urban and non-urban areas were not significantly different.
[image: Figure 6]FIGURE 6 | Precipitation anomaly percentage difference (PAP-DIFF) trends of the annual average PRCPTOT95 (A,B), RD95 (C,D), and SDII95 (E,F) between urban and non-urban areas in the Sichuan–Chongqing area. PRCPTOT95 is the extreme precipitation amount, RD95 is the extreme precipitation frequency, and SDII95 is the extreme precipitation intensity. Only grid points that passed the Mann−Kendall trend test at the 90% confidence level were included in the PAP-DIFF trends.
Figure 6B shows that the PRCPTOT95 PAP-DIFF from the SUDS to FUDS increased from −0.58 to 2.44%/year. The average trend of the PRCPTOT95 PAP-DIFF in urban and non-urban areas reached 0.42%/year throughout the study period. Similarly, Figure 6D shows that the PAD-DIFF between the urban and non-urban areas exhibits no significant change between 1979 and 1993, and there is no trend in the RD95 PAP-DIFF between urban and non-urban areas, with an average of 0.05%/year, increasing to 1.05%/year in the 1994–2015 period. Figures 6E,F show that the SDII95 PAP-DIFF exhibited a similar trend to the PRCPTOT95 PAP-DIFF; between 1979 and 1993, the PAP-DIFF between the urban and non-urban areas showed no evident decrease, whereas between 1994 and 2015, this trend substantially increased, with an average increase of 5.5%/year. The trends in extreme precipitation during each urbanization stage are further summarized in Table 2.
TABLE 2 | Comparison of the evolution of precipitation anomaly percentage difference during different stages of urbanization in the Sichuan–Chongqing area. “PRCPTOT95” is the extreme precipitation amount, “RD95” is the extreme precipitation frequency, and “SDII95” is the extreme precipitation intensity.
[image: Table 2]The changes in PRCPTOT95 and RD95 revealed that extreme precipitation in the Sichuan–Chongqing area is primarily reflected by an increase in the amounts of individual precipitation events, which is consistent with the SDII95 data. Based on the PAP-DIFF between urban and non-urban areas throughout the study period, rapid urbanization since 1994 has been associated with an increase in extreme summer precipitation in the Sichuan–Chongqing area.
3.3 Probability Analysis of Extreme Precipitation Events
To further explore the impact of urbanization on the probability of extreme summer precipitation events, we followed the “Technical Specifications for Rainstorm and Flood Disastrous Risk Mapping” of the CMA. Given the large disparities in extreme precipitation between location, different levels of precipitation intensity were defined as weak precipitation (<25 mm/d), heavy precipitation (25–35 mm/d), torrential rain (35–45 mm/d), and a downpour (≥45 mm/d). Thus, we calculated and compared the probability distribution function (PDF) by occurrence (PDFc) and the PDF by volume (PDFv) of daily precipitation under the various precipitation intensities (R) during the SUDS and FUDS stages (Guo et al., 2016; Wang et al., 2020). Overall, the PDFc of weak precipitation events during the FUDS was lower than during the SUDS (Figure 7A), whereas the PDFc of heavy precipitation events during the FUDS was higher than during the SUDS (Figure 7B). In the case of PDFv, the volume of weak precipitation events decreased during the FUDS (Figure 7C), but the volume of heavy precipitation events substantially increased (Figure 7D).
[image: Figure 7]FIGURE 7 | Probability distribution functions (PDFs) by occurrence [PDFc; (A,B)] and volume [PDFv; (C,D)] for different intensities of summertime precipitation events during the slow urbanization development stage (SUDS) and fast urbanization development stage (FUDS) in the Sichuan–Chongqing area.
Further analysis revealed that the PDFc of weak precipitation events (<1 mm) was excluded during the FUDS, with no noticeable changes during this stage. In contrast, the PDFc of heavy rain, torrential rain, and downpour events increased by 11.97, 11.45, and 11.50%, respectively, which is consistent with the precipitation frequencies previously discussed. In addition, the changes in PDFv during the FUDS were more noticeable, with heavy rain, torrential rain, and downpour events increasing significantly by 13.84, 12.06, and 10.71%, respectively. This indicates that strong convective events have occurred more frequently during the FUDS (Karl and Knight, 1998; Fujibe et al., 2005; Liao et al., 2011).
3.4 Causal Analysis of Extreme Precipitation Events
The atmospheric environment and circulation are primarily affected by two types of disturbances related to urbanization, i.e., the change in land cover type and the increase in anthropogenic pollutant emissions (Zhong et al., 2015). The UHI circulation and the reduction in surface wind speeds in the urban environments leads to unstable atmospheric stratification, favoring the generation of thermal convection and the production of convective precipitation. The UHI effect might, therefore, be an important component of the influence of urbanization on extreme summer precipitation in the Sichuan–Chongqing area. Indeed, large amounts of carbon dioxide and other greenhouse gases released by human activities coupled with the heat released from anthropogenic sources typically result in higher temperatures in cities compared to non-urban areas. As shown in Figures 8A,B, urban surface temperatures have been increasing annually in our study area relative to non-urban areas, particularly during the FUDS.
[image: Figure 8]FIGURE 8 | Comparison of annual average temperature (TEMP), specific humidity (SHUM), and wind speed (WIND) in the Sichuan–Chongqing area in urban and non-urban areas between 1979 and 2015: (A,C, and E) show anomaly trends (%), and (B,D, and F) show anomaly differences (%).
In addition, the difference in atmospheric humidity between urban and non-urban areas has increased annually (Figures 8C,D). The relatively high roughness of urban surfaces coupled with the UHI circulation leads to greater mechanical and thermal turbulence relative to the suburbs. Moreover, the amount of water vapor transported vertically to the upper layer through turbulence is more significant in urban areas than in non-urban areas. This results in a stronger upward motion, leading to more moist convections that supply water vapor for heavy summer precipitation. In addition, the uneven heights of city buildings can act as mechanical obstacles to airflow, triggering turbulence and uplift, and affecting vertical airflow. Due to the relatively high surface roughness of cities, airflow tends to decelerate on approach, which can also increase the duration of precipitation event. Indeed, as shown in Figures 8E,F, the annual mean wind speed in the Sichuan–Chongqing urban areas decreased overall between 1979 and 2015. Air masses can be blocked by cities, converging in downwind areas and resulting in upward air motion (Cotton and Pielke, 2007). This further enhances atmospheric convergence (Bornstein and Lin, 2000) and alters momentum, heat, and water exchanges between the land surface and atmosphere (Crutzen, 2004). Collectively, these factors likely contributed to the observed increases in precipitation during the FUDS in the Sichuan–Chongqing region.
4 CONCLUSION AND FUTURE RESEARCH
We provide the first analysis of changes in precipitation events in the Sichuan–Chongqing area as a consequence of rapid urbanization based on high-spatiotemporal-resolution meteorological reanalysis data and land cover between 1979 and 2015. We adopted six precipitation evaluation indices alongside spatiotemporal, probability, and mechanism analyses to analyze the distribution and evolution of extreme precipitation events before and during urbanization. Based on our results, we draw the following main conclusions:
1) In terms of spatial characteristics, extreme precipitation events in the Sichuan–Chongqing area were primarily concentrated in the highly urbanized Sichuan basin, and extreme precipitation occurred more frequently in urban areas during the FUDS.
2) Between 1979 and 2015, the impact of urbanization on summertime precipitation trends was prominent. In particular, rapid urbanization since 1994 has been associated with increases in the amount and intensity of extreme summer precipitation events.
3) In addition to large-scale climate change, the UHI effect and changes in underlying urban surface characteristics caused by rapid urbanization may have played critical roles in enhancing extreme summer precipitation in the Sichuan–Chongqing area.
Overall, our results highlight how urbanization can lead to changes in precipitation characteristics, having impacts on local climates and altering extreme precipitation trends. This implies that with the continuous growth in the global urban population, an increasing number of urban agglomerations and their associated impacts on land use and land cover changes will result in the widespread alteration of precipitation patterns.
Extreme precipitation events have an increasing impact on natural climate factors and human social and economic activity. However, studies on the impact of urbanization on extreme precipitation have primarily been focused at the local scale, whereas the understanding of regional-scale influences is still lacking. Furthermore, while we focused on the relationships between extreme summer precipitation and rapid urbanization, the mechanisms underpinning urban thermal, dynamic, and water vapor dynamics and extreme precipitation still need to be established. This could be achieved using numerical simulation and verification based on regional climate models. Finally, we suggest that the understanding of physical cloud-formation processes in urban areas needs to be deepened to establish reliable early warning and forecasting schemes for extreme regional-scale precipitation events.
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Based on the observational hourly precipitation data and the ERA5 reanalysis datasets, the short-term forecasts of the warm-sector heavy rainfall with warm-type shear line (WRWS) events over the coastal areas of the Yangtze–Huaihe River (YHR) are investigated in the regional business model Precision Weather Analysis and Forecasting System (PWAFS). Evaluations and diagnoses are carried out via objective estimations and composition analyses for the rainy season of 2017. Results show that the short-term forecasts of PWAFS are characterized by considerable skills for WRWS events in the coastal areas of YHR in view of the object-based diagnostic evaluation, which, however, tend to generate the rain belts with northeast shift phases and weaker intensities. Meantime, the threat score results for WRWS-associated processes show that the model forecasting skill declines sharply as the precipitation intensity increases. Moreover, composition differences of the synoptic-scale thermodynamic characteristics between observations and forecast results are diagnosed to reveal the possible mechanisms of the short-term forecast biases toward WRWS. The zonal westerlies are overestimated in the model, while the southerlies are underestimated in the lower troposphere over coastal areas of YHR, leading to the northeastward shifted shear line and the absent moisture channel associated with the East China Sea at the boundary layer. Attributed to these atmospheric circulation biases, the accumulated warm and moist energy is weaker at the boundary layer, and hence, the short-term forecasts of the rain-belt location for WRWS over the YHR coastal areas have northeast shifting phases with weaker intensities of precipitation in forecasts of the regional business model PWAFS.
Keywords: warm-sector heavy rainfall, warm shear pattern, forecast evaluation, model diagnosis, coastal areas of Yangtze–Huaihe River
1 INTRODUCTION
During the rainy season, a kind of heavy rainfall often occurs in the warm sector of cold front or takes place in the warm areas without cold air influenced (Huang and Coauthors, 1986; Ding et al., 2004; Luo et al., 2016), which is named as the warm-sector heavy rainfall (WSHR). There are extraordinary differences between the WSHR and frontal rainfall in the triggering and maintaining mechanisms, the dynamic and thermodynamic structures, and the interaction with large-scale systems and the meso-scale convective environmental fields (Zhao et al., 2007; Luo et al., 2016; Luo et al., 2017; Du and Chen, 2018). Compared with the frontal rainfall events, the WSHR events always feature more intensive precipitation in a smaller range, which, therefore, tend to emerge conspicuous risks on agriculture and daily life of human beings (Tao and Chen, 1987; Ni and Zhou, 2006; Xie et al., 2006; Zhao et al., 2007; Wu and Luo, 2016).
Generally, small- and meso-scale weather systems are the direct systems causing heavy rainfall. Meantime, the synoptic weather system provides necessary conditions or backgrounds for the smaller-scale weather system. Previous studies have shown that rainfall in South China is closely associated with synoptic weather systems such as low-level jet (Du et al., 2015; Chen et al., 2018; Du and chen, 2018), low vortex (Tao and Ding, 1981; Ninomiya and Akiyama, 1992; Huang and Meng, 2014; Zhong et al., 2014), and shear line (Chang et al., 1998; Ding and Chan, 2005).
Among the studies of heavy rainfall in East China, the most discussed topic is the Meiyu front rainstorm (Li H et al., 2019; Wang et al., 2019; Guan et al., 2020), whereas few of them have focused on WSHR. According to the synoptic weather analyses, WSHR events in the middle and lower reaches of the Yangtze River are summarized in three types: cold fronts, warm types of shear line, and edge of subtropical high. Also, warm-sector heavy rainfall with a warm-type shear line (WRWS) accounts for 68% of the total (Chen et al., 2018), which is an important part of WSHR in the Yangtze–Huaihe River (YHR) Basin in China. In addition, WRWS are both observed in the south of Yangtze River areas (Yao et al., 2020) and Yellow–Huaihe River areas (Lyu et al., 2017). The shear line over YHR is a unique weather system in eastern China. It often occurs in the Meiyu season and is an important weather scale system that triggers heavy rains over YHR. Therefore, for the WSHR analysis in the YHR Basin, it is worth paying enough attention to the characteristics of WRWS.
In fact, the characteristics and mechanisms of WSHR events in China have been researched for several decades. However, WSHR caused by complicated cloud-precipitation microphysical processes and boundary layer processes often occurs abruptly and locally, inducing difficulties in both numerical model predictions and subjective forecasts (Chen et al., 2019). Previous studies have shown that current global numerical weather prediction models normally have limited abilities to predict WSHR events, while the numerical predictability of regional models and ensemble forecasts have comparably higher performances (Wang et al., 2017; Chen et al., 2019). Based on the Advanced Research Weather and Research Forecasting (WRF-ARW) model (Skamarock et al., 2008), the Precision Weather Analysis and Forecasting System (PWAFS) has been developed by Jiangsu Meteorological Bureau, China, through involving three-dimensional variational data assimilations and localizing for East China, especially Jiangsu Province. The PWAFS model shows generally considerable performances in the prediction of convective systems (Shi et al., 2021), but the forecasting skills for WRWS have not been evaluated in detail yet.
In order to further understand the prediction performances of WRWS in PWAFS and make better use of the model in forecasting WRWS, the WRWS forecasts over coastal areas of YHR are evaluated and diagnosed toward the PWAFS model in this study. The article is structured as follows: the data, model, and methodology are briefly described in Section 2. Section 3 provides the objective determinations and forecast evaluations of WRWS over coastal areas of YHR in PWAFS. Afterward, the WRWS-associated thermodynamic differences between observations and PWAFS forecasts are investigated to diagnose possible mechanisms of the prediction biases in Section 4. A summary and discussion follow in Section 5.
2 DATA, MODEL, AND METHODS
2.1 Observations
The hourly gauge-satellite precipitation data in China, with 0.1° × 0.1° resolution, are derived from the National Meteorology Information Center, China Meteorological Administration (Shen et al., 2014). These hourly precipitation data are merged by two-step algorithms of the probability density function and optimal interpolation through more than 30,000 automatic weather stations over China and Climate Precipitation Center Morphing (CMORPH) precipitation product. The hourly atmospheric circulation fields are taken from the European Center for Medium-Range Weather Forecasts ERA5 reanalysis datasets at 0.25° × 0.25° resolution for detailed analyses of forecast evaluations and diagnoses toward the PWAFS model.
In this study, WRWS events over the coastal areas of YHR (right bottom in Figure 1) are investigated for the rainy season (April–September, AMJJAS) in 2017. The rainstorm events associated with typhoon are removed from the precipitation data using typhoon path data of the Joint Typhoon Warning Center (JTWC).
[image: Figure 1]FIGURE 1 | Domains in the PWAFS model and corresponding topography (m), with the 3 km nested domain marked by the inner brown box. The purple outline denotes the study area. The coastal areas of YHR are attached at the right bottom.
2.2 Model Description
The numerical forecast results are derived from the regional business forecast model Precision Weather Analysis and Forecasting System (PWAFS) of Jiangsu Meteorological Bureau, China. It is generally consisted of the WRF-ARW model version 3.5.1 and three-dimensional variational data assimilations including the Advanced Regional Prediction System (ARPS 3DVAR) and the Gridpoint Statistical Interpolation (GSI 3DVAR) localized for Jiangsu Province.
The system assimilates observations of the surface and upper air, multiple radar data, the Cross-track Infrared Sounder, and the Advanced Himawari Imager radiance as well as plenty of other sources (Li et al., 2016; Li X et al., 2019). The model physical schemes utilize the WRF Single-Moment 6-class Microphysics (Hong, 2006a), the Monin–Obukhov surface layer (Monin and Obukhov, 1954), the Noah land surface (Chen and Dudhia, 2001), the Yonsei University planetary boundary layer (Hong S. Y. et al., 2006), the rapid radiative transfer model longwave radiation (Mlawer et al., 1997), the Dudhia shortwave radiation (Dudhia, 1989), and the Kain–Fritsch cumulus parameterization (Kain and Fritsch, 1992; Kain, 2004).
The PWAFS model adopts the Lambert conformal conic projection, covering an area shown in Figure 1. In the beginning, the model is run using a 15 km resolution domain (480 × 360 grids) with 42 vertical levels up to 50 hPa. The analyses presented in the study, however, are produced with a 3 km resolution domain (840 × 840 grids) nested inside of the parent domain. The parent run is initialized four times per day and driven by the six-hourly National Center for Environmental Prediction Final (NCEP FNL) Operational Global Analysis data with a resolution of 1.0° × 1.0°, which provides the initial and boundary conditions for the three-hourly nested run with the final model output generated hourly.
2.3 Methods
Aiming at a more comprehensive evaluation of the PWAFS forecasts from different aspects, the threat score (TS) and the method for object-based diagnostic evaluation (MODE) are employed to assess the forecast performances of WRWS in the coastal areas of YHR.
The TS score is a primary operational forecast verification metric for business forecasts of precipitation. A strict point-to-point calculation is provided in Eq. (1):
[image: image]
where [image: image], [image: image], and [image: image] are the counts of points where the precipitation event reaching a given threshold occurs in both the observation and forecast (hit), in the forecast but not observed (false alarm), and in the observation but not forecast (miss), respectively. It is employed here to compare the observations and predictions point by point without taking the resemblance of spatial patterns into account.
Meantime, the MODE (Davis et al., 2006), a typical feature-based displacement approach for spatial diagnoses, is carried out to further evaluate more aspects of the precipitation forecasts. It allocates weight and confidence coefficients for predefined precipitation object attributes and calculates a total interest function based on a fuzzy logic approach, which quantifies the similarity between any two objects (Johnson and Wang, 2013). Four steps are involved in the MODE procedures, i.e., identifying objects, calculating object attributes, detecting matching objects between observations and predictions, and evaluating the similarity of the attributes, which are briefly introduced as follows and can be found in more detail in Ji et al. (2020).
(1) Identifying objects. To identify the spatial boundary of an object, the precipitation field is first smoothed with a convolution radius (two grid points in this study), which is associated with the precipitation scale. In addition, an intensity threshold (10 mm/6 h in this study) is used to define the boundaries of precipitation objects. The original precipitation field within these boundaries then determines the precipitation objects.
(2) Calculating object attributes. The overall location of a precipitating system, its size, and its shape are always concentrated during verifications of precipitation forecasts, especially when dealing with extreme weathers (Johnson and Wang 2013). Therefore, the specific attributes used in our study include the area coverage of precipitation objects, their aspect ratio and orientation angle, and their centroid location. For matched object pairs, attribute differences in the four object attributes can be calculated.
(3) Detecting matching objects. Object matching creates a pair consisting of one object in the forecasts and one object in the observations. Here, we follow Davis et al. (2006) and determine paired objects based on their centroid distance [image: image] and their areas. If Eq. (2) is satisfied,
[image: image]
with [image: image] and [image: image] being areas of the observed object and the forecasted object, respectively, both the objects create a matched pair. Thus, a matching object pair requires the centroid distance between both objects to be less than their average size.
(4) Evaluating attribute similarities. For a matched pair, the similarity of total interest is computed via Eq. (3):
[image: image]
where [image: image] and [image: image] are the confidence value and the weight of the attribute [image: image], respectively, and [image: image] is the number of attributes used. While the weight depends only on the specific attribute, the confidence value varies with the sizes and distances of the paired objects. [image: image] is the interest value of the matched objects in terms of attribute [image: image], which quantifies the object attribute similarity as a monotonic function decreasing from 1 to 0 as the attribute dissimilarity increases.
3 MODEL FORECASTS OF THE WRWS OVER COASTAL AREAS OF YHR
3.1 Objective Criteria of WRWS Over Coastal Areas of YHR
According to previous studies (Luo et al., 2016; Fu et al., 2020) and the definition of WSHR (Huang and Coauthors, 1986) and shear line (Ma and Yao, 2015), the determination criteria of WRWS used in this study are described as follows:
(1) The precipitation within 500 km of the typhoon center needs to be eliminated according to the JTWC typhoon path.
(2) The mesoscale rainstorm is defined as a continuous rainfall area (CRA): (a) where the average precipitation is larger than 5 mm/h with the peak being greater than 20 mm/h; and (b) whose long axis is larger than 100 km. Parameters such as the long axis and geometric center point of the CRA are determined through spatial attribute diagnosis.
(3) The front is defined by the sharp gradient of equivalent potential temperature at 850 hPa over (20°–40°N and 110°–130°; Fu et al., 2020) If a low-level front exists over (28°–40°N and 110°–130°E), the CRA must take place at 200 km away from the front; otherwise, the CRA must be dominated by the southerlies at low levels, and no surface northerlies exist within a 100 km distance from CRA (v < 0).
Accordingly, the precipitation satisfying the previously listed three criteria is defined as WSHR. Moreover, the following criterion (4) is necessary for a WRWS event:
(4) A shear line exists, and the shortest distance between the shear line and CRA of WSHR must be between the range of 100 and 300 km. The shear line over (28°–40°N and 110°–128°E) is defined by the meridional shear of zonal wind and relative vortex at 850 hPa: (a) ∂u/∂y<0; and (b) ζ>0. Also, all types of the wind direction shear for the warm shear line over YHR are considered during identification of the warm shear line, which are shown in Figure 2.
[image: Figure 2]FIGURE 2 | Schematic diagram of wind direction shear for the warm shear line over YHR.
According to the aforementioned criteria, 21 moments of WRWS are selected over coastal areas of YHR in the rainy season (April–September, AMJJAS) of 2017. The spatial distributions of accumulated precipitation and their associated atmospheric circulations during the moments of WRWS are shown in Figure 3. Red dots represent the center locations of CRA during the WRWS moments, which is generally located at the northwest boundary of the western Pacific subtropical high (WPSH, red contour in Figure 3B) and at the south side of the shear line (brown solid line in Figure 3B). Under these synoptic-scale atmospheric circulations, the coastal areas of YHR in the lower troposphere are mainly dominated by southwesterlies (arrows in Figure 3).
[image: Figure 3]FIGURE 3 | Spatial distributions of accumulated precipitation [mm, (A)] at WRWS occurrence moments and associated composites of synoptic-scale circulations (B). Red (black) solid lines are contours of geopotential height (gpm) at 500 hPa (700 hPa). Arrows represent horizontal wind at 850 hPa (m/s). Red dots represent the CRA centers of WRWS over coastal areas of YHR (pink box).
3.2 Model Forecast Evaluations
Considering the rainfall durations and intensities, 15 WRWS moments (Table 1) are selected in the four precipitation processes for forecast evaluations and diagnoses of the PWAFS model. The spatial distributions of accumulated precipitation during the four precipitation processes are displayed for the observations (the first column in Figure 4) and PWAFS forecasts (the second and third columns in Figure 4). Due to the three-hourly initialization of the model run, the short-term forecasts are separated as lead times of 1–3 h and 4–6 h, respectively, for a common evaluation on the hourly forecast results.
TABLE 1 | Details of selected WRWS cases with durations of more than 6 h over coastal areas of YHR in 2017.
[image: Table 1][image: Figure 4]FIGURE 4 | Spatial distributions of accumulated precipitation (mm) during WRWS cases in observations (A,D,G,J) and the PWAFS forecasts with different lead times: 1–3 h (B,E,H,K) and 4–6 h (C,F,I,L).
It is indicated that forecasts of the rain belt location and pattern do not show great differences between the two forecast lead time periods. However, for the intensity of the rain belt, forecasts of the 4–6 h lead times show higher skills for the WRWS events. Except for Case 1, the PWAFS model is generally capable of predicting the rain belt pattern but with the northeast shift in the forecasting location of the main rain belt. Furthermore, TS scores, which have strict requirements on the location and intensity forecasts of precipitation, are calculated in Table 2 for the 6 h accumulated precipitations with different intensities. During these four WRWS processes, the sunny-or-rainy accuracy (TS for 0.1 mm in Table 2) shows relatively good performance in the PWAFS forecasts. However, with the increasing precipitation thresholds, the TS decreases sharply.
TABLE 2 | Threat scores of accumulated precipitation forecasts in 6 h during four WRWS cases in 2017 over coastal areas of YHR (30°–35°N, 116°–122.75°E).
[image: Table 2]According to the point-to-point evaluations, the PWAFS model shows limited skills in strictly forecasting the WRWS-associated precipitation. On the other hand, it has good performances in forecasting the rainfall pattern of the rain belt with a similar location shift in Figure 4. Therefore, the MODE method is involved in this study to objectively assess the precipitation location, size, and shape of the four WRWS processes. The similarity of each WRWS process is obtained from the object attributes in Table 3 and (Table 4) with a threshold of 10 mm for the lead time of 1–3 h (4–6 h). In more detail, the similarity is calculated from the area ratio, centroid distance, intensity ratio, and orientation angle difference with weight 2:2:2:1. Among the four WRWS cases, Case 1 shows the worst forecast skill, representing the failure of the PWAFS model in the corresponding predictions of the process. The other three cases display generally higher similarities, with Case 3 characterized by the best performance for both lead times of 1–3 h and 4–6 h. Results are consistent to the spatial distribution features of precipitation (Figure 4). Therefore, both subjective and objective evaluations show that three of four WRWS events can be captured in the PWAFS forecasts, but the main rain belts generally shift to the northeast with weaker intensities of precipitation.
TABLE 3 | Pair attributes of matched objects and the similarity from MODE for the 1–3 h lead time precipitation forecasts of four WRWS cases in 2017 over coastal areas of YHR.
[image: Table 3]TABLE 4 | Same as Table 3, but for the lead time of 4–6 h.
[image: Table 4]4 DIAGNOSES OF THE WRWS FORECASTS IN THE MODEL
The location and pattern of the WRWS-associated rain belt can be reasonably predicted in the PWAFS model, but it shows significant shifting phases compared with the observations. Therefore, the composites of synoptic-scale circulation by 15 moments of WRWS are further accessed and diagnosed to reveal the possible mechanisms of the PWAFS biases.
Figure 5 shows the composites of synoptic-scale circulation at the WRWS occurring moment in the PWAFS results for 1–3 h and 4–6 h lead times. At the lower troposphere, the shear line (meridional shears of zonal wind) is observed over the northern part of Jiangsu Province and adjacent ocean region, which is located at the north side of the coastal areas of YHR. Under the background circulations, the coastal areas of YHR are controlled by the west-southwesterlies (arrows in Figure 5) and are dominated with zonal circulations in the PWAFS results. The differences of synoptic-scale circulation between PWAFS forecasts and observations are further checked in Figure 6. Comparing with observations, abnormal westerlies are observed in the study area, indicating that the PWAFS model overestimates the zonal wind in the lower troposphere. In addition, the northerly anomalies prevail over most of Jiangsu Province. Combined with the shear line location, it indicates weaker cyclonic anomalies of the shear line in the PWAFS forecasts. The different forecasting periods (Figures 6A, 7B) show the similar results. Therefore, only analyses of PWAFS forecasts with the 1–3 h lead time are illustrated in the following paragraphs to further discuss the rain belt anomalies and the associated physics.
[image: Figure 5]FIGURE 5 | Composites of synoptic-scale circulations at WRWS occurrence moments in the PWAFS forecasts with different lead times: 1–3 h (A) and 4–6 h (B). Black contours are geopotential height (gpm) at 700 hPa. Arrows represent horizontal wind at 850 hPa (m/s). Red dots represent the CRA centers of WRWS over coastal areas of YHR (pink box).
[image: Figure 6]FIGURE 6 | Composition differences of synoptic-scale circulations between the PWAFS forecasts and observations at WRWS occurrence moments with different lead times: 1–3 h (A) and 4–6 h (B). The shading areas are geopotential height (gpm) at 700 hPa. Arrows represent horizontal wind at 850 hPa (m/s). Red dots represent the CRA centers of WRWS over coastal areas of YHR (pink box).
[image: Figure 7]FIGURE 7 | Composites of wind fields (arrow, m/s) during WRWS occurrence moments in observations (A,D,G) and the PWAFS forecasts (B,E,H), as well as their differences (C,F,I), at 700 hPa (A,B,C), 850 hPa (D,E,F), and 925 hPa (G,H,I). The shading represents the full wind velocity (m/s).
The composites of horizontal wind in the model forecasts and observations in the lower troposphere are shown in , as well as their differences are shown in Figure 7. From 925 hPa to 700hPa, the horizontal wind fields change from southwesterlies to westerlies, which turns clockwise with height, indicating the prevailing warm advection over coastal areas of YHR. Abnormal north westerlies turn to northerlies from the boundary layer to the lower levels of the troposphere, suggesting the well-predicted abnormal warm advection in the PWAFS model. In addition, comparing with the observations, zonal wind fields are stronger in the PWAFS short-term forecasts, especially at the boundary layer (Figure 7I). The zonal wind shear shows that the shear lines in PWAFS are located more northeasterly than in the observations. The transformation from southwesterlies to southeasterlies can be observed at 925 hPa in observations over coastal areas of YHR, but these wind direction changes can hardly be captured in the PWAFS predictions, which leads to their differences of moisture transportations (Figures 9C, 10E) at the boundary layer. Therefore, the conditions of moisture are subsequently analyzed.
The meridional-height section of longitude averages of water vapor flux along (31°N–33°N) during WRWS occurrence moments in observations and the PWAFS forecasts is shown in Figure 8. The vertical distributions of moisture flux shows that the abundant moisture is mainly concentrated at the lower troposphere in the mainland, while over coastal areas of YHR, the maximum moisture is centered at the boundary layer. Observations and the PWAFS short-term predictions show similar vertical distributions of the water vapor, but the intensity of moisture flux is stronger in the PWAFS model. Considering the vertical characteristics, the moisture flux with vertical integration from 1000 hPa to 925 hPa and integration from 925 hPa to 700 hPa is checked, respectively. At the boundary layer (Figure 9C), the water vapor transports from the south of China and the East China Sea through southerlies and southeasterlies to coastal areas of YHR and converges in the northern part of coastal areas of YHR in the observations. Results of the integration from 925 hPa to 700 hPa (Figure 9A) show that the water vapor transports from southwest to coastal areas of YHR and diverges in the northern part at 700 hPa. The sources of moisture for WRWS have differences at different levels, but this feature is not captured in the short-term predictions of PWAFS. From 1000 hPa to 700 hPa, the moisture is transported by the consistent southwesterlies in coastal areas of YHR in the PWAFS results (Figures 9B,D). The convergence and divergence regions are further shifted to the northeast, which corresponds to the shift locations of the shear line and rain belt.
[image: Figure 8]FIGURE 8 | Composites of the meridional-height section of longitude mean of water vapor flux [image: image] along (31°N–33°N) during WRWS occurrence moments for (A) observations and (B) the PWAFS forecasts.
[image: Figure 9]FIGURE 9 | Composites of the vertical integrated water vapor flux [image: image] and the divergence of water vapor flux [image: image] at 700 hPa (A,B) and 925 hPa (C,D) during WRWS occurrence moments in observations (A,C) and the PWAFS forecasts (B,D): (A) water vapor flux integrated from 925 hPa to 700 hPa and (B) water vapor flux integrated from 1000 hPa to 925 hPa.
In addition, the composition differences of pseudo-equivalent potential temperature are studied in Figure 10. Although the PWAFS model tends to generate stronger warm advection and moisture transport, the accumulated warm and moist energy are predicted weaker at the boundary layer over coastal areas of YHR (Figures 10H,I), which leads to the underestimations of the precipitation intensity in the PWAFS results. The accurate prediction of warm and moist energy transportation from the East China Sea by southeasterlies along the coastal areas of YHR at the boundary layer is revealed fairly important for the WRWS event forecasts in the model.
[image: Figure 10]FIGURE 10 | Composites of pseudo-equivalent potential temperature [image: image] during WRWS occurrence moments in observations (A,D,G) and the PWAFS forecasts (B,E,H), as well as their differences (C,F,I) at 700 hPa (A,B,C), 850 hPa (D,E,F), and 925 hPa (G,H,I).
In summary, for the short-term prediction of WRWS events in coastal areas of YHR in the regional business forecast model PWAFS, the horizontal winds are overestimated in the lower troposphere, especially for zonal westerlies. Meantime, the shear line shifts to the northeast, inducing that the moisture channel associated with the East China Sea is absent at the boundary layer, and the accumulated warm and moist energy is weaker over coastal areas of YHR. Finally, the short-term model prediction of the rain belt location for WRWS in coastal areas of YHR notably shifts to the northeast with weaker intensities of precipitation.
5 CONCLUSION AND DISCUSSION
Based on the short-term prediction results of the regional business forecast model Precision Weather Analysis and Forecasting System (PWAFS) of Jiangsu Meteorological Bureau, China, forecasts of the warm-sector heavy rainfall with warm-type shear line (WRWS) events in coastal areas of the Yangtze–Huaihe River (YHR) are evaluated and diagnosed via objective estimation methods and composition analysis. The observational hourly precipitation data of CMORPH and the ERA5 reanalysis datasets from ECMWF are employed as references to check the forecast skills of precipitation and associated atmospheric circulations in the model results. The obtained results are summarized as follows:
According to the objective identifications of WRWS events and the rainfall durations, 15 moments of WRWS in four precipitation processes are selected for investigations of the PWAFS forecasts. Both subjective and objective evaluations show that three of four WRWS events can be captured in the PWAFS forecasts, but the main rain belts generally shift to the northeast with weaker intensities of precipitation. The PWAFS model has considerable skills for short-term forecasts of WRWS events in coastal areas of YHR, but the prediction performances decrease sharply with the increasing precipitation thresholds.
Moreover, the differences of synoptic-scale thermodynamic characteristics are diagnosed to reveal the possible mechanisms of the short-term model forecast biases via analyzing the composition differences between the observations and the PWAFS forecasts during WRWS moments. For short-term forecasts of WRWS events in coastal areas of YHR, the zonal moisture transportation is stronger in the model due to the overestimation of westerlies, while the meridional moisture transportation is weaker due to the underestimation of southerlies along coastal areas of YHR. Meantime, the shear line is characterized by a notably northeast shifted phase. The aforementioned biases of horizontal wind fields in the model induce that the moisture channel associated with the East China Sea is absent and the accumulated warm and moist energy is weaker at the boundary layer in coastal areas of YHR. As a result, the short-term prediction of the rain belt location for WRWS in coastal areas of YHR notably shifts to the northeast with weaker intensities of precipitation in the model results.
Understanding the prediction attributes of WRWS events in coastal areas of YHR is crucial for investigations of local meteorological characteristics and would help the forecast agencies to improve the model applications more sufficiently. Furthermore, the rainfall biases can be effectively eliminated by the advanced statistical model. For instance, object attributes in MODE describe the location and pattern of the rain belt, which could be applied for further development of advanced statistical model constructions to improve the prediction performances of WRWS events in the forecast models (Ji et al., 2020; Lyu et al., 2021; and Zhu et al., 2021). The associated concerns are to be further studied in the future.
In addition, the cloud microphysics parameterization scheme plays an important role in the precipitation simulation. A cloud (Hong S. Y. et al., 2006; Morrison et al., 2009; and Luo et al., 2017) physical process is one of the most important non-adiabatic heating physical processes in mesoscale numerical models. The mutual transformation between water vapor and various hydrometeors in clouds, as well as their dynamic and thermodynamic effects, directly affects the weather processes. Then, the large-scale circulations would be reacted through sensible heat, latent heat, and momentum transport, leading to the vertical distribution changes of temperature and humidity. There are obvious differences in the simulation of the temperature and humidity structure of the atmosphere by different microphysical parameterization schemes. Therefore, selecting microphysical parameterization schemes suitable for the local area through a series of experiments, or using multi-parameterization schemes ensemble forecasting, is conducive to improving the forecast skills of convective precipitation in the model.
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Southwest China, which is close to the Qinghai-Tibet Plateau, presents complex topography. As a result of the combined influence of the South Asian monsoon, East Asian monsoon, and plateau monsoon, climate in this region is unique. Since Southwest China is one of the areas where extreme weather events occur more frequently, this region is sensitive and vulnerable to climate change. In the present research, daily temperature from 1969 to 2020 recorded at 93 weather stations in Southwest China, and data from nine models for the period 1995 to 2040 were used in CMIP6 (Coupled Model Intercomparison Project Phase 6) to calculate 17 ETIs (Extreme Temperature Indices). Furthermore, we analyzed and compared the annual change rate, temporal and spatial change trend, and mean change of extreme temperature events in Southwest China and four subzones during historical period and under SSP2-4.5 scenario for the next 20 years. The results showed: 1) The 8 ECTIs (Extreme Cold Temperature Indices) and the 8 EWTIs (Extreme Warm Temperature Indices) in 1969–2020 were corroborated. These results indicated a warming trend. Also, DTR (Diurnal temperature range) showed a decreasing trend, and different degrees of warming were observed in the four subzones. 2) From 2021 to 2040 and under the SSP2-4.5 scenario, the annual rates of change for 17 ETIs in Southwest China showed that extreme cold events will continue to decrease. On the other hand, extreme warm events will continue to increase. 3) Under the SSP2-4.5 scenario in the next 20 years, CSDI (cold spell duration indicator) will decrease, while WSDI (warm spell duration indicator), TMINmean (average daily minimum temperature), and TMAXmean (average daily maximum temperature) will increase. Moreover, the decrease in amplitude of CSDI was smaller than the increase in amplitude of WSDI. Also, the increase in amplitude of TMINmean was slightly smaller than that of TMAXmean. The projected WSDI, TMINmean, and TMAXmean obtained with the preferred three models and MEM-9 (nine-Model Ensemble Mean) showed an overall growing trend with respect to space; however, the increased range fluctuated in different regions. 4) In 2021–2040, mean values of 4 ETIs in different subzones indicated that the lowest TMINmean and TMAXmean were observed in the ZP (Zoigê Plateau), the highest in the YGP (Yunnan-Guizhou Plateau), and intermediate higher in the SB (Sichuan Basin). Compared with the 4 ETI mean values corresponding to 1969–2020, the persistence and average state of extreme cold and warm events in different subzones showed that future change trends depend on altitude.
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1 INTRODUCTION
Working Group I contribution to the Sixth Assessment Report (AR6) of IPCC (Intergovernmental Panel on Climate Change) states that global average surface temperature in the past 10 years (2011–2020) increased by 1.09 [0.95–1.20] °C as compared with that from 1850 to 1900. From 2003 to 2012 (the historical period of the Fifth Assessment Report (AR5)), a global warming of 0.19 [0.16–0.22] °C was observed. In addition, the global average surface temperature was higher in every decade of the past 40 years than in any other decade of previous periods (IPCC, 2021; Zhou, 2021). Continuous temperature rise has resulted in the warming of the upper layer of the world’s ocean, glacial melting, and frequent extreme climate events. Studies have shown that for every 1 K increase in global temperature, the water vapor content in the atmosphere will increase by 7%. The increase in atmospheric humidity will augment the intensity of extreme precipitations, and a temperature rise can cause droughts (Wentz et al., 2007; Allen and Ingram, 2012). In the past 20 years, over 90% of the natural disasters such as droughts, floods, and high-temperature heat waves have been related to extreme climate events. In recent years, droughts and high temperature heat waves have received a significant amount of attention (Sun, 2018). Climate extremes have been identified by the WCRP (World Climate Research Program) as part of the seven “grand challenges”. They are also a central component of IPCC assessments. For the first time, the IPCC AR6 report includes a chapter dedicated to a comprehensive and systematic evaluation of climate extremes, including extreme temperatures and droughts. Assessment of extreme temperature events suggests that in the context of further global warming, extreme warm events will continuously increase on the global and continental scales and in all inhabited regions of the Earth even if the global temperature rise level stabilizes at 1.5°C. Moreover, the extreme warm events will increase in intensity, while the extreme cold events will decrease in both frequency and intensity. The more significant the global warming, the higher the reliability of the projection (IPCC, 2021; Zhou and Qian, 2021). To this point, CMIP6 have been used to project future trends, intensity, duration, and frequency of extreme temperature events in different parts of the world. Scholars have assessed the projection uncertainty and compared the simulation performance of different models. Various projections of extreme temperature events for future periods on different time scales and in different regions have been obtained (Chen et al., 2020; Grose et al., 2020; Kim et al., 2020; Wehner, 2020; Wehner et al., 2020; Ajjur and Al-Ghamdi, 2021; Quenum et al., 2021; Sobie et al., 2021; Zhang et al., 2021; Das and Umamahesh, 2022).
In the context of global warming, China’s temperature has risen significantly as in many other parts of the world. Between 1901 and 2020, China’s annual average temperature increased at a rate of 0.15°C/10 years. This increase was even more significant between 1951 and 2020, where a rate of 0.26°C/10 years was observed. The past 20 years represent the warmest period since the early 20th century (China Meteorological Administration Climate Change Centre, 2021). In the future, China will experiment further warming. According to the results projected by Yang et al. (2021) using the CMIP6 multi-model ensemble in the reference period 1995–2014, under the SSP2-4.5 and SSP5-8.5 scenarios, the annual average temperature in China will increase by the end of this century in 2.7 and 5.4°C, respectively. Both values are higher than the global average increase. It is expected that global warming will rise the frequency and intensity of warm events, and decrease the frequency and intensity of cold events. These will be important features of China’s extreme temperature events. However, some differences may occur across regions. For example, Li et al. (2018) projected changes for the six ETIs in China based on eight selected CMIP5 general circulation models during future periods (2021–2100) under the RCP4.5 and 8.5 scenarios. The results showed that FD0 (frost days) and TN10p (cool nights) will present decreasing trends, and more meteorological stations will show increasing TNn (coldest daily minimum temperature) trends as compared to corresponding decreasing trends. The decreases in FD0 and TN10p will reach 31.4 and 27.4 days from 2021 to 2060 and 42.6 and 29.7 days from 2061 to 2100. However, TD30 (tropical days), TX90p (warm days) and TXx (warmest daily maximum temperature) will show increasing trends. TNn, TD30, TX90p, and TXx will increase in 8.7°C, 45.3 days, 41.6 days, and 5.7°C from 2021 to 2060 and 7.2°C, 65.6 days, 62.4 days, and 6.4°C from 2061 to 2100. You et al. (2021) analyzed 20 models corresponding to the CMIP6 under three SSP (Shared Socio-economic Pathway) scenarios (SSP126, SSP245 and SSP585). With respect to 1986–2005, the regional average surface temperature from the multi-model ensemble mean (MMEM) of 20 models in CMIP6 were projected to increase by 1.31°C, 1.32°C, and 1.45°C in the near-term (2021–2040); 1.75°C, 2.06°C, and 2.66°C in the mid-term (2041–2060); and 1.08°C, 2.97°C, and 5.62°C in the long-term (2081–2100) under SSP126, SSP245, SSP585 scenarios, respectively. Ai et al. (2021) projected spring climate extremes in China based on models in CMIP6. The results reported that the models were generally able to capture mean climate extremes and trends. By the end of the 21st century, wet and warm extreme climate events were projected to increase, particularly in northern and western China. In addition, dry and cold extreme climate events were projected to decrease, particularly in southern China. Xiang et al. (2021) used the EC-Earth3 model in CMIP6 to project China’s extreme temperatures between 2021 and 2100 under four future scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5). Data indicated that China would present a significant temperature increase. Moreover, before the 2050s, the resulting ETIs were similar under the four scenarios. However, after this point, variations appeared. Except for parts of southern Tibet, both TXx and TNn increased in all the regions. The maximum TXx was concentrated in Northern China, and that of TNx was found in North China and Northeast China.
Southwest China (21°08’∼34°19′ N, 97°21’∼110°11’ E) is located in the southeastern part of the Tibetan Plateau, a transition zone between mountains, plateau, and basin. This region has complex topography and unique climate, which is complicated and variable due to the dynamic and thermodynamic effects of the Qinghai-Tibet Plateau and several monsoon circulations (Wu et al., 2012). Southwest China is highly vulnerable to climate change. Ma et al. (2006) observed a significant temperature rise from 1961 to 2000 in the Qinghai-Tibet Plateau, Western Sichuan Plateau, and YGP of Southwest China. However, a significant temperature decrease in SB and Chongqing was determined. These climate changes were asynchronous with global warming. In the past few decades, extreme temperature events have become increasingly frequent in Southwest China, negatively impacting human activities and the ecosystem (Luo et al., 2016; Zhou et al., 2017; Xue et al., 2020). Some scholars determined the feasibility of obtaining temperature simulations and future projections using the models from CMIP5. For example, Wu et al. (2017) used surface temperature observations at 115 stations and historical simulations from CMIP5 in Southwest China from 1961 to 2005. Performance of 40 global climate models (GCMs) for the simulation of surface temperature were assessed in three aspects: simulations of the intensity, interdecadal variation, and mutation of warming. Most models indicated a significant increase in annual average temperature in the past 45 years in different parts of Southwest China. However, only six models replicated the effect of altitude on surface temperature increase. Ten models simulated the interdecadal decrease in annual average temperature in the SB and the hilly area of Chongqing, where the altitude is lower. However, none of the models simulated the air temperature mutation. Wu et al. (2018) used the data from 11 GCMs in CMIP5 and the multimodel ensemble method to project future changes in air temperature at the height of 2 m in Southwest China from 2020 to 2050 under the RCP4.5 scenario and in the presence of intermediate radiative forcing. They determined that the annual average temperature and the temperatures in the four seasons in Southwest China will increase significantly from 2020 to 2050. The rise in temperature was higher during winter and smaller during summer. Regions with a higher and lower temperature increase were mainly located west of 102°E and on the border between southwest Sichuan and northwest Yunnan, respectively.
The future trends of extreme temperature events in China have been intensively studied (Hu et al., 2013; Shen, 2014; Zhang, 2015; Li et al., 2017; Li et al., 2018; Ai et al., 2021; Xiang et al., 2021; You et al., 2021). Yuan and Zhen (2015), Luo et al. (2016), and Li et al. (2020) determined the spatial-temporal variation trends of historical extreme temperature events in Southwest China. However, there is a need for more refined projections of extreme temperature events in this region. The CMIP6 incorporates the largest number of climate models, presents the most reasonable experimental design, and provides the biggest volume of simulation data ever since the CMIP was first launched over 20 years ago (Zhou et al., 2019). Compared with models in CMIP5, CMIP6 models have dramatically improved kinetic parameterization and model resolution (Eyring et al., 2016; Zhan et al., 2020). In addition, performance of models from CMIP6 for extreme climate events simulation has been assessed. It has been suggested that models from CMIP6 outperformed those from CMIP5 in simulating the averages and trends of extreme climates, though only by a slight margin (Chen et al., 2020; Fan et al., 2020; Kim et al., 2020; Lin and Chen, 2020; Jiang and Chen, 2021; Xiang et al., 2021). Chen et al. (2020) made projections based on models in CMIP6, finding an increased consistency in extreme high and low temperatures on the global scale. Data indicated that the probability that high temperature heat waves occur in the future will increase significantly, while that of low-temperature cold damage will decrease. However, projection uncertainty was higher when models in CMIP6 were used as compared with models in CMIP5. According to similar studies, the probability of extreme high and low temperatures will increase in China, and a smaller projection uncertainty was achieved with models in CMIP6 as compared to models in CMIP5 (Luo et al., 2020). CMIP6 simulations vary for different regions, and further investigations are needed.
In the present research, we used nine models in CMIP6 to obtain 17 ETIs for Southwest China. We analyzed historical extreme temperature events during 1969–2020 and variation trends for the period 2021–2040 in four subzones divided by meteorological and topographical characteristics. Also, the SSP2-4.5 scenario was considered, which represents the “middle of the road” development pattern. At the same time, we also evaluated and compared the simulation performance of the selected models for different ETIs in Southwest China. Our findings will inform the government about extreme temperature events in Southwest China in the near future. In the context of global warming, our data will assist during the formulation of disaster relief and prevention measures and for decision-making purposes.
2 DATA AND METHODOLOGY
2.1 Data
According to China’s meteorological and geographical division, the study area in Southwest China consists of four provinces and cities: 1) Chongqing City; 2) Sichuan Province; 3) Guizhou Province; and 4) Yunnan Province. In the present research, Southwest China was divided into four landform units based on climate and hydrologic conditions, geographical location, as well as altitude from north to south: 1) Zoigê Plateau; 2) Hengduan Mountains; 3) Sichuan Basin; and 4) Yunnan-Guizhou Plateau. The Zoigê Plateau (ZP) covers part of northern Sichuan; Hengduan Mountains (HMs) cover western and southern Sichuan and northern Yunnan; the Sichuan Basin (SB) covers most of Chongqing City and eastern and central Sichuan; and the Yunnan-Guizhou Plateau (YGP) covers most of Guizhou as well as part of southern Yunnan.
As previously reported for ETIs, quality control was performed on daily maximum temperature and daily minimum temperature (Zhang and Yang, 2004). Data were obtained from the China Meteorological Data Service Center (MDSCC) (http://data.cma.cn) for the period 1969 to 2020. Ninety-three weather stations located in Southwest China were chosen for the study. Three quality control methods (internal consistency check, climate limit value check and station extreme check) were used. Interpolation was performed to fill data gaps in adjacent stations by using the linear regression method, which ensured that the corrected meteorological data presented high accuracy, homogenization and continuity (Li et al., 2020). Figure 1 displays the geographical locations of the 93 studied stations in Southwest China and the digital elevation model (DEM) of the four geographical divisions. Among them, 4 stations were located in the ZP (No.1–4), 22 stations in the HMs (No.5–26), 23 stations in the SB (No.27–49), and 44 stations in the YGP (No.50–93). DEM data were obtained from the SRTM data (http://www.cgiar-csi.org/) published by the National Imagery and Mapping Agency.
[image: Figure 1]FIGURE 1 | Spatial distribution of weather stations and topographical division in Southwest China
Many studies have indicated that GCMs is able to simulate some climatic factors on a large scale. However, simulation performance of GCMs may significantly vary across the regions due to differences in working mechanism, initial condition configuration, parameterization scheme setting, and spatial resolution (Walsh et al., 2008; Mote and Salathé, 2010). At present, most studies using models from CMIP for temperature projections in Southwest China have assessed the performance of different models. For example, Wu et al. (2017) performed temperature projections in Southwest China using models in CMIP5. ACCESS1.0, ACCESS1.3, CanESM2, CESM1, INM-CM4, IPSL-CM5A-LR, MIROC5, and MPI-ESM-LR were able to simulate a significant increase in annual average temperature in different parts of Southwest China. Among these models, ACCESS1.0, CESM1, and MIROC5 displayed a better performance in simulating the effect of altitude on surface temperature increase. Wu et al. (2018) projected air temperatures in Southwest China from 2020 to 2050 using 11 models from CMIP5. CanESM2, INM-CM4, IPSL-CM5A, and MIROC5 showed better performances. The results indicated that the statistical downscaling method and the multimodel ensemble method effectively reduced simulation errors, and the latter had smaller errors. Chu et al. (2015) assessed the efficacy of some models from CMIP5 for the simulation of air temperature in the Yangtze River Basin, including Southwest China, between 1961 and 2005. CanESM2 and MPI-ESM-LR produced simulations that were consistent with the observations and showed good temporal and spatial correlations. Xiang et al. (2021) evaluated the capacity of models in CMIP6 to simulate extreme temperatures in the major regions of China. These researchers reported that 20 GCMs produced different simulations for the following five ETIs: TXx (Max Tmax), TNn (Min Tmix), DTR (diurnal temperature range), TN10P (cool nights), and TX90P (warm days). The simulations also varied significantly across the regions. ACCESS-CM2, CanESM5, INM-CM5-0, IPSL-CM6A-LR, MIRCO6, and MPI-ESM1-2-LR displayed better simulation performance when they were applied to Southwest China.
With respect to projections, we additionally considered the entire model data obtained from the literature and selected nine models from CMIP6 with proven temperature simulation performance. Table 1 shows the basic information of the nine selected models. These data were obtained from the website https://esgf-node.llnl.gov/search/cmip6/. Since spatial resolution varied across the models, a bilinear interpolation with a spatial resolution of 0.5 ° × 0.5 ° was performed using all the models to determine the daily highest and lowest temperature. At the same time, data from each model were uniformly interpolated to the 93 weather stations. Then, 17 ETIs were calculated, and the Taylor diagram was plotted to assess the degree of correspondence between the modeled and observed data in the historical period. Finally, models with better simulation performance were selected to project and compare the spatial and temporal variations of 17 ETIs. The time-series data covered the period from 1995 to 2040. The period 1995–2014 represented the historical base period, and corresponding data were used to assess the model’s simulation performance. The data for the period 2020–2040 were used for the projection. The future scenario SSP2-4.5 was chosen for the following reasons: 1) SSP2-4.5 is an updated version of the RCP4.5 scenario in CMIP5 and combines intermediate social vulnerability with intermediate radioactive forcing. This scenario is usually used as a CMIP6 reference scenario, as in the Decadal Climate Projection Project (DCPP) under the Coordinated Regional Downscaling Experiment (CORDEX). The most important and intensively discussed scenario in relevant research corresponds to SSP2-4.5 (Jiang et al., 2020). 2) Since the reform and opening-up, China has been undergoing a rapid economic growth and development. This situation has resulted in severe damage to the urban eco-environment. The SSP2-4.5 scenario properly represents China’s national conditions 3) Existing studies have shown that the projected ETIs trends in the major regions of China displayed small variations under different recent scenarios. The resulting signal-to-noise ratio was usually larger under high-emissions scenarios as compared to low-emissions scenarios (Jiang and Chen, 2021; Xiang et al., 2021).
TABLE 1 | Basic information of 9 models in CMIP6 chosen for future projection (the full model names can be found at https://esgf-node.llnl.gov/search/cmip6/).
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3.1 Extreme temperature index
In order to monitor, detect, and analyze the impact of climate change, it is better to use extreme climate indices than average values (Peterson et al., 2008). Herein, 17 ETIs were selected to analyze the characteristics of past and future extreme temperature events in Southwest China (Table 2). This was performed in accordance with the Expert Team on Climate Change Detection and Indices (ETCCDI) recommended by the Commission for Climatology (CCI) of the World Meteorological Organization (WMO) and Climate Variability and Predictability Program (CLIVAR) (Liu and Xu, 2014). The ETIs were calculated by using the RClimDex (1.0) software developed by Xuebin Zhang and Feng Yang (http://etccdi.pacificclimate.org) (Zhang and Yang, 2004). The 17 ETIs included 8 extreme warm temperature indices (EWTIs), 8 extreme cold temperature indices (ECTIs) and 1 index of diurnal temperature range (DTR).
TABLE 2 | List of the 17 selected ETIs.
[image: Table 2]3.2 Taylor diagram
The Taylor diagram presents three statistics, the spatial correlation coefficient between the simulated and the observed value, standard deviation, and RMSE (Root mean square error) of the simulated value relative to the observed field. Differences between the simulated results and reference data can be observed intuitively. Taylor diagram provides information on the simulation performance of the model. We first plotted the Taylor diagram for nine selected single models and MEM-9 (nine-Model Ensemble Mean) to assess their simulation performance for 17 historical ETIs in Southwest China. Then, models with better simulation performance were selected to project the spatiotemporal change trends of future extreme temperature events. The spatial correlation coefficient between the simulated and the observed values estimates the performance of model’s simulation at the central location. In addition, the standard deviation ratio indicates the model’s simulation performance for central amplitude. Moreover, RMSE measures pattern similarities between the simulated and the observed values. The closer the RMSE to 0, the stronger the simulation performance. These three statistics were calculated, and results are shown herein (Taylor, 2001; Zhang et al., 2015; Jiang and Chen, 2021):
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Where R corresponds to correlation coefficient; x is the dataset of the test field; y is the dataset of the observed field; [image: image] and [image: image] indicate data size of the ith sample in the dataset of the test field and the observed field, respectively; [image: image] and [image: image] correspond to the means of the dataset of the test field and the observed field, respectively; n is the sample size; [image: image] is the mean of the dataset; STD indicates standard deviation; and the standard deviation ratio is represented by [image: image], the ratio of the standard deviation of the test field (STDT) to that of the observed field (STDo).
3.3 Skill score
In order to quantitatively describe the simulation performance of the models, the skill score (S) was selected according to Taylor (2001) to quantitatively evaluate the simulation ability of nine single models and MEM-9 to 17 ETIs. The larger the S, the better the simulation ability of the models. Eq. 4 displays the formula used for this purpose (Zhang et al., 2015):
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Where R is the correlation coefficient between simulated and observed value; R0 represents the maximum correlation coefficient that can be obtained; and STDR indicates the standard deviation ratio. When the variance of simulated value is close to the variance of observed value, the closer the spatial correlation coefficient between simulated and observed value is to R0, the closer S is to 1; when the variance ratio is close to 0 or infinity, the correlation coefficient is close to −1, and S is close to 0.
4 RESULTS
4.1 Interannual variation of extreme temperature events between 1969 and 2020
According to the interannual variability of ETIs in Southwest China from 1969 to 2020 (figures omitted), the 8 ECTIs were reciprocally corroborated with the 8 EWTIs, which indicated a warming trend. Significant differences were observed in amplitude variations of different types of indices. TN10p and TX90p displayed higher daily amplitude variations than other indices. DTR showed a decreasing trend, indicating a narrowing monthly average difference between daily lowest and highest temperatures. In addition, the interannual propensity rates of all indices passed the significance test at the 0.05 level. Varying degrees of warming were also observed in the four subzones. The specific means of each index can be found in Table 3. Data indicated that the lowest CSDI and WSDI values were found in the ZP. In addition, the highest number of extreme cold days, the lowest number of extreme warm days, the lowest extreme temperature, and the highest DTR were observed in the ZP. Moreover, the HMs presented fewer extreme cold days than ZP. However, in the HMs, the number of cold days were higher than those observed in the SB and the YGP. The number of extreme warm days, extreme temperatures, and DTR were higher in the HMs than in the ZP but lower than in the SB and the YGP. Data also indicated that WSDI displayed the highest value in the SB and the lowest in DTR. In the SB, the largest number of extreme warm days, the smallest number of extreme cold days (TX10p), and the highest extreme temperature indices (TMINmean, TNn, TNx, and TXx) were observed. Also, the highest CSDI, the lowest extreme cold indices (FD, ID, and TN10p), and extreme warm index TN90p were obtained in the YGP. With respect to extreme temperatures, maximum values corresponded to TXn and TMAXmean in the YGP. Among the four geographical divisions shown in Figure 1, the highest and lowest elevations correspond to northwestern Southwest China (ZP and HMs) and eastern Southwest China (SB and northeast YGB), respectively. The population density and urbanization rate in the east are significantly higher than those in the west. As previously shown, regions in higher altitudes and sparsely inhabited displayed larger temperature differences due to the effects of geographical partitioning and human activities. In these regions, fewer extreme warm events were observed, while extreme cold events were more frequent.
TABLE 3 | Average values of 17 ETIs in different subzones from 1969 to 2020.
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We plotted a Taylor diagram to assess the simulation performance of the nine models for 17 ETIs in Southwest China. Previous studies have shown that multimodal ensemble-based simulated values were similar to observed values (Zhao et al., 2014). Thus, in order to obtain MEM-9, nine models were combined into multimodel ensembles using model averaging. The Taylor diagram was used to compare the simulation performance of nine models and MEM-9.
Figure 2 shows the Taylor diagram of 17 ETIs in Southwest China based on simulated and observed data in the historical base period. Three evaluation parameters, R, STDR, and RMSE, were involved. REF represents the observed data. The closer the model data to REF, the higher the simulation performance. According to our results, the R value was consistently smaller with all nine models and MEM-9 for CSDI simulation. Comparatively speaking, MEM-9 and ACCESS-CM2 displayed a better simulation performance, where STDR was close to 1 and a small RMSE was obtained. The nine models and MEM-9 presented the best simulation performance for FD, TR, and TNx, with STDR close to 1, R value above 0.8, and a small RMSE. In the case of ID, the best simulation performance corresponded to CESM2 and CanESM5. Also, the nine models and MEM-9 inadequately simulated TN10p, TX10p, TN90p, and TX90p. However, they properly simulated TMINmean, TMAXmean, and TXx. For all nine models and MEM-9, the R value of 0.6–0.8, STDR close to 1, and small RMSE were achieved. CESM2, ACCESS-CM2, INM-CM5-0, and MEM-9 were able to simulate TNn. In addition, TXn was best simulated with CESM2 and ACCESS-CM2, and MEM-9 presented the best simulation performance for WSDI. The best agreement between observed values and SU simulations were obtained with CESM2, ACCESS-CM2, and MIROC6. Furthermore, CanESM5, MPI-ESMI-2-LR, NESM3, and MEM-9 presented a better simulation performance for DTR. In these models, R displayed a high value, STDR was close to 1, and RMSE was small. Although the simulated results of each index varied across the models, CESM2, CanESM5, ACCESS-CM2, and MEM-9 had a relatively better simulation performance for the 17 ETIs.
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Table 4 presents the Ss between 17 simulated and observed ETIs calculated with nine models and MEM-9 using Eq. 4. Results indicated that the Ss of the nine models and MEM-9 for all 17 ETIs were different. However, according to the average S of each model and MEM-9, the highest Ss were obtained with CESM2, MEM-9, ACCESS-CM2 and CanESM5. These data were consistent with the results obtained with Taylor diagram analysis.
TABLE 4 | Skill scores (Ss) between simulated and observed ETIs for nine single models and MEM-9.
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4.3.1 Annual change rates
Taking into account the Taylor diagram and skill score of ETIs assessed by nine models and MEM-9, and considering the best projection performance on 17 ETIs, we selected CESM2, CanESM5, ACCESS-CM2, and MEM-9. In order to improve the accuracy and reduce the uncertainty of future projections, we used these three models and MEM-9 to project extreme temperature events in Southwest China under the SSP2-4.5 scenario between 2021 and 2040. Table 5 displays the projected annual change rates of 17 ETIs for this period. According to the three models and MEM-9 prediction, and considering the increasing trend in CSDI projected by MEM-9, it is expected that in the next 20 years the annual change rates of the ECTIs CSDI, FD, ID, TN10p, and TX10p will decrease, while TMINmean, TNn, and TXn will increase. That is, the number of cold days is projected to decrease, and the lowest temperature is projected to increase. In addition, the annual change rates of 8 EWTIs indicated an increase in the number of extreme warm days and highest temperature. The annual change rate of DTR displayed a small value with a slightly increasing trend, except for ACCESS-CM2, which showed a slight downward trend. Although the projected annual change rate values differed between the three models and MEM-9, the change trends were generally consistent. Thus, under the SSP2-4.5 scenario, the extreme cold events in Southwest China will continuously decrease in the next 20 years, while the extreme warm events will continuously increase.
TABLE 5 | Future projections of the annual change rates of 17 ETIs from 2021 to 2040 obtained with different models under the SSP2-4.5 scenario.
[image: Table 5]In the case of the 8 ECTIs, the projections of annual change rates obtained using the three models and MEM-9 showed that MEM-9 projected an annual change rate of 0.13 for CSDI, which corresponds to an increasing trend. In contrast, the other three models projected a decreasing trend in annual change rates for CSDI, and the projected annual change rates were very close to each other. The projected variation ranges of FD and ID were [−1.15, −0.42] and [−0.33, −0.06], respectively. In both cases, the smallest projection corresponded to CanESM5, and the largest to MEM-9. The projected variation ranges of TN10p, TX10p, TMINmean, TNn, and TXn were [−0.35, −0.27], [−0.32, −0.18], [0.04, 0.08], [0.04, 0.09], and [0.04, 0.11], respectively. The results were similar to each other. Thus, among the three models and MEM-9, this last one produced larger ECTIs projections, while the smallest values were obtained with CanESM5. With respect to the 8 EWTIs, the three models and MEM-9 indicated an increasing trend. The projected variation range for WSDI was [0.28, 0.58]. The largest projected values were produced by MEM-9 and the smallest by CanESM5. The projected TR and SU variation ranges were [0.32, 0.58] and [0.00, 0.40], respectively. In both cases, the largest and smallest projections were obtained using CESM2 and MEM-9, correspondingly. The projected TN90p and TX90p variation ranges corresponded to [0.34, 0.82] and [0.21, 0.69], respectively. Herein, the largest and smallest projections were produced by MEM-9 and ACCESS-CM2, correspondingly. The projected variation ranges for TMAXmean, TNx, and TXx were [0.02, 0.08], [0.02, 0.06], and [0.00, 0.12], in that order. Data also indicated that, when different models were used, the projections were similar. In general, the highest and smallest EWTIs projections were obtained using MEM-9 and ACCESS-CM2, respectively. In the three models and MEM-9, the projected variation range for DTR corresponded to [−0.02, 0.04]. ACCESS-CM2 and CESM2 projected a decreasing and increasing trend, correspondingly. On the other hand, the annual change rates projected by MEM-9 and CanESM5 were zero, indicating no change.
4.3.2 Temporal variation trends
CSDI and WSDI represent the continuity of extreme cold and warm events. TMINmean and TMAXmean represent the averages of extreme cold and warm events. Thus, the variation features of extreme cold and warm events can be obtained by combining the two groups of indices. In order to reduce projection uncertainty and increase accuracy, and because of limited space, we applied the three models in addition to MEM-9 to project the spatial and temporal variation trends of these four indices representing the extreme temperature events from 2021 to 2040 under the SSP2-4.5 scenario. Figure 3 shows the projected temporal variation trends in the next 20 years.
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When CESM2 was used, an annual CSDI average value of 4.2 days was obtained, which was higher than the WSDI average of 3.5 days. Thus, the cold spell duration is expected to decrease in the next 20 years, while the warm spell duration is expected to increase. In addition, the decreasing trend of extreme cold events was comparable to the increasing trend of extreme warm events. The annual TMINmean average displayed a value of 10.5°C, and that of TMAXmean was 19.5°C. Both showed an increasing trend, and the increase in TMAXmean was larger than that in TMINmean. The projected CSDI was statistically significant at the 0.1 level. In addition, the projected WSDI, TMAXmean, and TMINmean were statistically significant at the 0.01 level and a good linear fit was obtained. When CanESM5 was applied, CSDI presented an annual average value of 4.5 days, which was higher than the average WSDI of 4.0 days. However, the decrease in CSDI was higher than that in WSDI, indicating that the decrease in extreme cold spells was greater than the increase in extreme warm spells. The annual TMINmean average was 9.5°C, and that of TMAXmean was 18.5°C, both showing an increasing trend. Besides, TMINmean showed an amplitude increase slightly larger than that of TMAXmean. Among the four indices, the projected TMINmean and TMAXmean were statistically significant at p < 0.01. In addition, the projected CSDI and WSDI were statistically significant at p < 0.05, and a good linear fit was achieved. According to the ACCESS-CM2 projections, the resulting WSDI value was 5.6 days, which was higher than the annual average CSDI value of 3.9 days. The TMINmean was 9.0°C, and TMAXmean 16.8°C. Specifically, the decrease in extreme cold spells amplitude was slightly smaller than the increase in extreme warm spells amplitude. TMINmean displayed a higher amplitude increase than TMAXmean. Test of significance indicated that projected TMINmean was statistically significant at the 0.01 level, and corresponding CSDI at the 0.05 level. According to MEM-9 projections, the WSDI resulted in 1.1 day, which was higher than the CSDI value of 0.7 days. Moreover, TMINmean and TMAXmean presented values of 10.8 and 17.6°C, respectively. Results indicated that extreme cold spells displayed a decrease in amplitude far smaller than the increase in amplitude observed in extreme warm spells. In addition, the increase in TMINmean and TMAXmean were similar. The projected WSDI, TMAXmean, and TMINmean were statistically significant at p < 0.01 and a good linear fit was achieved. As previously shown, extreme cold events are expected to decrease, and extreme warm events are expected to increase in Southwest China in the next 20 years under the SSP2-4.5 scenario. In addition, CSDI might decrease, while WSDI, TMINmean, and TMAXmean might increase. Moreover, CSDI presented a smaller decrease in amplitude than WSDI amplitude increase. The amplitude increase of TMINmean was slightly smaller than that of TMAXmean.
When different models were used, a CSDI projected variation of 0.7–5.6 days was obtained. The lowest projection was produced by MEM-9 and the highest by ACCESS-CM2. The largest and smallest interannual decrease variability were projected by CESM2 and MEM-9, respectively. In addition, a projected WSDI variation of 1.1–4.0 days was obtained using different models. The lowest projection was produced by MEM-9 and the highest by CanESM5. Moreover, the highest and smallest interannual increase variability were obtained with MEM-9 and CanESM5, in that order. In addition, a projected TMINmean variation of 9.0–10.8°C was achieved. The lowest projection was produced by ACCESS-CM2 and the highest by MEM-9. The maximum interannual increase in variability was obtained with CanESM5, and those of the remaining three models were alike. The projected TMAXmean variation derived from different models was 16.8–19.5°C. The lowest projection was produced by ACCESS-CM2 and the highest by CESM2. In this case, the highest and smallest interannual increase in variability were obtained with CESM2 and ACCESS-CM2, respectively. As previously shown, the lowest and highest CSDI and WSDI projected values were obtained with MEM-9 and ACCESS-CM2, correspondingly. Furthermore, the lowest and highest TMINmean and TMAXmean projected values were achieved using ACCESS-CM2 and CESM2, in that order.
4.3.3 Spatial variation trends
Figure 4 shows the projected spatial variation of regression coefficients (RCs) for 4 ETIs in 93 weather stations for the next 20 years. According to our results, CESM2 indicated that projected CSDI decreased dramatically in Southwest China, and the decrease in amplitude augmented from the center to the periphery. WSDI generally increased, and its value decreased from southwest to northeast. TMINmean and TMAXmean showed an overall increasing trend in Southwest China, and its increasing rate decreased from east to the west. The CSDI projected by CanESM5 primarily decreased in Southwest China, and its amplitude reduction decreased from southeast to northwest. In general, WSDI, TMINmean, and TMAXmean increased. Specifically, WSDI increased from east to west, while TMINmean and TMAXmean increased in the south to north direction. The CSDI projected by ACCESS-CM2 primarily decreased in Southwest China, and its amplitude reduction decreased from east to west. WSDI, TMINmean, and TMAXmean generally increased. Specifically, WSDI increased from north to south; TMINmean increased from south to north; and TMAXmean increased from east to west. The CSDI projected by MEM-9 was different from the values projected by the remaining three models. Different increasing and decreasing trends were projected in different parts of the study area. Nevertheless, regions projected to have an increasing CSDI outnumbered those projected to have a decreasing CSDI. A significant increasing trend was projected in the SB and the eastern YGP. In contrast, a significant decreasing trend was projected in the northern HMs and the ZP. In general, WSDI, TMINmean, and TMAXmean increased; WSDI increased from east to the west; and finally, TMINmean and TMAXmean increased from south to north. As previously indicated, the CSDI values projected by CESM2, CanESM5, and ACCESS-CM2 decreased in space as a whole, and that projected by MEM-9 generally increased. The values of WSDI, TMINmean, and TMAXmean projected by the three models and MEM-9 increased in general, though the increase in amplitude varied from one part to another. Regions with high projected WSDI values were located in western YGP. In addition, regions with low projected WSDI values were located in the SB and eastern YGP. Moreover, the northern HMs and ZP regions displayed high projected TMINmean values, while the southern HMs and the western YGP areas showed low projected TMINmean values. Regions with high projected TMAXmean values were located in ZP and northern HMs, while regions with low projected TMAXmean values were located in southern HMs. The spatial distributions of intermediate values of the four indices projected using the three models and MEM-9 varied more significantly.
[image: Figure 4]FIGURE 4 | Projections of spatial change trends of the 4 ETIs in the next 20 years obtained using different models under the SSP2-4.5 scenario. CESM2 [(A) CSDI (B) TMINmean (C)WSDI (D) TMAXmean], CanESM5 [(E) CSDI (F) TMINmean (G) WSDI (H) TMAXmean], ACCESS-CM2 [(I) CSDI (J) TMINmean (K)WSDI (L) TMAXmean], MEM-9 [(M) CSDI (N) TMINmean (O)WSDI (P) TMAXmean]
4.3.4 Variation trends in the four subzones
Table 6 shows the four projected ETIs average values for different subzones of Southwest China from 2021 to 2040 under the SSP2-4.5 scenario. These values were obtained using the three models and MEM-9. With respect to CESM2, ZP displayed the smallest TMINmean and TMAXmean projected values. That is, the extreme high and low temperatures were the lowest in this region. In the HMs, the lowest CSDI and highest WSDI were observed. This means that the largest number of extreme warm spells correspond to the HMs region. In addition, the SB presented the lowest projected WSDI and the highest projected TMINmean and TMAXmean values. This indicated that this region is expected to have a smaller number of extreme warm spells and larger extreme high and extreme low temperatures. The highest projected CSDI, WSDI, TMINmean, and TMAXmean values were observed in this region. Therefore, extreme cold and warm events occurred more frequently in the YGP. According to the CanESM5 and ACCESS-CM2 projections, the four smallest ETIs projected values were observed in the ZP. Except for WSDI, the largest projected ETIs values corresponded to the YGP. Regions with the highest WSDI projected by CanESM5 were located in the HMs. Regions with the highest WSDI projected by CCESS-CM2 were located in the SB. Among the MEM-9 projections, except for WSDI, the projected values of the three remaining ETIs were consistent with those projected by CanESM5 and ACCESS-CM2. Regions with the lowest projected WSDI values corresponded to the YGP, and those with the highest projected values were located in the HMs. According to the projected averages of the 4 ETIs in the subzones, the lowest, highest, and higher intermediate TMINmean and TMAXmean were located in the ZP, the YGP, and the SB, respectively. Except for CESM2, the lowest and highest CSDI values projected by the remaining three models corresponded to the ZP and the YGP, in that order. However, the projected WSDI values varied significantly across the models.
TABLE 6 | Future projections for average values of the 4 ETIs in different subzones for 2021–2040 under the SSP2-4.5 scenario obtained with three models and MEM-9.
[image: Table 6]According to the data presented in Table 3, when the four ETIs averages of the historical period are compared with the ETIs obtained with the three models and MEM-9, it is expected that in the next 20 years: CSDI and WSDI will increase in the ZP; TMINmean will augment while TMAXmean will decline. In addition, it is projected that in the HMs, CSDI and WSDI will increase, while TMINmean and TMAXmean will decrease. Moreover, in the SB, CSDI will likely increase, WSDI will likely decrease, and TMINmean and TMAXmean are expected to decline. Also, in the YGP, CSDI are expected to increase, while WSDI to decrease. TMINmean is projected to escalate, while TMAXmean is projected to decline. This means that in the ZP, the number of extreme cold and warm spells as well as the average daily lowest temperature are expected to increase, and the average daily highest temperature to decrease. Similarly, in the HMs, the number of extreme cold and warm spells are projected to increase, and the average daily lowest and highest temperatures to decrease. With respect to the SB, the average daily lowest and highest temperatures are projected to decrease; the number of extreme cold spells will likely increase, while the number of extreme warm spells will likely decrease. Moreover, the average daily lowest and highest temperatures are projected to decrease. It is also projected that in the YGP, the number of extreme cold spells will increase, the number of extreme warm spells will decrease, the average daily lowest temperature will increase, and the average daily highest temperature will decrease.
5 DISCUSSION
At present, GCM is the most powerful tool for climate change simulation and future projection, which can provide climate change data at the global and regional scales. Luo et al. (2020) evaluated 27 models from CMIP6. They simulated extreme temperatures over China and compared observed data for the period 1979–2005. Their results showed that these models contained the observed extreme temperature trends. The ability of individual models varied for different indices, although some models outperformed the others. The models in CMIP6 were able to properly reproduce the spatial distribution of TXx, TNn and FD. And the model spread in CMIP6 was reduced with respect to CMIP5 for some temperature indices, such as TXx, WSDI and TX90p. The study by Chen et al. (2020) indicated that the models from CMIP6 exhibited a general improvement in terms of simulation of climate extremes and their trend patterns compared to observations. Particularly for regions in the high northern latitudes, the model spread in CMIP6 models tended to be much smaller than those of their predecessors. However, the improvement was limited or even decreased for some individual models, which still needs further explanation from other perspectives. The research of Fan et al. (2020) also showed that models from CMIP6 adequately captured the spatial patterns and temporal variations of the observed temperature extremes for some indices, although they were less accurate for others. We plotted the Taylor diagram and calculated skill score to assess the simulation performance of the nine models and MEM-9 in the historical base period before making the projections of 17 ETIs for the next 20 years. We found that, although the average simulation performance of the multimodel ensemble was better than that obtained using individual models, the simulation performance of the nine single models and MEM-9 varied considerably for different ETIs. This result agreed with the findings mentioned above. Thus, in order to improve the projection reliability and to reduce uncertainty, we selected three CMIP6 models and MEM-9 for further comprehensive evaluation.
To the best of our knowledge, many projections of extreme temperature events have been performed on the global and large regional scales. However, few projection studies have focused on the small regional scale, especially in Southwest China, which is more susceptible to climate change, presents complex topography, and has frequently experienced extreme climate events. IPCC AR6 has pointed out that since the 1950s, the number of warm days and warm nights has increased, while the number of cold days and cold nights has decreased on a global scale. Among them, both TXx and TNn showed an increasing trend, and the average increase of TNn was higher than that of TXx in the land area. Moreover, this variation trend of extreme temperature events on the global scale was also observed on the continental and regional scales. The confidence of Asia on the continental scale was very likely. In addition, more than 90% of the regional scale changes presented with above moderated confidence (IPCC, 2021; Zhou and Qian, 2021). In the present research, climate projections over Southwest China for the period between 1969 and 2020 showed consistency with the IPCC AR6 results, with TNn and TXx rising by 0.44°C/10 years and 0.28°C/10 years, respectively.
Xiang et al. (2021) assessed the extreme temperature simulation ability of models from CMIP6 in the major regions of China and conducted projections under future scenarios. They reported significant differences in the simulation of ETIs across GCMs and regions. These researchers used the bias-corrected EC-Earth3 to project the five ETIs (TXx, TNn, DTR, TN10P, and TX90P) in the future period. It was projected that, from 2021 to 2100, Southwest China may have a significant increase in TXx and TNn under all four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). In addition, temperature increase amplitude is expected to gradually increase under the four scenarios. Moreover, TX90P will dramatically increase, while TN10P will dramatically decrease. DTR showed a significant decreasing trend. These findings agreed with those obtained in the present research. Later, we used the three models and MEM-9 selected by the Taylor diagram and skill score to project the annual change rates of 17 ETIs in the next 20 years under the SSP2-4.5 scenario. It was found that the extreme cold index TN10P will dramatically decrease while TNn will increase. Among the extreme warm indices, TX90P will considerably increase, and TXx will also augment but to a lesser extent as compared to TX90P. However, DTR displayed small variations. Our DTR projections were different from those reported by Xiang et al. (2021). Such difference may be the effect of Southwest China complex topography and zoning differences. In addition to variations in projection trends for annual rates of change of the 17 ETIs that were obtained for the period 2021 to 2040 using the three models and MEM-9, we also calculated the ranges of annual change rates of these 17 ETIs using different models. We expect to gain a thorough understanding of the change rates of different ETIs in the future. Among the projections of extreme cold and heat indices obtained using the three models and MEM-9, the MEM-9 projections were generally larger, which agreed with data reported by Luo et al. (2020) and Fan et al. (2020).
Previous research has indicated that the signal-to-noise ratio observed under high emissions scenarios is usually larger than that obtained under low emissions scenarios. Recent studies on the variation trends of ETIs in the major regions of China have shown insignificant differences between scenarios. Therefore, in order to determine near future projections (from 2021 to 2040), we chose the SSP2-4.5 scenario, which better represents China’s national conditions. However, in the present study, we only chose one scenario and one future period. Considering the spatial resolution of the study area, we performed data processing by statistically downscaling the data from CMIP6. However, this method may increase model projection uncertainty, which can be addressed by bias correction, dynamic downscaling, and regional model ensemble. These data processing methods are expected to enhance projection reliability, and they will be further developed and improved as part of future research.
6 CONCLUSIONS
Daily temperature observations at 93 weather stations in Southwest China from 1969 to 2020 and data from nine models in CMIP6 from 1995 to 2040 were used to calculate 17 ETIs. First, the interannual variation of extreme temperature events and the averages of 17 ETIs in the four subzones were analyzed from 1969 to 2020. Then, the models’ simulation performance was assessed by plotting the Taylor diagram and calculating skill score. In order to reduce the projection uncertainty, we selected the three models plus MEM-9, which had a better simulation performance. Finally, these models were used to project and compare the following analysis in Southwest China from 2021 to 2040 under the SSP2-4.5 scenario: annual change rates of 17 ETIs, spatial and temporal variation trends of four representative ETIs, and the average variations of these four ETIs in different subzones. According to our results, we formulated the following conclusions:
(1) From 1969 to 2020, the 8 ECTIs and the 8 EWTIs were mutually confirmed, which consistently indicated a warming trend. DTR showed a decreasing trend, indicating a narrowing monthly average difference between the daily lowest and highest temperatures. Varying degrees of warming were also observed in the four subzones. Regions in higher altitudes and sparsely inhabited displayed larger temperature differences due to the effects of geographical partitioning and human activities. In these regions, fewer extreme warm events were observed, while extreme cold events were more frequent.
(2) Taylor diagram and skill score analysis showed that CESM2, CanESM5, ACCESS-CM2, and MEM-9 had a relatively better simulation performance for the 17 ETIs. Under the SSP2-4.5 scenario, the extreme cold events in Southwest China will continuously decrease in the next 20 years, while the extreme warm events will continuously increase. Among the three models and MEM-9, MEM-9 produced larger ECTIs projections, while the smallest were obtained with CanESM5. The highest and smallest EWTIs projections were obtained using MEM-9 and ACCESS-CM2, respectively. However, the three models and MEM-9 had little differences in DTR predictions.
(3) The results of temporal change trends of the 4 ETIs representing extreme temperature events indicated CSDI might decrease, while WSDI, TMINmean, and TMAXmean might increase in Southwest China in the next 20 years under the SSP2-4.5 scenario. Moreover, CSDI presented a smaller decrease in amplitude as compared with the amplitude increase of WSDI. The amplitude increase of TMINmean was slightly smaller than that of TMAXmean. The lowest and highest CSDI and WSDI projected values were obtained with MEM-9 and ACCESS-CM2, correspondingly. And the lowest and highest TMINmean and TMAXmean projected values were achieved using ACCESS-CM2 and CESM2, in that order. The results of spatial variation trend showed that the CSDI values projected by CESM2, CanESM5, and ACCESS-CM2 decreased in space as a whole, and that projected by MEM-9 generally increased. The values of WSDI, TMINmean, and TMAXmean projected by the three models and MEM-9 increased in space as a whole, though the increase in amplitude varied from one part to another.
(4) According to the projected averages of the 4 ETIs in the subzones, the lowest, highest, and intermediate higher TMINmean and TMAXmean were located in the ZP, the YGP, and the SB, respectively. Except for CESM2, the lowest and highest CSDI values projected by the remaining three models corresponded to the ZP and the YGP, in that order. However, the projected WSDI values varied significantly across the models. Compared with the 4 ETI mean values corresponding to 1969–2020, the persistence and average state of extreme cold and warm events in different subzones showed that future change trends depend on altitude.
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Based on Bayesian model averaging (BMA), the suitability and characteristics of the BMA model for forecasting 2-m temperature in Xinjiang of China were analyzed by using the forecast results of the Desert Oasis Gobi Regional Analysis Forecast System (DOGRAFS) and Rapid-refresh Multiscale Analysis and Prediction System (RMAPS) developed by the Urumqi Institute of Desert Meteorology of the China Meteorological Administration, China Meteorological Administration–Global Forecast System (CMA-GFS) developed by the China Meteorological Administration, and the European Center for Medium-Range Weather Forecasts (ECMWF) developed by the European Center. The results showed that (1) the weight of ECMWF to the 2-m temperature forecast is maintained at about 0.6–0.7 under different lengths of training periods, and the weight of other model products is below 0.15. (2) The forecasts of each model at the four representative stations are quite different, and the maximum forecast error reaches 6.9°C. However, the maximum error of the BMA forecast is only about 2°C. In addition, the forecast uncertainty in southern Xinjiang is greater than that in northern Xinjiang. (3) Compared with multi-model ensembles, the overall prediction performance of the BMA method is more consistent in spatial distribution. Additionally, the standard deviation and correlation coefficient between the BMA forecast and observation were greater than 0.98, and the RMSE decreased significantly. It is feasible to use the BMA method to correct the accuracy of the 2-m temperature forecast in Xinjiang.
Keywords: regional numerical model, Xinjiang, 2-m temperature, BMA model, probability forecast
1 INTRODUCTION
The Xinjiang Meteorological Service has recently strengthened the construction of a fine grid forecast platform based on multi-model forecasts. However, due to the uncertainty of initial field data and model parameters, meteorological factors such as temperature and precipitation forecast by numerical models differ from the observations. There are also differences in the forecast of meteorological elements such as temperature among model products, making it difficult for a single model product to fulfill the actual forecast needs (Cai and Yu, 2019; Peng and Zhi, 2019).
Forecasts based on multi-model ensembles can improve the performance of model prediction and be used in probabilistic forecasts. Many studies have investigated the Bayesian model averaging (BMA) method based on ensemble forecasts (Tan and Jiang, 2016; Ji et al., 2019; Lee and Shin, 2020). For example, Raftery et al.(2005) applied the BMA method to the ensemble of dynamic meteorological models for the first time to forecast normal variable temperature and sea level pressure and found that the performance of the BMA method was significantly better than that of the traditional ensemble mean method, and the root mean square error (RMSE) of the BMA method was 8% lower than that of the ensemble mean method. Zhiand Wang(2015) used the BMA method to estimate the temperature in East Asia from 2011 to 2035. They pointed out that the temperature generally increased under the representative concentration pathway 4.5 (RCP4.5) scenario, and the increase in the ocean was relatively small. Ji and Zhi(2017) studied the extension period forecast of 2-m temperature in East Asia via the BMA method and concluded that the BMA method significantly improved the ensemble forecast performance.
Additionally, the BMA method is better than the traditional method in simulating observations and can reduce the uncertainty of model simulation. Miao et al. (2014) used the BMA method, simple model averaging, and reliability ensemble averaging (REA) to evaluate the ability of the coupled model intercomparison project phase 5 (CMIP5) model on interannual and interdecadal changes in the surface temperature in Eurasia. The results demonstrated that the BMA and REA methods significantly improved the ability of model simulation, and the BMA method had the lowest uncertainty. Brunner et al. (2020) and Zhao et al. (2020) have pointed out that compared with traditional methods, the BMA method can better reduce the deviation between the model and observation and better capture uncertainty and local climate features. In the statistical downscaling of large-scale variables, Zhang and Yan(2015) pointed out that the downscaling method combining the optimum correlation method and the BMA method has a better performance than multiple linear regression. Fang and Li(2016) estimated the uncertainty, weight, and variance of the paleoclimate modeling intercomparison project phase 3 (PMIP3) and CMIP5 model simulations by using the BMA method. They found that the BMA method considers the simulation capability of different models and generates more reliable past time variations over long periods based on multi-model ensembles and training sets. Javanshiriet al(2021) noted that the BMA method was more accurate, skilled, and reliable than the ensemble model output statistics-censored shifted gamma method and had better resolution but poor discrimination in predicting the probability of high precipitation events.
The terrain of Xinjiang is relatively complex. The regional numerical model assimilates local observation data and satellite data, which can better simulate and forecast extreme weather, and has advantages in forecasting some small-scale regions. However, due to the limitation of computing resources and storage space, the current regional numerical model can only provide deterministic forecasting results. In addition, the forecasting results of global numerical models such as the ECWMF model are relatively stable but cannot simulate and forecast extreme weather well. Therefore, in this study, global numerical models are combined with regional models to investigate the probabilistic forecasts of 2-m temperature in Xinjiang, China, using the BMA method. Section 2 introduces observations and four model products. Section 3 introduces the BMA method. Section 4 selects the best training period of the BMA model, analyzes the temporal and spatial characteristics of BMA deterministic and probabilistic forecasts, and evaluates the BMA forecast performance. Section 5 and Section 6 provide the discussion and main conclusions, respectively.
2 DATA AND METHODS
2.1 Data
The 24 h 2-m temperature forecasts (initialized at 0000 UTC) from May 30 to 31 August 2020, used in this study were obtained from the Xinjiang regional weather forecast system Desert Oasis Gobi Regional Analysis Forecast System (DOGRAFS) and Rapid-Refresh Multiscale Analysis and Prediction System (RMAPS) developed by the Urumqi Institute of Desert Meteorology of China Meteorological Administration, the European Center for Medium-Range Weather Forecasts (ECMWF), and the China Meteorological Administration–Global Forecast System (CMA-GFS) (Zhang and Chen, 2012).
DOGRAFS, which achieved business access in 2015, is based on the weather research and forecast (WRF) model and WRF data assimilation (WRFDA) in version 3.5.1, with triple nested domains and 40 vertical computational layers. The regional resolution of Xinjiang is 9 km, and the regional resolution of Urumqi to Xiaocaohu is 3 km. The atmospheric and surface fields of the National Centers for Environmental Prediction (NCEP) GFS model forecasts were introduced as the initial conditions. The RMAPS is based on the WRF model and WRFDA in version 4.1.2, with two nested domains and 50 vertical computational layers. For the Central Asia region and Xinjiang, China, the regional resolutions are 9 km and 3 km, respectively. The RMAPS takes the atmospheric and surface fields of the NCEP GFS model forecasts as the initial conditions and realizes trial operation at the end of May 2018 (Ju and Liu, 2020; Tang and Li, 2021).
All forecasts are interpolated to 103 observation stations over Xinjiang, China, to evaluate the performance of the BMA method and different model products and their ensemble mean. Figure 1 shows the orographic effects of the study area and the location of observation stations. It can be seen that the distribution of observation stations in the study area is not uniform, and the terrain is complex. In addition, southern Xinjiang is subjected to drought, with large diurnal temperature differences and complex climatic characteristics (Yao et al., 2022). Furthermore, the topography of the initial field of the numerical model is different from the actual topography. All of these factors may have an impact on BMA forecast results (Liu and Ju, 2020; Xin and Li, 2021).
[image: Figure 1]FIGURE 1 | Orographic effects of the study area and the location of observation stations. The blue inverted triangles represent the example stations of X51053, X51705, X51815, and X51855.
2.2 Methods
BMA is a statistical post-processing method for multi-model ensemble forecasts. Its basic principle is to take a weighted average of multi-model forecasts instead of selecting the best members (Raftery et al., 2005). Assuming that [image: image] is the predictor, [image: image] is the observation data during the training period, [image: image] is the forecast result of [image: image] model products, and the probability density function (PDF) of the BMA model is given by
[image: image]
where [image: image] is the conditional probability of predictor [image: image] based on model [image: image], [image: image] is the posterior probability of [image: image] forecasted by model [image: image] for a given [image: image], and [image: image]. In essence, the BMA method uses [image: image] as the weight of model [image: image]. Therefore, the PDF of the BMA model can be expressed as
[image: image]
where [image: image] represents the relative contribution of model [image: image] to the forecast (i.e., the weight of model [image: image]), and [image: image].
For surface temperature forecasting, the normal linear hypothesis with expectation [image: image] and variance [image: image] can be adopted:
[image: image]
where [image: image] and [image: image] can be obtained from the linear relationship between observation [image: image] and forecast [image: image]. Under this assumption, the conditional expectation of predictor [image: image] is the mean value of the BMA forecast:
[image: image]
Eq. 4 can be understood as a deterministic forecast, which can be compared with the mean value of the multi-model ensemble mean or a single-model forecast.
Under the assumption of normal linearity, parameters of the BMA model were solved by using the observation and model data in the training period. For predictor, the estimates of [image: image] and [image: image] can be regarded as a simple deviation correction process. The weights and variance [image: image] can be estimated using the log-likelihood function. Assuming that the forecast error is independent of space (different stations) and time (different forecast times), the log-likelihood function of the BMA model is provided by
[image: image]
where [image: image] represents the length of the training period, and [image: image] and [image: image] represent station [image: image] and time [image: image], respectively. When Eq. 5 estimates the conditional distribution of predictor [image: image] based on model [image: image] (i.e., when a single predictor y is estimated), there is no analytical maximum. Therefore, the expectation-maximization algorithm is used to solve the parameters.
In addition, this study uses the continuously ranked probability score (CRPS), forecast accuracy, relative error analysis, Brier score (BS), RMSE, and Taylor diagram to evaluate the correction and performance of the BMA method on multi-model ensembles.
The CRPS of the multi-model ensemble mean can be written as
[image: image]
where [image: image] and [image: image] are independent copies of a random variable with the distribution function [image: image] and finite first moment (Gneiting and Raftery, 2007).
The forecast accuracy can be expressed as
[image: image]
where [image: image] and the [image: image]represent the forecast and observation of the station [image: image] during the time [image: image], respectively (Cui and Peng, 2002).
Assuming that [image: image] and [image: image] are the probabilities of numerical models (or BMA forecasts) and observations within the ith interval and [image: image] is the number of separated intervals (Fu et al., 2013), then the BS is given by
[image: image]
3 RESULTS
3.1 Selection of the best training period
The BMA method needs to divide data into training and forecast periods, and the length of the training period affects the BMA forecast results (Zhi and Peng, 2018). Therefore, before forecasting the 2-m temperature in the Xinjiang region, determining the best training period for the BMA model is necessary. Because the data duration was 92 days, the first 70 days were selected to participate in the sliding training. The best training period was selected from 41 to 70 days. Figure 2 shows the CRPS scores and RMSEs for different training periods. The CRPS score and RMSE showed the same trends. Before 47 days, the CRPS score and RMSE decreased, but after 47 days, they continued to increase. When the training period was 47 days, the CRPS score and RMSE were the minimum. Therefore, 47 (from June 1 to July 17) days were selected as the training period of the BMA model to conduct deterministic and probabilistic forecasts of 2-m temperature, and the remaining 45 (from July 18 to August 31) days were used to evaluate the BMA forecast and multi-model ensembles (i.e., forecast period).
[image: Figure 2]FIGURE 2 | Verification metrics of (A) CRPS score and (B) RMSE with different training period lengths for the BMA forecast.
Additionally, to demonstrate the contribution of each model to the 2-m temperature forecast under different training periods, Figure 3 shows a boxplot of the weights of the four models in the sliding training periods. Except for ECMWF, the weights of the other three models change little at different training periods, indicating that each model has a relatively stable contribution to 2-m temperature prediction at different training periods. The weight of the ECMWF remained 0.6–0.7, the RMAPS weight was less than 0.1, and the DOGRAFS and CMA-GFS weights were 0.1–0.15. This result indicates that among the 2-m temperature forecasts of 103 stations in Xinjiang, ECMWF forecast information is dominant, followed by DOGRAFS, CMA-GFS, and RMAPS.
[image: Figure 3]FIGURE 3 | Boxplot of weights of four models under different training periods for the BMA forecast.
3.2 Probability forecast of Bayesian model averaging
After selecting the best training period, the deterministic prediction results of the BMA forecast and multi-model ensembles were analyzed. The forecasting performance of the same numerical model at different stations is quite different, and different numerical models have different forecasting performances at the same station. Furthermore, the BMA forecasting error of most stations is within 2°C, but the BMA forecasting error of some stations is more than 2°C. Therefore, in order to compare the results of observation, BMA probabilistic forecast, BMA deterministic forecast, and different numerical model forecasts, four stations where there are great differences among different forecast results are selected as representative stations. Figure 4 shows the BMA probability forecast curve, BMA deterministic forecast, and different model deterministic forecasts and their ensemble mean values of 2-m temperature with a lead time of 24 h at four representative stations. Representative station X51053 is an example (Figure 4A): the observed 2-m temperature is 23.7°C (solid gray line in Figure 4A); the maximum and minimum errors of the four models are 4.9°C and 0.63°C, respectively (solid green and blue lines in Figure 4A); and the prediction error of the multi-model ensemble mean also reached 3.1°C (solid black line in Figure 4A). After the multi-model forecasts are processed by the BMA method, the error between the BMA deterministic forecast and observation is 1°C.
[image: Figure 4]FIGURE 4 | Deterministic forecasts and BMA probability forecasts of 2-m temperature at stations (A) X51053, (B) X51705, (C) X51815, and (D) X51855 with a lead time of 24 h. The black curve and black dotted line represent the BMA probability forecast curve and deterministic forecast curve, respectively. Gray and black solid lines represent the observed and multi-model ensemble mean deterministic forecasts; the remaining solid lines represent the deterministic forecasts of the four models. The shadow represents the probability centered on the BMA deterministic forecast with an interval length of 2°C.
For representative stations X51705, X51815, and X51855, although the minimum error of each model and multi-model ensemble means for the 2-m temperature forecast was 1°C, there were significant differences among the models, and the maximum forecast error reaches 6.9°C. Moreover, the same model had different forecasting performances at different stations. The maximum error of the deterministic BMA forecast weighted by the four models is approximately 2°C, indicating that the BMA method can effectively reduce the error of the observation and model forecasts. Additionally, except for the X51705 station, the observation of the other three representative stations basically falls within the uncertainty range (i.e., the solid gray line is in the shadow). As shown in Figure 4, with the larger interval (i.e., the PDF is flatter), there is a larger possibility that the observation (gray line in Figure 4) is to fall in the interval. In other words, the forecast uncertainty is lower.
To further analyze the regional characteristics of BMA probability forecast uncertainty (i.e., the probability that the forecast error is within 2°C), Figure 5 shows the spatial distribution of 2-m temperature uncertainty with a lead time of 24 h in Xinjiang (i.e., the probability distribution centered on the BMA deterministic forecast of each station and with an interval length of 2°C). The probability of most stations in Xinjiang exceeded 0.6. Among them, the probability of most stations in southern Xinjiang is 0.6 ∼ 0.8 and of some stations is less than 0.6. The probability of most stations in northern Xinjiang is more than 0.7, and the probability of stations in western northern Xinjiang is 0.9–1. This result shows that forecast uncertainty in southern Xinjiang is greater than that in northern Xinjiang. In other words, from low latitude to high dimension, the 2-m temperature uncertainty of the BMA forecast in Xinjiang decreases.
[image: Figure 5]FIGURE 5 | Spatial distribution of 2-m temperature uncertainty of the BMA forecast at each station. (i.e., probability distribution with the BMA deterministic forecast as the center and interval length of 2°C).
3.3 Evaluation of the Bayesian model averaging forecast
According to the aforementioned analysis, different models have different forecast performances on four stations, and the BMA method effectively reduces the forecast error between the observation and models. To compare the performance of the multi-model ensemble mean and BMA forecast for each station, Figure 6 shows the CRPS score of the multi-model ensemble mean and BMA forecast. There are significant differences in the CRPS scores of the multi-model ensemble mean at each station. Among them, the CRPS scores of some stations in central Xinjiang exceeded 4, and some stations exceeded 7. The CRPS scores of other stations were approximately 1–4 and those of some stations were lower than 1 (Figure 6A). In the spatial distribution, the simple ensemble mean method has poor prediction performance, and the CRPS scores differ. The CRPS score of the BMA forecast of some stations was less than 2, and the CRPS score of most stations was less than 1 (Figure 6B). This shows that the forecast performance of the BMA method is better than that of the multi-model ensemble mean. Additionally, the overall prediction performance of the BMA method for spatial distribution is consistent.
[image: Figure 6]FIGURE 6 | Spatial distribution of the CRPS score for (A) multi-model ensembles and (B) BMA forecast of 2-m temperature with a lead time of 24 h.
Figure 7 shows the spatial distribution of RMSE between the observation and BMA deterministic forecasts, four models, and their multi-model ensemble mean in the forecast period. During the forecast period, the RMSE between the observation and DOGRAFS, RMAPS, and CMA-GFS forecasts was above 2°C for most stations in Xinjiang (Figures 7C,D,andF). Among them, the RMSE of the RMAPS forecast at some stations exceeded 3°C, and the RMSE of the CMA-GFS forecast exceeded 5°C. The RMSE between the observation and ECMWF forecast is between 1°C and 4°C at most stations (Figure 7E). Among them, the RMSE of stations in the northwest of northern Xinjiang is between 1 and 3°C. Additionally, the RMSE between the observation and multi-model ensemble mean is between 2°C and 5°C at most stations (Figure 7B). The RMSE between the observation and BMA forecast is reduced to less than 2°C at most stations, and at some stations, it is between 2°C and 3°C. In other words, there is a large forecast error between the observation and the CMA-GFS forecast at most stations in the forecast period, and the forecast error of the other three models remains between 2°C and 5°C. In addition, the multi-model ensemble mean does not reduce the forecast error between the observation and the model. The error between the observation and the BMA forecast in the forecast period was lower than that of each model, and there was no obvious regional difference.
[image: Figure 7]FIGURE 7 | Spatial distribution of RMSE between (A) BMA, (B) multi-model ensemble mean, (C) DOGRAFS, (D) RMAPS, (E) ECMWF, (F) CMA-GFS and observed 2-m temperature during the forecast period.
Furthermore, Figure 8 shows the box plot of the Brier score, relative error and forecast accuracy of BMA forecast, and different model forecasts of 2-m temperature at observation stations during the forecasting period. As shown in Figure 8, the distribution of Brier score, relative error, and forecast accuracy of single model forecasts are scattered, which means that the accuracy of single model forecasts at different stations is significantly different in the forecasting period. During the forecasting period, the distribution of the Brier score, relative error, and forecast accuracy of BMA forecasts is concentrated. The Brier score and relative error of most stations are also close to 0, and the median forecast accuracy is close to 0.8. Compared with a single model forecast, the accuracy of BMA forecasts is basically consistent in spatial distribution better than single model forecasts.
[image: Figure 8]FIGURE 8 | Box plot of the (A) Brier score, (B) relative error, and (C) forecast accuracy analysis of the BMA forecast and different model forecasts of 2-m temperature at observation stations during the forecasting period.
In addition, to make a more intuitive comparison between the BMA forecast and different models’ (and multi-model ensemble mean) forecasts of 2-m temperature in the Xinjiang, Figure 9 shows the Taylor diagram of the forecasts and observation (the mean of the forecast period at each station). The distance from different forecasts to the observation (the hollow point on the abscissa) represents the RMSE of the observation and forecast. The distance from different forecast results to the origin of the coordinate represents the ratio of the standard deviation of the forecast and observation. The angle between different forecasts and the horizontal axis represents the correlation coefficient between forecast and observation. The abscissa represents the correlation coefficient of forecast and observation. The correlation coefficient between the deterministic forecast of the four models, and the observation is approximately 0.9, RMSE is above 0.5, and the ratio of standard deviation exceeds 1. Compared with the forecast of each model, the multi-model ensemble mean only improves in correlation. However, the standard deviation and correlation coefficient between the BMA forecast and observation were over 0.98, and the RMSE decreased significantly.
[image: Figure 9]FIGURE 9 | Taylor diagram of BMA and multi-model forecast of 2-m temperature during the forecast period.
These results indicate that the 2-m temperature forecasts of the four models and their ensemble mean differ from the observations in dispersion degree and spatial distribution. The BMA method significantly reduces the difference, and its forecast is closer to the observation.
4 DISCUSSION
Notably, the regional numerical models adopted in this study are the forecast products commonly used by the Xinjiang Meteorological Bureau for daily weather forecasting. In this study, we evaluated the performance and error of four models for 2-m temperature forecasts in the Xinjiang region while conducting probability forecasts based on the BMA method. In general, the ECMWF was better than the other three regional numerical models. Additionally, the deterministic forecast of the 2-m temperature in Xinjiang by different models is inconsistent in different regions. The BMA method makes up for the spatial uniformity of the model forecast, effectively reduces the RMSE of the model forecast and observation, and provides probabilistic prediction results.
In addition, BMA forecast reliability (forecast uncertainty) can be judged using the BMA deterministic forecast and probability forecast results. Zhi and Peng(2018) and Peng and Zhi(2019) have studied the 2-m temperature probability forecast in different seasons in East Asia and pointed out that the forecast uncertainty of land is greater than that of marine areas and that of high-latitude areas is greater than that of low-latitude areas. In the forecast of 2-m temperature in Xinjiang, the uncertainty of the BMA forecast in southern Xinjiang is greater than that in northern Xinjiang, which may be caused by drought and the desert in southern Xinjiang.
5 CONCLUSION
In this study, first, based on the deterministic forecasts of the DOGRAFS, RMAPS, ECMWF, and CMA-GFS models, an analysis of the applicability of the BMA method for 2-m temperature forecasts in Xinjiang, China, was conducted. Second, the deterministic and probabilistic forecast characteristics of the BMA method were discussed, and the BMA forecast and different models (and their ensemble mean) were evaluated and compared. The results showed the following:
(1) During the sliding training period, the CRPS score and RMSE exhibited the same trend. The CRPS score and RMSE decreased before day 47 but increased after day 47. Therefore, 47 days was the training period selected for the BMA model. In addition, the contribution of each model to the 2-m temperature forecast was relatively stable under different training periods. Among them, the weight of ECMWF basically remains 0.6–0.7, and the weight of the other models is below 0.15.
(2) Although the minimum error of each model and multi-model ensemble means for the 2-m temperature forecast of the four representative stations is only 0.63°C, there is a difference in the forecast of each model, and the maximum forecast error reaches 6.9°C. Moreover, the same model had different forecasting performances at different stations. However, the maximum error of the BMA forecast is only approximately 2°C, which effectively reduces the error of observation and model forecast. Regarding the uncertainty of the forecast, the probability of most stations in southern Xinjiang is 0.6∼0.8, and the probability of most stations in northern Xinjiang is above 0.7, indicating that the uncertainty of the BMA forecast in southern Xinjiang is greater than that in northern Xinjiang.
(3) Spatial distribution of the CRPS score of the multi-model ensemble mean was significantly different, with the CRPS score ranging from 1 to 7. The CRPS score of the BMA method at each station was below 2, indicating that the overall forecast performance of the BMA method is consistent in space. During the forecast period, the RMSE of the observations and the four model forecasts at most stations were above 2°C, and the largest RMSE exceeded 5°C. However, the RMSE of the observations and BMA forecasts at most stations are within 2°C. In the forecast period, the RMSE of the observation and BMA forecasts were lower than those of the other models, and there was no obvious regional difference. Additionally, the standard deviation and correlation coefficient between the observation and BMA forecasts are more than 0.98, and the RMSE decreases significantly.
Machine learning algorithms such as the support vector machine, light gradient boosting machine, and long short-term memory have been widely used in forecasting meteorological elements (Wang et al., 2018; Fan et al., 2019; Hamid et al., 2020; Qadeer et al., 2020). Compared with machine learning algorithms, statistical post-processing methods such as BMA are relatively easy to model but not sufficiently flexible (Javanshiri et al., 2021). Further research could compare and combine BMA and other statistical methods with machine learning algorithms to evaluate the post-processing methods suitable for Xinjiang. These conclusions provide theoretical support for the post-processing of regional numerical models in Xinjiang.
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There is evidence that the interannual relationship between El Niño events and the following Indian summer monsoon rainfall (ISMR) has weakened with the more frequent occurrence of central Pacific (CP) El Niño events. We revisited the following ISMR responses to the two different types of El Niño events using observations and reanalysis datasets. Our results show that the ISMR anomalies associated with eastern Pacific (EP) and CP El Niño events are different, with decreased (increased) rainfall in early summer (June–July) following EP (CP) El Niño events. This is primarily attributed to the different responses to anomalous warming of the sea surface temperature (SST) in the northern Indian Ocean (NIO), which is characterized by double peaks in the warming SST during EP El Niño events, but only one peak during CP El Niño events. For EP El Niño events, the second SST warming peak in early summer contributes to the lower level antisymmetric wind pattern over the tropical Indian Ocean (TIO), which delays the onset of the Indian summer monsoon (ISM) and decreases the supply of moisture to India, implying a decrease in the ISMR. By contrast, for CP El Niño events, the cooling SST over the western TIO directly induces a significantly positive meridional SST gradient and drives the lower level southwesterly wind anomalies, resulting in an eastward shift in the decreased antisymmetric winds over TIO and the early onset of ISM. These circulation features are associated with anomalous upper-level divergence over TIO and sinking over India, jointly leading to the excess ISMR in early summer. These results suggest that, in addition to the key role of the warming of the NIO SST, cooling of the SST over the western TIO during CP El Niño events should be considered carefully in understanding the El Niño–ISMR relationship.
Keywords: eastern Pacific El Niño, central Pacific El Niño, Indian summer monsoon rainfall, northern Indian Ocean warming, antisymmetric wind pattern
1 INTRODUCTION
The Indian summer monsoon rainfall (ISMR), which occurs in June–September (JJAS), is driven by the Indian summer monsoon (ISM; also known as the South Asian summer monsoon). The ISMR accounts for more than 75% of the total annual rainfall in India (Parthasarathy et al., 1994) and is crucially important to agricultural production and economic development over the subcontinent. As an important component of the global monsoon system, the ISM is characterized by strong southwesterly winds over the northern Indian Ocean (NIO) and the South Asian subcontinent in JJAS (Schott et al., 2009). However, due to the great uncertainty about the ISM and ISMR onset and intensity, it is challenging to accurately forecast for decades.
Previous studies have shown that the variability of ISMR can be linked to the activities of mid- and high-latitude systems (e.g., Krishnamurthy and Krishnamurthy, 2014; Malik et al., 2017) and coupled air–sea interactions in the tropics (e.g., Shukla and Paolino, 1983; Yang et al., 2007; Kucharski et al., 2008; Schott et al., 2009). Among these factors, the El Niño–Southern Oscillation (ENSO) is regarded as one of the most important on an interannual timescale, with the ENSO negatively (positively) correlating with the ISMR in its developing (decaying) phase (Mooley and Parthasarathy, 1983; Shukla and Paolino, 1983; Parthasarathy and Pant, 1985; Webster et al., 1998; Kumar et al., 2006). During the developing phase of El Niño events, the weakening and eastward shift in the Walker circulation anomalies caused by the warming sea surface temperature (SST) anomalies (SSTAs) in the tropical eastern and central Pacific induces significant anomalous sinking over the Indo-Pacific warm pool and suppress convective activities in situ, leading to a decrease in the ISMR (Shukla and Paolino, 1983). This is the so-called “atmospheric bridge” mechanism (Klein et al., 1999; Alexander et al., 2002; Lau and Nath, 2003).
El Niño events can also modulate the following ISM and its related ISMR anomalies by influencing the SSTAs in the tropical Indian Ocean (TIO; Terray et al., 2003; Park et al., 2010). El Niño events exert an impact on the anomalous warming of the SST in the southwestern Indian Ocean (SWIO) through the westward propagation of the downwelling ocean Rossby wave responses to the anomalous anticyclonic wind pattern over the tropical southeastern Indian Ocean induced by El Niño events (Xie et al., 2002; Xie et al., 2009). Such sustained warming of the SWIO causes south-trending SSTA gradients and induces a cross-equatorial antisymmetric pattern of atmospheric anomalies during the following spring and early summer (Xie et al., 2002; Wu et al., 2008; Wu and Yeh, 2010), which gives rise to a pronounced second warming peak in the SSTA over the NIO via a positive wind–evaporation–SST (WES) feedback mechanism (Du et al., 2009). These atmospheric circulations in the TIO inhibit the southwest ISM and reduce ISMR in early summer following El Niño events (Lü and Zheng, 2017). Park et al. (2010) found a greater number of rainfall anomalies over India in late summer following El Niño events through the “delayed effect” of these events.
However, the interannual relationship between El Niño events and the ISMR is unstable over the long term (Kripalani and Kulkarni, 1997) and has weakened since the 1990s (Kumar et al., 1999; Yang and Huang, 2021). This unstable relationship might be attributed to the more frequent occurrence of central Pacific (CP) El Niño events in recent decades (Kumar et al., 2006; Feba et al., 2021). In contrast with the conventional eastern Pacific (EP) El Niño events in which the warmest SSTA is centered in the eastern equatorial Pacific, CP El Niño events are primarily featured by the warmest SSTA in the central tropical Pacific and cooling SSTAs in the western and eastern tropical Pacific (Ashok et al., 2007; Kao and Yu, 2009; Ren and Jin, 2011; Xu et al., 2012; Xu et al., 2014; Capotondi et al., 2015; Xu et al., 2017; Xu et al., 2020).
EP and CP El Niño events have different impacts on the global climate (Ashok et al., 2007; Kug et al., 2009; Xu et al., 2013; Wang et al., 2019; Xu et al., 2019; Wang et al., 2021), including the Indian Ocean and surrounding regions (Kumar et al., 2006), presumably due to their distinct diabatic heating. For example, Tao et al. (2014) found that the weaker and more insignificant Indian Ocean basin mode (IOBM) is found in the following spring of CP El Niño events as a result of the absence of the tropospheric temperature mechanism and the related ocean dynamic process. Dogar et al. (2019) showed that CP El Niño events cause a decrease in the South Asian rainfall anomalies through modulation of the Hadley and Walker circulations, but these rainfall anomalies are weaker than that of EP El Niño events. Chowdary et al. (2017) also showed that the excess ISMR is mainly controlled by the rapid decay rate of the SSTAs in the TIO induced by CP El Niño events. In addition, Wang et al. (2013) emphasized that the late (early) onset of the Asian summer monsoon in the decaying years of EP (CP) El Niño events is determined by the significant (insignificant) warming of the southern Indian Ocean in the following spring. These evidence show the different impacts on the climate over the Indian Ocean associated with the two types of El Niño event, although the relationship between the variability of the ISMR and the diversity of El Niño events is not yet fully understood, especially the role of the anomalous SST in the TIO. Given the importance of the ISMR and the different impacts of the diversity of the El Niño on the climate in the Indian Ocean, we investigated whether ISMR shows different responses to these two types of El Niño event with the aim of clarifying the related physical mechanisms.
The remainder of the paper is organized as follows. The datasets and methods are briefly introduced in Section 2. Section 3 gives the main results of this study, including the different responses of the ISMR and the related atmospheric circulation anomalies, the role of the SSTA in the western NIO and the possible physical mechanisms. Our summary and discussion are presented in Section 4.
2 DATA AND METHODS
2.1 Data
The global monthly SST data was obtained from the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST; Rayner et al., 2003) dataset with a horizontal resolution of 1° × 1°. Monthly three-dimensional wind datasets, which are available at a horizontal resolution of 2.5° × 2.5° and extend from 1000 to 10 hPa with 17 vertical pressure levels, were extracted from the United States National Center for Environmental Prediction–National Centers for Atmospheric Research (NCEP-NCAR) reanalysis products (Kalnay et al., 1996). Monthly rainfall data for all India were provided by the Indian Institute of Tropical Meteorology–Indian regional/subdivisional monthly rainfall (IITM-IMR; Parthasarathy et al., 1994) dataset. The anomaly in each variable was obtained by subtracting the climatological value from 1951 to 2016. All the monthly mean variables were linearly detrended and then smoothed by taking three-month running averages to exclude the subseasonal variability.
2.2 Classification of eastern Pacific and central Pacific El Niño events
Following the criterion of the NOAA, an El Niño event is defined by a three-month running Niño3.4 (5°S–5°N, 120°W–170°W) SSTA index greater than or equal to +0.5 K for at least five consecutive overlapping time periods. Because we mainly focused on moderate and stronger El Niño events, a total of 15 El Niño events were identified during the time period 1951–2016 (Table 1) based on peak values of the Niño3.4 SSTA greater than +1.0 K. We then determined the type of these selected El Niño events based on the consensus of three identification methods, including the Niño3/El Niño Modoki index (EMI) method of Ashok et al. (2007), the Niño3/Niño4 method of Yeh et al. (2009) and the EP/CP-index method of Kao and Yu (2009). Using the Niño3/EMI method, El Niño events were classified as central (eastern) Pacific types when the DJF mean EMI value was greater (less) than that of the Niño3 (5°S–5°N, 90°W–150°W) SSTA index. The EMI is defined as:
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where the square brackets with a subscript represent the area-averaged SSTA over the central (10°S–10°N, 165°E–140°W), eastern (15°S–5°N, 110°W–70°W) and western (10°S–20°N, 125°E–145°E) tropical Pacific, respectively.
TABLE 1 | Major El Niño events during the time period 1951–2016 and their types identified by the majority consensus from the Niño3/Niño4 method, the EMI method and the EP/CP-index method.
[image: Table 1]With the Niño3/Niño4 method, El Niño events are classified as CP (EP) types when the DJF-averaged values of the Niño4 (5°S–5°N, 160°E–150°W) index are greater (less) than those of the Niño3 index.
Kao and Yu (2009) applied a combined regression–empirical orthogonal function (EOF) analysis to identify the EP and CP types of El Niño events and referred to this as the EP/CP-index method. In this method, El Niño events are classified as CP types when the DJF-averaged principal components of the EOF for the residual SSTA after removing the anomalies regressed with the Niño1+2 (0°–10°S, 80°W–90°W) SST index are greater than their counterparts after removing the anomalies regressed with the Niño4 index, and vice versa for the EP events. According to the majority consensus shown in Table 1, eight of the 15 major El Niño events were of the EP type and seven were of the CP type events.
3 RESULTS
3.1 Contrasting responses of the Indian summer monsoon rainfall to the two types of El Niño event
To validate the rationality of the classification method for the two types of El Niño event used in this study, Figure 1 shows the temporal variation of the equatorial Indo-Pacific Ocean SSTA averaged between 5°S and 5°N associated with the EP and CP El Niño events. The center of the warming EP El Niño-related SSTA is observed in the eastern-central equatorial Pacific, with the warmest SSTA of +2.0 K to the east of 120°W (Figure 1A). By contrast, the significant anomalous SST warming during CP El Niño events shifts westward to the west of 150°W and its corresponding center with a maximum positive SSTA of +1.0 K is much weaker than that of the EP El Niño events (Figure 1B). Based on a significant SSTA greater than +0.5 K, a warm SSTA related to an EP (CP) El Niño event develops in April (June) of the developing year, peaks in winter and subsequently decays after the following June (April), indicating that the positive SSTA starts later and ends earlier during CP El Niño events, with a duration four months shorter and a decay rate much faster than for EP El Niño events.
[image: Figure 1]FIGURE 1 | Time–longitude cross-section of the composite sea surface temperature anomaly (SSTA; units: K) at the equator (averaged from 5°S to 5°N) for (A) EP El Niño events and (B) CP El Niño events, where (0) indicates the El Niño developing year and (1) represents the decaying year. White contours indicate regions with a SSTA greater than +0.5 K and gray dots denote a SSTA statistically significant at the 90% confidence level.
Differences also exist in the strength and timing of the warming SSTA responses in the equatorial Indian Ocean to the two types of El Niño event. Anomalous equatorial Indian Ocean SST warming associated with EP El Niño events is stronger and lasts longer than that of CP El Niño events (Figure 1), highlighting the stronger IOBM and the subsequent air–sea interactions during EP El Niño events. This result indicates that EP El Niño events are followed by the IOBM until the following summer, but the warming SSTA related to CP El Niño events only lasts until the following spring and is insignificant in summer, consistent with the results of Tao et al. (2014). The classification method therefore effectively reflects the differences between EP and CP El Niño events, especially their different impacts on the SSTA in the equatorial Indian Ocean.
To investigate the different impacts of EP and CP El Niño events on rainfall anomalies over India, Figure 2 shows composites of the all-Indian rainfall anomalies during the decaying years of the two types of El Niño event. In the climatology, the ISMR in JJAS contributes as much as 75% to the annual rainfall over India, consistent with the results reported by Parthasarathy et al. (1994). It is clear that the larger standard deviations of the ISMR occur in JJAS (Figure 2, error bars), indicating that the ISMR also shows the most pronounced interannual variation. For the decaying years of EP El Niño, the ISMR shows a deficit in early summer (June–July), a surplus in late summer (August–September) and peaks in September, consistent with previous studies (Park et al., 2010; Lau and Nath, 2012; Lü and Zheng, 2017). By contrast, the ISMR is shows a greater surplus during the following JJAS of CP El Niño events and the peak in the ISMR anomalies occurs a month earlier than the peak in EP El Niño events.
[image: Figure 2]FIGURE 2 | Climatology (1951–2016) of the all-India monthly rainfall (green bars; units: mm day−1) and the anomalies (units: mm day−1) of the all-India monthly rainfall during the decaying years of EP El Niño events (red) and CP El Niño events (blue). The gray error bars indicate one standard deviation.
The variations in the ISMR can be very different during the following JJAS, with suppressed (enhanced) rainfall in early summer for EP (CP) El Niño events (Figure 2). The opposite signs of the early summer rainfall over India associated with two the types of El Niño event imply that the corresponding onset time of the ISM also shows contrasting differences, with a late (early) onset of the ISM for EP (CP) El Niño events. The responses of the ISMR to the two types of El Niño event are significantly different in early summer. The summer in El Niño decaying years is therefore divided into early (June–July, JJ) and late (August–September, AS) summer in the following analysis to explore the anomalous atmospheric circulation and SST and the related physical mechanisms.
3.2 Anomalous atmospheric circulation during the following summer for the two types of El Niño event
After inspecting the equatorial Indo-Pacific Ocean SSTAs related to the two types of El Niño event and their different impacts on the following ISMR, we investigated the associated atmospheric circulation anomalies over the tropics. Figure 3 shows the EP and CP El Niño composites of the 850 hPa winds and the relative vorticity anomalies in early and late summer. During the decaying years of EP El Niño events, an antisymmetric wind structure over the TIO is observed in early summer, with anomalous northeasterly flow to the north of the equator and anomalous northwesterly flow to the south of the equator (Figure 3A). Such an antisymmetric wind pattern is forced by the sustained warming of the SST over the SWIO associated with the El Niño-induced downwelling oceanic Rossby waves (Masumoto and Meyers, 1998; Du et al., 2009; Wu and Yeh, 2010). Anomalous northeasterly winds over the western NIO (WNIO) inhibit the southwest summer monsoon and reduce surface evaporation, thus delaying the onset of the ISM, leading to prominent warming of the SST over the NIO via the positive WES feedback (Xie and Philander, 1994). As a result of the westward expansion of the strong lower level easterlies over the NIO, less moisture is transported to South Asia and weak negative relative vorticity anomalies appear over the South Asian subcontinent (Figure 3A), which also reduce early summer rainfall over India (Figure 2). In late summer, however, the antisymmetric wind pattern is weakened and shifted eastward; weak westerly anomalies are observed over the WNIO (Figure 3B), indicating the start of the ISM. These warm and humid southwesterly winds substantially enhance the supply of moisture to South Asia and lead to stronger moisture convergence over India and significantly positive relative vorticity anomalies in situ, resulting in excess rainfall in this sector during the following AS season of the EP El Niño events.
[image: Figure 3]FIGURE 3 | (A) June–July (JJ) and (B) August–September (AS) mean wind anomalies at 850 hPa (vectors; units: m s−1) and their related relative vorticity anomalies (shading; units: 10−6 s−1) for decaying EP El Niño events. (C) and (D) are the same as (A) and (B), but for CP El Niño events. Only vectors with magnitudes greater than 0.2 m s−1 are shown; cyan dots indicate relative vorticity anomalies above the 80% significance level.
During the early summer of the CP El Niño events, the lower level atmospheric circulation anomalies are similar to those for the late summer EP El Niño events, with an eastward shift of the weakened antisymmetric wind pattern over the TIO (Figure 3C). Significantly anomalous southwesterly winds over the WNIO cause the easterly anomalies to retreat eastward to the eastern Arabian Sea and then transport more moisture to South Asia. Significantly positive relative vorticity anomalies are also found over the south of the Indian subcontinent, leading to enhancement of the ISMR. This indicates that the ISM starts in JJ season when the onset time for the CP El Niño is about two months earlier than that for the EP El Niño. Two months later, anomalous southwesterly flow over the WNIO is gradually intensified and is more significant in AS season, along with the disappearance of the antisymmetric wind pattern over the TIO (Figure 3D). Over India, significant convergence of the relative vorticity anomalies and the increase in the amount of moisture transported by the anomalous southwesterly winds give rise to more rainfall in situ (Figure 2).
The velocity potential and divergence wind can be used to reflect the large-scale features of divergent motion (Tanaka et al., 2004). Figure 4 shows the differences between the velocity potential and divergence wind anomalies between 200 and 850 hPa in early and late summer related to EP and CP El Niño events. For the EP El Niño events, the most significant and strongest upper level convergence anomalies are centered over the western equatorial Pacific in early summer (Figure 4A), collocating with significantly negative local SSTAs (Figure 1A), whereas insignificant upper level divergence anomalies are located over the TIO (Figure 4A), along with the lower level antisymmetric wind pattern. In late summer, however, these upper level divergence anomalies are enhanced and are centered over the eastern TIO (Figure 4B). This divergent circulation indicates ascending motion over the TIO, which favors excess rainfall over India in AS season. By contrast, for CP El Niño events, the significant upper level divergence anomalies (and, by implication, ascending motion) in early summer are centered over the western TIO (Figure 4C), whereas the anomalies in late summer extend into the maritime continent and are progressively intensified (Figure 4D). Compared with the EP El Niño events, the most prominent difference in the upper level circulation related to CP El Niño events is the strong divergent anomalies over South Asia, which highlight the stronger ascending motion and higher rainfall during the following summer of CP El Niño events, especially in early summer. These results confirm the late onset of the ISM and lower ISMR in early summer for EP El Niño events, but a normal onset of the ISM and higher ISMR for CP El Niño events.
[image: Figure 4]FIGURE 4 | (A) June–July (JJ) and (B) August–September (AS) vertical shear of the divergence wind (vectors; units: m −1) and velocity potential (VP, shading; units: 106 m2 s−1) anomalies between 200 and 850 hPa for decaying eastern Pacific (EP) El Niño events. (C) and (D) are the same as (A) and (B), but for CP El Niño events. Only vectors with magnitudes greater than 0.2 m s−1 are shown; cyan dots indicate relative vorticity anomalies above the 80% significance level.
To further identify the possible connection between the ISMR and the local meridional cells associated with EP and CP El Niño events, Figure 5 shows composites of the latitude–height cross-sections of the wind and geopotential height anomalies averaged over India between 65 and 85°E. An anomalous clockwise circulation in early summer is observed over the Indian subcontinent for EP El Niño events (Figure 5A), with significant anomalous descending (ascending) motion over northern India (the TIO), suppressing convective activity over India and leading to less rainfall, despite the slightly converging anomalies of the water vapor flux (figure not shown). The upper level southerly wind and southward geopotential height gradient anomalies over India are also related to the anomalous southwesterly winds, implying a delay and weakening of the ISM. Two months later, the significant anomalous sinking over northern India disappears and changes to ascending motion in the mid-troposphere from 300 to 500 hPa (Figure 5B). The inverted wind direction and geopotential height gradient indicate the occurrence of upper level northeasterly wind anomalies as well as the onset of the ISM, which both favor surplus rainfall in India in late summer.
[image: Figure 5]FIGURE 5 | (A) June–July (JJ) and (B) August–September (AS) for the meridional circulation (vectors; units: m s−1) and geopotential height (shading; units: m) anomalies averaged from 65 to 85° for decaying eastern Pacific (EP) El Niño events. (C) and (D) are the same as (A) and (B), but for CP El Niño events. The vertical pressure velocity is multiplied by a factor of −50 for clarity. Gray crosses indicate geopotential height anomalies above the 80% significance level.
By contrast, for CP El Niño events, significant anomalous ascending motion over India and the TIO are present in both early and late summer, along with upper level northerly wind anomalies, small lower level southerly wind anomalies (Figures 5C,D) and strong water vapor flux convergence anomalies (figure not shown). These types of circulation contribute to the onset of the ISM. The anomalous lower level southwesterlies with local convergence and ascending anomalies in late summer are stronger than those in early summer (Figures 5C,D). As a result, they can transport more moisture to India, enhancing the ISMR.
We have shown that the two types of El Niño event have different influences on the timing of the onset of the following ISM and ISMR. This is clearly due to the associated atmospheric circulation anomalies over the TIO in early summer. For EP El Niño events, India is influenced by anomalous easterlies related to the lower level antisymmetric wind pattern over the TIO, which delay the onset of the ISM and then suppress the transport of moisture to India, resulting in less-than-normal ISMR in early summer. By contrast, for the CP El Niño events, the enhanced southwesterly flow over the WNIO and weakened antisymmetric wind pattern over the TIO facilitate the onset of the ISM in early summer and also transport more moisture to South Asia. There is anomalous ascending motion over India, which boosts precipitation processes, leading to an increase in the ISMR.
3.3 Role of the sea surface temperature anomalies in the western northern Indian Ocean
Previous studies have shown that El Niño events can modulate the ISM via the subsequent warming of the SST in the TIO (Alexander et al., 2002; Lau and Nath, 2003; Du et al., 2009). We also found remarkable differences in the strength and timing of the warming SSTA in the equatorial Indian Ocean in response to the two types of El Niño event (see Figure 1). We therefore further investigated the importance of the El Niño-associated SSTA patterns in the TIO in determining the atmospheric circulations in the TIO during the following summer of El Niño years (Figure 6).
[image: Figure 6]FIGURE 6 | (A) June–July (JJ) and (B) August–September (AS) for the SSTA (units: K; shading) in the tropical Indian Ocean. (C) and (D) are the same as (A) and (B), but for CP El Niño events. Purple dots indicate SSTA above the 80% significance level.
During the early summer following EP El Niño events, the SSTA is characterized by the significantly warmer-than-normal temperature in the TIO, especially in the NIO (Figure 6A). This basin warming, which is the so-called second NIO SST warming (Du et al., 2009), can sustain an antisymmetric wind structure over the TIO with northeasterly (northwesterly) wind anomalies north (south) of the equator (see Figure 3A) via positive WES feedback. The significant southwestward SST gradient in the WNIO corresponds to the maintenance of an anomalous northeasterly flow, which, in turn, delays the onset of the ISM. Two months later, warming of the SST in the NIO gradually weakens in late summer (Figure 6B) and the positive SSTA in the WNIO decays faster and earlier than that in the eastern NIO (ENIO), corresponding to the weakening and eastward movement of the antisymmetric wind pattern over the TIO. This result indicates that the anomalous southwesterly flow transports more moisture to India and leads to excessive ISMR in late summer following EP El Niño events.
The largest difference in the SSTA pattern related to CP El Niño events compared with EP El Niño events is a significant cooling of the SSTA in the western TIO, highlighting a key role of the negative SSTA in the different responses of the ISMR to the two types of El Niño event. In early summer, significant warming of the SST is mainly concentrated in the NIO and the southeastern TIO, whereas a negative SSTA center is found along the eastern coast of Africa (Figure 6C). Both the warming SSTA in the Arabian Sea and the cooling SSTA in the western TIO form a positive meridional SSTA gradient in the WNIO, which can excite local southwesterly wind anomalies (see Figure 3C), contributing to the onset of the ISM. In AS season, the negative SSTA center along the coast of Africa is intensified and expanded, although warming of the SST in other regions is weakened (Figure 6D). The increased meridional SSTA gradient in the WNIO therefore continues to strengthen the southwesterly anomalies, which favors the increased transport of moisture to India and enhances the ISMR in late summer.
To further distinguish the relative role of the SSTA, we examined the El Niño composites for the monthly evolution of the SSTA in some key regions (Figure 7). It is clear that there are remarkably different responses of the SSTA in the NIO to different types of El Niño events. The warming of the SST over the NIO related to EP El Niño events (0–20°N, 50–100°E) is characterized by double peaks in the developing November and the following June, whereas the warming of the SST over the NIO related to CP El Niño events increases slowly with time and shows a single peak in the following March (Figure 7A). This result for CP El Niño events is inconsistent with the double warming of the NIO associated with El Niño events reported by Du et al. (2009).
[image: Figure 7]FIGURE 7 | Monthly evolution of the sea surface temperature anomaly (SSTA; units: K) over (A) the northern Indian Ocean (NIO; 0–20°N, 50–100°E), (B) the western NIO (WNIO, 0–20°N, 50–80°E), (C) the eastern NIO (ENIO, 0–20°N, 80–100°E) during EP El Niño (blue) and CP El Niño (red) events. The time axis is from July of the El Niño developing year (0) to December of the following year (+1). Markers indicate signals statistically significant at the 90% confidence level. (D) Monthly evolution of the differences in the SSTA (units: K) between the Arabian Sea (15–25°N, 55–75°E) and the western TIO (WTIO, 10°S–10°N, 40–60°E).
The warming of the SST over the NIO in the following summer also shows a non-uniform zonal distribution in the two types of events (Figure 6). Significant double warming peaks are observed over the WNIO (0–20°N, 50–80°E) during EP El Niño events, but only a single warming peak during CP El Niño events (Figure 7B), consistent with the results for the NIO shown in Figure 7A. However, the responses of the SSTA over the ENIO (0–20°N, 80–100°E) to the two types of El Niño events show few differences, with a single warming peak in the following March (Figure 7C). These results indicate that the warming SSTA in the WNIO makes a major contribution to the warming pattern of the SST in the NIO, whereas the counterpart in the ENIO has little effect.
Significantly different responses of the SSTA in the WNIO can result in different meridional SSTA gradients between the Arabian Sea (15–25°N, 55–75°E) and the western TIO (10°S–10°N, 40–60°E). As a result of the double warming peaks in the NIO associated with EP El Niño events, the negative meridional SSTA gradient persists from the winter to the following early summer (Figure 7D), which favors the maintenance of the northeasterly wind anomalies and leads to a delay in the onset of the ISM, suppressing ISMR in early summer. Until late summer, the meridional SSTA gradient changes from negative to slightly positive, heralding the onset of the ISM and an increase in the ISMR. By contrast, when the single warming peak related to CP El Niño events decays in early summer, the meridional SSTA gradient becomes positive and then remains significantly positive from the following May to September (Figure 7D), which corresponds to the anomalous southwesterly wind in the WNIO. This wind anomaly can contribute to the onset and intensification of the ISM, resulting in the enhanced ISMR. These analyses show that the different SSTAs in the WNIO associated with the two types of El Niño event are primarily attributed to the differences in the early summer ISMR anomalies between the EP and CP El Niño events.
3.4 Possible physical mechanisms
We have considered the remarkable differences in the anomalous SST and atmospheric circulation patterns over the NIO associated with the two types of El Niño event. To investigate the possible physical mechanism of how the different SSTAs in the NIO might modulate the circulation related to the ISMR, we examined the monthly evolution of three groups of the ISM strength index in decaying years of the EP and CP El Niño events (Figure 8). The Indian monsoon index (IMI; Wang and Fan, 1999) is used to indicate the difference in the 850 hPa zonal wind between the southern Arabian Sea (5–15°N, 40–80°E) and the northern Indian continent (20–30°N, 70–90°E). The Indian rainfall index (IRI; Shukla and Paolino, 1983) refers to the standardized Indian rainfall, similar to the ISMR (shown in Figure 2) in this study. The Webster–Yang index (Webster and Yang, 1992) denotes the zonal wind shear between 850 and 200 hPa over the NIO (0–20°N, 40–110°E). The changes in these three indices from negative to positive represent the onset of the ISM. The IMI and the Webster–Yang index lead and lag the IRI, respectively (Figure 8), indicating that the onset of the ISM manifests first in the lower level zonal wind field, then in the rainfall over India and finally in the vertical shear of the zonal wind over the NIO.
[image: Figure 8]FIGURE 8 | Composites of the monsoon indices for the decaying years of (A) EP and (B) CP El Niño events. IMI (−1), IRI (0) and WYI (1) represent the one-month-ahead Indian monsoon index, the simultaneous Indian rainfall index and the one-month-behind Webster–Yang index, respectively.
For EP El Niño events, the second NIO SST warming peak in the following June (Figure 7A) induces the lower level antisymmetric wind over the TIO and its resultant northeasterly anomalies over the Arabian Sea inhibit the onset of the ISM, leading to a negative value of the simultaneous IMI. This lower level circulation decreases the transport of moisture and then gives rise to the negative IRI anomalies in early summer, which suppress the release of the heat of condensation over South Asia, resulting in negative zonal wind shear over the NIO in the following August (Figure 8A). By contrast, the single SST warming induced by CP El Niño events, which peaks in the following March, decays quickly during the late spring and summer (Figure 7A). The early summer SST cooling in the western TIO (Figure 6C) directly causes the significantly positive meridional SSTA gradient in the WNIO, which induces lower level southwesterly wind anomalies (Figure 3C), corresponding to the positive IMI in the following June and the onset of the ISM (Figure 8B). This lower level circulation can cause an eastward shift in the decreased lower level antisymmetric wind over the TIO, which favors the onset of the ISM.
A comparison between EP and CP El Niño events suggests that the time of onset of the ISM circulation and the ISMR for CP El Niño events is about two months earlier than that of EP El Niño events. Anomalous ascending motion over India also enhances the positive IRI anomalies and the resultant release of the heat of condensation in early summer, leading to positive zonal wind shear over the NIO in the following July (Figure 8B). These results confirm that the different SSTA gradients in the WNIO attributed to the diversity of El Niño events can affect the time of onset of the ISM circulation in the early summer following the El Niño event and can therefore result in a deficit (surplus) in the ISMR associated with EP (CP) El Niño events.
4 SUMMARY AND DISCUSSION
Previous studies have shown a good correlation between the ISMR and ENSO on interannual scales, but this relationship has weakened since the 1990s, which might be attributed to the more frequent occurrence of CP El Niño events. We have revisited the interannual relationships of the ISMR with the diversity of El Niño events and examined its possible physical mechanism using observations and reanalysis datasets for the time period 1951–2016. Statistical analyses show that the ISMR has the most pronounced interannual variation and its responses to the decaying phase of EP and CP El Niño events show remarkable differences. In particular, the delay in the onset of the ISM and a reduced ISMR are found during the following early summer of EP El Niño events, whereas excess ISMR is observed in late summer. By contrast, there is excess ISMR in the summer following CP El Niño events and the related rainfall peak occurs 1 month earlier than for EP El Niño events. Further analysis showed that the warming of the SST in the NIO related to EP El Niño events is characterized by double peaks (mainly in WNIO but not in ENIO), but the warming related to CP El Niño events shows only a single peak. These differences primarily contribute to the differences in the early summer ISMR between EP and CP El Niño events. In addition, the WTIO cooling SSTA in CP El Niño plays a major contribution to the early onset of ISM circulation through generating the meridional SSTA gradient.
Figure 9 summarizes the SSTA and atmospheric responses over the NIO to EP and CP El Niño events and their influences on ISMR in the early summer of the decaying years. During early summer following an EP El Niño event, the second SST warming peak contributes to the lower level antisymmetric wind over the TIO via a positive WES feedback. The lower level northeasterly anomalies over the Arabian Sea caused by the antisymmetric wind pattern delay the onset of the ISM and therefore decrease the transport of moisture to South Asia, accompanied by upper level southwesterly anomalies and descending motion over India, ultimately resulting in a decrease in the ISMR (Figure 9A). By contrast, cooling of the SST in the western TIO and the rapid decay of the single warming peak of the SST in the NIO associated with CP El Niño events directly cause the significantly positive meridional SSTA gradient in the WNIO and drive the lower level southwesterly wind anomalies. This lower level circulation causes an eastward shift in the decreased antisymmetric wind over the TIO, which favors the onset of the ISM circulation. Both the upper level divergence anomalies over the TIO and the lower level southwest monsoon interact with each other and jointly induce anomalous ascending motion over India, leading to an increase in ISMR (Figure 9B).
[image: Figure 9]FIGURE 9 | Schematic diagram illustrating the mechanism of the responses of the sea surface temperature anomaly in the northern Indian Ocean to (A) EP and (B) CP El Niño events and their effects on Indian summer monsoon rainfall in early summer (June–July) in decaying years.
These results suggest that a cold SSTA in the western TIO could be an important factor in modulating the ISMR anomalies related to CP El Niño events. However, details of its impact process or the remote teleconnection path by which CP El Niño events affect the SSTA in the western TIO have not been established. Tao et al. (2014) suggested that cooling of the SST in the eastern equatorial Pacific prevents the tropospheric temperature mechanism and the Rossby wave process from warming the SST in the TIO, leading to a weaker response of the SST to CP El Niño events. The response of the SST in the TIO to the diversity of El Niño events is complex and requires further investigation. It should be noted that, although the 1986–1987 El Niño event is classified as an eastern Pacific event in our classification, the following ISMR anomalies were strongly negative, differing from the composite results of the EP and CP El Niño events, which suggests that the ISMR may also be modulated by other factors. In addition, our results are based on statistical analyses with a small sample size and the possible physical mechanism of different responses of the ISMR to the diversity of El Niño events requires further modeling.
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In this study, subseasonal precipitation forecast skills over Maritime Continent in boreal summer are investigated for the ECMWF and CMA models involved in the S2S Project. Results indicate that the ECMWF model shows generally superior forecast performances than CMA, which is characterized by lower errors and higher correlations compared with the observations. Meanwhile, ECMWF tends to produce wet biases with increasing lead times, while the mean errors of CMA are revealed to be approximately constant throughout lead times of 2–4 weeks over most areas. Besides, the temporal correlations between model outputs and observations obviously decrease with growing lead times, with a high-low distribution presented from north to south. In addition, the roles of large-scale drivers like ENSO and BSISO in modulating subseasonal precipitation forecast skills are also assessed in the models. Both ECMWF and CMA can reasonably capture the ENSO related precipitation anomalies for all lead times, while their capabilities of capturing BSISO related precipitation anomalies decrease with growing lead times, which is more obvious in CMA. The enhanced subseasonal precipitation forecast skills mainly respond to the BSISO associated precipitation variability. For most MC areas such as southern Indochina, western Indonesia, Philippines and the eastern ocean, the forecast skills of both ECMWF and CMA can be improved to a great extent by enhancing the capture of BSISO related precipitation anomalies, with the temporal correlations for both ECMWF and CMA increased by about 0.15 for lead times of 3–4 weeks. It provides an opportunity window for the models to improve precipitation forecasts on the subseasonal timescale.
Keywords: Subseasonal forecast, Summer precipitation, Maritime continent, ENSO, BSISO
INTRODUCTION
In the context of global warming, extreme weather events such as floods and droughts are revealed to be increasingly frequent, which emerge serious threats to both economic society and human health (Zhang et al., 2015; Zhu et al., 2020a; 2020b). Recently, there has been a surge of interest to develop the precise seamless forecasts, playing a crucial role in disaster reduction (WMO, 2015; Yuan et al., 2016; Rauser et al., 2017). Although the weather forecasts and seasonal forecasts, which are mainly influenced by atmospheric initial conditions and boundary conditions, respectively, have been improved significantly during the past decades, the subseasonal forecasts are still lacking in development and remain as a great challenge for operational forecasting centers (Johnson et al., 2014; Robertson et al., 2015; Vigaud et al., 2017).
The World Weather Research Programme (WWRP) and World Climate Research Programme (WCRP) have jointly implemented the Subseasonal to Seasonal (S2S) Prediction project to improve the forecast skills and physical understanding on the S2S processes (Vitart et al., 2012; Vitart et al., 2017). The S2S Project database have been broadly used to investigate different scientific issues on the subseasonal timescale, including forecasts of temperature (Zhu et al., 2021) and precipitation (L’Heureux et al., 2021; Vigaud et al., 2018), as well as simulations of Asian summer monsoon (Jie et al., 2017; Wang X. et al., 2022; Fan et al., 2022). Generally, the S2S models retain certain skills in predicting instance temperature (Tian et al., 2017; Mastrangelo and Malguzzi 2019) and the large-scale climate conditions, such as the Madden-Julian Oscillation (MJO; Vitart, 2017; Kim et al., 2018; Marshall and Hendon, 2019), the Boreal Summer Intraseasonal Oscillation (BSISO; Wang et al., 2019; Shibuya et al., 2021), and the North Atlantic Oscillation (NAO; Vitart, 2014) even for lead times of week 3 and 4, while their forecast skills after week 2 are always quite limited for precipitation. Such phenomena have been demonstrated for a wide range of geographical areas, including the contiguous United States (Tian et al., 2017), East Asia (Liang and Lin 2018), and more generally at a global scale (de Andrade et al., 2019; Mastrangelo and Malguzzi 2019).
In order to achieve a better understanding on subseasonal forecast of precipitation and to improve the corresponding forecast skills, recent studies have devoted to finding the sources of subseasonal predictability and their roles in modulating precipitations (Koster et al., 2010; Liu et al., 2015; Pan et al., 2019). So far, El Niño-Southern Oscillation (ENSO) and Intraseasonal Oscillation (ISO) are considered as two of the main predictability sources (Neena et al., 2014; Li and Robertson., 2015; Liang and Lin, 2018), whose different phases have various impacts on the subseasonal precipitation forecast skills (de Andrade et al., 2019). On the other hand, the ENSO and ISO have also been utilized to improve subseasonal precipitation forecasts based on the Bayesian framework, multiple linear regression, and many other advanced statistical approaches (Cohen et al., 2019; Vigaud et al., 2019; Specq and Batté et al., 2020). To be noted, ISO mainly include the eastward propagating MJO in boreal winter and the northward and eastward propagating BSISO, which play different roles in different seasons (Lee et al., 2013; Wang et al., 2018; Wang S. et al., 2022). Previous studies have well indicated that MJO plays an important role in modulating precipitation forecast skills (de Andrade et al., 2019; de Andrade et al., 2021), while the role of BSISO has been relatively less explored.
Meanwhile, comprehensive assessments for different models over different areas are still necessary, which would provide an “opportunity window” for enhancements of subseasonal precipitation forecast skills for specific areas (Coelho et al., 2018; Mariotti et al., 2020). The current paper investigates the weekly forecasts skills on precipitation in boreal summer over Maritime Continent (MC), which is an area featured by complex topography, warmest oceans, and characterized by great vulnerabilities to high-impact precipitation events (Neale and Slingo, 2003; Qian et al., 2010), for the models of European Centre for Medium-Range Weather Forecasts (ECMWF) and China Meteorological Administration (CMA) derived from the S2S Project. In addition, the roles of ENSO and BSISO in modulating the subseasonal forecast skills of local precipitation are also explored.
The rest of the paper is organized as follows. Section 2 provides a brief description of the used datasets and methods. Section 3 firstly evaluates the model performances of subseasonal precipitation forecasts. And the relationships between the local precipitation and drivers of ENSO and BISO are assessed in detail for both observations and model forecasts, with the contributions of these climate drivers on prediction enhancements of precipitation over MC also captured for the subseasonal timescale. Finally, a summary and discussion are given in Section 4.
DATA AND METHODS
Data
The precipitation reforecast datasets from the ECMWF and CMA models are extracted from the S2S Project (Vitart et al., 2017). They are both air-sea coupled systems and are characterized by consistent initialized day. The main features of these two models are summarized in Table 1. The data are derived from the ECMWF archive with a common resolution of 1.5° × 1.5° over MC (10°S-20°N, 90°E-150°E). The study period is boreal summer seasons (June, July and August) from 2006 to 2020, composing a total of 360 samples (24 initialization days per year × 15 years) for the forecast evaluation. Besides, the precipitation from the Global Precipitation Climatology Project (GPCP) Version 3.2 Daily Precipitation Data Set covering the same period is used for verification.
TABLE 1 | Information on the S2S models of ECMWF and CMA.
[image: Table 1]In order to obtain the ENSO and BSISO indices, the daily sea surface temperature (SST) and outgoing longwave radiation (OLR) at the top of atmosphere from ECMWF and CMA reforecasts are also required. Besides, the daily optimum interpolation SST (OISST) version 2 and daily interpolated OLR from the National Oceanic and Atmospheric Administration (NOAA; Reynolds et al., 2007) are used to calculate the observed indices. The ENSO index is calculated by averaging SST anomalies in the Niño-3.4 region (5°S–5°N, 120°W–170°W; Bamston et al., 1997). The OLR-based MJO index (OMI), which has been demonstrated capable of effectively tracking BSISO (Wang et al., 2018), is calculated as in Kiladis et al. (2014), and the OMI1 and OMI2 indices correspond to the first two leading principal components of the equatorial-averaged OLR derived from the empirical orthogonal function analysis (Tseng et al., 2020; Hoffmann et al., 2021).
Forecast verification framework
Aiming at making a comprehensive assessment for subseasonal precipitation forecasts of ECMWF and CMA models over MC in boreal summer, two verification metrics are employed including mean error (ME) and correlation coefficient (R):
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where [image: image] refers to the total number of samples. The terms of [image: image] and [image: image] represent the forecast and observation of sample [image: image], respectively, while the terms of [image: image] and [image: image] denote the averaged forecast and observation. The ME describes the mean difference between forecasts and observations, indicating the overestimation (ME>0) or underestimation (ME<0) conditions of the model forecast results. R denotes the linear relationship between forecasts and observations. Notably, statistical significance of the linear correlation between two autocorrelated time series is accessed via a two-tailed Student’s t-test using the effective degrees of freedom (EDOF), which is given by the following approximation (Bretherton et al., 1999):
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where N is the sample size. [image: image] and [image: image] are the lag1 autocorrelations for two respective time series.
RESULTS
Forecast performance assessments
For assessments of the subseasonal precipitation forecasts over MC in the ECMWF and CMA models, Figure 1 presents spatial distributions of the MEs between weekly mean precipitations in the model forecasts and observations for lead times of 1–4 weeks in boreal summer ranging from 2006 to 2020. Generally, ECMWF shows lower MEs than CMA for almost all the lead times. At the first lead week, the MEs of ECMWF are mostly lower than 2 mm, with the largest of around 4 mm over specific areas, while CMA overall shows MEs of greater than 2 mm, reaching up to 6 mm to the southeast of Philippines. Besides, the two models are characterized by different ME features with the increasing lead times. ECMWF shows a wetting trend, and the largest overestimation exhibits a banded distribution from the north of Indonesia to the east of Thailand, while CMA MEs are approximately constant throughout lead times of 2–4 weeks over most areas. The CMA model displays obvious overestimations from west central Indonesia to Philippines, and prominent underestimations over around eastern Indonesia and its surrounding oceans.
[image: Figure 1]FIGURE 1 | Spatial distributions of the MEs (unit: °C) between weekly mean precipitations in the ECMWF (A–D) as well as CMA (E–H) and observations for lead times of 1–4 weeks in boreal summer ranging from 2006 to 2020.
Figure 2 describes the temporal correlation coefficients between the weekly mean precipitation anomalies in the observations and model forecasts for lead times of 1–4 weeks in boreal summer. Generally, the ECMWF results are characterized by higher correlations than CMA over most regions. Specifically, at the lead time of 1 week, the correlations of ECMWF are greater than 0.6 for most areas, which is higher than those of CMA, especially over areas around western Indonesia and the ocean to the east of Indonesia. In addition, the correlations of both ECMWF and CMA decrease obviously with growing lead times and present a high-low distribution from north to south. The correlations over around Indochina and Philippines are still above 0.4 even for lead times of 3–4 weeks in the ECMWF forecasts, whereas they are generally lower than 0.3 over the southern MC. On the other hand, in the CMA results, it reaches roughly 0.3 over the northern MC for the lead time of 3 weeks, while only no greater than 0.1 over the southern MC.
[image: Figure 2]FIGURE 2 | Spatial distributions of the temporal correlation coefficients between weekly mean precipitations in the ECMWF (A–D) as well as CMA (E–H) and observations for lead times of 1–4 weeks in boreal summer ranging from 2006 to 2020.
To summarize, the ECMWF model shows generally superior performances than CMA in the precipitation forecast over MC on the subseasonal timescale, which are characterized by lower errors and higher correlations compared with the observations. Meanwhile, ECMWF tends to produce wet biases with increasing lead times, while the MEs of CMA are revealed to be approximately constant throughout the lead times of 2–4 weeks over most areas. In addition, the temporal correlations between model outputs and observations obviously decrease with growing lead times, with a high-low distribution presented from north to south.
Driver modulation on forecast quality
Although previous studies have figured out the fact that large-scale drivers such as ENSO and ISO play important roles in modulating precipitation, the capabilities of subseasonal models in capturing the relationships between precipitation and these drivers remain to be assessed. Thus, Figures 3–5 describe the spatial distributions of temporal correlation coefficients between the observed weekly mean precipitation anomalies and weekly mean ENSO, OMI1 and OMI2 indices, respectively, together with those in the ECMWF and CMA model outputs for lead times of 1–4 weeks. The pattern correlation coefficients between observed and predicted correlation distributions are also provided at the right-top of each plot.
[image: Figure 3]FIGURE 3 | Spatial distribution of correlation coefficients between observed weekly mean precipitation anomalies and observed weekly mean ENSO index (A), together with the correlation coefficients maps between forecasted weekly mean precipitation anomalies and forecasted ENSO index in ECMWF (B–E) and CMA (F–I) at the lead time of 1–4 weeks. The pattern correlation coefficients between observed correlation coefficients maps and forecasted correlation coefficients maps are also provided on the right strings. Stipples indicate correlations statistically significant at the 95% level.
Generally, negative correlations between weekly mean precipitation anomalies and weekly mean ENSO indices are observed around Indonesia and its surrounding ocean, along with positive correlations occurring over the ocean to the north of New Guinea and the surrounding ocean of Guam (Figure 3A). The two models of ECMWF and CMA could well reproduce these ENSO related precipitation variabilities around Indonesia and the island of New Guinea, with the pattern correlations in both models being greater than 0.5 for all lead times. However, deficiencies exist in capturing ENSO related precipitation variabilities over the Guam surrounding regions for both ECMWF and CMA, which require further improvements in the future.
Meanwhile, BSISO also plays an important role in modulating the local precipitation. Negative correlations are verified between precipitation anomalies and OMI1 over around the northeast area of MC, while the southwest regions are mainly featured with positive correlations (Figure 4A). On the other hand, there are strong positive correlations between precipitation anomalies and OMI2 over the belt from northwest to southeast, along with negative correlations over southwest and northeast areas (Figure 5A). Although the capabilities of capturing OMI1 and OMI2 related precipitation variabilities are both decreasing with growing lead times in ECMWF and CMA products, the reproducibility differs from different models for different drivers. The ECMWF model could represent the OMI1 related precipitation variabilities for all lead times, and the corresponding pattern correlation is greater than 0.7 for even the lead time of 4 weeks. Nevertheless, CMA tends to show lower pattern correlations for 3–4-week lead times, with the corresponding pattern correlation being 0.38 at the lead time of 4 weeks. On the other hand, both ECMWF and CMA show lower skills in capturing OMI2 related precipitation variabilities than those for OMI1 for longer lead times. The phenomenon is more obvious in the CMA results, showing pattern correlations of lower than 0.15 for lead times of 3–4 weeks. In general, the shortage of ECMWF in capturing OMI2 related precipitation variabilities is associated with the insufficiency in reproducing the negative correlations over southwest MC, while the CMA model could hardly reproduce any of them.
[image: Figure 4]FIGURE 4 | Spatial distribution of correlation coefficients between observed weekly mean precipitation anomalies and observed weekly mean OMI1 index (A), together with the correlation coefficients maps between forecasted weekly mean precipitation anomalies and forecasted OMI1 index in ECMWF (B–E) and CMA (F–I) at the lead time of 1–4 weeks. The pattern correlation coefficients between observed correlation coefficients maps and forecasted correlation coefficients maps are also provided on the right strings. Stipples indicate correlations statistically significant at the 95% level.
[image: Figure 5]FIGURE 5 | Spatial distribution of correlation coefficients between observed weekly mean precipitation anomalies and observed weekly mean OMI2 index (A), together with the correlation coefficients maps between forecasted weekly mean precipitation anomalies and forecasted OMI2 index in ECMWF (B–E) and CMA (F–I) at the lead time of 1–4 weeks. The pattern correlation coefficients between observed correlation coefficients maps and forecasted correlation coefficients maps are also provided on the right strings. Stipples indicate correlations statistically significant at the 95% level.
Furthermore, in order to quantitatively reveal the large-scale driver emerging impacts on the model forecast performances, Figure 6 describes the regionally averaged correlations between hindcasts and observed precipitation anomalies over MC in the initial model output and experiments after adding the corresponding observed regression patterns to hindcasts, that is, replacing the modeled regression patterns associated with drivers of ENSO, OMI1, OMI2, and OMI1+OMI2 with the observed regression patterns for ECMWF and CMA, respectively. The linear regression approach is used to obtain ENSO, OMI1 and OMI2 related precipitation variabilities for both forecasts and observations. To be specific, the predicted large-scale driver associated precipitation anomalies are computed based on the predicted weekly mean precipitation anomalies and the predicted weekly mean ENSO, OMI1 and OMI2 indices, while the observed ones are obtained from the observed weekly mean precipitation anomalies and the observed weekly mean ENSO, OMI1 and OMI2 indices. Generally, the enhanced forecast skills of both ECMWF and CMA are mainly associated with BSISO related precipitation variability, while there is no obvious improvement in response to the ENSO signal, which might be attributed to the better performances of both ECMWF and CMA to capture the ENSO related precipitation. Therefore, a multiple linear regression considering both OMI1 and OMI2 is further applied to obtain the associated precipitation variability. The obviously enhanced forecast skills are found at lead times of 2–4 weeks for both ECMWF and CMA models, showing the greatest correlation improvement of even up to 0.1 when the OMI1 and OMI2 signals are considered simultaneously at the lead time of 4 weeks.
[image: Figure 6]FIGURE 6 | The regionally averaged correlations between hindcasts and observed precipitation anomalies over MC in the initial model output and experiments after replacing the modeled regression patterns associated with drivers of ENSO, OMI1, OMI2, and OMI1+OMI2 with the observed regression patterns for ECMWF (A) and CMA (B), respectively.
Aiming at investigations on spatial characteristics of the subseasonal precipitation forecast skills improved by enhancing precipitation forecasts associated with different drivers, Figures 7, 8 display the spatial distributions of differences on temporal correlations before and after the replacement of large-scale driver associated precipitation anomalies in the model products. For both ECMWF and CMA models, the OMI1 signal plays an important role in enhancing the forecast skills over Philippines, along with the west Indonesia, and their surrounding ocean, while the OMI2 signal affects the forecast skills over the belt from south of Indochina Peninsula to north of New Guinea Island, where temporal correlations could be improved by up to 0.1 at lead times of 2–4 weeks. Moreover, for both replacements of OMI1 and OMI2 associated precipitations, it indicates more obvious improvement for CMA than ECMWF, and greater improvements are always found for longer lead times. In addition, when the OMI1 and OMI2 signals are “perfectly” captured simultaneously, all these associated regions exhibit obviously enhanced forecast skills.
[image: Figure 7]FIGURE 7 | Spatial distributions of enhanced correlations between hindcasts and observed precipitation anomalies at lead times of 1–4 weeks after replacing the modeled regression patterns associated with drivers of OMI1 (A–D), OMI2 (E–H), and OMI1+OMI2 (I–L) with the observed regression patterns for the ECMWF model.
[image: Figure 8]FIGURE 8 | Spatial distributions of enhanced correlations between hindcasts and observed precipitation anomalies at lead times of 1–4 weeks after replacing the modeled regression patterns associated with drivers of OMI1 (A–D), OMI2 (E–H), and OMI1+OMI2 (I–L) with the observed regression patterns for the CMA model.
In summary, both ECMWF and CMA can reasonably capture the ENSO related precipitation anomalies for all lead times, showing decreasing capabilities with growing lead times. The ECMWF model generally displays better performances than CMA. The enhanced subseasonal precipitation forecast skills mainly respond to the BSISO associated precipitation variability. For most MC areas such as southern Indochina, western Indonesia, Philippines and the eastern ocean, the forecast skills of both ECMWF and CMA can be improved to a great extent by enhancing the capture of BSISO related precipitation anomalies. It provides an opportunity window for the models to further improve the subseasonal precipitation forecasts.
CONCLUSION AND DISCUSSION
In this study, the subseasonal precipitation forecast skills over Maritime Continent in boreal summer are investigated for the ECMWF and CMA models involved in the S2S Project for the period of 2006–2020. The roles of large-scale drivers like ENSO and BSISO in modulating the subseasonal precipitation forecast skills are also assessed. Associated results are obtained as follows.
Generally, the ECMWF model outperforms CMA in the subseasonal precipitation forecast over Maritime Continent in boreal summer, which are featured with lower errors and higher correlations compared with the observations. ECMWF tends to generate wet biases with increasing lead times, while the mean errors of CMA are approximately constant throughout the lead times of 2–4 weeks. In addition, the temporal correlations between model outputs and observations decrease obviously with growing lead times, along with a high-low distribution presented from north to south.
Both ECMWF and CMA can reasonably capture the ENSO related precipitation anomalies for all lead times, with the pattern correlations in both models being greater than 0.5 for all lead times. In contrast, their capabilities of capturing BSISO related precipitation anomalies decrease with growing lead times, which is more obvious in CMA, with the pattern correlations lower than 0.15 at lead times of 3–4 weeks. The enhanced subseasonal precipitation forecast skills mainly respond to the BSISO associated precipitation variability, while there is no obvious improvement in response to the ENSO signal. For most MC areas such as southern Indochina, western Indonesia, Philippines and the eastern ocean, the forecast skills of both ECMWF and CMA could be improved to a great extent by enhancing the capture of BSISO related precipitation anomalies, with the temporal correlations for both ECMWF and CMA increased by about 0.15 for lead times of 3–4 weeks. It provides an opportunity window for the models to improve precipitation forecasts on the subseasonal timescale.
As analyzed in the current study, the prediction of large-scale drivers in the subseasonal models do have crucial impacts on forecasts of local precipitation. Besides, for lead times of within 4 weeks on the subseasonal timescale, there is generally little changes in ENSO while the BSISO forecasts would vary a lot (Jie et al., 2017; Wang et al., 2019; Shibuya et al., 2021), which corresponds to the non-significant (significant) response of the forecast skill of adding ENSO (BSISO) signals to the hindcasts in this study. On the other hand, the models always have different capabilities of predicting the large-scale drivers such as ENSO and BSISO, which tends to result in different subseasonal forecast skills of precipitation for different cases. Classified experiments are to be further investigated to reveal the different roles of these predictors in the subseasonal model forecasts and to make full use of the predictors in the operational forecasts on the subseasonal timescale. In addition, on the basis of the model outputs and the historical observations, the prediction skills could also be strengthened via sort of statistical postprocessing methods such as the single-model calibrations (Lyu et al., 2021; Pan et al., 2022) and the multimodel ensembles (Ji et al., 2019; Ji et al., 2020; Peng et al., 2020). Associated investigations would be further carried out in the future.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.
AUTHOR CONTRIBUTIONS
YL, SZ and XZ contributed to conception and design of the study. FD and YF contributed to the analysis. CZ and LJ organized the database. All authors contributed to manuscript revision, read, and approved the submitted version.
FUNDING
The study was jointly supported by the National Natural Science Foundation of China (Grant No. 42105030), the National Key R&D Program of China (Grant No. 2017YFC1502002), the Basic Research Fund of CAMS (Grant No. 2022Y027) and the research project of Jiangsu Meteorological Bureau (Grant No. KQ202209).
ACKNOWLEDGMENTS
The authors are grateful to ECMWF, CMA, NOAA, and NCEP for their datasets.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
REFERENCES
 Bamston, A. G., Chelliah, M., and Goldenberg, S. B. (1997). Documentation of a highly ENSO‐related SST region in the equatorial Pacific: Research note. Atmosphere-ocean 35 (3), 367–383. doi:10.1080/07055900.1997.9649597
 Coelho, C. A. S., Firpo, M. A. F., and de Andrade, F. M. (2018). A verification framework for South American sub-seasonal precipitation predictions. metz. 27 (6), 503–520. doi:10.1127/metz/2018/0898
 Cohen, J., Coumou, D., Hwang, J., Mackey, L., Orenstein, P., Totz, S., et al. (2019). S2S reboot: An argument for greater inclusion of machine learning in subseasonal to seasonal forecasts. WIREs Clim. Change 10 (2), e00567. doi:10.1002/wcc.567
 de Andrade, F. M., Coelho, C. A. S., and Cavalcanti, I. F. A. (2019). Global precipitation hindcast quality assessment of the Subseasonal to Seasonal (S2S) prediction project models. Clim. Dyn. 52 (9), 5451–5475. doi:10.1007/s00382-018-4457-z
 de Andrade, F. M., Young, M. P., MacLeod, D., Hirons, L. C., Woolnough, S. J., and Black, E. (2021). Subseasonal precipitation prediction for Africa: Forecast evaluation and sources of predictability. Weather Forecast. 36 (1), 265–284. doi:10.1175/waf-d-20-0054.1
 Fan, Y., Zhu, S., Wang, L., and Wang, X. (2022). Subseasonal dynamical prediction of South China Sea summer monsoon. Atmos. Res. , 106347. doi:10.1016/j.atmosres.2022.106347
 Ge, F., Zhu, S., Peng, T., Zhao, Y., Sielmann, F., Fraedrich, K., et al. (2019). Risks of precipitation extremes over southeast Asia: Does 1.5° C or 2° C global warming make a difference?Environ. Res. Lett. 14 (4), 044015. doi:10.1088/1748-9326/aaff7e
 Gottschalck, J., Wheeler, M., Weickmann, K., Vitart, F., Savage, N., Lin, H., et al. (2010). A framework for assessing operational madden–julian oscillation forecasts: A clivar MJO working group project. Bull. Am. Meteorol. Soc. 91 (9), 1247–1258. doi:10.1175/2010bams2816.1
 Hoffmann, C. G., Kiladis, G. N., Gehne, M., and Von Savigny, C. (2021). A Python package to calculate the OLR-based index of the Madden-Julian-Oscillation (OMI) in climate science and weather forecasting. J. Open Res. Softw. 9, 9. doi:10.5334/jors.331
 Ji, L., Zhi, X., Simmer, C., Zhu, S., and Ji, Y. (2020). Multimodel ensemble forecasts of precipitation based on an object-based diagnostic evaluation. Mon. Weather Rev. 148 (6), 2591–2606. doi:10.1175/mwr-d-19-0266.1
 Ji, L., Zhi, X., Zhu, S., and Fraedrich, K. (2019). Probabilistic precipitation forecasting over East Asia using Bayesian model averaging. Weather Forecast. 34 (2), 377–392. doi:10.1175/waf-d-18-0093.1
 Jie, W., Vitart, F., Wu, T., and Liu, X. (2017). Simulations of the Asian summer monsoon in the sub‐seasonal to seasonal prediction project (S2S) database. Q. J. R. Meteorol. Soc. 143 (706), 2282–2295. doi:10.1002/qj.3085
 Johnson, N. C., Collins, D. C., Feldstein, S. B., L’Heureux, M. L., and Riddle, E. E. (2014). Skillful wintertime North American temperature forecasts out to 4 weeks based on the state of ENSO and the MJO. Weather Forecast. 29 (1), 23–38. doi:10.1175/waf-d-13-00102.1
 Kim, H., Vitart, F., and Waliser, D. E. (2018). Prediction of the madden–julian oscillation: A review. J. Clim. 31 (23), 9425–9443. doi:10.1175/jcli-d-18-0210.1
 Koster, R. D., Mahanama, S. P. P., Yamada, T. J., Balsamo, G., Berg, A. A., Boisserie, M., et al. (2010). Contribution of land surface initialization to subseasonal forecast skill: First results from a multi‐model experiment. Geophys. Res. Lett. 37, L02402. doi:10.1029/2009gl041677
 Lee, J. Y., Wang, B., Wheeler, M. C., Fu, X., Waliser, D. E., and Kang, I. S. (2013). Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Clim. Dyn. 40 (1), 493–509. doi:10.1007/s00382-012-1544-4
 L’Heureux, M. L., Tippett, M. K., and Becker, E. J. (2021). Sources of subseasonal skill and predictability in wintertime California precipitation forecasts. Weather Forecast. 36 (5), 1815–1826. doi:10.1175/waf-d-21-0061.1
 Li, S., and Robertson, A. W. (2015). Evaluation of submonthly precipitation forecast skill from global ensemble prediction systems. Mon. Weather Rev. 143 (7), 2871–2889. doi:10.1175/mwr-d-14-00277.1
 Liang, P., and Lin, H. (2018). Sub-seasonal prediction over East Asia during boreal summer using the ECCC monthly forecasting system. Clim. Dyn. 50 (3), 1007–1022. doi:10.1007/s00382-017-3658-1
 Liu, X., Yang, S., Li, J., Jie, W., Huang, L., and Gu, W. (2015). Subseasonal predictions of regional summer monsoon rainfall over tropical Asian oceans and land. J. Clim. 28 (24), 9583–9605. doi:10.1175/jcli-d-14-00853.1
 Lyu, Y., Zhi, X., Zhu, S., Fan, Y., and Pan, M. (2021). Statistical calibrations of surface air temperature forecasts over East Asia using pattern projection methods. Weather Forecast. 36 (5), 1661–1674. doi:10.1175/waf-d-21-0043.1
 Mariotti, A., Baggett, C., Barnes, E. A., Becker, E., Butler, A., Collins, D. C., et al. (2020). Windows of opportunity for skillful forecasts subseasonal to seasonal and beyond. Bull. Am. Meteorological Soc. 101 (5), E608–E625. doi:10.1175/bams-d-18-0326.1
 Marshall, A. G., and Hendon, H. H. (2019). Multi-week prediction of the madden–julian oscillation with ACCESS-S1. Clim. Dyn. 52 (5), 2513–2528. doi:10.1007/s00382-018-4272-6
 Mastrangelo, D., and Malguzzi, P. (2019). Verification of two years of CNR-ISAC subseasonal forecasts. Weather Forecast. 34 (2), 331–344. doi:10.1175/waf-d-18-0091.1
 Neale, R., and Slingo, J. (2003). The Maritime continent and its role in the global climate: A gcm study. J. Clim. 16 (5), 834–848. doi:10.1175/1520-0442(2003)016<0834:tmcair>2.0.co;2
 Neena, J. M., Lee, J. Y., Waliser, D., Wang, B., and Jiang, X. (2014). Predictability of the Madden–Julian oscillation in the intraseasonal variability hindcast experiment (ISVHE). J. Clim. 27 (12), 4531–4543. doi:10.1175/jcli-d-13-00624.1
 Pan, B., Hsu, K., AghaKouchak, A., Sorooshian, S., and Higgins, W. (2019). Precipitation prediction skill for the West Coast United States: From short to extended range. J. Clim. 32 (1), 161–182. doi:10.1175/jcli-d-18-0355.1
 Pan, M., Zhi, X., Liu, Z., Zhu, S., Lyu, Y., and Zhu, D. (2022). Statistical calibrations to improve the 2–5-year prediction skill for SST over the North Atlantic. Meteorol. Atmos. Phys. 134 (3), 52–14. doi:10.1007/s00703-022-00888-4
 Peng, T., Zhi, X., Ji, Y., Ji, L., and Tian, Y. (2020). Prediction skill of extended range 2-m maximum air temperature probabilistic forecasts using machine learning post-processing methods. Atmosphere 11 (8), 823. doi:10.3390/atmos11080823
 Qian, J. H., Robertson, A. W., and Moron, V. (2010). Interactions among ENSO, the monsoon, and diurnal cycle in rainfall variability over Java, Indonesia. J. Atmos. Sci. 67 (11), 3509–3524. doi:10.1175/2010jas3348.1
 Rauser, F., Alqadi, M., Arowolo, S., Baker, N., Bedard, J., Behrens, E., et al. (2017). Earth system science frontiers: An early career perspective. Bull. Am. Meteorological Soc. 98 (6), 1120–1127. doi:10.1175/bams-d-16-0025.1
 Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and Schlax, M. G. (2007). Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20 (22), 5473–5496. doi:10.1175/2007jcli1824.1
 Robertson, A. W., Kumar, A., Peña, M., and Vitart, F. (2015). Improving and promoting subseasonal to seasonal prediction. Bull. Am. Meteorological Soc. 96 (3), ES49–ES53. doi:10.1175/bams-d-14-00139.1
 Shibuya, R., Nakano, M., Kodama, C., Nasuno, T., Kikuchi, K., Satoh, M., et al. (2021). Prediction skill of the Boreal Summer Intra-Seasonal Oscillation in global non-hydrostatic atmospheric model simulations with explicit cloud microphysics. J. Meteorological Soc. Jpn. 99, 046–992. doi:10.2151/jmsj.2021-046
 Shiogama, H., Watanabe, M., Yoshimori, M., Yokohata, T., Ogura, T., Annan, J. D., et al. (2012). Perturbed physics ensemble using the MIROC5 coupled atmosphere–ocean GCM without flux corrections: Experimental design and results. Clim. Dyn. 39 (12), 3041–3056. doi:10.1007/s00382-012-1441-x
 Specq, D., and Batté, L. (2020). Improving subseasonal precipitation forecasts through a statistical–dynamical approach: Application to the southwest tropical pacific. Clim. Dyn. 55 (7), 1913–1927. doi:10.1007/s00382-020-05355-7
 Tian, D., Wood, E. F., and Yuan, X. (2017). CFSv2-based sub-seasonal precipitation and temperature forecast skill over the contiguous United States. Hydrol. Earth Syst. Sci. 21 (3), 1477–1490. doi:10.5194/hess-21-1477-2017
 Tseng, K. C., Barnes, E. A., and Maloney, E. (2020). The importance of past MJO activity in determining the future state of the midlatitude circulation. J. Clim. 33 (6), 2131–2147. doi:10.1175/jcli-d-19-0512.1
 Vigaud, N., Robertson, A. W., and Tippett, M. K. (2017). Multimodel ensembling of subseasonal precipitation forecasts over North America. Mon. Weather Rev. 145 (10), 3913–3928. doi:10.1175/mwr-d-17-0092.1
 Vigaud, N., Tippett, M. K., and Robertson, A. W. (2019). Deterministic skill of subseasonal precipitation forecasts for the east africa‐west Asia sector from september to may. J. Geophys. Res. Atmos. 124 (22), 11887–11896. doi:10.1029/2019jd030747
 Vigaud, N., Tippett, M. K., and Robertson, A. W. (2018). Probabilistic skill of subseasonal precipitation forecasts for the east africa–west Asia sector during september–may. Weather Forecast. 33 (6), 1513–1532. doi:10.1175/waf-d-18-0074.1
 Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., et al. (2017). The subseasonal to seasonal (S2S) prediction project database. Bull. Am. Meteorological Soc. 98 (1), 163–173. doi:10.1175/bams-d-16-0017.1
 Vitart, F. (2014). Evolution of ECMWF sub‐seasonal forecast skill scores. Q. J. R. Meteorol. Soc. 140 (683), 1889–1899. doi:10.1002/qj.2256
 Vitart, F. (2017). Madden—julian oscillation prediction and teleconnections in the S2S database. Q. J. R. Meteorol. Soc. 143 (706), 2210–2220. doi:10.1002/qj.3079
 Vitart, F., Robertson, A. W., and Anderson, D. L. T. (2012). Subseasonal to seasonal prediction project: Bridging the gap between weather and climate. Bull. World Meteorological Organ. 61 (2), 23. 
 Wang, S., Ma, D., Sobel, A. H., and Tippett, M. K. (2018). Propagation characteristics of BSISO indices. Geophys. Res. Lett. 45 (18), 9934–9943. doi:10.1029/2018gl078321
 Wang, S., Martin, Z. K., Sobel, A. H., Tippett, M. K., Dias, J., Kiladis, G. N., et al. (2022a). A multivariate index for tropical intraseasonal oscillations based on the seasonally‐varying modal structures. JGR. Atmos. 127 (4), e2021JD035961. doi:10.1029/2021jd035961
 Wang, S., Sobel, A. H., Tippett, M. K., and Vitart, F. (2019). Prediction and predictability of tropical intraseasonal convection: Seasonal dependence and the Maritime Continent prediction barrier. Clim. Dyn. 52 (9), 6015–6031. doi:10.1007/s00382-018-4492-9
 Wang, X., Fan, Y., Wang, L., and Zhu, Y. (2022b). The 1-31-day predictions of the south China sea summer monsoon in the CAMS-CSM climate forecast system. Atmosphere 13 (7), 1051. doi:10.3390/atmos13071051
 WMO (2015). Seamless prediction of the earth system: From minutes to months. Switzerland: Communication and Public Affairs Office Geneva. 
 Yuan, H., Sun, M., and Wang, Y. (2016). Assessment of the benefits of the Chinese public weather service. Mater. Apps. 23 (1), 132–139. doi:10.1002/met.1539
 Zhu, S., Ge, F., Fan, Y., Zhang, L., Sielmann, F., Fraedrich, K., et al. (2020a). Conspicuous temperature extremes over southeast Asia: Seasonal variations under 1.5 C and 2 C global warming. Clim. Change 160 (3), 343–360. doi:10.1007/s10584-019-02640-1
 Zhu, S., Ge, F., Sielmann, F., Pan, M., Fraedrich, K., Remedio, A. R. C., et al. (2020b). Seasonal temperature response over the Indochina Peninsula to a worst-case high-emission forcing: A study with the regionally coupled model ROM. Theor. Appl. Climatol. 142 (1), 613–622. doi:10.1007/s00704-020-03345-7
 Zhu, S., Zhi, X., Ge, F., Fan, Y., Zhang, L., and Gao, J. (2021). Subseasonal forecast of surface air temperature using superensemble approaches: Experiments over Northeast Asia for 2018. Weather Forecast. 36 (1), 39–51. doi:10.1175/waf-d-20-0096.1
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Lyu, Zhu, Zhi, Dong, Zhu, Ji and Fan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 31 August 2022
doi: 10.3389/feart.2022.969853


[image: image2]
Interdecadal Increase in Summertime Extreme Precipitation over East China in the Late 1990’s
Zengliang Zang1, Junyao Luo1* and Yao Ha1,2*
College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
Jiangsu Collaborative Innovation Center for Climate Change and School of Atmospheric Sciences, Nanjing University, Nanjing, China
Edited by:
Xiefei Zhi, Nanjing University of Information Science and Technology, China
Reviewed by:
Zhiwei Zhu, Nanjing University of Information Science and Technology, China
Shanlei Sun, Nanjing University of Information Science and Technology, China
* Correspondence: Junyao Luo, luojunyao1998@163.com; Yao Ha, hayao1986@yeah.net, hayao86@nudt.edu.cn
Specialty section: This article was submitted to Atmospheric Science, a section of the journal Frontiers in Earth Science
Received: 15 June 2022
Accepted: 25 July 2022
Published: 31 August 2022
Citation: Zang Z, Luo J and Ha Y (2022) Interdecadal Increase in Summertime Extreme Precipitation over East China in the Late 1990’s. Front. Earth Sci. 10:969853. doi: 10.3389/feart.2022.969853

This study focuses on the interdecadal increase of summertime extreme precipitation over East China in the late 1990s and physical mechanisms behind. The results show that summer extreme precipitation over East China during 1979–2020 demonstrates an upward trend and a significant interdecadal increase occurs around 1997/1998. Since 1997, extreme precipitation anomalies turn from less than normal to more than normal, corresponding to a strong upward movement in the lower troposphere over East China. A cyclonic circulation with positive vorticity controlled by a strong southeasterly flow appears in the lower level over South China. The reasons for the interdecadal increase of summer extreme precipitation over East China are analyzed from the perspective of the abnormally strong South Asian subtropical high (SAH) and the atmospheric circulation anomalies caused by zonal sea surface temperature (SST) gradient in the tropical oceans. After 1997, positive sensible heat anomalies appear over the Tibetan Plateau in spring, which is the major factor that maintains the intensity of the SAH. Besides, the SST of the tropical oceans presents an obvious “high-low-high” zonal gradient distribution with positive sea surface temperature anomaly (SSTA) in the Indian Ocean and western Pacific, and negative SSTA over the Maritime Continent. The zonal SST gradient results in an anomalous downdraft and boundary layer divergence over the Maritime Continent. The tropical zonal SST gradient triggers a local Hadley circulation, and its ascending branch is located in East China. This is a circulation condition favorable for the development of extreme precipitation. In addition, since the late 1990s, the SAH has strengthened in the upper troposphere above the southeastern China. The anomalous divergence at the upper level effectively maintains the upward movement, which in turn facilitates the occurrence of extreme precipitation. As a result, the sensible heat changes in the Tibetan Plateau in spring and the tropical SST zonal gradient jointly affect summer extreme precipitation over East China, leading to the interdecadal increase of extreme precipitation in the late 1990s.
Keywords: extreme precipitation, interdecadal change, southern asian subtropical high, western pacific subtropical high, sea surface temperature, atmospheric circulation anomalies
1 INTRODUCTION
Extreme precipitation events are difficult to predict and often occur abruptly. They can lead to serious natural disasters, cause great property losses and casualties, and impose a huge impact on many aspects of human life such as economy, society, life safety and ecological environment system. Therefore, extreme precipitation events have been widely studied worldwide. Many previous studies (e.g., Groisman et al., 1999; Alexander et al., 2006; Goswami et al., 2006) have shown that extreme precipitation events are increasing in many countries and regions around the world as global warming intensifies. It is particularly noted that the frequency and intensity of extreme precipitation are significantly increasing in the middle and high latitudes of the northern hemisphere, even in areas where average precipitation is decreasing. The IPCC Fourth Assessment Report also points out that extreme precipitation events will become more frequent in the 21st century. Groisman analyzed the precipitation data collected in countries in the temperate region (the study area covers 80% of the global temperate region). The results show that in the middle-latitude countries considered, the average summer precipitation in the last century has increased by at least 5%, yet the precipitation days do not change significantly. This implies an increasing trend of heavy summer precipitation. Some other studies (e.g., Karl and Knight, 1998) also indicate that the percentage of total annual precipitation accounted for by extreme precipitation in the United States is increasing, and the increase in total precipitation is largely attributed to the increase in extreme precipitation intensity and frequency. Studies over Australia, Canada, and Japan (e.g., Suppiah and Hennessy, 1996, 1998; Yamamoto and Sakurai, 1999; Stone et al., 2000) have come to a similar conclusion, that is, areas where precipitation increases tend to be characterized by a decrease in precipitation days and an increase in extreme precipitation events as well as an increase in precipitation intensity, leading to a more pronounced trend towards extreme precipitation. In addition, a study over Europe (Beniston, 1994) concluded that under the background of global warming, precipitation in the Alps generally decreases, but extreme precipitation events have increased significantly.
Studies on the interdecadal change of extreme precipitation have also attracted extensive attention in China. Most of the annual total precipitation in eastern China occurs in summer, and precipitation in summer is highly correlated with extreme precipitation (e.g., Mei and Yang, 2005; Su et al., 2006). A large number of studies on extreme precipitation events in China show that in the past 40 years, the average annual precipitation intensity in eastern China has been significantly increasing, especially after the 1990’s, when the frequency and intensity of precipitation both demonstrate a trend of increasing with expanding scope of influence. Extreme precipitation events occur more frequently to the south of 35°N, especially in the middle and lower reaches of the Yangtze River and southern China. Among those areas that experience more frequent extreme precipitation events, southern Anhui province and the coastal region of southern China are the areas with the most frequent extreme precipitation events, and the duration of extreme precipitation events in these regions is also longer. More extreme precipitation events have become the main reason for precipitation increase in these regions (e.g., Ren and Zhai, 1998; Zhai and Pan, 2003a; Zhai et al., 2005; Zhai and Zou, 2005; Wang and Qian., 2009; Yang et al., 2011; Chen and Zhai, 2013; Zhu et al., 2014; Shi and Wen, 2015; Zhu and Li, 2016; Zhu and Li, 2018). Extreme precipitation events with higher occurrence frequency and stronger intensity are very likely to cause disasters. In eastern China, extreme precipitation is a high impact weather event, which occurs frequently in summer and often causes floods and urban waterlogging. For example, in the summer of 1998, the extremely heavy rainfall in the Yangtze River Basin lasted for more than 40 days, resulting in multiple catastrophic floods in the entire basin and huge economic losses and casualties (e.g., Huang et al., 1998; Lu et al., 2014; Qi et al., 2016). In July 2012, Beijing was struck by extreme precipitation. Floods caused by the extreme rainfall affected 1.602 million people, and the economic loss reached 11.64 billion yuan (Zhang et al., 2013).
Physical mechanisms for precipitation formation have been explored in many studies. The formation of rain belts in eastern China is closely related to the East Asian summer monsoon activities and their anomalies (Chen et al., 1991) as well as other external forcing factors. Several studies proposed that precipitation in the Yangtze River Basin is under strong influence of SST in the equatorial eastern Pacific (e.g., Yang et al., 1992; Huang et al., 1999; Li and Shao., 2000; Wei., 2005). A few other studies (e.g., Guan and Yamagata., 2003; Park and Schubert., 1997) argued that the occurrence of droughts and floods in East Asia are related to SST in the Indian Ocean and the Pacific Ocean. It is also found that convective activities around the Philippines are closely related to droughts and floods in the Jianghuai Basin (e.g., Kurihara and Kawahara, 1986; Nitta, 1987; Huang., 1990). Zhang and Tao (1998), 2003 pointed out that precipitation anomalies during the flood season in eastern China are associated with variation of the western Pacific subtropical high (WPSH). The above factors are also very likely to be factors affecting extreme precipitation in these areas. In addition, some studies indicated that the occurrence of summer extreme precipitation in eastern China is affected by typhoons. In highly urbanized areas, the urban heat island effect is also one of the factors affecting extreme precipitation events (e.g., Pan et al., 2018; Sun et al., 2021).
Although many studies have discussed the interannual and interdecadal changes of precipitation in eastern China, few studies have focused on the interdecadal change of extreme precipitation in eastern China and possible physical mechanisms behind. The eastern China is located in the monsoon region, where the weather and climate are greatly affected by the East Asian monsoon. Furthermore, eastern China is a region of developed economy with large population density. Therefore, this region is particularly sensitive to natural disasters such as extreme precipitation. Any change in the frequency and intensity of extreme precipitation will have a significantly impact on the society and the natural environment. With increasing concerns on extreme precipitation and the accumulation and development of data, it is imperative and feasible to explore the spatiotemporal characteristics and physical mechanism of extreme precipitation that occurred in eastern China in recent years. Such studies are expected to effectively increase the lead time of extreme precipitation forecast and improve the ability for early warning of and timely response to possible disasters induced by extreme precipitation. The present study will focus on this issue.
The paper is organized as follows. Section 1 introduces the data and methods, including the thresholds used to determine extreme precipitation and the algorithms to calculate water vapor flux and water vapor flux divergence. Section 2 analyzes the spatial distribution and interdecadal change characteristics of extreme precipitation in eastern China. Section 3 starts from analysis of atmospheric circulation anomalies and focuses on analyzing interdecadal changes of water vapor transport and ascending motions. The climate background for the interdecadal change in extreme precipitation is also explored. Section 4 discusses possible physical mechanisms for the interdecadal change of extreme precipitation. Section 5 provides the summary and discussion.
2 DATA AND METHODS
2.1 Data
In this paper, daily precipitation data for the period 1979 to 2020 are obtained from the Climate Prediction Center Merged Analysis of Precipitation (CMAP; Xie and Arkin, 1997) (https://www.cpc.ncep.noaa.gov/products/global_precip/html/wpage.cmap.shtml). The CMAP has the resolution of 0.5° × 0.5° (latitude × longitude). Meteorological variables including geopotential height, wind, vertical velocity, sea level pressure, temperature and specific humidity for the period 1979–2020 are extracted from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR; Kanamitsu, et al., 2002) reanalysis product (https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html), which is a global dataset on 2.5° × 2.5° (latitude × longitude) grids. The SST dataset (COBE SST) is provided by the National Oceanic and Atmospheric Administration Climate Diagnostic Center (NOAA; Folland and Parker, 2002) (https://psl.noaa.gov/data/gridded/data.cobe.html). It has a horizontal resolution of 1° × 1° (latitude × longitude). The average condition over 1981–2010 is taken as the climatic average. In this paper, winter is from current December to February in the subsequent year, spring is from March to May, summer is from June to August.
2.2 Methods
In the studies of extreme precipitation, the definition of extreme precipitation index mostly adopts the threshold method, and a precipitation event exceeding the threshold is determined to be an extreme precipitation event. There are mainly two types of threshold: fixed threshold and percentile threshold. The study area in this paper is eastern China and the geographical area is relatively broad. If fixed thresholds are adopted, then the extreme precipitation signals in some regions and some seasons (such as the precipitation signals of ten days and five days) will be undistinguished. Therefore, the percentile threshold method is adopted in this paper. To define the threshold of extreme precipitation index, precipitation of the same day at each grid point from 1979 to 2020 is sorted in ascending order. Those days without precipitation (precipitation <0.1 mm/d) are excluded. The 95th percentile of daily precipitation is then defined as the extreme precipitation threshold, and the extreme precipitation event is considered to occur when the threshold is exceeded. The three extreme precipitation indices are extreme precipitation amount, extreme precipitation frequency and extreme precipitation intensity.
Sufficient water vapor is an important condition for the occurrence of extreme precipitation event, and the water vapor transport in the middle and lower troposphere plays a crucial role in the maintenance of extreme precipitation event. Divergence is a physical quantity that measures the horizontal inflow of air. Positive and negative values of water vapor flux divergence can intuitively indicate the convergence and divergence of water vapor in the study area. The methods to calculate water vapor flux and water vapor flux divergence are as follows.
The calculation formula of water vapor transport flux (unit: kg/(ms)) in the whole atmosphere layer is:
[image: image]
In the above algorithm, the zonal component is [image: image] , and the meridional component is [image: image]. In the formula, u and v are the zonal and meridional wind speed components at individual levels of the atmosphere in each unit of air column, q is the specific humidity of the atmosphere, and p are atmospheric lower boundary pressure (ground pressure) and upper boundary pressure (500 hPa), g is the acceleration of gravity. Between and p, six levels, i.e., 1000 hPa, 925 hPa, 850 hPa, 700 hPa, 600 hPa, and 500 hPa, are considered.
The formula for calculating the water vapor flux divergence D (unit: kg/(m2·s)) is:
[image: image]
Where a is the radius of the Earth, [image: image] means latitude, [image: image] means longitude.
In this paper, moving t test (MTT) and Yamamoto test are used to comprehensively determine the abrupt interdecadal change year of extreme precipitation index. The linear propensity estimation method is used to determine the long-term trend of extreme precipitation.
The Moving t-test technique is often used to test the significance of difference between the means of two random samples. To this end, we divide a continuous climate series x into two sub-sample sets x1 and x2, let [image: image] and [image: image] represent the mean, variance and sample length (i=1,2).
Null hypothesis: [image: image], define a statistic as:
[image: image]
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[image: image] obeys the distribution [image: image]. Given the reliability [image: image], the critical value [image: image] can be obtained. Comparing [image: image] and [image: image] , if [image: image], the null hypothesis [image: image] is rejected, which means that there is a significant difference between the two climate sequences; if [image: image], the null hypothesis [image: image] is accepted.
The Yamamoto method is similar to the MMT method but relatively simple and clear. In this method, a signal-to-noise ratio is defined as:
[image: image]
Where the meanings of the symbols are the same as that in the MMT. If [image: image], then a climate change point can be determined.
The significance test is to make a hypothesis on the parameters or the overall distribution form of the population (random variable) in advance, and then use the sample information to determine whether this hypothesis (alternative hypothesis) is reasonable, that is, to determine whether there is a significant difference between the actual situation of the population and the original hypothesis. In this paper, T test and F test are used, and the formulas are expressed by (6) and (7), respectively.
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[image: image] [image: image] and [image: image] represent the mean, variance and sample numbers.
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[image: image] represents the regression sum of squares, [image: image] represents the residual sum of squares. If it is a univariate regression, then [image: image] =1.
3 INTERDECADAL INCREASE IN SUMMERTIME EXTREME PRECIPITATION
3.1 Characteristics of spatial distribution of summer extreme precipitation in eastern China
Figure 1 displays spatial distribution characteristics of summer extreme precipitation amount, precipitation intensity, and precipitation frequency in eastern China from 1979 to 2020. In general, the distribution characteristics of extreme precipitation amount (Figure 1A) and extreme precipitation intensity (Figure 1B) are very similar. Both of them show higher values in the south than in the north, and both show a decreasing trend from southeast to northwest, that is, they decrease from coastal to inland regions. The areas with larger extreme precipitation amount and higher extreme precipitation intensity are located in the southeastern coastal areas, southern Anhui Province and western Hubei Province. The southeastern coastal area is frequently affected by typhoons in summer, where a large amount of extreme precipitation with high intensity occurs; southern Anhui and western Hubei are mountainous areas, where the southerly airflow and accompanied water vapor transport tend to form mesoscale water vapor convergence, which is conducive to the occurrence of extreme precipitation events. Therefore, the probability of extreme precipitation in southern Anhui and western Hubei is also high (Wang et al., 2015). In addition, southern Anhui is adjacent to the Poyang Lake and the Yangtze River is located to its north. Frequent extreme precipitation events greatly increase the risk of flood disasters. The regions with high occurrence frequency of extreme precipitation are mainly located in south and southwest China. High occurrence frequency of extreme precipitation can also be found in Beijing and western Hebei (Figure 1C). The occurrence frequency of extreme precipitation in the lower Yellow River Basin is low. Figures 1D–F shows the long-term variation trends of extreme precipitation amount, extreme precipitation intensity, and extreme precipitation frequency. The trend characteristics show that extreme precipitation amount (Figure 1D) and extreme precipitation intensity (Figure 1E) are relatively consistent, both of which display a linear increasing feature in Southeast China, East China and northern Guangxi. And the change trends are significant at the 95% confidence level by F test. On the whole, the frequency of extreme precipitation in most areas of eastern China (Figure 1F) increases linearly and the most obvious increase occurs in northern Guangxi and southeastern coastal region.
[image: Figure 1]FIGURE 1 | Eastern China in the summers from 1979 to 2020: extreme precipitation amount (A) (units: mm); extreme precipitation intensity (B) (units: mm/d); extreme precipitation frequency (C) (units: (D); linear trend of extreme precipitation amount (D) (units: [image: image]); linear trend of extreme precipitation intensity (E) (units: [image: image]); linear trend of extreme precipitation frequency (F) (units: [image: image]). Dotted areas indicate values exceeding the 95% confidence level determined by using F test. Red star represents Beijing, A-T represent individual provinces: Hebei (A), Shanxi (B), Shaanxi (C), Shandong (D), Henan (E), Hubei (F), Jiangsu (G), Anhui (H), Jiangxi (I), Hunan (J), Zhejiang (K), Fujian (L), Guangdong (M), Guangxi (N), Taiwan (T).
3.2 Interdecadal change in summer extreme precipitation in eastern China
Figure 2 shows the time series of extreme precipitation amount, extreme precipitation intensity and extreme precipitation frequency in eastern China in the summers of 1979–2020. The solid lines in Figure 2 display the time series of the above three indices, and the bars represent the anomaly series. It can be seen that the extreme precipitation indexes before the mid-to late 1990’s are mostly characterized by negative anomalies. After the mid-to late 1990’s, however, the extreme precipitation indexes are mostly characterized by positive anomalies and show an upward trend, which is consistent with their linear trends shown in Figure 1. The dotted lines in Figure 2 are the 9-years moving averages of individual extreme precipitation indexes. It can be found that these three indices of extreme precipitation all present an upward trend, and the upward trend is much more obvious in the late 1990’s, indicating that there may exist an abrupt interdecadal change in extreme precipitation in the late 1990’s.
[image: Figure 2]FIGURE 2 | Eastern China: time series of extreme precipitation amount (A); time series of extreme precipitation intensity (B); time series of extreme precipitation frequency (C). The dotted line in each panel represents the 9-years moving average, and the bars represent the anomalies.
The moving t test Eqs 3,4 and the Yamamoto method Eq. 5 are applied to detect the abrupt change of extreme precipitation characteristics on the interdecadal scale. Results of the two methods both indicate that 1997 is the year of abrupt change for extreme precipitation in eastern China (Figure 3). After 1997, the amount of extreme precipitation, the intensity of extreme precipitation and the frequency of extreme precipitation all increase significantly compared with those before 1997. It can be seen from the time series of extreme precipitation in Figure 2 that, the extreme precipitation showed an obvious linear increase in the past 40 years. In order to better extract and test the abrupt features of precipitation series, we recalculated the linear trends of extreme precipitation amount, intensity and frequency, and subtract the linear trend from the original time series. It is found that, after eliminating the linear trend, the interdecadal increase of extreme precipitation in East China still occurs in late 1990’s. The results are consistent with the conclusions showed in the Figure 3. In this paper, we select the sliding window of 9-years, which is conducive to studying the interdecadal variation characteristics of rainfall change. We also test the different sliding windows (e.g., 5-,7- and 11-years) to verify the interdecadal abrupt change points are independence of the selected sliding window. It is find that when the sliding window is 5 years, due to the short time series, it is impossible to obtain the accurate abrupt point. When the sliding window is 7- to 11-years, the results are consistent with the results of this paper. Based on this, we believe that the sliding window selected in this paper is appropriate and does not affect the judgment of the abrupt point. Therefore, 1997 is taken as the time line to separate the study period into two sub-periods: 1979–1997 (P1) and 1998–2020 (P2). The purpose of using two different methods to test the abrupt change of extreme precipitation is to avoid possible errors caused by individual methods.
[image: Figure 3]FIGURE 3 | Moving t-test (A) and Yamamoto test (B) of extreme precipitation (blue line), extreme precipitation intensity (green lines), and extreme precipitation frequency (red lines).
Figure 4 shows the interdecadal differences in extreme precipitation amount, extreme precipitation intensity and extreme precipitation frequency between P2 and P1 periods (P2-P1) in eastern China. It can be seen that the interdecadal differences of these three indices are positive in most regions, especially in Fujian, Jiangxi, Guangdong, Guangxi and other regions in the southeastern coastal area. This result indicates that extreme precipitation in P2 period is more than that in P1 period. And the frequency and intensity of extreme precipitation also increase significantly, which is consistent with the linear increasing trend (Figures 1D–F). It is worth noting that the interdecadal difference of extreme precipitation in northern Hebei and Beijing is negative, indicating that the interdecadal variation of extreme precipitation in this area is contrary to the trend in other areas of eastern China.
[image: Figure 4]FIGURE 4 | Interdecadal differences between P2 and P1 periods in eastern China (P2-P1): extreme precipitation amount (A) (units: mm); extreme precipitation intensity (B) (units: mm/d); extreme precipitation frequency (C) (units: d). Dotted areas indicate values exceeding the 95% confidence level by t test.
3.3 Atmospheric circulation anomalies
The atmospheric circulation provides a large-scale background for the occurrence of extreme precipitation events (Ding and Chan., 2005). Usually, sufficient water vapor supply and strong upward movement are necessary conditions for the occurrence and maintenance of large-scale extreme precipitation. In order to study the characteristics of the atmospheric circulation anomalies in P2 period with high occurrence of extreme precipitation events, we calculate interdecadal differences (P2-P1) in various elements involved in the atmospheric circulation between P1 and P2 periods (Figure 5). Figure 5A is the 500 hPa vertical velocity field, which shows an upward movement in eastern China and the Indo-China Peninsula. The high value area is located in the northeast of Taiwan Island as well as Vietnam and Thailand in the Indo-China Peninsula, while descending motions prevail in the low latitude area (0°–10°N) during P2. Figure 5B presents the interdecadal difference in sea level pressure. Negative values appear in eastern China, indicating that the sea-level pressure in P2 period is lower than that in P1 period over this region. And the central area of negative values is basically the same as the center of upward motion shown in Figure 5A, indicating that the upward motion at 500 hPa to a certain extent is driven by the convergence in lower levels close to the ground. However, there is no obvious correlation between the interdecadal differences of sea level pressure and 500 hPa vertical motion in the low latitudes. Figure 5C shows the interdecadal differences in 850 hPa wind and relative vorticity. Positive vorticity circulation appears in eastern part of China, and upward movement appears in the lower levels, which is controlled by the southerly wind originated from the ocean. Looking at water vapor flux and its divergence in the whole layer (Figure 5D), it is found that the divergence of water vapor flux in most areas of eastern China is negative, indicating that these areas experience strong water vapor convergence. At the same time, warm and moist air mass with abundant water vapor content has been continuously transported to eastern China. In summary, the upward movement in the middle and lower levels is stronger in the P2 period than in the P1 period. Meanwhile, more warm moist air mass is transport to eastern China in P2 period than in P1 period. The above changes in the atmospheric circulation all are favorable for the increase in extreme precipitation in eastern China.
[image: Figure 5]FIGURE 5 | Interdecadal difference between P1 and P2 periods (P2-P1): 500 hPa vertical velocity (A); sea level pressure (B); 850 hPa wind field and relative vorticity (C); 1000–500 hPa water vapor flux and water vapor flux divergence (D). Dotted areas and black wind arrows indicate values exceeding the 95% confidence level by t test.
Some studies have shown that when the SAH and the WPSH are abnormally overlapped zonally, that is, when the east ridge of the SAH is abnormally close to the west ridge of the WPSH (compared with the multi-year average state), abnormal upward movements and water vapor convergence anomalies would develop above eastern China, resulting in more precipitation in the region (Zhang and Zhi., 2010).
Figure 6 shows the geopotential heights of 500 hPa (A) and 200 hPa (B), and the contours of 5,880, 5,870 and 12,500 gpm are used to represent typical ranges of the WPSH and the SAH respectively. It can be seen that during the P2 period, the WPSH and the SAH both are stronger than that in the P1 period, and ranges of their influence are also larger than before. The WPSH anomaly extends westward, and the SAH anomaly moves eastward. In other words, along the zonal direction, the two highs show the characteristics of opposite moving directions (zonal overlap). When the two high pressure systems overlap in the zonal direction, the warm moist air mass from the western Pacific ocean will be transported to eastern China by the southwesterly winds on the northwest side of the WPSH. A large value belt of southerly wind and water vapor transport can form over eastern China. Water vapor is transported from the Pacific ocean to eastern China, which, combined with the low-level convergence and upward movement, is conducive to the development of extreme precipitation. At the same time, in the P2 period, it is found that the divergence of water vapor flux in most areas of eastern China is negative, indicating that these areas experience strong water vapor convergence. And the anomalous enhancement of the SAH (Figure 6B) is favorable for divergence in the upper layer and upward movement in the middle layer. In general, the circulation pattern in the upper and lower levels is conducive to the formation of extreme precipitation in eastern China during the P2 period.
[image: Figure 6]FIGURE 6 | P1 period (red line) and P2 period (blue line): 500 hPa (A) geopotential height; 200 hPa (B) geopotential height.
The interdecadal difference in atmospheric circulation between P1 and P2 periods in most parts of eastern China is statistically significant at the 95% confidence level by t test, indicating that the large-scale atmospheric circulation that affects extreme precipitation in eastern China also experiences an interdecadal change in the late 1990’s. The atmospheric circulation change is favorable for the interdecadal transformation of extreme climate event in eastern China. It is also consistent with the abrupt interdecadal changes shown in the time series of extreme precipitation indexes obtained by moving t-test and Yamamoto methods (Figure 3). It can be seen that the anomaly of atmospheric circulation is an important factor that contributes to the interdecadal change of extreme precipitation over eastern China.
3.4 Impacts of sensible heat flux changes over the Tibetan Plateau
Sensible heat flux plays an important role in the occurrence of extreme precipitation. Figure 7 shows the interdecadal differences (P2-P1) in spring sensible heat flux over the Tibetan Plateau. It can be found that the Tibetan Plateau is an area of positive difference of sensible heat flux, indicating that the sensible heat flux during the P2 period is larger than that during the P1. Larger sensible heat fluxes can lead to higher temperature in the lower troposphere and thus increase water vapor content in the air, which is favorable for the increase in regional precipitation and extreme precipitation. Therefore, sensible heat flux is closely related to the occurrence of extreme precipitation.
[image: Figure 7]FIGURE 7 | Interdecadal differences in spring sensible heat flux over the Tibetan Plateau (P2-P1). The red box indicates the Tibetan Plateau region. Dotted areas indicate values exceeding the 95% confidence level by t test.
In addition, sensible heat flux over the Tibetan Plateau in spring is the main factor that maintains the intensity of the SAH. The correlation analysis between the time series of regional average sensible heat flux in spring over the Tibetan Plateau from 1979 to 2020 and 500 hPa geopotential height in summer during the same period (Figure 8) reveals that the area of high correlation coefficient is consistent with the range of the SAH shown in Figure 6B. This result indicates that the springtime sensible heat flux over the Tibetan Plateau has a significant positive correlation with the SAH. In other words, the sensible heat flux in spring over the Tibetan Plateau is the dominant factor that contributes to the strengthening of SAH during the P2 period (Figure 6B).
[image: Figure 8]FIGURE 8 | Correlation between interdecadal differences in spring sensible heat flux over the Tibetan Plateau and differences in geopotential height at 200 hPa (P2-P1). Dotted areas indicate values exceeding the 95% confidence level by t test.
3.5 Impacts of zonal sea surface temperatureT gradient in the tropical oceans
The Pacific SST is one of the main factors affecting the atmospheric circulation (Zhang and Ding, 2004; Yang et al., 2008). By studying the interdecadal difference in SST between P1 and P2 (Figure 9), it can be found that the SST differences in the tropical oceans in winter, spring and summer shows positive values in the western Pacific and the Indian Ocean, but there is an area of relatively small SST difference in the Maritime Continental region (100°-120°E). And the surface temperature of the Indian Ocean and the Western Pacific continue to increase, forming “warm pools.“ This result indicates that SST in the tropical oceans show a more significant zonal gradient during P2. The positive SST difference in the western Pacific in winter is the most obvious, and positive SST differences significant at the 95% confidence level occur over the entire area over 120°–160°E. This “high-low-high” SST distribution is conducive to descending motion over the Maritime Continent. In addition, the continuous warming of the Indian Ocean and the Western Pacific also affects the intensity of the SAH and the WPSH, that is, the Indian Ocean and the Western Pacific warm pools force the SAH and the WPSH to be strengthened, which leads to the adjustment of the atmospheric circulation. As a result, more warm moist air mass above the ocean in the northwest side of the WPSH is transported to eastern China (Figure 5D), leading to abnormally intense summer extreme precipitation events there.
[image: Figure 9]FIGURE 9 | Interdecadal differences in SST between P1 and P2 periods (P2-P1): winter (A); spring (B); summer (C). Dotted areas indicate values exceeding the 95% confidence level by t test.
The ascending and descending branches of the Walker Circulation (Figure 10A) in low-latitude regions (0°–10°N average) are significantly stronger during P2 compared to that during P1. Large interdecadal differences can be found in the Walker Circulation (P2-P1). That is, after 1997, driven by the warm pool in the equatorial Indian Ocean and the Western Pacific, the Walker circulation during the P2 period is significantly stronger than that in the previous period of P1. The ascending branches of the Walker Circulation are located at 60–80°E and 160–180°E, respectively, and the descending branch is located at 80–160°E. The strongest descending motion is concentrated over 90–120°E. In addition, the anomalous ascending motion above 700 hPa that occurs near 140°E is also favorable for abnormal intensification of the WPSH at 500 hPa.
[image: Figure 10]FIGURE 10 | Interdecadal differences between P1 and P2 periods: Walker circulation (0°-10°N average) (A); Hadley circulation (100°–120°E average) (B). Shaded: vertical velocity (note that vertical velocity is multiplied by 100 for better visualization).
At the same time, the ascending branch of the Walker Circulation in the equatorial western Pacific leads to the formation of a meridional Hadley circulation on its north side (Figure 10B) and a counterclockwise circulation anomaly center in the middle and upper troposphere (400–200 hPa) along the vertical direction. The Hadley circulation links the wind fields in the low and middle to high latitudes and thus plays a crucial role in the exchanges of heat, momentum and water vapor between different latitudes. In the P2 period, the local Hadley circulation in East Asia is abnormally strong with upward movements at around 20–28°N and 32–40°N and downward movements at around 0–10°N and 30°N. This circulation pattern is consistent with the ascending motion shown in Figure 5A and the area of negative sea level pressure anomalies shown in Figure 5B. The strongest upward movement occurs near 25°N, which is more favorable for the intensification of WPSH than that in the P1 period. The descending branch near 10°N tilts to the north near the ground, which further strengthens the southerly winds over eastern China. On the one hand, it is conducive to the northward movement of warm moist air mass from the northwestern Pacific; on the other hand, it strengthens upward movement in this region. The above analysis reveals that the joint impacts of the latitudinal and longitudinal circulations promote the occurrence and development of extreme precipitation in eastern China in summer.
4 DISCUSSION
The major conclusions of the present study about extreme precipitation in eastern China are based on analysis of the average state over the entire region. However, it is worth noting that with the increases in both rainfall amount and occurrence frequency of extreme precipitation in most regions of eastern China, the variation trend of extreme precipitation in Beijing-Tianjin-Hebei region and parts of the Pearl River Delta is actually opposite to that in other regions of eastern China. Despite the fact that large-scale weather and climate background is becoming more conducive to the occurrence of extreme precipitation events, extreme precipitation events in the above two regions are decreasing rather than increasing. This indicates that in addition to large-scale weather and climate background, there are some other factors that can affect the occurrence and development of extreme precipitation events in these two regions. Considering the fact that these two regions are highly urbanized, it is reasonable to hypothesize that urbanization could be a key factor that affects extreme precipitation. It is worth further exploring this research topic in the future.
The SAH is a planetary-scale vortex center in the upper troposphere above the Tibetan Plateau in summer. It is also the most powerful and stable atmospheric activity center in the upper troposphere in the northern hemisphere summer. The activities of SAH have important impacts on Asian weather and climate, especially on precipitation in eastern China (Qian et al., 2002; Wu et al., 2004; Liu et al., 2013; Peng et al., 2016). The WPSH is a large-scale subtropical high-pressure system in the middle troposphere over the western Pacific, and it is also an important circulation system in the middle and low latitudes. The peak period of the WPSH activities appears in summer, when its scope and intensity both reach the maximum. The WPSH is one of the main atmospheric activity centers that affect the weather and climate in eastern China, and the east-west oscillation of the WPSH has an important impact on precipitation in Eastern China (Yao et al., 2005; Liu and Ding., 2009; Wang and Qian., 2009; Wang et al., 2011; Ren et al., 2013; Ye et al., 2014; Zhang et al., 2014, Zhang et al., 2015; Lin et al., 2016; Huang et al., 2015; He et al., 2018). This study shows that the contribution of the SAH is the most obvious in the interdecadal change of extreme precipitation that occurred around 1997. Note that although the WPSH intensity has increased during the P2, it does not directly modulate the interdecadal change of extreme precipitation in South China.
In addition, the strength of the East Asian summer monsoon and the location change in the upper-and lower-level jets are also factors that can affect extreme precipitation in eastern China. Many studies have analyzed the influence of a single or two factor on extreme precipitation in Eastern China, but few studies have focused on the physical mechanism study for extreme precipitation and interaction between various factors. In order to comprehensively understand the causes for the interdecadal change in extreme precipitation in Eastern China, more work needs to be done.
5 CONCLUSIONS
This paper analyzes the interdecadal change in summer extreme precipitation over East China that occurred in the late 1990’s. The influence mechanism of summer extreme precipitation over East China is explored based on analysis of atmospheric circulation anomalies on the interdecadal time scale. Major conclusions are as follows.
From 1979 to 2020 (P2), summer extreme precipitation in East China overall shows an upward trend, and there is a significant interdecadal increase that occurred around 1997. After 1997, the extreme precipitation changes from less than normal to higher than normal. Spatial distributions of extreme precipitation amount and intensity are similar, i.e., larger extreme precipitation amount and higher precipitation intensity are more concentrated in the south than in the north. The extreme precipitation events decrease from southeast to northwest and the coastal areas experience more extreme precipitation than inland areas. The areas with more extreme precipitation and extreme precipitation intensity are located in the southeastern coastal region as well as southern Anhui Province and western Hubei Province.
In the P2 period, there is a strong upward movement in the lower troposphere above eastern China and a positive vorticity circulation develops at 850 hPa, which is controlled by strong southeasterly winds. From the perspective of water vapor transport in the whole atmosphere, convergence of warm and moist air originated from the northwestern Pacific Ocean can be found in eastern China, and convective activities are obviously strong in this region. These atmospheric conditions are favorable for the increase of extreme precipitation in eastern China.
Sensible heat flux in the Tibetan Plateau in spring is the main factor that helps to maintain the intensity of the SAH. After 1997, positive anomalies of sensible heat flux develop over the Tibetan Plateau in spring. According to the significant positive correlation between the plateau sensible heat in spring and the SAH intensity, the intensification of the SAH strengthens the upper-level divergence over South China, providing a favorable background condition for the development of updrafts and convection activities there.
Besides, the interdecadal difference in SSTA in the tropical oceans presents an obvious “high-low-high” pattern with larger zonal SST gradient during P2. Positive SST anomalies occur in the Indian Ocean and western Pacific, and negative SST anomalies appear over the Maritime Continent. The tropical zonal SST gradient triggers a secondary Hadley circulation with its ascending branch located in eastern China. This is a circulation condition favorable for the occurrence of extreme precipitation. In addition, since the late 1990’s, the South Asian High has strengthened in the upper troposphere over southeastern China. The anomalous divergence at the upper levels effectively maintains the upward movement there, which in turn facilitates the occurrence of extreme precipitation. The sensible heat flux changes in the Tibetan Plateau in spring and the increased zonal tropical SST gradient jointly affect summer extreme precipitation over East China, leading to the interdecadal increase in extreme precipitation.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding authors.
AUTHOR CONTRIBUTIONS
ZZ and YH obtained funding; ZZ and YH contributed to the idea and research of the study; ZZ and YH designed this manuscript; JL performed the statistical analysis; JL drafted the manuscript; ZZ and YH performed manuscript review and editing. All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.
FUNDING
This work is sponsored jointly by the National Natural Science Foundation of China (41975167 and 41975090), the Natural Science Foundation of Hunan Province, China (2022JJ20043), the Scientific Research Program of National University of Defense Technology (18/19-QNCXJ).
ACKNOWLEDGMENTS
The authors acknowledge the National Natural Science Foundation of China for supporting this study. The authors also thank NOAA and NECP/NCAR for providing their free multiple databases.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
REFERENCES
 Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., et al. (2006). Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 111, D05109. doi:10.1029/2005JD006290
 Chen, L,-X., Zhu, Q,-G., and Luo, H,-B. (199l). East Asian monsoon (in Chinese). Beijing: China Meteorological Press, 362. 
 Chen, Y., and Zhai, P, -M. (2013). Persistent extreme precipitation events in China during 1951-2010. Clim. Res. 57 (2), 143–155. doi:10.3354/cr01171
 Ding, Y, -H., and Chan, J. (2005). the East asian summer monsoon: An overview. Meteorol. Atmos. Phys. 89, 117–142. doi:10.1007/s00703-005-0125-z
 Folland, C. K., and Parker, D. E. (1995). Correction of instrumental biases in historical sea surface temperature data. Q. J. R. Meteorol. Soc. 121, 319–367. doi:10.1002/qj.49712152206
 Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., and Xavier, P. K. (2006). Increasing trend of extreme rain events over India in a warming environment. Science 314, 1442–1445. doi:10.1126/science.1132027
 Groisman, P. Y., Karl, T. R., Easterling, D. R., Knight, R. W., Jamason, P. F., Hennessy, K. J., et al. (1999). Changes in the probability of heavy precipitation: Important indicators of climatic change. Clim. Change 42, 243–283. doi:10.1023/A:100.5432803188
 Guan, Z., and Yamagata, T. (2003). The unusual summer of 1994 in east Asia: IOD teleconnections. Geophys. Res. Lett. 30, 1544. doi:10.1029/2002GL016831
 He, C., Lin, A., Gu, D., Li, C., Zheng, B., Wu, B., et al. (2018). Using eddy geopotential height to measure the western North Pacific subtropical high in a warming climate. Theor. Appl. Climatol. 131 (1-2), 681–691. doi:10.1007/s00704-016-2001-9
 Huang, R, -H. (1990). Studies on the teleconnections of the general circulation anomalies of East Asia causing the summer drought and floods in China and their physical mechanism. Sci. Atmos. Sin. 14 (1), 108–117, (in Chinese) Availabale at: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DQXK199001013&DbName=CJFQ1990. 
 Huang, R, -H., Xu, Y, -H., Wang, P, -F., and Zhou, L, -T. (1998). The features of the catastrophic floodover the Changjiang River basin during the summer of 1998 and cause exploration. Clim. Environ. Res. (in Chin. 3 (4), 300–313. doi:10.3878/j.issn.1006-9585.1998.04.02
 Huang, R, -H., Xu, Y, -H., and Zhou, L, -T. (1999). The interdecadal variation of summer precipitations in China and the drought trend in North China. Plateau Meteorol. 18 (4), 465–476. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DQXK 200302002&DbName=CJFQ2003. 
 Huang, Y., Wang, H., Fan, K., and Gao, Y. (2015). The Western pacific subtropical high after the 1970s: Westward or eastward shift?Clim. Dyn. 44 (7/8), 2035–2047. doi:10.1007/s00382-014-2194-5
 Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M., et al. (2002). NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 83 (11), 1631–1643.
 Karl, T. R., and Knight, R. W. (1998). Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Am. Meteorol. Soc. 79, 231–241. doi:10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2
 Kurihara, K., and Kawahara, M. (1986). Extremes of East Asian weather during the post ENSO years of 1983/84 Severe cold winter and hot dry summer. J. Meteorological Soc. Jpn. 64, 493–503. doi:10.2151/JMSJ1965.64.4_493
 Li, S, -S., and Shou, S, -W. (2000). Equatorial eastern Pacific SST and analysis on causes of summerer flood/droughts in the Changjiang and Huaihe River basin. Q. J. Appl. Meteorololgy (in Chinese) 11 (3), 331–338. doi:10.3969/j.issn.1001-7313.2000.03.010
 Lin, R., Zhu, J., and Zheng, F. (2016). Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols. Sci. Rep. 6, 38546. doi:10.1038/srep38546
 Liu, B., Wu, G., Mao, J., and He, J. (2013). Genesis of the south asian high and its impact on the asian summer monsoon onset. J. Clim. 26 (9), 2976–2991. doi:10.1175/JCLI-D-12-00286.1
 Liu, Y, -Y., and Ding, Y, -H. (2009). Influence of the western north pacific summer monsoon on summer rainfall over the Yangtze River basin. Chinese Journal of Atmospheric Sciences 33 (6), 1225–1237. https://d.wanfangdata.com.cn/periodical/daqikx200906009. 
 Lu, R, -Y., Dong, H, -L., Su, Q., and Ding, H. (2014). The 30-60-day intraseasonal oscillations over the subtropical Western North Pacific during the summer of 1998. Adv. Atmos. Sci. 31 (1), 1–7. doi:10.1007/s00376-013-3019-x
 Mei, W., and Yang, X, -Q. (2005). Trends of precipitation variations in the mid-lower Yangtze River valley of China. JOURNAL OF NANJING UNIVERSITY(NATURAL SCIENCES) 41 (6), 577–589. doi:10.3321/j.issn:0469-5097.2005.06.001
 Nitta, T. (1987). Convective activities in the tropical Western Pacific and their impact on the Northern Hemisphere summer circulation. Journal of the Meteorological Society of Japan. 64, 373–390. doi:10.2151/JMSJ1965.65.3_373
 Pan, J, -S., Teng, D, -G., Zhang, F, -Q., Zhou, L, -L., Luo, L., Weng, Y, -H., et al. (2018). Dynamics of local extreme rainfall of super Typhoon Soudelor (2015) in East China. Sci. China Earth Sci. 61, 572–594. doi:10.1007/s11430-017-9135-6
 Park, C. K., and Schubert, S. D. (1997). On the nature of the 1994 East Asian summer drought. J. Clim. 10 (5), 1056–1070. doi:10.1175/1520-0442(1997)010<1056:OTNOTE>2.0.CO;2
 Peng, L, -X., Sun, Z, -B., Chen, H, -S., and Zhu, W. (2016). Analysis on the multi-center structure of summer south Asia high and its thermal influence factors. Chinese Journal of Atmospheric Sciences 40 (5), 1089–1106. doi:10.3878/j.issn.1006-9895.1601.14310
 Qi, Y, -J., Zhang, R, -H., and Li, T. (2016). Structure and evolution characteristics of atmospheric intraseasonal oscillation and its impact on the summer rainfall over the Yangtze River basin in 1998. Chinese Journal of Atmospheric Sciences (in Chinese) 40 (3), 451–462. doi:10.3878/j.issn.1006-9895.1507.15107
 Qian, Y, -F., Zhang, Q., and Zhang, X, -H. (2002). the South asian high and its effects on China’s mid-summer climate abnormality. Journal of Nanjing University(Natural Science) 38 (3), 295–307. doi:10.3321/j.issn:0469-5097.2002.03.004
 Ren, F, -M., and Zhai, P, -M. (1998). Study on changes of China′s extreme temperatures during 1951-1990. SCIENTIA ATMOSPHERICA SINICA 22 (2), 217–226. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DQXK802.009&DbName=CJFQ1998. 
 Ren, X., Yang, X, -Q., and Sun, X. (2013). Zonal oscillation of Western Pacific Subtropical High and subseasonal SST variations during Yangtze persistent heavy rainfall events. J. Clim. 26 (22), 8929–8946. doi:10.1175/JCLI-D-12-00861.1
 Shi, X, -H., and Wen, M. (2015). Distribution and variation of persistent heavy rainfall events in China and possible impacts of heating source anomaly over QinghaiXizang Plateau. Plateau Meteorology (in Chinese) 34 (3), 611–620. doi:10.7522/j.issn.1000-0534.2014.00039
 Stone, D. A., Weaver, A. J., and Zwiers, F. W. (2000). Trends in Canadian precipitation intensity. Atmosphere-Ocean 28 (2), 321–347. doi:10.1080/07055900.2000.9649651
 Su, B, -D., Jiang, T., Ren, G, -Y., and Chen, Z, -H. (2006). Observed trends of precipitation extremes in the Yangtze River basin during 1960 to 2004. Advances in Climate Change Research 2 (1), 9–14. doi:10.3969/j.issn.1673-1719.2006.01.002
 Sun, X, -Y., Lou, Y, -L., Gao, X, -Y., Wu, M, -G., Li, M, -X., Huang, L, -N., et al. (2021). On the localized extreme rainfall over the great bay area in south China with complex topography and strong UHI effects. Mon. Weather Rev. 149, 2777–2801. doi:10.1175/MWR-D-21-0004.1
 Suppiah, R., and Henessy, K. J. (1996). Trends in the intensity and frequency of heavy rainfall in tropical Australia and links with the Southerm Oscillation. Aust. Meteorol. Mag. 45, 1–17. 
 Suppiah, R., and Hennessy, K. J. (1998). Trends in total rainfall, heavy rain events and number of dry days in Australia, 1910–1990.Int. J. Climatol. 18:1141–1164. doi:10.1002/(sici)1097-0088(199808)18:10<1141::aid-joc286>3.0.co;2-p
 Wang, J., Yu, J, -H., and He, J, -Q. (2015). The study on characteristic and change of extreme rainfall over Jianghuai region. Climatic Environ Res (in Chinese) 20 (1), 80–88. doi:10.3878/j.issn.1006-9585.2014.13222
 Wang, L, -J., Chen, X., and Guan, Z, -Y., (2011). Relationship between the position variation of the West pacific subtropical high and the diabatic heating during persistent heavy rain events in yangtze-huaihe rivers basin. Journal of Tropical Meteorology 27 (3), 327–335. doi:10.3969/j.issn.1004-4965.2011.03.005
 Wang, Z, -F., and Qian, Y, -F. (2009). Frequency and intensity of extreme precipitation events in China. Advances in Water Science 20 (1), 1–9. doi:10.14042/j.cnki.32.1309.2009.01.005
 Wei, F,-Y. (2005). “The effect of different time scale factors on the summertime rainfall over the middle and lower reaches of the Yangtze River,” in Proceeding of the 2005 Annual Conference of Chinese Meteorological Society,  (Suzhou, Joctober 1, 2005), 1150–1155. (in Chinese). 
 Wu, G, -X., Mao, J, -Y., and Duan, -A. M. (2004). Recent progress in the study on the impacts of Tibetan plateau on asian summer climate. ACTA METEOROLOGICA SINICA 62 (5), 528–540. doi:10.3321/j.issn:0577-6619.2004.05.002
 Xie, P., and Arkin, P. A. (1997). Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 78 (11), 2539–2558. doi:10.1175/1520-0477(1997)078<2539:gpayma>2.0.co;2
 Yamamoto, R., and Sakurai, Y. (1999). Long-term intensification of extremely heavy rainfall intensity in recent 100 years. World Resource Review 11, 271–281. 
 Yang, J, -H., Jiang, Z, -H., and Bai, H, -Z. (2008). Teleconnection between summer extreme precipitation event of east part of northwest China and pacific SSTA. Plateau Meteorology 27 (2), 331–338. doi:10.3969/j.issn.000-0534.2008.02-0331-08
 Yang, S, -Y., Lu, Q, -F., Ju, X, -H., et al. (2011). The non-uniformity characteristic of extreme precipitation in Northeast China during the flood period during 1961-2010. Transactions of Atmospheric Sci. 34 (6), 756–762. doi:10.3969/j.issn.1674-7097.2011.06.014
 Yang, X, -Q., Xie, Q., and Huang, S, -S. (1992). Correlations between drought/flood in Yangtze River valley and anomalies of central-eastern equatorial Pacific SST and Arctic sea ice extent. Journal of Tropical Meteorology (in Chinese) 8 (3), 261–266. doi:10.16032/j.issn.1004-4965.1992.03.009
 Yao, X, -P., Yu, Y, -B., and Liu, H, -Z. (2005). Characteristicks of the subtropical anticyclone during the abnormal rainfall period over the huaihe river region 2003. Journal of Tropical Meteorology 21 (4), 393–401. doi:10.3969/j.issn.1004-4965.2005.04.007
 Ye, T, -S., Zhi, R., Zhao, J, -H., and Gong, Z, -Q. (2014). The two annual northward jumps of the West Pacific Subtropical High and their relationship with summer rainfall in Eastern China under global warming. Chinese Phys. B 23 (6), 069203–069536. doi:10.1088/1674-1056/23/6/069203
 Zhai, P, -M., and Pan, X, -H. (2003a). Change in extreme temperature and precipitation over northern China during the second half of the 20th century. Acta Geographica Sinica 58, 1–10. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DLXB 2003S1000&DbName=CJFQ2003. 
 Zhai, P, -M., Zhang, X, -B., Wan, H., and Pan, X, -H. (2005). Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 18 (7), 1096–1108. doi:10.1175/JCLI-3318.1
 Zhai, P, -M., and Zou, X, -K. (2005). Changes in temperature and precipitation and their impacts on drought in China during 1951-2003. Advances in Climate Change Research 1 (1), 16–18. doi:10.3969/j.issn.1673-1719.2005.01.004
 Zhang, D.-L., Lin, Y., Zhao, P., Yu, X., Wang, S., Kang, H., et al. (2013). The beijing extreme rainfall of 21 july 2012: “Right results” but for wrong reasons. Geophys. Res. Lett. 40, 1426–1431. doi:10.1002/grl.50304
 Zhang, L., Zhi, X, -F., and Karray, F. (2010). Retinal vessel extraction by matched filter with first-order derivative of Gaussian.Comput. Biol. Med. 30 (4), 438–445. doi:10.1016/j.compbiomed.2010.02.008
 Zhang, Q, -Y., and Tao, S, -Y. (1998). Influence of Asian mid high latitude circulation on East Asian summer rainfall. Acta Meteorologica Sinica (in Chinese) 56 (2), 199–211. doi:10.11676/qxxb1998.019
 Zhang, Y, -L., and Ding, Y, -G. (2004). The teleconnection between summer extreme precipitation over east China and north pacific SST. Transactions of Atmospheric Sciences 27 (2), 244–252. doi:10.3969/j.issn.1674-7097.2004.02.014
 Zhang, Y., Li, Y, -H., and Liu, K. (2015). Effect of western pacific subtropical high on regional rainfall anomalies in summer over huang-huai-hai plain. Arid Zone Research 32 (3), 518–525. doi:10.13866/j.azr.2015.03.16
 Zhang, Y., Li, Y, -H., and Wang, J, -S. (2014). Analysis on the cause of the abnormally persistent high temperature in south of China in july 2013. Journal of Tropical Meteorology 30 (6), 1172–1180. doi:10.3969/j.issn.1004-4965.2014.06.018
 Zhu, Z., and Li, T. (2016). A new paradigm for continental U.S. Summer rainfall variability: Asia-north America teleconnection. J. Clim. 29 (20), 7313–7327. doi:10.1175/JCLI-D-16-0137.1
 Zhu, Z., and Li, T. (2018). Amplified contiguous United States summer rainfall variability induced by East Asian monsoon interdecadal change. Clim. Dyn. 50 (9/10), 3523–3536. doi:10.1007/s00382-017-3821-8
 Zhu, Z., Li, T., and He, J. (2014). Out-of-Phase relationship between boreal spring and summer decadal rainfall changes in southern China. J. Clim. 27 (3), 1083–1099. doi:10.1175/JCLI-D-13-00180.1
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Zang, Luo and Ha. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 01 September 2022
doi: 10.3389/feart.2022.969742


[image: image2]
Dynamic downscaling ensemble forecast of an extreme rainstorm event in South China by COSMO EPS
Luying Ji1, Xiefei Zhi2*, Bernd Schalge3, Klaus Stephan4, Zhifang Wu5, Chong Wu6, Clemens Simmer3 and Shoupeng Zhu1
1Key Laboratory of Transportation Meteorology of China Meteorological Administration, Nanjing Joint Institute for Atmospheric Sciences, Nanjing, China
2Key Laboratory of Meteorological Disasters, Ministry of Education (KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
3Institute for Geosciences—Section Meteorology, University of Bonn, Bonn, Germany
4Deutscher Wetterdienst, Offenbach, Germany
5Guangdong Meteorological Bureau, Guangzhou, China
6State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Science, Beijing, China
Edited by:
Jingyu Wang, Nanyang Technological University, Singapore
Reviewed by:
Xiaoming Shi, Hong Kong University of Science and Technology, Hong Kong SAR, China
José Pedro Matos, Universidade de Lisboa, Portugal
* Correspondence: Xiefei Zhi, zhi@nuist.edu.cn
Specialty section: This article was submitted to Atmospheric Science, a section of the journal Frontiers in Earth Science
Received: 15 June 2022
Accepted: 09 August 2022
Published: 01 September 2022
Citation: Ji L, Zhi X, Schalge B, Stephan K, Wu Z, Wu C, Simmer C and Zhu S (2022) Dynamic downscaling ensemble forecast of an extreme rainstorm event in South China by COSMO EPS. Front. Earth Sci. 10:969742. doi: 10.3389/feart.2022.969742

In this study, the high-resolution ensemble prediction system COSMO (Consortium for Small Scale) EPS is used to predict the extreme rainstorm that occurred from 27 to 31 August 2018 in Guangdong Province, China, which leads to intensities exceeding historical extreme values. COSMO EPS is run with a 2.8-km grid spacing, allowing for an explicit treatment of deep convection, and 24 members of the EPS are initialized and laterally driven by the ICON (ICOsahedral Nonhydrostatic) global model. We compare the predictions of COSMO EPS against observations derived from the global precipitation measurement (GPM) and with ensemble forecasts of both mesoscale EPS and global EPS provided by GRAPES (Global and Regional Assimilation and PrEdiction System), and with the deterministic forecasts of global models ICON and ECMWF (European Centre for Medium-Range Weather Forecasts). Model performances are evaluated both by gridpoint-based scores, such as the equitable threat score (ETS), and by the Method for Object-based Diagnostic Evaluation (MODE) for spatial verification. According to our results, COSMO EPS could perform better forecasts for the rainstorms taken place in eastern Guangdong than other models. However, the location and coverage area of its predicted rainstorm is eastward and smaller in contrast with the observations. Therefore, COSMO EPS exhibits relative high performance by object-based spatial evaluations, while it could not display evident superiority in terms of the gridpoint-based scores. The cause analysis of this extreme rainstorm shows that Guangdong Province of China is mainly affected by monsoon depression. Southwesterly and southerly winds continuously transport water vapor from the South China Sea to Guangdong Province. The southwest monsoon low-level jet advances northward over time, which promotes the occurrence and development of continuous heavy precipitation in the coastal areas of Guangdong. In an additional experiment, we investigate the benefit of assimilation of radar data, by applying the latent heat nudging (LHN) approach based on surface-based radar observations to the COSMO EPS. Subsequently, the prediction by assimilation of radar data more reasonably reproduces the spatial distribution of precipitation observations, while the coverage and intensity of the rainstorm in eastern Guangdong are still not reflected satisfactorily.
Keywords: extreme weather events, regional high-resolution model, ensemble prediction system, latent heat nudging, dynamic downscaling
1 INTRODUCTION
During the period of 27–31 August 2018, a continuous, long-lasting, and heavy precipitation occurred in the Guangdong Province, especially over the southern part of the Pearl River Delta and eastern Guangdong. Both the total accumulated precipitation over 5 days and daily precipitation over the Huidong and Luhe regions exceeded historical maxima. From 21 UTC on 30 August to 21 UTC on 31 August, 1,057 mm of precipitation fell over Gaotan Town in Huidong, resetting the historical maximum for the whole Guangdong Province and for non-typhoon precipitation over mainland China. This extreme rainstorm event caused 23 reservoirs in Guangdong to exceed the flood limit, and many places suffered severe waterlogging lasting for more than a week. The lives of 1.9 million people were strongly affected, with two people dying and two missing. The direct economic loss exceeded 0.5 billion USD.
Guangdong Province is adjacent to the western Pacific Ocean, the South China Sea, and the Bay of Bengal. Thus, it is usually influenced by the East Asian monsoon, the Indian monsoon, the western Pacific subtropical high, and typhoons, resulting in abundant water vapor and frequent rainstorms (Wu et al., 2018). The monsoon depression usually brings heavy but not extreme precipitation to Guangdong. However, the extreme rainstorm that occurred at the end of summer 2018 in Guangdong was closely related to the monsoon depression. None of the numerical models such as ECMWF (European Centre for Medium-Range Weather Forecasts) used by the Guangdong (Provincial) Meteorological Bureau successfully predicted this event.
Extreme precipitation forecasting is one of the major challenges in numerical weather prediction (NWP). Many NWP models remain unable to predict the extreme weather resulting from small-scale processes to a satisfactory degree because of insufficient spatial resolution. Regional high-resolution (∼1 km) NWP (HR-NWP) models have been developed to improve the prediction skill of these events (Roberts et al., 2009; Mahoney et al., 2012; Sun et al., 2014; Hoogewind et al., 2016) by better and more explicitly describing the mesoscale processes based on their non-hydrostatic dynamics (Mass et al., 2002; Kain et al., 2008; Tang et al., 2013; Soares et al., 2017; Knist et al., 2020). Nowadays, many national meteorological centers operate HR-NWP models to provide guidance for extreme weather warnings (Saito et al., 2006; Skamarock and Klemp 2008; Staniforth and Wood 2008; Weisman et al., 2008; Bouttier 2009; Baldauf et al., 2011; Seity et al., 2011).
Since 2003, the Deutscher Wetterdienst (DWD; German national meteorological service) has developed the convective-scale HR-NWP model COSMO (Consortium for Small Scale Modeling) with a horizontal grid spacing of 2.8 km, which has been used for operational forecasts since April 2007. A detailed model description can be found in the studies by Doms and Schättler (1999), Steppeler et al. (2003), and Rockel et al. (2008). Many studies have indicated the capability of the COSMO model to simulate well severe weather events (Hohenegger et al., 2008; Seifert et al., 2008; Schlüter and Schädler 2010; Bentzien and Friederichs 2012; Kober et al., 2012; Sokol et al., 2014; Beck et al., 2016), and the model has been implemented as the atmospheric component in the regional Terrestrial System Modeling Platform (TerrSysMP, Shrestha et al., 2014; Simmer et al., 2014).
It is consensual that perfect numerical weather forecasts can never be achieved because even the small uncertainties associated with models and initial conditions will inevitably increase, eventually making any deterministic forecasts probably useless (Lorenz 1963, 1969). An ensemble prediction system (EPS) produces a limited number of ensemble forecasts to estimate the future atmospheric state instead of one deterministic forecast, which not only improves the forecast accuracy but also provides information about forecast uncertainty (Leith, 1974; Buizza et al., 2005; Bowler et al., 2008; Bouttier et al., 2012; Röpnack et al., 2013; Ben Bouallègue and Theis, 2014; Beck et al., 2016). COSMO-DE-EPS is a regional EPS with 20 ensemble members based on COSMO-DE and running operationally at DWD every 3 h with a resolution of 2.8 km, producing 27-h forecasts (up to 45 h at 03 UTC) since May 2012. The uncertainties of the COSMO-DE-EPS are described by perturbations of the initial state, lateral boundary conditions, and model physics (Gebhardt et al., 2011; Peralta et al., 2012; Kühnlein et al., 2014). On 15 May 2018, COSMO-DE-EPS was upgraded with the horizontal resolution increasing from 2.8 to 2.2 km, and now it is called COSMO-D2-EPS (Hess, 2020).
In this study, we apply the COSMO EPS under the framework of TerrSysMP to South China and verify its ability to predict the heavy precipitation event over the Guangdong Province, evaluating its performance against other models. In Section 2, we describe the experiment design including the study region, model configuration, observations, and the other model datasets that are compared with the COSMO forecasts. A subsection introduces the adopted gridpoint-based and object-based verification techniques. The comparisons among COSMO predictions, observations, and other model predictions as well as the impact of mesoscale data assimilation on COSMO forecasts are presented in Section 3. A summary and discussion are provided in Section 4.
2 DATA AND METHODS
2.1 Experiment design
2.1.1 Study region
Guangdong Province is located in the southernmost part of mainland China, which is located between 20°13′N–25°31′N and 109°39′E–117°19′E. It is mostly characterized by a subtropical monsoon climate with hot and rainy summers and mild and dry winters. The annual mean precipitation in this province is 1,774 mm, and its annual mean temperature is 21.9°C. The terrain is high in the north and low in the south, with an average altitude of 100 m and a maximum altitude of 1,902 m. The province is the one most affected by typhoons in China. Figure 1 shows the model domain used for COSMO in this study (dashed line), which has a spatial extension of roughly 2,240 × 1,176 km2.
[image: Figure 1]FIGURE 1 | The study region encompasses the Guangdong Province. The model domain of COSMO is indicated by the black dashed line with its elevations above sea level displayed according to the color bar. Thin black lines indicate the coastline and borders between Chinese provinces; the full black line indicates the continental Chinese–Vietnamese border.
2.1.2 COSMO model configuration
All our predictions are performed with the COSMO model, version 5.01. The model is constructed based on the primitive thermo-hydrodynamical equations describing the compressible flow of a moist atmosphere. The model equations are formulated in rotated geographical coordinates with a generalized terrain following a height coordinate (http://www.cosmo-model.org/). The north pole is shifted in order to allow for similar grid area extensions within the model area. The grid specifications for our experiments are summarized in Table 1.
TABLE 1 | Grid specifications of the COSMO model.
[image: Table 1]The regional model COSMO (2.8 km) uses predictions from the global model ICON (ICOsahedral Nonhydrostatic; Zängl et al., 2015) with the horizontal resolution of 13 km as initial and lateral boundary conditions in our experiments. While the boundary conditions for COSMO are only available every 3 h, the model automatically (linearly) interpolates between these times so that boundary conditions are available at any time. Table 2 provides the basic model configuration parameters we used for the COSMO predictions. Since tropical and sub-tropical regions, as well as rough mountainous regions, are contained in the model domain, the bottom height from which the Rayleigh sponge layer extends to the top of the model domain needs to be adjusted from its default value of 11–14 km (Wang et al., 2013). The width of the lateral boundary relaxation layer is recommended to be 10 to 15 times the grid mesh size; thus, it is set to 28 km. The COSMO predictions are initialized daily at 00 UTC and run for 24 h from 27 to 31 August 2018.
TABLE 2 | Basic model configuration parameters for COSMO.
[image: Table 2]The COSMO EPS used in our study is a multi-physics ensemble. The different parameter values of the COSMO model physics package used in our experiments are set following the COSMO-DE-EPS guidance document (Kühnlein et al., 2014) and are listed in Table 3. For the EPS, four parameters are perturbed: the scaling factor for the thickness of the laminar boundary layer for heat rlam_heat, the mean entrainment rate for shallow convection entr_sc, the critical value for normalized over-saturation q_crit, and the asymptotic maximal turbulent distance tur_len. To perturb the parameters equally and taking the dependencies between the various parameters into account, the product of the perturbation parameters rlam_heat and rat_sea (ratio of laminar scaling factors for heat over sea and land) should be kept constant (Theis et al., 2017). Thus, a total of 24 ensemble members are finally obtained by using all possible combinations of default and perturbed values of the four parameters listed in Table 3.
TABLE 3 | Parameter values of the COSMO model physics package used for the ensemble members of the COSMO EPS. Parameter rlam_heat is the scaling factor for the thickness of the laminar boundary layer for heat; entr_sc is the mean entrainment rate for shallow convection; q_crit is the critical value for normalized over-saturation; and tur_len is the asymptotic maximal turbulent distance. The first line of numbers gives the default values also used in the EPS.
[image: Table 3]2.2 Forecasts from other operational prediction systems
We compare the COSMO EPS precipitation forecasts with the deterministic forecasts of its global driving model ICON, the deterministic forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF), and the ensemble forecasts of two GRAPES (Global and Regional Assimilation and PrEdiction System) EPSs, which are running operationally at China Meteorological Administration (CMA) (for details, see Table 4).
TABLE 4 | Various models used for comparisons in this study.
[image: Table 4]The GRAPES model has a fully compressible dynamical core based on the non-hydrostatic approximation, a semi-implicit and semi-Lagrangian scheme for time integration, and a height-based terrain-following sigma coordinate system (Chen et al., 2019). GRAPES mesoscale EPS (GRAPES MEPS) has 15 ensemble members covering all regions of China, for which the initial conditions and lateral boundary conditions are downscaled from the corresponding members of the GRAPES global EPS (GRAPES GEPS; Zhang et al., 2014; Xia et al., 2019). GRAPES GEPS uses gridded statistical interpolation (GSI) for the operational data assimilation, while ensemble data assimilation (EDA) is employed by ECMWF. The global model ICON running operationally at DWD adopts a hybrid method with an assimilation cycle of 3 h, which consists of an ensemble transform Kalman filter (ETKF) coupled with a three-dimensional variational analysis (3D-VAR).
2.3 Verifying data
The global precipitation measurement (GPM) with a horizontal resolution of 0.1° × 0.1° provided by the new generation of precipitation observation satellites is used as the observation. The GPM satellite was launched on 27 February 2017. It inherits and improves the algorithm and the detection technology of the TRMM (Tropical Rainfall Measuring Mission) satellite. The dual-frequency radar observation system is first adopted to provide precipitation data with higher spatiotemporal resolution over a wider spatial area, contributing to more accurate descriptions of the precipitation distribution (Liu et al., 2017; Huffman et al., 2019). All forecast data are regridded to the observation grid.
In addition, the estimated precipitation rates derived from ten S-band Doppler radars covering the Guangdong Province via classic Z–R relations are used for latent heat nudging (LHN) experiments, which are further discussed in Section 3.3. The average separation of these radars is 100–150 km, and the maximum observed range is 230 km.
2.4 Verification methods
2.4.1 Gridpoint-based evaluation
The pattern correlation coefficient (PCC), the mean absolute error (MAE), and the equitable threat score (ETS) are used to compare the model forecasts with the observations grid point by grid point; they are defined by
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with [image: image] being the total number of grid samples in the spatial field, [image: image] the model forecast value of the [image: image] th sample, and [image: image] the corresponding observation. [image: image] and [image: image] denote the temporal averages of the [image: image] and [image: image], respectively. [image: image] is defined as the occasion where both forecast and observation are greater than or equal to a certain threshold; [image: image] is the occasion where the forecast is above a threshold, whereas observation is under the same threshold; [image: image] represents the occasion where the observation is above a threshold and forecast is under the same threshold; and [image: image] is the occasion where both forecast and observation are under the threshold. The larger values of PCC and ETS and smaller MAE values indicate better forecast skills. For a certain EPS (e.g., COSMO EPS), these three gridpoint-based metrics are calculated based on the mean of the values derived by using individual ensemble members.
2.4.2 Object-based evaluation
The gridpoint-based verification techniques introduced earlier may not satisfactorily reflect the forecast spatial features at convective scales because even small spatial displacements between forecast and observation resulting from the random components of the precipitation patterns will strongly deteriorate these measures by double punishment. Spatial verification methods such as the method for object-based diagnostic evaluation (MODE, Davis et al., 2006; 2009; Johnson et al., 2013; Mittermaier and Bullock, 2013), the fractions skill score (FSS, Roberts, 2008; Mittermaier and Roberts, 2009), the intensity scale (IS, Casati et al., 2004; Casati 2009), and image warping (IW, Gilleland et al., 2010) have been proposed and are in use to account for these circumstances. In this study, the MODE is used to assess the spatial features of the model forecasts.
The MODE first identifies precipitation objects by applying an intensity threshold to the spatially filtered observed and forecast precipitation fields. Second, several attributes of the precipitation objects are determined. We use, similar to Ji et al. (2020), the area coverage (the number of grid points covered by the object), the orientation angle (the orientation of the major axis in degrees counted clockwise starting at zonal orientation), the aspect ratio (the ratio of the minor axis to the major axis, i.e., 1.0 for a circular object and < 1 otherwise), and the zonal (east-west) and meridional (south-north) centroid location in this study. Third, an object from the forecast field will be matched to an object in the observed field when the centroid distance between these two objects is smaller than their average size. If matched successfully, these two objects are marked as one “object pair.” Finally, the fuzzy object-based threat score (OTS) is calculated to quantify the similarity between all observed and forecast objects (including matched or not matched objects) based on their attribute differences.
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where [image: image] is the total number of object pairs. For the [image: image]th object pair, [image: image] represents the value for their similarity which is a quantitative combination of multiple attributes’ differences between the object pair, [image: image] and [image: image] are, respectively, the areas of the forecast and observed object. [image: image] and [image: image] are the total areas of all identified objects in the forecast and observed field. The value of OTS ranges from 0 to 1, and larger values represent better forecast performance. The details of object identification and the calculations of OTS (including the object similarity [image: image]) can refer to the study by Ji et al. (2020).
3 RESULTS AND ANALYSIS
3.1 Evaluations and comparisons of different models
The spatial distribution of observed precipitation is compared with different model forecasts in Figure 2. For an EPS such as COSMO, the precipitation distribution is represented by its ensemble median forecast in Figure 2. The precipitation caused by the extreme storm event that accumulated over the period 27–31 August 2018 is mainly concentrated in the southeast coastal areas and gradually decreases from southeast to northwest. Only COSMO EPS and ECMWF predict the heavy precipitation over the eastern coastal regions where the 5-day total precipitation exceeds 250 mm, but the location of the heavy precipitation in both of them exhibits a larger eastward bias than the observations. The coverage area of heavy precipitation predicted by ECMWF is relatively small, while COSMO EPS’ prediction is closer to the reality. However, COSMO EPS also predicts a second heavy precipitation center in the northern inland, which is not observed. In other regions of Guangdong Province, the precipitation predicted by COSMO EPS is much weaker than the observations, especially in the southern Pearl River Delta. ICON and GRAPES MEPS both underestimate the precipitation in eastern Guangdong while predicting well in the central and northern inland regions. GRAPES GEPS overforecasts precipitation in most regions of Guangdong. The corresponding gridpoint-based scores of different model forecasts are consistent with the visual appearance (not shown). Although ICON and GRAPES MEPS have the smallest MAE and largest PCC values, their ETS values for heavy precipitation above 250 mm are almost zero because they both underforecast the extreme precipitation. In contrast, COSMO EPS obtains the largest MAE and smallest PCC values, but it performs best for heavy precipitation exceeding 250 mm by showing the highest ETS value among all models.
[image: Figure 2]FIGURE 2 | Spatial distributions of cumulative precipitation in Guangdong Province during the period of 27–31 August 2018 for (A) the observations; (B) the ensemble median forecast of COSMO EPS based on the COSMO-noLHN experiment (i.e., pure downscaling of ICON global predictions); (C) the deterministic forecast of the ICON global model; (D–E) the ensemble median forecast of GRAPES MEPS and GRAPES GEPS, respectively; (F) the deterministic forecast of ECMWF global model.
The occurrence frequency of daily precipitation according to its amount as quantified by the cumulative distribution function (CDF) varies considerably between model forecasts and observations (Figure 3). During the period of 27–31 August 2018, the CDFs of GRAPES MEPS and GRAPES GEPS increased rapidly with the increase of the precipitation amount, which are quite different from the observed distributions. The CDFs will reach 1 when the daily precipitation predicted by GRAPES MEPS is just around 40–60 mm, and GRAPES GEPS forecasts are generally below 80 mm. This phenomenon reflects the fact that both GRAPES models (including regional and global EPS) underpredict this extreme rainstorm event in Guangdong. ICON and ECMWF perform similarly, with both models underestimating the occurrence of the lower precipitation amounts and overestimating the occurrence of precipitation amounts above 60 mm, especially on 29 and 30 August 2018. Compared with these four models, the CDF curves of COSMO EPS are much closer to the observations, except for 31 August 2018. Especially for higher precipitation amounts, COSMO EPS CDFs almost coincide with the observed CDFs, but it overestimates the occurrence of precipitation below 40 mm. Visually and also quantified by the non-parametric two-sample Kolmogorov–Smirnov test, which does not require restrictive assumptions about the distribution of the test statistic (Orskaug et al., 2011), COSMO EPS reproduces the observed CDF best. But none of the model CDFs—including the one produced by COSMO EPS—stands the test for similarity with the observations (not shown). The gridpoint-based statistics (i.e., MAE, PCC, and ETS) for daily precipitation verification are shown in Figures 5A–D. COSMO EPS performs again only below average compared to the other models in terms of MAE and PCC, but shows the best forecasts for the daily heavy precipitation above 50 mm during 27–29 August 2018. GRAPES GEPS performs well for the heavy precipitation that occurred on 30 and 31 August 2018. ICON and GRAPES GEPS exhibit relatively high performance for daily precipitation above 25 mm, but have almost no forecasting skill for heavy precipitation.
[image: Figure 3]FIGURE 3 | Cumulative distribution functions (CDF) of daily accumulated precipitation for the observations (the black solid line) and all model predictions (the colored lines) used in this study. The horizontal axis represents the precipitation amount. The dashed lines represent the results of the regional models (i.e., COSMO EPS and GRAPES MEPS) and the colored solid lines represent the global models.
To focus on the heavy precipitation, Figure 4 only displays the daily precipitation objects with intensity exceeding 25 and 50 mm identified by the MODE. For the object identification, the precipitation field is spatially smoothed with a convolution radius of four grid points in our evaluations in order to account for an effective resolution of a model being about seven grid points (Skamarock 2004). The quantification of similarities between the forecast objects and the observed objects by OTS metric is shown in Figures 5E,F. The precipitation on 27 August 2018 is in the early stage of development. The observed areas with daily precipitation above 25 mm are mainly located in northern, western, and eastern Guangdong. Only ECMWF predicts the observed rain belt in northern Guangdong, contributing to its highest OTS value. COSMO EPS predicts heavy precipitation over the east coast, consistent with the observations, but with stronger intensities. The other three models all underpredict the precipitation. On 28 August, the heavy precipitation gradually concentrated in the Pearl River Delta. The precipitation distribution predicted by ICON is the one most similar to the observations. COSMO EPS predicts a wide range of heavy precipitation in coastal areas, most of which are not observed. The coverage area of heavy precipitation expands significantly on 29 August and is located in the coastal regions with the rain belt northeast–southwest oriented. To a certain extent, the heavy precipitation in eastern Guangdong has been predicted by COSMO EPS and ECMWF. In contrast, both ICON and GRAPES MEPS underestimate the precipitation above 50 mm but predict well the precipitation above 25 mm. Therefore, the former two models obtain the highest OTS values for the threshold of 50 mm, and the latter two models have the highest OTS values for the threshold of 25 mm. On 30 August, the heavy precipitation moves to eastern Guangdong. The distributions of heavy precipitation above 50 mm predicted by COSMO EPS and GRAPES GEPS are similar. Their forecast coverage area of heavy precipitation in eastern Guangdong is much smaller than the observations, and heavy precipitation predicted in other regions has not actually happened. The coverage area and intensity of heavy precipitation decrease on 31 August, which is mainly located in Heyuan city. All five models’ precipitation distributions are different from the observations. COSMO EPS and GRAPES GEPS predict some regions in which heavy precipitation occurs, but with incorrect locations.
[image: Figure 4]FIGURE 4 | Daily precipitation objects identified by the MODE in the observed field and all models’ forecast fields (in the columns) during the period of 27–31 August 2018 (in the row) with a four-gridpoint averaging radius and thresholds of 25 and 50 mm.
[image: Figure 5]FIGURE 5 | Gridpoint-based and object-based evaluations for daily accumulated precipitation obtained from different models during the period of 27–31 August 2018. (A) MAE (unit: mm); (B) PCC; (C,D) ETS for precipitation exceeding 25 and 50 mm; (E,F) OTS for precipitation exceeding 25 and 50 mm.
3.2 Cause analysis
In order to obtain multiple meteorological variables such as pressure, temperature, specific humidity, relative humidity, and wind, the ECMWF reanalysis data (ECMWF Reanalysis v5, ERA5) are used as the observations in this section. First, the large-scale circulation background during the occurrence and development of this extreme rainstorm event is analyzed, as shown in Figure 6. During the whole period, the South Asia high (200 hPa) is continuously and stably located over the Tibetan Plateau, and divergent airflow persists over South China. The middle and high latitudes of the middle troposphere (500 hPa) are controlled by the circulation of two troughs and one ridge. The high-pressure ridge is located on the west side of Lake Baikal and moves slowly. The western Pacific subtropical high exhibits an abnormal shape with double ridges, of which the north and south ridge line are, respectively, located at about 5°N and 30°N. Therefore, a belt-shaped high-pressure dam is formed between the Yangtze–Huaihe river basin and the Yellow-Huaihe river basin. The southwest monsoon is strong in the lower troposphere (850 hPa), but it is blocked by the high-pressure dam when advancing northward, causing it to mainly affect areas south of 30°N. The southwest monsoon continuously transports warm and moist airflow to the monsoon depression to strengthen its development. Coupled with the slow-moving large-scale weather systems, the monsoon depression has a lasting impact on Guangdong, providing favorable conditions for the occurrence and development of extreme rainstorms (Cai et al., 2019).
[image: Figure 6]FIGURE 6 | 200 hPa geopotential height (red dashed line, unit: gpm), 500 hPa geopotential height (thick black solid line, purple line denotes 5,880 gpm contour, unit: gpm), and 850 hPa wind (vector, unit: m·s−1, wind speed greater than 8 m s−1 is shaded) at (A) 00 UTC on 27 August 2018 and (B) 00 UTC on 31 August 2018.
Combined with the analysis of gridpoint-based (i.e., PCC, MAE, and ETS) and object-based (i.e., MODE) evaluations, the regional model COSMO EPS and the global model ECMWF, respectively, predict well the precipitation above 50 and 25 mm. Therefore, a more in-depth comparative analysis of these two models from the aspects of circulation background and water vapor conditions will be conducted. Figure 7 shows the distributions of wind flow and relative humidity in the lower troposphere (850 hPa). Guangdong Province is mainly under the control of the monsoon depression on 27–28 August. The southwest airflow in the southeast side of the monsoon depression transports water vapor from the South China Sea to Guangdong. The monsoon depression then moves westward, with low-level winds shifting from southwesterly to southerly. The southerly wind over the coastal areas has proven to be an important factor for the continuous extreme rainstorm (Li et al., 2020). The circulation distributions of COSMO EPS and ECMWF are roughly the same as the observations, while the water vapor distributions predicted by COSMO EPS are more similar to the observations.
[image: Figure 7]FIGURE 7 | 850 hPa wind vector and relative humidity (contour, unit: %) obtained from the observations, ensemble median forecasts of COSMO EPS, and deterministic forecasts of ECMWF at 18 UTC on 27, 29, and 31 August 2018.
The evolution of the low-level jet (LLJ) over time in the northern South China Sea (113°E) is shown in Figure 8. From 00 UTC on 27 August to 18 UTC on 31 August, the LLJ progresses gradually northward and strengthens. The LLJ core front with a wind speed greater than 12 m s−1 on 850 hPa lands on the coastal areas of Guangdong at 00 UTC on 29 August. It is conducive to the convergence of water vapor and dynamic uplift here, and then promotes the occurrence and development of the extreme rainstorm. Subsequently, the LLJ intensifies to above 14 m s−1 and is located over the southern Pearl River Delta, contributing to the heavy precipitation occurring in most of the coastal areas. After 06 UTC on 30 August, the monsoon depression begins to weaken; thus, the LLJ weakens and then the precipitation in the coastal areas gradually disappears. COSMO EPS predicts the evolution and intensity of LLJ more closely to the reality than ECMWF.
[image: Figure 8]FIGURE 8 | Time-latitude cross sections of 850 hPa wind (vector, unit: m·s−1, wind speed greater than 4 m s−1 is shaded) along 113°E from 00 UTC on 27 August to 18 UTC on 31 August 2018 for (A) the observations, (B) the ensemble median forecast of COSMO EPS, and (C) the deterministic forecast of ECMWF.
The transport of water vapor is necessary to maintain continuous precipitation; thus, Figure 9 calculates the integrated atmosphere (1,000–200 hPa) water vapor flux divergence. The observed convergence at 18 UTC on 29 and 30 August are significantly stronger than that at 06 UTC, which is related to the characteristics of monsoon precipitation (Guo et al., 2019). However, both COSMO EPS and ECMWF do not capture this feature. Starting from 06 UTC on 29 August, the observed water vapor flux convergence occurs in the coastal areas of Guangdong Province, and the maximum convergence exceeds 70 × 10−6 g cm−2·s−1. At 18 UTC on 31 August, the water vapor flux convergence significantly weakens, and the maximum center is shifted westward. The area with strong convergence on 29 August predicted by COSMO EPS is located in the coastal area, and then it mainly appears in the eastern and northern parts of Guangdong. ECMWF predicts that there will be strong convergence in eastern Guangdong on 29 August and the convergence intensity will weaken in the following 2 days. The distributions of water vapor flux convergence predicted by both COSMO EPS and ECMWF are quite different from the observations, while the convergence intensity predicted by COSMO EPS is generally stronger than that of ECMWF.
[image: Figure 9]FIGURE 9 | Integrated atmosphere (1,000–200 hPa) water vapor flux divergence (unit: 10−6 g cm−2·s−1) from the observations, ensemble median forecasts of COSMO EPS, and deterministic forecasts of ECMWF at 06 UTC and 18 UTC on 29–31 August 2018.
3.3 COSMO LHN experiments
The regional model forecasts by COSMO EPS and GRAPES MEPS compared so far are initialized and driven at the boundaries by the predictions of their global models. Thus, there are no mesoscale data assimilation involved. However, several COSMO experiments with different initial conditions show that the forecasts of this extreme rainstorm event in Guangdong Province are very sensitive to the initial conditions (not shown). Therefore, in this section, we feed the in-built LHN scheme of COSMO with the precipitation rate retrieved by radar in order to explore its impact on the forecast quality of COSMO EPS. The LHN scheme is developed for a 2.8-km resolution and introduces increments in temperature and moisture to the thermodynamic equation, which is expected to enable the model dynamic to react in generating similar precipitation patterns as observed (Stephan et al., 2008). It assumes that the latent heat release is proportional to the model surface rain rate (Jones and Macpherson, 1997). Accordingly, the LHN scheme adds positive temperature increments to increase model precipitation and negative increments to decrease it. We run COSMO LHN experiments with two setups. The results of the EPS without LHN (COSMO-noLHN EPS, first setup) have been already discussed in Section 3.1. For the second setup, we stop LHN each day after an analysis window of 3 h (COSMO-3hrLHN EPS). Thus, we have each day a 21-h free (not nudged) forecast.
The results of two setups for the 21 h of the free forecast from the LHN runs are summarized in Figure 10. Without LHN (Figure 10C), the results are similar to the ones discussed already in the previous subsection. Note that differences between Figure 2B and Figure 10C relate to the shorter periods—21 instead of 24 h/day—for the latter. COSMO-3hrLHN EPS reproduces the overall observed precipitation pattern for amounts above 50 mm, which significantly improves the gridpoint-based scores compared to the COSMO-noLHN experiment (not shown). Although the precipitation intensity in eastern Guangdong predicted by COSMO-3hrLHN EPS is still too weak, its location has moved westward compared with COSMO-noLHN EPS, which is closer to the observations. The daily precipitation (21 h/day) is spatially evaluated by the MODE with thresholds of 25 and 50 mm, and the OTS values are listed in Table 5. For the threshold of 25 mm, the OTS values of COSMO-3hrLHN EPS are generally higher than those of COSMO-noLHN EPS, indicating the forecast skill improvements by LHN. However, there are no obvious differences between the COSMO-3hrLHN EPS and COSMO-noLHN EPS predictions for the threshold of 50 mm.
[image: Figure 10]FIGURE 10 | Spatial distributions of cumulative precipitation in Guangdong Province during the period of 27–31 August 2018 (precipitation of the first 3 h are removed of each day) for (A) the observations, (B) the ensemble median forecast of COSMO-3hrLHN EPS, and (C) the ensemble median forecast of COSMO-noLHN EPS.
TABLE 5 | OTS values of COSMO-noLHN EPS and COSMO-3hrLHN EPS at a precipitation threshold of 25 and 50 mm, respectively.
[image: Table 5]4 CONCLUSION AND DISCUSSIONS
In this study, an ensemble system of the high-resolution regional model COSMO, obtained by variations of parameters in its physics package, is used to predict an extreme rainstorm event, which occurred over the Guangdong Province during 27–31 August 2018. Predictions are performed first without and then with the in-built latent heat nudging scheme driven by the observed precipitation. The COSMO predictions are compared against observations and also with the forecasts of several regional and global models/EPSs.
In this extreme rainstorm event, the precipitation was mainly concentrated in the coastal areas of Guangdong Province, and precipitation intensity decreased from south to north. According to the gridpoint-based and object-based evaluations, COSMO EPS has the best forecast for the heavy precipitation that occurred in eastern Guangdong among all numerical models. However, its forecast location is easterly and the coverage area is smaller when than the observations. The deterministic forecasts of the global models (i.e., ECMWF and ICON) perform well for daily precipitation above 25 mm, but have limited ability to predict heavy precipitation exceeding 50 mm. GRAPES MEPS underestimates the precipitation amount during the whole period. The forecast skill of GRAPES GEPS for this extreme rainstorm event is generally higher than that of GRAPES MEPS, and it has certain forecast ability for heavy precipitation above 50 mm. Global models such as ECMWF generally perform better than regional models (i.e., COSMO EPS and GRAPES MEPS) for daily precipitation below 50 mm. Since the regional versions are simply downscaled versions of global predictions, this result may be a consequence of independent weather development in the regional model because predictions are not constrained by data assimilation in the inner model regions. The predicted intensity distributions by all models are significantly different from the observed ones, but the statistics of the two-sample Kolmogorov–Smirnov test suggest that the COSMO EPS CDF is clearly closest to the observations.
The cause analysis shows that Guangdong Province is under the control of the monsoon depression southwesterly airflow in the early stage. The southwesterly monsoon low-level jet lands on the coastal regions on 29 August, and then strengthens, promoting the occurrence and development of continuous heavy precipitation there. As the monsoon depression slowly moves westward, the strong southerly wind dominates in the Guangdong Province. Strong water vapor flux persists in the South China Sea, and southwesterly and southerly winds transport a large amount of water vapor to Guangdong. The predictions of COSMO are much closer to the observations than those of ECMWF.
An additional experiment with the in-built latent heat nudging scheme switched on for the first 3 h of the forecast shows that these predictions indeed lead to significant improvements, especially in terms of the spatial distribution, but the heavy precipitation intensity still remains too weak compared to the observations.
Since the forecast capabilities of various models are different, if the forecast information of multiple models is integrated, the advantages of each model may be fully utilized to reduce forecast deviation and then improve forecasting skills. Therefore, the multimodel ensemble forecast will be compared with the dynamic downscaling forecasts in the next work. We also observed that the spread of the COSMO EPS is rather small compared to the spread of other EPSs (not shown). This is because only one lateral boundary condition is available from the ICON global model. In the future, we will use the ICON EPS as the driving ensemble for COSMO EPS, which will, however, need an intermediate downscaling step because the global ICON EPS has a resolution of only 40 km.
The COSMO EPS in our experiment is constructed based on varying physics packages. The multi-physical process parameterization method was first proposed by Houtekamer et al. (1996) by combining different physical parameters to reflect the model uncertainty in ensemble forecasts. The multi-physics EPS favors providing a larger ensemble spread and improving probabilistic forecast skills, and it has been widely used in regional EPSs (Stensrud et al., 2000; Berner et al., 2011; Gebhardt et al., 2011; Zhang et al., 2017). However, multi-physics ensembles usually result in an inconsistent distribution and thus are contrary to the assumptions of statistical post-processing. Each ensemble member has different climate characteristics and forecast bias by using multi-physics, which is one reason why the multi-physics parameterization scheme can improve the ensemble spread (Eckel and Mass, 2005). But this result contradicts the fundamentals of forecast errors, where forecast uncertainty is a stochastic rather than a systematic component. Preliminary research shows that the combination of multi-physical process parameterizations with initial condition perturbations can further improve the ensemble spread and significantly improve the forecast accuracy of precipitation (Huang et al., 2016), which is worthy of further investigation.
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The boreal winter climate of 2022 was characterized by the occurrence of La Niña, which is one of the most predictable drivers of South China precipitation (SCP) deficit. However, surprisingly, South China (SC) received abnormal high precipitation in January–February (JF) 2022. Possible causes of the deviation of JF 2022 SCP from its historical response to La Niña are explored with observational and reanalysis data. Results suggest that the La Niña event in winter 2022 features an eastern Pacific (EP) type, which corresponds to a weaker zonal sea surface temperature (SST) gradient between the equatorial central and western Pacific than those of the historical La Niña events, leading to a weaker western North Pacific (WNP) cyclone (WNPC) anomaly. Meanwhile, the SST warming over the tropical Indian Ocean (TIO) would also weaken the La Niña-associated WNP circulation anomaly. Therefore, the flavor of La Niña and the TIO warming act in concert to dampen the La Niña-associated WNPC anomaly and the SCP deficit. But these tropical SST anomalies are still insufficient to explain the extremely high SCP. Furthermore, the investigation identifies two extra-tropical circulation patterns over Eurasia that dominate the SCP anomalies in JF 2022. One is the wave train propagating along the South Asian jet that intensifies the India–Burma trough. It enhances the SCP through exciting anomalous strong moisture transport from the Bay of Bengal and ascending motion. The other is the positive geopotential height anomaly over eastern Siberia that prompts southward cold air intrusion and convergence over the SC region. These two dynamical drivers can account for approximately 75% of the observed SCP anomaly in JF 2022. However, they may be largely attributed to the atmospheric internal dynamical processes, which implies limited seasonal predictability of this extreme wet event.
Keywords: South China precipitation, La Niña, wave train, sea surface temperature (SST), Indian Ocean
1 INTRODUCTION
Under the influence of the East Asian winter monsoon (EAWM), extreme winter precipitation events, such as heavy rainfall, snowstorms, and severe freezing rain, occasionally occur over South China (SC), causing a catastrophic impact on agriculture, transportation, and human lives (Wen et al., 2009). Although the winter SC precipitation (SCP) accounts only for approximately 10% of the annual total precipitation, it experiences large year-to-year variability (Wang and Feng, 2011; Ge et al., 2016). Therefore, a deeper understanding and accurate prediction of such events are of great importance. The interannual variation of winter SCP had become a subject of great concern, but the underlying physical mechanisms are still not fully understood and require further investigation.
Many previous studies had revealed that the El Niño–Southern Oscillation (ENSO) and the EAWM are two important factors that affect the SCP (Wang et al., 2000; Huang et al., 2003; Zhou and Wu, 2010; Jia and Ge, 2017). Wet (dry) anomalies tend to appear in SC during the El Niño (La Niña) winters (Wu et al., 2003). The ENSO impacts SCP mainly through modulating the Walker circulation and low-level circulation anomalies over the western North Pacific (WNP) region. In an El Niño winter, the sea surface temperature (SST) warming anomalies in the equatorial central/eastern Pacific (CP/EP) and in the tropical Indian Ocean (TIO), as well as cooling in the equatorial western Pacific (WP), jointly force a WNP anticyclone (WNPAC) anomaly through chains of ocean–atmosphere coupling and atmospheric dynamical processes (Wu et al., 2010; Tim Li et al., 2017). The WNPAC anomaly then induces anomalous southwesterly flow and transports more moisture to the SC, resulting in increased precipitation (Zhang et al., 1996; Wang et al., 2000; Chung et al., 2011). In La Niña, the nearly opposite SST anomalies tend to force a WNP cyclone (WNPC) anomaly and thus cause SCP deficiencies. It had also been noted that different flavors of ENSO may have different types of impact on SCP. The EP El Niño tends to exert a stronger influence on SCP than the CP El Niño (Feng and Li, 2011; Jiang et al., 2019). Recent studies had revealed that the EP and CP types of La Niña would also exert different types of climate impact over SC (Yuan et al., 2014; Yu and Sun, 2018).
The EAWM is another important system that affects winter SCP (e.g., Wang and Feng, 2011; Lee et al., 2013). A weak EAWM is associated with anomalous south-westerlies over the East Asian coast that can induce anomalous moisture transport and upward motion, thus enhancing SCP. It should be pointed out that the EAWM and ENSO are not independent. A weak EAWM is usually accompanied by the mature phase of an El Niño event (Kim et al., 2017). But Zhou and Wu, (2010) noted that the EAWM-associated wet anomaly extends more northward than that of the ENSO, due to the anomalous southerlies penetrating more northward over eastern China. It had also been noted that the ENSO–EAWM relationship is unstable, which can be modulated by the Pacific Decadal Oscillation, the Atlantic Multidecadal Oscillation, and global warming (He and Wang, 2013; Jia et al., 2020). In addition to ENSO and EAWM, some recent studies highlighted that a Rossby wave train propagating along the subtropical jet over South Asia can also significantly impact the winter SCP (Xiuzhen Li et al., 2017; Hu et al., 2018; Ma et al., 2019; Shen et al., 2019; Li et al., 2020). This wave train can be captured as the leading empirical orthogonal function (EOF) mode of the monthly meridional wind (v) over the North Africa–Asia region in the upper troposphere (Hu et al., 2018). It deepens the India–Burma trough (IBT) over the northern Bay of Bengal (BoB), enhancing water vapor transport from the BoB to SC, thus enhancing SCP.
As had been previously discussed , wet winters over SC are most likely to be associated with El Niño and weak EAWM, such as the extreme positive SCP anomalies occurred in winter 1982/1983, 1997/1998, and 2015/2016. Actually, although La Niña tends to increase the probability of dry anomalies and persistent cold, and wet weather occasionally occurred in La Niña winters, for example, winter 2007/2008 and 2017/2018 (Wu et al., 2011; Wang et al., 2020). But these La Niña winters are usually primarily featured by severe snowfall or freezing rain, with the seasonal mean precipitation amounts still near or even below normal (Figure 1B). However, the La Niña winter of 2021/2022 is a unique case. It is surprising to see that SC experienced extreme wet conditions throughout this winter (Figure 1A). The SCP amount in JF 2022 even exceeds that in El Niño winters of 1998 and 2016 (Figure 1D). So far, the underlying mechanisms driving the 2022 wet anomalies over SC remain unclear. In this study, we use observations and re-analysis to investigate which role tropical thermal forcings and extra-tropical circulation anomalies played in the extreme SCP in JF 2022. Particularly, whether the extreme winter precipitation in 2022 could be ascribed to the wave train along the South Asian jet or high latitude circulation patterns is an interesting question. In the following sections, Section 2 describes the data and methods. In Section 3, anomalous SCP in 2022 and its linkages with the atmospheric/oceanic conditions are analyzed. In Section 4, a multiple linear regression (MLR)-based reconstruction of the winter rainfall of JF 2022 is presented, in order to estimate the relative contribution from several identified influence factors. Finally, a summary and discussion of the results are given in Section 5.
[image: Figure 1]FIGURE 1 | (A) and (C) Spatial distributions of anomalous precipitation (units: mm/day) in DJF 2022 and JF 2022, respectively. (B) Time series of DJF mean SCP anomalies (averaged over 105–120°E and 20–28°N, as shown in the black box in (A) and (C)) from 1980 to 2022. (D) Time series of JF mean SCP (bar) and Niño3 (solid line) anomalies from 1980 to 2022. (E) SCP anomalies for December 2021, January 2022, February 2022, JF mean 2022, and JF mean of 13 historical La Niña events excluding 2022 (units: mm/day).
2 DATA AND METHODS
The monthly precipitation dataset from the Global Precipitation Climatology Project (GPCP) with a horizontal resolution of 2.5° × 2.5° is used in this study (Adler et al., 2003). The monthly SST dataset is the Centennial in situ Observation-Based Estimates of SST (COBE SST; Ishii et al., 2005), which has a horizontal resolution of 1.0° × 1.0°. For the circulation variables, we use the National Centers for Environmental Prediction-Department of Energy (NCEP-DOE) atmospheric reanalysis dataset (Kanamitsu et al., 2002), with a horizontal resolution of 2.5° × 2.5°. Considering that the observations and reanalysis before the satellite era (around 1979) exhibit larger uncertainties, the analysis period of the present study ranges from 1979 to 2022. In this article, the anomalies in JF 2022 are computed relative to the climatology of 1991–2020.
The Niño3 (Niño4) index is defined as the area-averaged SST anomaly over 150–90°W, 5°S–5°N (160°E–150°W, 5°S–5°N). The Niño3.4 index is defined as the averaged SST anomaly over 170–120°W, 5°S–5°N. The La Niña events are defined based on a threshold of −0.5°C of the Niño3.4 index for five consecutive months. According to this definition, 14 La Niña winters had been identified, including 1985, 1989, 1996, 1999, 2000, 2001, 2006, 2008, 2009, 2011, 2012, 2018, 2021, and 2022. Similar to the definition of Kug et al. (2009), we further classify these events into EP and CP types according to the absolute ratio of the Niño3 index to the Niño4 index. If the ratio is greater (less) than 1, then an EP (CP) La Niña event is identified. The EP La Niña events include 1985, 1996, 2000, 2006, 2008, 2018, and 2022, while the CP La Niña events include 1989, 1999, 2001, 2009, 2011, 2012, and 2021.
To describe the propagation of Rossby wave energy in the upper troposphere, the phase-independent wave activity flux (WAF; Takaya and Nakamura, 2001; see equation below) was calculated. The phase-independent flux was derived from combined perturbation energy and pseudo-momentum terms. Mathematically, the WAF can be written as follows:
[image: image]
Here, [image: image] denotes the stream function, [image: image] is the Coriolis parameter, [image: image] is the gas constant, U =(u, v) represents the horizontal wind velocity, and [image: image], with temperature T, and the specific heat at constant pressure [image: image]. Overbars and primes represent the climatology and anomalies, respectively. The so-derived WAF is parallel to the group velocity of local Rossby waves and is suitable for a snapshot analysis of either stationary or migratory waves on a zonally varying basic flow. Thus, the WAF represents the propagation of the wave packet.
3 ANOMALOUS SCP IN 2022 AND ITS LINKAGES WITH THE ATMOSPHERIC/OCEANIC CONDITIONS
3.1 Rainfall anomalies
It is known that La Niña usually tends to be associated with dry rather than normal conditions over the SC in wintertime. However, although a La Niña event occurred in winter 2021/2022, the rainfall was unusually intense over the SC. Positive precipitation anomalies occupy most of the SC and the Yangtze River valley in this winter (December to February averaged, Figure 1A). The wet anomalies were particularly strong during JF of 2022, with the largest anomalies existing over the coastal regions of the SC (Figure 1C). The SCP index (SCPI), defined as the average rainfall anomalies over the region of 20–28°N, 105–120°E, reaches +1.78 mm/day in JF 2022, the second largest value since 1980 (Figure 1D), only next to 1983. There seems to be a prominent decadal change in late winter precipitation anomalies (Figure 1D). Thus, we conduct a 9-year high-pass filtering to see the contribution from an inter-annual timescale. The inter-annual component of SCP in 2022 is 1.26 mm/day, accounting for ∼70% of the total anomaly, ranking as the third highest since 1980, next to 1983 and 2016. This result suggests that the extreme SCP in 2022 is primarily contributed by the inter-annual variability, while the decadal background plays a secondary role. We also note that the JF averaged SCP in 2022 is the largest among the historical La Niña events since 1980 (Figure 1E). Therefore, the extreme SCP in this winter is quite unique, and the physical mechanisms lying behind deserve further investigation.
3.2 Low-level circulation anomalies over East Asia and the WNP
Many previous studies had emphasized the important role of low-level circulation over the WNP region in wintertime SCP variability (e.g. Zhang et al., 2015). The WNPAC/WNPC is also known to bridge ENSO and SCP anomalies. Therefore, we first analyze the low-level circulation anomalies over the WNP region during JF 2022. As seen from Figure 2A, negative SLP anomalies occupied most of the WNP region during JF 2022. Meanwhile, evident easterly anomalies at 850 hPa prevailed over this region. We note that the La Niña-associated WNPC anomaly was absent, which was unfavorable for the development of dry anomalies over SC. So why was the circulation feature over the WNP region distinct from that in the canonical La Niña events? Whether the patterns of tropical SST anomalies played a role would be further discussed in Section 3.3.
[image: Figure 2]FIGURE 2 | (A) Spatial distribution of the sea-level pressure anomalies (shading, unit: hPa) and 850-hPa wind anomalies (vector, unit: m/s) in JF 2022. (B) Regression map of the sea-level pressure anomalies (shading, unit: hPa) and 850-hPa wind anomalies (vector, unit: m/s, only vector with u or v component significant at the 95% confidence level was plotted) against the normalized SCP in JF for the period of 1980–2022.
Historically, high SCP corresponds to the positive SLP anomaly over the WNP region, as well as anomalous low level southerly over SC (Figure 2B). Thus, the circulation pattern over the WNP region in JF 2022 is distinct from that of the historical wet years (Zhang et al., 2015; Ding and Li, 2017; Huang et al., 2019), suggesting other circulation anomalies may contribute to the extreme SCP. We note that positive SLP anomalies dominate the East Asian continent in JF 2022, with a center over eastern Siberia. At 850 hPa, there is a correspondingly giant anticyclonic anomaly centered around 70°N, 120°E. As suggested in Figure 2B, a positive SCP anomaly is also associated with a positive SLP anomaly over eastern Siberia. In addition, Figure 2A and Figure 2B show dramatic similarities over mid-high latitudes of the Eurasian continent and north Pacific, indicating the mid-high latitude circulation anomalies may be responsible for the extreme SCP in JF 2022. The role of extra-tropical circulation patterns would be further discussed in Section 3.4 and Section 3.5.
3.3 Impact from tropical SST anomalies
For the oceanic conditions, SST was below normal across the equatorial central-eastern Pacific during JF 2022 (Figure 3A). According to the definition of Kug et al. (2009), this is an EP-type La Niña as the amplitude of the Niño3 index (−1.24°C) is larger than that of the Niño4 index (−0.38°C). Regression analysis suggests that historical positive SCP anomalies usually correspond to significant warming over the equatorial central-eastern Pacific and the TIO, as well as a significant cooling over the tropical WNP region, resembling the mature phase of El Niño (Figure 3B). These results agree with previous studies that the ENSO and TIO warming play an essential role in winter SCP variability by driving the lower tropospheric WNPAC anomalies (e.g., Wang et al., 2000). We note that the 2022 SST anomalies in most tropical regions are distinct from this regression pattern, except for the TIO. There also appears prominent SST warming in the extra-tropics, such as in the mid-latitudes of the north and south Pacific, especially the northern part (Figure 3A). However, judged from Figure 3B, these SST anomalies are less to play an important role in the extreme SCP of 2022. This is because north Pacific SST has a weak correlation with SCP, while the 2022 SST pattern in the south Pacific is nearly opposite to the regression pattern.
[image: Figure 3]FIGURE 3 | (A) SST anomaly pattern (°C) in JF 2022. (B) Regression map of the SST anomaly (shading, unit: °C) against the normalized SCP in JF for the period of 1980–2022. Dotted areas denote the 95% confidence level based on the two-tailed Student’s t-test.
Furthermore, we showed the composite mean of SST, SLP, and precipitation anomalies for 13 historical La Niña events (Figures 4A,D,G). As expected, historical La Niña events feature significant SST cooling over the central-eastern Pacific and the TIO, as well as SST warming over the WNP (Figure 4A). Significant low SLP anomalies occupy vast regions across WP and the TIO, with a center over the WNP (Figure 4D). Correspondingly, significant wet anomalies over the WNP as well as moderate dry anomalies over the SC are also noted, while the La Niña event would have induced a strong WNPC anomaly and notable SCP deficit, but this is not the case for JF 2022, as shown in Figure 1C and Figure 2A. So why were the La Niña signatures in JF 2022 distinct from its historical perspective? For comparison, we further show the difference between 2022 and the composite mean of historical La Niña events (Figures 4B,E,H). The difference between SST over the tropical Pacific and Indian ocean has two prominent features: 1) TIO SST is warmer than its historical counterparts; 2) a zonal dipole structure of SST difference exists in the tropical Pacific (Figure 4B). We pay particular attention to SST in these tropical regions because they are significantly linked with SCP variability (Figure 3B).
[image: Figure 4]FIGURE 4 | (A,D,G) SST (unit: °C), SLP (unit: hPa), and precipitation (unit: mm/day) anomalies of 13 historical La Niña events in JF, respectively. (B,E,H) SST (unit: °C), SLP (unit: hPa), and precipitation (unit: mm/day) difference between 2022 and 13 historical La Niña events in JF, respectively. (C,F,I) Same as (B,E,H) but with all variables detrended. Dotted areas denote the 95% confidence level based on the two-tailed Student’s t-test.
According to the findings from previous studies (e.g., Xie et al., 2009), this anomalous TIO warming relative to the previous La Niña events would trigger a positive SLP difference that acts to weaken the La Niña-associated negative SLP anomaly over the WNP in 2022. Therefore, the positive SLP difference over the WNP region may be partly due to this SST difference in TIO (Figure 4E). On the other hand, the zonal dipole structure of SST difference over the tropical Pacific, comprising a positive anomaly in the equatorial CP while a negative anomaly in the equatorial EP, is a reflection of the EP La Niña (Figure 4B). Compared to the average of historical La Niña events, the warming over the CP slackens the zonal SST gradient between the CP and the WP, which would suppress La Niña-related anomalous Walker circulation and the WNPC anomaly, as had been manifested in the positive (negative) SLP difference over the WNP (CP) shown in Figure 4E. This result indicates that the weak WNPC anomaly in the La Niña winter of 2022 may also be due to its flavor.
To further verify this, Figure 5 displays the composite mean of EP and CP La Niña events, as well as the composite differences between them. SST anomaly patterns over the tropical Pacific display notable differences for EP and CP La Niña events. For EP La Niña events, significant and evident negative SST anomalies cover the equatorial EP, but positive SST anomalies in the equatorial WP are weak and less significant (Figure 5A). In contrast, for CP La Niña events, the negative SST anomaly centers more westward into the equatorial CP. In addition, stronger significant positive SST anomalies are seen in the WNP than those of EP events (Figure 5B). Therefore, the SST contrast between CP and WNP during EP La Niña events is generally weaker than that associated with CP La Niña events (Figure 5C). As a result, the SLP contrast between CP and WNP is weaker for EP La Niña events, with a weaker amplitude of WNP low-pressure anomaly (Figure 5D), thus causing the absence of dry anomaly over SC (Figure 5G). Apparently, the atmospheric and oceanic anomalies in 2022 bear more resemblance to these of the EP flavor (Figures 5A,D,G). By comparing Figures 4B,E,H and Figures 5C, F, I, we also note that the difference between 2022 and the historical La Niña events are very similar to than between the EP and the CP La Niña events, demonstrating the La Niña flavor is also responsible for the anomaly of 2022 relative to the previous La Niña events.
[image: Figure 5]FIGURE 5 | (A,D,G) SST (unit: °C), SLP (unit: hPa), and precipitation (unit: mm/day) anomalies of seven EP La Niña events in JF, respectively. (B,E,H) SST (unit: °C), SLP (unit: hPa), and precipitation (unit: mm/day) anomalies of seven CP La Niña events in JF, respectively. (C,F,I) Composite differences between seven EP and seven CP La Niña events (details can be seen in Section 2). Dotted areas denote the 95% confidence level based on the two-tailed Student’s t-test.
Overall, an EP La Niña flavor, as well as an anomalous TIO warming relative to the previous La Niña events, leads to a weaker WNPC anomaly in JF 2022 than its historical counterparts. As a result, a wet difference relative to the previous La Niña events appears over the SC (Figure 4H). This could explain why the drying effect of La Niña on SCP did not work effectively in JF 2022. It should be noted that the oceanic and atmospheric differences in Figures 4B,E,H may also reflect the global warming pattern to some extent. Thus, we repeat the difference analysis with all the datasets de-trended, as shown in Figures 4C,F,I. It is found although the amplitude of SST warming difference weakened in many regions, the overall patterns of SST, circulation, and precipitation differences remain unchanged, which would not substantially impact our conclusions.
3.4 IBT activity and the wave train propagating along the South Asian jet
The SCP could be affected not only by the low-level WNP circulation anomalies and the tropical SST anomalies but also by the upper-level westerly trough to the upstream. To reveal this, the contemporary mid-to-upper level circulation anomalies in JF 2022 are shown in Figure 6. Figure 6A shows the spatial distribution of 500 hPa GPH anomalies. At subtropical latitudes, the negative GPH anomalies appear over the Tibetan Plateau (TP) region and the northern part of BoB, indicating an intensified IBT. In association with the anomalous trough, a giant cyclonic anomaly encircles the TP, which facilitates the advecting of moist air from BoB to SC (Figure 6C). According to the diagnosis analysis of Hu et al. (2018), the intensified IBT would cause ascending anomalies over SC through the effect of positive vorticity advection and warm temperature advection. Therefore, anomalous IBT can enhance SCP through exciting anomalous moisture transport from BoB and ascending motion. In this study, the IBT index (IBTI) is defined as the normalized 500-hPa vorticity averaged over 20–35°N and 80–110°E (black box in Figure 6A). The correlation coefficient between JF SCP and the IBTI during 1980–2022 reaches 0.72 (Figure 8A). Thus, the activity of the IBT is very crucial to the winter SCP. Its impact is even more effective than that of the ENSO, given the IBT–SCP correlation is higher than the ENSO–SCP correlation. In JF 2022, the IBTI anomaly exceeds +1.2 standard deviation (Figure 8A), and thus the IBT activity is directly responsible for the intense rainfall over the SC.
[image: Figure 6]FIGURE 6 | (A) Spatial distribution of the 500-hPa geopotential height anomalies (shading, unit: gpm) and wind anomalies (vector, unit: m/s) in JF 2022. (B) 250-hPa geopotential height anomalies and the associated WAF; green line denotes the 45 m/s contours of the climatological Asian westerly jet. (C) Spatial distribution of the 500-hPa vertical velocity anomalies (shading, unit: pa/s) and 700-hPa wind anomalies (vector, unit: m/s) in JF 2022.
This negative GPH anomaly around the TP, in association with the intensified IBT, might be part of the zonally oriented wave train over the subtropical latitudes of the Eurasia continent. As is known, the signal and propagation of the zonal Rossby wave train are usually clearer in the upper troposphere. Thus, we further show the GPH anomalies at 250 hPa and calculate its WAF (Figure 6B). Evident wave-like GPH anomalies extend from western Europe to the north Pacific. The centers of the Rossby wave are located over western Europe, the Arabian Peninsula, and Japan with positive GPH anomalies, but with negative GPH anomalies located over northern Africa, the TP, and the north Pacific. It is seen that this Rossby wave train is mainly constrained within the climatological waveguide of the South Asian jet. The WAFs start from western Europe, pass through north Africa and the Arabian Sea, and then turn northeastward to East Asia, indicating the path of Rossby wave energy propagation. The distribution of 250 hPa v anomalies shows an even more clear wave train pattern, as is shown in Figure 7A. During JF 2022, negative v anomalies emerge over the Mediterranean and India, while positive v anomalies exist over the Arabian Peninsula and eastern China. We performed an EOF analysis upon the monthly 250 hPa v anomalies over the region of 0–45°N and 0–140°E. The leading mode (EOF1), explaining 32.5% of the total variance, also exhibits a wave train pattern along the South Asian jet (Figure 7B). By comparison, it is found that the anomalous v pattern during JF 2022 bears highly resemblance to the EOF1 pattern. Although the January and February value of the standardized PC1 of v anomalies (vPC1) was not extremely high (Figure 7C, 1.68 and 1.26, respectively), the JF mean amplitude in 2022 is 1.47, the second highest since JF 1980, only next to JF 1992 (Figure 8B). The time series of JF mean vPC1 is highly correlated with the IBTI (r = 0.84, p<0.01), further demonstrating the significant influence of the wave train along the South Asian jet on the IBT activity.
[image: Figure 7]FIGURE 7 | (A) Spatial distribution of the 250-hPa meridional wind anomalies (vector, unit: m/s) in JF 2022. (B) First EOF mode of monthly mean meridional wind at 250 hPa of boreal winter from 1979/1980 to 2021/2022 over 0–45°N, 0–140°E, which explains 32% of the total variance. (C) Wintertime monthly PC1 time series of the first EOF mode.
[image: Figure 8]FIGURE 8 | Time series of JF SCP with IBT (A), v250 PC1 (B), and ESH (C) index during 1980–2022.
3.5 High latitude circulation anomalies over Eurasia
In addition to the disturbances along the subtropical jet, high latitude circulation anomalies may also play a role. Figure 9 shows the regressed 500-hPa GPH upon the SCPI. The significant positive signals in the tropics are manifestations of the ENSO impact. The significant positive or negative GPH anomalies over the mid-to-low latitudes of Eurasia suggest the influences from the wave trains, as had already been discussed in the aforementioned sections. At high latitudes, we also note strong and significant positive GPH anomalies over East Siberia. To characterize its effect, in this study, we define an eastern Siberia GPH index (ESHI) as the normalized 500-hPa GPH averaged over 60–70°N and 100–130°E. The correlation coefficient between JF SCPI and the ESHI during 1980–2022 reaches 0.35 (Figure 8C). Thus the activity of the ESH is another important factor influencing the winter SCP. In JF 2022, the GPH anomalies at high latitudes of Eurasia show a west–east dipole pattern, and negative anomalies center over Scandinavia, while the positive anomalies dominate eastern Siberia. The high-pressure anomaly over eastern Siberia is consistent with the regressed pattern. The ESHI in JF 2022 exceeds +2.4 standard deviation, and thus the high-pressure anomaly over eastern Siberia is another important factor responsible for the intense rainfall over the SC. The circulation anomaly over eastern Siberia usually exhibits a quasi-barotropic structure, which coincides with the anticyclonic anomaly at 850 hPa and positive SLP anomaly at the surface (Figure 2A). The pronounced anomalous cold northeasterly from this anomalous anticyclone encounters warm and moist air over the SC, which would support strong convergence and upward motion and consequently provide a favorable dynamical condition for SCP.
[image: Figure 9]FIGURE 9 | Regression map of the 500-hPa geopotential height anomalies (shading, unit: gpm) against the SCP index in JF for the period of 1980–2022. Dotted areas denote the 95% confidence level based on the two-tailed Student’s t-test.
4 RECONSTRUCTION OF THE WINTER RAINFALL OF JF 2022
The aforementioned sections discussed several climate drivers that may impact the SCP anomaly in JF 2022. These factors include the ENSO phase, the warming of TIO, the wave train along the South Asian jet, and the GPH anomaly over eastern Siberia. To further identify the relative importance of the aforementioned four factors, the MLR method is employed to reconstruct the precipitation anomaly in JF 2022. First, the MLR analysis is performed using the Niño4 index (quantify ENSO), the SST averaged over 20°S–20°N, 50–100°E (quantify TIO SST), the vPC1 (quantify the South Asian jet wave train activity), and the ESHI (quantify GPH anomaly over East Siberia), based on monthly data from winter 1979/1980 to 2020/2021. Here, considering an EP La Niña occurred in 2022 which exerts a weaker impact on SCP than its CP counterpart, instead of the Niño3 index, we use the Niño4 index as a predictor to avoid overestimating La Niña effects on SCP in 2022. The correlations between the Niño4 index and the ESHI, as well as between vPC1 and ESHI, are near zero, indicating they are nearly independent. However, we note that there is a moderate correlation between Niño4 and vPC1 (r = 0.23) and a strong correlation between Niño4 and TIO (r = 0.55). Therefore, before performing the MLR analysis, we had removed the ENSO-related variability from the vPC1 and TIO SST to obtain an ENSO-independent vPC1 (i.e., vPC1res) and an ENSO-independent TIO SST (i.e., TIOres SST), respectively. These are performed by means of linear regression. After this, the four indices are almost orthogonal to each other, making it more reliable to superimpose their individual climate effects. Then, the MLR coefficients are multiplied by the corresponding values of each index in January and February. The reconstructed JF precipitation anomalies are obtained by adding the reconstructed January and February values. Our examination suggests that this MLR model can well reconstruct the historical SCP variability. The observed JF SCPI has a significant correlation coefficient (r = 0.84) with the MLR-reconstructed SCPI during 1980–2021; thus, over 70% of the total variance of the SCPI can be explained by the selected factors. Therefore, it is reliable to use this MLR model to reconstruct SCP.
Figures 10A–D show the patterns of contributions of each factor to precipitation anomalies in JF 2022; it is found that the signals of different factors show distinct spatial distributions. We primarily focus on the reconstructed precipitation anomalies over the SC. The contributions of each factor to SCP are displayed in Figure 11. The imprint of the Niño4 index, indicative of the impact from the La Niña event, exhibits a weak dry anomaly (−0.16 mm/day). Thus, La Niña exerts a slightly negative contribution to the SCP anomalies in JF 2022. The TIO warming causes a slight increase in SCP (0.29 mm/day) that accounts for 16% of the observed rainfall anomaly, generally consistent with the previous findings (Zhang et al., 2015). In contrast, the signal of vPC1res, representing the effect of the South Asian jet wave train, is featured by stronger wet anomalies over SC. The SCPI response is 0.86 mm/day, accounting for almost 50% of the observed rainfall anomaly. The ESHI also produces an evident positive SCP, with an SCPI response of 0.47 mm/day, accounting for ∼25% of the observed rainfall anomaly. Therefore, the two extra-tropical circulation patterns, characterized by vPC1res and the ESHI, dominated the observed SCP anomalies in JF 2022, with a larger contribution from the former (∼50%). The sum of these two factors accounts for ∼75% of the observed SCP anomaly. On the other hand, the tropical oceanic forcings, including the La Niña and the TIO warming, exert a relatively weak impact on SCP in 2022.
[image: Figure 10]FIGURE 10 | Reconstructions of the JF 2022 precipitation anomaly (mm/day) based on the multiple linear regression with (A) Niño3; (B) vPC1res index; (C) ESHI; (D) TIOres; and (E) the sum of (A)–(D). (F) is same as (E), but for reconstructed 500-hPa geopotential height anomalies.
[image: Figure 11]FIGURE 11 | Multiple linear regression reconstructions of the area-averaged (green box in Figure 10E) SCP anomaly (mm/day) in JF 2022 (A) and December 2021 (B) using the four factors, as well as the sum of all factors and the observed anomaly.
Next, we examined the spatial pattern of the reconstructed precipitation. Figure 10E depicts the reconstructed 2022 precipitation anomalies using all four factors. It is found that the main features of the rainfall pattern over the Asian–Pacific region are well captured. The wet anomalies over SC, BoB, SCS, and equatorial WP, as well as dry anomalies over Japan and equatorial Indian Ocean, are all consistent with observations. In addition, the reconstructed H500 pattern bears high resemblance with observation (Figure 10F and Figure 6A). The key atmospheric circulation anomalies associated with the 2022 SC wet anomaly are also well reproduced, including the wave train along the South Asian jet and positive GPH anomalies over eastern Siberia. These results indicate that the MLR reconstruction may have captured the main physical drivers of SCP anomaly in JF 2022.
There comes another interesting question: are these four identified factors also responsible for the sub-seasonal change in SCP anomalies from early (December 2021) to late winter (JF 2022)? In order to reveal this, we repeated the MLR reconstruction in Figure 11A for the SCP anomaly in December 2021, as shown in Figure 11B. It is seen that for December 2021, the sum of these four factors, which represent the MLR reconstruction of SCP, is nearly identical to the observed SCP anomaly, demonstrating that the sub-seasonal change in the precipitation anomaly in winter 2021/2022 can be well captured by this MLR reconstruction. It is also found that the contributions from tropical oceanic anomalies, including the La Niña event and the TIO warming, are very close between early and late winter. Therefore, the sub-seasonal change in the precipitation anomaly in this winter mainly arises from the extra-tropical circulation anomalies, including the changes in the South Asian jet wave train pattern and the ESHI anomaly.
5 SUMMARY AND FURTHER DISCUSSION
The SC region had experienced long-lasting rainy weather throughout the winter of 2021/2022. The wet anomalies were particularly strong during JF 2022. The SCPI reaches +1.78 mm/day, the second largest value since 1980, only next to 1983. At the same time, there was a La Niña event. As suggested by the previous studies, canonical anomalies associated with a mature La Niña would have the WNPC anomaly bring a dry winter to the SC in 2022. But in reality, an extreme wet event occurred instead. This promotes us to ask why was the La Niña winter of 2021/2022 extremely wet over SC? In this study, we use observations and reanalysis to investigate which role tropical SST anomalies and extra-tropical circulation anomalies played in this wet event.
Our analysis suggests the La Niña event had not effectively forced circulation anomalies over the WNP region in JF 2022 as expected. Particularly, the WNPC anomaly at lower levels was not obvious, which is at least unfavorable for SCP deficiencies. The absence of a WNPC anomaly may be related to the SST distributions across the tropical oceans. Over the tropical Pacific, the EP type of a La Niña event shifted the center of the negative SST anomaly more eastward than the average of historical La Niña events. This would slacken the La Niña-associated anomalous zonal SST gradient between CP and WP, thus suppressing the development of anomalous Walker circulation and the WNPC. On the other hand, there was an unexpected SST warming over the TIO, which would favor the anticyclonic anomaly over the WNP region. Thus, the EP type of La Niña and the SST warming in the TIO act in concert to dampen the WNPC anomaly and the SCP deficiencies. However, these tropical SST anomalies, along with the corresponding WNP circulation pattern, could only explain why there was no evident dry anomaly over the SC. They are still unable to explain the observed wet extreme, as the WNPAC anomaly was absent. Thus, the tropical oceanic condition may not be the primary cause for the extreme wet condition over SC in JF 2022.
Furthermore, the investigation identifies two extra-tropical circulation anomalies over Eurasia that play dominant roles in the 2022 SC wet extreme. One is the wave train propagating along the South Asian jet. This wave train pattern results in a strong cyclonic anomaly over TP and the northern BoB region, which intensifies the IBT. In JF 2022, the IBTI anomaly exceeds +1.2 standard deviation. The intensified IBT can enhance SCP through exciting anomalous moisture transport from BoB and ascending motion. A positive GPH anomaly over eastern Siberia is another important factor influencing the winter SCP. In JF 2022, the GPH anomalies at high latitudes show a west–east dipole pattern, and negative anomalies center over Scandinavia, while the positive anomalies dominate eastern Siberia. The circulation anomaly over eastern Siberia usually exhibits a quasi-barotropic structure, which is physically consistent with the anticyclonic anomaly at 850 hPa and positive SLP anomaly at the surface. The pronounced anomalous cold northeasterly from this anomalous anticyclone encounters warm and moist air over the SC, which would support strong convergence and upward motion and consequently provide a favorable dynamical condition for SCP. The MLR reconstruction suggests that the South Asian wave train explained ∼50% of the observed SCP anomaly, while ESHI explained ∼25% of the observed SCP anomaly in JF 2022. Therefore, the unexpected extreme wet condition over the SC in JF 2022 is attributed mainly to the enhanced IBT maintained by the South Asian jet wave train, as well as the high-pressure anomalies over eastern Siberia.
Canonical anomalies associated with a mature La Niña would have the WNPC anomaly bring a dry winter to SC in 2022. In reality, the South Asian jet wave train, as well as the high-pressure anomaly over eastern Siberia, overwhelmed this tendency, bringing an extremely wet winter instead. Particularly, the South Asian jet wave train that intensifies IBT plays the most important role. This promotes us to ask what are the potential causes for this pattern? Previous studies had identified two kinds of forcing factors that may influence the phase of this wave train: the tropical SST anomalies and the North Atlantic Oscillation (NAO). For SST anomalies, previous studies suggested a moderate impact of an El Niño-like SST pattern across the tropics on the South Asian jet wave train. According to Hu et al. (2018), warm SST anomalies and positive rainfall anomalies in the equatorial EP would excite a wave-like pattern from the Northeast Pacific across the North Atlantic through Europe to East Asia, thus projecting onto the positive phase of vPC1. But considering a La Niña event that occurred, the tropical SST pattern is not a plausible cause for the observed wave train pattern in JF 2022.
Some studies had emphasized the role of the NAO in triggering wave trains along the South Asian jet stream, and the positive NAO anomaly tends to cause the positive phase of vPC1 (Branstator, 2002; Watanabe, 2004). In JF 2022, the NAO index reaches +1.1, which may favor the observed South Asian jet wave train anomaly to some extent. However, the impact of NAO on vPC1 is not deterministic, as a comprehensive analysis by Huang et al. (2020) had shown that both positive and negative phases of NAO can excite the same phase of the South Asian wave train, although with different orientations. In fact, the wave train is an atmospheric internal mode, which can be developed without external forcing. Internal atmospheric dynamic processes, such as the conversion between barotropic and baroclinic energy, are also important in maintaining and strengthening the wave train along the westerly jet stream (Li et al., 2020). Therefore, the wave train anomaly in JF 2022 may be largely due to atmospheric internal dynamical processes, which indicates a low predictability season ahead. But the exciting mechanisms of the South Asian jet wave train remain controversial. In addition, although the present study highlights the influence on the SCP anomalies of both tropical SST/circulation anomalies and atmospheric inner dynamic processes in the extra-tropics, other climatic factors, for example, the Arctic sea ice concentration, may also play a role. Previous studies revealed that the reduction in the Arctic sea ice may excite anomalous upward air motion due to strong near-surface thermal forcing, which further triggers a meridional overturning wave-like pattern extending to mid-latitudes of Eurasia, thus, in turn, inducing the zonally oriented Rossby wave train along the mid-latitudes of jet stream (He et al., 2018; He et al., 2020). Whether the sea ice anomaly affects the 2022 extreme SCP should be further investigated in future studies.
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In recent years, with the emergence of new artificial intelligence (AI) technology and more observational data from automatic meteorological stations, radars and satellites, the deep learning has very broad application scenarios in the context of meteorological big data. The deep learning has powerful data learning ability and feature capturing ability of complex structures, which has now occupied an important position in the meteorological field and also become a hot topic in meteorological research. Especially, AI has shown great potential advantages in image recognition, which can provide new ideas and new directions for typhoon monitoring and forecasting. In this study, the data used include the typhoon best track data set provided by the China Meteorological Administration and the Himawari-8 and FY4 satellite image data from 2005 to 2020. We use the deep learning model to conduct the typhoon vortex identification, the determination of typhoon location and intensity, and the detection of typhoon intensity mutation with AI techniques. The main research content includes a typhoon vortex identification model based on deep image target detection, an intelligent typhoon intensity determination model based on image classification and retrieval, and a typhoon rapid intensification identification model. Then, a typhoon intelligent monitoring and forecasting system is constructed. The results show that the system can correctly identify typhoon vortices above the strong tropical storm grade in a percentage of 88.6%. The mean absolute error (MAE) and Root mean square deviation (RMSE) of typhoon intensity estimation are 3.8 m/s and 5.05 m/s, respectively, and the comprehensive accuracy of rapid intensification estimation of annual independent samples reaches 92.0%. The system is capable of performing the automatic identification, location and intensity determination, and intelligent tracking of tropical cyclones in real time by using high spatial and temporal resolution satellite images. This study may help further improve the operational techniques for typhoon monitoring and forecasting.
Keywords: deep learning, typhoon vortex identification, determining typhoon location and intensity, rapid intensification, satellite image
1 INTRODUCTION
Typhoon disaster is one of the natural disasters with the highest frequency and the most serious impact in the world (Chen et al., 2004, 2006; Duan et al., 2020). China is located on the west coast of the Pacific Ocean. The coastal provinces affected by typhoon activities are densely populated and economically developed, and are also the most vulnerable to typhoon disasters (Chen, 2010; Xu et al., 2010; Zhang et al., 2010; Wu et al., 2017). It poses a serious threat to the socio-economic development of China (Lei et al., 2009; Duan, et al., 2012, 2014). In particular, with the global warming, the probability and proportion of typhoon enhancement in the Northwest Pacific are on the rise (Emanuel, 2005; Webster et al., 2005; Wu et al., 2022). The increase of typhoon intensity and strong typhoon frequency and the low moving speed result in a longer impact time and stronger intensity of landing typhoons. The hazards brought by typhoons are gradually increasing, leading to more casualties and property damage. Moreover, the prevention of typhoons is becoming more and more difficult. With the rapid development of artificial intelligence (AI), as a means of artificial intelligence, machine learning has been proved to become a new method to overcome the bottleneck of typhoon prediction (Chen and Chavas. 2020). To be specific, the machine learning is used to conduct the fusion of satellite data, radar data and numerical model outputs, so as to improve the forecast performance on typhoon intensity and wind field structure (Chen and Chavas. 2020).
Moreover, the deep learning has also been gradually applied in the assessment and prediction of typhoon intensity. Wimmers et al. (2019) used the convolutional neural network to estimate typhoon intensity based on satellite cloud pictures. Wang et al. (2015) predicted TC (Tropical Cyclone) intensity according to the artificial neural network. Baik and Paek (2000) used the back-propagation (BP) algorithm to optimize the multilayer perceptron Multi-layer Perceptron (MLP) network and established a 12–72 h forecast model on TC intensity in the Northwest Pacific. Through the application of the multidimensional predictors same as the multiple linear regression model (MLR), the average error of MLP model is reduced by 7%–16% compared with that of MLR model. Chaudhuri et al. (2013) also used MLP to predict typhoon intensities. They used the variables such as central pressure, maximum sustained surface wind speed, pressure drop, total atmospheric ozone column and sea surface temperature as the input matrix of the model, and found that the minimum prediction error of the model is 4.07%. Since the intensity variation of typhoon can be considered as a time series, the recursive neural networks (RNN) can be used in the modeling of temporal dynamic behavior. Pan et al. (2019) constructed 24–48 h prediction models by using RNN. The model has a better performance in reducing the final error compared to the traditional dynamic model. The average error is 5.1 m s−1 for 24 h prediction and 6.7 m s−1 for 48 h prediction. Chen et al. (2019) established a convolutional neural network and a long short-term memory neural network model, which focused on the spatio-temporal correlation of atmospheric and oceanic variables. The error of this model is smaller than those of some existing numerical models, statistical models and traditional machine learning methods. In addition, Jin et al. (2020) studied the relationship between remote sensing data and TC intensity, and developed a “ring segmentation method” to extract satellite data features. Then, using a gradient enhancement model-XGBoost model, they established a typhoon intensity prediction model for the South China Sea based on FY-2 satellite data, environmental data and typhoon best track dataset. Generative adversarial networks combined with long and short-term memory networks are used to solve the problem of satellite cloud-image sequence prediction (Xu et al., 2019). A research group from the Japan Agency for Marine Research and the Kyushu University jointly developed a method to identify tropical depression clouds with high accuracy from the Global Cloud System Resolution Model climate experiment data. The method can identify the signs a week before the occurrence of tropical depressions in the Northwest Pacific Ocean in summer. Meanwhile, it can predict typhoon paths and intensities, and the occurrence of heavy rainfall (Matsuoka et al., 2018). Further studies have shown that deep learning algorithms can also be well integrated with model forecast data. Hurricane-WRF is a widely used typhoon forecast model in numerical simulation studies, and its forecast output can be well integrated with feedforward neural networks (FFNN) for TC intensity prediction, especially for the typhoons with rapid intensification (Cloud et al., 2019). The output meteorological analysis field from the global forecast system (GFS) can drive the Bayesian model to conduct TC intensity prediction (Schaffer et al., 2020).
In order to improve typhoon monitoring and forecasting capabilities and serve national sustainable development and disaster prevention and mitigation, this study chooses several AI-based deep learning models based and applies them in operational typhoon monitoring and forecasting. The models include a typhoon vortex identification model based on deep image target detection, an intelligent typhoon intensity determination model based on image classification and retrieval, and a typhoon rapid intensification discrimination model based on spatio-temporal sequence features. Based on the aforementioned models, a whole set of AI-based typhoon monitoring and forecasting system is proposed in this study. In the next two sections, both data and models are described followed by the design and applications of AI-based system in Section 4. The problems of the current AI techniques in typhoon monitoring and forecasting applications and the outlook of future work are discussed in the last section.
2 DATA
The TC data used in this paper include the best track dataset from 2005 to 2021 (http://tcdata.typhoon.org.cn/zjljsjj_sm.html) provided by Shanghai Typhoon Research Institute, China Meteorological Administration. This data set includes the position of TC once every 6 h, the lowest central air pressure, the maximum wind speed near the center, etc. The Himawari-8 satellite data from 2005 to 2017 were selected as the training set, the satellite data from 2018 as the validation set, and the FY4A satellite data from 2019 to 2021 as the test set. The horizontal resolution of the satellite cloud map is 0.05°. Based on the best typhoon path information compiled by the Shanghai Typhoon Research Institute of China Meteorological Administration, a 400 × 400 pixel cloud map (about 2000 × 2000 km) of the typhoon center at the corresponding moment is intercepted, and the sample labels are labeled according to the real typhoon intensity in the best path as the training set of deep learning data samples (15730 cloud maps in total).
3 BRIEF INTRODUCTION OF DEEP LEARNING MODELS
In order to build an artificial intelligence-based typhoon monitoring and forecasting system to achieve automated and objective localization, intensity determination and intensity trend discrimination of tropical cyclones, this paper mainly selects a typhoon vortex identification model based on deep image target detection, a typhoon intelligent intensity determination model based on image classification and retrieval, and a typhoon fast enhancement discrimination model incorporating spatio-temporal sequence features.
3.1 Vortex recognition model based on deep image target detection
3.1.1 Methodology
Using the satellite cloud map and the best typhoon path information to construct a large sample annotated data set, the classical target detection SSD (Single Shot MultiBox Detector) model with fast operation and high recognition accuracy in the field of artificial intelligence is used as the base model for typhoon vortex recognition, and the model is modified to propose an iterative SSD target detection model for the uniqueness of typhoon vortex recognition, especially the difficulty of weak vortex recognition (Figure 1). SSD model of target detection is a one-stage multi frame detection model. Because of its fast running speed and high recognition rate, SSD model is the most widely used basic model of target detection at present. SSD model adopts the method of multi-scale feature mapping, using six convolution blocks with different scale sizes to convolute images with different scales, so as to detect target objects with different sizes. The satellite raw data is converted into a disk map, and the disk map is cropped into an 1800*1800 area image according to the area to be monitored, and the 1800*1800 area image is labeled with data to perform vortex recognition and localization of the cloud map by the model of the trained SSD.
[image: Figure 1]FIGURE 1 | Flowchart of vortex recognition model based on depth image target detection.
According to the best typhoon track data, the images are marked one by one. Firstly, we read the best track file, get the list of files to be labeled, find the corresponding best track, and generate a label file, so as to build a large sample label data set. The construction of sample label data set is a very time-consuming and labor-intensive task, and it is also the primary key work in the research and development of this technology. The sample data set includes typhoon samples of all levels (tropical depression, tropical storm, severe tropical storm, typhoon, strong typhoon and super typhoon). From the specific sample distribution number of each wind speed, the sample size of severe tropical storm is the largest, while the sample size of tropical depression and super typhoon is the smallest. In addition, if a picture contains multiple images with different intensity levels, each typhoon vortex will be labeled, so the total number of samples will be more than the original 1800 × 1800 samples. After a lot of processing above, the target monitoring data set of Typhoon Vortex recognition is finally constructed.
According to the experimental results as follows, the thresholds of 0.2 and 0.7 were selected respectively. Firstly, fuzzy localization is performed by inputting 1800 × 1800 size, performing the first round of detection and coarse localization with 0.2 lower confidence threshold, de-weighting the output results based on the center distance, and intercepting 640 × 640 images as the second round of input with the center of localization as the origin; then precise localization is performed: inputting 640 × 640 size, performing recognition with 0.7 higher confidence threshold, de-weighting the second time, and The 400 × 400 final output image is further intercepted, which is used to finely localize the vortex and output the final vortex localization results (latitude and longitude coordinates with confidence scoring).
3.1.2 Verification
The iterative model (after improvement) and the non-iterative model (before improvement) were tested using 2020 data (Figure 2), with a total of 702 samples. The experimental results show that, compared with the non-iterative model, the iterative model has a better recognition effect at all typhoon intensity levels, significantly improving the recognition ability of vortices at typhoon level and below, and the correct recognition rate of vortices at tropical depression and tropical storm level and below. The correct recognition rate is 40%–80%, which is a significant improvement to the original SSD model (the original correct recognition rate is only 15%–50%), and the correct recognition rate of typhoon vortices of strong tropical storm level and above is over 90%.
[image: Figure 2]FIGURE 2 | Vortex recognition rate test results (blue columns represent non-iterative algorithm; red columns represent iterative algorithm).
3.2 Intelligent intensity model based on image classification and retrieval
3.2.1 Methodology
According to the best track data (location and moment) at an interval of 1, 3 or 6 h, the 400*400 pixel cloud image of the typhoon center at the corresponding time is intercepted as the cloud image data set of deep learning, with a total of 15730 samples. From the wind speed distribution in the typhoon data set, we can see that the distribution of each wind speed is not uniform, in which the number of wind speeds such as 18 m/s, 20 m/s, 22 m/s, 25 m/s is significantly more than other wind speeds, while the number of wind speeds with particularly low values (such as 10 m/s, 12 m/s, 13 m/s, etc.) and wind speeds with particularly high values (such as 68 m/s, 70 m/s, 72 m/s, etc.) is significantly less. We divided each wind speed into the training set and the test set according to the ratio of 7:3, so as to ensure that the model can learn the characteristics of typhoons with different wind speeds. There are 12550 samples in the final training set and 3138 samples in the test set.
Due to the unbalance sample data of typhoon intensity, this paper uses the data enhancement technology commonly used in machine learning to improve to a certain extent. The goal of data enhancement is to increase the training data to prevent over fitting and enhance the generalization ability of the model. The main methods are rotation, flip and crop and so on (Qian et al., 2021).
Deep learning, which can implicitly extract deep abstract complex features in images through machine analysis and learning of a large number of samples, is increasingly applied to the field of estimating typhoon intensity. In order to achieve intelligent typhoon intensity determination, we introduce an end-to-end dual estimation Pipeline deep typhoon intensity determination model (Figure 3), which is a technical model for typhoon intensity determination based on image classification and retrieval, based on mature pre-trained CNN (convolutional neural network) deep learning models in the field of computer vision, such as: ResNet, VGG (Visual Geometry Group), etc., to perform typhoon intensity related to satellite cloud image data Based on the extracted features, a classification model (regression depth model) and a similarity-based retrieval model (visualization retrieval model) are constructed respectively to obtain the decision results, and finally the recognition results of the two models are fused (fusion module) to give the final top three typhoon strengths with the highest confidence level, the confidence level and the corresponding reference satellite cloud images.
[image: Figure 3]FIGURE 3 | Flowchart of the intelligent intensity determination model of typhoon based on image classification and retrieval.
3.2.2 Verification
Here we select the two most commonly used indicators which can reflect the error between the estimated value and the real value to measure accuracy of AI models.
Mean absolute error of wind speed estimation:
[image: image]
Root mean square error of wind speed estimation:
[image: image]
Here [image: image] is total times of wind speed estimation, [image: image] is wind speed estimation times, [image: image] is estimated value of the ith wind speed, [image: image] is the actual value of the ith wind speed.
For a full-year sample of 2020, the MAE and RMSE of the ResNet model in determining the typhoon intensity are 3.8 m/s and 5.05 m/s, respectively (Figure 4). Compared with the results of Pradhan et al. (2018) who used a deep CNN model to conduct the intensity estimation of 68 TCs over the Atlantic Ocean and 30 TCs over the Pacific Ocean (their independent samples have a RMSE of about 5.84 m/s), the ResNet model in this study has a slight advantage. Compared with the traditional statistical method for typhoon intensity estimation from satellite cloud images (Lu et al., 2014), which has a RMSE of 7.7 m/s for independent samples, the ResNet model in this study has a clear advantage. It has a good reference value for the objective determination of typhoon intensity.
[image: Figure 4]FIGURE 4 | MAE (A) and RMSE (B) of the ResNet model for smart intensity determination of typhoons for the annual sample intensity estimation in 2020.
The cloud chart samples for 2020 are classified into 6 classes according to the maximum average wind speed near the center of TC, which are tropical depression, tropical storm, strong tropical storm, typhoon, strong typhoon, and super typhoon class (Table 1), containing a total of 868 samples. When the maximum average wind speed near the bottom center of a tropical cyclone reaches 10.8 m/s–17.1 m/s, it is a tropical depression, when it reaches 17.2 m/s–24.4 m/s, it is a tropical storm, when it reaches 24.5 m/s–32.6 m/s, it is a strong tropical storm, when it reaches 32.7 m/s–41.4 m/s, it is a typhoon, and when it reaches 41.5 m/s–50.9 m/s, it is a strong typhoon, It is a super typhoon if it reaches or exceeds 51.0 m/s. From the MAE and RSME of the samples of each class, the model has the best estimation for the samples of tropical depression and tropical storm, whose MAE and RSME are both the smallest. The MAE for the samples of tropical storm is 2.66 m/s, and the MAE for tropical depression is 3.12 m/s, and its intensity estimation ability has reached the level for operational reference. The model is less effective in estimating typhoon-class samples, with the estimated MAE reaching 6.16 m/s and RSME reaching 7.81 m/s. Therefore, subjective revisions and analyses by forecasters are required for such typhoons in operational terms.
TABLE 1 | AI Model analysis of the intensity estimation of the 2020 typhoon cloud samples.
[image: Table 1]3.3 RI discrimination model incorporating spatio-temporal sequence features
3.3.1 Methodology
According to the sample statistics from 2005 to 2018, it was found that the RI cases account for less than 5% of all typhoon cases. Generally, for a data set, if the target event is few and the proportion is less than 10%, it is called an extremely imbalanced data set. For imbalanced data sets, machine learning algorithms often fail to achieve satisfactory classification results. In order to increase the number of RI cases, to increase the number of positive samples of a few categories, to and reduce the number of negative samples of most categories, we defined the cases with an increase of typhoon speed by more than 7 m/s within 12 h as the positive samples of typhoon RI. In the training process, although the number of positive samples increased by adopting the new threshold of RI (wind speed increases by 7 m/s in 12 h), the ratio of positive samples to negative samples in the whole data set (with RI samples as positive samples and non-RI samples as negative samples) was still about 1:11. As the positive and negative samples were not evenly distributed, a re-weighting method was applied to the training data (Zhou et al., 2022). Weighting means giving different punishments to imbalanced categories. Different weights were applied to the loss (the difference between the model predicted value and the true value of the sample) calculated by different categories in the training process, so that the model optimization tended to favor the few categories (RI samples).
[image: image]
where [image: image], Eq. 3 represents the loss weight given to the actual positive (RI) samples, [image: image] represents the probability that the samples are predicted to be positive by the RI trend detection model, [image: image] represents the loss weight given to the actual negative (non-RI) samples, [image: image] represents the probability that the samples are predicted to be negative, and [image: image] represents the label of the samples (positive samples are 1 and negative samples are 0).
In order to realize the objective discrimination of the intensity change trend of TCs, an automatic and objective technique for rapid enhancement trend discrimination of typhoons is proposed based on the deep residual network ResNet model and the spatio-temporal correlation deep learning model LSTM in the field of artificial intelligence, and the life cycle indication is introduced by labeling and learning the key information in satellite cloud map data, which can effectively solve the typhoon intensity The problem of predicting and discriminating the rapid intensification trend is effectively solved. The technical route of the typhoon rapid intensification discrimination model incorporating spatio-temporal sequence features is shown in Figure 5. In the 1800*1800 regional image after satellite data resolution, the typhoon life cycle is marked every 6 h according to the best path file, and a 400*400 vortex image sequence is cropped. After that, the image sequence and the marked life cycle are fed into the model for trend discrimination of whether the typhoon is rapidly intensifying after 12 h, which improves the accuracy of predicting and discriminating the trend of rapid typhoon intensity intensification.
[image: Figure 5]FIGURE 5 | Flow chart of the fast enhancement discriminative model for typhoons incorporating spatial and temporal sequence features.
3.3.2 Verification
Taking Typhoon No.2114 “Chanthu” in 2021 as an example (Figure 6), the number of information on the optimal path is 166, and by labeling the 166 information, a total of 9 mutation moments are marked (labeling 1 for T moments means that the typhoon wind speed will increase ≥7 m/s within T-T+12 h). Since the model input is serial data, 4 consecutive data messages (with an interval of 6 h) are used as an input in the prediction, and a total of 166 messages are obtained in this way, of which 9 data are abruptly changed (4 abruptly changed data are obtained in addition). The threshold value above 0.55 is considered as rapid intensification (Zhou et al., 2022), while the opposite is considered as no rapid intensification. The result of sample No.2114 typhoon “Chanthu” has an accuracy rate of 91.6%, an omission rate of 44.4%, and a false alarm rate of 6.4%, which shows that the technique is able to discriminate the trend of rapid intensification of the objective intensity of typhoons.
[image: Figure 6]FIGURE 6 | Comparison of model predicted abrupt change probability (purple asterisks) and actual abrupt change probability (green dots) of Typhoon Chanthu.
In addition, the test analysis of the independent sample of operational typhoon cloud maps for 2021 showed that the composite accuracy of the sudden change of typhoon intensity estimation in 2021 reached 91.8%, and the test results showed that the AI-based typhoon rapid strengthening trend discrimination technology is better than the traditional subjective intensity forecasting method, and has certain operational application value.
Heat maps are a common visualization tool that aggregate a large amount of data and represent it with progressive color bands, which can visually show the similarities and differences between data. One of the important roles is to show the correlation between different indicators and different samples. As shown in Figure 7, there was a positive correlation between the cloud structure of the typhoon vortex and the wind speed and rapid intensification of the typhoon at the same time, especially the vortex structure near the center of typhoon. When the cloud pattern and its corresponding intensity are subjected to LSTM, there is high confidence in the ability to discriminate the RI trend in the next phase.
[image: Figure 7]FIGURE 7 | (A) The FY-4A satellite cloud of Typhoon 2114 at 09–07 18:00; (B) is the heat map obtained by passing through the ResNet model and convolving the last layer of the ResNet model; (C) is obtained by superimposing (A) and (B) together.
4 ARTIFICIAL INTELLIGENCE-BASED TYPHOON MONITORING AND FORECASTING SYSTEM
Figure 8 shows the Flowchart of AI-based typhoon monitoring and forecasting system. The integrated AI-based TC monitoring and forecasting system starts from the original satellite data, crops the disc map into an 1800*1800 area image according to the area to be monitored, and then uses the 400 × 400 final image output by the typhoon vortex model, combined with an end-to-end visualized intelligent typhoon intensity fixing model, and fuses the strategies according to the typhoon intensity trend cycle and typhoon intensity abrupt change detection, and finally outputs the typhoon intensity abrupt change trend discrimination results to achieve automated intelligent identification and positioning of intensity fixing and intensity trend discrimination, with the final product for further analysis and utilization by forecasters.
[image: Figure 8]FIGURE 8 | Flowchart of AI-based typhoon monitoring and forecasting system.
Figures 9A,B shows the full disk grayscale and 1800*1800 (range 70–160°E, 20°S–70°N) projection maps of the FY-4A satellite cloud map through 7 September 2021 at 12 UTC, respectively. The two typhoon vortices were first identified with a lower confidence threshold (0.2), and then identified with a higher confidence threshold of 0.7, and the secondary de-weighting was performed to further truncate the 400 × 400 final output images, giving confidence probabilities of 0.91 and 0.98, respectively (see Figure 9B), and the identified vortex images of small areas of the typhoon were given separately, along with the estimated intensity of the typhoon. The estimated intensity of Typhoon 2114 “Chanthu” is 28 m/s (Figure 9C), which is slightly weaker than the observed intensity (30 m/s). The estimated intensity of Typhoon Conson is 26 m/s (Figure 9D), which is also slightly stronger than the observed intensity of 28 m/s.
[image: Figure 9]FIGURE 9 | Artificial intelligence-based typhoon monitoring and forecasting system (A) FY-4A satellite’s disk map on 7 September 2021 at 12 UTC (B) Range 70–160°E, 20°S–70°N projection area (C) Cropped cloud map of Typhoon 2114 “Chanthu” on September 7 at 12 UTC (D) Cropped cloud map of Typhoon 2113 “Conson” on September 7 at 12 UTC.
From the live intensity, Chanthu experienced a rapid increase in intensity from 30 m/s (Figure 10A) to 58 m/s (Figure 10B) from 0000 UTC on September 7 to 0000 UTC on September 8. As we can see in Figures 11A–D, based on the historical data of the typhoon up to the current moment (7 September 2021, 18 UTC), the spatial and temporal characteristics of the remote sensing cloud maps and the known intensity information series are extracted for Typhoon 2114, and it is predicted that 06UTC on 8 September 2021) the probability of the typhoon showing rapid intensification is 0.84, labeled as a sudden intensity change of 1, and the RI process does occur in reality (wind speed increases by 10 m/s to 58 m/s after 12 h). If it is difficult to distinguish whether the rapid intensification process will occur by manual simply looking at the satellite images, and the model discriminations give a more objective and accurate judgment. This artificial intelligence-based typhoon monitoring and forecasting system has now been carried out on a trial basis in the typhoon operations of the National Meteorological Center.
[image: Figure 10]FIGURE 10 | Infrared channel satellite cloud image of Typhoon 2114 “Chanthu” (A) 7 September 2021 00UTC (B) September 8, 00UTC.
[image: Figure 11]FIGURE 11 | Satellite remote sensing cloud maps of Typhoon 2114 at four consecutive times (A) 00UTC on 7 September 2021 (B) 06UTC on September 7 (C) 12UTC on September 7 (D) 18UTC on September 7.
In Table 2, the accuracy index of the model was tested by comprehensive accuracy (Acc), TS score (TS), missing rrate (FNR), and false rate (FPR), where TP represents frequency counted when the actual RI is predicted as RI, TN represents the frequency counted when the actual non-RI is predicted as non-RI, FN represents the frequency counted when the actual RI is predicted as non-RI, and FP represents the frequency counted when the actual non-RI is predicted as RI.
TABLE 2 | Comparison table between AI algorithm and different subjective and objective forecasts.
[image: Table 2]The comprehensive accuracy represents the proportion of the correct prediction of RI among the total samples.
[image: image]
The TS score represents the proportion of the correct prediction of RI after excluding the correct prediction of non-RI.
[image: image]
The missing rate represents the proportion of prediction errors (non-RI) for the instant of RI in reality.
[image: image]
The false rate represents the proportion of prediction errors (RI) for the real non-RI.
[image: image]
According to further statistics comparison in 2021, it can be found comparison between AI and different forecast results. TS of NCEP model is 0.16, TS of JTWC’s forecast is 0.16, TS of CMA’s forecast is 0.11, and TS of our AI algorithm is 0.19. The combined accuracy rate of NCEP model is 90%, that of JTWC’s forecast is 87%, that of CMA’s forecast is 89%, and that of our AI algorithm is 92%. Compared with other different subjective and objective forecasts, our method has high prediction accuracy for actual RI samples. The results also show that the technology based on artificial intelligence is superior to the traditional subjective intensity forecasting method.
5 CONCLUSION
Artificial intelligence has shown great potential in typhoon monitoring and forecasting applications. This paper introduced an artificial intelligence-based typhoon monitoring and forecasting system to achieve automated and objective localization, intensity determination and intensity trend discrimination of tropical cyclones. The main research content includes a typhoon vortex identification model based on deep image target detection, an intelligent typhoon intensity determination model based on image classification and retrieval, and a typhoon rapid intensification identification model. The results show that the system is capable of performing the automatic identification, location and intensity determination, and intelligent tracking of tropical cyclones in real time by using high spatial and temporal resolution satellite images.
However, there are still many difficulties and challenges in the application of AI technology in typhoon monitoring and forecasting. In the future, we may deeply explore the various large-scale influencing factors and the typhoon internal forces which affect track and intensity of TCs. Secondly, we may comprehensively use the cloud images of other 13 channels to extract more effective information and feature vectors for typhoon monitoring and forecasting. Moreover, the combination of AI technology and other methods (such as numerical models and ensemble forecasts) will certainly give a great impetus to typhoon monitoring and forecasting, greatly reduce the manual work of forecasters, and improve the effectiveness of disaster prevention and mitigation.
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Severe wind events which occur in the metropolis of Beijing in China bring major catastrophes. Characteristics of severe winter and spring wind events over Beijing during the past 40 years have been analyzed. An artificial intelligence-based method is adopted to categorize the favorable large-scale circulation patterns and dominant weather systems. Four categories are concluded and compared to each other in terms of distributions of geopotential height at 500 hPa, temperature at 500 hPa, sea level pressure and their corresponding anomalies in 1979–2019. It is found that the first category (T1) which is dominated by strong cold trough at upper levels with strong cold-core high locating at surface is the most conducive circulation pattern, while the fourth category (T4) which is controlled by weak trough and strong ridge with strong low cyclone at surface is the least one. The second and third categories, represented by T2 and T3, are under the control of strong cold trough and warm ridge at upper levels with weak high at surface, and of weak trough and strong ridge with strong low cyclone at surface, respectively. Characteristics and differences under different backgrounds of global temperatures are analyzed by separating the past 40years into two distinct periods. The decreasing trends of intensities of the trough and ridge, the temperature at 500hPa, together with the surface systems, are found to be responsible for the decrease in severe wind events in T1, T2 and T3 in the last 20 years, while T4 is distinct to the other three categories with little change in its circulation pattern, and thus continues contributing to the severe wind events over Beijing. The results found in this study with the usage of an AI-based algorithm will benefit for the operational forecasting for extreme wind events over Beijing.
Keywords: SOM method, large-scale circulation, synoptic weather system, global warming, severe wind event in spring and winter seasons
INTRODUCTION
Due to the frequent occurrence of cold air activities in winter and spring, severe wind events hit Beijing in China every year. Extreme winds are catastrophic and pose threats to public facilities, traffic safeties, agricultural productions, as well as the safeties of peoples’ lives and properties (Qian and Zhang, 2007; Liu and Guo, 2012; Xu et al., 2014). As the Capital of China, the economy and urban population in Beijing have increased rapidly during the past decades (United Nations, 2018). Severe winds and secondary disasters over Beijing and the surrounding North China Plain have thus caused more human casualties and property damage. Therefore, it is of great importance to study severe wind events over Beijing.
Characteristics of the frequency, intensity, and persistence of severe winds are often associated with certain atmospheric circulation patterns dominated by specific large-scale weather systems. Previous studies have shown that the strength of East Asian winter winds and the location of the trough over East Asia have a great influence on the intensity of severe winter and spring winds over Beijing (Gong and WangZhu, 2001; Li et al., 2006; Xu et al., 2006; Chen and Wang, 2015). Cold high pressure system and Mongolian cyclones from the Siberia are the corresponding dominant weather systems at surface. The stronger the intensities of cold high pressure system and Mongolian cyclone, the stronger the wind events are (Wu and Wang, 2002; Kang et al., 2010; Li et al., 2022). Statistical clustering methods, such as EOF analysis and K-means clustering methods, are commonly used for categorizing the atmospheric circulations and dominant weather systems in meteorology (Yamal et al., 1988; Dommenget and Latif, 2002; Zhou and Yu, 2005; Solidoro et al., 2007). The self-organizing feature mapping network (SOM) method first designed by Kohonen (1982) is an ideal tool for extracting features because the input data are treated as a continuum without relying on correlation, cluster or Eigen function analysis (Liu et al., 2006). It is widely used in the arena of data downscaling and visualizations (Jensen et al., 2012; Pearce et al., 2014; Dyson, 2015; Stauffer et al., 2016). In the 20th century, the applications of this AI-based algorithm are increasingly widespread in atmospheric sciences (Reusch et al., 2005; Cassano et al., 2006; Johnson et al., 2008; Swales et al., 2016; Mattingly et al., 2016; Huang et al., 2017; Rodriguez-Morata et al., 2018). Many scientists have adopted it in the arena of classifying atmospheric circulations (Liu and Weisberg, 2005, 2011; Johnson et al., 2008). During the recent 10 years, SOM methods have also been widely used in extreme weather and climate events, such as extreme precipitations (Tymvios et al., 2010; Loikith et al., 2017), droughts (Zhuang et al., 2018), and environmental pollution phenomena (LiaoSun et al., 2018; Callahan and Mankin, 2020; Li et al., 2021). However, fewer studies have been performed on severe wind events over the metropolis in China. For example, the detailed distributions of favorable synoptic patterns and their differences in severe wind events during 1979–2019 have not been conducted before with the adoptions of either K-means or SOM methods. Recently, the K-means clustering has been adopted by China Meteorological Administration for performing mid-term forecasting of large-scale circulations favorable for extreme weather and climate events.
Climatological studies on the relationship between the increasing global temperature and precipitation variability (Katz and Brown, 1992; Du et al., 2019; Yu and Zhai, 2021; Zhang et al., 2021) have indicated that uneven extreme floods and droughts tend to occur more frequently in the future. Comparative analysis of the different large-scale circulation patterns under the climatic background of global warming (Cao and Yin, 2020) will be conducted in this paper. Focus will be put on the characteristics of wind speed intensities and temporal variations in different large-scale circulation types in the two distinct periods, while the possible reasons are beyond the scope of this study. Besides, there are many recent studies on the relationship between the meteorological parameter of wind and the concentration of air pollutants over Beijing and its surroundings (Chen et al., 2009; Zhang et al., 2012; Miao et al., 2017; Yin et al., 2019, 2020). It is found that meteorological paramters are influenced by weather systems of large and small scales (Aneja et al., 2000; Cao and Yin, 2020). Large-scale systems dominate the regional meteorological background, while local circulations also play important roles in the transports and concentrations of air pollutants. However, most of those researches focused on either haze weather which requires small velocities or severe wind events in summer seasons governed by weather systems which are distinctly different from the cold airflows in winter and spring seasons. Therefore this study will investigate the classifications and characteristics of large-scale circulation patterns conducive to severe wind events in the winter and spring seasons over Beijing based on the SOM applications to the recent 40 years.
The remainder of this paper is organized as follows. Data and methodology are described in Introduction, followed by descriptions of the characteristics of severe wind events over Beijing during the past 40 years in Introduction. Categories of different large-scale patterns conducive to the severe wind events are obtained by SOM method in Introduction, while their characteristics and differences under different backgrounds of global temperatures are analyzed in Introduction. Last section is the summation and discussions of this study.
DATA AND METHODOLOGY
Data
Both observational data and reanalysis datasets are adopted in this study.
The observational data from local observatory of the Beijing Southern Suburb Observatory (Station No. 54511) are provided by the Beijing Meteorological Bureau. The data sequence of the winter and spring (December-May) from 1979 to 2019 is checked after quality control. The standard for selecting the severe wind day is strictly in accordance with the regulations of China’s meteorological observation business (Editorial board of Atmospheric Science Dictionary, 1994). To be specific, the instantaneous wind speed of 17 m/s and above, or visually estimated wind force reaching to and exceeding eight levels, is counted for a severe wind case. Once there’s a severe wind case during 20:00 in 1 day and 20:00 in the next day of Beijing local time, it is marked as a severe wind day.
ERA5 (Hersbach et al., 2018) is the fifth generation of the European Center for Medium-Range Weather Forecasts reanalysis data, which has been significantly upgraded from ERA Interim (Dee et al., 2011). The variables adopted in this study for analyzing and categorizing conducive large-scale circulations include geopotential height and temperature at 500 hPa, together with sea level pressure and wind 10 m above the ground with a horizontal resolution of 1° x 1°.
Methodology
The adopted SOM method is an AI-based method based on unsupervised, iterative and competitive learning procedure which allows unsupervised learning clustering of data (Kohonen et al., 2001). It is a neural network with only one input layer and one competing layer. The nodes at the competing layer have a topological relationship with each other, which can be one-dimensional linear or at two-dimensional planes. Each node at the competing layer represents either a neuron or a certain category of clusters. Once the input data finds only one node at the competing layer with the best match, the winning node is determined. The parameters of the winning node are then updated with the usage of the stochastic gradient descent method. Parameters of the adjacent points around the winning node are also updated according to their distances to the winning node. The final convergence is obtained through continuous iteration, and thus leads to the completion of clustering. Whether or not a node at the competing layer learns from the one at the input layer is determined by the neighborhood function. Only those that are topologically close enough to the winning node will be updated according to the SOM learning algorithm.
Python is used in this study to cluster the large-scale circulation patterns of severe wind events over Beijing during the past 40 winters and springs. All the variables on the points at the input layer are normalized by the L2 norm. In other words, each element value in the eigenvector is divided by the L2 norm of the vector. The specific steps are listed as follows:
Step 1. Start from inputting the machine learning series in the vector form, denoted by (x1, x2, … , xn), and the resulting number of clusters (m). Here, n represents the total amounts of neuron nodes at the input layer.
Step 2. Initialize the network connection weight (wji), and randomly assign and normalize the initial value to wji. Here wji is between the jth neuron node at the output layer and the ith neuron node at the input layer; j=1, 2, ... m; i=1, 2, ... n. Determine the initial values of the learning rate η(0) (0<η (0) <1) and the winning field Nj*(0). Determine the maximum training step (T), together with the permissible error accuracy (ε).
Step 3. Select one group from (x1, x2, … , xn) randomly, and marked as xk with k=1, 2, … , n.
Step 4. Calculate the Euclidean distance between the input vector xk from Step 3 and wji from Step 2 with i ranging from one to n. Then find the winning neuron node which has the minimum distance dj* with j ranging from one to m.
Step 5. Update the values of wji at tth time based on the following expression as:
Wji (t+1) = wji(t) + η(t)[xk–wji(t)]
Here η(t) is the function of topological distance between the kth neuron node and the j* winning field.
Step 6.Start over from Step 3 by selecting another group from (x1, x2, … , xn) and run through Step 4 to Step 5, until all of the n groups are performed.
Step 7. Update the values of η(t) and the Nj*(t) with t ranging from one to T.
Stpe 8. Calculate the error Ej = ||wt–wt-1|| = ∑j=1, … ,m ||wj,t–wj,t-1||.
Step 9. The iterative step stops when Ej < ε, otherwise go back to Step 3 until the end of T.
TEMPORAL VARIATIONS OF SEVERE WIND EVENTS OVER BEIJING
Seen from the temporal variations of severe wind days over Beijing from 1979 to 2019 in Figure 1, the overall trend in the past 40 years presented by the observation data (black solid curves) is decreasing. It is consistent with many researches (Yan et al., 2014; Callahan and Mankin, 2020; Li et al., 2021). To be specific, severe winter and spring wind days over Beijing declines at the rate of 3.2 days per decade. 1980–1988 is a period of frequent occurrences, with an average of more than 10 days per year. The year of 1980 reaches the maximum (25 days). From the year of 1989, the windy days sharply decrease with only 1 day of strong winds every year and then rise slowly until the year of 2002 after which remains in the range of 3–13 days each year. After 2002, most years have windy days below 5 days. The year of 2010 reaches another maximum value in the past 20 years with 15 days, while the windy days during the past 5 years shrink to less than 5 days.
[image: Figure 1]FIGURE 1 | Temporal evolutions of severe wind days over Beijing during 1979 and 2019 by the observational data (solid black curves) and ERA5 reanalysis data (solid red curves). The dotted grey and red curves are the corresponding trends of univariate linear regression.
The maximum velocities at a height of 10 m above the surface of the Earth are obtained from ERA5 analysis data of the same period. The number of windy days which meet the standard of severe wind days in last section is depicted in Figure 1 with solid red curves. It is found that the temporal evolution trends of the two datasets are similar. Besides, the consistency between these two is higher after the 1990s. Therefore, the validity of the velocity data from ERA5 reanalysis datasets is solid for the follow-up comparative analyses using the SOM method.
THE FOUR CIRCULATION CATEGORIES CONDUCIVE TO SEVERE WIND EVENTS OVER BEIJING AND THEIR INDIVIDUAL CHARACTERISTICS
The four categories and their primary features
In order to figure out the typical circulation patterns conducive to winter and spring severe winds over Beijing, the geopotential height field at 500hPa, the temperature field at 500hPa, and sea level pressure field are chose as the eigenvectors following previous studies by Li et al. (2006), and Chen and Wang (2015), and Ji et al. (2020). The other commonly used meteorological variables for haze events are also tested (Cai et al., 2017), such as the temperature variations in 24 h at 2 m above the surface, the specific humidity at 850hPa, and temperature differences between 850 hPa and 200 hPa. Different from results in air pollutant studies (Chen et al., 2009; Cao and Yin, 2020), they are not as important as the three variables we adopted for analyzing synoptic patterns, and are thus not included in the final experiments. The possible reasons lie in the synoptic-scale characteristics for the unique severe wind events during the winter and spring seasons. Troughs and ridges in the westerly wind belt are clearly represented by the geopotential height field at 500 hPa on this height layer, which include the Ural Mountain ridge, the East Asian trough, and several short-wave troughs. The temperature field at 500 hPa is a powerful variable for characterizing the extent of cold air accumulations. For example, a cold center of -40°C indicates that cold air has already accumulated to a substantial depth. Sea level pressure fields are capable of representing weather systems of synoptic scales conducive to the intensity of extreme winds, such as the Mongolian cyclones and the cold-core high from Siberia (Kang et al., 2010).
A total number of 292 severe wind days are selected from 1979 to 2019 from ERA5 reanalysis data. The above three scalar parameters in the 292 days are then treated as the clustered element fields. Their values at each grid points in the domain of 35°N-70°N and 90°E-130°E are individual input factors to start up the categorizing steps by the SOM method. In the choice of the node number, this paper starts with the setting of four by five node. With the aim to find an ideal result, four by 4, three by 4, three by 3, two by three and two by two and other different schemes are also performed. Finally the number of nodes of 2*2 is determined together with the maximum training step to be settled as 100 steps. The choice of the two by two nodes is determined after considerations from the perspective of both the operational forecasting and several experiments with different nodes. On one hand, according to the Weather forecast manual for Beijing (Ji et al., 2020), the surface synoptic systems responsible for severe winter-season wind events over Beijing in China can be divided into two categories, i.e., the high pressure system with cold core and low pressure system. Meanwhile, the upper level systems are either low vortex with trough or horizontal trough. Therefore, the number of subcategories for severe wind events during the winter and spring seasons over Beijing is limited for operational forecasting. One the other hand, we still performed several sets of experiments with different nodes, such as four by 5, three by 4, and two by 3. Similar patterns can be seen over different subcategories and finally can be concluded into the four categories which are obtained from the two by two nodes. Therefore, we eventually adopt the two by two nodes in our study for analyzing synoptic patterns conducive for severe wind events during the winter and spring seasons over Beijing.
Theresults are four categories represented by T1, T2, T3 and T4 hereafter. T1 contains 51 days (17.5% of the total). Both T2 and T3 contain 87 days, each accounting for 29.8% of the total. T4 contains 67 days which is 22.9% of the total. This categorizing result is relatively stable with obvious differences among each category. Statistical analyses of the severe wind days in different months in the four circulation types lead to different results. It can be seen in Figure 2 that in T1 most gale events occur in December and March, while none in May. In T2, the most and least likely to experience gale days are February and January, and then April and May, respectively. In T3, 87 gale days occur in all of the 6 months with the maximum in April followed by March. In T4, gale days only occur in April and May. As a short conclusion, the distributing features of the above four categories are statistically different especially in T4 which only contains spring gales. The F-test method (Casella and Berger, 2001) is conducted among the three meteorological parameters and their corresponding anomalies with the statistical results listed in Table 1. It is found that the six meteorological parameters obtained from the four classifications all pass the criteria with the F values larger than F-test values. Therefore, the hypothesis of the similarity among T1, T2, T3, and T4 is refuted. In other words, the F-test demonstrates these four types are able to distinguish with each other. Since atmospheric circulations vary sharply during the transition of winter and spring, it is necessary to distinguish each category before further analysis. In other words, the SOM method is capable of capturing and distinguishing these features.
[image: Figure 2]FIGURE 2 | Severe wind days in each month in T1, T2, T3, and T4 categories.
TABLE 1 | Results from F-test.
[image: Table 1]Characteristics of circulation patterns in the four categories
Figure 3 shows the composite of geopotential height at 500 hPa for the four categories (T1, T2, T3 and T4), together with their corresponding anomalies to the winter and spring of 1979–2019. It can be seen that the similarity of the four types lies in the relatively large meridional distributions. Beijing is under the control of the northwest air flow in front of the ridge, which favors the intrusion of the cold air from the north and thus conducive to severe wind events. The difference is that T1 and T3 are affected by vortices and troughs, while their intensities are stronger in T1 with more northward positions. T2 is controlled by strong troughs and ridges, while T4 is by weak troughs and strong ridges.
[image: Figure 3]FIGURE 3 | The composite fields of geopotential height at 500 hPa (contours) for T1, T2, T3 and T4, and their corresponding anomalies to the winter and spring of 1979–2019 (shaded). Beijing is marked with the white triangle.
The distributions of temperature fields at 500 hPa in the four categories as shown in Figure 4 are also distinctly different with each other. To be specific, the anomaly over Beijing in T1 is entirely negative with extremely cold centers allocated with the low trough. It indicates the accumulation of strong cold air at the upstream side of Beijing. Weak negative anomalies near the trough and ridge in T2 allocate with increased temperature gradients between the negative and positive centers. The cold-core in T3 which relates to the low trough is weak, while the entire area of T4 shows positive anomaly with a relatively cold trough.
[image: Figure 4]FIGURE 4 | Same as Figure 3, except for the temperature at 500 hPa
T1 and T2 share the same characteristics in the form of a high pressure system which can be seen from the distributions of sea level pressure field and their anomalies in Figure 5. Beijing is located in the large value area of the air pressure gradient in front of cold high pressure. The intensity of the high pressure system in T1 is extremely stronger with larger areas. The main part of the high pressure system in T3 lies slightly north, while the low-pressure area is stronger. Therefore, Beijing is located in front of the high pressure system and behind the low-pressure area. In T4, Beijing is also under the joint control of these two surface weather systems. The allocation of the weaker high-pressure system and the stronger low pressure is favorable for the dominant control of the strong low pressure over Beijing.
[image: Figure 5]FIGURE 5 | Same as Figure 3 except for the sea surface pressure.
Characteristics of the velocities in the four categories
Distributions of the maximum velocity, minimum and averaged ones are analyzed with ERA5 reanalysis data and depicted in the four categories (Figure 6). Three quarters of the velocity in all the four categories are smaller than 23 m s−1. They share similar values in both the minimum velocity (blue curves in Figure 6) and average one (green curves in Figure 6). The main differences among the four categories lie in the frequencies and velocities of severe wind events. The maximum velocity in T1 reaches 29.7 m s−1, with around 5% exceeding 27.9 m s−1. It is therefore the strongest circulation pattern over Beijing which is governed by strong cold trough at upper levels and strong high pressure systems at surface. T3 which is governed by surface cyclones follows with the maximum velocity reaching 28.3 m s−1 and around 5% exceeding 26 m s−1. The thresholds for the rest two patterns are similar to each other which lead to less extreme windy events.
[image: Figure 6]FIGURE 6 | Box plot of the daily maximum velocity in T1, T2, T3, and T4.
Preliminary results with comparisons to the categories by the K-means method
Comparisons of the clustering results with assessments between the SOM and K-means methods are performed with the following preliminary results. Four circulation patterns (denoted as K1, K2, K3, and K4; figures omitted) conducive to severe winds are obtained with the adoption of K-means method. According to the F-test method, the four types are able to distinguish with each other. In comparisons to the four patterns obtained by the SOM method, the three similar patterns in the distributions of geopotential height at 500 hPa are as follows: T1 and K1 which are dominated by strong cold trough, T2 and K3 by strong cold trough and warm ridge, T4 and K4 by weak trough and strong ridge. T3 is governed by weak cold vortex or trough, while K2 is by weak cold trough only. The main difference in surface pressure is the lack of high pressure centers as presented in T3. Instead, both K2 and K4 show similar distributions in the form of strong low pressure center.
Quantitative comparisons are performed with the adoption of the Calinski-Harabasz index which is one of the clustering algorithms evaluation measures. It is most commonly used to evaluate the goodness of split by a K-means clustering algorithm. The index CH is calculated from the following expressions:
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Here,nj represents the sample number in the jth category. m and k are the total sample numbers and categories, respectively. cpi and cj are the centers of each category, while [image: image] is the center of the entire dataset. Seen from the values of CH index, i.e., 95.39 for K-means and 101.35 for SOM, the latter is a little better in this study. We believe this small advantage obtained from only one index may not holds true through other evaluation measures which is beyond this study.
COMPARATIVE ANALYSIS BETWEEN THE PERIOD OF 1980–1999 AND THE PERIOD OF 2000–2019
Compared to the temporal variations of severe wind events during the past 40 years as shown in Figure 1, the interdecadal variation trends are analyzed in terms of the four circulation categories. Differences in the four categories are depicted in Figure 7. It is found that T2 and T3 are the dominant pattern in the 1980s and 1990s, respectively. During 2000–2009, the four types play equal importance. In the recent 10 years, T4 is the most conducive one.
[image: Figure 7]FIGURE 7 | Same as Figure 2 but for (A) T1, (B) T2, (C) T3 and (D) T4 categories. (E) quantitative differences among each other.
With the aim to distinguish the characteristics and to figure out the dominant circulation patterns responsible for the influence of increasing global temperature on severe wind events over Beijing in terms of different circulation patterns, the entire period of 1979–2019 is divided into two sequences of 20 years. One is from 1980 to 1999, and the other from 2000 to 2019. The geopotential height at 500hPa, temperature at 500hPa, and the sea level pressure in these two periods are depicted for this composite and anomaly fields in Figures 8–10.
[image: Figure 8]FIGURE 8 | Same as Figure 3 but for the period of 1980–1999 (upper row) and 2000–2019 (lower row).
Visible intensity differences of the geopotential height at 500 hPa can be seen in Figure 8 among the four circulation types, especially in T2 and T3. The intensity of the trough and ridge in T2 as well as that of the trough in T3 is much stronger in the first 20 years. The intensity of the trough in T2 varies slightly with the center value of -14 while the center value of its ridge decreases rapidly from 10 to 2. The trough systems in T3 decrease from -10 to -4. The intensity of the trough in T1 is also slightly stronger in the first 20 years, but its width is significantly widened during the last 20 years. It leads to the reduction of meridional circulations in T1. The intensity and its amplitude in T4 change little.
The variations of the distributions of temperature at 500 hPa (Figure 9) are similar to those of geopotential height. The temperature contrast between the cold and warm airflow in T2 decreases from 12 to 6, which is the representation of the weakening intensity of fronts as shown in Figure 8. The area of the cold-core in T3 significantly shrinks with the intensity anomaly changes from -2 to 2. The cold-core center in T1 rises a little from -8 to -5. The intensity in T4 keeps little variations.
[image: Figure 9]FIGURE 9 | Same as Figure 8 but for the temperature at 500 hPa
As shown by the sea level pressure in Figure 10, the high pressure system in T1 sharply weakens in the last 20 years with the center value decreasing from 14 to 8. Together with the northward positioned center, it means the influence of the cold airflow over Beijing decreases. Similarly the intensities of the pressure centers in T2, T3, and T4 all decreases to the extent of two to four.
[image: Figure 10]FIGURE 10 | Same as Figure 9 but for the sea level pressure.
As a short conclusion, the decreasing trends of intensities of the trough and ridge, the temperature at 500hPa, together with the surface systems, are responsible for the decrease in severe wind events in T1, T2, and T3 in the last 20 years. T4 is distinct to the other three categories with little change in its circulation pattern, and thus keeps contributing to the severe wind events over Beijing.
CONCLUSION AND DISCUSSION
In this paper, the large-scale circulation patterns of severe wind events over Beijing from 1979 to 2019 are analyzed and then classified by an AI-based method into four categories occupying 17.5, 29.8, 29.8 and 22.9% of the total events. The validity of the categorizing algorithm as well as the reliability of ERA5 reanalysis data are investigated firstly. Then the intensities of velocity and temporal variations in the four types are analyzed with comparison to the entire events as well as to each other. It is found that during the past 40 years from 1979 to 2019, the occurrence of severe wind events in the winter and spring over Beijing decreases to the extent of 3.2 days every decade. The events occur more frequently in the period of 1980–1988 with more than 10 days every year, and less frequently in the period of 1989–2002 with the threshold of 3–13 days. Since the year of 2002, most years only experience less than five events. Under the decreasing trend of the entire events, the temporal variations for the four categories are distinct with each other. In the 1980s, T2 is the dominant circulation pattern with the other three happening alternately. In the 1990s, T3 occurs most frequently. In the period of 2000–2009, T2 and T3 play identically equal importance. In the recent 10 years, T4 becomes the primary one.
The four categories can be concluded in terms of distributions of geopotential height at 500 hPa, temperature at 500 hPa, and sea level pressure. T1 is dominated by strong cold trough at upper levels with strong high pressure system locating at surface, T2 by strong cold trough and warm ridge at upper levels with weak high at surface, T3 by weak cold vortex or trough with jointly influences of high pressure centers at surface, and T4 by weak trough and strong ridge with strong low cyclone at surface. These differences in circulation patterns lead to different weather systems of synoptic scale responsible for the severe wind events over Beijing. T1 brings the most severe winds while T4 is the weakest one.
The characteristics for the occurrence and intensity variations in circulation patterns under the climatic background of global warming are also investigated in this study. During the latest 20 years from 2000 to 2019, the intensities of the trough and ridge systems at 500hPa, the temperature centers at 500hPa, and the pressure centers at surface, all present a weakening trend in T1, T2 and T3. The combined contributions of the cold air intensity and primary systems lead to the decreasing trend in severe wind events. However, T4 varies little with negligible change in the occurrence of severe wind events during the past 40 years.
The findings of the two most conducive circulation patterns to severe wind events over Beijing, T1 and T4, with the usage of an AI-based algorithm will lead to the operational applications for extreme wind predictions. Preliminary results obtained from the comparisons of the clustering results by SOM and K-means methods show a little advantage of the SOM method from the perspective of one of the clustering algorithms evaluation measures. However detailed comparisons between the SOM method and other methods are beyond the scope of the current study. The relation between T4 and the increasing trend in haze weather in winter and spring over Beijing will be investigated in our follow-up studies. As the urbanization extent increases, the influences of urbanization together with global warming over the extreme wind events also call for attention which is beyond the scope of this study.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/supplementary material further inquiries can be directed to the corresponding author.
AUTHOR CONTRIBUTIONS
WZ, CH, and JC contributed to conception and design of the study. XL organized the database. HY performed the statistical analysis. WZ wrote the first draft of the manuscript. WZ, CH, and JC wrote sections of the manuscript. All authors contributed to manuscript revision, read, and approved the submitted version.
FUNDING
This work was supported by the National Natural Science Foundation of China (Nos. 91937301, 41875074), Beijing Natural Science Foundation (8214058), the Scientific Program by Beijing Meteorological Administration (Grant BMBKJ202001005).
ACKNOWLEDGMENTS
The authors are thankful to the two reviewers for their comments and suggestions on the original manuscript that improved the presentations of the results.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
REFERENCES
 Aneja, P., Adams, A., and Arya, S. (2000). An observational based analysis of ozone trends and production for urban areas in North Carolina. Chemosphere - Glob. Change Sci. 2, 157–165. doi:10.1016/s1465-9972(00)00007-6
 Cai, W., Li, K., Liao, H., Wang, H., and Wu, L. (2017). Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat. Clim. Chang. 7, 257–262. doi:10.1038/NCLIMATE3249
 Callahan, C., and Mankin, J. S. (2020). The influence of internal climate variability on projections of synoptically driven Beijing haze. Geophys. Res. Lett. 47 (11), e2020GL088548. doi:10.1029/2020gl088548
 Cao, B., and Yin, Z. (2020). Future atmospheric circulations benefit ozone pollution control in Beijing-Tianjin-Hebei with global warming. Sci. Total Environ. 743, 140645. doi:10.1016/j.scitotenv.2020.140645
 Casella, G., and Berger, R. (2001). Statistical inference. Belmont, California: Duxbury Press, 521–534. 
 Cassano, J. J., Uotila, P., and Lynch, A. (2006). Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries, Part 1: Arctic. Int. J. Climatol. 26, 1027–1049. doi:10.1002/joc.1306
 Chen, H., and Wang, H. (2015). Haze days in north China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012. J. Geophys. Res. Atmos. 120, 5895–5909. doi:10.1002/2015jd023225
 Chen, Y., Zhao, C., Zhang, Q., Deng, Z., Huang, M., and Ma, X. (2009). Aircraft study of mountain chimney effect of beijing, China. J. Geophys. Res. 114, D08306. doi:10.1029/2008JD010610
 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597. doi:10.1002/qj.828
 Dommenget, D., and Latif, M. (2002). A cautionary note on the interpretation of EOFs. J. Clim. 15 (2), 216–225. doi:10.1175/1520-0442(2002)015<0216:acnoti>2.0.co;2
 Du, H., Alexander, L., Donat, M., Lippmann, T., Srivastava, A., Salinger, J., et al. (2019). Precipitation from persistent extremes is increasing in most regions and globally. Geophys. Res. Lett. 46, 6041–6049. doi:10.1029/2019GL081898
 Dyson, L. L. (2015). A heavy rainfall sounding climatology over Gauteng, South Africa, using self-organising maps. Clim. Dyn. 45, 3051–3065. doi:10.1007/s00382-015-2523-3
 Editorial board of Atmospheric Science Dictionary (1994). Dictionary of atmospheric science. Beijing: China Meteorological Press. 
 Gong, D. Y., Wang, S. W., and Zhu, J. H. (2001). East Asian winter monsoon and arctic oscillation. Geophys. Res. Lett. 28 (10), 2073–2076. doi:10.1029/2000gl012311
 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., et al. (2018). ERA5 hourly data on pressure levels from 1979 to present. Available at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview (accessed on May 16, 2022). 
 Huang, W. Y., Chen, R. Y., Yang, Z. F., Wang, B., and Ma, W. Q. (2017). Exploring the combined effects of the Arctic Oscillation and ENSO on the wintertime climate over East Asia using self-organizing maps. J. Geophys. Res. Atmos. 122, 9107–9129. doi:10.1002/2017JD026812
 Jensen, A. A., Thompson, A. M., and Schmidlin, F. J. (2012). Classification of Ascension Island and Natal ozonesondes using self-organizing maps. J. Geophys. Res. 117, D04302. doi:10.1029/2011jd016573
 Ji, Z., Zhang, Y., Qiao, L., and Sun, J. (2020). Weather forecast manual for Beijing in China. Beijing: China Meteorological Press, 287pp. 
 Johnson, N. C., Feldstein, S. B., and Tremblay, B. (2008). The continuum of Northern Hemisphere teleconnection patterns and a description of the NAO shift with the use of self-organizing maps. J. Clim. 21 (23), 6354–6371. doi:10.1175/2008jcli2380.1
 Kang, Z. M., Jin, R. H., and Bao, Y. Y. (2010). Characteristic analysis of cold wave in China during the period of 1951-2006[ J]. Plateau Meteorol. 29 (2), 420–428. 
 Katz, R., and Brown, B. (1992). Extreme events in a changing climate: Variability is more important than averages. Clim. Change 21, 289–302. doi:10.1007/bf00139728
 Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69. doi:10.1007/bf00337288
 Kohonen, T., Schroeder, M. R., and Huang, T. S. (2001). Self-organizing maps. Berlin, Germany: Springer-Verlag. 
 Li, F., Jiao, M. Y., Ding, Y. H., and Jin, R. H. (2006). Climate change of Arctic Atmospheric circulation in last 30 years and its effect on strong cold events in China. Plateau Meteorol. 25 (2), 209–219. 
 Li, H. Y., Lin, S., Wang, Y., Huang, P., and Yu, Y. (2022). Characteristics of cold wave activities in Beijing-Tianjin-Hebei region from 1961 to 2017. J. Arid Meteorology 40 (1), 41–48. 
 Li, J., Hao, X., Liao, H., Hu, J., and Chen, H. (2021). Meteorological impact on winter PM2.5 pollution in Delhi: Present and future projection under a warming climate. Geophys. Res. Lett. 48, e2021GL093722. doi:10.1029/2021GL093722
 Liao, Z. P., Sun, J. R., Yao, J. L., Liu, L., Li, H. W., Liu, J., et al. (2018). Self-organized classification of boundary layer meteorology and associated characteristics of air quality in Beijing. Atmos. Chem. Phys. 18, 6771–6783. doi:10.5194/acp-18-6771-2018
 Liu, X., and Guo, X. (2012). Analysis and numerical simulation research on severe surface wind formation mechanism and structural characteristics of a squall line case. Chin. J. Atmos. Sci. 36 (6), 1150–1164. (in Chinese with English abstract). doi:10.3878/j.issn.1006-9895.2012.11212
 Liu, Y. G., and Weisberg, R. H. (2005). Patterns of ocean current variability on the West Florida Shelf using the self-organizing map. J. Geophys. Res. 110, C06003. doi:10.1029/2004jc002786
 Liu, Y. G., Weisberg, R. H., and Mooers, C. N. K. (2006). Performance evaluation of the self-organizing map for feature extraction. J. Geophys. Res. 111, C05018. doi:10.1029/2005jc003117
 Liu, Y., and Weisberg, R. H. (2011). “A review of self-organizing map applications in meteorology and oceanography,” in Self organizing maps-Applications and novel algorithm design (Inno, Honeywell: InTech). doi:10.5772/13146
 Loikith, P. C., Lintner, B. R., and Sweeney, A. (2017). Characterizing large-scale meteorological patterns and associated temperature and precipitation extremes over the Northwestern United States using self-organizing maps. J. Clim. 30 (8), 2829–2847. doi:10.1175/Jcli‐D‐16‐0670.1
 Mattingly, K. S., Ramseyer, C. A., Rosen, J. J., Mote, T. L., and Muthyala, R. (2016). Increasing water vapor transport to the Greenland Ice Sheet revealed using self-organizing maps. Geophys. Res. Lett. 43, 9250–9258. doi:10.1002/2016GL070424
 Miao, Y., Guo, J., Liu, S., Liu, H., Li, Z., Zhang, W., et al. (2017). Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution. Atmos. Chem. Phys. 17, 3097–3110. doi:10.5194/acp-17-3097-2017
 Pearce, J. L., Waller, L. A., Chang, H. H., Klein, M., Mulholland, J. A., Sarnat, J. A., et al. (2014). Using self-organizing maps to develop ambient air quality classifications: A time series example. Environ. Health 13, 56. doi:10.1186/1476-069X-13-56
 Qian, W. H., and Zhang, W. W. (2007). Change in cold wave events and warm winter in China during the last 46 years. Chin. J. Atmos. Sci. 31 (6), 1266–1278. 
 Reusch, D. B., Alley, B. A., and Hewitson, B. C. (2005). Relative performance of self-organizing maps and principal component analysis in pattern extraction from synthetic climatological data. Polar Geogr. 29 (3), 188–212. doi:10.1080/789610199
 Rodriguez-Morata, C., Ballesteros-Canovas, J. A., Rohrer, M., Espinoza, J. C., Beniston, M., and Stoffel, M. (2018). Linking atmospheric circulation patterns with hydro-geomorphic disasters in Peru. Int. J. Climatol. 38 (8), 3388–3404. doi:10.1002/joc.5507
 Solidoro, C., Bandelj, V., Barbieri, P., Cossarini, G., and Fonda Umani, S. (2007). Understanding dynamic of biogeochemical properties in the northern Adriatic Sea by using self-organizing maps and k-means clustering. J. Geophys. Res. 112, C07S90. doi:10.1029/2006jc003553
 Stauffer, R. M., Thompson, A. M., and Young, G. S. (2016). Tropospheric ozonesonde profiles at long-term us monitoring sites: 1. A climatology based on self-organizing maps. JGR. Atmos. 121, 1320–1339. doi:10.1002/2015JD023641
 Swales, D., Alexander, M., and Hughes, M. (2016). Examining moisture pathways and extreme precipitation in the US Intermountain West using self-organizing maps. Geophys. Res. Lett. 43, 1727–1735. doi:10.1002/2015GL067478
 Tymvios, F., Savvidou, K., and Michaelides, S. C. (2010). Association of geopotential height patterns with heavy rainfall events in Cyprus. Adv. Geosci. 23, 73–78. doi:10.5194/adgeo-23-73-2010
 United Nations (2018).Epartment of economic and social affairs, population division. 2019,World urbanization prospects: The 2018 revision (ST/ESA/SER.A/420). New York: United Nations, 126pp. 
 Wu, B. Y., and Wang, J. (2002). Possible impact s of winter Arctic oscillation on Siberian High, the East Asian winter monsoon and Sea ice extent. Adv. Atmos. Sci. 19 (2), 297–320. 
 Xu, H., Zou, H., Li, P., and Tan, B. (2014). Statistical analysis on strong surface wind and its impacts on flight safety at Nyingchi Airport. Plateau Meteorol. 33 (4), 907–915. (in Chinese with English abstract). doi:10.7522/j.issn.1000-0534.2013.00055
 Xu, M., Chang, C. P., Fu, C., Qi, Y., Robock, A., Robinson, D., et al. (2006). Steady decline of east Asian monsoon winds, 1969–2000: Evidence from direct ground measurements of wind speed. J. Geophys. Res. 111, D24111. doi:10.1029/2006jd007337
 Yamal, B., White, D. A., and Leathers, D. J. (1988). Subjectivity in a computer-assisted synoptic climatology Ⅱ: Relationships to surface climate. J. Climatol. 8, 227–239. 
 Yan, F., Zhou, S., and Ma, Y. (2014). Variation characteristics of gale in spring and its weather patterns in shijiazhuang. J. Arid Meteorology 32 (2), 207–214. doi:10.11755/j.issn.1006-7639(2014)-02-0207
 Yin, Z. C., Cao, B. F., and Wang, H. J. (2019). Dominant patterns of summer ozone pollution in eastern China and associated atmospheric circulations. Atmos. Chem. Phys. 19 (22), 13933–13943. doi:10.5194/acp-19-13933-2019
 Yin, Z. C., Li, Y. Y., and Cao, B. F. (2020). Seasonal prediction of surface O3-related meteorological conditions in summer in North China. Atmos. Res. 246, 105110. doi:10.1016/j.atmosres.2020.105110
 Yu, B., Li, S., Hao, C., Liu, Y., Du, J., and Lu, L. (2022). Relationship between snowfall in the yanqing zone of winter olympic games and the easterly wind in the boundary layer. Chin. J. Atmos. Sci. 46 (1), 181–190. (in Chinese with English abstract). doi:10.3878/j.issn.1006-9895.2106.21055
 Yu, B., Li, S., Huang, F., Jin, N., and Du, J. (2019). Comparative analysis of continuous cold wave events in beijing-tianjin-hebei region in january 2016. J. Arid Meteorology 37 (6), 954–963. 
 Yu, R., and Zhai, P. (2021). Changes in summer persistent precipitation over the middle–lower reaches of the Yangtze River and associated atmospheric circulation patterns. J. Meteorol. Res. 35, 393–401. doi:10.1007/s13351-021-0186-z
 Zhang, J. P., Zhu, T., Zhang, Q. H., Li, C. C., Shu, H. L., Ying, Y., et al. (2012). The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings. Atmos. Chem. Phys. 12 (11), 5031–5053. doi:10.5194/acp-12-5031-2012
 Zhang, W., Furtado, K., Wu, P., Zhou, T., Chadwich, R., Marzin, C., et al. (2021). Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 7, eabf8021. doi:10.1126/sciadv.abf8021
 Zhou, T. J., and Yu, R. C. (2005). Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res. 110 (8), D08104. doi:10.1029/2004jd005413
 Zhuang, Y. Z., Fu, R., and Wang, H. Q. (2018). How do environmental conditions influence vertical buoyancy structure and shallow-to-deep convection transition across different climate regimes?J. Atmos. Sci. 75 (6), 1909–1932. doi:10.1175/Jas-D-17-0284.1
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Zhao, Hao, Cao, Lan and Huang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 20 September 2022
doi: 10.3389/feart.2022.978041


[image: image2]
Deep-learning-based post-processing for probabilistic precipitation forecasting
Yan Ji1,2, Xiefei Zhi1,2*, Luying Ji3, Yingxin Zhang4, Cui Hao4 and Ting Peng5
1Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/Key Laboratory of Meteorological Disasters, Ministry of Education (KLME), Nanjing University of Information Science and Technology, Nanjing, China
2WeatherOnline Institute of Meteorological Applications, Wuxi, China
3Key Laboratory of Transportation Meteorology of China Meteorological Administration, Nanjing Joint Institute for Atmospheric Sciences, Nanjing, China
4Beijing Meteorological Observatory, Beijing, China
5Taizhou Environmental Monitoring Center, Taizhou, China
Edited by:
Jingyu Wang, Nanyang Technological University, Singapore
Reviewed by:
Rui A. P. Perdigão, Meteoceanics Institute for Complex System Science, Austria
Chen Chaohui, National University of Defense Technology, China
* Correspondence: Xiefei Zhi, zhi@nuist.edu.cn
Specialty section: This article was submitted to Atmospheric Science, a section of the journal Frontiers in Earth Science
Received: 25 June 2022
Accepted: 18 August 2022
Published: 20 September 2022
Citation: Ji Y, Zhi X, Ji L, Zhang Y, Hao C and Peng T (2022) Deep-learning-based post-processing for probabilistic precipitation forecasting. Front. Earth Sci. 10:978041. doi: 10.3389/feart.2022.978041

Ensemble prediction systems (EPSs) serve as a popular technique to provide probabilistic precipitation prediction in short- and medium-range forecasting. However, numerical models still suffer from imperfect configurations associated with data assimilation and physical parameterization, which can lead to systemic bias. Even state-of-the-art models often fail to provide high-quality precipitation forecasting, especially for extreme events. In this study, two deep-learning-based models—a shallow neural network (NN) and a deep NN with convolutional layers (CNN)—were used as alternative post-processing approaches to further improve the probabilistic forecasting of precipitation over China with 1–7 lead days. A popular conventional method—the censored and shifted gamma distribution-based ensemble model output statistics (CSG EMOS)—was used as the baseline. Re-forecasts run using a frozen EPS—Global Ensemble Forecast System version 12—were collected as the raw ensembles spanning from 2000 to 2019. The re-forecast data were generated once per day and consisted of one control run and four perturbed members. We used the calendar year 2018 as the validation period and 2019 as the testing period, and the remaining 18 years of data were used for training. According to the results, in terms of the continuous ranked probability score (CRPS) and the Brier score, the CNN model significantly outperforms the shallow NN model, as well as the CSG EMOS approach and the raw ensemble, especially for heavy or extreme precipitation events (those exceeding 50 mm/day). A remarkable degradation was seen when reducing the size of training samples from 18 years of data to two years. The spatial distribution of the CRPS shows that the stations in central China were better calibrated than those in other regions. With a lead time of 1 day, the CNN model was found to be superior to the other models (in terms of the CRPS) at 74.5% of the study stations. These results indicate that deep NNs can serve as a promising approach to the statistical post-processing of probabilistic precipitation forecasting.
Keywords: deep learning, probabilistic precipitation forecasting, post-processing, loss function, ensemble model output statistics
1 INTRODUCTION
Heavy and extreme precipitation events are highly socioeconomically relevant, as they can lead to numerous hazards (Zhang et al., 2015; Surcel et al., 2017). High-quality precipitation predictions are therefore critical for providing emergency services and developing early-warning systems. However, although remarkable progress has been made in this area in recent decades, numerical weather prediction (NWP) models still often fail to produce accurate precipitation patterns, especially for heavy precipitation events (Fritsch et al., 1998; Gourley and Vieux, 2005). Ensemble prediction systems (EPSs) promote the transition from deterministic to probabilistic forecasts by adding certain perturbations to the initial conditions, which enables the generation of a greater number of possible simulations of precipitation and hence improves forecasting ability (Majumdar and Torn, 2014; Scheuerer et al., 2017). However, because they are limited by imperfect model configurations and the chaotic nature of the atmosphere, even optimal EPSs suffer from their own systemic biases, and appropriate post-processing steps are thus required.
Bayesian model averaging (BMA) (Raftery et al., 2005; Ji et al., 2019) and ensemble model output statistics (EMOS) (Gneiting et al., 2005; Peng et al., 2020) are two popular parametric post-processing methods for probabilistic forecasts. Based on the performance during the training period, the BMA method mixes the probability density functions (PDFs) or kernels of the individual ensemble members and provides a weighted average PDF prediction. The weights are equal to posterior probabilities that reflect the relative contributions of each member. Conversely, the EMOS method produces a single parametric PDF that is directly based on the raw ensembles instead of their PDFs or kernels. The parameters of EMOS are further estimated as regression coefficients of a multiple regression between the forecasts and their corresponding observations. Particularly for probabilistic precipitation forecasting, the censored generalized extreme value (GEV) (Scheuerer and Möller, 2015) and the censored and shifted gamma (CSG) (Baran and Nemoda, 2016; Scheuerer et al., 2017) distribution EMOS modeling techniques have been proposed. In the GEV EMOS framework, three parameters are optimized that represent location, ratio, and shape. The location parameter is an affine function of the ensembles and the ratio of ensemble forecasts at zero. The shape parameter is an affine function of the ensemble variance and Gini’s mean difference. Analogously, there are three parameters in the CSG EMOS framework: shape; scale; and shift. The shape and scale parameters are used to formulate the gamma distribution, and the shift parameter is introduced to shift the raw distribution and ensure it is left-censored at zero. The parameters of BMA and EMOS are usually estimated by minimizing the continuous ranked probability score (CRPS) (Hersbach, 2000) or ignorance score (IGN) (Gneiting and Raftery, 2007) over the rolling training period. Previous studies (Baran and Nemoda, 2016; Scheuerer et al., 2017) have shown that CSG EMOS outperforms GEV EMOS and the BMA approach; here, we thus implement the CSG EMOS method as the conventional baseline model.
These traditional post-processing methods are basically built upon linear projection. The solvers required to optimize their parameters are somewhat out-of-date and inefficient when dealing with massive amounts of training data. Deep-learning (DL) (Hinton and Salakhutdinov, 2006) approaches have shown their potential in representation learning within large datasets by establishing highly nonlinear architectures. Inspired by this, an increasing number of studies are being performed that apply advanced DL models in the contexts of weather forecasting (McGovern et al., 2017), climate projection (Reichstein et al., 2019), and Earth system science (Schultz et al., 2021). Specifically, as discussed by Düben et al. (2021), there are many potential applications of DL in each component of the workflow for NWP, such as data assimilation (e.g., Hatfield et al., 2021), physical parameterization (e.g., Han et al., 2020), statistical downscaling (e.g., Sha et al., 2020), and post-processing (e.g., Han et al., 2021).
In the context of the post-processing—or bias correction—of the raw NWP outputs, Zhi et al. (2012) systematically compared the performance of a neural network (NN) approach and conventional methods, and they indicated that the NN-based model was more accurate than the other models for 24–120-h forecasts. Cho et al. (2020) assessed various machine learning (ML) models for the bias correction of extreme air temperatures and found that ML-based models have greatly improved R2 values and reduced bias. Han et al. (2021) further applied a U-shaped NN (U-Net) with encode and decode layers into post-processing for the 2-m temperature, 2-m relative humidity, 10-m wind speed, and 10-m wind direction and obtained remarkable improvements.
However, the DL and ML models described above have mainly focused on deterministic forecasting, and there have been few studies on post-processing for probabilistic forecasting. Taillardat et al. (2016) found that a non-parametric quantile regression forest model showed competitive performance with the EMOS approach for temperature and wind speed, while it performed poorly in probabilistic precipitation forecasting. Rasp and Lerch (2018), in a study in Germany, were the first to use NNs in post-processing of 2-m temperature probabilistic forecasting, and they demonstrated that the NN model outperformed the other models in 73.5% of the study stations. Cheng et al. (2018) applied an ensemble recurrent NN method in the bias correction of probabilistic wind-speed forecasts, further contributing to the work of relevant energy industries. Peng et al. (2020) compared two ML models, NGBoost and NN, with the conventional EMOS method for extended-range 2-m temperature probabilistic forecasting. Their results increased the potential to improve the forecast skills beyond 2 lead weeks. The applications of NN-based models in probabilistic post-processing were recently extended to precipitation by two studies (Ghazvinian et al., 2021; Li et al., 2022). In both of these studies, the CSG distribution, which is used in the CSG EMOS method, were applied to formulate the PDF and cumulative distribution function (CDF) of the precipitation. Their results demonstrated that this is a promising way to further improve probabilistic precipitation forecasting with post-processing using NN-based models. However, the study regions of the two works were limited to their selected river basins, and they thus fail to provide a comprehensive analysis over a very large area with various types of terrain and climate. Inspired by these impressive studies, herein, we propose a DL-based framework for the post-processing of probabilistic precipitation-forecasting data across China with lead times of 1–7 days.
One of the main concerns when applying DL models to statistical post-processing is the requirement for a large volume of high-quality training data. It should be noted that when extracting training samples that span a long period, version updates of the EPS models should be avoided; this is because once the numerical models are updated, the statistical correction between the model outputs and the observations will change (Hamill et al., 2013). Here, we collected the re-forecast data generated by a frozen EPS model, namely, Global Ensemble Forecast System version 12 (GEFS-v12) (Guan et al., 2022). The re-forecast data were produced once for each day spanning from 2000 to 2019, consisting of one control run and four perturbed members. This means that there were 7,305 training samples in total at each grid point. In our study, we were seeking to provide well-calibrated probabilistic precipitation forecasting over China, and we hence selected 153 national ordinary stations as the targets. In general, the data from the calendar year 2018 were used for validation, the data from 2019 were used for testing, and the data from the other 18 years were used for training.
An important issue in this task regards the objective function, or loss function, used in the DL models. Considering that precipitation is a non-Gaussian weather variable (Ravuri et al., 2021), a specific mathematically principled loss function is required to generate a sharp PDF of precipitation with calibration. Inspired by the success of the CSG EMOS approach (Scheuerer et al., 2017) and the hybrid CSG EMOS- and NN-based models (Ghazvinian et al., 2021; Li et al., 2022), we integrated the simplified expression of the CRPS for precipitation as the loss function in our DL models. In this framework, the DL models are trained to generate predictions for the three parameters in CSG EMOS (shape, scale, and shift). The CRPS loss is then calculated by the predicted parameters and the corresponding precipitation observations.
Accordingly, the main contributions of our study are:
• A potential operating system based on deep NNs is proposed for the post-processing of ensemble precipitation forecasts over China.
• An exhaustive evaluation is carried out to assess the model performance on regions with various types of terrain and climate across China. The results demonstrate that the DL-based model significantly outperforms the competitors at most of the study stations, especially for heavy or extreme precipitation events.
• A sensitivity analysis is performed on the size of training data for optimizing the DL-based model.
The remainder of this manuscript is structured as follows. Section 2 describes the data, methods, and evaluation metrics used in the study. The main results are then presented in Section 3, which is followed by a brief summary and discussion in Section 4.
2 DATA AND METHODS
2.1 Re-forecasts and observations
As noted above, re-forecast data produced by a frozen EPS, GEFS-v12, were used as the raw ensemble forecast data in this work. GEFS-v12 used the current operational Global Forecast System version 15.1 (GFS-v15.1) (Tallapragada, 2019) at the National Centers for Environmental Prediction (NCEP). Both the GFS-v15.1 and GEFS-v12 systems were run with the Finite-Volume 3 Cubed-Sphere dynamical core (Harris and Lin, 2013). The resolution of the GEFS-v12 system was around 25 km with 64 vertical hybrid levels. The re-forecasts were initialized at 00:00 UTC once per day up to 16 days, spanning from 2000 to 2019. Each run consisted of five ensemble members, and the perturbations were produced with ensemble Kalman filter 6-h forecasts (Bloom et al., 1996). In this study, 6-h precipitation re-forecasts of 1–7 lead days were extracted over China and further calculated as 24-h accumulated precipitation data. The re-forecast data used in this paper were obtained from the NCEP’s FTP server.
The precipitation observations were retrieved from the Daily Meteorological Dataset of Basic Meteorological Elements of China National Surface Weather Station (v3.0). This dataset collects daily measurements of multiple variables from 1951 to the present. Based on to the integrity and quality of the historical data, 156 national ordinary stations were further selected as the study stations (see Figure 1). The observation data were downloaded from the China Meteorological Data Service Centre.
[image: Figure 1]FIGURE 1 | Spatial distribution of weather stations in this study. The mean annual precipitation from 2000 to 2019 of each station is given by color.
Grid re-forecasts were extracted based on the locations of the study stations. The re-forecasts of the nearest grid point to a given station were used as the raw ensembles for the EMOS and NN methods. Considering that image-like data are required as the inputs of the convolutional-neural-network (CNN) model, 21 × 21 windows of re-forecasts centered on each of the given stations were extracted. By matching the time periods of the re-forecasts and observations, a total of 7,305 training samples were obtained for the period 2000–2019. As noted above, in the general experiments, we made use of the data from 2018, 2019, and the other 18 years for validation, testing, and training, respectively. To test the influence of the size of the training dataset on the model performance, a sensitivity experiment using two-year data from 2016 to 2017, five-year data from 2013 to 2017, and ten-year data from 2008 to 2017 for training was further performed.
2.2 CSG EMOS
As discussed in Section 1, the CSG EMOS method proposed by Scheuerer and Möller (2015) outperforms the gamma BMA and GEV EMOS for probabilistic precipitation forecasting. Here, we therefore implement the CSG EMOS approach as the baseline. The CSG EMOS model is a variant of the EMOS method based on a CSG distribution specially designed for precipitation. If the shape k > 0 and the scale θ > 0, then the PDF and CDF of a general gamma distribution Γ(k, θ) can be respectively formed as:
[image: image]
and
[image: image]
The shape and scale parameters k and θ can also be replaced by the more commonly used mean μ and standard deviation σ:
[image: image]
Here, we introduce a shifted parameter δ > 0, which transforms the standard gamma distribution to a shifted gamma distribution that is left-censored at zero and whose CDF can be written as:
[image: image]
Considering that the gamma distribution PDF is not analytically integrable, the PDF of a shifted gamma distribution can be formed as:
[image: image]
Note that although the formula is a piecewise function, the PDF of a shifted gamma distribution is continuous for non-negative values of x.
In the CSG EMOS framework, the k and θ parameters of the predictive PDF are usually represented by μ and σ2 using Eq. 3. We suppose an EPS containing m individual ensemble forecasts with notation f1, f2, … , fm for a given station and forecast time. Then, μ and σ2 can be computed by:
[image: image]
where a, (b1, b2, … , bm), c, and d are non-negative regression coefficients. According to Eqs 3, 5, and 6, the predictive PDF of CSG EMOS can be obtained from the raw forecasts of the EPS’s ensemble members and the regression coefficients, which can be estimated from the training data by optimizing an appropriate scoring rule. The IGN and the CRPS are the two most popular scoring rules in the atmospheric sciences for probabilistic forecasting; however, the CRPS has been proven to be more robust (Gneiting et al., 2005; Scheuerer and Möller, 2015), so we use this as the scoring rule here. The CRPS can be written as:
[image: image]
where y is the observation of the targeted variable, F(⋅) is the CDF of the targeted variable with estimated parameters, and H(⋅) is the Heaviside step function, which is 0 if x ≤ y and 1 otherwise. This is expressed in a simplified form following Scheuerer and Möller (2015) in the CSG EMOS:
[image: image]
where CDFk,δ and CDFk,θ,δ are the CDFs of a gamma distribution and a shifted gamma distribution, shown in Eqs 2 and 4, respectively, and B(⋅) is the Beta function. By minimizing the mean CRPS over a rolling training period using maximum-likelihood estimation, the predictive regression coefficients are applied to the ensemble-member forecasts in an independent validation period. The CSG EMOS approach was implemented with the help of the ensembleMOS package in R (Jordan et al., 2017).
2.3 DL-based models
Deep NNs show advantages for tackling complex nonlinear tasks with large volumes of data (Hinton and Salakhutdinov, 2006). With the help of layer-wise pre-training, DL-based models mitigate the issue of gradient diffusion and are able to learn features from high-dimensional data. CNN models are typical DL models, and they are the most commonly used models for extracting spatial information. Generally, CNN models comprise an input layer, convolutional layers, pooling layers, fully connected layers, and an output layer. In the convolutional layers, a convolution operation (*) is applied to the grid-like topology input in a given sliding step. This can be read as: s = x*w, where x denotes the input, w is the convolutional kernel or filter, and s refers to the feature map. A pooling function in the pooling layer modifies the feature maps from the previous convolutional layers using a summary statistic, which is usually the maximum and average, to the nearby outputs. The use of convolutional layers and pooling layers is viewed as an efficient approach for the filtering and sharpening of the raw input data.
In our study, both a shallow NN and a deep CNN model were used for the post-processing of probabilistic precipitation forecasting. The two models were implemented as end-to-end architectures, and their workflows are presented in Figure 2. In these models, for a given station, the raw ensembles of re-forecasts (five ensemble members) are used as the inputs. The NN model consists of two hidden layers, which respectively have 16 and 32 neural nodes, with a dropout rate of 0.1. The glorot_uniform scheme (Glorot and Bengio, 2010) is used to initialize the kernels and biases of the neural nodes, and an L2 regularizer is further added to the kernels. The rectified linear unit (ReLU) (Agarap, 2018) is applied as the activation function between the hidden layers, and a linear activation function is used between the last hidden layer and the output layer.
[image: Figure 2]FIGURE 2 | Illustration of the workflows using DL-based architectures.
As noted above, a 21 × 21 window of re-forecasts was extracted for a given station as the inputs of the CNN model. The CNN architecture used in our work consists of k convolutional blocks followed by two fully connected layers (see Figure 2). In each convolutional block, there is a 2D convolutional layer with C features followed by a batch-normalization layer (Santurkar et al., 2018), a max-pooling layer, and a dropout layer (Srivastava et al., 2014) with a dropout rate of 0.1. The number of features C is doubled after each convolutional block. The convolutional blocks are repeated twice with k equal to 2, and C0 was set to 16 in our experiments. Within the 2D convolutional layer, a filter size of 3 × 3 is fixed with a slide of 1, and ReLU is used as the activation function.
Both the shallow NN and deep CNN models were used to predict the three precipitation parameters—shape, scale, and shift—following the CSG EMOS approach and the work of Ghazvinian et al. (2021) and Li et al. (2022). These three parameters, as well as the precipitation observations, were further used to calculate the CRPS loss (see Eq. 4) of the DL models. The Adam algorithm (Kingma and Ba, 2014) was used as the optimizer with an initial learning rate of 1 × 10–4, and the total number of training epochs was fixed as 300. A learning-rate-decay scheduler was integrated to linearly decrease the learning rate from to 1 × 10–4 to 1 × 10–5, which starts at the 250th epoch and ends at the 300th epoch. Both the NN and CNN models were implemented with TensorFlow (Abadi et al., 2015) and Keras (Chollet et al., 2015).
2.4 Verification methods
To quantitatively evaluate the performance of the post-processed forecasts, the mean CRPS was computed for each station over the testing period. As shown in Eq. 7, the CRPS measures the sum of the squared differences of the cumulative probability space for the probabilistic forecasts in a continuous way. It demonstrates how well the forecasts predict the possibility against the observations. Similar to the root-mean-square error in deterministic forecasting, the CRPS is negative orientated and the perfect value is 0. Additionally, the Brier score (BS) (Williams et al., 2014) was computed to assess the model performance for precipitation events exceeding a given threshold. The BS can be written as:
[image: image]
where y is the observation of the targeted variable, x is the specific threshold, F(⋅) is the CDF of the targeted variable with estimated parameters, and H(⋅) is the Heaviside step function, which is 0 if x ≤ y and 1 otherwise. Looking at Eq. 7, it can be seen that the CRPS is the integral of the BSs at all the possible thresholds. Here, we calculate the BSs with four different thresholds (0, 10, 25, and 50 mm), which respectively represent light precipitation, moderate precipitation, heavy precipitation, and rainstorms for 24-h accumulated precipitation. Calculation of the skill scores of the CRPS and BS is proposed to assess the improvements in the post-processed forecasts compared to the reference forecasts (i.e., the raw re-forecasts). These are defined as:
[image: image]
and
[image: image]
Both of these skill scores are positively oriented. Reliability diagrams were plotted to evaluate the consistency of the raw ensembles and the post-processed forecasts with observations exceeding a given threshold. The diagrams show the binned forecast probability and observed relative frequency of precipitation events exceeding a specific threshold: the more concentrated the data points on the main diagonal, the better the obtained performance. As with BS, 0, 10, 25, and 50 mm were used as the thresholds in the reliability diagrams, and the whole units were divided into 11 bins with values of 0.0, 0.1, 0.2, … , 1.0.
3 RESULTS
In this section, the overall model performance in terms of the averaged CRPS and BS over the entire 2019 testing period is presented. Reliability diagrams are plotted to show how well the models simulate the probability of predicted precipitation against the observations. The station-by-station model performance is assessed, followed by giving the spatial distribution of the skill scores. The best-performing models in terms of the CRPS and BS at each study station are further exhibited. Finally, two cases using post-processing methods are illustrated to intuitively visualize the model performance.
3.1 Analysis of overall model performance
Figure 3A shows boxplots of the station-wise CRPS with lead times of 1–7 days using the proposed post-processing models. The CRPS values are averaged over the entire 2019 testing period at each study station. All of the post-processing methods remarkably reduce the CRPS with all the lead times, and the CNN model significantly outperforms the other two approaches (EMOS and NN). The interquartile ranges in the boxplots indicate the forecast uncertainty of each model. The plots show that the performance of raw ensembles varies significantly among the study stations. The EMOS and NN models perform competitively in narrowing this disparity, while the CNN approach is even better. With an increasing number of lead days, the improvements of the CNN model compared to the EMOS and NN approaches decrease, but the CNN model is still superior to the others.
[image: Figure 3]FIGURE 3 | (A) Boxplots of the mean continuous ranked probability scores (CRPS) of the raw ensemble re-forecasts (ENS) and calibrations using different post-processing methods (EMOS: ensemble model output statistics; NN: shallow NN; and CNN: convolutional NN) for 24-h accumulated precipitation over the entire 2019 testing period with lead times of 1–7 days; (B) as with panel (A), but the CNN models were trained with two-year data (CNN_2y), five-year data (CNN_5y), ten-year data (CNN_10y), and 18-years data (CNN_18y); the red dotted lines are the averaged CRPS values of EMOS for all the study stations over the entire 2019 testing period with lead times of 1–7 days.
To test the impact of the size of the training dataset on the DL-based models, we made use of two-year data from 2016 to 2017, five-year data from 2013 to 2017, ten-year data from 2008 to 2017, and 18-year data from 2000 to 2017 to train the CNN model, and the resulting comparison is given in Figure 3B. This shows that increasing the number of training samples can further improve the performance of the model. However, the improvements are not as significant as we expected, especially when moving from using ten-year data to 18-year data. This indicates that the CNN model is able to capture the statistical dependence between the raw ensembles and the observations in our study using ten-year training samples. Similar results can be seen in the recent work of Gong et al. (2022).
Figure 4 presents the model performance in terms of the BSs of four different thresholds with lead times of 1–7 days. This shows that all the proposed post-processing methods can significantly reduce the BS of the 0-mm threshold with all the lead times, and the CNN model is superior to the others. This indicates that the post-processing methods can distinguish rain or no-rain events well. With an increasing threshold, the improvements brought about by the post-processing methods decrease, but the CNN model is still dominant among them. This demonstrates that the CNN model is practical for calibrating the PDF, even for heavy or extreme precipitation events.
[image: Figure 4]FIGURE 4 | As Figure 3, but for the mean Brier scores of different thresholds: (A) 0 mm; (B) 10 mm; (C) 25 mm; and (D) 50 mm.
A comparison between the binned forecasts generated by the raw ensembles and the post-processing methods and the observed relative frequency is given in the reliability diagrams (Figure 5). As with BS, four thresholds were used to evaluate the model performance for different intensities of precipitation with a lead time of 1 day. The raw ensemble (ENS) line, which lies in the bottom-right corner (Figure 5A), indicates that the raw ensembles tend to generate more rainy forecasts than the observations, which results in wet deviations. The more concentrated points generated by the post-processing methods on the main diagonal demonstrate that the proposed models can accurately calibrate probabilistic forecasts and mitigate the wet-deviation issue. However, with an increasing threshold, the EMOS and NN models start to perform unsteadily and fail to maintain high consistency between the binned forecasts and the observed relative frequency. Surprisingly, the CNN model can still provide reliable forecasts for heavy or extreme precipitation events. The concentrated points close to the 1:1 reference line (Figures 5C and D) indicate that the CNN model is able to generate forecasts that share similar probabilities as the observations for precipitation events exceeding 25 and 50 mm.
[image: Figure 5]FIGURE 5 | Reliability diagrams of the binned raw ensemble re-forecasts (ENS) and the binned calibrations using different post-processing methods (EMOS: ensemble model output statistics; NN: shallow NN; and CNN: convolutional NN) against the observed relative frequencies of 24-h accumulated precipitation over the entire 2019 testing period with a lead time of 1 day with different thresholds: (A) 0 mm; (B) 10 mm; (C) 25 mm; and (D) 50 mm.
3.2 Station-by-station model performance analysis
To assess the model performance at each study station, the spatial distributions of the skill scores (CRPSS and BSS) are presented in Figures 6 and 7, in which the warm tones indicate positive improvements. This shows that all the proposed post-processing methods can greatly improve the model performance in most of the study stations (see Figure 6). With a lead time of 1 day, EMOS obtains remarkable improvements over Central China and slight improvements in the Beijing–Tianjin–Hebei region, Yangtze River Delta, and Pearl River Delta. Similar results are achieved by using DL-based models, but CNN performs much better in the Yangtze River Delta and the Beijing–Tianjin–Hebei region. It is noted that NN performs invalidly at some stations in Southeast China, since the shallow NN model failed to learn the features of the raw ensembles over the training period, generating “inf” forecasts. With increasing lead times, the improvements of EMOS decrease, and negative performance is even exhibited at some study stations in the Beijing–Tianjin–Hebei region. However, although similar performance degradation is shown, almost all study stations still obtain significantly positive improvements using the CNN model.
[image: Figure 6]FIGURE 6 | Spatial distributions of the continuous ranked probability skill scores (CRPSS) of calibrations using different post-processing methods (EMOS: ensemble model output statistics; NN: shallow NN; and CNN: convolutional NN) with the raw ensembles as the reference forecasts.
[image: Figure 7]FIGURE 7 | Spatial distributions of the Brier scores (BS) of calibrations using different post-processing methods (EMOS: ensemble model output statistics; NN: shallow NN; and CNN: convolutional NN) with the raw ensembles as the reference forecasts. The BSS was computed with a lead time of 1 day for different thresholds: 0, 10, 25, and 50 mm.
Figure 7 presents the spatial distribution of BSs using the proposed post-processing methods for different precipitation thresholds with a lead time of 1 day. This shows that all the post-processing methods can significantly improve the probabilistic forecasts for rain or no-rain events at all the study stations. With increasing thresholds, the EMOS performance degrades, and negative improvements are observed at some stations in North China and the Yangtze River Delta. Similar spatial patterns of the BSs are obtained using CNN, while the improvements at the study stations are significantly higher than those obtained using EMOS.
Maps showing the best-performing models in terms of the CRPS and BS are presented in Figures 8 and 9, respectively. The best-performing model is verified by the best mean scores over the entire 2019 testing period for each study station. As shown in Figure 8, the performance of CNN is dominant for the majority of the stations (74.5%) with a lead time of 1 day, especially for the Yangtze River Delta and Pearl River Delta. With increasing lead time, the performance of NN gradually improves, and in general, the DL-based models perform best at over 75% of study stations with all lead times.
[image: Figure 8]FIGURE 8 | Spatial distributions of study stations color coded by the best-performing model (ENS: raw ensembles; EMOS: ensemble model output statistics; NN: the shallow NN; and CNN: convolutional NN) in terms of the continuous ranked probability score (CRPS) with lead times of: (A) 1 day; (B) 4 days; and (C) 7 days. The percentages of the different models performing as the best model are listed in the bottom left.
[image: Figure 9]FIGURE 9 | Spatial distributions of study stations color coded by the best-performing model (ENS: raw ensembles; EMOS: ensemble model output statistics; NN: the shallow NN; and CNN: convolutional NN) in terms of the Brier skill (BS) for different thresholds with lead times of 1, 4, and 7 days. The percentages of the different models performing as the best model are listed in the bottom left.
Figure 9 presents more details regarding which model performs best for different intensities of precipitation at each study station. This shows that CNN is superior to the other models for all intensities of precipitation with a lead time of 1 day, which is consistent with its performance in terms of the CRPS. However, when the lead time increases, the NN model significantly outperforms the others for the post-processing of light precipitation events. Its remarkable calibration for light precipitation means that the NN model performs best at 46.4% of the study stations in terms of the CRPS with a lead time of 7 days (Figure 8C). However, with increasing precipitation thresholds, CNN again becomes significantly superior to the other models, especially for heavy or extreme precipitation events. This demonstrates that CNN is the best model for the post-processing of probabilistic precipitation forecasting with lead times of 1–7 days and, importantly, it is still practical for heavy precipitation events, where the conventional method EMOS and the shallow NN model fail.
3.3 Case Study
Figure 10 visualizes two cases of the calibrated PDF using the proposed post-processing methods with a lead time of 1 day. The two cases were selected randomly among events in which the observed 24-h accumulated precipitation exceeded 10 mm. This shows that CNN can accurately calibrate probabilistic forecasts with a narrow PDF width and a PDF mode closer to the observation. As shown in Figure 10A, the raw re-forecasts provide an accurate prediction whose ensemble mean is close to the observation. In this case, NN generates the “sharpest” PDF, while the mode of CNN prediction is closer to the observation. The second case is more of a challenge since the raw ensemble mean is far away from the observation; this means that the raw re-forecasts fail to provide accurate information. The EMOS model suffers from this issue and generates a PDF whose mode is close to the ensemble mean rather than to the observation. However, both the NN and CNN models are able to mitigate the problem and provide well-calibrated PDFs with narrow widths. In general, the CNN model is more practical in all situations, while NN is somewhat prone to generating smaller precipitation values in the probabilistic forecasting.
[image: Figure 10]FIGURE 10 | Illustration of the predicted PDFs of 24-h accumulated precipitation for (A) national ordinary station No. 53913 on 19 August 2019 and (B) national ordinary station No. 57127 on 09 September 2019 using the proposed post-processing methods (EMOS: ensemble model output statistics; NN: shallow NN; and CNN: convolutional NN) with a lead time of 1 day. The vertical dashed lines indicate the raw ensemble means, and the red squares indicate the observations.
4 CONCLUSION AND DISCUSSION
In this work, DL-based models are proposed for probabilistic precipitation post-processing. A shallow NN and a deep CNN, as well as the conventional method EMOS, were applied to 153 selected national ordinary stations across China with lead times of 1–7 days. Our results demonstrate that the DL models, especially the deep CNN, significantly outperform the raw ensembles and the EMOS method. The main advantages of applying DL-based models are their ability to capture the features from raw ensembles and to learn the nonlinear dependence between the ensembles and the observations. Compared with conventional parametric models, DL models are more flexible and do not require pre-definition of specific link functions. It is also easy to embed additional predictors, such as corresponding weather variables and ensembles from multiple EPSs.
As discussed in Section 1, the use of long-term historical data and appropriate loss functions are the two crucial points when using DL-based models in probabilistic precipitation post-processing. In this study, re-forecasts generated by a frozen EPS (GEFS-v12) spanning from 2000 to 2019 were collected as the raw ensembles. The use of re-forecast data helps to mitigate the shortage of training samples. A sensitivity test on the size of training data was performed to present its influence on the DL-based model performance. By increasing the number of training samples from two years of data to 18 years, a remarkable improvement can be seen in terms of the CRPS. It should be noted that the DL-based model is not as competitive as the conventional EMOS model with a small training data set of two years. This indicates that the quantity and quality of training samples are critical to obtain a well-trained DL-based model, which outweighs the model architecture to some extent. To obtain a narrow calibrated PDF for precipitation, in this work, the CRPS was computed as the loss function. However, the original expression of the CRPS is an integral form (Eq. 7), which cannot be directly incorporated into NN models. This is mainly because NN-based models optimize the loss by updating the parameters with gradients. Here, a simplified expression of the CRPS for probabilistic precipitation forecasting is given (Eq. 8) following the CSG EMOS method (Scheuerer and Möller, 2015). A similar strategy was applied by Rasp and Lerch (2018), but they only considered temperature forecasts.
Our results indicate that DL-based models are a promising approach to probabilistic precipitation post-processing. The deep CNN model can greatly reduce the CRPS and BS, especially for heavy or extreme precipitation events, with lead times of 1–7 days; furthermore, it serves as the best-performing model at 74.5% of the study stations for the first lead day. Once the DL models are trained, it is more efficient in producing well-calibrated probabilistic precipitation forecasts, and this significantly saves computing time and resources (see also Rasp and Lerch, 2018).
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In the present study, the response of North Pacific storm tracks to spatial multiscale (large-scale and mesoscale) sea surface temperature anomalies (SSTAs) in stable state of Kuroshio Extension (KE-related SSTAs) system are investigated. The results show that storm tracks are significantly strengthened with local enhanced rainfall in the central North Pacific and near the west coast of the North American continent in response to KE-related large-scale SSTAs, while they shift to the north and are significantly strengthened in the central-eastern North Pacific and Gulf of Alaska with remote impact on precipitation along west coast of North America continent in response to KE-related mesoscale SSTAs. The anomalous storm tracks influenced by KE-related SSTAs at different spatial scales are closely related to the locations of low-level baroclinicity. The response of horizontal advection of temperature to different scales of KE-related SSTAs in the lower atmosphere plays an important role in resulting baroclinicity anomalies.
Keywords: Kuroshio Extension, multiscale SSTAs, baroclinicity, storm tracks, atmospheric circulation
INTRODUCTION
The Kuroshio Extension (KE) system is characterized by pronounced variations between stable and unstable states (Qiu et al., 2014). In the stable state, the KE jet is strengthened and shifts northward, with weakened regional mesoscale eddy activity and an intensified southern recirculation gyre. The opposite occurs in the unstable state. Variations of KE accompanying multiscale sea surface temperature anomalies (SSTAs) can often affect the storm tracks, and especially KE-related mesoscale SSTAs are still understudied but remain very important for storm track variability.
Previous work indicates that decadal fluctuations of the KE large-scale dynamic state are the primary cause of local SST changes (Qiu 2000; Vivier et al., 2002), which strongly affects the air‒sea heat flux exchange over the KE region (Tanimoto et al., 2003; Wang and Liu, 2015). This heat flux plays an important role in maintaining surface baroclinicity, which both anchors and energizes storm tracks (Nakamura et al., 2004). Therefore, changes in the KE dynamic state may exert a significant impact on the North Pacific storm tracks. Révelard et al. (2016, 2018) found that in the stable state of KE system, the storm track activity in the northeast Pacific Ocean and Alaska is significantly strengthened. Qiu et al. (2014) indicated that changes in the KE state can result in large-scale uniform warming or cooling over the western and central North Pacific (see their Figure 6A) and can alter the position of storm tracks. However, the KE is also a region with abundant mesoscale features, including the oceanic front (Chen and Zurita-Gotor, 2008; Kida et al., 2015) and eddies (Qiu and Chen, 2005; Qiu and Chen 2010). Therefore, changes in the dynamic state of KE also expected to be manifest in mesoscale SSTAs. Wang and Liu (2015) determined that KE-related mesoscale SSTAs are aligned zonally and collocate with the troughs and ridges of KE meanders. Mesoscale KE SSTAs can also induce pronounced changes in storm tracks, and the change in the storm track anomaly is influenced by both mesoscale ocean front and mesoscale ocean eddy. The oceanic baroclinic adjustment proposed by Nakamura et al. (2008) suggests that the near-surface baroclinicity is sustained by a cross-frontal sensible heat flux, contributing to the intensity of a storm track. Taguchi et al. (2009) found that the weakening of KE fronts would weaken the low-level storm track and shift it to the south. The meridional shift of the KE oceanic front significantly modulates the intensity of the storm tracks (Kwon and Joyce. 2013). Using an idealized model, Foussard et al.(2018) indicated the meridional shift of the storm track following the oceanic fronts. As mentioned above, in addition to a mesoscale ocean front, a mesoscale ocean eddy can also affect the storm track anomaly (Ma et al., 2015). Ma et al. (2017) showed that the mesoscale SSTA variability in the KE could enhance storm tracks over north-eastern Pacific, and the intensity of storm track would decrease 15% after removing the mesoscale KE SSTA. Zhang et al. (2020) conducted similar experiments to those of Ma et al. (2015) using an AGCM and found the low level storm track decreased by about 20%.
In other numerical experiments, randomly adding some mesoscale SSTA disturbances can make the westerly jet shift northward with a northward-strengthened storm track (Foussard et al., 2018; Sun et al., 2018); these mesoscale SSTAs usually affect the storm track by enhancing baroclinicity and latent heat in the lower atmosphere. Due to the nonlinear nature of the Clapeyron-Clausius function, the positive and negative diabatic heating associated with warm eddies and cold eddies cannot cancel each other, which leads to positive net water vapor flux and diabatic heating after adding cold eddies and warm eddies randomly. The ensemble numerical experiment in Zhang et al. (2021) mainly investigated the feedback effects of mesoscale SSTAs and large-scale warming SSTAs on large-scale low-frequency atmospheric circulation. It was found that mesoscale SSTAs could strengthen the westerly jet with a shift to northward, and at the same time, mesoscale SSTAs could stimulate a remarkable counterclockwise circulation, similar to a Ferrell cell. Diagnostics show that the feedback of synoptic transient eddy stimulated by mesoscale SSTAs are the largest reason for low-frequency atmospheric circulation anomaly, but the accompanying diabatic heating was weak. However, under the influence of large-scale warming SSTAs, diabatic heating is stronger and can stimulate a significant clockwise secondary circulation in the altitude-latitude section. Diagnostic analysis shows that diabatic heating is the main factor affecting large-scale low-frequency circulation in the central North Pacific.
From the above, KE-related SSTAs present obvious multispatial scale characteristics, and all of them have significant impacts on storm track anomalies. Because storm tracks are important factors that modulate the atmospheric response to mid-latitude SSTAs (Peng and Whitaker 1999; Kushnir et al., 2002; Taguchi et al., 2012; Okajima et al., 2018; Zhang et al., 2021), clarifying the impacts of KE-related multiscale SSTAs, especially KE-related mesoscale SSTAs, on storm tracks is critical to deepening our understanding of the climatological effects of the KE system. Therefore, our objective is to highlight the differential responses of North Pacific storm tracks to the large-scale and mesoscale SSTAs in the KE. We use ensemble numerical experiments to diagnose the fundamental mechanisms involving this air-sea interaction (Zhang et al., 2021). The remainder of this article is organized as follows: The datasets and methods used in this study are briefly introduced in the next section. The following section evaluates the performance of model on storm tracks. After this, the next section investigates the response of storm tracks to large-scale and mesoscale SSTAs induced by KE dynamic state. The possible reasons for the formation of the anomalous storm tracks under the influence of SSTA at different scales are discussed in the penultimate section. A summary and discussion of our findings are given in the final section.
DATA AND METHODS
The SST data, i.e., data on the initial values and boundaries used in model experiments, are the same as in work (Zhang et al., 2021). The scheme of numerical ensemble experiments is also consistent with work (Zhang et al., 2021). A total of three sets of ensemble numerical experiments with different initial values are designed, and each group has 16 members with different initial values. The integration scheme and the initial and boundary conditions are the same for each group of experiments, but the difference between the three groups of experiments is the different forcing of SSTA. The first group of experiments is called the control test (CTRL), forced by the climatological monthly mean SST [20-year average (1993–2012)] in the North Pacific.
The second set of ensemble experiments uses a KE-related SSTA superimposed on climatological monthly mean SST to force the model, which is called KSTS. This KE-related SSTA is obtained from the monthly mean SSTA regression onto the KE index (KEI) (Qiu and Chen, 2005) in the area (140°E–160°W, 32°N–40°N). The third experiment is mesoscale filtered simulations (MEFS). The 2-D spatial Loess filter was used to separate mesoscale SST from KE-related SSTAs, and the remaining large-scale SSTAs were superimposed on the climatological monthly mean SST as the boundary SST condition in MEFS. The initial conditions for 16 members are those of September 1 of the different years 1981, 1982, 1985, 1986, 1989, 1990, 1997, 1998, 2000, 2001, 2002, 2003, 2004, 2005, 2006, and 2007. The lateral boundary conditions were climatological (1981–2010) 6 h NCEP2 reanalysis data. The three sets of ensemble experiments were integrated from September 1 to February 2 of the following year, and the first month was the spin-up time. The results of differences between the two groups represent different meanings. KSTS-MEFS represents the response of storm track to mesoscale SSTA. MEFS-CTRL represents the response of storm track to large-scale SSTA. The detailed design of the numerical experiments scheme and the significance test method are drawn from those of Zhang et al. (2021). The storm tracks are represented by the variance or covariance of synoptic disturbances (Chang et al., 2002). Specifically, we chose the variance of synoptic-scale meridional wind velocity ([image: image]) at 250 hPa and the synoptic-scale transient eddy meridional heat flux [image: image] at 850 hPa. The prime stands for the 2–8-day Lancozs bandpass filter. In addition, the cold season refers to the average from October to January in the following year.
EVALUATION OF MODEL PERFORMANCE IN REPRODUCING ATMOSPHERIC RESPONSES TO THE KE DYNAMIC STATE CHANGES
The storm tracks of [image: image] are significantly strengthened in the central-eastern Pacific Ocean (Figure 1), consistent with the results of previous work (Peng and Whitaker 1999; Liu and Wu 2004; Révelard et al., 2016, Révelard et al., 2018). RegCM4.6 well simulates the response of storm tracks to KE-related SSTAs. We also assessed the ability of the model to simulate atmospheric response to mesoscale SSTAs. Observational studies show that the surface wind speed usually increase over warm eddies and decreases over cold eddies (Chelton et al., 2004, 2007; Bryan et al., 2010), and the boundary layer is also higher over warm eddies and lower over cold eddies (Ma et al., 2015). The response of the boundary layer to the KE-related mesoscale SSTAs is shown in Figure 2. We followed the Holtslag planetary boundary-layer scheme to calculate the height of the boundary layer (Holtslag et al., 1990). The 10 m winds strengthen (weaken) and the boundary-layer height increases (decreases) over the warm (cold) mesoscale SSTAs. This indicates that RegCM4.6 can reproduce the atmospheric boundary-layer response to the KE-related mesoscale SSTA field.
[image: Figure 1]FIGURE 1 | 250 hPa storm track response to KE-related SSTAs (m2 s−2, shading). The isoline is the climatological storm track simulated by the model (CTRL). Statistically significant differences at 90% according to Student’s t test are stippled.
[image: Figure 2]FIGURE 2 | Boundary-layer response to KE-related SSTAs in the cold season (KSTS-MEFS). (A) KE-related mesoscale SSTAs (°C, shading) and 10 m wind speed (m s−1, contours); (B) KE-related mesoscale SSTAs (°C, shading) and boundary-layer thickness anomalies (m, contours).
RESPONSE OF THE STORM TRACKS TO KE-RELATED LARGE-SCALE AND MESOSCALE SSTAS
The intensity and location of the storm tracks under the influence of KE-related SSTAs at different scales are shown in Figures 3A,B. KE-related mesoscale SSTAs significantly strengthen the storm tracks over the central-eastern Pacific and Gulf of Alaska, while KE-related large-scale SSTAs significantly enhance storm track activity over the eastern North Pacific and near the west coast of the North American continent. Compared with the storm tracks influenced by the large-scale SSTAs, the storm tracks influenced by the mesoscale SSTAs are located slightly northward, as shown in Figure 3C.
[image: Figure 3]FIGURE 3 | Response of storm tracks (m2 s−2, shading) at 250 hPa to different scales of KE-related SSTAs in KE in the cold season: (A) KE-related mesoscale SSTAs (KSTS-MEFS) and (B) KE-related large-scale SSTA background (MEFS-CTRL). (C) Differences in the response of storm tracks to KE-related mesoscale SSTAs and the response of storm tracks to KE-related large-scale SSTAs. The isoline is the climatological storm track simulated by the model (CTRL). Statistically significant differences at 90% according to Student’s t test are stippled.
The 850 hPa synoptic meridional heat flux v’t' was calculated as shown in Figure 4. Under the influence of large-scale SSTAs, there is strong enhancement near 45°N over the central Pacific, while under the influence of mesoscale SSTAs, there is strong enhancement in the area north of 45°N, and its distribution is more northward than that influenced by large-scale SSTAs. The difference between them presents a dipole structure as shown in Figure 4C.
[image: Figure 4]FIGURE 4 | Numerical simulations of 850 hPa meridional transient eddy heat flux (K m s−1, shading) in the cold season. (A) Response of 850 hPa meridional eddy heat flux to KE-related mesoscale SSTAs (KSTS-MEFS). (B) The same as (A) but for KE-related large-scale SSTAs (MEFS-CTRL). (C) The differences in the response of transient eddy heat flux to KE-related mesoscale SSTAs and the response of transient eddy heat flux to KE-related large-scale SSTAs. The isoline is the climatological meridional transient eddy heat flux simulated by the model (CTRL). Statistically significant differences at 90% according to Student’s t test are stippled.
The activity of the storm tracks plays an important role in modulating precipitation at middle and high latitudes (Adler, et al., 2003; Hawkroft et al., 2015). Therefore, the anomalous storm tracks’ activity is usually accompanied by precipitation anomalies. As shown in Figure 5, under the influence of KE-related mesoscale SSTAs, there is a positive precipitation anomaly over the central-eastern Pacific Ocean, Gulf of Alaska, and west coast of North America north of 45°N where the storm tracks are active. This conclusion is similar to that of Liu et al. (2021), and their results indicate that the mesoscale SSTAs can exert a remote influence on a landfalling AR (Atmospheric River) on the sub-seasonal to seasonal time scales and related heavy precipitation along the west coast of North America. By contrast, under the influence of KE-related large-scale SSTAs (Figure 5B), there is a heavy precipitation anomaly over the KE large-scale warm SSTAs.
[image: Figure 5]FIGURE 5 | Winter mean precipitation (10–4 kg m−2 s−1, shading) for (A) KE-related mesoscale SSTAs (KSTS-MEFS) and (B) KE-related large-scale SSTAs (MEFS-CTRL). The isoline is the climatological precipitation simulated by the model (CTRL). Statistically significant differences at 90% according to Student’s t test are stippled.
In addition, we compare the precipitation under the influence of KE-related large-scale SSTAs and mesoscale SSTAs, and we find that most of the precipitation in KE area is caused by KE-related large-scale SSTAs, and KE-related mesoscale SSTAs do not cause too much precipitation in KE region. Although mesoscale SSTAs only increase the precipitable water in the atmosphere (Jia et al., 2019), they enhance the precipitation along the North American continental coast far away from KE region. This requires further study on the response of the storm track and precipitation to the scale-dependence of SSTAs.
POSSIBLE MECHANISM FOR RESPONSES OF STORM TRACKS
The baroclinic structure in the lower atmosphere has an important influence on the baroclinic growth of synoptic-scale eddies. The growth rate is usually indicated by the maximum Eady growth rate [image: image] (Lindzen and Farrel 1980):
[image: image]
where [image: image] is the Brunt-Väisälä frequency and [image: image] is the potential temperature. A KE-related mesoscale SSTA field leads to strengthened atmospheric baroclinicity over the north of the KE jet axis and the central-eastern North Pacific. We find that atmospheric baroclinicity at 850 hPa caused by KE-related mesoscale SSTAs is significantly enhanced in the western Pacific Ocean north of 40°N and in the central-eastern Pacific Ocean north of 50°N, as shown in Figure 6A. The baroclinicity at 850 hPa is significantly enhanced in the central-eastern Pacific between 40°N and 50°N under the influence of large-scale SSTAs, as shown in Figure 6D. We further decomposed the atmospheric baroclinicity response into the changes caused by atmospheric static stability [image: image] and the meridional gradient of potential temperature (Gan 2014), as shown in Eq. (2)
[image: image]
[image: Figure 6]FIGURE 6 | Baroclinic growth rate anomaly (10–6 s–1, shading) to different scales of KE-related SSTAs at 700 hPa: (A) Baroclinicity growth rate in response to KE-related mesoscale SSTAs (KSTS-MEFS). (B) Baroclinicity caused by meridional gradient of potential temperature in response to KE-related mesoscale SSTAs (KSTS-MEFS). (C) Baroclinicity caused by atmospheric static stability N in response to KE-related mesoscale SSTAs (KSTS-MEFS). (D–F) The same as (A–C) but for KE-related large-scale SSTAs (MEFS–CTRL). Statistically significant differences at 90% according to Student’s t test are stippled.
As shown in Figure 6, under the influence of KE-related mesoscale SSTAs, baroclinicity is mainly caused by changes in the meridional gradient of potential temperature (Figure 6B). Under the influence of KE-related large-scale SSTAs, the enhancement of baroclinicity is also mainly caused by the increased meridional gradient of potential temperature (Figure 6E). According to Tao et al. (2019) and Zhang et al. (2020), this change in potential temperature can be explained as the surface heat flux forcing induced by the KE-induced SSTAs. SSTAs can effectively maintain atmospheric baroclinicity through a significant meridional difference in heat flux in the lower atmosphere (Nakamura et al., 2004; Nakamura et al., 2008; Yao et al., 2016). Therefore, we studied the difference in heat flux in the lower atmosphere under the influence of different scales of SSTAs. As shown in Figure 7, the turbulent heat flux (latent heat flux and sensible heat flux, THF) in the lower atmosphere caused by mesoscale SSTAs is well matched with the SSTAs. The THF above the warm mesoscale eddy is stronger, while that above the cold mesoscale eddy is weak. Large-scale SSTAs can cause strong THF in the central Pacific Ocean, and there is a maximum value of the meridional gradient near 40°N, which is larger than that caused by mesoscale SSTAs. It should be noted that this large-scale SSTA warming is accompanied by the stable period of KE. SSTAs (especially at the basin scale) can be forced by atmospheric circulation anomalies, while many data analyses in recent decades have examined the impact of the SST changes in the KE region on the atmospheric circulation across the mid-latitude North Pacific basin (Qiu et al., 2007; Frankignpul et al., 2011; Taguchi et al., 2012; Smirnov et al., 2015; Qiu et al., 2017). A consistent feature resulting from these analyses is that when the KE dynamic state is stable, increased surface turbulent (i.e., sensible + latent) heat fluxes tend to be emitted from ocean to atmosphere. Additionally, we do not find that the baroclinicity region is accompanied by the enhancement of THF under the influence of mesoscale SSTAs, so we need to further explore the possible reasons for the enhancement of atmospheric baroclinicity under the influence of mesoscale SSTAs.
[image: Figure 7]FIGURE 7 | Response of surface turbulent heat flux (sensible heat flux and latent heat flux, unit: W m−2) and the average meridional gradient (unit: W m−2 (30 km)−1) in the interval (150°E∼160°W) to different scales of KE-related SSTAs. (A) is turbulent heat flux caused by mesoscale SST anomalies, and (B) is turbulent heat flux caused by large-scale SST anomalies. Statistically significant differences at 90% according to Student’s t test are stippled.
The atmospheric response to low-level thermal anomalies usually shows a zonal movement of baroclinicity, the jet stream, and storm tracks (Chen and Zurita-Gotor, 2008; Nie et al., 2016). This process includes two mechanisms: one is the direct thermal wind response, and the other is indirect transient eddy feedback (Deser et al., 2004; Liu and Wu, 2004). Generally, the convergence of a transient eddy momentum flux acts to strengthen the upper-tropospheric jet, while transient eddy heat flux acts to relax the lower tropospheric baroclinicity, corresponding to a strengthened low-level jet. Meanwhile, the feedback of a transient eddy can cause a latitudinal shift of the lower-level baroclinicity which is responsible for the latitudinal shift of the jet and storm track (Zhang et al., 2012; Nie et al., 2013). Under the influence of mesoscale SSTAs, the northward shift of intensified storm track and baroclinicity may be the feedback of transient eddy (Vallis, 2006), an obvious counterclockwise circulation anomaly, driven by a transient eddy (Zhang et al., 2021), similar to the eddy-driven Ferrel Cell, which can demonstrate this result.
We speculate that KE-related mesoscale SSTAs can contribute more to the enhancement of transient eddies, while large-scale warm SSTAs cause more diabatic heating in the central North Pacific, affecting atmospheric circulation, as has been proved by diagnosis in work (Zhang et al., 2021). When transient eddy feedback plays a major role, it can cause the polar movement of baroclinicity and the enhancement of storm tracks. When diabatic heating plays a major role, baroclinicity is maintained to a greater degree by the direct role of thermal wind. Different characteristics of secondary circulation in latitude–altitude sections may be accompanied by different low-level cold and warm temperature advections, which may be the main factor in maintaining baroclinicity (Sun et al., 2018). We calculated horizontal temperature advections under the influence of different scales of KE-related SSTAs, as shown in Figure 8. We found that the influence of mesoscale SSTAs leads to significant warm temperature advections in the western Pacific north of 40°N and in the central-eastern Pacific Ocean north of 50°N. This enhances the meridional temperature gradient in the north of warm advections and maintains baroclinicity. Under the influence of large-scale SSTAs, we find that there are significant cold temperature advections at approximately 40°N and north of 50°N. It can be found that this baroclinicity affected by temperature advection is mainly reflected in the eastern North Pacific east of 170°W.
[image: Figure 8]FIGURE 8 | Response of air temperature advection at 850 hPa to different scales of KE-related SSTAs (shading, unit: 10–3 K s−1), where the isoline is the corresponding atmospheric baroclinicity at 850 hPa (isoline, unit: 10−6 s−1), showing only the positive value. (A) Response of temperature advection and atmospheric baroclinicity to mesoscale SSTAs; (B) response of temperature advection and atmospheric baroclinicity to large-scale SSTAs. Statistically significant differences at 90% according to Student’s t test are stippled.
There are several factors that affect the efficiency of energy absorption by synoptic transient eddies. According to Cai et al. (2007), these factors include the barotropic energy conversion (BTEC) from mean flow kinetic energy (MKE) to eddy kinetic energy (EKE) and baroclinic energy conversion terms from the mean available potential energy (MAPE) to eddy available potential energy (EAPE) (BCEC1). The energy conversion terms can be expressed as follows:
[image: image]
[image: image]
where [image: image], [image: image], θ is the potential temperature, g is gravitational acceleration, P0 is 1000 hPa, R is the dry-air-specific gas constant, and Cv and Cp are the heat capacities at constant pressure and volume, respectively. The primes denote the synoptic transient disturbances, and the overbars represent averaging over the individual cold season months. The energy conversion terms under the influences of KE-related large-scale and mesoscale SSTAs are shown in Figure 9. Here, we calculated the barotropic energy conversion BTEC at 250 hPa in the upper troposphere and BCEC1 at 850 hPa in the lower troposphere. The barotropic energy conversion is weak in the lower troposphere which is not consistent with the storm track in the lower troposphere, so we ignored the contribution of the barotropic energy conversion in the lower troposphere to the storm track. However, the conversion of barotropic energy mainly exists in the upper troposphere because low-frequency energy can be converted to high-frequency energy at the exit of a climatological low-frequency westerly jet stream. As shown in Figure 9A, under the influence of the KE-related mesoscale SSTAs, there are positive BTECs near 50°N located on the left side of westerly jet stream exit, which is beneficial to the strengthening of the storm track. However, under the influence of large-scale SSTAs, as shown in Figure 9B, there are positive BTECs on the right side of the westerly jet stream exit near 40°N, which is conducive to the strengthening of the storm track. BTEC contributes to the storm track of 250 hPa in the upper troposphere. Under the influence of KE-related mesoscale SSTAs, there are strong BCEC1s in the central Pacific and north of approximately 40°N. The enhancement of BCEC1 is beneficial to the transformation of more energy into the available eddy potential energy, which shows good correspondence with the synoptic meridional heat flux at 850 hPa. Under the influence of large-scale SSTAs, BCEC1 is significantly enhanced near 40°N in the central Pacific Ocean, but seems to be limited to approximately 40°N and significantly enhance the synoptic heat flux only near 40°N in the central Pacific Ocean. From the results above, we can argue that the baroclinicity and BCEC play a key role in modulating the storm track response to mesoscale SSTAs and large-scale SSTAs.
[image: Figure 9]FIGURE 9 | Response of energy conversion terms to (A,B) KE-related mesoscale SSTAs (KSTS-MEFS) and (C,D) KE-related large-scale SSTAs (MEFS-CTRL) at 850 hPa. (A,C) Energy conversion from mean available potential energy to eddy available potential energy (BCEC1, W m−2, shading). (B,D) Energy conversion from eddy available potential energy to eddy kinetic energy (BCEC2, W m−2, shading). Statistically significant differences at 90% according to Student’s t test are stippled.
SUMMARY AND DISCUSSION
In this study, we investigate the responses of differential North Pacific storm tracks to multiscale KE-related SSTAs. Different scales of KE-related SSTAs resulted in different locations and intensities of the storm tracks. KE-related mesoscale SSTAs usually led to significant enhancement of the storm tracks in the central-eastern Pacific and Gulf of Alaska north of 40°N, while KE-related large-scale SSTAs led to significant enhancement of the storm tracks over the central Pacific and near the west coast of the North American continent. Under the influence of different scales of KE-related SSTAs, precipitation also shows some differences. Although some studies show that mesoscale SSTAs enhances atmospheric precipitable water (Jia et al., 2019; Zhou and Cheng, 2022; Liu et al., 2021), a remote impact is also seen on precipitation along west coast of North America continent, which may have some influence on the sub-seasonal to seasonal scale. The large-scale SSTAs directly affect precipitation over the local region, and the scale-dependence of this precipitation still deserves further discussion.
Further analysis of the causes shows that the differences in storm tracks are related to barotropic energy conversion and anomalies of lower-level baroclinicity accompanying the corresponding baroclinic energy conversion. Baroclinicity anomalies are related to changes in potential temperature in meridional gradients under the influences of KE-related large-scale and mesoscale SSTAs. The response of the horizontal warm advection of temperature in the lower atmosphere to mesoscale SSTAs shifts the baroclinicity anomaly northward, while under the influence of large-scale SSTAs, the horizontal cold advection of temperature anomaly in the lower atmosphere strengthens and inhibits the northward movement of baroclinicity in the eastern North Pacific. We also briefly discussed the similarities and differences in the formation of baroclinicity corresponding to storm tracks, which is mainly affected by temperature advection. From the above conclusions, it should be noted that different scales of SSTAs in KE region can contribute some to storm track anomaly and precipitation anomaly, showing the scale-dependence of the atmospheric response to SSTAs, which is worthy of further discussion.
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Short-lived climate pollutants (SLCPs) including methane, tropospheric ozone, and black carbon in this work, is a set of compounds with shorter lifetimes than carbon dioxide (CO2) and can cause warming effect on climate. Here, the effective radiative forcing (ERF) is estimated by using an online aerosol–climate model (BCC_AGCM2.0_CUACE/Aero); then the climate responses to SLCPs concentration changes from the pre-industrial era to the present (1850–2010) are estimated. The global annual mean ERF of SLCPs was estimated to be 0.99 [0.79–1.20] W m−2, and led to warming effects over most parts of the globe, with the warming center (about 1.0 K increase) being located in the mid-high latitudes of the Northern Hemisphere (NH) and the ocean around Antarctica. The changes in annual mean surface air temperature (SAT) caused by SLCPs changes were more prominent in the NH [0.78 (0.62–0.94) K] than in the Southern Hemisphere [0.62 (0.45–0.74) K], and the global annual mean value is 0.70 K. By looking at other variable responses, we found that precipitation had been increased by about 0.10 mm d−1 in mid- and high-latitudes and decreased by about 0.20 mm d−1 in subtropical regions, with the global annual mean value of 0.02 mm d−1. Changes in SLCPs also influenced atmospheric circulation change, a northward shift in the Intertropical Convergence Zone was induced due to the interhemispheric asymmetry in SAT. However, it is found in this work that SLCPs changes had little effect on global average cloud cover, whereas the local cloud cover changes could not be ignored, low cloud cover increase by about 2.5% over high latitudes in the NH and the ribbon area near 60°S, and high cloud cover increased by more than 2.0% over northern Africa and the Indian Ocean. Finally, we compared the ERFs and global and regional warming effects of SLCPs with those induced by CO2 changes. From 1850 to the present, the ERF of SLCPs was equivalent to 66%, 83%, and 50% of that of CO2 in global, NH, and SH mean, respectively. The increases in SAT caused by SLCPs were 43% and 55% of those by CO2 over the globe and China, respectively.
Keywords: effective radiative forcing (ERF), short-lived climate pollutants (SLCPs), climatic responses, carbon dioxide (CO2), simulation
1 INTRODUCTION
Carbon dioxide (CO2) is the most important anthropogenic driver of global warming. Besides CO2, Short-lived climate pollutants (SLCPs) have strong contributions to the warming, as well. SLCPs is a set of warming climate forcers, which are gases and particles that can affect the climate by modifying the global energy budget and influence human health. SLCPs includes methane (CH4, a well-mixed greenhouse gas with warming effect second to CO2), tropospheric ozone (O3), and black carbon (BC). They have lifetimes in the atmosphere of a few days to a decade, shorter than the timescale for stabilizing the climate (Borgar et al., 2016). As important climate-forcing factors, SLCPs contribute to 40%–45% of total global warming (UNEP&WMO, 2011). Xie et al. (2016a), Xie et al. (2016b) found the increased CH4 and tropospheric O3 concentrations since pre-industrial times have resulted in a global annual mean surface air temperature (SAT) increase of 0.31 and 0.36°C, respectively. Removing all anthropogenic BC emissions would cause a global cooling of 0.05°C according to Stohl et al. (2015).
The short lifetimes of SLCPs cause spatially and temporally inhomogeneous distribution and concentrations tend to be highest nearer to source regions. Therefore, the resulting forcing patterns are also inhomogeneous, and the regional and global climatic responses is much more complex than to CO2 (Shindell et al., 2009; Shindell and Faluvegi, 2009). For the majority of emissions of SLCPs are in the Northern Hemisphere (NH), so their forcing is prominent in the NH (Shindell, 2014). Borgar et al. (2017) found that SLCPs could significantly affect the potential for temperature change in the Arctic and mid latitudes of the Northern Hemisphere (NH). Meanwhile, the Arctic Monitoring and Assessment Programme (2015) assessed the effects of regional SLCPs emissions on the Arctic, indicating that non-CH4 SLCPs emissions from East and South Asia had the greatest warming effect in the Arctic. Xie et al. (2016a), Xie et al. (2016b) found both CH4 and tropospheric O3 lead to more obvious warming in Northern Hemisphere. BC emissions in Europe and East Asia led to Arctic temperature response 390% and 240% larger than the global temperature response, respectively (Borgar et al., 2017). The warming in eastern China due to BC and tropospheric O3 was 0.62°C and 0.43°C, respectively, much higher than their effects on globally averaged SAT (Chang et al., 2009).
IPCC AR6 indicates that rapid, effective and sustained reductions in emissions of SLCPs are essential to the goal of limiting near-term warming (IPCC, 2021; Sun et al., 2022). Lots of evidences suggest that reducing SLCPs would play a key role to prevent global warming from exceeding 1.5°C or 2°C above pre-industrial levels (Shindell and Smith, 2019; Harmsen et al., 2020). Zhang et al. (2018) evaluated the ERFs caused by changes in SLCPs concentrations from 2010 to 2050 under RCP8.5, RCP4.5, and RCP2.6, which were 0.1, −0.3, and −0.5 W m−2, respectively. They also indicated that there would be a 0.57 K reduction in global warming by 2050 under strong SLCPs mitigation. Xu and Ramanathan (2017) obtained a consistent conclusion with Zhang et al. (2018), and suggested that reducing SLCPs would bring more benefits than abating CO2 only (Xu and Ramanathan, 2017; Dreyfus et al., 2022). Specifically, quickly reducing the emissions of CH4 and BC could avoid 0.3°C and 0.2°C of warming by 2050, respectively. Shindell et al. (2012) and Ramanathan and Xu (2010) reached similar conclusions. If the concentrations of all SLCPs were reduced using current technologies, the rise of sea surface level could be reduced by approximately 25% by 2050 (Hu et al., 2013) and 22%–42% by 2100 (Ramanathan and Xu, 2010).
Most of the existing scientific studies and public policies about SLCPs have focused mainly on single species of SLCPs or the possible influences on climate due to SLCPs changes in the future. In this study, we focus on how SLCPs have already affected our past global and regional climates and to what extent they did by comparing with the contribution from CO2. In order to measure and compare the effects of different factors on global and regional SAT, we firstly need to evaluate quantitatively the driver of climatic change, effective radiative forcing (ERF), defined as the change of the net radiant flux at the TOA or the tropopause, after allowing for atmospheric temperatures, water vapour, clouds and land albedo to adjust, but with global surface temperature unchanged (Myhre et al., 2013; Smith et al., 2018). Xie et al. (2016a), Xie et al. (2016b) estimated the ERFs of CH4 from 1750 to 2011 and tropospheric O3 from 1850 to 2013 both to be 0.46 W m−2 by using a global climate model combined with satellite observations. IPCC AR6 evaluated ERFs (from 1750 to 2019) of CH4 and O3 to be 0.54 ± 0.11 and 0.47 ± 0.23 W m−2, respectively. However, quantitative assessment on ERF of overall SLCPs is very limited.
This study, the ERF of overall SLCPs is estimated by using an online aerosol–climate model (BCC_AGCM2.0_CUACE/Aero); then evaluate the global and reginal climate responses to SLCPs concentration changes from the year of 1850 to 2010 and estimate quantitatively what warming is resulted from the SLCPs compared with CO2 in the past. The model, data sets, and methods used in this work are described in Section 2. The ERF and climate response due to changes in SLCPs concentrations and comparisons with those of CO2 are presented in Section 3; Our conclusion are summarized in Section 4.
2 DATA, MODEL, AND SCHEME DESCRIPTION
2.1 Model
In this study, we used an online aerosol–climate model, BCC_AGCM2.0_CUACE/Aero, developed by Zhang et al. (2012b), Zhang et al. (2014) and Wang et al. (2014). The model incorporates the atmospheric general circulation model BCC_AGCM2.0, developed by the Beijing Climate Center of the China Meteorological Administration (BCC/CMA) and an aerosol model CUACE/Aero, developed by the Chinese Academy of Meteorological Sciences (CAMS). BCC_AGCM2.0 employs a horizontal T42 spectral resolution (about 2.8° × 2.8°) and a hybrid vertical coordinate with 26 levels, the top of which is located at about 2.9 hPa. The CUACE/Aero aerosol model (Gong et al., 2002, Gong et al., 2003) considers five types of aerosols (sulfate, black carbon, organic carbon, dust, and sea salt) and multiple aerosol physical and chemical processes (including anthropogenic aerosol emissions, gaseous chemistry, transport, coagulation, and removal), more detailed introduction of CUACE/Aero can be found in Zhang et al. (2016). BCC_AGCM2.0_CUACE/Aero reproduces fairly well the present-day climate at regional and global scales, especially for temperature and wind (Wu et al., 2008; Wu et al., 2010). The radiation scheme BCC_RAD (Zhang et al., 2014; Zhang, 2016) and the McICA cloud vertical overlap scheme (Jing and Zhang, 2012, Jing and Zhang, 2013; Zhang et al., 2014) are used in BCC_AGCM2.0. These improvements have reduced the error in the simulated longwave and shortwave radiative fluxes at the TOA and the surface compared to the original version. The model also includes physical representations of the aerosol direct, semi-direct, and indirect effects for liquid-phase clouds (Wang et al., 2014). BCC_AGCM2.0_CUACE/Aero reproduces fairly well the present-day climate at regional and global scales, especially for temperature and wind (Wu et al., 2008; Wu et al., 2010). This model simulates the atmospheric burden and geographical distribution of aerosols reasonably well (Zhang et al., 2012a; Wang et al., 2014), and is widely used in studies of aerosol and GHG RF estimations and their impacts on climate (Zhang et al., 2012a, Zhang et al., 2016, Zhang et al., 2018; Wang et al., 2013a, Wang et al., 2013b, Wang et al., 2015, Wang et al., 2016; Zhao et al., 2014; Xie et al., 2016a, Xie et al., 2016b). It was a member of AeroCom phase II comparisons of aerosol direct RF (Myhre et al., 2012) and organic aerosol modeling comparisons (Tsigaridis et al., 2014).
2.2 Data
The CO2 and SLCPs data, including BC emissions and CO2, tropospheric O3, and CH4 concentrations, were obtained from the representative concentration pathways (RCPs) in AR5. There are four concentration emission paths, RCP2.6, RCP4.5, RCP6.0, and RCP8.5, named for their projected RF values (unit: W m−2) in 2100. In this study, the emissions and concentrations of CO2 and SLCPs in 1850 were obtained from historical projection and inventory data in the RCP Database (Mieville et al., 2010) and the current (2010) data were taken from RCP4.5 (Wise et al., 2009). Changes in the concentration of CO2 and SLCPs from the year of 1850 to 2010 are shown in Section 3.1.
2.3 Experimental design
To calculate the ERFs caused by changes in the SLCPs and CO2 concentrations from the year of 1850 to 2010, we performed three sets of experiments, consisting of two perturbing experiments (SERF2010 and CERF2010, the simulations with the changes from 1850 to 2010 in SLCPs and CO2 concentration, respectively) and a control experiment (ERF1850, the simulation keep SLCPs and CO2 concentration at 1850). The experimental configurations are given in Table 1. In this study, the method of “fixed-SST” was selected to estimate ERF (IPCC, 2021), which means that sea surface temperature and sea ice were kept constant during the above three sets of experiments. We ran 15 years in each simulation, of which the last 10 years of data were averaged to estimate the ERFs, as follows:
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where ∆F was the net radiation flux (the difference between incoming and outgoing radiative flux, both shortwave and longwave) at the top of the model (for there is little difference in net radiation flux between the top of the model and the TOA). The ∆FSERF2010, ∆FCERF2010, and ∆FERF1850 are the net radiation flux of SERF2010, CERF2010, and ERF1850, respectively.
TABLE 1 | Experimental design.
[image: Table 1]Another three sets of numerical experiments (SCR 2010, CCR 2010, and CR 1850) were performed to simulate climate responses to changes in SLCPs and CO2 concentrations, using the model coupled with a slab ocean model (Hurrell et al., 2008). We evaluated the SLCPs- and CO2-induced climate responses (CR), as follows:
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To allow the global mean SAT to reach a quasi-equilibrium state, the coupled model requires an adjustment of 30 years (Kristjánsson et al., 2005); therefore, we ran 70 years in the three simulation tests, and results for the last 40 years were used for the analysis.
The t-test was used on the ERF and climate responses to estimate their statistical significance in this study. The t-test is the test for a difference between two sample means, as follows:
[image: image]
Where X and S is the average and variance of the sample, and n is sample size. The confidence coefficient of 95% was chosen in this study, which means that ERF (climate responses) will pass the significance test when its absolute t-value is greater than 2.262 (2.045).
3 RESULTS
3.1 Changes in the concentration of CO2 and SLCPs from the year of 1850 to 2010
Since the Industrial Revolution, the emissions of CO2 and SLCPs and their concentration in the atmosphere have increased remarkably due to the development of human activities. Based on the input data of CO2, CH4, and ozone concentrations used in this study (mentioned in Section 2.2), by 2010, the global annual average CO2 and CH4 concentration has increased by 118 ppm and 942 ppb, relative to 1850. As shown in Figures 1B,D, tropospheric ozone column concentrations generally increase by more than 12 DU in middle and high latitudes in the Northern Hemisphere, with two increasing centers in Bohai and Mediterranean regions, which is consistent with the results of An et al. (2022). According to our simulations (as shown in Figures 1A,C), the annual mean column concentrations of BC increased more than 0.4 mg m−2 in Eastern China, Northern India, and Central Africa, of which up to 1.6 mg m−2 in Eastern China.
[image: Figure 1]FIGURE 1 | Annual mean differences of BC loading (top, unit: mg m−2) between SERF2010 and ERF1850, and tropospheric ozone changes from the year of 1850 to 2014 (bottom, unit: DU).
3.2 ERF of SLCPs in 2010, relative to 1850
Figure 2 shows the distributions of ERF of SLCPs in 2010, relative to 1850. SLCPs concentrations have increased significantly since the pre-industrial era, which produced notably positive ERFs over most parts of the globe, especially in the Ural Mountains region, the southern Indian Ocean, East Asia, the central Pacific, and most parts of the Atlantic. The ERFs were greater than 1.5 W m−2 over above-mentioned areas, and the largest positive ERFs occurred over central and eastern China (CEC), with the value more than 4.0 W m−2. According to the definition of ERF (see Section 2.3), the spatial distribution of ERF depends on many factors, such as changes in SLCPs concentrations and adjustment of clouds and other factors. The notably positive ERFs over continents were mainly from shortwave ERFs (similar to ERF, but for the change of the net shortwave radiant flux). For instance, over the Ural Mountains region and CEC, shortwave ERFs were more than 2.0 W m−2, and longwave ERFs (similar to ERF, but for the change of the net longwave radiant flux) were approximately 0 W m−2 (Figures 2B,C). The decrease in low cloud cover (LCC: above 680 hPa) of about 1.2%–2.0% resulted in less solar radiation being scattered, and induced strong positive ERFs over the Ural Mountains region and CEC (Figures 3B,E).
[image: Figure 2]FIGURE 2 | Annual mean ERF (top), shortwave ERF (middle), and longwave ERF (bottom), which are obtained by the difference between SERF2010 and ERF1850, unit: W m−2. The areas with “⋅” passed the 95% significance test.
[image: Figure 3]FIGURE 3 | Annual mean differences of low cloud (top) and high cloud (bottom) between SERF2010 and ERF1850, unit: %.
The BC loadings in the CEC has increased by about 1.4 mg m−2 (see Figure 1C) since the pre-industrial era, which has also led to positive shortwave ERF there. The BC loading has also increased in India, but the shortwave ERF was about −3.5 W m−2 there (Figure 2E), which was mainly attributed to the increased LCC (about 1.8%) scattering more solar radiation. The positive ERFs over the ocean were caused by both shortwave and longwave ERFs. The increased SLCPs concentrations led to the longwave ERFs being about 1.0 W m−2 over most parts of the ocean (Figure 2C), and the shortwave ERFs over the middle of the Indian Ocean, North of the Equatorial Pacific, and the North Atlantic Ocean being 0.5–1.0 W m−2. Notably, over the East and West of the Gulf of Mexico, and the sea area of southern Japan, longwave ERFs were over 2.0 W m−2 due to increased high cloud cover (HCC: below 440 hPa) (Figure 3B) by absorbing thermal radiation.
Due to the short atmospheric lifetimes of SLCPs, the spatial pattern of SLCPs ERF is more inhomogeneous than CO2 ERF. There are more human activities in NH than in Southern Hemisphere (SH), leading to greater SLCPs emissions; therefore, the ERF of NH was 1.24 [0.97–1.51] W m−2 larger than that of SH [about 0.75 (0.47–1.04) W m−2]. Meanwhile, the CO2 ERF during 1850–2010 in the NH and SH were both 1.50 [1.35–1.65] W m−2. The global annual mean ERFs were 0.99 [0.79–1.20] and 1.50 [1.35–1.65] W m−2 due to the changes in SLCPs and CO2 concentrations since pre-industrial era, respectively. Therefore, the SLCPs ERF was equivalent to 66%, 83%, and 50% of the CO2 ERF in global, NH, and SH terms, respectively. Previous studies had indicated that ERF is virtually identical to RF for CO2 and CH4 (Hansen et al., 2005). By comparison (shown in Table 2), the ERF of this study was consistent with these results.
TABLE 2 | Comparison of ERFs in this work and the simulated ERFs/RFs from other studies due to changes in variety of greenhouse gases and BC since the pre-industrial era (Units: W m−2).
[image: Table 2]3.3 Temperature response to changes in SLCP concentrations
The increases in SLCPs concentrations since the pre-industrial era have produced positive ERF and warming effect in most parts of the globe. As shown in Figure 5, SAT increased by over 1.0 K (past 95% significance test) in North America, most of Europe, the Arctic region, northwestern China, and the ribbon area near 60°S. The changes in SAT are consistent with that of surface net radiation flux (SNRF), which composed of shortwave (the surface net solar flux, abbreviated to FSNS) and longwave (the surface net longwave flux, abbreviated to FSNS) components. As shown in Figures 4A,D, the SNRF increased by more than 2.5 W m−2 in the above-mentioned regions. The SNRF is substantially affected by changes in SLCPs concentrations, clouds, and surface albedo. In northeastern China, increases in CH4 and O3 concentrations leaded to FLNS increase by about 2.0 W m−2 (Figure 4F), while FSNS decrease by 2.0 W m−2 (Figure 4E), and eventually caused a weak increase in SAT (Figure 5B) there. These might be due to the 1.2% increase of LCC (Figure 6D) reflecting more solar radiation, which blocked a part of the shortwave radiation reaching the surface, and weakened the warming effect of SLCPs in northeastern China. Sea ice cover near the Antarctic decreased by about 10% (figure not shown), causing a decrease in surface albedo, which decreased the reflection of solar radiation around Antarctic and led to FSNS increases of about 3.5 W m−2. This series of processes ultimately resulted in the SAT increasing by approximately 1.5 K in the Antarctic. The FLNS increased across most of the globe, particularly in middle and lower latitudes (Figure 4C). This was due to significant increases in CH4 and O3 concentrations (Xie et al., 2016a, Xie et al., 2016b). Changes in cloud cover, especially middle and high clouds, also can influence the FLNS. In northern Africa, the decrease in HCC of more than 2.5% (Figure 6C) produced a decrease of FLNS by 0.5 W m−2 due to more outgoing longwave radiation, and ultimately offset part of the warming effect caused by SLCPs there. In western America, reduced middle cloud cover (Figure 6B) resulted in a 1.5 W m−2 decrease in the FLNS, whereas simultaneously the reduced LCC increased the FSNS by about 3.5 W m−2 by reflecting less downward solar radiation. The opposite changes of FLNS and FSNS eventually resulted in notable increases in SNRF and SAT in western America.
[image: Figure 4]FIGURE 4 | Annual mean differences of SNRF (top), FSNS (middle), and shortwave FLNS (bottom) between SCR2010 and CR1850, unit: W m−2. The areas with “⋅” passed the 95% significance test.
[image: Figure 5]FIGURE 5 | Annual mean differences of surface air temperature (contour, unit: K) and 850 hPa circulation (vector) between SCR2010 and CR1850. The areas without color did not pass the 95% significance test.
[image: Figure 6]FIGURE 6 | Annual mean differences of low (top), middle (middle), and high (bottom) cloud covers between SCR2010 and CR 1850, unit: %. The areas with “⋅” passed the 95% significance test.
The concentrations of SLCPs have increased significantly in both southern China and the Indian Peninsula since the pre-industrial era (Xu et al., 2021), but the warming in China was much greater (Figure 5B). This was mainly due to the contrasting patterns of cloud changes in these two regions, as discussed in Section 3.3. The 1.5% decrease in LCC (Figure 6D) led to 1.5 W m−2 increase in the FSNS in southern China (Figure 4E). Conversely, in the Indian Peninsula, the LCC increased about 1%, and resulted in a decrease in the FSNS of 3.5 W m−2. Although the changes in the FLNS were the opposite of those in the FSNS in these two regions, thus, the increase in the SNRF in southern China were greater than it in the Indian Peninsula, which ultimately increase SAT in southern China and the Indian Peninsula by 0.9 and 0.3 K, respectively.
From the year of 1850 to 2010, changes in CO2 concentrations caused significant increases in the SAT in high latitudes of the NH, northwestern China, and the ribbon area near 60°S (Supplementary Figure S1). The CO2-induced average warmings in global, NH, and SH were 1.62 [1.48–1.76], 1.67 [1.50–1.83], and 1.58 [1.43–1.73] K, respectively. The distribution of SAT changes induced by CO2 was similar to that caused by SLCPs. The changes in SLCPs led to global, NH, and SH average temperature increases of 0.70 [0.60–0.80], 0.78 [0.62–0.94], and 0.62 [0.45–0.74] K, respectively, which were equivalent to 43% of the CO2-induced warmings. In China, SLCPs concentrations (especially BC) increased remarkably, this resulted in the SLCPs-induced warming in this region equivalent to 55% of the CO2-induced.
3.4 Cloud cover response to changes in SLCP concentrations
Changes in SLCPs concentrations from 1850 to 2010 had little effect on global average cloud cover, but a large effect on regional cloud cover. As shown in Figure 6A, the increasing centers of LCC were mainly located over high latitudes of the NH, the ocean around Antarctica, and near the equator (especially over the east Pacific and Atlantic). Over central Africa, the Indian Peninsula, and most of the United States, where the surface relative humidity (SRH) increased by about 1.5% (Figure 8C), LCC increased by 1.0%, which indicates LCC have a good correlation between relative humidity (Chris, 1994). However, circulation is also an influential factor in cloud. In mid-India, where the change in SRH was weak, for example, the 2% increase in LCC was mainly due to enhanced cyclonic vorticity. Conversely, enhanced anticyclonic vorticity in the southern Pacific led to a 1.0% decrease in LCC. In high latitudes of the SH, LCC increased by more than 2%, which was largely due to the increases in relative humidity and enhanced updrafts between 900 and 700 hPa over 60°S (Figures 7A,B). SLCPs concentrations have increased significantly in both the Indian Peninsula and southern China since the pre-industrial era; however, there were opposite changes in the LCC over these two regions. LCC increased by about 1.0% over the Indian Peninsula but decreased by about 1.8% over southern China (Figure 6D), mainly due to the 1.5% and −1.4% changes in SRH in these two areas, respectively (Figure 8F). The geographical distributions of changes in middle cloud cover and HCC were similar (Figures 6B,C). HCC clearly decreased over northern Africa, the Indian Ocean, the northern and southern Pacific, and the equatorial Atlantic, especially over northern Africa and the Indian Ocean with decreases of about 2.2%–3.0%. This was caused by a reduction in the relative humidity of about 1.3% between 400 and 200 hPa over the subtropics (Figure 7B). Over the high latitudes in both the NH and SH (near 60°S and 60°N), HCC increased by about 1.5% due to increases in relative humidity below 300 hPa.
[image: Figure 7]FIGURE 7 | Annual mean differences in zonally averaged circulation (left column), relative humidity (middle column), and cloud fraction (right column) between SCR2010 and CR1850. The areas with “⋅” passed the 95% significance test.
[image: Figure 8]FIGURE 8 | Annual mean differences of precipitation (top, unit: mm d−1), SWVF (middle, unit: kg m−2d−1), and SRH (bottom, unit:%) between SCR2010 and CR1850. The areas with “⋅” passed the 95% significance test.
3.5 Precipitation response to changes in SLCP concentrations
Figure 8 shows the changes in precipitation (left column), surface water vapor flux (SWVF) (middle column), and SRH (right column) caused by the increased SLCPs concentrations. Changes in SLCPs concentrations produced significant increases in the SWVF (around 0.10 kg m−2 day−1) over most marine areas, especially the equatorial Pacific, Central Indian Basin, and East China Sea (Figure 8B). The most significant increase (over 0.18 kg m−2 day−1) occurred over the East China Sea. Decreases in the SWVF were mainly apparent over most continents and were caused by the reductions in the SNRF. In northern Africa, southern Europe, Australia, and most parts of South America, the SNRF decreased by about 1.0 W m−2, leading to a reduction of about 0.10 kg m−2 day−1 in the SWVF. The changes in the SWVF had a great influence on the changes in SRH. In the most parts of the Pacific and northern Atlantic, SRH increased by 0.6% due to the increases in the SWVF. Conversely, with reductions in the SWVF, SRH decreased by 0.8% in northern Africa, Australia, and most parts of South America. Changes in circulation also affected the local SRH. For example, in eastern Canada, the SWVF increased by 0.10 kg m−2 day−1, but the SRH decreased due to enhanced flows from inland. It is worth noting that the opposite changes in SRH occurred in the Indian Peninsula and southern China. As shown in Figure 8F, in the Indian Peninsula, the increased SWVF with the enhanced cross-equatorial flows caused a 1.5% increase in SRH. However, in southern China, the enhanced flow, from land to ocean, blocked water vapor transport in the South Asian Monsoon, with a SWVF reduction of 0.06 kg m−2 day−1; thus, SRH ultimately decreased by 1.8% there. As shown in Figure 8A, precipitation mainly increased (about 0.10 mm d−1) in mid-high latitudes and decreased (about −0.20 mm d−1) in subtropical regions. In tropical areas, precipitation increased significantly in the NH and decreased in the SH. The largest changes in precipitation occurred in the north and south of the Pacific equatorial region, with the maximum increase (decrease) of 0.50 mm d−1 (−0.45 mm d−1). According to a simulation by Broccoli et al. (2006), the interhemispheric asymmetry in SAT changes led to the movement of the Intertropical Convergence Zone (ITCZ) toward the relatively warmer hemisphere. In our simulation, the change in the annual mean SAT was +0.9 K in the NH and +0.6 K in the SH, and there was a northward shift of the ITCZ, which was the opposite of the trends induced by anthropogenic aerosols (e.g., Zhang et al., 2016; Zhou et al., 2018). Since the pre-industrial era, changes in SLCPs concentrations have caused global mean precipitation to increase by 0.03 mm d−1 (approximately 0.6%). Therefore, our simulation results indicate that the global mean precipitation has increased by about 1.0% per K surface temperature in response to SLCPs forcing, which is lower than the result (1.5–2% K−1) obtained by Salzmann (2016).
4 CONCLUSION
We simulated the ERF and climate responses to changes in SLCPs concentrations from 1850 to the present (represented by the model year of 2010) using an aerosol–climate coupled model of BCC_AGCM2.0_CUACE/Aero. The global annual mean ERF due to changes in SLCPs concentrations since the pre-industrial era was 0.99 W m−2. The largest positive ERF was more than 4.0 W m−2, and occurred over central and eastern China, mainly due to adjustments in low cloud cover and BC loading. The greater level of human activity in NH led to more SLCPs emissions than in SH, and correspondingly the SLCPs ERF in NH is larger than that in SH. We found that the SLCPs ERF was equivalent to 66%, 83%, and 50% of the CO2 ERF in global, NH, and SH terms, respectively. Increased SLCPs concentrations led to warming effects over most parts of the globe, with obvious warming in the mid-high latitudes of NH and the ocean around Antarctica, where increases reached 1.0 K. Precipitation increased by about 0.10 mm d−1 in mid-high latitudes and was reduced by about 0.20 mm d−1 in subtropical regions. As a result of the interhemispheric asymmetry in SAT changes caused by SLCP, ITCZ moved toward NH. Changes in SLCPs concentrations caused increases in the global annual mean SAT and precipitation of 0.70 K and 0.02 mm d−1, respectively. In our simulation, the global mean precipitation increased by about 1.0% per K surface warming in response to the forcing by SLCPs. From the year of 1850 to 2010, the increase in SAT caused by SLCPs was equivalent to 43% of the warming effect of CO2 over the globe and 55% over China. Increased SLCPs concentrations had little effect on global average cloud cover, but had obvious effects on regional cloud cover. Low cloud cover increased by about 2.5% over high latitudes in the NH and the ribbon area near 60°S, whereas high cloud cover increased more than 2.0% over northern Africa and the Indian Ocean.
SLCPs concentrations have increased significantly in both the Indian Peninsula and southern China since the pre-industrial era; however, the respective relative humidity at the surface of the two regions changed by 1.5% and −1.8%, and low cloud cover by 1.0% and −1.8%, with the opposite signs. The enhanced cross-equatorial flows and a weakened South Asian Monsoon maybe important driving factors for these opposite changes over these two regions. Combining the direct effect of SLCPs and the consequent cloud response, the final SAT increases were 0.3 K in the Indian Peninsula and 0.9 K in southern China.
Our results suggest that SLCPs-induced warming should not be underestimated, which was equivalent to half of the global warming effect of CO2, even much larger in the regions with more coal consuming (e.g., China). SLCPs can influence regional SAT by affecting radiation budget; while the circulation response to SLCPs change in driving the changes of regional SAT is also important.
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During the winter half-year (previous October–April), the mid-latitude westerlies flows around the Tibetan Plateau (TP) and generate a dynamic low-pressure trough on its south side and a high-pressure ridge on its north side. In this study, we define the vorticity perturbation as the difference between local vorticity and the meridionally-averaged vorticity. Then, the difference of averaged vorticity perturbation at 600 hPa in the two key areas where the trough and ridge are located is used to represent the intensity of the flows around the Tibetan Plateau (FAT). The evolution characteristics of FAT in the winter half-year, as well as in autumn, winter and spring, are analyzed. Moreover, under global warming, in winter the relationship of FAT to the precipitation and temperature in China are discussed. The results show that FAT steadily exists on both sides of TP during the winter half-year. With the north-south migration of the mid-latitude westerlies, the FAT gradually strengthens in autumn, with the strongest intensity and the widest range in winter, and begins to weaken in spring. The intensity of FAT (IFAT) has a decreasing trend and a quasi-4a period variation on the interannual scale in all the time, both of which are closely related to the mid-latitude westerlies upstream of TP. Represented by the winter when IFAT is strongest, the IFAT is significantly correlated to the change of precipitation and temperature in most parts of China under global warming, especially in the convergence area over central-eastern China. There is also a significant correlation between IFAT and the precipitation and temperature anomalies in Northwest China, TP, and Northeast China. This relationship between the FAT anomaly and the climate anomaly in China in winter can be well explained by analyzing the anomalies of large-scale circulation, outgoing longwave radiation and water vapor flux divergence. The FAT anomaly maybe one of the reasons for the climate extreme events in China in winter.
Keywords: the flows around the Tibetan Plateau, the mid-latitude westerlies, under global warming, the anomalies of precipitation and temperature, large-scale circulation, the climate extreme events
INTRODUCTION
The Tibetan Plateau (TP), known as “the roof of the world” and “the third pole of the Earth”, has an average altitude of more than 4 km. It is a huge barrier standing in the atmospheric circulation (Gu, 1951). In the winter half-year, when the strong mid-latitude westerlies approach the TP, they branch in the southwest of the TP (32°N, 75°E) (Li et al., 2012). The circulations at the southern and northern parts of the TP are cyclonic and anticyclonic in the downstream of TP branch point (Yeh, 1950; Ramaswamy, 1956; Wu et al., 2007), respectively, corresponding to the steady positive and negative vorticity zones (Murakami, 1981). The northern branch westerlies guides the strong cold air from the polar region to the south. The southern branch westerlies transport a large amount of warm-humid air to the south of China (Li and Luo, 1986;Liang et al., 2005; Zhang et al., 2014;Zhang et al., 2018). The cold and warm airflows converge to the east of TP and form a strong East Asian jet (Bolin, 1950; Gu, 1951; Wu et al., 2015), which has an important impact on the downstream weather and climate (Yang, 1960; Zhu and Yang, 1990; Fan et al., 2015; Li et al., 2021). Such flows around TP (FAT) mainly occur in the middle and lower troposphere, and can also reach above the tropopause sometimes (Yeh and Gu, 1955; Wang and Wang, 1985).
Wu et al. (2007) named the cyclonic circulation on the south side and anticyclonic circulation on the north side of TP as TP “dipole” (TPD) circulation figuratively. They used the divergence difference between the east and west sides of TP to evaluate the dynamic effect of TP, which can affect the drought in India, the early spring rain in South China, and the onset time of Asian summer monsoon in the Bay of Bengal. Using the mean vorticity difference between the positive and negative vortex pairs on the east side of TP, (Jiang et al., 2009),defined the FAT index and concluded that strong FAT index is conducive to the transportation of cold air in the middle-high latitudes to North China, and thus more precipitation can occur in the Yangtze-Huaihe region. When using the zero line of meridional wind speed to discuss the seasonal variation of FAT, Li and Zhang (2012) found that the winter precipitation mainly occurs in the convergence area of FAT in Eastern China, where the southerly prevails in the south of the zero line. Qiao et al. (2014) found that the intensity of FAT varies with height and season. It mainly occurs in the middle and lower troposphere, and its dynamic effect is stronger in winter and spring. Jiang et al. (2021) defined the southern and northern branches of FAT by using the averaged wind speed in the four regions of FAT, and discussed their impacts on the weather and climate in China separately. Moreover, the “north ridge and south trough” circulation is the main weather pattern causing the snow disasters in the eastern pastoral areas of TP in winter and the freezing rain and snow disasters in South China (Liang et al., 2002; Wang et al., 2011).
Under the background of global warming, there is still a lack of systematic analysis on the interannual variation and seasonal evolution of the FAT in the winter half-year. There are few studies on its relationship with precipitation and temperature anomalies in China in winter, and there are also few studies on its possible impacts on the high impact weather and extreme events in China. Therefore, in this study the northern branch ridge (NBR) and the southern branch trough (SBT) are used to represent the FAT visually. Then, the intra-seasonal and interannual evolution characteristics of FAT in the winter half-year are analyzed. Furthermore, the relationships of FAT to the precipitation and temperature in China in winter are investigated. Finally, the possible reasons for this relationship are explored by analyzing the anomalies of the atmospheric circulation and physical quantities at different levels. This study has important implications for understanding the TP dynamic effect on high-impact weather and climate extreme events in China and could favor the short-term climate prediction.
DATA AND METHODS
Data
The European Centre for Medium-Range Weather Forecasts reanalysis data set (ERA-interim) with a spatial resolution of 1° × 1° is used in this study, including the monthly mean sea level pressure, geopotential height, horizontal meridional wind and zonal wind, and the 6 h interval horizontal meridional wind and zonal wind (Dee et al., 2011; Bao and Zhang, 2013). The 2.5° × 2.5° monthly average outgoing longwave radiation (OLR) data observed by the United States (US) polar-orbiting operational meteorological satellite is used. Besides, the high-resolution 1°×1°grid data from the Climatic Research Unit of the United Kingdom (United Kingdom) is also used (Wen et al., 2006). All the data are from 1979 to 2019, totaling 41 years. The winter half-year is from previous October to current April. autumn, winter, and spring are represented by October, January, and April in this study. The situations in these months are similar to the seasonal average. The rest months are the transition period of seasons.
Methods
To obtain FAT more clearly in the flow and vorticity field in the Northeast hemisphere, the article uses the zonal deviation algorithm same as the paper (Wu et al., 2007). Use [image: image] to represent the average zonal wind at 0–180° E, and the calculation method of deviation zonal wind [image: image] is formula 1, the same calculation applied to the radial wind V and VOR is consistent
[image: image]
The linear tendency estimation, empirical orthogonal function (EOF) analysis, wavelet analysis, correlation analysis, and composite analysis are adopted in this study (Torrence and compo, 1998).
Definition of FAT index
Based on the conservation law of energy and angular momentum of large-scale motion, Wu (1984) proposed a theoretical terrain critical height (Hc), that is, when the mountain height is higher than this value, the air will flows around rather than over the mountain. He showed that the Hc value is only a few hundred meters to 1 km. Trenberth and Chen (1988) thought the value is 1.5 km. Through numerical simulations, Zhang and Qian (1999) showed that the value of Hc is between 1.5 and 2 km. Li and Zhang (2012) concluded a simulation result of 2 km. The annual mean intensities of flows around and over the TP all increase with increasing altitude, the flows around prevails in terms of the regional distribution (Li et al., 2012).
Comparing the zonal deviation flow and vorticity fields at 850 hPa, 700 hPa, 600 hPa and 500 hPa averaged in the winter half-year of the northeast hemisphere, we find that the absolute values of the zonal deviation flow and vorticity at 600 hPa are the strongest, which can be considered that the FAT is the most significant at 600 hPa in the winter half-year.
Figure 1 shows the zonal deviation flow and vorticity field at 600 hPa averaged in the winter half-year, autumn, winter and spring. In the winter half-year (Figure 1A), the deviation flow field in middle and high latitudes in Eurasia is characterized by “two troughs and two ridges”. The ridge in Western Europe and the trough in Eastern Europe are weak. The ridge in northern TP and the East Asian trough are both strong, which can be seen from the obvious anticyclonic circulation and negative vorticity center in the north of TP, and the cyclonic deviation circulation and positive vorticity centers along the coast of East Asia. There are cyclonic circulation and positive vorticity center on the south side of TP in mid-low latitudes and strong anticyclone circulation in the northwest Pacific. It indicates that there is a significant FAT phenomenon. On the west side of TP, the airflow diverges and flows around TP, and then two air flows converge on the east side of TP, forming an anticyclone deviation circulation on the north side of TP and a cyclone deviation circulation on the south side of TP. These appear as an asymmetric TPD circulation on the north and south sides of TP (Wu et al., 2007), accompanied by constant negative and positive vorticity bands (Murakami, 1981), respectively. The circulation in the northeast hemisphere in autumn is similar to that in the winter half-year (Figure 1B). The deviation circulation and vorticity field are weak, indicating that the long-wave trough and ridge are weak. This means it is in the transition period from the summer circulation pattern to the winter circulation pattern. The TPD is also weak by this time, and the position of the western Pacific subtropical high is farther north. With the southward movement of the westerlies, the deviation circulation characterized by “two troughs and one ridge” in middle-high latitudes reaches the strongest in winter (Figure 1C). The East Asian trough, the deviation circulation center and vorticity center of TDP also reach the strongest. The center of the cyclonic circulation on the south side of TP moves eastward, while the western Pacific subtropical high is the weakest and farther south. In spring (Figure 1D), the long-wave trough and ridge in the middle-high latitudes weaken and begin to adjust to the summer circulation pattern gradually. The deviation circulation and vorticity of the TPD are also weakened. Weak cyclonic circulation appears in the southwest of India and the south of the South China Sea, indicating that the cross-equatorial southerly in the low latitudes begin to increase, which is conducive to the outbreak of the Asian summer monsoon (Wu and Zhang, 1998).
[image: Figure 1]FIGURE 1 | The mean zonal deviation circulation (unit: m s−1; contours) and vorticity (unit: 10−5s−1; shaded) field in (A) winter half-year, (B) autumn, (C) winter, (D) spring at 600 hPa. The boxes to the north and south of the TP represent the average positions of northern branch ridge and southern branch trough, respectively.
It can be further seen from Figure 1 that there is a pair of cyclonic and anticyclonic zonal deviation circulations in the north (35–45°N, 70–90°E) and south (20–28°N, 80–100°E) sides of TP at each period in winter half-year at 600 hPa, respectively corresponding to strong positive and negative zonal deviation vorticity centers. These two regions can be considered as the key regions of FAT activity. The intensity indexes of SBT (ISBT) and NBR (INBR) can be expressed by the average zonal deviation vorticity in the northern and southern regions, and the calculation method of these are formula 2 and 3, respectively. The difference between ISBT and INBR can be used as the intensity index of FAT (IFAT) to represent FAT visually. It is shown in formula 4.
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The correlation coefficients between IFAT and the TPO index that uses divergence difference between the east and west sides of TP (Wu et al., 2007), the FAT index defined by (Jiang et al., 2009)that uses the average vorticity difference of positive and negative vortex pairs on the east side of TP, and the meridional wind divergence line used by Li and Zhang (2012) are 0.89, 0.87 and 0.78, respectively. All the correlations have passed the confidence test at 0.001 confidence level.
EVOLUTION CHARACTERISTICS OF FAT
Vertical structures
In order to understand the vertical structure of FAT, the vertical profiles of zonal circulation and vorticity averaged in the main longitude of FAT (80–90°E) in the winter half-year, autumn, winter, and spring are shown in Figure 2. In the winter half-year (Figure 2A), the updraft near the equator is strong and deflects northward at 200 hPa. The updraft at 60°N is weaker than that at the equator and deflects southward at 300 hPa. The two airflows converge and descend at 30°N. The intensity difference between the two updrafts indicates that the Hadley circulation in the low latitudes to the south of TP is stronger than the Ferrel circulation in the middle latitudes to the north of TP. The negative vorticity to the south of 25°N is the strongest near 200 hPa, indicating that the South Asian high in the upper level to the south of TP is strong. There is a positive center and a negative vorticity center between 24 and 45°N on the south and north sides of TP, respectively. The positive vorticity extends upward from the ground to the tropopause, and the negative vorticity from the ground to 300 hPa. Both of them reach the strongest near 600 hPa. This indicates that FAT is the strongest at 600 hPa on the north and south sides of TP, as indicated by the vorticity of each level in all periods. There is still a negative vorticity zone to the north of 45°N, corresponding to the high-pressure area around Lake Baikal (Chen et al., 2013). The center of the upper westerly jet with zonal wind speed greater than 40 m s−1 is located at the intersection of two circulations of 200 hPa above 28°N, and also at the zero vorticity line in the upper levels.
[image: Figure 2]FIGURE 2 | Latitude-altitude cross-sections of meridional (unit: m s−1; vector) circulation, vorticity (unit: 10−5s−1; contour) and upper-level jet (u≥30 m s−1; long dashed) averaged in 80–90°E in (A) winter half-year, (B) autumn, (C) winter, (D) spring. (J) the jet center; shadow: the topography.
In autumn (Figure 2B), both the Hadley circulation and the Ferrel circulation are northward. The low latitude strong ascending is accompanied by obvious positive vorticity at 10°N, indicating that the Intertropical Convergence Zone (ITCZ) is stronger and farther north. The South Asian high is also farther north. There are respectively weak positive and negative vorticity centers on the south and north sides of TP, which reach the strongest at 500–600 hPa and have obvious ascending and descending motions. These centers correspond to the SBT and NBR formed by FAT on the south and north sides of TP. The upper-level westerly jet moves northward to about 35°N over the TP, with weak intensity.
The Hadley circulation and the Ferrel circulation move southward in winter (Figure 2C), when their intensity and range reach the maximum. The descending branches of both circulations are enhanced by the descending motion of the TP cold high, resulting in the strongest downdraft over TP (Lu et al., 2007). The ITCZ at low latitudes moves back to the equator, making the positive vorticity near the equator extends from the surface to 200 hPa. The negative vorticity in middle-low latitudes appears from bottom to top in the troposphere, and thus the cold high is a deep high-pressure system. The positive and negative vorticity on the south and north sides of TP increases. Especially, the positive vorticity reaches the strongest and largest in winter, indicating that the SBT reaches the strongest and largest in winter, and extends upward over the TP (Suo and Ding 2009). The westerly jet with wind speed greater than 50 m s−1, which is still centered at 200 hPa, also moves southward and reaches the strongest in winter.
In spring (Figure 2D), both the Hadley circulation and the Ferrel circulation weaken, and the anti-Hadley circulation becomes obvious on the south side of TP, that is, the “pre monsoon circulation” (Luo et al., 1984). The ITCZ and the deep subtropical high move slightly northward. The positive and negative vorticity on the south and north sides of TP is still strong. Especially, the negative vorticity reaches the strongest, indicating that the NBR is the strongest in spring, and so is FAT. But, obvious ascending motion occurs at both sides of TP. It is possibly because the TP starts to change from a cold source to a heat source, which strengthens the ascending motion and weakens the descending branch of Hadley circulation (Freitas, et al., 2017). The South Asian high in the upper level is weakened. The westerly jet is also weakened to 30 m s−1, and moves slowly northward.
From the analysis of the above vertical circulation structure characteristics, it can be concluded that the FAT exists in each time periods. In the winter half-year, the intensity of FAT is stronger, the Hadley and Ferrel circulations are stronger, and the upper westerly jet is stronger. In autumn, the FAT is weak, the Hadley and Ferrel circulations are weak, including the upper westerly jet. It is noted that not only the FAT is the strongest in winter, but also the Hadley and Ferrel circulations are also the strongest, and even the upper westerly jet is the strongest, but its location is northerly. Finally, the FAT weakened in spring, and the upper westerly jet is the weakest.
Spatial distributions
Figure 3 shows the spatial distribution of the first eigenvector of the zonal deviation vorticity obtained by EOF decomposition in the main area of FAT in recent 40 years. In the winter half-year (Figure 3A), there is mainly negative zonal deviation vorticity around the TP and weak positive zonal deviation vorticity away from the TP. It indicates that the NBR is enhanced from north to south, and the SBT weakens from south to north. There is an overall weakening trend of FAT. In autumn (Figure 3B), zonal deviation vorticity is positive in the NBR area and negative in the SBT area, indicating both NBR and SBT are weakened. Meanwhile, there is a consistent weakening trend of FAT from north to south. Weak negative zonal deviation vorticity in the NBR area in winter indicates the enhanced NBR (Figure 3C). The obvious positive zonal deviation vorticity on the south side of TP shows the enhancement of SBT from south to north. FAT in winter is continuously enhanced from south to north. Zonal deviation vorticity in the NBR area is consistently positive and decreases from west to east in spring (Figure 3D). On the other hand, there is large positive zonal deviation vorticity on the south side of TP and negative vorticity in low latitudes, which means SBT enhances from south to north. The FAT shows a weakening trend as a whole. Therefore, the NBR tends to weaken in all periods, while the SBT weakens from south to north in the winter half-year and autumn, but enhances from south to north in winter and spring. The spatial variation trends of FAT and SBT are almost the same.
[image: Figure 3]FIGURE 3 | Spatial distributions of the first eigenvector of the mean zonal deviation vorticity obtained by the decomposition of the empirical orthogonal function in (A) winter half-year, (B) autumn, (C) winter, (D) spring. The number in the upper right represents the variance contribution of the first eigenvector. Shadow: the topography.
Seasonal variation characteristics
It can be seen from the pentad evolutions of the vorticity in 70–100°E at 600 hPa (Figure 4A) that, the ITCZ maintains near the equator from January to April, then moves northward substantially in May, reaches 20°N in July, begins to move southward in September gradually, and stabilizes near the equator at the end of October. The subtropical high stabilizes in 8–23°N from January to April. In the first 10 days of May, with the onset of the Asian monsoon in the Bay of Bengal (He and McGinnisSong., 1987; Wu and Zhang, 1998), and the enhancement of the thermal effect of TP, the subtropical high begins to weaken and contract northward (Yanai et al., 1992). In summer, due to the obvious thermal effect of TP, the subtropical high weakens and breaks into pieces over the TP, and moves northward to around 28°N. In autumn, the subtropical high slowly intensifies and expands, and moves back to low latitudes gradually. The SBT between 24°N and 28°N is stronger from January to April, and then weakens with the weakening and northward moving of the westerlies. From June to early September, affected by a weak subtropical high, the SBT moves southward with the westerlies. The SBT reappears in mid-September and gradually intensifies, reaching the strongest from previous November to April. The NBR exists all year round at 35–45°N. With the migration of the westerlies, it is stronger in the winter half-year and weaker from May to August. With the north-south shift of ITCZ, subtropical high and westerlies, as well as the conversion of TP between cold and heat sources, the seasonal variation of FAT is obvious, and it is stronger from November to the next April.
[image: Figure 4]FIGURE 4 | The pentad evolution of climatic mean of (A) vorticity (unit: 10−5s-1) in 70–100°E at 600 hPa and (B) IW (unit: m s-1), IFAT (unit: 10−5s-1), ISBT (unit: 10−5s-1) and INBR (unit: 10−5s-1).
The FAT, NBR and SBT are formed when the subtropical westerlies pass through the TP in the winter half-year. In this study, the average zonal wind speed in the upstream of TP at the mid-latitudes (20–45°N, 55–70°E) is selected to represent the index of westerlies intensity (IW) upstream of TP, and the relationships between the westerlies and the intensities of FAT, NBR and SBT are discussed (Figure 4B). It can be seen that all the indexes have significant seasonal variations.
From January to February, the IW shows an obvious increasing trend. It reaches the strongest in the 12th pentad, then decreases remarkably, and reaches the weakest in the 39th pentad in July with a value close to zero. The westerlies in July and August are weak, and increase rapidly in September. The standardized anomalies of IW from the 26th to 60th pentad are lower than zero, indicating that the mid-latitude westerlies upstream of TP are stronger in the winter half-year from previous November to current April and reach the strongest at the end of February. During the weakening and northward moving of the westerlies at mid-latitudes from the end of April to October, the westerly wind upstream of TP is gradually replaced by a stronger easterly wind, which is the strongest in July. When the westerlies at mid-latitudes begin to move southward, the intensity of westerly wind upstream of TP enhances again.
The NBR exists all year around and changes with the north-south shift of the westerlies. It is stronger in the winter half-year from previous November to current April, strongest in the ninth pentad, and weaker in summer from June to August, especially in the 43rd pentad in August. It begins to enhance with the slow southward movement of the mid-latitude westerlies.
The ISBT is also stronger in the winter half-year. It reaches the strongest in the eighth pentad, weakens from April to June, and reaches the weakest in the 53rd pentad. It is weaker from July to August, and starts to strengthen slowly in September. The standardized anomalies of ISBT in the 22nd–65th pentad are less than zero. It means that the SBT changes with the north-south shift of the westerlies. It is the strongest in winter at the beginning of February (Suo and Ding, 2009), and then starts to weaken. With the onset of the Bay of Bengal monsoon from April to June, the SBT weakens slowly and reaches the weakest rapidly from July to August in mid-summer, with the intensity close to zero. When the westerlies at mid-latitudes slowly move southward, the SBT slowly intensifies from September.
The FAT has the common evolution characteristics of SBT and NBR. It is stronger in the winter half-year from October to the next April, and reaches the strongest in the eighth pentad in February when the IW has the second-largest value. Then, the FAT gradually weakens with the northward movement of the westerlies at mid-latitudes, and is the weakest in the 45th pentad in August. The standardized anomalies of IFAT in the 30th–60th pentad are less than 0. The weakening of FAT is caused by the simultaneous weakening of SBT and NBR after the weakening and northward moving of mid-latitude westerlies.
The correlation coefficients between IW, IFAT, ISBT and INBR are shown in Table 1, which all pass the significance test at the 0.001 significance level. They indicate that FAT, NBR, and SBT are closely related to the changes of the subtropical westerlies in upstream areas. The correlation coefficient between INBR and ISBT is 0.85, which has also passed the significance test of 0.001, indicating a significant positive correlation between the NBR and SBT.
TABLE 1 | The correlation coefficients of IFAT, ISBT, INBR, and IW.
[image: Table 1]Interannual variation and periodic characteristics
From the annual average of IFAT and IW and the wavelet analysis of IFAT (Figure 5), it can be seen that the IFAT and IW have obvious interannual variation and periodic characteristics in the winter half-year, autumn, winter and spring.
[image: Figure 5]FIGURE 5 | The time series of IFAT(solid line and square), and IW(dashed line and circle) in (A) winter half-year, (C) autumn, (E) winter, (G) spring. The wavelet power spectrum for IFAT in (B) winter half-year, (D) autumn, (F) winter, (H) spring. The shaded areas in B, D, F and H indicate statistical significance 0.05 level, and dotted line areas indicate the cone of the wavelet influence by the boundary.
There are the best positive correlation for IFAT and IW in the winter half-year, passing the significance test at the 0.001 significance level. They are decreasing trends year by year. The trend of IW has passed the significance test at the 0.05 significance level. Both of them are stronger before 1997 and then weaker (Figure 5A). The IFAT of the winter half-year has a 4–8a period in the 1990s and a quasi-4a period in the 2010s (Figure 5B).
In autumn, the mid-latitude westerlies move from north to south with a weak intensity, which shows a decreasing trend that has passed the significance test of 0.05. It is the strongest in 1980 and then continually weakens until 1998 (Figure 5C). The average intensity of FAT in autumn is weaker than that in the winter half-year. It also reaches the strongest in 1980 and the weakest in 1994. After that, it intensifies slowly. The correlation between IFAT and IW has passed the significance test of 0.001. The IFAT in autumn has a 2–4a period in the 1980s, and a 4–8a period in 1990s–2000s (Figure 5D).
The intensity of mid-latitude westerlies and FAT reaches the strongest in winter, with large interannual variation. But the positive correlation between them has only passed the significance test at the 0.02 significance level. The IW shows a slight weakening trend. It reaches the weakest in 1979, then slowly intensifies until 1989, maintains a strong state in the early 1990s, and then slowly weakens. However, the IFAT shows a slight strengthening trend. Both of them maintain a strong state around 1990 (Figure 5E). The IFAT in winter has a quasi-2a period in the 1980s, and a 16a period in the 1990s (Figure 5F).
In spring, as the mid-latitude westerlies start to move northward, IFAT and IW weaken, showing a weak weakening trend. The positive correlation between them has also passed the significance test at the 0.001 significance level (Figure 5G). The IFAT in spring has a 3–4a period from the 1980s to the 1990s, and a quasi-3a period at the end of the 2000s (Figure 5H).
Overall, it can be concluded that the interannual evolution of IFAT is closely related to IW in the upstream of TP, both of which are the strongest in winter and have obvious periodic changes.
According to the above analysis, the FAT is the strongest in winter. The year when a standardized anomaly of IFAT in winter is greater than one or less than −1 is taken as the strong and weak winter FAT year, respectively. The results are shown in Table 2. In the following sections, the winter is used as the representative period. After the t-test, the composite difference of physical quantities between strong and weak winter FAT years is used to explore the relationship between winter FAT anomaly and the precipitation and temperature in China, as well as the characteristics of atmospheric circulation under anomalous winter FAT.
TABLE 2 | The stronger/weaker years of IFAT in winter.
[image: Table 2]RELATIONSHIP OF WINTER FAT WITH THE CLIMATE AND ATMOSPHERIC CIRCULATION IN CHINA
Relationship of winter FAT with precipitation and temperature
The NBR and SBT in winter are closely related to the precipitation and temperature in China (Fan et al., 2015; Li et al., 2021). This relationship under the background of global warming can be seen in Figure 6. There are significantly positive precipitation anomalies in most parts of China (Figure 6A), indicating that there will be more precipitation when winter FAT is stronger and vice versa. Especially in the central part of Xinjiang and TP, the southern part of Southwest China, North China, the Yangtze-Huaihe River, the middle and lower reaches of the Yangtze River and South China, the positive precipitation anomalies are significant and have passed the significance test. Only the northern part of Northeast China has weak negative precipitation anomalies, indicating less precipitation when winter FAT is stronger and vice versa.
[image: Figure 6]FIGURE 6 | The t-test results of the (A) precipitation and (B) temperature difference in China between the stronger and weaker winter FAT years. (Solid lines and dashed lines represent positive and negative values respectively; correlation significant at the 0.01, 0.05 and 0.1confidence level are shaded with dark and light grey, contour interval: 2)
The relationship between temperature in China and winter FAT is almost opposite. Figure 6B shows negative temperature anomalies in most parts of China, especially in the TP, North China and the middle of Northeast China. Only the southern parts of Southwest and South China have positive anomalies that have passed the significance test, while some weak positive anomalies occur in local areas of Northwest China, Southwest China, South China and East China. It means that when the winter FAT is stronger, the temperature in most parts of China is lower, especially over the TP and in the middle of Northeast China, and the temperature in the south of Southwest China and South China is higher, and vice versa. All the conclusions have passed the significance test at the 0.1 significance level.
It can be concluded that with the change of IFAT, the precipitation changes in most parts of China are very significant, especially in most parts of Northwest, and central-eastern parts of China under global warming. The anomalies of precipitation and temperature in TP and Northeast China are also obvious. Extreme weather such as blizzards and cold waves may occur in some areas of Northwest China, TP and North China. Low temperature and continuous rainy weather may occur in the Yangtze-Huaihe River and the middle and lower reaches of the Yangtze River, causing road icing. These relationships can be discussed from the perspective of abnormal atmospheric circulation in stronger and weaker winter FAT years.
Relationship of winter FAT with atmospheric circulation
Under the background of global warming, the abnormal FAT in winter causes the abnormal precipitation and temperature in China, which reflects the abnormal large-scale atmospheric circulation and physical quantities. The abnormal change of large-scale circulation may affect the occurrence of extreme events (You et al., 2011).
The difference of sea-level pressure and OLR between the stronger and weaker winter FAT years is shown in Figure 7A. There is strong positive pressure anomaly centered over the Central Siberian Plateau and Northeast China. It indicates that the Asian cold high is stronger, and results in lower temperature in most parts of Asia, especially in Northeast and North China. From South China to the Indochina Peninsula and eastward to the Aleutian Islands, there is a weak negative pressure anomaly which can cause higher temperature. There are negative OLR anomalies in most parts of Asia, especially in Northwest China, TP, the central-eastern China, and most coastal areas of China. It indicates that there are more clouds and convective activities (Brant et al., 1998; Liu and Li, 2007), which is in favor of more precipitation and lower temperature in these eraes. The OLR anomaly in the TP area in winter has good spatial consistency and persistence, which can affect the 500 hPa circulation in the current month and the next 1–2 months (Li et al., 1996).
[image: Figure 7]FIGURE 7 | The t-test results of the difference of (A) sea level pressure (unit: hPa; contours) and OLR (unit: W/m2; shadows), (B) wind (unit: m s−1; vectors) and water vapor flux divergence (unit: 10–6 g·s-1·cm-2·hPa-1; shadows) at 850 hPa, (C) geopotential height (unit: gpm; contours) and vertical velocity (unit: hPa/s; shadows) at 500 hPa, and (D) wind (unit: m s−1; vectors) and divergence (unit: s−1; shadows) at 200 hPa between the stronger and weaker winter FAT years. The values larger than 1.8 have passed the significance test at the 0.1 significance level.
The t-test results of the difference of wind and water vapor flux divergence at 850 hPa between the stronger and weaker winter FAT years are shown in (Figure 7B). As can be seen, the mid-high latitudes of Eurasia are dominated by anticyclonic abnormal circulation, and there is significant northerly wind anomaly in Northeast Asia, which can guide the cold air in the polar region to the south along the Central Siberian Plateau through the easterly path and cause low temperatures in most parts of northern-eastern China in strong winter FAT years. In the middle and low latitudes, there is an abnormal cyclonic circulation centered on the TP, with the strongest part located in the area from the Indian peninsula to the middle and lower reaches of the Yangtze River in China. It indicates that the SBT and the southwesterly low-level jet are relatively strong when winter FAT is strong. The western Pacific subtropical high is farther north and west. There is easterly wind anomaly in the north of the Yangtze River, and strong southerly wind anomaly in the south. Obvious wind shear is formed in the Yangtze River basin, where the cold air and warm air converge. The abnormally strong southwesterly low-level jet between the SBT and the western Pacific subtropical high continuously transports the warm-humid air from the Bay of Bengal, the South China Sea and the East China Sea to the mainland of China. There is a significant water vapor flux convergence anomaly in the south of the Yangtze River. Combined with the cold air moving southward, it is easy to cause precipitation and low-temperature weather in most parts of central-eastern China during the strong winter FAT years, while the temperature in the southwest and southern China is abnormally high.
In Figure 7C, the t-test is conducted based on the difference of geopotential height and vertical velocity at 500 hPa between the stronger and weaker winter FAT years. As can be seen, there are positive geopotential height anomalies in the middle-high latitudes of Asia and near the equator, and negative anomalies in southern China. It shows that in stronger winter FAT years the Ural high-pressure ridge and the East Asian trough are weak, the northern part of Asia is controlled by the abnormally strong high pressure ridge, and the southern part is an abnormal low-pressure trough. The NBR in the north side of TP is stronger when winter FAT is stronger, which guides the cold air from the polar region to the south by the eastern path, resulting in abnormally low temperatures in northern and eastern China. The SBT and the western Pacific subtropical high are relatively stronger. The southwesterly airflow transports more water vapor from the Bay of Bengal, the South China Sea, the East China Sea and the western Pacific to the mainland of China. Most parts of China from northwest to southeast show obvious ascending motion anomaly in strong FAT winter, especially in the northwest and south of the Yangtze River, which is conducive to more precipitation in most parts of Northwest and South China. In Northeast China, there is a weak positive anomaly, indicating the descending motion which is unfavorable for precipitation.
Figure 7D shows the t-test results of the difference of divergence and wind at 200 hPa between the stronger and weaker winter FAT years. In the mid-high latitudes of Eurasia, there is an abnormal cyclonic circulation. The polar front jet in northern Asia is weak, which is an abnormal easterly. In the subtropical region, an abnormal westerly flow indicates a stronger westerly jet in strong winter FAT years. In China there is an abnormal cyclonic circulation centered on the east side of TP. The subtropical westerly jet on the south side of TP is relatively strong, and the jet axis is located from the Iranian Plateau to Indochina Peninsula. The Northwest China, TP and most areas in eastern China are abnormal high-level divergent areas, which is conducive to the formation of precipitation. Such distribution of upper-level jet stream will lead to strong East Asian winter monsoon and large-scale land surface cooling in China (Mao, et al., 2007; Yao and Li, 2013).
In summary, the baroclinic characteristics from bottom to top in most parts of Asia in strong winter FAT years are very significant. The positive surface pressure anomaly and negative OLR anomaly are significant. At low levels, there is obvious cold air moving southward by the easterly path in the north of the Yangtze River. In contrast, the strong low-level jet in the south of the Yangtze River transports abundant water vapor from the source areas. The cold air and warm air converge and form a shear line in the Yangtze River basin. The FAT in middle levels and the ascending motion in most parts of Northwest and East China are stronger. The divergence at high levels is stronger in most parts of Northwest and South China. Meanwhile, the subtropical upper-level jet is also stronger. These abnormal distributions are consistent with the precipitation and temperature anomalies shown in Figure 6, which can well explain the precipitation and temperature anomalies in China, including the possible causes of the extreme weather such as cold waves and blizzards in most areas of the North China and TP in winter, the low-temperature freezing disasters in the middle and lower reaches of the Yangtze Rive.
Precursor circulation signals and abnormal circulation characteristics
Investigating the characteristics of precursory and anomalous circulation in the northern hemisphere during the anomaly of FAT in winter is conducive to understanding the possible reasons for the formation and change of its relationship with precipitation and temperature. From 500 hPa geopotential height anomaly field of the FAT anomaly in January and the previous in October, November, and December in the northern hemisphere (Figure 8), the Rossby wave is the main feature.
[image: Figure 8]FIGURE 8 | The composite 500 hPa geopotential height anomaly of winter FAT in previous October (A,B), November (C,D), December (E,F) and anomalous January (G,H) in the northern hemisphere. A, C, E and G are the stronger FAT years, and B, D, F and H are the weaker FAT years. The shadow is the same as Figure 6.
Firstly, the anomalous field of precursory circulation in stronger years of FAT is analyzed. The polar vortex is located at the North American in October (Figure 8A). The North Atlantic Oscillation (NAO) is strong. The Rossby wave originating from the North Atlantic propagates eastward, passes through Europe to Siberia and the Aleutian Islands, which is a strong positive anomaly. The East Asian Trough is stronger, and the North Pacific Oscillation (NPO) is also strong. The positive anomaly in the north of TP is stronger, and negative anomaly in the south is weaker, indicating the FAT is stronger. In November (Figure 8C), the polar vortex moves to the eastern hemisphere, and the NPO is stronger. The trough and ridge on the south and north sides of TP are weaker, so the FAT is weaker, too. While the NAO in December (Figure 8E) is significant. The polar vortex distributed in the North America, the polar regions and the Ural Mountains are abnormally stronger. The Rossby wave from the east of the Atlantic Ocean, through the Ural Mountains to the east of Asia, shows abnormally high pressure. The East Asian Trough is weaker. Moreover, the trough and ridge on the south and north sides of TP are still weaker, and the FAT is also weaker. The propagation of the Rossby wave originating in the North Atlantic is very evident by January (Figure 8G). Western Europe and northern Asia are positive anomalies, the stronger polar vortex is near the Ural Mountains, forming an “inverted Ω pattern” circulation in the eastern hemisphere, which is conducive to guiding the cold air from the stronger polar vortex southward to affect China. At the same time, the NBR and SBT are stronger, and the FAT is also stronger. The SBT can transport water vapor from the bay of Bengal and the South China Sea to China, which is prone to precipitation. It can be seen that the precursor circulation signal is the strongest in October.
The precursory circulation anomalous field in weaker years of FAT is not in the opposite phase to the anomalous in stronger years completely. The NAO and NPO are stronger in October (Figure 8B). The SBT and NBR in the south and north of TP are weaker, and the FAT is weaker. In November (Figure 8D), the stronger polar vortex is biased towards the Western Hemisphere, and the weaker polar vortex is biased towards northern Asia. The NAO is exceptionally strong. The propagation of Rossby wave originating from the North Atlantic region is unusually pronounced. The negative anomaly in the north of TP is weak, and the FAT is weaker. The polar high pressure in December is stronger (Figure 8F). There is a “multipolar” circulation in the middle and high latitudes. The abnormal low pressure in north of TP increases, the NBR is weaker, and the FAT is also weaker. The polar region is still controlled by the polar high pressure in January (Figure 8H). The stronger polar vortex moves southward to the Western Hemisphere. The NAO is significant. There is a weak high-pressure circulation around the TP, the NBR is stronger, and the East Asia Trough is stronger and eastward, which are not conducive to the southward movement of cold air to affect China. At the same time, the SBT is weaker, which can’t be conducive to the transportation of water vapor. The precursory circulation in December is similar to the abnormal circulation in January.
Anomalous characteristics of upstream TP zonal westerly wind
The analysis in the previous chapter shows that the changes of FAT at different time scales are closely related to the changes of the westerly flow upstream of the TP. The anomaly of the FAT circulation in winter must be related to the anomaly of the westerly airflow upstream of the TP. Figure 9 is obtained by taking a vertical section of the 20–45°N mean zonal westerly wind upstream of the TP when the FAT is abnormal. When the FAT is stronger (Figure 9A), the westerly airflow upstream of the TP is around 65°E, showing a bottom-up enhancement centered at 200 hPa, and the upper-altitude westerly jet is stronger. When the westerly airflow passes through the TP, it is blocked by the TP and forms a north-south branch, and its intensity is weakened. After the two westerlies converge to the east of the TP, the intensity increases from bottom to top and from west to east, forming a stronger subtropical westerly jet stream. The anomalous characteristics of westerly winds (Figure 9B) are almost opposite when FAT is weaker or stronger. The westerly airflow is centered at 200 hPa near 65°E, weakening from bottom to top, and the high-altitude westerly jet is weaker. After the two westerly airflows intensifies confluence east of the TP, and the subtropical westerly jet also intensified, but the westerly weakens east of 135°E and moved eastward, and the westerly jet also weakens.
[image: Figure 9]FIGURE 9 | Longitude-altitude cross-sections of the average zonal westerly (unit: m s−1; vector) anomaly of 20–45°N in (A) the stronger, (B) the weaker of FAT years. Shadow is the 4 km topography.
It can be concluded that, according to the upstream and downstream effects, the strength of the zonal westerly wind upstream of the TP leads to the abnormality of FAT, and the change of the subtropical westerly jet stream in the downstream, which may also be another important trigger mechanism for the formation of the abnormal relationship between FAT and precipitation and temperature in China.
CONCLUSION AND DISCUSSION
In this study, we define the vorticity perturbation as the difference between local vorticity and the meridionally-averaged vorticity. Then, the difference of averaged vorticity perturbation at 600 hPa in the two key areas where the trough and ridge are located is used to represent the intensity of the flows around the Tibetan Plateau (IFAT) visually. Then, we analyze the vertical structure and spatial distribution of FAT in the winter half-year, autumn, winter and spring, as well as the intraseasonal and interannual evolution characteristics of FAT. Taking winter as a representative, this study discusses the relationship of FAT with precipitation, temperature and large-scale circulation in China under global warming. The main conclusions are as follows.
The asymmetric TPD circulation is steady on the north and south sides of TP in the winter half-year. With the movement of the westerlies, the FAT begins to strengthen gradually in autumn. In winter, the mid-latitude westerlies and FAT in the upstream of TP reach the strongest and the widest. In spring, they begin to weaken and change to the summer circulation pattern. The NBR shows a weakening trend in all periods, while the variation trends of FAT and SBT are the same. The interannual variation of FAT in each period is mainly a weakening trend year by year, and has a quasi-4a period.
Under the background of global warming, taking winter which has the strongest FAT as an example, the relationships of IFAT with the precipitation and temperature in China are analyzed. It is found that the relationships in most parts of China are very significant, especially in most parts of central and eastern China, as well as in Northwest China, TP and Northeast China. In addition, extreme weather such as blizzards and cold waves may occur in parts of Northwest China, TP and North China, and the low temperature and freezing events in the Yangtze-Huaihe River region and the middle and lower reaches of the Yangtze River.
When the FAT is abnormal in winter, the abnormal fields of large-scale atmospheric circulation, OLR, water vapor flux divergence and vertical velocity at all levels are discussed. Results show that the baroclinic characteristics in most parts of China are significant in the troposphere from bottom to top. When FAT is stronger, the positive pressure anomalies on the ground and the negative OLR anomalies are obvious. There is significant convergence caused by cold and warm humid air in low levels, and the FAT and ascending motion in the middle levels are stronger. Meanwhile, the westerlies jet in the south and the divergence at high levels are relatively strong. Rossby wave is the main feature of the circulation anomalies and precursor signals in the northern hemisphere. The precursory signals in stronger and weaker years of FAT appears in previous October and December respectively. When the FAT is stronger in winter, the westerly jet in the upstream of the TP is strengthened from bottom to top significantly, and it is the opposite in weaker years. These abnormal distributions can well explain the relationships between the FAT and the precipitation and temperature in China. In addition, the FAT anomaly may also be one of the reasons for the climate extreme events in China, such as cold waves and blizzards in the north and in most areas of TP in winter, the low-temperature freezing disasters in the middle and lower reaches of the Yangtze River.
Research on the dynamic effect of TP started in the 1950s (Yeh, 1950; Bolin, 1950; Ramaswamy, 1956). In recent years, the research on TP mainly focused on the characteristics of its thermal effect and its impact on Asian weather and climate (He et al., 1987; Liu et al., 2012). This study only discussed the influence of the mid-latitude westerlies on the evolution of FAT, but the relationship between TP thermal status and FAT is still unclear. Duan et al.,2008, and Liu et al. (2012) found that the change of wind speed over the TP is the key factor affecting the thermal condition of TP. Besides the influence of the westerlies, what else is the driving mechanism of TP wind speed change? From the perspective of large-scale circulation, this study has already concluded that the FAT may be one of the reasons for the high impact winter weather events in China. What is the effect of FAT on climate extreme weather under the background of global warming? These are the issues that need to be studied in the future.
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Southwest China (SWC) is located in the eastern part of Tibetan Plateau (TP) with large elevation differences and complex topography, which has always been a challenge to the simulation of precipitation in climate modeling community. In this study, the differences in the simulation of precipitation over the SWC are evaluated using the lower and higher resolution models (LR and HR) from the High–Resolution Model Intercomparison Project (HighResMIP) protocol in Coupled Model Intercomparison Project Phase 6 (CMIP6). Our results indicate that the spatial patterns of annual precipitation over the SWC for the period 1985–2014 are well reproduced in most of the HR and LR models, with an increasing tendency from the northwest to southeast. Compared with LR models, the wet biases over the eastern TP and the dry biases over the Sichuan Basin are significantly reduced in HR models. The bias for annual precipitation of the multi–model ensemble mean (MME) has been reduced from 0.97 mm/day (LR) to 0.72 mm/day (HR). In addition, the simulation of extreme precipitation is significantly improved in the finer horizontal resolution models, showing effectively reduced simulation biases in the Sichuan Basin compared with the LR models. The frequency and intensity of extremes are represented by heavy precipitation days (R10 mm) and maximum consecutive 5 days precipitation (Rx5day), which the relative changes have been decreased from 66% (LR) to 47% (HR) in R10 mm and decreased from 23% (LR) to 19% (HR) in Rx5day. We further examine the possible reasons for the difference between LR and HR models in precipitation simulation, showing that the HR models could generate “additional” cyclonic circulation and promote more upward motion with the water vapor convergence, thus correcting the dry biases of precipitation simulation over the Sichuan Basin. This indicates that atmospheric circulation and moisture conditions could be simulated more realistically in climate model with a finer resolution, further improving precipitation simulation performance.
Keywords: CMIP6, HighResMIP, model evaluation, precipitation, Southwest China
1 INTRODUCTION
Precipitation, as an indispensable part of climate and hydrological cycle, has long been the hotspot of research in meteorology and hydrology (Cheng et al., 2019; Zhao et al., 2021; Zhao and Zhou 2021; Cao et al., 2022). Large greenhouse gas emissions contribute to global warming, with concomitant changes in atmospheric circulation and the water cycle, which could affect the spatiotemporal distribution of precipitation. Heterogeneity of precipitation could bring about a massive drought and flood under the warming scenario, which in turn, affect regional, and global climate (IPCC 2021). Accordingly, for the perspectives of water resources management, hydrological disaster protection and agricultural production, it is worthwhile to identify the variations of precipitation (Ge et al., 2019, 2021; Zhao et al., 2022).
Southwest China (SWC) is adjacent to the Tibetan Plateau (TP), considered as one of the most complex terrains over China, with plenty of mountains, basins, hills and other landforms (Figure 1). With fragile ecosystems and drastically varying elevation, the frequent occurrence of precipitation extremes in the SWC can not only directly induce flooding, but also can cause secondary disasters, for instance, landslides and debris flows, resulting in enormous loss of human lives and economic damage (Zhang et al., 2012; Jiang et al., 2014; Liu et al., 2015; Wang et al., 2017). Hydrological cycle over the SWC is critical to utilization of water resources throughout the middle and lower reaches in East and Southeast Asia (Zhang et al., 2013a; Yan et al., 2018; Miao et al., 2019). Meanwhile, the variability of the spatiotemporal distribution of precipitation has been regarded by some studies as one of the major factors dominating the hydrological cycle and ecology over the SWC (Gao et al., 2020; Nie and Sun, 2020; Zhang, 2020). Consequently, precipitation remains a key and valuable predictive variable from natural hazard prevention and socioeconomic perspectives.
[image: Figure 1]FIGURE 1 | Geographic location, topography (surface elevation; shaded; unit: m) of the study domain (on the left), (A), and the area covered by purple shadow is SWC (20–35°N, 96–111°E), which includes Chongqing, Sichuan, Yunnan, and Guizhou (zoomed and shown on the right), (B).
Observations have recorded, in recent decades, an increasing trend of annual precipitation at high–elevation areas over the western part of the SWC, such as the TP and the Hengduan Mountains, but a decreasing trend over the Sichuan Basin (Chen and Xie, 2012; Qin et al., 2015; He and Zhai, 2018; Tang et al., 2018). Previous studies have also shown that precipitation extremes become more dominant as the frequency and intensity tend to increase over the SWC (Ma et al., 2013; Naveendrakumar et al., 2019; Zhang and Zhou, 2020). It indicates that under the rapid global warming, intensified precipitation extremes would induce more frequent floods and droughts, and increase the risk of severe secondary disasters over the SWC (Zhang et al., 2013b; Tang et al., 2016; Wang et al., 2017; Deng et al., 2018). Hence, it is necessary to assess precipitation variations in the SWC to identify current climate change and make robust predictions. Although there have been lots of improvements on the simulation of precipitation over the SWC, it is still challenging to accurately reproduce the atmospheric general circulation and moisture conditions due to the deficiency of model resolution and the complex topography.
Nowadays, benefiting from the Coupled Model Intercomparison Project (CMIP) established and promoted by the World Climate Research Program (WCRP), global climate models (GCMs) have become available tools for understanding current and future climate change variations (Li et al., 2013; Sillmann et al., 2013; Stanfield et al., 2016; Sun et al., 2022). Previous studies have shown that the models commonly overestimate precipitation in mountainous areas relative to observed data, especially in the eastern of the TP (Su et al., 2013; Lin et al., 2018; Luo et al., 2022). Also, the precipitation intensity is generally underestimated in the Sichuan Basin (He et al., 2017; Tao et al., 2020; Hu and Yuan, 2021). This indicates that the uncertainty of simulated precipitation is still relatively large over the SWC. In addition, the model resolution is considered as the one of primary elements influencing the performance in simulating precipitation (Sun and Ao, 2013; Kim et al., 2019; Xie and Wang, 2021). The resolution is too coarse to reproduce the important processes and features within the regional scale (Xu et al., 2017; Bonekamp et al., 2018), and precipitation events related to complex terrain could not be captured (Ménégoz et al., 2013; Liu et al., 2018; Schneider et al., 2018; Duan et al., 2019). Some studies also report that the simulation performance on regional precipitation characteristics can be improved with increasing resolution, but the improvement depends on the precipitation properties and the complexity of terrain (Mahoney et al., 2013; Feng et al., 2018; Vanden Broucke et al., 2019). Therefore, further studies ought to be intended to investigate whether the uncertainty in simulating precipitation over the SWC can be reduced by using the finer resolution models.
As one of the CMIP6–Endorsed Model Intercomparison Projects (MIPs), the High–Resolution Model Intercomparison Project (HighResMIP) is launched for the first time, providing a timely research platform to determine the improvement in simulation performance resulting from the increase in horizontal resolution of the models (Eyring et al., 2016). Detailed model assessment is performed by designing high–resolution climate simulations with the same requirements, including the specific effects of improved resolution on model dynamics and physical processes (Haarsma et al., 2016). Simulations involving the finer resolution model of HighResMIP may shed more lights on climate change. Recently, related works based on HighResMIP models have reported that the enhancement of horizontal resolution can significantly improve the performance of models for the diurnal variation of tropical cyclones and the resulting precipitation (Bao et al., 2020; Zhang et al., 2021). However, there is a lack of studies on evaluation of precipitation simulation over the complex terrain by using CMIP6 HighResMIP models. This study is aim to evaluate the performance in precipitation simulation of CMIP6 HighResMIP models over the SWC, and to address the following questions: 1) How do the CMIP6 HighResMIP models perform in simulating precipitation and precipitation extremes over the SWC? 2) To what extent the models differ in simulating precipitation at higher and lower spatial resolutions over this complex terrain?
2 DATA AND METHODS
2.1 CMIP6 HighResMIP model data
The HighResSST–present experiments (Tier 1) in HighResMIP protocol are the forced–atmosphere runs historically covered the period of 1950–2014. We select this historical simulation outputs in this study, including daily precipitation, monthly horizontal wind, vertical velocity and specific humidity. Six modelling groups from different institutions, each of the group which contains model of different horizontal resolutions (at least with a higher and a lower resolution version), 12 models in total are adopted in this study (Table 1). To ensure the evaluating consistency the models with different horizontal resolutions, the outputs from models are converted to a common grid of 0.5° longitude by 0.5° latitude before analyses and focused on the period of 1985–2014, which is consistent with the precipitation observations and reanalysis datasets described in next section.
TABLE 1 | The basic information of 12 CMIP6 HighResMIP models used in this study.
[image: Table 1]2.2 Observation and reanalysis data
A daily precipitation gridded dataset, called CN05.1, is used in this study. As the reference for precipitation, it is generated by the National Climate Center (NCC) of China Meteorological Administration (CMA) from more than 2,400 national observation stations through optimal interpolation approach based upon the climate background field (Wu and Gao, 2013). It can remarkably reduce the analysis errors due to precipitation heterogeneity (Wu et al., 2017; Yang et al., 2017). At present, this dataset has been extensively adopted in the evaluation of climate models in China (Lun et al., 2021; Veiga and Yuan, 2021; Guo et al., 2022). Moreover, the ERA5 reanalysis dataset from the European Center for Medium–Range Weather Forecasts (ECMWF), is also adopted as the reference for upper atmosphere variables, including the monthly vertical velocity, horizontal wind and specific humidity, with 17 vertical pressure levels from 1,000 hPa to 100 hPa (Hersbach et al., 2020).
2.3 Extreme precipitation indices
To evaluate the performance of models in simulating precipitation extremes over the SWC, six extreme precipitation indices recommended by the ETCCDI (Expert Team on Climate Change Detection and Indices) are used in this study (details listed in Table 2), which are as follows: Consecutive dry days (CDD), Consecutive wet days (CWD), Heavy precipitation days (R10mm), Very wet days precipitation (R95p), Maximum consecutive 5 days precipitation (Rx5day), Simple daily intensity (SDII). Detailed introduction about ETCCDI and climate indices could be found on the website of the ETCCDI: http://etccdi.pacificclimate.org.
TABLE 2 | List of the extreme precipitation indices used in the study.
[image: Table 2]2.4 Evaluation metrics
In this study, Taylor diagram and Taylor Skill Scores (TS) are used to quantitatively evaluate the ability of models in simulating precipitation and precipitation extremes over the SWC (Taylor, 2001). The Taylor diagram could illustrate the statistics of spatial correlation coefficient (SCC), the ratio of spatial standard deviation (RSD), and centered root–mean–square error (RMSE). The TS is calculated as follows:
[image: image]
where [image: image] is the SCC between the simulation and observation; [image: image] is the maximum value available for the correlation coefficient (usually used as 0.999); and [image: image] and [image: image] represent the spatial standard deviations (SDs) of the simulation and observation, respectively. The TS close to one indicates that the simulation is more consistent with the observation and the model has a relative superior simulation performance, while the TS close to 0 indicates the opposite performance between the simulation and the observation and represents a relative inferior simulation performance.
3 RESULT
3.1 Precipitation climatology
The spatial distributions of climatological precipitation over the SWC from CMIP6 HighResMIP simulations and CN05.1 observations are shown in Figure 2. The observed climatological precipitation is spatially inhomogeneous over the SWC, showing an increasing tendency from northwest to southeast. Overall, the CMIP6 HighResMIP models captured the characteristics of the climatological precipitation well during the period of 1985–2014. Compared with observation, the precipitation is generally overestimated in the LR models over the eastern part of TP and the Hengduan Mountain (Figures 2A–H). The locations of heavy rainfall belts simulated in CNRM–CM6–1, MPI–ESM1–2–HR, and IPSL–CM6A–LR are generally shifted northward compared with the observed data. The HadGEM3–GC31–LM performs relatively weak, with large overestimations over the Yunnan and Guizhou. In contrast, the HR models are substantially improved the simulations of precipitation (Figure 2I–P), especially showing more accurate distribution of rainfall belts associated with abruptness terrain around 31 °N over the SWC. Additionally, the spatial distribution of the multi–model ensemble mean (MME) precipitation in the HR models (MME–HR, Figure 2G) is better than the MME–LR (Figure 2O), which also reveals that the reproducibility of precipitation in HR models have been improved.
[image: Figure 2]FIGURE 2 | Climatological annual precipitation over SWC for the period from 1985 to 2014 based on the observation and CMIP6 HighResMIP models simulation (unit: mm/day), (A–F) Low–resolution models simulation, (I–N) High–resolution models simulation, which MME (G,O) and CN05.1 (H,P) represent multi–model ensemble means and observation respectively.
The spatial distribution of the differences between the simulated and observed precipitation for LR and HR models are presented in Figure 3. Models in the LR groups (Figures 3A–F) show wet biases in most plateau regions over the SWC, while the dry biases can be found at lower elevations such as the Sichuan Basin and the southern of the Yunnan and Guizhou. The HR models show moderate biases (Figure 3H–M, areal–mean absolute biases of 0.49–1.29 mm/day), which are much lower than the LR models (areal–mean absolute biases of 0.51–1.78 mm/day). Furthermore, the ECMWF–IFS and MPI–ESM1–2 models show lower biases, while the models from HadGEM3–GC31 and IPSL–CM6A show relatively higher biases. It is indicated that the modelling groups have different parameterization schemes and adjustment methods for climate models, which lead to some differences in precipitation simulation. However, the HR models significantly reduce the wet bias over the TP and the Hengduan Mountains compared to the LR models, and the bias in MME is reduced from 0.97 mm/day (LR) to 0.72 mm/day (HR). It exhibits that the resolution is a factor that plays an important role in simulating precipitation. Although the increase of model resolution reduces the bias of precipitation simulation over the SWC, there is still uncertainty between the eastern edge of TP and the elevation transition zone near 31°N. This means that precipitation simulations over complex terrain areas remain a challenge for the CMIP6 HighResMIP model.
[image: Figure 3]FIGURE 3 | Same as Figure 2, but for the spatial distribution of precipitation difference between each model and observation. The areal–mean absolute bias (unit: mm/day) over SWC are given on the top–right of each panel. Black dots denote the regions of precipitation differences statistical significance at the 95% confidence level using a two–tailed Student’s t–test.
Figure 4A shows the Taylor diagram for the simulated spatial distribution of climatological precipitation over the SWC. For the simulation of precipitation, there is considerable variation in the models of different modeling groups. ECMWF–IFS–HR, MPI–ESM1–2–XR, HadGEM3–GC31–HM, and ECMWF–IFS–LR with spatial correlation coefficients (SCC) above 0.5, and the ratios of standard deviations (RSD) are mostly close to 1, showing relatively better modeling performance. Figure 4B shows the Taylor skill scores (TS) for each model, in general, the TS of HR models are higher than the corresponding LR models. The MME–HR (0.6) is also higher than MME–LR (0.4), indicating that the increase of horizontal resolution can improve the performance in simulating precipitation. Since the purpose of this study is to examine the simulation differences of the high and low horizontal resolution models over the SWC. We adopt the MME to investigate the differences precipitation extremes simulation in the following subsections.
[image: Figure 4]FIGURE 4 | Taylor diagram (A) and Taylor Skill Scores (B) of climatological annual precipitation simulated over SWC. Angular axes show spatial correlation coefficients between simulated and observed pattern; radial axes show the spatial centered RMSE (normalized against the observed). Each dot represents a model, identified by its color on the bottom.
3.2 Extreme precipitation
Figure 5 shows the spatial distributions of the extreme precipitation indices from the CN05.1 observation for the climatological period 1985–2014. Large number of consecutive dry days (CDD) are observed over the Hengduan Mountains, while more consecutive wet days (CWD) can be found in the eastern of the TP (Figures 5A,B). In terms of the heavy precipitation days (R10mm), very wet days precipitation (R95p), maximum consecutive 5 days precipitation (Rx5day), and simple daily intensity (SDII) show an increasing tendency from northwest to southeast, which is similar to precipitation climatology (Figures 5C–F). It can be seen that more precipitation extremes mostly occur in the western and northern of the Sichuan Basin, but with fewer sustained rainfall days than in the highlands. This suggests that precipitation extremes could be more frequent, shorter in duration and higher in intensity in the steep transition regions over the SWC.
[image: Figure 5]FIGURE 5 | Spatial patterns of the precipitation extreme indices, (A) CDD, (B) CWD, (C) R10mm, (D) R95p, (E) Rx5day, (F) SDII, (units: day, day, day, mm, mm, mm/day), during 1985–2014 from the observation over the SWC.
The differences in the spatial distribution of extreme precipitation indices for the LR and HR models relative to CN05.1 are shown in Figure 6. The CDD and CWD are generally underestimated by the LR and HR models in the eastern of TP (Figures 6A–D). However, the models exhibit overestimation of CWD simulations mainly concentrated in the Hengduan Mountain (Figures 6C,D). In addition, for the simulations of R10mm, R95p, Rx5day and SDII, large wet biases exist over the eastern TP and dry biases occur in Sichuan Basin, which are similar to the climatological mean precipitation simulation (Figures 6E–I). In terms of the areal–mean relative changes (absolute bias as percentage of observation), the HR models have lower biases compared to the LR models, decreasing in CDD (7%), CWD (22%), R10mm (19%), R95p (7%), Rx5day (4%), and SDII (3%), respectively. Generally, the HR models show some advancements in simulating precipitation extremes, with more moderate biases in extent and magnitude compared with the LR models.
[image: Figure 6]FIGURE 6 | The spatial distribution difference of precipitation extreme indices between the MME (from LR and HR models) simulation and observation, (A,B) CDD, (C,D) CWD, (E,F) R10mm, (G,H) R95p, (I,J) Rx5day, (K,L) SDII, (units: day, day, day, mm, mm, mm/day), for the period from 1985 to 2014. The areal–mean relative changes (absolute bias as percentage of observation; unit: %) over SWC are given on the top–right of each panel. Black dots indicate the region of indices differences statistical significance at the 95% confidence level using a two–tailed Student’s t–test.
Figure 7A shows the Taylor diagram for the simulation of the extreme precipitation indices by HR and LR models versus the CN05.1 observation. Compared with the LR models, the HR indicate a good performance in reproducing the precipitation extremes, with the higher SCCs and lower centered RMSEs. Moreover, the TS of MME increase significantly in the HR models (Figure 7B). The TS for CDD, R10mm, R95p, Rx5day and SDII increased by 0.23, 0.17, 0.17, 0.29, and 0.20, respectively. However, for CWD the TS is reduced by 0.09. By comparing the spatial distribution (Figures 6C,D), it can be found that although the HR model greatly corrected the overestimates of CWD in the Hengduan Mountains, the underestimates over the eastern of TP also increased. This indicates that improving resolution of the models could overcorrect the CWD simulation biases while correcting the wet biases in precipitation simulation. It is noteworthy that the biases of the frequency and intensity of precipitation extremes are considerably reduced in the HR models simulations, which indicates that the finer resolution models generally have the superiority of the simulation ability of the precipitation extremes over the SWC.
[image: Figure 7]FIGURE 7 | Same as Figure 4, but for the Taylor diagram and Taylor Skill Scores of precipitation extreme indices with the MME.
3.3 Simulation differences of atmospheric circulation
Large–scale circulation and water vapor content are two dominant elements that directly affect the precipitation amount in SWC. To further explore the possible causes for the improvement of precipitation simulation in different horizontal resolutions, we calculate the simulated differences in atmospheric circulation and specific humidity between the CMIP6 HighResMIP models and ERA5 reanalysis. As shown in Figures 8A,B, the horizontal wind simulated difference from models at low–level (850 hPa) can be clearly found in the Sichuan Basin, where the LR models mainly show an anti–cyclone, indicating the weakened precipitation due to the mean divergent atmospheric flows. The horizontal winds in the HR models are characterized by the cyclone, which favors more precipitation around the Sichuan Basin. In addition, differences between the HR and LR models show that the extensive southwesterly wind over the southern SWC (Figure 8C), which enhance the transport of abundant moisture inland from the tropical ocean. The upper–level circulation is shown by 500 hPa wind field, both the LR and HR models indicate relatively similar wind shears over the SWC (Figures 8D,E). It can be seen that the cyclone and wind convergence occur in eastern TP and Hengduan Mountains where overestimated precipitation exists in the LR and HR models. However, as shown in Figure 8F, the HR models exhibit the strong northerly wind over the transitional region between the TP and the Sichuan Basin. And there is an anti–cyclone over the TP. This suggests that the added value of the HR models for suppressing the rainfall bias over steep elevations by reducing the convergence conditions in simulation of mean atmospheric circulation.
[image: Figure 8]FIGURE 8 | The climatological horizontal wind difference between MME and ERA5 for the period 1985–2014 over SWC (unit: m/s), (A–C) at 850 hPa, (D–F) at 500 hPa, color–shaded areas show terrain elevation below the corresponding barometric surface (unit: m). The blue dots denote the regions of horizontal wind speed differences statistical significance at the 95% confidence level using a two–tailed Student’s t–test.
On the other hand, Figure 9 presents MME difference for the zonal circulation and specific humidity with the ERA5 reanalysis. The MME–LR (Figure 9A), shows strong ascending motion in the edges of TP around 102°E, and the descending motion in Sichuan Basin around 108°E. Meanwhile, there are significantly negative biases of specific humidity at lower levels over plains, indicating the weakened precipitation due to the mean flow of moisture divergence in the LR models. The MME–HR (Figure 9B), exhibits strong descending motion with less moisture over the eastern TP, which indicates the wet bias have been reduced in the HR models. The difference in the MME between the HR and LR models (Figure 9C), presents less specific humidity over the TP accompanied with strong descending motion and more moisture conditions in the Sichuan Basin and the surrounding transition zone (about 103°E) accompanied with ascending motion, suggesting that the HR models added value to the reduction of precipitation bias. With the increase of resolution, the HR models perform better in simulations of atmospheric circulation and moisture content in the complex terrain, thus reducing the biases of precipitation over the SWC.
[image: Figure 9]FIGURE 9 | Differences in zonal wind (vectors; units: m/s) and specific humidity (shading; units: g/kg), cross section along 31°N (A) MME–LR minus ERA5, (B) MME–HR minus ERA5, (C) MME–HR minus MME–LR, and the green dots denote the regions of specific humidity differences statistical significance at the 95% confidence level using a two–tailed Student’s t–test.
4 SUMMARY AND DISCUSSION
In this study, the performance of the latest multi–resolution models from the CMIP6 HighResMIP protocol in simulating climatological precipitation and extreme precipitation indices have been quantitatively evaluated over the SWC. The differences in precipitation simulations due to the models with low and high resolution (LR and HR) are analyzed and the possible reasons for the differences are discussed.
1) Both of the LR and HR models can reasonably simulate the observational spatial distribution of precipitation well, which capture characteristics that the region of more precipitation in the area of Hengduan Mountains, with less in Sichuan Basins. However, the models show the dry biases in the Sichuan Basin, and wet biases in the eastern edges of the TP. The MME areal–mean absolute biases have been reduced from 0.97 mm/day (LR) to 0.72 mm/day (HR), suggesting some improvements of in simulation of the climatological precipitation in the HR models over SWC.
2) The LR and HR models show underestimate the CDD and CWD in the Hengduan Mountains and eastern TP, but overestimate in Sichuan Basin. For the R10mm, R95p, Rx5day and SDII, more wet biases exist over the plateau of western SWC, while moderate dry biases occur in Sichuan Basin. The spatial extents and magnitudes of simulation biases are significantly reduced in the HR models. The areal–mean relative changes decreasing in CDD (7%), CWD (22%), R10mm (19%), R95p (7%), Rx5day (4%), and SDII (3%), respectively, indicating that the finer, high–resolution models have added value in simulating extreme precipitation.
3) The dry and wet bias of the LR and HR models in simulating precipitation in the plateau and basin over the SWC are attributed to the simulation of atmospheric circulation and water vapor content. Compared with the LR models, the HR models have more reasonable moisture transport from the tropical ocean and convergence conditions to reduce the dry bias over the Sichuan Basin. Less water vapor content simulation with local descending motion reduces the wet biases over the higher altitude complex terrain. With the improvement of horizontal resolution, models can simulate more accurate atmospheric circulation pattern in complex terrain, so as to simulate precipitation more realistically.
The HR models exhibit superiority in simulating mean precipitation and precipitation extremes compared with the LR models. Especially over the TP and Hengduan mountains, the HR models substantially reduce the wet bias and the overestimation of the intensity and frequency of precipitation extremes. It can be responsible for the better simulation of atmospheric circulation and topographic forcing in the plateau and basin by the HR models, which leads to a reasonable estimation of moisture transport and convergence conditions. While the systematic precipitation biases that existed in the LR models seem to persist in the HR models, further analysis indicates that the intensity and extents covered by the dry biases over the Sichuan Basin and wet biases over the TP have reduced in the HR models. Moreover, the biases reduction in lower altitude areas (below 2000 m) is not as significantly as that in higher altitude areas (above 2000 m), indicating a certain elevation dependency exists in this improvement. It also indicates that the current state–of–the–art climate models may still be inadequate for describing meso–and micro–scale complex topography, and the considerable role of orography in water vapor transport and condensation cannot be simulated well by enhancing the horizontal resolution of the models (Collier and Immerzeel, 2015; Wang et al., 2020; Chen et al., 2021; Liang et al., 2021). By using the same parameterization, the climate models participating in the HighResMIP protocol are only tuned for their resolution. In order to obtain the more realistic simulation results, it is also important to adjust the cloud physical parameterization and aerosol emission factors of the model. Following the development of convection–permitting model (CPM), and regional climate model (RCM) dynamical downscaling can be as relatively beneficial tools to simulate the precipitation phenomenon. These models can show some advantages in simulating precipitation in complex terrains (Zou and Zhou, 2013; Shi et al., 2018; Li et al., 2021). Additionally, reducing the uncertainty in precipitation simulations appears to be achieved by the weighted average multi–model groups approach (Abramowitz et al., 2019; Merrifield et al., 2020). At the same time, the resolution of the weighted multi-model ensemble for the LR and HR groups should be paid more attention. However, considering the limitations of the models available from the HighResMIP protocol in this study, subsequent studies on systematic biases in precipitation simulations over complex terrain regions should be conducted by additional updated climate models or by the above–mentioned tools. Thus, we can gain insight into more dynamic and physical processes related to precipitation, identify more critical causes of uncertainty in climate models, and ultimately improve the confidence in projections.
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Previous studies have pointed out that persistent abnormal precipitation is closely related to atmospheric low-frequency oscillation, and Southwest China can be affected by low-frequency oscillation in different latitudes and altitudes. Therefore, it is necessary to study the relationship between persistent abnormal precipitation in Southwest China and low-frequency oscillation. In this study, the characteristics of atmospheric low-frequency oscillation in different latitudes and altitudes affecting persistent extreme precipitation in Southwest China were discussed by synthetic analysis and Butterworth filtering with precipitation data from meteorological stations and NCEP/NCAR reanalysis data, and the configuration relationship of low-frequency systems in three-dimensional space was shown. The results showed the following: 1) in the low-frequency circulation field, the Ural Mountains, east of Lake Baikal, the Sea of Okhotsk (Japan), the Western Pacific subtropical high control area, the South China Sea, the Indian Peninsula, and the Bay of Bengal were the key areas affecting precipitation; 2) oscillation could better reflect the original circulation characteristics at all latitudes of each layer, and on a period of oscillation of 15–30 days, it will affect precipitation at all altitudes and latitudes; and 3) at the lower level, different low-frequency cyclones and anticyclones moved to the mid-latitude and converged in different forms in the precipitation area. In the middle layer, the low-frequency high-pressure and low-pressure centers in the middle and high latitudes moved southward, finally forming a circulation situation of the high west and low east. At the upper level, the rainy area was controlled by low-frequency anticyclones and divergence centers from different regions, forming a high-altitude divergence field. The results can provide a theoretical basis for forecasting the extended period of persistent heavy rain in Southwest China.
Keywords: Southwest China, persistent extreme precipitation, low-frequency oscillation, system configuration, low-frequency
1 INTRODUCTION
Persistent abnormal precipitation is the main cause of floods. Ding (2005) proposed that the generation of torrential rain is mainly affected by three large-scale circulation factors. Liao Qinghai and Tao Shiyan (2004) clarified that the circulation process of the East Asian summer atmospheric circulation is related to the abnormal disturbance of the quasi-stationary waves of the subtropical westerly jet. Sometimes low-latitude circulation can also cause persistent anomalous precipitation. For example, Zhou and Cheng (1987) reported that the low-level jet in Somalia may be one of the reasons for the persistent heavy rainfall in the upper reaches of the Yangtze River. He Min (2005) proposed that the interaction between the cross-equatorial airflow and the westerly circulation anomaly in the southern hemisphere may be an important factor for the formation of the continuous heavy rain in the Huaihe River in 2003. In addition to the influence of planetary-scale systems, synoptic-scale systems are the direct cause of precipitation, and persistent heavy rain is often caused by the continuous generation, convergence, strengthening, and mutual influence of several mesoscale and small-scale precipitation systems (Zhou, 2000; Liu et al., 2005).
Many studies have found that atmospheric intraseasonal oscillations are closely related to monsoon activity and persistent abnormal precipitation (Zhang et al., 1992; Li and Zhou, 1995; Kikuchi and Wang, 2009). Most of the low-frequency oscillations of precipitation result from the interaction of low-frequency systems at high and low latitudes of the atmosphere (Horel and Wallace, 1981; Li, 1990; Yang, 1990). Liang and Ding (2012) showed that the large-value area of Meiyu in East Asia is closely related to the transport of warm air at low latitudes and cold air at high latitudes (Xiao and Li, 1992). In the middle and high latitudes, the low-frequency wave trains carry cold air from the Caspian Sea to the east, and the center of the potential vortex propagates from the Sea of Okhotsk to the southwest (Barnes et al., 1983; Zhang, 1987; Luo, 1998). At low latitudes, a low-frequency northerly wind and low-frequency offset are formed in the lower layers of the precipitation area (Lu, 1994; Lu, 1994; Qiu et al., 2004; Liu and Lu, 2006). The upper layer is controlled by low-frequency divergent airflow; the low-frequency circulation at each altitude layer and the southward transport of cold air in the middle and high latitudes work together, all of which provide favorable conditions for precipitation (Lu and Ding, 1996; Mao and Wu, 2005).
Previous studies have noted that persistent anomalous precipitation is closely related to low-frequency atmospheric oscillations, and its laws have been widely used in extended-range forecasting (Hu and Chen, 1995; Xin et al., 2007). The precipitation in the southwest is also affected by the low-frequency oscillations in the middle and high latitudes, as well as low latitudes. Therefore, it is necessary to study the relationship between the persistent anomalous precipitation in the southwest and the low-frequency oscillations in various latitudes. In the existing research, most of the research objects are in South China, Jianghuai, and North China, and most of them are based on case analysis and less systematic analysis. Many studies have found that the intraseasonal oscillation of the atmosphere is closely related to the monsoon activity and persistent abnormal precipitation in China. The circulation in the Asian monsoon region mainly has 30–50-day and 10–20-day oscillation periods, together affecting the precipitation process in the monsoon region. Lorence (1984) pointed out that this process is mainly realized through the meridional propagation of low-frequency oscillation in the monsoon region. Liang and Ding (2012b) stated that the large value area of plum rain in East Asia is closely related to the transport of warm air at low latitudes and cold air at high latitudes. The research results of many scholars have drawn a similar conclusion that the tropical low-frequency oscillation brings sufficient warm and wet air during its northward propagation. In contrast, the mid-high latitude low-frequency oscillation brings cold air during its southward propagation. The confluence of cold and warm air and the superposition and interaction of the upper, middle, and lower circulation systems lead to the generation of persistent abnormal precipitation, and the low-frequency oscillation of precipitation corresponds to the low-frequency oscillation of the circulation system. At present, domestic and foreign scholars seldom study the low-frequency oscillation of persistent heavy precipitation in Southwest China. Southwest China is an important water source in China due to its complex terrain, diverse climate, and abundant rainfall. Extreme precipitation frequently occurs in the southwest region, seriously threatening the safety of people’s lives and property. The relationship between extreme precipitation and low-frequency oscillation in this study will help provide a theoretical basis for extreme precipitation prediction in this region. Therefore, this study will systematically analyze the persistent anomalous precipitation events in the southwest regions. Research materials and methods are shown in Section 2. Sources and propagation paths of low-frequency systems and configuration and evolution characteristics of low-frequency systems are shown in Section 3. The conclusion and discussion are presented in Section 4.
2 ARTICLE TYPES
2.1 Research materials
The precipitation data used in this study are taken from the daily value data set of basic meteorological elements of China’s national surface meteorological stations (V3.0), the time period is from January 1981 to December 2016, and the southwest region’s (e.g., Yunnan province, Sichuan province, Guizhou province, Chongqing municipality) historical data of 364 sites as the research object are selected. In order to ensure the quality of the data, the stations with missing tests for more than 1 month were excluded, leaving 353 stations. The data selected for the NCEP/NCAR daily reanalysis included 500 and 200 hPa geopotential heights, 100–1,000 hPa wind fields, the time length was from January 1981 to December 2016, and the horizontal resolution was 2.5° × 2.5°.
2.2 Research methods
2.2.1 Definition of persistent abnormal precipitation
First, the regional average processing is conducted for the precipitation of stations in the study area from 1981 to 2016. The 95th percentile precipitation value with precipitation records is taken as the threshold value of extreme precipitation. If the threshold value is exceeded, it is defined as extreme precipitation. The abnormal precipitation in this area is defined as continuous abnormal precipitation if it lasts for at least three consecutive days. The first day when the regional precipitation reaches the threshold value is regarded as the 0 day when the persistent abnormal precipitation starts. The date before the precipitation starts is expressed as a negative number, and the date after the precipitation starts is expressed as a positive number.
2.2.2 Synthetic analysis
The average value of meteorological elements during several persistent abnormal precipitation periods will be calculated in turn by time to obtain the time series of composite variables. This method can be used to obtain multiple atmospheric synthetic variables during continuous precipitation.
The advantage of the Butterworth filter (Yao et al., 2005) is that it can freely choose the passband and does not cause information loss at both ends of the data. Its output function of the filter is as follows:
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The above formula is the time series of a certain element of [image: image], [image: image] is the filtered value, and its response function is as follows:
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where [image: image] is the time step, f is the frequency, and [image: image] and [image: image] are the cutoff frequencies.
3 RESULTS
3.1 Sources and propagation paths of low-level and critical low-frequency systems
The time series of monthly precipitation anomaly in Southwest China was decomposed by REOF (Figure 1). The cumulative variance of the first four modes contributes 43%, and the high load area covered most areas in southwest China. The high-value area of the first rotation factor occupied most of Yunnan, the load center value is greater than 0.7, and the variance of this modal interpretation was 12.8%. The interpretation variance of the second rotation factor was 9.07%. The large load area was in northeast Sichuan, and the central value was greater than 0.7. The interpretation variance of the third rotation factor was 12.7%, the large load area was located in Guizhou province, the interpretation variance of the fourth rotation factor was 8.4%, and the large load area was located in Sichuan Basin. The big value center clearly divided the southwest region into four parts without overlapping each other, and only the western Sichuan region did not show it. However, considering the similar terrain, elevation, and climate characteristics of the western Sichuan region, the western Sichuan region was considered a separate region, as shown below.
[image: Figure 1]FIGURE 1 | The first four REOF modes of precipitation in Southwest China (A–D) are the first, second, third, and fourth modes, respectively.
The distribution results of rainfall REOF eigenvectors showed that the precipitation in this region is inconsistent. The first four major component centers divide the southwest region into four regions. Considering the similarity of the topography and climate of the western Sichuan plateau, the western Sichuan plateau was considered a separate region. Therefore, the southwest region was divided into five regions for discussion. The time of heavy rainfall in each region and the low-frequency impact system were not uniform. Therefore, we needed to discuss each region one by one.
3.1.1 Western Sichuan area
Figure 2 shows that on the second day after the onset of precipitation, the key system remained strong, and the north–south air currents converged in this area to form precipitation. At this time, the position of the cyclone over the western Pacific was eastward, and the southeasterly airflow on the west side had not yet affected the western Sichuan area. The water vapor mainly came from the southwesterly airflow in the north of the Indian Peninsula anticyclone. Therefore, the prevailing southwesterly winds in the Indian peninsula (80°E, 10°N) can be used as the low-latitude early precipitation signal in the western Sichuan region. When there are low-frequency cyclones or low-frequency anticyclones in the north, it is conducive to the occurrence of precipitation in western Sichuan. The low-frequency cyclone in the Sea of Japan originates from the low-frequency cyclone in the Lake Baikal area moving eastward to the south, reaching the Sea of Japan area on the 0 day. Previously, the area was a southwesterly airflow, which was not conducive to the southward movement of cold air at high latitudes. The cold air comes from the low-frequency anticyclone on the east side of Lake Baikal. It can be traced back to 3 days before the start of precipitation. When the low-frequency cyclone in the area moved southeast out of the Lake Baikal area, and there was a northerly wind on the north side, it reached the area and formed an abnormal anticyclone. It is beneficial for the north wind to travel south to the western Sichuan area. A two-tailed Student’s t-test was used for the significance test. The results showed the north–south airflow in the confluence area of western Sichuan and the above key areas, where the low-frequency anticyclones and cyclones that were influenced passed the 95% significance test (p < 0.05).
[image: Figure 2]FIGURE 2 | Evolution of the low-frequency (15–30 days) wind fields at 850 hPa from 8 days before the precipitation to 2 days after onset in Western Sichuan, unit: m/s (the box is the precipitation area in western Sichuan, A is the key low-frequency anticyclone, C is the key low-frequency cyclone. The same as below).
3.1.2 Basin area
At the beginning of precipitation in the basin, the key low-frequency systems in the lower layers are the low-frequency trough on the east side of Lake Baikal, the low-frequency cyclone in the Sea of Okhotsk, the low-frequency anticyclone on the southeast coast, and the low-frequency cyclone in South China. Five days before the onset of precipitation, the northern part of my country and the Sea of Japan had a southerly airflow, the Lake Baikal trough had not yet been formed, the area of the Sea of Okhotsk had a low-frequency anticyclone, and the low-frequency anticyclone near the Taiwan Strait had not been formed, showing an anticyclonic circulation, and the South China Sea is a low-frequency cyclone. Four days before the onset of precipitation, a low-frequency cyclone was formed in the vast area from Lake Baikal to northern China and gradually moved eastward to the vicinity of the Sea of Japan. Three days before the onset of precipitation, a low trough in Beihu was formed, and the southerly wind turned into a northerly wind and gradually strengthened, which transported cold air southward and merged with warm air in the basin. Therefore, the early signal of the low frequency 850 hPa in the basin is that a low-frequency cyclone was generated in the western Pacific Ocean in the first 13 days and gradually moved northwest to the South China Sea to South China. It moved eastward to the vicinity of the Sea of Okhotsk, and a low-frequency anticyclone formed and stabilized in the Taiwan Strait (Figure 3). The areas affected by cyclones and anticyclones, as well as the confluence areas of south–north airflow in the precipitation area, passed the 95% significance test (p < 0.05).
[image: Figure 3]FIGURE 3 | Evolution of the low-frequency (15–30 days) wind fields at 850 hPa from 5 days before the precipitation to 0 day after onset in Basin area, unit: m/s.
3.1.3 East Sichuan
In the 15–30 day low-frequency circulation field of 850 hPa in eastern Sichuan, the low-frequency systems affecting precipitation in eastern Sichuan are cyclones of various latitudes located in the east of Beihu, the East China Sea, and the Indo-China Peninsula. The north wind from the west side of the cyclone in the high latitudes moves to the south, and the west side of the cyclone in the East China Sea guides the high-latitude north wind to the middle and low latitudes, making it enter the southwest area, providing cold air for precipitation in eastern Sichuan. However, the cyclone in the Indo-China Peninsula brings precipitation to the South China Sea. The warm and humid airflow makes the cold and warm air converge in the eastern Sichuan area, forming precipitation. By observing the time evolution of the low-frequency system, it can be found that the low-frequency cyclone to the east of Beihu formed 4 days before the precipitation. The northerly wind at high latitudes was the main reason for its formation. Then the intensity gradually increased, bringing the high-latitude cold air down (Figure 4). The areas affected by cyclones and anticyclones, as well as the confluence areas of the south–north airflow in the precipitation area, passed the 95% significance test (p < 0.05).
[image: Figure 4]FIGURE 4 | Evolution of the low-frequency (15–30 days) wind fields at 850 hPa from 6 days before the precipitation to 0 day after onset in Eastern Sichuan, unit: m/s.
3.1.4 Guizhou area
Figure 5 shows that in the low-frequency circulation field of 850 hPa in Guizhou, the main low-frequency systems affecting Guizhou are the cyclones in the Sea of Okhotsk and the anticyclones in the Northeast of China in the middle and high latitudes and the anticyclones and Indo-China Cyclones near the East China Sea in the middle and low latitudes. The warm and humid airflow mainly comes from the South China Sea and the western Pacific Ocean. The anticyclone to the east of the East China Sea formed 2 days before the precipitation and then developed and expanded, bringing water vapor from the western Pacific to Guizhou. The Indo-China Peninsula cyclone formed on the ocean centered at 5°N, 110°E, and 4 days before the precipitation and then moved northward to the Indo-China Peninsula, bringing South China Sea vapor to Guizhou. The areas affected by cyclones and anticyclones, as well as the confluence areas of south–north airflow in the precipitation area, passed the 95% significance test (p < 0.05).
[image: Figure 5]FIGURE 5 | Evolution of the low-frequency (15–30 days) wind fields at 850 hPa from 4 days before the precipitation to 0 day after onset in Guizhou Sichuan, unit: m/s.
3.1.5 Yunnan region
In the low-level of the low-frequency circulation field in Yunnan (Figure 6), the key low-frequency systems that affect precipitation were the cyclone in northeastern China and the Bay of Bengal cyclone. These two low-frequency cyclones formed at the same time 3 days before the precipitation. The high-latitude cold air on the west side of the low-frequency cyclone in the Sea of Okhotsk caused northeastern China to be controlled by the northerly wind, which led to the formation of a cyclonic circulation near the Sea of Japan. Subsequently, the cyclone continued to strengthen in this area, increasing the northerly wind going southward. A low-frequency anticyclone exists near the equator in the southern part of the Lake Baikal of Bengal. Its north side has a westerly wind component, which promotes the formation of a low-frequency cyclone in the northern part of the anticyclone. During the precipitation period, the cyclone intensifies, and the southwesterly airflow enters the Yunnan area and merges with the southeasterly wind from the middle and high latitudes. The areas affected by cyclones and anticyclones, as well as the confluence areas of the south–north airflow in the precipitation area, passed the 95% significance test (p < 0.05).
[image: Figure 6]FIGURE 6 | Evolution of the low-frequency (15–30 days) wind fields at 850 hPa from 3 days before the precipitation to 0 day after onset in Yunnan region, unit: m/s.
3.2 Sources and propagation paths of mid-level critical low-frequency systems
3.2.1 Western Sichuan
Figure 7 shows that the key low-frequency systems that affect the persistent precipitation in western Sichuan are similar to the low-frequency circulation with an average of 500 hPa during the precipitation period. There is a low-frequency low pressure near northeastern China and the Sea of Japan. It can be seen that the early middle-level signals affecting the persistent precipitation in western Sichuan are those in the first 15 days, there was 15–30-day low-frequency high pressure generated in the Barents Sea, and 14 days before the precipitation, low-frequency low pressure on 15–30 days was generated in Northwest Asia. These two systems tended to the southwest direction, moving to the Beihu area and northeast China and the vicinity of the Sea of Japan, which is beneficial to the cold air affecting the western Sichuan area to form precipitation. Low-frequency high voltage center and low voltage center passed the 95% significance test (p < 0.05).
[image: Figure 7]FIGURE 7 | Evolution of the low-frequency (15–30 days) geopotential height anomaly at 500 hPa from 14 days before the precipitation to 0 day after onset in western Sichuan, unit: gpm.
3.2.2 Basin area
The evolution of the low-frequency geopotential height anomaly field in the middle layer is shown in Figure 8. In the first 15 days, the Asian inverted “Ω” flow pattern was formed in the middle and high latitudes. Subsequently, the resistance height of Wushan gradually declined and collapsed, which helped the horizontal trough in the polar region to rotate counterclockwise to the south. The small disturbance of the split of the low-pressure center near the Sea of Japan moved to the southwest to the northeast side of the basin (10 days before the precipitation). In the first 5 days before the precipitation, the horizontal trough completely turned vertical and moved to the southeast. The development of the high pressure in the Sea of Okhotsk strengthened and connected with the high-pressure ridge extending from Novaya Zemlya in the north. At the same time, a part of the high-pressure ridge near the Sea of Japan also extended to northeast China. The original negative disturbance over the center basin is completely dead. Subsequently, the small trough of the western low-pressure split spread downstream, and its intensity weakened during the eastward movement. The high-pressure ridge originally located in the northeast region split into a small disturbance center and moved southwestward to the northeast side of the Sichuan Basin, and the high latitude high pressure also moved along with it to the Ural Mountains. At the beginning of the precipitation, the center of low pressure near the Sea of Japan developed strongly, and the center of low pressure in the west moved to Mongolia. The two low pressure and the low-frequency high pressure in the Ural Mountains formed a circulation pattern of high in the west and low in the east. This situation is conducive to the southward movement of cold air, and the northeast direction of the basin is positive. The small disturbance center still exists, causing the mid-to-high latitude airflow to flow eastward around the periphery of the positive disturbance center and then flow back into the Sichuan Basin. Low-frequency high voltage center and low voltage center passed the 95% significance test (p < 0.05).
[image: Figure 8]FIGURE 8 | Evolution of the low-frequency (15–30 days) geopotential height anomaly at 500 hPa from 15 days before the precipitation to 0 day after onset in Basin area, unit: gpm.
3.2.3 East Sichuan
In the 500 hPa low-frequency height field in eastern Sichuan (Figure 9), the key low-frequency systems are the low pressure extending southward to 25°N in the east of Beihu Lake and the high-pressure trending northeast–southwest in the Black Sea and Aral Sea areas affect the eastern Sichuan area. By tracing the source of the two key systems, it was found that the low-frequency high pressure originated from the Eastern European region (60°N, 45°E), and the high pressure was weak at first, then intensified, and moved to the southeast, passing the Ural Mountains, when the precipitation started (0 day) to the Black Sea, the Aral Sea region. A low-frequency low pressure was formed in the northeastern part of Russia (70°N, 140°E) 8 days before the precipitation. Then, the low pressure gradually moved southward, reaching the Baikal region and continuing to develop southward. Four days before the precipitation, a low-frequency low pressure was also formed near the Bohai and the Lake Baikal and gradually strengthened. On 0 day, the low pressure at the lower part of Beihu Lake was connected with the Bohai the Lake Baikal low pressure, forming a north–south low-pressure center. Low-frequency high voltage center and low voltage center passed the 95% significance test (p < 0.05).
[image: Figure 9]FIGURE 9 | Evolution of the low-frequency (15–30 days) geopotential height anomaly at 500 hPa from 10 days before the precipitation to 0 day after onset in East Sichuan, unit: gpm.
3.2.4 Guizhou area
Figure 10 shows that the key low-frequency systems in the 500 hPa height field during the precipitation period in Guizhou are the high pressure extending from the south of Beihu to the Bohai Bay and the low pressure in the Sea of Okhotsk. The high pressure corresponds to the 15–30-day low-frequency anticyclone at 850 hPa. The high-pressure center was formed near Bohai Bay 5 days before the precipitation, finally developed and strengthened, expanded in scope, and extended to the north and south sides, making it evolve into a north–south belt-like distribution, making cold air southward to lower latitudes. The low pressure in the Sea of Okhotsk was formed by moving southward at high latitudes. A small-scale low-pressure center was formed north of Lake Baikal 10 days before the precipitation, then intensified, and moved southward. On −8 days, the south side reached Baikal Lake, and the main body of 5 days before the precipitation located at Lake Baikal moved to the southeast, 3 days before the precipitation, the low presure center does not continue to develop to the south, but extends eastward to the Sea of Okhotsk area On 0 day, the main body reaches the Sea of Okhotsk and develops to the southeast. Low-frequency high voltage center and low voltage center passed the 95% significance test (p<0.05).
[image: Figure 10]FIGURE 10 | Evolution of the low-frequency (15–30 days) geopotential height anomaly at 500 hPa from 8 days before the precipitation to 0 day after onset in the Guizhou area, unit: gpm.
3.2.5 Yunnan region
Figure 11 of the mid-level height field inversion in Yunnan shows that the low-frequency height field in Asia shows a trough-ridge pattern during precipitation, East Asia is a low trough, West Asia is a high-pressure ridge, and the trough and ridge are distributed in a north–south belt, affecting lower latitudes. Yunnan is located behind the ridge anterior and the trough and is easily affected by the cold air from the north. The East Asian low-pressure center originated 6 days before the precipitation, formed in the northern Sea of Japan, and then developed and strengthened. The low-pressure center extended to the north–south, forming a belt-like distribution. The West Asian high-pressure ridge developed from the high-pressure center north of Beihu. On −6 day, the high-pressure center in the north of Beihu developed westward, forming a northeast–southwest trend 4 days before the precipitation. Two days before the precipitation, the center moved to the east of the Ural Mountains and turned to the east on 0 day. The north–south trend affects the Yunnan area. Low-frequency high voltage center and low voltage center passed the 95% significance test (p < 0.05).
[image: Figure 11]FIGURE 11 | Evolution of the low-frequency (15–30 days) geopotential height anomaly at 500 hPa from 6 days before the precipitation to 0 day after onset in Yunnan region, unit: gpm.
3.3 Configuration and evolution characteristics of high-level low-frequency systems
3.3.1 Western Sichuan
The synthesized 200 hPa low-frequency divergence and low-frequency wind fields in western Sichuan are shown in Figure 12. After the onset of precipitation, the area over western Sichuan is low-frequency divergence, and there is a corresponding low-frequency anticyclone. Consistent with the original field analysis, the pumping effect of high-level low-frequency circulation can be strengthened. The upward movement is conducive to the production of precipitation. In order to explore the source of the low-frequency anticyclone and the divergence center, the time is reversed. Five days before the precipitation, the anticyclone and the divergence center are located in the northeastern region of China, with high intensity, and the two basically coincide. Ten days before the precipitation, the anticyclone was located in the Lake Baikal area, and the divergence center was on its southwest side. Ten days before the precipitation, the anticyclone and divergent center moved from west to east, starting 16 days before the precipitation, west of Lake Baikal (55°N, 90°E). The above analysis clearly shows that the moving path of the high-altitude low-frequency anticyclone and the divergent center first moved to the southeast and then turned to the southwest. The positive divergence center passed the 95% significance test (p < 0.05).
[image: Figure 12]FIGURE 12 | Evolution of the low-frequency (15–30 days) divergence (shading, unit: 10−6S−1) and wind (vector, unit: m/s) field at 200 hPa from 16 days before the precipitation to 0 day after onset in western Sichuan, the red box is the western Sichuan area, and A is the low-frequency anticyclone.
3.3.2 Basin area
The 200 hPa low-frequency wind field and divergence field in the basin are shown in Figure 13. Fourteen days before the precipitation, the upper air of the Sichuan Basin is the divergence center. At this time, a low-frequency anticyclone is generated at 45°N, 75°E (Kazakhstan). The left side of the anticyclone corresponds to the divergent center, and the right side corresponds to the convergent center. The anticyclone moves eastward slowly over time. The anticyclone reaches Beihu on the north side of the 10 days before the precipitation anticyclone, and the main body of the −5 day anticyclone reaches the south of Beihu. The divergence center moves with the anticyclone. Then, the anticyclone did not continue to move eastward but developed southward. On 0 day, the center of the anticyclone reached North China, and the easterly airflow on the south side affected the basin. The divergence center is located in Inner Mongolia, Mongolia, and extends southward to affect the Sichuan Basin, resulting in increased divergence over the basin, which is conducive to the production of precipitation. Therefore, the early signal of the circulation over the basin is roughly 14 days before the precipitation. A low-frequency anticyclone and a divergence center were generated in Kazakhstan, moved eastward to the south of Beihu Lake, and then continued to develop and strengthen southward, affecting the basin through Mongolia and North China. The positive divergence center passed the 95% significance test (p < 0.05).
[image: Figure 13]FIGURE 13 | Evolution of the low-frequency (15–30 days) divergence (shading, unit: 10−6S−1) and wind (vector, unit: m/s) field at 200 hPa from 14 days before the precipitation to 0 day after onset in the Basin area.
3.3.3 East Sichuan
The 200 hPa, 15–30 day low-frequency circulation pattern in the eastern Sichuan area is shown in Figure 14. After the onset of precipitation, the upper air in the eastern Sichuan area is a low-frequency divergence area controlled by a low-frequency anticyclone. The anticyclone was generated in the Inner Mongolia region of China 6 days before the precipitation, and the divergence value in the eastern Sichuan region was negative at this time, which was not conducive to the divergence of the airflow at high altitudes. The position of the anticyclone remained stable for the next few days, but the intensity continued to increase. The center and west of the anticyclone correspond to the divergence area, and the east side corresponds to the convergence area. As the anticyclone intensifies and moves south, the range of the divergence area continues to expand and move south, at the beginning of the precipitation (0 day), the airflow on the south side of the anticyclone affects the eastern Sichuan, and the corresponding divergence value gradually turns to positive control. The positive divergence center passed the 95% significance test (p < 0.05).
[image: Figure 14]FIGURE 14 | Evolution of the low-frequency (15–30 days) divergence (shading, unit: 10−6S−1) and wind (vector, unit: m/s) field at 200 hPa from 6 days before the precipitation to 0 day after onset in East Sichuan.
3.3.4 Guizhou area
In the wind field of low-frequency divergence at 200 hPa in Guizhou (Figure 15), the divergence value over Guizhou is positive, which is beneficial to airflow divergence. However, the divergence area is different from other areas in that it is not in the low-frequency anticyclone. It is at the junction of a low-frequency cyclone and a low-frequency anticyclone. The divergence center and the low-frequency cyclone and anticyclone evolve. The divergence center can be traced back to 18 days before the precipitation, formed at the junction of Mongolia and Xinjiang (90°E, 45°N), and then gradually moved southeast to the sky over Guizhou. The anticyclone corresponds to the middle- and low-level systems. It was formed in the northeastern part of my country on −6 day and then moved southward to the eastern coastal areas of my country. The cyclone can be traced back to 8 days before the precipitation, formed at 80°E, 40°N, then developed and moved to the southeast, and finally stagnated and disappeared in the southwest of China. The positive divergence center passed the 95% significance test (p < 0.05).
[image: Figure 15]FIGURE 15 | Evolution of the low-frequency (15–30 days) divergence (shading, unit: 10−6S−1) and wind (vector, unit: m/s) field at 200 hPa from 6 days before the precipitation to 0 day after onset in the Guizhou area.
3.3.5 Yunnan region
As shown in Figure 16, at 200 hPa, on 15–30 days of low-frequency divergence field and wind field over Yunnan, after the onset of precipitation (0 day), the sky over Yunnan is controlled by the divergence center, which corresponds to the northwest side of the low-frequency anticyclone. The anticyclone center is located in the central and southern parts of the country. Moreover, we found that the divergence center and the anticyclone changed synchronously, and the peninsula was always located in the northwest of the anticyclone. Fifteen days before the precipitation, the low-frequency anticyclone and divergence center were generated in Northwest Asia at 50°N and 90°E, then moved southeastward, entered my country through Xinjiang, reached Inner Mongolia 10 days before the precipitation, and reached North China 5 days before the precipitation. At this time, a strong low-frequency cyclone followed from the west side of the low-frequency anticyclone. While moving to the southeast, it turned in the same direction, forcing the anti-air to rotate to the southwest and its intensity weakened. On 0 day, it passed through the southwestern region of my country and reached Yunnan and the Indo-China Peninsula. During the precipitation, it stayed in the Indo-China Peninsula, then weakened and disappeared. The positive divergence center passed the 95% significance test (p < 0.05).
[image: Figure 16]FIGURE 16 | Evolution of the low-frequency (15–30 days) divergence (shading, unit: 10−6S−1) and wind (vector, unit: m/s) field at 200 hPa from 15 days before the precipitation to 0 day after onset in Yunnan region.
4 CONCLUSION AND DISCUSSION
This study is based on previous studies on the relationship between low-frequency oscillation and precipitation, mainly concentrated in South China, Jianghuai, and North China, Although the research on Southwest China is little. This study selected Southwest China as the research object, discussed the impact of low-frequency oscillation on heavy precipitation, and clearly defined the key area of abnormal precipitation. In addition, it deeply analyzed the propagation characteristics, sources, and propagation paths of low-frequency oscillation at different heights and its impact on precipitation and comprehensively understood the characteristics of atmospheric low-frequency oscillation affecting persistent precipitation in Southwest China from three-dimensional space. Furthermore, this study specifically analyzed the propagation characteristics and origins of key low-frequency systems in each latitude zone and at each altitude for 15–30 days and showed the mutual configuration of low-frequency oscillations in three-dimensional space and their impact on precipitation. The main conclusions were as follows:
(1) During the continuous heavy rainfall, in the 500 hPa height field and 850 hPa wind field before filtering, except for the western Sichuan region, the other four regions showed that the occurrence of extreme precipitation was closely related to the western Pacific subtropical high (based on the 5,880 gpm contour line). During the period of persistent abnormal precipitation, the ridge point of the Western Pacific subtropical high extends westward to around 110°E and has a large control range. It corresponds to a strong low-frequency anticyclone at the middle and lower levels. The southwest warm and wet airflow at the edge of the low-frequency anticyclone is transported to the southwest region, bringing sufficient moisture to the extreme precipitation in the southwest region. In the middle and high latitudes, the low-frequency key areas affecting precipitation were the Ural Mountains, east of Lake Baikal, the Sea of Okhotsk, and the Sea of Japan. The mid-latitude was the control area of the Western Pacific subtropical high. The low latitude was the vicinity of the South China Sea, Indian Peninsula, and Bay of Bengal regions.
(2) In the 15–30 day low-frequency circulation field, the atmospheric low-frequency waves in each region had a certain baroclinic property during the continuous precipitation. The high north spreads to the middle latitudes and merges with the north wind, forming a convergence and rising area of north-south airflow in the rainy area. The middle and lower layers of the vorticity field were positive vorticity centers, and the upper layers were negative vorticity centers, with obvious baroclinicity, providing energy conditions for precipitation.
(3) The low-frequency systems of low-, mid-, and high-latitude tended to move southward and bring cold air to the rainy area, whereas low-latitude systems tended to move northward to bring warm and humid air currents, and the cold and warm air currents met in the rainy area. The center of low-frequency high-low pressure in the middle-level high latitude moved southward, eventually forming a circulation pattern with high west and east low, which helped the cold air move southward along the front ridge and trough. The high-level mainly showed that the positive and negative V wind components propagated from the mid-to-high latitudinal rain area, and the rain area corresponded to the low-frequency divergent system. The detailed high-low-altitude low-frequency system configuration of each area is shown in Figure 17.
[image: Figure 17]FIGURE 17 | Low-frequency system configuration diagram of (A) Western Sichuan (B), Basin (C), Eastern Sichuan (D), Guizhou (E) and Yunnan. Five-pointed star represents the precipitation area, blue (red) ellipse represents cyclone or low pressure (anticyclone or high pressure), blue (red) dotted arrows represent the propagation path of low pressure or cyclone (high pressure or anticyclone), blue (red) solid arrows represent the propagation path of cold air (warm air), black arrows represent vertical airflow, blue (red) triangles represent low pressure or cyclone (high pressure or anticyclone) source, the black solid line represents the high-altitude ridge.
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Index

CpD
CWD
RI0mm
R95p
RxSday
sDIl

Description

Consecutive dry days
Consecutive wet days

Heavy precipitation days

Very wet days precipitation

Maximum consecutive 5 days precipitation

Simple daily intensity

Definition

Maximum number of consecutive days when precipitation <1 mm
Maximum number of consecutive days when precipitation >1 mm
Annual count of days when precipitation 210 mm

Annual total precipitation from days >95th percentile

Annual maximum consecutive 5-days precipitation

“Total wet days precipitation divided by the number of wet days

Units

mm/day
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Model

CNRM-CM6-1-HR
CNRM-CM6-1
ECMWEF-IFS-HR
ECMWE-IF$-LR
HadGEM3-GC31-HM
HadGEM3-GC31-LM
IPSL-CM6A-ATM-HR
IPSL-CM6A-LR
MPI-ESM1-2-XR
MPI-ESM1-2-HR
MRI-AGCM3-2-$
MRI-AGCM3-2-H

Institute,
country or union

Centre National de Recherches Meteorologiques, France
European Centre for Medium-Range Weather Forecasts, United Kingdom
Met Office Hadley Centre, United Kingdom

Institute Pierre Simon Laplace, France

Max Planck Institute for Meteorology, Germany

Meteorological Research Institute, Japan

Resolution (latitude x longitude,
level)

050" x 0.50°, L91
141" x 141°, 191
050" x 0.50°, L91
1.00° x 1.00°, L91
023" x 035", L85
125" x 188", L85
050" x 0.70°, L79
126" x 2.50%, L79
047" x 047", 195
094° x 0.94°, 195
0.19° x 0.19, L64
056" x 056", L64

Reference

Voldoire et al.(2019)

Roberts et al. (2018)

Roberts et al. (2019)

Boucher et al. (2019)

Gutjahr et al. (2019)

Mizuta et al. (2012)
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EN FPR (%) ENR (%) Ts Acc (%)

NCEP 8 25 487 15 5 65 0.16 90
CMA 8 49 732 17 % 68 011 89
JTWC 12 45 409 16 10 57 0.16 87
Al 19 70 1004 21 6 52 0.19 92
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els

ropical depression
Tropical storm
Strong tropical storm
Typhoon

Strong typhoon
Super typhoon

Total

Number of samples/pc

25
413
200
128
82
20
868

(MAE) m/s

312
266
5.04
6.16
445
385
393

(RSME) m/s

462
389
6.08
7.81
550
667
5.40
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ECMWE Tco639/Tco319, 191 2fweek Past 20 years On the flying
CMA T106, 140 2fweek Past 15 years On the flying
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Meteorological o o F-test F>F-test Hypothesis of
parameter T1=T2=T3=T4
Geopotential height at 500 hPa 625.17 0.00006 261 Yes Yes

Temperature at 500 hPa 184.97 0.000003 261 Yes Yes

Sea surface pressure 2409.98 0.00012 261 Yes Yes

Anomalies of geopotential height over 500 hPa 7706.87 0.000000 261 Yes Yes

Anomalies of temperature at 500 hPa 233135 0.000000 261 Yes Yes

Anomalies of sea surface pressure 4231.39 0.000000 261 Yes Yes
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ETIs Models CESM2 CanESM5 ACCESS-CM2 [EM-9 Average values
of models

Subzones
CSDI (d/a) zp 337 191 268 154 238

HMs 3.08 366 317 171 291

SB 391 467 373 422 413

YGP 529 525 48 427 490
WSDI (d/a) zp 267 2.76 337 4.14 324

HMs 417 416 518 477 457

SB 224 383 602 35 390

YGP 383 3.86 551 334 4.14
TMINmean (‘C/a) zp -0.93 -2.64 -1.09 034 -1.08

HMs 334 193 283 442 313

SB 1245 7.87 1038 1175 10.61

YGP 1384 1292 19 1439 1326
TMAXmean (‘C/a) zp 932 106 638 819 8.62

HMs 1363 1318 1067 1193 1235

SB 207 17.15 1742 1832 18.40

YGP 2225 2175 203 2083 2128
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ETIs Models Annual change ETIs Models Annual change
rates rates
CSDI MEM-9 013 WSDI MEM-9 058
CESM2 ~0.36 CESM2 0.36
CanESM5 -0.32 CanESM5 028
ACCESS-CM2 031 ACCESS-CM2 033
ED MEM-9 -0.42 TR MEM-9 032
CESM2 -0.56 CESM2 058
CanESM5 -L15 CanESM5 057
ACCESS-CM2 -0.50 ACCESS-CM2 034
ID MEM-9 -0.06 su MEM-9 0.00
CESM2 -0.17 CESM2 0.40
CanESM5 -0.33 CanESM5 0.16
ACCESS-CM2 -0.19 ACCESS-CM2 003
TN10p MEM-9 -0.30 TN9Op MEM-9 082
CESM2 031 CESM2 036
CanESM5 035 CanESM5 0.40
ACCESS-CM2 -0.27 ACCESS-CM2 034
TX10p MEM-9 -0.25 TX90p MEM-9 0.69
CESM2 -0.32 CESM2 045
CanESM5 -031 CanESM5 033
ACCESS-CM2 -0.18 ACCESS-CM2 021
TMINmean MEM-9 004 TMAXmean MEM-9 004
CESM2 004 CESM2 0.8
CanESM5 008 CanESM5 0.08
ACCESS-CM2 0.04 ACCESS-CM2 0.02
TNn MEM-9 004 TNx MEM-9 0.02
CESM2 0.09 CESM2 0.06
CanESM5 007 CanESM5 0.04
ACCESS-CM2 0.09 ACCESS-CM2 003
TXn MEM-9 0.04 TXx MEM-9 0.04
CESM2 0.10 CESM2 0.12
CanESM5 0.10 CanESM5 0.07
ACCESS-CM2 011 ACCESS-CM2 0.00
DTR MEM-9 0.00
CESM2 0.04
CanESM5 0.00
ACCESS-CM2 -0.02
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ETIs ESS- CanESM5  CESM2  INM-  INM-  IPSL- MIROC6 MPI- NESM3  MEM-9
cM2 CM4-8  CM5-0  CM6A-LR ESM1-2-LR

CSDI 0.538 0272 0.501 0.694 0.337 0.324 0.315 0.249 0.235 0512
FD 0.957 0.776 0.990 0.824 0.880 0.877 0.928 0.902 0.795 0.959
ID 0.682 0.881 0.997 0.852 0.846 0.537 0.592 0.640 0.534 0.727
TN10p 0.251 0.629 0.233 0217 0.379 0.240 0.260 0.409 0.258 0.369
TX10p 0.253 0.363 0.381 0315 0.272 0273 0.318 0.362 0.293 0.386
TMINmean  0.869 0.765 0.882 0.932 0.923 0.726 0.804 0.865 0.956 0.905
TNn 0.945 0.703 0.998 0.758 0.878 0.729 0.804 0.804 0.583 0.901
TXn 0.939 0.662 0.998 0.678 0.663 0.700 0.682 0.662 0.678 0.659
WSDI 0.409 0.734 0.141 0.356 0.163 0.327 0.253 0.423 0.359 0.834
TR 0.682 0.707 0.999 0.831 0.890 0.828 0.862 0.703 0.890 0919
SU 0.726 0.549 0.998 0.197 0.250 0.641 0.749 0.099 0.298 0.437
TN9Op 0.281 0.285 0.081 0.226 0.057 0.046 0.105 0.035 0.072 0.269
TX90p 0.340 0344 0.214 0.092 0.097 0.105 0.279 0.150 0.070 0229
TMAXmean 0.892 0.849 0.959 0918 0.906 0.751 0.738 0.880 0.911 0917
TNx 0.971 0.884 0.994 0911 0.886 0.969 0.977 0.906 0.943 0.985
TXx 0.866 0.690 0.941 0.730 0.691 0.629 0.738 0.684 0.733 0.670
DTR 0.266 0.773 0.480 0.524 0.363 0.283 0.163 0.726 0.806 0.776
Average S 0.639 0.639 0.693 0.591 0.558 0.529 0.563 0.559 0.554 0.674
Ranking 3 3 1 5 8 10 6 ¥ -] 2
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Subzone CSDI FD (d/a) ID (d/a) TNI10p TX10p TMINmean TNn (C/a) TXn (C/a)
average (d/a) (d/a) (d/a) ('Cla)

zp 106 190.68 1600 16.87 17.14 -159 2134 375

HMs 232 10926 6.58 1670 17.02 427 -11.02 145

SB 348 15.50 334 16.65 1694 1321 -1.88 292

YGP 449 1126 120 1650 17.07 1296 -1.90 352

Subzone average ~ WSDI (d/a) TR (d/a) SU (d/a) TN9Op (d/a)  TX90p (d/a) ~TMAXmean (‘C/a) ~ TNx (‘Cla) TXx (Cla) DTR (d/a)
zp 3.04 000 0.10 1727 17.30 13415 1271 27.13 1501
HMs 434 152 003 1745 1758 17.097 1585 2892 1284
SB 192 86.80 1574 17.32 17.15 20556 2616 3640 716
YGP 424 62.00 582 1682 17.80 21901 2343 33.98 893
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Categories No. Descriptive names/Units Indices Definitions

ECTIs 1 Cold spell duration indicator/d CSDI Annual count of days with at least 6 consecutive days when Tn (daily minimum) <10"
percentile
2 Frost days/d FD Annual count when Tn < 0°C
3 Ice days/d D Annual count when Tx (daily maximum) < 0°C
4 Cool nights/d TN10p Number of days when Tn < 10 percentile
5 Cool days/d TX10p Number of days when Tx < 10" percentile
6 Average daily minimum TMINmean  Average Tn
temperature/"C
4 Min Tmin/"C TNn Annual minimum value of daily minimum temperature
8 Min Tmax/'C TXn Annual minimum value of daily maximum temperature
EWTIs 8 ‘Warm spell duration indicator/d ‘WSDI Annual count of days with at least 6 consecutive days when Tx > 90" percentile
10 Tropical nights/d TR Annual count when Tn > 20°C
11 Summer days/d sU Annual count when Tx > 25°C
12 Warm nights/d TN90p Number of days when Tn > 90™ percentile
13 Warm days/d TX90p Number of days when Tx > 90 percentile
14 Average daily maximum TMAXmean Average Tx
temperature/’C
15 Max Tmin/'C TNx Annual maximum value of daily minimum temperature
16 Max Tmax/'C TXx Annual maximum value of daily maximum temperature

17 Diumnal temperature range/'C DTR Monthly mean difference between Tx and Tn
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Number

Model name

Institution and country

Spatial resolution (grid
points, LonxLat)

Ny A AR R R

ey

ACCESS-CM2
CanESM5
CESM2
INM-CM4-§
INM-CM5-0
IPSL-CM6A-LR
MIROC6
MPI-ESM1-2-LR
NESM3

Commonwealth Scientific and Industrial Research Organisation, Australia
Canadian Center for Climate Modelling and Analysis, Canada

National Center for Atmospheric Research, USA
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Max Planck Institute for Meteorology, Germany
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PRCPTOT
RD

SDIl
PRCPTOT95
RD95
SDIIgs

Description

Total precipitation

Precipitation frequency
Precipitation intensity

Total extreme precipitation
Extreme precipitation frequency
Extreme precipitation intensity

Definition

Annual total precipitation from days with =1 mm
Number of wet days with =1 mm

Specific ally intensity: ratio of total precipitation (PRCTOT) to precipitation frequency (RD)
Annual total precipitation from extreme precipitation days with >35th percentile

Number of extreme precipitation days with >95th percentile

Ratio of total extreme precipitation (PRCTOTES) to extreme precipitation frequency (RD95)

Unit

mm
day
mm/day
mm
day
mm/day
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Tasks

TC grade judgment

TC intensity forecasting

Forecasting of the rapid change in TC
intensity

Algorithms

multiple logistic regression, support vector machine and back-propagation neural
network

convolutional neural networks-DeepMicroNet

Two-dimensional and three-dimensional convolutional neural networks

multi-layer deep convolutional neural network

back-propagation neural network
partial least squares regression

support vector machine and genetic algorithm

decision tree

logistic regression and bayesian network

deep convolutional neural network

ResNet deep learning

convolutional neural network-long short-term memory network
deep neural network-long short-term memory network
shallow learing and DL algorithms

DL convolutional neural network- DeepMicroNet

DL-based method augmented- DeepTCNet

c45

recurrent neural network

support vector machine

decision tree

References

Chen et al. (2018)

Wimmers et al. (2019)
Lee et al. (2019)

Pradhan et al. (2018); Cui et al.
(2020)

Baik and Paek (2000)
Zhou (2014)

Guet al. (2011)

Gao et al. (2016)

Rozoff and Kossin (2011)
Pradhan et al. (2018)

Qian et al. (2021)

Chen et al. (20190)
Zahera et al. (2019)

Jiang et al. (2018)
Wimmers et al. (2019)
Zhou and Tan (2021)
Zhang et al. (2013)
Chandra and Dayal (2015)
Mercer and Grimes (2015)
Gao et al. (2016)
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Tasks

TC track forecasting based on time series data

TC track forecasting based on remote sensing images

TC track forecasting based on the fusion of time series data

and remote sensing images

Algorithms

linear regression algorithm

stepwise regression algorithm

neural network

artifiial neural network

principle component analysis, genetic algorithm and
neural network algorithm

support vector machine

gradient boosting decision tree

K-means cluster analysis

dynamic fuzzy clustering method
recurrent neural network

long short-term memory neural network
neural network

convolutional neural networks

convolutional long short-term memory network
integrated neural network

References

Neumann and Hope (1972)
Chen et al. (199a)

Shao et al. (2009)

Wang et al. (2011)

Huang and Jin (2013)

Song et al. (2005); Lv et al. (2009)

Tan et al. (2021)

Gamargo et al. (2007); Yu et al. (2017); Wang et al.
(2019)

Li et al. (2008)

Dong and Zhang (2016); Alemany et al. (2018);
Kordmahalleh et al. (2016)

Gao et al. (2018)

Lee and Liu (2000); Kovorda and Roy (2009)
Sophie et al. (2020)

Shi et al. (2015); Kim et al. (2019b)
Giffard-Roisin et al. (2020); Dong (2021)
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Tasks Algorithms References

Short-term forecasting decision tree Zhang et al. (2015); Park et al. (2016)
logistic regression Winands et al. (2016)
random forest Ahijevych et . (2016)
AdaBoost Zhang et al. (2019)
decision tree, random forest and support vector machine Kim et al. (2019a)
Long-term forecasting support vector regression Richman and Leslie (2012); Winands et al. (2014); Richman et al. (2017)

multiple inear regression Nath et al. (2016)
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Tasks

Forecasting of TC-induced
wind

Forecasting of TC-induced
rainfall

Disaster impact assessment

Algorithms.

support vector regression
RF and quantie regression

artificial neural networks

knowledge-enhanced deep learning algorithm
principal component analysis-radial basis function

least absolute shrinkage and selection operator regression, random forest and deep

learning algorithms
neural network

self-organizing map and multiayer perception networks hybrid neural network
back-propagation network and support vector machine

support vestor machine
muli-objective genetic - support vector machine
physical-conceptual models - ML methods

conceptual rainfall-runoff model - Bayesian artiicial neural networks statistical model
two-stage forecasting approach integrating numerical and ML-based models

Hopfield neural network
support vector machine
decision tree
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