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Macrophages comprehend a heterogeneous 
mononuclear phagocytic population with wide range 
phenotypes and roles in homeostasis maintenance 
and diseases, such as infections, autoimmunity and 
cancer. Technology improvements enable researchers 
to track different macrophage populations in different 
tissues and situations and hypothesize on their role 
in promoting inflammation or stimulating tissue 
repair. Through innate immune recognition system 
macrophages can launch several effector artilleries 
that culminate in the production of various types of 
inflammatory mediators as cytokines, chemokines, 
lipid mediators and oxygen reactive species, which 
in turn, influence the behavior of other cells. 
Furthermore, macrophages and interacting cells are 
also susceptible to metabolic changes that ultimately 
will define the outcome macrophage signaling and its 
effect in the tissue. Here, we present a concise series of 
discussions on the role of macrophages, its response to 
the microenvironment and effects on other cells during 

tissue injury and repair. Triggering of inflammasome in macrophage activation and function is of 
special interest in this issue. We will emphasize the role of different macrophage subpopulations 
and the plasticity of these cells during fibrotic process in different models of diseases.
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Editorial on the Research Topic

Macrophages Role in Integrating Tissue Signals and Biological Processes in Chronic 
Inflammation and Fibrosis

Macrophages comprehend a population with wide range phenotypes and roles in homeostasis main-
tenance and diseases. Technology improvements enable researchers to track different macrophage 
populations in different tissues and situations and hypothesize on their role in promoting inflam-
mation or maintaining tissue homeostasis. In the present editorial, we present a concise series of 
discussions on the role of these cells, its response to the microenvironment, and effects on other cells 
during tissue injury and repair. We also discuss the themes proposed by the authors on macrophage 
plasticity during fibrotic processes in the context of the topic subject. M1 macrophages are consid-
ered foe cells for the pro-fibrotic process once they are associated with pro-inflammatory functions 
(Braga et al.), and an exacerbation of tissue inflammation initiates the pro-fibrotic process (1). On the 
other hand, M2 macrophages have anti-inflammatory properties due to its ability to secrete IL-10, 
arginase, and TGF-β (2). However, when the insult is persistent, excessive M2 macrophage activation 
leads to continuous TGF-β production, promoting increased extracellular matrix deposition (3).  
In this scenario, despite its friendly behavior against the exacerbated fibrosis development, M2 
becomes foe cells in the tissue repairing. Macrophages are also able to influence innate lymphoid 
cells (ILCs) during the fibrotic process (Hams et al.). Repetitive cycles of epithelial damage and repair 
are able to generate fibrosis through the release DAMPs and alarmins by epithelium (4). Among the 
alarmins, IL25, IL33, and TSLP are able to polarize ILCs to the ILC2 phenotype. ILC2 can enhance 
Th2 responses and collagen deposition (5, 6), either indirectly via IL13-mediated dendritic cell prim-
ing or directly through CD4-T cells interaction (via MHCII-CD4) (7, 8). In addition, ILC2 produces 
IL4 and IL5 and induces tissue collagen deposition in pulmonary and hepatic models of fibrotic 
diseases (9, 10). In turn, deficiency of IL25 and IL33 or their receptors, IL17RB and ST2, respectively, 
leads to decreased collagen deposition (5, 9). However, the apparent redundancy of these alarmins 
may be due to different ligand and receptor expression at different anatomical sites (11).

ILC2s interact with macrophages on the improvement of obesity-induced insulin resistance 
(Castoldi et al.). Different subtypes of macrophages are related to the maintenance of adipose tissue 
(AT) homeostasis during the lean state, obesity, and insulin resistance (Castoldi et al.). It has been 
known that the microenvironment in a lean AT is composed of macrophages subtypes in a ratio of 
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4:1 M2:M1 (12). To maintain AT homeostasis in this lipid-rich 
microenvironment, macrophages present increased adiposity (13) 
and increased expression of fatty acids transporters (13). However, 
obesity status triggers the accumulation of M1 macrophages, 
although it was reported that the secretion of pro-inflammatory 
cytokines in AT is dependent on peroxisome proliferator-activated 
receptor gamma (PPAR-γ), an M2 marker (14). Inflammatory fac-
tors present in obesity context lead to insulin resistance, character-
ized by decreased phosphorylation of insulin receptor substrate-1 
and -2, decreased phosphorylation of Akt (15, 16) and activation 
of the mammalian target of rapamycin signaling pathway (17), a 
sensor of nutrients able to alter the cellular metabolism. In obesity, 
nutrient sensing by mTOR regulates the switch of ATMs from 
M2 to M1 (18). However, obesity can be controlled through the 
production of large amounts of anti-inflammatory cytokines and 
the induction of uncoupling protein 1 expression in AT, a process 
called “beiging” or “browning” (19). In line with the relationship 
between AT and inflammation, it has been reported high levels 
of inflammatory mediators in the context of cachexia (de Matos-
Neto et al.), a health problem present especially in cancer patients 
(20). Weight loss, the most visible feature of cachexia, is accom-
panied by increased production of CCL2, CCL3, TNFα, and IL1β 
and reduced relative numbers of M2 macrophages in the tumor 
environment (de Matos-Neto et al.).

Macrophages directly influence the metabolic status of the 
organism (21). Different sterile inflammation, in special type 1 dia-
betes (T1D) can be triggered by leukotriene B4 (LTB4) (Filgueiras 
et al.). Filgueiras et al. wonder if LTB4 could be targeted in new 
therapy strategies for treating T1D once LTB4 could either increase 
pro-IL1β expression or potentiate the IL1R activation by modulat-
ing MYD88. Previously, the same group has demonstrated that low 
insulin concentrations are able to induce LTB4 production, which 
triggers systemic inflammation through MyD88 and its transcrip-
tional effector STAT-1 (signal transducer and activator of tran-
scription 1) (22). On the other hand, insulin-treated mice showed 
less LTB4 in the blood and reduced Myd88 and Stat1 expression in 
macrophages. In addition, diabetic mice lacking 5-lipoxygenase or 
the receptor for LTB4 produced less pro-inflammatory cytokines 
(22). Mitochondrial DNA (mDNA) derived from diabetic mice is 
also implicated in the activation of NLRP3 and IL1β in the context 
of T1D (Carlos et al.). It has been known that NLRP3 deficiency 
plays a protective role against T1D (23) and that polymorphisms in 
NLRP3 are associated with T1D (24), however, the precise mecha-
nisms by which NLRP3 is triggered in the context of T1D was 
poorly explored. Besides demonstrating the importance of NLRP3 
for the development of T1D, Carlos et al. also took advantage of a 
sub dosage model of disease that is not able to induce T1D, unless 
mDNA was given concomitantly with streptozotocin. However, 
it is still puzzling the fact that only mDNA from diabetic mice 
activates the NLRP3 inflammasome.

Besides homeostasis-altering compounds, exogenous mol-
ecules can also alter the macrophage status of activation (25). 
Crystalline silica reduces the activation of macrophages by reduc-
ing TLR2 expression (Beamer et al.). Previous studies established 
that the scavenger receptor CD204 is important for the binding/
uptake of silica (26, 27). It has been also demonstrated that 
silica crystals activate NLRP3 inflammasome and induce IL1β 

production (28), a mechanism dependent of the first signal 
triggered by the TLR4 agonist, LPS. Beamer et al. demonstrated, 
on the other hand, that silica crystals leads to less IL1β produc-
tion after Pam3CSK4 and Pam2CSK4 stimulus, lipopeptides 
recognized by the TLR2/1 and TLR2/6 heterodimer, respectively 
(Beamer et al.). Tissue-resident intestinal macrophages can also 
contribute to the gut homeostasis by eliminating invading patho-
gens without inducing a robust inflammatory response (Kühl 
et al.). Bone marrow-derived monocytes are the precursor cells 
of tissue-resident intestinal macrophages (29) and in the context 
of ulcerative colitis (UC) and Crohn’s diseases (CD), increased 
numbers of M1 macrophages are observed despite monocyte 
infiltration. In addition, lesions of UC, but not CD, are character-
ized by impaired bacterial clearance, formation of granulomas, 
inflamed mesenteric fat tissue, and pronounced fibrosis.

The prevention of damage that would be caused by mac-
rophage prolonged activation is achieved by changes in their 
transcriptional program (Hamidzadeh and Mosser). ATP and  
adenosine can diminish the production of inflammatory cytokines 
by macrophages (30). In an inflammatory scenario, TLR-stimulated 
macrophages undergo metabolic alterations that result in an 
increase rate of aerobic glycolysis and production of ATP. This 
nucleotide is rapidly hydrolyzed to adenosine on the macrophage 
surface by CD39 and CD73 (30). Following TLR stimulation, 
macrophages dramatically upregulate their expression of recep-
tors for adenosine, in a physiological self-regulating program. In 
addition, it has been demonstrated that IFNγ sustains macrophage 
inflammatory responses, by attenuating their sensitivity to extra-
cellular adenosine (31). This decreased macrophage sensitivity to 
adenosine delays the transition of macrophages to a regulatory 
phenotype, allowing them to sustain macrophage activation for 
the duration of an adaptive immune response. IFNγ-mediated 
adenosine sensitivity signals through STAT1 (31); however, the 
exact mechanism whereby IFNγ affects the macrophage activa-
tion remain to be enlightened. However, when not controlled, 
blood-borne infections change the splenic microenvironment 
and can ultimately lead to splenomegaly (32). Splenic architecture 
and differences among red pulp (RpMΦs), marginal metallophilic 
(MMMΦs), and marginal zone macrophages (MZMΦs) were 
described by Borges da Silva et  al. CD47, a self-molecule ubiq-
uitously expressed on many cell types, function as an inhibitory 
signal for phagocytosis (33) and red blood cells expressing a modi-
fied isoform of CD47 are phagocytized by RpMΦs (34). MZMΦs 
and MMMΦs populate the interface between the bloodstream and 
lymphocyte-rich zones, and for this reason they are candidate cells 
to bridge innate and adaptive immunity. In this collection of arti-
cles, the authors show how macrophages influence chronic inflam-
matory diseases, and how the understanding of their biology can 
contribute to improved scenario for balance the homeostasis. We 
hope this collection can help further studies on the development 
of new therapies and in the better understanding of the biology 
of these cells.
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Macrophages undergo profound physiological alterations when they encounter 
pathogen-associated molecular patterns (PAMPs). These alterations can result in the 
elaboration of cytokines and mediators that promote immune responses and contribute 
to the clearance of pathogens. These innate immune responses by myeloid cells are 
transient. The termination of these secretory responses is not due to the dilution of 
stimuli, but rather to the active downregulation of innate responses induced by the 
very PAMPs that initiated them. Here, we describe a purinergic autoregulatory program 
whereby TLR-stimulated macrophages control their activation state. In this program, 
TLR-stimulated macrophages undergo metabolic alterations that result in the production 
of ATP and its release through membrane pannexin channels. This purine nucleotide is 
rapidly hydrolyzed to adenosine by ectoenzymes on the macrophage surface, CD39 and 
CD73. Adenosine then signals through the P1 class of seven transmembrane receptors 
to induce a regulatory state that is characterized by the downregulation of inflammatory 
cytokines and the production of anti-inflammatory cytokines and growth factors. This 
purinergic autoregulatory system mitigates the collateral damage that would be caused 
by the prolonged activation of macrophages and rather allows the macrophage to 
maintain homeostasis. The transient activation of macrophages can be prolonged by 
treating macrophages with IFN-γ. IFN-γ-treated macrophages become less sensitive to 
the regulatory effects of adenosine, allowing them to sustain macrophage activation for 
the duration of an adaptive immune response.

Keywords: adenosine, autoimmunity, ATP, CD39, CD73, glycolysis, iFN-γ

iNTRODUCTiON

The central role that macrophages play in host defense has been well described and thoroughly 
studied. These remarkable cells can change their physiology in response to diverse environmental 
stimuli and become potent antimicrobial effectors. This property has been loosely called an “activa-
tion” response, and the receptors that induce this response are generally called pattern recognition 
receptors (PRRs) (1). More recently, the role of macrophages in mitigating inflammatory responses 
and contributing to the resolution of inflammation has become an area of intense study (2, 3). It 
is clear that the very cell type that could be a potent inducer of inflammatory pathology could be 
equally effective at reversing this pathology. The remarkable plasticity of macrophages allows this 
cell to be a primary mediator of homeostasis in the host (4, 5).

Given the remarkable differences in the physiologies of the various macrophage subsets, 
efforts are underway to characterize each. These characterizations would theoretically allow the 
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identification of each macrophage subtype in tissue during 
immunity or immunopathology. However, studies to identify 
definitive biochemical differences between inflammatory M1 
macrophages and anti-inflammatory regulatory macrophages 
(R-Mϕ) have been surprisingly underdeveloped. The in  vitro 
transcriptional responses of the so-called M1 macrophages fol-
lowing their exposure to a variety of TLR ligands, such as LPS or 
to bacteria themselves, have been reported (6–11). These studies 
have begun to reveal the molecules that macrophages express and 
the products they secrete in response to inflammatory stimuli. 
However, most of these studies lack a careful kinetic analysis of 
transcriptional responses over time. Therefore, we are left with 
“snap-shots” of transcriptional responses to stimuli, rather than 
a motion picture of the sequential transcriptional program these 
stimuli induce. The transcriptional responses of anti-inflamma-
tory macrophages have also been described (12, 13), but again 
these studies generally selected only a single time to analyze 
macrophage transcripts. In this review, we propose that one of 
the difficulties in identifying definitive biochemical differences 
between the various macrophage cell populations is due to the 
transient nature of the inflammatory response of macrophages to 
stimuli and the compensatory regulatory changes that accompany 
this activation. We describe an intrinsic program where the meta-
bolic alterations that allow for the production of inflammatory 
cytokines and mediators are the very alterations that give rise to 
the anti-inflammatory macrophage phenotype. This autoregula-
tory response depends on the generation of endogenous ATP by 
macrophages, which initiates a purinergic signaling cascade to 
terminate the inflammatory response to innate stimuli, result-
ing in a transient state of activation. Therefore, the time when 
one measures the transcriptional responses of macrophages to 
TLR stimuli is critical. We also propose that this transient state 
of macrophage stimulation can be prolonged and accentuated 
in individuals undergoing cell-mediated immune responses. 
This is due to a novel activity of IFN-γ, which interferes with 
the stimulus-dependent upregulation of adenosine receptors to 
block purinergic autoregulatory responses. In this way, IFN-γ 
prevents the transition to a regulatory macrophage and prolongs 
the activation response.

MeTABOLiC ALTeRATiONS iNDUCeD BY 
THe LiGATiON OF MACROPHAGe 
PATTeRN ReCOGNiTiON ReCePTORS

When macrophages encounter pathogen-associated molecular 
patterns (PAMPs) or damage-associated molecular patterns 
(DAMPs) they undergo dramatic changes in their metabolism 
and increase their rate of aerobic glycolysis. An increase in glucose 
uptake by these cells results in an accumulation of lactate in M1 
macrophages (12). In contrast to M1 macrophages stimulated by 
PAMPs, alternatively activated macrophages exposed to IL-4 or 
IL-13 undergo oxidative phosphorylation and electron transport. 
The metabolic alterations associated with M1 macrophage polari-
zation are believed to provide short-term, immediate access to 
energy for innate immune functions, whereas alternative activa-
tion is thought to provide a more stable long-term metabolism to 

support prolonged processes associated with wound healing (14). 
Recent work suggests that these metabolic alterations not only 
accompany differential activation but also promote the polarized 
responses of M1 and M2 macrophages (15). The rapid alterations 
in metabolism that M1 macrophages undergo are thought to 
allow these cells to produce the cytokines and mediators asso-
ciated with host defense [reviewed in Ref. (14)]. However, the 
increase in glycolysis by M1 macrophages results in an increase in 
the production of intracellular ATP by stimulated macrophages. 
A portion of cytosolic ATP generated by M1 macrophages is 
released into the extracellular milieu via pannexin-1 channels. 
The addition of inhibitors of either glycolysis or pannexin chan-
nels prevents ATP release from macrophages (16). This released 
ATP is rapidly captured and catabolized to adenosine by M1 
macrophages, allowing them to transition from an inflammatory 
to a regulatory phenotype. Thus, the very metabolic alterations 
that allow M1 macrophages to promote immune responses can 
also prevent these cells from causing immunopathology.

THe MACROPHAGe eCTOeNZYMeS, 
CD39 AND CD73

Purinergic signaling molecules released as a result of metabolic 
alterations, cell death, or tissue damage can have profound effects 
on macrophage activation. ATP concentrations in human plasma 
are typically in the nanomolar range (17) but can rise to the 
micromolar range under inflammatory conditions (18). ATP is 
constitutively released from resting parenchymal cells, and the 
levels are intrinsic to the tissue in which the cells reside (19). ATP 
release from resting macrophages is quite low, but this release is 
substantially increased upon TLR stimulation (16). The ATP that 
is released by macrophages is catabolized by macrophages in a 
coordinated two-step process. First, ATP is hydrolyzed to AMP 
by the macrophage surface ectoenzyme CD39 (E-NTPDase1) in 
a Ca2+- and Mg2+-dependent manner (20). AMP is then rapidly 
converted to adenosine by the surface Ecto5′NTase, CD73 (21). 
The expression of these two enzymes by macrophages can there-
fore determine the concentration of adenosine in the extracellular 
milieu immediately surrounding the macrophage.

CD39 and CD73 expression on macrophages can change 
depending on the macrophage activation state. In hypoxic 
conditions, CD39 and CD73 function is enhanced approximately 
sixfold (22), whereas prolonged cultivation of macrophages in 
complete medium appears to downregulate CD73 expression. 
CD39 is more highly expressed than CD73 on bone marrow 
derived macrophages, and this expression pattern remains 
relatively constant after a brief exposure of these cells to LPS. M1 
macrophages have been reported to exhibit a modest decrease 
in the expression of both CD39 and CD73 (23), while M2 mac-
rophages express higher levels of both (23). These results suggest 
that macrophages may regulate the catabolism of ATP in order to 
modulate their inflammatory profile. It has also been shown that 
CD39 is transcriptionally regulated by the cAMP/CREB second 
messenger pathway that can be induced following GPCR ligation 
(24, 25). This suggests a positive feedback loop where adenosine 
signaling upregulates CD39 to generate more adenosine. Overall, 
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this work suggests that the increased expression of either/both of 
these cell surface enzymes can result in an amplification of the 
purinergic signaling pathway in macrophages.

We recently demonstrated that the addition of exogenous 
adenosine or ATP to macrophages can induce these cells to 
assume an anti-inflammatory phenotype (16) characterized 
by a decreased production of inflammatory cytokines and an 
increased expression of angiogenic factors and anti-inflammatory 
cytokines (12). We further demonstrated that the hydrolysis of 
self-released (endogenous) ATP via macrophage CD39 allows 
that cell to transition from an inflammatory to an immunoregula-
tory state (16). Macrophages derived from CD39 knockout bone 
marrow fail to catabolize ATP following LPS stimulation. As a 
result, the production of inflammatory cytokines is sustained for 
up to 24 h poststimulation, whereas wild-type macrophages stop 
synthesizing these cytokines after a few hours (16). Similarly, the 
pharmacological inhibition of CD39 activity, using the chemical 
inhibitor POM-1, made macrophages hyperinflammatory with 
increased TNF and IL-12p40 production over the course of at 
least 16 h (16). It appears that of the two ectoenzymes involved in 
ATP hydrolysis, CD39 has more profound effects than CD73, pre-
sumably because the conversion of AMP to adenosine can occur 
in the absence of CD73. It was recently demonstrated that an 
inhibitor of CD73 did not have a substantial role in macrophage 
polarization (26).

The ability of macrophages to transition to an immunoregu-
latory state is key in controlling pathology in an LPS model of 
endotoxemia. Our lab results and others have shown that CD39 
on myeloid cells can decrease mortality in mouse models of sepsis 
(16, 27), and that the addition of CD39 knockout macrophages 
can increase mortality in this model (16). CD73 has also been 
demonstrated to be protective in mouse models of sepsis (28).

THe ReCePTORS FOR ADeNOSiNe

Macrophages respond to adenosine via four transmembrane 
G-protein-coupled receptors: A1R, A2aR, adenosine 2b receptor 
(A2bR), and A3R (29). The A1 and A3 receptors are coupled 
to the Gi family of proteins resulting in decreased cAMP upon 
stimulation. A2a receptors are high affinity Gαs-coupled recep-
tors that increase intracellular cAMP (30, 31). Similarly, the 
low-affinity A2b receptors can signal through Gαs or Gq proteins, 
also resulting in increased cAMP (30, 32). When coupled to TLR 
stimulation, adenosine promotes the transition from an inflam-
matory to a regulatory macrophage (4). Adenosine is known to 
be immunosuppressive in macrophages as adenosine treatment 
leads to increased IL-10 production and decreased TNF and 
IL-12 production (16). We recently performed high-throughput 
RNA sequencing on macrophages stimulated with LPS in the 
presence or absence of adenosine. Macrophages stimulated with 
LPS in the presence of adenosine upregulated 501 transcripts 
relative to LPS alone and downregulated 610 transcripts. Many 
of the genes that were upregulated were involved in cell growth 
and neovascularization, whereas genes involved in inflammation 
were most potently downregulated by the presence of adenosine 
(12, 13). Adenosine signaling through its Gαs-coupled receptors 
also leads to increased IL-10 production via posttranscriptional 

mechanisms (33). Adenosine is thought to inhibit the production 
of the inflammatory cytokine TNF by signaling through both the 
A2a and A2b receptors (34).

Although signaling through these GPCRs modulates levels of 
cAMP within cells, the role of the cAMP/PKA pathway in the 
regulation of inflammatory cytokines by adenosine receptor 
signaling remains somewhat unclear. One group has indicated 
that the decrease in macrophage TNF production after exposure 
to adenosine is due to a cAMP/PKA-independent pathway, which 
likely involves phosphatases (35). However, others have shown 
that cAMP/PKA levels are inversely correlated with TNF pro-
duction (36). Thus, it is possible that while cAMP itself, mainly 
investigated in the form of 8-bromo-cAMP, can downregulate 
TNF production in macrophages, adenosine may also work by 
additional mechanisms that have not yet been fully defined. It 
was shown that the A2bR interacts with NF-κB in order to inhibit 
it, and that A2bR knockout macrophages secrete less IL-10 and 
more IL-12 and TNF (37).

The adenosine receptors have been implicated in the pathol-
ogy of a variety of diseases. These receptors are widely expressed 
in the brain, heart, spleen, muscle, and lung (38, 39). In fact, 
their widespread expression is one of the challenges of develop-
ing therapeutics targeting the receptors with specificity. Studies 
have implicated a role for both A2aR and A2bR in diabetes as 
they are involved in gluconeogenesis and glucose homeostasis 
as a result of increased cAMP (40–42). There is also therapeutic 
anti-inflammatory potential for A2aR agonists in ischemia reper-
fusion injury (43). In atherosclerosis, A2aR and A2bR both play 
a role in reducing foam cell formation, which is a feature of this 
disease (44, 45). However, it has been shown that the lack of A2aR 
has a protective effect in a mouse model of hypercholesterolemia 
because macrophages remain inflammatory and are able to 
reduce atherosclerotic lesions (46). Adenosine receptors also play 
a role in wound healing and contribute to cytokine production 
by macrophages of patients with chronic obstructive pulmonary 
disease (29, 47).

iFN-γ AND THe PROLONGATiON OF THe 
MACROPHAGe ACTivATiON ReSPONSe

Priming macrophages with IFN-γ prior to TLR stimulation 
results in profound changes in their physiology and dramatically 
accentuates their inflammatory responses (48, 49). Macrophages 
exposed to IFN-γ not only make greater amounts of inflamma-
tory cytokines but also produce them for prolonged periods of 
time (50). In this way, IFN-γ prolongs the activation response 
to promote host defense against intracellular pathogens (51). 
The activation of macrophages, however, comes at a cost. 
Inflammatory macrophages exhibiting an “IFN signature” are 
observed in rheumatoid arthritis, multiple sclerosis, and many 
other autoimmune diseases, indicating that IFN-γ contributes 
to autoimmune pathogenesis by promoting chronic macrophage 
activation (52, 53). Although the ability of IFN-γ to enhance the 
inflammatory potential of TLR-activated macrophages is a well-
known phenomenon, the mechanism(s) whereby IFN-γ affects 
the intrinsic regulation of macrophage activation remain to be 
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determined. We recently identified a novel mechanism whereby 
IFN-γ sustains macrophage inflammatory responses, by attenuat-
ing their sensitivity to extracellular adenosine (50).

Following TLR stimulation, macrophages dramatically upreg-
ulate their expression of receptors for adenosine. The A2bR, in 
particular, is upregulated more than 20-fold in response to virtu-
ally any of the TLR ligands (50). The molecular mechanism(s) of 
A2bR upregulation remain to be determined, but the upregula-
tion of adenosine receptors in response to TLR stimulation 
enhances macrophage sensitivity to adenosine and leads to the 
induction of the immunoregulatory phenotype. IFN-γ priming 
of macrophages signals through STAT1 to prevent adenosine 
receptor induction. This decreases macrophage sensitivity to 
adenosine and delays the transition of macrophages to a regula-
tory phenotype. This prolongs the production of inflammatory 
cytokines such as TNFα and IL-12. Thus, we propose a novel 
mechanism whereby IFN-γ contributes to host defense, by 
desensitizing macrophages to the immunoregulatory effects of 
adenosine. This mechanism overcomes the transient nature of 
TLR activation and prolongs the antimicrobial state of the classi-
cally activated macrophage.

SUMMARY

We describe a purinergic-based autoregulatory program that 
terminates inflammatory responses of TLR-stimulated (M1) 
macrophages. When macrophages are so stimulated, they 
undergo metabolic alterations that result in ATP generation and 
release through pannexin channels. Extracellular ATP is rapidly 

hydrolyzed to adenosine by CD39 and CD73, two ectoenzymes on 
the macrophage surface. Adenosine generated in this way binds to 
macrophage adenosine receptors to initiate a signaling pathway 
that terminates the synthesis of many inflammatory cytokines 
and induces the synthesis of regulatory transcripts (Figure 1). In 
this way, the overexuberant activation of macrophages is avoided. 
We propose that this program is in place to prevent the pathologi-
cal consequences associated with chronic macrophage activation. 
We suggest that there are many ways to exploit this program to 
manipulate the phenotype of macrophages. The overexpression 
of CD39 and CD73 would be predicted to accelerate adenosine 
production by macrophages and promote a rapid regulatory 
transition. Drugs to prevent ectoenzyme downregulation 
may represent a new class of anti-inflammatory therapeutics. 
Similarly, drugs to induce adenosine receptor upregulation or 
prevent their downregulation may be developed as a way to inter-
rupt macrophage-mediated inflammation. Conversely, targeting 
macrophage CD39 would be predicted to prevent this regulatory 
transition and promote the more efficient killing of intracellular 
pathogens by macrophages.
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FiGURe 1 | Purinergic autoregulatory signaling in macrophages. Intracellular ATP, generated in response to pathogen-associated molecular patterns 
(PAMPS), is released from macrophages and converted to adenosine by the concerted action of CD39 and CD73. Adenosine signals through seven transmembrane 
receptors to terminate the production of inflammatory cytokines and to promote the production of IL-10 and growth factors (54).
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Numerous studies have examined the relationship between alveolar macrophages 
(AMs) and crystalline silica (SiO2) using in  vitro and in  vivo immunotoxicity models; 
however, exactly how exposure to SiO2 alters the functionality of AM and the potential 
consequences for immunity to respiratory pathogens remains largely unknown. Because 
recognition and clearance of inhaled particulates and microbes are largely mediated 
by pattern recognition receptors (PRRs) on the surface of AM, we hypothesized that 
exposure to SiO2 limits the ability of AM to respond to bacterial challenge by altering 
PRR expression. Alveolar and bone marrow-derived macrophages downregulate TLR2 
expression following acute SiO2 exposure (e.g., 4  h). Interestingly, these responses 
were dependent on interactions between SiO2 and the class A scavenger receptor 
CD204, but not MARCO. Furthermore, SiO2 exposure decreased uptake of fluorescently 
labeled Pam2CSK4 and Pam3CSK4, resulting in reduced secretion of IL-1β, but not IL-6. 
Collectively, our data suggest that SiO2 exposure alters AM phenotype, which in turn 
affects their ability to uptake and respond to bacterial lipoproteins.

Keywords: lung, inflammation, mouse, scavenger receptor, toll-like receptor, bacterial susceptibility

inTrODUcTiOn

Silicon dioxide, also known as silica, is one of the most common elements on earth, yet its inhalation 
can result in acute lung injury and ongoing inhalation can result in permanent lung damage due to 
deposition of particles in the lung. Silicosis is a progressive, disabling, and often-fatal lung disease 
resulting from the inhalation of crystalline silica (SiO2) particles over prolonged periods of time. 
Silicosis occurs as the result of exposure through occupation (e.g., construction, mining), recrea-
tion (e.g., pottery), or environment (e.g., soil). Inhalation of SiO2 particles causes a granulomatous 
inflammatory response that progresses to interstitial fibrosis as well as systemic immune deficits 
(1–5). There is no cure for silicosis, and treatment options are limited. Although significant efforts 
have been made through industrial hygiene standards to control ambient dust in the workplace, 
silicosis remains a prevalent health problem throughout the world, particularly in developing 
nations (6).

In addition to its importance as an occupational hazard, inhalation of SiO2 predisposes work-
ers to bacterial infections, impairs lung defense mechanisms, and significantly shortens worker 
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lifespans  –  particularly in less-advanced countries and among 
disadvantaged persons in developed nations (1, 7). In particular, 
SiO2-exposed workers, with or without silicosis, are at increased 
risk for tuberculosis and non-tuberculous mycobacteria-related 
diseases (5, 8, 9). Previous studies suggest that the acute and 
accelerated forms of silicosis exhibit the highest prevalence of sili-
cotuberculosis (1), and that the development of Mycobacterium 
tuberculosis (Mtb) infection is directly dependent on the collec-
tive SiO2 exposure (5, 8, 10). Indeed, SiO2 exposure results in a 
threefold or greater risk of developing pulmonary Mtb infections. 
Similarly, recent studies demonstrate that acute exposure to silica 
nanoparticles increases the susceptibility of mice to Pseudomonas 
aeruginosa-induced pneumonia (11).

Alveolar macrophages (AMs) play a critical role in the ongo-
ing cross-talk between innate and adaptive immune responses in 
the lung and are the typical host cell for an array of pathogens 
such as bacterial infections (e.g., Mtb) and many airborne par-
ticulates (e.g., SiO2). In macrophages, formation and activation 
of the NLRP3 inflammasome are an important mechanism 
mediating the inflammatory response to numerous particulates, 
including nanoparticles, silica, MSU crystals, asbestos, and 
urban particulate matter, resulting in promotion of IL-1β release 
(12–15). Macrophages not only initiate the inflammatory process 
to SiO2 (16) but also play an important role in host resistance 
to bacterial infections, including Mtb (17). Moreover, numerous 
adverse effects on macrophage function have been described fol-
lowing exposure to SiO2 (18–27), suggesting that SiO2-mediated 
macrophage injury might impair host defense and increase 
susceptibility to infection. The current view is that SiO2 “dam-
ages” macrophages or alters their phenotype, thereby inhibiting 
their ability to phagocytose and kill bacteria (19, 28); however, the 
molecular mechanisms underlying this predisposition remain 
unknown.

Alveolar macrophages sense bacterial pathogens through 
pattern recognition receptors (PRRs) (29, 30) via the detection 
of highly conserved molecular structures, designated pathogen-
associated molecular patterns (PAMPs) (31–33). Numerous 
families of PRRs exist, all of which recognize a different repertoire 
of PAMPs, including C-type lectin receptors, scavenger receptors 
(SRs), toll-like receptors (TLRs), NOD-like receptors, and RIG-
I-like receptors. Of these PRRs, TLRs 1/2, 4, and C-type lectin 
receptors have all been shown to mediate the in vitro recogni-
tion of Mtb and the cytokine response of macrophages is lower 
in the absence of these TLRs (34). It is clear that macrophages 
contribute to the lung response to SiO2 and to bacterial infections 
independently, and that these effects may be mediated through 
PRRs. Therefore, we investigated whether SiO2 exposure alters 
the expression of select PRRs on alveolar and bone marrow-
derived macrophages and assessed the ability of SiO2-exposed 
macrophages to uptake and respond to bacterial lipoproteins 
acting at TLR2/1 and TLR2/6.

MaTerials anD MeThODs

Mice
Breeding pairs of C57BL/6 (C57BL/6J, stock #000664) mice 
were originally purchased from The Jackson Laboratory (Bar 

Harbor, ME, USA); whereas breeding pairs of MARCO−/− and 
SRA−/− mice on C57BL/6 background were kindly provided by 
Dr. Lester Kobzik (Harvard School of Public Health, Boston, MA, 
USA), and caspase 1-deficient (casp1−/− B6N.129S2-Casp1tm1Flv/J, 
stock #016621) mice (for experimental use) were kindly pro-
vided by Dr. Andrij Holian (University of Montana, Center for 
Environmental Health Sciences). All mice were maintained in the 
University of Montana Specific Pathogen-Free (SPF) Laboratory 
Animal Facility and both sexes used at 6–8 weeks of age. All ani-
mal use procedures were in accordance with NIH and University 
of Montana IACUC guidelines.

experimental instillations
Crystalline silica (SiO2, 1.5–2  μm) (Pennsylvania Glass Sand 
Corporation, Pittsburgh, PA, USA) was acid washed, dried, and 
determined to be free of endotoxin (data not shown). Mice were 
anesthetized with isoflurane and instilled via the intranasal (i.n.) 
exposure route with 25 μl sterile saline (vehicle) or 1 mg SiO2 sus-
pended in 25 μl of sterile saline (35, 36). Mice were then returned 
to their cages and monitored until mobility returned. Whole lung 
lavage samples were collected at 4, 24, and 72 h, as well as 7 days 
following the initial instillation, as previously described (37, 38).

Flow cytometry
Single cell suspensions from either whole lung lavages or bone 
marrow-derived macrophages were washed and re-suspended in 
100 μl of purified rat anti-mouse CD16/CD32 diluted 1:100 in PBS 
with 1% bovine serum albumin and 0.1% sodium azide (PAB) for 
15 min on ice to block non-specific Ab binding. Monoclonal Abs 
specific to CD11c redFluor 710 (clone #N418, Tonbo Biosciences), 
F4-80 FITC (clone BM-8), DC-SIGN PE (clone # 5H10), TLR2 
eF450 (clone # 6C2 eBiosciences), TLR4 PE-Cy7 (clone # SA15-
21, Biolegend), TLR5 AF647 (clone # ACT5), and TLR6 (clone # 
418601, R&D Systems) to identify cell surface receptor density 
on live, F4-80+CD11c+ AMs (23). Following titration of the indi-
vidual antibodies in preliminary experiments, 1 μg of each Ab 
was added per 106 total cells and allowed to incubate for 30 min 
in the dark on ice, with agitation two to three times. Finally, cells 
were washed twice with PBS and re-suspended in 0.3  ml PAB 
on ice. Immediately before acquisition, 5 μl of propidium iodide 
solution (BioLegend) was added per 106 total cells and allowed to 
incubate for 15 min prior to analysis. Cell acquisition and analysis 
were performed on a FACS Aria flow cytometer using FACS Diva 
software (version 6.1.2, Becton Dickinson), with the exception of 
Figure 4 – where cell acquisition and analysis was performed on 
a Attune NxT Accoustic Focusing Cytometer using Attune NxT 
software (version 2.2, Thermo Fisher Scientific). In the multi-
color staining panels, positive/negative gates were set based on 
fluorescence minus one (FMO) controls and checked against 
single stained controls. Compensation of the spectral overlap for 
each fluorochrome was performed using compensation control 
beads (BD Biosciences).

generation and stimulation of Bone 
Marrow-Derived Macrophages
Bone marrow macrophages (BMM) were generated using 
murine recombinant macrophage colony-stimulating factor 
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(50 ng/ml, U.S. Biological, Swampscott, MA, USA), as previously 
described (37, 39). By 7 days, cells were fully differentiated, >75% 
confluent, and immune-positive for macrophage characteristics 
(F4-80+CD11b+ MHC class IIlow), as assessed by flow cyometry 
(data not shown). Viability was determined to be >90% by trypan 
blue exclusion staining prior to experimental manipulations. 
BMM were seeded at 106 cells/ml/well of a 6-well plate, immedi-
ately exposed to media alone (vehicle) or 50–100 μg/ml SiO2, and 
allowed to incubate for 4 or 24 h at 37°C. By 24 h at these exposure 
levels, ~20% of the BMM exhibited signs of apoptosis and/or cell 
death using trypan blue exclusion and/or live dead dyes during 
flow cytometry experiments. Following stimulation, BMM were 
lightly scraped within the spent culture media, centrifuged, and 
the supernatant and cells separated for analysis.

confocal Microscopy and Quantification 
of Uptake of rhodamine Tlr ligands
Bone marrow macrophages (1 × 106 cells/eppendorf microfuge 
tube) were exposed to media alone (vehicle) or 50–100 μg/ml 
SiO2 on a rotisserie for 24 h at 37°C. Macrophages were subse-
quently exposed to 0.5 μg/ml rhodamine conjugated Pam2CSK4 
(TLR2/6 ligand) or Pam3CSK4 (TLR2/1 ligand) (Invivogen) 
for 2 h. Cells were washed twice with PBS and were cytospun 
(1 × 105) onto glass slides, coverslipped with Prolong Gold with 
Dapi, and images collected on an Olympus Fluoview Confocal 
Imaging System. NIH Image J software or flow cytometry was 
used to analyze mean fluorescence intensity (MFI) and side 
scatter (SSC) properties of the BMMs to measure TLR ligand or 
SiO2 uptake (40).

cytokine elisas
IL-1β, TNFα, IL-6, and IL-10 were measured in tissue culture 
supernatants using murine ELISA kits according to the manu-
facturer’s instructions and assay procedure (R&D Systems). Color 
development was assessed at 450 nm on a plate reader.

statistical analysis
For each parameter, the values for individual mice were averaged 
and the SD and SE calculated. The significance of the differences 
between the exposure groups was determined by t-test, one-
way, or two-way ANOVA, in conjunction with Tukey’s test for 
variance, where appropriate. All ANOVA models were performed 
with Prism software, version 4. A p-value of <0.05 was considered 
significant.

resUlTs

Differential Pattern recognition receptor 
expression following acute silica 
exposure
Previous studies established that SiO2 alters the phenotype and 
function of AM, bone marrow-derived dendritic cells, and 
macrophages, and freshly isolated interstitial macrophages and 
dendritic cells (23, 39, 41); however, these studies did not evalu-
ate PRR expression on AM in response to SiO2. To test whether 
exposure of AMs in situ resulted in altered expression of PRRs, 

C57Bl/6 wild-type mice were instilled with either saline (vehicle 
control) or 1  mg SiO2. Four hours after encountering SiO2 in 
the alveolus, flow cytometry confirmed that live (PI negative) 
F4-80+CD11c+AMs had taken up SiO2 particles via changes in SSC 
properties, and simultaneously downregulated their expression 
of TLR2 and TLR6, but not DC-SIGN, TLR4, or TLR5 (Figure 1, 
inset). Representative histograms illustrate the relative change in 
fluorescent intensity between AMs lavaged from the airways of 
saline (black line) vs. SiO2 (silver line) exposed C57Bl/6 wild-type 
mice, compared to unstained controls (dashed line) (Figure 1).

In the murine model, TLR-2 in particular plays a crucial role 
in the cellular response to bacterial pathogens. Therefore, we 
evaluated whether SiO2 exposure downregulated TLR2 expres-
sion levels on live, F4-80+CD11c+ AMs in a time-dependent 
manner in wild-type C57BL/6 mice. SiO2 exposure reduced TLR2 
expression on the surface of AMs by 86.4 and 32.9% relative to 
their corresponding saline controls at 4 and 24 h, respectively. By 
contrast, SiO2 exposure increased TLR2 expression on the surface 
of AMs by 47.8% relative to the saline control at 72 h. By 7 days 
after silica exposure, TLR2 expression on live, F4-80+CD11c+ 
AMs had returned to baseline (Figure  2A). Representative 
histograms illustrate the relative change in fluorescent intensity 
between saline (black line) and SiO2 (silver line) exposed mice at 
the indicated time point following exposure (Figure 2B).

silica-induced changes in Tlr2 
expression are Dependent on cD204, but 
not inflammasome activation
Previous studies from our laboratory established that the class 
A SRs CD204 and MARCO were important for the binding/
uptake of SiO2 and subsequent inflammatory response (35, 40). 
Therefore, we investigated the relationship between CD204 and 
MARCO, and SiO2-induced changes in TLR2 expression. Using 
bone marrow-derived macrophages as a model system (41), 
we demonstrate that SiO2-induced loss of TLR2 expression on 
F4-80+CD11b+ macrophages was dependent on CD204, but not 
MARCO at 4 h (Figure 3A) and 24 h post-exposure (data not 
shown). Representative histograms illustrate the relative change 
in fluorescent intensity of TLR2 on the cell surface of media (black 
line) and SiO2 (silver line)-treated bone marrow-derived mac-
rophages (Figure 3A). These results were confirmed using AMs 
lavaged from saline and SiO2-exposed C57Bl/6 wild-type and 
CD204−/− mice, at 4 h post-exposure (Figure 3B). Representative 
histograms illustrate the relative change in fluorescent intensity 
of TLR2 on the cell surface of live, F4-80+CD11c+ AMs between 
saline (black line) and SiO2 (silver line) exposed mice (Figure 3B).

NLRP3 inflammasome activation and resultant IL-1β produc-
tion by AMs is recognized as a significant mechanism underlying 
silicosis (13, 24, 26, 42). Because activation of the NLRP3 inflam-
masome converges on caspase 1, which then contributes to the 
production and secretion of mature IL-1β, we examined the con-
tributions of inflammasome activation to SiO2-induced changes 
in TLR2 expression using caspase 1-deficient (caspase 1−/−) mice. 
Four hours following exposure, we show that SiO2-induced loss of 
TLR2 expression on live, F4-80+CD11c+ AMs occurs independ-
ent from NLRP3 inflammasome activation and secretion of IL-1β 
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FigUre 1 | acute silica exposure selectively reduced Tlr2 and Tlr6 expression on F4-80+cD11c+ alveolar macrophages. C57Bl/6 wild-type mice were 
exposed to saline (25 μl, black line) or silica (1 mg, gray line) through intranasal aspiration. After 4 h, whole lungs were lavaged and cells immunostained. 
Representative histograms from the flow cytometric analysis demonstrates concomitant uptake of SiO2 particles through increases in side scatter (SSC) 
measurements and decreased expression of TLR2 and TLR6 expression on alveolar macrophages (AMs) relative to saline control. By contrast, no change was 
observed in the cell surface expression of DC-SIGN, TLR4, or TLR5 on live, F4-80+CD11c+AMs in response to SiO2. Scatter plots (inset) show the raw data in 
graphical form. Results are means ± SEM (n = 6). *p < 0.05 compared to saline.
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(Figure 4A). Representative histograms demonstrate the relative 
change in fluorescent intensity of TLR2 on the cell surface of live, 
F4-80+CD11c+ AMs between saline (black line) and SiO2 (silver 
line) exposed C57Bl/6 and caspase 1−/− mice (Figure 4B).

effects of silica exposure on the Uptake 
of Tlr2/1 and Tlr2/6 ligands
Because TLR2 cooperates with TLR6 in response to diacylated 
mycoplasmal lipopeptide and associates with TLR1 to recognize 
triacylated lipopetides, we next examined the ability of SiO2-
exposed bone marrow-derived macrophages to take up fluo-
rescently labeled bacterial cell wall components recognized by 
the TLR2/1 heterodimer (Pam3CSK4) and TLR2/6 heterodimer 
(Pam2CSK4) using a combination of flow cytometry and confocal 
microscopy. Flow cytometry demonstrated that SiO2 exposure 
reduced the uptake (e.g., MFI) of both the synthetic triacylated 
and synthetic diacylated lipoproteins recognized by TLR2/1 and 
TLR2/6 heterodimers, respectively, in both C57Bl/6 and CD204−/− 
derived cells (Figure 5A). This response was slightly dampened 
in CD204−/− cells vs. C57Bl/6 cells. Moreover, simultaneous 

measurements of SSC characteristics revealed comparable levels 
of SiO2 uptake across all exposure groups and mouse strains 
(Figure 5A), indicating similar levels of SiO2 exposure and uptake 
across treatment groups. Representative images collected via 
confocal microscopy support the observation of reduced uptake 
of fluorescently labeled TLR ligands in response to SiO2 exposure 
(Figure  5B). These changes were quantified by image analysis 
using NIH Image J and showed a similar reduction in uptake of 
fluorescently labeled diacylated and triacylated lipopetides into 
SiO2-exposed cells (data not shown).

silica exposure reduced il-1β levels in 
response to synthetic Triacylated and 
synthetic Diacylated lipoproteins In Vitro
Given that the observed reduction in TLR expression correlated 
with a decrease in lipoprotein uptake, we next determined if this 
resulted in functional changes by analyzing the inflammatory 
response of BMM to SiO2 plus or minus synthetic triacylated 
and diacylated lipoproteins. We chose to focus on the trifecta 
of innate immune cytokines because of both lipoproteins are 
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FigUre 2 | silica exposure altered Tlr2 expression on F4-80+cD11c+ alveolar macrophages. C57Bl/6 wild-type mice were exposed to saline (25 μl) or 
silica (1 mg) through intranasal aspiration. After 4, 24, 72 h, and 7 days, whole lungs were lavaged and cells immunostained. (a) Flow cytometric analysis 
demonstrates decreased expression of TLR2 on live, F4-80+CD11c+ alveolar macrophages (AMs) at 4 and 24 h, whereas TLR2 expression was increased on AMs 
at 72 h. By contrast, no change was observed in the cell surface expression of TLR2 on AMs 7 days following exposure to SiO2. Results are presented as mean 
percent of control ± SEM (n = 6-8). *p < 0.05 compared to saline control. (B) Representative histograms from the flow cytometric analysis demonstrate changes in 
the cell surface expression of TLR2 as a function of time.
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anticipated to induce the maturation and release of IL-1β, and to 
trigger the release of TNFα and IL-6 (likely via the activation of 
NF-kb signaling pathways). As anticipated, bone marrow-derived 
macrophages recognized and responded to synthetic triacylated 
and diacylated lipoproteins by increasing levels of IL-1β, TNFα, 
and IL-6 found in the tissue culture supernatant relative to media 
alone, whereas exposure to SiO2 alone resulted in little to no change 
(Figure 6). Although SiO2 exposure reduced the levels of IL-1β 
and TNFα present in the tissue culture supernatant in response to 
stimulation with either Pam2CSK4 or Pam3CSK4, it had no effect 
on the secretion of IL-6 (Figure 6). Furthermore, as a positive 
control, exposure to SiO2 plus 10  ng/ml LPS appears to have 
activated the Nlrp3 inflammasome, thus resulting in enhanced 
IL-1β secretion relative to either stimulus alone (Figure 6) and 
supporting the finding that TLR4 expression remains unchanged 
by SiO2 exposure. Finally, although we analyzed the tissue culture 
supernatants for the presence of IL-10, the levels detected were at 
or below the limit of detection of the assay.

DiscUssiOn

Silicosis, the most prevalent of the pneumoconioses, is caused 
by inhalation of crystalline SiO2 particles. In addition to its 
importance as an occupational disease, silicosis or even exposure 

to SiO2 without established disease is associated with increased 
risk of developing many pulmonary and systemic comorbidities: 
chronic obstructive pulmonary disease, lung cancer, tuberculosis, 
non-tuberculous mycobacteria-related diseases, glomerulone-
phritis, rheumatoid arthritis, scleroderma, and other systemic 
autoimmune diseases. Although the epidemiological link between 
silicosis and tuberculosis has been acknowledged for decades, the 
cellular and molecular mechanisms underlying this increased 
risk remain largely unknown. As the first line of defense in the 
alveolar spaces, AM recognize and respond to inhaled pathogens 
and particulates, likely through interactions with PRRs, resulting 
in activation of NLRP3 inflammasome among many other signal-
ing pathways. The primary objectives of this investigation were to 
(1) uncover if SiO2 modifies the profile of select PRRs expressed 
on macrophages and (2) examine the interactions between SiO2-
exposed macrophages and Pam3CSK4 and Pam2CSK4: synthetic 
diacylated and triacylated lipopeptide ligands, which mimic 
bacterial cell wall components recognized by TLR2/6 and TLR2/1, 
respectively. The results from this study suggest that SiO2 inter-
feres with the ability of macrophages to appropriately respond to 
bacterial ligands by downregulating the expression of TLR2 in a 
CD204-dependent, but inflammasome-independent manner.

The lung is constantly exposed to potentially harmful 
pathogens, including airborne particulates and microorganisms. 
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FigUre 3 | silica-induced decrease in Tlr2 expression is dependent on the scavenger receptor cD204 in vitro and in vivo. (a) Macrophages were 
derived from the bone marrow of wild-type C57Bl/6, CD204−/−, and MACRO−/− mice and subsequently exposed to media or silica (100 μg/ml). As anticipated, flow 
cytometric analysis demonstrates decreased expression of TLR2 on live, F4-80+CD11b+ macrophages 4 h following exposure to SiO2. This reduction in the cell 
surface expression of TLR2 was dependent on the presence of the scavenger receptor CD204, but not MARCO. Results are means ± SEM (n = 3–5). *p < 0.05 
compared to saline. Representative histograms from the flow cytometric analysis display changes in the cell surface expression of TLR2 as a function of mouse 
strain. (B) Wild-type C57Bl/6 and CD204−/− mice were exposed to saline (25 μl) or silica (1 mg) through intranasal aspiration. After 4 h, whole lungs were lavaged 
and cells immunostained and analyzed by flow cytometry. Flow cytometry shows decreased expression of TLR2 on live, F4-80+CD11bc+ AMs 4 h after SiO2, which 
is dependent on the presence of the scavenger receptor CD204. Results are means ± SEM (n = 4–5). *p < 0.05 compared to saline. Representative histograms 
from the flow cytometric analysis display changes in the cell surface expression of TLR2.
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Numerous studies have established that macrophages (alveolar 
and interstitial) are key orchestrators of pulmonary immunity 
and the prototypical host for diverse pathogens – including SiO2 
and bacterial pathogens. In the steady state, the ability of mac-
rophages to generate an inflammatory response is tightly regu-
lated to ensure that lung injury does not occur, thus preserving 
alveolar physiology and gas exchange. By contrast, in response to 
insult, macrophages are responsible for the uptake and clearance 
of a wide variety of environmental contaminants (e.g., crystalline 
silica), as well as phagocytizing and eliminating bacteria (e.g., 
Mtb). Macrophage responses to airborne particulates and micro-
organisms ranges from ingestion and clearance with minimal 
inflammation to massive secretion of inflammatory mediators 
(e.g., cytokines and reactive oxygen species) and recruitment 
and/or activation of other innate and adaptive immune cell types. 
Although freshly isolated AMs most closely represent the natural 
state, bone marrow-derived macrophages are a widely used and 
accepted model system because of the relative simplicity of the 
isolation procedure, the high numbers of cell yielded, and the 

consistency of the cellular response to immune activation. In this 
study, both freshly isolated alveolar and bone marrow-derived 
macrophages were utilized to verify findings based on assay 
specific needs.

Alveolar macrophages are the first line of defense in the 
alveolar spaces against inhaled pathogens, and also serve to limit 
inflammation and minimize injury to preserve lung function. 
Because PRRs, such as C-type lectin receptors, SRs, TLRs, NOD-
like receptors, and RIG-I like receptors, play a prominent role in 
the activation of AMs and subsequent cross-talk with innate and 
adaptive immune cells, how a macrophage reacts to a given stimu-
lus depends greatly on the diverse range of PRRs expressed on the 
cell’s surface (43, 44). In the case of concomitant or sequential 
exposure to two distinct pathogens, the capacity of macrophages 
to recognize, phagocytose, and appropriately respond to a second 
stimuli may be compromised by stimulant-induced changes in the 
profile of PRRs (45) – thus altering susceptibility to disease. TLRs, 
which recognize microbial molecules, are major triggers of innate 
responses (e.g., enhanced costimulatory molecule expression, 
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FigUre 4 | silica-induced reduction in Tlr2 expression occurs independently of inflammasome activation. Wild-type C57Bl/6 and caspase 1−/− mice 
were exposed to saline (25 μl) or silica (1 mg) via intranasal aspiration. After 4 h, whole lungs were lavaged and cells immunostained and analyzed by flow cytometry 
using the Attune NxT acoustic focusing flow cytometer. (a) Flow cytometry corroborates decreased expression of TLR2 on live, F4-80+CD11c+ AMs isolated from 
C57Bl/6 mice 4 h after SiO2 and further demonstrates that this decrease is not dependent on the NLRP3 inflammasome and IL-1β secretion. Results are 
means ± SEM (n = 3–4, repeated twice). *p < 0.05 compared to saline. (B) Representative histograms from the flow cytometric analysis demonstrate changes in 
the cell surface expression of TLR2 as a function of time.
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cytokine secretion, production of reactive oxygen species, and 
antimicrobial mediators) and thus modulate adaptive immunity 
by influencing macrophage functions. TLRs are important for 
host responses to Mtb. In particular, TLR-2 activation has been 
shown to play a prominent role in eliciting appropriate immune 
responses to Mycobacterium avium or Mtb, as well as to bacterial 
products, such as lipoarabinomannan, lipoprotein, and phos-
phatidylinositol mannosides (28, 46–51). Furthermore, associa-
tions between TLR2 gene polymorphisms and tuberculosis have 
been reported for a range of different human populations (52, 
53), suggesting that changes in TLR2 expression may be involved 
in susceptibility to disease. In this study, we tested the hypothesis 
that exposure to SiO2 triggers phenotypic changes in AMs – rec-
ognized as differences in the PRR profile. Following acute SiO2 
exposure (≤4  h) in C57BL/6 mice, we ascertained that live 
F4-80+CD11c+ AMs downregulate the expression of TLR2 using 
multi-color flow cytometry. These results were confirmed using 
F4-80+CD11b+ murine bone marrow-derived macrophages, and 
more importantly shown to be dependent on the presence of the 
class A SR, CD204, but not the NLRP3 inflammasome. These 
findings support the importance of interactions between SiO2 
and CD204 (40) and further link the SiO2–CD204 interface in 
macrophages to the inflammatory response to ligands acting at 

TLR2. Of note, Chávez-Galán et al. recently reported that human 
monocyte derived macrophages and a human macrophage cell 
line (THP-1) also respond to SiO2 by downregulating the expres-
sion of TLR2 in a dose-dependent manner (54). Although this 
study did not explore the role of SRs in this process, their results 
suggest that SiO2 may impair the ability of human macrophages 
to control intracellular bacterial growth (54). These results led us 
to assess whether SiO2 altered the expression of other PRRs (e.g., 
TLR4, TLR5, TLR6, and DC-SIGN) involved in innate immunity 
to various pathogens. Although acute exposure to SiO2 decreased 
TLR6 expression on AMs, we have not yet examined whether this 
reduction in protein expression is dependent on CD204. These 
data suggest that interaction between SiO2 and CD204 may 
regulate the responsiveness of antigen-presenting cells to TLR2 
activation. Previous studies have also observed connections 
between CD204 and TLR4 signaling (55, 56); although little is 
known about the biochemical nature of such interactions.

Recognition of TLR ligands results in immune activation, 
which can be measured as enhanced costimulatory molecule 
expression, cytokine secretion, production of reactive oxygen 
species, and antimicrobial mediators. Previous studies from 
our laboratory group demonstrated that SiO2 downregulates 
the expression of costimulatory molecules on murine bone 
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FigUre 5 | silica exposure decreased uptake of fluorescently labeled synthetic diacylated and triacylated lipoproteins in vitro. Macrophages derived 
from the bone marrow of wild-type C57Bl/6 and CD204−/− mice were exposed to media or silica (100 μg/ml) for 24 h and subsequently treated with fluorescently 
labeled Pam2CSK4 and Pam3CSK4 for 2 h. (a) Flow cytometry revealed uptake of the rhomadine-labeled lipoproteins into macrophages as measured by an increase 
in the mean fluorescence intensity (MFI), which was attenuated in the SiO2-exposed macrophages. This increase in MFI was not due to changes in the uptake of 
SiO2 into the macrophages, as shown by an increase in SSC. (B) Representative images from confocal microscopy showed increased fluorescence in the 
macrophages exposed to fluorescently labeled lipoproteins vs. media alone. Moreover, this fluorescence was diminished in SiO2-exposed macrophages. Results are 
means ± SEM (n = 5). *p < 0.05 compared to media.

February 2016 | Volume 7 | Article 4920

Beamer et al. Silica Reduces Macrophage Activation

Frontiers in Immunology | www.frontiersin.org

marrow-derived dendritic cells. These results lead us to examine 
whether SiO2-induced changes in TLR2 expression may result 
in aberrant response to bacterial ligands in vitro. Furthermore, 
SiO2 exposure reduced uptake of fluorescently labeled synthetic 
diacylated and triacylated lipoproteins recognized by TLR2/6 
and TLR2/1 in both C57Bl/6 wild-type and CD204−/− derived 
macrophages. Several possibilities arise from this incongruity 
that CD204−/− macrophages do not downregulate TLR2 expres-
sion, yet exhibit reduced ability to uptake rhodamine-labeled 
Pam2CSK4 and Pam3CSK4. CD204−/− macrophages may have 
enhanced expression of other PRRs (e.g., biological compensa-
tion) (57), the reduced levels of TLR2 may not be responsible for 
changes in diacylated and triacylated ligand uptake, and SiO2 may 
alter signaling molecules down stream of the receptor, resulting 
in the same net effect. Interestingly, we also observed attenuated 
levels of the inflammatory cytokines IL-1β and TNFα, but not 
IL-6, in the culture supernatants. These results are intriguing and 
suggest that SiO2 disrupts more downstream signal transduction 
events pertinent to the maturation and secretion of cytokines.

In summary, uptake of SiO2 downregulates the expression of 
select PRRs on AMs, as well as their ability to recognize, uptake, 

and respond to specific ligands. We hypothesize that these 
changes in AM phenotype may play a role their ability to appro-
priately respond to a secondary pathogen such as mycobacteria 
following SiO2 exposure. Our data suggest that SiO2, interacting 
with CD204, does not indiscriminately alter expression of all 
PRRs, but rather may amend signaling components involved in 
macrophage activation. Moreover, our data identify CD204 as an 
important partner for TLR2 on macrophages for the production 
of inflammatory mediators in response to bacterial stimuli. Future 
experiments may shed light on the relationship between reduced 
TLR2 expression and immunity to MTB infection later on.
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FigUre 6 | silica reduced il-1β, but not il-6, levels in response to synthetic diacylated and triacylated lipoproteins in vitro. Macrophages derived from 
the bone marrow of wild-type C57Bl/6 mice were exposed to media or silica (100 μg/ml) for 24 h and subsequently treated with fluorescently labeled Pam2CSK4 and 
Pam3CSK4 for 2 h. Cell-free supernatants were analyzed for the presence of the inflammatory cytokines IL-1β and IL-6. As expected, activation of naïve 
macrophages with Pam2CSK4 and Pam3CSK4 upregulated IL-1β and IL-6 levels. SiO2 alone induced a slight, but not significant, increase in IL-1β. Although SiO2 
reduced the levels of IL-1β, it had no effect on the levels of IL-6 induced by TLR activation. Results are means ± SEM (n = 4). *p < 0.05 compared to media.
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Immune cell infiltration in (white) adipose tissue (AT) during obesity is associated with 
the development of insulin resistance. In AT, the main population of leukocytes are mac-
rophages. Macrophages can be classified into two major populations: M1, classically 
activated macrophages, and M2, alternatively activated macrophages, although recent 
studies have identified a broad range of macrophage subsets. During obesity, AT M1 
macrophage numbers increase and correlate with AT inflammation and insulin resis-
tance. Upon activation, pro-inflammatory M1 macrophages induce aerobic glycolysis. 
By contrast, in lean humans and mice, the number of M2 macrophages predominates. 
M2 macrophages secrete anti-inflammatory cytokines and utilize oxidative metabolism 
to maintain AT homeostasis. Here, we review the immunologic and metabolic functions 
of AT macrophages and their different facets in obesity and the metabolic syndrome.

Keywords: obesity, adipose tissue, insulin resistance, macrophage, adipokines, macrophage polarization, adipose 
tissue inflammation

iNTRODUCTiON

Obesity is a prevalent metabolic disease characterized by excess accumulation of white adipose tissue 
(AT) due to increased food intake and changes in lifestyle (1, 2). Obesity leads to the development of 
a low-grade systemic chronic inflammatory state (3–6). According to the World Health Organization 
(WHO), 39% of adults over 18 years of age are overweight and 13% are clinically obese, translating 
to approximately 2 billion overweight adults where more than half a billion are obese (7).

A major player in systemic low-grade chronic inflammation in obesity is the increased numbers 
of AT pro-inflammatory macrophages and deregulated production and function of AT hormones 
and cytokines (2, 4). Besides its role in storing energy, AT is an important endocrine organ (8, 9), 
such that its dysfunction strongly contributes to the initiation and exacerbation of type 2 diabetes 
(T2D) (8, 10).

Insulin resistance is defined as a reduced response to insulin in liver, muscle, and AT. This 
impairment is due to the inhibition of the insulin-signaling pathway, leading to hyperglycemia. 
Insulin resistance is commonly associated with obesity and may precede the onset of T2D (11–13). 
One hypothesized reason for impaired insulin signaling has been thought to be due to the chronic 
systemic low-grade inflammation in obesity (14).

The finding that infiltration of monocytes, which differentiate into macrophages, is augmented 
in obesity is fundamental (15, 16). This results in pro-inflammatory macrophage and polarization 
leading to AT inflammation and insulin resistance (15, 17). Importantly, macrophages are crucial 
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for regulating the immune system, specifically by restoring and 
maintaining AT homeostasis (18, 19).

In this review, we highlight the different functions of AT 
macrophages (ATMs) in the maintenance AT tissue homeostasis 
during lean, obese, and insulin resistant states.

ADiPOSe TiSSUe MACROPHAGeS

The mechanisms by which inflammation increases during 
obesity are not fully understood. Increased pro-inflammatory 
cytokine secretion contributes to insulin resistance in obesity. 
Among these cytokines, tumor necrosis factor-α (TNF-α) was 
the first cytokine identified to be capable of inducing insulin 
resistance in adipocytes in vitro. In AT, the secretion of TNF-
α is primarily derived from macrophages (20–22), and the 
accumulation of these immune cells in obesity contributes to 
the development of insulin resistance (23). This supports a key 
role for inflammation in the regulation of systemic metabolic 
homeostasis.

Macrophages make up to 40% of all AT cells in obese mice 
compared to 10% in lean mice (23). These cells are increased in 
AT during obesity due to increased amounts of several factors, 
including free fatty acids (FFAs), cholesterol, and lipopolysac-
charide (LPS). Serum levels of LPS are elevated in obesity and, 
this cell wall component from Gram-negative bacteria, is linked 
to changes in the gut microbiota (metabolic endotoxemia) 
(24). LPS binds to and activates toll-like receptor 4 (TLR4) and 
its downstream signaling pathways in AT resident cells. These 
activated macrophages secrete cytokines and chemokines, such 
as monocyte chemoattractant protein-1 (MCP-1), and express 
C–C motif chemokine receptor-2 (CCR2) and CCR5, which in 
turn augment the recruitment of more monocytes and other 
leukocytes into AT (25–27). Macrophages share the same dif-
ferentiation and recruitment molecules with other myeloid cells 
in many inflammatory conditions (28). As observed during 
bacterial inflammation (29), in obesity, macrophage activation 
is dependent on I kappa B kinase-β (IKK-β) (30). Arkan et al. 
showed that IKK-β activation in macrophages is sufficient for 
the development of insulin resistance, and mice with loss of 
IKK-β function only in myeloid cells are protected from obesity 
development and insulin resistance (30). These findings demon-
strate the importance of macrophages in the context of insulin 
resistance development.

In addition to the activation and inflammatory profile of 
macrophages in the obese state, ATMs are highly adaptive to its 
lipid-rich environment. To maintain AT homeostasis in this lipid-
rich microenvironment, macrophages increase their adiposity 
by activating lysosomal lipid metabolism (31). This may be a 
physiological response to buffer the increase in lipid concentra-
tions released by adipocytes during obesity. This process does 
not classically activate ATMs, but it activates an immune cell 
differentiation program where high concentrations of lipids and 
FFAs induce a macrophage phenotype distinct from differenti-
ated bone marrow macrophages (BMDM) (31). This phenotype 
is characterized by lipid accumulation in ATMs and increased 
expression of fatty acids transporters, such as CD36 and the lipid 
scavenger receptor Msr1 (31).

Several immune cells regulate AT inflammation, insulin resist-
ance (32), and macrophage recruitment and differentiation (19, 
33–35). There are two distinct macrophage populations found 
in AT. In healthy/lean AT, alternatively activated macrophages 
(M2) that express CD206 and CD301 on their surface and secrete 
anti-inflammatory cytokines predominates. On the other hand, 
obesity triggers the accumulation of classically activated mac-
rophages (M1) characterized by CD11c surface expression, and 
expression of pro-inflammatory cytokines (17, 36), although this 
pan-classification spans a broad range of macrophage subtypes.

However, Kratz et al. recently described a different subtype of 
macrophage (37). They observed that treating macrophages with 
a mix of glucose, palmitate, and insulin (“metabolic activation”) 
generates a unique macrophage pro-inflammatory phenotype 
that is different from M1. This type of macrophage secretes 
pro-inflammatory cytokines, such as interleukin-1β (IL-1β) 
and TNF-α, whereby the secretion is dependent on peroxisome 
proliferator-activated receptor gamma (PPAR-γ) and p62 expres-
sion. In vivo, this phenotype is due to continuous and excessive 
exposure of ATMs to FFAs, such as palmitate, in a microenvi-
ronment that is saturated with glucose and insulin. In obesity, 
this differentiated macrophage subtype indicates the importance 
and the necessity to identify differentiated profiles of immune 
cells. Since there is a large spectrum of ATMs that have different 
immune profiles, we choose to focus on M1 and M2 subtypes of 
ATMs to better understand how metabolic alterations in ATMs 
impact obesity and insulin resistance.

M1 MACROPHAGeS: AN OveRview

M1 macrophages are associated with a pro-inflammatory profile. 
These macrophages are generally stimulated by T-helper 1 (Th1) 
type of cytokines, such as interferon-γ (IFN-γ), or by pathogen-
associated molecular patterns (PAMPs), such as LPS (38). In turn, 
M1 macrophages secrete cytokines, including IL-6, TNF-α, IL-1β 
(39), IL-12, and IL-23 (40). M1 macrophages can also induce Th1 
responses (41, 42). In general, these cells express high levels of 
major histocompatibility complex class II (MHC-II), CD80 and 
CD86 costimulatory molecules and CD68 (43). Moreover, M1 
macrophages express Th1 cell-attracting chemokines, including 
CXCL9 and CXCL10 (44).

In addition to IFN-γ and LPS, there are several other molecules 
involved in M1 macrophage polarization, such as interferon 
regulatory factor (IRF), signal transducers and activators of tran-
scription (STAT), and suppressor of cytokine signaling (SOCS). 
IRF5 is involved in M1 polarization by inducing the transcrip-
tion of interleukin-12 subunit p40 (IL-12p40), IL-12p35, and 
IL-23p19, and by repressing the transcription of IL-10 (45). M1 
macrophages express SOCS3, which promotes nitric oxide (NO) 
production (46). SOCS3 controls nuclear factor-κB (NF-κB) and 
phosphatidylinositol 3-kinase (PI3K) activity, favoring NO pro-
duction in macrophages (46). The induction of inducible nitric 
oxide synthase (iNOS), another important molecule induced 
in M1 macrophages is dependent on TLR ligands, such as LPS, 
and activation of NF-κB, PI3K, and IFN-γ secretion (47, 48) 
(Table 1). Furthermore, myeloid differentiation primary response 
gene 88 (MyD88)-dependent pathway is also important for M1 
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TABLe 1 | Differential requirement for stimuli and differential expression of transcription factors, cytokines, chemokines, and other molecules by M1 
and M2 macrophages.

M1 M2

Classical stimuli LPS/GM-CSF/IFN-γ/TNF-α PPAR-γ agonists/IL-4/IL-10/IL-13
Membrane markers MHCII/CD80/CD86/CD11c/CCR7/Ly6Chigh/CD11b/CD62L/

CCR2high/CX3CR1low/CCR5
Dectin-1/CD206/Scavenger receptor/CD163/CCR2low/CXCR1/
CXCR2/Ly6Clow/CD11b/CX3CR1high

Classical transcription factors STAT1/IRF5 STAT6/FIZZ1/Ym1/PPARα/β/γ

Cytokines and chemokines IL-6/TNF-α/IL-1β/IL-12/Il-23/IFN-γ/CXCL9,10,11,13/CCL8,  
15, 19, 20

TGF-β/IL-10/CCL17, 18, 22, 24

Other classical molecules SOCS3/iNOS Arg1
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polarization (49). The expression of TLR4/TLR2 is significantly 
higher in M1 when compared to M2 macrophages (50). The 
absence of TLR4 drives macrophages toward an M2 phenotype 
(51), indicating that activation and polarization of macrophages 
is, at least, in part dependent on TLRs.

In contrast to M1 macrophages generated in vitro, which do 
not express CD11c, M1 ATMs express CD11c concomitant with 
F4/80 and CD11b (17, 52–54). Interestingly, the expression of 
CD11c in  vitro by BMDM can be induced if BMDMs are dif-
ferentiated in the presence of adipocytes (31, 37). This indicates 
the importance and requirement of adipocytes in orchestrating 
the functional phenotype of ATMs.

The recruitment of monocytes, which in AT gives rise to 
CD11c+ ATMs, is dependent on CCR2, CCR5, and MCP-1 (55, 
56). Nagareddy et  al. demonstrated that ATM-derived IL-1β 
promotes monocyte release from the bone marrow (57) and 
MCP-1 induces M1 ATM proliferation in AT (58). These pro-
cesses are important to promote macrophage accumulation in 
the AT during obesity and sustain AT inflammation and insulin 
resistance (58).

POLARiZiNG M1 ATMs: HOw THeY 
iNDUCe iNSULiN ReSiSTANCe

Obesity-associated insulin resistance correlates with elevated 
levels of pro-inflammatory cytokines, such as TNF-α, IL-1β, and 
IL-6 (42, 59–62). These cytokines are secreted by both adipocytes 
and ATMs due to increased levels of pro-inflammatory factors 
released during obesity development. These factors include FFA, 
triglycerides, resistin, leptin, retinol-binding protein 4 (RBP4), 
IL-6, TNF-α, and IL-1β, among others (31, 63, 64).

Secretion of these factors activates several inflammatory 
signal transduction pathways in macrophages and adipocytes, 
which are required for obesity-induced insulin resistance. The 
stress-responsive c-Jun NH2-terminal kinase (JNK 1 and 2) (65), 
inhibitor of κB kinase (IKK) (66), extracellular signal-regulated 
kinase 1 and 2 (ERK 1 and 2) (67), and mitogen-activated pro-
tein kinase p38 (p38 MAPK) are responsible for alterations in 
the insulin receptor signaling pathway (68). These alterations 
lead to decreased tyrosine phosphorylation of insulin receptor 
substrate (IRS-1 and -2), PI3K activation followed by a decreased 
serine phosphorylation of Akt and consequently insulin resist-
ance (66, 68–72). There is a crosstalk between the two isoforms 

of JNK (JNK1 and JNK2) that contributes to obesity-induced 
insulin resistance development. The balance between these 
two molecules determines the total activity of JNK in fat tis-
sues (73). Hematopoietic activation of JNK1 is a major player 
in obesity-induced inflammation and insulin resistance (74). 
Corroborating this, Han et al. verified that knockdown of both 
JNK 1 and 2 in macrophages protect mice from HFD-induced 
insulin resistance and AT inflammation (65). Similarly, Vallerie 
et  al. showed that myeloid JNK1 is a regulator of cytokine 
expression in AT during the late, but not early states of obesity 
development (75).

Toll-like receptors and inflammasomes are activated in 
obesity by damage-associated molecular pattern molecules 
(DAMPs), such as high-mobility group box 1 (HMGB1) and 
oxidized low-density lipoprotein (Ox-LDL), RBP4 or PAMPs, 
such as LPS (24, 76–80). TLRs and inflammasomes modulate 
macrophage polarization due to activation of NF-κB, STAT1, and 
caspase-1 to induce IL-1β production (81, 82). Upon activation, 
these receptors contribute to low-grade chronic inflammation in 
obesity, leading to M1 polarization of ATMs. Importantly, TLR4 
expression is increased in ATMs during obesity (83). Thus, many 
studies have investigated the role of TLR4 and nod-like receptor 
protein 3 (NLRP3) in knockout mouse models in HFD-induced 
obesity (17, 23, 51, 84).

Toll-like receptor 4 deficiency in HFD-fed mice ameliorates 
AT inflammation, insulin resistance, and adiposity (83, 85, 86). 
The reduction in inflammation is due to decreased macrophage 
infiltration and a switch from M1 to M2 macrophage profile (51, 
83, 85, 87).

Nod-like receptor protein 3 inflammasome also plays a key 
role in the development of AT inflammation and insulin resist-
ance (88, 89). Expression of NLRP3, apoptosis-associated speck-
like protein containing CARD (ASC), caspase-1, and IL-1β are 
all upregulated in AT of obese mice, as well as the mature form 
of IL-1β (82, 90). The secreted IL-1β binds to IL-1R and activates 
NF-κB and MAPK pathways, thereby impairing insulin signaling 
through the activation of IRS-1 in adipocytes leading to insulin 
resistance (82, 91).

Functional deletion of NLRP3 and caspase-1 ameliorate HFD-
induced insulin resistance and AT inflammation (82, 90, 92). 
Moreover, weight loss and insulin sensitivity in patients with T2D 
is associated with decreased AT expression of NLRP3 and IL-1β 
(82). Protection from insulin resistance and inflammation follow-
ing loss of functional NLRP3 may be due to a shift in macrophage 
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polarization, since NLRP3-knockout mice have decreased M1 
and increased M2 gene expression profiles in AT (84).

In addition to these important signaling pathways, the mam-
malian target of rapamycin (TOR) has an important function 
in insulin resistance. It is able to sense nutrients and respond 
by altering the cellular metabolism in different kind of cells, 
including ATMs (93). Insulin, glucose, leptin, and other growth 
factors and cytokines activate mTOR pathway via PI3K–Akt 
signaling pathway (94). The protein kinase Akt phosphoryl-
ates and inhibits TSC2 and, consequently, activates mTORC1 
(95, 96). Activation of these metabolic sensors, mainly PI3Kγ, 
is important for immune cell functions. PI3Kγ activation in 
hematopoietic cells contributes to the development of obesity 
and insulin resistance. PI3Kγ activity in the non-hematopoietic 
compartment is critical during obesity (97). Moreover, the cata-
lytic subunit of PI3Kγ, p110γ, was shown to be activated during 
obesity. Absence of functional p110 improved insulin sensitivity 
with reduced infiltration of pro-inflammatory macrophages and 
inflammatory marker expression in AT. In addition, specific 
depletion of PI3Kγ in bone marrow cells as well as pharmaco-
logical blockade also inhibited macrophage infiltration during 
obesity and insulin resistance (98). Together, these data indicate 
that activation of metabolic sensors in immune cells during 
obesity is essential for inflammation and insulin resistance 
development.

Defects in mTORC1 regulation can lead to metabolic 
dysfunction, including T2D (93). Deletion of mTORC1 in 
macrophages diminishes AT inflammation and protects mice 
against HFD-induced insulin resistance (99, 100). mTORC1 
disruption suppresses HK1-dependent glycolysis, caspase-1 
activation, IL-1β, and IL-18 secretion in vitro and in vivo and 
induces M2 polarization (100). In accordance, Jiang et  al. 
showed that mTORC1 depletion in macrophages protects 
mice against HFD-induced AT inflammation and insulin 
resistance through the inhibition of IRE1α/JNK/NF-κB 
pathways (99).

In 2013, Horng et al. demonstrated in vitro and in vivo that 
TSC1 deletion (Tsc1 deficiency, thereby mTORC1 is constitutively 
active) in macrophages leads to a marked defect in M2 polariza-
tion in response to IL-4, although LPS stimulation induced 
inflammatory responses in an mTOR-dependent manner (101). 
Moreover, in obesity, nutrient sensing by mTORC1 regulates the 
switch of ATMs from M2 to M1 (12).

More recently, Zhu et  al. proposed that TSC1 deletion in 
macrophages intensifies the M1 polarization (102). TSC1 inhib-
its M1 polarization by suppressing the Ras GTPase/Raf1/MEK/
ERK signaling pathway in an mTOR-independent manner, 
whereas TSC1 promotes M2 properties by mTOR-dependent 
CCAAT/enhancer-binding protein-β pathway (102). These 
findings indicate a critical role for TSC1 in orchestrating mac-
rophage polarization via mTOR-dependent and -independent 
pathways (102) (Figure 1).

Increased M1 activation in AT is involved in activation of 
the adaptive immune response through the recruitment and 
activation of T cells. Increased recruitment of CD4+ T cells cor-
relates with increased M1 polarization. Also, M1 polarization 
appears to be dependent on AT Th1 polarization (42, 103–106). 

In addition, during obesity, the activation of Th1 responses in 
AT are mediated by mTORC1, since this molecule is necessary 
for polarization of T lymphocytes toward a Th1 phenotype 
(107). Moreover, circulating leptin, which is elevated dur-
ing obesity, activates mTOR pathway, and also induces Th1 
responses (108, 109). Thus, Th1 polarization is dependent on 
M1 polarization, and it is critical for the development of insulin 
resistance (104).

Together, several pathways mediate the induction/activation 
of ATMs to maintain AT homeostasis, which can also be affected 
by changes in systemic and cellular metabolism.

M2 MACROPHAGe: AN OveRview

M2 macrophages are associated with tissue remodeling and 
inflammation resolution (110). M2 macrophages have immuno-
suppressive properties, have high phagocytic capacity, and secrete 
extracellular matrix components, angiogenic and chemotactic 
factors, anti-inflammatory cytokines, and growth factors, such 
as IL-10 and transforming growth factor β (TGF-β) (111, 112). 
M2 macrophages are characterized by upregulated expression of 
Dectin-1, CD206, scavenger receptor A, scavenger receptor B-1, 
CD163, CCR2, CXCR1, CXCR2, and MgL 1/2 (36). Moreover, 
the expression of arginase-1 (Arg1), PPAR-γ, and transcription 
factor found in inflammatory zone 1 (FIZZ1), which is specific 
of murine M2 macrophages, are necessary for collagen synthesis, 
further supporting the role of these cells in tissue remodeling (44) 
(Table 1).

In vitro, M2 macrophages appear to be a heterogeneous popu-
lation induced by a variety of stimuli. M2a is induced by IL-4 or 
IL-13 express high levels of CD206 and has immunoregulatory 
functions (38, 113–115). M2b is induced by immune complexes 
and TLRs or IL-1R agonists. Both M2a and M2b have an immu-
noregulatory role through down-regulation of IL-12, IL-6, and 
TNF (116). M2c is induced by IL-10 and glucocorticoids. It has an 
immunosuppressive phenotype and participates in tissue remod-
eling. M2c secretes pro-fibrotic factors, such as TGF-β, CCL17, 
and CCL22 (38, 116). In addition, expansion of M2c macrophages 
is negatively regulated by PPAR-γ, which is expressed in M2 ATM 
(117). Although significant progress has been made in character-
izing M2 subpopulations, it still not completely understood how 
these cells behave in vivo.

M2 ATMs AND iNSULiN SeNSiTiviTY

The microenvironment in a lean AT is composed of a 4:1 M2:M1 
ratio (118). The presence of eosinophils and regulatory T cells 
(Tregs), which secrete the cytokines IL-4/IL-13 and IL-10, respec-
tively, polarizes ATMs toward an anti-inflammatory phenotype 
(119–121). In lean AT, adipocytes secrete higher levels adiponec-
tin compared with obese AT. Adiponectin enhances insulin 
sensitivity and increases M2 macrophage polarization (121). 
These cells and their secretome maintain the positive balance of 
M2 macrophages in lean AT.

Obesity inversely correlates with AT Tregs (122, 123). 
Moreover, Tregs can induce M2 macrophage differentiation in 
mice through IL-10 and TGF-β (124). In lean AT, these cells 
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FiGURe 1 | Macrophages are central players in lean and obese states. Lean adipose tissue is abundant in immune cells, such as eosinophils, Th2 T cells, 
ILC2, regulatory T cells (Treg), and M2 (anti-inflammatory) macrophages. These cells are known to secrete anti-inflammatory cytokines, such as IL-10, IL-4, IL-13, 
and IL-33, to maintain AT homeostasis and controlling insulin sensitivity. M2 macrophages use oxidative metabolism through PPARγ/β/δ, CARKL, STAT6, and 
PGC-1β. These events are central to maintain a healthy environment in adipose tissue. In the other hand, during obesity, AT is characterized by infiltration of several 
immune cells, such as monocytes, neutrophils, Th1 and Th17 lymphocytes, and M1 (pro-inflammatory) macrophages. The increased secretion of FFA, SFA, Ox-LDL, 
and LPS in obesity activates resident macrophages and adipocytes leading to secretion of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β, and chemokines 
MCP-1, CCR2, and CCR5. This process will instigate the recruitment of monocytes and differentiation of M1 macrophages in AT. Besides, activation of pro-
inflammatory signaling pathways downstream to TLRs, such as JNK, ERK, p38, IκB, IKKβ, and Pi3Kγ, inhibit insulin receptor signaling, leading to insulin resistance. 
Moreover, in obese AT, M1 macrophages use glycolytic metabolism and require activation of intracellular molecules, such as NLRP3, TLR2/4, STAT1, GLUT-1, 
HIF-1α, mTORC1, PFK2, and PKM2, and conversion of pyruvate to lactate by LDH. Activation of glycolysis in macrophages is central to maintain their pro-
inflammatory profile.
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are involved in the regulation of tissue homeostasis and help to 
maintain the M2 macrophage population (122).

Recently, new regulatory players in AT homeostasis have been 
identified: innate lymphoid type 2 cells (ILC2s) and IL-33. ILC2s 
are a regulatory subtype of ILCs. These cells were divided into 
three distinct populations, ILCs 1, 2, and 3 (125–127). These 
subpopulations of ILCs are analogous to the largely known CD4+ 
T helper subsets: Th1, Th2, and Th17, respectively, with respect 
to cytokine profile expression (128). However, ILCs do not have 
T-cell receptors and respond to antigenic signals in the absence 
of antigen specificity (128). ILCs are activated by the cytokine 
IL-33 and produce large amounts of the type 2 cytokines: IL-5 
and IL-13 (129).

Interleukin-33 is constitutively present in humans and mice, 
mainly in specialized populations of epithelial and endothelial 
cells (130, 131). Its receptor (ST2) is highly expressed in ILC2s 
and Th2 lymphocytes, and it is also found in eosinophils, mast 
cells, dendritic cells, basophils, myeloid-derived suppressor cells, 
and Tregs (132).

Interleukin-33, as well as ILC2s, has been in the spotlight 
due to their putative contributions in the improvement of 
obesity-induced insulin resistance. Upon binding to its recep-
tor, IL-33 induces the production of large amounts of anti-
inflammatory cytokines by AT ILC2s and also the polarization 
of ATMs toward an M2 phenotype (133). This results in AT 
mass reduction and improves insulin resistance (133, 134). Han 
and colleagues investigated ST2 expression in murine Tregs in 
lean and obese visceral AT. AT Tregs from lean mice express 
higher levels of ST2 compared to AT Tregs from obese mice. 
Moreover, treatment with IL-33 restored the ST2-positive Treg 
population, reduced AT inflammation, and improved insulin 
resistance (133).

In this context, Brestoff et al. demonstrated that IL-33 plays 
an important role in the maintenance of ILC2s in AT, promoting 
energy expenditure, and reducing adiposity in mice (135). This 
decrease in adiposity was due to caloric expenditure upon the 
induction of uncoupling protein 1 (UCP1) expression in AT, a 
process called “beiging” or “browning” (136, 137). UCP1 protein 
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is limited to beige and brown adipocytes and regulates caloric 
expenditure (135). In agreement with Artis et al., Chalwa’s et al. 
found that IL-33 promoted the accumulation and activation of 
ILC2s in mouse AT, leading to the biogenesis of beige fat, which 
is crucial for AT metabolic homeostasis (138) (Figure 1).

Taken together, these studies demonstrate the importance 
of alternatively activated macrophages to maintain the tissue 
homeostasis, especially in AT. Moreover, the discovery of new 
alternative pathways for the polarization of ATMs toward an 
M2 phenotype is necessary to better understand the mechanisms 
by which insulin sensitivity in obesity.

MACROPHAGe MeTABOLiSM AND iTS 
ROLe iN iNSULiN SeNSiTiviTY

In addition to cytokines, the availability of substrates in tissues 
orchestrates macrophage function. Cellular metabolism is not 
static but is rather a dynamic process that allows cells to adapt 
to the microenvironment (139). The type of nutrient substrate is 
critical for ATM function. Saturated fatty acids (SFAs) are pro-
inflammatory and induce M1-like phenotype, while certain types 
of unsaturated fatty acids (UFAs), such as omega-3 and branched 
fatty acid esters of hydroxy fatty acids (FAHFA) (140), are anti-
inflammatory and induce an M2-like phenotype (141).

M1 macrophages preferentially metabolize glucose as an 
energy substrate (142). During activation, macrophages alter 
its metabolism to support survival and cellular functions. The 
metabolism of M1 macrophages upon activation is characterized 
by induced aerobic glycolysis with increased glucose uptake and 
the conversion of pyruvate to lactate by lactate dehydrogenase 
(LDH) (143). This activation in aerobic glycolysis decreases 
respiratory chain activity due to increased ROS levels (144). This 
metabolic switch is necessary for NO production, an important 
effector of immune microbicidal activity and pro-inflammatory 
M1 macrophage responses (144).

In addition, the expression of glucose transporter-1 (GLUT-
1) drives the pro-inflammatory phenotype of M1 macrophages, 
increases glucose uptake, and, subsequently, augments glucose 
metabolism (145).

One important molecule regulating glycolysis and mac-
rophage activation is hypoxia inducible factor-1α (Hif-1α). 
Hif-1α induces a pro-inflammatory phenotype in macrophages 
(146) via TLR4 activation, which involves the PI3K/Akt signal-
ing pathway (147). Low oxygen (O2) tension and inflammatory 
responses increase TLR4 expression in macrophages (148). 
Moreover, M1 macrophages co-localize with AT hypoxic areas 
in obese mice and are associated with increased inflammatory 
responses (147–149). Because these macrophages need to adapt 
to the obesity-induced hypoxic tissue environment, activating 
anaerobic glycolysis under these circumstances best serves these 
immune cells to support their rapid and demanding energy 
requirements (143).

Activation of macrophages with LPS also results in increased 
levels of succinate and malate (150). Succinate, in particular, 
drives IL-1β production, which is dependent on Hif-1α activation 

(150). In addition, pyruvate kinase M2 (PKM2), a critical deter-
minant of macrophage activation by LPS, promotes inflammatory 
responses (151). Activation of PKM2 plays a key role in stabilizing 
Hif-1α and Hif-1α-dependent genes, such as IL-1β expression. 
LPS induces dimerization of PKM2 that in turn complexes with 
Hif-1α. This complex directly binds to the IL-1β promoter, an 
event that is inhibited by the activation of tetrameric PKM2, 
which induces M2 macrophage differentiation and attenuates 
LPS-induced M1 macrophages (151). Thus, PKM2 in its dimeric 
form is required for glycolytic reprograming in response to LPS. 
The dimeric form of PKM2 plays role in Hif-1α function, whereas 
the tetrameric form of PKM2 impairs the ability of PKM2 to pro-
mote transcriptional activity of Hif-1α and LPS-induced IL-1β 
expression (151).

Nonetheless, the microenvironment rich in LPS and 
IFN-γ also enhances M1 macrophage polarization and 
glycolysis activation independently of Hif-1α. This occurs 
upon 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 
(PFK2) induction (152).

In contrast to M1 glycolytic metabolism, M2 macrophages 
utilize oxidative metabolism (142). The induction of oxidative 
metabolism in M1 macrophages shifts their phenotype toward an 
M2 profile (152). Moreover, the overexpression of carbohydrate 
kinase-like protein (CARKL), which regulates the production of 
sedoheptulose-7-phosphate (S7P), an intermediate of the pentose 
phosphate pathway (PPP) (153) results in decreased production 
of pro-inflammatory cytokines, which suggests a shift toward an 
M2 macrophages phenotype (154).

Besides CARKL, the coactivator protein PPAR-γ-coactivator-
1β (PGC1-β) induces mitochondrial respiration as well as mito-
chondrial biogenesis. This is a key player in the metabolic switch 
of macrophages from M1 to M2 phenotype (142, 144). Blocking 
PGC1-β results in impaired M2 macrophage metabolism and 
function (142). Thus, identifying mechanisms that modulate the 
metabolism of macrophages may dampen the onset and exacer-
bation of inflammatory processes.

Adipose tissue-derived IL-4 and IL-13 signals through IRF/
STAT to activate STAT6 in M2 macrophages (44, 113). STAT6 
induces the expression of transcriptional regulators, such as 
PPAR-γ (44). PPAR-γ maintains the metabolic switch toward 
oxidative metabolism and promotes M2 gene expression (Arg1) 
to amplify the effector phenotype of M2 macrophages (collagen 
synthesis) (31, 155, 156). Other members of the PPAR family, 
PPARβ/δ, appears to differentially influence macrophage activa-
tion, along with IL-4 and IL-13, and promotes an alternative 
M2 macrophage phenotype (156). Myeloid deletion of PPARβ/δ 
leads to glucose intolerance and insulin resistance (27), indicat-
ing that expression of PPARs transcription factors is crucial 
to maintain the M2 phenotype through the secretion of Th2 
cytokines (Figure 1).

Hypoxia inducible factor-2α has been shown to regulate the 
transcription of Arg1, which is expressed by M2 macrophages 
(157). However, Hif-2α also controls IL-1β production and 
NF-κB activity, which is associated with an M1 phenotype (150, 
157). Thus, although Hif-2α appears to have a role in macrophage 
polarization, more studies are needed to better understand the 
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importance of this transcription factor for macrophage pheno-
type, metabolism, and function.

It is still unclear how M2 macrophages metabolism is regulated 
during obesity and the role of M2 macrophage metabolism for 
the development of insulin resistance. Nevertheless, in lean state, 
they have an oxidative metabolism, which may shift to glycolytic 
metabolism, during obesity, due to a pro-inflammatory environ-
ment and further studies are needed to better understand their 
role in obesity.

CONCLUSiON

Macrophages are central mediators of obesity-induced AT inflam-
mation and insulin resistance. They also are key cells for mainte-
nance of AT homeostasis. Recently, several reports described the 
importance of these cells as regulators of insulin sensitivity, which 
involves the activation of innate immune receptors, transcription 
factors, and intracellular metabolism to support the either pro- or 
anti-inflammatory AT phenotype. Thus, macrophages have a dual 
role, changing their status to support immune responses, obesity 
development, and related diseases.
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systemic inflammation in 
cachexia – is Tumor cytokine 
expression Profile the culprit?
Emidio M. de Matos-Neto1*† , Joanna D. C. C. Lima1† , Welbert O. de Pereira2 ,  
Raquel G. Figuerêdo1 , Daniela M. dos R. Riccardi1 , Katrin Radloff1 ,  
Rodrigo X. das Neves1 , Rodolfo G. Camargo1 , Linda F. Maximiano3 , Flávio Tokeshi3 ,  
José P. Otoch3 , Romina Goldszmid4 , Niels O. S. Câmara5 , Giorgio Trinchieri4 ,  
Paulo S. M. de Alcântara3 and Marília Seelaender1
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Cachexia affects about 80% of gastrointestinal cancer patients. This multifactorial 
syndrome resulting in involuntary and continuous weight loss is accompanied by sys-
temic inflammation and immune cell infiltration in various tissues. Understanding the 
interactions among tumor, immune cells, and peripheral tissues could help attenuating 
systemic inflammation. Therefore, we investigated inflammation in the subcutaneous 
adipose tissue and in the tumor, in weight stable and cachectic cancer patients with 
same diagnosis, in order to establish correlations between tumor microenvironment and 
secretory pattern with adipose tissue and systemic inflammation. Infiltrating monocyte 
phenotypes of subcutaneous and tumor vascular-stromal fraction were identified by flow 
cytometry. Gene and protein expression of inflammatory and chemotactic factors was 
measured with qRT-PCR and Multiplex Magpix® system, respectively. Subcutaneous 
vascular-stromal fraction exhibited no differences in regard to macrophage subtypes, 
while in the tumor, the percentage of M2 macrophages was decreased in the cachec-
tic patients, in comparison to weight-stable counterparts. CCL3, CCL4, and IL-1β 
expression was higher in the adipose tissue and tumor tissue in the cachectic group. 
In both tissues, chemotactic factors were positively correlated with IL-1β. Furthermore, 
positive correlations were found for the content of chemoattractants and cytokines in 
the tumor and adipose tissue. The results strongly suggest that the crosstalk between 
the tumor and peripheral tissues is more pronounced in cachectic patients, compared 
to weight-stable patients with the same tumor diagnosis.
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inTrODUcTiOn

Cachexia is a multifactorial and multi-organ syndrome char-
acterized by continuous and involuntary weight loss and by 
systemic inflammation (1, 2). This syndrome was described about 
2000 years ago by Hippocrates and is a common feature of several 
diseases, such as chronic obstructive pulmonary disease, chronic 
heart failure, chronic infection, and cancer (3).

In cancer, cachexia is present in approximately 50% of all 
patients and in up to 80% of patients with advanced disease, 
reducing tolerance to treatment, therapeutic response, and qual-
ity of life and survival (4). Among 22–40% of all cancer deaths are 
directly caused by cachexia (5), and its incidence varies among 
the different types of cancer, being of around 80% in pancreas 
and gastrointestinal cancer patients, and of 60% in lung cancer 
patients (6).

An important feature of cachexia is chronic systemic inflam-
mation and, paradoxically, immunosuppression (7). Mediators 
produced by both the tumor and the host induce intracellular 
changes directly associated with persistent inflammation (8). 
The sources of the inflammatory factors in cachexia are plenty, 
including tumor cells, tumor infiltrating cells along with periph-
eral tissue parenchymal cells and associated infiltrating cells 
(9). Thus, an intricate tumor–host interaction is established, 
promoting an imbalance that favors the pro-inflammatory over 
the anti-inflammatory status (10, 11).

Solid tumors often present infiltrating immune cells and release 
cytokines into surrounding tissues and into the bloodstream (12). 
The immune cells within tumor microenvironment consist of 
various phenotypes, among which myeloid-derived suppressor 
cells, dendritic cells, natural killers, T cells, and macrophages 
(13). The infiltrate contributes to tumor growth and also to micro-
environment remodeling; while the release of cytokines into the 
bloodstream promotes tissue and organ functional impairment as 
a result of systemic inflammation (12). Studies with models have 
shown that the host’s tissues play a key role in sustaining systemic 
inflammation and inducting cachexia (14–17).

However, as far as we know, there are no reports in the 
literature comparing the cytokine secretory profile of tumors of 
cachectic and non-cachectic cancer patients matched for tumor 
type and stage. It is very possible that inflammatory factors 
secreted by the tumor are the culprit, eliciting secondary tissue 
inflammation, will as a consequence, fuel systemic inflamma-
tion. Argilés et  al. review the large number of cytokines that 
might be responsible for the metabolic changes associated with 
cancer wasting (18). We have consistently found that WAT 
(white adipose tissue) is a contributor to systemic inflam-
mation, as both adipocytes and infiltrating immune cells are 
capable of releasing cytokines in animal models of cachexia. 
Nevertheless, the mechanisms that trigger adipose inflamma-
tion in cancer cachexia are not fully elucidated. We hypothesize 
that differences in tumor microenvironment and secretion pat-
tern in patients with the same diagnosis and tumor stage could 
be associated with the presence or absence of cachexia-related 
peripheral tissue inflammation.

The aim of the present study was therefore, to examine the 
secretory profile of tumors of cachectic and non-cachectic 

patients with matched tumor diagnosis and relate to the results 
with local white adipose tissue and systemic inflammation.

MaTerials anD MeThODs

subjects
Twenty-three cancer patients (60.53  ±  13.08  years old) par-
ticipated in the study. The study was approved by the University 
of São Paulo Biomedical Sciences Institute Ethics Committee 
(1004/CEP) and by the University Hospital Ethics Committee 
(CEP-HU/USP: 752/07) in accordance to the Declaration of 
Helsinki (2013). All participants signed an informed consent prior 
to engaging in the study. The inclusion criteria were: not having 
received anticancer or continuous anti-inflammatory treatment 
and willingness to participate. The exclusion criteria were: liver 
failure, renal failure, AIDS, inflammatory diseases of the bowel, 
and autoimmune disorders. Patient group division was based on 
the criteria proposed by Evans et al. (19). Characteristics of the 
subjects are summarized in Table 4.

realtime Pcr
Total RNA was isolated from samples, with Trizol® reagent 
(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s 
recommendations, and then homogenized. RNA concentrations 
were determined by measuring the absorbance in 260/280  nm 
in Synergy H1 Multi-Mode Reader (Thermo Fisher Scientific 
Inc., Waltham, MA, USA). Complementary DNA synthesis was 
carried out using the high capacity cDNA reverse transcription 
kit (Life Technologies, Grand Island, NY, USA), which consisted 
of an assay mix containing 1 μg total RNA, 2 μL 10× RT Buffer, 
0.8 μL 25× dNTP mix (100 mM), 2 μL 10× Random primers, 1 μL 
MultiScribe™ Reverse Transcriptase, and 4.2 μL of nuclease-free 
water in a final volume of 20 μL. The thermal cycler conditions 
were: 25°C for 10 min, then 37°C for 120 min followed by 85°C 
for 5 min. Then, 20 ng of cDNA was mixed with 2× SYBR Green 
fast PCR master mix – and primers (Table 1) (Life Technologies, 
Grand Island, NY, USA) – in a final volume of 10 μL for qPCR, 
performed in the Quantstudio 12K Real Time Systems (Life 
Technologies, Grand Island, NY, USA). The mRNA levels were 
determined by the comparative Ct method. For each sample, a 
ΔCt value was obtained by subtracting RPL-27 or HPRT1 gene 
values from those of the gene of interest. The average ΔCt value of 
the control group was then subtracted from the sample to derive 
a −ΔΔCt value. The expression of each gene was evaluated by 
2−ΔΔCt, according to Livak and Schmittgen (20).

Multiplex analysis of sample Protein 
content
Samples of the tumor and subcutaneous adipose tissue from the 
experimental groups were incubated with the mixture of Magplex 
microspheres and covered with the specific antibodies for 2  h. 
The detection of target antigens bound to the microspheres was 
performed with a mixture of biotinylated capture antibodies 
after incubation for 1 h followed by incubation with streptavidin 
labeled with phycoerithrin for 30  min. The microspheres were 
then analyzed with the phycoerithrin Magpix® instrument (Life 
Technologies, Grand Island, NY, USA). Each cytokine value 
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TaBle 2 | cytokine analysis.

cytokine abbreviation

Tumor necrosis factor alpha TNF-α
Tumor necrosis factor beta TNF-β
Interleukin 6 IL-6

Interleukin 7 IL-7

Interleukin 10 IL-10

Interleukin 13 IL-13

Interferon alpha IFN-α
Interferon gamma IFN-γ
Interferon gamma-induced protein 10 IP-10

Monocyte chemotactic protein1 MCP1/CCL2

Macrophage inflammatory protein-1α MIP-1α/CCL3

Macrophage inflammatory protein-1β MIP-1β/CCL4

Chemokine(C–C motif) ligand 5 RANTES/CCL5

TaBle 1 | list of primers.

gene (species) sequence 5′→3′

CCL-2 (Homo sapiens) (NM 
002982.3)

Fw: TCA GCC AGA TGC AAT CAA TG
Rev: ACA CTT GCT GCT GGT GAT TCT

IL-1β (Homo sapiens) (NM 
000576.2)

Fw: AGC CAA TCT TCA TTG CTC AAG T
Rev: AGT CAT CCT CAT TGC CAC TGT

IL-6 (Homo sapiens) (NM 
000600.3)

Fw: CAG CCC TGA GAA AGG AGA CAT
Rev: AGC CAT CTT TGG AAG GTT CA

IFN-γ (Homo sapiens) (NM 
000619.2)

Fw: TGG AAA GAG GAG AGT GAC AGA A
Rev: TTG GAT GCT CTG GTC ATC TTT A

TNF-α (Homo sapiens) (NM 
000594.3)

Fw: CTC TCT CCC CTG GAA AGG AC
Rev: ATC ACT CCA AAG TGC AGC AG

IL- 10 (Homo sapiens) (NM 
000572.2)

Fw: TGTCATCGATTTCTTCCCTGT
Rev: TGC CTT TCT CTT GGA GCT TAT T

RPL-27(Homo sapiens) (NM 
000988.3)

Fw: CCG AAA TGG GCA AGT TCA T
Rev: CCA TCA TCA ATG TTC TTC ACG A

IL-8 (Homo sapiens) (NM 
000584.3)

Fw: AGC TCT GTG TGA AGG TGA T
Rev: TTT GGG GTG GAA AGG TTT G

ZAG (Homo sapiens) (NM 
001185.3)

Fw: CCA GGA GAA CCA AGA TGG TC
Rev: CTG CTT CCA ATC CTC CAT TC

PIF (Homo sapiens) (NM 
005268627.1)

Fw: AGG AAG CAG AGA TCC AGC CT
Rev: GGC TCC TTT ACC CAC GCT TT

HPRT1(Homo sapiens) (NM 
000194.2)

Fw: TGG CGT CGT GAT TAG TGA TG
Rev: CTT GAG CAC ACA GAG GGC TA

TaBle 3 | Panels of fluorochrome-conjugated antibodies for flow 
cytometry.

Panel antibody Fluorochrome catalog no.

Macrophages (M1 and M2) CD45 FITC 555482
CD206 PE 555954
CD14 PERCP-Cy5.5 562692
CXCR4 PE-Cy7 560669
CD86 APC 555660
CD11b APC-Cy7 557657
CCR7 BV421  562555
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was corrected to total protein concentration. The table below 
describes all analyzed cytokines (Table 2).

immunophenotyping by Flow cytometry
Preparation of Adipose Tissue and Tumor Cells for 
Flow Cytometry
Fractions of subcutaneous adipose tissue and tumor were 
obtained, any lymph nodes were carefully removed, and the tis-
sues were placed in either DMEM (Dulbecco’s Modified Eagle 
Medium) or HBSS (Hank’s Balanced Salt Solution). The tissue 
fragments were then digested for 40 min at 37°C in these culture 
media containing collagenase type I (280 U/ml) (Sigma Aldrich) 
under agitation. The samples were filtered through fine plastic 
mesh and washed with respective media.

Finally, cells of vascular-stromal fraction were separated by 
centrifugation at 500 g for 5 min. The cells of the stromal-vascular 
fraction of adipose tissue were resuspended and washed twice 
with culture medium and centrifuged again at 500 g, for 5 min. 
The cells were resuspended in 500 μL of FBS and dimethyl sul-
foxide (DMSO) and stored in liquid nitrogen until processing for 
flow cytometry.

cell surface antigens for Flow cytometry
The samples were rapidly thawed in a water bath at 37°C, washed 
with culture medium, and pelleted at 600 g for 10 min at 4°C. 
Compensation of the flow cytometer (FACSCanto II  –  BD 
Biosciences) was performed with compensating beads and then 
the gates were determined for the analysis of cell populations of 
interest (Figure S1 in Supplementary Material).

The fluorochrome conjugated antibodies (listed in Table 3) of 
the macrophage panels were added to the samples, and these were 
incubated for 30 min at 4°C, in the dark. The labeled cells were 
washed, centrifuged 400 g for 5 min, resuspended in 500 μL of 
DMEM, and detected by BD FACSCantoTM II cytometer.

statistical Methods
Data are expressed as mean ± SE or median [first quartile; third 
quartile]. First, a Gaussian distributions test was employed for all 
samples (D’Agostino-pearson omnibus test, Shapiro–Wilk test, 
Kolmogorov–Smirnov Test). Student’s t-test or Mann–Whitney 
test with multiple comparisons was employed for parametric and 
non-parametric data, respectively. The significance level was set 
at p < 0.05. Graphpad Prism 5.0 was adopted for the analysis. All 
statistical procedures were performed with the assistance of the 
Institute of Biomedical Sciences/University of Sao Paulo, under 
the supervision of Ms. Rosana Duarte Prisco.

resUlTs

general characteristics of Patients
The general characteristics of patients are illustrated in Table 4. 
No statistical differences were found in regard to age and height 
between the groups. Body mass in the 12 months before engage-
ment in the study, as informed by the patients at moment of 
the recruitment interview, showed no statistical differences 
between groups, while baseline body mass of the cachectic can-
cer group was lower (in average 11%), when compared with the 
weight-stable cancer group, although not statistically significant 
(p = 0.07). When comparing the difference between previously 
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FigUre 1 | gene expression in tumor tissue. Data expressed as mean ± SE or as median [first quartile; third quartile]. *Significant difference between WSC vs. 
CC. Expression of target genes was normalized to the reference HPRT1. TNF-α, tumor necrosis factor α (a); CCL2, chemokine (C–C motif) ligand 2 (B); Arbitrary 
units, AU. WSC (n = 10) and CC (n = 14).

TaBle 4 | general characteristic of patients.

Wsc (weight-stable 
cancer)

cc (cachectic 
cancer)

p

N 17 19

Male/female (n) 10/7 12/7

Age (years) 59.2 ± 3.69 61.7 ± 2.55 0.582

Height (m) 1.65 ± 0.024 1.65 ± 0.018 0.936

Previous body mass 
as informed (kg)

74.1 ± 3.13 72.3 ± 3.21 0.695

Current body  
mass (kg)

70.5 ± 3.17 62.5 ± 2.86 0.07

Weight loss (kg) 0.00 [0.00; 6.50] 10.00 [5.00; 13.00]a 0.0009

Weight loss (%) 0.00 [0.00; 9.00] 12.0 [8.00; 16.0]a 0.0006

BMI (kg/m2) 25.9 ± 1.04 22.8 ± 0.76a 0.0195

Tumor stage (n)

I-II 4 7

III-IV 13 12

CRP (mg/L) 3.95 [0.90; 8.03] 11.7 [7.15; 13.5]a 0.0026

Albumin (g/dL) 4.32 ± 0.18 4.04 ± 0.21 0.316

Hemoglobin (g/dL) 13.4 ± 0.50 11.2 ± 0.57a 0.0064

IL-6 (pg/mL) 2.67 ± 0.65 9.84 ± 2.02a 0.0119

Data expressed as mean ± SE or as median [first quartile; third quartile]. 
aSignificant difference CC vs. WSC group. 
BMI, body mass index; CRP, C-reactive protein; IL-6, interleukin 6.
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informed body mass and current body mass, marked weight 
loss (both in terms of absolute and relative weight) was found 
for CC, in relation to the weight-stable cancer (WSC) group, in 
accordance with the proposed by Evans et al. (19) (weight loss 
>5% over past 6 months – in absence of simple starvation). The 
body mass index (kg/m2) of CC, although greater than 20 kg/m2 
(considered the cutoff point for cachexia), was significantly lower 
than that of WSC. C-reactive protein, albumin, hemoglobin, and 
IL-6, biochemical markers of cachexia, were also evaluated. CRP 
plasma content  –  the most widely accepted index of systemic 
inflammation  –  was higher in CC than in WSC (p  =  0.0026). 
Similarly, plasma IL-6 levels were significantly higher in cachectic 
cancer patients (CC) (p  =  0.0119). Additionally, serum hemo-
globin levels of CC were consistently lower when compared with 
WSC (p = 0.0064). Serum albumin levels were not significantly 
different between groups (p = 0.316).

Tumor gene expression analysis
Gene expression of the pro-inflammatory cytokines TNF-α 
and CCL2 in the tumor were increased in CC compared to 
WSC, p = 0.020 and p = 0.0354, respectively (Figures 1A–B). 
No statistically significant difference in mRNA concentration 
of VEGF (angiogenesis factor), IL-6, IL-1β, IFN-γ, PIF, ZAG, 
IL-10, between WSC and CC could be detected, as shown in 
Table 5.

subcutaneous adipose Tissue gene 
expression analysis
As previously described, we found that gene expression of 
TNF-α, IL-1β, and MCP-1/CCL2 were significantly higher 
in cachectic cancer patients when compared with WSC. IL-6 
and IFN-γ gene expression showed no differences among the 
groups.

Tumor Protein expression analysis
Protein expression of chemoattractant factors in tumor tissue 
CCL [(chemokine (C–C motif) ligand)]-2, CCL4, CCL5 was not 
significantly different between the groups as shown in Table 6. 
However, CCL3, also known as macrophage inflammatory pro-
tein 1 alpha, was higher in CC in relation to WSC (p = 0.043) 
(Figure 2A).

The protein concentrations of different pro- and anti-inflam-
matory cytokines and cachexia-related factors in cachectic and 
non-cachectic cancer are shown in Table  6. Among the pro-
inflammatory cytokines, IL-1β was increased in CC compared 
to WSC (p = 0.041) (Figure 2B). Protein concentration of IP-10, 
a chemokine secreted by interferon stimulated cells was not 
significantly different but showed a tendency to be significantly 
higher in CC (p = 0.092). Other inflammatory cytokines such 
as IFN-γ and IL-6 were not significantly different between the 
groups. Members of the tumor necrosis factor family TNF-α 
and TNF-β were also not statistically different in CC compared 
to WSC. The protein concentration of anti-inflammatory inter-
leukins IL-10 was not different (p  =  0.9652) between groups, 
yet that IL-13 (p = 0.007) was lower in CC in compared WSC 
(Figure 2C).
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FigUre 2 | ccl3, il-1β, and il-13 protein expression in tumor samples. Data expressed as median [first quartile; third quartile]. *Significant difference 
between WSC vs. CC. CCL3, chemokine (C–C motif) ligand 3 (a); IL-1β, interleukin 1β (B); IL-13, interleukin 13 (c). WSC (n = 11) and CC (n = 12).

TaBle 5 | Tumor gene expression of cytokines and cachexia-related 
factors (aU).

qrT-Pcr 
(a.U)

Wsc (weight-stable 
cancer)

cc (cachectic cancer) p

VEGF 1.275 [0.446; 8.270] 0.557 [0.069; 3.28] 0.410

IL-6 1.395 [0.368; 2.509] 1.163 [0.537; 8.330] 0.683

IL1-β 2.545 [0.430; 16.07] 0.791 [0.185; 7.893] 0.524

IFN-γ 1.317 [0.313; 5.095] 27.65 [0.420; 80.16] 0.151

PIF 0.711 [0.154; 9.012] 9.706 [0.023; 101.1] 0.571

ZAG 2.029 [0.374; 3.501] 0.716 [0.369; 2.766] 0.497

IL-10 0.728 [0.152; 10.93] 34.12 [0.141; 54.02] 0.398

Data expressed as median [first quartile; third quartile]. Target gene expression was 
normalized to the housekeeping gene hypoxanthine-guanine phosphoribosyltransferase 
(HPRT-1). 
Arbitrary units (AU). WSC (n = 10); CC (n = 14).

TaBle 6 | inflammatory factors in tumor samples.

Pico gram per 
milligram of 
total protein

Wsc (weight-stable 
cancer)

cc  
(cachectic cancer)

p

CCL2 230.5 [96.08; 373.1] 261.89 [124.1; 546.4] 0.431

CCL4 9.32 [3.92; 13.41] 16.62 [6.77; 55.84] 0.060

CCL5 649 ± 99.69 977.8 ± 272.2 0.306

IFN-α 20.34 [5.65; 51.66] 10.95 [7.76; 52.70] 0.791

IL-10 0.363 [0.22; 1.58] 0.441 [0.16; 2.42] 0.725

IL-6 1.034 [0.245; 1.92] 2.097 [0.724; 8.33] 0.194

IP-10 243.7 [151.0; 352.2] 1263 [179.8; 2822] 0.092

TNF-α 0.352 [0.202; 0.908] 0.724 [0.339; 1.55] 0.169

TNF-β 2.306 ± 0.567 2.435 ± 0.601 0.878

Data expressed as mean ± SE or as median [first quartile; third quartile], 
p = significance of Mann–Whitney test. Cytokine concentration was normalized to total 
protein. WSC (n = 11); CC (n = 12).
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subcutaneous adipose Tissue Protein 
expression analysis
Data of protein expression of chemoattraction factors are shown 
in Table 7. We found no statistical difference for CCL2, CCL3 
and CCL5 in subcutaneous adipose tissue (Table  7). CCL4 
protein expression was higher in CC, when compared with WSC 
(Figure 3A).

Anti- as well as pro-inflammatory cytokines (IFN-α, IL-10, 
IL-13, IL-6, IP-10, and TNF-α) did not exhibit differences between 
the two studied groups (Table 7). The pro-inflammatory IL-1β 
and TNF-β cytokines protein expression presented higher levels 
in CC in relation to WSC (Figures 3B,C, respectively).

immunophenotyping by cytometry
The characterization of the different phenotypes within the total 
population of infiltrating macrophages in the tumor microen-
vironment is shown in Figure 4. The incidence of macrophages 
with anti-inflammatory profile (M2 macrophages  –  CD11b 
CD14++ CXCR4+) was significantly lower in CC, compared 
to WSC (p  =  0.007). Macrophages with inflammatory profile 
(M1 macrophages – CD11b+ CD14++ CCR7+) were found in 
similar numbers in the tumors of both groups.

The analysis of the stromal-vascular fraction of the subcuta-
neous adipose tissue yielded no statistic difference in concern 
to M1M2 macrophage (CD11b CD14++ CCR7+ CXCR4+), M1 
macrophage (CD11b+ CD14++ CCR7+) and M2 macrophage 
(CD11b CD14++CXCR4+) population percentage (Figures 5A–C, 
respectively).

correlations analysis
Non-parametric correlation (Spearman) analysis between 
chemokine (C–C motif) ligand (CCL)-3 and CCL-4 with the 
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protein expression of the cytokine anti-inflammatory cytokine 
IL-13 in the tumor of cachectic patients was found to be signifi-
cant (p = 0.0089); while the relationship between CCL4 and IL-13 
(p = 0.147) was not (Figures 6D,H). Analysis of correlation of 
CCL3 with the protein expression of the inflammatory cytokine 
IL-1B showed positive relationship (CCL3/IL-1β) (p =  0.0059) 
(Figure 6E). Whether the CCL4/IL-1β correlation (p = 0.0897) 
(Figure 6F) nor of CCL3 with %macrophages were found to be 
significant (Figures 6A–C).

When non-parametric correlation (Spearman) analysis 
was carried out in regard to macrophages and CCL4 in the 
subcutaneous adipose tissue, no statistical correlations were 
observed for M1M2 macrophages not for M1 macrophages, or 
M2 macrophages (Figures  7A–C, respectively). Furthermore, 
non-parametric correlation for CCL4 and IL-1β was found not 

to be significant, whereas that between CCL4 and TNF-β was 
significant (Figures 7D,E, respectively).

Finally, we performed non-parametric correlation 
(Spearman) analysis for CCL4 in the subcutaneous adipose 
tissue and for CCL3 in the tumor, having found a statistically 
significant positive correlation (p = 0.0448) only for the cachec-
tic patients (Figure 8A). When the relationship of TNF-α in the 
subcutaneous adipose tissue and TNF-β in the tumor was ana-
lyzed, no statistical significance was found for CC (p = 0.0892) 
(Figure 8B). A tendency for positive correlation between IL-10 
in subcutaneous adipose tissue and in the tumor (p = 0.0978) 
(Figure 8C).

DiscUssiOn

Cancer cachexia remains a major health problem worldwide as 
prevalence of cancer is on the rise. This syndrome is frequently 
undiagnosed and rarely treated, resulting in compromising of 
treatment and shortened survival (1, 10). Weight loss is the most 
visible feature of cachexia, yet some early metabolic and inflam-
matory changes precede the establishment of the most evident 
symptoms. The cachectic patients in the study, beyond presenting 
severe weight loss in the previous 6 months, exhibited systemic 
inflammation and anemia (CRP >5.0 mg/L, IL-6 >4 pg/mL, Hb 
<12 g/dL), in accordance to that proposed by Evans et al. (19), but 
no alterations of circulating albumin levels.

Cachexia-associated inflammation is the result of many 
alterations acting in concert, among which, the secretion of 
inflammation-promoting factors by the tumor itself. This, on the 
other hand, may elicit tissue and organ local sustained inflamma-
tion, in a vicious cycle. One such mechanism has been proposed 
to exist in cancer patients (2, 21).

TaBle 7 | inflammatory factors in the subcutaneous adipose tissue.

Pico gram per 
milligram of total 
protein

Wsc (weight-stable 
cancer)

cc (cachectic 
cancer)

p

CCL2 38.0 ± 7.20 20.3 ± 5.26 0.0646

CCL3 13.0 [4.06; 59.4] 3.38 [0.010; 68.6] 0.3725

CCL5 157 ± 31.0 121 ± 30.6 0.4219

IFN-α 0.210 [0.135; 3.68] 2.12 [0.228; 4.73] 0.2883

IL-10 0.070 [0.060; 0.123] 0.100 [0.060; 0.330] 0.2275

IL-13 0.190 [0.110; 1.63] 0.500 [0.170; 0.680] 0.6480

IL-6 0.0711 ± 0.004 0.101 ± 0.024 0.2668

IP-10 9.19 ± 2.42 3.63 ± 0.919 0.0522

TNF-α 0.050 [0.040; 0.0525] 0.055 [0.030; 0.103] 0.5140

Data expressed as mean ± SE or as median [first quartile; third quartile], 
p = significance of Mann–Whitney test. Cytokine concentration was normalized to total 
protein. WSC (n = 11); CC (n = 12).

FigUre 3 | ccl4, il-1β, and TnF-β protein expression in subcutaneous adipose tissue. Data expressed as mean ± SE. *Significant difference CC vs. WSC 
group. CCL4, chemokine (C–C motif) ligand 4 (a); IL-1β, interleukin 1β (B); TNF-β, tumor necrosis factor β (c). WSC (n = 11) and CC (n = 12).
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Obesity research has provided solid evidence that the 
adipose tissue is an important player in the onset and main-
tenance of systemic inflammation (22). Indeed, the adipose 
tissue produces numerous bioactive molecules as TNF-α, 
IL-1β, IL-6, CCL2, to cite a few; all of which are able to act 
in an autocrine, paracrine, and endocrine manner, hence 

reaching the blood stream and promoting the crosstalk with 
other tissues (23).

In cancer cachexia, we have previously shown evidence that 
the white adipose tissue is a potential contributor for systemic 
inflammation, as it suffers comprehensive rearrangement and 
immune cell infiltration, in association with robustly increased 

FigUre 4 | Percentage of the phenotypes of macrophage populations in the tumor microenvironment. Data expressed as median [first quartile; third 
quartile] or median ± SE. *Significant difference between WSC and CC. Tumor samples WSC and CC (n = 5). M1M2 macrophage (a); M1 macrophage (B); 
M2 macrophage (c).

FigUre 5 | Percentage of the phenotypes of macrophage in subcutaneous adipose tissue. Data expressed as median [first quartile; third quartile]. 
Stromal-vascular fraction of subcutaneous adipose tissue: WSC (n = 4) and CC (n = 5). M1M2 macrophage (a); M1 macrophage (B); M2 macrophage (c).
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FigUre 6 | correlation of cytokine protein expression and % of infiltrating immune cells in tumor. (a) CCL3/M1 macrophage (%) p = 0.938; (B) CCL3/
M1M2 macrophage (%) p = 0.956; (c) CCL3/M2 macrophage (%) p = 0.342; (D) CCL3/IL-13 p = 0.0089; (e) CCL3/IL-1β p = 0.0059; (F) CCL4/IL-1β p = 0.089; 
(g) IP10/IL-13 p = 0.057; (h) CCL4/IL-13 p = 0.147.

secretion of inflammatory factors (15, 24–26). Furthermore, the 
white adipose tissue of Walker 256 tumor-bearing rats was found 
to be infiltrated with monocytes (24), and we recently reported 
immune infiltration in cachectic cancer patients (25).

In another recent study employing the animal model of 
cachexia, we found up-regulation of IL-1β expression and activa-
tion of NF-κB and of the inflammasome pathways in adipocytes, 
and evidence of a major contribution of the vascular-stromal frac-
tion of the retroperitoneal adipose tissue to tissue inflammation 
(26). In the current study, we have similarly found a population 

of infiltrated macrophages in the subcutaneous adipose tissue of 
cachectic patients, despite lack of statistical difference between 
the cachectic and non-cachectic groups in regard to the predomi-
nance of different macrophage phenotypes (M1M2, M1, and M2).

We also previously reported that NF-κBp65 gene expression is 
increased in the subcutaneous white adipose tissue of cachectic 
cancer patients, concomitantly to up-regulation of its inflam-
matory target genes IL-1β, TNF-α, CCL2/MCP-1, and IκB-α. 
Haugen et al. also found alterations in gene expression, including 
of TNF-α and CCL2, in the intra-abdominal adipose tissue, which 
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FigUre 7 | correlations between macrophage phenotypes and ccl4 protein, and between ccl4 and il-1β, TnF-β in subcutaneous adipose tissue. 
(a) M1M2/CCL4, p = 0.787; (B) M1/CCL4, p = 0.321; (c) M2/CCL4, p = 0.790 and correlations between CCL4 protein and IL-1β, TNF-β (D) CCL4/IL-1β, 
p = 0.955; (e) CCL4/TNF-β, p = 0.041.

FigUre 8 | correlation between protein expression of inflammatory factors in subcutaneous adipose tissue and tumor. (a) CCL4 tumor/CCL3 adipose 
tissue; (B) TNF-α adipose tissue/TNF-β tumor; (c) IL-10 adipose tissue/IL-10 tumor.

was associated with reduced fat mass in patients with pancreatic 
cancer (27, 28).

To our knowledge, we are the first to show that the subcu-
taneous adipose tissue of cachectic patients presents higher 
CCL4 protein content in relation to WSC with matched tumor 
diagnosis. Increased CCL4 gene expression was found by Wu 

et al. (29) in the adipose tissue of obese mice, with concomitant 
augment of the number infiltrating leukocytes. In the present 
study, increased IL-1β and TNF-β protein expression was also 
detected, corroborating our previous findings (27).

However, what are the stimuli inducing adipose inflamma-
tion? The group of Michael Tisdale has approached, in several 
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cOnclUsiOn
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is proposed, as a positive correlation was found between tumor 
and adipose tissue-derived cytokines and inflammatory factors.
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Macrophages as innate immune cells and fast responders to antigens play a central role 
in protecting the body from the luminal content at a huge interface. Chronic inflammation 
in inflammatory bowel diseases massively alters the number and the subset diversity 
of intestinal macrophages. We here address the diversity within the human intestinal 
macrophage compartment at the level of similarities and differences between homeo-
stasis and chronic intestinal inflammation as well as between UC and CD, including the 
potential role of macrophage subsets for intestinal fibrosis. Hallmark of macrophages is 
their enormous plasticity, i.e., their capacity to integrate signals from their environment 
thereby changing their phenotype and functions. Tissue-resident macrophages located 
directly beneath the surface epithelium in gut homeostasis are mostly tolerogenic. The 
total number of macrophages increases with luminal contents entering the mucosa 
through a broken intestinal barrier in ulcerative colitis (UC) as well as in Crohn’s disease 
(CD). Although not fully understood, the resulting mixtures of tissue-resident and tis-
sue-infiltrating macrophages in both entities are diverse with respect to their phenotypes 
and their distribution. Macrophages in UC mainly act within the intestinal mucosa. In 
CD, macrophages can also be found in the muscularis and the mesenteric fat tissue 
compartment. Taken together, the present knowledge on human intestinal macrophages 
so far provides a good starting point to dig deeper into the similarities and differences of 
functional subsets and to finally use their phenotypical diversity as markers for complex 
local milieus in health and disease.

Keywords: intestinal macrophages, gut homeostasis, inflammatory bowel diseases, fibrosis, diversity

inTRODUCTiOn

The gastrointestinal tract is the largest immune compartment of the human body. The major function 
of the intestinal immune cells is to maintain the integrity of the body at the huge interface between 
external stimuli that include food components and the intestinal microflora. Chronic inflammation 
in inflammatory bowel diseases (IBD) profoundly alters the composition of all local immune-cell 
compartments. Macrophages are part of the innate immune system and instrumental in control-
ling the barrier function in the small and the large intestine. The macrophages integrate signals 

Abbreviations: ALDH, aldehyde dehydrogenase; CD, Crohn’s disease; CCL, C–C chemokine ligand; CLR, C-type-lectin-like 
receptor; CX3CR1, chemokine (C–X3–C motif) receptor 1; HLA, human leukocyte antigen; IBD, inflammatory bowel disease; 
Ig, immunoglobulin; MMP, matrix metalloproteinase; NF-κB, nuclear factor kappa-light-chain enhancer of activated B cells; 
NOD, nucleotide-binding oligomerization domain; NLR, NOD-like receptor; PRR, pattern recognition receptors; TLR, toll-
like-receptor; TREM, triggering receptor expressed on myeloid cells; UC, ulcerative colitis.
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FiGURe 1 | Schematic summary of the relative intestinal macrophage-subtype distribution in (A) gut homeostasis or (B) ulcerative colitis and  
(C) Crohn’s disease.

December 2015 | Volume 6 | Article 61347

Kühl et al. Macrophages in Inflammatory Bowel Diseases

Frontiers in Immunology | www.frontiersin.org

from their environment, thereby changing their phenotype and 
function. The present knowledge about intestinal macrophages is 
predominantly based on mouse studies. Even the finding of the 
gut as the largest reservoir of tissue-resident macrophages within 
the body (1) remains to be verified for men. This minireview 
deliberately restricts to systematic human studies. Only if such 
data were lacking, we included findings from animal models that 
might be relevant for the human mucosal surface. Differences 
in between mice and men will be highlighted. Non-inflamed 
tissue areas neighboring the inflamed areas in ulcerative colitis 
(UC) and Crohn’s disease (CD), the main forms of IBD, repre-
sent rather homeostatic conditions. Hence, the diversity within 
the human intestinal macrophage compartment at the level of 
similarities and differences between homeostasis and chronic 
intestinal inflammation as well as between UC and CD, including 
the potential role of macrophage subsets for intestinal fibrosis, 
will be discussed.

inTeSTinAL MACROPHAGeS in GUT 
HOMeOSTASiS AnD in iBD

In terms of a first-line defense, tissue-resident intestinal mac-
rophages contribute to the gut homeostasis by eliminating invading 
pathogens without inducing an inflammatory response of the lym-
phocytes within the lamina propria. Positioned directly beneath 
the surface epithelium, the macrophages in intestinal tissues are the 
first immune-cell population encountering foreign material, e.g., 

luminal bacteria or food antigens randomly passing the epithelial 
barrier (Figure  1A). Whether human macrophages are able to 
sample luminal antigen by extending their dendrites between the 
epithelial cells reaching into the gut lumen as shown for mouse 
macrophages (2, 3) is unknown. On the one hand, intestinal mac-
rophages are tolerant toward foreign matter by down-regulation 
of recognition receptors (4). On the other hand, intestinal mac-
rophages that recognize food-derived antigens or commensal 
microbiota present the processed antigens in a tolerizing manner in 
the absence of co-stimulatory signals (5). Also to fulfill the task of 
protecting from unwanted immune responses and different from 
peripheral monocytes, stimulation via pattern recognition recep-
tors (PRR) on resident macrophages results in low cytokine secre-
tion and strong bactericidal activity (6). This increased bacterial 
clearance is associated with increased metallothionein expression, 
which is regulated by nuclear factor kappa-light-chain enhancer of 
activated B cells (NF-κB) and by caspase-1 (7).

Precursors of tissue-resident intestinal macrophages are bone 
marrow-derived monocytes, which circulate through the blood 
before recruitment into the intestinal mucosa by interleukin 
(IL)-8 and transforming growth factor (TGF)β (8). These freshly 
recruited monocytes exhibit an inflammatory phenotype and exert 
inflammatory functions. Signals from the intestinal mucosa sub-
sequently polarize them into inflammation anergic macrophages, 
e.g., by stromal TGFβ-induced inhibition of NF-κB activation (9). 
Additionally, TGFβ and IL-10 induce down-regulation of trigger-
ing receptor expressed on myeloid cells (TREM)-1 on intestinal 
macrophages, a receptor that potently amplifies inflammatory 
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reactions (10). A minority of tissue-resident intestinal mac-
rophages express CD14 as well as CD11c involved in sensing 
of bacterial lipopolysaccharides (LPS) and are considered to be 
differentiation intermediaries (11). Blood monocytes have a life 
span of 3–4 days, while the life span of intestinal macrophages is 
unknown. In mice, intestinal macrophages lost upon senescence 
or apoptosis are constantly replenished by newly recruited blood 
monocytes and by cell division in situ (12). While mouse mac-
rophages replenish in the intestine by recruitment of circulating 
cells and proliferation (12, 13), human intestinal macrophages 
fail to do so (8). Again in mice, mucosal tolerance is mediated by 
intestinal macrophages secreting IL-10, thereby expanding regula-
tory T cells (Tregs) (14). By contrast, human macrophages isolated 
from healthy jejunum and stimulated, e.g., with LPS, Helicobacter 
pylori urease, heat-killed Staphylococcus aureus, interferon (IFN)γ 
or phorbol myristate acetate in vitro did not produce IL-10 (6).

A hallmark of macrophages is their plasticity as well as the abil-
ity to change phenotype and function according to the immediate 
environment. This has been demonstrated systemically by recent 
work from Xue and colleagues who defined a core transcriptome 
network for human and murine macrophages (15).

Hence, it is not surprising that small intestinal macrophages are 
different from large intestinal macrophages. These two organs have 
a distinct architecture, exert different functions, and host diverse 
microbiota. For example, macrophages from healthy jejunum show 
high expression of human leukocyte antigen (HLA)-DR and very 
low expression of CD14 and the low-affinity human immunoglob-
ulin (Ig)G receptor CD16 (6), whereas in colonic macrophages low 
levels of CD14 and CD16 are accompanied by moderately expressed 
HLA-DR (16). Very early work, e.g., uses the activities of acid 
phosphatase and nonspecific esterase to distinguish macrophage 
subtypes (17). Here, tissue-resident intestinal macrophages directly 
underneath the epithelium differ from macrophages positioned 
deeper in the lamina propria with no implication that these cells 
abandon their tolerogenic potential (17).

Following the M1–M2 paradigm, which mirrors the 
polarization of T helper cells, macrophages are classified as 
pro-inflammatory M1 macrophages and anti-inflammatory 
M2 macrophages (18). Adhering to this model, tissue-resident 
macrophages are  considered to be M2 macrophages (19, 20). In 
IBD, macrophages massively infiltrate the intestinal mucosa and 
present phenotypes and distribution distinct from tissue-resident 
macrophages in homeostasis. In CD patients, macrophages also 
infiltrate the muscular layer and the mesenteric fat (17, 21). At first 
sight, large numbers of CD68+ macrophages massively infiltrate 
the intestinal mucosa in IBD and diffusely spread throughout 
the thickened mucosa and submucosa but differ with regard to 
the subset composition and function in UC (Figure 1B) and CD 
(Figure  1C). Analyses of blood monocytes derived from CD 
patients reveal a reduction of classical monocytes (CD14hiCD16−), 
while intermediate monocytes (CD14hiCD16+) were increased 
(22, 23). Extensive migration of classical  monocytes toward the 
C-C chemokine ligand (CCL)2 in vitro and massively enhanced 
CD14hi macrophages in the ileal and the colonic mucosa of the CD 
patients led to the conclusion that peripheral classical monocytes 
immigrated into the intestinal mucosa (23). These newly recruited 
macrophages express high levels of CD33, of the high-affinity 

human IgG receptor CD64 and of the G-protein-coupled frac-
talkine receptor CX3CR1 but were HLA-DRdim (23). Infiltrating 
intestinal macrophages are distinct in phenotype and function 
from their resident counterparts. For example,  tissue-infiltrating 
intestinal macrophages strongly express CD14 (24), TREM-1 
and the human myeloid IgA Fc receptor CD89 (25) as well as 
activated NF-κB (26). Additionally, tissue-infiltrating intestinal 
macrophages secrete pro-inflammatory cytokines such as TNF, 
IL-6, IL-8, IL-23, IL-1β, and IFNγ as well as the chemokine 
CCL2 attracting monocytes (25, 27). This pro-inflammatory 
macrophage phenotype might result from polarization of any 
monocytic cell entering the pro-inflammatory environment of 
the inflamed intestinal mucosa. In line with this, the conditioning 
of newly recruited monocytes toward inflammation anergic M2 
macrophages might be disturbed in IBD patients due to defective 
TGFβ signaling (28). In IBD, a broken epithelial barrier allows 
luminal content to enter the lamina propria, thereby triggering the 
inflammatory response of the lamina propria leukocytes. For rec-
ognition of microbiota, macrophages up-regulate PRR, including 
membrane-bound toll-like-receptors (TLR) and C-type-lectin-
like receptors (CLR) as well as cytoplasmic nucleotide-binding 
oligomerization domain-containing protein (NOD)-like receptors 
(NLR) and retinoic acid-inducible gene- I-like receptors. Human 
PRR show less variants than those in mice; 10 TLR and 22 NLR 
are known in men compared to 13 TLR and 34 NLR in mice. 
Tissue-infiltrating macrophages in the inflamed colon mucosa 
predominantly express TLR2, TLR4, and TLR5 responding to 
bacterial peptidoglycans, LPS, and bacterial flagella (29). CLR 
bind a variety of carbohydrate ligands but only collectins function 
in terms of PRR (30). NOD2 recognizing muramyl dipeptide on 
Gram-positive and -negative bacteria is expressed in monocytes 
and Paneth cells but not in intestinal macrophages (31). In vitro 
studies showed that NOD2 level declined during differentiation 
of monocytes into macrophages (31). CARD15 coding for the 
caspase-recruitment domain of NOD proteins is highly up-
regulated in colonic macrophages of CD patients (32). So far it 
is not clear whether in chronic inflammation in CD the down-
regulation of NOD2 in monocytes infiltrating the colon mucosa 
is affected or whether resident macrophages up-regulated NOD2 
expression. A missense mutation in the coding sequence of NOD2 
was found in 17% of CD patients and in 4% of UC patients (33). 
As over 200 genes have been linked to IBD (34) and many of them 
are associated with macrophage functions (35–39), these immune 
cells present one cell population contributing to the pathogenesis 
of UC and CD.

DiveRSiTY wiTHin inTeSTinAL 
MACROPHAGe COMPARTMenTS in 
ULCeRATive COLiTiS AnD CROHn’S 
DiSeASe

Above, we highlighted differences in the macrophage compart-
ments and differentiated between tissue-resident and tissue-infil-
trating macrophages in gut homeostasis and IBD. Additionally, the 
composition and functions of intestinal macrophages also differ in 
the inflamed gut of UC and CD patients, while overall macrophage 
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numbers are comparable. So the question arises whether distinct 
macrophage subpopulations and distributions of these subtypes 
within the inflamed tissue areas might explain the overall different 
outcome in CD and UC. As for similarities in the local distribution, 
monocytes and M1 macrophages directly contribute to the defect 
of the barrier in IBD and large numbers of pro-inflammatory 
macrophages reside in the inflamed mucosa (40).

Over a decade ago, CD has even been referred to as a mac-
rophage primary immunodeficiency (41). While this statement 
might simplify the overall interaction of immune cells in the 
mucosa, several facts add to this hypothesis. Thus, impaired bac-
terial clearance in CD has been attributed to defective cytokine 
secretion by macrophages (42). E. coli is commonly found within 
intestinal macrophages in CD (43), a dysfunction not reported 
for UC. On the contrary, macrophages of UC patients exuberantly 
and protractedly respond toward bacteria (44). This difference in 
bacterial clearance is also reflected by the formation of granulo-
mas in CD but not UC (45, 46). Granulomas are formed when the 
effective eradication of invading pathogens fails.

Tissue-resident intestinal macrophages express the scavenger 
receptor CD163 that also recognizes Gram-positive and -nega-
tive bacteria (47, 48). While CD163 was initially thought to be 
exclusively expressed on noninflammatory M2 macrophages (49, 
50), CD163 is expressed on resident macrophages of all normal 
tissues except on splenic white pulp macrophages and on germi-
nal center macrophages (51). CD163+ macrophages are enriched 
in the peripheral blood as well as in the colonic mucosa of IBD 
patients (52–54). As CD163 is cleaved by metalloproteinases 
(MMPs) and shed from macrophages upon activation, soluble 
CD163 is an appropriate marker for macrophage activation (55). 
Compared to healthy controls, sCD163 is increased in UC and 
CD patients (56). In line with comparable numbers of mac-
rophages in the intestinal mucosa in CD and UC, sCD163 levels 
are comparable in both entities (56). Upon successful treatment 
with glucocorticoids or TNFα-antibodies, histomorphologically 
reflected by reduced macrophages in colon biopsies (57), serum 
sCD163 levels are reduced (56, 58).

No differences were found regarding the numbers of TREM-1+ 
macrophages triggered to high production of pro-inflammatory 
cytokines (25) or in the expression of the co-stimulatory mol-
ecules CD80 and CD86 (5).

Aldehyde dehydrogenase (ALDH) is involved in the release 
of retinoic acid, which has immunomodulatory properties and 
is mandatory in the induction of forkhead-box protein 3+ Tregs 
(59, 60). Directly relating to Treg numbers in the colonic mucosa, 
ALDH+ macrophages are reduced in the intestinal mucosa of UC 
but not of CD patients (61). While Treg numbers are generally 
increased in intestinal tissues from IBD patients compared to 
those of healthy controls, the numbers are lower in UC compared 
to CD (62, 63). Taking into account that the composition of 
macrophage subpopulations might mirror the local environ-
ment, these findings suggest rather pro- than anti-inflammatory 
macrophage subpopulations involved in UC.

Specific for CD and relying on the presence of numerous M2 
macrophages, the hyperplastic mesenteric fat tissue beyond the 
transmural inflammation could be defined as a second protec-
tive barrier from invading luminal contents (21). In the liver, 

macrophages are the master regulators of fibrosis (64). Large num-
bers of macrophages are found in fibrotic lesions of CD patients 
(65). Gene polymorphisms associated with the fibrostenotic 
phenotype in IBD like the V249I polymorphism of CX3CR1 and 
the T300A mutation in the autophagy-related ATG16L1 link to 
macrophage functions (66, 67). An indication for the involvement 
of distinct macrophage subpopulations in IBD is the development 
of fibrosis that is more pronounced in CD than in UC (68–70). 
Fibrosis and subsequent fibrotic strictures result from excessive 
wound-healing processes. Intestinal wound healing involves 
various steps with macrophages involved in all of these steps. In 
the early phase, inflammatory macrophages clear the wound from 
bacteria and cellular debris; in later phases, wound-healing M2 
macrophages promote tissue remodeling. Tissue-resident intes-
tinal macrophages express matrix MMP-2 (71) that takes part in 
the breakdown of extracellular matrix. In fibrotic CD, MMP2 is 
increased in the mucosa compared to that of healthy persons (72). 
The tyrosine-protein kinase Hck, a master regulator for human 
M2 macrophages (73) regulates myeloproliferation in mice 
(74). Other studies in mice showed that noninflammatory mac-
rophages are involved at many levels in the whole wound-healing 
process, i.e., in wound closure, in formation of granulation tissue, 
in angiogenesis, in collagen synthesis, and in the production 
of growth factors (75). The pleiotropic cytokine IL-13 was also 
identified as a pro-fibrotic factor in CD (72). In combination with 
TNFα, IL-13 induces TGFβ production in macrophages (76).

Macrophages carrying the mannose receptor CD206 and 
considered wound-healing macrophages (77) are increased in the 
injured mucosa of UC patients (78). The expression of the proto-
oncogene protein Wnt1 by CD206+ macrophages enhanced the 
proliferation of stem cells in response to the epithelial injury in 
UC (78). Relating to the increased risk of cancer development 
upon long-standing IBD, large numbers of CD206+ macrophages 
are found in colorectal cancer (79).

Taken together, many open questions remain with regard to 
specifics of the involvement of different subpopulations of human 
macrophages in the pathogenesis and the chronicity of UC and 
CD. Further dissecting the diversity and the local distribution of 
functional macrophages in human gut tissues will help to define 
the clinical relevance of the macrophage subset.
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Macrophages play essential activities in homeostasis maintenance during different 
organism’s conditions. They may be polarized according to various stimuli, which 
subsequently subdivide them into distinct populations. Macrophages with inflammatory 
activity function mainly during pathological context, while those with regulatory activity 
control inflammation and also remodel the repairing process. Here, we propose to review 
and to present a concise discuss on the role of different components during tissue 
repair, including those related to innate immune receptors and metabolic modifications. 
The scar formation is directly related to the degree of inflammation, but also with the 
appearance of M2 macrophages. In spite of greater numbers of macrophages in the 
fibrotic phase, regulatory macrophages present some characteristics related to promo-
tion of fibrosis but also with the control of scar formation. These regulatory macrophages 
present an oxidative metabolism, and differ from the initial inflammatory macrophages, 
which in turn, present a glycolytic characteristic, which allow regulatory ones to optimize 
the oxygen consumption and minimizing their ROS production. We will emphasize the 
difference in macrophage subpopulations and the origin and plasticity of these cells 
during fibrotic processes.

Keywords: polarization, macrophage activation, cell metabolism, myofibroblasts, fibrosis

inTRODUCTiOn

Macrophages are cells of the innate immune system highly heterogeneous, involved in the primary 
response to microorganisms, in inflammatory responses, homeostasis, and tissue regeneration (1). 
Several evidences show that initial infiltration of macrophages culminates with pro-inflammatory 
cytokines and reactive oxygen species (ROS) production, which exacerbates inflammatory diseases 
such as diabetes mellitus, kidney disease, heart, and liver disease. Conversely, macrophages in the 
later phase of diseases have been associated with release of anti-inflammatory molecule and growth 
factors, which attenuate inflammation and promote tissue regeneration (2). However, there are 
macrophage dysfunction, which can impair the proper regenerative process, and otherwise, promote 
the development of fibrosis, deposition of type I and III collagen, and myofibroblasts activation. 
Emerging evidence demonstrates that both inflammatory and regulatory macrophages may partici-
pate in the pro-fibrotic processes, and this event may be dependent on the macrophage origin and 
the intrinsic aspects of the pathology (3, 4). Below, we will discuss the differences in macrophage 
subpopulations characteristics and their ontogeny with emphasis in the fibrotic process.
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OnTOGenY OF MACROPHAGeS

Since the description of macrophages in 1888 by the renowned 
scientist Elie Metchnikoff (5) considerable accumulating 
knowledge about their biology, development, and origin were 
generated, re-evaluated, and placed on discussion as a result of 
advances in biology technology such as conditional deletion and 
colored-labeled-monocytes, that unquestionably enable us to 
better understand these cells (6–9). One example is that for years 
we assumed that all resident macrophages come from circulat-
ing monocytes derived from a single myeloid precursor in bone 
marrow (7). However, nowadays we know resident macrophages 
are heterogeneous cells that can develop from different sources, 
including embryonic progenitor cells, bone marrow hematopoi-
etic cells or local proliferation (6–9).

Embryonic hematopoiesis begins on the eighth day after 
conception in the yolk sac (10, 11). Progenitors migrate to fetal 
liver to establish a temporary hematopoiesis (7, 12). Macrophages 
with embryonic origins may be regulated by CSF1R and their cor-
responding ligands IL-34 and CSF1 (13–15). Studies on CSF1R 
ablation verified CSF1R is important for the generation of resi-
dent macrophages once deletion of this receptor compromises the 
development of resident macrophages in brain, bone, skin among 
other tissue (15).

Monocytes derived from bone marrow myeloid progenitors 
also give rise to both dendritic cells and macrophages. Two dif-
ferent types of monocytes are described in mice: Ly6C+CCR2high 
and Ly6C−CX3CR1high. Ly6C+CCR2high are called “inflamma-
tory” monocytes and are considered to be recruited to inflamed 
lymph nodes and tissues where typically differentiate into DC 
or inflammatory macrophages. In contrast, Ly6C−CX3CR1high 
present low CCR2 expression, are smaller and are known as 
“resident-monocyte,” responsible by surveillance in homeostatic 
conditions, an essential task to accomplish the cleaning oxidized 
lipids, dead cells, and possible pathogens (16–18). Besides, these 
cells are also related to reduce inflammation and promotion of 
tissue repair (16). A schematic origin of macrophage is shown 
in Figure 1.

MACROPHAGe POLARiZATiOn

Resident and infiltrating macrophages may be polarized according 
to the microenvironment stimuli (6, 8). They may be considered 
M1, also known as classical or pro-inflammatory, and M2 also 
known as alternative macrophages, but with intermediate states 
of activation (19, 20).

Classically activation is acquired in presence of IFN-γ, derived 
from natural killer cells and Th1 lymphocytes, and LPS from 
pathogens. Such activation increases the phagocytic capacity 
of macrophages along with the expression of class II MHC and 
costimulatory molecules such as CD80/CD86 (21). This bio-
logical event makes the macrophage a cell specialized to present 
antigens, along with the production of inflammatory cytokines 
(TNF-α, IL-12, and IL-23), besides recruiting Th1 and Th17 lym-
phocytes. Consequently, the adaptive immune system maintains 
activation of macrophages in order to provide a stable defense 
against any pathogen. The role of M1 macrophages is associated 

with microbicide capacity, antigen presentation, antitumor activ-
ity, and they are related to inflammatory diseases (2, 21). M1 
macrophages also express ROS and chemokines such as CCR7, 
CXCL9, and CXCL10 (2, 22).

M2 macrophages, in turn, present different properties, 
sometimes opposite, to M1 macrophages. They secrete anti-
inflammatory factors, which help to diminish the inflammation 
(2, 20). The polarization of M2 cells is mainly promoted by Th2 
cytokines such as IL-4 and IL-13. The profile of chemokines and 
cytokines are also different between both cases. M2 macrophages 
produce chemokines that recruit Th2 lymphocytes and T regula-
tory cells such as CCL17, CCL22, and CCL24 (23). Other features 
that characterize M2 macrophages are the expression of Arg1, 
Ym1, and Fizz, secretion of angiogenic factors such as IL-8, 
VEGF, and EGF4, increased mannose receptor (CD206), besides 
reduced expression of pro-inflammatory cytokines and ROS. M2 
macrophages carry out the clearance of apoptotic cells, combat 
intestinal parasites, stimulate tumor growth, and promote the 
regeneration of organs (24, 25).

THe ROLe OF MACROPHAGeS in THe 
PROGReSSiOn OF FiBROSiS

Defining Fibrosis
The repair tissue damage is a fundamental biological process that 
allows the orderly replacement of damaged or dead cells due to 
some injury, an essential mechanism for survival. The damage 
tissue can result from various stimuli, acute or chronic, includ-
ing infections, autoimmune reactions, mechanical injury, or any 
stimulation of the immune response. The repair process typically 
involves two distinct stages: a regenerative phase, in which the 
damaged cells are replaced by cells of the same type without 
bringing any evidence of harm; and a phase called fibroplasia 
or more commonly called fibrosis, in which connective tissue 
replaces normal parenchymal tissue. Although initially benefi-
cial, the healing process becomes pathological when it becomes 
continuous, resulting in substantial remodeling of the ECM and 
formation of permanent scar. In some cases, this can lead to organ 
failure (26).

Unlike acute inflammatory reactions that are characterized 
by fast vascular changes, edema, and neutrophil infiltration, 
fibrosis usually originates from chronic inflammatory responses, 
defined as a response that persists for several weeks or months, 
and which inflammation and tissue destruction process repair 
occur simultaneously. Although different etiologies and clinical 
distinction, most fibrotic disorders have in common a persistent 
inflammation which maintains production of growth factors, 
proteolytic enzymes, angiogenic factors, and pro-fibrotic 
cytokines, which together stimulate the deposition of connective 
tissue elements remodel or progressively destroy normal tissue 
architecture (27, 28).

Irrelevant of the initial cause, the development of interstitial 
fibrosis is characterized by the appearance of activated fibroblasts, 
positive for α-smooth muscle actin (α-SMA), also called myofi-
broblasts. In renal parenchyma, the deposition of ECM products 
is largely attributed to these cells (29).
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FiGURe 1 | Macrophages are present in all mammalian tissues, contributing to homeostasis and organ disease. Most tissue macrophages have an 
embryonic origin, and they are not fully derived from circulating monocytes. From embryonic day 6.5–8.5, resident macrophages can be generated in yolk sac. 
These macrophages can be identified as being regulated by CSF1R, and they are independent of the factor myb. Subsequently, during day E 8.5 to E 10.5 
hematopoietic stem cells (HSCs)-derived aorta-gonad-mesonephros can migrate to fetal liver and establish a temporary hematopoiesis, giving rise, for example, to 
Langerhans cells and alveolar macrophages. In addition, resident macrophages derived from fetal liver may originate both HSCs precursors and mature erythro-
myeloid cells. Finally, during the perinatal period, HSCs migrate to the bone marrow to establish itself a definitive place of hematopoiesis that will last until the 
adulthood. On this point, they are produced as Ly6C+CCR2high and Ly6C−CX3CR1high monocytes capable of infiltrating organs and differentiate into macrophages. 
Both infiltrating and residents macrophages can be polarized to M1 and M2 according to the microenvironment stimuli.
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Myofibroblasts as effector Cells in 
Fibrosis
Myofibroblasts are recognized as the effector cells of fibrogenesis 
(30). These cells are recognized by synthesizing large amounts of 
ECM, a substance which is mainly comprised of fibers of type I 
and III collagen, fibronectin, laminin, and other basal membrane 
proteins that are the source of scar tissue (31, 32). In addition, 
myofibroblasts are characterized by generating contractility, 
and distort the architecture organs, a property that is due to the 
expression of smooth muscle proteins as α-SMA (33). It has been 
identified at least three different sources for myofibroblasts (34). 
The first origin is related to the activation of local stromal cells 
such as fibroblasts and pericytes in the presence of pro-fibrotic 
factors (35). The second myofibroblasts source is from circulating 
fibrocytes. These cells originate in the bone marrow and express 
markers such as CD34, CD45RO, 25F9, S100A8/A9, and type 1 
collagen (36). They can be recruited by inflammatory chemokines, 

and its importance is related to the role they have in lung, skin, 
heart, liver, and kidney fibrosis process (37). Other sources of 
myofibroblasts are epithelium or endothelium to mesenchymal 
transition (EMT and EndoMT), a reported process that occur 
in tubular cells in the presence of TGF-β in which such cells 
may adopt mesenchymal characteristics (38, 39). During EMT 
and EndoMT, renal tubular cells lose their phenotype and thus 
transdifferentiate into myofibroblast cells expressing α-SMA and 
type I collagen. The EMT/EndoMT process involves four key 
events: (1) loss of epithelial adhesion properties, (2) new α-sMA 
expression and actin reorganization, (3) increased permeability 
of the tubular basement membrane, and (4) increased migration 
and invasion ability (40).

TGF-β is the only factor described as participating in the four 
events of EMT and two molecules: hepatocytes growth factor 
(HGF) (41) and bone morphogenic protein-7 (BMP-7) (42) have 
been demonstrated as being capable of reversing the process of 
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EMT due to inhibition of TGF-β and hence decreasing renal 
fibrosis.

Macrophages and Fibrosis
Since embryonic stages, it has been shown that CSF1R+ 
macrophages participate in the homeostasis and architectural 
remodeling of tissue (43). However, it has also been shown that 
the degree and severity of damage and fibrosis correlates with 
infiltrating macrophages (44). Depletion of resident macrophages 
by clodronate or CCL2 blockade improves kidney injury and 
reduce the pro-fibrotic process (45, 46). Interestingly, Nishida 
et al. showed that there are apparently infiltrating macrophages 
with opposing functions, once angiotensin II type 1 receptor 
(AGTR1+) macrophages have an anti-fibrotic role. In fact, it 
was observed that AGTR1−/− animals have a more pronounced 
fibrosis (47). This suggests that there are diverse populations of 
macrophages that infiltrate the kidney, with pro- and anti-fibrotic 
capacities which could be related to the time the injury happens.

M1 macrophages are known to predominate during the onset 
of injury (48–50). They release pro-inflammatory cytokines 
that exacerbate the injury, amplify the inflammatory response 
and contribute to myofibroblasts proliferation and recruitment 
of fibrocytes (4, 32). M1 have been associated with the release 
of metalloproteinases that degrade ECM and promote EMT/
EndoMT (51). It was shown that blocking MMP-9 or MMP-2 
results in reduction of fibrosis in the UUO model of disease 
(52). Oppositely, Lutz et  al., have demonstrated that inhibition 
of MMP-2 in chronic allograft nephropathy results in a more 
severe fibrosis (53), which suggests that MMPs are also important 
enzymes for the control of fibrosis and scarring area limitation. 
Macrophage secretion of MMP-9, MMP-12 and MMP-13 in the 
liver is related to ECM degradation and resolution of fibrosis (54, 
55). Also, it has been identified a Ly6Clow macrophage popula-
tion that secrete MMPs and have anti-fibrotic role in the liver 
(56). However, by transcriptional analysis, such macrophage 
population could not be classified as M1 or M2. In the liver, as 
in the kidney, macrophages have an important role in fibrosis 
progression. For example, there is strong evidence showing 
that Kupffer cells activate hepatic stellate cells to promote their 
transdifferentiation into myofibroblasts (57). These cells are the 
main source of ECM in the liver and they are responsible for the 
progression of cirrhosis.

When the acute phase of inflammation finishes, Th2 cytokines 
are produced to promote the polarization and recruitment of M2 
macrophage (58). Added to this, apoptotic cells are recognized 
and phagocytosed by macrophages M1, an event that also pro-
motes macrophage alternative activation (59). M2 macrophages 
are intended to create an anti-inflammatory environment and 
promote healing and regeneration of wounds. However, when 
the lesion is persistent, M2 macrophages take an important pro-
fibrotic role and these cell population are known to secreting large 
amounts of pro-fibrotic factors such as TGF-β and Galactin-3 
(60). The latter is a protein that is widely associated with car-
diac fibrosis and atrial fibrillation (61). Preclinical studies have 
shown that infusion of recombinant galectin-3 activates cardiac 
fibroblast proliferation, leading to ventricular dysfunction (62). 
Furthermore, it has been observed that patients with paroxysmal 

atrial fibrillation have elevated levels of galectin-3 (63). Therefore, 
some authors believe that galectin-3 could act as heart failure 
and fibrosis biomarker. Furthermore, Braga et al. showed that in 
the absence of IL-4, mice underwent UUO are associated with 
improved parameters and decreased renal fibrosis (64).

M1 and M2 in the Context of 
Myofibroblasts Activation
There are growing evidences showing the relationship between 
macrophages and myofibroblasts activation during inflamma-
tion by different ways (50). M1 macrophages generate cytokines 
that activate myofibroblasts, either by the production of pro-
inflammatory cytokines such as TNF-α and IL-1β, or chemokine 
production, such as CCL2 that assist in fibrocytes recruitment 
(65). Fibrocytes can migrate to the site of the inflammation 
through the expression of receptors as CCR2, CCR3, CCR7, and 
CXCR4 (37, 66).

M2 macrophages contribute to the control of inflammatory 
process through the release of IL10, arginase, TGF-β and HO-1, 
a process which promotes controlled wound healing and tissue 
regeneration (67, 68). However, the healing process depends on 
whether the initial insult persists or not (69). In this sense, if 
the insult persists, chronic activation of M2 leads to an opposite 
effect. M2 can activate resident fibroblasts through the release of 
TGF-β, PDGF, VEGF, IGF-1, and Galactin-3 (50, 57, 70). This 
evidence demonstrates that the exacerbation of fibrosis could 
depend on the type of macrophage polarization and persistence 
of the inflammatory insult, as shown in Figure 2.

Macrophage Metabolism Regulation in 
Fibrosis
Recently, a large amount of data has been coming in focus 
concerning metabolism and macrophage plasticity (71–73). We 
know M1 macrophages present an glycolytic cellular metabo-
lism (74). It has been shown LPS, in an M1 polarization context, 
induces the transcriptional factor HIF-1α, which, in turn, 
transcriptionally couples glycolytic metabolism to macrophages’ 
inflammatory and microbicidal programs (74). HIF-1α is stabi-
lized by succinate, an effect that is inhibited by 2-deoxyglucose, a 
glycolytic pathway inhibitor (75). A metabolomic screen of LPS-
stimulated macrophages revealed not only the expected activa-
tion of the Warburg effect but also an unexpected accumulation 
of intermediates of the tricyclic acid cycle, in particular succinate 
(75, 76). In M1 macrophages, it was also identified a metabolic 
break at the enzyme that converts isocitrate to α-ketoglutarate, 
providing mechanistic explanation for tricyclic acid cycle frag-
mentation (76).

On the other hand, M2 polarization was found to activate 
glutamine catabolism (76). Given that M2 macrophage activation 
and chronic diseases are energetically demanding, both in terms 
of intensity and duration, Vats et al., demonstrated that distinct 
substrates and pathways might meet the metabolic demands of 
M2 (77). Microarray analysis of M2 revealed that genes important 
in fatty acid oxidation were preferentially expressed in such cells. 
Metabolic studies further verified that M2 present increased 
mitochondrial amount and function. Accordingly, inhibition of 
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FiGURe 2 | Participation of M1 and M2 macrophages in the process of fibrosis. The activation of myofibroblasts is a physiological process generated in 
order to repair and restore tissue homeostasis. However, if the insult persists, fibrosis progress with proliferation of myofibroblasts and deposition of ECM which 
replaces functional tissue, leading to scar tissue formation. In this context, M1 macrophages represent the starting point of pro-fibrotic process. Therefore, M1 
releases pro-inflammatory cytokines and chemokines that indirectly promote the proliferation of myofibroblasts. M1 can release CCL2, assisting in the recruitment of 
fibrocytes and also MMP-9, that promotes EMT/EndoMT. M1 has also been associated with an anti-fibrotic effect by releasing MMPs that degrade ECM. M2 
macrophages can be generated by phagocytosis of apoptotic bodies or Th2 cytokines stimulation. M2 is initially anti-inflammatory cells through the release of IL10, 
arginase, TGFβ and HO-1. But when the damage persists, M2 activation leads to EMT/EndoMT as well as proliferation of fibrocytes due to the release of several 
growth factors. In this sense, macrophage modulation is the central axis of the exacerbation or control of fibrosis.
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oxidative phosphorylation by metabolic inhibitors dramatically 
diminished the expression of M2 markers (77). It is also known 
that IL-4 and IL-13 induce oxidative metabolism by inhibiting 
mTOR, via activation of its upstream negative regulators TSC1 
and TSC2 (78). Inhibition of mTOR can also lead to a decrease 
in HIF-1α levels, and therefore could result in reduced HIF-1α-
dependent glycolytic and inflammatory gene expression (79).

There is a clear distinction in metabolism between macrophage 
subtypes, otherwise, the relevance of these observations and the 
implications for fibrosis are not fully understood. It is known 
pulmonary fibrosis development is related to mutations in mater-
nally inherited mtDNA encoding for key genes of mitochondrial 
energy-generating oxidative phosphorylation, rather than 
Mendelian nuclear genetic principles (80, 81). Mitochondrial 
ROS are also responsible by death of alveolar epithelial cells in 
the context of fibrosis originated from fibrogenic dusts, such as 
asbestos and silica (82). Also, liver kinase B1 (Lkb1), an upstream 
regulator of fatty acid metabolism, has been implicated in chronic 
kidney disease (CKD) development (83). Loss of Lkb1 impaired 
metabolic signaling and caused intracellular lipid accumulation, 
impaired fatty acid oxidation, and decreased glycolysis compared 
to control cells. Subcellular analyses of the mutant cells also 

identified a distorted mitochondrial structure, which negatively 
impacted upon cellular ATP content (83). Besides fatty acid, 
glucose metabolism has been implicated in CKD. High glucose 
concentrations may play important role in fibrosis development 
once leads to up-regulation expression of TGFβ, Smad3, Smad7, 
and CTGF (84).

However, much is expected in order to correlate macrophage 
metabolism and fibrosis formation. We still do not understand 
the scar formation in the context of drugs capable to modulate the 
metabolism in cells. It is known that chronic ethanol consump-
tion disturbs several hepatic enzymes, including those related to 
cellular metabolism, such as PGC-1α (85), in a cirrhosis model 
of disease, meanwhile new studies in fibrotic models that do not 
are related to metabolites ingestions are needed.

COnCLUSiOn

Macrophages represent a heterogeneous cell population that can 
develop from different sources. M1 macrophages are associated 
with pro-inflammatory functions, and an exacerbation of tissue 
inflammation initiates the pro-fibrotic process (69). In this direc-
tion, M1 activates myofibroblasts through the release of MMPs 
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that promote EMT/EndoMT and fibrocytes recruitment through 
CCL2 secretion. On the other hand, M2 macrophages have anti-
inflammatory properties due to the ability to secrete IL-10, argin-
ase, TGFβ, and HO-1 (65, 68). In this point of view, M2 becomes 
friend of the tissue repairing. However, when the insult is not 
controlled and there is a persistent activity of M2 macrophages, 
these cells act as an enemy for tissue homeostasis. Excessive M2 
macrophage activation leads to the continuous production TGFβ 
and growth factors that promote proliferation of myofibroblasts, 
activation of EMT/EndoMT and ECM deposition (34). In this 
scenario, M2 represents a break point between wound healing 
and exacerbation of pro-fibrotic process. Recently, much has 

been studied about macrophages metabolism. We know, for 
example, that pro-inflammatory cells present a glycolytic 
metabolism while anti-inflammatory ones are characterized by 
an oxidative metabolism. Otherwise, more studies are needed 
in order to identify macrophages components responsible 
by fibrosis triggering and different intervention manners in 
fibrotic process.
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Fibrosis is a characteristic pathological feature of an array of chronic diseases, where 
development of fibrosis in tissue can lead to marked alterations in the architecture of 
the affected organs. As a result of this process of sustained attrition to organs, many 
diseases that involve fibrosis are often progressive conditions and have a poor long-term 
prognosis. Inflammation is often a prelude to fibrosis, with innate and adaptive immunity 
involved in both the initiation and regulation of the fibrotic process. In this review, we will 
focus on the emerging roles of the newly described innate lymphoid cells (ILCs) in the 
generation of fibrotic disease with an examination of the potential interplay between ILC 
and macrophages and the adaptive immune system.

Keywords: fibrosis, macrophages, innate lymphoid cells, Th2 cells, epithelial-derived cytokines

iNTRODUCTiON

Fibrosis is a characteristic pathological feature of an array of chronic diseases. The development 
of fibrosis in distinct tissues and organs is associated with numerous conditions, for example, idi-
opathic pulmonary fibrosis (IPF), cystic fibrosis (CF), systemic sclerosis, non-alcoholic steatohepa-
titis (NASH), primary biliary cirrhosis, cancer, and atherosclerosis. In these diseases, the chronic 
development of fibrosis in tissue can lead to marked alterations in the architecture of the affected 
organs and subsequently cause defective organ function. As a result of this process of sustained 
attrition to organs, many diseases that involve fibrosis are often progressive conditions and have a 
poor long-term prognosis. Indeed, due to the limited understanding of the mechanisms underlying 
the generation of fibrosis and the heterogeneity of fibrotic disease, there is currently a paucity of 
effective treatment strategies, contributing to the poor prognosis. The processes that underlie fibrosis 
are a tightly controlled natural mechanism of repair; however, dysregulation in the wound healing 
mechanism can result in aberrant fibrosis. Inflammation is often a prelude to fibrosis, with innate and 
adaptive immunity involved in both the initiation and regulation of the fibrotic process. In different 
organs, the insult to distinct cells, for example, bronchial epithelial cells in the respiratory tract, can 
lead to cell damage and release of various mediators, such as damage-associated molecular patterns 
(DAMPs), as well as proinflammatory and profibrotic factors. The mediators released can, depending 
on prevailing stimuli and local cellular environment, initiate a cascade within the cellular milieu in 
a tissue that leads to the accumulation of extracellular matrix components (ECM), rich in fibrillar 
collagens, fibronectin, and hyaluronic acid culminating in the deposition of fibrous connective tissue 
(1, 2). In this review, we will focus on the development of pulmonary fibrosis and the emerging roles 
of the newly described innate lymphoid cells (ILCs) in the generation of fibrotic disease with an 
examination of the potential interplay between ILC and macrophages.
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iNFLAMMATiON AND FiBROSiS

While chronic injury is a prominent factor in many fibrotic 
diseases, acute inflammatory reactions may also play an 
important role in the initiation of fibrosis. Using experimental 
models involving acute lung injury, such as bleomycin-induced 
pulmonary fibrosis, where cellular apoptosis and necrosis are the 
underlying causative mechanisms, acute inflammatory responses 
initiated via activation of DAMP signaling cascades, results in a 
profibrotic response. While most chronic fibrotic diseases have 
an underlying inflammatory cause in many cases, for example, 
IPF, the causative mechanisms are not fully understood. Indeed, 
IPF is not responsive to anti-inflammatory steroid treatment, 
conversely treatment appears to exacerbate disease (3). However, 
in certain fibrotic disorders where the inflammatory cause has 
been identified, the use of anti-inflammatory therapies, such as 
ibuprofen to reduce the symptoms of CF (4, 5), demonstrate the 
potential roles of inflammation in chronic fibrotic diseases.

A loss of membrane integrity of cells, through injury, apopto-
sis, or necrosis, results in uncontrolled release of cellular contents, 
some of which can act as DAMPs, initiating an inflammatory 
response to clear cellular debris and initiate wound healing. In 
addition, DAMPs can be further synthesized and released in 
response to local cellular damage. The receptors for DAMPs, the 
pattern recognition receptors, including the Toll-like receptor 
(TLR) family, can in addition to recognizing pathogen-associated 
molecular patterns (PAMPs) identify fragments of ECM, such as 
hyaluronic acid and fibrinogen cleavage products (6). Indeed, 
effective danger signaling is implicated in the generation of 
fibrosis, with TLR2-, TLR3-, TLR4-, and TLR9-deficient animals 
demonstrating exacerbated collagen deposition in experimental 
disease models (7). The excessive synthesis and release of DAMPs 
underlies “sterile inflammation,” with innate immune cells pro-
moting inflammation in the absence of an active infection (8). 
Apoptotic and necrotic epithelial cells are a primary source of 
DAMPs, in particular ATP, IL-33, and uric acid that can initiate 
fibrosis (7). Release of uric acid, which crystallizes locally, can 
activate the NALP3 inflammasome in macrophages resulting 
in the release of IL-1β (9). Inflammasome activation leads to an 
increase in a number of other proinflammatory and profibrotic 
cytokines and chemokines, such as CXCL1, platelet-derived 
growth factor (PDGF), and transforming growth factor β1 
(TGF-β1), linking innate immune activation and generation of 
fibrosis (10). Due to the requirement for inflammasome activa-
tion in the processing of IL-1β and IL-18 and the upregulation of 
other profibrotic mediators, inflammasome activation may play 
a critical role in wound healing; however, further investigation is 
required to address the potential for therapeutics targeting the 
inflammasome as beneficial in fibrotic disease.

THe ePiTHeLiAL BARRieR iN wOUND 
HeALiNG AND FiBROSiS

The epithelium serves as the initial defense against insult, pro-
viding both a physical and mechanical barrier, and is therefore 
a crucial interface to orchestrate both the innate and adaptive 
immune responses. Proinflammatory mediators released by 

damaged and dying epithelial cells, as well as recruited leukocytes, 
activate mesenchymal precursor cells in tissues and induce their 
trans-differentiation to ECM-producing myofibroblasts (1). 
The fibrosis cascade progresses following the insult to cells and 
subsequent release of mediators, such as IL-13, connective tissue 
growth factor (CTGF), and TGF-β, that operates downstream of 
initial cellular injury (6, 11). The mature epithelium in the lung is 
non-proliferative; however, in response to injury or inflammation, 
it is vital that the damage to the epithelium is repaired to ensure 
it remains an effective physical barrier. The signaling pathways 
activated in the process of repairing epithelial damage are similar to 
those initiated during development, with the dysregulation of these 
developmental pathways underlying the generation of fibrosis (12).

Transforming growth factor-β is the major profibrotic cytokine; 
it has central roles in promoting the activation and proliferation 
of fibroblasts, upregulates α-smooth muscle actin (α-SMA) and 
collagen I synthesis by myofibroblasts and promotes epithelial-to-
mesenchymal transition (EMT) (6). The Wnt signaling pathway 
has also been implicated in EMT, with overexpression of the 
WNT-1 inducible signaling protein regulating the expression of 
profibrotic markers, such as MMP7 and plasminogen-activator 
inhibitor 1 (PAI-1), thus promoting EMT locally (6). CTGF is a 
matricellular protein, which can mediate the activities of a number 
of other profibrotic and angiogenic factors, such as TGF-β, bone 
morphogenic protein (BMP) 4, and vascular endothelial growth 
factor (VEGF) (13, 14). CTGF has been implicated in fibrosis 
in the liver, lung, skin, and kidney and acts synergistically with 
TGF-β to promote chronic fibrosis inducing ECM expression and 
collagen production by fibroblasts (6). Indeed, trials of antibod-
ies targeting CTGF are currently ongoing in patients with IPF 
and liver fibrosis (15). Repetitive cycles of epithelial damage and 
repair are required for the generation of fibrosis (16, 17), with fac-
tors that damage the epithelium and initiate DAMPs and alarmin 
responses being actively pursued as potential therapeutic targets.

ePiTHeLiAL-DeRiveD CYTOKiNe 
MeDiATORS OF FiBROSiS

In addition to the “classic” profibrotic mediators, such as TGF-β 
and CTGF, recent research has focused on epithelial-derived 
type 2 cytokines as potential therapeutic targets for fibrosis. In 
response to epithelial cell injury, the alarmin cytokines IL-25, 
IL-33, and TSLP are released and are responsible for the initiation 
of a cascade of inflammatory responses. These cytokines have 
important roles in type 2 immunity, in particular in helminth 
infection and allergy (18). In the context of fibrosis, all three 
epithelial cell-derived cytokines have individually been shown to 
be involved in different aspects of fibrosis and are dysregulated in 
patients with fibrotic diseases (Table 1).

iL-25

IL-25, also known as IL-17E, is a member of the IL-17 family 
of cytokines and is secreted by many immune cells including 
activated Th2 cells, eosinophils, mast cells and macrophages, in 
addition to epithelial cells. IL-25 binds to IL-17RB, which forms a 
receptor complex with IL-17RA, activating the NF-κB pathway and 
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initiating Th2-mediated inflammation. IL-25 has been implicated 
in both experimental models of fibrosis and has been detected in 
samples from patients with chronic lung conditions and in the 
skin of patients with systemic sclerosis (19–23). Mice deficient in 
IL-25, or its functional receptor IL-17RB, show impaired collagen 
deposition in response to bleomycin-induced lung injury or S. 
mansoni egg-induced granulomatous pulmonary inflammation 
(21). Furthermore, intranasal administration of IL-25 induces 
collagen deposition and TGF-β and CTGF expressions in the 
lungs (21, 22). IL-25 is also upregulated in asthma and has been 
shown to play a role in airway remodeling and angiogenesis 
both in vitro and in in vivo models (24, 25). Treatment with an 
anti-IL-17RB antibody, thereby blocking IL-25-mediated signal-
ing, improves airway hyper-responsiveness in a mouse model of 
allergic lung inflammation (26, 27). The therapeutic benefits of 
inhibiting IL-25 in conditions, such as allergic lung inflamma-
tion, where airway remodeling is a key event, suggest that IL-25 
is an important mediator of tissue regeneration and consequently 
fibrosis in conditions, such as asthma.

IL-25-dependent fibrosis elicited in the lungs has been attrib-
uted to a downstream pathway involving IL-25-mediated expan-
sion of ILC2 within the lungs with subsequent induction of fibrosis 
via an IL-13-dependent mechanism (21). Further mechanistic 
studies have demonstrated that in addition to activating ILC2, 
IL-25 can also directly drive polarization of bone marrow-derived 
macrophages in vitro toward a type 2 phenotype, with increas-
ing surface expression of M2 marker CD206, in synergy with 
coadministered IL-4 (28). In addition, IL-25 can directly bind to 
human pulmonary fibroblasts through its receptor IL-17RB and 
can promote proliferation and differentiation to a myofibroblastic 
phenotype (22). These data suggest that IL-25 is an important 
mediator of fibrosis with roles in human fibrotic disease and, as 
such, is an exciting therapeutic target.

iL-33

IL-33 is the functional ligand for the IL-1 receptor family member 
ST2 in a complex with IL-1R accessory protein (IL1RAP) (29). 
IL-33 is not normally secreted, instead it is found localized to 
heterochromatin in the nucleus; however, it is released upon cell 

TABLe 1 | expression of selected epithelial-derived cytokines in human fibrotic diseases.

Cytokine Disease Observation Reference

IL-25 IPF Increased IL-25 detected in BAL fluid of IPF patients’ levels positively correlate with fibrotic marker 
periostin

Hams et al. (21)

Asthma Rhinovirus-induced IL-25 exacerbates asthma attacks Beale et al. (25)
Systemic sclerosis Increased IL-25+ cells in the skin of SSc patients Lonati et al. (23)

IL-33 IPF IL-33 is elevated in the lungs and BAL of IPF patients Luzina et al. (34)
Asthma Increased IL-33 in the serum and sputum of patients with allergic asthma Hamzaoui et al. (31)

Guo et al. (32)
Hepatitis IL-33 is increased in the endothelial cells from livers of patients with hepatitis B, hepatitis C, and cirrhosis Marvie et al. (33)
Systemic sclerosis Serum IL-33 is increased in SSC patients Yanaba et al. (30)

Serum IL-33 positively correlates with skin lesions

TSLP Asthma Bronchial and BAL expression of TSLP increased in asthmatics Ying et al. (41)
TSLP promotes airway remodeling in lung fibroblasts Wu et al. (42)

Systemic sclerosis TSLP is upregulated in the skin of patients with SSc Christmann et al. (43)

damage as an alarmin. IL-33 and ST2 have been causally linked 
with fibrotic conditions, including Crohn’s disease, pulmonary, 
and liver fibrosis (Table 1) (30–32). In mouse studies, Il33−/− and 
Il1rl1−/− mice demonstrate decreased collagen deposition in 
models of lung, liver, and intestinal fibrosis (33–37). Interestingly, 
only the full length but not the proteolytically cleaved mature 
IL-33 is implicated in the pathogenesis of the bleomycin-induced 
model of pulmonary fibrosis (34, 38). Mechanistically, IL-33 
initiates a local inflammatory response through the recruitment 
and activation of type 2-associated effector cells including eosino-
phils, basophils, mast cells, and ILC2, resulting in the release of 
Th2 cytokines and activation of macrophages, thereby potentially 
contribution to the downstream development of fibrosis. Indeed, 
in the liver and lung, the profibrotic effects of IL-33 are closely 
linked with increased IL-13 production from ILC2 (35, 39, 40).

TSLP

TSLP is secreted predominantly by keratinocytes but is also found 
in the small airway and intestinal epithelium, and signals via a 
heterodimeric receptor comprising one chain of IL-7Rα and one 
chain of TSLPR. TSLP has also been implicated in several models 
of fibrosis [Table  1 (41–43)], with diminished pulmonary and 
skin fibrosis in mice deficient in the receptor for TSLP (44, 45).

While it is evident that these epithelial alarmin cytokines indi-
vidually contribute to the generation of fibrosis, there is overlap 
and functional redundancy in IL-25, IL-33, and TSLP potentially 
due to the ability of all three cytokines to activate ILC2, as reported 
by Locksley and colleagues, with respect to chitin-elicited pul-
monary inflammation (46). However, this apparent redundancy 
may be due to different ligand and receptor expression at different 
anatomical sites and a hierarchy of action at each tissue, although 
this speculation would need experimental clarification.

iNNATe LYMPHOiD CeLLS

Innate lymphoid cells are a recently described group of innate 
cells of a lymphoid lineage that do not express antigen-specific 
receptors. These cells have important roles in the innate response, 
regulation of homeostasis and inflammation, and interplay 
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with adaptive immunity. While relatively rare in the systemic 
circulation in comparison to other hematopoietic cells, ILCs 
are enriched at epithelial barrier surfaces and act as regulators 
of chronic inflammation and tissue remodeling, acting to bridge 
innate and adaptive immunities.

Mature ILCs can be identified by a lack of markers associated 
with cells of a lymphoid lineage; however, they share expression 
of Thy1, the common gamma chain (γc), and IL-7Rα (47). ILC 
develops from common lymphoid progenitors (CLPs) in the 
fetal liver and adult bone marrow, relying upon the transcrip-
tion factors’ inhibitor of DNA binding 2 (Id2), nuclear factor 
interleukin-3 regulated (NFIL3), promyelocytic leukemia zinc 
finger protein (PLZF), and thymocyte selection-associated 
mobility group box (Tox) (47–52). Expression of Id2 is essential 
for the development of ILCs; however, PLZF is only transiently 
expressed in the early ILC precursor populations, with levels 
barely detectable in mature ILCs, suggesting that its importance 
in the early development of ILCs (49). Expression of NFIL3 and 
Tox is detected earlier than Id2 in the development cascade of ILC; 
however, these transcription factors do not appear to be as critical 
as Id2 for ILC development, with only minimal effects observed 
in the ILC repertoire in mice deficient in either NFIL3 or Tox 
(48, 51). These precursor cells differentiate to NK precursors or 
common helper innate lymphoid precursors, which, under the 
influence of additional transcription factors and cytokines give 
rise to mature ILC subsets (Figure 1) (53, 54).

Innate lymphoid cells can be divided into distinct subsets 
based on the cytokines they produce and the transcription factors 
necessary for their development and function: group 1, which 
produces interferon (IFN) γ and includes NK cells; group 2, which 
produces Th2-associated cytokines; and group 3, which produces 
IL-17 and IL-22 (Figure 1). Expression of the transcription fac-
tors T-bet, GATA3, and RORγt is required for the development 
of ILC1, ILC2, and ILC3 respectively (Figure 1). While GATA3 
is required for the maturation of all ILC subsets, it is expressed at 
much higher levels in ILC2. The transcription factors RORα and 
Bcl11b are also required for effective function of ILC2, deficiency 
in either RORα or Bcl11b diminishes the generation of mature 
ILC2 (55–58). Expression of the aryl hydrocarbon receptor (Ahr) 
appears critical for ILC3 function, with reduced IL-22 production 
and decreased presence of ILC3 in the intestines of Ahr-deficient 
mice (59). There is some plasticity between ILC subsets, ILC3 
can downregulate RORγt expression, allowing T-bet to become 
the prominent transcription factor, and ILC3 cells can take on a 
more ILC1 phenotype associated with increased IFNγ expression 
(47). A recent study has also demonstrated that CD14+ DCs in the 
intestine of Crohn’s disease patients promote polarization of ILC3 
to CD127+ ILC1 (60). An IL-25-elicited ILC2 population also has 
been detected, which has been shown to transition to produce 
IL-17 (61). Furthermore, in the absence of the T cell-associated 
transcription factor Bcl11b in ILC2, there is an increase in the 
expression of RORγt, and the cells take on an ILC3-like phenotype 
(57, 58, 62). While each ILC subset has unique roles in host defense 
and development, the plasticity between groups suggests that ILC 
subtypes may change depending on the tissue environment.

Innate lymphoid cells play an important role in orchestrating 
acute inflammation in response to infection and also chronic 

inflammation and wound healing. While ILC2 is commonly 
associated with chronic tissue inflammation and fibrosis, ILC1 
has not yet been formally implicated in the pathogenesis of 
fibrosis, while ILC3 is also associated with the development 
of fibrosis and is elevated in the bronchoalveloar lavage (BAL) 
fluid of asthma patients (63, 64). ILC3 is an important source 
of IL-17, which may mechanistically underlie a role for ILC3 in 
fibrosis. IL-17A has been implicated in the generation of fibrosis, 
with elevated levels detected in patients with IPF and CF (65, 
66). Furthermore, IL-17A has a critical role in the generation of 
bleomycin-induced pulmonary fibrosis, which is dependent on 
TGF-β, suggesting codependent roles for IL-17A and TGF-β in 
the pathogenesis of fibrosis (65). Therefore, as a source of IL-17 
in mucosal tissues, ILC3 may represent an important cell subset 
in the progression of IL-17-mediated fibrosis. The relative roles 
of ILC subsets may have further implications in the pathogenesis 
of lung inflammation. Indeed, a recent study has identified both 
Th2-high and Th17-high clusters of asthma patients, which are 
inversely correlated (67). Experimental models have shown that 
therapeutically targeting one cluster promotes the other subtype 
and that combination therapy may prove more effective (67). This 
study clearly demonstrates the interplay between Th2-cytokine-
producing cells and IL-17-producing cells and the potential 
implications for inflammatory and fibrotic diseases.

TYPe 2 iNNATe LYMPHOiD CeLLS, 
CHRONiC TiSSUe iNFLAMMATiON, AND 
FiBROSiS

ILC2 is characterized by their ability to produce the Th2 cytokines 
IL-4, IL-5, IL-9, IL-13, and amphiregulin (Figure  1) (68–71). 
They rely upon the transcription factors GATA3 and RORα for 
their development and the cytokines IL-25 and IL-33 for their 
maturation and recruitment (55, 69, 72). Recently, it has been 
reported that ILC2 can be further classified into two distinct sub-
types: the IL-33-elicited Lin-T1/ST2+ “natural ILC2” (nILC2) and 
the IL-25-elicted Lin-KLRG1hi “inflammatory ILC2” (iILC2) (61). 
While ILC2 has been implicated in the pathogenesis of fibrosis, 
the relative functions of nILC2 and iILC2 with regards to inflam-
mation, tissue repair, and fibrosis has yet to be fully elucidated.

ILC2 is implicated in the effective resolution of helminth 
infection, and in the development of allergic inflammation (73). 
Furthermore, ILC2 has been shown to play an important role 
in wound healing, tissue repair, and consequently chronic tis-
sue inflammation and fibrosis (74). Studies have demonstrated 
that while the pathogenesis of ILC2 in fibrosis is associated with 
IL-13 release (21, 56), ILC2-mediated wound healing and tissue 
regeneration in the lung are promoted by release of amphiregulin 
by ILC2 (70, 71). ILC2 is associated with tissue fibrosis in experi-
mental models, and dysregulated ILC2 responses have been 
detected in samples from patients with chronic inflammatory 
diseases, including IPF, atopic dermatitis, chronic rhinosinusi-
tis, and asthma (21, 75–78). Furthermore, depletion of ILC2 in 
experimental models of fibrosis attenuates collagen deposition; 
conversely, transfer of ILC2 can induce tissue collagen deposi-
tion (21, 39).
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Increased localized expression of IL-25 and IL-33 is associated 
with expansion of ILC2 that may thereby promote tissue fibrosis 
through a number of mechanisms (Figure  2). ILC2-derived 
IL-5 can recruit and activate eosinophils, contributing to tissue 
inflammation (79). ILC2 can also enhance Th2 responses, either 
indirectly via IL-13-mediated DC priming or directly through 
major histocompatibility complex class II (MHCII) interaction 
with TCR on CD4+ T cells (56, 80, 81). ILC2-derived IL-13 can 
activate macrophages toward a profibrotic phenotype and can 
also induce collagen deposition from fibroblasts (21). These stud-
ies clearly demonstrate an important pathogenic role for ILC2 
in the generation of fibrosis. This suggests that targeting ILC2 
and the associated signaling pathways offers the possibility for 
therapeutic exploitation.

TYPe 2 ReSPONSeS iN FiBROSiS

CD4+ Th1 and Th2 cells and the cytokines they produce are 
important mediators in the inflammatory phase of fibrosis. While 
Th1-derived IFNγ inhibits fibrosis, the Th2 cytokines IL-4, IL-5, 
and IL-13 have been linked to a number of fibrotic conditions. 
Both IL-4 and IL-13 can promote polarization of macrophages 
to an alternatively activated profibrotic phenotype, recruit innate 
cells, such as basophils and eosinophils, and can directly act on 
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fibroblasts to induce myofibroblast differentiation and collagen 
deposition (82, 83). Indeed, transgenic mice overexpressing IL-13 
spontaneously develop tissue fibrosis with significant collagen 
deposition (84). IL-5 release by Th2 cells can also recruit and 
activate eosinophils, which are a potent source of the profibrotic 
cytokines TGF-β, PDGF, and IL-13 (85).

Studies using IL-4- and IL-13-deficient mice (Il4−/−, Il13−/−, 
Il4ra−/−, and Il-13ra1−/−) demonstrate a prominent role for 
IL-13 over IL-4 in the Th2-induced generation of fibrosis 
(86–89). Using IL-13-deficient mice, a profibrotic role for IL-13 
was shown in S. mansoni egg-induced fibrosis in the livers of 
infected mice as well as in the lungs of egg-injected animals 
(87, 90). As reported first by Wynn and colleagues using soluble 
IL-13Ralpha2-Fc (86), a specific role for IL-13 in fibrosis was 
identified with anti-IL-13 antibodies now in clinical trials 
for fibrotic diseases (91). The functional receptors for IL-13, 
IL-4Rα, and IL-13Rα1 are expressed on fibroblasts, fibrocytes, 
and myofibroblasts (92). IL-13 can directly induce inhibition 
of the matrix metalloproteinase synthesis and can drive the 
differentiation of resident fibroblast and circulating fibrocytes 
to myofibroblasts, resulting in enhanced collagen deposition 
(83, 93, 94). These studies clearly demonstrate the importance 
of Th2 cells and specifically the associated cytokines, IL-4 and 
IL-13, in the pathogenesis of fibrosis.
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Recent studies have identified crosstalk between the innate 
and adaptive immune responses as integral in the initiation and 
maintenance of type 2 immunity (Figure 3). ILC2 is able to acti-
vate Th2 cells via MHCII-mediated antigen presentation, whereas 
MHCII expressing ILC3 suppresses T cell activation due to the lack 
of costimulatory molecules (80, 95). Antigen-specific interaction 
between ILC2 and Th2 cells leads to the production of IL-4, IL-13, 
and also IL-2 by the Th2. Notably, Th2-derived IL-2 interacts 
with CD25 expressed on ILC2 activating ILC2 to release IL-13 
(80). Furthermore, in addition to directly producing IL-13, ILC2 
produces IL-5, which activates eosinophils, which are also potent 
producers of IL-13 and TGF-β (79). These cytokines are all able to 
activate recruited and resident macrophages to a profibrotic pheno-
type, as well as directly inducing trans- differentiation of fibroblasts. 
This interplay between innate ILC2 cells and adaptive CD4+ T cells 
to induce macrophage activation and myofibroblast differentiation 
provides interesting mechanistic insight and identifies pathways 
that could potentially be exploited by novel therapeutics.

MACROPHAGeS SUBTYPeS, 
iNFLAMMATiON, AND FiBROSiS

Macrophages are phagocytic cells, which are integral in homeo-
stasis, development, and immunity and are found in all tissues 
where they display distinct anatomical and functional diversity. A 
brief overview of the central role that macrophages play in fibrosis 
is provided, as there have recently been a series of comprehensive 
reviews focused on macrophages (1, 96–99). Resident mac-
rophages regulate tissue homeostasis by responding to changes 
in the local environment. If required, circulating monocytes are 
recruited to the site of insult and activated to the desired pheno-
type or resident cells may proliferate locally in response to tissue 
injury (100). Macrophages can exist in many activation states 

dependent upon the inflammatory environment or stimulation 
used (98). Macrophages were commonly broadly divided into 
two subtypes: those associated with a type 1 response, termed 
“classically” activated or “M1,” which are generally proinflam-
matory, and “alternatively” activated or “M2,” which are typically 
associated with type 2 responses and wound healing. These two 
macrophage subtypes are defined experimentally by in  vitro 
responses to IFNγ and the TLR4 agonist lipopolysaccharide 
(LPS) and the Th2 cytokines IL-4 and IL-13, respectively, with 
macrophages differentially generated having a unique gene pro-
file and distinct functions. However, it is now accepted that the 
broad M1 versus M2 dichotomy terminology does not adequately 
describe the diverse phenotypes of macrophages. Therefore, 
newer and broader characterization of subtypes based on the 
activation of the macrophages under experimental conditions 
has been proposed (Figure 4) (98). Macrophages have a key role 
in the generation of fibrosis with distinct subtypes temporally 
activated and expanded in damaged tissue contributing to aspects 
of both the development of fibrosis and its subsequent resolution 
(97). Studies specifically depleting CD11b+F4/80+ macrophages, 
using Cd11b-DTR mice, have demonstrated that macrophages 
are crucial for the maintenance of type 2 immunity and also the 
associated generation of fibrosis (101, 102).

When tissues are damaged following infection or injury, circu-
lating Ly6C+ monocytes are recruited and differentiate into pro-
inflammatory macrophages as they migrate through the affected 
tissue (103). Proinflammatory macrophages elicited via STAT1 
in response to localized release of IFNγ or TLR agonists are a 
potent source of the cytokines tissue necrosis factor (TNF)-α, 
IL-6, IL-12, and IL-23, and reactive oxygen species (ROS), which 
act to kill invading pathogens (96). To counteract the damaging 
effects of macrophage-derived reactive oxygen and nitrogen spe-
cies to the local tissue, macrophages undergo apoptosis or switch 
to an anti-inflammatory phenotype, which dampens the immune 
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response and facilitates tissue repair (96). If the causal insult is 
not removed, as is the case in a number of chronic inflammatory 
diseases, the resulting aberrant activation of macrophages can 
lead to fibrosis. Indeed, macrophages play a crucial role in the 
pathogenesis of most chronic fibrotic diseases.

Activation of macrophages by proinflammatory stimuli causes 
a metabolic switch from oxidative phosphorylation to glycolysis, 
similar to the Warburg effect originally identified in tumors (104, 
105). This switch occurs in response to inflammatory stimuli, 
such as LPS and type I interferon, as well as hypoxic conditions 
and activation of hypoxia-inducible factor-1α (HIF-1α) (105). 
Indeed, the metabolic status of macrophages is closely linked to 
their function. Aerobic glycolysis is initiated upon activation of 
proinflammatory macrophages, increasing the uptake of glucose 
and attenuating the activities of the respiratory chain allowing for 
the generation of ROS, this provides the cell with a rapid release of 
energy essential for the removal of pathogens (106). Conversely, 
anti-inflammatory macrophages have a more sustained role 
requiring a slower release of energy and thus rely on fatty acid 
oxidation and oxidative metabolism (107). There is a clear distinc-
tion in metabolism between macrophage subtypes; however, the 
relevance of these observations and the implications for diseases, 
such as fibrotic disease, are, as yet, not fully understood.

The development of anti-inflammatory macrophages within 
a type 2 immune environment in response to IL-4 and IL-13 
via STAT6 signaling has specific functions in wound repair and 
resolution (99). Macrophages elicited by IL-4 and IL-13 have a 

distinctive expression profile characterized by high expression of 
Arginase (Arg) 1, chitinase-like protein Ym1 and RELMα, and 
release of the chemokines CCL17, CCL22, and CCL24 (Figure 4). 
Macrophages can also be activated by IL-10, via STAT3, which 
results in autocrine production of IL-10; these macrophages 
are characterized by expression of IL-4Rα [Figure  4 (108)]. 
Indeed, IL-4/IL-13-primed macrophages expressing Arg1 have 
been shown to inhibit IL-13-mediated fibrosis, via suppressing 
the activation of CD4+ T cells and suppressing myofibroblasts 
by competing for arginase in the local environment (109, 110). 
Conversely, IL-13-elicited macrophages are also implicated in the 
pathogenesis of fibrosis (102). There is clearly a balance between 
the pro- and antifibrotic roles of macrophages in inflammation; 
however, IL-13-elicited profibrotic macrophages (PFMs) are 
associated with the release of TGF-β and are considered profi-
brotic in most chronic inflammatory diseases.

Distinct from the pro- and anti-inflammatory macrophage pop-
ulations a CD11blow non-phagocytic macrophage population that 
does not express Arg1, termed resolution-promoting macrophages 
(Mres), has been identified in the lymphoid organs and adipose 
tissue (111). These macrophages appear to be antifibrotic and 
immune regulatory, secreting low levels of inflammatory cytokines 
and IL-10 and therefore may play an important role in the localized 
and systemic termination of an inflammatory response (112).

Recently, the epithelial-derived cytokines IL-25, IL-33, and 
TSLP discussed above have been shown to activate macrophages, 
both directly and indirectly, by promoting expansion of IL-13-
expressing ILC2 (113–115). Indeed, IL-13 production from ILC2 
and also eosinophils and Th2 cells has been shown to induce and 
maintain localized tissue macrophage activation both in the lung 
and in the adipose tissue (21, 115, 116). This interplay between 
ILC2 and Th2 cells in the maintenance of potentially PFMs at 
tissue sites could have implications in fibrotic disease.

Given the heterogeneity of macrophages (Figure  4), studies 
have focused on characterizing the PFM populations. These 
include IL-4-elicited proangiogenic PFMs that express a number 
of factors that are key mediators in the tissue repair process 
including TGF-β, PDGF, VEGF, as well as a number of matrix 
metalloproteinases (MMPs) (96). These factors contribute to the 
fibrotic cascade via recruitment of tissue fibroblasts, circulating 
fibrocytes and bone marrow-derived myofibroblasts, activation 
of resident myofibroblasts, and differentiation of epithelial cells 
into myofibroblasts through EMT. Indeed, in fibrotic tissue, 
macrophages localize in close proximity to myofibroblasts, sug-
gesting the importance of macrophages and macrophage-derived 
mediators in the progression of fibrosis (2). Macrophages are 
clearly important regulators of wound healing and therefore also 
fibrosis. The heterogeneity in macrophage populations (Figure 4) 
highlights the extent of further mechanistic investigation needed 
to address the relative roles of macrophage populations in the fine 
balance between wound healing and fibrosis.

CONCLUSiON

In this article, we have expanded on the potential roles of innate 
cells in fibrosis with a focus on the interplay between the epithelial-
derived cytokines, ILC2, and macrophages. We have also explored 
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the role of ILC2 in bridging the innate and adaptive immune 
system in the context of inflammation and fibrosis. Dysregulation 
of macrophages underlies a majority of inflammatory and fibrotic 
disease conditions, with a number of therapies targeting mac-
rophages currently under development (97). While the relative 
roles of macrophages in the induction and resolution of fibrosis 
have been extensively studied, it is yet unclear whether distinct 
populations of macrophages control these disparate functions, or 
whether the phenotype of the local macrophages alters dependent 
on changes in the tissue microenvironment. Many mechanisms 
underlying fibrosis are common to multiple organs, which is 

important for the development of potential therapeutics (117). 
A key to developing effective therapeutics for tissue fibrosis is the 
identification of common pathways and, although further studies 
are needed, the epithelial cytokines and ILC2 axis interplay with 
macrophages is a promising area for therapeutic intervention.
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In the last decade, the incidence of metabolic disorders has increased drastically worldwide and is
becoming a global health threat. Studies have shown that the pathogenesis and co-morbidities of
diseases such as diabetes, gout, and atherosclerosis involve chronic low-grade inflammation and
metabolic changes (1). As this inflammation is triggered by endogenous substances, instead of
pathogens, it is called “sterile inflammation”. Chronic low-grade inflammation can be triggered by
the accumulation of metabolic products such as uric acid, glucose, cholesterol, and free circulating
fatty acids. These substances can induce inflammation by two distinct mechanisms: (1) engagement
of Toll-Like Receptors (TLR), such as TLR-2 (2), TLR-4 (3), and TLR-9 (4) and (2) activation of
the intracellular receptor complex known as inflammasome that leads to caspase-1 activation, an
enzyme that cleaves pro- interleukin (IL)-1β into its active form (5–7). IL-1β acts on its receptor
IL1R1, a member of the TLR family whose activation is dependent on the presence of the adaptor
molecule Myeloid Differentiation primary response gene 88 (MyD88). Although TLR-2 signaling
is mediated mainly through the MyD88, TLR-4 activates MyD88-dependent and TIR-domain-
containing adapter-inducing interferon β (TRIF)-dependent pathways. The MyD88-dependent
pathway culminates in the activation of the Nuclear Factor kappa B (NFκB)/Activator Protein (AP)
1 and the TRIF-dependent pathway leads to delayed activation of NFκB associated with Interferon
Regulatory Factor (IRF) (8). Thus, NFκB is a transcription factor of several genes involved in
inflammation and also regulates its own transcription (9). In metabolic diseases with chronic low-
grade inflammation, NFκB is continuously activated (10). Since NFκB can be activated through the
adaptor molecule MyD88, modulation of its expression should have important consequences on the
inflammatory response.

Leukotrienes are lipid mediators whose production is increased during inflammation. Acti-
vated phospholipase A2 releases arachidonic acid from membrane phospholipids. Liberated (sol-
uble) arachidonic acid can be metabolized by 5-lipoxygenase (5-LO) to produce leukotrienes
including LTB4 and cysteinyl leukotrienes, LTC4, LTD4, and LTE4. It is well documented that
leukotrienes are mediators of inflammatory events such as edema and leukocyte infiltration
and activation and that they have an essential role in acute and chronic inflammatory diseases.
Leukotrienes were also shown to mediate resistance to infections by several microorganisms (11).
In macrophages, leukotrienes were shown to potentiate phagocytosis and microbicidal activity by
affecting the mechanisms involved in actin polymerization and activation of NADPH oxidase,
respectively (12).

LTB4 binds to two distinct G protein-coupled receptors. The Leukotriene Receptor (BLT)1 is
the high affinity receptor that induces inflammation, enhances cytokine production, phagocyto-
sis, and mediates antimicrobial effector functions. Through BLT1, LTB4 was shown to enhance
MyD88 expression and potentiate MyD88-dependent stimuli responses while no difference on
MyD88-independent stimuli was found (13). BLT2 binds LTB4 with lower affinity and has
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been much less studied, currently no information is available on
BLT2 in the context with metabolic syndrome. It was shown that
LTB4 through both, BLT2 and BLT1 receptors enhances NFκB
activation (14).

It can be concluded that LTB4, by increasingMyD88 expression,
would potentiate a TLR/IL-1R dependent sterile inflammation.
Considering that metabolic diseases involve sterile inflammation
we propose that LTB4 plays a central role in the development of
metabolic diseases and may be considered a target for the devel-
opment of new therapies. Here, we will highlight recent findings
on LTB4 involvement in Type 1 Diabetes (T1D), Type 2 Diabetes
(T2D), and gout.

According to the World Health Organization, diabetes is a
syndrome characterized by hyperglycemia with disturbances in
protein, lipid, and carbohydrate metabolism due to a deficiency
in insulin production (in T1D) or insulin resistance (in T2D). In
T1D, both hyperglycemia and insulin deficiency can be respon-
sible for the sterile inflammation (15, 16). We found that mice
with T1D exhibited higher serum levels of IL-1β, TNF-α, and
LTB4. Macrophages from type 1 diabetic mice, compared to those
from non-diabetics, expressed higher levels of MyD88 mRNA
and produced higher levels of pro-inflammatory cytokines and
nitric oxide, in response toMyD88-dependent stimuli such as LPS
and IL-1β. Inhibition of LT synthesis restored MyD88 expression
and cytokines production to similar levels found in macrophages
from non-diabetic mice (15). Another important finding in this
work was that pharmacologic or genetic inhibition of LTB4/BLT1
protectedmice from succumbing to sepsis and this correlatedwith
decreasedmacrophageMyD88 expression and decreased systemic
inflammatory responses in the septicmice. This was an interesting
finding because increased susceptibility to sepsis is a characteristic
of diabetic patients (17).

In T2D, obesity is one of the largest risk factors for the devel-
opment of insulin resistance (18, 19). It has been proposed that
in obese people and in murine models of obesity, chronic sterile
inflammation is triggered by free fatty acids (FFA), which engage
MyD88-dependent receptors to produce IL-6 (20) and TNF-α
(21). FFA can also activate the inflammasome and induce IL-1β
production (7). Macrophages that infiltrate adipose tissue seem to
play an essential role in insulin resistance. In diet-induced obesity,
adipose tissue macrophages express an activated M1 phenotype
(22–24). These results suggest that pro-inflammatory cytokines
produced by macrophages have a local effect on adipocytes and
a systemic effect on liver and muscle cells impairing insulin
signaling.

In obese mice, increased uptake of omega-3-polyunsaturated
fatty acids (ω-3-PUFA) led to enhanced insulin sensitivity. This
correlated with decreased production of 5-LO products and
increased generation of anti-inflammatory lipidmediators such as
resolvins and protectins in the adipose tissue (25). Resolvins and
protectins are mediators derived from ω-3-PUFA and are associ-
ated with the resolution phase of inflammation (26). Resolvin E1
can bind to BLT1, acting as a partial agonist to attenuate LTB4-
induced NFκB activation in polymorphonuclear leukocytes. The
effect of resolvin E1 was comparable to that of the BLT1 antago-
nist, U-75302 (27). Together these results suggest a dominant role
for LTB4 through BLT1 in insulin resistance.

Recently, it was demonstrated that knockdown of the Ltb4r1
gene (the gene that transcribes BLT1) or inhibition of LTB4 syn-
thesis protectedmice from diet-induced insulin resistance (10, 28,
29). In mice fed a high-fat diet, increased amounts of LTB4 can be
found in the white adipose tissue, liver, and muscle (29, 30). In
obese animals, LTB4 promotes NFκB p65 nuclear translocation
and production of IL-6 and TNF-α in adipose tissue (10). More-
over, when NFκB activation is increased, LTB4 could enhance
pro-IL-1β expression for subsequent cleavage to the mature form
via inflammasome activation.

Another possibility is that in skeletal muscle cells, adipocytes,
and hepatocytes, LTB4 by enhancing MyD88 expression and
action would potentiate the IL-1R response, further impairing
insulin signaling in insulin target organs. LTB4 was also shown to
decrease insulin signaling in hepatocytes through BLT1 by acti-
vating the NFκB pathway and up-regulating inhibitors of insulin
pathways such as Phosphatase and Tensin homolog (PTEN)
and Protein-Tyrosine Phosphatase 1B (PTP1B) (31). Thus, LTB4
could promote insulin resistance by enhancing macrophage pro-
inflammatory cytokine production, potentiating IL-1β action in
insulin target organs and negatively affecting different compo-
nents of insulin action. Therefore, LTB4 is an essential mediator
in the development of insulin resistance in T2D.

Retinal capillary degeneration is a hallmark of diabetic
retinopathy, and there is evidence that LTB4 is involved in this dia-
betes co-morbidity. This is supported by studies in animal models
of diabetic retinopathy. 5-LO-deficient mice exhibited decreased
leukocyte adherence to the vascular wall (the leukocyte subset was
not assessed in this study), superoxide generation, NFκB expres-
sion and did not exhibit signs of capillary degeneration (32, 33).
Both superoxide generation and NFκB expression can be induced
byMyD88-dependent events (34). In humans, leukotriene precur-
sor levels were increased in vitreous samples from patients with
diabetic retinopathy compared with samples from non-diabetics
(35). These results show that the 5-LO pathway is important for
the development of diabetic retinopathy in humans.

In gout, joint deposition ofmonosodiumurate (MU), a byprod-
uct of purine degradation, is the disease etiological agent.MU is to
activate macrophage NLRP3 leading to IL-1β and IL-18 secretion
(caspase-1-dependent), IL-6, CXCL1 and CXCL2 production and
inflammatory cell recruitment (36). It has been shown that LTB4
is produced bymacrophages stimulated withMU and in the knee-
joint of mice injected with MU crystals. Amaral et al. showed
that pharmacologic and genetic inhibition of LTB4 production or
BLT1 antagonism reduced MU-induced IL-1β and CXCL1 pro-
duction and this correlated with neutrophil migration to the joint.
Moreover, the injection of LTB4 into the joint was sufficient to
induce IL-1β production and neutrophil recruitment, suggesting
an essential role for this lipid mediator in the pathogenesis of
gout (37). In patients, LTB4 in gouty effusion was found at a
higher concentration that in synovial fluid from patients with
rheumatoid arthritis or osteoarthritis (38).

In summary, involvement of LTB4 on sterile inflammation in
metabolic diseases is supported by the finding that inhibition of
LTs synthesis or BLT1 antagonism: (a) reduced IL-1β and TNF-
α serum levels in T1D (15) and MCP-1, IL-6, and TNF-α serum
levels in T2D (29); (b) reduced the sterile inflammation in adipose
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tissue in obesemice, more specifically themacrophage infiltration
(28), pro-inflammatory cytokine production (10), andNFκB acti-
vation (10); reduced neutrophil migration and IL-1β production
in a murine model of gout (37); prevented diet-induced insulin
resistance and steatosis (28, 30), and reduced susceptibility to
sepsis in T1D mice (15).

Evidence presented here led us to propose that LTB4 has a
central role in metabolic dysfunctions. By increasing MyD88
expression, LTB4 enhances macrophage response to TLR/IL1
receptor agonists potentiating the sterile inflammation, a central
event in metabolic disease progression. Furthermore, LTB4 can
amplify tissue injury by increasing reactive oxygen and nitrogen
species that are known to mediate β-cell destruction, impairing

insulin production. Although further studies are required, inhi-
bition of the LTB4/BLT1 axis is a promising therapeutic strat-
egy for the treatment of metabolic disorders. There is a 5-LO
inhibitor already approved to treat asthma, and BLT1 antago-
nists are under development. Reduction in LTB4 production or
activity may reduce sterile inflammation and decrease disease
severity.

Funding

Fundação deAmparo aPesquisa doEstadode SãoPaulo (FAPESP)
and the National Institute of Health (HL-103777-01 and HL-
124159-01).

References
1. Robbins GR, Wen H, Ting JP. Inflammasomes and metabolic disorders: old

genes in modern diseases.Mol Cell (2014) 54(2):297–308. doi:10.1016/j.molcel.
2014.03.029

2. Liu-Bryan R, Scott P, Sydlaske A, Rose DM, Terkeltaub R. Innate immunity
conferred by toll-like receptors 2 and 4 and myeloid differentiation factor
88 expression is pivotal to monosodium urate monohydrate crystal-induced
inflammation. Arthritis Rheum (2005) 52(9):2936–46. doi:10.1002/art.21238

3. Davis JE, Gabler NK, Walker-Daniels J, Spurlock ME. Tlr-4 deficiency selec-
tively protects against obesity induced by diets high in saturated fat. Obesity
(Silver Spring) (2008) 16(6):1248–55. doi:10.1038/oby.2008.210

4. Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, et al.
Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta
in mice. Gastroenterology (2010) 139(1):323–34e7. doi:10.1053/j.gastro.2010.
03.052

5. Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for
metabolic danger? Science (2010) 327(5963):296–300. doi:10.1126/science.
1184003

6. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, et al.
NLRP3 inflammasomes are required for atherogenesis and activated by choles-
terol crystals. Nature (2010) 464(7293):1357–61. doi:10.1038/nature08938

7. Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, et al. Fatty acid-induced
NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat
Immunol (2011) 12(5):408–15. doi:10.1038/ni.2022

8. Kawai T, Akira S. TLR signaling. Cell Death Differ (2006) 13(5):816–25. doi:10.
1038/sj.cdd.4401850

9. Brown K, Park S, Kanno T, Franzoso G, Siebenlist U. Mutual regulation of the
transcriptional activator NF-kappa B and its inhibitor, I kappa B-alpha. Proc
Natl Acad Sci U S A (1993) 90(6):2532–6. doi:10.1073/pnas.90.6.2532

10. Horrillo R, González-Périz A, Martínez-Clemente M, López-Parra M, Ferré
N, Titos E, et al. 5-lipoxygenase activating protein signals adipose tissue
inflammation and lipid dysfunction in experimental obesity. J Immunol (2010)
184(7):3978–87. doi:10.4049/jimmunol.0901355

11. Peters-Golden M, Henderson WR Jr. Leukotrienes. N Engl J Med (2007)
357(18):1841–54. doi:10.1056/NEJMra071371

12. Morato-Marques M, Campos MR, Kane S, Rangel AP, Lewis C, Ballinger MN,
et al. Leukotrienes target F-actin/cofilin-1 to enhance alveolarmacrophage anti-
fungal activity. J Biol Chem (2011) 286(33):28902–13. doi:10.1074/jbc.M111.
235309

13. Serezani CH, Lewis C, Jancar S, Peters-Golden M. Leukotriene B4 amplifies
NF-kappaB activation in mouse macrophages by reducing SOCS1 inhibition of
myD88 expression. J Clin Invest (2011) 121(2):671–82. doi:10.1172/JCI43302

14. Sánchez-Galán E, Gómez-Hernández A, Vidal C, Martín-Ventura JL, Blanco-
Colio LM, Muñoz-García B, et al. Leukotriene B4 enhances the activity of
nuclear factor-kappaB pathway throughBLT1 andBLT2 receptors in atheroscle-
rosis. Cardiovasc Res (2009) 81(1):216–25. doi:10.1093/cvr/cvn277

15. Filgueiras LR, Brandt SL, Wang S, Wang Z, Morris DL, Evans-Molina C, et al.
Leukotriene B4-mediated sterile inflammation promotes susceptibility to sepsis
in a mouse model of type 1 diabetes. Sci Signal (2015) 8(361):ra10. doi:10.1126/
scisignal.2005568

16. GhanimH,Korzeniewski K, Sia CL, Abuaysheh S, LohanoT, Chaudhuri A, et al.
Suppressive effect of insulin infusion on chemokines and chemokine receptors.
Diabetes Care (2010) 33(5):1103–8. doi:10.2337/dc09-2193

17. SmithermanKO, Peacock JE Jr. Infectious emergencies in patients with diabetes
mellitus. Med Clin North Am (1995) 79(1):53–77.

18. Steinberger J, Moorehead C, Katch V, Rocchini AP. Relationship between
insulin resistance and abnormal lipid profile in obese adolescents. J Pediatr
(1995) 126(5 Pt 1):690–5. doi:10.1016/S0022-3476(95)70394-2

19. Fagot-Campagna A, Pettitt DJ, Engelgau MM, Burrows NR, Geiss LS, Valdez
R, et al. Type 2 diabetes among North American children and adolescents:
an epidemiologic review and a public health perspective. J Pediatr (2000)
136(5):664–72. doi:10.1067/mpd.2000.105141

20. Sabio G, Das M, Mora A, Zhang Z, Jun JY, Ko HJ, et al. A stress signaling
pathway in adipose tissue regulates hepatic insulin resistance. Science (2008)
322(5907):1539–43. doi:10.1126/science.1160794

21. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from
obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature
(1997) 389(6651):610–4. doi:10.1038/39335

22. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in
adipose tissue macrophage polarization. J Clin Invest (2007) 117(1):175–84.
doi:10.1172/JCI29881

23. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr.
Obesity is associated with macrophage accumulation in adipose tissue. J Clin
Invest (2003) 112(12):1796–808. doi:10.1172/JCI200319246

24. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, et al. CCR2
modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest
(2006) 116(1):115–24. doi:10.1172/JCI24335C1

25. González-Périz A, Horrillo R, Ferré N, Gronert K, Dong B, Morán-Salvador
E, et al. Obesity-induced insulin resistance and hepatic steatosis are alleviated
by omega-3 fatty acids: a role for resolvins and protectins. FASEB J (2009)
23(6):1946–57. doi:10.1096/fj.08-125674

26. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology.
Nature (2014) 510(7503):92–101. doi:10.1038/nature13479

27. Arita M, Ohira T, Sun YP, Elangovan S, Chiang N, Serhan CN. Resolvin E1
selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to reg-
ulate inflammation. J Immunol (2007) 178(6):3912–7. doi:10.4049/jimmunol.
178.6.3912

28. Spite M, Hellmann J, Tang Y, Mathis SP, Kosuri M, Bhatnagar A, et al. Defi-
ciency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin
resistance in diet-induced obesity. J Immunol (2011) 187(4):1942–9. doi:10.
4049/jimmunol.1100196

29. Mothe-Satney I, Filloux C, Amghar H, Pons C, Bourlier V, Galitzky J,
et al. Adipocytes secrete leukotrienes: contribution to obesity-associated
inflammation and insulin resistance in mice. Diabetes (2012) 61(9):2311–9.
doi:10.2337/db11-1455

30. Li P, Oh da Y, Bandyopadhyay G, Lagakos WS, Talukdar S, Osborn
O, et al. LTB4 promotes insulin resistance in obese mice by acting on
macrophages, hepatocytes andmyocytes.NatMed (2015) 21(3):239–47. doi:10.
1038/nm.3800

31. Pardo V, González-Rodríguez Á, Guijas C, Balsinde J, Valverde ÁM. Opposite
cross-talk by oleate and palmitate on insulin signaling in hepatocytes through

Frontiers in Immunology | www.frontiersin.org October 2015 | Volume 6 | Article 51574

http://dx.doi.org/10.1016/j.molcel.2014.03.029
http://dx.doi.org/10.1016/j.molcel.2014.03.029
http://dx.doi.org/10.1002/art.21238
http://dx.doi.org/10.1038/oby.2008.210
http://dx.doi.org/10.1053/j.gastro.2010.03.052
http://dx.doi.org/10.1053/j.gastro.2010.03.052
http://dx.doi.org/10.1126/science.1184003
http://dx.doi.org/10.1126/science.1184003
http://dx.doi.org/10.1038/nature08938
http://dx.doi.org/10.1038/ni.2022
http://dx.doi.org/10.1038/sj.cdd.4401850
http://dx.doi.org/10.1038/sj.cdd.4401850
http://dx.doi.org/10.1073/pnas.90.6.2532
http://dx.doi.org/10.4049/jimmunol.0901355
http://dx.doi.org/10.1056/NEJMra071371
http://dx.doi.org/10.1074/jbc.M111.235309
http://dx.doi.org/10.1074/jbc.M111.235309
http://dx.doi.org/10.1172/JCI43302
http://dx.doi.org/10.1093/cvr/cvn277
http://dx.doi.org/10.1126/scisignal.2005568
http://dx.doi.org/10.1126/scisignal.2005568
http://dx.doi.org/10.2337/dc09-2193
http://dx.doi.org/10.1016/S0022-3476(95)70394-2
http://dx.doi.org/10.1067/mpd.2000.105141
http://dx.doi.org/10.1126/science.1160794
http://dx.doi.org/10.1038/39335
http://dx.doi.org/10.1172/JCI29881
http://dx.doi.org/10.1172/JCI200319246
http://dx.doi.org/10.1172/JCI24335C1
http://dx.doi.org/10.1096/fj.08-125674
http://dx.doi.org/10.1038/nature13479
http://dx.doi.org/10.4049/jimmunol.178.6.3912
http://dx.doi.org/10.4049/jimmunol.178.6.3912
http://dx.doi.org/10.4049/jimmunol.1100196
http://dx.doi.org/10.4049/jimmunol.1100196
http://dx.doi.org/10.2337/db11-1455
http://dx.doi.org/10.1038/nm.3800
http://dx.doi.org/10.1038/nm.3800
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Filgueiras et al. Leukotriene B4 in metabolic disorders

macrophage activation. J Biol Chem (2015) 290(18):11663–77. doi:10.1074/jbc.
M115.649483

32. Gubitosi-Klug RA, Talahalli R, Du Y, Nadler JL, Kern TS. 5-Lipoxygenase, but
not 12/15-lipoxygenase, contributes to degeneration of retinal capillaries in a
mouse model of diabetic retinopathy. Diabetes (2008) 57(5):1387–93. doi:10.
2337/db07-1217

33. Talahalli R, Zarini S, Tang J, Li G, Murphy R, Kern TS, et al. Leukocytes
regulate retinal capillary degeneration in the diabetic mouse via generation of
leukotrienes. J Leukoc Biol (2013) 93(1):135–43. doi:10.1189/jlb.0112025

34. Takeuchi O, Akira S. MyD88 as a bottle neck in toll/IL-1 signaling. Curr Top
Microbiol Immunol (2002) 270:155–67. doi:10.1007/978-3-642-59430-4_10

35. Schwartzman ML, Iserovich P, Gotlinger K, Bellner L, Dunn MW, Sartore
M, et al. Profile of lipid and protein autacoids in diabetic vitreous correlates
with the progression of diabetic retinopathy. Diabetes (2010) 59(7):1780–8.
doi:10.2337/db10-0110

36. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated
uric acid crystals activate the NALP3 inflammasome. Nature (2006)
440(7081):237–41. doi:10.1038/nature04516

37. Amaral FA, Costa VV, Tavares LD, Sachs D, Coelho FM, Fagundes CT, et al.
NLRP3 inflammasome-mediated neutrophil recruitment and hypernocicep-
tion depend on leukotriene B(4) in a murine model of gout. Arthritis Rheum
(2012) 64(2):474–84. doi:10.1002/art.33355

38. Rae SA, Davidson EM, Smith MJ. Leukotriene B4, an inflammatory mediator
in gout. Lancet (1982) 2(8308):1122–4. doi:10.1016/S0140-6736(82)92785-4

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2015 Filgueiras, Serezani and Jancar. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Immunology | www.frontiersin.org October 2015 | Volume 6 | Article 51575

http://dx.doi.org/10.1074/jbc.M115.649483
http://dx.doi.org/10.1074/jbc.M115.649483
http://dx.doi.org/10.2337/db07-1217
http://dx.doi.org/10.2337/db07-1217
http://dx.doi.org/10.1189/jlb.0112025
http://dx.doi.org/10.1007/978-3-642-59430-4_10
http://dx.doi.org/10.2337/db10-0110
http://dx.doi.org/10.1038/nature04516
http://dx.doi.org/10.1002/art.33355
http://dx.doi.org/10.1016/S0140-6736(82)92785-4
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


September 2015 | Volume 6 | Article 48076

Review
published: 22 September 2015

doi: 10.3389/fimmu.2015.00480

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Ivan C. Moura,  

INSERM, France

Reviewed by: 
Martin Herrmann,  

Universitätsklinikum Erlangen, 
Germany  

Takahiro Yamazaki,  
Institute Gustave Roussy, France

*Correspondence:
 Henrique Borges da Silva and  
Maria Regina D’Império Lima,  

Department of Immunology, Instituto 
de Ciências Biomédicas, 

Universidade de São Paulo, 
1730 – Room 226, 2nd Floor,  
São Paulo 05508-000, Brazil  

henrique.borges.silva@usp.br;  
relima@usp.br

†Present address: 
Henrique Borges da Silva, 

Department of Laboratory Medicine 
and Pathology, University of 

Minnesota, Minneapolis, MN, USA

‡Henrique Borges da Silva and 
Raíssa Fonseca have contributed 

equally to this work.

Specialty section: 
This article was submitted to 

Molecular Innate Immunity, a section 
of the journal Frontiers in Immunology

Received: 30 June 2015
Accepted: 03 September 2015
Published: 22 September 2015

Citation: 
Borges da Silva H, Fonseca R, 

Pereira RM, Cassado AA, Álvarez JM 
and D’Império Lima MR (2015) 

Splenic macrophage subsets and 
their function during blood-borne 

infections.  
Front. Immunol. 6:480.  

doi: 10.3389/fimmu.2015.00480

Splenic macrophage subsets and 
their function during blood-borne 
infections
Henrique Borges da Silva*†‡ , Raíssa Fonseca‡ , Rosana Moreira Pereira ,  
Alexandra dos Anjos Cassado , José Maria Álvarez and Maria Regina D’Império Lima*

Department of Immunology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil

The spleen is one of the major immunological sites for maintaining blood homeostasis. 
Previous studies showed that heterogeneous splenic macrophage populations con-
tribute in complimentary ways to control blood-borne infections and induce effective 
immune responses. Marginal metallophilic macrophages (MMMΦs) and marginal zone 
macrophages (MZMΦs) are cells with great ability to internalize blood-borne pathogens 
such as virus or bacteria. Their localization adjacent to T- and B-cell-rich splenic areas 
favors the rapid contact between these macrophages and cells from adaptive immunity. 
Indeed, MMMΦs and MZMΦs are considered important bridges between innate and 
adaptive immunity. Although red pulp macrophages (RpMΦs) are mainly considered 
scavengers for senescent erythrocytes, several data indicate a role for RpMΦs in con-
trol of infections such as blood-stage malaria as well as in the induction of innate and 
adaptive immunity. Here, we review current data on how different macrophage subsets 
recognize and help eliminate blood-borne pathogens, and, in turn, how the inflammatory 
microenvironment in different phases of infection (acute, chronic, and after pathogen 
clearance) influences macrophage function and survival.

Keywords: spleen, macrophages, phagocytosis, pattern-recognition receptors, tissue remodeling

introduction

Effective control of infections through the immune system is ensured by the well-organized  structure 
of secondary lymphoid organs, which allow capture, processing, and presentation of antigens, 
ultimately leading to successful elimination of pathogens and induction of adaptive immunity. 
Among lymphoid organs, the spleen is particularly shaped for clearance of blood-borne pathogens. 
Microanatomically, the spleen is divided into the white pulp and the red pulp (Rp), separated by 
the marginal zone (MZ) [reviewed in Ref. (1)]. Rp and MZ have a complex macrophage (MΦ) 
network with distinct origins and functions in the immune response to infections. RpMΦs form 
a vast network inside the Rp and are characterized in mice by expression of F4/80highCD68+CD1
1blow/− and intense autofluorescence (2). In turn, inside the MZ, two populations of MΦs can be 
discerned. The MZMΦs typically express in their surface the C-type lectin SIGN-related 1 (SIGNR1) 
and a type I scavenger receptor called Macrophage Receptor with Collagenous structure (MARCO), 
which recognize non-opsonized molecules (3), mainly blood-borne antigens (4). Furthermore, 
marginal metallophilic MΦs (MMMΦs) are defined, among other molecules, by the expression of 
Sialic acid-binding Ig-like Lectin-1 (Siglec-1, Sialoadhesin, CD169) and MOMA-1 (5). A general 
scheme of the spleen structure is depicted in Figure 1.
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Recent studies led to a growing understanding of the precise 
roles different splenic MΦs play to maintain blood homeostasis, 
particularly in infectious diseases, in which pathogen elimination 
depends on the development of appropriate adaptive immune 
response. In this review, we addressed the roles of each one of 
these MΦ subsets, with special focus on blood-borne infec-
tions. We described the current knowledge on the effects of 
splenic microarchitecture and microenvironment on these MΦs 
and reciprocal influence of these cells on spleen structure and 
functionality.

How Splenic MΦ Sense Pathogens and 
Damage-Associated Self-Molecules?

Splenic MΦs have two main protective activities during blood-
borne infections. The first and most well characterized is phago-
cytosis and elimination of pathogens from circulation. However, 
beyond the task of eliminating blood-borne pathogens, splenic 
MΦs can play a prominent role in immune system activation. 
To properly execute these functions, they are provided with 
a large variety of pattern-recognition receptors (PRRs) that 
recognize pathogen-associated molecular patterns (PAMPs) and 

FiGURe 1 | Localization and phenotype of splenic MΦ subsets. This figure is a broad scheme of the positioning of RpMΦs, MZMΦs, and MMMΦs inside 
spleen and their respective phenotypic markers. RpMΦs (in red) are typically found within cords on the red pulp, allowing direct contact with RBCs and other blood 
cells/particles passing through venous sinuses. They are better defined by the concomitant expression of F4/80, CD11b (at low levels), and CD68 as well as other 
receptors that aid in their function. MZMΦs (in green) are found in the marginal zone (MZ) outer layer – they are also in direct contact with blood-borne particles. 
These cells express in their surface the molecules MARCO and SIGNR1 and other receptors that help in the uptake of blood-borne pathogens. Finally, the MMMΦs 
(in brown) reside within the inner layer of the MZ, in the contact with the white pulp. They are also specialized in blood-borne particle uptake and express surface 
markers such as SIGLEC-1 and MOMA-1.

damage-associated molecular patterns (DAMPs). Engagement 
of Toll-like receptor (TLR) 4 by pathogen molecules, such as 
lipopolysaccharides (LPS) from Gram-negative bacteria is funda-
mental for the induction of a proinflammatory gene and protein 
expression signature in MΦs, which ultimately leads to innate 
immune activation (6). This also holds true for several other 
interactions such as TLR2 and/or TLR4 with glycosylphosphati-
dylinositol (GPI) anchors from Trypanosoma and Plasmodium 
parasites (7, 8) and TLR9 engagement by CpG motifs found in 
bacterial (9) and plasmodial DNA (10).

On the other hand, TLRs recognize DAMPs in  situations 
of tissue injury. For example, heat shock proteins (HSPs) are 
endogenous damage signals (molecules released by cells under 
stress or necrotic cell death) and bind to TLR2 and TLR4 in MΦs, 
inducing these cells to produce proinflammatory cytokines and 
to express costimulatory molecules (11). Release of HSPs to circu-
lation has been reported during sepsis (12) as well as production 
of HSP homologues by pathogens such as Plasmodium parasites 
(13). Also, TLRs  –  especially TLR2 and TLR4  –  can recognize 
extracellular matrix components such as fibronectin (14). TLR4 
engagement by fibronectin leads to MΦ activation in a similar 
fashion to what happens after LPS stimulation. Fibronectin is 
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presumably secreted by fibroblasts inside the spleen. Thus, this 
molecule may be produced during blood-borne infections such 
as malaria, where profound changes in splenic microarchitecture 
following acute infection occur, leading to the accumulation of 
fibroblasts inside the Rp (15). Expression of fibronectin-binding 
proteins (FnBPs) by Staphylococcus aureus is important to bacte-
rial uptake by MΦs in inflammatory situations through binding 
of very late antigen 5 (VLA-5) (16). Therefore, it is reasonable 
to question whether TLR2 and/or TLR4 expressed in MΦs are 
engaged by fibronectin in those situations. Importantly, S. aureus 
FnBPs are crucial for the development of sepsis (16).

Another DAMP that can induce MΦ activation is the high 
mobility group box protein 1 (HMGB1), an intracellular DNA-
binding protein involved in chromatin remodeling and transcrip-
tion regulation (17). Extracellular HMGB1 binds to different 
endogenous ligands that are recognized by receptors such as 
TLR4, as well as the receptor for advanced glycation end products 
(RAGE) (18), and triggers inflammatory responses by the innate 
immune system. Release of HMGB1 by splenic MΦs occurs upon 
extensive splenic cell apoptosis, a feature commonly observed 
during sepsis. Indeed, HMGB1 is released into the extracel-
lular milieu during sepsis and neutralization of this protein by 
monoclonal antibody treatment blocks sepsis development (19). 
Abundant splenic cell apoptosis is also typical in rodent malaria, 
at the peak of acute infection (20). In human malaria, endogenous 
HMGB1 serum levels are significantly higher in patients with 
severe disease compared to uncomplicated cases (21), suggest-
ing that HMGB1 might also be involved in the development 
of immunopathology. Thus, it would not be surprising if acute 
immune response to Plasmodium and consequent immunopa-
thology could be suppressed in great extent with neutralization 
of HMGB1.

Splenic MΦ receptors also include C-type lectin receptors 
(CLRs), such as dectin-1, mannose receptor, and dendritic cell-
specific intercellular adhesion molecule-3-grabbing non-integrin 
(DC-SIGN). CLRs have multiple functions in the immune sys-
tem, including pathogen recognition and neutralization (22). 
Additionally, the liver synthesizes mannose-binding protein 
(MBP) during infectious diseases. This protein activates the 
complement system in order to form the membrane attack com-
plex (MAC), and, more importantly in the spleen, to opsonize 
microorganisms such as virus (23) or protozoan parasites such 
as Trypanosoma cruzi (24). Scavenger receptors (SRs), such as 
SR-A1 and MARCO, are also expressed in splenic MΦs and like-
wise bind both self and pathogen molecules – more specificities 
of these receptors will be discussed later in this review. Among 
class B SRs, CD36 is known to mediate the uptake of oxidized 
low-density lipoprotein (oxLDL) and apoptotic cells, but also 
promotes phagocytosis of S. aureus bacteria by peritoneal MΦs 
(25). However, CD36 mediates cytoadherence of Plasmodium-
infected red blood cells (iRBCs) to microvascular endothelium 
(26), a process supposed to avoid parasite clearance inside the 
spleen. The role of CD36 in recognizing this parasite by splenic 
MΦs still needs to be fully elucidated. Of note, RpMΦs express 
constitutively this molecule, which implies a possible role for this 
receptor in antiplasmodial immunity. This is a clear example of 
a receptor capable of mediating the recognition of both self and 

non-self molecules, implicating RpMΦs with both blood homeo-
stasis and control of blood-borne infections.

Among cytoplasmic PRRs, splenic MΦs express molecules 
from the NOD-like receptor (NLR) family (27). For example, 
disturbance of cellular ionic gradient activates the pyrin sub-
family member NLRP3, leading to inflammasome complex 
formation and in consequence to the release of inflammatory 
cytokines IL-1β and IL-18. Hemozoin, a disposal product 
formed from hemoglobin digestion by Plasmodium parasites, 
triggers the NLRP3 inflammasome in bone marrow-derived 
macrophages (BMDMs) (28), mediating the production of 
proinflammatory cytokines by these cells. Furthermore, the 
NLRP3 inflammasome is activated in mouse RpMΦs and 
human peripheral monocytes during acute malaria – although 
large amounts of IL-1β are only produced after stimulation with 
LPS (29). Interestingly, in mice, this process is mediated by the 
purinergic P2 × 7 receptor which recognizes extracellular ATP. 
ATP accumulates in Plasmodium-iRBCs and is released into the 
extracellular milieu through ion channels in the erythrocyte 
membrane or upon iRBC rupture (30).

Role of RpMΦs in Blood-Borne infections

As stated previously, RpMΦs form a vast network inside the Rp, 
and although there is no consensus about the origin of RpMΦs, 
recent data indicate that these MΦs are maintained by local 
proliferation during physiological conditions (31). Conversely, 
in some pathological conditions, circulating monocytes are able 
to differentiate into RpMΦs (32). RpMΦ population comprises 
macrophage colony-stimulating factor (M-CSF)-dependent and 
M-CSF-independent cells (33). M-CSF-dependent RpMΦs are 
efficient phagocytes and produce proinflammatory cytokines 
such as TNF-α and type I IFNs and are highly responsive to 
prostaglandin E2 (PGE2). In contrast, M-CSF-independent 
BMDMs are less efficient phagocytes that produce high amounts 
of PGE2 (34). If this is a general feature of M-CSF-independent 
MΦ populations, M-CSF-independent RpMΦs might influence 
the activity of M-CSF-dependent RpMΦs.

Venous cords and sinuses render the splenic Rp bloodstream 
in a slow pace. This characteristic allows for the filtering func-
tion of the spleen and favors elimination of aberrant red blood 
cells (RBCs) or Plasmodium-iRBCs (35). Of note, development 
of RpMΦs relies on the expression of the transcription factor 
Spi-C, which is induced by free heme from RBC degradation 
(32). Thus, iron homeostasis – which conversely is controlled 
by RpMΦs – might play a role in RpMΦ development. Splenic 
structure also facilitates the control of numerous blood-borne 
infections by RpMΦs. For example, RpMΦs can recognize 
the capsular polysaccharide glucuronoxylomannan (GXM) 
from Cryptococcus neoformans and subsequently phagocytize 
the bacteria (36). RpMΦs can also eliminate Streptococcus 
pneumoniae under conditions of splenomegaly (37). However, 
these MΦs are permissive to intracellular growth of Salmonella 
typhimurium (38).

Red pulp macrophages have also been implicated in the con-
trol of blood-stage malaria (35). Nevertheless, in experimental 
Plasmodium yoelii infection, spleen remodeling facilitates iRBC 
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adherence to the vascular endothelium and, in consequence, 
allows parasites to escape from phagocytes (15). Interestingly, a 
proportion of Rp phagocytes exhibit strong labeling for F4/80 
and CD11c, a phenotype shared by RpMΦs and DCs (39). This 
population participates in the early clearance of Plasmodium 
chabaudi parasites, but it sharply declines at the parasitemia 
peak. RpMΦs have a slow turnover rate and possibly undergo 
cell death after ingesting Plasmodium-iRBCs due to the toxic 
effects of hemozoin. RpMΦs, which are primarily required to 
maintain tissue homeostasis, might be substituted by inflamma-
tory phagocytes as well as by MΦs derived from inflammatory 
monocytes. An alternative explanation is downregulation of the 
F4/80 molecule upon MΦ activation, as reported during myco-
bacterial infection (40).

Several mechanisms mediate RBC recognition and clearance 
by RpMΦs. One of the most studied mechanisms is the antibody 
binding to altered self components such as Band 3 clusters (41) 
or phosphatidylserine residues exposed in the outer leaflet of 
RBC membrane (42). In these cases, natural antibodies and 
complement system proteins opsonize RBCs though recogni-
tion of Band 3 clusters or phosphatidylserine residues. Another 
important interaction involved in RBC phagocytosis by RpMΦs 
is the ligation of CD47 to Signal Regulatory Protein alpha (SIRPα) 
(43). CD47 is a self-molecule important to avoid clearance by 
phagocytes, which is ubiquitously expressed on many cell types, 
including RBCs. CD47 expression on RBCs is an inhibitory 
signal for phagocytosis (44), but RBCs expressing a modified 
isoform of this molecule are phagocytized by RpMΦs through 
SIRPα binding (43). Interestingly, the conformation-dependent 
anti-CD47 antibody 2D3 binds sickle RBCs preferentially (45), 
which might explain the enhanced phagocytosis of sickle RBCs 
inside spleen. A recent study showed that P. yoelii parasites pref-
erentially infect young RBCs expressing high levels of CD47 and, 
in consequence, escape from splenic clearance (46). Furthermore, 
enhanced resistance to P. yoelii observed in CD47-deficient mice 
is associated with a larger population of RpMΦs that ingest more 
iRBCs than wild-type counterparts. These findings explain why 
individuals with mild genetic RBC disorders (e.g., sickle cell trait 
and glucose-6-phosphate dehydrogenase deficiency) are pro-
tected from lethal malaria due to enhanced RBC phagocytosis.

Apart from being phagocytized by splenic MΦs, Plasmodium-
iRBCs are also destroyed intravascularly as a consequence of plasma 
membrane damage upon release of free merozoites. Hemozoin, a 
disposal product formed from hemoglobin digestion by parasites, 
is released from lysed iRBCs. Furthermore, a massive destruction 
of non-infected RBCs occurs during blood-stage malaria, leading 
to increased hemoglobin levels in circulation [reviewed in Ref. 
(47)]. Another example of hemolysis induced by infections is 
observed in septicemia caused by Escherichia coli, which produces 
exotoxin α-hemolysin (Hlyα) (48). Evidencing RpMΦs crucial 
role in neutralizing toxic effects of hemoglobin, these MΦs have 
high levels of intracellular heme due to RBC phagocytosis (2) and 
of free hemoglobin through the scavenger receptor CD163 (49). 
The enzyme heme-oxygenase 1 (HO-1) plays an important role in 
degrading free heme, which in excess causes toxicity to MΦs (50). 
Importantly, RpMΦs are able to control pathogen burden through 
control of iron availability. For  example, RpMΦs express the 

natural resistance associated macrophage protein-1 (NRAMP1) 
that is associated with protection against intraphagosomal patho-
gens, such as Mycobacterium bovis BCG, Leishmania donovani, 
or S. typhimurium. This molecule is a pH-dependent metal trans-
porter localized in phagosomal compartments, which reduces 
intraphagosomal iron levels derived from RBC phagocytosis (51). 
NRAMP1 synthesis is upregulated in IFN-γ-activated MΦs (52), 
a condition likely to occur during acute blood-borne infections. 
RpMΦs also limit pathogen iron uptake through TLR-mediated 
release of lipocalin-2, which can form complexes with pathogen-
secreted siderophores – molecules that help the collection of iron 
available for pathogens (53). RpMΦs involvement in controlling 
excessive immune responses is suggested by studies on autoim-
mune syndromes, while a similar participation in infectious 
diseases remains to be established. For instance, RpMΦs con-
stitutively express peroxisome proliferator-activated receptor-γ 
(PPAR-γ), which might be important to curb excessive immune 
responses to pathogens, in a similar manner to PPAR-γ expressed 
on lung MΦs upon S. pneumoniae infection (54). RPMΦs can also 
prevent autoimmunity by producing anti-inflammatory cytokines 
such as TGF-β and IL-10 and by inducing generation of regulatory 
T (Treg) cells (55). Of note, there are many T cells scattered in Rp 
(55), and this population participates in acute immune responses 
to infections, such as blood-stage malaria (39). We present an 
illustrated scheme of the different roles of RpMΦs in homeostasis 
and disease in Figure 2.

MZMΦs and MMMΦs Role in Blood-Borne 
infections

Marginal zone macrophages and MMMΦs have unique charac-
teristics that contribute to rapid phagocytosis of pathogens and 
other particles. Thus, these MΦs act like scavenger cells, develop-
ing pro- or anti-inflammatory responses depending on the nature 
of the interaction. MZMΦs express SIGNR1 that binds to yeasts 
and the yeast-derived particle zymosan (4), to bacteria such as 
Mycobacterium tuberculosis (56), S. pneumoniae (57), E. coli, and 
S. typhimurium (58), and to virus such as human immunode-
ficiency virus (HIV) (4). This receptor recognizes carbohydrate 
antigens from blood-borne pathogens and mediates their subse-
quent internalization into phagosomes (4). Although SIGNR1 in 
peritoneal MΦs cooperate with dectin-1 in zymosan uptake (59), 
these innate receptors colocalize poorly in MZMΦs (60). Similar 
to classical complement pathway activation, but independently of 
antibodies, SIGNR1 also binds C1q and assembles the complex 
C4bC2a or C3 convertase that catalyzes C3b opsonin formation 
(61). This mechanism was shown to provide resistance to intra-
venous S. pneumoniae infection.

Expression of the scavenger receptor MARCO is upregulated 
in different MΦ populations, especially in MZMΦs and MΦs 
in the medullary cord of lymph nodes (3). MARCO was firstly 
reported to bind and mediate uptake of Gram-negative bac-
teria and also to recognize oxLDL [reviewed in Ref. (62)]. The 
structure of MARCO is similar to that of the Scavenger Receptor 
A1 (SR-A1, CD204), which plays a role in bacteria and virus 
recognition (3). TLR-mediated activation of BMDMs stimulates 
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FiGURe 2 | RpMΦ biology during homeostasis and infection. This figure summarizes the different roles of RpMΦs in maintenance of host homeostasis and in 
the control of different infections. In the absence of infection (left), RpMΦs play important roles in the uptake of apoptotic cells, oxidized LDL (oxLDL), or senescent 
RBCs (sRBCs) from the circulations, through interaction with receptors such as SIRPα, CD36, CR3, or FcRs. CD47 expression on RBCs is an inhibitory signal for 
phagocytosis mediated by SIRPα, but sRBCs expressing a modified isoform of this molecule (altCD47) are phagocytized by RpMΦs. CD36 binds to 
phosphatidylserine (PS) and, alternatively, to oxLDL. RpMΦs are also important for iron homeostasis, and conversely, iron homeostasis seems to control RpMΦ 
development, through the action of free heme on Spi-C transcriptional factor. In these situations, RpMΦs have the ability of self-renewal by proliferation. Beyond the 
task of maintaining blood homeostasis, RpMΦs contribute to control blood-borne infections such as malaria (center) or bacterial infections (right) lead to changes in 
RpMΦ function. Plasmodium-infected RBCs (iRBCs) are recognized through the same receptors that recognize sRBCs, such as SIRPα, CR3, FcRs, or CD36, 
inferring a role for RpMΦs in parasite clearance. However, the adherence of iRBCs to microvascular endothelium through CD36 prevents iRBC clearance inside the 
spleen. Interestingly, P. yoelii parasites preferentially infect young RBCs expressing high levels of CD47 and, in consequence, escape from splenic clearance. RpMΦs 
also present with other receptors such as CLRs and PPRs, which in conjunct with FcγRIII contribute to recognition and elimination of bacteria from circulation. 
RpMΦs can recognize the capsular polysaccharide glucuronoxylomannan (GXM) from Cryptococcus neoformans and subsequently phagocytize the bacteria. The 
ability of RpMΦ renewal during infections, however, is poorly understood, and substitution of dead RpMΦs for monocyte-derived RpMΦs is presumable.
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MARCO-mediated phagocytic activity (63). Furthermore, 
MARCO in MZMΦs directly binds and mediates phagocytosis 
of E. coli and S. aureus bacteria (3). TLR engagement leads to acti-
vation of transcriptional mechanisms that increase phagocytosis 
and cell activation, and MARCO seems to work in conjunct with 
TLRs in order to mediate pathogen control (64).

Marginal zone macrophages and MMMΦs are fundamental 
in the early control of Listeria monocytogenes bacteremia, 
as evaluated by depletion of these MΦs using a low dose of 

clodronate liposomes (65). T-cell responses are not affected in 
this experimental model, ruling out the participation of MZMΦs 
and MMMΦs as antigen-presenting cells. Similar findings were 
reported during infection with Neisseria meningitidis (64), thus 
it is likely that these MΦs have a direct role in the elimination 
of bacteria from circulation. Conversely, adenoviruses colocalize 
with MZMΦs as soon as a few minutes after intravenous injection 
in mice (66). MZMΦs and MMMΦs play a similar role in lympho-
cytic choriomeningitis virus (LCMV) infection, corroborating 
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FiGURe 3 | Role of MZMΦs and MMMΦs during infection. In this figure, a brief description on how MZMΦs and MMMΦs are able to recognize and mediate 
protection against blood-borne pathogens is shown. MZMΦs (above) can recognize bacterial and viral infections by receptors such as MARCO or SIGNR1, which 
usually induce internalization and further pathogen degradation. A similar feature can be depicted for MMMΦs, where MOMA-1 or SIGLEC can mediate pathogen 
recognition and elimination from circulation. MMMΦs can also interact with CD8α+ dendritic cells (DCs), which ultimately lead to CD8+ T-cell activation.
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the importance of these MΦs in first-line antiviral defense (67). 
On the other hand, localization of MZMΦs and MMMΦs in the 
interface between the bloodstream and lymphocyte-rich zones 
makes them suitable to bridge innate and adaptive immunity in 
several situations. For instance, mice lacking SRs MARCO and 
SR-A1 show a defective microarchitecture of the splenic MZ and 
an impaired T-independent type 2 response when challenged with 
pneumococcal polysaccharide (68). MMMΦs also collaborate 
in cytotoxic T-cell activation by transferring antigen directly to 
CD8α+ DCs, which are specialized in cross-presentation to CD8+ 
T cells (69). This observation supports the use of the MMMΦs 
antigen-concentrating capacity in therapeutic strategies for 
the development of antitumor immunity. The different roles of 
MZMΦs and MMMΦs in blood-borne infections are shown in 
Figure 3.

Reciprocal influence of Splenic 
Microenvironment and MΦs

In several aspects, splenic MΦs shape splenic structure and/or 
microenvironment. The development of splenomegaly is typical 
in blood-borne infections, and it is characterized by profound 
changes in splenic microarchitecture, including remodeling of Rp 
(1). Given this, splenic MΦs are expected to play a prominent role 
in the recruitment of different cell types during acute immune 
responses. For example, RpMΦs recruit neutrophils into the spleen 
during early Candida infection by releasing CXCL1 and CXCL2, 
through autophagy-mediated depletion of the NF-κB inhibitor 
molecule A20 (70). Another example is the arresting of T cells 
inside the Rp during acute Plasmodium infection (39). RpMΦs 

may produce CXCR3- and/or CCR5-binding chemokines by a 
mechanism similar to that observed during early Candida infec-
tion – CXCR3 and CCR5 are the main upregulated chemokine 
receptors in splenic CD4+ T cells during acute blood-stage malaria 
(71). However, splenic MΦs might also act on splenic microen-
vironment after an acute infection. For example, apoptotic cell 
uptake induces CCL22 production by MMMΦs, which in turn 
induces Foxp3+ Tregs and DCs recruitment and accumulation, 
leading to a state of tolerance (72). Since the accumulation of apop-
totic cells is a normal feature after acute blood-borne infections 
(20), a similar mechanism possibly takes place. RPMΦs can also 
prevent autoimmunity by producing anti-inflammatory cytokines 
such as TGF-β and IL-10 and by inducing the generation of Treg 
cells (55). These cytokines may be important – besides limiting 
autoimmunity – to curb an excessive immune response that could 
be dangerous to the host after pathogen clearance.

Conversely, the splenic structure and its microenvironment 
seem to play pivotal roles in MΦ homing and function. For instance, 
arrangement of sinusoidal endothelial cells inside Rp hampers the 
circulation of aging and/or iRBCs (1), facilitating their trapping 
inside Rp and posterior phagocytosis by RpMΦs. Importantly, 
the cytokine milieu in the microenvironment  –  which varies 
throughout an acute infection – may also dictate RpMΦ function. 
Classic M1 MΦs have an enhanced capacity to accumulate iron, 
which positively influences the maintenance of these cells in a pro-
inflammatory state. On the other hand, alternative M2 MΦs have 
an increased ability to release iron, and increased iron availability 
in the microenvironment seemingly favors tissue remodeling 
[reviewed in Ref. (73)]. These effects can easily be associated with 
RpMΦs especially considering their role in iron uptake (1), thus it 
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TABLe 1 | Overview of splenic MΦ subsets.

MΦ type associated markers Connection to immune response Associated pathogens

RpMΦs

F4/80+/++ (2), CD11blow (2),  
CD68+ (2), and SIRPα+ (43)

• Uptake of aging or apoptotic RBCs (2)
• Limitation of autoimmunity (IL-10 and TGFβ in resolution of inflammation) (55)
• Induction of Tregs by IL-10 production (55)
• Phagocytosis of blood-borne pathogens (35–38)
• Iron homeostasis (1, 50–53)

Plasmodium (35), Cryptococcus 
neoformans (36), Streptococcus 
pneumoniae (37), Salmonella 
typhimurium (38)

MZMΦs

SIGNR1+ (3, 4), F4/80+/‒ (3, 4),  
MARCO+ (3, 4), lymphotoxin, and  
TNF receptors (75, 76)

• Clearance of modified LDL (1)
• TI-2 B cell responses (68)
• Phagocytosis of blood-borne pathogens (3, 4, 65, 67)

Staphylococcus aureus (3), 
Listeria monocytogenes (65), 
Escherichia coli (3), HIV (4), 
LCMV (67)

MMMΦs

SigLec-1+ (CD169+) (5), MOMA-1+ (5), 
F4/80+/‒ (5), lymphotoxin, and TNF  
receptors (75, 76)

• Indirect activation of CD8+ T cells (69)
• Phagocytosis of blood-borne pathogens (67)

Listeria monocytogenes (65), 
LCMV (67)

A subdivision of splenic MΦs, detailing RPMΦs, MZMΦs, and MMMΦs associated markers, their connection to the systemic immune response, and associated pathogens. 
The respective references from each feature are detailed inside the table.
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is possible that RpMΦs play distinct roles as M1- or M2-skewing 
microenvironments may occur during the beginning of an acute 
blood-borne infection or after pathogen clearance, respectively. 
Furthermore, the MZ contains a large number of resident cells that 
apparently depend on each other for their localization, thereby 
establishing and maintaining MZ integrity (1). For example, studies 
in which B cells were absent from the time of birth or in which they 
are depleted led to disappearance of MZMΦs and MMMΦs (74). 
Thus, the continuous interaction between resident and transmi-
grating cells inside the spleen MZ is crucial for efficient homing of 
MZMΦs and MMMΦs as well as for efficient removal and destruc-
tion of blood-borne pathogens by these cells. Lymphotoxin (LT) 
and TNF also influence the dynamics of MZMΦs and MMMΦs. L. 
donovani-infected mice have profound changes in the splenic MZ 
including loss of MZMΦs, which depend on TNF signaling that 
may increase MZMΦs susceptibility to parasite-induced cell death 
(75). These changes block lymphocyte traffic in the white pulp, 
impairing the development of an appropriate adaptive immune 
response. In another case, MZ B cells secrete LT-α1β2, and this 
leads to induction of a range of chemokines that could, in turn, 
influence lodging and retention of MZMΦs (76).

Concluding Remarks

As discussed above, splenic MΦs (RpMΦs, MZMΦs, and 
MMMΦs) play important roles in the control of blood-borne 

infections and shape several aspects of innate and adaptive 
immune responses (Table 1). Thus, a clear concept on the nature 
of splenic MΦ populations can be drawn, in which their interplay 
with the splenic microenvironment guarantees efficient control of 
blood-borne pathogens and maintenance of homeostasis follow-
ing these infections. At the same time, the splenic structure is likely 
fundamental for proper localization and function of these MΦs. 
However, several questions on the nature and function of these 
cells are still unanswered, especially on (a) the development of 
splenic MΦs during embryogenesis, (b) the exact signals required 
for the homeostatic maintenance of these cells, and (c) the extent 
of how important each of these subsets are for the development 
of immunity against blood-borne infections. The development of 
mouse models to accurately study the distinct roles of RpMΦs, 
MZMΦs, and MMMΦs as well as the development of more 
detailed studies on signaling pathways and epigenetic modifica-
tions on genes involved in the function of these cells will be of 
great utility to solve these questions.
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Juliana N. U. Yaochite1, Gabriela G. Oliveira1, Fernando S. Carneiro2, Rita C. Tostes2, 
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Although a correlation between polymorphisms of NOD-like receptor family-pyrin domain 
containing 3 (NLRP3) and predisposition to type 1 diabetes (T1D) has been identified, 
the potential function and activation of the NLRP3 inflammasome in T1D have not been 
clarified. The present study shows that non-obese diabetic mice exhibited increased 
NLRP3, and pro-IL-1β gene expression in pancreatic lymph nodes (PLNs). Similar 
increases in gene expression of NLRP3, apoptosis associated speck like protein (ASC) 
and pro-IL-1β were induced by multiple low doses of streptozotocin (STZ) in C57BL/6 
mice. In addition, diabetic C57BL/6 mice also exhibited increased IL-1β protein expres-
sion in the pancreatic tissue at day 7, which remained elevated until day 15. Diabetic 
mice also showed increased positive caspase-1 macrophages in the PLNs, which were 
decreased in NLRP3−/− mice, but not in ASC−/− mice, after STZ treatment. NLRP3- and 
IL-1R-deficient mice, but not ASC-deficient mice, showed reduced incidence of diabe-
tes, less insulitis, lower hyperglycemia, and normal insulin levels compared to wild-type 
(WT) diabetic mice. Notably, these mice also displayed a decrease in IL-17-producing 
CD4 and CD8 T cells (Th17 and Tc17) and IFN-γ-producing CD4 and CD8 T cells (Th1 
and Tc1) in the PLNs. Following STZ treatment to induce T1D, NLRP3-deficient mice 
also exhibited an increase in myeloid-derived suppressor cell and mast cell numbers 
in the PLNs along with a significant increase in IL-6, IL-10, and IL-4 expression in the 
pancreatic tissue. Interestingly, diabetic mice revealed increased circulating expres-
sion of genes related to mitochondrial DNA, such as cytochrome b and cytochrome 
c, but not NADH dehydrogenase subunit 6 (NADH). Mitochondrial DNA (mDNA) from 
diabetic mice, but not from non-diabetic mice, induced significant IL-1β production 
and caspase-1 activation by WT macrophages, which was reduced in NLRP3−/− mac-
rophages. Finally, mDNA administration in  vivo increased Th17/Tc17/Th1/Tc1 cells in 
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inTrODUcTiOn

Type 1 diabetes (T1D) results from the autoimmune destruc-
tion of insulin-producing pancreatic β cells (1) in genetically 
predisposed individuals. It is currently known that both innate 
and adaptive immune responses play a role in the pathogenesis of 
the disease. Adaptive immunity has been studied thoroughly over 
the past few years with several therapies, such as anti-CD3 mono-
clonal antibody therapy (2), anti-CD20 (3), and antithymocyte 
globulin treatment, reaching clinical trials (4). However, whether 
the innate immune response triggers T1D remains poorly under-
stood and controversial. In non-obese diabetic (NOD) mice, a 
deficiency of toll-like receptor (TLR) 2 (5) or the MyD88 adaptor 
molecule (6) correlated with protection from developing T1D, 
yet TLR2−/− (7) and MyD88−/− (8) mice are susceptible to T1D 
induced by multiple low doses of streptozotocin (MLD-STZ).

Although many studies in the literature on innate immunity 
focused on the TLRs in T1D, the contribution of nucleotide bind-
ing and oligomerization domains (NOD), such as nucleotide-
binding domain-like receptor (NLR), in the development of 
T1D needs to be explored. The NOD-like receptor family-pyrin 
domain containing 3 (NLRP3) is a member of the NLR family. 
NLRP3 assembles a complex called the inflammasome through 
oligomerization with apoptosis-associated speck-like protein 
(ASC) in myeloid cells, such as dendritic cells (9) and mac-
rophages (10). This process leads to the autocatalytic activation 
of caspase-1 (11), which in turn cleaves pro-IL-1β and pro-IL-18 
into mature forms (12). The NLRP3 inflammasome is thought to 
play an important role as a defense mechanism against pathogens 
and damage signals called danger-associated molecular patterns 
(DAMPs), such as uric acid crystals, ATP, high-mobility group 
box 1, and the heat-shock proteins hsp70 and hsp90 (13).

Other activators, such as pore-forming toxins (14) and UV 
radiation, also activate the NLRP3 inflammasome by reducing 
intracellular K+ concentrations or by promoting cytosolic release 
of lysosomal cathepsins (13). Certain activators, such as ATP, are 
able to induce mitochondrial dysfunction and apoptosis, which 
results in the release of oxidized mitochondrial DNA (mDNA) into 
the cytosol then binds and activates the NLRP3 inflammasome 
(12). The role of the NLRP3 inflammasome in autoinflammatory 
diseases, such as type 2 diabetes (T2D) (15), and autoimmune 
diseases, such as experimental autoimmune encephalomyelitis 
(EAE) (16), has been recognized. In this context, inhibition of 
caspase-1 suppresses IL-17 production by CD4 T cells and γδ  
T cells and the induction of EAE, which suggests that IL-1β 
induces the Th17 responses in autoimmunity (17). In fact, IL-1β 
synergizes with IL-6 and IL-23 to trigger the expression of the 

IRF4 and RORγt transcription factors as well as driving the 
induction of Th17 cells (18).

Despite this evidence, little is known about the role of the 
NLRP3 inflammasome in T1D. Interestingly, an association 
study in Brazil identified two single-nucleotide polymorphisms 
in NLRP3 that are associated with T1D (19). A recent study has 
also demonstrated that NLRP3 deficiency plays a protective role 
against T1D by inhibiting chemokines and chemokine receptors 
involved in immune cell migration to pancreatic islets (20). 
However, the activator of the NLRP3 receptor in T1D and the 
precise immunological mechanisms related to T1D pathogen-
esis remain elusive. Our data demonstrate that mDNA isolated 
from diabetic mice displays an intrinsic capacity to activate the 
NLRP3 inflammasome in macrophages. Furthermore, increased 
expression of mDNA-related genes was detected in diabetic mice 
sera. Finally, mDNA administration causes IL-1β production 
associated with the induction of pathogenic Th17/Tc17/Th1/Tc1 
responses in the pancreatic lymph nodes (PLNs), which results in 
STZ-induced T1D onset.

resUlTs

Diabetic Mice have Upregulation of 
nlrP3 inflammasome gene expression 
and il-1β Production in Plns and 
Pancreas
To investigate the role of the NLRP3 inflammasome in the 
pathogenesis of T1D, C57BL/6 wild-type (WT) male mice were 
inoculated intraperitoneally with MLD-STZ (40 mg/kg) for five 
consecutive days and were assessed for mRNA expression of 
NLRP3, ASC and pro-IL-β in the PLNs at 7 and 15 days after start-
ing the STZ injections. Increased gene expression of the NLRP3, 
ASC, and pro-IL-1β genes was found in the PLNs of diabetic mice 
at 7 and 15 days after STZ treatment compared to non-diabetic 
mice treated with the vehicle (Figures 1A–C). We also observed 
a peak of protein IL-1β levels at day 7 after STZ-induced T1D, 
which decreased at day 15, but remained significantly elevated 
compared to non-diabetic mice (Figure  1D). In addition, we 
detected a significant increase of NLRP3 protein expression on 
day 7 using a Western blot, which remained increased at day 15 
after STZ-induced T1D (Figure 1E). In agreement, we noted an 
increase of caspase-1-positive macrophage percentage at day 7, 
which slightly decreased at day 15 in the PLNs after STZ-induced 
T1D (Figure 1F). Notably, we observed a significant decline in 
the caspase-1-positive macrophage percentage in the PLNs of 
NLRP3-deficient mice, but not in ASC-deficient mice, not only 

the PLNs and precipitated T1D onset, which was abolished in NLRP3−/− mice. Overall, 
our results demonstrate that mDNA-mediated NLRP3 activation triggers caspase-1- 
dependent IL-1β production and contributes to pathogenic cellular responses during the 
development of STZ-induced T1D.

Keywords: nlrP3 inflammasome, type 1 diabetes, cytokines, il-17-producing cD4 T cells (Th17), il-17-producing 
cD8 T cells (Tc17), iFnγ-producing cD4 T cells (Th1), iFnγ-producing cD8 T cells (Tc1)
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FigUre 1 | nOD-like receptor family-pyrin domain containing 3 (nlrP3) inflammasome-related protein and gene expression profile during type 1 
diabetes. Relative gene expression of NLRP3 (a), apoptosis-associated speck-like protein (ASC) (B), and pro-IL-1β (c) by RT-PCR in the pancreatic lymph nodes 
(PLNs) of streptozotocin (STZ)-induced diabetic or non-diabetic mice (vehicle). The time course of IL-1β production was determined in the pancreatic tissue by an 
ELISA assay (D). The kinetics of NLRP3 expression was quantified 7 or 15 days after STZ by Western blotting (e). The PLNs were removed, and caspase-1 
activation was measured with a fluorescent cell-permeable probe that binds to activated caspase-1 (FLICA), after 7 and 15 days of STZ or vehicle administration 
(F,g). The concentrations of IL-1β (h) and IL-18 (i) were determined in the pancreatic tissue by an ELISA assay. The relative gene expression of NLRP3 (J) and 
pro-IL-1β (K) was assessed by RT-PCR in the PLNs of prediabetic (8 weeks of age) and non-obese diabetic (NOD) mice (20 weeks of age). The results are 
expressed as the mean ± SEM (n = 9 in the vehicle-injected wild-type (WT) group; n = 15 in the STZ-administered WT group; n = 15 in the STZ-administered 
ASC−/− group; n = 15 in the STZ-administered NLRP3−/− group; n = 18 in the prediabetic group and n = 12 in the diabetic NOD group). *p ≤ 0.05 compared to the 
vehicle-injected WT group or prediabetic group, #p ≤ 0.05 compared to the STZ-administered WT group. Significant differences between two groups were 
compared by Student’s t-test or three or more groups by one-way ANOVA followed by Tukey’s multiple-comparison test. The results are representative of a single 
experiment repeated three times.
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on day 7 but also on day 15 compared to WT mice after STZ treat-
ment (Figures 1F,G). Similarly, the IL-1β protein levels decreased 
significantly in the pancreatic tissue of NLRP3-deficient mice, 

but not in ASC-deficient mice after STZ treatment (Figure 1H). 
Conversely, the IL-18 protein levels were reduced significantly 
only in the pancreatic tissue of ASC-deficient mice compared to 
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WT mice after STZ treatment (Figure 1I). Additionally, geneti-
cally determined NOD mice displayed increased gene expression 
of NLRP3 and pro-IL-1β in the PLNs compared to prediabetic 
mice (Figures 1J,K). These findings demonstrated that NLRP3-
dependent IL-1β expression and caspase-1 activation is induced 
in macrophages in PLNs during T1D.

il-1r signaling confers susceptibility to 
the Development of sTZ-induced T1D
Diabetic WT mice exhibited body weight loss compared to non-
diabetic mice (Figures 2A,E). On the other hand, whereas cas-
pase-1/11−/− mice maintained the body weight loss (Figure 2A), 
IL-1R−/− mice had a very minor body weight loss after STZ 
treatment (Figure 2E). Similarly, 66% of caspase-1/11−/− mice in 
comparison to 50% of IL-1R−/− mice developed T1D at day 15 
after STZ treatment (Figures 2B,F). Additionally, blood glucose 
levels were significantly lower in IL-1R−/− mice (Figure 2G), but 
were not affected in the caspase-1/11−/− mice compared to WT 
mice (Figure  2C). Serum insulin levels increased in IL-1R−/− 
(Figure  2H), but not in caspase-1/11−/− mice (Figure  2D) 
compared to WT mice after 15  days of the STZ treatment, 
although the increase in IL-1R−/− animals was not significant. 
The pancreatic islets from non-diabetic WT mice appeared to be 
structurally normal with no leukocytic infiltration (Figure 2I). 
However, pancreatic islets of diabetic WT mice revealed invasive 
insulitis (Figure 2J), whereas a less extensive inflammatory infil-
tration was observed in the IL-1R−/− mice after STZ (Figure 2K). 
Moreover, immunostaining showed the islets of non-diabetic 
mice had a high number of β cells containing insulin (Figure 2L). 
The islets of diabetic WT mice had fewer β cells (Figure  2M), 
while those cells from the IL-1R−/− mice had many more β cells 
positive for insulin (Figure 2N). Collectively, these results suggest 
that IL-1R signaling contributes to pancreatic islet inflammation, 
which leads to insulin-producing β cell damage and development 
of T1D.

il-1r signaling increases Pathogenic Th1/
Th17/Tc17 Populations during sTZ-
induced T1D
Despite the fact that there was no observable difference in the 
percentage of CD4+IL-17+ cells (Figure S1A in Supplementary 
Material), the absolute number of this population was significantly 
reduced in the PLNs of IL-1R−/− compared to diabetic WT mice 
after STZ treatment (Figure S1D in Supplementary Material). In 
addition, the percentage of CD8+IL-17+ cells did not differ among 
the several experimental groups (Figure S1B in Supplementary 
Material), but there was a significant decrease in the absolute num-
ber of this cell population in the PLNs of IL-1R−/− mice compared 
to diabetic WT mice (Figure S1E in Supplementary Material). 
The frequency and absolute numbers of CD4+IFN-γ+ cells in the 
PLNs were significantly reduced in IL-1R−/− mice compared to 
diabetic WT mice (Figures S1C,F in Supplementary Material). 
There was a significant increase in the protein IL-6 levels in the 
pancreatic tissue of IL-1R−/− mice compared to the diabetic WT 
mice (Figure S1G in Supplementary Material). Despite the lack of 
differences in expression levels, IL-17 decreased in IL-1R−/− mice 

compared to diabetic WT mice after STZ treatment (Figure S1H 
in Supplementary Material). Despite a trend toward increase, no 
differences in the IFN-γ or TNF-α expression between the experi-
mental groups were observed (Figures S1I,J in Supplementary 
Material). In contrast, the IL-4 and IL-10 levels were significantly 
increased in the pancreatic tissues of IL-1R−/− mice compared 
to diabetic WT mice after STZ treatment (Figures S1K,L in 
Supplementary Material). These data support the idea that the 
IL-1R signaling pathway plays an important role in driving the 
Th17/Tc17/Th1 immune response after STZ induces T1D.

nlrP3 activation is required for insulitis 
and Development of sTZ-induced T1D
To further explore whether NLRP3 and ASC are involved in 
T1D onset, we used the MLD-STZ model in WT, NLRP3−/−, and 
ASC−/− mice, and disease incidence was monitored. STZ-treated 
diabetic WT and ASC−/− mice had a cumulative disease incidence 
of 100%, while the NLRP3−/− mice developed resistance and had a 
reduction of disease incidence of 40% (Figure 3A). As expected, 
WT, NLRP3−/−, and ASC−/− mice did not become hyperglycemic 
and had normal serum insulin levels after vehicle administration 
(Figures  3B–D). The WT and ASC−/− mice became hypergly-
cemic at day 15 after STZ treatment, whereas NLRP3−/− had 
a significant decrease of glycemia levels after STZ treatment 
(Figures  3E,F). Importantly, NLRP3−/− presented higher levels 
of insulin in the serum, whereas STZ-injected ASC−/− mice 
maintained unaltered insulin levels compared to WT after STZ 
administration (Figure  3G). Corroborating this observation, 
these mice displayed increased insulin immunohistochemistry 
staining in the pancreatic islets, whereas ASC−/− mice had similar 
staining to WT mice after STZ treatment (Figures 3H,I).

In STZ-administrated mice, we found the appearance of 
more invasive insulitis and reduction of insulin-positive β cells 
(Figures  3J,L,O). Later, we investigate whether the protection 
observed in NLRP3−/− mice against STZ-induced T1D could 
be attributed to a reduced pro-inflammatory response into the 
pancreatic islets. In fact, histological analysis showed that STZ-
injected NLRP3−/− mice had milder inflammatory infiltration 
with less severe insulitis in the pancreatic islets and an increase of 
insulin-positive β cells (Figures 3J,M,P). Non-diabetic WT mice 
did not have moderate or severe insulitis and showed intense 
insulin-positive β cells in the pancreatic islets (Figures 3J,K,N). 
Taken together, our data indicate that an NLRP3-dependent 
mechanism is required for pancreatic islet inflammation, which 
results in insulin-producing β cell damage and T1D development.

nlrP3 activation increases Th17/Tc17 
and Decreases the Myeloid-Derived 
suppressor cell (MDsc) Populations 
during sTZ-induced T1D
The percentage and absolute numbers of CD4+ T cells and CD8+ 
T cells were unaltered in the PLNs of diabetic WT mice compared 
to vehicle-treated mice (Figures 4A–D). However, the percentage 
of CD4+ T cells, but not CD8+ T cells, were significantly reduced 
in the PLNs of NLRP3−/− mice compared to diabetic WT mice 
(Figures  4A,C). In addition, the CD4+IL-17+ cell frequency 
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FigUre 2 | continued 
il-1r deficiency, but not caspase-1/11, confers resistance to type 1 diabetes development. Body weight variation (a,e), cumulative disease incidence 
(B,F), and blood glucose levels (c,g) were detected in caspase-1/11−/−, IL-1R−/−, or wild-type (WT) mice. These clinical parameters were monitored 1, 4, 7, 11, 15, 
and 18 days after the initial streptozotocin (STZ) treatment. The non-diabetic mice only received the sodium citrate (vehicle). The serum insulin concentrations were 
determined at day 15 after the initiation of STZ or vehicle administration (D,h). Pancreatic tissues from vehicle-injected WT (i,l), STZ-treated WT (J,M), and 
STZ-treated IL-1R−/− mice (K,n) were stained with hematoxylin-eosin (H&E) (upper panels) or immunostained for insulin (lower panels), respectively (original 
magnification 400×). The results are expressed as the mean ± SEM (n = 12 in the vehicle-injected WT group; n = 18 in the STZ-administered WT group; n = 18 in 
the STZ-administered caspase-1/11−/− group; and n = 18 in the STZ-administered IL-1R−/− group). #p ≤ 0.05 compared to the STZ-administered WT group. 
Significant differences between the two groups were compared by Student’s t-test or three groups by one-way ANOVA followed by Tukey’s multiple-comparison 
test. The results are representative of a single experiment repeated three times. n.s., not significant.
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and absolute numbers in the PLNs from NLRP3−/−mice 
were significantly decreased compared to diabetic WT mice 
(Figures 4E,F,M). Similarly, the frequency and absolute numbers 
of CD8+IL-17+ cells were significantly reduced in the PLNs of 
these mice (Figures  4G,H). Despite a trend toward reduction, 
there was no significant difference between the percentage and 
absolute numbers of CD4+IFN-γ+ and CD8+IFN-γ+ cells in the 
PLNs of NLRP3−/−mice and diabetic WT mice (Figures 4I–L). 
In parallel, NLRP3 deficiency significantly increased IL-6 and 
IL-4 levels (Figures 5A,D) without alterations in the IL-17 and 
IFN-γ levels (Figures  5B,C) in the pancreatic tissue after STZ 
treatment. Surprisingly, ASC-deficient mice had significantly 
decreased IL-17, IFN-γ, and IL-4 (Figures 5F–H), but the IL-6 
levels remained unaltered (Figure  5E). Our next step was to 
identify whether the resistance observed in NLRP3−/− mice could 
be attributed to the induction of tolerogenic cells in the myeloid 
or lymphoid compartment. Importantly, NLRP3−/− mice had a 
normalization of frequency and absolute numbers of MDSCs in 
the PLNs compared to diabetic WT mice (Figures 5I–K). On the 
other hand, the arginase-1 and iNOS gene expressions decreased 
in the pancreatic tissue of NLRP3−/− mice compared to diabetic 
WT mice (Figures 5L,M), while Foxp3 and TGF-β gene expres-
sion was not altered (Figures 5N,O). Overall, our results showed 
that NLRP3 activation promotes IL-1β production, which in turn 
triggers Th17/Tc17 induction and dampens MDSC expansion in 
STZ-induced T1D.

Mitochondrial Dna Triggers caspase-1-
Dependent il-1β Production by 
Macrophages
Later, we determined the effect of mDNA from non-diabetic mice 
(cmDNA) or from diabetic mice (dmDNA) on NLRP3 inflamma-
some activation. To examine whether the inflammasome is acti-
vated by mDNA, bone marrow-derived macrophages (BMDMs) 
were exposed to different concentrations of mDNA after priming 
with LPS to allow expression of pro-IL-1β. Consistently, IL-1β 
production was significantly increased in BMDMs from WT 
mice after stimulation with dmDNA (10 µg/mL) when compared 
with cells stimulated only with LPS. However, this response was 
reduced in BMDMs from NLRP3−/− mice. On the other hand, 
cmDNA stimulation (5 or 10  µg/mL) after LPS priming did 
not induce IL-1β production (Figure 6A). Conversely, cmDNA 
or dmDNA stimulation (5 or 10 µg/mL) did not change IL-1α 
production in BMDMs from WT mice when compared to LPS-
stimulated cells. Nevertheless, BMDMs from NLRP3−/− mice 

already presented a significant IL-1α reduction when compared 
to BMDMs from WT mice, independent of the stimulus that was 
used (Figure 6B).

Because active caspase-1 is crucial for the cleavage of pro-IL-
1β to its mature and biologically active form, we determined if 
dmDNA is able to trigger the activation of caspase-1. The activa-
tion of caspase-1 was demonstrated by using the FAMYVAD-FMK 
fluorescent inhibitor (FLICA), which binds covalently to active 
caspase-1. Notably, the dmDNA stimulation at a concentration 
of 10  µg/mL induced a significant increase in the percentage 
of caspase-1-positive BMDMs compared BMDMs incubated 
only with LPS, and this effect was inhibited in the BMDMs of 
NLRP3−/− mice. However, cmDNA stimulation at a concentra-
tion of 5 or 10  µg/mL did not promote a significant increase 
in caspase-1-positive BMDMs compared to the LPS stimulus 
alone (Figures 6C,D). Because nigericin is a potent activator of 
the NLRP3 inflammasome, we used this compound as a posi-
tive control in the Western blot assays. Of fact, we detected an 
increase of active IL-1β (p17) expression in the supernatant of 
BMDMs from WT mice exposed to nigericin after LPS priming, 
which was inhibited in BMDMs from NLRP3−/− mice. Similarly, 
the immunoblot analysis showed that the active form of IL-1β 
was being produced in response to dmDNA at a concentration of 
10 µg/mL in the supernatant of the BMDMs from WT mice, but 
this effect was inhibited in BMDMs from NLRP3−/− mice, after 
priming the cells with LPS. Of interesting manner, the expression 
of active form of IL-1β was similar by BMDMs from WT mice 
or NLRP3−/− mice in response to cmDNA at the same concen-
tration (Figures  6E,F). These results suggest that the NLRP3 
inflammasome senses mitochondrial DNA from diabetic mice in 
macrophages and causes caspase-1-dependent IL-1β production.

Mitochondrial Dna from Diabetic Mice 
Precipitates sTZ-induced T1D Onset
The administration of five doses of STZ (40 mg/kg) induces T1D 
as described before. However, the administration of only four 
doses does not have this effect (Figures 7A–D). This result sug-
gests that four doses of STZ do not induce T1D because the doses 
are not sufficient to produce robust β-cell damage. Therefore, we 
tested whether four sub-diabetogenic doses of STZ would cause 
T1D if they were administered with mDNA from diabetic mice 
(three doses each at 5 µg i.p.) to C57BL/6 mice on day 1 before 
and days 6 and 9 after STZ administration. Our findings showed 
that dmDNA administration predisposes animals to T1D onset, 
which was confirmed by 83% disease incidence (Figure 7B) and 
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FigUre 3 | continued 
nOD-like receptor family-pyrin domain containing 3 (nlrP3) deficiency promotes protection against type 1 diabetes development. Cumulative disease 
incidence was monitored in NLRP3−/−, ASC−/−, or wild-type (WT) mice after streptozotocin (STZ) administration (a). The time course of glycemia was monitored or 
blood glucose levels was determined at day 15 after the initiation of vehicle (B,c) or STZ administration (e,F) by a glucometer system Accu-Chek Active. The serum 
insulin concentrations were determined at day 15 after the initiation of STZ or vehicle administration (D,g). The quantitative analysis of insulin-staining pancreatic 
islets (h,i) or semiquantitative scale insulitis score (J). Pancreatic tissues from vehicle-injected WT (K,n), STZ-treated WT (l,O), and STZ-treated NLRP3−/− mice 
(M,P) were stained with hematoxylin-eosin (H&E) (upper panels) or immunostained for insulin (lower panels), respectively (original magnification 400×). The results 
are expressed as the mean ± SEM (n = 12 in the vehicle-injected WT group; n = 24 in the STZ-administered WT group; n = 12 in the vehicle-injected ASC−/− group; 
n = 24 in the STZ-administered ASC−/− group; n = 12 in the vehicle-injected NLRP3−/− group; and n = 24 in the STZ-administered NLRP3−/− group). #p ≤ 0.05 
compared to the STZ-administered WT group. Significant differences between two groups were compared by Student’s t-test or three or more groups by one-way 
ANOVA followed by Tukey’s multiple-comparison test. The results are representative of a single experiment repeated three times or a compilation of two different 
experiments (A). 
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increased blood glucose levels after four sub-diabetogenic doses 
of STZ (Figures  7C,D). Nevertheless, dmDNA administration 
did not affect body weight loss compared with mice only given 
four doses of STZ (Figure 7A). The dmDNA effects in the disease 
incidence and hyperglycemia were abrogated in NLRP3−/− mice, 
since we observed a significant reduction of glycemic levels in 
these mice compared to diabetic WT mice after four doses of STZ 
(Figures 7B–D). As shown in Figure 7E, the group treated only 
with STZ had a striking proportion of insulitis-free islets (96%) 
and some infiltrated areas with peri-insulitis (4%). However, 
more infiltrated areas with peri-insulitis (16%), moderate insulitis 
(34%), and severe insulitis (18%) were observed in mice treated 
with four sub-diabetogenic doses of STZ and dmDNA. On the 
other hand, the pancreatic islets of NLRP3−/− mice revealed more 
insulitis-free islets (74%) and no moderate or severe insulitis 
after the same treatments. Similarly, serum insulin levels further 
decreased in WT mice, but were normalized in NLRP3−/− mice 
treated with dmDNA after STZ (Figure  7F). Thus, these data 
indicate that NLRP3 activation mediated by mDNA from diabetic 
mice is required for the pancreatic islet inflammation involved in 
insulin-producing β cell damage and T1D development.

Mitochondrial Dna induces Pathogenic 
lymphocyte response and Dampens 
Mast cell and MDsc expansion in sTZ-
induced T1D
Considering dmDNA promotes IL-1β production mediated by 
NLRP3 and the established role of IL-1β in Th17 differentiation 
(21, 22), we examined whether NLRP3 is involved in Th17 and 
Tc17 induction in mice treated with mDNA after sub-diabetogenic 
doses of STZ. The dmDNA administration plus STZ was able to 
promote a significant increase of CD4+IL-17+ and CD8+IL-17+ 
absolute numbers in the PLNs of WT mice (Figures  7K,L). 
Importantly, the frequency and absolute numbers of CD4+IL-17+ 
cells were significantly reduced in the PLNs of NLRP3−/− mice 
compared to diabetic WT mice treated with STZ and dmDNA 
(Figures  7G,K,O). Although there were no differences in the 
frequency, the absolute number of CD8+IL-17+ cells was sig-
nificantly decreased in the PLNs of NLRP3−/− mice compared 
to diabetic WT mice after the same treatments (Figures 7H,L). 
Another important observation is the increased frequency and 
absolute numbers of CD4+IFN-γ+ and CD8+IFN-γ+ cells in the 
PLNs of mice treated with mDNA after sub-diabetogenic doses 

of STZ (Figures 7I,J,M,N). Of note, the frequency and absolute 
numbers of CD4+IFN-γ+ cells were significantly decreased in the 
PLNs of NLRP3−/− mice compared to diabetic WT mice treated 
with STZ and dmDNA (Figures  7I,M,P). However, only the 
absolute numbers of CD8+IFN-γ+ cells, but not the percentage, 
were significantly decreased in the PLNs of NLRP3−/− mice com-
pared to diabetic WT mice (Figures 7J,N).

Analysis of circulating mDNA genes, such as NADH 
dehydrogenase subunit 6 (NADH), cytochrome b (Cyt B), and 
cytochrome c (Cyt C), demonstrated a significant increase in 
gene expression of Cyt B and Cyt C, but not NADH, 15 days after 
STZ in diabetic mice compared to vehicle-treated mice (Figures 
S2A–C in Supplementary Material). Interestingly, we observed 
that NLRP3−/− mice treated with STZ and dmDNA exhibited a 
significant increase in the percentage and absolute numbers of 
mast cells (Figures S2D,G in Supplementary Material), but not 
M2 macrophages (Figures 2E,H in Supplementary Material), 
compared to WT and NLRP3−/− mice after only STZ doses. In 
addition, NLRP3−/− mice had a trend to increase the percentage 
and absolute number of monocytic MDSCs compared to WT mice 
treated with STZ and dmDNA (Figures S2F,I in Supplementary 
Material). A coadministration of STZ and dmDNA also signifi-
cantly increased IL-1β levels in the pancreatic tissue of WT mice, 
but significantly decreased IL-1β levels in NLRP3-deficient mice 
(Figure S2J in Supplementary Material). Conversely, the NLRP3 
deficiency caused a significant increase in IL-6 levels (Figure 
S2K in Supplementary Material) without affecting the IL-17, 
IL-23, IFN-γ, and IL-10 levels (Figures S2L–O in Supplementary 
Material) in the pancreatic tissue after dmDNA and STZ adminis-
tration. Taken together, our results showed that NLRP3 activation 
depended on mDNA from diabetic mice for the induction of 
Th17/Tc17/Th1/Tc1 responses and the suppression of mast cells 
and MDSCs in STZ-induced T1D.

DiscUssiOn

Type 1 diabetes is one of the most prevalent autoimmune diseases 
in the world. It affects approximately 10–20 million people and 
develops most frequently in childhood but also can develop in 
adulthood. Similar to other autoimmune disorders, the etiol-
ogy of diabetes remains unclear, but it is known that the risk 
of developing the disease is determined by genetic and envi-
ronmental factors, including viral infections, food, vaccination, 
toxins, and stress (23, 24). A strong association between NLRP3 
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polymorphisms and a greater predisposition to the disease has 
been reported in diabetic patients (19).

The NLRP3 inflammasome is a molecular platform required 
for the proteolytic cleavage of caspase-1 and is activated by 
endogenous and exogenous stimuli, including uric acid crystals 
and silica, bacterial toxins, β-amyloid particles, and ATP (12–14). 
After activation, NLRP3 oligomerization and interaction with 
the adapter molecule ASC resulted in activation of caspase-1 and 
expression of active forms of IL-1β and IL-18. Our results showed 
a correlation between increased NLRP3, ASC, and pro-IL-1β 
gene expression in the PLNs, as well as IL-1β, but not IL-18 pro-
tein expression at day 7 in the pancreatic tissue of STZ-induced 

diabetic mice. In addition, pancreatic IL-1β expression remained 
elevated at day 15 through a mechanism dependent on NLRP3 
inflammasome activation. IL-18 expression, after 15  days of 
STZ-induced T1D, was not dependent on NLRP3 inflamma-
some activation. In parallel, we observed an elevated percentage 
of caspase-1-expressing macrophages in the PLNs of diabetic 
mice, which was reduced in mice lacking NLRP3. In addition, 
deficiency of IL-1R and NLRP3 in mice triggered resistance to 
T1D development. This protection observed in IL-1R−/− mice 
was associated with smaller IL-17 production in the pancreatic 
tissue during T1D. NLRP3 deficiency in NOD mice also pro-
tected against T1D through inhibition of chemokines CCL5 and 
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FigUre 7 | continued 
nOD-like receptor family-pyrin domain containing 3 (nlrP3) activation by mitochondrial Dna (mDna) from diabetic mice contributes to Th17/Tc17/
Th1/Tc1 response and leads to type 1 diabetes onset. Body weight variation (a), cumulative disease incidence (B), and time course of glycemia was 
monitored, or blood glucose levels were determined after 15 days of streptozotocin (STZ) (c,D) in wild-type (WT) mice treated only with four doses of STZ (light gray 
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clinical parameters were monitored 1, 7, 10, and 15 days after the initial STZ treatment. The insulitis score was evaluated using a semiquantitative scale (e). The 
serum insulin concentrations were determined at day 15 after the initiation of STZ (F). The percentage and absolute numbers of CD4+IL-17+ (g,K), CD8+IL-17+ 
(h,l), CD4+IFN-γ+ (i,M), and CD8+IFN-γ+ (J,n) cells in the pancreatic lymph nodes (PLNs) was determined by flow cytometry. Representative dot plots of the Th17 
(CD4+IL-17+) and Th1 (CD4+IFN-γ+) percentages in the PLNs, respectively (O,P). Intracellular cytokine levels were detected after stimulation with PMA plus 
ionomycin. The gate was set on CD3-positive lymphocytes. The results are expressed as the mean ± SEM (n = 12 in the WT group administered only with STZ; 
n = 18 in the WT group administered with STZ plus mDNA; n = 12 in the NLRP3−/− group administered only with STZ; and n = 18 NLRP3−/− group administered 
with STZ plus mDNA). *p ≤ 0.05 compared to the WT group treated only with STZ, #p ≤ 0.05 compared to the WT group treated with STZ plus mDNA. Significant 
differences between the groups were compared by one-way ANOVA followed by Tukey’s multiple-comparison test. The results are representative of a single 
experiment repeated three times.
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CXCL10 in the pancreatic islets (20). Taken together, these results 
indicate that NLRP3-dependent IL-1β production accounts for 
T1D onset in the STZ-induced experimental model.

NLRP3 receptor activation plays a crucial role in the induction 
of inflammatory responses and in the subsequent polarization of 
the adaptive immune response. In terms of cellular immunity,  
T CD4 lymphocytes are related to Th1, Th2, Treg, Th9, Th22, and 
Th17 according to their profile of cytokine expression and tran-
scription factors (25). The differentiation of these cell subtypes 
is induced by a differential pattern of anti- or pro-inflammatory 
cytokines produced by macrophages and dendritic cells (26). It 
has been reported that IL-18 and IL-1β play an important role in 
driving Th1 and Th17 cellular responses, respectively (27). Initial 
studies supported a crucial role for IFN-γ-secreting Th1 cells in 
T1D pathogenesis (28, 29). However, this notion was altered by 
the discovery that genetic absence neither IFN-γ nor its receptor 
protect against T1D in NOD mice (30, 31). Notably, Emamaullee 
et al. provided strong evidence about the pathogenic role of Th17 
in T1D by treating animals with either a neutralizing anti-IL-17 
antibody or recombinant IL-25 (32). The deficiency of IL-1R, 
as well as NLRP3 in mice protected against T1D development 
and was associated with reduced Th17/Tc17/Th1 populations in 
the PLNs. Previous studies have also reported that deficiency 
of IL-1R or NLRP3 results in a lower production of IL-17 and 
causes resistance to EAE (16, 33). Similarly, another study 
reported that IL-1Ra-deficient mice spontaneously develop 
arthritis due to the high expression of IL-17 caused by increased 
signaling of IL-1 (34).

Mechanisms involving IL-1β-induced Th17 differentiation 
have been reported. TGF-β induces ROR-γt expression in naïve 
T cells and triggers IL-23R and IL-1R expression, which makes 
these cells receptive to IL-23 and IL-1β (35). In vitro studies have 
shown that IL-1β induces the expression of IRF-4, which posi-
tively regulates IL-21-mediated STAT-3 and ROR-γt transcription 
factor expression (18, 36). Additionally, a role for IL-1β on Th17 
phenotype induction has been attributed to alternative splicing of 
Foxp3 (37). However, there are no reports about the direct effect 
of IL-1β on the induction or expansion of Th1 lymphocytes. 
More recently, the ability of Th17 and Tc17 lymphocytes to be 
converted into Th1 lymphocytes in the presence of IL-12 in T1D 
was also observed (38, 39), demonstrating the considerable plas-
ticity of these cellular subtypes. Therefore, it is possible that the 
reduction in the Th1 lymphocyte population in NLRP3−/− mice 

is due to a defect in the differentiation of Th17/Tc17 lymphocytes 
and their subsequent conversion into Th1 lymphocytes. Taken 
together, our results demonstrate that NLRP3-dependent IL-1β 
expression appears to drive Th17/Tc17/Th1 differentiation under 
inflammatory conditions, such as T1D.

NLRP3 deficiency increased IL-6 and IL-4 protein expression 
in the pancreatic tissue after STZ administration. A study has 
shown that the activation of basophils and mast cells induces 
the secretion of IL-4 and delays the onset of T1D in NOD mice 
(40). Additionally, coculturing mast cells with MDSC leads to 
IL-6, IL-13, and TNF-α production, increasing their suppres-
sor activity (41). MDSCs are increased in the blood of patients 
and experimental models of T1D, but these cells have a defect 
in their suppressor activity (42). Supporting these findings, we 
also observed a positive correlation between increased numbers 
of mast cells and MDSCs in the PLNs of NLRP3−/− mice after 
STZ administration, which indicates a synergistic effect between 
these two cell subtypes in protection against T1D. More recently, 
IL-6 has been involved in the generation of both mouse and 
human MDSC cells (43, 44). Accordingly, we demonstrated 
that mast cells play a regulatory role through IL-6-dependent 
mechanisms during T1D (45). Based on this evidence, we sug-
gest that the increased MDSC population in NLRP3−/− mice 
is due to elevated IL-6 expression, which in turn inhibits the 
inflammatory response in the pancreatic islets and prevents the 
onset of T1D.

Danger-associated molecular patterns are usually found in 
different compartments within cells and are often modified by 
proteolytic and oxidative processes associated with cellular injury 
mechanisms (46). Most DAMPs are released or secreted and exert 
their biological activity through the activation of TLR and NLR 
receptors (47). In particular, mitochondrial DAMPs, including 
mDNA and formylated peptides, stimulate neutrophils via TLR9 
and FPR-1, respectively, after being released into the extracel-
lular space (48). In humans, the presence of mDNA is detected 
in the synovial fluid of patients with arthritis, and intra-articular 
injection of mDNA induces arthritis mediated by the recruitment 
of macrophages and monocytes. Researchers concluded that oxi-
datively damaged DNA bases are major contributors to arthritis 
development (49). Another study also revealed that neutrophil 
mitochondria guide oxidized mDNA in the steady state into 
lysosomes for degradation. On the other hand, blood neutrophils 
from patients with systemic lupus erythematosus (SLE) patients 
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have mitochondrial retention of oxidized nucleoids, indicating 
that a defect in degradation of neutrophil oxidized mDNA might 
contribute to SLE pathogenesis (50).

It is known that excessive oxidative damage to DNA 
impairs the normal repair mechanisms and induces apoptosis 
(51, 52).

Considering that alterations in DNA induced by oxidative 
stress contribute to diabetes progression (53), we addressed 
the in vitro and in vivo effects of mDNA released in response 
to pancreatic damage in T1D in the activation of NLRP3 
inflammasome in macrophages. Macrophages primed with 
LPS and stimulated with mDNA from diabetic mice exhib-
ited increased IL-1β production, caspase-1 expression and 
cleavage of pro-IL-1β in active IL-1β in  vitro. In addition, 
coadministration of mDNA plus four doses of STZ-induced 
pancreatic islet inflammation and led to T1D, which was 
abrogated in NLRP3-deficient mice. mDNA plasma levels 
are significantly elevated in diabetic patients compared with 
healthy controls (54). Likewise, we also detected increased 
expression of mDNA-related genes in the serum of diabetic 
mice. It is plausible that tissue necrosis resulting from beta-
cell death leads to extracellular mDNA release. However, 
it is still puzzling the fact that only mDNA from diabetic 
mice activates the NLRP3 inflammasome. We speculate that 
beta-cell death and DAMP release, such as mDNA, occur 
during the initial phase of diabetes (prediabetic phase). In 
addition, oxidative stress that contributes to beta-cell death 
may induce mDNA oxidation, which turns into an immuno-
genic molecule. In this context, it has been reported that ATP 
induces mitochondrial dysfunction, apoptosis, and oxidized 
mDNA release into the cytosol, which activates the NLRP3 
inflammasome (12). Thus, it seems likely that the presence of 
extracellular mDNA exacerbates inflammation by stimulat-
ing IL-1β production via NLRP3 activation, thereby causing 
massive β-cell destruction and accelerating T1D onset in this 
experimental model.

In summary, we conclude that NLRP3 inflammasome acti-
vation mediated by mitochondrial DNA from diabetic mice 
promotes caspase-1 activation and IL-1β production by mac-
rophages, which drives pathogenic Th17/Tc17/Th1 responses 
and negatively modulates the tolerogenic responses mediated by 
MDSC and mast cells in the PLNs, and leads to the development 
of T1D. Thus, alternative therapies using nucleases or drugs that 
cause extracellular mDNA degradation should be explored in 
human T1D.

aniMals anD MeThODs

animals
This research project was approved by the Animal Research 
Ethics Committee of the Ribeirao Preto Medical School, 
University of São Paulo (no. 001/2008). Male NLRP3−/−, 
IL-1R−/−, and ASC−/− mice generated on the C57BL/6 back-
ground (8–12  weeks old) were obtained from the Isogenic 
Breeding Unit at Ribeirao Preto Medical School, University 

of São Paulo, Ribeirao Preto, Brazil. Female NOD/LtJ mice 
(8–20 weeks old) were obtained from the Jackson Laboratory 
and housed in the animal facility of the Department of 
Biochemistry and Immunology, Ribeirao Preto Medical 
School, at 23–25°C with free access to water and food.

induction of Diabetes by MlD-sTZ
The mice were given daily intraperitoneal injections of 40 mg/kg 
of streptozotocin (Sigma-Aldrich,) dissolved in 0.1 M sodium cit-
rate (pH 4.5) for five consecutive days. Blood glucose levels, body 
weight, and diabetes incidence were monitored weekly. Mice were 
defined as diabetic when glucose levels were ≥230 mg/dL after 
two consecutive determinations under non-fasting conditions.

Flow cytometry analysis of intracellular 
and extracellular Markers
Flow cytometry analysis was performed on samples with 
1 × 106 cells/tube in 100 µL of PBS. First, cell suspensions were 
incubated with 5% normal rabbit serum for 30  min to block 
non-specific binding. Next, antibodies against CD3, CD4, CD8, 
CD25, CD117, FcϵRI, CD11b, Ly6C, CD206, TLR2, and their 
control isotypes (BD Pharmingen, San Diego, CA, USA) were 
added and incubated for 30 min in the dark. IL-17 and IFN-γ 
production was evaluated after in vitro reactivation with PMA 
(25 ng/mL) and ionomycin (1 mg/mL, Sigma-Aldrich) together 
with 10  mg/mL monensin (Sigma-Aldrich) as previously 
described (55). The cells were analyzed using a FACS Canto 
flow cytometer, and the data were analyzed using FlowJo (Tree 
Star) software.

Detection of cytokine levels in Pancreatic 
Tissue
Pancreatic fragments (tail portions) were removed, weighed, and 
placed in a tube containing 700 µL of Complete Protease Inhibitor 
Cocktail (Roche Diagnostics, Abbott Park, IL, USA). The tissue 
was homogenized using a Polytron homogenizer (Thermo Fisher 
Scientific, Waltham, MA, USA) and IL-1∝, IL-1β, IL-18, IL-6, 
IL-17, IL-23, TNF-α, IFN-γ, IL-10, and IL-4 levels were detected 
by ELISA using colorimetric kits according to the manufacturer’s 
instructions (R&D Systems). The results were expressed as the 
mean nanograms ± SEM per gram/tissue (pancreatic tissue) or 
picograms per milliliter (culture supernatant).

Quantification of serum insulin levels
Serum samples were collected 15 days after MLD-STZ adminis-
tration of non-fasting mice. The insulin concentration was deter-
mined using the Mouse Ultrasensitive Insulin ELISA kit (Alpco 
Diagnostics) according to the manufacturer’s instructions.

histological and immunohistochemistry 
analysis
Pancreatic fragments (head portion) were removed, fixed 
in 10% buffered formalin, and embedded in paraffin. Then, 
4–5  µm sections were stained with hematoxylin and eosin 
(Merck, Whitehouse Station, NJ, USA). Immunohistochemistry 
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reactions were performed as previously described (55). The 
degree of insulitis was evaluated using a semiquantitative scale: 
0, intact islet; 1, peri-insulitis; 2, moderate insulitis (<50% of 
the islets infiltrated); and 3, severe insulitis (>50% of the islets 
infiltrated).

culture of BMDMs
The BMDMs from WT and NLRP3−/− mice were differenti-
ated as previously described (56). Briefly, total bone marrow 
cells were cultured for 7  days in RPMI 1640 medium (Sigma-
Aldrich) supplemented with 10% fetal bovine serum (FBS) 
(Life Technologies, Molecular Probes, Carlsbad, CA, USA) and 
30% L-929 cell-conditioned media at 37°C and 5% CO2. The 
cells (0.5  ×  106/well) were stimulated with nigericin (20  µM) 
for 30  min (Sigma-Aldrich), and then mitochondrial DNA 
from non-diabetic or control mice (cmDNA) or diabetic mice 
(dmDNA) at the concentration of 5 or 10 µg/mL for 2 h. Prior 
to stimulation, BMDMs were prestimulated for 4  h with LPS 
(0.5 µg/mL) (InvivoGen).

Western Blotting
Fifty micrograms of extracted proteins were loaded directly 
into sodium dodecyl sulfate (SDS) sample buffer for 10% SDS-
polyacrylamide gel electrophoresis. After transferring the samples 
onto a nitrocellulose membrane (Trans-Blot Transfer Medium; 
Bio-Rad, Hercules, CA, USA), the membranes were blocked 
with 5% milk in Tris buffer solution containing 0.1% Tween 20 
for 1 h and then incubated with antibodies against IL-1β (Santa 
Cruz) or NLRP3 (R&D Systems) overnight at 4°C. Next, the cells 
were incubated with an IgG HRP-conjugated secondary Ab (Cell 
Signaling) for 1  h at room temperature. After the membranes 
were rinsed, the immunocomplexes were developed using an 
enhanced peroxidase/luminol chemiluminescence reaction (ECL 
Western blotting detection reagents; Pierce Biotechnology) and 
exposed to X-ray film with autoradiography (Carestream Health). 
The bands were quantified densitometrically using ImageTool 2.0 
software (University of Texas), and the results were expressed as 
arbitrary units.

active caspase-1 staining
Active caspase-1 was detected using the caspase-1 fluoro-
chrome inhibitor of caspases (FLICA) kit (Immunochemistry 
Technologies) according to the manufacturer’s instructions. 
Briefly, macrophages or PLN cells were adjusted to a volume 
of 0.5 × 106/tube or 1-2 × 106/tube, respectively. Later, the cells 
were stained for F4/80 and FLICA for 30 min at 37°C. The cells 
were then washed two times with PBS containing 10% FBS and 
analyzed directly with flow cytometry on a FACS Canto flow 
cytometer.

Mitochondrial Dna isolation
Pancreata from diabetic and non-diabetic mice (control) 
were used in protocols for isolating the mitochondria. Briefly, 

the pancreatic tissue was cut in pieces and added to 50 mL of 
medium (Hepes 10 mM, saccharose 250 mM e EGTA 1 mM) at 
pH 7.2 and homogenized for 15 s. Later, the pancreatic tissue was 
centrifuged at 600 g for 5 min, and the supernatant was collected 
and centrifuged at 2,000 g for 10 min. The pellet containing the 
isolated mitochondria was recovered. The mitochondria were 
sonicated at an amplitude of 100% (10 sonicagens of 30 s with 
30  s intervals). Then, the suspension of lysed mitochondria 
was centrifuged at 12,000  g for 10  min at 4°C followed by 
centrifugation at 100,000 g at 4°C for 30 min. The supernatant 
from this centrifugation was used for DNA extraction with the 
phenol–chloroform–isoamyl alcohol mixture (Sigma-Aldrich). 
Finally, DNA quantitation was determined with a Nanodrop 
2000 (Thermo Technologies).

Mitochondrial Dna Quantification
Circulating DNA was extracted and purified using the QIAamp 
DNA Blood Mini Kit (Qiagen, Germantown, MD, USA). Isolated 
DNA from mice was amplified and quantified using real-time 
(RT)-PCR. The primers (Invitrogen, Grand Island, New York, NY, 
USA) that were used to amplify mDNA were cytochrome b (Cyt 
b) (forward 5-ACCTCAAAGCAACGAAGCCT-3′ and reverse 
5′-GGTTGGCCTCCAATTCAGGT-3′), cytochrome c (Cyt c) 
(forward 5′-GACTTGCAACCCTACACGGAT-3′ and reverse 
5′-CCGGTTAGACCACCAACTGT-3′), and NADH dehydroge-
nase subunit 6 (forward 5′-ATTCCACCCCCTCACGACTA-3′ 
and reverse 5′-TGTCGTTTTGGGTGAGAGCA-3′). The primer 
sequences have no homology with DNA found in any bacterial 
species published on BLAST. The RT-PCR results are presented 
as the inverse of cycle threshold (CT) for gene amplification as 
described (57).

rna extraction and Quantitative rT-Pcr
Total RNA was extracted from the PLNs or pancreatic tissue 
using Trizol (Life Technologies, Molecular Probes, Carlsbad, 
CA, USA) following the manufacturer’s instructions. cDNA was 
obtained using a High Capacity reverse transcription kit (Applied 
Biosystems, Foster City, CA, USA). Quantitative mRNA analysis 
by RT PCR was performed using the SYBR Green fluorescence 
system (Applied Biosystems). The following primers were 
used: β-actin: 5′-AACGAGCGGTTCCGATG-3′, reverse: 
5′-GGATTCCATACCCAACAAGGA-3′, NLRP3 forward: 5′-G 
TGGATGGGTTTGCTGGGAT-3′, reverse: 5′-CCACACTCTAC 
CTAGACGC-3′; IL-1β forward: 5′-TGACAGTGATGAGAATG 
ACCTGTTC-3′, reverse: 5′-TTGGAAGCAGCCCTTCATCT-3′; 
arginase-1 forward: 5′-GTTCCCAGATGTACCAGGATTC-3′, 
reverse: 5′-CGATGTCTTTGGCAGATATGC-3′; iNOS forward:  
5′-CGTGAGTGGAGTCATACTGGAA-3′, reverse: 5′-CGAAAC 
GCTTCACTTCCAA-3′; TGF-β forward: 5′-TGAACCAAGGAG 
ACGGAATACA-3′, reverse: 5′-GGAGTTTGTTATCTTTGCTG 
TCACA-3′; Foxp3 forward: 5′-ACAACCTGAGCCTGCACAA 
GT-3′, reverse: 5′-GCCCACCTTTTCTTGGTTTTG-3′. Specific 
mRNA expression levels were normalized relative to β-actin 
mRNA levels using the comparative 2ΔΔCt method.
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tissue by an ELISA assay. The results are expressed as the mean ± SEM (n = 9 
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(STZ)-administered WT group; n = 9 in the vehicle-injected IL-1R−/− group; and 
n = 24 in the STZ-administered IL-1R−/− group). *p ≤ 0.05 compared to the 
vehicle-injected WT group, #p ≤ 0.05 compared to the STZ-administered WT 
group. Significant differences between the groups were compared by one-way 
ANOVA followed by Tukey’s multiple-comparison test. The results are 
representative of a single experiment repeated three times.

FigUre s2 | nOD-like receptor family-pyrin domain containing 3 (nlrP3) 
activation by mitochondrial Dna (mDna) from diabetic mice decreases the 
mast cell and myeloid-derived suppressor cell population in the pancreatic 
lymph nodes (Plns). Relative quantification of circulating mDNA genes, NADH 
dehydrogenase subunit 6 (NADH), cytochrome b (Cyt b), and cytochrome c (Cyt c) 
measured by RT-PCR of vehicle-injected or streptozotocin (STZ)-administered 
mice (a–c). The percentage and absolute numbers of CD117+FcϵRI+ (D,g), 
CD11b+CD206+ (e,h), and CD11b+Ly6C+ (F,i) in the PLNs were determined by 
flow cytometry. The concentrations of IL-1β (J), IL-6 (K), IL-17 (l), IL-23 (M), IFN-γ 
(n), or IL-10 (O) were determined in the pancreatic tissue by an ELISA assay. The 
results are expressed as the mean ± SEM [n = 12 in the wild-type (WT) group 
administered only with STZ; n = 18 in the WT group administered with STZ plus 
mDNA; n = 12 in the NLRP3−/− group administered only with STZ; and n = 18 
NLRP3−/− group administered with STZ plus mDNA]. *p ≤ 0.05 compared to the 
vehicle-injected WT group or treated only with STZ, #p ≤ 0.05 compared to the WT 
group or treated only with STZ plus mDNA, or &p ≤ 0.05 compared to the 
NLRP3−/− group administered only STZ. Significant differences between the groups 
were compared by one-way ANOVA followed by Tukey’s multiple-comparison test. 
The results are representative of a single experiment repeated three times.
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