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Editorial on the Research Topic
Highlights in Sports Science, Technology and Engineering: 2021/22
Introduction

Sports Technology and Engineering is a trending sub-category translating the

innovative use of technology and engineering design into practice and encompasses

many disciplines of sports science (e.g., sports medicine, prevention, rehabilitation,

athletic development, etc.). Research in this field often aims to develop materials,

sensors, algorithms, or full pieces of equipment to maintain and improve certain

dimension of health, lifestyle and/or performance in different populations (e.g., able-

bodied and disabled, sedentary, diseased, fitness oriented, competitive, or athletic).

Such sports technologies are either developed from a research perspective to increase

the understanding of operating principles and adaptation mechanisms

(e.g., employing sensors and algorithms to monitor a variety of parameters in

different settings) or from an applied perspective to provide technologies which

optimize training, competition, or lifestyle activities.

Research around sports technology is growing rapidly and even outpaces other areas

of interest in the field of sports science. Figure 1 illustrates the number of yearly

publications listed in the Pubmed database. In 2000, 168 articles were published in

Pubmed for the search-term “Sports Technology” and for example “Endurance

Training” or “Strength training” hit 299 and 437 numbers of publications,

respectively. While the numbers of all these search terms increased since 2011 year-

by-year annual publications for “Sports Technology” (n = 702 in 2011) have surpassed

those for “Endurance Training” (n = 678 in 2011). Since 2020, the annual number of
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FIGURE 1

Number of publications for “Sports Technology”, “Endurance Training” and “Strength Training” in Pubmed.gov as of 07.11.2022.
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publications for “Sports Technology” (n = 5,264 in 2020) is also

higher than the yearly number of publications for “Strength

Training” (n = 5,114 in 2020).

The variety of sports technology research is reflected in the

present research topic including 10 articles from 54 authors out

of which six are original research articles, one perspective

article, one research report, one case report and one

methodological article.

The aim of this research topic was to gather scientific

contributions from the broad variety of research performed

across the Sports Science, Technology and Engineering section

in the years 2020–2021 to highlight the current main areas of

interest, as well as emerging applications and trends. Here, the

potential for sports technology and engineering research

describes the potential to enhance “in the field” motion

analysis, investigate mechanisms of adaptation, and enhance

health monitoring and training in different populations and

settings.

Two papers tested markerless motion capture for “in the

field” sport motion analysis, through the assessment of upper

and lower limbs kinematics. In this regard, Lahka and

colleagues aimed at evaluating the concurrent validity of a

bidimensional markerless motion capture system in assessing

upper limbs kinematics of elite boxers while performing some

typical in-ring boxing maneuvers Lahkar et al. while Pinheiro

et al. tested the open-source OpenPose software for penalty

kick analysis in elite football players from TV footage as

compared to an observational analysis.
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Two papers investigated technologies to assess muscle

parameters during exercise: Puce et al. investigated the

correlation between spectral parameters obtained from surface

electromyography and variations of kinematic data and

mechanical fatigue in elite swimmers. McPhail et al. and

co-workers evaluated the within-session reliability of some

force-related performance parameters during a novel

unilateral isometric hex bar pull as performed by male and

female elite freeski athletes on a force plate at the maximal

voluntary contraction, while providing sex- and level specific

reference values.

Health monitoring was the focus of three contributions:

Ausland et al. proposed the use of a new mobile, long-term

electrocardiogram (ECG) monitoring patch to assess

automatic arrhythmia detection during endurance training in

elite athletes. Bender et al. reported a device capable of

automatically analyzing urine specific gravity (i.e., an index of

hydration status of individuals) in real time. Finally, Fraysse

et al. report physical activity cut-points for wrist-worn

technologies in elderly populations (>70 years of age).

Noteworthy, the authors investigate whether wear-side (i.e.,

dominant vs. non-dominant wrist) affects accuracy and

conclude that wearing the technology on the dominant wrist

might deliver more accurate data especially when individuals

are active in low intensity zones. Schelling and co-workers

presented a methodological framework for the design of a

decision support systems for scheduling trips and training

sessions in professional team sports.
frontiersin.org
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Sports technology research contributes also to aspects of

training, e.g., by augmenting the training environment using

virtual reality, or adapting sport equipment to the specific

athlete. In particular, the case report by Severin et al. and

others compared the effects of adjusting seat and backrest

angle on performance of an elite paralympic rower. In their

perspective paper, McIlroy et al. shared their opinion

concerning the use of virtual reality to train cyclists. The

authors summarize strengths, weaknesses, as well as

opportunities and threats of virtual online training platforms,

with the attempt to enhance awareness of various aspects of

virtual training technology and online cycling.

Throughout the reported research ideas and research

outcomes, it remains clear that sports technology does not

fulfill a purpose on its own, but it is a means to an end for

sport scientists, applied practitioners, coaches and athletes. To

increase our understanding of working principles and

mechanisms, sports technology needs to be sound and reliable

and must be flawlessly applied. In this regard, the field needs

educated researchers and practitioners who understand how

to employ and interact effectively and efficiently with

technologies of different forms (1, 2). This interaction

includes (i) having an evidence-based course of action on

whether and when to apply technologies for a certain

problem, (ii) the selection of appropriate technologies for a

given purpose, population and setting, (iii) the appropriate

management, handling and application of the technology and

(iv) understanding of how to analyze and contextualize data
Frontiers in Sports and Active Living 03
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correctly. Given the increasing availability of sports

technologies, it seems necessary to constantly and critically

evaluate new technologies and, at the same time, educate

stakeholders in this area.
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Physical Activity Intensity Cut-Points
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Purpose: This study aims to (1) establish GENEActiv intensity cutpoints in older adults

and (2) compare the classification accuracy between dominant (D) or non-dominant (ND)

wrist, using both laboratory and free-living data.

Methods: Thirty-one older adults participated in the study. They wore a GENEActiv

Original on each wrist and performed nine activities of daily living. A portable gas analyzer

was used to measure energy expenditure for each task. Testing was performed on two

occasions separated by at least 8 days. Some of the same participants (n= 13) also wore

one device on each wrist during 3 days of free-living. Receiver operating characteristic

analysis was performed to establish the optimal cutpoints.

Results: For sedentary time, both dominant and non-dominant wrist had excellent

classification accuracy (sensitivity 0.99 and 0.97, respectively; specificity 0.91 and 0.86,

respectively). For Moderate to Vigorous Physical Activity (MVPA), the non-dominant wrist

device had better accuracy (ND sensitivity: 0.90, specificity 0.79; D sensitivity: 0.90,

specificity 0.64). The corresponding cutpoints for sedentary-to-light were 255 and 375

g ·min (epoch independent: 42.5 and 62.5mg), and those for the light-to-moderate were

588 and 555 g · min (epoch-independent: 98.0 and 92.5mg) for the non-dominant and

dominant wrist, respectively. For free-living data, the dominant wrist device resulted in

significantly more sedentary time and significantly less light and MVPA time compared to

the non-dominant wrist.

Keywords: accelerometer, dominant, non-dominant, sedentary, light, moderate

INTRODUCTION

Population-level measurement of physical activity (PA) and sedentary behaviors (SBs) is important
for a number of reasons, including investigating relations with health outcomes (Osborn et al.,
2018), quantifying the effect of PA interventions (Mitchell et al., 2019), and establishing secular
trends in PA behaviors (Fraysse et al., 2019). Device-measured PA is most commonly carried
out using accelerometers worn on the hip, wrist, or thigh. In recent years, most research-grade
accelerometers have allowed direct access to raw acceleration data. This allows control over the
whole data processing method, resulting in better transparency and reproducibility. Typically,
to facilitate classification of activity intensity, acceleration magnitude is collapsed (summed or
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averaged) into epochs ranging from 1 to 60 s, and thresholds
are applied to classify each waking wear epoch as sedentary,
light PA (LPA), moderate PA (MPA), or vigorous PA (VPA).
These thresholds, also commonly called cutpoints, are established
in calibration studies (Evenson et al., 2008; Sasaki et al., 2011;
Hildebrand et al., 2017) where acceleration data are recorded
concurrently with energy expenditure (EE), obtained from
measurement of VO2/CO2 using a metabolic cart (Bassett et al.,
2012). Some studies have also used other means of estimating
EE, such as direct observation, video recordings, or use of the
PA compendium. EE is expressed relative to the standard unit of
resting metabolism [metabolic equivalent (MET)], and typically,
1.5, 3, and 6 METs are considered the thresholds between
sedentary, LPA, MPA, and VPA (Copeland and Esliger, 2009)
(although some studies have used 4 and 7 METs for the latter
two) (Gorman et al., 2014; Whitcher and Papadopoulos, 2014;
Evenson et al., 2015).

These acceleration cutpoints are age-specific and wear-
site–specific. The relation between EE and bodily movement
changes with age. Physical fitness decreases with age, and
as a result, performing the same activity requires higher
EE. Because intensity cutpoints are based on fixed values
of EE, the corresponding acceleration threshold (reflecting
body movement) will tend to decrease the older the target
population is. Previous studies have emphasized the need for
activity cutpoints specific to older adults (Rejeski et al., 2015;
Mankowski et al., 2017). Moreover, while different accelerometer
brands generally show excellent agreement in terms of activity
classification, they can differ in terms of raw acceleration output
(Rowlands et al., 2017). GENEActiv and Axivity devices both
use the ADXL345 accelerometer, and their raw acceleration
outputs are practically identical, so that it is sensible to use
the same cutpoints for both devices. It is not clear whether
the same cutpoints can be applied for brands using different
accelerometers; for instance, we know that ActiGraph GT9X
exhibits overall lower accelerations than GENEActiv and Axivity.

Most cutpoint studies have focused on children or adults,
including studies using raw acceleration data from the
GENEActiv and ActiGraph GT3x+ devices (Esliger et al.,
2011; Phillips et al., 2013; Schaefer et al., 2014; Hildebrand et al.,
2017). ActiGraph devices prior to the GT3X provide results not
in terms of raw acceleration, but in so-called counts, which are
filtered signals, with the filtering parameters kept undisclosed
by ActiGraph. For the hip-worn ActiGraph GT3X (ActiGraph,
Pensacola, FL) accelerometer, ActiGraph count cutpoints have
been compared in older (66.6± 2.9 years) and younger (21± 2.5
years) adults, with 824 and 2,207 counts · min−1, respectively,
associated with moderate-intensity (3 METs) activity (Whitcher
and Papadopoulos, 2014). However, few studies have reported
cutpoints for older adults (Gorman et al., 2014; Whitcher and
Papadopoulos, 2014; Evenson et al., 2015).

For GENEActiv devices, studies by Duncan et al. (2019) and
Sanders et al. (2019) have established acceleration cutpoints for
older adults (55–77 and 60–86 years old, respectively). Duncan
et al. tested the effect of wear site on activity classification, with
devices worn on both wrists, waist, and ankle. The activities used
were focused on the moderate activity level, and most of the

moderate-intensity activities were walking activities, at different
speeds. Sanders et al. investigated a non-dominant-wrist-worn
GENEActiv and a waist-worn ActiGraph and produced two sets
of cutpoints, one optimizing the overall classification accuracy
and the other optimizing sedentary sensitivity and MVPA
specificity. This study did not compare dominant vs. non-
dominant wrist, and we know that acceleration, and therefore
cutpoints, can be different between wrists for the same activity
(Esliger et al., 2011; Phillips et al., 2013; Duncan et al., 2019).
Moreover, both studies placed the emphasis on sedentary and
moderate-vigorous intensities, at the expense of light intensity.

Older adults tend to have a lower exercise capacity, spend
more time sedentary, and rarely engage in VPA relative to
younger adults (Matthews et al., 2008; Troiano et al., 2008;
Jefferis et al., 2019). For this reason, an increase in PA could
result in improved health. In particular, it has been shown that
even LPA is associated with a lower risk of death in the elderly
(Ekelund et al., 2019; Klenk and Kerse, 2019). However, most
accelerometer-based PA studies tend to focus on the ends of
the PA spectrum, that is, sedentary and MVPA. Our study was
designed with a focus on light-to-moderate activities, with a goal
to achieving better discrimination between sedentary, LPA, and
MPA in older adults.

Wrist-worn accelerometers are reported to bemore acceptable
and better tolerated by children (Fairclough et al., 2016),
adolescents (Scott et al., 2017), and adults (Montoye et al.,
2020), compared to a hip-worn device, although we do not
know whether this is true for older adults for which daily
activity patterns and usual clothes are usually very different
from younger populations. The identification of PA intensity
cutpoints, specific to older adults for wrist-worn accelerometers,
and with a stronger focus on the light activity intensities, is
warranted. A secondary purpose was to investigate the effect of
accelerometer placement [dominant (D) or non-dominant (ND)
wrist] on classification accuracy and test–retest reliability, with an
emphasis on typical activities in LPA domain—such as grocery
shopping, sweeping, washing dishes, gardening, and walking—
in order to complement the results of Duncan et al. (2019). We
also applied the cutpoints established in this study to a sample of
free-living data from the same participants, in order to determine
whether there were any differences between devices worn on
each wrist.

METHODS

An opportunistic sample of 36 healthy, South Australia
community-dwelling older adults was recruited for this study.
Inclusion criteria were as follows: older than 70 years, fluent
in English, and capable of undertaking general activities of
daily living unassisted, such as walking and carrying shopping.
Participants’ characteristics are presented in Table 1. Twenty-
four of the 36 participants were classified as overweight or
obese, with a body mass index >25 kg/m2. The protocol
was approved by the University of South Australia Human
Research Ethics Committee. Participants provided written,
informed consent.
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TABLE 1 | Participants’ characteristics.

Sample

size

Age (y) Height

(cm)

Weight

(kg)

Body mass index

(kg/m2)

Female 18 76 (4) 158 (6) 66 (11) 26.2 (4.1)

Male 18 78 (6) 174 (5) 86 (11) 28.3 (3.6)

Standard deviations are presented in brackets.

The experiment consisted of two laboratory visits at least a
week apart, for test–retest data. The same protocol was repeated
for the two visits.

Laboratory Sessions Protocol
Participants were fitted with one GENEActiv on each wrist
(GENEActiv Original, Activinsights, UK). The devices were
configured to record data at 100Hz. Breath-by-breath online
gas analysis was conducted via MetaMax 3B (Cortex Biophysik
GmbH, Leipzig, Germany) with a face mask (Hans Rudolph
Inc., Shawnee, KS, USA). Volume and gas calibration were
conducted in accordance with the manufacturer’s guidelines
prior to each session. Heart rate was measured continuously
using a wireless chest-strap telemetry system (RS400; Polar
Electro Oy, Espoo, Finland).

They were then asked to perform a series of activities typical
of activities of daily living for older adults. These were, in order,
as follows:

1. light gardening (digging and removing objects from a sandpit)
for 4min,

2. sweeping the floor with a broom while standing for 4min,
3. seated reading for 5min,
4. walking overground at a self-paced comfortable speed for

4min (a “comfortable, everyday walking pace”),
5. lying in a lateral recumbent position for 5min,
6. washing and drying dishes while standing for 4min,
7. walking overground at a self-paced brisk speed for 4min (a

“brisk pace”),
8. watching TV seated for 5min, and
9. unpacking groceries while standing for 4min.

There was a 1-min break between each activity. The researcher
wrote down the start and end time of each activity with a
1-s resolution.

Free-Living Protocol
Between the two laboratory sessions, some participants (n = 13)
wore a GENEActiv monitor on each wrist for 3 days
continuously. They were instructed to keep the devices on at
all times as much as feasible, including sleep, and to remove
them only for prolonged water immersion. They were also asked
to fill in a paper log every day with their bed time and get-up
time. This free-living data were processed following the same
method as the main study, following which sleep was isolated
using self-report logs filled by the participants. Waking wear time
was then classified using the cutpoints established in this study. t-
Tests were performed for the daily average time spent in each of

the three intensities in order to check for significant differences
between wrists.

Data Processing
All processing was done in MATLAB (2018b, the MathWorks,
Inc.), and the programs are available on request. GENEActiv data
were downloaded and low-pass filtered with a cutoff frequency
of 20Hz. The 100-Hz data were collapsed in 5-s epochs by
computing the signal vector magnitude (SVM), subtracting
gravity, and summing magnitudes over a 5-s window:

SVMgs =
∑

5s

∣

∣

∣

∣

√

a2X + a2Y + a2Z − g

∣

∣

∣

∣

For each activity, the mean, median and standard deviation of the
SVM over the central 3 min of activity were computed.

To determine the MET values for each activity, 30-s measured
oxygen consumption (mL · kg−1 · min−1) were averaged
for the last 2 min of each activity and divided by 2.8
mL · kg−1 · min−1 [resting metabolic rate (1 MET) for older
adults (Kwan et al., 2004)].

MET data were averaged for each activity. Test–retest
reliability analyses were conducted for data collected for each
activity across the two testing sessions. The activities were
then coded into three categories: sedentary (<1.5 METs), light
(1.5–2.99 METs), moderate (3.0–5.99 METs), and vigorous (≥6
METs) (Copeland and Esliger, 2009). The focus of the study
was on the light–moderate region of PA, and as such, very few
instances of vigorous activity were observed. For the purpose of
establishing cutpoints, we therefore opted to groupmoderate and
vigorous activities into a single moderate-to-vigorous (MVPA)
level corresponding to METs ≥3.

ROC Analysis
The goal of the receiver operating characteristic (ROC) curve
analysis was to find the cutpoints of accelerometer SVM that
most accurately classified each of the three considered activity
levels. We followed the same method as Esliger et al. (2011) and
Phillips et al. (2013).

The two SVM cutpoints between sedentary and LPA, and
between LPA and MVPA, were varied from 1 to 100 g · s (for
sedentary to light) and 1–1,000 g · s (for LPA to MVPA) in
increments of 1 g · s.

The true- and false-positive, and true- and false-negatives,
were then computed, with the definition for true positives
as follows:

– Sedentary: if the accelerometer SVM classified the activity as
sedentary, and the METs for the activity were <1.5;

– MVPA: if the accelerometer SVM classified the activity as
MVPA, and the METs for the activity were at or >3.0.

– Consequently, LPA classification is the one that is above
sedentary and below MVPA. A true-positive for LPA
classification is therefore as follows: MET values are between
1.5 and 3.0, and acceleration magnitude between the
sedentary-to-light and light-to-MVPA thresholds.
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Sensitivity and specificity were then computed, and the ROC
curves for each of the two cutpoints were created. The optimal
cutpoints were defined as the SVM threshold values that
maximized the product of sensitivity and specificity. In order
to allow comparison with other studies, these cutpoints are
presented in two ways:

– scaled to a 60-s epochs equivalent by multiplying the values
by 12 (5 s × 12 = 60 s) to allow direct comparison with the
cutpoints (g ·min) of Esliger et al.;

– averaged over the 5-s epoch length, which makes the resulting
cutpoints independent of epoch length.

RESULTS

Acceleration SVM as a Function of Activity
Intensity
Of the 36 initial participants, five were excluded from analysis:
one did not complete all tasks, two withdrew before completion,
one had issues with GENEActiv data extraction (identical data for
dominant and non-dominant wrists, likely due to operator error
during configuration or extraction), and one had mismatches
between GENEActiv and VO2 data time stamps. Thus, 31
participants (14 female) were included in the analysis.

The MET values and acceleration SVM for each activity,
averaged across participants, are presented in Table 2. Standard
deviations and 95% confidence intervals are also presented.
There were no significant differences (p > 0.05) for either MET
values or acceleration between the two time points; we therefore
decided to merge the two time points for the subsequent ROC
analysis in order to obtain more robust cutpoint estimates.
Generally speaking, sitting, lying recumbent, and watching TV
were sedentary activities (MET <1.5); light gardening and doing
dishes were LPA (1.5≤ MET <3.0); and walking and unpacking
groceries were MPA (3.0≤ MET <6.0) with a few participants
performing brisk walking as VPA (MET ≥6.0). Paired t-
tests resulted in significant differences between acceleration
magnitudes (SVM) for the dominant and non-dominant wrists
for gardening (p < 0.001), sweeping (p < 0.001), and doing
dishes (p < 0.001) for both timepoints, with the dominant wrist
exhibiting larger SVM for all these. For all other activities, there
were no significant differences at either timepoint.

Figure 1 presents the SVM vs. METs for each participant and
activity. As can be seen, acceleration SVM increased reasonably
linearly with METs. Pearson correlation was r2 = 0.650
and r2 = 0.628 for dominant and non-dominant wrists,
respectively. Dominant wrist SVM was overall higher than
non-dominant; however, the difference was only statistically
significant for LPA (1.5 ≤ METs < 3.0, p < 0.001) and MVPA
(METs ≥3.0, p < 0.05).

In order to check whether participants had reached
steady state for each activity when recording started,
we calculated the MET values during the 1-min period
preceding the 2min recording for each activity. As shown
in Table 2B, those MET values indicate steady state was
reached for each activity. Moreover, data sampled 1min
before each sedentary activity started support the fact that T
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FIGURE 1 | SVM vs. METs for the dominant (left) and non-dominant (right) wrists. Each point represents one activity and one participant. Timepoint 1 and 2 are

shown in blue and red, respectively.

TABLE 2B | MET values for the nine activities and both timepoints, average (SD) and 95% CI across 31 participants, compared to the MET values for the same activities,

in the minute prior to the recording period.

Gard Sweep Seat WalkS Lie Dishes WalkF TV Grocer

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

T1 MET 2.79 (0.74) 3.86 (0.86) 1.41 (0.24) 3.68 (0.69) 1.26 (0.19) 2.48 (0.40) 4.94 (1.05) 1.29 (0.20) 3.55 (0.61)

T2 MET 2.75 (0.58) 3.85 (0.81) 1.41 (0.25) 3.47 (0.91) 1.23 (0.31) 2.47 (0.39) 4.82 (1.33) 1.27 (0.22) 3.49 (0.78)

Minute before recording MET 2.78 (0.76) 3.78 (0.89) 1.49 (0.34) 3.59 (1.09) 1.42 (0.33) 2.19 (0.44) 4.65 (1.07) 1.40 (0.33) 3.34 (0.75)

FIGURE 2 | ROC for the sedentary to LPA (left) and LPA to MPA (right) cut points. Dominant and non-dominant wrists are shown in red and blue, respectively. The

dots show the selected cut-points maximizing the product of sensitivity and 1-specificity.

participants had recovered, with MET values of 1.49 (SD,
0.34), 1.42 (SD, 0.33), and 1.40 (SD, 0.33) prior to the three
sedentary activities.

Intensity Cutpoints
Figure 2 shows the results of the ROC analysis for the sedentary
to LPA, and the light to MPA intensity cutpoints. For both wrists,
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TABLE 3 | Intensity cutpoints and associated sensitivity and specificity for sedentary to light PA, and light to moderate PA, for the present study and the studies of Esliger

et al., Duncan et al., and Sanders et al. cutpoints from both studies were converted to 60-s epoch equivalents at 100Hz.

Sedentary to light Cutpoint (g · min) Cutpoint (mg) Sensitivity Specificity

60-s epochs epoch independent

ND—this study 255 42.5 0.97 0.86

ND—Esliger 271 45.2 0.97 0.95

ND—Duncan 19.2 0.74 0.81

ND—Sanders 57 0.43 0.99

D—this study 375 62.5 0.99 0.91

D—Esliger 483 80.5 0.99 0.96

D—Duncan 20.2 0.88 0.84

Light to moderate

ND—this study 588 98.0 0.90 0.79

ND—Esliger 806 134.3 0.95 0.72

ND—Duncan 89.7 0.67 0.81

ND—Sanders 104 0.81 0.65

D—this study 555 92.5 0.94 0.64

D—Esliger 550 91.7 1 0.56

D—Duncan 113.8 0.65 0.8

TABLE 4 | Average daily time spent in each activity intensity for the 3-day

free-living data, calculated for the dominant (D) and non-dominant (ND) wrists,

using the respective cutpoints.

n Mean (min/day) Standard deviation (min/day)

Sedentary D 13 630* 75

ND 13 538* 90

Light PA D 13 103* 25

ND 13 209* 57

MVPA D 13 141 50

ND 13 134 44

Asterisks indicate significant differences (p < 0.05) between dominant and non-

dominant wrists.

the sedentary to light cutpoint presented excellent sensitivity
(0.987 and 0.974 for D and ND, respectively) and relatively
lower, although still very acceptable, specificity (0.908 and
0.856, respectively). Corresponding intensity cutpoints for 60-
s epoch data were 375 and 255 g · min for the dominant and
non-dominant wrists, respectively. The light to MPA cutpoints
displayed good sensitivity (0.940 and 0.898 for D and ND,
respectively) but lower specificity (0.638 and 0.789, respectively)
than the sedentary to LPA cutpoint. Corresponding 60-s intensity
cutpoints were 555 and 588 g · min for D and ND wrists,
respectively. Table 3 summarizes these findings and presents
the results from Esliger et al. (2011), Duncan et al. (2019),
and Sanders et al. (2019) for comparison. Age range for
our participants was 70–91 years, and that of Esliger et al.
was 40–63 years.

Free-Living Data
In order to assess the practical differences in intensity estimates
between wrists, we used data from a 3-day free-living sample
collected on 13 participants that were also part of the main study.

Average daily time spent in each intensity level (sedentary, LPA,
and MVPA) is presented in Table 4.

The dominant wrist and associated cutpoints resulted in
significantly more (p < 0.01) sedentary time (+92 min/day
average), and conversely, significantly less LPA time (−106
min/day average). There was no significant difference (p = 0.42)
for MVPA time.

DISCUSSION

This study fills a gap in the literature regarding intensity cutpoints
for older adults when using the GENEActiv accelerometer, with
an emphasis on the LPA and MPA intensity. Additionally, it
examines the benefits of wearing the accelerometer on the
dominant or non-dominant wrist in terms of activity intensity
classification accuracy.

There are a number of published cutpoints for the GENEActiv
on adult populations (Esliger et al., 2011; Hildebrand et al., 2017;
Duncan et al., 2019; Sanders et al., 2019). However, Hildebrand
et al. (2017) used a different method of data processing, in that
they rounded the negative acceleration values to zero rather
than taking the absolute value. Therefore, our results can only
be compared with those of Esliger et al. (2011). In this regard,
our cutpoints are generally lower than those of Esliger et al.
(2011) for both sedentary to LPA and LPA to MPA, with the
exception of the LPA to MPA cutpoint for the dominant wrist. In
comparison to Esliger et al. (2011), the corresponding intensity
cutpoints for sedentary-to-light were 6% lower for the non-
dominant (255 vs. 271 g · min) and 22% lower for the dominant
wrist (375 vs. 483 g · min), and the light-to-moderate cutpoint
was 27% lower on the non-dominant wrist (588 vs. 806 g · min),
but similar for the dominant wrist (555 vs. 550 g · min). The
population of Esliger et al. (2011) was younger than ours, so these
findings are in line with the fact that cutpoints become lower
for the same intensity with increasing age. This is most notable
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when comparing children and adult cutpoints, and our study
indicates that this trend continues between adults and elderly,
in agreement with the findings of Whitcher and Papadopoulos
(2014).

Usually, accelerometers are worn on the non-dominant wrist,
as it is believed to be a better estimate of overall body movement
and therefore activity intensity. In particular, sedentary activities
involving mostly dominant arm movement, such as writing,
eating, or smoking, could result in the activity being erroneously
classified at a higher intensity than it really is. Our ROC
results indicate that classification accuracy is comparable for
sedentary to LPA, with very high sensitivity and specificity
for both dominant and non-dominant wrists, and only slightly
lower specificity for the dominant wrist. Note, however, that
in this case the specificity is >0.9, which indicates a very
good accuracy. Esliger et al. (2011) report similar sensitivities
but higher specificities; this may be due to the fact that our
study has a continuous range of METs and acceleration SVM
(Figure 2), whereas the activities used in the study of Esliger
et al. (2011) resulted in a more clustered distribution, which
may have contributed to higher specificity (fewer false-positives).
Finally, posture (standing vs. sitting) was not considered in the
reference method; therefore, the sedentary-to-light cutpoint may
be misclassifying light activities as sedentary, if the person is
standing up but not moving his/her arms much. Additionally,
we used a base value for resting METs for all participants instead
of measuring each participant’s base resting METs individually,
which may have affected the final cutpoint values at all levels.

For the LPA toMPA cutpoint, classification accuracy drops for
both wrists; in particular, the specificity is much lower, at 0.638
and 0.789 for dominant and non-dominant wrists, respectively.
This was also observed in the results of Esliger et al. (2011). Lower
specificity indicates more false-positives, i.e., the accelerometer
classified the activity as MPA (or VPA), whereas the activity
was actually lower than MPA according to MET values. One
reason for this may be that some LPA-level activities involve
large or rapid arm movement, while overall the body is standing
still: washing dishes and light gardening would be examples
from our study. This would also explain the fact that the non-
dominant wrist device showed better specificity (0.789) than
the dominant one (0.638); as mentioned above, some LPAs
primarily involve dominant arm movement; therefore, the risk
of misclassifying these as MPA is higher with a dominant wrist
device, resulting in more false-positives. Table 2 confirms this:
our LPA-level activities showed significantly higher accelerations
of the dominant wrist compared to the non-dominant.

Cutpoints established by Duncan et al. (2019) and Sanders
et al. (2019) are more difficult to compare directly to ours,
because these studies round negative magnitudes to 0 rather
than take their absolute value, which causes overall acceleration
magnitudes to be lower and therefore cutpoints to be lower.
Nevertheless, it can be seen that the sedentary-to-light cutpoints
from Duncan et al. are lower than ours by a factor of 2
and 3 for the non-dominant and dominant wrists, respectively
(and Duncan having very similar cutpoints for both wrists).
The Sanders cutpoints reported in Table 2 are those established
using their so-called “Se” method, which aims at maximizing

detection of sedentary and MVPA levels, at the expense of
LPA. The Sanders cutpoint for sedentary-to-light, at the non-
dominant wrist, is 57mg, approximately 27% higher than ours,
which is consistent with their methodology of minimizing false-
negatives for sedentary time (and therefore results in a higher
cutpoint value).

The target population for this study was older adults, who
generally have relatively high levels of sedentary time (Matthews
et al., 2008). In this population, a shift in PA from sedentary to
light is expected to have positive health outcomes (Stamatakis
et al., 2018; Jefferis et al., 2019). In that regard, having a better
discrimination between sedentary and LPA should be seen as
positive as it allows a finer detection of improvements in PA
behaviors. Note that the UK Biobank study used the dominant
wrist (Doherty et al., 2017), whereas the majority of other large-
scale studies have used the non-dominant wrist [e.g., NHANES
(Matthews et al., 2008), LSAC Checkpoint (Fraysse et al., 2019)].

Our study seems to indicate that a dominant-wrist-worn
device achieves a better discrimination between sedentary and
LPA intensities. However, the difference between dominant and
non-dominant wrists remains small, and the present study is by
design limited to a small number of laboratory-based activities.
Of note, the sedentary-level activities we tested involve about
equal movement of the right and left hands (lying, seated
reading, and watching TV), whereas our light-intensity activities
(gardening and washing dishes) involve mostly the dominant
hand. This could have caused the difference in classification we
see here between the two devices.

Similarly, for the light-to-moderate threshold, walking is not
associated with large differences between dominant and non-
dominant accelerations, whereas activities such as gardening are.
The proportion of activities that are predominantly performed
with the dominant hand will determine the magnitude of this
effect. Comparing acceleration magnitudes from both wrists
using free-living data has provided more insight into this issue
with a younger population (Rowlands et al., 2019), but remains
to be done with data for an older population. Cross-validation of
the cutpoints using an independent sample would provide better
ecological validity to these findings. Additionally, reallocation of
LPA into MPA or VPA also has positive effects, and in this case,
the non-dominant wrist provides better discrimination. Overall,
it is still unclear which of the dominant or non-dominant wrist
provides better estimates of activity intensities. Finally, a recent
study indicates that temporal patterns of PA are associated with
health outcomes in older adults (Li et al., 2019); in this regard,
obtaining cutpoints that allow good separation of PA levels is
even more critical.

When the dominant and non-dominant cutpoints were
applied to free-living data, results showed that the dominant
wrist resulted in significantly more time spent sedentary, at
the expense of time spent in LPA (Table 3). This result is
expected considering the higher sedentary-to-light cutpoint for
the dominant wrist. It is, however, unclear which wrist is a better
estimate of sedentary and LPA intensities. One possibility is that
the laboratory study exacerbated differences between wrists that
are not as large in free-living. A recent study by Migueles et al.
(2019) found indeed that the dominant wrist exhibited overall
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larger acceleration magnitudes; however, the resulting difference
they found in cutpoints (50 and 45mg for dominant and non-
dominant, respectively) is smaller than the one we found here,
suggesting the possibility that our laboratory activities favored
motion of the dominant arm. It is also worth noting the
large difference in sedentary-to-light cutpoints found by Sanders
et al. (2019) when optimizing for either overall best intensity
discrimination (20mg) compared to optimizing for sedentary
detection (57 mg).

On a side note, the MET values for the comfortable and
brisk walks were significantly different (p < 0.001), and both
were in the range of MPA (>3.0 METs). While current
guidelines advocate walking at a “brisk” pace for health benefits
(American College of Sports Medicine, 2017), our data indicate
that a self-selected “comfortable” walking speed should be
enough in this population, with associated MET values >3.0.
Instructions to participants to “walk at a comfortable pace”
indeed resulted in moderate-intensity activity according to
MET recordings. Moreover, the fact that comfortable and brisk
paces were significantly different in terms of energy spent
indicates that using self-selected walking speeds in a laboratory
study is a feasible method, and more ecologically valid than
treadmill walking.

In summary, we provide modified cutpoints for sedentary,
LPA, and MVPA in older adults. However, the question of
accelerometer wear site (dominant or non-dominant wrist)
still remains. In particular, if studying a relatively sedentary
population for which most of the PA will be LPA, such as the
retired older adults in our study, it may be beneficial to use

dominant-wrist-worn devices as our data suggest they provide
more accurate estimates of time spent in LPA vs. MPA.
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Paralympic rowers with functional impairments of the legs and trunk rely on appropriate

seat configurations for performance. We compared performance, physiology, and

biomechanics of an elite Paralympic rower competing in the PR1 class during ergometer

rowing in a seat with three different seat and backrest inclination configurations. Unlike

able-bodied rowers, PR1 rowers are required to use a seat with a backrest. For this study,

we examined the following seat/backrest configurations: conA: 7.5◦/25◦, conB: 0◦/25◦,

and conC: 0◦/5◦ (usually used by the participant). All data was collected on a single day,

i.e., in each configuration, one 4-min submaximal (100W) and one maximal (all-out) stage

was performed. The rowing ergometer provided the average power and (virtual) distance

of each stage, while motion capture provided kinematic data, a load cell measured the

force exerted on the ergometer chain, and an ergospirometer measured oxygen uptake

(V̇O2). Where appropriate, a Friedman’s test with post-hoc comparisons performed with

Wilcoxon signed-ranked tests identified differences between the configurations. Despite

similar distances covered during the submaximal intensity (conA: 793, conB: 793, conC:

787m), the peak force was lower in conC (conA: 509, conB: 458, conC: 312N) while

the stroke rate (conA: 27 conB: 31, conC: 49 strokes·min−1) and V̇O2 (conA: 34.4,

conB: 35.4, conC: 39.6 mL·kg−1·min−1) were higher. During the maximal stage, the

virtual distances were 7–9% longer in conA and conB, with higher peak forces (conA:

934m, 408N, conB: 918m, 418N, conC: 856m, 331N), and lower stroke rates (conA:

51, conB: 54, conC: 56 strokes·min−1), though there was no difference in V̇O2peak (∼47

ml−1·kg−1·min−1). At both intensities, trunk range of motion was significantly larger in

configurations conA and conB. Although fatigue may have accumulated during the test

day, this study showed that a more inclined seat and backrest during ergometer rowing

improved the performance of a successful Paralympic PR1 rower. The considerable

increase in ergometer rowing performance in one of the top Paralympic rowers in the

world is astonishing and highlights the importance of designing equipment that can be

adjusted to match the individual needs of Paralympic athletes.

Keywords: kinematics, paraplegia, elite athlete, equipment modification, rowing ergometer

1617

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/journals/sports-and-active-living#editorial-board
https://www.frontiersin.org/journals/sports-and-active-living#editorial-board
https://www.frontiersin.org/journals/sports-and-active-living#editorial-board
https://www.frontiersin.org/journals/sports-and-active-living#editorial-board
https://doi.org/10.3389/fspor.2021.625656
http://crossmark.crossref.org/dialog/?doi=10.3389/fspor.2021.625656&domain=pdf&date_stamp=2021-02-11
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cecilia.severin@ntnu.no
https://orcid.org/0000-0003-0404-1072
https://doi.org/10.3389/fspor.2021.625656
https://www.frontiersin.org/articles/10.3389/fspor.2021.625656/full


Severin et al. Case Report: Seat Adjustments and Rowing Performance

INTRODUCTION

Paralympic rowers compete in three classes; PR1 for athletes
with no leg function, minimal/no trunk function, and poor

sitting stability, PR2 for athletes with limited/no leg function
and functional use of the trunk, and PR3 for athletes with

residual leg function (https://bit.ly/370Scrz, accessed December
4, 2020). While Paralympic rowers compete over the same
2000-m distance as Olympic rowers, the current world records
for male and female PR1 rowers are around 3min slower
(∼7 vs. 10min) than the world record for able-bodied rowers
(www.worldrowing.com/events/statistics, accessed October 22,
2020). The faster times in able-bodied rowers are mainly because

of the ability to utilize their whole body during the rowing task
(Baudouin and Hawkins, 2002; Maestu et al., 2005; Van Soest and
Hofmijster, 2009). In addition, while both PR1 and PR2 rowers
use a fixed seat, PR1 rowers have less sitting stability than PR2
rowers, and are thus required to be strapped into their seat during
competition. Therefore, PR1 rowers rely predominantly on their
arms and shoulders to generate the boat speed (Cutler et al.,
2017).

Regardless of whether rowers are able to actively utilize their
legs or not, the purpose of the sport is to cover the race
distance as fast as possible. The boat speed is dependent on the
propulsive force produced (Baudouin andHawkins, 2004), which
in turn depends on the physical capabilities and technique of
the rower, and the configuration and design of the equipment
(Baudouin and Hawkins, 2002; McGregor et al., 2004). Burkett
(2010) highlighted that the seat can be modified to match the
individual needs of the athlete in Paralympic rowing, and the
World Rowing Federation (WRF) currently has few restrictions
with regard to seat configurations. The only regulations state that
that PR1 athletes must have a backrest on their seat and use a
trunk strap for safety purposes with specifications on how these
straps should be formed and function (Rolland and Smith, 2017).
While using and adapting equipment to match the requirements
of the individual Paralympic rower may have a large effect on
performance, such effects have not been reported in the literature.

To date, most research on seat modifications for Paralympic
performance has been conducted on wheelchair sports (e.g.,
Costa et al., 2009; Vanlandewijck et al., 2011; Van Der Slikke
et al., 2018). Vanlandewijck et al. (2011) found that utilizing a
more posteriorly inclined seat can benefit seating stability but
highlighted that it may also have negative effects on performance.
This was because the increased hip flexion angle and pelvic
posterior tilt appeared to reduce the trunk and shoulder range
of motion (ROM). Contrary to wheelchair propulsion, rowing
propulsion is comprised of a backward pull and thus relies
more on trunk extension. It is therefore possible that adjusting
the inclination of the backrest, and thereby allow more trunk
extension, may compensate for an inclined seat. This may, in
turn, allow the athlete to regain some of the restricted motion
and improve performance. However, it remains unknown if this
applies to Paralympic rowers with minimal trunk function. This
case report therefore aimed at assessing the effects of a more
inclined seat and backrest on rowing performance in a multiple
Paralympic PR1 world champion.

CASE DESCRIPTION

The participant was an elite female Paralympic PR1 rower
(age: 30 years, height: 1.80m, body mass: 60 kg), who acquired
an incomplete spinal cord injury in 2008 at the level of the
10th thoracic vertebra, leaving her with minimal trunk function
and reduced sitting stability (see https://bit.ly/370Scrz for a
description of the tests performed during classification). At the
time of the data collection she did not have any additional
injuries, was in good health, and trained∼28 h per week. Written
informed consent was obtained prior to data collection, and the
testing complied with the declaration of Helsinki.

LABORATORY TESTING AND MEASURED
VARIABLES

The participant attended the laboratory on 2 consecutive days,
with pilot testing and familiarization on day 1, and the data
collection on day 2. A custom-made test seat replaced the original
seat on a Concept2 rowing ergometer (Concept2, Morrisville.
VT. USA). The seat and backrest inclinations were adjustable but
the seat itself was stationary (non-sliding). Based on the pilot
testing from day 1, the three seat configurations analyzed on
day 2 were: seat 7.5◦ (from horizontal) and backrest 25◦ (from
vertical) (conA), seat 0◦ and backrest 25◦ (conB), and her usual
configuration seat 0◦ and backrest 5◦ (conC) (Figure 1). The
participant was strapped into the seat with one strap across her
upper thighs, and one strap around her lower trunk, similar to
her competition set-up.

The Concept2 software provided the virtual rowing distance
covered (henceforth referred to as distance) and the average
power output, while a Futek Miniature Load Cell (Futek
LCM200; capacity, 250 lbs.; nonlinearity 0.5%; hysteresis 0.5%;
weight 17 g; Futek Inc., Irvine, CA) was used to record the
instantaneous force exerted by the participant on the chain of the
ergometer (200Hz). The load cell was calibrated against a range
of forces of known magnitude employing calibrated weights
(linear correlation r2 = 0.999). Kinematics were collected by
a 10-camera system (Oqus, Qualisys AB, Gothenburg, Sweden)
recording at 100Hz. Bilateral symmetry was assumed, and
retroreflective markers were attached to the participants left side
on the 2nd toe, lateral malleolus, lateral femoral epicondyle,
greater trochanter, iliac crest, the spinous processes of the T10
and C7 vertebrae, acromion process, lateral epicondyle of the
humerus, and styloid process of the radius. One additional
marker was placed on the ergometer handle and one on the
flywheel, allowing for identifying strokes. Rate of oxygen uptake
(V̇O2) was recorded using an ergospirometer with a mixing
chamber (Oxycon Pro, Jaeger GmbH, Hoechberg, Germany)
and a mouthpiece (Hans Rudolph Inc, Kansas City, MO, USA).
Prior to testing, the gas analyzer was calibrated against a known
mixture of gases (15% O2 and 5% CO2) and ambient air.
Calibration of the flow transducer was manually performed with
a 3L high precision syringe (Hans Rudoph Inc., Kansas City, MO,
USA). Heart rate (HR) was monitored using an H10 Polar heart
rate monitor (Polar Electro Inc., Kempele, Finland). Blood lactate
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FIGURE 1 | Illustration of the three seat configurations used during this study. conA had a 25◦ incline of the backrest from the vertical plane, with a 7.5◦ incline of the

seat to the horizonal plane. conB had the same backrest incline as conA (25◦ to the vertical) and a flat seat (0◦ to the horizontal). conC, which was the participant’s

usual set up, had the backrest inclined to 5◦ from the vertical plane and a flat seat (0◦ from the horizontal plane).

concentration (BLa) was assessed with the Lactate pro 2 (Arkray
Inc., Kyoto, Japan). Subjective rate of perceived exertion (RPE)
was measured on a 6–20 Borg scale (Borg, 1982).

The data collection protocol consisted of three 4-min stages
performed at 80W, 100W, and an all-out effort in each of
the three seat configurations. During the all-out stage, the
participant was instructed to row as hard as she could for
the 4 mins and pace herself so that she reached exhaustion
toward the end of the stage. Maximal exhaustion was considered
reached if 2 of the 3 following criteria were met: (1) the self-
reported max heart rate from the participant, (2) respiratory
exchange ratio over 1.15, and (3) an RPE of 18 or higher.
The participant was allowed 2–3 mins rest between stages and
30 mins between the different configurations. The 80W stages
were considered familiarization stages and were not included
in the analysis. The 100W (SUBMAX) stages provided steady-
state responses while the all-out (MAX) stages provided peak
responses. Performance (i.e., distance covered during MAX),
biomechanical, and physiological data were recorded throughout
the 4-min stages. RPE was recorded after each stage and a BLa
was measured from the earlobe directly after SUBMAX, and 1
and 3min after MAX.

SUBMAX steady-state V̇O2 and HR data were calculated by
averaging the final 60 s of each stage. For MAX, the data was
analyzed using a 30 s moving average for the V̇O2 and 30 s
for the HR, and the peak value was identified as V̇O2peak and
HRpeak, respectively. Kinematic and force data were analyzed
using custom MATLAB code (MATLAB 2019b, Matworks Inc.,
Nantick, MA, USA). Marker and force data were low-pass filtered
using a 4th order Butterworth filter with cut-offs of 7 and 50Hz,
respectively. Elbow and shoulder joint and trunk angles were
calculated from marker positions (Figure 2).

The start of each rowing stroke was defined as the point where
the handle marker was closest to the flywheel marker. The stroke
was divided into a drive and a recovery phase (Cutler et al.,
2017), with the end of drive identified as when the handle was
farthest away from the flywheel. Eighteen strokes in the middle of
each stage were extracted for analysis. For each stroke, timeseries
data for the joint angles (trunk, shoulder, and elbow) and force
data from the load cell were time-normalized to 101 data points
(0–100% of each stroke). In addition, the following discrete

biomechanical variables were extracted for the 18 cycles: maximal
and minimal joint angles, peak force, impulse (the integral of
force over time), the drive phase duration (expressed as % of
stroke), the stroke rate, and stroke length (i.e., distance the handle
moved during the drive phase).

The joint angles, peak force, impulse, drive phase duration,
stroke rate, and stroke length were analyzed in SPSS version
26 (IBM Inc., Armonk, NY, USA). All variables violated
the assumptions of a repeated-measures one-way ANOVA so
differences between configurations were determined using a
Friedmans test with a subsequentWilcoxon singed-ranks tests for
post-hoc comparisons. Statistical significance of all post-hoc tests
was accepted at an alpha level of 0.017 (0.05/3 ≈ 0.017 following
Bonferroni adjustments). Cohen’s D was used to indicate effect
size, and was considered small if d < 0.5, moderate if 0.5 < d <

0.8, and large if d > 0.8 (Cohen, 1988). The drive phase of the
normalized time series were analyzed using Statistical Parametric
Mapping (SPM) (github.com/0todd0000/spm1dmatlab, accessed
March 17, 2020) by employing paired samples T-tests (Pataky
et al., 2016). The time interval used for the SPM analysis was
chosen as the drive phase duration for conA and conB that
occurred last (38% for SUBMAX from conA, and 51% for MAX
from conB). Statistical significance for the SPM analyses was
accepted at an alpha level of 0.05.

OUTCOMES AND RESULTS

The Friedmans tests indicated significant main effects of seat
configurations on all tested variables (χ2(2) < 36.000, p <

0.05). Table 1 shows the results of the post-hoc comparisons
for the biomechanical variables along with descriptive data for
the performance and physiological variables. During SUBMAX,
conC had significantly lower peak force and impulse coupled
with higher V̇O2 and significantly higher stroke rate than conA
and conB. Further, although the distance, V̇O2, and RPE were
similar between conA and conB, conB had higher HR and
significantly lower peak force and impulse. During MAX, longer
distances were covered in conA (+78 meters) and conB (+60
meters), compared to conC (Table 1, Figure 3). Peak force was
significantly higher and stroke rate was significantly lower in
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TABLE 1 | Performance, physiological, and biomechanical variables presented as single values or mean ± SD for the three seat configurations tested on day two with statistical comparisons for the three configurations.

100 W MAX

conA conB conC conA v conB conA v conC conB v conC conA conB conC conA v conB conA v conC conB v conC

Distance (m) 793 793 787 – – – 934 918 856 – – –

Power output (W) 101 101 99 – – – 165 157 127 – – –

V̇O2 (mL·kg−1·min−1 ) 34.4 35.4 39.6 – – – 46.3 46.2 47.4 – – –

HR (bpm) 157 166 176 – – – 188 188 187 – – –

BLa (mmol·L−1) 3.6 6.4 11.3 – – – 21.8 23.5 18.4 – – –

RPE 11 12 14 – – – 20 19 19 – – –

Peak Force (N) 509 ± 40 458 ± 30 312 ± 28 0.003α
<0.001α

<0.001α 408 ± 17 418 ± 29 331 ± 23 0.170 <0.001α
<0.001α

Impulse (N·s) 172.2 ± 8.1 157.9 ± 8.7 97.0 ± 8.9 <0.001α
<0.001α

<0.001α 153.5 ± 5.9 129.9 ± 10.0 102.9 ± 6.5 <0.001α
<0.001α

<0.001α

Drive phase duration (%) 32 ± 1 37 ± 1 51 ± 1 <0.001α
<0.001α

<0.001α 52 ± 1 54 ± 1 56 ± 1 0.001α
<0.001α 0.001α

Stroke rate (spm) 26.5 ± 0.7 30.8 ± 0.8 48.6 ± 1.4 <0.001α
<0.001α

<0.001α 50.9 ± 0.8 54.1 ± 1.2 56.0 ± 0.7 <0.001α
<0.001α 0.001α

Stroke length (cm) 80.5 ± 2 77.7 ± 1.2 67.2 ± 1.3 0.002α
<0.001α

<0.001α 78.7 ± 1.2 77.3 ± 1.7 68.4 ± 1.1 0.006α
<0.001α

<0.001α

Trunk flexion (◦) 68.7 ± 0.8 70.9 ± 0.9 69.3 ± 1.2 <0.001α 0.170β
<0.001α 69.8 ± 0.8 71.6 ± 1.1 70.2 ± 1.1 <0.001α 0.053 0.004α

Trunk extension (◦) 123.9 ± 1.5 124.5 ± 1.1 106.4 ± 0.7 0.102 <0.001α
<0.001α 127.4 ± 1.1 129.6 ± 0.8 109.4 ± 0.9 <0.001α

<0.001α
<0.001α

Trunk ROM (◦) 55.2 ± 1.8 53.6 ±1.2 37.2 ± 1.1 0.011α
<0.001α

<0.001α 57.7 ± 1.3 58.0 ± 1.5 39.2 ±1.3 0.446 <0.001α
<0.001α

Shoulder flexion (◦) 82.4 ± 1.4 81.7 ± 1.5 80.1 ± 2.0 0.148 0.004α 0.025α 84.7 ± 1.4 76.7 ± 3.5 75.1 ± 1.8 <0.001α
<0.001α 0.094β

Shoulder extension (◦) 51.8 ± 2.7 50.3 ± 2.2 45.5 ± 2.1 0.064β
<0.001α

<0.001α 48.5 ± 1.6 38.9 ± 3.2 44.2 ± 2.4 <0.001α 0.002α 0.001α

Shoulder ROM (◦) 134.1 ± 3.5 132.0 ± 2.6 125.6 ± 3.2 0.043β
<0.001α

<0.001α 133.1 ± 1.7 115.7 ± 4.5 119.3 ± 3.2 <0.001α
<0.001α 0.018α

Elbow flexion (◦) 140.1 ± 2.2 139.5 ± 1.8 134.8 ± 1.7 0.446 <0.001α
<0.001α 139.0 ± 1.7 130.9 ± 3.0 130.4 ± 1.8 <0.001α

<0.001α 0.586

Elbow extension (◦) 54.4 ± 1.8 58.6 ± 3.0 62.5 ± 2.0 0.002α
<0.001α 0.002α 59.9 ± 2.3 68.6 ± 2.0 64.4 ± 2.1 <0.001α 0.001α

<0.001α

Elbow ROM (◦) 85.7 ± 3.1 80.9 ± 3.5 72.5 ± 2.6 0.010α
<0.001α

<0.001α 79.1 ± 2.3 62.5 ± 4.3 65.7 ± 2.3 <0.001α
<0.001α 0.013α

bpm, beats per min; cm, centimeters; d, Cohen’s D; m, meters; N, Newtons; p, p-value; spm, strokes per min; V̇O2, Oxygen uptake; W, watt.

Drive phase duration indicates the timing of when the participant transitioned from the drive phase to the recovery phase.
αdenotes a large effect size (d > 0.8 or d < −0.8), βdenotes a moderate effect size (0.5 < d < 0.8 or −0.8 < d < −0.5).
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FIGURE 2 | Definition of the angles calculated from the kinematic data (indicated by the yellow lines). (A) Trunk: angle created between the thigh and neck using

markers on the lateral femoral epicondyle, the greater trochanter, and the spinous process of C7. (B) Shoulder: angle created between the greater trochanter,

acromion process, and lateral humeral epicondyle. (C) Elbow: angle created between the acromion process, lateral humeral epicondyle, and radial styloid process.

conA and conB compared to conC also at MAX, although these
differences were smaller than at SUBMAX.

Trunk extension was significantly less in conC compared
to conA and conB during both intensities (Table 1, Figure 3).
The SPM analysis showed significant differences between
configurations conA and conB (shaded areas in Figure 3) in
both their force profiles and joint kinematics throughout a large
part of the drive phase during both intensities. While the elbow
and shoulder joints showed a similar pattern during all three
configurations, the timing of their peak flexion significantly
differed between configurations during SUBMAX (Figure 3).
Though the differences in peak shoulder and elbow flexion and
extension angles between conC and the other configurations
were small (less than 6.0◦), the consistent movement pattern of
the participant resulted in these differences reaching statistical
significance (Table 1).

DISCUSSION

In this case report, the performance of an elite Paralympic
rower improved substantially during an all-out maximal effort
on a rowing ergometer when using adjusted seat configurations.
Compared to her usual setup (conC), the configurations with
an increased back angle (conA and conB) showed 7–9%
improved performance (virtual distance covered) along with
significantly higher peak force production, larger impulse,
increased trunk motion and longer stroke length coupled with
lower stroke frequency.

During SUBMAX, the participant was able to maintain the
target power (100W) in all three configurations, and therefore
covered similar distances. However, she had to employ a higher
stroke rate in her usual setup (49 strokes·min−1) compared
to conA and conB, which is considerably higher than what
usually is reported for able-bodied rowers (20–36 strokes·min−1)
(McGregor et al., 2004; Hofmijster et al., 2007). This was to
compensate for the lower peak force, lower impulse, and shorter
stroke length. The higher stroke rate was achieved predominantly
through a shorter recovery phase in conC (conA: 1.53 s, conB:
1.23 s, and conC: 0.60 s), which required an active contribution
from the participant to return the handle toward the flywheel
before the next stroke. In addition, with a high stroke rate, the

participant moved faster and changed the direction of movement
more frequently, which required her to continuously overcome
larger linearmomentum. Further, while the drive phase durations
only differed by < 0.1 s between all three configurations, the
stroke lengths in conA and conB were ∼10 cm longer than conC
during SUBMAX. It has been shown in able-bodied rowers, that
the amount of positive work done per stroke during rowing
is mainly dependent on stroke length (Hofmijster et al., 2007).
Consequently, the high stroke rate with a shorter recovery
phase, and shorter stroke lengths, would be disadvantageous for
producing work. A high stroke rate has further been linked to
increased respiratory demands (Saltin et al., 1998; Lindinger and
Holmberg, 2011), which is supported by the current study in that
the higher V̇O2 in conC indicates a lower efficiency than in conA
and conB.

Surprisingly, both peak force and impulse were higher at
SUBMAX (work rate 100W) than at MAX for both conA and
conB (work rate 165 and 157W, respectively). In addition, her
stroke rate increased considerably for conA and conB (+83 and
+57%, respectively) at MAX compared to SUBMAX, while conC
only increased with 15%. It is also noteworthy that the stoke
rate only differed by ∼10% between the three configurations
at MAX, which suggests that she has a “default” stroke rate
during “all-out” effort bouts. It seems the participant adopted this
“default” stroke rate when performing an “all-out” effort during
the testing, which subsequently shortened the time per cycle, and
caused the lower impulse and peak force at MAX. Importantly,
if the participant adopted this “default” stroke rate, it suggests
the “all-out” instruction triggered a rowing technique that was
different from the one used when instructed to maintain a target
power (i.e., SUBMAX). So, while the participant covered a longer
distance at MAX in conA and conB, this was done with a less
powerful drive phase. Our findings therefore suggest that she
may be able to perform even better if she can maintain a rowing
technique at MAX, with a more powerful drive phase and lower
stroke rate.

Further, while stroke rate and drive phase duration differed
considerably between conC and the other configurations at
SUBMAX, they were more similar at MAX, suggesting that the
participants “all-out” effort strategy was similar regardless of the
seat configuration. Conversely, the gains the participant achieved
in peak force/impulse when transitioning from SUBMAX to
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FIGURE 3 | Mean ± standard deviation of the handle force and joint angles for the 3 seat configurations (conA, conB, and conC) for 0–100% of a stroke. The vertical

dashed line indicates the point of phase shift (between drive and recovery phase), up until which the SPM analysis was performed. The shaded area in gray indicates

when there was a significant difference during the drive phase between conA and conB since conC was statistically different to the other configurations during most of

the drive phase.

MAX were noticeably smaller in conC than conA and conB. This
was perhaps since she was not able to increase the already high
stroke rate much further in conC (+15%), which also resulted in
a shorter distance covered. In line with the lower efficiency during
SUBMAX, the performance was poorer in conC during MAX,
despite similar levels of volitional exhaustion (V̇O2peak, HRpeak

and RPE) in all configurations.
Even in a participant with minimal residual trunk function,

the increased performance in conA and conB was likely
associated with the increased trunk motions due to the
inclined backrest (Table 1). This supports previous research that
linked increased power production to increased trunk ROM in

able-bodied male rowers (McGregor et al., 2004). The increased
trunk motion likely also triggered the arm movements earlier
in the stroke during SUBMAX (Figure 3), which subsequently
allowed the more rapid force development and the longer
recovery phases (Table 1). The backrest inclination was the same
for conA and conB (25◦), so the marginally better performance
in conA may in part be due to the increased seat inclination
(conA: 7.5◦, conB: 0◦). Speculatively, the inclined seat may
have prevented the participant from sliding forward during the
strokes and thereby increased her stability. In wheelchair athletes,
an inclined seat has been cautioned to have negative effects
on performance since it creates “closed” posture with reduced
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trunk ROM (Vanlandewijck et al., 2011). However, the difference
in seat angle between conA and conB caused only minimal
differences in trunk angles (flexion: 2.2◦ and 1.8◦, extension:
0.6◦ and 2.2◦ in SUBMAX and MAX, respectively), and the
more closed posture in conA did not have a negative effect
on her performance. Furthermore, wheelchair propulsion and
rowing are opposite movements, and it is therefore likely that
rowing performance would be more affected by the range of
trunk extension and is not as affected by limited trunk flexion as
wheelchair performance. This further highlights the importance
of allowing trunk extension even for Paralympic rowers with
minimal residual trunk function. Overall, this data shows the
importance of designing individualized equipment to match the
very heterogenous physical capabilities of Paralympic athletes.

SUBJECT PERSPECTIVE

Following this experiment, the athlete chose to employ conA
and conB during training and has, after a few months, settled
with conA. During the experiment, the athlete commented that
conA and conB felt “easier and more effective,” and that she
“didn’t have to use somuch energy.” The coach also observed that
athlete seemed more relaxed in these adjusted configurations and
particularly noticed the lower stroke rate.

LIMITATIONS

A limitation of this case report is that because of time restriction,
all configurations were tested on 1 day, with conA first, then
conB, and conC last. Despite measures to prevent fatigue, it is
possible that the results may in part be attributed to accumulating
fatigue. However, the differences between conC and the other
configurations are so large that it seems unlikely that these
effects would disappear completely even if fatigue was avoided.
Some of the significant differences in kinematics between the
configurations were also very small (e.g., trunk angle, Figure 3).
This was caused by the very consistent movement patterns from
the single, experienced rower in this case report, resulting in
small standard deviations. However, in elite sport, even such
small changes may still affect the athlete’s chances of winning
a medal or finishing off the podium. Finally, even though
differences exist between indoor ergometers and on-water rowing
(Shaharudin et al., 2014), ergometers are frequently used by
high performance rowers during testing and training (Bjerkefors
et al., 2007; Van Soest and Hofmijster, 2009; Cutler et al., 2017).
On the ergometer, we saw a 7–9% performance improvement
in conA and conB, compared to the participants usual set up.
Although non-standardized on-water pilot testing has indicated
performance improvements with the adjusted seat, the extent of
these during competitions remains to be investigated.

CONCLUSION

This case study showed that adjustments to the seat and backrest
improved performance by 7–9% in an elite Paralympic PR1
rower compared to her usual configuration during land-based
ergometer rowing. The two configurations with increased
backrest inclination allowed longer virtual distances, higher peak

forces, larger impulses, increased trunk motions, longer stroke
lengths, and lower stroke rates compared to the participants usual
set-up. It should be acknowledged that the design of the study,
where the participant performed three “all-out” tests on a single
day, may have resulted in accumulating fatigue and thus affected
the results. However, the differences between her usual set up and
the adjusted configurations were so large that is seems unlikely
that they would disappear completely if fatigue was avoided.
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The purpose of this study was to assess validity, stability and sensitivity, of 4 spectral

parameters–median frequency (Fmed), mean frequency (Fmean), Dimitrov index (DI), and

mean instant frequency (Fmi)–in measuring localized muscle fatigue in swimming and

to investigate their correlation with the variations of kinematic data and mechanical

fatigue. Electrophysiological measures of muscle fatigue were obtained in real-time

during a 100m front crawl test at maximum speed in 15 experienced swimmers, using

surface electromyography in six muscles employed in front crawl, while kinematic data

of swimming was measured from video analysis. Mechanical fatigue was measured as

the difference between muscle strength prior to and immediately after the 100m front

crawl in a dry-land multi-stage isometric contraction test. Statistically significant fatigue

(p < 0.0001) was found for all spectral parameters in all muscles. Fmed and Fmean

varied between 10 and 25%, DI between 50 and 150%, and Fmi between 5 and 10%.

Strong correlation (Pearson r ≥ 0.5) with mechanical fatigue was found for all spectral

parameters except for Fmi and it was strongest for Fmed and Fmean. From our study, it

turns out that Fmed and Fmean are more valid and stable parameters to measure fatigue

in swimming, while DI is more sensitive.

Keywords: electromyography, spectral parameters, fatigue, swimming, master swimmers, video analysis

INTRODUCTION

Fatigue has been defined as “a reduction in force output that occurs during sustained voluntary
activity” (Bigland-Ritchie et al., 1983), and more recently as “any exercise-induced loss of ability
to produce force with a muscle or muscle group” (Taylor et al., 2006). The phenomenon of fatigue
is a common experience in sports, particularly complex as it varies with the change in the type
of exercise performed. In particular swimming is a dynamic task and it requires coordinated
activation of lower limbs, core, and upper body muscles in each stroke cycle. In addition, the water
environment does not offer a fixed fulcrum to exert a maximal force, indeed muscle force at each
pulling stroke is only about 50% of themaximal voluntary contraction (Stirn et al., 2011). The decay
of velocity and the variations of the kinematic parameters are widely used methods to monitor
fatigue in swimming (Stirn et al., 2011; Ikuta et al., 2012; Figueiredo et al., 2013; Conceição et al.,
2014; Puce et al., 2018). Although relatively simple to determine, these methods are neither direct
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nor muscle-specific measurements of fatigue. Real-time
monitoring of localized muscle fatigue during the execution of
a task is possible through surface electromyography (EMG).
During a prolonged muscle contraction, as consequence of
the physiological mechanisms of fatigue, the spectral weight
of the EMG shifts from high to low frequencies (Dimitrov
et al., 2006; González-Izal et al., 2012). For this reason, the time
evolution of power spectrum parameters such as the median
frequency (Fmed), the mean frequency (Fmean), the Dimitrov
index (DI) (Dimitrov et al., 2006) and themean instant frequency
(Fmi) could be used to detect the electrophysiological signs of
localized muscle fatigue in swimming. Two studies monitored
the variation of Fmean (Stirn et al., 2011; Conceição et al., 2014).
Stirn et al. reported that at the end of a 100m front crawl, Fmean

decreased significantly by 20–25% in the upper body muscles. In
the study of Conceição et al., despite the evolution of kinematic
and physiological parameters reflected the development of
muscle fatigue during 200m breaststroke, only a non-significant
trend of Fmean decrease in the upper body muscles was reported.
Front crawl and breaststroke are technically different in terms
of functional involvement of muscles, and consequently fatigue.
The upper body muscles, monitored in both studies, are more
active in front crawl than in breaststroke, as in breaststroke
most of the propulsion is provided by lower body muscles. For
this reason, a direct comparison of these apparently conflicting
results is not possible.

In order to investigate the evolution of fatigue in a 200-m
front crawl, Figueiredo et al. (2013) used DI, which is thought
to be more sensitive than Fmed and Fmean as a measure of
fatigue in sub-maximal contractions (Dimitrov et al., 2006;
González-Izal et al., 2012). The results of this work showed a
significant increase of DI by 40–60% for upper limb muscles,
but no significant variation for those in lower limbs. Spectral
analyses of EMG signal that rely on the Fourier transform (Fmed,
Fmean and DI), are based on the assumption that the signal is
stationary during the analyzed 0.5–2.0 s intervals (Cifrek et al.,
2009). This may not be the case for EMG signals associated
to dynamic contractions, especially involving fast movements,
where myoelectric signal bursts are often shorter than 500ms
(Bonato et al., 1996). On the other hand, alternative analysis
models have been used for non-stationary EMG signals, such
as the short-time Fourier transformation (STFT), where the
FFT is applied to short overlapping stationary intervals, to
the detriment of frequency resolution, the autoregressive or
autoregressive–moving-average methods (Witte et al., 2006), the
Wavelet methods based on intensity analysis, the methods based
on transforms that work well for non-stationary and non-linear
data. Among other time-frequency distributions that do not
require the hypothesis of stationarity of the EMG signal, are
the Cohen class time-frequency transforms (Cifrek et al., 2009),
which may thus be more suitable for the spectral analysis in
the case of dynamic contractions (Bonato et al., 1996, 2001;
González-Izal et al., 2010). Caty et al. (2006) calculated Fmi using
the Choi-Williams transform, belonging to the Cohen’s class
transforms, in a 4 × 50m front crawl and observed a decrease
in Fmi for the extensor carpi ulnaris and flexor carpi ulnaris
muscles by 11 and 9%, respectively. These variations of Fmi were

sizably smaller than the variations of spectral parameters based
on the Fourier transform (Stirn et al., 2011; Figueiredo et al.,
2013; Conceição et al., 2014). From the above mentioned reports,
it appears that further studies are necessary to gain insight on the
validity of the methods of spectral analysis of EMG signal, for the
assessment of localized muscle fatigue in swimming. Yet, valid,
stable and sensitive methods to measure fatigue could be useful
to assess the level of performance, prevent injuries (Matthews
et al., 2017) and adjust training methods (Puce et al., 2018). In
this work, we present the evolution of the 4 spectral parameters
Fmed, Fmean, DI and Fmi during a 100m front crawl and their
correlation with the variations of the kinematic data and the peak
torque. Our final aim is to assess validity, stability, and sensitivity
of each spectral parameter in measuring the localized muscle
fatigue in swimming.

METHODS

Subjects
Fifteen elite masters swimmers (two women; mean ± standard
deviation age 33.0 ± 9.7 years; weight 71.9 ± 9.5; height 177.8 ±
8.6 cm) took part in the research study, after 10 days of tapering
phase. The swimmers were front crawl specialists, even if some
of them were not sprinters. Their average technical index was
considered high (612± 43) (Santos et al., 2020).

The study was carried out in accordance with the code of
ethics of the World Medical Association (Declaration of Helsinki
2014) for experiments involving humans. A written informed
consent was obtained from all participants prior to participation
in the study. The project was approved by the local ethics
committee (University of Genova, Italy. N. 2020/21).

Study Design
Electrophysiological measures of muscle fatigue and kinematic
data were obtained in real-time during a 100m front crawl, using
EMG and video analysis. Mechanical fatigue was measured as
the difference between muscle strength prior to and immediately
after the 100m front crawl in a dry-land multi-stage Isometric
Contraction Test (MICT). After the MICT performed at rest
(pre-MICT), a 30min time was used for recovery and for
application of EMG electrodes and adhesive markers. Then the
100m front crawl Swimming Fatigue Test (SFT) was carried
out. The secondMICT (post-MICT) was performed immediately
after the SFT. It must be stressed that the time elapsed between
the end of the SFT and the post-MICT was kept at minimum (<
10 s), in such a way that the level of muscular strength measured
in the post-MICT was representative of the fatigue experienced
in the SFT.

The outcome measures of this study were the variations of
the four spectral parameters of the EMG signal, Fmed, Fmean, DI
and Fmi, measured during the SFT, the variations of the peak
torque measured before and after the SFT and the variations of
the kinematics data, velocity, stroke length, and stroke index,
measured during the SFT.

Validity of the spectral parameters was determined on the
basis of the correlation of electrophysiological signs of fatigue
with mechanical fatigue and kinematic parameters. Stability
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of the spectral parameters was estimated in terms standard
deviation of data within individual 100m SFTs. Sensitivity of the
spectral parameter was determined in terms of range of variation
in the SFTs.

Swimming Fatigue Test (SFT)
Measurements were performed in a 50-m indoor swimming
pool. After the pre-MICT and 30min recovery, the swimmers
performed an individual warm-up. After the warm-up, the
swimmers were instructed to perform a 100m front crawl at the
highest level of self-perceived exertion. Due to the measuring
equipment attached to the body, the underwater turn was allowed
but the dive start was not.

Multi-Stage Isometric Contraction Test
(MICT)
MICT had a total duration of 43 s and was carried out on the
pool deck. It consisted of six isometric contractions lasting 3 s
interspersed with 5 s (change of exercise), each one involving
different muscles, carried out using a cable cross over apparatus
(model Technogym Cable Stations Ercolina Rehab, Cesena,
Italy) with a load cell connected to a Digital Force Indicator
display (model C2S-AMP, Modena, Italy). For the pre-MICT
and post-MICT tests to be equivalent, participants were asked to
express strength at their maximum in the contractions. It must
be pointed out that these cannot be considered as maximum
voluntary contractions (MVC), which are commonly used in
fatigue experiments, due to the short duration (3 s) of the effort.
Yet, this duration was chosen to minimize the difference in
recovery times among the six successive contractions in the
post-MICT tests, as well as to avoid an overall fatigued state
that developed in the participants through the MICT tests, in
case of contraction durations of 5 s or longer. The maximum
value that was maintained on the display for a time at least of
the order of 1 s was considered as the peak force value. This
force value was converted into a torque (Nm) for each exercise
and the difference between pre-MICT and post-MICT torques
was normalized to the pre-MICT torque value. The swimmer
was harnessed to a chair and changed their body position for
each contraction in such a way as to be biomechanically able
to recruit a specific muscle (Figure 1). The first muscle used
was the pectoralis major (PM), followed by the triceps lateralis
(TL), latissimus dorsi (LD), anterior deltoid (AD), biceps femoris
(BF) and rectus femoris (RF). The succession was structured to
optimize the timing. The athletes carried out a pre-test warm-
up and a month-long training to learn to compensate as little
as possible with other muscles, keep a correct standard position,
stay within the contraction/exercise change times, and express
the maximum strength during the test.

EMG Data Collection
EMG signals from PM, TL, LD, AD, BF, and RF of the
dominant side were measured through bipolar surface electrodes
using a waterproof wireless EMG equipment (Cometa srl,
Milan, Italy) operating at 2,000Hz, according to SENIAM
guidelines (Hermens et al., 2000). To avoid alterations induced
by underwater recording, a water resistant adhesive tape over

the electrodes was applied (Rainoldi et al., 2004). The above
six muscles were selected according to their relevance in front
crawl (Clarys, 1983) and were the same as those assessed in
the MICT. Data analysis was performed using the open source
software Python distributed by Anaconda Inc. In each EMG
trace, the activation interval [tin, tfin] of each stroke was identified
where the envelope of the rectified signal around the maximum
amplitude exceeded 20% of the maximum amplitude itself,
following the same criterion of Stirn et al. (2011). Once the
starting and ending times of the activation interval of each stroke
were identified this way, spectral analysis was carried out on each
activation interval. The EMG intervals were filtered with a band-
pass Butterworth filter of 4-th order in the range of 20–500Hz
and then analyzed in the frequency domain. The four spectral
parameters Fmed, Fmean, DI and Fmi were calculated.

Fmed of the power spectrum was calculated as the frequency
that divides the power spectrum into two parts having the same
spectral weight, according to the following equations:

∫ Fmed

fc1

PSD
(

f
)

df =

∫ fc2

Fmed

PSD
(

f
)

df =
1

2

∫ fc2

fc1

PSD
(

f
)

df (1)

where fc1 = 20Hz and fc2 = 500Hz are the cut-off frequencies
of the high-pass and low-pass filters applied to the spectra and
PSD(f) is the power spectral density.

Fmean of the power spectrumwas calculated as the momentum
of order 1 of the power spectrum:

Fmean =

∫ fc2
fc1
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)

df
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DI was calculated as the ratio of the momentum of order −1 of
the power spectrum to the momentum of order 5:

DI =

∫ fc2
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1
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The instant frequency IF(t) was calculated using the Choi–
Williams time-frequency distribution, with intermediate value
of the kernel parameter (O’Toole and Boashash, 2013). Fmi was
then calculated by averaging IF(t) over each activation interval
between times tin and tfin:

IF (t) =

∫ fc2
fc1

f ·
∣

∣CW
(

t, f
)∣
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2
df
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∣

∣CW
(

t, f
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2
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, Fmi =

∫ tfin
tin

IF (t) dt

tfin − tin
(4)

Here |CW(t,f)|2 are the squared time-frequency components of
the Choi-Williams transform.

Electrophysiological detection of muscle fatigue were
obtained as time variation of spectral index, quantified by
the slope of the linear regressions of spectral index vs. time,
with uncertainty given by the standard deviation of the linear
regression. A negative slope for Fmed, Fmean, Fmi and positive
slope for DI indicates fatigue. The slopes were finally normalized
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FIGURE 1 | Multi-stage isometric contraction test (MICT). In the left-most position, θ indicated the angle between the cable and the horizontal axis. The joint and cable

angles in the six positions are: Pectoralis Major: shoulder flexed in neutral position (0◦) and elbow flexed by 90◦, θ = −15◦; Triceps Lateralis: shoulder flexed by 180◦

and elbow flexed by 90◦, θ = +55◦; Latissimus Dorsi: shoulder abducted by 75 ◦, θ = −45◦; Anterior Deltoid: shoulder flexed by 75◦, θ = +60◦; Biceps Femoris: knee

flexed by 90◦, θ = 0◦; Rectus Femoris: knee flexed by 90◦, θ = 0◦. IC = isometric contraction.

to the initial value of the regression line for each EMG trace.
Average values of normalized slopes of each spectral parameter
for each muscle were calculated over the 15 participants. The
average of each spectral parameter x over the participants was
calculated by weighting each value with the inverse variance 1

σ 2
i

obtained from the linear regression:

xaverage =

∑15
i=1

xi
σ 2
i

∑15
i=1

1
σ 2
i

(5)

The error bars on these averages were calculated as:

σx =

√

√

√

√

1
∑15

i=1
1
σ 2
i

(6)

Kinematic Data Collection
The measurements of kinematic data were carried out by
analyzing video recordings (Kinovea 0.8.25), acquired on sagittal
plane using two cameras (model GoPro Hero 8, GoPro, San
Mateo, CA, USA) one above the water surface and one below.
The cameras were fixed to a pushcart which was moved at the
same speed as the swimmer speed. Precise information on the
absolute position of body and limbs was obtained by applying
adhesive markers on the joints of the lower and upper limbs and
synchronizing the biomechanical analysis with the EMG signal.
Specifically, triggering of video recording and EMG signal was
done by tapping a spare EMG probe at the start. Swimming
velocity (SV), stroke length (SL), and stroke index (SI) were
evaluated. SI was calculated as the product of SV and SL, and it
was used as an index of the swimming efficiency (Costill et al.,
1985). The SV was calculated as the ratio of space swum to
chronometric time. The SL was calculated as the ratio of space
swum to the corresponding number of strokes. To avoid the
influence of the start and turn phases, all three parameters were
calculated in the free-swimming segment, that is between 15th
and 45thm of the pool length. Finally, the variations of SV, SL and

SI were evaluated as the linear time derivatives
(

dSI

dt
, dSV
dt

, dSL
dt

)

in the free swimming segments and normalized to the respective
values at the instant t0 corresponding to the 15th m of the first
length, SI(t = t0), SV(t = t0), SL(t = t0).

Statistical Analysis
Correlation between electrophysiological signs of fatigue
(normalized slopes of EMG spectral index) and mechanical
fatigue (normalized difference in torque between pre-MICT
and post-MICT) and between electrophysiological signs of
fatigue and decay of kinematic parameters (normalized slopes of
kinematic parameters) was evaluated by the Pearson coefficient
r. It was assumed that correlation was strong for 0.5 ≤ |r| ≤ 1,
moderate for 0.3 ≤ |r| ≤ 0.49, low for |r| ≤ 0.29, null for |r| =
0. One-way ANOVA test was used to evaluate the significance
of differences of electrophysiological signs of fatigue between
different muscles. Statistical significance was also evaluated in
terms of p-value for the average normalized slope of each spectral
parameter for each muscle and for the average variation of
kinematic parameters. Statistical significance was set at p < 0.05.

RESULTS

Electrophysiological Signs of Fatigue
In Figure 2, we present a typical EMG acquisition during the
underwater phase of a stroke, where the activation intervals of
the 6 muscles and their relative shift are shown. The upper body
muscles had one activation interval per stroke, while lower limbs
have either two or three activation intervals per stroke, depending
on the participant. PM has the longest activation interval.

Fmed, Fmean, and Fmi for all the participants and muscles
exhibited a decreasing trend over time while DI exhibited an
increasing trend. Figure 3 shows recordings of a representative
set of these parameters.

The average normalized slopes of each parameter and each
muscle over the 15 participants are shown in Figure 4. All these
values were statistically significant (p < 0.0001).

Frontiers in Sports and Active Living | www.frontiersin.org 4 February 2021 | Volume 3 | Article 6447652728

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Puce et al. EMG for Fatigue in Swimming

FIGURE 2 | EMG activation of the underwater phase stroke of the 6 muscles of one representative participant during the SFT.
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FIGURE 3 | Time evolution of spectral parameters of the 6 muscles of one representative participant during the SFT. Panels from top to bottom: Fmed, Fmean, DI, Fmi.

PM, pectoralis major; TL, triceps lateralis; LD, latissimus dorsi; AD, anterior deltoid; BF, biceps femoris; RF, rectus femoris.

Frontiers in Sports and Active Living | www.frontiersin.org 6 February 2021 | Volume 3 | Article 6447652930

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Puce et al. EMG for Fatigue in Swimming

FIGURE 4 | Weighted averages of the normalized slopes of spectral parameters for the six muscles. Panels from top to bottom: Fmed, Fmean, DI, Fmi. All these values

are statistical significant (p < 0.0001). Right-hand axes indicate the percent variation in the FST. Asterisks indicate statistical significance (p < 0.05) of difference

between either two or all six muscles. Red arrows point to the direction of increasing fatigue for each spectral parameter.
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Fmed and Fmean varied between 10 and 25%, DI between 50
and 150%, and Fmi between 5 and 10%. Regarding scattering
of data for each parameter in individual SFTs (see sets of data
in Figure 3 as an example), in absolute terms, the standard
deviation of DI was on average seven times larger than the
standard deviation of Fmed, 13 times larger than the standard
deviation of Fmean, and nine times larger than the standard
deviation of Fmi. In relative terms, normalizing to average values,
the standard deviation of DI was still the largest (∼70%), as
compared to∼60% for Fmed and Fmi and∼35% for Fmean.

For all spectral parameters, larger relative changes among
upper body muscles was observed in PM and LD, while the least
relative change was observed in AD. In the lower limb muscles,
the relative change was comparable for BF and RF, except in the
case of DI, which showed larger variation for RF.

Regarding the differences between muscles, statistical
significance (p < 0.05) was observed for the PM-TL and TL-RF
couples and within the group of all the 6 muscles for Fmed; only
for the PM-TL couple for Fmean; for the PM-TL, PM-AD and
PM-BF couples for DI.

Mechanical Fatigue
Mechanical fatigue, evaluated as normalized difference between
post and pre MICT varied between 8% for RF and 17% for LD,
as shown in Figure 5. Due to the scattering of data, statistical
significance was found only for TL and LD (p < 0.05).

Kinematic Data
The average swimming time achieved by the swimmers was
longer than their personal best by as little as 3.2%. Hence,
considering the fact that in SFT the participants did not perform
the dive start, did not wear a racing suit and had to cope with
the burden of the equipment, the performance can be considered
performed at maximum effort. Moreover, for all participants a
progressive decrease of SV, SL, and SI was observed. Figure 6
presents the normalized slope of the three kinematic parameters

FIGURE 5 | Average percent variation of the torque for each muscle from the

pre-MICT to the post-MICT, representing mechanical fatigue. Asterisks

indicate statistical significance (p < 0.05).

across the FST. SV, SL, and SI exhibited variations by 15, 9, and
22%, respectively. Statistical significance applied to SV and SI
(p < 0.05).

Correlation
For increasing fatigue Fmed, Fmean, and Fmi should decrease
and DI increase, and torque should decrease as well. In these
conditions, all the characteristic spectral frequencies (Fmed,
Fmean, and Fmi) correlate positively with the changes in torque,
while DI correlates negatively with the changes in torque. Indeed,
this is just what comes out from the Pearson coefficients r,
reported in Table 1, used to evaluate the correlation between
electrophysiological signs of fatigue, assessed through different
spectral parameters, and mechanical fatigue.

The negative variations of Fmed and Fmean exhibited strong
positive correlation with mechanical fatigue for all the muscles,
except RF. Statistical significance of these correlations was found
for TD, LD, AD, and BF. On the contrary, the negative variations

FIGURE 6 | Average relative variation of the kinematic parameters (SV, SL, SI)

per unit time in the FST, expressed as linear time derivative of each kinematic

parameter ( dSI
dt
, dSV

dt
, dSL

dt
, respectively) normalized to the value of the kinematic

parameter at the beginning of the free swimming segment

[SI(t = t0 ),SV (t = t0 ),SL(t = t0), respectively]. Asterisks indicate statistical

significance (p < 0.05).

TABLE 1 | Pearson correlation coefficient rPearson coefficients between normalized

variations of spectral parameters (electrophysiological fatigue) and normalized

variations of torque (mechanical fatigue).

Muscle Spectral parameter

Fmed Fmean DI Fmi

PM 0.61 0.59 −0.42 −0.37

TL 0.88* 0.83* −0.63* 0.20

LD 0.59* 0.66* −0.03 −0.60

AD 0.90* 0.95* −0.53 −0.15

BF 0.75* 0.78* −0.68* 0.26

RF −0.26 −0.33 0.57 −0.53

Asterisks indicate statistical significance of the correlation (p < 0.05).
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Fmi exhibited positive correlation with mechanical fatigue only
for TL and BF, but this correlation was low and not significant.

The positive variations of DI exhibited strong negative
correlation with mechanical fatigue for TD, AD, and BF, with
statistical significance for TL and BF, while for PM only moderate
correlation was found.

Not significant correlation was found between the changes in
spectral parameters and the changes in all kinematic parameters
SV, SL, and SI.

DISCUSSION

In this study, we presented the evolution of the four spectral
parameters during 100m front crawl and their correlation with
the variation of the torque and kinematic data to assess the
validity and sensitivity of each spectral parameter that measures
fatigue in swimming. From our study, it turned out that Fmed and
Fmean are more stable and valid parameters to measure fatigue in
swimming, while DI is more sensitive.

Electrophysiological Signs of Fatigue
The relative difference in fatigue between different muscle is
qualitatively similar for all the spectral parameters, in agreement
with results of Dimitrov studies (Dimitrova et al., 2005; Dimitrov
et al., 2006, 2008). The widest range of variation was observed for
DI revealing about six times larger sensitivity to fatigue than Fmed

and Fmean and 15 times larger than Fmi. In other studies, DI was
found to be up to 150 times larger than Fmed and Fmean during
electrically evoked contractions (Dimitrova et al., 2005) and 50
times larger during voluntary isometric contractions (Dimitrov
et al., 2008).

Larger sensitivity of DI is due to definition as the ratio
of momentum of order −1 of the power spectrum to the
momentum of order five, which better describes the shift of
spectral weight from high to low frequencies with increasing
fatigue, due to different mechanisms. The spectral moment
of order (−1) emphasizes the increase in low and ultralow
frequencies in the EMG spectrum due to increased negative
after-potentials during fatigue. The spectral moment of order
five emphasizes the effect of decreases in high frequencies,
due to increments in the duration of the intracellular action
potentials and decrements in the action potential propagation
velocity (Dimitrov et al., 2006). As a counterpart of such larger
sensitivity, DI showed the largest standard deviations of the data
within individual 100m SFTs, likely due to numerical instability,
originating from the stochastic nature of the EMG signal and
the DI definition itself in terms of higher-order momenta of the
power spectrum.

Comparing fatigue in different muscles, the largest fatigue
was observed for PM. Indeed, in studies that analyse the EMG
amplitude normalized of MVC (Clarys, 1983; Pink et al., 1991),
PM was observed to produce the most propulsive force in front
crawl, together with LD and TB. Moreover, from our results,
the duration of its EMG activity in the front crawl stroke was
the longest among the investigated muscles, lasting throughout
the whole underwater phase (Figure 2). This may be due to the
fact that PM, in synergy with other respiratory muscles, is also

responsible for inspiration. LD and TB showed large fatigue, as
well. LD is known as the “swimmers muscle” due to the major
role it plays in the successful completion of each of the swim
styles (Laudner and Williams, 2013) and, together with TB, it
is considered the key muscle in maintaining swimming speed
in fatigued conditions (Ikuta et al., 2012). AD was the least
fatigued upper body muscle. The contribution of this muscle to
propulsion is limited (Figure 2), and its main function is bringing
the shoulder over the head during the recovery phase of the stroke
(Pink et al., 1991). Although lower limb muscles only contribute
about 15% to propulsion in front crawl (Stirn et al., 2011), fatigue
in BB and RF was similar to upper body muscles. In front crawl
the biomechanics of lower limbs do not rely on a good support
surface, as in the case of breaststroke, however they have twice
or three times as many activations intervals as the upper body
muscles in each stroke (Figure 2).

Correlation
The electrophysiological manifestation of fatigue obtained as
change in spectral parameters over time is associated with
phenomena that occur in the muscle, prior to occurrence of
mechanical fatigue. Indeed, the variations of these parameters
reflect physiological phenomena that will only subsequently
degrade the mechanical performance of the muscle. Therefore,
it is interesting to inspect the correlation between the parameters
that reflect electrophysiological signs of fatigue and parameters
that identify mechanical fatigue.

An important finding of the present work was that
Fmed and Fmean showed the highest correlation between
electrophysiological signs of fatigue and mechanical fatigue.
Hence, these spectral parameters proved to be the most valid in
dynamic contractions, whose bursts are often shorter than 500ms
(Figure 2), a time interval in which the problem of possible
non-stationarity of the EMG signal may arise.

Regarding Fmi it exhibited the least correlation between
electrophysiological and mechanical fatigue and the least
sensitivity to fatigue in different muscles. It must be noted that
we observed a negligible dependence of results on the choice of
the Choi–Williams parameter over a wide range of values. This
parameter suppresses the cross-terms in the frequency spectrum,
i.e., terms originating from the product of different frequency
components, which appear as a consequence of non-stationarity
of the signal. The negligible influence of this parameter on
the results indicates that the problem of non-stationarity is
not relevant in our signal. In this situation, the use of the
Choi-Williams distribution in place of the Fourier transform is
not appropriate, as it causes a smoothening of the frequency
spectrum, thus also altering the frequency components of the
signal and not just the mixed terms.

We remark that the correlation between electrophysiological
and mechanical fatigue observed in our study was not obvious
a priori. Indeed, dynamic and static contractions have different
patterns of neural activations (Cheng and Rice, 2005).

The kinematic parameters were not correlated with
electrophysiological measures of fatigue, represented by
any of the spectral parameters. This result can be explained
by the unaware tendency of swimmers to maintain constant
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velocity in fatigued conditions, through modification of arm
coordination (Cheng and Rice, 2005) and muscle activation
(Stirn et al., 2011; Ikuta et al., 2012). This unaware compensation
strategy may be a further reason why fatigue occurs differently
for different muscles.

PRACTICAL IMPLICATIONS

This study provides information on the use of the most
appropriate spectral parameters in terms of validity, stability
and sensitivity for the assessment of fatigue in swimming. Our
results show that Fmed and Fmean are the most valid and stable
parameters and are thus recommended, particularly in tests
where maximum effort is required. DI is the most sensitive,
and it may be more suitable in tests where low intensity muscle
contractions are required, although it is intrinsically more liable
to numerical instability, due to the stochastic nature of the
EMG signal.

LIMITATIONS OF THIS STUDY

We point out two limitations of this study. First, the positions of
the MICT were optimized in neither singling out the effort of a
specific muscle, nor in simulating the in-water stroke movement.
However, the MICT provided a good measure of mechanical
fatigue as long as it was performed in identical conditions prior
to and after the swimming fatiguing test. A second limitation
regards the measurement of the mechanical force, which was
carried out by visual inspection of the dynamometer display,
rather than by recording and mathematic averaging the output

signal of this instrument. However, attention was paid to ensure
reproducibility of the method.
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Virtual online training has emerged as one of the top 20 worldwide fitness trends for

2021 and continues to develop rapidly. Although this allows the cycling community

to engage in virtual training and competition, critical evaluation of virtual training

platforms is limited. Here, we discuss the strengths, weaknesses, opportunities and

threats associated with virtual training technology and cycling in an attempt to enhance

awareness of such aspects. Strengths include immersive worlds, innovative drafting

mechanics, and versatility. Weaknesses include questionable data accuracy, inadequate

strength and reliability of power-speed algorithms. Opportunities exist for expanding

strategic partnerships with major cycling races, brands, and sponsors and improving

user experience with the addition of video capture and “e-coaching.” Threats are present

in the form of cheating during competition, and a lack of uptake and acceptance by a

broader community.
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INTRODUCTION

In a recent survey, virtual and online training ranked in the top 6 worldwide fitness trends for 2021
(Thompson, 2021). Development of strategic digital live-streaming or pre-recorded sessions of
group, individual, or instructional programs allows exercise to be performed at home (Thompson,
2021). This is particularly important at this time, since the national or local lockdowns used to
manage the COVID-19 pandemic in many parts of the world, including temporary closure of gyms,
has forced many athletes to engage in ergometer training at home.

In the case of cycling, advances in technology have improved indoor training equipment,
providing novel simulation trainers equipped with power measuring capability connected online
with new 2- or 3D virtual training and competition applications. The virtual environment can be
achieved with wearable technology, such as a virtual reality (VR) headset, or through a figure on
the screen (normally referred to as an avatar) whose movements the player controls. The most
important feature of VR is effective immersion, making the individual feel fully present in the
virtual environment (Witmer and Singer, 1998; Radianti et al., 2020).
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In the rapidly evolving field of virtual online training, Zwift
(https://www.zwift.com) is currently one of the most popular
platforms, with more than 2.5 million registered app users
in 190 countries (Long, 2020) and an all-time high of more
than 30,000 users cycling at the same time (Schlange, 2020b).
Other communities such as Peloton (https://www.onepeloton.
com/), Real Grand Tours (RGT; https://www.rgtcycling.com/),
Rouzy (https://rouvy.com/), and others are growing. The Zwift
community continues to expand, with the formation of racing
teams, first informally and more recently with support from
sponsors, and competition monitored through a third party
(Zwiftpower; https://zwiftpower.com/).

Here, we would like to share our experience concerning
cycling in virtual reality by elite and amateur athletes worldwide.
In this context we summarize the strengths, weaknesses, as well
as opportunities and threats of virtual online training platforms
(i.e., especially, but not exclusively Zwift) in attempt to enhance
awareness of various aspects of virtual training technology and
online cycling. This description is also intended to act as a
starting point for discussion and planning of future research on
this new and rapidly evolving type of sport.

STRENGTHS

Availability at a Wide Range of Costs
With the Zwift online training platform, for example, power,
speed, cadence, and heart rate are monitored indoors by specific
sensors on a bicycle set up as a static trainer. Most popular are
turbo trainers, free-standing rollers, or specially designed indoor
bicycles. Turbo trainers vary in their level of technology, starting
with wheel-on trainers (i.e., attaching the rear bicycle wheel to
a weighted fly wheel), which are usually unpowered and unable
to provide data, requiring external devices for this purpose (and
therefore nicknamed “dumb” trainers). Top-of-the-line (“smart”)
trainers are direct-drive (requiring the rear bicycle wheel to be
removed and the bicycle chain to be attached directly to the
trainer) and are usually electronic and capable of simulating
conditions such as incline and changes in the road surface, while
monitoring performance data.

To date, a wheel-on trainer plus external speed and cadence
monitors costs ∼£150/e165/$195 (not including the bicycle) in
addition to the monthly Zwift subscription fee of £12/e13/$15.
The cost can rise to more than £2,000/e2,200/$2,500 when
purchasing a high-quality trainer, with incline simulation and a
secondary power-meter for back-up and verification. Although
the latter may seem to be relatively expensive, it is cheaper than
other commercially available virtual training platforms utilizing
VR headsets (Duking et al., 2018), as well as many of the cycle
training camps organized in different parts of the world. This
high-end set-up can provide an almost unlimited number of
simulated training environments, routes, and races.

Novel Strategies for Team Management
The adaptable nature of virtual cycling platforms allows
preparation for many different kinds of competitions, decreasing
the need for athletes and coaches to travel to different training
venues, thereby avoiding jetlag and fatigue (Fowler et al., 2017),

reducing the time lost to periodization and tapering, and costs
normally associated with travel (Le Meur et al., 2012). In
addition, coaching staff can assist athletes remotely, regardless of
location or time zones. Cyclists can train and compete in greater
comfort in their own homes and/or other familiar surroundings.
Moreover, fewer mechanics will be required as the risk of
problems with an indoor trainer is relatively low.

Realistic Simulation of Many Different
Racing Situations and Conditions
New routes and training environments are being developed
continuously, with the most recent updates encompassing
simulations of different stages of the Tour de France, including
the world-famous sprint finish along the Champs-Élysées.
Currently, more than 70 racing courses are available, ranging
from short sprints (<5 km) to endurance courses (longer than
100 km). World-famous climbs, such as the Alpe d’Huez and
Mont Ventoux, can be simulated in virtual reality. This versatility
allows greater training specificity than is possible with more
traditional indoor cycling.

Furthermore, virtual cycling platforms can simulate drafting
effects that mimic those experienced outdoors, i.e., a cyclist is
able to conserve energy by riding behind another cyclist on-
screen. This drafting effect allows for basic adaptations based on
differences in the cyclist’s height and mass, the weight and model
of the bicycle and wheel selection (in the Zwift simulation), the
size of riding group, and inclines, even shallow climbs of up to
3 degrees. When cycling downhill, the rider can free-wheel and
still maintain speed while in different positions, most notably
the “super-tuck” position, an extremely aerodynamic position
which every avatar will assume when free-wheeling at or above a
certain speed. During actual cycling outdoors on varying terrain,
freewheeling is quite common and, accordingly, virtual training
platforms can simulate a range of cadences.

In addition, virtual cycling platforms allow simulation of
different road surfaces, including tarmac, gravel, and dirt, each
with its own resistance and riding experience. Thus, with only
one type of bicycle at home, the athlete can train and compete in
a greater variety of scenarios or categories than would otherwise
be possible.

The most recent innovation is the introduction of steering
capabilities via a steering platform fixed to the bicycle at home,
which allows for an even greater level of immersion in the
virtual environment.

Safety
Globally, rates of traffic-related cycling injuries vary from 174
to 1,329 per 100,000 registered cyclists (Ag, 2019), resulting in
significant costs – in the case of minor injuries, averaging 841
e in time lost from work, medical treatment, and costs for
replacement of equipment (Aertsens et al., 2010). In addition,
fear of, e.g., heavy traffic, darkness and/or bad weather, being
attacked by strangers and bicycle theft is often a barrier to
engaging in cycling (Heesch et al., 2012).

The ability to participate in simulated races in different
disciplines and in large group races without fear of accidents is
particularly useful for those recovering from an injury or who

Frontiers in Sports and Active Living | www.frontiersin.org 2 March 2021 | Volume 3 | Article 6311013637

https://www.zwift.com
https://www.onepeloton.com/
https://www.onepeloton.com/
https://www.rgtcycling.com/
https://rouvy.com/
https://zwiftpower.com/
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


McIlroy et al. Virtual Training Platforms

are anxious when cycling in groups. Nervous and inexperienced
cyclists can also join a race on virtual cycling platforms without
having to deal with the potentially intimidating experience of
traveling to an outdoor event and negotiating the start of a mass
participation event.

Athletes can also conduct high-intensity training sessions
without encountering traffic or, e.g., having to stop at traffic lights,
allowing training loads to be standardized. In fact, the sense of
pressure and urgency that can be created in connection with
virtual cycling can increase both the intensity and enjoyment of
high-intensity interval cycling by untrained individuals (Farrow
et al., 2019).

An additional advantage is that the cyclist does not have to
worry about detrimental environmental factors, such as extreme
temperatures, rain, snow, strong winds or air pollution (Heesch
et al., 2012). While training indoors, a cyclist can control the
temperature and humidity and even simulate different altitudes
with hypoxia-inducing procedures.

Gamification
The gamification of indoor cycling, with feedback loops
commonly employed in video games, has lead to a myriad
of possibilities for interactive usage that enhances engagement
(Beatty, 2013). With the virtual training platform, successful
performance is rewarded with special currency, experience points
and levels that can be used to make in-game purchases, e.g.,
bike frames and wheelsets with properties (better aerodynamics
or lighter weight) that can improve performance. As has been
shown in connection with many exercise tasks (Van Der Kooij
et al., 2019; VanMastrigt et al., 2020), such rewards may motivate
users and encourage them to exercise at higher speeds, climb
more meters or ride for longer periods to accumulate even
greater rewards

In addition, at random points along the course, virtual cycling
platforms offer temporary events, called power-ups, that can
boost performance, ranging from a reduction in drag to a
decrease in the cyclist’s body mass, a feature similar to those in
many video games.

This can both attenuate the perceived level of exertion, thereby
promoting more prolonged and/or intense cycling, and make the
experience more versatile and enjoyable (Farrow et al., 2019).

Moreover, the gaming nature of this program may attract
new participants by including music and social interactions (e.g.,
multiplayer options that allow friends to be included or guidance
to be received from experienced players), as well as reducing
frustration due to poor-quality graphics and overly complex
controls and display functions that may evoke motion sickness
(Faric et al., 2019).

Finally, virtual forms of training may allow players to engage
in more physical activity thereby reducing screen time and self-
efficacy (Staiano et al., 2017).

WEAKNESSES

Accuracy
Questionable accuracy has been one of the most obvious
weaknesses of Zwift (Whiting, 2018). Themany types andmodels

of trainers involved require multiple ways of measuring power
output. Some trainers have built-in power meters; others require
external devices; and some require speed and cadence sensors
which use Zwift’s own algorithms to estimate power output.
Alternatively, meters on the crank-arm, wheel hub or pedal of
the cycle, each with its own level of accuracy, can be used to
monitor power.

Zwift applies an algorithm to convert this measured power
output to in-game speed. This offers a somewhat crude
estimation of actual speed since, as explained in more detail
elsewhere, it is based on several factors, including the cyclist’s
mass, height and choice of bike (Schlange, 2020a).

In this context, aerodynamics, which have a considerable
influence on outdoor cycling (Atkinson et al., 2003), are only
measured in basic terms of height and mass, with adaptations
for specific in-game bicycle and wheel choices. The cyclist’s body
size and shape are not considered, nor is their riding positions.
Cyclists with superior technique and flexibility may be able to
assume more aerodynamic positions than others, but this has no
impact in-game.

At present, for the devices commonly employed to measure
power, manufacturers report a variance in accuracy of ±1–3%
(TacX, Wahoo, Elite, 4iiii and Stages). Although this may not be
important to a recreational rider, for a competitive cyclist it could
well mean the difference between winning and losing. Therefore,
for appropriate simulation and interpersonal racing in Zwift, this
accuracy must be improved. At present, elite cyclists must verify
their Zwift power data with a secondary measuring device, which
entails additional expense and technical experience.

The cyclists using “dumb” trainers, with only speed and
cadence monitors and no power measurement device, make use
of Zwift’s alternative algorithms for estimating power (Zwift
Power or ZP). Within the racing community these are not
considered reliable, and many races exclude riders using these
algorithms when reporting results. This could lead to simulated
high-level racing becoming an elitist sport.

Indoor vs. Outdoor Load Metrics
Many recreational and competitive cyclists train both indoors
and outdoors over the course of a season. Depending on the
technology involved, cyclists may perceive these two types of
training differently. In fact, power output and heart rate during
cycling outdoors and indoors may differ (Mieras et al., 2014).
Thus, internal and external load metrics associated with indoor
and outdoor cycling cannot be applied interchangeably.

Inaccurate Data Entry and “Cyber-Doping”
For the estimated power and actual power algorithms offered by
Zwift to function, the user must provide body mass and height to
establish an individual drag coefficient for drafting, riding solo,
leading groups, or riding up- or downhill. Some cyclists may
not know their actual mass and therefore enter incorrect data.
False data can affect performance outcomes, since Zwift utilizes
watts per kilogram body mass as the main determinant of avatar
speed. Moreover, entering an incorrect height would alter the
drag coefficient, the second determinant of avatar speed. More
concerningly, the cyclist may deliberately enter an incorrect body
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mass and/or height to improve apparent performance, a practice
nicknamed “cyber-doping” and seen by the Zwift community
as analogous to real-life doping. There have also been cases of
gender swapping, most frequently by men, who then participate
in competitions for women only.

So far, these practices have been policed by the community
itself, with users flagging suspect performances or requesting
verification of power data and/or body mass through external
forums. The most common and supposedly robust enforcement
involves suspending a cyclist until his/her power data is verified
by a secondary power source, although this approach is not
always readily available and entails additional cost. Riders can
also be suspended until a verified weigh-in video is provided, but
this is rare and more questionable, as weighing scales are often
poorly calibrated.

Such factors can lead to confusion when reporting results.
The results of traditional (non-virtual) elite races are released
almost immediately, allowing athletes, teams, and sponsors to
celebrate their successes. Zwift’s requirements for verification of
performances that are suspect could reduce confidence in the
results and undermine public perception of the races.

System Failure
Another weakness of the Zwift system are dropouts, i.e., shorter-
or longer-term loss of Bluetooth or Ant+ connectivity between
power meters, trainers or computing devices used for simulation.
The racing community calls these events “cyber mechanicals,”
in analogy to the mechanical failures seen in non-virtual bike
races. Dropouts are relatively rare, sometimes only lasting a
matter of seconds, but since they may occur at any time, these
can still exert a considerable impact on apparent performance,
especially during a race. Faulty hardware, problems with software
including bugs and/or hosting, and human error (such as not
charging devices) can all lead to dropouts. Regardless of the
cause, dropouts constitute a risk that sponsors and/or athletes
may find unpalatable.

The Human Component
The very nature of the simulation may reduce the skillful
technique and bike handling needed for success in elite non-
virtual races. Because of the way it is constructed, sprinting
maximally on an ergometer is different to sprinting outdoors.
The platform simulates cornering, so there is no need for the
user to do so. Furthermore, it is not necessary to understand
body positioning while descending or braking and distance
management within a group of cyclists. Onscreen avatars and
power data make it difficult to determine whether attacks or
changes in pace will have the desired effect. Crowds, which
can provide emotional support and a sense of gratification
when successful, are absent. This may reduce the enthusiasm
of both the competitor and sponsors. Furthermore, the overall
performance of elite cyclists can be affected by the skills and
characteristics of their teammates (e.g., cyclists often try to help
the team leader win at the cost of their own chances) (Torgler,
2007). In general, virtual racing may attenuate the intuitive
feelings of real-life racing.

OPPORTUNITIES

A New “Normal”
The ongoing Covid-19 pandemic is causing more and more
individuals to incorporate virtual platforms into their daily lives.
Online exercise and virtual personal training are becoming more
common (Thompson, 2021). At the same time, many global
sports competitions have been postponed or canceled, opening
opportunities for a viable and stable virtual platform to offer
alternatives to professional athletic competitions. As long as the
availability of live sports events remains limited, the numbers of
viewers may increase, and new audiences may be captured.

New Event Formats, Sponsors, and Teams
Collaboration between event organizers and commercial brands
is on the rise, with the first virtual Tour de France in July
2020 (www.letour.fr, 2020). Now teams (some associated with
professional teams who compete in Grand Tour races) that
focus solely on virtual racing through Zwift are being formed.
In addition to the virtual world championships on the Zwift
program each year, the three Grand Tours of cycling (Tour de
France, Giro d’Italia, Vuelta a España) could also conduct virtual
races. The high-profile one-day races could be added as well. In
this way elite cyclists could compete year-round with teams and
brands exposed to new audiences.

Moreover, the new technology in combination with the
pandemic situation presents opportunities for changing the
traditional structure of road cycling teams. Cyclists who normally
sacrifice personal chances of success by drafting a team leader
could race more aggressively, potentially leading to more exciting
races and new cycling stars. Furthermore, with shorter races and
the ability of each cyclist to prepare nutrition and hydration
in advance and keep these close at hand, less time will be lost
in this respect and fewer employees assigned to such tasks will
be required.

The Crossover Athlete, Talent
Identification, and Coaching
Cyclists who normally specialize in one type of event could
try racing in different competitions, e.g., road cyclists could
compete in virtual mountain bike races, BMX riders could try
gravel racing, etc. Virtual online platforms could also expand
to include track cycling disciplines, BMX racing, cyclocross and
fixed gear racing. World championship in all-round categories
could be offered.

This situation could well-lead to the identification of new
talents, with cyclists being particularly successful in virtual
disciplines they have not competed in previously. In this manner
virtual online cycling platforms could become a testing agency
for National Governing Bodies and Olympic Federations. As an
example, this is currently operated through an academy, which
partners with a professional cycling team to offer a male and
female rider a development contract (Norman, 2020), but it could
be expanded upon.

Partnering with high-level coaches to provide a greater variety
of in-game training plans is another opportunity. With data
collected being fed back to the coach and alterations being
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made where necessary to accommodate training adaptations
and responses (Duking et al., 2018, 2020), it is possible that
digital online coaching could reduce incidents of overtraining
and injury. This could also be accomplished through additional
algorithms that automatically adjust the resistance of “smart”
trainers when an athlete is training at an intensity that is too
high (Duking et al., 2020). Outdoor cycling data could also be
added to these algorithms to create a more complete training
plan. Such digital coaching framework (Duking et al., 2018) could
allow athletes to exercise and train with a quality they may not
normally have access to. There are currently external platforms
providing this service (e.g., Today’s Plan and others), but this
approach could be included within the virtual online training
platform itself, thereby increasing usage and control.

Finally, virtual platforms provide athletes with physical or
cognitive disabilities with opportunities they do not have in the
real world. Paralympic disciplines can be included, allowing for
increased inclusion and diversity.

Enhanced Modeling and Simulation
Combining power readings with video data captured from
multiple angles could allow for more accurate avatar modeling,
thereby increasing the realistic nature of in-game performance.
Photographs or video of riders in their preferred riding positions
on the bicycle could be beneficial to those with certain body
shapes or greater flexibility.

Additionally, virtual online training platforms could simulate
weather simulations that a rider might normally encounter,
including changes in temperature, wind direction and speed, and
rain or snow. This would require cyclists to adapt their tactics
to cope with the changes (such as sheltering from head and
crosswinds when riding in a group or reducing visibility and
avatar responsiveness when riding in rain or snow).

Virtual online platforms may offer opportunities for field-
based studies related to both the training and racing aspects
of cycling, and the inter-relationship between the two, as all
exercises are performed using the same platform and equipment,
and may offer the opportunity to recruit many participants.

In this context the so-called “ERG (short for ergometer)
mode” allows the resistance of this device to be set automatically.
Use of this mode requires a smart bike trainer in combination
with either a compatible app or computer that makes it possible
to adjust the resistance remotely and maintain constant power
output during a workout.

INTEGRATING ASPECTS OF eSPORTS

Virtual athletic platforms will lead to the development of new
tactics that could enhance public engagement and excitement.
This may explain, at least in part, the surge in popularity of
eSports, with tickets for multi-day elite competitions selling out.
First events in endurance sport (Ltd, 2020; Triathlon, 2020), a
fusion of real-life and virtual triathlon and cycling, immerses fans
in a view of the world’s best athletes and provides them with
actual power, speed and heart rate data collected by Zwift. In
addition to attracting new fans, this concept could provide more
revenue for athletes, teams, and sponsors.

In-Game Success and Real-World
Advantages
By offering discounts on specific products based on, e.g.,
the distance cycled, meters climbed, or points accumulated
through racing, sponsors could entice users through the
gamified feedback loops. To a limited extent, in-game uniforms
and unlockable bikes are already offered as rewards for the
completion of specific rides or challenges and this could easily
be extended to benefits in real life.

This strategy to promote health would allow governments,
organizations concerned with public health, and insurance
companies to reward users for participation with vouchers or
promotional codes.

Expansion Into New Sports
At present cycling is the leading sport in terms of virtual
simulation (through platforms such as Zwift, Real Grand Tours,
Rouzy, Sufferfest, Peloton, and TrainerRoad), but the use of
analogous simulations for running (Zwift, NordicTrack, Peloton)
is expanding. Opportunity exists for expansion into other sports
for which reliable indoor training equipment is available, such as
rowing and cross-country skiing. In the case of rowing, online
comparison of performances has been available for some time,
but without any virtual simulation.

THREATS

Cheating
Cheating remains the foremost threat to Zwift. In the case of
some trainers, participants have succeeded in “hacking” and
controlling the power-meter remotely (Yeager, 2019). Since
some participants have been accused of “cyber-doping,” a
Zwift Anti-Doping Agency (“ZADA”) was installed to penalize
fiction wattage, misrepresentative metrics and gender swapping
(Yeager, 2018).

Lack of Acceptance
Expansion of virtual competitions will require a certain level
of acceptance by existing teams, athletes, coaches, sponsors,
and organizers of competitions. If only a few parties accept
such virtual competition, it may be viewed as less legitimate
and thereby struggle to maintain interest, generate sufficient
revenues, and even survive (Akenhead and Nassis, 2016).

In the end, virtual training and competition may come
to be a fad (Best, 2006). Especially when the current global
pandemic restrictions end and people leave their homes freely to
exercise and socialize, they may prefer to return to “real-world”
experiences. However, the recent worldwide survey of fitness
trends for 2021 indicates clearly that virtual training is not simply
a fad (Thompson, 2021).

Lack of Competition
At present Zwift is the market leader for simulated cycling
competition, but without serious competitors it could become
an echo chamber of sorts, reducing the drive for innovation and
development that might occur if there were competitors of a
similar standard.
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FIGURE 1 | A summary of strengths and weaknesses, as well as opportunities and threats associated with virtual training in cycling.

Competition or Recreation
Currently, Zwift offers opportunities for competitive and
recreational users, but there may come a point in the future
when one of these markets is more viable than others. The
community aspect drives most daily users, with substantially
more people using the platform for training and non-structured
riding than racing and competition. Previous research has shown
that exergaming supports feelings of competitiveness among
those who already identify as competitive and has detrimental
effects on those who identify as less competitive (Song et al.,
2013). It is possible that the pattern for virtual online platforms
is similar, with only those identifying as competitive feeling
engaged by the racing aspect of the platform. Racing raises the
profile of athletes, brands, and sponsors in a way that recreational
use will not, but if user feedback on the recreational component
is more positive, then racing may fade from prominence.

Health Risks
There is some risk that while competing virtually, athletes
exercising at-home may push themselves beyond their own safe
physical limits and experience an adverse reaction (e.g., injury,
nausea, fainting, or injury) in a situation where no supervision or
support is available. Cycling indoors without adequate air flow for
cooling and sufficient intake of fluids can result in dehydration,

thereby imposing additional physiological strain on the cyclist
(Ramos-Jimenez et al., 2014).

Data Security
Finally, the large amounts of data provided by users of virtual
programs for training and competition are prone to hacking
(Yeager, 2019) and must be protected from inappropriate
external access (Spiegel, 2018).

SUMMARY

Virtual training may offer many strengths, opportunities,
weaknesses, and threats to cyclists engaging in this new
technology, as summarized in Figure 1.

In conclusion, virtual online cycling platforms can build
upon its strengths of immersive worlds, innovative drafting
mechanics, and versatility by enhancing realism, improving data
accuracy, and increasing the strength and reliability of its power-
speed algorithms. Opportunities exist for expanding strategic
partnerships withmajor cycling races, brands, and sponsors. User
experience can be improved with the addition of video capture
and “e-coaching.” Threats are present in the form of cheating,
a lack of acceptance and usage by a broader community, health
risks and data insecurity.
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Background: Periodization implies the systematic planning of training and competition

with the goal of reaching the best possible performance in the most important

competition. In team sports, this consists of finding a flight-and-practice schedule that

maximizes the opportunities to perform the periodized contents (e.g., trips, practices,

games, and days off). This process is conducted whilst considering known constraints

(e.g., competitive schedule, roster availability, weather, especial events, holidays, or

emotional effect of days away). The way a scheduling decision support system (DSS)

leads users to make a decision should allow for flexibility, whilst minimizing users’

confusion and facilitating the understanding of the recommendation given by the

scheduling decision support system. Traditional approaches to solving scheduling

problems use either simulation models, analytical models, heuristic approaches or a

combination of these methods. When it comes to evaluate how the scheduling DSS

is performing, three overarching aspects need to be reviewed: context satisfaction,

process efficiency, and output quality. Appropriate training periodization and scheduling

of trips and training sessions are critical for teams to optimize training and recovery

processes in order to maximize health and performance. This article presents a

methodological framework for designing decision-support systems for scheduling in

professional team sports.

Keywords: decision making, information system, sport science, optimization, scheduling

INTRODUCTION

Professional sport leagues involve millions of fans, broadcast rights, merchandizing, and
advertising. Therefore, they constitute a major economic activity, where revenue maximization
and logistical optimization are key factors (Kendall et al., 2010). Consequently, in popular
team sports such as soccer, basketball, baseball, or ice hockey, it is common to have several
games per week (i.e., ≥3) per team throughout a competitive season. Additionally, any
professional sport requires training and traveling periodically, which should be periodized
considering the competitive calendar. Periodization implies the systematic planning of training
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and competition with the goal of reaching the best possible
performance in the most important competition of the season
(Robertson and Joyce, 2018). This goal involves the development
and optimization of the multiple factors that drive sport
performance, which rely on psychological and physiological
processes (e.g., fitness, cognition, and emotions), as well as
environmental conditions (e.g., weather, equipment, rewards)
(Seirul·lo, 1998).

Most professional team sports globally utilize a tournament
format where each team plays against every other a fixed
number of times (also known as “all-play-all” or “round robin
tournament”) (Ribeiro, 2012; Byl, 2013). Every team has prior
knowledge of opponents along with, the date, location and time
in which they will compete, which provides an opportunity to
prepare for both the tournament and upcoming games (Byl,
2013). In some leagues (e.g., National Basketball Association—
NBA), the exact day and time for all games is released before
the season starts, in others (e.g., La Liga) they are defined
throughout the season, for instance five games in advance. Each
team typically has its own venue at its home city and each
game is played at the venue of either one of the two teams
in confrontation.

The timing of a national league season (i.e., domestic league)
must be coordinated with international competitions such as
World Cups, Olympic Games, Eurocup, Pan-American games,
Asian games, Champions League, etc. Depending on the sport
and the country, the effect of international competitions can be
significant since the best players will not play in their domestic
league program unless the calendar is adjusted accordingly. Some
domestic leagues also include special events or tournaments such
as the all-star weekend, the Challenge cups, or the Supercups.

Concerns around congested competitive schedules have been
publicly shared across sports (Kloke, 2016; Holmes, 2018; Sport,
2020), with predominant reasons including a lack of training and
recovery opportunities, and potential sleep deprivation, which
can have a negative effect on the player’s health (Teramoto et al.,
2017; Lewis, 2018; Rossi et al., 2018) or teams’ performance
(Moskowitz and Wertheim, 2011; Mitchell et al., 2019; Esteves
et al., 2020). Such effects could also lead to a lower product quality
for consumers and broadcasters (Shelburne, 2017). Although
the question of whether schedule density impacts injuries is
complex, as it requires a multifaceted analysis, adjusting for
many related factors such as prior injury, travel time, time
zone difference, home vs. away, or acute vs. overuse injuries
(Mack et al., 2018); sleep, training, and recovery opportunity
are impaired due to the traveling schedule of team sports
athletes (Sortino, 2015; Fullagar et al., 2016; Nutting and
Price, 2017; Lastella et al., 2019). Additionally, in teams or
leagues with lower budgets, or amateur sports, substantial
differences in travel quality, particularly the presence of bus
trips, non-charter flights, and the inevitable differences in hotel
and restaurant accommodations should also be considered
(Mitchell et al., 2019). Against this background, leagues have
tried to modify schedules in the spirit of creating more non-
game days and better traveling combinations (Holmes, 2018).
Nevertheless, for especially congested periods of the season,
some teams may still opt to rest players in order to provide

them with extra recovery time, entailing a negative effect on the
team’s competitiveness and the game-product quality (Shelburne,
2017).

Appropriate training periodization and scheduling of trips
and training sessions will be critical for teams to optimize
training and recovery opportunity in order to maximize
health and performance. This article presents a methodological
framework to designing decision-support systems for scheduling
in professional team sports. The proposal will follow a previously
published decision support system framework (Schelling and
Robertson, 2020) which considers the organization’s needs,
the efficiency of the processes, and the quality of the
system’s recommendation.

SCHEDULING PROBLEM DESCRIPTION

Problem Definition
Conceptually, a team’s schedule problem consists of finding
a flight-and-practice schedule for the pre-season and the
regular season that maximizes the opportunities to perform the
periodized contents (e.g., trips, practices, games, and days off).
This activity is required whilst considering known constraints
(e.g., competitive schedule, roster availability, weather, special
events, holidays, and emotional effect of days away). Hence,
designing a schedule is a combinatorial problem, consisting of
a set of instances or inputs, candidate solutions for each instance,
and an overall outcome for each candidate solution (Goldreich,
2008; Mahapatra et al., 2017).

Schedule-related problems have two important features
(Balas, 1999): Constraints, a formal description of the
requirements that must be satisfied by a candidate solution
to the problem; for example, a team has to be at a specific
date, time and location to play the upcoming game; and an
optimization indicator, which characterizes the quality of the
recommendation. The optimization indicator represents a value
whose calculation is based on the recommended solution; for
example, to minimize the distance traveled in a regular season.

There are two levels of planning and scheduling depending on
the time scale of decision-making. The first level “predicts” the
schedule, whereas the second level “reacts” to the current local
situation and is often called reactive scheduling (Aytug et al.,
1994). Both levels are important; predictive scheduling is useful
for macro planning (i.e., season overview), utilizing invariant
information available earlier, whereas reactive scheduling should
allow for enhanced decision-making thanks to better and recent
information, closer to the action at hand (i.e., micro planning).
Reactive scheduling is more difficult to analyze and provide
meaningful automated help due to the unpredictable and recency
nature of the required information tomake the decision. Training
session scheduling is an example of reactive scheduling, where
factors such as roster availability or team performance may
cause disruption in the team environment requiring a different
schedule from the originally planned. Coaching and performance
staff are accustomed to dealing with such disruptions. However,
their decisions may be crisis-oriented or biased with little
attention given to the bigger picture and impact therein (Aytug
et al., 1994; Cross et al., 2019). If a computer-aided method
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FIGURE 1 | Examples of fixed and dynamic constraints, and optimization indicators relating to scheduling in professional team sport. There are potentially an infinite

number of constraints and optimization indicators that could be included. Some of them are interrelated and may change over time. Different constraints and

optimization indicators can be defined among various sports.

is used for reactive scheduling it must be periodically iterated
throughout the season.When new solutions require continual re-
computation due to contextual changes over time the scheduling-
problem is referred to as an online problem, whereas an offline
problem is when information about all activities, resources,
constraints and optimization indicators are known in advance,
and the goal of the decision support system (DSS) is to
find a single “good” solution to the problem (Wang et al.,
2003).

There can be several reasons to develop a DSS for
scheduling (Schelling and Robertson, 2020): the schedule simply
requires application of a set of heuristic rules; the process
can be automated; the current scheduling process is largely
subjective or solely expertise-based; there is current disagreement
among staff on how to design the schedule; new data (or
criteria) allows for a re-structure of the scheduling process;
team schedule has a significant impact on performance and
thus warrants optimization. Additionally, when a scheduling
DSS is built, the organization’s knowledge about the domain
becomes explicit. This enables one to study that knowledge,
to critique it, to use it in training, and to preserve it over
time (Fox, 1990). Last, understanding how the organization
resolved scheduling-problems in the past, the available and
required information-systems (hardware, software, and data
workflow), the required time or deadline to solve the schedule,
and the satisfaction with the implemented schedules in the
past will help defining the feasibility and design of the DSS
before starting its development (Schelling and Robertson,
2020).

Constraints and Optimization Indicators
A schedule is affected by several restrictions, or constraints. These
can be “fixed” (those constraints set prior to the start of the season

and with none or very low variability throughout the season)
or “dynamic” (those which are subject to change throughout
the season) (Robertson and Joyce, 2018). Some examples of
fixed constraints include the competitive calendar (game date,
time, and location/topography), flight duration, flight options
(when flying commercial), or time zone difference. Examples of
dynamic constraints include game difficulty, standings, or roster
availability (Figure 1). Some expertise-based heuristics such as
preferred arrival times or accommodation preferences must be
also considered as constraints when developing any DSS.

Moreover, there are schedule-problems where the goal is
to optimize (maximize or minimize) an outcome variable, for
instance the numbers of days away, or the distance traveled. Some
examples of schedule optimization problems are spending the
least possible number of days in a city with a time zone difference
larger than “x hours,” selection of arrival time to avoid traffic
in rush hours or canceling or modifying a scheduled practice
session if not enough available players. In such problems the
DSS will require from an optimization indicator (e.g., days away,
distance traveled, recovery opportunity, practice opportunity,
etc.). There are potentially an infinite number of constraints
and optimization indicators that could be included, and most of
them are interrelated and may change over time (Rocha, 2017)
(Figure 1).

Data Input and Sources
When developing a decision support system, data quality,
including data meaning, availability, structure, integration,
accessibility, and timeliness of retrieval, are critical aspects
for a successful implementation (Schelling and Robertson,
2020). When direct connections (i.e., application programming
interface or API) between a team’s database and the league or a
website’s database are not available, web harvesting or scraping
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techniques can be explored to automate and facilitate one-time
data extraction or regular feeding from online servers (Glez-
Peña et al., 2014). Considering the fixed and dynamic constraint
examples shown in Figure 1 below are listed some considerations
regarding data input quality when developing decision support
system for scheduling.

• Fixed constraints

◦ Game location, opponent teams, dates, times, and phase of
the season (pre-season, regular season, playoffs, finals, post-
season) are defined by the official competitive calendar.
In professional leagues the game schedule for the regular
season is released several weeks before the start of the
season in order to allow teams to arrange transportation
and accommodation. This information is usually publicly
available on each league’s website (e.g., La Liga, NBA,
National Football League—NFL, Major League Baseball—
MLB, etc.).

◦ International competition calendars are also made publicly
available by the global governing body for each sport (FIBA,
FIFA, IOC, etc.).

◦ Geodesic distance (Karney, 2013) between cities and other
travel related factors can be retrieved from public websites
(e.g., www.distancecalculator.net) or automated via open
source platforms.

• Dynamic constraints

◦ Game difficulty, or win probability, considers factors
such as game schedule, roster quality, home court
advantage, team form, or game importance to provide a
continuous (points spread) or discrete (win/lose) game
outcome prediction for each team. Game difficulty can be
developed internally as a sub-model within the scheduling
decision support system, or retrieved from public sources
(e.g., www.fivethirtyeight.com).

◦ Daily standings and game results can be obtained
from the official websites of the league, sport news
websites (e.g., www.espn.com), or sport-specific sources
(e.g., www.baseball-reference.com).

◦ Daily roster availability can be retrieved from the team’s
athlete management system (AMS) or manually entered
before the upcoming practice or game. Some sport news
websites (e.g., www.espn.com) publish the injuries by team
daily. Nevertheless, roster availability is often not accurate
(i.e., low data quality) as there can be last-minute roster
changes. Some leagues allow until 1 h before the start of
the game to list a player as unavailable. Roster availability
will also be affected by individual load-management needs
(i.e., resting a player for a game or practice as a prophylactic
strategy) (Drew and Finch, 2016), which is another example
of reactive individual scheduling.

FIGURE 2 | Example of the model architecture of a scheduling decision support system.

Frontiers in Sports and Active Living | www.frontiersin.org 4 June 2021 | Volume 3 | Article 6784894546

http://www.distancecalculator.net
http://www.fivethirtyeight.com
http://www.espn.com
http://www.baseball-reference.com
http://www.espn.com
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Schelling et al. Decision Support Systems in Sport

◦ Carry-over effect, or the effect of previous events on
future performance (Guedes and Ribeiro, 2011; Goossens
and Spieksma, 2012) will require from integrating
multiple features or even having a sub-model within the
scheduling DSS.

• Data input integration refers to combining multiple
sources or types of data (fixed or dynamic) to create
new contextual knowledge regarding the goal at hand,
thereby increasing data quality (Kenett and Shmueli, 2016).
Data integration could also help optimizing the decision
support system’s complexity and performance, for example
by reducing the data dimensionality or creating richer
input features (Schelling and Robertson, 2020). Some
examples are:

◦ Schedule congestion indicators derived from game schedule
(date and time) such as number of hours between games,
number of games over time (e.g., number of games
in 7 days, etc.), or labeling the game congestion with
arbitrary categorical indicators (e.g., back-to-back, 3-in-4,
or 4-in-5).

◦ Team performance indicators based on expected
performance (e.g., game difficulty or win probability)
and recent performance (e.g., production in attack
and defense).

Figure 2 shows an example of model architecture including
several data sources and sub-models. The example represents a
multi-phase solution including different processes based on what
needs to be scheduled, the available information, timescale, and
the expert’s knowledge:

• Phase 1: Initial competitive calendar analysis and exploration,
• Phase 2: Flight schedule recommendation,
• Phase 3: Flight schedule adjustment by expert,
• Phase 4: In-season input data update (this step can affect flight

schedule also),
• Phase 5: Practice schedule recommendation,
• Phase 6: Practice schedule adjustment by expert.

System’s Decisional Guidance
The way a scheduling DSS leads users to make a decision is
referred to as decisional guidance (Morana et al., 2014; Schelling
and Robertson, 2020), which considers factors such as:

• What aspect of the scheduling process the system is supporting
(i.e., exploration or decision),

• How explicit the output of the scheduling system is based on
its delivered knowledge (i.e., description or recommendation),

• When the scheduling system provides the outcome (i.e., real-
time, prospectively, or retrospectively),

• How flexible the scheduling system is (i.e., pre-defined
or interactive),

• What the users’ level of knowledge on scheduling and on the
DSS itself is (i.e., expert or novice),

• How the output is delivered (i.e., text, tables, graphs, or
image), and

• How the scheduling system is invoked (i.e., on-demand
or automatically).

Appropriate decisional guidance should allow some flexibility

while minimizing users’ confusion and facilitating the

understanding of the recommendation given by the DSS

(Silver, 1991; Montazemi et al., 1996). Optimal decisional

guidance will be critical to achieve organizational satisfaction.
Table 1 shows three examples of scheduling DSS with different

decisional guidance considerations. Example 1 represents a

non-interactive DSS built for a one-time schedule descriptive

analysis. Example 2 shows a non-interactive DSS developed

to give a recommendation on flight scheduling for the entire
regular season before it starts. Example 3 represents a daily

DSS, automatically invoked throughout the season, which
recommends daily practice schedule for the upcoming 7 days.
The daily schedule can include the roster availability (Figure 3),
the official competitive calendar, a recommendation for load
distribution (Figure 4), and a training session load estimator
(Figure 5).

Data visualization and user interface are powerful decisional
guidance tools with tremendous potential in supporting complex

TABLE 1 | Example of various decision support systems with different decisional guidance considerations.

DSS’ decisional

guidance

considerations

Example (1) non-interactive

DSS for a one-time schedule

descriptive analysis

Example (2) non-interactive DSS for

one-time flight schedule before the

season starts

Example (3) automatically invoked

DSS for daily practice schedule for the

upcoming 7 days

(1) Overall goal One-time research Once-a-year automation Daily automation

(2) Influenced aspect

of decision-making

Overall schedule exploration Flight schedule selection Daily practice schedule selection

(3) Delivered

knowledge

Information Recommendation Information

(4) Output timing Prospective or retrospective Prospective Real-time

(5) Mode Pre-defined Pre-defined Interactive

(6) User’s knowledge Novice Intermediate Expert

(7) Communication Table, graphs, and map Table, graphs, and text Table and graphs

(8) Invocation On-demand On-demand Automatic

For further reading see Morana et al. (2014) and Schelling and Robertson (2020).
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FIGURE 3 | An example of a player availability report for American football,

which allows coaches and staff to quickly determine which position groups

have a substantial number of players unavailable for full practice, warranting a

potential change in the training plan.

decision-making (Zhang and Zhu, 1998). Excellence in statistical
graphics consists of complex ideas communicated with clarity,
precision, and efficiency. Graphical displays should show the
data; avoid distorting what the data have to say; induce the
viewer to think about the substance in the project; present
many numbers in a small space; make large data sets coherent;
encourage the eye to compare different pieces of data; reveal
the data at several levels of detail, from a broad overview to
the fine structure; serve a clear purpose: decoration, description,
exploration, tabulation, or recommendation; and to be closely
integrated with the statistical descriptions of a data set (Tufte,
1983). Common visualization tools include charts, diagrams,
drawings, graphs, ideograms, pictograms, data plots, schematics,
tables, illustrations, and maps or cartograms. In scheduling-
related problems there are several recurrent visualizations.

When the goal of the DSS is calendar exploration (Example
1 in Table 1), one needs to contextualize the schedule and to
let the expert judge if it is good or bad compared to the rest
of the teams and to previous seasons. An example would be
to visualize an optimization indicator such as games played per
month comparing a team against the rest of the teams, showing
previous seasons as well (Figure 6). For a non-interactive DSS
recommender (Example 2 in Table 1), visualizing how the
optimization indicator such as distance traveled or days away
compares to flight schedules from previous seasons (Figure 7)
would give context for the calendar demands and the DSS’
output quality. In an interactive DSS recommender (Example
3 in Table 1), visualizations could show how the modifications
made by the user affect the optimization indicator, which can be
multiple. For instance, changing a flight date or itinerary may

increase the days away, the distance traveled, or the recovery or
training opportunity (Figure 8).

In addition to calendar exploration and optimization of travel
schedules, training periodization is critically important in sports
with more training opportunity, with in-season micro-cycles of
typically 3–7 days in duration (Akenhead et al., 2016). Coaches
and support staffmust not only consider the technical and tactical
objectives, but also the positive (improved fitness) and negative
(increased fatigue) consequences of successive training session,
including pre-defined optimization indicators, and the net result
on gameday (Morton et al., 1990). As recently identified by
practitioners (Cross et al., 2019), there seems to be disparity
between the available scientific evidence and current industry
practice (i.e., human bias) in regards scheduling of training and
recovery. It is here where a DSS is useful as it can provide
objective contextual information and recommendations that
allow practitioners to have a load distribution overview for the
upcoming micro-cycle (Figure 4) as well as to prescribe training
sessions (Figure 5) considering individual needs within a team
structure (i.e., reactive scheduling). This process will be mainly
constrained by the competitive calendar (e.g., number of games,
location, day of the week, and time) (Akenhead et al., 2016)
and the players’ availability (Hagglund et al., 2013). Information
from the Athlete Management System (AMS) can be retrieved to
determine which players are injured and will be unavailable for
training in the upcoming week, which players need additional
recovery time following the last game, and which players are
able to participate in full. Codifying these details allows the
staff to identify training loads and position groups that may
be challenged to have enough players available to train on a
given day. Such information can be reflected in a dashboard
or web application, allowing coaches to make any necessary
changes to the weekly training plan should certain positional
groups be at risk due to a limited number of players being able
to participate in full (Figure 3). Finally, once the micro-cycle
structure has been designed and the available players identified,
a customized session load estimator can be used to help adjust
the practice andmake it more appropriate considering themicro-
cycle load distribution and the available players. Figure 5 shows
an example of a session load estimator that allows the support
staff to build the training session with the coach and manipulate
the drill duration to automatically get an estimation of player load
[e.g., the sum of instantaneous rate of change of acceleration,
or jerk, divided by a scaling factor (Nicolella et al., 2018)] for
a given session. Tools such as this aid the decision making of
the staff as drills can be removed or added from the session and
training duration for a specific drill can be altered to gain an
understanding of the potential training demands on a position
group or individual for the upcoming session.

SCHEDULING MODELS

Traditional approaches to solving scheduling problems use
either simulationmodels, analytical models, heuristic approaches
or a combination of these methods (Aytug et al., 1994;
Balas, 1999; Mahapatra et al., 2017). Simulation models are
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FIGURE 4 | Examples of visualization of micro-cycle load distribution in soccer with different competitive calendar constraints and outputs (number of flights, number

of games, number of days off, number of practice days, etc.).

FIGURE 5 | An example of session load estimator that allows the staff to build a training plan with the coach. The staff can change the drill types and manipulate the

drill duration to obtain an estimation for Player Load, allowing the coaching staff to make changes to the training session for an individual athlete or position group

depending on what they are able to tolerate for a given day.

primarily used to assess schedules and are most useful for
schedule exploration (e.g., initial competitive calendar analysis
and tentative flight dates) (Aytug et al., 1994). Analytical
models include mathematical programming models, stochastic
models, and control theory approaches focusing on optimization
processes. A disadvantage of these models is that the problem
needs to be explicitly formulated, which is difficult for schedulers
who do not have the mathematical knowledge and background

(Zhou et al., 2013). Additionally, since even the most simplified
scheduling problems are complex, realistically sized problems
cannot be optimally solved, and real-life applications of analytical
approaches are scarce (Aytug et al., 1994). Consequently, a wide
body of heuristic approaches have been investigated to find near-
optimal solutions in cases where finding the optimal solution
is impractical (Zhou et al., 2013; Mahapatra et al., 2017). Some
research has shown that human interactions with automated
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FIGURE 6 | Example of visualization to explore the number of games per month (x-axis) for a Major League Baseball team (black dot) compared to the distribution of

all teams in the league (gray boxplot). The differences between the team and the league’s average are shown in parentheses.

FIGURE 7 | Example of a visualization representing estimated mileage traveled by Major League Baseball teams over two consecutive seasons. Reference lines

represent the average mileage traveled for 2019 (horizontal reference line) and 2018 (vertical reference line).

heuristics methods often offer improved performance (Aytug
et al., 1994). Computer-based systems are better than humans
at finding complex and subtle patterns in massive data sets,
but humans are very effective connecting different sources of
information in creative and unpredictable ways (Akata et al.,
2020). DSS offers a mean to combine various types of knowledge
in a manner that can be used for scheduling problems (Schelling
and Robertson, 2020).

Expert systems (ES) represent a special case of knowledge-
based scheduling DSS (Aytug et al., 1994). ES are developed
by first acquiring the knowledge from a human expert and

then codifying this knowledge into a series of algorithmic
rules (Figure 9). Scheduling ES can recommend decisions on
actual or simulated cases and do so in a way that captures the
idiosyncratic nature of a specific organization. Nevertheless,
many researchers (Aytug et al., 1994) believe that expert
system approaches are not ideal for scheduling because most
real-life environments present complex relationships that are
often difficult to model with simple association rules. Two
additional issues are that most environments are so dynamic
that knowledge becomes obsolete too fast (Fox and Smith,
1985), and that the input of a small set of experts might
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FIGURE 8 | Example representing the addition of multiple “optimization indicators” and its impact on the DSS for a professional Basketball team competing in the

domestic and European league over the Christmas period.

FIGURE 9 | Example of expert system (ES) applied to Major League Baseball.

focus too strongly on specific individual experience, hindering
the generalization capabilities of the model. Consequently,
more advanced computer-based approaches such as random
search, blind search or heuristic search have been implemented
for scheduling problems. Constraint-based heuristic search
are methods that use knowledge about the restrictions, or
constraints, of the scheduling problem to guide and limit
the search of a near-optimal solution within a search space

that is too large to explore entirely (Trick et al., 2012).
Nevertheless, a limitation of many computer-based methods
in scheduling is their inability to adapt to changing demands
without human-intensive intervention. This observation
has led to including learning components in scheduling
DSS. Machine learning methods focus on learning from
experience to provide predictions on yet-unobserved data,
without requiring human intervention in the learning process,
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and, in many cases, being able to adapt when new data
is available.

For the scheduling problem in sports, both supervised (e.g.,
regressions, decision trees, support vector machine, K-nearest,
random forest) and unsupervised (e.g., clustering, PCA) machine
learning algorithms could provide a mechanism for creating
better features to be used as input for the scheduling DSS (see
Song et al., 2019 for more on the interaction between machine
learning and optimization processes). Some examples of richer
features include the difficulty level estimation of a game, the
estimation of a team’s carry-over effect throughout the season
or discretizing continuous variables that are difficult to model
within a DSS such as player load (see the three sub-models in
Figure 2).

Besides the computational complexities and requirements,
the desired decisional guidance discussed in the previous
section, requires several design considerations when choosing
the analytical processes and techniques embedded in the system.
The system’s acceptance and its outcome interpretability will be
related to the selected model architecture (Ribeiro et al., 2016).
Selection of one family of algorithm over another may also
change, when possible, the way in which the problem is framed
for the end user (Schelling and Robertson, 2020). The scheduling
DSS should aim for the most efficient and effective analytical
process to solve a task while it meets the interpretability and
the operational functions expected by the end-user. Developers
need to design a DSS that can provide an understanding
of any discrepancy between the DSS recommendation and
the expert’s opinion (identification of expert bias) (Kayande
et al., 2009). Many standard machine learning algorithms such
as logistic regression, decision trees, decision-rules learning,
or K-nearest neighbors are examples of more interpretable
algorithms, whereas random forest, gradient boosting, support
vector machine, neural networks and deep learning fall into
the less- or non-interpretable machine learning approaches (i.e.,
black-box algorithms) (Luo et al., 2019).When a black-boxmodel
produces significantly better recommendations than a more
interpretable model, the scheduling DSS developer may consider
integrating feedback within the system (Kayande et al., 2009),
with tools such as partial dependence (PD) plots, individual
conditional expectation (ICE), local interpretable model-agnostic
explanation (LIME), or kernel Shapley values (SHAP) to help
partially understand the scheduling recommendation and to
ensure trust and transparency in the decision process of the
model (Messalas et al., 2019). On the other hand, if there are
no specific design needs of relying on the mentioned black-
box methods as the main model for the DSS their capacity of
exploiting non-linear relationships could still be used to derive
richer features, such as the ones mentioned above. Another
data-based approach that could provide a good balance between
interpretability and prediction accuracy is the use of probabilistic
graphical models (e.g., Bayesian networks), which would allow
practitioners to obtain a clearer idea of the relationship between
the different variables within the DSS and inspect the impact
that one decision might have in the rest of the variables. A
potential issue of probabilistic outputs and visualizations is
that humans generally have more difficulty understanding these

than frequency-based data with familiar units (Tversky and
Kahneman, 1983).

SCHEDULING DECISION SUPPORT
SYSTEM EVALUATION

When it comes to evaluate how the scheduling DSS is
performing, three overarching aspects need to be reviewed:
context satisfaction, process efficiency, and output quality. The
first consideration refers to how satisfied the organization is
with the system (e.g., is the DSS covering the organization’s
needs? is it technically and economically feasible?). The second
aspect refers to the efficiency of the process (e.g., is the
DSS user-friendly? Is the recommendation given by the DSS
what the end-user expected? Is the complexity of the model
adequate? Is the interpretation of the recommendation clear
for the user?). The third and last criterion relates to the
quality of the recommendation (e.g., is the recommended
schedule been followed on its entirety by the organization?
if not, how many instances have been modified? if there
was an optimization indicator, did the DSS’ recommendation
improve historical decisions? is the DSS capable of learning
based on the expert modifications?). Based on these three
considerations a comprehensive DSS evaluation tool has been
previously published (Schelling and Robertson, 2020), which
includes feasibility, decisional guidance, data quality, system
complexity, and system error as the assessment components.
Nevertheless, assessing a scheduling system’s error might seem
cumbersome, but as discussed on the section on decisional
guidance, assessing the system’s output quality will require a
subjective and an objective perspective. For instance, Figure 8
shows two scheduling options based on different optimization
indicators (physiological and psychological). The expert will
find more suitable one option than the other for the team’s
context. Visualizing the degree of agreement between the
scheduling DSS recommendation and the expert’s decision
can help evaluating the overall DSS recommendation quality,
in addition to the analysis of the optimization indicators
when the DSS recommendation are changed. Future research
should include analyzing the efficacy of scheduling DSS on
enhancing decision-making processes and key performance
indicators (KPIs).

CONCLUSION

A scheduling decision support system can enhance a schedule
better than a human-judgment-only approach primarily by
automating certain or all processes, by objectively weighing
constraints in the schedule (i.e., optimization), and allowing
systematic historical comparisons, particularly if personnel
changes occur. Scheduling DSS can include predictive and
exploratory solutions for macroplanning (e.g., competitive
calendar analysis and tentative travel schedule), and reactive
solutions for microplanning (e.g., weekly session prescription
and travel updates). These solutions must consider several
contextual constraints (fixed and dynamic) and provide the
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nearest-optimal solution, since an optimal solution might not
be feasible due to contextual requirements or computational
complexity. Constraints and optimization indicators, as well
as the advantages of the DSS adoption may differ between
organizations. An integrative understanding of current
scheduling practices and the organization’s needs prior to
the development of the DSS is warranted. Traditional approaches
to solving scheduling problems use either simulation models,
analytical or mathematical models, heuristic approaches, or a
combination of these methods. Machine learning algorithms
(supervised and unsupervised) could provide a mechanism for
creating better features to be used as input (e.g., game difficulty,
carry-over effect, and discretization of continuous variables)
or for reducing data dimensionality (i.e., variable selection).
For a better acceptance and a successful implementation,
the scheduling DSS recommendation process should be as
understandable as possible. Visualization techniques might
be required to improve the system’s interpretability. Once

implemented, the system’s recommendations (output) and the
users’ feedback (interaction) can be closely and systematically
monitored for eventual improvements.
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The aim of the study was to (1) assess the within-session reliability of a unilateral isometric

hex bar pull (UIHBP) maximal voluntary contraction (MVC) test and, (2) determine

unilateral isometric absolute peak force (PFabs) and relative peak force (PF) values in

freeski athletes. Twenty-one male and eight female academy to national team freeskiers

performed the novel UIHBP MVC task on a force plate and PFabs and relative PF

were assessed (1000Hz). Within-session measures of PFabs offered high reliability

on left and right limbs for males (ICC = 0.91–0.94, CV = 2.6–2.2%) and females

(ICC = 0.94–0.94, CV = 1.4–1.6%), while relative PF measures showed good to high

reliability in both left and right limbs for males (ICC = 0.8–0.84, CV = 2.6–2.2%) and

females (ICC = 0.92–0.90, CV = 1.4–1.7%). We observed significantly lower PFabs
(p < 0.001) and relative PF (p < 0.001) in females compared to males. No statistical

difference was found between left and right limbs in males and females in PFabs (p= 0.98)

and relative PF measures (p = 0.93). The UIHBP MVC test appears to be a reliable

method for assessing PFabs and relative PF in male and female freeski athletes.

Keywords: freeskiing, skiing, strength testing, unilateral, isometric, maximal, voluntary, contraction

INTRODUCTION

Freeskiing is an extremely complex skill-based action sport that involves numerous technical,
tactical, and psychophysical demands (Willmott and Collins, 2015). There are three freeski
disciplines (slopestyle, big air and half-pipe). In freeski slopestyle, athletes perform a series of tricks
using jumps, custom built rails, and other creative features such as quarter pipes. Freeski big air is
performed using only one large jump and competitors perform complex tricks in the air, aiming
for high amplitude, style, creative grabs, and a clean landing. During freeski half-pipe, 6–8 tricks
are performed whilst skiing down a u-shaped pipe. Accordingly, there are many psychological, skill
acquisition and physical factors that may influence the performance, skill execution and safety in
freeskiing. To date there is no evidence-based consensus on reliable and practically meaningful
physical testing protocols that could be used for screening and monitoring freeski athletes in the
context of performance enhancement, injury prevention and/or rehabilitation.
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Generally, periodic testing and monitoring of an athlete’s
neuromuscular performance at several stages during the year
can be considered an effective way to provide useful information
to practitioners concerning an athletes’ current training state
(Edwards et al., 2018). This data can be combined with an
appreciation and understanding of the emotional load action
sport athletes experience (Collins et al., 2018). There is,
however, a paucity of data regarding what physical qualities are
considered important for freeski athletes from both a supporting
performance and injury risk mitigation standpoint. Nevertheless,
in certain contexts, maximal strength is plausibly an important
capacity to develop for potentially preventing acute and overuse
injuries (Lauersen et al., 2018) and is, in certain athletic settings,
known to be moderately associated with jump and sprint
performance (Kirkpatrick and Comfort, 2013; Comfort et al.,
2014). Furthermore, possessing greater lower body strength
has been deemed advantageous in other snow sports such as
snowboard cross and alpine snowboarding (Vernillo et al., 2016)
and alpine skiing (Cross et al., 2021). Nonetheless, a degree of
caution should be given when drawing the same conclusions to
freeskiing without proper investigation of kinetics, kinematics,
and individuals factors such as riding style.

With respect to testing methods, there are numerous
approaches to assess athletes’ maximal force capabilities. For
example, the gold standard method to assess knee flexor and
extensor strength is with a motor-driven isokinetic dynamometer
(Knapik et al., 1983; Ly and Handelsman, 2002). Isokinetic
dynamometry is recommended as it can elicit maximal efforts
over a full range of motion (Caruso et al., 2012) and can be used
to assess neuromuscular function through different parameters
such as peak torque, total work or the peak torque ratio
between agonist and antagonist muscles (Gleeson and Mercer,
1996; Bosquet et al., 2016). However, this method is expensive,
time consuming and is often impractical in many instances for
freeskiers, especially in-season and when testing a group.

Alternative methods to reliably assess maximal strength, are
the one-repetition maximum (1 RM) test (Grgic et al., 2020)
or via isometric maximal voluntary contraction (MVC) testing
at specific joint angles (Drake et al., 2017). In the 1 RM test,
eccentric muscles actions are often coupled with concentric
actions which can be more reflective of dynamic muscle actions
that occur in resistance training and sporting actions (Grgic
et al., 2020). Contrasting with isokinetic dynamometry, the 1
RM test is highly cost effective, however this form of testing
can also be time consuming with groups of athletes and is also
often not appropriate in-season for freeskiers. During isometric
contractions, the muscle-tendon unit remains at a constant
length and can produce more force than a concentric muscle
contraction (Abbott and Wilkie, 1953). Isometric contractions
have also been shown to result in reduced structural muscle
damage compared to eccentric contractions (Nosaka et al.,
2003) which makes this approach of assessment popular in
applied settings with athletes. However, isometric contractions
performed at longer muscle lengths and for sustained durations
can increase muscle soreness, damage, and fatigue (Allen et al.,
2018). Finally, common isometric MVC modalities include the
isometric leg press (Granacher et al., 2011; Bogdanis et al., 2019),

isometric knee extension (Kubo et al., 2006; Noorkõiv et al.,
2014), isometric squat (Markovic and Jaric, 2004; Eliassen et al.,
2018) and isometric mid-thigh pull (West et al., 2011). These
methods are often utilized in training interventions investigating
neuromuscular responses to exercise (Taipale et al., 2014),
exploring mechanisms of fatigue (Izquierdo et al., 2009) and
can also be incorporated into rehabilitation processes (Maestroni
et al., 2019; Jordan et al., 2020; Taberner et al., 2020). Despite
the advantages of the isometric tests listed above, there are
limitations to these methods. For example, these tests often
require custom built and robust equipment fixed in place in a
laboratory which can create challenges for athletes who travel
extensively or train in several locations.

Although the demands of freeskiing have not been quantified,
when taking into consideration the incidence and location of
injuries often occurring to the knee and lower extremities
(Flørenes et al., 2010; Steffen et al., 2017; Palmer et al., 2021),
assessing unilateral lower body strength could be warranted.
Evaluating athletes’ force producing capabilities at several
stages during the rehabilitation process can help identify and
resolve deficits in neuromuscular performance (Maestroni et al.,
2019; Taberner et al., 2020). Moreover, monitoring lower limb
strength can provide objective information to help guide task
progressions and support inter-disciplinary decision making
on important functional milestones such as initiating running,
jumping and plyometric activity (Palmieri-Smith and Lepley,
2015; Buckthorpe et al., 2020). The hex bar deadlift also referred
to as a ‘trap bar’ has become a popular resistance training exercise
to perform and is a variant of the barbell deadlift (Camara
et al., 2016; Lake et al., 2017; Andersen et al., 2018). Despite
this increased popularity, to the authors’ knowledge the hex bar
deadlift and unilateral variations have not been utilized in testing
via the use of force-platforms. Using a hex bar to assess unilateral
isometric MVC could provide practitioners with as an alternative
testing method when other methods are not compatible or suit
their setting and context. However, before using such methods
in a practical setting, it is necessary to determine the level of
reliability of a test (McCall et al., 2015).

Based on these considerations, the aims of the present study
were to (1) evaluate the within-session reliability of absolute
(PFabs) and relative peak force (PF) during a novel unilateral
isometric hex bar pull (UIHBP) maximal voluntary contraction
(MVC) test in male and female academy to national team freeski
athletes and (2) to provide sex- and level specific reference values.

MATERIALS AND METHODS

Subjects
Twenty-nine academy to national team freeski athletes gave their
informed consent to participate in the study: twenty-one males
aged 20 ± 2.5 years old, 176 cm ± 3.9, 70 kg ± 3.8, eight females
aged 21± 4.6 years old, 165 cm± 2.6, 60.3 kg± 4.6. Only athletes
without a history of knee injuries were included in the study. All
participants had to have been enrolled in a freeski academy or
part of a national team program. Additional eligibility criteria for
the study included having had experience of at least six months of
organized strength and conditioning training history and being
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familiarized with the testing procedures. Subjects did not take
part in any physical activity in the 48 h prior to testing. The
study was approved by the Ethical Committee of the University
of Jyväskylä, and it was conducted according to the provisions of
the Declaration of Helsinki.

Testing Procedures
Testing was conducted to assess the within-session reliability of
a UIHBP MVC task. The duration of testing for each subject
was 30–45min. Subjects undertook a 15min dynamic warm up,
consisting of: 5min of jogging and skipping, 2min of dynamic
stretching, three sets of 6–8 repetitions of bilateral and unilateral
ankle pogo jumps, 2 sets of 8 linear and lateral hop and holds,
1 set of 4 squat jumps, 1 set of 4 bilateral and unilateral
countermovement jumps and 3 progressive accelerations of 15–
20 meters separated by 1min rest between each acceleration.
Three min of passive rest was provided after the completion of
the warmup prior to starting the MVC measurements.

UIHBP MVC Test
A hex bar (27.5 kg) was loaded with 160 kg to ensure it was
secured to the ground and would not move when the subjects
were performing the test. The height of the hex bar handle
when loaded was 335mm, the circumference of the handle of
the bar was 98mm. The distance width between the two handles
was 588mm. The subjects were told to prepare as if they were
performing a bilateral hex bar deadlift from the ground and
a handheld goniometer was used to ensure a knee angle of
115◦ flexion. If required for taller subjects, blocks were placed
under the weights to raise the bar and ensure the correct knee
angle was maintained. Once subjects were in the correct starting
position and were comfortable, they lifted the uninvolved non-
weight bearing limb backwards, ensuring their trunk was in the
same position throughout and remained still for 2–3 s before
completing warm up trials at 70%, 80% and 90% of self-estimated
maximal effort (Figure 1). A second researcher observed the test
being performed and was responsible for confirming whether the
participant maintained the previously described position during
the test. The test was performed following 3min of rest after
the warmup was complete. The subjects were instructed to “pull
against the bar and push into the ground as hard as possible”
exerting maximal force for 4 s. Each limb was tested 3 times for
a total of 3 trials per leg with 60 s rest between each trial. Testing
was performed in a training facility and conducted using a force
plate (1000Hz, HUR labs, Finland). The force plate was calibrated
before each independent test. PFabs was defined as the maximum
force generated during the test and relative PF as PFabs divided
by body mass (kg). Coachtech online measurement and feedback
system (University of Jyväskylä, Finland) was used to collect the
force data (Ohtonen et al., 2016) and was classified according to
left and right legs due to the equilateral nature of skiing.

Statistical Analysis
We confirmed data normality using the Shapiro-Wilk test
(Ghasemi and Zahediasl, 2012) and determined within-session
reliability (Atkinson and Nevill, 1998) using two-way mixed-
effects model ICC with a 95% confidence interval (CI), based

FIGURE 1 | Unilateral maximal isometric hex bar MVC task.

on a single measurement (Koo and Li, 2016). Intra-individual
coefficient of variation (CV), with a 95% CI, calculated as the
average of the CV for each individual where MSE represents the
mean squared error across trials and represents the mean of all

the trials (CV =

√
MSE
x ×100x) (Knutson et al., 1994). Reliability

thresholds for ICC values were defined as poor (<0.50), moderate
(0.50–0.75), good (0.75–0.90), and excellent (>0.90) (Koo and
Li, 2016). For coefficient of variation (CV), a value of ≤10%
was defined as reliable (Brughelli and Van Leemputte, 2013).
Sex and leg differences were analyzed using a mixed model
two-way analysis of variance. Bonferroni post-hoc tests (pairwise
comparisons) were performed if significant interactions between
group and time were found (VanderWeele andMathur, 2019). All
statistical analyses were conducted with custom-made scripts in
MATLAB (Version R2018a, MathWorks, Natick, MA, USA), and
statistical significance was set to p< 0.05 and confidence intervals
to 95%.

RESULTS

Within-session reliability variables (ICC, CV, SEM, MDC) and
descriptive statistics of male and female PFabs and relative PF
values are presented in Tables 1, 2. Within-session measures of
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TABLE 1 | Within-session reliability measures of unilateral hex bar isometric pull test.

UIHBP ICC PFabs ICC

Relative PF

CV% PFabs CV%

Relative PF

SEM (N) MDC (N)

Male left 0.91 (0.80–0.96) 0.8 (0.55–0.91) 2.6% (1.9–3.3) 2.6% (1.8–3.3) 59 162

Male right 0.94 (0.87–0.98) 0.84 (0.62–0.93) 2.2% (1.8–2.7) 2.2% (1.7–2.7) 44 122

Female left 0.94 (0.74–0.99) 0.92 (0.66–0.98) 1.4% (0.8–2) 1.4% (0.78–2.2) 21 68

Female right 0.94 (0.87–0.97) 0.9 (0.55–0.98) 1.6% (0.6–2.5) 1.7% (0.6–2.8) 27 75

ICC, intraclass correlation coefficient; CV, coefficient of variation; PFabs, absolute peak force; PF, peak force; SEM, standard error measurement; MDC, minimal detectable change.

TABLE 2 | Descriptive statistics for unilateral isometric hex bar pull outcome

variables.

UIHBP Mean PFabs (N) Mean relative PF (N/kg)

Male left 1708.7 ± 183 24.6 ± 1.7

Male right 1697.6 ± 195 24.5 ± 1.7

Female left 1318.9 ± 97 21.5 ± 1.3

Female right 1339.5 ± 106 21.9 ± 1.02

PFabs, absolute peak force; PF, peak force. Data are shown as mean ± 1

standard deviation.

PFabs offered high reliability on left and right limbs for males
(ICC = 0.91–0.94, CV = 2.6–2.2%) and females (ICC = 0.94–
0.94, CV = 1.4–2.2%). Relative PF measures showed good to
high reliability in both left and right limbs for males (ICC = 0.8–
0.84, CV = 2.6–2.2%) and females (ICC = 0.92–0.90, CV = 1.4–
1.7%). No significant differences in maximal isometric force were
observed between left and right legs in either PFabs (p = 0.98)
or relative PF (p= 0.93) measures (Figure 2). Significantly lower
maximal isometric force was observed in females compared
to males both in PFabs (mean difference (95%CI) = −376N
(−279 to −473), p < 0.001) and relative PF (mean difference
(95%CI) = −3 N/kg (−2 to −4), p < 0.001) (Figure 2). No
statistical difference was found between left and right limbs in
males and females in PFabs (p = 0.98) and relative PF measures
(p= 0.93).

DISCUSSION

The main finding of this study was that the UIHBP MVC test
when performed on a force plate offered good-excellent within-
session reliability in PFabs and relative PF in bothmale and female
freeski athletes. This study also provided force production data of
the lower body in male and female freeski athletes. It was found
that female freeski athletes produced lower PFabs and relative PF
when compared to male freeskiers.

Reliable testing methods and protocols are required to
confidently detect meaningful changes in performance
(Moeskops et al., 2018). The findings from this study offer
practitioners a viable option to assess unilateral lower body
strength. ICC values between 0.75 and 0.9 indicate good
reliability, and values <0.90 indicate excellent reliability

(Portney and Watkins, 2009; Koo and Li, 2016). The ICC
calculated for the male left and right limbs for PFabs were
0.91–0.94 and for relative PF were 0.8–0-84. The ICC for the
female left and right limbs for PFabs was 0.94–0.94 and for
relative PF was 0.92–0.90. The CV is a common and robust
criterion to test reliability and a CV of ≤10% is often used as
the criterion to declare a variable as reliable (Brughelli and
Van Leemputte, 2013). The CV calculated for the male left and
right limbs for PFabs were 2.6%–2.2% and for relative PF were
2.6–2.2%. The CV for female left and right limbs for PFabs were
1.4%-1.6% and for relative PF were 1.4–1.7%. A force plate is the
gold standard for measuring isometric muscle force (Verdera
et al., 1999). Therefore, providing practitioners follow the same
testing procedures as presented in the current study, they can be
confident that they are collecting reliable data from their athletes.
The UIHBP MVC test appears to offer equivalent reliability
values when compared to the isometric mid-thigh pull and the
isometric squat (ICC = ≥ 0.80 to 0.99) (Drake et al., 2017) and
therefore, offers an alternative method for assessing unilateral PF
when other methods are not appropriate or feasible.

This is the first study to present data regarding unilateral
lower body strength values of male and female freeskiers. As
expected, significantly lower maximal isometric force in females
compared to males in both PFabs (p < 0.001) and relative
PF capacities (p < 0.001) were observed. The main factors
accounting for differences in lower body strength between
men and women are likely due to muscle mass (Miller et al.,
1993), greater proportion of fast type fibers (Nindl et al., 1995)
and morphological characteristics such as muscle thickness,
pennation angle, and fascicle length (Blazevich and Sharp, 2005;
Bartolomei et al., 2019). Furthermore, although knee flexion
was controlled for in this study, hip flexion was not, and this
may have contributed to a certain extent to the differences
between sexes. There was no statistical difference between left
and right limb absolute PFabs (p= 0.98) or relative PF (p= 0.93)
measures. Freeskiing is an equilateral sport characterized by
similar physical demands on each leg. However, certain tricks and
the initiation of aerial maneuvers and landings often occur using
predominantly one leg. Consequently, freeskiers may commonly
utilize various forms of unilateral resistance training to seek
a desired training adaptation. These findings could therefore
be of potential interest for practitioners working with freeski
populations. However, unilateral strength measurement values
recorded in the laboratory may not be correlated to the ground
reaction force kinetics in the sport (Ogrin et al., 2021). Further
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FIGURE 2 | PFabs values (left) for left and right limbs in male and female freeski athletes. Relative PF values (right) for left and right limbs for male and female freeski

athletes. Data are shown as mean (+95% confidence intervals) and individual data (gray dots). *Represents a significant difference between male and females.

research is required to determine a detailed physiological and
neuromuscular profile of academy to elite freeski athletes. Such
data combined with kinetic, kinematic, and qualitative analysis
of tricks during the sport could provide meaningful information
to practitioners aiming to enhance the physical preparation of
these athletes and help support talent identification and long-
term athlete development models. Without further investigation,
it is uncertain whether the UIHBP test could be used to track
both acute and chronic changes in neuromuscular performance.
Nevertheless, isometric contractions have been shown to be a
highly reliable means of assessing and tracking force production
(Wilson and Murphy, 1996; Bazyler et al., 2015; Drake et al.,
2017). However, the ability of isometric assessments to predict
dynamic performance compared to alternative modalities of
assessment such as isokinetic and isoinertial testing is not as well
supported (Wilson and Murphy, 1996).

Recent data from the 2016 and 2020 Youth Winter Olympic
Games show that the highest percentage of injuries occurred
in freeski and snowboard slopestyle disciplines (Steffen et al.,
2017; Palmer et al., 2021). A similar trend was also apparent
at the PyeongChang 2018 Winter Olympic Games (Soligard
et al., 2019). This highlights that further longitudinal/multi-
season injury surveillance data of academy to elite level freeskiers
and in-depth investigation of injury mechanisms are required.
Previous data from Flørenes et al. (2010) showed that one quarter
of all injuries encountered by freestyle ski athletes involved the
knee (with 38% of these relating to the ACL). However, this
study included the freestyle ski disciplines of moguls, dual-
moguls, aerials, ski cross and halfpipe skiers, with no data from
the freeski disciplines of slopestyle and big air. Given that it
is common for freeski athletes to suffer an injury, it would
appear worthwhile to monitor training load and neuromuscular
status throughout the season and during appropriate stages of

the return to sport process. The UIHBP MVC test outlined
in the present study could potentially be incorporated into
lower body rehabilitation programs. Physical properties such
as maximum strength, explosive strength, and reactive strength
have also been shown to influence reinjury outcomes (Kyritsis
et al., 2016; King et al., 2018) and it is recommended that
objective physical testing be carried out before athletes return
to sport (Carolan et al., 2020). Regarding maximal strength,
there is evidence highlighting that return to sport frameworks
should include the assessment of unilateral quadriceps MVC
during suitable phases of the rehabilitation (Buckthorpe et al.,
2020; Jordan et al., 2020). Current ACL return to sport protocols
recommend using a quadriceps limb symmetry index of 90%
before determining readiness to return to sport (Gokeler et al.,
2016; Brown et al., 2021), though it is not clear whether the same
thresholds are appropriate for freeski athletes. It is important to
note that although objective insight into elements of the recovery
process can be useful, isometric quadriceps limb symmetries
can overestimate the recovery of the injured limb (Wellsandt
et al., 2017) and therefore, consideration must be given when
examining the data of such measures in isolation. Practitioners
are recommended to consider a holistic, multifactorial and
individual approach to injury rehabilitation (Lahti et al., 2020),
emphasizing movement quality (Buckthorpe, 2021), tasks that
incorporate decision making and divided attention (Hughes
and Dai, 2021), as well as nutritional (Shaw et al., 2019) and
psychological readiness elements (Papadopoulos et al., 2018;
D’Astous et al., 2020).

It must be highlighted that this data is only representative
of the current cohort of freeski athletes recruited in this study
and further data is required, especially from female athletes
as the sample size in this study was small. Additionally, these
measurements and comparisons were only taken from one
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specific joint angle (115◦ knee flexion). Further analysis from
several knee and hip angles could yield different results as
alternative limb arrangements can affect force production and
muscle recruitment patterns (Dos’ Santos et al., 2017; Goodwin
and Bull, 2021). However, isometric contractions performed at
longer muscle lengths can result in increased muscle damage
(Allen et al., 2018). Moreover, correlation with an isokinetic
dynamometer and further exploration of the current test via
kinematic and EMG analysis to accurately quantify and compare
muscle activation patterns could help practitioners make a more
informed decision regarding test selection for their environment
and specific needs. A limitation to the study is that between-
session reliability was not assessed. However, it was not possible
to do so without interfering with the day-to-day training of the
athletes. Furthermore, rate of force development (RFD) was not
analyzed in the current study. Attempting to achieve maximal
force and RFD within the same contraction may result in
suboptimal measures of both parameters (Maffiuletti et al., 2016).
It is recommended that when assessing RFD that contractions be
“fast and hard” with short durations (0.5–1.5 s) (Maffiuletti et al.,
2016) and this would have interfered with the specific aim of the
current study to establish the reliability of measuring peak force.

CONCLUSION

The UIHBP MVC test can be considered as a simple and quick
testing approach that provides reliable measures of lower body
PFabs and relative PF. The study also provided unilateral lower
body force production reference values for male and female
freeski athletes.
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Body orientation of football players has proven to be an informative resource related

to successful penalty kicks. OpenPose is one of the most popular open-source pose

estimation technologies. This study aims: (i) to verify whether OpenPose can detect

relevant body orientation angles from video data of penalty kicks in elite football

and (ii) to investigate the relationship between these body angles and observable

behaviors analyzed via an observational system for penalty kick analysis in football

(OSPAF) with the penalty taker and goalkeeper strategy. A total of 34 penalty videos,

with standardized viewing angle, from the main European leagues (2017–2020) were

analyzed. Relevant body orientation variables were selected for penalty kicks analysis

and were extracted from video data through OpenPose technique. The OSPAF,

previously validated by experts, was used. The mean confidence score of OpenPose

measures was 0.80 ± 0.14. OpenPose Retest reliability values was 0.976 ± 0.03.

Logistic regressions were performed to investigate the relationship between OpenPose

investigated variables (penalty taker: shoulder, hips, and nonkicking foot orientation;

goalkeeper: right and left foot, anticipation), observable behaviors (OSPAF variables),

and the strategy (penalty taker: goalkeeper dependent or independent; goalkeeper:

shooter dependent or independent) in penalty kicks. The selected body orientation

angle (goalkeeper anticipation) measured through OpenPose correlated significantly with

the goalkeeper strategy. The prediction model of the goalkeeper’s strategy had its

accuracy increased to 97% when the variable goalkeeper anticipation was included

[χ2
(35) = 49.648, p < 0.001]. Lower degrees of goalkeeper anticipation, the goalkeeper

tactical action (awaiting), and run up speed (slow) were associated with a kicker-

dependent strategy. Regarding the penalty taker, the selected body angles measured

through OpenPose did not associate significantly with the shooter strategy. Body

orientation analysis by using OpenPose has shown sufficient reliability and provides

practical applications for analyzing the strategies adopted by goalkeepers in penalty kicks

in elite football.

Keywords: body orientation, performance analysis, OSPAF, OpenPose, human movement, motion capture, soccer

analytics
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INTRODUCTION

The analysis of penalty kick performance in football has played
an important role in sports analytics (Paterson et al., 2020; Noël
et al., 2021; Pinheiro et al., 2021a,b). Over the past 30 years, there
have been several scientific studies that identify themotivational-,
strategic-, anticipatory-, attention-, and perception-based factors
that can mean a successful or failed penalty kick (Memmert and
Nöel, 2020). Recent research focusing on the technical dynamics
of penalty kicks has also identified multiple key variables that
can differentiate the players strategy (Pinheiro et al., 2021b) and
enhance the overall chances of scoring a penalty kick (Jamil
et al., 2020). The importance of the optimal performance of
both the rival players during the penalty kick is paramount,
especially since the introduction of the penalty shoot-out in
major competitions to determine which team progresses after a
drawn match (Fariña et al., 2013).

One prerequisite to increase the probability of successful
performance is the implementation of the suitable penalty kick
strategy (van der Kamp, 2006). Previous research has identified
two main strategies for taking a penalty (Kuhn, 1988; van
der Kamp, 2006). First, the keeper-independent strategy, where
the kicker selects the target location to shoot toward before
the run-up and does not attend to the actions made by the
goalkeeper during the run-up. The decision of where to aim
depends on the penalty taker’s kicking preference (Noël et al.,
2015). On the contrary, in the keeper-dependent strategy, the
kicker tries to obtain information from the goalkeeper’s reactions
during the run-up. Nevertheless, the outcome of a penalty is
determined by an interaction between the shooter’s strategy (e.g.,
technique, speed) and the goalkeeper’s strategy (Hunter et al.,
2018; Pinheiro et al., 2021b). The optimal strategy depends
on the keeper’s behavior and the relative benefits of speed,
accuracy, and unpredictability within each situation. Regarding
the goalkeeper strategy, there are two approaches: the dependent
and independent penalty takers. The goalkeeper who behaves
according to the first group defines his movement based on the
actions of the penalty taker. The second type of goalkeeper is the
one who risks jumping to a corner independently of the kicker’s
movement (Kuhn, 1988).

The analysis of the penalty kick strategies has been

investigated about numerous factors (Noël et al., 2015; Pinheiro
et al., 2021b). Noël et al. (2015) developed a method for
investigating penalty taker strategies, based on a controlled
simulated situation. In a noncompetitive setting, youth players

were instructed to take penalty kicks adopting either a keeper-
independent or keeper-dependent strategy. Based on this setting,

an observational system was developed to evaluate penalty kick
performances by using video footage from competitive matches.
Those authors identified that attention to the goalkeeper, run-up

fluency, and kicking technique in combination could predict kick
strategy in 92% of the penalties. However, one possible limitation
is that the penalty takers followed a script denoting whether
they use a keeper-independent or keeper-dependent strategy
and, therefore, the design created differed very importantly
from the match situation (Pinheiro et al., 2021a). Besides that,
it remains unclear whether the young players disposed of a

sufficient skill level to execute both the strategies with the
same quality. To address the interaction process in professional
football and provide a valid instrument, (Pinheiro et al., 2021b)
developed an observational system for penalty kick analysis
in football (OSPAF). The OSPAF met all the requirements of
instrument validation.

Body orientation has been indicated as a key factor under
covering the success in penalty kicks (Li et al., 2015). However,
it is a yet little explored area in penalty kick analytics. There
is a need within human movement sciences for a markerless
motion capture system, which is easy to use and sufficiently
accurate to evaluate motor performance (Nakano et al., 2020).
OpenPose method adopts unique top-down position recognition
by using deep learning and also the unique algorithm as affiliation
recognition of body parts by Part Affinity Fields (PAFs) to detect
the two-dimensional (2D) pose of multiple people in images
(Nakai et al., 2019). OpenPose can recognize skeletons ofmultiple
players in real-time, by using a simple web camera. Given a
video or image, OpenPose estimates a total of 25 biometric
human body parts (e.g., right knee, left knee, and right foot).
The output of the algorithm is in the form of 25 × 3 vector for
each individual, where the first two columns of the vector stand
for the x-y coordinate of key points in the field domain, while
the third column represents the confidence score. This method
has shown high-level accuracy on multiple public benchmarks,
being efficient for multiperson pose estimation (Cao et al., 2017).
Zago et al. (2020) confirmed the feasibility of tracking kinematics
by using OpenPose. OpenPose-based markerless motion capture
can be used for human movement science with an accuracy of
30mm or less (Nakano et al., 2020). Despite several studies in
this area, key gaps remain, including a lack of research by using
OpenPose to detect relevant body orientation angles in field
settings and based on sports broadcasts such as penalty kicks
from TV videos.

Sangüesa et al. (2019) had previously applied OpenPose to
estimate the body orientation of football players from video
data during match play. Those authors indicated that a time-
based set of player orientations might detect specific situations
where orientation is crucial in the match. Recently, Sangüesa
et al. (2020a) used a player’s body orientation to model pass
feasibility in football. The inclusion of the orientation data
estimated directly from video frames by using pose models,
into a passing model, has proved to be a key feature in the
decision-making process of players and is strictly correlated to
the play outcome. In another study, Sangüesa et al. (2020b)
mapped body pose parts (e.g., shoulders and hips) in a 2D field
by combining OpenPose with a super-resolution network and
merging the obtained estimation with contextual information
(ball position). Results have been validated with players held
electronic performance and tracking systems devices, obtaining
a median error of 27◦ per player.

Notation analysis has been widely used to examine the
technical properties of football performance through recording
behavior incidence (Lames and Hansen, 2001; Hughes and
Bartlett, 2004; Sarmento et al., 2014; Casal et al., 2017; Pinheiro
et al., 2021b). In the recent years, there has been a vertiginous
evolution in thematch analysismethods, mainlymotivated by the
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emergence of automatic registration procedures, which allows
the immediate acquisition of a large amount of data related to
the positioning of the players with the game (Castellano et al.,
2014). The rise of sports analytics has provided a new set of
metrics and statistics that can serve coaches to evaluate the player
(Sangüesa et al., 2019). Nevertheless, one limitation is that one
method does not entirely supply all the necessary information.
There is, therefore, a need to use multimethod approach to
solve sports analytics problems, analyzing variables by using
different methods (Aranda et al., 2019). Methodology designs
that combine different study approaches (e.g., observational and
biomechanical/method that produce body angles), also known as
mixed methods (Preciado et al., 2019), tend to provide a deeper
understanding and reliability of the studied phenomenon (i.e.,
penalty kicks).

The influence variables on penalty kicks success are
extensively studied (Jamil et al., 2020; Memmert and Nöel, 2020;
Paterson et al., 2020; Noël et al., 2021; Pinheiro et al., 2021b).
(Pinheiro et al., 2021b) recommended that future studies could
use the OSPAF, applying technological methods to analyze its
variables, such as computer techniques for body pose estimation
and machine learning-based video analysis. To the best of our
knowledge, no study has used OpenPose to detect relevant
body orientation angles in penalty kicks in elite football from
TV broadcast. Therefore, the aims of this study are: (i) to
verify whether OpenPose can detect relevant body orientation
angles from video data of penalty kicks in elite football and (ii)
to investigate the relationship between these body angles and
observable behaviors analyzed via OSPAF (Pinheiro et al., 2021b)
with the penalty taker and goalkeeper strategy.

MATERIALS AND METHODS

Sample
The dataset consists of 34 penalty kicks from the main European
football leagues (Premier League, Ligue 1, Bundesliga, LaLiga,
Serie A, and Champions League; seasons 2017–2020). The
videos were recorded from TV broadcasters and were registered
and analyzed postevent. As the video recordings were public,
confidentiality was not an issue and authorization was not
required from the players observed or their representatives. The
procedures performed in this study were in strict accordance with
the Declaration of Helsinki as well as with the ethical standards
of the Technical University of Munich.

Methodological Design
All the penalty kick data were annotated by the researchers
with the OSPAF (Pinheiro et al., 2021b). Body orientation was
analyzed by using OpenPose (CMU-Perceptual-Computing-Lab,
2017). The choice and analysis of the penalty kick video viewing
angle was standardized (Pinheiro et al., 2021b), with a pixel
resolution of 1,280 × 720. The viewing angle used in this
study was the view behind the penalty taker (Figure 1). The
confidence score, calculated by OpenPose, was used to evaluate
reliability (Sangüesa et al., 2019). In order to check the stability
within the observation, every penalty kick was analyzed with

FIGURE 1 | Penalty kick viewing angle, frames analyzed, and process of pose

estimation. The upper image corresponds to the moment when the penalty

taker starts the run-up approaching the ball, and the down one corresponds

to the moment when he touches the ball. The coordinates belonging to

shoulders, hips, and non-kicking foot of penalty taker are mapped in a 2D

field. LR-side Booleans (LRSh, LRHi, LRSF: penalty kicker’s shoulder, hips, and

non-kicking foot orientation, respectively), angles (αSh αHi, αSF: penalty kicker’s

shoulder, hip, and non-kicking foot, respectively) and confidences (CSh, CHi,

CSF: confidence score of the orientation of penalty kicker’s shoulder, hips and

non-kicking foot, respectively). Coordinates belonging to the neck and hip of

the goalkeeper at these two moments are mapped to a vector and the angle is

calculated (αGK ). DGKR and DGKL, the movement distance of right and left foot;

CGK, represent confidence score.

OpenPose twice. Retest reliability was utilized to check these
repeated measurements.

Body Pose Detection and Orientation
OpenPose (version 1.4.0) was installed from GitHub (CMU-
Perceptual-Computing-Lab, 2017) and run with a notebook
(Apple’s M1 Chip) under default settings. Orientation from
pose used pretrained models and three-dimensional (3D) vision
techniques to obtain a first orientation estimation of each player.
Once the pose is extracted for each player, the coordinates and
confidence level associated with the body parts are stored to
estimate the pose orientation. As a result, in the moving skeletal
pictures generated by OpenPose, the skeleton marks are shown
and overlapped well with the figure of players (Nakai et al.,
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2019). For technical details of posemodels, see Ramakrishna et al.
(2014), Wei et al. (2016), and Cao et al. (2017).

In this study, the orientation of a player’s body was defined as
the 2D rotation of the player’s upper torso around the vertical
axis, which is assumed to coincide with the field projection
of a normal vector placed in the center of their upper torso,
involving both the shoulders and hip parts (Sangüesa et al., 2019).
Especially in the case of the non-kicking foot, the hallux and the
fifth toe of the support foot were used as the left-right (LR) pair to
find the normal vector. Orientation was measured in degrees. For
technical details of this methodological approach, see Sangüesa
et al. (2019, 2020a,b).

In this study, two frames were analyzed. First, when the
penalty taker starts the run-up into the ball and, second, when
he touches the ball (Figure 1). Then, the target variables for
the penalty taker (nonkick foot orientation, hips, and shoulders)
and the goalkeeper [anticipation movement (explained in detail
below) and right and left foot orientation] were extracted. There
might be blurry frames and overlap of players. OpenPose could
then fail to detect the main biometric body parts of the two
players involved in this analysis; therefore, in this case, the
neighboring frames, in which biometric body parts can be
detected, were used.

Once the pose was extracted for the goalkeeper and
penalty taker, the direct linear transformation (DLT) algorithm
(Hartley and Zisserman, 2004) was used to map the coordinate
information of players into a 2D field with a homography, given
the 4 field corners’ coordinates in the image (or its projection
out of the image in the nonvisible cases). The homography was
first calculated based on four 2D-to-2D point correspondences
between the frames (Equation 1). From the output of OpenPose,
the coordinates of the main upper-torso parts are found in the
image domain; by mapping the LR pair (either shoulders or hips)
in the 2D field, a first insight of the player orientation is obtained.
The player can be inclined toward the right (0–90 and 270–360◦)
or the left (90–270◦) side of the field.





x′

y′

1



 = αH





x
y
w



 ,where homography H =





h1 h2 h3
h4 h5 h6
h7 h8 h9



 (1)

After that, the 2D field projections of the LR pair of penalty
taker’s shoulders, hips, and nonkicking foot (big toe and small
toe) were calculated. All the body parts’ orientations could point
to the left or right half, based on the angle system presented by
Sangüesa et al. (2019, 2020a,b). Based on the 2D projection, LR-
side Booleans (LRSh, LRHi, and LRSF: penalty kicker’s shoulder,
hips, and non-kicking foot orientation, respectively), angles (αSh
αHi, and αSF: penalty kicker’s shoulder, hip, and non-kicking foot,
respectively), and confidences (CSh, CHi, and CSF: confidence
score of the orientation of penalty kicker’s shoulder, hip, and non-
kicking foot, respectively) were obtained. The corresponding
confidences are the average of OpenPose’s player toes, shoulders,
and hips confidences, respectively. Figure 1 shows the output of
OpenPose on which the key biometric body parts of an individual
are detected, illustrating the estimation process of orientation.

Anticipation Movement of the Goalkeeper
The anticipation movement of the goalkeeper in the penalty
kick was defined here as to how far the goalkeeper moves
between: (1) the moment when the penalty taker starts the run-
up approaching the ball and the (2) moment when the penalty
taker first touches the ball. In detail, the line formed by the
connection between the goalkeeper’s neck and the middle of the
hip was used to depict the position status of the goalkeeper in
these two moments. Furthermore, the angle (αGK) between the
two lines drawn from the twomomentsmeasures the anticipation
movement of the goalkeeper. The confidence level for this
measure (CGK) was calculated by the average confidence scores of
the neck and middle of the hip. This process is given in Figure 1.

The movement distance of the goalkeeper’s left and right
foot was also used to measure the anticipation movement. Left
and right ankles were used to represent the left and right feet,
respectively; moreover, coordinate information together with
metric Euclidean distance was used to depict the movement
distance of the goalkeeper’s feet, as shown in Figure 1.

Ball Speed
Ball speed was determined with the open-source software
program Kinovea motion analysis (version 0.8.15, Kinovea,
France). This software has already been used in various studies
analyzing penalty kicks (Hunter et al., 2018;Makaruk et al., 2019).

Notational Analysis
A previously developed and validated observational system
(OSPAF) for penalty analysis in elite football was also
used in this study (Pinheiro et al., 2021b). The protocols
for the use of observational systems were adopted (Lames
and Hansen, 2001; Aranda et al., 2019; Fernandes et al.,
2019). All the observable behaviors recorded are shown in
Table 1.

Data Analysis
For descriptive analysis, mean and SD were used. The Shapiro–
Wilk test was performed to verify data normality. The association
level between the OSPAF variables with the penalty taker and
goalkeeper strategy was determined with the use of the chi-
squared (χ2) test. The effect size was determined by using
the Cramer’s V and classified as weak (ES ≤ 0.2), moderate
(0.2 < ES ≤ 0.6), and strong (ES > 0.6) (Cohen, 1988). The
association level between OpenPose variables with the penalty
taker and goalkeeper strategy was determined with the use
of the point-biserial correlation. Retest reliability was utilized
to check the repeated measurements of OpenPose (Vilagut,
2014). Test-retest reliability coefficients (also called coefficients
of stability) vary between 0 and 1, where 1: perfect reliability, ≥
0.9: excellent reliability, ≥ 0.8 < 0.9: good reliability, ≥ 0.7 <

0.8: acceptable reliability, ≥ 0.6 < 0.7: questionable reliability,
≥ 0.5 < 0.6: poor reliability, < 0.5: unacceptable reliability,
and 0: no reliability (Vogt, 2005; Lindstrom, 2010). To identify
which variables would be able to predict the penalty takers
and goalkeeper strategy, the logistic regression (enter method)
analyses were performed. Dimensions and categories of OSPAF
were coded in Lince software (Figure 2; Gabin et al., 2012;
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TABLE 1 | OSPAF variables.

Variables Definition Attribute levels

Run up speed Running speed of the penalty kicker toward the ball Fast or slow

Run up fluency Characteristic of the penalty kicker’s run during the

approach of the ball, with or without pauses.

Continuous running or running with pauses

Run up approach angle Penalty kicker’s running angle to the ball. Frontal or diagonal

Number of steps Number of steps of the penalty kicker until contact with

the ball

1–3; 3–5; or +5

Kicking technique The technique used by the penalty kicker to kick the ball Side foot kick or instep kick

Foot used to kick Foot used by the penalty kicker to kick the ball Right or left

Penalty taker gaze behavior Gaze behavior of the kicker during the approach run. Gaze at the ball or not at the ball

Goalkeeper (GK) initial

posture

Position of the body segments. Arms raised; arms down or arms extended in a position

perpendicular to the goalkeeper ’s trunk

Deception by the penalty

taker

Indication if the kicker has done any action to distract the

goalkeeper during his or her run-up

Yes or no

Goalkeeper tactical action General evaluation of the way the goalkeeper acted

during the penalty shoot-out, to the anticipatory aspect

Try to guess the location of the shot; or awaiting the

penalty taker action

Goalkeeper performance Evaluation of the goalkeeper’s performance according to

his movement and contact with the ball

0: GK made any final movement to the side of the goal

opposite to the final ball location; 1: GK did not move

from the center of the goal; 2: GK made a movement in

the correct direction but did not dive and failed to make

contact with the ball; 3: GK dived in the correct direction

but failed to make contact with the ball; 4: GK dived in

the correct direction and contacted the ball without

saving it; or 5: GK successfully saved the kick

Moment of the match Time of the match when the penalty will be taken First half; second half or extra time or shoot out

Location of the match

(kicker point of view)

Indication if the penalty kicker is from the home team,

visitor, or if he plays on a neutral field.

Home, neutral or away

Momentary result (kicker

point of view)

Result of the match (for the penalty kicker) at the

moment the penalty was marked.

Winning, drawing or losing

Momentary result (GK point

of view)

Result of the match (for the Goalkeeper) at the moment

the penalty was marked.

Winning, drawing or losing

Match importance Level of importance of the match for the team Championship final match; decisive knockout match;

group stage match; early season game; match in final

stages of the season

Penalty kick direction The direction of the ball on goal Left; center or right

Penalty kick height Height of the ball on goal Upper; center or down

Penalty kick outcome Result of the penalty kick Goal; saved by goalkeeper or Shot misses goal (wide,

over or post)

Penalty taker strategy Overall strategy perceived by the observer (6) Goalkeeper dependent; unclear or goalkeeper

independent

Goalkeeper strategy Overall strategy perceived by the observer (6) Kicker independent; unclear or kicker dependent

Soto et al., 2019). Kappa levels of the OSPAF were 0.90 and
0.86—intra- and interreliability (Pinheiro et al., 2021b). The
interpretation of this coefficient was adopted as follows: κ > 0.8:
very good; 0.6 < κ < 0.8: good; 0.4 < κ < 0.6: moderate; 0.2 <

κ < 0.4: fair; and κ < 0.2: poor (Altman, 1991; O’Donoghue,
2010). The level of statistical significance adopted was α =

0.05, with a 95% CI. All the data were analyzed by using
JASP software (JASP Team, 2021; Computer software; JASP
Version 0.14).

RESULTS

Descriptive data of all the OpenPose and OSPAF variables
analyzed are presented as Supplementary Material.

OpenPose Confidence Score and Retest
Reliability
The mean confidence score of OpenPose measures was 0.80 ±

0.14. The confidence score per variable is shown in Table 2.
Test-retest reliability values are shown in Table 3.

Influence Variables on Goalkeeper Strategy
The association between all the OpenPose and OSPAF variables
with the goalkeeper’s strategy was analyzed. Table 4 presents only
the variables that presented association and the respective values.

A logistic regression (enter method) was performed to
investigate the relationship between the goalkeeper’s tactical
action and run-up speed on the likelihood of the goalkeeper
strategy. The logistic regression model was statistically
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FIGURE 2 | Lince Plus interface. Example of criteria and categories coding.

significant, χ2
(36)

= 28.592, p < 0.001. The model correctly

classified 84.6% of cases. The goalkeeper’s tactical action
(awaiting) and run speed (slow) were related to a kicker-
dependent strategy. While including the correlated OpenPose
variable (goalkeeper anticipation) in the model [χ2

(35)
= 49.648,

p < 0.001], the accuracy is increased to 97.0%. Therefore, lower
degrees of goalkeeper anticipation, the goalkeeper tactical action
(awaiting), and run-up speed (slow) were associated with a
kicker-dependent strategy.

Influence Variables on Penalty Taker
Strategy
The association between all the OSPAF and OpenPose variables
with the penalty taker’s strategy was analyzed. Table 5

presents only the variables that presented association and
the respective values.

A logistic regression (enter method) was performed to
investigate the relationship between the correlated OSPAF
variables (run-up speed, run-up fluency, penalty taker gaze
behavior, deception by penalty taker, and ball speed) on the
likelihood of the goalkeeper-dependent strategy. The logistic
regression model was statistically significant, χ2

(33)
= 24.819,

p < 0.001. The model correctly classified 97.1% of cases. The
run-up speed slow, run-up fluency running with pauses, penalty
taker gaze behavior not at the ball, the deception performed
by the penalty taker, and lower ball speed were related to a
goalkeeper-dependent strategy.

DISCUSSION

A unique method to calculate football players’ orientation
in in-match penalty kicks from a video has been tested.
The mean confidence score of OpenPose variables
was 0.80 and test-retest reliability showed an excellent
reliability (Vogt, 2005; Lindstrom, 2010). The selected
body orientation angle (goalkeeper anticipation) measured
through OpenPose correlated significantly with the goalkeeper
strategy. The prediction model of the goalkeeper’s strategy
had its accuracy increased when the variable goalkeeper
anticipation was included. This finding corroborates the
applicability of OpenPose to obtain the body orientation of
professional football players during matches (Sangüesa et al.,
2019).

Goalkeepers face a clear trade-off between moving early and
moving in the correct direction (Hunter et al., 2018). The
goalkeeper’s chance of successfully saving a penalty kick is lower
than that of the penalty taker to score and he must try to
reverse this disadvantage by positioning himself to anticipate
the direction of the kick that is about to come (Kuhn, 1988).
In this study, the goalkeeper tactical action (awaiting) and
run-up speed of the penalty taker (slow) were associated with
a kicker-dependent strategy (84.6%). To further improve this
model, the inclusion of the correlated OpenPose variable (i.e.,
goalkeeper anticipation) correctly classified 97.0% of cases.
Corroborating previous studies (Nakai et al., 2019; Sangüesa
et al., 2019, 2020a,b), the analysis of the body orientation
through OpenPose has proved to be extremely useful on penalty
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TABLE 2 | OpenPose confidence score per variable.

Player Body orientation angle Confidence score

Penalty taker Non-kick foot orientation 0.51

Shoulders 0.87

Hips 0.85

Goalkeeper Anticipation 0.87

Left foot 0.84

Right foot 0.83

TABLE 3 | Test-retest reliability per variable.

Player Body orientation angle r

Penalty taker Non-kick foot orientation 0.924*

Shoulders 0.998*

Hips 0.991*

Goalkeeper Anticipation 0.998*

Left foot 0.953*

Right foot 0.961*

*p < 0.05.

TABLE 4 | Association between OSPAF and OpenPose variables with the

goalkeeper strategy.

OSPAF variables χ
2 p Cramer’s V

Goalkeeper strategy Run up speed 4.875 <0.05 0.354

GK tactical action 26.542 <0.05 0.825

OpenPose variable rpb p

Goalkeeper anticipation 0.959 <0.05

kick analytics. The improvement in the model related to the
goalkeeper strategy shows the important practical application
through the evaluation of the body orientation of football
players by using OpenPose as a tool. These findings support
previous study by Sangüesa et al. (2019, 2020a,b) and Nakai
et al. (2019), which showed that skeletal data recognized by
OpenPose are found to be highly applicable with sufficient
accuracy. The acquisition of a set of biometric human body
part orientations implies an improvement of the analysis of
the penalty kick in elite football. Moreover, its integration with
video allows this model to be used as a coaching resource to
assess players’ orientation and improve training strategies for
game preparation.

Previous study has shown that the penalty outcome depends,
above all, on the emerging results of the “penalty taker—
goalkeeper” dyadic interaction (Lopes et al., 2012; Almeida et al.,
2016; Pinheiro et al., 2021b). In this study, lower degrees of
goalkeeper anticipation, the goalkeeper tactical action (awaiting),
and run-up speed of the penalty taker (slow) were associated
with a kicker-dependent strategy. From a behavioral perspective,
the present findings corroborate this dyadic interaction between

TABLE 5 | Association between OSPAF and OpenPose variables with the penalty

taker strategy.

OSPAF variables χ
2 p Cramer’s V

Penalty taker strategy Run up speed 2.300 <0.05 0.243

Run up fluency 5.512 <0.05 0.376

Gaze behavior 22.224 <0.05 0.755

Deception 8.770 <0.05 0.474

OpenPose variable rpb p

Ball speed 0.927 <0.05

the players in a penalty kick, as results showed that the
goalkeeper strategy is influenced by the run-up speed of the
penalty taker. Corroborating with this finding, Noël et al. (2021)
indicated that goalkeepers must consider the penalty taker’s
run-up for deciding when to initiate their jump to the ball.
It is presumed that more successful goalkeepers wait longer to
decide for a goal side because this allows them to access more
reliable information from the penalty taker’s kicking actions
to anticipate the penalty takers’ intentions (Noël et al., 2021).
Analytical procedures that integrate the study of criteria related
to the interactions between opponents are highly recommended
in game analysis in football (Sarmento et al., 2014). In real
competitions, penalty kicks are an interaction process and the
observable performance is rather the emergent result of this
interaction process than the display of skills and abilities of
the two parties (Lames, 2006). The new approach presented
in this study, combining different methods, provides a deeper
understanding of the player strategy in penalty kicks, through
objective identification of the anticipation of the goalkeeper (i.e.,
angle: αGK measured via OpenPose). To further clarify the
process of interaction in the penalty kick and the goalkeeper
response time, future studies could introduce a time interval
before the kick or an event (exact moment of the kick) as
new variables with objective parameters to be analyzed by
using OpenPose.

Regarding the penalty taker, the selected body angles
measured through OpenPose did not associate significantly
with the shooter strategy. A possible explanation could be
that the biomechanical patterns of approaching the ball during
the kick may vary from player to player, regardless of the
strategy adopted. Previous study has shown that kicking from
an approach angle of 45 and 60◦ may alter aspects of kick
technique, such as enhancing pelvic rotation and thigh abduction
of the kicking leg at impact (Scurr and Hall, 2009). Reinforcing
this, Prassas et al. (1990) reported significant differences for
a substantial number of variables, related to the kicking
foot, leg, the non-kicking foot, trunk, and hip segments in
football kicks.

A novelty of this study is the adoption of OpenPose
measurements with notational analysis (i.e., OSPAF) to analyze
penalty kicks. The OSPAF is an adequate and consistent
instrument for analyzing successful and non-successful
penalty kick patterns (Pinheiro et al., 2021b). The analysis
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of observational variables in penalty shooting may provide a
general description of its technical execution, which allows
for detecting the shooters and the goalkeeper’s strategy based
on the behavioral variables studied (Pinheiro et al., 2021b).
Although the variables used to detect body angles possibly
relevant to the analysis of strategy of the shooter in penalty
kicks in football did not correlate significantly with the penalty
taker strategy, the variables measured by OSPAF (i.e., run-up
speed, run-up fluency, penalty taker gaze behavior, deception
by penalty taker, and ball speed) were able to correctly classify
97.1% of the penalty taker strategy. The run-up speed slow,
run-up fluency running with pauses, penalty taker gaze behavior
not at the ball, the deception performed by the penalty taker,
and lower ball speed were related to a goalkeeper-dependent
strategy. Partially corroborating these findings, Noël et al. (2015)
identified three variables (attention to the goalkeeper, run-up
fluency, and kicking technique) that in combination could
predict kick strategy in 92% of the penalties. Previous study
had also shown that run-up and spatiotemporal patterns of
gaze may differ between strategies (Noël and van der Kamp,
2012; Noël et al., 2015). The difference in fluency is probably
a consequence of penalty takers who use a keeper-dependent
strategy to increase time at the end of the run-up by waiting
for the goalkeeper to commit to one side of the goal (van der
Kamp, 2006). Studies in a realistic setup pointed those penalty
takers by using the keeper-dependent strategy direct their gaze
more toward the goalkeeper compared to the ball and the target
location (Kurz et al., 2018). In contrast, penalty takers by using
the keeper-independent strategy direct their gaze more toward
the ball compared to the goalkeeper and the target location (Noël
and van der Kamp, 2012).

Several studies have investigated the penalty kick strategies in
football (van der Kamp, 2006; Noël et al., 2015, 2021; Pinheiro
et al., 2021b). However, to the best of our knowledge, this
is the first study to use OpenPose to detect relevant body
orientation angles in penalty kicks in elite football from TV
broadcast. This study is a preliminary study in penalty kick
analysis and, thus, requires further examination. This study
limitation was to not use a larger sample (e.g., full season), as
it could bring practical applications and be more representative.
Another limitation of this study was using only one viewing
angle. It was included only one standard viewing angle and
video quality was standardized, as recommended by (Sangüesa
et al., 2020b). Nevertheless, for comparison of penalties from
different viewing angles, a 3D transformation must be adopted
when using OpenPose. Camera positioning (e.g., viewing angles)
could affect the accuracy and, thus, the feasibility of the systems
in practical settings (Zago et al., 2020). Nonetheless, this study
presents an innovative approach to the analysis of penalty kicks
in football, combining notational analysis with OpenPose. Its
integration with video specification allows this model to be
used as a coaching tool to assess players’ orientation under
different penalty kicks, improving sports preparation against
upcoming opponents.

Multiple practical applications can be provided, from
improving and refining player strategy in penalty kicks, to
producing a precise assessment of player orientation in high-level

competitive scenarios. Although it is not optimal to analyze
only 34 penalty kicks, results from the present preliminary
data indicate that it is possible to distinguish the goalkeeper’s
strategy (i.e., kicker dependent vs. kicker independent) based
on the degree of goalkeeper anticipation, extracted through
OpenPose. The body orientation analysis gives practitioners the
potential to quickly evaluate the temporal decision-making of
the goalkeeper (i.e., anticipation movement of the goalkeeper)
with consideration to choosing when to initiate their jump to the
ball. This could help to identify which goalkeepers move early
or late in the penalty kick situation. Based on the pattern of
anticipation of the goalkeeper in official competitions, specific
training strategies can then be developed. Besides, having a time-
based set of player orientations enhances analysts’ ability to
evaluate the relationship of on-ball and off-ball direction with
the anatomical patterns. Posture analysis by using OpenPose has
been verified to be practical with our model on the goalkeeper
strategy identification. Future study could train a deep learning
model to provide results about pose orientation automatically
and faster.

CONCLUSION

This study tested an innovative approach in applying OpenPose
measures integrated with notational analysis to investigate the
factors influencing the players’ strategy in penalty kicks. Results
showed the applicability of OpenPose for in-match penalty kick
analysis and an improvement in the prediction of the goalkeeper
strategy by using a body orientation variable (anticipation)
extracted via OpenPose. The goalkeeper degree of anticipation,
tactical action, and run-up speed of the penalty taker can be
associated with the goalkeeper strategy. Observable variables
such as run-up speed, run-up fluency, penalty taker gaze
behavior, deception by penalty taker, and ball speed may identify
the shooter strategy.
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T., et al. (2019). The effects of combining focus of attention and autonomy

support on shot accuracy in the penalty kick. PLoS ONE 14:e0213487.

doi: 10.1371/journal.pone.0213487

Memmert, D., and Nöel, B. (2020). The Penalty Kick: The Psychology of Success.

Aachen: Meyer and Meyer Sport.

Nakai, M., Tsunodam, Y., Hayashi, H., and Murakoshi, H. (2019). “Prediction of

basketball free throw shooting by OpenPose,” in New Frontiers in Artificial

Intelligence. JSAI-isAI 2018. Lecture Notes in Computer Science, vol 11717, eds

K. Kojima, M. Sakamoto, K. Mineshima, and K. Satoh (Cham: Springer), 31.

doi: 10.1007/978-3-030-31605-1_31

Nakano, N., Sakura, T., Ueda, K., Omura, L., Kimura, A., Iino, Y., et al.

(2020). Evaluation of 3D markerless motion capture accuracy using

OpenPose with multiple video cameras. Front. Sports Act. Living. 2:50.

doi: 10.3389/fspor.2020.00050

Noël, B., Furley, P., van der Kamp, J., Dicks, M., and Memmert, D. (2015). The

development of a method for identifying penalty kick strategies in association

football. J. Sports Sci. 33, 1–10. doi: 10.1080/02640414.2014.926383

Noël, B., and van der Kamp, J. (2012). Gaze behaviour during the soccer penalty

kick: an investigation of the effects of strategy and anxiety. Int. J. Sport Psychol.

43, 326–345.

Noël, B., van der Kamp, J., and Klatt, S. (2021). The interplay of goalkeepers

and penalty takers affects their chances of success. Front. Psychol. 12:645312.

doi: 10.3389/fpsyg.2021.645312

O’Donoghue, P. (2010). Research Methods for Sports Performance Analysis.

London: Routledge.

Paterson, G., van der Kamp, J., and Savelsbergh, G. (2020). Moving advertisements

systematically affect gaze behavior and performance in the soccer penalty kick.

Front. Sports Act. Living. 1:69. doi: 10.3389/fspor.2019.00069

Pinheiro, G. S., Costa, V. T., and Lames, M. (2021a). “Penalty kicks in elite

football: identifying factors related to the player strategy,” in International

Society of Sport Psychology (ISSP) 15th World Congress Proceeding, Taipei,

228–229,

Frontiers in Sports and Active Living | www.frontiersin.org 9 March 2022 | Volume 4 | Article 8185567071

https://www.frontiersin.org/articles/10.3389/fspor.2022.818556/full#supplementary-material
https://doi.org/10.1080/24748668.2016.11868905
https://doi.org/10.3389/fpsyg.2019.01476
https://doi.org/10.1109/CVPR.2017.143
https://doi.org/10.3389/fpsyg.2017.01176
https://doi.org/10.1007/s40279-014-0144-3
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://doi.org/10.1080/24748668.2013.11868634
https://doi.org/10.1177/1747954119827283
https://doi.org/10.1016/j.sbspro.2012.06.320
https://doi.org/10.1017/CBO9780511811685
https://doi.org/10.3390/sports6030073
https://doi.org/10.1080/24748668.2020.1794720
https://doi.org/10.3389/fpsyg.2018.00019
https://doi.org/10.1080/24748668.2001.11868251
https://doi.org/10.7575/aiac.ijkss.v.3n.4p.1
https://doi.org/10.1080/24748668.2012.11868602
https://doi.org/10.1371/journal.pone.0213487
https://doi.org/10.1007/978-3-030-31605-1_31
https://doi.org/10.3389/fspor.2020.00050
https://doi.org/10.1080/02640414.2014.926383
https://doi.org/10.3389/fpsyg.2021.645312
https://doi.org/10.3389/fspor.2019.00069
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Pinheiro et al. Pose Estimation in Penalty Kicks

Pinheiro, G. S., Nascimento, V. B., Dicks, M., Costa, V. T., and Lames, M. (2021b).

Design and validation of an observational system for penalty kick analysis in

football (OSPAF). Front. Psychol. 12:661179. doi: 10.3389/fpsyg.2021.661179

Prassas, S. G., Terauds, J., and Nathan, T. (1990). “Three-dimensional kinematic

analysis of high and low trajectory kicks in soccer,” in Proceedings of the VIIIth

Symposium of the International Society of Biomechanics in Sports, eds N. Nosek,

D. Sojka, W. Morrison, and P. Susanka (Prague: Conex), 145–149.

Preciado, M., Anguera, M. T., Olarte, M., and Lapresa, D. (2019). Observational

studies in male elite football: a systematic mixed study review. Front. Psychol.

10:2077. doi: 10.3389/fpsyg.2019.02077

Ramakrishna, V., Munoz, D., Hebert, M., Bagnell, J. A., and Sheikh, Y.

(2014). “Pose machines: articulated pose estimation via inference machines,”

in European Conference on Computer Vision (Berlin: Springer), 33–47.

doi: 10.1007/978-3-319-10605-2_3

Sangüesa, A. A., Haro, G., Ballester, C., andMartín, A. (2019).Head, Shoulders, Hip

and Ball... Hip and Ball! Using Pose Data to Leverage Football Player Orientation.

Barça sports analytics summit. Barcelona: Barça Innovation Hub.

Sangüesa, A. A., Martín, A., Fernández, J., Ballester, C., and Haro, G. (2020a).

“Using player’s body-orientation to model pass feasibility in soccer,” in

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW) (Nashville, TN), 3875–3884.

Sangüesa, A. A., Martín, A., Fernandez, J., Rodríguez, C., Haro, G., and

Ballester, C. (2020b). Always look on the bright side of the field: merging

pose and contextual data to estimate orientation of soccer players. arXiv

e-prints arXiv:2003.00943.

Sarmento, H., Marcelino, R., Anguera, M. T., Campaniço, J., Matos,

N., and Leitão, J. C. (2014). Match analysis in football: a systematic

review. J. Sports Sci. 32, 1831–1843. doi: 10.1080/02640414.2014.8

98852

Scurr, J., and Hall, B. (2009). The effects of approach angle on penalty kicking

accuracy and kick kinematics with recreational soccer players. J. Sports Sci.Med.

8, 230–234.

Soto, A., Camerino, O., Iglesias, X., Anguera, M. T., and Castañer, M. (2019).

LINCE PLUS: research software for behavior video analysis. Apunts Educ. Fís.

Deportes 137, 149–153. doi: 10.5672/apunts.2014-0983.es.(2019/3).137.11

van der Kamp, J. (2006). A field simulation study of the effectiveness of penalty

kick strategies in soccer: late alterations of kick direction increase errors and

reduce accuracy. J. Sports Sci. 24, 467–477. doi: 10.1080/02640410500190841

Vilagut, G. (2014). “Test-retest reliability,” in Encyclopedia of Quality of Life

and Well-Being Research, eds A. C. Michalos (Dordrecht: Springer), 3001.

doi: 10.1007/978-94-007-0753-5_3001

Vogt, W. P. (2005).Dictionary of Statistics andMethodology: A Nontechnical Guide

for the Social Sciences. Newcastle upon Tyne: Sage.

Wei, S., Ramakrishna, V., Kanade, T., and Sheikh, Y. (2016). “Convolutional

pose machines,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (San Juan, PR: IEEE), 4724–4732.

doi: 10.1109/CVPR.2016.511

Zago, M., Luzzago, M., Marangoni, T., De Cecco, M., Tarabini, M.,

and Galli, M. (2020). 3D tracking of human motion using visual

skeletonization and stereoscopic vision. Front. Bioeng. Biotechnol. 8:181.

doi: 10.3389/fbioe.2020.00181

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Pinheiro, Jin, Costa and Lames. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Sports and Active Living | www.frontiersin.org 10 March 2022 | Volume 4 | Article 8185567172

https://doi.org/10.3389/fpsyg.2021.661179
https://doi.org/10.3389/fpsyg.2019.02077
https://doi.org/10.1007/978-3-319-10605-2_3
https://doi.org/10.1080/02640414.2014.898852
https://doi.org/10.5672/apunts.2014-0983.es.(2019/3).137.11
https://doi.org/10.1080/02640410500190841
https://doi.org/10.1007/978-94-007-0753-5_3001
https://doi.org/10.1109/CVPR.2016.511
https://doi.org/10.3389/fbioe.2020.00181
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


BRIEF RESEARCH REPORT
published: 16 June 2022

doi: 10.3389/fspor.2022.921418

Frontiers in Sports and Active Living | www.frontiersin.org 1 June 2022 | Volume 4 | Article 921418

Edited by:

Cain Craig Truman Clark,

Coventry University, United Kingdom

Reviewed by:

Marijn M. Speeckaert,

Ghent University Hospital, Belgium

Jakub Chycki,

Jerzy Kukuczka Academy of Physical

Education in Katowice, Poland

*Correspondence:

Brian F. Bender

brian@intake.health

Specialty section:

This article was submitted to

Sports Science, Technology and

Engineering,

a section of the journal

Frontiers in Sports and Active Living

Received: 15 April 2022

Accepted: 24 May 2022

Published: 16 June 2022

Citation:

Bender BF, Johnson NJ, Berry JA,

Frazier KM and Bender MB (2022)

Automated Urinal-Based Specific

Gravity Measurement Device for

Real-Time Hydration Monitoring in

Male Athletes.

Front. Sports Act. Living 4:921418.

doi: 10.3389/fspor.2022.921418

Automated Urinal-Based Specific
Gravity Measurement Device for
Real-Time Hydration Monitoring in
Male Athletes
Brian F. Bender*, Nick J. Johnson, Jasmine A. Berry, Kelvin M. Frazier and

Michael B. Bender

Intake Health, Raleigh, NC, United States

Acute and chronic hydration status is important for athlete safety and performance and

is frequently measured by sports scientists and performance staff in team environments

via urinalysis. However, the time required for urine collection, staff testing, and reporting

often delays immediate reporting and personalized nutrition insight in situations of acute

hydration management before training or competition. Furthermore, the burdensome

urine collection and testing process often renders chronic hydration monitoring sporadic

or non-existent in real-world settings. An automated urinalysis device (InFlow) was

developed to measure specific gravity, an index of hydration status, in real-time during

urination. The device was strongly correlated to optical refractometry with a mean

absolute error of 0.0029 (±0.0021). Our results show this device provides a novel and

useful approach for real-time hydration status via urinalysis for male athletes in team

environments with high testing frequency demands.

Keywords: urinalysis, hydration, sports science, sports technology, wellness, safety, athletic performance

INTRODUCTION

Water is essential for life, playing such vital physiological roles as a cellular and tissue building
material, a solvent and reaction medium, a carrier of nutrients and waste, and a medium for
thermoregulation and shock absorption (Jéquier and Constant, 2010). As dehydration ensues and
leads to a state of hypohydration, negative impacts on blood flow, skeletal muscle metabolism,
cardiovascular strain, and thermoregulation often lead to impaired physiological function and
athletic performance such as a shorter time to exhaustion and lower exercise intensity (Cheuvront
and Kenefick, 2014). This is particularly true for athletes and other highly active individuals, where
sweat output is high and performance optimization is a top priority (Sawka et al., 2007b). It
is well-known that dehydration impairs aerobic performance and is increasingly demonstrating
impairment in areas of strength and power, cognitive function, mood, and sleep (Cheuvront and
Kenefick, 2014; Harris et al., 2019; Deshayes et al., 2020). Maintenance of euhydration has been
stressed for endurance athletes. However, a state of hypohydration has been shown to negatively
affect skill-based performance metrics in sports such as soccer (McGregor et al., 1999; Edwards
et al., 2007) and basketball (Baker et al., 2007a,b).

The extreme importance of euhydration on preserving organ function and health has resulted
in the evolution of sensitive and precise homeostatic mechanisms to maintain fluid and electrolyte
balance and results in physiological changes that have been used as biomarkers of hydration
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status (Jéquier and Constant, 2010). One regulatory mechanism
is related to thirst, generated via a neuroendocrine response to
the osmotically driven shrinking of cells when water deficits
result in intracellular water leaving the cell to dilute an overly
ionic extracellular fluid space (Cheuvront and Kenefick, 2014;
Leib et al., 2016). Another physiological mechanism triggered
during intracellular volume contraction is signaling from the
antidiuretic hormone vasopressin, triggering the kidneys to
produce a smaller volume of more concentrated urine (Popkin
et al., 2010). This unique role of the kidneys to regulate blood
osmolality is what has led to the use of several urine indices as
biomarkers of hydration status, including urine osmolality, urine
specific gravity (USG), 24-h urine volume, urine color, and urine
conductivity (Armstrong et al., 1994).

A more concentrated urine sample, as indicated by a higher
urine osmolality, higher urine specific gravity, lower 24-h
urine volume, darker urine color, or higher urine conductivity,
correlates to other commonly used biomarkers of hypohydration
status such as blood plasma osmolality and body mass decrease.
Urine osmolality is typically measured via freezing point
depression and represents the concentration of all solutes in
solution. Urine specific gravity measures the density of the
urine solution relative to water and thus heavier solutes, such
as glucose and creatinine, can bias the results. Urine color is
often measured via comparison to color charts and can be a
quick and easy method but is subject to user error and some
potential confounding physiological conditions or presence of
supplements. Urine conductivity is a function of conductive
species in solution, largely sodium, and correlates to total solute
concentration. All these techniques trend together. However,
no individual measurement can provide a complete picture of
hydration status, nor can each be reliable in all individuals and
for all use cases. For example, a rugby player with exceptionally
high lean body mass typically excretes higher rates of larger
molecules like creatinine that bias urine specific gravity toward
the higher end of the scale, suggesting a more hypohydrated state
when compared to leaner runners, despite similar blood plasma
osmolality measurements (Hamouti et al., 2010). Furthermore,
low Index of Individuality (II) for several of these biomarkers
(Cheuvront et al., 2010) leaves the need for repeated testing
and individual baselining important for better assessing dynamic
hydration status (Cheuvront et al., 2011).

Measuring athlete hydration status in real-world settings is
often difficult, necessitating a balance between accuracy, cost,
and ease-of-use (Belval et al., 2019). Methods for measuring
hydration have been reviewed elsewhere, including their benefits
and limitations (Barley et al., 2020). For example, body mass
change and bioelectrical impedance analysis (BIA) are non-
invasive and relatively simple (players only need to stand on
the device for a few moments). However, as with all hydration
assessment techniques (Armstrong, 2007), these methods possess
limitations. Confounding activities include recent food ingestion,
fluid ingestion, urination, defecation, and intensive physical
activity (Mialich et al., 2014). In addition, due to both logistical
challenges and reliability, USG is generally recommended over
BIA in athletic settings for serial hydration assessment (Barley
et al., 2020). The current processes most often used for

urine-testing are manual, requiring players to urinate into cups
which are later collected by staff that perform dipstick or optical
refractometer testing. This is both labor and time-intensive and
results in infrequent testing and/or delayed reporting. Optimal
solutions are often dubbed “invisible monitoring,” which require
no athlete burden and facilitate buy-in (Windt et al., 2020). In
addition, some of the best results for player optimization of
health and safety comes from player empowerment that drives
self-regulation (Kim and Cruz, 2021). An automated, accurate
USG measurement device that allows players to self-monitor
hydration status could provide high-compliance testing and
improved hydration awareness.

MATERIALS AND METHODS

Study Design
The study was carried out in February 2022 at three public
U.S. University athletic training facilities. All measurements were
performed using surplus human urine samples to requirement
(≥50mL) from routine testing. Anonymized samples were used
for all experiments. Samples were stored at room temperature,
did not undergo any processing or centrifugation, and were
analyzed within 2 h of sample collection.

The use of patient samples complied with all relevant
national regulations and institutional policies. The study does not
conform to NIH definition of a Clinical Trail per NOT-OD-15-
015. In addition, the study does not conform to the definition of
human subjects research per 45 CFR 46, as only unidentifiable
surplus samples from routine testing were used in the study.

FIGURE 1 | The InFlow Urinalysis System. (A) Fully assembled system

installed in a urinal using rear suction cups capable of catching a stream of

urine in real-time. Urine fills the cup at a rate faster than it can drain through a

hole in the bottom. (B) The front, fully assembled InFlow system magnified.

LED lights under the top of the insert housing flash red, yellow, or green to

categorize results for the user as dehydrated, mildly dehydrated, and

hydrated, respectively. (C) Rear view of the full assembly showing suction

cups for installation. (D) Rear view of the removed insert sub-assembly

showing the sensors that interface with the urine sample during use. As urine

fills the cup, fluid engulfs the insert from the bottom. The metal electrodes

register the presence of fluid by shorting the pin voltage and initiate testing via

the LED and photodiodes residing behind a glass window.
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TABLE 1 | Imprecision of InFlow system measured in USG units using artificial urine control.

Material Mean USG Total imprecision (SD) Total imprecision (%CV) Within unit (SD) Between unit (SD)

Artificial urine control 1.0325 0.0009 0.09% 0.0001 0.0009

Participants included 151 NCAA male football athletes from
three collegiate institutions. Urine samples were collected into
plastic cups by each player and brought to performance staff
and dietitians during the normal course of their activities
for USG testing using manual (Teckoplus) and digital optical
refractometers (MISCO Palm Abbe and Atago 3741 PEN) and
dipsticks (Diagnox Urinox-10) for a subset of the tests. After
normal testing, the surplus urine samples were poured through
the InFlow system.

InFlow System
The InFlow system is designed to capture urine in real-
time during a urination event from a urinal (Figure 1A).
The system has a cup to easily catch and fill with urine
(Figure 1B). The system is installed by pressing the unit against
the wall of a urinal using the suction cups on the back
of the device (Figure 1C). During urination, urine quickly
fills the cup volume faster than it can drain through a
small hole in the bottom of the cup. A removable insert
housed within the cup (Figure 1D) holds the electronics,
sensors, and power. As the cup fills, the fluid covers the
testing chamber, turning on the system and performing a test
in <2 s.

Analytical Imprecision and Bias
For analytical testing and quantitative analysis of the InFlow
system, the mean (µ) and standard deviation (SD) were
calculated. Method comparison results for the InFlow
system were assessed using Bland-Altman difference plots
and regression analysis (including Pearson’s r correlation
coefficients) for quantitative parameters (USG). Confidence
intervals and prediction intervals at 95% were calculated for
InFlow performance against the manual optical refractometer.

Analytical system performance was assessed using artificial
urine control (Aldon Life Sciences, IS5070). The SD and
coefficient of variation (CV%) (SD/µ × 100) of total imprecision
were calculated by testing artificial urine control across 10
units in triplicate. The within-unit SD was calculated as the
average SD across triplicate back-to-back runs from the same
unit across 10 units. The between-unit SD was calculated
using artificial urine control across 10 units. For each pool,
the “observed” reference USG value was established for each
specimen using a manual optical refractometer and taking the
mean USG. The InFlow system mean and SD are derived
from measurements through the urinalysis device. Data was
analyzed using the Westgard model, using Total Error (TE)
and TE (%) defined by Equations (1) and (2), respectively.
The threshold used for acceptable percent Total Allowable
Error (TAE%) for USG was ±0.6% (Ricós et al., 1999). Results

provided from analytical sensitivity experiments were rounded
to 4 decimal places, except TE (%) which was rounded to 2
decimal places.

Total Error (TE) = |Bias| + 2SD (1)

TE (%) =
(

TE÷ reference mean
)

× 100 (2)

Diagnostic Performance
Assessment of classification of dehydration was performed
at a criterion value (USG ≥ 1.020) designated by the
American College of Sports Medicine (ACSM) and the National
Athletic Training Association (NATA) (Casa et al., 2000;
Sawka et al., 2007a). A positive result was assigned to a
dehydrated sample and a negative result was assigned to
a euhydrated sample. True Positives (TP) were assigned to
samples the InFlow system classified as a positive result
when the manual optical refractometer reported a positive
result, and True Negatives (TN) were assigned to samples the
InFlow system classified as a negative result when the manual
optical refractometer reported a negative result. In contrast,
False Positives (FP) were assigned to samples the InFlow
system classified as a positive result when the manual optical
refractometer reported a negative result, and False Negatives
(FN) were assigned to samples the InFlow system classified
as a negative result when the manual optical refractometer
reported a positive result. Diagnostic accuracy, sensitivity,
specificity, and precision were calculated (Zweig and Campbell,
1993).

Receiver operator characteristic (ROC) analysis was
performed to assess diagnostic accuracy represented by the area
under the ROC curve (AUC) (Zweig and Campbell, 1993). There
is no established analytical goal for dehydration; a recommended
minimum of 80% for sensitivity and specificity was used (Zweig
and Campbell, 1993; Cheuvront et al., 2010), which would
represent odds of 4 to 1 in favor of a correct classification.

RESULTS

The distribution of USG values among the sample population
ranged from 1.003 to 1.036 (Supplementary Figure 1). The
mean USG was 1.018 (±0.009) and approximately 45%
of samples tested were hypohydrated (USG ≥1.020). This
distribution USG mean is similar to population USG means
of other athletes (1.018 ± 0.009) prior to exercise (Stover
et al., 2006). The percentage of hypohydrated samples is less
but similar to (66%) other NCAA athlete samples (Volpe
et al., 2009) and the range and distribution (SD) provide an
adequate and representative array of urine samples for system
performance evaluation.
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The InFlow system’s design was chosen to minimize testing
burden on the user while maintaining adequate accuracy for
hydration reporting consistent with existing protocols and
testing equipment. Results from precision studies are shown
in Table 1. Very low total imprecision was demonstrated using
artificial urine control material. Imprecision estimates (within
unit, between unit) were estimated in USG “units.” The within-
unit imprecision of 0.0001 is comparable to digital optical
refractometer resolution (0.0001) (Atago, 2022; MISCO, 2022).

Analytical performance studies (Figure 2A) demonstrated
strong correlation to manual optical refractometry (r = 0.90; n=
247 specimens, USG range 1.003–1.036). The mean population
error (Figure 2B) was not significantly different than zero at
any USG range with root mean squared error (RMSE) of
0.0036. The mean absolute error (±SD) as a function of USG
(0.0029 ± 0.0022) tended to trend in a positive direction
but this trend was not significant (Supplementary Figure 2).
The error between the InFlow system and a manual optical
refractometer was compared against the error between digital
optical refractometers and the manual optical refractometer
via Bland-Altman plot of agreement (Figure 2C). All points
representing error between InFlow results and themanual optical
refractometer fell between the limits of agreement established
by clinically relevant USG thresholds based on inter- and
intraindividual variability for hydration assessment (Cheuvront
et al., 2010, 2011).

Analytical imprecision and bias testing demonstrated
acceptable TE (%) [defined as <0.6% TAE(%)] at all USG levels
tested (Table 2). The analytical imprecision, CVA, of 0.09% was
below half the intraindividual variation, CVI , for USG (0.4%),
as recommended in clinical chemistry best practices (Fraser and
Harris, 1989; White et al., 2004; Cheuvront et al., 2010).

Diagnostic performance evaluation yielded an accuracy of
87%, a sensitivity of 87%, a specificity of 88%, and a precision of
85% (TP= 96; TN= 120; FP= 17; FN= 14). These values exceed
cutoff values for sensitivity and sensitivity of 70% used elsewhere
for urine-based hydration classification at 1.020 (Hooper et al.,
2016) and our own analytical goal of 80% (Cheuvront et al.,
2010). These assessments demonstrate the InFlow system
performs adequately for USG testing for hydration assessment
given USG’s inter- and intraindividual variability. ROC analysis
produced an AUC of 0.94, providing evidence of generally
acceptable diagnostic accuracy (Supplementary Figure 3).

DISCUSSION

Experiments demonstrated acceptable analytical and diagnostic
performance of the automated InFlow system for USG, including
imprecision and accuracy. The instrument worked reliably with
sample flowing through the system, which is analogous to
real-world use in a urinal. We did not encounter ambient
lighting-related difficulties (which others have reported with
digital optical refractometers) (Minton et al., 2015), because the
InFlow system measurement chamber is internally housed and
shielded from external lighting conditions. No staining of the
glass window occurred during the study or during prolonged

FIGURE 2 | Device accuracy. (A) Comparison of manual optical refractometer

(x-axis) versus InFlow system (y-axis) results. Dotted line (...) is linear regression

(r = 0.90). Dot-dash line (- . -) represents 95% confidence interval. Dashed line

(- -) represents 95% prediction interval. (B) Bias (in USG “units”) of InFlow

system vs. manual optical refractometry. Large dots represent averages at

each USG range (<1.015, 1.015−1.025, >1.025). Error bars represent SD.

Small dots represent individual test results. (C) Bland-Altman plots of

agreement between the manual optical refractometer with the InFlow system

( ), the MISCO digital optical refractometer ( ), and the Atago digital optical

refractometer ( ). All systems fall with the agreement limits set at the reference

change value (0.010) for USG established via CVI and CVG (Cheuvront et al.,

2010, 2011). Error bars represent the SD of the agreement limits.

benchtop testing of over 45 days of testing. Power analyses
demonstrated a low sleep current while not in use of around
10 µA and a test current output of approximately 0.41 mAh
(Supplementary Figure 4). The InFlow system performed over
5,000 tests per charge, similar to the digital optical refractometers
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TABLE 2 | Analytical sensitivity of Inflow system by USG range as measured against manual optical refractometry.

USG range Number of samples in set Observed mean of sample set InFlow mean of samples InFlow SD Bias TE (%)

<1.015 96 1.0088 1.0095 0.0023 0.0007 0.53

1.015–1.025 85 1.0196 1.0209 0.0023 0.0013 0.59

>1.025 66 1.0286 1.0276 0.0025 −0.0010 0.59

tests. The InFlow system includes a wireless Qi charging system
for simple battery recharging.

The InFlow system was compared to manual optical
refractometry for error analysis. The mean absolute error
(±SD) between manual optical refractometry and the InFlow
system was 0.0029 (±0.0021). To compare these results
to other available tools for measuring USG, two digital
optical refractometers were compared to manual optical
refractometry (Supplementary Figure 5). The mean absolute
error of the MISCO digital optical refractometer (0.0038 ±

0.0047) was higher than the InFlow system, but the mean
absolute error of the Atago digital optical refractometer
(0.0016 ± 0.0011) was lower than the InFlow system. All
three systems were deemed interchangeable for use in
hydration assessment via USG in a sports environment
based on Bland-Altman analysis (Figure 2C). Based on
recommendations for setting Bland-Altman agreement limits
on biologically and analytically relevant criteria (Giavarina,
2015), limits of ±0.010 were used as defined by the reference
change value for USG-based hydration assessment given its
intraindividual (CVI = 0.4) and interindividual (CVG = 1.0)
variability (Cheuvront et al., 2010, 2011). These results
generally point to interchangeability between the digital
optical refractometers and the InFlow system for use in USG
reporting (Giavarina, 2015). All datapoints fell within the limits
with the exception of 4% (n = 5) of MISCO digital optical
refractometer readings.

Urine dipstick testing has known error associated
with manual color comparison, lighting variation,
sample size variation, timing variation, and the inherent
variability associated with USG binning by 0.005 USG
unit increments (de Buys Roessingh et al., 2001; Smith
et al., 2017). A subset of urine samples (n = 119)
was randomly selected for urine dipstick analysis. USG
error (±SD) for dipstick testing compared against
manual optical refractometry was 0.0051 (±0.0047)
with r = 0.76 (Supplementary Figure 6). This error
was significantly higher than the InFlow system
(p < 0.001; α = 0.05).

Although there are a number of commercially available
handheld digital optical refractometers including Palm Abbe
(MISCO); PEN, UG-α, PAL-10S (Atago); Clinic-Chek, USG-
Check, and TS METER D (Reichert; Depew, NY), this system
represents the first automated device designed to measure USG
from a urinal in real-time as the individual urinates into the
system. This represents a significant improvement to USG testing
in high frequency testing environments such as those found

within collegiate and professional athletic programs. Testing
time is a significant hurdle to large-scale, frequent hydration
testing in team settings. This leads to delayed action. It is not
uncommon for players to already leave the locker room and
begin training or competition before hydration results have been
measured, assessed, and reported. Similarly, the high burden on
performance staff, necessitating tracking down players, handling
urine cups, labeling, testing, and reporting, leads to a sporadic
testing schedule. The InFlow system significantly reduces, and
at times eliminates, the testing and reporting time by analyzing
results in real-time during the act of urination and reporting
those results directly to the player instantaneously.

The InFlow system provides significant improvement over
manual quality control (QC) errors common to clinical testing
procedures. Pre-analytical errors typically account for most QC
errors and include mislabeling of sample containers and sorting
errors (Delanghe and Speeckaert, 2014). Similarly, post-analytical
errors such as mistakes in data transcription are common
(Hammerling, 2012). InFlow’s automated testing framework
eliminates the need for sample collection, labeling, and data
transcription and thus reduces, or eliminates, these common
QC errors.

Future areas of research may include assessment of varying
physiological and environmental conditions that present in
altered urine color, such as conditions like rhabdomyolysis or
medication/supplement use. Future research will also compare
the InFlow system to other markers of hydration, such as blood
and urine osmolality, alongside mechanistic studies in urine
composition to improve accuracy and error reporting such as
albumin (known to present during intense physical exercise)
and creatinine (known to exist in higher concentrations in
individuals with high lean muscle mass). In addition, broadening
and diversifying the sample of users may improve the test
statistics. Similarly, this system may be assessed for useability
and accuracy in other environments that may provide benefit
such as within industrial settings, military settings, and general
consumer-facing health and wellness settings. Finally, altered
designs for use among female athletes is another area of
ongoing research.

In conclusion, the automated InFlow system was
demonstrated to be a fast, simple, and accurate way to measure
USG. The InFlow system met accuracy requirements for reliably
monitoring USG for hydration assessment given its biological
variation within an automated testing platform for male users
from a urinal measured during the act of urination. The results
from this report may prove valuable for those interested in
evaluating use of the InFlow system in a variety of settings and
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applications in long-term, longitudinal hydration monitoring
and behavior change studies.
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Introduction: Arrhythmias also occur among elite endurance athletes.

Conventional diagnostic tools for assessment of arrhythmias su�er from

limited availability and usability challenges, particularly under the demanding

training conditions of an elite athlete. Among endurance athletes, there is

a need for out-of-hospital monitoring to enhance detection of arrhythmias

under conditions that are relevant and potentially provocative of underlying

pathology. The Norwegian patch ECG247 Smart Heart Sensor has been

developed to simplify the assessment of heart rhythm disorders. The current

study aimed to evaluate the ECG247 Smart Heart Sensor function and usability

in an elite athlete environment.

Methods: A total of 13 professional cyclists from the UNO-X Pro Cycling

Team were examined with the ECG247 Smart Heart Sensor during training

camp in Spain, December 2021. All ECG data were analyzed by cardiologists

at Sorlandet Hospital Arendal, Norway. The athletes also completed a brief

questionnaire registering their training (from on-bike monitoring units) and

provided self-assessment of usability parameters after the test.

Results: In 8 of 13 athletes (69% male, age 23 ± 4 years), two test periods

were performed with di�erent ECG patches, resulting in a total of 21 tests

with continuous ECG monitoring. Average total ECG test duration per athlete

was 144 ± 47h (89 ± 24 h/patch). Athletes performed an average of 15 ±

5 training h during each test. The ECG quality from all tests was considered

satisfactory for rhythm analysis—also during exercise. The reported usability of

the ECG247 Smart Heart Sensor was high, and no athletes reported trouble

sleeping or training with the sensor. The automatic arrhythmia algorithm

reported episodes of possible arrhythmias in 5 (24%) tests; 2 atrial flutter, 2

supraventricular tachycardia and 1 bradycardia (heart rate < 30/min). Manual

assessment by physicians verified the episode of bradycardia but revealed

normal sinus rhythm in all other tests. No false negative events were identified

in over 1,800h of ECG collection.

Conclusion: The ECG247 Smart Heart Sensor allowed for high quality ECG

monitoring with high usability during intensive exercise in athletes.

KEYWORDS

atrial fibrillation, endurance athletes, elite athletes, cardiac screening, cardiac

arrhythmia
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Introduction

The importance of large volumes of training to perform at

a high level in endurance sports is well documented among

elite athletes (Seiler, 2010; Tønnessen et al., 2014; Stöggl and

Sperlich, 2015). Elite endurance athletes’ annual training volume

typically ranges from 500 to well above 1,000 h (Billat et al., 2001;

Tønnessen et al., 2014; Metcalfe et al., 2017). Endurance exercise

is also established as an efficacious method of reducing the risk

of developing cardiovascular diseases (CVD). However, there

are multiple studies suggesting that “excessive” long-lasting and

high-volume endurance training may paradoxically increase the

risk of developing certain types of heart disease, particularly

arrhythmias (Madias, 2008; Goodman et al., 2015). Atrial

Fibrillation (AF) is one of themost common cardiac arrhythmias

reported among endurance athletes and AF incidence in athletes

has been a theme of considerable research interest (Grimsmo

et al., 2011; Andersen et al., 2013; Sanchis-Gomar et al., 2016;

Lippi et al., 2021; Newman et al., 2021).

Today’s gold-standard for diagnosing cardiac arrhythmias is

a 12-lead electrocardiogram (ECG). An ECG test is performed

by healthcare personnel in a clinical setting and provides a time-

limited snapshot of the heart’s electrical function (Quer et al.,

2020). Some specific cardiac arrhythmias may be transient, such

as AF, and a 12-lead ECG recording period lasting only a few

minutes may fail to detect intermittent cardiac arrhythmias.

Continuous ECG-recordings are needed to detect and diagnose

specific cardiac arrhythmias and the equipment used for long-

term ECG recordings is often referred to as “Holter monitoring”

(Kułach et al., 2020). A Holter monitor system typically requires

a recording device worn on the hip and coupled to at least

three cables attached to electrodes on the chest. The system is

applied to the patient by specialized healthcare professionals,

and is usually worn for ∼24–72 h (Lutfullin et al., 2013). Most

Holter systems are not water repellent. Consequently, the Holter

monitor system may limit movements and can loosen or detach

with physical activity and hard exercise.

For an elite athlete training daily, a Holter monitor

prescription will prevent the athlete from training normally,

thereby decreasing the validity of the ECG monitoring process.

Arrhythmias among elite athletes often occur during exercise

(Madias, 2008). A Holter monitor may limit the intensity

or continuity of the exercise (Lutfullin et al., 2013). 12-lead

ECG and Holter monitoring are dependent on assistance from

healthcare personnel, and therefore are subject to limited

availability, limited test duration time, and usability challenges.

In the context of a high-performance endurance sport team,

cardiac screening with today’s clinical tools becomes so time

consuming that it may be avoided by athletes and coaches

despite the appearance of symptoms of concern.

Several new systems purporting to provide long-term

ECG monitoring are available. “Smart” watches and training

accessories can provide identification of arterial pressure waves.

However, international guidelines require ECG documentation

for the diagnosis of arrhythmias. Self-applied, single lead ECG

patches are currently available on the market for home-based

use. However, there is a lack of research evidence regarding their

validity and utility in a high-performance endurance athlete

population. TheECG247TM Smart Heart Sensor is a new, mobile,

long-term patch ECG monitoring device that has undergone

extensive testing in a home health care setting (Sandberg

et al., 2021; Jortveit and Fensli, 2022; Jortveit et al., 2022)

and is approved by European directives for medical devices

(93/42/EEC). It provides continuous monitoring of the heart

rhythm for up to 7 days and can be used during exercise. The

device is small, wireless, and easy to apply and use without

any clinical expertise or assistance (Appsens, 2021). All the data

acquired by the sensor is uploaded to cloud storage through a

smartphone application and can be easily accessed by health care

professionals. The user also has access to real-time ECG feedback

during testing. The ECG sensor patch is applied over the

sternum and remains attached through the whole monitoring

period. Monitoring duration is limited by the integrity of the

fixation of the sensor patch to the skin over time (up to 7

days). ECG247 has not been systematically tested on athletes. If

this ECG patch technology withstands the use characteristics of

elite athletes (vigorous movement, sweat, showers, etc.), it can

potentially become a viable alternative for screening and cardiac

rhythm monitoring in athletes.

The aims of this study were: (1) to evaluate how the

ECG247 Smart Heart Sensor technical solution performs in

a setting representative of the demands of high-performance

endurance athletes during daily training, (2) to investigate

the perception of comfort and usability among elite athletes

training in demanding field conditions, and (3) to evaluate the

ECG quality and automatic arrhythmia detection during high

endurance training.

Materials and methods

Study design

This study was designed as a descriptive field test of the

ECG247 Smart Heart Sensor (Appsens AS, Lillesand, Norway)

on elite endurance athletes from the Uno-X Pro Cycling Team

while performing a high volume of endurance training. Methods

were designed to accommodate the practical demands of the

athletes while assessing both technical and practical aspects of

using the ECG device in a sports medicine context. All data

collection and testing were performed in December 2021.

Study subjects and procedure

The field test was completed during a 14-day training

camp for the Uno-X Pro Cycling Team in Spain, December

2021, and a total of 13 athletes (9 male) were monitored
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with the ECG247 sensor. These athletes were selected from

the entire team (∼50 athletes) by the Uno-X team leadership.

They participated in an information meeting and provided

signed informed consent prior to the start of ECG data

collection. The athletes agreed to wear the sensor for 3–6 days

(depending on quality of the ECG recording). The research

project leader was present at the training camp during the

test period and answered questions from athletes. During the

training camp, collected ECG recordings were simultaneously

reviewed by physicians at Sorlandet Hospital Arendal in

Norway. Cardiological support was provided during the field-

testing period to ensure rapid communication with athletes in

the event of detected arrhythmias or if false positive events

arose. After completion of the field-testing period, the physicians

performed a manual review of the complete ECG recordings

from every athlete and provided a detailed report for each

athlete. Acceptable ECG quality was defined as the ability to

determine rhythm (sinus rhythm or specific arrhythmia) based

on the physician’s assessment. In case of doubt, additional

physicians (cardiologists) were consulted.

ECG247 smart heart sensor

The ECG247 is a single-lead patch ECG-monitoring device.

The monitoring system consists of a one-time “multi-day

use” electrode patch that is attached over the sternum, a

re-usable ECG sensor, a smartphone application, a back-end

cloud service, and a web portal (Figure 1). The ECG247 sensor

continuously monitors the hearth rhythm and automatically

detects and categorizes arrhythmias in real-time by using

algorithms based on artificial intelligence in the sensor and

at the back-end service. The ECG247 Smart Heart Sensor

system and the arrhythmia detection algorithms are described

previously (Sandberg et al., 2021; Jortveit and Fensli, 2022).

The ECG-recordings are transferred via Bluetooth to the

ECG247 application on the smartphone, and simultaneously

uploaded to the back-end cloud service (Figure 2). In cases

when the Bluetooth communication between the sensor and

the smartphone is interrupted, the ECG247 application will

send a notice, with reestablishment of the connection made

automatically. In addition, the sensor has an internal memory

for ECG storage in case communication error with the phone.

The user has ownership and access to the results in the

web portal and can provide permissions for sharing of ECG

data with their physician or other healthcare professionals.

User authentication is provided using the Firebase Service

(Google, Mountain View, CA, USA), which generates a two-

factor authentication required for access to sensitive health

information. All information stored in the web portal is coded

as Fast Health Interoperability Resources (FHIR).

All detected arrhythmias are uploaded and saved in the

back-end cloud service and sorted by severity in the web

portal. The user can also manually highlight up to 1min

of ECG recording by activating this function on the sensor.

This allows the user to “tag” ECG measurements when they

subjectively experience what they perceive to be a disturbance in

heart rhythm.

Laboratory ECG smart heart sensor pilot
test

Prior to the field testing of ECG247, preliminary pilot

testing in the laboratory was conducted on 6 (4 male, 2

female) physically active sport science students. The primary

purpose of the pilot test was to investigate how different

movements (cycling, double-poling, running) affected the ECG

recordings, as well as evaluate the tolerance of the single-

use electrode for repeated bouts of exercise and showering.

The positive results of this preliminary test were also deemed

a necessary pre-condition for further testing with UNO-

X Pro Cycling Team. The test protocol in the laboratory

consisted of 15min efforts on each exercise modality. These

efforts were divided into 5min segments with small successive

increases in work intensity. A 5min rest period was provided

between each 15min exercise bout (Figure 3). Double-poling

(Figure 4A) was performed on a Concept2 Skierg (Concept2,

Morrisville, VT, USA), cycling (Figure 4B) on aWattbike AtomX

(Wattbike, Nottingham, England), and running (Figure 4C)

on a motorized treadmill (Lode Katana Sport, Lode B. V.,

Groningen, Netherlands).

Ethical considerations

The study was carried out according to the Declaration of

Helsinki and data collectionmethods were approved from a data

security perspective by the Norwegian Center for Research Data

and was approved by the Ethics Committee of the Faculty for

Health and Sport Science, University of Agder.

Athlete participants were not randomly selected by

Uno-X team leadership. Athletes with history of reporting

possible arrhythmic symptoms were selected to be among

the test participants to participate in the test. Consequently,

a cardiologist was brought in early to provide additional

information to the athletes. In this process, the cardiologist

informed the participants that the current algorithms of the

ECG247 were not specifically designed for athletes exercising at

high heart rates. This increased the likelihood of false positive

detection of supraventricular tachycardia (SVT) and Atrial

Flutter (AFLU) when heart rate (HR) was normally elevated

during training sessions. Therefore, false positive events related

to these tachycardias were anticipated and discussed with

the athletes.
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FIGURE 1

The ECG Smart Heart Sensor system: sensor with real-time arrhythmia detection, smartphone application, back-end cloud service with
post-processing arrhythmia analyzer, and web portal.

Results

Laboratory ECG247 smart heart sensor
pilot test

A total of 6 (4 male) subjects completed the preliminary

pilot testing in the laboratory. Figure 5 demonstrates the

ECG recordings of the different modalities of one of the

subjects. Running (Figure 5A) showed more disturbance in the

ECG recordings among all subjects compared with cycling

(Figure 5B) and XC-ski double-poling (Figure 5C). All ECG

recordings were evaluated by a cooperating physician within

48 h of the test period and considered satisfactory for rhythm

analysis in all the tests.
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FIGURE 2

(A) The ECG247 sensor placed over the sternum, screenshots from (B,C) the ECG247 mobile application and (D) the web portal.

Field test of the ECG247 smart heart
sensor

Continuous ECG monitoring was successfully performed

on a total of 13 athletes. The average age of the participants

was 23 ± 4 years (69% males). In 8 of 13 athletes, 2 test

periods were performed, resulting in 21 continuous ECG

monitoring periods of at least 43 h. New tests, with new single

use electrode patches were started due to partial detachment of

the electrode from the skin (n = 1), ECG signal degradation

was identified remotely by the physician (n = 4), and by

request from athletes (n = 3). The mean athlete test duration

time was 144 ± 47 h, with an average functional duration of

89 ± 24 h for each ECG patch/test period. During the test
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FIGURE 3

Test protocol for the pilot test of the ECG247. Started with applying the sensor and connect to the participants phones. Recovery consisted of
walking and sitting. The intensity increased slightly every 5min during the e�orts.

FIGURE 4

Laboratory exercise modalities evaluated during preliminary testing of ECG24 sensor: (A) Ski double-poling, (B) Cycling, (C) Running.

period, an average of 24 ± 6 h of training was performed by

each athlete, with an averaging 15 ± 5 training h for each

electrode patch.

Self-reported usability of ECG247 smart
heart sensor

Four participants reported some discomfort (itching)

underneath the sensor patch on the chest. Three of these four

athletes reported that the itching stopped after the first 24 h

of the test. Nine athletes reported forgetting that they were

wearing the sensor from time to time. No athletes reported

trouble sleeping or training with the ECG247 sensor. None of

the 13 tested athletes reported problems with the connection

or Smart phone application. However, 7 athletes reported

concerns and questions around results during the test period

(Table 1).

ECG quality and automatic arrhythmia
detection

The ECG quality from all tests was considered satisfactory

by the physicians for rhythm analysis—also during exercise. One

short nocturnal episode of bradycardia (heart rate<30/min) was

detected by the ECG247 automatic algorithms and verified by

the physician. Two short episodes of SVT and 2 short episodes

of AFLU in four different athletes were marked by the ECG247

system, but all of these were refuted by the manual assessment

of the physicians. User-initiated recordings were performed five

times without any pathological ECG findings (Table 2).
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FIGURE 5

Laboratory exercise modalities evaluated during preliminary
testing of ECG247 sensor: (A) Running, (B) Cycling, (C) Double
poling XC.

Discussion

This study of the ECG247 Smart Heart Sensor technical

performance in 13 endurance athletes from the Uno-X Pro

Cycling Team during extensive training verified technical

quality, usability, and ECG quality satisfactory for heart rhythm

assessment, also during exercise.

The findings of the present study suggest that the ECG247

Smart Heart Sensor provides an easy and technical acceptable

method of monitoring cardiac health in athletes with minor

negative side effects or annoyances. The system overcomes the

limitations of conventional diagnostic tools for assessment of

rhythm disorders like limited availability, limited test duration

time, and usability challenges, particularly under the demanding

training conditions of an elite athlete.

The reported usability of the ECG247 Smart Heart Sensor

was high, and no athletes reported trouble sleeping or training

while wearing the sensor. The project leader present at the

training camp during the field testing received athlete concerns

during the test period. These concerns arosemainly from reports

from the application saying that there was a possible arrhythmia.

Most of these events were determined to be false positive. The

patch sensor showed promising usability also in a team training

camp context. The sensor enables transition of the assessment

of arrhythmias from the hospitals to the athlete’s training and

competition environment. Professional sports teams are often

composed of multinational athletes, with different healthcare

service providers. An out-of-hospital, reusable cardiac rhythm

TABLE 1 Usability of ECG247 smart heart sensor.

All (n= 13)

Itching 4

No reported discomforts 9

Disturbed sleep 0

Disturbed training 0

Disturbed phone connection 0

Concerns during the test 7

Values are presented as prevalence.

n, number of participants.

TABLE 2 Characteristics and diagnostic evaluation for the field tests.

Athletes

(n= 13)

Tests

(n= 21)

Age (y) 23± 4

Test duration (hours) 144± 47 89± 24

Training volume (hours) 24± 6 15± 5

Showers (times) 6± 1 4± 1

Recording periods < 72 h 3 3

ECG247 algorithm detection

AF and severe arrhythmia 0 0

Bradycardia 1 1

False positive SVT 2 2

False positive AF 2 2

False negative 0 0

Patient-initiated recordings

Recordings 3 5

Physician review detection of arrythmia 1 1

Values are presented as mean± standard deviation and prevalence.

SVT, supraventricular tachycardia; AFlu, atrial flutter; n, number of participants.

device could make assessment of heart rhythm disorders and

heart symptoms cheaper and less time-consuming compared

with conventional hospital methods. In addition, ECG247 Smart

Heart Sensor did not limit exercise in any way, which is a crucial

detail when monitoring elite athletes.

A purpose of the pilot test was to investigate how different

movements (cycling, double-poling, running) affected the ECG

recordings, as well as initially evaluate the tolerance of the single-

use electrode for repeated bouts of exercise and showering.

The pilot testing completed as a prelude to the present study

illustrates that there are some differences in ECG quality

across exercise modalities. There was one incident of a false

positive test (AFLU) during preliminary lab testing, which

provided perspectives about the need to ensure the safety and

psychological wellbeing of the athletes during the field trial. A

cardiologist was brought in to analyze potential arrhythmias

simultaneously during the test period. The quality of the
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ECG recordings was considered satisfactory for hearth rhythm

assessment in the pilot test. However, more work is needed on

the different exercise modalities and their potential influence on

the quality of the ECG recordings.

The findings from the present field testing will inform

algorithm adaptation for sport medicine applications. This

athlete population represented a severe test of the technical

solution given the high training volumes performed. The

capacity of the solution to deliver continuous, interpretable ECG

recordings for at least 48 h was deemed as a cutoff for minimum

viability in a sports medicine context. The arrythmia detection

algorithms employed were originally based on a sedentary,

primarily elderly population. SVTs and AFLU may be near

identically to the ECG of an athlete exercising with abrupt

changes in HR.

Therefore, the physician on the research team anticipated

a risk of false positive findings associated with the high heart

rates achieved during normal training in this elite athlete group.

Prior to the field test, athlete volunteers were informed that

the integrated arrhythmia analyzing algorithm was sensitive to

abrupt HR elevation and might falsely detect events of AFLU

and SVTs However, the proportion of false positive arrhythmia

events detected by the automatic algorithm was relatively low

(19%). Importantly, no actual ECG arrythmias went undetected

(false negative) by the algorithmic solution in over 1,800 h of

ECG monitoring.

Strength and limitations

The main strengths of the present study were: (a)

cooperation with a professional cycling team, which provided

an excellent field-testing environment, and (b) extensive

preliminary pilot testing. A training camp, with a professional

cycling team was an appropriate environment for testing

whether ECG247 Smart Heart Sensor withstands the typical

patterns of athlete training several hours daily, showering, etc.

In addition, testing the sensor during a training camp was

a good simulation for investigating how it works in a team

context. On-time access to a cardiologist was crucial for this

initial study because it provided both reassurance for the athletes

and ensured an optimal analysis process. However, this was

not an interventional study, and there was no comparison with

today’s best practice (Holter monitoring). Cycling is also one

of the endurance sports with the least amount of movement in

the upper body. Therefore, the present findings should not be

generalized to all sports movements.

A single-lead ECG may be more difficult to interpret

by a physician compared to a 3-lead ECG from a Holter

system. However, the number of leads is less important for

the interpretation of narrow QRS complex arrhythmias like

AF and SVT. The position of the single-lead ECG patch is

essential for high signal quality on the ECG recordings during

physical exercise. The ECG247 Smart Heart Sensor is placed

directly over the sternum. This is an anatomical placement with

little multi-directional skin stretch and muscular movement

under the electrode and therefore presumably less electrical

signal disturbance compared with placing the sensor left on

the chest, over skin and muscle that introduces significant

resonant movement artifact during exercise. For sport-use,

sternal ECG electrode placement of single-lead patch electrodes

may be optimal.

Practical applications

The importance of large volumes of training to perform at

a high level in endurance sports is well documented among

elite athletes (Seiler, 2010; Tønnessen et al., 2014; Stöggl and

Sperlich, 2015). These findings highlight the need for cardiac

screening methods which are easily accessible and do not

interfere with the everyday training of an elite athlete. The field

test of ECG247 Smart Heart Sensor illustrates how assessment

of possible heart rhythm disorders can be performed in an elite

team environment, without any interference of training and

sleeping rhythms.

As mentioned, cycling is one of the endurance sports with

the least amount of movement in the upper body. Therefore,

additional field testing of this device in other athlete groups, such

as runners, is warranted.

Conclusion

The study demonstrates that the ECG247 Smart Heart

Sensor allowed high quality ECGmonitoring with high usability

during intensive exercise in athletes.
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Accuracy of a markerless motion
capture system in estimating
upper extremity kinematics
during boxing
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Kinematic analysis of the upper extremity can be useful to assess the

performance and skill levels of athletes during combat sports such as boxing.

Although marker-based approach is widely used to obtain kinematic data, it

is not suitable for “in the field” activities, i.e., when performed outside the

laboratory environment. Markerless video-based systems along with deep

learning-based pose estimation algorithms show great potential for estimating

skeletal kinematics. However, applicability of these systems in assessing

upper-limb kinematics remains unexplored in highly dynamic activities. This

study aimed to assess kinematics of the upper limb estimatedwith amarkerless

motion capture system (2D video cameras along with commercially available

pose estimation software Theia3D) compared to thosemeasured with marker-

based system during “in the field” boxing. A total of three elite boxers equipped

with retroreflective markers were instructed to perform specific sequences

of shadow boxing trials. Their movements were simultaneously recorded

with 12 optoelectronic and 10 video cameras, providing synchronized data

to be processed further for comparison. Comparative assessment showed

higher di�erences in 3D joint center positions at the elbow (more than

3 cm) compared to the shoulder and wrist (<2.5 cm). In the case of joint

angles, relatively weaker agreement was observed along internal/external

rotation. The shoulder joint revealed better performance across all the joints.

Segment velocities displayed good-to-excellent agreement across all the

segments. Overall, segment velocities exhibited better performance compared

to joint angles. The findings indicate that, given the practicality of markerless

motion capture system, it can be a promising alternative to analyze sports-

performance.

KEYWORDS

markerless vs. marker-based, kinematic analysis, evaluation, elite sport, upper-limb,

sports-performance
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Introduction

Boxing is an intensive combat sport, involving highly

dynamic and non-symmetrical movements of the front and

rear arms with the role of attack or defense as situation

demands. In such sports, high-performance athletes are often

characterized by their agility, i.e., the ability to punch or

evade swiftly by maintaining fluidity of motion. To achieve a

powerful punch during offensive action and quick retraction

during defense, coordination of the body segments plays

a vital role (Dinu and Louis, 2020). As body segments’

coordination is often a consequence of how the adjacent

segments are oriented to each other (Zajac and Winters,

1990; Putnam, 1993), estimating segment pose (positions

and orientations) during boxing may be helpful to analyze

the performance athletes. Furthermore, the velocities at

which body segments move and coordinate with each other

have been reported to vary across athletes based on their

skills (Putnam, 1993). Therefore, estimating velocities of the

body segments seems essential to analyze sports-performance

during boxing.

To quantify body segment kinematic variables, marker-

based motion capture has been most widely used. In such

systems, skin markers are placed on the specific anatomical

landmarks, based on which body segment coordinate systems

are defined to estimate 3D pose of the segments. While marker-

based methods are traditionally referred to as standard, they are

commonly performed in a laboratory environment and require

adequate skills in physical palpation of landmarks. Even with

necessary skills, such palpation is examiner-dependent and at

times tends to produce systemic bias for an examiner (Johnson

et al., 2018). Furthermore, joint kinematics are also largely

affected by soft tissue artifact (Camomilla et al., 2017; Lahkar

et al., 2021). Alternatively, measurements based on wearable

sensors such as inertial measurement units have been recently

shown effective in natural environment in estimating joint

angles of the lower extremity with moderate to strong accuracy

(Al Borno et al., 2022). Studies also presented the use of inertial

measurement units in estimating hand velocity (Kimm and

Thiel, 2015; Punchihewa et al., 2020) and other body segments

(Dinu and Louis, 2020) during a sport activity. While such

studies are useful for understanding differences in skills between

athlete groups, placing sensors or markers on the body surface

may be inconvenient and potentially distracting to an athlete and

practically impossible during a live combat.

With the rapid advancement of computer vision research,

human movement study has received a significant stride

allowing unobtrusive capture of data using video-based

markerless motion capture (Colyer et al., 2018; Armitano-Lago

et al., 2022). These methods rely on 2D video data combining

with generative or discriminative algorithms to estimate human

pose in 3D (Colyer et al., 2018). Generative approach often

TABLE 1 Demographic details of the athletes.

Athlete Gender Age (years) Height (m) Body mass (kg)

1 Male 20 1.72 54

2 Male 18 1.90 78

3 Female 19 1.63 59

involves fitting a predefined model of the subject to 2D visual

cues such as image features from detectors or to 3D cues such as

a visual hull reconstruction with the help of silhouette matching

algorithms (Corazza et al., 2006, 2007; El-Sallam et al., 2013).

On the other hand, learning-based discriminative algorithms,

particularly deep neural network, involves detecting sparse set

of learned features such as joint key points describing a subject’s

pose in 2D. In this family, openly accessible pose estimator like

OpenPose (Cao et al., 2021) has received significant attention in

human movement analysis and similarly DeepLabCut (Mathis

et al., 2018) for both human and non-human activities. As

these tools are primarily intended for 2D pose estimation,

some studies leveraged its potential in estimating 2D kinematics

of the lower limb (hip, knee, and ankle joint) during gait

(Stenum et al., 2021), vertical jump (Drazan et al., 2021), and

under water running (Cronin et al., 2019). Progressing further,

others focused on estimating 3D poses from 2D images of

multiple calibrated cameras using triangulation during walking

(Nakano et al., 2020; Needham et al., 2021; Pagnon et al., 2022),

jumping (Nakano et al., 2020; Needham et al., 2021), running

(Needham et al., 2021; Pagnon et al., 2022), cycling (Pagnon

et al., 2022), and throwing (Nakano et al., 2020). While these

studies demonstrated the potential of openly accessible pose

estimation tools in estimating 3D joint kinematics, most of them

primarily evaluated the lower extremity. As far as we are aware of

Nakano et al. (2020) estimated 3D joint positions of the shoulder,

elbow, and wrist and evaluated against traditional marker-

based approach during walking, jumping, and ball throwing

activity. A mean absolute error up to 4 cm was observed at the

wrist, 4.7 cm at the elbow, and 2.2 cm at the shoulder during

throwing activity.

In a recent development in markerless video-based systems,

Theia3D (Theia Markerless, Inc., Kingston, Ontario) has

emerged as a rapidly evolving commercial pose estimation

software. The software implements deep convolutional

neural network combining with standard biomechanical

pose estimation approaches (inverse kinematics) to estimate

3D pose of human body segments. Using this tool, studies

showed decent kinematic accuracies compared to marker-based

method while maintaining good repeatability both in laboratory

environment (Kanko et al., 2021a,b) and in community

settings (Mcguirk et al., 2022; Riazati et al., 2022). These

studies, however, mainly provide the assessment of the lower
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FIGURE 1

(A) Layout of the boxing ring with green and blue cameras depicting optoelectronic and video cameras, respectively. (B) An example of the
boxing punch with Theia3D multibody model overlaid on the 2D video image.

TABLE 2 Boxing trials and their specific characteristics.

Trial Characteristics

1 Direct from the front arm to the face

2 Direct from the front arm to the body

3 Double of the front arm to the face

4 Rear arm jab+ front arm hook

5 Front arm (uppercut to the body+ hook to the body+ hook to the face)

extremity kinematics during either treadmill or over ground

walking activity.

While it is relevant to evaluate the usability of markerless

systems in a highly dynamic and non-symmetrical sport

such as boxing, it still remains unknown how accurate

these systems are in estimating upper-limb kinematics

as compared to marker-based approach. This study

aimed to assess whether a markerless approach (use of

video cameras + commercial pose estimation software

Theia3D) can be used to estimate upper-limb kinematics

as an alternative to the state-of-the-art marker-based

approach for sports-performance analysis during “in the

field” boxing.

Materials and methods

Participants

A total of three elite boxers volunteered in the study at

the boxing arena of National Institute of Sport, Expertise,

and Performance (INSEP, Paris, France). Out of the three

boxers, one is competing at the national level and two others

at the international level. All of them are undergoing regular

training at INSEP for Paris Olympics, 2024. Demographic

details of the athletes are presented in Table 1. The athletes,

after being fully informed about the objectives and protocol

of the study, signed an informed consent form. The study

and the procedures were approved by an institutional

review board.

Data acquisition setup and protocol

Boxing data were collected synchronously using an

optoelectronic marker-based system (12 Qualisys Miqus

and Arqus cameras; 2–5 megapixel) at 300Hz, and using

a markerless 2D video-based system (10 Qualisys Miqus

video cameras; 2 megapixel) at 60Hz. Both the types of

cameras, optoelectronic and video, were placed next to

each other as a pair around the boxing ring, except two

optoelectronic cameras placed separately to the posterior

aspect of the athlete (Figure 1A). All the cameras were

connected to Qualisys Track Manager for allowing them to

be synchronized and calibrated in space and time, giving

a single global reference frame nearly at the center of the

boxing platform. Camera setup and placement was performed

by the team members with expertise in both optoelectronic

and video-based motion analysis. Specific attention was

provided to the 2D video-based cameras to comply with

recommended specifications for resolution, focus, and

exposure time.

Prior to the sessions, the boxers were outfitted with 44

retro-reflective skin markers placed by a single operator

with adequate palpation skills on the relevant landmarks

of the whole body (Wu et al., 2002, 2005). The details
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FIGURE 2

Joint center positions (ordinate) at the shoulder, elbow and wrist in the global reference frame (X, Y, Z) computed with marker-based and
markerless methods and represented over time (abscissa). Left and right columns represent joints of the rear and front limbs, respectively.
Example shown for the second athlete and first boxing trial. Blue and red colors represent marker-based and markerless joint center positions,
respectively.

of the marker-set and their anatomical locations are

provided in the Supplementary Material. A professional

coach instructed each boxer to perform specific five

shadow boxing trials of different characteristics, with 4–5

repetitions in each trial (Table 2). In between repetitions

within a trial, boxers were instructed to perform footwork

and remain in defensive pose with elbow flexed guarding

their body and face, as classically performed during

a contest.

Data processing and analysis

Multibody models
Theia3D embedded multibody kinematic model consists of

two separate kinematic chains: one for the lower extremity and

one for the upper extremity, and a separate head segment with

six degrees of freedom (DoFs) (https://www.theiamarkerless.ca/

docs/model.html). In this study, we will only adhere to the

upper extremity model in the following descriptions. The upper
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FIGURE 3

Joint angles (ordinate) at the shoulder, elbow, and wrist computed with marker-based and markerless methods and represented over time
(abscissa). Left and right columns represent joints of the rear and front limbs, respectively. Example shown for the second athlete and first
boxing trial. Blue and red colors represent marker-based and markerless joint angles, respectively.

extremity chain comprises the thorax as root segment with

six DoFs with respect to the ground, followed by the clavicle,

upper arm, forearm, and hand segments bilaterally. The clavicle,

at its proximal end, is connected to the thorax with a two

rotational DoFs constraint, while distally connected to the upper

arm with a three rotational DoFs at the shoulder joint. The

elbow and the wrist joints are constrained to have two DoFs,

restricting abduction/adduction (Abd/Add) at the elbow and

internal/external (Int/Ext) rotation at the wrist.

For the marker-based multibody model, a gender-

specific generic template was created in Visual3D (C-motion,

Germantown, USA, v2021.11.3) to have identical body segments

and joint constraints as that of the Theia3D model. The

shoulder, cervical, lumbar, and thoracic joint centers were

defined based on the regression equations adopted from the

study of Dumas and Wojtusch (2018). The midpoint between

the medial and lateral humeral epicondyles was defined as

the elbow joint center and the midpoint between the ulnar

and radius styloid processes as the wrist joint center. Segment

reference frames were defined following the methodology

reported in the study of Dumas and Wojtusch (2018).

For both the models, the center of mass position for each

segment was defined according to the study of Dumas and

Wojtusch (2018).

Kinematic estimation
Markerless motion capture data were processed with

Theia3D (v2021.2), a deep learning-based software. The

underlying principle of the software is detailed elsewhere
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TABLE 3 Bland–Altman bias (b), confidence interval (CI) along with

coe�cient of determination (R2) and root mean square di�erence

(RMSD) between markerless and marker-based methods for joint

angles at the shoulder, elbow, and wrist.

Joints Side b CI R
2

RMSD

Abduction/Adduction (◦)

Shoulder Front 3.7 13 0.90 6.6

Rear −0.1 15 0.37 6.3

Wrist Front 7.2 17 0.31 11

Rear 0.2 21 0.39 9.1

Internal/External (◦)

Shoulder Front −8.7 9.4 0.83 12

Rear 2.5 19 0.41 8.1

Elbow Front 13 30 0.17 23

Rear −12 18 0.21 18

Flexion/Extension (◦)

Shoulder Front 2.4 13 0.88 10

Rear 0.3 8 0.77 7.3

Elbow Front −6.2 5.3 0.99 7.4

Rear −5.4 8.5 0.87 7

Wrist Front 7.4 22 0.41 14

Rear −0.7 59 0.27 20

Units for all parameters are in degrees except R2 (no unit).

in the study of Kanko et al. (2021a) and briefly delineated

hereafter. The software relies on synchronized and calibrated

videos as input that uses pre-trained deep convolutional neural

networks to estimate 2D positions of learned key features

(e.g., joint locations and surface landmarks) within the frames

of video data, thus enabling to obtain the features in 3D

space. The embedded multibody kinematic model is adapted

to fit 3D subject-specific features, and a multibody kinematic

optimization scheme (Begon et al., 2018) allows to perform 3D

pose estimation during an activity. In this study, estimated 3D

poses (4-by-4 matrices) of the body segments were exported to

Visual3D to compute joint kinematics and segment velocities.

Figure 1B illustrates an example of the Theia3D model obtained

with multibody kinematic optimization during boxing.

Regarding the marker-based data, the generic multibody

template was adapted to obtain subject-specific scaled models,

and segment’s pose estimation throughout all motion frames was

obtained using multibody kinematic optimization (Begon et al.,

2018) within Visual3D. Proper segment-specific marker weights

were implemented and tuned based on residual analysis, with

highest weight at the thorax, followed by the upper arm, forearm,

and hand.

The markerless vs. marker-based method was assessed by

the following kinematic variables: joint center positions, joint

angles, and linear segment velocities. The joint center positions

at the shoulder, elbow, and wrist were retrieved from the

pose matrices resulting frommultibody kinematic optimization.

Then, 3D Euclidean distances between corresponding joint

centers across all the trials and subjects were computed. The

joint angles at the shoulder (between thorax and upper arm),

elbow (between upper arm and forearm), and wrist (between

forearm and hand) were computed with cardan sequences of

rotation adopted from the study of Wu et al. (2002). Linear

segment velocity magnitudes were derived from the center

of mass positions of each segment in the global reference

frame. The kinematic variables were exported to MATLAB

(MathWorks, USA), and a 4th-order low-pass Butterworth filter

was implemented to filter both the joint angles and segment

velocities with cutoff frequency of 8 Hz.

Statistical analysis
The deviation between corresponding joint centers

estimated with marker-based and markerless system was

assessed as mean (standard deviation) or median (interquartile

range) based on normality outcomes across all the trials and

subjects. The degree of agreement between joint angles resulting

from both the methods was assessed using Bland–Altman

analysis (Bland and Altman, 1986). Bias (b), confidence

interval (CI; 1.96 times standard deviation or 1.45 times

interquartile range for non-normal distributions), coefficient of

determination (R2), and root mean square difference (RMSD)

were calculated for comparison. The same statistical parameters

were used for comparing segment velocity magnitudes. All the

analyses were performed for the front and rear limbs separately

using customized MATLAB routines.

Results

Joint center positions

An example (second athlete and first trial) of the joint

center positions in the global reference frame estimated with

markerless vis-à-vis marker-based approach is presented in

Figure 2. Overall across all the subjects and trials, the joints of the

front and rear limbs followed similar trajectories measured with

both the systems. Differences [median (interquartile range)]

between markerless and marker-based joint centers for the front

shoulder, elbow, and wrist were found as 2.3 (0.8), 3.1 (0.8), and

1.8 (1.2) cm, respectively. These values for its rear counterparts

were 2.3 (1.3), 3.1 (0.9), and 2.2 (2.5) cm, respectively.

Joint angles

Figure 3 illustrates an example (second athlete and first trial)

of the joint angles at the shoulder, elbow, and wrist obtained with

markerless and marker-based systems. Overall, the kinematic
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FIGURE 4

Segment velocity magnitudes (ordinate) at the thorax, and at the front and rear upper arm, forearm, and hand computed with marker-based and
markerless methods and represented over time (abscissa). Example shown for the second athlete and first boxing trial. Blue and red colors
represent marker-based and markerless segment velocities, respectively.

profiles estimated with both the methods exhibited qualitatively

similar pattern, with some noticeable offsets.

Table 3 represents the statistical parameters b, CI, R2, and

RMSD when comparing markerless joint angles with marker-

based ones. No values are reported for the elbow and wrist joint

along Abd/Add and Int/Ext rotation, respectively, as these DoFs

were restricted in the multibody kinematic optimization.

Along Abd/Add axis, higher bias, CI, and RMSD, and

lower R2 values were found at the wrist as compared to

the shoulder. Similar outcomes were observed for Int/Ext

rotation, with higher bias, CI, and RMSD, and lower R2

at the elbow joint. As for the flexion/extension (Flex/Ext)

axis, overall, lower bias was noticed at the shoulder

joint, whereas lower CI and RMSD were observed at

the elbow joint. When comparing across DoFs, highest

bias and RMSD were seen along Int/Ext axis (bias:

2.5–13◦; RMSD: 8.1–23◦), followed by Flex/Ext (bias: 0.3–

7.4◦; RMSD: 7.3–20◦) and Abd/Add (bias: −0.1 to 7.2◦;

RMSD: 6.3–11◦).

When comparing across joints, lowest bias (−0.1◦) and

lowest RMSD (6.3◦) were noticed at the shoulder joint, while

revealing largest values at the elbow (bias up to 13◦ and RMSD

up to 23◦). Interestingly, between joints on both the sides, lower

bias, R2, and RMSD were observed at all the rear-side joints

compared to its front counterparts with few exceptions.

Segment velocities

Figure 4 demonstrates linear segment velocity magnitudes

at the thorax, upper arm, forearm, and hand for the second

athlete and first trial. The velocity profiles estimated by both

the systems displayed qualitatively similar patterns. The median

peak velocities across all the athletes and trials measured by

the marker-based system were different among segments, with

highest velocity of 7.5 m/s at the front hand, followed by the

forearm with 5.5 m/s, upper arm with 3.2 m/s, and thorax with

1.6 m/s. These peak velocities were observed while the boxers
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TABLE 4 Bland–Altman bias (b), confidence interval (CI) along with

coe�cient of determination (R2) and root mean square di�erence

(RMSD) between markerless and marker-based methods for segment

velocity magnitudes at the thorax, upper arm, forearm, and hand.

Velocity magnitudes (m/s)

Segments Side b CI R
2

RMSD

Thorax 0.00 0.12 0.96 0.07

Upper arm Front −0.01 0.14 0.98 0.09

Rear −0.02 0.13 0.97 0.08

Forearm Front −0.03 0.20 0.98 0.14

Rear −0.02 0.14 0.98 0.09

Hand Front −0.01 0.23 0.98 0.17

Rear −0.01 0.17 0.97 0.11

Units for all parameters are in m/s except R2 (no unit).

were throwing punches, and some small velocities (∼0–1.5 m/s)

were noticed in between punches when they were performing

footwork. The markerless system estimated similar results, with

7.0 m/s at the hand, 5.5 m/s at the forearm, 3.5 m/s at the upper

arm, and 1.6 m/s at the thorax.

The results of Bland–Altman analysis showed a relatively

good agreement between both the systems for the segment

velocity magnitudes (Table 4). Very small bias was observed

for every segment. Confidence intervals were slightly higher

(between 0.10 and 0.25 m/s), but remained small compared

to the peak velocity observed during the punch. Overall,

the segment with lowest velocity (i.e., thorax) performed the

highest level of agreement between both the systems. When

comparing between the sides, the rear-side segments showed

better agreement as compared to the front-side ones.

Discussion

The purpose of the study was to assess whether markerless

motion capture system can be exploited to estimate upper-

limb kinematics as a substitute to maker-based approach for

analyzing sports-performance during “in the field” boxing.

We assessed joint center positions, joint angles, and segment

velocities obtained with a commercially available markerless

motion data processing software (Theia3D) compared to

those estimated with classical marker-based method. Multibody

models and optimization methods were designed to match at

best between the two approaches.

Across all the subjects and trials, the median 3D distances

between corresponding joint centers were noticed in the range

∼1.5–2.5 cm for all the joints, except the elbow exceeding 3 cm.

Our findings were comparable to those, who reported an average

difference in the range 1.1–2.4 cm for the upper extremity joints

during a treadmill walking activity (Kanko et al., 2021a) and in

the range∼2.0–4.7 cm during a throwing activity (Nakano et al.,

2020).

The upper limb joint angles captured a varying agreement

across all the joints and DoFs. Highest bias and RMSD were

observed along Int/Ext rotation axis and lowest along Abd/Add

axis, confirming the remarks reported for the lower extremity

joints during gait (Kanko et al., 2021a). However, the values

obtained for the upper extremity joints were higher than

those obtained for the lower extremity. For instance, RMSD

along Int/Ext rotation axis was found in the range 6.9–13.2◦

for the lower extremity (Kanko et al., 2021a), whereas 8.1–

23◦ was observed for the upper extremity in the present

work. These higher values could be a consequence of weaker

estimation of segment poses during a dynamic activity as

compared to gait, respecting the previous evidence of pose

estimation performance being task-specific (Nakano et al.,

2020; Needham et al., 2021). With regard to all statistical

parameters, the shoulder joint demonstrated better agreement

between the methods across all DoFs, except Flex/Ext axis

along which elbow joint was seen superior. Furthermore,

relatively lesser agreement was observed for the front-side

joints in general. It is perhaps because of relatively higher

and faster movement of the front-side segments resulting

higher differences. The front arm is also more often fully

extended, a configuration in which determining Int/Ext rotation

becomes problematic.

With regard to the segment velocities, the markerless

system performed a good-to-strong level of agreement,

with maximum RMSD ≤ 0.17 m/s and with a strong

R2 (0.96–0.98). Both systems captured highest velocity

at the hand (7–7.5 m/s) followed by the other body

segments in the kinematic chain. These tendencies

corroborate the findings who reported average punch

contact velocities in the range 5.9–8.2 m/s for combination

of punches (Whiting et al., 1988; Piorkowski et al.,

2011).

Overall, we have noticed a higher degree of agreement

at the proximal joints/segments between the data collecting

methods. This could be a result of the pose algorithm, whichmay

perform less for distal segments, especially for the hand in the

considered boxing task as it moves relatively quicker. It could

also be a consequence of the multibody kinematic optimization,

in which the proximal segments are more constrained than

distal segments (they “inherit” the constraints from distal

segments) and thus less sensitive to measurement errors.

Nevertheless, further investigations are required to confirm

these hypotheses.

While interpreting the degree of agreement or differences

between the two methods, we would like to highlight few

potential sources of errors and assumptions whichmay influence

the results. Marker-based kinematics are prone to misplacement

or inconsistent placement of markers. Although the markers

were placed by the same operator with adequate palpation skills,
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some degrees of variability/inconsistency cannot be denied. On

the other hand, markerless kinematics are normally susceptible

to the quality of 2D video data determined by particularly

spatial resolution, exposure time, and angle of view specified

for the motion under study. As such we have not studied the

sensitivity of these parameters on the kinematic accuracy, we

can expect some changes (improvement/deterioration) in the

kinematics as reported in other studies (Nakano et al., 2020).

Nevertheless, we believe that these impacts would likely to be

minimal as data collection was carried out under proficient

supervision, and the video data were randomly and qualitatively

checked after each acquisition. Furthermore, a repeatability

study for the upper extremity seems relevant in the future,

although the same has been assessed during gait showing

reliable estimation of the lower-limb kinematics using Theia3D

(Kanko et al., 2021b). Another source of error commonly known

as soft tissue artifact (Camomilla et al., 2017) may impact

marker-based kinematics to certain extent, although multibody

kinematic optimization was implemented to compensate for

it (Begon et al., 2018). Apart from the probable sources of

errors, there are some likely differences in defining segment

reference frames between the Theia3D kinematic model and

marker-based model. For instance, in the marker-based model,

the long axis of the thorax is defined between the thoracic joint

center and the cervical joint center estimated with regression

equations (Dumas and Wojtusch, 2018). Although the Theia3D

model uses identical landmarks derived from pose matrices

to define the axis, any differences in estimating joint centers

would impact the segment frame and thereby resulting in

offsets and distortions in the joint angles. We acknowledge

that such discrepancies could not be avoided; nevertheless,

definition of marker-based joint centers for the shoulder, elbow,

and wrist was in accordance with the study carried out by

the team involving in Theia3D development (Kanko et al.,

2021a,b).

The present work may provide practical avenues to analyze

the performance and skill levels of athletes by assessing upper

extremity kinematics. For instance, the joint center trajectories

and angles have been shown to vary based on the characteristics

of boxing type and level of expertise (Whiting et al., 1988; Dinu

and Louis, 2020). Measuring these kinematic variables would

be necessary to analyze and enhance punches that require a

distinct segment orientation in different planes. Information on

trajectories of different punch types will also help the combatant

to deflect or escape blows (Piorkowski et al., 2011). Furthermore,

ranges of motion may provide insights on predisposing factors

of injury, as larger joint motion has been reported to implicate

joint injury, particularly at the shoulder (Lenetsky et al., 2015).

The literature on assessing segment velocities suggests that

punch velocity is crucial for optimal performance in boxing

(Whiting et al., 1988), with higher values reported for elite

boxers (Dinu and Louis, 2020). Attaining high velocity at

the fist is typically a result of contribution of other body

segments in the kinematic chain. The latter study indicated

that the shoulder contributed most to hook and uppercut

punch both in junior and in elite boxers. They also noticed

moderate differences in segment contribution between high-

and low-performing boxers, underlining the need for accurate

estimation of segment velocities. Despite such knowledge on

the biomechanical distinctions across boxing styles and athletes,

receiving timely feedback has been a major burden to coaches

and athletes with marker-based methods. In this context, the

markerless system is easily deployable both in training sessions

and in live combats, while maintaining comparable kinematics

to marker-based approach. It is worthwhile to mention that the

usability of the kinematic variables as performance measures

will depend upon the context of application within an allowable

error limit, and this remains an explorable avenue. In marker-

based motion analysis, with reference to gait analysis, 5◦ of

error is generally considered the maximum accepted (McGinley

et al., 2009). This 5◦ error correspond to the lower limb,

and no such value seems to be present in the literature

for the upper limb. That said, we expect segment velocities

across all the segments, and joint angles along Abd/Add and

Flex/Ext axes can be used with reasonable confidence. The

wrist joint angles should be dealt with caution due to relatively

poor agreement.

There are few limitations of the present work to

acknowledge. We assessed only the upper extremity kinematics,

although may not be sufficient to underscore a wide range

of performance descriptors such as athletes’ stability and

kinetic characteristics such as punching force. For example,

distribution of the forces between the legs has a considerable

effect on punching performance in terms of both stability

and fist velocity (Stanley et al., 2018; El-Oujaji et al., 2019).

For direct measurement, this would, however, require

additional arrangements such as force plates (Piorkowski

et al., 2011; Stanley et al., 2018) and instrumented punch

bags, making it cumbersome and unsuitable for monitoring

“in the field” matches. Studies have also also showed the

possibility of estimating punching force using wearable

devices and external contact loads (Robert et al., 2013;

Muller et al., 2020) using marker-based approach without

the need of force sensors. Estimation of these variables

using markerless video-based approach seems relevant in

assessing sports-performance. One important limitation to

highlight is the small number of elite athletes participated in

the study. It is also noteworthy to remark that comparative

assessment was performed for shadow boxing trials, i.e., one

single athlete throwing punches without interaction with

the opponent. Although it would be pertinent to analyze

the performance of both the athletes in close-combats,

evaluating with marker-based motion capture system would

be questionable due to its inherent limitations. Moreover,

the boxers performed trials without the usage of gloves and

boxing outfit as it was convenient to place markers on body
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landmarks. It would be interesting to analyze the sensitivity

of the markerless kinematics in response to traditional

boxing attire.

Conclusion

As a first “in the field” study of a highly dynamic sport,

we evaluated 3D joint center positions, joint angles, and

segment velocities of the upper extremity of three elite athletes

estimated with a markerless approach in comparison with

those obtained with marker-based method. We observed a

median difference of <2.5 cm for the shoulder and wrist,

and slightly higher than 3 cm for the elbow joint between

the two approaches. While assessing the joint angles, the

shoulder joint largely exhibited a higher level of agreement

with RMSD in the range of 6–12◦, whereas the wrist and

elbow joint displayed more than or equal to 20◦ in some

DoFs. The agreement along the Int/Ext axis was consistently

poor across all the DoFs. Segment velocities demonstrated

a strong level agreement between the two methods showing

a maximum RMSD of 0.17 m/s. Overall results indicated

higher levels of agreement between the methods for segment

velocities compared to joint angles. Given the practicality of

the markerless motion capture system out of the laboratory

environment, the results will help both athletes and coaches

to analyze sports-performance. Future studies will focus on

analyzing both the athletes in close-combat situations with

markerless method.
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