
Edited by  

Christophe Pellefigues and Hajime Karasuyama

Published in

Frontiers in Immunology

The fundamental biology 
of basophils in health 
and disease

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/research-topics/33329/the-fundamental-biology-of-basophils-in-health-and-disease#overview
https://www.frontiersin.org/research-topics/33329/the-fundamental-biology-of-basophils-in-health-and-disease#overview
https://www.frontiersin.org/research-topics/33329/the-fundamental-biology-of-basophils-in-health-and-disease#overview


November 2023

Frontiers in Immunology 1 frontiersin.org

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-3841-8 
DOI 10.3389/978-2-8325-3841-8

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


November 2023

Frontiers in Immunology 2 frontiersin.org

The fundamental biology of 
basophils in health and disease

Topic editors

Christophe Pellefigues — CNRS EMR8252 Centre de Recherche sur l’Inflammation, 

France

Hajime Karasuyama — Tokyo Medical and Dental University, Japan

Citation

Pellefigues, C., Karasuyama, H., eds. (2023). The fundamental biology of 

basophils in health and disease. Lausanne: Frontiers Media SA. 

doi: 10.3389/978-2-8325-3841-8

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-3841-8


November 2023

Frontiers in Immunology 3 frontiersin.org

05 Editorial: The fundamental biology of basophils in health and 
disease
Christophe Pellefigues and Hajime Karasuyama

10 A newly identified secreted larval antigen elicits 
basophil-dependent protective immunity against 
N. brasiliensis infection
Natalie Thuma, Daniela Döhler, Dirk Mielenz, Heinrich Sticht, 
Daniel Radtke, Lena Reimann, Bettina Warscheid and 
David Voehringer

22 IgE receptor responsiveness of basophils in chronic inducible 
urticaria
Mayuko Mizuno, Yoshiko Oda, Shinya Imamura, Ken Washio, 
Takeshi Fukumoto and Atsushi Fukunaga

31 Basophils activation of patients with chronic spontaneous 
urticaria in response to C5a despite failure to respond to 
IgE-mediated stimuli
Daiki Matsubara, Yuhki Yanase, Kaori Ishii, Shunsuke Takahagi, 
Akio Tanaka, Koichiro Ozawa and Michihiro Hide

40 Decreased peripheral basophil counts in urticaria and mouse 
model of oxazolone-induced hypersensitivity, the latter 
suggesting basopenia reflecting migration to skin
Izumi Kishimoto, Ni Ma, Riko Takimoto-Ito, Chisa Nakashima, 
Atsushi Otsuka, Andrew F. Walls, Hideaki Tanizaki and 
Naotomo Kambe

51 Basophils from allergy to cancer
Remo Poto, Adriana Rosa Gambardella, Gianni Marone, 
John T. Schroeder, Fabrizio Mattei, Giovanna Schiavoni and 
Gilda Varricchi

69 Skin-homing basophils and beyond
Rintaro Shibuya and Brian S. Kim

79 CD25 as a unique marker on human basophils in 
stable-mildly symptomatic allergic asthma
Joseena Iype, Lionel Rohner, Sofia Bachmann, Tanja Rahel Hermann, 
Nikolay Pavlov, Christophe von Garnier and Michaela Fux

87 IgE-dependent human basophil responses are inversely 
associated with the sarcoplasmic reticulum Ca2+-ATPase 
(SERCA)
Anette T. Hansen Selnø, Vadim V. Sumbayev and Bernhard F. Gibbs

95 Mas-related G protein-coupled receptor MRGPRX2 in human 
basophils: Expression and functional studies
Alessandro Toscano, Jessy Elst, Athina L. Van Gasse, Michiel Beyens, 
Marie-Line van der Poorten, Chris H. Bridts, Christel Mertens, 
Michel Van Houdt, Margo M. Hagendorens, Samuel Van Remoortel, 
Jean-Pierre Timmermans, Didier G. Ebo and Vito Sabato

Table of
contents

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/


November 2023

Frontiers in Immunology 4 frontiersin.org

108 Basophils control T cell priming through soluble mediators 
rather than antigen presentation
Christian Möbs, Martin Salheiser, Fabian Bleise, Marie Witt and 
Johannes U. Mayer

117 IL-3 produced by T cells is crucial for basophil extravasation 
in hapten-induced allergic contact dermatitis
Carole El Hachem, Pierre Marschall, Pierre Hener, Anupama Karnam, 
Srinivasa Reddy Bonam, Pierre Meyer, Eric Flatter, 
Marie-Christine Birling, Jagadeesh Bayry and Mei Li

133 Basophils beyond allergic and parasitic diseases
Remo Poto, Stefania Loffredo, Gianni Marone, Antonio Di Salvatore, 
Amato de Paulis, John T. Schroeder and Gilda Varricchi

152 Basophils in pruritic skin diseases
Daniela Wiebe, Maren M. Limberg, Natalie Gray and Ulrike Raap

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/


Frontiers in Immunology

OPEN ACCESS

EDITED AND REVIEWED BY

Francesca Granucci,
University of Milano-Bicocca, Italy

*CORRESPONDENCE

Christophe Pellefigues

Christophe.pellefigues@inserm.fr

RECEIVED 11 September 2023
ACCEPTED 06 October 2023

PUBLISHED 18 October 2023

CITATION

Pellefigues C and Karasuyama H (2023)
Editorial: The fundamental biology of
basophils in health and disease.
Front. Immunol. 14:1292279.
doi: 10.3389/fimmu.2023.1292279

COPYRIGHT

© 2023 Pellefigues and Karasuyama. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Editorial

PUBLISHED 18 October 2023

DOI 10.3389/fimmu.2023.1292279
Editorial: The fundamental
biology of basophils in health
and disease

Christophe Pellefigues1,2* and Hajime Karasuyama3
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Editorial on the Research Topic

The fundamental biology of basophils in health and disease
1 Quick history of basophils research and emerging
hot topics

Basophils are one of the rarest immune cell types, representing less than 1% of

circulating leucocytes in humans. They were discovered more than 140 years ago by Paul

Ehrlich, but basophils research has suffered from their rarity and from “shifting trends” in

immunology. Indeed, from 1985 to 2009, the number of publications on basophils stalled

(Figure 1A), while “newer” immune cells grabbed a steady focus (i.e., “Dendritic cells”).

The year 2009 saw a renewal of basophils research, which may have arisen from several

anterior breakthroughs, beginning with thorough descriptions of the regulation and

dynamics of basophil degranulation (1–6), of their expression of IL-4 (7, 8), and of

human basophils promoting B cell IgE production without exogenous IL-4 (9) in the

1980s-1990s. The democratization of flow cytometry in the 2000s enabled better protocols

of purification and deeper characterization of the human basophil (10, 11), which fostered

the development of the Basophil Activation Test (BAT) (12). Mice basophil research

showed that basophils are a primary source of IL-4 in helminth infection (13), mediate

delayed hypersensitivity reactions after intravenous IgE sensitization and intradermal

allergen challenge (14), and promote in vivo antibody responses (15), Th2 responses (16),

and IgG-driven anaphylaxis (17). This formed the announcement of a “rebirth” of

basophils research in 2009, with numerous major publications characterizing how

basophils are activated and promote Th2 responses (18–27).

From 2009 to 2019, the number of publications citing basophils rose steadily, with

many discoveries deciphering the fundamental biology of basophils and their contribution

to health or disease. This was supported by the generation of specific basophil-deficient

mice (28, 29) and conditionally basophil-deficient mice (30, 31), which allowed

unambiguous demonstrations of the various roles of basophils (32). Nowadays, we have

a better understanding of several aspects of basophils biology, including their

differentiation (and a pre-mature basophil state) (33–35), their heterogeneity (36–38),
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their responsiveness to various ligands (24, 27, 37–39), their

expression of chemokine receptors (40, 41), and the mechanisms

by which they can present antigens (42, 43). The controversies

regarding how basophils promote the priming of T cells are

underlined by Möbs et al.

A deleterious role of basophils seems evident in several allergic

diseases of the skin (atopic dermatitis and chronic spontaneous

urticaria), the airways (asthma and chronic rhinosinusitis), or the

gut and in some anaphylactic reactions. Basophils are also

detrimental in various autoimmune diseases (i.e., systemic lupus

erythematosus) and chronic inflammatory or fibrotic diseases of the

lungs (chronic obstructive pulmonary dysfunction), the gut

(inflammatory bowel diseases), the kidneys (ischemia/reperfusion-

induced fibrosis), or the heart (allograft-induced fibrosis) (32).

Wiebe et al. underlined how basophils contribute to pruritus in

allergic and inflammatory or autoimmune skin diseases. An

updated description of the contribution of basophils to non-

allergic and non-parasitic diseases, with a focus on autoimmune

and chronic inflammatory disorders, has been reviewed by Poto

et al. Basophils show complex capabilities to promote tumor

progression or, inversely, tumor suppression. An updated

description of the potential prognostic value of circulating

basophils counts and a summary of their functions in various

cancer or cancer models has been presented in another

manuscript by Poto et al.
Frontiers in Immunology 026
These complex roles in cancer highlight that basophils can also

promote health and homeostasis in a broad array of conditions:

they display unique interactions with hematopoietic and non-

hematopoietic cells during lung development (38); they secrete

both retinoic acid (44), IL-10 (45), and cleave extracellular ATP

(46) to reduce inflammation; and they promote the resolution of

infectious and sterile inflammation in the skin, liver, lungs, or heart

(32, 47). Basophils have also emerged as being protective in

infectious models beyond ectoparasite infections, including in a

mouse model of sepsis (48) and of malarial infection (49, 50).
2 Original research, brief reports,
and hypotheses

Despite these exciting discoveries, basophils remain the least

studied of the main immune cells, representing less than 1% of these

publications in 2019 (Figure 1B). In this context, the aim of this

Research Topic was to aggregate original manuscripts exploring

emerging hot topics in basophils research, which will be

presented below.

IgE crosslinking induces several signaling events controlling

intracellular calcium mobilization and degranulation. Hansen Selnø

et al. explored the expression of the sarcoplasmic reticulum Ca2+

ATPase (SERCA2) in human basophils and its function. SERCA2
A

B

FIGURE 1

Evolution of publications from 1950 to 2019 for each main immune cell type. (A) The number of publications per year retrieved from the Pubmed
database from 1950 to 2019 is depicted for each query, corresponding to the dot plot titles. (B) Percentage of publications retrieved from each
query from the sum of all the queries represented in A for the year 2019. The year 2019 was chosen as an endpoint as the volume and dynamics of
publications changed drastically from 2020 due to the COVID-19 pandemic.
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expression is strongly inversely correlated with anti-IgE-induced

histamine release, and pharmaceutical inhibition or activation of

SERCA proteins controls the amplitude of basophil histamine

release. Thus, SERCA2 appears as a new negative regulator of

basophil degranulation.

Basophil responsiveness to IgE decreases among patients

suffering from chronic spontaneous urticaria (CSU), supposedly

due to the presence of autoreactive antibodies against IgE or its

receptor. However, Matsubara et al. showed that the response of

CSU patients’ basophils to the anaphylatoxin C5a is unaltered. This

suggests targeting the C5a/C5aR axis may be of critical value in

patients refractory to anti-FcϵRIa treatments.

In chronic inducible urticaria, urticaria is induced by specific

stimuli, such as ultraviolet light exposure. Mizuno et al. showed that

the circulating basophils of these patients are more activated than

those of healthy controls (as CSU patients) but without any IgE

hyporesponsiveness. This highlights differences in the

pathophysiology of these distinct conditions.

Peripheral basopenia in CSU patients is associated with disease

activity, and basophils are found in patients’ skin lesions. Kishimoto

et al. confirmed previous reports underlining a reversal of basopenia

upon treatment of CSU patients with Omalizumab or anti-

histamine. Then, using an oxazolone-induced contact dermatitis

model, they demonstrated that the migration of circulating

basophils to skin lesions provoked a transient basopenia. This

supports the concept that clinical observations of basopenia

reflect an active basophils extravasation.

El Hachem et al. explored the mechanisms governing basophils

extravasation in the skin in FITC-induced dermatitis. They revealed

that basophil migration was critically dependent on the secretion of

IL-3 by T cells. They also demonstrated that IL-3-stimulated human

and mice basophils relied on an autocrine retinoid acid production

to drive their expression of specific integrins and mice basophil

extravasation. Overall, these results strongly suggest that T cell IL-3

drives basophils autocrine secretion of retinoic acid to enable their

extravasation in the inflamed skin.

The unique properties of skin-homing basophils have been

described in a hypothesis and theory article by Shibuya and Kim,

which suggests these basophils may have a unique identity, acquired

during hematopoiesis and/or through late imprinting by the action

of TSLP and epithelial-derived alarmins as mice lung basophils do

under the control of IL-33 and GM-CSF (38). Skin-infiltrating

basophils may externalize MRGPRX2, a receptor involved in

pseudoallergic reactions and neuroimmune interactions.

MRGPRX2 expression by basophils has been the subject of

some controversy. In this Research Topic, Toscano et al. explored

the expression and function of this receptor on basophils from

patients allergic to birch pollen or hypersensitive to moxifloxacin.

Circulating basophils express only very low levels of functional

surface MRGPRX2, but this is very quickly externalized by specific

activation (anti-IgE, fMLP) or non-specific activation (i.e.,

purification). Thus, the reactivity of patients’ basophils to

MRGPRX2 ligands can be studied but only when using carefully

controlled conditions.

Basophils are known to participate in allergic airway

inflammation and allergic asthma but have mainly been studied
Frontiers in Immunology 037
following allergen challenge or asthma exacerbation. Here, Iype

et al. analyzed the expression of activation markers on stable

asthmatics basophils and reported that they express more surface

CD25 but no other activation markers. As human basophils

activated by IL-2 secrete type 2 cytokines, and IL-2 is associated

with asthma, this pathway seems important in asthma chronicity

and pathophysiology.

The development of efficient helminth vaccines is an ongoing

challenge in immunology. Thuma et al. cloned a new immunogenic

protein secreted by the model helminth Nippostrongylus brasiliensis

(Nb) during infection, Nb-LSA1a. Immunization with Nb-LSA1a

induces specific IgG1 and protective immunity against Nb infection

in wild-type but not basophil-deficient mice. This strongly suggests

helminth vaccination strategies should benefit from inducing

basophil-dependent immunity.

Overall, the manuscripts submitted to this Research Topic

underline current and emerging trends in basophils immunology:

the regulation of their degranulation via FcϵRIa or MRGPRX2;

their roles in chronic urticaria, pruritic diseases, asthma, or cancer;

the controversies surrounding their regulation of T cell polarization

and their potency in promoting anti-helminth protective immunity;

the mechanisms controlling their extravasation and peripheral

basopenia; and, finally, the concept of mature basophils harboring

distinct specific identities.
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A newly identified secreted
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Hookworms infect more that 400 million people and cause significant socio-

economic burden on endemic countries. The lack of efficient vaccines and the

emergence of anthelminthic drug resistance are of major concern. Free-living

hookworm larvae infect their hosts via the skin and live as adult worms in the

small intestine where they feed on host tissue and blood. Excretory/secretory

(E/S) products, released by helminths as they migrate through their host, are

thought to play a key role in facilitating infection and successful establishment

of parasitism. However, E/S products can also elicit protective immune

responses that might be harnessed for vaccine development. By performing

Western blots with serum of Nippostrongylus brasiliensis (Nb) infected mice as

a model for human hookworm infection, we identified a largely overlapping set

of IgG1- and IgE-reactive antigens in E/S from infective L3 stage larvae. Mass

spectrometry analysis led to the identification of a new protein family with 6

paralogues in the Nb genome which we termed Nb-LSA1 for “Nippostrongylus

brasiliensis larval secreted protein 1”. The recombinantly expressed 17 kDa

family member Nb-LSA1a was recognized by antibodies in the serum of Nb

immune mice. Immunization of mice with Nb-LSA1a in alum elicited a strong

IgG1 response but no detectable antigen-specific IgE. Most importantly,

immunized mice were largely protected against a challenge Nb infection.

This effect was dependent on the presence of basophils and occurred before

the parasites reached the intestine. Therefore, basophils appear to play a critical

role for rapid control of infection with L3 stage larvae in mice immunized with a

single secreted larval protein. A better understanding of basophil-mediated

protective immunity and identification of potent larval antigens of human

hookworms could help to develop promising vaccination strategies.
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Introduction

About a quarter of the human world population is infected

with helminths, especially in low economic countries with poor

sanitary conditions. Hookworms alone account for more than

400 million infections and cause major socioeconomic problems

in endemic countries (1). Hookworm infections can result in

anemia, malnutrition and intellectual disability of children.

Anthelmintic drugs such as mebendazole or pyrantel can be

used to efficiently reduce the worm burden but reinfections

rapidly occur after deworming. In addition, there is evidence for

increasing drug resistance to some anthelmintics (2). Despite

major research efforts, there are no vaccines available yet for any

human helminth infection (3).

The major human hookworm species are Necator

americanus and Ancylostoma duodenale which live as adult

worms for up to 10 years in the lumen of the small intestine

and feed on blood and host tissue. Hookworms infect their hosts

as free-living L3 larval stage by penetration of the skin. Next,

they reach the lung via the bloodstream, enter the alveolar space,

get coughed up and swallowed, to finally reach the lumen of the

small intestine. Here, they mature to adult worms, feed on host

tissue and blood, and females produce eggs that are excreted to

the environment where the L1-L3 larval stages develop.

Hookworms secrete a huge variety of different proteins which

are poorly characterized but likely facilitate entry and persistence

in their hosts. Such secretomes contain mainly three categories

of proteins: proteases and protease inhibitors, sperm-coating

proteins/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) including Venom

Allergen-Like (VAL) or Activation-associated Secreted

Proteins (ASPs) (Pfam acc. no. PF00188), and proteins with

domains of unknown function (4). SCP/TAPS proteins are often

immunogenic and therefore include candidates for vaccine

development (5).

Although vaccines are unlikely to eradicate hookworm

infections, it has been calculated that in combination with

anthelmintics they would reduce the disability adjusted life

years (DALYs) about 6-fold in a 10 years time frame as

compared to administration of anthelmintics alone (6). The

development of an efficient hookworm vaccine remains a major

challenge and requires detailed understanding of molecular and

cellular events required for an efficient and protective immune

response. Ideally, protective immunity should be achieved in the

skin to prevent larval migration to the lung and intestine.

Infection of mice with Nippostrongylus brasiliensis (Nb) is

widely used to investigate potential mechanisms of protective

immunity against hookworms. Nb is genetically related to N.

americanus and has a similar life cycle. Although more prevalent

in rats, Nb has also been isolated from wild mice (Mus musculus)

(7). Nb elicits a strong type 2 immune response during primary

infection and promotes worm expulsion from the intestine

within 10 days by a “weep-and-sweep” mechanism that
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requires IL-13-elicited activation of goblet cells and smooth

muscle cells. During a secondary infection, most L3 larvae are

trapped in the skin or lung and only few parasites reach the

intestine (8). We and others could show that protective

immunity against secondary infection is provided by

antibodies, basophils and alternatively activated macrophages

(9–14).

In this study we performed Western blots with immune

serum of Nb-infected mice followed by mass spectrometry of

secreted proteins from infective Nb L3 stage larvae to identify

new antigens with the potential to elicit protective immunity

against Nb infection. We identified a 17 kDa protein which

belongs to a new subfamily of SCP/TAPS proteins. This Nb-

LSA1a protein elicited a strong IgG1 response but no detectable

IgE upon immunization of mice. Importantly, Nb-LSA1a

immunized mice showed a strong reduction in adult worm

and egg counts. This protective effect occurred before larval

stages reached the lung and was not observed in basophil-

deficient Mcpt8Cre mice. These findings indicate that

antibodies against Nb-LSA1a and perhaps other cross-reactive

antigens activate basophils and prevent larval transit from skin

to the lung.
Materials and methods

Mice

Mcpt8Cre mice on C57BL/6 background were bred and

maintained in the Franz-Penzoldt Center in Erlangen and kept

under specific pathogen free conditions. In Mcpt8Cre mice

basophils are specifically and constitutively deleted as a result

of Cre toxicity (15). C57BL/6 mice were obtained from Charles

River Laboratories.
Ethics statement

Animal experiments were approved by the Local

Government of Lower Franconia and performed in accordance

with German animal protection law and European

Union guidelines.
Parasite infection and enumeration of
eggs and worms

For N. brasiliensis (Nb) infection mice were subcutaneously

(s.c.) injected with 500 L3 stage larvae as previously described

(15). To assess parasite fecundity, fecal egg counts were

determined on day 7 post infection (p.i.) using a modified

MacMaster counting chamber. Worm burden in the lung was
frontiersin.org
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analyzed on day 2 p.i. by enumeration of larvae that migrated

out of the harvested lung tissue.
Preparation of N. brasiliensis antigens

For preparation of Nb excretory/secretory proteins (NES)

from L3 stage larvae or adult worms, the larvae were collected

from the culture plates (L3) or intestine of infected mice (adults)

and washed extensively (PBS/PenStrep). For collection of NES-

containing supernatants, 10,000 larvae/mL for L3 or 100 worms/

mL for adults were cultured in 1% glucose in PBS for 48-72h in

24-well plates at 37°C and 5% CO2. NES was passed through a

0.2 µm filter and stored at -80°C until used. N. brasiliensis

somatic extract (NEX) was prepared by homogenization of L3

larvae on ice with stainless steel beads in PBS (TissueLyser,

Qiagen, Hilden, Germany) followed by centrifugation and

recovery of supernatant.
His-tagged Nb-LSA1a protein expression
and purification

For expression of His-tagged Nb-LSA1a protein, fullength

cDNA was cloned in pcDNA3.1 (+) C-HA vector

(Supplementary Figure S1). Transient transfection of

HEK293T cells was performed at a cell confluency of 70-90%

using 20 µg plasmid and standard calcium phosphate

transfection technique (250 mM CaCl2 and HEPES-buffered

saline). Supernatant containing His-tagged Nb-LSA1a protein

was stored at -20°C until Ni-NTA purification (HisPur™ Ni-

NTA Spin Columns, Thermo Fisher Scientific, Waltham, MA).

For immunization experiments purified Nb-LSA1a protein or

collected supernatant was used as indicated.
Mouse immunization

Female C57BL/6 or Mcpt8Cre mice were immunized with

Nb-LSA1a (purified or supernatant), NES or control (buffer used

for Ni-NTA purification of protein or supernatant from empty

vector transfected HEK293T cells) by intraperitoneal injection

(i.p.) with 200 µL Imject Alum (Thermo Fisher Scientific). Nb-

LSA1a or NES protein was used at 5-10 µg/mouse for prime and

1 µg/mouse for boost immunizations. Immunizations were

performed on day 0, then boosted on day 7, before infection

with Nb on day 14.
Sample processing for LC-MS/MS

NES samples (1-10 µg) were prepared in 5x Laemmli buffer

without b-mercaptoethanol (non-reducing condition), heated
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(95°C, 5 min) and analyzed by SDS-PAGE. Following

visualization of proteins using colloidal Coomassie Brilliant

Blue, gel lanes were cut into 6 slices covering approx. the mass

range between 10 to 95 kDa. Slices were washed and destained

by alternatingly incubating them with 10 mM NH4HCO3 and

50% (v/v) acetonitrile (ACN)/10 mM NH4HCO3 (10 min at

room temperature (RT) each). Cysteine residues were reduced (5

mM TCEP/10 mM NH4HCO3, 30 min at RT) and alkylated (50

mM 2-chloroacetamid/10 mM NH4HCO3; 30 min at RT)

followed by proteolytic digestion of proteins using trypsin (60

ng per slice; overnight at 37°C). Peptides were eluted with 0.5%

(v/v) trifluoroacetic acid (TFA)/50% (v/v) ACN, dried in vacuo,

resuspended in 30 ml 0.1% TFA and desalted with in-house

prepared STAGE tips prior to LC-MS analysis.
LC-MS/MS analysis

Reversed-phase liquid chromatography-mass spectrometry

was performed using the UltiMateTM 3000 RSLCnano system

(Dionex LC Packings/Thermo Fisher Scientific, Dreieich,

Germany) coupled online to a Q Exactive Plus (Thermo Fisher

Scientific, Bremen, Germany) instrument. The UHPLC system

was equipped with two C18 m-precolumns (Ø 0.3 mm × 5 mm;

PepMap, Thermo Fisher Scientific) and an Acclaim PepMap™

analytical column (ID: 75 mm x 500 mm, 2 mm, 100 Å, Dionex

LC Packings/Thermo Fisher Scientific). Peptides eluting from

the LC column were transferred to a fused silica emitter for

electrospray ionization using a Nanospray Flex ion source with

DirectJunctionTM adaptor (Thermo Fisher Scientific) and

applying a spray voltage of 1.5 kV and a capillary temperature

of 200°C. The MS instrument was externally calibrated using

standard compounds and equipped with a nanoelectrospray ion

source and a stainless steel emitter (Thermo Fischer Scientific).

MS parameters were as follows: MS scan range, m/z 375–1,700;

resolution, 70,000 (at m/z 200); target value, 3 x 106 ions; max

injection time, 60 ms; TOP12-higher-energy collisional

dissociation of multiply charged peptides; NCE of 28%; target

value of 1 x 105, maximum injection time of 120 ms; dynamic

exclusion time of 45 s.
Bioinformatics

For this study, the MaxQuant 1.6.10.43 was used with the

UniProt database for Nippostrongylus brasiliensis, Taxonomy ID

27835, (release 2020_05; 22636 protein entries). The precursor

mass tolerance was set to 20 ppm for the first search and to 4.5

ppm for the main search. Trypsin was set as proteolytic enzyme

(≤2 missed cleavages). Oxidation of methionine and acetylation

of the protein N-terminus was allowed as variable modifications

and cysteine carbamidomethylation as fixed modification. A

false discovery rate (FDR) of 1% was applied on both peptide
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(on modified peptides separately) and protein lists. The mass

spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium via the PRIDE (16) partner

repository with the dataset identifier PXD035568.
AlphaFold

The three-dimensonal structure of Nb-LSA1a was predicted

using AlphaFold v2.0 (without homologous structure templates

and using a selected portion of the BFD database) (17, 18). The

prediction is colored by model confidence band and the accuracy

of the AlphaFold model was scored as highly accurate with a

predicted local distance difference (pLDDT>90) on a scale from

0 to 100.
1D and 2D gel electrophoresis and
Western blot

NES and NEX samples (1-10 µg), purified Nb-LSA1a protein

or supernatant of transfected cells was subjected to reducing and

non-reducing SDS-PAGE using precast gels (10-12% Mini-

PROTEAN TGX, Biorad, Hercules, CA) and blotted onto a

PVDF membrane according to manufacturer´s instructions

(Trans-Blot Turbo System, Biorad). Therefore, samples were

prepared in Laemmli buffer containing either 5% (reducing) or

no b-mercaptoethanol (non-reducing). Membranes were blocked

in 5% milk powder in Tris-buffered saline (TBS) with 0.1%

Tween-20 (TBST) overnight at 4°C, before being incubated with

indicated mouse serum samples (1:10 dilution in 3% bovine serum

albumin (BSA)/PBS) overnight at 4°C. After extensive washing in

TBST, bound immunoglobulin was detected by incubation with

HRP-conjugated anti-mouse IgG (Fcg fragment specific, Jackson

ImmunoResearch, Ely, UK), 1:5000 diluted in 5% milk powder/

TBST for 1 h at RT. Alternatively, blots were incubated with rat

anti-mouse IgE or rat anti-mouse IgG1 (SouthernBiotech,

Birmingham, AL), 1:200 in 5% milk powder/TBST) for 2 h at

RT, followed by HRP-conjugated goat anti-rat (Jackson

ImmunoResearch), 1:5000 in 5% milk powder/TBST for 1 h at

RT. For detection of the His-tag, the blot was incubated with

polyclonal rabbit anti-His antibody (Cell Signaling, Danvers,

MA), 1:1000 3% BSA/PBS for 2 h at RT. Detection followed by

HRP-conjugated donkey anti-rabbit (Jackson ImmunoResearch,

1:5000 in 5% milk powder/TBST) and membrane was developed

as above. For 2D SDS-PAGE, proteins are separated by isoelectric

focusing (IEF) using precast gels (SERVAGel) prior to standard

separation by size (SDS-PAGE). In contrast to standard SDS-

PAGE, the used NES samples were desalted (Zeba spin columns,

Thermo Fisher Scientific) and directly eluted in IEF sample buffer

and loaded onto the gel. Subsequent western blotting was carried

out as described above.
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ELISA

Detection of IgE and IgG1 levels in the serum of naïve and

infected mice was determined as follows: Purified mouse anti-

IgE (clone R35–72, BD Biosciences, Franklin Lakes, NJ) or a

commercial IgG1 ELISA kit (SouthernBiotech) was used for

coating. As secondary reagents anti-mouse IgE-AP or IgG1-AP

(SouthernBiotech), followed by development with pNPP

substrate (SouthernBiotech) was applied. For detection of

parasite-specific IgE or IgG1, a 10-20 mg/mL NES protein

suspension (Supplementary Figure S2) was coated on 96-well

polystyrene plates overnight (4°C), blocked with 3% BSA/PBS

for 2 h and then incubated for 2 h with serum dilutions. Parasite-

specific antibodies were determined using the secondary

reagents described above. For Nb-LSA1a-specific ELISA, 96-

well polystyrene plates were coated with a 10-20 µg/mL Nb-

LSA1a suspension. Absorption was measured at 405 nm on a

Multiskan FC photometer (Thermo Fisher) and blank wells were

used for background subtraction.
Statistical analysis

Statistical analysis was performed with Sigmaplot (Version

12.3, Systat Software) using Mann-Whitney U-test. Data is

always indicated as mean + standard error (SEM). Levels of

significance: *p < 0.05, **p < 0.01. n.s. = not significant.
Results

Immune serum from secondary Nb-
infected mice stains a discrete set of
parasite-secreted antigens

Infective L3 stage larvae of Nb secrete a large variety of

prote ins and other molecules (col lect ively termed

Nippostrongylus brasiliensis excretory/secretory products, NES)

some of which may play a critical role for entry of L3 larvae into

the host organism via the skin barrier and for successful

establishment of parasitism within their hosts. We therefore

reasoned that identification of immunogenic proteins in NES

could help to develop a vaccination strategy and dissect the

mechanisms of protective immunity against the early stage of

infection in the skin.

As a first step we determined total and NES-specific IgE and

IgG1 levels in the serum after primary and secondary Nb

infection of mice on C57BL/6 background. While total IgE

and IgG1 levels increased after primary infection, we could not

detect NES-specific IgE or IgG1 in the serum by ELISA

(Figure 1A). This could be due to bystander activation of

unspecific B cells or production of low-affinity antibodies.
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However, after secondary infection NES-specific IgE and IgG1

antibodies were clearly detectable by ELISA (Figure 1A). Next,

we performed Western blot analysis. There was no antigen-

specific IgG1 or IgE response to NES detectable in the serum of

naïve mice while the serum after primary Nb infection showed a

faint staining for secretions of adult worms (L5) and

preparations of whole worm homogenates at ~100 kDa and

above 180 kDa (Figure 1B and Supplementary Figure S3). This

may indicate that only some antigen multimers are detected by

low-affinity antibodies after primary infection. However, a

discrete and overlapping set of NES antigens was recognized

by both IgG1 and IgE antibodies from secondary Nb-infected

mice with a broad signal between 45 and 55 kDa and additional

signals at 70 kDa and above 180 kDa (Figure 1B). Importantly,

this discrete band pattern was only detectable in non-reducing

conditions which preserves inter- and intramolecular disulfide

bonds of the proteins. We then further separated NES proteins

by size and charge using two-dimensional gel electrophoresis

(2D SDS-PAGE) followed by Western blotting to reveal the

complexity of the detected NES antigens. We identified several

spots at about 55 or 70 kDa separated by the pH gradient
Frontiers in Immunology 05
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suggesting that the detected antigens consist of numerous

proteins with similar size but different charge (Figure 1C).

Interestingly, the 70 kDa spots basically mirrored the charge-

based distribution of the 55 kDa spots. This may indicate

differences in glycosylation although further analysis would be

required to confirm this assumption.
Identification of a new venom/allergen-
like protein family in NES of L3 larvae

To further analyze NES components and identify individual

antigens, we performed Liquid Chromatography Mass

Spectrometry (LC-MS/MS) of eluted gel slices in the area of

interest based on the Western blot analysis. We identified a total

of 76 proteins, of which the top 25 most abundant proteins are

listed in Figure 2A. Only three proteins showed a match with

already described proteins exhibiting peptidase activity

(legumain, aminopeptidase), as well as a protein disulfide-

isomerase, while all others were uncharacterized proteins.

Some of the uncharacterized proteins contained domains
A B

C

FIGURE 1

Polyclonal IgE and IgG1 antibodies from secondary Nb-infected mice recognise a discrete set of Nb antigens. (A) Graphs display kinetic of total
(upper row) and NES-specific (lower row) serum IgE and IgG1 antibodies during the course of Nb infection, collected at indicated time points
after primary (1st) and secondary (2nd) Nb infection (arrows) of wild-type mice or from naïve mice. Mean+SEM with 2-6 mice per group. (B) NES
from L3 stage larvae were separated by standard SDS-PAGE under non-reducing conditions. Western blots were performed with serum from
naïve, 1st or 2nd Nb-infected mice, following detection with either anti-mouse IgE or anti-mouse IgG1. (C) Representative 2D Western blots of
NES hybridized with serum from mice after 2nd Nb infection, followed by detection with either anti-mouse IgE or anti-mouse IgG1.
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found in serine proteases (PF05577), histidine phosphatases

(PF00328), copper-binding tyrosinase (PF01549), or

macroglobulin (PF01835). ID68, a macroglobulin-related

protein, may confer endopeptidase inhibitor activity. ID52
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contains a Serpin domain (PF00079), characteristic for serine

protease inhibitors whose role in nematodes is still poorly

defined. ID70 contains a CUB domain (PF00431) often found

in peptidases. The most frequently represented group of proteins
A

B

D

C

FIGURE 2

Top 25 most abundant proteins in the secretory proteins of Nb L3 stage larvae (NES). (A) Table summarizes the top 25 most abundant proteins in
NES, representative for 2 separate LC-MS/MS runs. Mass spec identification numbers (ID) were assigned to distinguish between different proteins.
Gene ID is taken from WormBase ParaSite database after Blast search for Nb genome annotations (Taxonomy ID 27835). Conserved domains were
identified using PfamScan (EMBL-EBI) and CD-Search (from NCBI). Peptide intensity score is visualized by color code. MW, Molecular Weight; NP,
Number of unique peptides; n/a, not available. (B) Multiple sequence alignment of five Nb-LSA1a paralogues. The deduced amino acid sequence of
the NBR_0001642601 gene, assigned Nb-LSA1a (red letters), was aligned to its five paralogues, using Clustal Omega. The following consensus
symbols are used for amino acid alignment: `*´ indicates identical alignment, `:´ indicates that substitutions are conserved, `.´ means weak
similarity of substitutions; Cysteine residues are shaded in light blue. (C) Comparison of Nb-LSA1a sequence with selected CAP-domain proteins of
known structure. Alignment of Nb-LSA1a with Ac-ASP-7 (PDB entry 3s6s), Na-ASP-1 (PDB entry 3nt8) and Na-ASP-2 (PDB entry 1u53). CAP
domains 1-4 are shown in green boxes, Cysteine residues are shown in blue. The Cysteine-rich region, not present in Nb-LSA1a, is indicated by a
black line. The same consensus symbols for amino acid alignment as in B were used. Sequence alignments were generated manually based on
initial Clustal Omega prediction, secondary structures are shaded in red (a-helix) and yellow (b-strand) according to AlphaFold Protein Structure
Prediction. (D) AlphaFold prediction and experimental structure for Nb-LSA1a and Na-ASP-1 with the same color-coding as in C. * indicates
identitical alignment and ** or *** therefore simply means that two or three identical alignments are next to each other.
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in the NES products belonged to the SCP/TAPS superfamily

(19). This superfamily also contains members of the Venom

Allergen-Like (VAL) or Ancylostoma Secreted Protein (ASP)

families, which are very abundant in helminth secretions (20,

21). However, molecular targets and functions remain largely

elusive. The core of helminth VALs consists of CAP domains

with characteristic Cysteine-rich regions (PF00188). Blast

annotation and domain analysis showed that at least five

proteins contained single or double CAP-domains.

Interestingly, one of the proteins (ID78) with a single CAP

domain is closely related to C. elegans Venom-Allergen-like

protein 1 (vap-1).

ID72 was the most abundant protein in all NES

preparations. BLAST search against the Nb genome on the

WormBase ParaSite database revealed that this 16,696 kDa

protein with 144 amino acids (aa) is encoded by the gene

NBR_0001642601 with seven exons. Additionally, this gene

has 5 uncharacterized paralogues in the Nb genome, two of

which were also detected in our LC-MS/MS analysis (Figure 2A).

We termed this protein family Nb-LSA1 for “Nippostrongylus

brasiliensis larval secreted protein 1”, and assigned Nb-LSA1a to

ID72. Then, Clustal Omega (22) was used to align the Nb-LSA1a

protein sequence with the other 5 family members (Figure 2B).

Nb-LSA1a is most closely related to Nb-LSA1b (97% protein

sequence identity and same size, encoded by the gene

NBR_0001642701). The protein sequence identity of Nb-

LSA1a to the other family members is only 19-29%. The

sizes of these proteins are: 27,6 kDa (Nb-LSA1c, encoded

by NBR_0001642501), 35,8 kDa (Nb-LSA1d, encoded

by NBR_0001642801), 23,1 kDa (Nb-LSA1e, encoded by

NBR_0002055701) and 17,2 kDa (Nb-LSA1f, encoded

by NBR_0000291501). A signal peptide motif (first 17-aa) is

only present in four family members and missing in Nb-LSA1c

and Nb-LSA1f.

The sequence of the initially identified protein Nb-LSA1a

was then used to search for homologues in other nematode

species using the SWISS-MODEL database (23). A sequence

similarity of 21,15% was found for the dog hookworm protein

Ac-ASP-7, and 14,29% similarity for the human hookworm

protein Na-ASP-1. Although the algorithm used for conserved

domain search in Figure 2A did not identify a CAPmotif for Nb-

LSA1a, the result of the homology analysis and the known

sequence diversity of the CAP domains supported the idea

that Nb-LSA1a might indeed contain a CAP domain. To

investigate this more closely, Nb-LSA1a was subjected to

comparative analysis with ASPs of known structure, namely

Ac-ASP-7 (PDB entry 3s6s), Na-ASP-1 (PDB entry 3nt8) and

Na-ASP-2 (PDB entry 1u53). By comparing the sequence and

structural features, conserved CAP sequence motifs could be

identified in Nb-LSA1a (Figure 2C).

The CAP motifs CAP1, CAP2 and CAP3, which are

relatively well conserved between the so far known CAP

domain-containing proteins, are also present in Nb-LSA1a.
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Sequence alignment furthermore showed that Nb-LSA1a does

not contain a CAP4 motif and is also missing the cysteine-rich

region. This region is only weakly conserved and is not a central

component for the 3D-structure of the CAP domain.

Furthermore, the most likely structure for Nb-LSA1a was

generated using AlphaFold prediction algorithm (24) and

compared to the known crystal structure of Na-ASP-1 which

is composed of two CAP domains (Figure 2D). The accuracy of

our AlphaFold model was scored as highly accurate with a

predicted local distance difference test (pLDDT) >90%

(Supplementary Figure S4). The arrangement of a-helices and
b-strands of Nb-LSA1a clearly resembles one CAP domain of

Na-ASP-1. Therefore, it appears that Nb-LSA1a is a CAP

domain protein.
Recombinantly expressed Nb-LSA1a is
recognized by immune serum of Nb-
infected mice

To further characterize the immunogenicity of Nb-LSA1a,

we expressed a C-terminally His-tagged version in HEK293T

cells and first performed Western blot analysis of supernatants

with anti-His antibodies. Under reducing conditions (+b-ME)

Nb-LSA1a appeared as a dominant band of approximately 17

kDa (Figure 3A). However, under non-reducing conditions (-b-
ME), the 17 kDa band was almost gone and three other bands at

around 30-40 kDa appeared (Figure 3A). This suggests that Nb-

LSA1a is actually expressed as dimer/trimer.

Next, we addressed the question whether Nb-LSA1a is

indeed recognized by immune serum from Nb-infected mice.

As expected, no bands appeared when blots were hybridized

with serum from naïve mice. In contrast, serum isolated from

mice after secondary Nb infection showed basically the same

staining pattern as the anti-His antibodies (Figure 3B). ELISA

analysis further revealed that Nb-LSA1a-specific IgG1 and IgE is

generated in Nb-infected mice and both antibody levels

increased after secondary as compared to primary infection

(Figure 3C). Based on the strong humoral immune response

against Nb-LSA1a we further investigated whether

immunization of mice with Nb-LSA1a could protect against

Nb infection.
Immunization with Nb-LSA1a elicits
basophil-dependent protective immunity

To determine whether immunization of mice with Nb-

LSA1a is sufficient to protect against Nb infection we

performed experiments using a standard intraperitoneal

immunization protocol with alum adjuvant (Figure 4A). In

brief, mice were immunized with Nb-LSA1a or NES in alum

on day 0 and 7, infected with Nb on day 14 and analyzed 7 days
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after infection. While Nb infection elicited similar levels of total

IgG1 serum antibodies in all groups of mice, Nb-LSA1a-specific

IgG1 was only present in the serum of Nb-LSA1a-immunized

mice (Figure 4B, C). IgG1 in the serum of Nb-LSA1a-immunized

mice also bound to NES-coated plates, which confirms that Nb-

LSA1a is a prominent antigen in the whole secreted protein

mixture (Figure 4D). Unexpectedly, we did not detect a

significant increase of anti-Nb-LSA1a IgE (Figures 4E–G).

Importantly, Nb-LSA1a-immunized mice showed strongly

reduced egg burden in fecal pellets, similar to NES-immunized

mice (Figure 4H). Previous studies have shown that basophils

contribute to protection against secondary Nb infection.

Hence, we decided to compare the protective effect of Nb-

LSA1a immunization in wild-type and basophil-deficient

Mcpt8Cre mice (15). Egg counts in fecal pellets of Nb-

LSA1a-immunized Mcpt8Cre mice were similar to egg counts

from non-immunized wild-type or Mcpt8Cre mice (Figure 4I).

This was not due to an impaired anti-Nb-LSA1a IgG1 response

in Mcpt8Cre mice (data not shown). To further analyze

whether this protective basophil-mediated effect occurs

already in the skin as the first anatomical site of infection, we

determined the number of larvae that reached the lung on day

2 after infection. While non-immunized wild-type or

Mcpt8Cre mice contained about 200 larvae, this number was

reduced to about 50 larvae only in Nb-LSA1a-immunized wild-

type mice (Figure 4J).

Overall, these data indicate that immunization with Nb-

LSA1a, a newly identified secreted protein of Nb L3 larvae, elicits

a strong IgG1 response and provides basophil-mediated

protective immunity against Nb infection mainly in the skin or

before they reach the lung. This finding illustrates that secreted

proteins of the free-living larval stage can have important and yet
Frontiers in Immunology 08
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to be determined functions for migration and survival within the

infected host.
Discussion

Development of efficient and safe vaccines against

hookworm infections remains a major challenge. Such

vaccines would reduce disease burden and ameliorate clinical

conditions even if achievement of sterile immunity is probably

not realistic (6, 25). Detailed understanding of the mechanisms

how hookworms establish their parasitic niches and how the

immune system responds to infection is detrimental to develop

new vaccination strategies. Basic research using mouse models of

hookworm infections such as infections of mice with Nb or

Heligmosomoides polygyrus (Hp) can be helpful in this regard

(26). For example, the mechanisms of worm expulsion from the

intestine by IL-13-elicited and STAT6-dependent activation of

goblet cells and smooth muscle cells are quite well understood

(27, 28). However, details such as the role of tuft cells, ILC2s and

alternatively activated macrophages are constantly emerging (12,

29, 30). In the present study, we sought to identify and

characterize new Nb-derived antigens that elicit a humoral

immune response and provide protection against Nb infection.

It is well established that Nb or Hp infections of mice elicit a

strong germinal center response and elevations of serum IgG1 and

IgE levels. However, primary infections induce an antibody

response with very few somatic mutations which might explain

the lack of detectable NES-specific antibodies by ELISA or Western

blot (31–34). Here, we also report high levels of IgE and IgG1 in the

serum of Nb-infected C57BL/6 mice after primary infection and a

further increase after secondary infection.
A B C

FIGURE 3

Native Nb-LSA1a forms oligomers and is detectable by serum IgG1 and IgE from secondary Nb-infected mice. (A) Detection of purified His-
tagged Nb-LSA1a from supernatant of transfected HEK293T cells after SDS-PAGE under reducing (+) and non-reducing (-) conditions and
Western blot using an anti-His-tag antibody. (B) Supernatant of HEK293T cells expressing Nb-LSA1-His or empty His vector (Ctrl) was analyzed
by standard SDS-PAGE under reducing (+) and non-reducing (-) conditions and Western blotting with serum from naïve (left) or secondary Nb-
infected mice (right), following by detection with an anti-mouse IgG antibody. (C) Detection of Nb-LSA1a-specific IgG1 (left) and IgE (right) in
serum from naïve, primary (1st) or secondary (2nd) Nb-infected mice. Bars show the mean+SEM with 4-5 mice per group.
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When analyzing the reactivity of induced antibodies towards

parasite antigens (secreted as well as whole worm extracts), we only

detected NES-reactive antibodies after secondary infection by ELISA.

These results indicate that Nb-specific IgE and IgG1 antibodies

with germinal center-dependent affinity maturation are only

induced after repeated infections. This assumption is also
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supported by a previous study which reported the identification of

a Nb-derived antigen recognized by a monoclonal IgE antibody

without somatic mutations (32). McCoy et al. further demonstrated

that primary Hp infection is accompanied by production of

antibodies with irrelevant specificities while parasite-specific

antibodies only arise after multiple infections (34). One might

assume that complex pathogens such as helminths express a large

variety of antigens. However, we repeatedly detected a very restricted

set of antigens in NES of L3 larvae that was recognized by antibodies

from secondary Nb-infected mice at a size around 55 or 70 kDa.

When analyzing the antigen specificity of polyclonal antibody

response for Hp infections it has been shown before that HES

elicits an antibody response directed against restricted glycan and

peptide epitopes (35). Interestingly, in line with our findings they

also observed that this response is directed at secreted, rather than

whole worm products. Immunization with three secreted SCP/

TAPS proteins of adult Hp worms elicited protective IgG1-

dependent but basophil-independent immunity by more

efficient larval trapping in the submucosa of the small intestine

(36). We used NES from L3 stage larvae, the infective larval stage,

to screen for serum reactivity because we reasoned that humoral

immunity against the first encountered antigens secreted by L3

larvae during skin invasion could lead us to identification of

critical proteins required for successful parasitism.

Using LC-MS/MS analysis, we identified a new subfamily of

SCP/TAPS proteins with 6 members in the Nb genome (Nb-

LSA1a-f). Interestingly, the SCP/TAPS superfamily, members of

which are also named VAL and ASP proteins, is very abundant in

the human hookworm N. americanus and other parasitic

nematodes but not in free-living nematodes (5). Previous

proteomic analysis that compared the secretome of L3 larvae

and adult worms from Nb already noticed the abundance of SCP/

TAPS proteins in the secretomes (37).This suggests that SCP/

TAPS proteins play a role in host infection and/or evasion from

rapid elimination by the immune system. However, the biological

functions and properties of these proteins remain elusive (4).

Nb-LSA1a was the most abundant protein with the highest

signal intensity in all LC-MS/MS runs. Nb-LSA1a shares 21%

sequence identity with A. caninum Ancylostoma-secreted

protein (Ac-ASP-7) and 14% sequence identity with N.

americanus Ancylostoma-secreted protein 1 (Na-ASP-1). The

basis for development of vaccines was set in the field of canine

hookworm infections. Here, the discovery that radiation-

attenuated A. caninum L3 larval vaccine protected against

challenge infection led to identification of the Ancylostoma-

secreted proteins (ASPs) which belong to the SCP/TAPS

superfamily (38). Such ASP proteins from N. americanus

turned out to be a promising class of antigens from infective

L3 larvae and were tested as potential human anti-hookworm

vaccines (39). One potential vaccine candidate was indeed Na-

ASP-2 that provided significant protection against challenge

infections but at the same time data from a clinical trial in a

hookworm-endemic area showed that it resulted in generalized
A
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FIGURE 4

Basophil-mediated protection in Nb-LSA1a immunized mice.
(A) Experimental setup. Mice were immunized with 1-10 µg
protein (NES, Nb-LSA1a or Ctrl) in alum i.p. on day 0 and 7,
infected with Nb on day 14 and analyzed on day 21. (B–D) Total
(B), Nb-LSA1a-specific (C), and NES-specific (D) serum IgG1
levels of wild-type mice which had not been immunized (n.i.,
white bar), or immunized with supernatant of HEK293T cells
transfected either with an empty vector (Ctrl., light gray bar) or
Nb-LSA1a vector (dark gray bar), or immunized with NES (black
bar). (E–G) Total (E), Nb-LSA1a-specific (F), and NES-specific
(G) serum IgE levels of wild-type mice, treated as described in
B-D. Calculation of mouse serum concentrations for 4 to 10
samples and absorbance calculated for 4 to 7 samples per
group. (H, I) Fecal egg counts on day 7 post Nb infection. (I)
Immunization was carried out with purification buffer (white
bars) or Nb-LSA1a purified protein (dark grey bar). (J) Number of
larvae in the lung on day 2 post Nb infection of wild-type or
basophil-deficient Mcpt8Cre mice, immunized with purification
buffer (white bars) or Nb-LSA1a purified protein (dark gray bar).
Data shown are combined from four experiments with each of
3-6 individual mice per group (H) and two experiments with 3 (I)
or 3-5 (J) mice per group. Statistical analysis was performed with
Mann-Whitney U test (*P<0.05, **P<0.01). n.s. = not significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.979491
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Thuma et al. 10.3389/fimmu.2022.979491
IgE-elicited urticarial reactions (40). In fact, Na-ASP-2-specific

IgE is readily detectable in serum of people living in endemic

areas. Therefore, Na-ASP-2 was not further considered and

other vaccine candidates are currently under investigation,

especially a combination vaccine with Na-GST-1, a

glutathione-S-transferase, and Na-APR-1, a aspartic protease

modified to lack protease activity (6). More recently, a phase I

trial with ultraviolet C (UVC)-attenuated N. americanus L3

larvae was successfully completed (41). However, vaccination

with defined recombinantly expressed proteins has obvious

advantages with regard to vaccine production at large scales.

Our study shows that immunization of mice with Nb-

LSA1a elicits a strong antigen-specific IgG1 response but no

detectable antigen-specific IgE. This was surprising because

anti-Nb-LSA1a IgE is clearly detectable in serum of Nb

infected mice. One explanation would be that the quality of

the humoral immune response elicited by immunization

versus infection is different. Alternatively, the larger

amounts of IgG1 antibodies in the serum of immunized

mice may cover all epitopes on Nb-LSA1a and thereby

prevent binding of IgE antibodies in ELISA and Western

blot analysis. In any case, the Nb infection of immunized mice

did not result in severe local or systemic allergic reactions. It

has been shown before, that IgG1 antibodies activate

macrophages during vaccination or infection of mice with

the helminth Heligmosomoides polygyrus bakeri and these

macrophages probably contribute to protection (36, 42).

Therefore, we will further investigate whether Nb_LSA1a-

specific IgG1 activates macrophages in the skin which could

be one component of protective immunity. Importantly, the

transition of L3 larvae from skin to lung was severely

impaired in immunized mice and this protective effect was

lost in basophil-deficient mice. Basophils have been

recognized before to confer protection in the skin against

secondary Nb infection (9). However, the critical antigens

that elicit basophil-mediated protection in the skin remained

unclear. We fill this gap of knowledge by showing that

immunization with a single secreted protein, Nb-LSA1a, is

sufficient to strongly reduce larval migration to the lung in a

basophil-dependent manner. As a consequence this effect

resulted in severely reduced fecal egg counts. Basophils are

a major source of vasoactive substances, proteases, lipid

mediators, chemokines, and Th2-associated cytokines such

as IL-4 and IL-5 that promote accumulation of alternatively

activated macrophages (AAM) and eosinophils in the skin (9,

43). Further studies are needed to characterize the function of

basophils in human skin and to identify new secreted antigens

from L3 stage larvae of human hookworms that elicit a strong

IgG1 and a weak IgE response. Development of efficient

hookworm vaccines that prevent larval migration from skin

to lung seems possible and would provide a great benefit for

millions of people living in hookworm-endemic regions.
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IgE receptor responsiveness
of basophils in chronic
inducible urticaria
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Introduction: Chronic inducible urticaria (CIndU) is a subgroup of chronic

urticaria induced by a specific stimulus. We evaluated basophil characteristics

in patients with CIndU and compared with those in patients with chronic

spontaneous urticaria (CSU) and healthy controls (HCs).

Methods: Blood was collected from patients, and a basophil activation test

(BAT) was performed. Basophil responsiveness and surface marker expression

in patients with CIndU were compared with those in patients with CSU and

HCs. For some patients with CIndU, blood was collected before and after

wheals were induced. In these cases, we compared the responsiveness of

basophils before and after the appearance of wheals.

Result: HCs (n=23) and patients with CIndU (n=24) or CSU (n=38) were

enrolled in the study. The degree of basophil activation at steady state in

patients with CIndU was higher than in HCs. Basophil responsiveness via high-

affinity IgE receptor (FcϵRI) stimulation with anti-IgE or anti-FcϵRI antibody in

patients with CIndU was equivalent to that in HCs, and higher than that in

patients with CSU. No abnormalities in IgE and FcϵRI expressions on the surface

of basophils in patients with CIndU were observed. When we induced wheals in

some patients with CIndU and performed a BAT before and after the

appearance of wheals, no significant changes were found.

Conclusion: Peripheral blood basophils in CIndU were slightly activated at

steady state, but no abnormalities in basophil responsiveness. In future, a higher

number of cases should be enrolled to confirm the role of basophils and refine

therapeutic targets for CIndU.

KEYWORDS

chronic inducible urticaria, chronic spontaneous urticaria, basophil activation test,

anti-IgE-induced histamine release, responsiveness of basophils via high-affinity
IgE receptor
Abbreviations: CIndU, Chronic inducible urticaria; CSU, Chronic spontaneous urticaria; FcϵRI, High-

affinity IgE receptor; HCs, Healthy controls; BAT, Basophil activation test; CholU, Cholinergic urticaria;

UCT, Urticaria control test.
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Introduction

Chronic urticaria is defined as the occurrence of wheals

and/or angioedema for more than 6 weeks. Chronic inducible

urticaria (CIndU) is a subgroup of chronic urticaria where

recurrent pruritic wheals and/or angioedema are induced by a

specific stimulus (1). Chronic spontaneous urticaria (CSU) is

characterized by the spontaneous appearance of wheals,

angioedema, or both and is associated with known (i.e.,

mast-cell activating autoantibodies) or unknown causes (2)

(3) (4). Several studies reported that the responsiveness of

basophils via the high-affinity IgE receptor (FcϵRI) and IgE

pathways was significantly lower in active CSU compared with

healthy controls (HCs), with basophil hyporesponsiveness

improving during disease remission (5–7). (8) In contrast,

anti-IgE-induced histamine release from the basophils of five

patients with cold urticaria, a subtype of CIndU, appeared to

be equivalent to that of HCs (9). Basophil FcϵRI expression
was significantly higher in patients with CSU and CIndU

compared with HCs (10, 11). However, there have been few

reports on the characteristics of basophils in patients with

CIndU. Here, we evaluated the characteristics of basophil in

patients with CIndU, including responsiveness and surface

marker expression, and compared them with those in patients

with CSU.
Materials and methods

Study design

An observational study was conducted on patients with

CIndU who visited the Dermatological Institute of Kobe

University Hospital. Blood was collected from patients

diagnosed with CIndU at the time of non-stimulation (when

no wheal was present), and a basophil activation test (BAT) was

performed. The basophil responsiveness and surface marker

expressions of patients with CIndU were compared with those

of patients with CSU and HCs. Moreover, in some patients with

CIndU, urticaria was induced by a specific physical stimulus in

the doctor’s office, and blood was collected before and after

wheals were induced. In these cases, we compared the

responsiveness of basophils before and after the appearance

of wheals.
Study population

Patients with CIndU and CSU who visited the Department

of Dermatology, Kobe University Hospital, agreed to

participate in the study, and met the inclusion criteria were

enrolled. The study protocol was approved by the Kobe
Frontiers in Immunology 02
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University Institutional Review Board (No. 180186).

Inclusion criteria were to be diagnosed with CIndU or CSU

by the following items and not to use omalizumab or steroids.

Patient with cholinergic urticaria (CholU) are diagnosed by

having wheals induced by exercise and/or passive heating

(warm bath). Patients with solar urticaria are diagnosed by

having wheals induced by exposure to visible and/or ultraviolet

light. CSU is diagnosed as wheals that recur for more than 6

weeks without an identifiable cause. HCs were enrolled from

healthy adult volunteers without urticaria symptoms and no

history of urticaria. Patients treated with omalizumab and oral

steroids were excluded at entry. It was set so that no patients

were excluded after inclusion.
Basophil activation test

Whole blood (up to 2 mL) was taken from patients with

CIndU, CSU, and HCs using ethylenediaminetetraacetic acid-

containing blood collection tubes and assays were performed

within 24 hours of blood sampling. An Allergenicity Kit

(Beckman Coulter, Fullerton, CA, USA) was used to

quantify basophil CD203c expression according to the

manufacturer’s instructions (12). The BAT based on

CD203c expression was performed as previously described

(6) (7). In addition to CD203c, CD63 (H5C6; BioLegend, San

Diego, CA) was also analyzed as an activation marker that

reflects histamine release (13). Basophil samples were

measured by flow cytometry (FACS Verse; BD Biosciences,

San Jose, CA). As previously described, the gating technique is

shown in the Supplementary Material (6) (Figure S1).

Basophil activation conditions were determined by the

mean fluorescence intensity (MFI). CD203c or CD63

expression after anti-IgE (E124-2-8D; Beckman Coulter,

Fullerton, CA, USA) or anti-FcϵRI antibody (CRA1;

BioAcademia, Osaka, Japan) stimulation was presented as

the CD203c or CD63 response ratio, respectively, and used to

calculate the responsiveness of basophils. The response ratio

was calculated by dividing the stimulation MFI by the

baseline MFI. In addition, the results of anti-IgE antibody

stimulation were also expressed as the percentage of CD63

positive basophils. The percentage of CD63 positive basophils

were determined using a threshold defined as the expression

level above which only 5% of basophils in the negative control

sample fluoresce, on average.
Measurement of IgE and FcϵRI levels
of basophils

Basophils were incubated with VioBlue-binding, anti-IgE

antibody (clone: MB10-5C4) (Miltenyi Biotec, Bergisch
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Gladbach, Germany), biotinylated anti-FcϵRI antibody (clone:

CRA1) (BioAcademia) and APC-Streptavidin (BD Biosciences,

Franklin Lakes, NJ) (1.8 mg/mL) which used as a second-step

reagent for the anti-FcϵRI antibody and, analyzed by flow

cytometry. The measurement of the IgE and FcϵRI levels of

basophils and FlowJo analysis were performed as for the BAT

after anti-IgE and CRA1 antibody stimulation. IgE and FcϵRI
levels were evaluated as the MFI.
Urticaria control test

The total score for the Urticaria control test (UCT) was

determined by the patient (14). The UCT is a simple,

validated, four-item questionnaire that can be used for CSU

and CIndU to assess the impact of urticaria symptoms on

morbidity, quality of life, and quality of treatment over the

past four weeks.
Autologous serum skin test

The autologous serum skin test was performed according to

established methods (15). Samples of autologous serum (0.05

mL) were injected intradermally into the volar aspect of the

forearm of each subject. The diameters of wheals and erythema

were measured after 15 minutes. Reactions were assessed as

positive if the diameter of the wheal induced by serum was equal

to or larger than 6 mm.
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Statistical analysis

The Kruskal-Wallis test with Dunn’s multiple comparisons

test was used for the statistical comparison of three

groups with nonparametric variables. The Wilcoxon test

was used for the statistical comparison of two groups

with nonparametric variables. All statistical analyses were

performed using GraphPad Prism 8 (GraphPad Software, San

Diego, CA, USA). Two-sided P values <0.05 were considered

statistically significant.
Results

Study population

Patients with CIndU (n=24) and CSU (n=38), and HCs

(n=23) who agreed to participate in this study were enrolled at

the Dermatological Institute of Kobe University Hospital

(Table 1). Patients with CIndU included 7 males and 17

females. The mean age was 40.2 years and the median

duration of illness was 10.0 years. The median total serum IgE

was 579.5 IU/mL. Patients with CSU included 24 males and 14

females. The mean age was 46.3 years. (Table 1). HCs included 7

males and 16 females. The mean age was 35.0 years. CIndU

patients included 21 with CholU and 3 with solar urticaria. Five

patients with CholU underwent a bathing provocation test and

exercise provocation test followed by blood collection (even

when wheals were induced) and a BAT. The BAT of these
TABLE 1 Clinical and laboratory characteristics of patients with chronic inducible urticaria (CIndU) and chronic spontaneous urticaria (CSU).

Demographics characteristics of patients with CIndU and CSU CIndU (n=24) CSU (n=38) P values

Age, years 40.2 ± 10.3 46.3 ± 16.2 P=0.0239

Female, n (%) 17 (70.8%) 24 (63.1%) P=0.5339

Disease duration, years 10.0 (1.0-40) 4.0 (0.2-33) P=0.046

Total IgE (IU/mL) 579.5 (14.2-1275.3) 139.5 (3-4392) P<0.0001

Basophil count (cell/mL) 68 (18-106) 52.5 (21.4-114) P=0.9485

UCT 10.7 ± 3.8 7.8 ± 4.1 P=0.0253

ASST positive rate, n (%) 11/16 (68.7%) 7/17 (41.1%) P=0.1663

Presence of angioedema at baseline, n (%) 7 (29.1%) 1 (2.6%) P=0.0041

Treatment, n (%)

H1 antihistamines at the conventional dosage 17 (70.8%) 19 (50%) P=0.1886

H1 antihistamines at high dosage 5 (20.8%) 14 (36.8%) P=0.2599

History, n (%)

Asthma 8 (33.3%) 5 (13.1%) P=0.1067

Allergic rhinitis 4(16.6%) 2 (5.2%) P=0.1949

Atopic dermatitis 10 (41.6%) 1 (2.6%) P=0.0002

Pollinosis 3 (12.5%) 2 (5.2%) P=0.3459
fron
ASST, Autologous serum skin test; UCT, Urticaria control test.
Data are given as the mean ± standard deviation for age, UCT; n (%) for sex, ASST positive rate, presence of angioedema, treatment, and history; and median (range) for disease duration,
serum total IgE, and basophil count.
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patients was compared before and after the appearance

of wheals.
Measurement of CD203c, CD63, IgE and
FcϵRI levels on basophils at steady state
in patients with CIndU, CSU, and HCs

First, we examined CD203c, CD63, FcϵRI and IgE

expression levels on basophils at steady state in patients with

CIndU, CSU, and HCs. The expression of CD203c on basophils

in patients with CIndU was significantly higher compared with

CSU and HCs (Figure 1A). The expression of CD63 on

basophils in patients with CIndU was significantly higher

compared with HCs and was comparable with CSU

(Figure 1B). The expression of FcϵRI on basophils in patients

with CIndU was comparable with HCs and was significantly

lower than that in CSU (Figure 1C). There were no significant

differences in the levels of cell-bound IgE among these three

groups (Figure 1D).
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Measurement of CD203c and CD63
expressions after anti-IgE or FcϵRI
stimulation of basophils in patients with
CIndU, CSU, and HCs

Next, we analyzed the expressions of the activation markers

CD203c and CD63 with anti-IgE or FcϵRI stimulation in

patients with CIndU, CSU, and HCs to examine basophil

reactivity via FcϵRI. When peripheral blood basophils were

stimulated with anti-IgE antibody, the upregulation of CD203c

expression on basophils in patients with CIndU was comparable

with HCs and was significantly higher than that in CSU

(Figure 2A). When peripheral blood basophils were stimulated

with anti-FcϵRI, the upregulation of CD203c expression on

basophils in patients with CIndU was comparable with HCs

and was significantly higher than that in CSU (Figure 2B). When

peripheral blood basophils were stimulated with anti-IgE

antibody, similar results were obtained when the detection

activation marker was also CD63 (Figure 2C). The percentage

of CD63 positive basophil also showed similar results when
B

C D

A

FIGURE 1

CD203c, CD63, IgE and FcϵRI levels at steady state. (A) CD203c expression on basophils, (B) CD63 expression on basophils, (C) FcϵRI expression
on basophils and (D) IgE expression on basophils at steady state. Statistical analysis was carried out using the Kruskal-Wallis test with Dunn’s
multiple comparisons test.
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peripheral blood basophils are stimulated with anti-IgE

antibody (Figure 2D).
Measurement of CD203c, CD63, IgE and
FcϵRI levels on basophils at steady state
in patients with CholU as a subgroup of
CIndU before and after the appearance
of wheals

Thirdly, we examined CD203c, CD63, FcϵRI and IgE

expression levels on basophils at steady state in patients with

CholU before and after the appearance of wheals. There were no

significant differences in the CD203 expression on basophils

(Figure 3A), CD63 expression on basophils (Figure 3B), FcϵRI
expression on basophils (Figure 3C) and in the levels of cell-

bound IgE on basophils (Figure 3D) before and after the

appearance of wheals.
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Measurement of CD203c and CD63
expressions after anti-IgE or FcϵRI
stimulation of basophils in patients with
CholU as a subgroup of CIndU before
and after the appearance of wheals

Finally, we analyzed the expression of the activation markers

CD203c and CD63 with anti-IgE or FcϵRI stimulation of

basophils in patients with CholU before and after the

appearance of wheals to examine basophil reactivity via FcϵRI.
When peripheral blood basophils were stimulated with anti-IgE

antibodies, the upregulation of CD203c expression on basophils

after wheals appeared were equivalent to that before wheals

appeared (Figure 4A). When peripheral blood basophils were

stimulated with anti-FcϵRI, the upregulation of CD203c

expression on basophils after wheals appeared was equivalent

to that before wheals appeared (Figure 4B). When peripheral

blood basophils were stimulated with anti-IgE antibodies,
B

C D

A

FIGURE 2

CD203c response ratio, CD63 response ratio and the percentage of CD63 positive basophils. CD203c response ratio of basophils when stimulated with
(A) anti-IgE or (B) anti-FcϵRI antibody. (C) CD63 response ratio of basophils when stimulated with anti-IgE, and (D) the percentage of CD63 positive
basophils when stimulated with anti-IgE. Statistical analysis was carried out using the Kruskal-Wallis test with Dunn’s multiple comparisons test.
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similar results were obtained when the detection activation

marker was also CD63 (Figure 4C). The percentage of CD63

positive basophil also showed similar results when peripheral

blood basophils are stimulated with anti-IgE antibody before

and after the appearance of wheals. (Figure 4D).
Discussion

In this study, we focused on the characteristics related to the

steady state of basophils, FcϵRI-mediated responsiveness, and
Frontiers in Immunology 06
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expression of IgE-related molecules in patients with CIndU. The

degree of basophil activation at steady state in patients with

CIndU was higher than in HCs. And then basophil

responsiveness via FcϵRI stimulation with anti-IgE or anti-

FcϵRI antibody in patients with CIndU was equivalent to that

with HCs, and higher than that with CSU. In addition, no

abnormalities were observed for the IgE and FcϵRI expressions
on the surface of basophils in patients with CIndU. In addition,

When we induced wheals in patients with CholU and performed

a BAT before and after the appearance of wheals, no significant

changes were found.
B

C D

A

FIGURE 3

CD203c, CD63, IgE and FcϵRI levels at steady state before and after the appearance of wheals in patients with CholU as a subgroup of CIndU.
Comparison of (A) CD203c expression on basophils, (B) CD63 expression on basophils, (C) FcϵRI expressions on basophils, and (D) IgE
expressions on basophils before and after the appearance of wheals. Statistical analysis was performed by Wilcoxon test.
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Basophils in patients with severe CSU might be mildly

activated by autoantigens or autoantibody-related IgE

pathways in the blood and persistently release small amounts

of histamine (16). As a result, basophils in patients with CSU

were exhausted and their responsiveness via FcϵRI was low (6)

(7). In contrast, this study revealed that steady-state basophils

in patients with CIndU had higher CD203c and CD63 than

HCs, but there were no abnormalities in the responsiveness of

basophils to stimulation with anti-IgE or FcϵRI antibodies.

These findings indicate that basophils at steady state in CIndU

patients may be weakly self-activated by unknown mechanism,

whereas the basophil responsiveness in CIndU patients is not
Frontiers in Immunology 07
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abnormal. In CholU as a subgroup of CIndU, FcϵRI-mediated

responsiveness of peripheral blood basophils and expression of

FcϵRI and IgE did not change significantly before and after the

appearance of the wheals.This FcϵRI-mediated responsiveness

of basophils and absence of abnormalities related to surface

markers in CholU as a representative of CIndU may indicate a

minor role of basophils in the pathogenesis in CIndU

compared with CSU. It makes sense that basophils, which are

mainly present in blood vessels, play a minor role in CIndU.

This can be because sweat that leaks into the dermis from

sweat ducts in CholU and serum-derived factors that are

changed by sunlight reaching the dermis in solar urticaria are
B

C D

A

FIGURE 4

CD203c response ratio, CD63 response ratio and the percentage of CD63 positive basophils before and after the appearance of wheals in
patients with CholU as a subgroup of CIndU. Comparison of CD203c response ratios of basophils when stimulated with (A) anti-IgE or (B) anti-
FcϵRI antibody before and after the appearance of wheals. Comparison of (C) CD63 response ratios of basophils when stimulated with anti-IgE
and (D) the percentage of CD63 positive basophils when stimulated with anti-IgE before and after the appearance of wheals. Statistical analysis
was performed by Wilcoxon test.
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highly likely to act as allergens that induce urticaria in the

dermis, respectively.

Our result regarding the expressions of FcϵRI and IgE on

peripheral blood basophils is different from a previously

reported result (11). This difference might be related to the

high proportion of patients with CholU in our study. The

statistical differences between CSU and CIndU in the presence

of total IgE and baseline angioedema, and the history of atopy,

might be associated with our high proportion of CIndU patients

with CholU. In addition, there is a significant difference in the

disease duration between CIndU and CSU. Differences in disease

duration affected the responsiveness of basophils in patients with

CSU (6), but no abnormalities in the responsiveness of basophils

were observed in patients with CIndU, regardless of the short or

long disease duration. Therefore, we believe that the difference in

disease duration between CSU and CIndU does not affect the

difference in basophil responsiveness between the two. The

significantly higher expression of CD203c and CD63 on

basophils at steady state in CIndU patients compared to HCs

may also be influenced to the higher proportion of CholU

complicated by AD. Indeed, we previously reported higher

CD203c and CD63 expression on basophils at steady state in

AD patients (17). Therefore, a population that does not differ

statistically should be analyzed. There were several study

limitations including the small number of cases and low

diversity of disease subtypes in CIndU. In future studies, a

higher number of cases should be enrolled to confirm the role

of basophils and refine therapeutic targets for CIndU.
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FIGURE S1

Flow cytometry data analysis. On the FSC/SSC plot (A), the basophil

scatter gate and leukocyte gate are defined. On the CD3-PE-Cy7/SSC
plot (B), the CD3 negative population is defined. On the CRTH2-FITC/

CD203c-PE plot (C), both CRTH and CD203c positive groups are defined
as basophils. The gating basophils on the CRTH2-FITC/CD203c-PE plot

are non-activated basophils (C) and the gating basophils on the CRTH2-

FITC/CD203c-PE plot are activated basophils with anti-IgE (D) The gating
basophils on the CRTH2-FITC/CD63-Pacific Blue are non-activated

basophils (E) and the gating basophils on the CRTH2-FITC/CD63-
Pacific Blue are activated basophils with anti-IgE (F) FITC, Fluorescein
isothiocyanate; FSC, forward scatter; PE, phycoerythrin; PE-Cy7, PE-
cyanine 7; SSC, side scatter.
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Urticaria is characterized by the occurrence of wheals and flares in response to

vasoactive mediators, such as histamine. Various studies have suggested the

involvement of basophils in the pathogenesis of chronic spontaneous urticaria

(CSU). However, histamine release from peripheral basophils in response to

stimuli acting on the high affinity IgE receptor (FcϵRI) is impaired in many

patients with CSU (non/low responders). We previously demonstrated that

tissue factor (TF)s expressed on vascular endothelial cells in response to a

combination of var ious st imul i , such as that of histamine and

lipopolysaccharide (LPS), activates the extrinsic coagulation pathway and

produces anaphylatoxin, complement 5a (C5a), which then activates

basophils and mast cells via the C5a receptor (C5aR). We have revealed that

histamine release was induced in response to C5a and formyl-l-methionyl-l-

leucyl-l-phenylalanine (fMLP), regardless of the response to anti-IgE antibody,

the reduced numbers of basophils and severity of urticaria. Moreover, we found

that spontaneous release of histamine ex vivo from basophils of patients with

CSU is higher than that from healthy individuals. These results suggest that

basophils and the complement system, which could be activated by

coagulation factors, may play a critical role in the pathogenesis of CSU,

especially in cases refractory to treatment involving the IgE/FcϵRI pathway.

KEYWORDS

peripheral basophils, IgE, complement, chronic spontaneous urticaria (CSU), histamine
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Introduction

Chronic spontaneous urticaria (CSU), also called as chronic

idiopathic urticaria (CIU), is a skin disorder characterized by daily

or almost daily recurring wheals and flares, with itch occurring

anywhere on the body for more than 6 weeks. The formation of

wheals and flares are induced by chemical mediators, especially

histamine, which may be released from mast cells and basophils

(1). Generally, basophils and mast cells express high affinity IgE

receptors (FcϵRIs) on the plasma membrane surface and bind

antigen-specific IgEs to FcϵRIs. When specific antigen binds to

IgEs on the surface of cells, basophils and mast cells are activated

and release inflammatory mediators, such as histamine, followed

by an increase of vascular permeability and edema formation.

Several reports suggest that 30-50% of patients with CSU have IgG

autoantibodies against IgE antibody and/or FcϵRI (2, 3).

Moreover, IgE autoantibodies against endogenous molecules,

such as dsDNA, interleukin (IL)-24, tissue factor (TF) and

thyroid peroxidase (TPO), have also been detected in a certain

population of patients with CSU (3). Furthermore, basophils

migrate from blood vessels into the skin during wheal

formation, and are suggested to contribute to the persistence of

wheals in CSU (4). Rapid effect of omalizumab, an anti-IgE

monoclonal antibody for the treatment of CSU also shows the

importance of FcϵRI-dependent activation of basophils rather

than mast cells (5). However, the number of peripheral blood

basophils and the histamine releasing activities of peripheral

basophils of healthy donors and patients with CSU in response

to anti-IgE antibody (anti-IgE), an activator of the IgE-FcϵRI
pathway, are significantly decreased (non- or low-responder) (6)

(7). These features of basophils could be explained by the

activation of FcϵRI on basophils either spontaneously or by

endogenous stimuli. However, histamine releasing activities of

IgG antibodies against IgE and/or FcϵRI or IgE antibodies against

autoantigens in patients with CSU shown in vitro have not been

demonstrated to fully activate basophils by themselves in patients

with CSU in vivo, even in severe cases (2, 8). Moreover, the

presence of such autoantibodies is not detected in more than a half

of patients with CSU, and the expression of FcϵRI on basophils

may be scant especially in patients with CSU refractory to

omalizumab treatment (9). Therefore, how peripheral basophils

are activated and release histamine in patients with CSU,
Abbreviations: CSU, chronic spontaneous urticaria; FcϵRI, the high affinity

IgE receptor; TF, tissue factor; LPS, Lipopolysaccharide; C5a, complement 5a;

C5aR, C5a receptor;; fMLP, formyl-l-methionyl-l-leucyl-l-phenylalanine;

CIU, chronic idiopathic urticaria; IL, interleukin; TPO, thyroid peroxidase;

TNF, tumor necrosis factor; F, factor; PAR1, protease activated receptor 1;

PF1+2, prothrombin fragment 1 + 2; HSA, human serum albumin; CD, cluster

of differentiation; EDTA, ethylenediaminetetraacetic acid; HPLC, high

performance liquid chromatography; AD, atopic dermatitis; 7-day Urticaria

Activity Score, UAS7; urticaria control test, UCT; NS, not significant.
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especially in non- or low-responders, has been largely unclear.

To date, we have revealed a relationship between TF expression,

activated coagulation factors and complement factors. Treatment

of vascular endothelial cells with histamine released from human

peripheral basophils or VEGF together with several

proinflammatory molecules, such as lipopolysaccharide (LPS),

tumor necrosis factor (TNF)a, IL-1b or IL-33, synergistically

increase TF expression on endothelial cells (10). High

expression of TFs on the cell surface then activates the extrinsic

coagulation pathway and produces active forms of coagulation

factors, such as factor (F)Xa and FIIa (thrombin), resulting in

inter-cellular gap formation of vascular endothelial cells via

protease activated receptor 1 (PAR1). Moreover, Asero and our

group reported that plasma levels of prothrombin fragment 1 + 2

(PF1+2) and D-dimer in patients with CSU are higher compared to

normal controls, and correlate with disease severities (11, 12).

Furthermore, the extrinsic coagulation potential is elevated in

patients with CSU (13). Of note, we revealed that an active form of

complement 5 (C5a), produced by the activated coagulation

factors or plasmin, induces histamine release from basophils of

healthy donors and skinmast cells via the C5a receptor (C5aR) (3)

(14). In fact, the increase of plasma C5a concentration was

reported in patients with CSU (15). Moreover, several reports

suggest that anticoagulant drugs, such as heparin or warfarin are

effective for the treatment of CSU (16, 17). These reports imply

that basophils trigger and/or promote the activation of the

coagulation pathway and subsequently-produced C5a plays a

major role in the pathogenesis of CSU. Previously, Zuberbier,

et al. revealed that basophils of patients with CSU pre-treated with

interleukin-3 (IL-3) release histamine in response to C5a, but not

to anti-IgE (18). On the other hand, Luquin et al. reported that

histamine release from basophils of patients who suffered from

CSU without basopenia, was less than that from basophils of

healthy controls (19). Moreover, Vasagar, et al. reported that

basophils isolated from patients with CSU in base line conditions

by density fractionation express higher in CD63 but normal in

CD203c as compared with healthy controls (20). In this study, we

obtained basophil-enriched leukocytes fractions from patients

with CSU with different disease severity and assessed their

histamine release in response to anti-IgE, C5a and formyl-l-

methionyl-l-leucyl-l-phenylalanine (fMLP) stimulation in a non-

IL-3 treated condition. The levels of spontaneous release of

histamine from leukocyte fractions, plasma histamine, and

basophil activation markers, CD203c and CD63 in patients with

CSU were also compared with those of healthy controls.
Methods

Reagents and instrument

The chemicals used in this study were obtained from the

following sources: human serum albumin (HSA) and fMLP from
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Sigma–Aldrich Japan (Tokyo, Japan). Anti-human IgE antibody

from BETYL (Montgomery, TX). Ficoll-Paque Plus was from

GE Healthcare Japan Corporation (Tokyo, Japan). Reverse-

phase HPLC was from Shimadzu (Kyoto, Japan). Fluorescence

labeled anti-cluster of differentiation (CD)63 antibody was from

Biolegend (San Diego, CA). C5a were from R&D Systems Inc.

(Minneapolis, MN). Allergenicity® kit was from Beckman

Coulter, Inc. (Brea, CA). Single cell fluorescence levels were

analyzed by fluorescence-activated cell sorting by Attune™

Acoustic Focusing Cytometer (Life technologies, Carlsbad, CA,

USA). Basophil number in the blood was counted by automated

complete blood cell counter (Sysmex Japan, Tokyo, Japan)
Measurement of histamine

Leukocytes including basophils were obtained from peripheral

blood as described in our previous paper (14). Briefly, fresh blood

was obtained with ethylenediaminetetraacetic acid (EDTA) from

each donor by venipuncture. The whole blood was mixed with the

same volume of 1% methylcellulose in saline and then allowed to

stand at room temperature for 30 min. A supernatant with

abundant leukocytes was collected, leaving red blood cells. The

amount of histamine in or out of cells was measured by means of

reverse-phase high performance liquid chromatography (HPLC)

(14). Histamine release tests were performed as described

previously (21) with a goat anti-IgE (670 ng/ml), C5a and fMLP

at the indicated concentrations. Cells were not pretreated with IL-

3 prior to the stimuli in experiments. Spontaneous release from

basophils of each patient was calculated by the amount of

histamine in buffer and basophils after incubation for 45 min.
Analysis by flow cytometry

Expression levels of CD203c and CD63 on the surface of

basophils were detected using Allergenicity® kit according to the

manufacturer’s instructions adding the anti-CD63 antibody.

Briefly, whole blood cells were stained with anti-CD203c-PE

and anti-CD63-APC in the presence or absence of anti-IgE or

C5a at indicated concentrations for 15 min at 37°C. After

incubation, red blood cells were ruptured by osmotic pressure.

Fluorescence level of anti-CD203c and anti-CD63 was measured

using Attune™ Acoustic Focusing Cytometer (Life technologies).
Subjects

Blood samples were collected from patients with CSU, who

visited the Department of Dermatology in Hiroshima University.

Healthy volunteers were recruited with written consents to

participate in this study. The study protocol was approved by the

institutional ethics committee (E-1716). Demographic characteristics
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of donors whose samples were analyzed in Figures 1, 2B, and

Supplementary Figure 2 are described in Figure 1A, Table 2, and

Supplementary Figure 2A, respectively. Demographic characteristics

of donors whose samples were analyzed in Figures 2A, 3–6,

Supplementary Figures 1, 3, 4 are described in Table 1.
Statistical analysis

Difference among each group was tested by the t-test or

Tukey’s test using GraphPad PRISM ver.6 (GraphPad Software,

San Diego, CA).
Results

To determine the status of peripheral blood basophils in

patients with CSU, we first measured the ratio of basophils in

peripheral blood leukocytes and the expression levels of cell

activation markers on basophil surface by means of flow

cytometry. In line with previous reports, the ratio of basophils

in peripheral blood leukocytes of patients with CSU was

significantly low compared to that of healthy donors.

(Figures 1A, B). However, the expression levels of CD63, a

degranulation marker, and CD203c, an activation marker, on

the surface of peripheral basophils of patients with CSU were not

significantly increased (Figures 1A, C, D). We then analyzed

spontaneous release of histamine from basophils of healthy and

CSU donors, whose information is summarized in Table 1. As

shown in Figure 2A, spontaneous release of histamine from

basophils of patients with CSU was slightly, but significantly

higher than that from basophils of healthy donors. The degree of

spontaneous release of histamine was not correlated with total

amount of histamine in whole blood of patients with CSU

(Supplementary Figure 1). The measurement of plasma

histamine in another set of healthy controls and patients with

CSU (Table 2) showed that the amount of histamine in plasma

of patients with CSU was significantly higher than that of

healthy controls (Figure 2B). We then investigated histamine

release activity of basophils of healthy donors and patients with

CSU in response to anti-IgE (670 ng/ml) and an anaphylatoxin,

C5a, at indicated concentrations (Figure 3). Although peripheral

basophils express both C3a receptor (C3aR) and C5aR, we

previously reported that C3a induces only marginal release of

histamine from peripheral basophils (14). Moreover, we have

confirmed that C5aR is expressed in basophils from patients

with CSU and healthy donors (Supplementary Figure 2).

Therefore, we focused on the effect of C5a as an anaphylatoxin

in comparison with anti-IgE. As shown in Figure 3, basophils of

most healthy donors released a large amount of histamine in

response to anti-IgE and C5a. However, histamine release from

basophils induced by C5a is weaker than that induced by anti-

IgE. Basophils of a certain population of healthy donors and
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patients with CSU released no or only slight amount of

histamine. For convenience, we defined these patients as non-

or low-responder when their histamine release from basophils

was less than 5% or 20% in response to anti-IgE, respectively.

The population of non- or low-responders in patients with CSU

tend to be higher than that in healthy donors. However, no
Frontiers in Immunology 04
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apparent difference in severity of urticaria was found between

non-/low-responders and responders (Table 1). On the other

hand, C5a induced histamine release from basophils of most

subjects in the groups in a dose-dependent manner. Moreover,

histamine release in response to C5a from basophils of patients

with CSU was similar to or even higher than that of healthy
frontiersin.org
A B

FIGURE 2

Analysis of spontaneous histamine release of basophils (A), and amount of histamine in plasma (B). Data represent mean ± standard error of the
mean. The statistical difference was determined by the t-test. Differences between two groups was considered significant at *P <0.05 **P <
0.01.
A

B DC

FIGURE 1

Analysis of peripheral basophil conditions by flow cytometry. (A) Characteristics of patients with CSU, and healthy controls. (B) Ratio of
peripheral basophils to total white blood cells in patients with CSU and healthy donors. Five hundred basophils were detected in each
measurement. Mean ± SEM of the number of basophils and white blood cells counted in the blood of 27 patients with CSU were 23.8 ± 3.00/
µL, and 6911± 393, respectively. (C, D) Detection of basophil activation markers, CD203c and CD63, by flow cytometry analysis. The statistical
difference was determined by the t-test. Differences between two groups was considered significant at **P < 0.01. ns, not significant.
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donors (Figures 3, 4). Of note, histamine release from basophils

in response to anti-IgE and that to C5a in CSU responders

tended to be negatively correlated, whereas those in healthy

donors showed a tendency of positive correlation (Figure 5).

Basophils of both responders and non-/low-responders were

also activated by fMLP which activates basophils by an FcϵRI-
independent pathway (Supplementary Figure 3). To further

confirm the potential of histamine release by basophils in the
Frontiers in Immunology 05
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blood, we analyzed the amount of total histamine and the

number of basophils in the blood of patients with CSU. As

shown in Figure 6, the level of whole blood histamine was

positively correlated with the number of basophils, but it was not

totally reduced even in blood with low numbers of basophils

(Figure 6). Unexpectedly, the amount of histamine per basophil

tended to be inversely correlated with the number of basophils in

the blood of patients with CSU (Supplementary Figure 4).
FIGURE 3

Histamine release from basophils of healthy donors (closed triangle, n=28) and patients with CSU (open circle, n=32. Only C5a 1000ng/ml,
n=31). Data represent mean ± standard error of the mean. The statistical difference was determined by the T test. Difference between two
groups was considered significant at *P <0.05. ns, not significant.
A B C

FIGURE 4

Histamine release from basophils of non-responder, low-responder, responder patients with CSU in response to anti-IgE or C5a. (A) CSU non-
responders, (B) CSU low-responders, and (C) CSU responders. Data represent mean ± standard error of the mean. The statistical difference was
determined by Tukey’s test. Difference between each group was considered significant at *P <0.05. ns, not significant.
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Discussion

In this study, we demonstrated that basophils of low- and

non-responders of CSU patients, whose basophils release low or

no amount of histamine in response to anti-IgE, maintain the

capacity to release histamine in response to stimuli, that is

independent of the IgE-FceRI pathway, such as C5a and

fMLP. Antigen-IgE activates basophils via several tyrosine

kinases, such as syk, and thus, non- or low-release of

histamine from basophils is considered to represent a loss of

function of tyrosine kinases (20). We also confirmed that the

number of basophils was significantly decreased in the

peripheral blood of patients with CSU.
Frontiers in Immunology 06
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Vasagar et al. also reported the elevation of CD63, but not of

CD69 and CD203c, on the surface of basophils of patients with

CSU (22). However, we found that the expression levels of both

degranulation/activation markers, CD63 and CD203c, were not

increased in basophils of patients with CSU. Expression levels of

degranulation/activation markers of basophils may change during

cell preparation. Vasagar, et al. labelled basophils isolated by

double gradient fractionation, whereas we employed heparinized

whole blood samples without particular cell isolation procedure.

Moreover, the level of basophil activation in peripheral blood may

change at the timing of blood collection due to the migration of

activated basophils to dermis, and diurnal fluctuation in new

basophil differentiation in the bone marrow and their emergence
A B C

FIGURE 5

Correlation between histamine release from basophils in response to anti-IgE and that to C5a. (A) Healthy donors. Histamine release in response
to anti-IgE and that to C5a tend to be positively correlated. (B) CSU non/low responders. Not more than 20% of histamine release was observed
in response to anti-IgE, but various degrees of histamine release were evoked by C5a. (C) CSU responders. A weak tendency of a negative
correlation was observed.
FIGURE 6

Correlation between basophil count and total histamine level in the blood of patients with CSU. Simple regression analysis revealed positive
correlation between basophil count and whole blood histamine concentration (R2 = 0.355, P=0.002).
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into the peripheral blood circulation with a lifetime of only 3-4

days (23) (24). Therefore, further studies are necessary to

characterize the detailed behaviors of activation markers on

peripheral basophils. Nevertheless, this study demonstrated that

basophils of patients with CSU are not constitutively activated in

the blood. On the other hand, both spontaneous histamine release

from basophils isolated ex vivo, and plasma concentration of

histamine of patients with CSU were higher than those of healthy

donors, suggesting a certain difference of function between

basophils of patients with CSU and those of healthy

individuals (Figure 2).

Previous reports of spontaneous histamine release from

basophils of patients with CSU are not consistent. Luquin,

et al. reported a significant increase in patients with CSU (19),

but Wahn, et al. found no difference between patients with CSU

and healthy controls (25). It should be noted that both Luquin,

et al. and Wahn, et al. studied pretreated basophils with IL-3

after the isolation by dextran sedimentation from the blood,

whereas we isolated basophils by methyl-cellulose sedimentation

and did not treat with IL-3. The real spontaneous release of

histamine from basophils into the blood circulation should be a

subject of future studies. Nevertheless, our results suggested that

basophils of patients with CSU are susceptible to non-IgE stimuli

or even to non-specific conditions to promote histamine release.

Interestingly, spontaneous release of histamine (%) was not

correlated to the whole blood histamine concentration (ng/ml)

(Supplementary Figure 1), which mostly reflects the sum of the

intracellular amounts of histamine in basophils (Figure 6) (26),

but the amounts of histamine of individual basophils of patients

were maintained or even higher in many patients with basopenia

(Supplementary Figure 4). In fact, capacity to release histamine
Frontiers in Immunology 07
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of basophils to either C5a or anti-IgE was maintained in almost

all patients with basopenia as well (Supplementary Figure 5).

When histamine was released from basophils in the vicinity

of vascular endothelial cells together with certain inflammatory

substances, such as LPS, TNFa, IL-1b or IL-33, they

synergistically induce TF expression on the vascular

endothelial cells in a local area of the blood vessel. Highly-

expressed TF then activates the extrinsic coagulation pathway,

followed by the increase of vascular permeability induced by

active forms of coagulation factors via PAR-1, C5a production,

basophils/mast cells activation via C5aR and edema formation

(Figure 7). As described above, Luquin et al., also reported the

increase of spontaneous release and impairment of anti-IgE

induced release of histamine from basophils of patients with

CSU compared to those of healthy donors (19). However, they

reported that the histamine release of basophils of patients with

CSU in response to C5a was significantly lower than that of

healthy donors (19). Considering possible difference of

backgrounds among patients, we divided patients with CSU

into 3 groups, namely, responders, low-responders, and non-

responders, and activated their basophils in. the whole leukocyte

fraction without separation to minimize possible mechanical

and chemical damages by isolation procedures. The results of

this study revealed that basophils circulating in the blood of

patients with CSU may be largely impaired in the IgE-mediated

pathway, and decreased in number, but preserve a high reactivity

to C5a and histamine in individual cells. The underlying

mechanism of loss of function in the IgE-FceRI-syk pathway

without an increase of cell activation markers, and decrease of

basophils in the blood circulation remains unclear. However, the

presence of patients with active CSU despite an impaired
TABLE 1 Demographic characteristics of patients with CSU and healthy donors in Figures 2A, 3–6, Supplementary Figures 1, 3, and 4.

Healthy CSU

Subject number n=28 n=32

Gender (male/female) 14/14 10/22

Age (years); mean ± SEM (range) 40.7 ± 2.46 (21-64) 45.8 ± 8.10 (13-76)

Non-responder
UCT
UAS7

n=2 n=8
9.00 ± 0.94 (n=5)
22 ± 0 (n=2)

Low-responder
UCT
UAS7

n=5 n=6
4.60 ± 1.25 (n=5)
22.75 ± 4.55 (n=4)

Responder
UCT
UAS7

n=21 n=18
8.07 ± 1.04 (n=14)
19.6 ± 3.94 (n=9)
TABLE 2 Characteristics of patients with CSU and healthy controls in Figure 2B.

Healthy CSU

Subject number n=8 n=66

Gender (male/female) 4/4 25/41

Age (years); mean ± SEM (range) 31.9 ± 2.87(25-50) 37.5± 18.8 (5-90)
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reaction to IgE-mediated stimuli suggests causative involvement

of a non-IgE-FceRI pathway in wheal formation of CSU. Thus,

the basophil-C5a axis may play critical roles in the pathogenesis

of CSU, especially that refractory to IgE-targeting medications,

such as omalizumab.

Conclusion
We demonstrated that basophils of patients with CSU, that

release no or only little amount of histamine in response to anti-

IgE, release substantial amounts of histamine in response to C5a

as basophils with normal reactivity to anti-IgE. C5a produced by

activated coagulation/fibrinolysis factors, such as FXa, FIIa, and

plasmin may contribute to the pathogenesis of CSU, especially in

patients whose basophils are impaired in the IgE-FcϵRI pathway.
C5a and its related molecules, including C5aR might be an

effective therapeutic target for patients with CSU including those

that are refractory to IgE-targeting medications.
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FIGURE 7

Summarized image of the role of basophils of responders and non-responders in CSU. Basophils of responders are activated via both the IgE-
FcϵRI and C5a-C5aR pathways. On the other hand, basophils of non/low-responders are activated via the C5a-C5aR, but not the IgE-FcϵRI
pathway. Therefore, C5a-C5aR stimulation may be a main activation pathway of non/low-responders with CSU. Histamine released from
basophils may synergistically induce TF expression on vascular endothelial cells together with certain proinflammatory substances, such as LPS,
TNFa. Spontaneous histamine released from basophils and other TF inducers may contribute to the synergistic expression of TF on vascular
endothelial cells, followed by C5a production through the extrinsic coagulation pathway.
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9. Deza G, Bertolıń-Colilla M, Pujol RM, Curto-Barredo L, Soto D, Garcıá M,
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Decreased peripheral basophil
counts in urticaria and mouse
model of oxazolone-induced
hypersensitivity, the latter
suggesting basopenia reflecting
migration to skin

Izumi Kishimoto1†, Ni Ma1†, Riko Takimoto-Ito2,
Chisa Nakashima3, Atsushi Otsuka3, Andrew F. Walls4,
Hideaki Tanizaki1 and Naotomo Kambe1,2*

1Department of Dermatology, Kansai Medical University, Hirakata, Japan, 2Department of
Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan, 3Department of
Dermatology, Kindai University Graduate School of Medical Sciences, Sayama, Japan,
4Immunopharmacology Group, Clinical and Experimental Sciences, University of Southampton,
Southampton, United Kingdom
A decrease in the number of basophils in the peripheral blood, or basopenia,

has been noted, reflecting the activity of chronic spontaneous urticaria (CSU).

Infiltration of basophils into the skin has also been reported, but themechanism

of basopenia in CSU has not been clarified. The phenomenon of basopenia

during the active phase of urticaria was confirmed, and basophil numbers

increased following symptom improvement in 15 out of 17 patients treated with

omalizumab and in 13 of 15 patients treated with antihistamines. Our

examination by immunostaining also revealed basophil infiltration of the CSU

lesions, as in previous reports, but since most of our patients were already

taking oral steroids, it was not considered appropriate to examine the

relationship between basophil numbers in tissue and peripheral blood. Then,

we used mouse model of contact hypersensitivity with a single application of

oxazolone, which is known to stimulate basophil infiltration, and investigated

basophil counts in the skin, peripheral blood, and bonemarrow. In this model, a

decrease in peripheral blood basophil numbers was observed one day after

challenge, but not after 2 days, reflecting supplementation from the bone

marrow. Indeed, when cultured basophils expressing GFP were transplanted

into the peripheral blood, GFP-positive basophil numbers in the peripheral

blood remained low even after 2 days of challenge. Despite differences among

species and models, these results suggest that one reason for the decrease of

basophils in the peripheral blood in CSU may involve migration of circulating

basophils into the skin.
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Introduction

Basophils are the least numerous types of granulocytes in the

peripheral blood (PB), generally representing less than 1% of

leukocytes. They differentiate from bone marrow (BM) and enter

the circulation. Basophils have basophilic granules in their

cytoplasm, high-affinity IgE receptors on their surface and as

is the case with mast cells, release chemical mediators such as

histamine (1–3). In mice, a member of the mouse mast cell

protease (mMCP) family termed mMCP-8 (with coding gene

Mcpt8) is unique to basophils and has served as a highly specific

differentiation marker for this cell type (4, 5). However, studies

of the roles of basophils have been neglected in immunological

research due to their presence in relatively small numbers, and

they have sometimes been confused with mast cells, which reside

in tissues (6).

A decrease in the number of basophils in the PB, or

basopenia, has long been reported in urticaria (7). Some

reports suggested that basophils in urticaria patients are

impaired in IgE-mediated histamine release, but this study

reported that the peripheral basophil counts in the patients

with chronic spontaneous urticaria (CSU) were slightly, but not

significantly, lower than in healthy subjects (8). A study in 2008

(9) examined whether the presence of autoantibodies in CSU

affects the impaired histamine release from basophils, but this

study did not focus on the number of basophils. In another

report, however, Oliver et al. (10) evaluated observations at two

time points and showed that leukocyte histamine levels,

reflecting the number and presence of basophils in the PB,

vary inversely with skin rash and itch scores. A systematic

search of 73 CSU studies reported in 2021 (11) did not list

basophil count as a predictor of the efficacy with treatment, while

it has been reported that PB basophil counts are inversely

correlated with CSU activity, and that antihistamine treatment

increases the number of basophils in the PB (10, 12). In

particular, omalizumab, a monoclonal anti-IgE antibody, was

shown to be effective in the treatment of CSU (13), and in the

course of validating the efficacy of omalizumab, basopenia came

to the attention again (14–16), along with various functional

abnormalities of basophils shown by urticaria patients (17, 18).

In addition, infiltration of basophils has been reported in the

skin tissue of CSU (19–21), but its relationship to basopenia has

not been investigated. Thus, we have not had direct evidence that

decreasing the number of circulating peripheral basophils

reflected basophil migration into tissues. In this study, we

confirmed that the PB basophil count, which was decreased

during the active phase of CSU, increased with successful

treatment with omalizumab and antihistamines. We also

confirmed that basophils were present at the lesion site of CSU

by immunostaining. However, we could not directly verify

whether the basopenia reflected local basophil infiltration.

Therefore, the relationship between changes in basophil counts
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in PB and infiltration of basophils into local skin tissues with

inflammation was examined using an oxazolone (OX)-induced

contact hypersensitivity model, in which basophils are known to

migrate to lesion sites, due to the lack of an appropriate mouse

model for CSU.
Materials and methods

CSU and peripheral basophil counts

The patients suffering from CSU were recruited in Kansai

Medical University Hospital (Hirakata, Japan). PB samples were

collected before and after treatment with antihistamines or

omalizumab (300 mg, every 4 weeks), along with other

laboratory tests. The severity of urticaria was evaluated by

urticaria activity score over 7 days (UAS7) at the outpatient

examination. Patients were reevaluated 4-8 weeks after the start

of omalizumab use and those who had symptom resolution or

USA7 improvement were collected. For patients treated with

antihistamines, blood was also collected when symptoms

relieved, but the timing varied from 1 to 9 weeks, depending

on the case. The basophil counts in PB were calculated from

leukocyte counts and leukocyte fractions in the clinical

laboratory at the hospital, and in some cases were confirmed

to be CD3-/CRTH2+/CD203c+ cells by flow cytometry (FACS)

using the Allergenicity Kit (Beckman Coulter, Brea, CA). Total

IgE levels were also measured by electro-chemiluminescence

immunoassay in the hospital’s clinical laboratory.

All human materials were approved by the Institutional

Review Board of Kansai Medical University (2018199) and the

study was conducted in accordance with the Declaration

of Helsinki.
Mice

C57BL/6JJmsSlc mice were purchased from Shimizu

Laboratory Supplies (Kyoto, Japan). Mcpt8GFP mice on the

C57BL/6J background (22) were kindly provided by Drs.

Miyake and Karasuyama (Tokyo Medical and Dental

University). All mice were maintained under specific

pathogen-free conditions in the animal facilities with the

guidelines of Kansai Medical University for animal care, and

all animal studies were approved by the Institution Annimal

Care and Use Committee of Kansai Medical University (22–046,

22–047).
BM-derived cultured basophils

BM-derived cultured basophils (BMBa) were prepared as

described previously (23). Briefly, BMBa were prepared by
frontiersin.org
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culturing BM cells in the presence of 0.3 ng/mL recombinant

murine IL-3 (BioLegend, San Diego, CA) in RPMI1640 with 10%

FCS for 1 week.
OX-induced contact hypersensitivity model

OX (4-Ethoxymethylene-2-phenyl-2-oxazolin-5-one,

Sigma-Aldrich, St. Louis, MO) was dissolved in ethanol.

Female C57BL/6J mice at the age of 8 weeks old were

percutaneously sensitized with 100 mL of 3% OX on their

shaved back skin and challenged 5 days later with topical

applications of either 30 mL of 1% OX on both the dorsal and

ventral surfaces of their ears for challenge. Ear thickness of

sedated mice was measured with a caliper (PEACOCK Dial

Thickness Gauge 0.01mm type G, Ozaki MFG, Tokyo, Japan).

In some experiments, 1x106 BMBa were intravenously

injected through the tail vein one day before OX-challenge.
FACS analysis

The ear skin was treated with 200 mL of Liberase solution by

mixture of 10 mg of Liberase I (Roche, Basel, Switzerland)

dissolve in 26 mL of RPMI-1640 medium with 1% FCS at

37°C for 1 hour, then added 20 mL of 0.5 M EDTA and

incubate at 37°C for 5 min with shaking to stop the

collagenase reaction. BM was harvested from the one side of

femur and pressed out with 1 mL of PBS. In PB, flow-count

fluorospheres (Beckman Coulter) were added to each 100 µL of

samples. Then, cells from BM and PB was lysed in lysis buffer

(BD Biosciences, Franklin Lakes, NJ). Single cell suspensions

were obtained by FACS buffer (PBS containing 2% FCS, 0.1%

sodium azide, and 1 mM EDTA) from the treated skin, BM and

PB. All the samples were stained with an indicated combination

of monoclonal antibody (mAb) for 30 min and analyzed by

FACS Canto II (BD Biosciences). Following antibodies for flow

cytometry were all purchased from BioLegend: PE/Cy7-

conjugated CD45 (30F11); PE-conjugated CD49b (DX5);

Pacific blue-conjugated CD117 (c-kit, 2B8); and APC-

conjugated CD200R3 (Ba13). Dead cells were excluded by

staining with propidium iodide (PI, Immunostep, Salamanca,

Spain) or 7-AAD (BD Biosciences). Cells were analysed with

FlowJo (BD Biosciences). Each cell lineages were defined in the

CD45+ hematopoietic lineage cells as follows: basophils (c-kit–/

CD49b+/CD200R3+), and mast cells (c-kit+/CD200R3+). The

number of basophils in PB was identified by calculating the total

number of CD45+ cells from the number of flow-count

fluorospheres, and skin and BM basophils were accessed as a

percentage of live cells evaluated for PI or 7-AAD negative.
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Histopathological analysis

Formalin-fixed, paraffin-embedded human skin samples,

biopsied from the urticaria lesion, were stained with

hematoxylin and eosin (HE) or a human basophil-specific

mAb, BB1 (20), and mast cell tryptase-specific mAb, G3 (24),

in combination with the alkaline phosphatase (AP)-conjugated

secondary antibody (Vector Labs, Burlingame, CA) and color

was developed with Fast-Red substrate, followed by hematoxylin

counterstaining. Digital images of each slide were acquired by

NanoZoomer 2.0 HT (Hamamatsu, Shizuoka) and the number

of cells was counted by the related image viewing software NDP

view 2 by selecting 3 parts of areas randomly at 100 µm view.

Mouse ear specimens were fixed with 4% paraformaldehyde

and embedded in paraffin, and sections were stained with HE or

with a basophil-specific anti-mMCP-8 (TUG8, BioLegend) with

donkey anti-rat IgG (Alexa Fluor 594-conjugated, Thermo

Fisher, Waltham, MA) and anti-GFP (B-2, Abcam,

Cambridge, UK) with donkey anti-goat IgG (Alexa Fluor 488-

conjugated, Abcam).
Quantitative PCR

Total RNA was extracted from tissues or isolated cells by

RNeasy Mini Kit (QIAGEN, Germantown, MD), followed by

cDNA synthesis with SuperScript III First-Strand Synthesis

System (Thermo Fisher). Q-PCR of the cDNA was performed

with a Fast SYBR Green Master Mix (Thermo Fisher) by using

following primer sets: Mm_Mcpt8_1_SG QuantiTect Primer

Assay (Qiagen, GeneGlobe Id: QT00131565) and GAPDH as

housekeeping gene: 5’-CATCACTGCCACCCAGAAGACTG

and 5 ’-ATGCCAGTGAGCTTCCCGTTCAG. Relative

expression value of Mcpt8 was calculated by 2DCT for the

housekeeping gene.
Statistical analysis

Statistical differences were determined by the statistical tests

stated in each figure legend using GraphPad Prism (San Diego,

CA). P < 0.05 was considered statistically significant.
Results

Peripheral basophil count in CSU was
recovered after treatment

Of the 17 CSU patients recruited who were treated with

omalizumab, we observed 15 cases in which there was a recovery
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in basophil counts (mean 30.4/µL rising to 50.0/µL, p = 0.003)

(Figure 1A) that was accompanied with an improvement in rash

as assessed by UAS7.

Successful omalizumab treatment is associated with

neutralization of serum IgE and increased serum IgE levels. In

patients whose serum IgE levels could be evaluated before and

after treatment with omalizumab (n = 13), 11 patients had an

increase in serum IgE levels as the skin rash improved (mean

437/µL rising to 730/µL, p = 0.014) (Figure 1B). There was no

association between pre- and post-treatment IgE levels (r = 0.08,

p = 0.37). Two cases with no increase in basophil numbers after

initiation of omalizumab (indicated by red triangles in Figure 1A

and 1B), had no increase in IgE levels (Figure 1C with red

triangles). When an increase in serum IgE levels was used as an

indicator that omalizumab was sufficiently neutralizing IgE, the

PB basophil counts increased associated with improvement in

the skin rash.

Of the 15 retrospectively collected CSU patients who had

been treated with antihistamines, three received concomitant

oral corticosteroids and one cyclosporine. We compared the

basophil count in PB before treatment and at the time the rash

disappeared or was relieved by antihistamine treatment. Of

the 15 cases, we observed that basophil numbers increased

in 13 cases and decreased in two cases. Mean basophil

counts of 14.9/µL rose to 43.1/µL after the treatment (p =

0.012) (Figure 1D).
Basophil detection in the affected skin of
CSU patients

Although skin biopsies were not usually performed in CSU

cases, some retrospectively collected antihistamine-refractory

cases underwent skin biopsy to differentiate them from other

conditions such as col lagen diseases or vascul i t is .

Immunostaining of biopsied tissue with basophil-specific

antibody, BB1, showed basophil infiltration in the lesioned

skin (Figure 2). As shown in Table 1, of the 22 CSU patients,

we identified basophils in 12 samples. The number of basophils

averaged 2.4 ± 5.4 in the field of observation, which was

approximately 1/10 of the number of mast cells (24.5 ± 11.9)

identified as tryptase-positive cells in the same field. In the

present study, there was no trend toward a decrease in the

number of basophils in the PB in patients with skin infiltration

of basophils (Table 1). However, most of the patients who had

skin biopsies performed were resistant to antihistamine

treatment, and most of them were receiving oral steroids at

the time they were referred to our hospital for skin biopsies, so

we did not consider it appropriate to examine the correlation

between the number of PB basophils and the number of

basophils infiltrating the tissues.
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Basophil changes in tissue and blood in
mice OX model

A decrease in the number of basophils in PB may reflect

migration of basophils into the tissues, but direct evidence of

such migration is difficult to obtain in humans. Therefore, we

decided to investigate the relationship between the decrease in

basophil count in PB and basophil migration to the skin, using

a mouse contact dermatitis model induced by OX, which is

known to cause basophil migration to the local skin

lesions (25).

Redness of the ears was observed only in the groups both

treated with sensitization with 3% OX on their back skin and

challenged 5 days later with 1% OX on both the dorsal and

ventral surfaces of their ears (Figure 3A). Swelling of the ear

reflecting inflammation was similarly observed only in the

sensitized and elicited groups, and swelling became noticeable

the day after the challenge, and was further enhanced two days

later (Figure 3B). Two days after challenge, mice were sacrificed

and skin samples were taken for immunostaining, and a large

number of mMCP8-positive basophils were observed infiltrating

the local skin area in the sensitized and challenged groups

(Figure 3C), reflecting the swelling of the skin.

We further identified basophils using FACS analysis, by first

gating lymphocyte fractions with forward side scatter (FSC) and

side scatter (SSC), then narrowing down to single cells with

basophils identified as CD45+/CD117-/CD49b+/CD200R3+

cells (Figure 3D). The results confirmed the presence of large

numbers of basophils in the tissue of the sensitized and

chal lenged groups , cons is tent with the resul ts of

immunostaining (Figure 3E). However, when basophils in PB

were examined at this time, there was no decrease in numbers of

basophils in PB similar to that in human CSU patients. Although

there was a trend for a slight decrease in the number of basophils

in the group challenged with OX, this did not reach significance

(Figure 3F). Interestingly, at this time we found that the BM

basophil counts were increased only in the sensitized and

challenged group (Figure 3G).

Based on these results, we hypothesized that failure to

observe a decrease in basophil numbers in the PB at 2 days

post-challenge, reflecting migration of basophils to the skin at

the site of inflammation, was a result of mobilization of new

basophils from BM into the PB. Therefore, we decided to

reexamine the basophil kinetics over time, although the skin

swelling was still slight at 1 day after sensitization (Figure 3B).

The number of infiltrating cells increased on the second day

from that on the first day, reflecting the swelling of the ear

(Figure 3H). On the other hand, when the basophil count in the

PB was examined, a decrease in the PB basophil count was

observed on one day after OX challenge, but it recovered to the

original level two days later (Figure 3I). When the basophil count

in the BM of the mice was examined at this time, an increase in
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FIGURE 1

Peripheral basophil counts in 17 CSU patients before and following recovery with omalizumab treatment. (A) Peripheral basophil counts before
and after omalizumab treatment. Left panel: Changes before and after treatment in individual cases. Right panel: Mean values before and after
treatment. Data show individual values as means and SD. (B) Serum IgE levels before and after omalizumab treatment (n = 13). Left panel:
Changes before and after treatment in individual cases. Right panel: Mean value before and after treatment. Data show individual values as mean
and SD. (C) Correlation between changes in peripheral blood basophils and serum IgE before and after treatment (n = 13). DBASO = (after –
before) basophil count, DIgE = (after – before) total IgE levels. Red triangles show a decrease in basophils after symptom improvement
compared to pre-treatment. (D) Peripheral basophil count of CSU patients was recovered with antihistamine treatment. (A) Peripheral basophil
count before and after antihistamine treatment (n=15) combination with corticosteroid (n = 3) and cyclosporine (n = 1). left panel: Changes
before and after treatment in individual cases. right panel: Average value before and after treatment. Data show individual values as means
and SD.
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FIGURE 2

Representative image of histological findings of biopsy in urticaria lesions. This tissue is from case 4 in Table 1. Left panel: HE stains, Middle
panel: Immunochemical stain with BB1, anti-human basophil specific mAb, scale bar = 100 µm. Right panel: Higher magnification for BB1 stain,
scale bar = 100 µm.
TABLE 1 Mast cell and basophil counts in urticarial skin lesions and blood basophil counts.

Case G3† BB1‡ Blood Basophil§ Treatment¶

1* 28 0 0 AH

2 26 3 30.9 mPSL 125 mg + BMZ 0.25 mg + AH

3* 47 0 0 AH

4 51 26 10.6 AH

5* 31 7 9.9 none

6 12 2 38.8 BMZ 0.5 mg + AH

7 20 0 0 BMZ 0.75 mg + AH

8 34 0 13.2 PSL 5 mg + AH

9 6 0 10.2 AH

10** 12 2 40 AH

11 17 0 19.8 none

12* 29 2 26.8 none

13 8 0 6.9 AH

14 15 3 50.4 AH

15 20 1 0 PSL 20 mg + AH

16 46 0 7.8 AH

17 24 0 9.7 BMZ 0.75 mg + AH

18* 26 2 14.8 PSL 10 mg + AH

19 27 1 0 PSL 10 mg + AH

20 28 0 15 mPSL 125 mg + AH

21 15 1 0 PSL 8 mg + AH

22 18 2 11.4 PSL 10 mg + AH

Mean ± SD 24.5 ± 11.9 2.4 ± 5.4 14.4 ± 14.2
Frontiers in Immunology
 06
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†Tryptase+ mast cells in the CSU lesion skin (/field).
‡Basophils in the CSU lesion skin (/field).
§Basophil counts in the peripheral blood (/mL).
¶Treatment of urticaria at the time of biopsy. Those who had received any oral corticosteroid or salazosulfapyridine, which could affect the basophil count in the peripheral blood, were
marked with *, and those whose treatment before biopsy was unknown were marked with ** after the case number.
AH, antihistamine; BMZ, betamethasone; mPSL, methylprednisolone; PSL, prednisolone.
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FIGURE 3

Basophil changes in tissue and blood in mouse OX model. Each experiment was conducted at least 3 times individually (each group, n = 3), and
data from one of these experiments are shown as representative. (A) Representative image of photo taken two days after OX challenge.
(B) Thickness of the ear. (C) Representative image of immunohistochemical staining of mouse ear tissue with TUG8, anti-basophil specific mAb
that recognizes mMCP-8, scale bar = 100 µm. (D) Gating for the identification of activated basophil. From the lymphocyte and granulocyte
population gated by FSC and SSC, we identified activated basophils as CD45-positive and CD117-negative and CD49b-positive and CD200R3-
positive. (E–G) Basophil counts in skin, blood and BM two days after sensitization and challenge. (H-J) Basophil count at 1 day after
sensitization. Controls were mice without either sensitization or challenge. *p < 0.05, **p < 0.001, ****p < 0.0001 ns. no significance. “sensi” is
sensitization and “elicit” is elicitation.
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the basophil count in the BM was observed two days after OX

challenge (Figure 3J).
Restoration of peripheral basophil
numbers two days after challenge
reflects mobilization from BM

Based on the results of the mouse OX model, it was

suggested that reduction in the number of basophils in the PB

one day after challenge is due to migration to the skin, but two

days after challenge, the number of basophils in the PB is

restored due to the mobilization of new basophils from BM.

To evaluate the supplementation of basophils from BM to PB,

we generated BMBa from Mcpt8GFP mice (22), which express

GFP specifically in basophils, and transferred these cells into PB.

Following BMBa transplantation, there were higher numbers

of GFP-positive cells in skin tissue on the first day after

challenge, but not on the second day (Figure 4A). When

mRNA was extracted from skin tissue and examined using

quantitative PCR, the expression of Mcpt8 was higher in the

tissue collected one day after challenge (Figure 4B). One day

after the challenge, there was an infiltration of cells in the dermis

for which the cytoplasm had granular GFP positive staining

(Figure 4C). Finally, the number of GFP-expressing basophils in

the PB was observed over time, and we can confirm that GFP-

positive cells in the PB were lower after 1 day of challenge and

there was no apparent increase after two days (Figure 4D),

suggesting that the recovery of the number of basophils in the PB

observed on the second day of challenge reflected the

mobilization of new basophils from the BM.
Discussion

The impetus for this study came from our experience with

one CSU patient, who　had had severe CSU for 6 years and had

persistently low, almost undetectable peripheral basophil counts

for at least 1 year (26). When urticaria was improved by

treatment with omalizumab, we noticed that his peripheral

basophil count recovered. When the patient discontinued

omalizumab treatment, the PB basophil counts again dropped

to zero and urticaria recurred. Re-administration of omalizumab

improved the skin rash and rescued the peripheral

basophil count.

Our observation of an apparent basopenia associated with

CSU is consistent with other reports (14–16). Of particular

interest has been suggestions that a reduced basophil count

may predict omalizumab efficacy (11, 15–18). Johal et al. (17)

reported that those with decreased PB basophils had higher

symptom scores and slower symptom improvement with

omalizumab treatment than those without. Rijavec et al. (15)

reported very low absolute basophil counts in circulating blood
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(1.7 basophils/mL) was reported to be a predictor of poor

response to omalizumab. However, the mechanism of

basopenia during the active phase of urticaria has not been

clarified (27).

In a report examining various inflammatory diseases by

immunostaining with basophil-specific antibody BB1,

basophils were detected in 6 out of 10 cases of urticaria

examined (20). In fact, in our CSU patients who had

previously undergone skin biopsies, we found that while

basophils were rarely seen in the skin of non-inflamed healthy

controls, basophils were seen to varying degrees in 12 out of 22

CSU cases in urticarial lesions, as shown in Table 1. Based on

these observations, we hypothesized that the decrease in

basophils in the PB during the active phase of urticaria reflects

the migration of basophils to the cutaneous region. However,

skin biopsies are not usually performed for urticaria. In addition,

many refractory cases that have undergone biopsy have already

been treated with oral steroids at the time of skin biopsy.

Therefore, it is difficult to correlate the migration of basophils

to skin tissue with PB.

Although there is no suitable mouse model that reproduces

the pathogenesis of urticaria, repeated application of OX has

been reported to shift the immune response toward Th2 and

induce migration of basophils to the lesion site (25). In this

report, basophils were reported to infiltrate the skin even two

days after a single application of OX. In addition, very

interestingly, the latest single cell RNA sequencing analysis

shows that basophils, which are newly migrated to the skin by

OX treatment, are the source of IL-4 and IL-13 and tilt the

immune response toward Th2, rather than mast cells residing

in the tissues (28). In our present study, 5 days after

sensitization, a single challenge of OX resulted in migration

of a sufficient number of basophils to the skin, though there

was not a concomitant decrease in basophils in the PB.

However, as the number of basophils in BM increased two

days after challenge, prompting us to consider the possibility

that the lack of a decrease in basophils in the PB may be a

consequence of new basophils being supplied from BM to the

peripheral circulation.

In our investigation of the kinetics of basophil migration in

tissue, PB and BM in the mouse OX model, the number of

basophils migrating to the tissues one day after challenge was not

as high as at two days after. However, at this time point the

number of basophils in the PB was clearly decreased, while that

in the BM had not yet increased. Since urticaria generally

resolves within 24 hours, the reaction after 1 day of challenge

in the mouse model may reproduce features of human urticaria.

In CSU, however, the migration of basophils is not necessarily a

transient phenomenon, since even after one skin rash

disappears, another rash may appear at a different site. As a

result, new basophils are recruited from the BM to the peripheral

circulation to compensate for the shortage of basophils

migrating to the skin, and the decrease of basophils in the PB
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FIGURE 4

Basophil migration in an OX model with GFP-expressing BMBa transplantation. Each experiment was conducted at least 3 times individually
(each group, n = 3), and data from one of these experiments are shown as representative. (A) GFP positive basophil count in skin at one and two
days after challenge. (B) Q-PCR of Mcpt8 in skin tissue. (C) Representative image of staining of skin tissue one day after challenge. Left panel:
GFP-positive cells. Middle panel: anti-mMCP-8 staining with TUG8. Right panel: overlay with GFP, mMCP-8 and DAPI, scale bar = 5 µm. (D) GFP
positive basophil count in blood at 1 and 2 days after challenge. Control mice were treated with BMBa but neither sensitized nor challenged,
and samples were taken on day 2 after i.v. injection of BMBa. *p < 0.05 and ***p < 0.005.
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should not be observed after the second day. However, the

discrepancy observed in basophil kinetics between the mouse

OX model and human urticaria may reflect differences between

the mouse and human. In parasite infestation, basophilia in the

PB has been observed in mice, whereas in humans, an increase in

basophil numbers was reported to be exceedingly rare (29). In

addition, in clinical practice, while neutrophilia or eosinophilia

are often encountered, there are few diseases associated with

increased basophil numbers other than rare basophilic

leukemias. Thus, human BM production of basophils may be

severely restricted. To exclude the influence of new basophils

emerging from BM, in the present study BMBa expressing GFP

were transferred into the PB and their contribution could be

distinguished from that of cells mobilized from BM. As expected,

we observed a decrease in the number of basophils in the PB,

reflecting the migration of basophils to the inflamed skin,

regardless of mobilization from BM.

In this study, we used a single application of OX to study the

migration of basophils to the skin. Given the success of

omalizumab targeting IgE in CSU, we may consideration

should be given to a model in which there is cell migration or

activation via IgE. In that case, however, the influence of not

only basophils but also other IgE-mediated activated cells,

especially mast cells pre-localized in the skin, would need to

be considered.　In addition, it has been reported that mast cells

are also required for contact hypersensitivity, since symptoms

are reduced in mast cell-deficient mice (30–32). On the other

hand, studies in models of atopic dermatitis with repeated

applications of OX have shown that skin thickness is reduced,

even in the absence of basophils (25). We believe that further

investigation is needed to determine whether IgE-mediated

stimulation also reduces the number of basophils in the PB,

reflecting the migration of basophils to the skin area, and

whether there is any interrelationship between the roles of

basophils and mast cells.

The number of basophils in PB may be useful as an index of

urticarial activity. Even though the studies we report here have

the limitation that they are experiments with different species

and models and that it is impossible to explain their results in a

unified manner, we believe that one of the mechanisms by which

the number of basophils in PB decreases at the onset of urticaria

is that basophils migrate from the circulation into the skin. A

focus on basophils should lead to new understanding of the

pathogenesis of CSU.
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Basophils from allergy to cancer
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Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR),
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Human basophils, first identified over 140 years ago, account for just 0.5-1% of

circulating leukocytes. While this scarcity long hampered basophil studies,

innovations during the past 30 years, beginning with their isolation and more

recently in the development of mouse models, have markedly advanced our

understanding of these cells. Although dissimilarities between human and

mouse basophils persist, the overall findings highlight the growing

importance of these cells in health and disease. Indeed, studies continue to

support basophils as key participants in IgE-mediated reactions, where they

infiltrate inflammatory lesions, release pro-inflammatory mediators (histamine,

leukotriene C4: LTC4) and regulatory cytokines (IL-4, IL-13) central to the

pathogenesis of allergic diseases. Studies now report basophils infiltrating

various human cancers where they play diverse roles, either promoting or

hampering tumorigenesis. Likewise, this activity bears remarkable similarity to

the mounting evidence that basophils facilitate wound healing. In fact, both

activities appear linked to the capacity of basophils to secrete IL-4/IL-13, with

these cytokines polarizing macrophages toward the M2 phenotype. Basophils

also secrete several angiogenic factors (vascular endothelial growth factor:

VEGF-A, amphiregulin) consistent with these activities. In this review, we

feature these newfound properties with the goal of unraveling the increasing

importance of basophils in these diverse pathobiological processes.

KEYWORDS

allergy, angiogenesis, angiopoietins, basophil, cancer, cysteinyl leukotrienes,
cytokines, vascular endothelial growth factors
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Introduction

Paul Ehrlich discovered, over 140 years ago, peripheral blood

basophils and tissue mast cells using novel hematological

techniques that combined the use of alkaline dyes and

conventional light microscopy (1, 2). Unlike mast cells, which

are only found as mature cells in tissues, basophils represent just

0.5-1% of all leukocytes in the bone marrow and peripheral

blood (3, 4). Basophils and mast cells are long recognized as

being morphologically similar in appearance and for sharing

several unique features (5, 6). For example, they are the only two

cells that express the full tetrameric (abg2) form of the high-

affinity receptor for IgE (FcϵRI). They both also uniquely store

histamine in cytoplasmic granules (7), releasing it and other

proinflammatory mediators (e.g., cysteinyl leukotrienes) when

appropriately activated (5, 8). In fact, these shared characteristics

continue to cause misperceptions, leading some to believe that

basophils and mast cells are one and the same. However,

compelling evidence over the last decades now supports that

human basophils possess morphological, immunological,

biochemical, and pharmacological characteristics quite

different from those of human mast cells (5–7, 9).

Until recently, there was some dispute as to whether mice

have basophils. However, the work of Ann M. Dvorak using

electron microscopy, clearly identified basophils in mice as a rare

population of bone marrow cells, with some ultrastructural

characteristics like those observed in human basophils (7, 10,

11). As discussed below, there remains considerable debate as to

whether mouse basophils are truly representative of human cells,

particularly with regard to function (11–17). Of course, much of

this debate often defaults to issues pertaining to the disparities
Abbreviations: ANGPT, angiopoietin; AREG: amphiregulin; BCG, bacillus

Calmette-Guérin; BEC, blood endothelial cells; BET, basophil extracellular

traps; CAF, cancer-associated fibroblast; CML, chronic myeloid leukemia;

CRC, colon carcinoma; CSF1, colony-stimulating factor 1; CSU, chronic

spontaneous urticaria; cys-LT, cysteinyl leukotriene; cys-LTR, cysteinyl

leukotriene receptor; CyTOF, cytometry by Time-Of-Flight; DC, dendritic

cell; DMBA, 7,12- dimethylbenz[a] amthracene; ET, extracellular trap; Flt3L,

l, FMS-like tyrosine kinase 3 ligand; HGF, hepatocyte growth factor; ILC2,

group-2 innate lymphoid cell; JAK2, janus kinase 2; LTC4, leukotriene C4; MI,

myocardial infarction; NET, neutrophil extracellular trap; NGF, nerve growth

factor; nLung, non-involved lung tissue; NSCLC, non-small cell lung cancer;

PC, pancreatic cancer; PDAC, pancreatic ductal adenocarcinoma; PV,

polycythemia vera; PGD2, prostaglandin D2; PGE2, prostaglandin E2; SCC,

squamous-cell carcinoma; TAM, tumor-associated macrophage; TDLN,

tumor-draining lymph nodes; Tfh, T follicular helper cell; TME, tumor

microenvironment; TPA, 12-0-tetradecanoylphorbol-13-acetate; Treg cell, T

regulatory cell; TrkA, tropomyosin receptor kinase A; TSLP, thymic stromal

lymphopoietin; TSLPR, TSLP receptor; VEGF, vascular endothelial growth

factor; VISTA, V-domain immunoglobulin suppressor of T-cell activation;

WT, wild type.
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expected with in vitro vs. in vivo experiments (18). Nonetheless,

the one newest function perhaps most shared by basophils from

both species is their capacity to secrete large quantities of IL-4,

even though debate persists about the stimuli most responsible

for this response.

Many fundamentals of basophil biology have been

extensively reviewed elsewhere, especially regarding their role

in allergic diseases (5, 19–24). In this review, we briefly touch on

this research field but will additionally focus on the concept of

basophils participating in tumorigenesis and wound-healing and

how these processes are seemingly linked and driven by the

capacity of these cells to secrete IL-4, IL-13, angiogenic factors

and pro-fibrotic cytokines.
Basophil development

Basophils originate from stem cell progenitors in the bone

marrow (25–27). Both in humans and mice, IL-3 is the most

important growth factor for basophil development (12, 17, 28,

29). In fact, basophils from both species can be developed in

vitro by simply culturing bone marrow cells (or CD34+

precursors in humans) in the presence of IL-3 for 10-14 days

(12, 30–32).

While IL-3 is clearly most important for basophil

development from precursors, other growth factors are

reported to facilitate expansion/function. For example, the

FMS-like tyrosine kinase 3 ligand (Flt3L) has been combined

with IL-3 to expand the number of culture-derived basophils

(33). Siracusa and co-workers reported that mouse basophils can

be generated by thymic stromal lymphopoietin (TSLP) through

the engagement of the heterodimeric TSLP receptor (TSLPR/IL-

7Ra) (34). These authors demonstrated that IL-3 and TSLP

induced the differentiation of two types of murine basophils

displaying different gene expression and functions (35). In

humans, it has been suggested that about 10% of basophils

from asthmatics express the TSLP receptor and release

histamine and cytokines in response to TSLP (15). In contrast,

more recent studies have shown that human basophils do not

express the IL-7Ra subunit of the heterodimeric TSLP receptor

(14) and do not respond to in vitro TSLP stimulation (12, 14,

16). By contrast, TSLP induces the release of IL-4, IL-13, CXCL1,

and CXCL2 from mouse basophils (12).
Heterogeneity of basophils: In species
and tissue versus peripheral blood

Human and mouse basophils express FceRI (36, 37) and will

up-regulate the degranulation markers, CD63 (38–40) and

CD203c when activated appropriately (9, 39, 41–43). Basophils

from humans and mice express the IL-3 (IL-3Ra/CD123) (34,
frontiersin.org
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44), GM-CSF (CD116) (45, 46), and IL-33 (ST2/IL1RL1)

receptors (47–50). The heterodimeric TSLP receptor, TSLPR/

IL-7Ra, is expressed by mouse basophils (12, 34), but the

presence of this receptor on basophils from allergic donors

and healthy subjects remains controversial (12, 14–16).

Human basophils reportedly express receptors for IL-5

(CD125) (51) and for Nerve Growth Factor (NGF)

(tropomyosin receptor kinase A: TrkA) (52–54). Both human

and mouse basophils display a variety of chemokine receptors (5,

55–60). The IgG receptors FcgRIIA, FcgRIIB, and small amounts

of FcgRIIIB are expressed by human basophils, whereas mouse

basophils express FcgRIIB and FcgRIIIA (61, 62).

Preformed mediators, such as histamine (≃ 1 pg/cell),

basogranulin (63, 64) and very low concentrations of tryptase

(65) are present in human basophils. Human (66) and mouse

basophils release granzyme B (67), that reportedly exerts

cytotoxic effects on tumor cells (68, 69). Basophils from both

species can synthesize cysteinyl leukotriene C4 (LTC4) through

the 5-lipoxygenase pathway (70). Mouse basophils additionally

produce prostaglandin D2 (PGD2) and prostaglandin E2 (PGE2)

through the cyclooxygenase pathway (71, 72). Human basophils

do not synthesize detectable levels of PGD2 or other mediators

requiring cyclooxygenase activity (12, 73).

Substantial evidence now shows that human (12, 24, 74–82)

and mouse (12, 47, 80) basophils secrete IL-4. Both human (12,

75, 76, 78, 81–85) and mouse basophils (12, 47) also generate

and release IL-13, yet the evidence for this response is far more

prevalent in the former species. Mouse basophils can release IL-6

(47, 86, 87) and TNF-a (47, 86). Two reports indicate that these

cytokines are secreted from human basophils (88, 89), even

though they do not appear to be products commonly released by

these cells. Human and mouse basophils release granzyme B (66,

67) that exerts a cytotoxic effect on tumor cells.

Human basophils secrete several angiogenic factors such as

vascular endothelial growth factor-A (VEGF-A) (64),

angiopoietin-1 (ANGPT1) (90), hepatocyte growth factor

(HGF) (47, 91), and amphiregulin (AREG) (92–94). Mouse

(47) and human basophils (91) express Hgf and release, under

certain conditions, AREG (94) and VEGF-A (Gambardella

et al., unpublished).

The life-span of circulating basophils is relatively short (≃
2.5 days in mice) (95) and therefore newly generated basophils

are constantly supplied from the bone marrow to the blood (25).

Basophils physiologically circulate in peripheral blood and

migrate within tissues mainly during certain types of

inflammation in mice (86, 95–98) and humans (99–104).

Basophils, present during mouse lung development, exhibit a

phenotype different from circulating blood basophils (47). In the

lung, specific gene signature of lung-resident basophils is

modulated by IL-33 and GM-CSF (47). These cells play a
Frontiers in Immunology 03
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prominent role in the development and polarization toward

the M2 state of alveolar macrophages, raising the possibility that

in tumors associated with M2macrophages (105–107), basophils

contribute the polarization of tumor-associated macrophages.

Basophils derived from murine bone marrow cells are often

used as a model system for studies of the immunological

functions of these cells (86, 97, 108–111). It should be pointed

out that these cells, developed by murine bone marrow cells in

the presence of IL-3, have an activated phenotype (82, 112).

Recently, Pellefigues et al. carefully demonstrated functional

heterogeneity between naïve murine basophils obtained from

spleen and bone marrow-derived basophils (108). In humans,

functional heterogeneity of peripheral blood basophils has been

demonstrated by applying mass cytometry (CyTOF) to

simultaneously assess several proteins and functions of

basophils (113).
Angiogenic factors released by basophils

Angiogenesis occurs physiologically during embryonic

development, pathologically in inflammation and cancer (114,

115). Both cancer and immune cells (116, 117) produce several

proangiogenic factors (118, 119). The vascular endothelial

growth factor (VEGF) family includes VEGF-A, VEGF-B,

VEGF-C, and VEGF-D. VEGFs activate specific receptors

(VEGFR1, VEGFR2, and VEGFR3) on blood endothelial cells

(BECs). VEGF/VEGFR axis plays pivotal roles in tumor and

inflammatory angiogenesis (118). VEGF-A is released by human

basophils (64). All members of the VEGF family are chemotactic

for human basophils through the engagement of VEGFR2 on

their surface (64, 120). Therefore, VEGFs released by cancer cells

and immune cells in the tumor microenvironment (TME) (118,

120–123) can favor basophil infiltration in TME.

Angiopoietins (ANGPTs) are other players of inflammatory

and tumor angiogenesis (124, 125). ANGPT1, released by

perivascular mural cells, binds to the Tie2 receptor on

endothelial cells and promotes endothelial stabilization (126).

ANGPT2, secreted by activated endothelial cells, induces

vascular permeability (127). ANGPT1 and ANGPT2 mRNAs

are expressed by human basophils (90), and their activation

induces ANGPT1 release. Mouse lung-resident basophils

express mRNA for HGF, a potent angiogenic factor (47, 91, 128).

Cysteinyl leukotrienes (cys-LTs) are powerful proinflammatory

mediators (129). The cys-LTs include leukotriene C4 (LTC4), the

main lipid mediator synthesized by human and mouse basophils

(54, 70). ɤ-glutamyl transpeptidases metabolize LTC4 to LTD4 and

to LTE4 by the membrane-bound enzymes (129). Cys-LTs are

potent agonists of three different receptors (CysLTRs) CysLT1R,
frontiersin.org
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CysLT2R, and CysLT3R (130–132). LTC4 and LTD4 induced the

formation of angiogenesis (133). The angiogenic properties of LTC4

and LTD4 were mediated in vivo by the activation of CysLT2R on

BECs. In mouse models, pharmacologic antagonism of CysLT2R

inhibited tumor growth and metastasis formation (133). These

results illustrate the relevance of cys-LTs as non-canonical

angiogenic factors in cancer. Moreover, these findings suggest

that CysLT2R might be a target in cancer (133). LTC4 is released

by activated human (70, 134) and mouse (54) basophils and future

studies should investigate whether basophil-derived LTC4 might

contribute to angiogenesis in human cancer.
Formation of extracellular DNA traps
by basophils

Activated neutrophils (135–137), eosinophils (138, 139),

mast cells (140–143), macrophages (144–148), and basophils

(149, 150) can release extracellular traps (ETs), which are DNA

structures decorated with a variety of proteins [e.g.,

myeloperoxidase and elastase) (151), lactoferrin and pentraxin

3) (151, 152), and matrix metalloproteinase 9) (151)]. ETs

released by human neutrophils (neutrophils extracellular traps:

NETs) were initially characterized by their antibacterial activity

(138, 151, 153, 154). Increasing evidences demonstrate that ETs,

particularly NETs, play a role in asthma (137) and in

fundamental aspects of tumorigenesis (155). NETs favor the

formation of metastasis in mice and in humans (156–159) and

awaken dormant cancer cells (160). An increase of NET release

occurs when neutrophils from myeloproliferative neoplasms are

associated with JAK2V617F mutations and mice with knock-in of

JAK2V617F (161). We have provided evidence that anaplastic

thyroid cancer cells can induce NET formation (162).

Collectively, these findings demonstrate that NETs can

promote tumor growth and metastasis formation. Basophils

from humans and mouse can release extracellular DNA traps

(BETs) in vitro and in vivo (149, 150, 163). The translational

relevance of these findings should be explored in experimental

models and human cancers.
Basophils in allergic disorders

Basophils play a major role in a variety of allergic disorders

(8, 164–166). Anaphylaxis is a rapid-onset, potentially life-

threatening allergic reaction caused by the release of vasoactive

mediators from mast cells and basophils after allergen exposure

(167). Mouse models of anaphylaxis suggest that basophils play a

major role in the IgG-, but not IgE-mediated anaphylaxis (168).
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In these studies, the depletion of basophils by anti-CD200R3

mAb inhibited IgG-mediated anaphylaxis, whereas it had minor

effect on IgE-mediated anaphylaxis. By contrast, mast cells are

central for IgE-mediated mouse models of anaphylaxis

(168, 169).

Several lines of indirect evidence suggest that basophils

participate in human anaphylaxis (24). For example, the

number of circulating basophils was significantly lower in

subjects undergoing anaphylactic reactions compared to

healthy controls (170). Peanut-induced allergic reactions also

resulted in a significant decrease in circulating basophil counts

and an increase in CCL2 levels compared with those in pre-

challenge samples.

While there is a plethora of information from murine

models regarding the role of basophils in allergic/asthma-like

inflammation, the involvement of basophils in human asthma

again derives mainly from indirect evidence (164). Most

compelling, basophils have been found in the airways of

asthmatics (171, 172), in post-mortem cases of fatal asthma

(173) and after antigen challenge of airway mucosa (174).

Basophil releasability (i.e., the ability of a basophil to release a

given percentage of histamine in response to a given

immunological stimulus) is long reported to be increased in

asthma and more recently subject to circadian changes (175).

Moreover, allergen-induced asthmatic responses are

accompanied by infiltration of basophils expressing IL-4

mRNA (103). The in vitro secretion of both IL-4 and IL-13

has been shown to track with the basophil-enriched fractions of

cells recovered after infiltrating the lung following segmental

allergen challenge (176, 177). Moreover, these so-called basophil

cytokine responses also correlated with the frequency of

eosinophils recovered from the lung. Thus, basophils might

represent an important source of Th2-like cytokines (IL-4 and

IL-13) in the lung microenvironment, particularly that

associated with human allergic disease.

Brooks and collaborators reported that basophils are

increased in the sputum of patients with eosinophilic asthma

compared to those with non-eosinophilic asthma (178). In

asthmatics, basophils were positively correlated with sputum

eosinophils and inversely with sputum neutrophils, but not with

FEV1, FEV1/FVC or bronchodilator reversibility. Sputum

basophils positively correlated with sputum eosinophils (179).

In comparison with blood basophils, sputum basophils have a

higher expression of activation markers (e.g., CD203c) (179).

These findings indicate that basophils may be involved in

eosinophilic asthma and that sputum basophil assessment

could be a useful additional indicator of “Th2-high” asthma.

Basophil counts in peripheral blood during childhood asthma

are associated with exacerbations (180). The proportion of

degranulated basophils can also be associated with

recurrent exacerbations.
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Hill et al. reported that omalizumab, a mAb that targets IgE

and neutralizes it from binding to FceRIa on basophils, reduces

blood basophil frequencies in asthmatic children (181).

Furthermore, treatment of severe asthma patients with

benralizumab, a mAb against IL-5Ra, markedly decreased the

number of both eosinophils and basophils (182–184). These

findings suggest that benralizumab may have a positive effect on

severe asthmatics by reducing not only eosinophils but

also basophils.

A number of mouse studies indicate that basophils are

involved in the development of asthma-like pathology. In an

ovalbumin-induced asthma model, basophils recruited to the

lungs, amplify the Th2 cell differentiation (185). In a papain-

induced asthma model, basophil-derived IL-4 induces the IL-5

and CCL11 expression in ILC2 cells, causing eosinophil

infiltration (68). Indeed, in a model of IgE-dependent

dermatitis, the production of IL-4 from basophils was shown

to directly condition endothelium for increased VCAM-1

expression, which facilitated the in vivo entry of eosinophils

into lesion sites (186). This mechanistic observation may help

elucidate the eosinophil/basophil IL-4 associations commonly

seen in human disease.

Chronic spontaneous urticaria (CSU) is a common skin

disease, characterized by spontaneous appearance of wheals,

angioedema or both, for more than 6 weeks due to known or

unknown causes (187, 188). A role for basophils in the

pathophysiology of CSU is suggested by a number of findings

(189, 190). CSU subjects have been shown to have significant

increases in the numbers of intradermal basophils compared

with non-atopic control subjects (191). Basopenia has long been

reported in patients with CSU (192) and more recently

postulated as the result of basophil migration from the

circulation into the skin (104, 191, 193). The degree of

basopenia often correlates with disease severity (194) and

improves during times of remission (195). CSU subjects

exhibit enhanced expression of the activation markers CD63

and CD69 on basophils compared to non-allergic subjects (196).

Rauber et al. identified three distinct immunologic

phenotypes of CSU (197). One group of patients’ basophils

reacted to FcϵRI stimulation, whereas the others had anti-

FcϵRI nonreactive basophils. Among the latter, it was found a

subgroup with basopenia. This subgroup had augmented serum-

induced basophil activation, increased levels of autoantibodies

against thyroid peroxidase, and worse quality of life. These

phenotypes were associated with different cl inical

characteristics, pointing to basophils as important players in

CSU pathophysiology (197). Oda et al. demonstrated that

basophils from CSU patients had higher FceRI expression

compared to healthy controls. The proportion of CD203chigh

basophils after anti-IgE or anti-FceRI stimulation was lower in
Frontiers in Immunology 05
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CSU patients compared to controls and characteristics of more

severe patients (198).

Omalizumab is a mAb anti-IgE often used in treating severe

allergic asthma (199, 200). More recently, it has also proved highly

effective in patients with CSU (201). Surprisingly, this treatment,

regardless of the disease being treated, is associated with increased

expression of Syk, which is often also manifested by basophils

showing greater histamine release in vitro when undergoing IgE/

FceRIa-dependent stimulation. This enhanced responsiveness is

seen even through cell-surface FceRIa/IgE levels are reduced with

this treatment (196, 202). These observations have since prompted

the same group of authors to suggest that Syk expression and IgE-

mediatedhistaminerelease inbasophils could functionasbiomarkers

forpredicting the clinical efficacyof omalizumab inpatients receiving

this therapy (203).

In following CSU subjects treated with omalizumab,

MacGlashan and collaborators have also identified three basophil

phenotypes in CSU patients: 1) subjects with basopenia, 2) normal

basophil numbers with normal IgE-mediated histamine release, and

3) normal basophil numbers with poor histamine release. Basopenia

was associated with the presence of autoantibodies to unoccupied

FcϵRI and basophil numbers did not change during omalizumab

treatment. Omalizumab resulted in similar kinetics for decreases in

surface FcϵRI and IgE in all three groups of CSU patients (204).

Atopic dermatitis is a common inflammatory skin disorder

characterized by chronic eczema and severe itching (205). Th2

cells mediate inflammation in atopic dermatitis with the release

of IL-4 and IL-13, which contribute to clinical manifestations

(206, 207). Keratinocyte-derived alarmins, such as IL-33, TSLP,

and IL-25 (IL-17E) that elicit Th2 cytokines responses by

activating group-2 innate lymphoid cells (ILC2s) play an

upstream pathogenic role in atopic dermatitis (208, 209).

Recent evidence indicates that LTC4 also plays a role in mouse

models of atopic dermatitis (210). IgG autoantibodies against

IgE from atopic dermatitis can induce the release of IL-4/IL-13

and LTC4 from human basophils (134, 211), indicating that

these cells contribute to this allergic disorder.

Early studies reported that up to 80% of food-allergic children

exhibit high spontaneous basophil histamine release (212).

Moreover, food-allergic children release histamine in response to

an IgE-dependent histamine-releasing factor (213). Schroeder and

collaborators demonstrated that basophils from food-allergic

children also spontaneously release IL-4 and overexpress CD203c

(214). Interestingly, spontaneousbasophil histamine release and IL-4

secretion decreased in children undergoing sublingual

immunotherapy (215). In vitro studies show that this enhanced

releasability of histamine and IL-4 from basophils of food-allergic

children is transferred to basophils of normal subjects by sensitizing

normal cells with plasma from the former group. However, the

addition of omalizumab during this passive sensitization completely
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abated the responses, thus pointing to the involvement of IgE in

transferring hyperresponsiveness (214).

Figure 1 schematically illustrates the versatile contribution of

basophils and their mediators to the development of

allergic disorders.
Peripheral blood basophils in human
hematological tumors

Polycythemia vera (PV) is a clonal proliferation of erythroid,

megakaryocytic, andmyeloid cell lines (232, 233).More than 90% of
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patientswith JAK2-STATactivatingmutations (JAK2V617For exon

12mutations) are characterizedbyanoveractive JAK-STATpathway

(234, 235). Pruritus and increased basophil-derived mediators (e.g.,

histamine) are common in PV patients (233, 236, 237). Peripheral

blood basophils (238) and CD63 expression are increased in PV

patients and are hyperresponsive to IL-3. Increased releasability of

histamine from PV basophils can contribute to pruritus in

these patients.

Basophilia can develop during the advanced phase of chronic

myeloid leukemia (CML) (239) and the transcription factor IKAROS

is reduced in the bone marrow from these patients (240). Basophils

from CML patients express HGF, promoting CML cell expansion
FIGURE 1

Schematic representation of the versatile role of basophils in the pathobiology of allergic disorders. Several immunological (i.e., allergens,
superallergens, viral, bacterial and fungal proteins, cytokines) and non-immunological stimuli (e.g., pollutants, diesel exhaust particles) activate
mucosal (i.e., lung and gut) and skin barriers to release different alarmins (i.e., TSLP, IL-33, IL-25) (130, 216, 217). Alarmins activate group 2 innate
lymphoid cells (ILC2s) through the engagement of specific receptors (TSLPR, ST2, IL-25R, respectively) (218, 219) to release IL-5 and CCL11 that
promote eosinophil infiltration into inflamed tissue (220, 221). Human and mouse basophils express the high-affinity receptor for IgE (FceRI) (36,
37) and the receptors for IL-3 (IL-3Ra/CD123) (34, 44), GM-CSF (CD116) (45, 46), IL-33 (ST2/IL1RL1) (47–50), IL-5 (CD125) (51) and a variety of
chemokine receptors (5, 55–60). The TSLP receptor (TSLPR/IL-7Ra) is expressed by mouse basophils (12, 34), but its presence on basophils
from allergic and healthy donors remains controversial (12, 14–16). TSLP activates mouse but not human basophils (12, 17). IL-3 plays a key role
in the development, survival and activation of human and mouse basophils (17). IL-3 activates human and mouse basophils to release cytokines
and chemokines (12, 17, 46, 222). IgE-FceRI crosslinking by antigens, superallergens and functional anti-IgE autoantibodies activates basophils to
release a wide spectrum of inflammatory and immunomodulatory factors (24, 70, 75, 76, 78, 79, 134, 211, 223). IL-33 activates human and
mouse basophils to release several cytokines and chemokines (12). Activated human (12, 24, 74–82) and mouse (12, 47, 80) basophils secrete
large amounts of IL-4. Both human (12, 75, 76, 78, 81–85) and mouse basophils (12, 47) also release IL-13. Human basophils secrete several
angiogenic factors such as vascular endothelial growth factor-A (VEGF-A) (64). Basophil-derived IL-4 activates ILC2s to enhance the release of
IL-5 and CCL11, leading to eosinophil infiltration (68). IL-4 promotes Th2 cell differentiation and enhances humoral immune responses (224). IL-
4, together with IL-13, induces T follicular helper cells (Tfh) to promote IgE responses (225, 226). Basophil-derived IL-4 and IL-13 act on
inflammatory monocytes inducing their differentiation into M2 macrophages (227). IL-4 and IL-13 activate fibroblasts to promote the production
of chemokines (CCL5 and CCL11) (228) and collagen (229). IL-4 and IL-13 and vasoactive mediators (histamine, LTC4, VEGF-A) act on blood
endothelial cells (64, 230) to upregulate the expression of vascular cell adhesion molecule-1 (VCAM-1) (231), leading to enhanced trans-
endothelial migration of eosinophils and basophils (186).
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(91). In a mouse model of CML, basophil-derived CCL3 promotes

CML development (241, 242). The presence of basophilia is

considered an independent risk factor for the progression from

myelodysplastic syndrome to acute myeloid leukemia (243, 244).
Basophils in solid cancers

Basophils are physiologically present in low numbers in

peripheral blood. Under certain inflammatory circumstances, the

number of circulating basophils can be altered, activated, or migrate

from the bloodstream to the sites of inflammation (23, 245).

Increased and decreased peripheral blood basophils can be

associated with the progression of certain human solid cancers

(Table 1) (256, 257). Basophilia positively correlates with improved

outcomes in melanoma (246, 247), ovarian cancer (248), non-small

cell lung cancer (NSCLC) (251), and glioblastoma (252), while

basopenia is associated with a poor prognosis for colorectal cancer

(245, 249, 250). Basophilia is also linked to improved outcomes in

melanoma patients receiving immunotherapy (247). By contrast, in

other solid tumors, such as prostate (253) and gastric cancers (250), a

detrimental role of circulating or tissue-infiltrating basophils has

beenreported.Moreover, baselinebasophil countpredicts recurrence

in bladder cancer patients receiving bacillus Calmette-Guérin (BCG)

following resection (254). Interestingly, in a mouse model of breast

cancer, basopeniacorrelatedwithan increasednumberofpulmonary

metastasis (258). However, basophils are not associated with

prognosis in breast cancer patients (259). Basophils may support

humoral immunity by secreting several B-cellmodulatingmolecules.

Once activated, basophils may express CD40L, IL-4, and IL-6 to

sustain B-cell proliferation and empower the production of IgM and
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IgG1. Gomez and colleagues demonstrated that, in vitro and in vivo,

basophils sustain plasma cell survival (245, 260). Histamine is

released from basophils and it has been suggested that it can be

involved in colon carcinoma (CRC) (245).

Bax and coworkers have investigated the presence and functions

of basophils from peripheral blood and in ovarian cancer (248). The

same group reported that basophilia and basophils who possess

greater ability for ex vivo stimulation are associated with improved

outcomes (261). Additionally, a positive correlation between

improved progression-free survival of patients and activated

basophil markers (CD63+, CD203c+, CD123, CCR3, FceRI) was
observed in the TME of ovarian cancer (Bax, Chauhan et al., 2020).

These results indicate that activated peripheral blood and

intratumoral basophils correlate with a survival benefit in ovarian

cancer patients (261). Nevertheless, these favorable effects that

basophils might mediate in targeting the tumor for destruction can

potentially result in unfavorable outcomes. For example, basophils

have been found in ascitic fluid from ovarian cancer patients and it

has been suggested that their release of vasoactive mediators (e.g.,

histamine) may exacerbate fluid accumulation in the peritoneal

cavity (58).

It has been reported that the expression of cytokines by lung-

resident basophils can be induced by local signals (e.g., IL-33, GM-

CSF) (47, 102), emphasizing the plasticity of these cells. Hence, the

lung microenvironment might influence the transcriptional and

functional development of basophils. Likewise, these resident

basophils seemingly play an important role in lung development

and function by forming cellular networks and facilitating so-called

macrophage imprinting. Low percentages of basophils (0.4%) were

located in the immune infiltrate of humannon-small cell lung cancer

(NSCLC) tumors (262). Basophils have been identified in the
TABLE 1 Role of peripheral blood basophils in human solid cancers.

Tumor
type

Prognostic/
predictive role

Reported observation References

Melanoma Favourable Basophilia is associated with improved outcome in melanoma patients receiving immunotherapy with nivolumab
plus ipilimumab and in newly diagnosed stage I-II melanoma patients

(246, 247)

Ovarian
cancer

Favourable A higher frequency of circulating basophils and the presence of activated basophil signature are associated with
improved overall survival in ovarian cancer patients

(248)

Colorectal
cancer

Favourable Low pretreatment basophil counts are associated with worse prognosis and higher tumor aggressiveness in colorectal
cancer patients

(245, 249,
250)

NSCLC Favourable Higher basophil counts are associated with increased probability of responding to ICI therapy in two cohorts of
stage-IV NSCLC patients

(251)

Glioblastoma Favourable Increased pre-operation circulating basophils predict better progression free survival in patients (252)

Prostate
cancer

Unfavourable Elevated baseline basophils and basophil-to-lymphocyte ratio are associated with worse clinical outcomes in
metastatic hormone sensitive prostate cancer patients

(253)

Bladder
cancer

Unfavourable Baseline basophil count may predict recurrence in BCG-treated primary bladder cancer patients (254)

Gastric
cancer

Unfavourable Elevated baseline basophil counts are prognostic for unfavorable clinical outcomes in gastric cancer patients treated
with ICI plus chemotherapy,

(255)
fr
BCG, Bacillus Calmette-Guérin; ICI, immune checkpoint inhibitors; NSCLC, non-small cell lung cancer.
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immune landscape in early (stage I) lung adenocarcinoma and in

non-involved lung tissue (nLung) (102). It remains unclear what the

exact function basophils mediate in the TME, yet emerging evidence

points to their capacity to secrete IL-4 and IL-13asplaying apotential

role. For example, mouse and human studies have shown that

basophils, by secreting these cytokines, facilitate the development/

expansion of M2-like monocytes/macrophages (227, 263–265),

which are often a prominent part of the immune cell landscape of

the TME. However, in chronic inflammation, the exposure of

basophils to certain cytokines, such as IL-33, may induce the

polarization of lung macrophages to M2-like phenotype

characterized by the expression of anti-inflammatory genes Clec7a,

Arg1, Itgax. In this context, basophils are participants in the

inflammatory entourage in lung cancer (261). It seems equally

possible that basophil-derived IL-4/IL-13 also favor tumorigenesis

by diminishing Th1-like immunity that is better suited to contest the

cancer (80). Should these hypotheses prove correct, then another

important question that arises pertains to the endogenous stimulus

responsible for inducing these cytokines. In this regard, Schroeder

et al. demonstrated that purified human basophils release histamine,

IL-4 and IL-13 when co-cultured with the lung adenocarcinoma cell

line A549 (16). Unexpectedly, these effects required IgE-expressing

basophils and were suppressed by specific inhibitors of FceRI
signaling. A subsequent study revealed that the IgE-binding lectin,

galectin-3, expressedon theA549cells,was responsible for thismodel

of basophil activation (223). In fact, galectin-3 is a biomarker and/or

factor implicated in many kinds of cancer, chronic inflammation,

cardiovasculardisease, autoimmunity, andalsobeneficially inwound

healing (266). These results thus reveal an innovative mechanism by

whichgalectin-3 expressedbyhuman lungcarcinomacells are able to

activate basophils [and likely other cell types, namely dendritic cells

(DCs) and monocytes] (267) to release cytokines and pro-

inflammatory mediators. Further studies are necessary to

understand the role of galectin-3 in activating basophils, and how

IL-4/IL-13 and other mediators could contribute to human and

experimental lung cancer.

Interestingly, many immune cells and markers that have a

mounting prominence in cancer/tumorigenesis are also

observed in experimental models of wound healing. For

example, scaffolds that promote wound-healing often induce

Th2 immune responses, whereby IL-4 and IL-13 are recognized

as critical cytokines that help initiate the process (268). M2 cells,

whose development is often dependent on the actions of IL-4/IL-

13, are also widely implicated in wound healing. Not

surprisingly, much emphasis is placed on the role of Th2 cells

in being the source of IL-4/IL-13. However, in a recent

publication that explored the mechanisms associated with

wound healing following experimental myocardial infarction

(MI), basophils were identified as a critical source of IL-4/IL-

13 required for the healing process. Specifically targeting

basophils using conditional knockouts or by antibody-
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mediated depletion, significantly impaired this wound healing

(269). Moreover, the administration of IPSE-a1, an IgE-binding

glycoprotein isolated from helminth eggs and well known for

activating basophils for IL-4/IL-13, greatly augmented healing

following the MI. While the endogenous ligand for stimulating

IL-4/IL-13 from basophils in this model was not reported, it is

intriguing to speculate that galectin-3 is involved. Indeed,

galectin-3 is often a prominent marker in wound healing, both

at the transcriptional and protein levels (266).

Investigation on the role of basophils in models of

melanoma has provided interesting results in Foxp3DTR mice,

in which these cells caused melanoma rejection (270). CCL3 and

CCL4 produced by intratumoral basophils induced CD8+

lymphocyte recruitment in TME. The administration of FcϵRI
(MAR-1) mAb in Foxp3DTR melanoma-bearing mice depleted

basophils and abrogated the recruitment of CD8+ T cells thus

preventing the rejection of melanoma. Furthermore, the IL-3/

anti-IL-3 antibody complexes combined with adoptive T cell

transfer induced basophilia and consequent T cell infiltration,

which positively correlated with melanoma rejection.

Unfortunately, the MAR-1 antibody can also deplete/activate

other immune cells (e.g., mast cells, DCs, monocytes) which

express FcϵRI (271, 272). Thus, studies in newer genetically

engineered basophil-deficient mouse models (80, 97) appear

necessary to establish the role of basophils in melanoma.

IL-33 is a cytokine that induces tumoricidal functions in

eosinophils (273, 274) and upregulates granzyme B mRNA and

the surface expression of CD63 (67), suggesting phenotypic and

functional activation. Moreover, IL-33-activated basophils co-

cultured with B16.F10 melanoma cells, inhibited tumor cell-

growth compared to melanoma cells co-cultured with

unstimulated basophils (67).

In a pioneering observation, Ann M. Dvorak first

demonstrated piecemeal degranulation of basophils in human

pancreatic cancer (PC) (7). Elegant studies evaluated the role of

basophils in experimental and human ductal adenocarcinoma

(PDAC) (80). In PDAC patients, they identified IL4 expressing

basophils in tumor-draining lymph nodes (TDLNs). Basophils

in TDLNs were an independent negative prognostic biomarker

of patient survival. They also evaluated basophil role in PC using

the Mcpt8-Cre basophil deficient (275) and wild-type (WT)

mice. After PC implant, cancer was detected in 80% WT, but

not in basophil-deficient mice. Basophils were found in TDLNs

and cancer-associated fibroblasts (CAFs) released TSLP, which

activated DCs to produce IL-3 from CD4+ T cells. CCL7,

produced by DCs and CD14+ monocytes, induced basophil

migration into TDLNs. Basophils activated by IL-3 played a

pro-tumorigenic role through the production of IL-4, which

favored Th2 and M2 polarization. These findings are consistent

with our results indicating that basophil-derived IL-4 (and IL-

13) promote M2-like cells (263).
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Topical exposure of the skin ofmice to an environmental DNA-

damaging xenobiotic [i.e., 7,12-dimethylbenz [a] anthracene

(DMBA)] caused the development of squamous-cell carcinomas

(SCCs),highserumlevelsof IgEandtumor infiltrationof IgE-bearing

basophils (276). In this model, FcϵRI+ basophils mediated the

DMBA-induced IgE protection against carcinogenesis. In contrast,

topical exposure of the skinofmice to theproinflammatory agent 12-

0-tetradecanoylphorbol-13-acetate (TPA) increased serum IgE and

IgE-bearing basophils in the skin that promoted carcinogenesis (97).

In a two-stage model of epithelial carcinogenesis (DMBA and

subsequent exposure to TPA), Hayes and coworkers also

discovered that mice lacking IgE (lgh7-/-) were less responsive to

tumor development compared to WT mice (97). IgE-signaling was

crucial for mediator release from basophils and infiltrating tissue

basophils showed expression of Cxcr2, Cxcr4, and Ptgdr2 (CRTH2,

the PGD2 receptor). Basophil infiltration into the inflamed skin was

mediated by TSLP/IL-3-mediated upregulation of CXCR4 on

basophils. The Mcpt8Cre/+ mice, presenting normal mast cell

numbers but strongly reduced basophils (275), were less responsive

to tumor growth. Table 2 summarizes the role of basophils in the

TME of different solid cancers.

Colony-stimulating factor 1 (CSF1) is a primary regulator of

monocytes/macrophage that sustains macrophage polarization

towards an M2-like phenotype (278). Mouse basophils resident in

the lung express high levels ofCsf1 and contribute toM2polarization

of lung macrophage (47). The functional relevance of basophil-

derived CSF1 was also underlined in vivo in a murine model of

atopic dermatitis, where it promoted M2-like macrophage
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polarization (279). Interestingly, an inhibitor of CSF1/CSF1

receptor signaling reduced tumor-associated macrophage (TAM)

infiltration in theTMEof sarcomamodels (278). These experimental

findings may have translational relevance in cancer: there is the

possibility that CSF1, in conjunction with basophil-derived IL-4/IL-

13, might enhance theM2-like/TAM polarization of macrophage in

TME (280).

A synopsis of the above findings signifies some conflicting views

of the role that basophils potentially mediate in tumorigenesis. A

more classical interpretation (from the ovarian, lung, colorectal, and

melanoma data) suggests basophils mediate anti-tumor effects (248,

261, 270, 276). While the mechanisms underlying the beneficial

outcomes are poorly defined, it has been proposed that some

basophil-derived mediators (e.g., granzyme B and TNF-a) exert
tumoricidal activity while others (e.g., CCL3 andCCL4) facilitate the

recruitment of cytotoxic CD8+ T cells (Figure 2). In contrast, there is

growing evidence that basophils, under certain circumstances, can

promote tumorigenesis (Figure 3). In this instance, the tumor cell

itself seemingly modulates basophil responses, causing a release of

cytokines that favor the development of protumorigenic TME.

Interestingly, this latter scenario shares many similarities with that

seen in wound healing.
Conclusions

Basophils were initially considered as effector cells of allergic

diseases (166, 230). The discovery that murine (290) and human
TABLE 2 Role of basophils in tumor microenvironment.

Tumor
type

Effect
on

cancer

Observed role Mechanism References

Melanoma Anti-
tumoral

Treg depletion results in infiltration of basophils and CD8+ T cells in the TME that
promote tumor rejection in mice
IL-33-activated mouse basophils induce melanoma cell death in vitro

CCL3/CCL4 secretion by intratumoral
basophils induces CD8+ T cell
recruitment in TME
Release of Granzyme-B

(270)
(67)

Ovarian
cancer

Anti-
tumoral

Activated signature (CD123, CCR3, FcϵRI, CD63, CD203c gene expression) in tumor-
resident basophils is associated with improved outcomes in these patients

NA (248, 261)

Lung
cancer

Anti-
tumoral

Higher expression of basophil markers (CD123, CCR3, and FcϵRI) in tumors is
associated with improved overall survival in lung cancer patients

NA (261)

Pro-
tumoral

Lung inflammatory cytokines trigger basophil-induced M2 polarization Basophil secretion of IL-4/IL-13 (47)

Skin
cancer

Anti-
tumoral

Topic exposure to DNA-damaging carcinogen DMBA promotes tumor-protective IgE
response through skin infiltrating basophils

Possible release of cytotoxic soluble
mediators

(276)

Pro-
tumoral

Skin inflammation by TPA, MC903 or R848 induced IgE/FcϵRI-signalling in basophils
promote epithelial carcinogenesis

TSLP/IL-3-mediated upregulation of
CXCR4 on basophils

(97)

Gastric
cancer

Pro-
tumoral

Increased tumor-infiltrating basophils in tissues from gastric cancer patients are negatively
associated with therapy response

Increased tumor M2 macrophage
infiltration

(255, 277)

Pancreatic
cancer

Pro-
tumoral

IL-4-secreting basophils are significantly increased in TDLNs of PDAC patients, correlate
with predominant Th2 inflammation and represent an independent prognostic factor of
poorer survival after surgery

Recruitment in TDLN mediated by
alternatively activated monocyte-
secreted CCL7/MCP3

(80)
fron
DMBA, 7,12-dimethylbenz [a] anthracene; MC903, vitamin D3 analogue; NA, not assessed; PDAC, pancreatic ductal adenocarcinoma;R848, resiquimod; TPA, 12-O-tetradecanoylphorbol-13-acetate.
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basophils produce immunomodulatory cytokines (e.g., IL-4, IL-

3, and IL-13) (28, 76–78, 81, 85, 291) changed dramatically this

erroneous concept. In addition, human and murine basophils

release several canonical (24, 64, 90, 91) and non-canonical

angiogenic factors (133) that play a pivotal role in inflammatory

and tumor angiogenesis. Further in vitro and in vivo studies are

needed to investigate the contribution of angiogenic factors

released by mouse and human basophils in experimental and

human tumors.

Basophils have been identified in human lung (102), gastric

(99, 100), pancreatic (7, 80) and ovarian cancer (248). Lung-

resident basophils (47) can provoke M2 polarization of lung

macrophages, as occurs in several tumors (105, 106). The

presence of basophils and their activation signatures appear to

be linked with more favorable patient outcomes in certain

tumors (melanoma, lung cancer, ovarian cancer) (248, 261,

270). Otherwise, with particular reference to gastric and

pancreatic cancers, increased tumor-infiltrating basophils are

negatively associated with less favorable overall survival (80,

255, 277).

Basophil functions in vivo have been evaluated through

several models of basophil-deficient mice (275, 292–294). It
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should be remembered that, in some instances, studies using

antibody-depleted basophils have produced erroneous findings

due to lack of antibody specificity (271, 272) and even new

mouse basophil-targeted mutants have some off-target

hematological alterations (295). Therefore, the evaluation of

basophil functions in complex and heterogeneous disorders,

such as cancer and allergic diseases using multiple genetically

engineered models of basophil deficiency, demands caution in

data interpretation.

Collectively, recent findings highlight the critical contributions

of basophils during homeostatic conditions and beyond their

ability to promote allergic inflammation. Further studies are

needed to understand the mechanisms and environmental

factors driving basophils to play a pro- or anti-tumorigenic role

in experimental and human cancers. A better knowledge of the

involvement and functions of basophils in human immunity

appears necessary considering the participation of these cells in

immune and cancer cell crosstalk and in priming of several

immune cell types. Single-cell RNA-seq of the immune

landscape of tumor cells will be of paramount importance to

characterize the role of basophils in different types of human and

experimental cancer. Understanding of the molecular mechanisms
FIGURE 2

Theoretical representation of how basophils can promote tumor suppression. Basophils have been located in the immune infiltrate of several
human (80, 102, 261, 262) and experimental tumors (80, 97, 102, 276). Vascular endothelial growth factors released by cancer cells and immune
cells in tumor microenvironment (TME) (e.g., mast cells, macrophages) (118, 120–123) can favor basophil infiltration in TME through the
engagement of VEGFR2 on these cells (120). IL-3, produced by intratumoral lymphocytes, mast cells and cancer cells (17, 82, 281), is the most
important growth and activating factor for human and mouse basophils, through the engagement of the IL-3 receptor (IL-3Ra/CD123) (17).
CCL3/CCL4 secreted by intratumoral basophils induces CD8+ T cell recruitment in TME, promoting melanoma rejection in mice (270). IL-33, a
pleiotropic cytokine produced by epithelial and tumor cells (282), plays a central role in tumorigenesis (282). IL-33 upregulates granzyme B
mRNA and the surface expression of CD63, suggesting functional and phenotypic basophil activation. IL-33-activated mouse basophils induce
melanoma cell death in vitro (67). Mouse (47, 86) and, under specific circumstances, human basophils (88, 89) release TNF-a. Human and
mouse basophils release granzyme B (66, 67). Both TNF-a and granzyme B exert cytotoxic effects on tumor cells (68, 69). Activated signature
(CD123, CCR3, CD63, CD203c gene expression) in tumor resident basophils is associated with improved outcome in ovarian cancer patients
(248, 261). Topical exposure to a DNA-damaging carcinogen promotes tumor-protective IgE response through skin infiltrating basophils (276).
Taken together, these results suggest that, in certain experimental and clinical conditions, basophils and their mediators may play an anti-
tumorigenic role.
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orchestrated by basophils in the TME of several cancer types could

allow to develop novel pharmacological/immunological strategies

to modulate basophil functions and perhaps to prevent

tumor progression.
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FIGURE 3

Theoretical representation of how basophils can promote tumor progression. Galectin-3 (Gal-3) is a lectin highly expressed by many types of
cancer cells, frequently manifesting as a marker of poor prognosis with capacity to mediate immunosuppression within the tumor
microenvironment (TME) (266). Recent in vitro studies show that Gal-3, expressed by the A549 adenocarcinoma cell line (or EC-Gal-3), has the
capacity to activate basophils to secrete copious amounts of IL-4/IL-13 (16, 223). Both cytokines are known to promote M2-like macrophages,
which are major players in the TME (227, 263–265). IL-4-producing basophils have been identified in the TME of human pancreatic cancer, with
mouse models indicating that this IL-4 promotes a Th2>Th1 response that is more conducive to tumorigenesis (80). Additionally, basophils are
long known to secrete VEGF-A (64) that promotes angiogenesis. Other studies show that basophils can induce IL-6/IL-8 secretion from cell
lines through a mechanism requiring cell-to-cell contact (283) (JTS, unpublished). This tumor cell-derived IL-6/IL-8 is implicated in playing a
critical role in metastasis formation (284). Likewise, dendritic cells and monocytes activated by EC-Gal-3 are shown to produce high levels of
TNF-a/IL-6 in vitro (285). Chronic production of these cytokines, when combined with M2 cell-derived IL-10/TGF-b, are implicated in
promoting T-cell exhaustion by up-regulating checkpoint inhibitors (e.g., PD-1) that interact with tumor cell-associated markers (PD-L1) to
suppress cytotoxic T cell activity (286). V-domain immunoglobulin suppressor of T-cell activation (VISTA) is another immune checkpoint
receptor which plays a role in cancer progression (287, 288) and regulates allergen-specific Th2-mediated immune responses (289). Overall, it is
proposed that the combined actions of these dysregulated innate immune responses synergize to promote tumorigenesis.
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Basophils have been implicated in type 2 inflammation and numerous disorders

in the skin such as helminth infection, atopic dermatitis, and urticaria. Although

similar in form and function to tissue-resident mast cells, classical studies on

basophils have centered on those from the hematopoietic compartment.

However, increasing studies in tissues like the skin demonstrate that

basophils may take on particular characteristics by responding to unique

developmental, chemotactic, and activation cues. Herein, we highlight how

recent studies in barrier immunology suggest the presence of skin-homing

basophils that harbor a unique identity in terms of phenotype, function, and

motility. These concepts may uniquely inform how basophils contribute to

diseases at multiple epithelial surfaces and our ability to therapeutically target

the innate immune system in disease.

KEYWORDS

basophil, CysLTR2, histamine, IL-33 and ST2, leukotriene C4, mast cell, MRGPRX2
Introduction

Basophils are rare granulocytes, accounting for <1% of leukocytes in the peripheral

blood, spleen, and bone marrow. Basophils were first described by Paul Ehrlich in 1879.

Subsequently, several groups have discovered that basophils in the blood are a source of

histamine in the 1950s (1–3). However, it was not until 1972 that basophils were shown

to be activated by allergens in an IgE-mediated fashion (4). Given their similarity in form

and function to tissue-resident mast cells, basophils have long been considered

“circulating mast cells”, although their differences and similarities are often debated.

Thus, they have long been studied as a surrogate for mast cells due to their accessibility

via the peripheral blood.

Monitoring of human basophils by flow cytometry has revealed changes in cell

surface markers and activation of basophils (5). Moreover, a recent study on human

basophils by Blom et al. reported unique chemokine receptor expression patterns upon
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IgE-mediated or non-IgE-mediated activation, strongly

suggesting heterogeneous activation manners in human

basophils (6). In contrast to human basophils, the

characteristics and functions of murine basophils in vivo have

come to light with the advent of antibody-mediated cell

depletion methods (e.g., anti-FcϵRIa, CD200R3, or Thy1

antibodies) (7–9). However, such methods were not sufficient

to distinguish the unique role of murine basophils from mast

cells in vivo due to the bystander effects on mast cells. This

problem was overcome with the development of unique

transgenic mouse technologies and the identification of

basophil-specific genes and markers (e.g., Mcpt8-DTR, Mcpt8-

Cre, Bas-TRECK Tg, and Basoph8 mice) (10–13). Indeed, these

advances have made it possible to directly compare basophils

with mast cells, revealing that these two myeloid cell populations

differ in surface marker expression, factors required for terminal

differentiation, signaling pathways, release of inflammatory

mediators, and impact on disease.

Furthermore, it is generally accepted that basophils are

effector cells of the innate immune system that promote type 2

immunity and inflammation through the release of a variety of

mediators including the type 2 cytokines IL-4 and IL-13.

Although residing in the circulation, basophils are rapidly

recruited into the tissues such as the intestine, lung, and skin

upon inflammation (14). Thus, they have been implicated in

promoting the expulsion of helminth parasites from mucosal

barriers and in the pathophysiology of a variety of allergic

disorders such as asthma, atopic dermatitis (AD), food allergy,

and chronic spontaneous urticaria (CSU) (15–19). Further,

recent studies have shed light on novel functions of basophils

which may even reside in peripheral organs (20–22). However,

how basophils are recruited to the tissues upon stimulation and

the manner in which they are activated or survive in tissues

remain poorly understood. Moreover, the precise contribution

of basophils to various allergic disorders such as AD continues to

be debated even though many studies have implicated basophils

as putative drivers in AD pathogenesis based on both mouse and

human studies (17, 23–27).

Herein, we highlight recent advances in basophil biology in

peripheral organs such as the skin and how they provoke new

hypotheses and theories about basophil function more broadly.

We propose revisiting a number of assumptions about the

properties of basophils in tissues using new approaches,

technology, and therapeutics.
Developmental, maturation, and
activation cues from the tissue

Both basophils and mast cells differentiate from

hematopoietic stem cells via common myeloid progenitors and

granulocyte monocyte progenitors (GMPs). Although similar in
Frontiers in Immunology 02
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terms of granularity, expression of the high affinity IgE receptor

(FcϵRI), and shared effector molecules, basophils largely reside

in the circulation while mast cells reside in other tissues. Recent

studies demonstrate that mast cells arise from the yolk sac and

aorta-gonad-mesonephros, and the degree to which they are

replenished by bone marrow precursors is variable depending on

the organ (28). Skin-resident mast cells, in particular, are devoid

of bone marrow-derived mast cells and are mostly seeded in the

early phase of embryonic development (29, 30). These findings

help to explain, at least in part, why the majority of allergic

disorders involving mast cells develop early in life. Furthermore,

these findings provoke the hypothesis that dysregulated mast cell

development could be one explanation for the heterogeneity of

allergic pathologies and therapeutic responses. Notwithstanding

these insights into the diversity of mast cell subpopulations, it is

largely unknown whether related developmental sophistication

underlies basophil heterogeneity.

IL-3 is an important growth factor for both basophils and

mast cells (31). For example, IL-3 deficient mice exhibited

impaired expansion of basophils and mast cells in a setting of

nematode infection despite no obvious abnormality in their

number at steady state (32). IL-3 is also capable of promoting

basophil differentiation from bone marrow cells and survival in

vitro (33, 34). Moreover, IL-3 augments cytokine production

from basophils after IgE crosslinking, a canonical activation

mechanism in basophils (35). Collectively, many of these early

studies established IL-3 as a key regulatory cytokine for

basophils as well as mast cell proliferation and function.

However, most of these studies centered on studying basophils

within the hematopoietic compartment. The precise properties

of basophils within barrier tissues have been traditionally

poorly understood.

In addition to IL-3, granulocyte–macrophage colony-

stimulating factor (GM-CSF), Toll-like receptors (TLRs), and

thymic stromal lymphopoietin (TSLP) are also known to

regulate basophil development (36–38). Among them, TSLP

has been shown to act directly on bone marrow and

extramedullary progenitors to promote basophil hematopoiesis

independently of IL-3 in mice (20, 36). Furthermore, murine

basophils differentiated by TSLP have unique transcriptional

profiles and activation states compared to those developed under

IL-3-enriched conditions (20). In contrast to murine basophils,

human basophils from healthy donors do not respond to TSLP

without IL-3 priming (39). However, disease-associated human

basophils from patients with asthma were responsive to TSLP

alone (40). These findings suggest that inflammatory conditions

could affect the responsiveness of the human basophil. In the

skin, TSLP is consistently upregulated during AD-associated

skin inflammation and has long been pursued as a therapeutic

target in humans (41, 42). However, the efficacy of targeting

TSLP as a therapy in AD has been brought into question, as the

anti-TSLP monoclonal antibody (mAb) tezepelumab has not

been successful in treating AD (43).
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Several studies have implicated TSLP-elicited basophils in

murine models of allergic diseases such as AD, food allergy, and

eosinophilic esophagitis (15, 16, 20). In addition, TSLP-elicited

murine basophils exhibit a highly activated phenotype as

evidenced by upregulation of key activating cytokine receptors

including those for IL-18 (IL-18R) and IL-33 (ST2, IL-33R) in

comparison to IL-3-elicited basophils (20). Both IL-18 and IL-33 are

now considered canonical activating cytokines for basophils and

strongly implicated in AD-associated inflammation in both mice

and humans (44–48). These findings suggest that skin

inflammation in AD may skew basophil development via

epithelial cell-derived TSLP, creating a reservoir of basophils that

can be rapidly activated by skin-associated IL-18 and IL-33. We

refer to these basophils as uniquely skin-homing (Figure 1). Similar

to IL-33, it is now appreciated that IL-18, in contrast to other

organs, acts as an alarmin in the skin to potently promote type 2

immune responses (49). These findings may explain, in part, the

failure of tezepelumab in phase 2 clinical trials for AD, as transient

blockade of TSLP may not be sufficient to reset the population of

basophils that are hyperresponsive to other alarmins in the skin

(43). In other words, a typical 12-week clinical trial would likely not

be able to capture clinical responses related to such biological effects.

Notwithstanding the duration, another possibility is that TSLP

blockade alone is no longer sufficient to suppress basophil-

mediated skin inflammation after the accumulation of basophils

in the skin that exhibit a unique transcriptional signature; such

basophils may require simultaneous blockade of IL-18 and/or IL-33

for synergistic therapeutic efficacy. Future studies are warranted to
Frontiers in Immunology 03
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determine the precise array of regulatory cytokines that need to be

disrupted to suppress basophils and AD-associated inflammation.
The emergence of skin-homing
basophils

Classically considered short-lived, both murine and human

basophils have been shown to rapidly lose their viability in a

matter of a few days in vivo and in vitro, respectively (9, 50).

However, these survival assays were performed on bulk

populations of basophils from the bone marrow, blood, or

spleen. It is increasingly appreciated that when basophils

traffick into the skin (or possibly the lung), they can acquire

distinct transcriptional and functional properties (21, 22). We

have long observed that while basophils are generally absent in

healthy skin, upon the induction of AD-like inflammation, they

traffick into the skin as early as day 4 and persist stably through

day 12, and likely well beyond (17, 51). Further, it has recently

been shown that basophils in AD-like skin are distinct from

splenic basophils and persist in the skin beyond the acute

inflammatory phase to aid in the resolution of inflammation.

Strikingly, these late-phase basophils promote the expansion of

M2-like macrophages via cooperative production of IL-4 and

monocyte colony-stimulating factor (M-CSF) (21). It has

recently been shown that basophils which reside in the lung at

early developmental stages imprint a unique developmental

program in alveolar macrophages. Indeed, these lung-
FIGURE 1

Skin-homing basophils may be distinct from conventional circulating basophils. Under steady state, basophil progenitors (BaP) develop into
FcϵRIhi basophils under the influence of IL-3 in the bone marrow (conventional circulating basophils, left). Upon inflammation, TSLP released
from the skin drives the maturation of BaPs to exhibit a highly activated phenotype (skin-homing basophils, right) as evidenced by upregulation
of IL-18R and ST2 in comparison to IL-3-elicited basophils.
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associated basophils demonstrated a distinct transcriptional

profile from those in circulation (22). In addition to

transcriptional differences, basophils in the skin could show

morphologically distinct characteristics compared to circulating

basophils. For example, Cheng et al. found that basophils

accumulated in antigen-sensitized skin close to blood vessels,

while those in non-sensitized skin were more widely distributed

upon antigen challenge (52). Similarly, basophils have been

shown to exhibit unique motility and apparent contacts with

sensory neurons upon the antigen challenge as well in the setting

of AD-like disease (53). Taken together, these studies provoke

the hypothesis that basophils, upon entry into the skin, acquire a

distinct transcriptional program leading to the distinct

morphological changes and unique survival and effector

programs not observed from traditional studies in the

hematopoietic compartments, which likely focused more on

conventional circulating basophils. However, it is important to

note that these studies on basophil heterogeneity usedMcpt8 as a

basophil-specific marker for transcriptional studies and cell-

depletion. Recent studies have suggested that integrinb7+ mast

cells also express Mcpt8 both in the skin and the lung under

allergic inflammation (54, 55). Nevertheless, how basophils

could acquire distinct identities in peripheral organs remains

to be fully clarified and addressed.

While it is increasingly appreciated that there is

developmental and functional heterogeneity of basophils, it

has only recently come to light how diversity of basophil

function can influence different aspects of a single disease (56,

57). For example, it is well-recognized that basophils are

associated with human AD and promote the pathogenesis of

AD-like disease in mice (17, 21, 23, 24, 27). By contrast, as

described above, it has been observed that in the resolution

phase of AD-like disease in mice, basophils in the skin also

promote restoration of barrier function and disease resolution

(21). In a context of itch sensation, basophils appear to be

dispensable for chronic itch, while they are known to be essential

for allergen-mediated acute itch (25, 27, 53). Indeed, it has been

shown that TSLP promotes a program that is also highly

enriched for the arachidonic acid pathway which leads to the

production of leukotrienes and other bioactive lipids that serve

as key effector molecules of murine basophils (20). One such

leukotriene, namely LTC4 is now recognized as a very potent

pruritogen (53, 58, 59). Taken together, these findings

demonstrate the sophisticated array of effector functions

orchestrated by basophils.

CSU exemplifies how skin-homing basophils can help to

explain disease pathogenesis. CSU is an itchy, immune-mediated

skin disorder that afflicts 1% of the population and has a

profoundly negative impact on quality of life. It is defined by

both hives and itch; these processes are mediated, in part, by

activation of IgE and release of histamine from mast cells.

Notwithstanding the role of mast cells, it is also appreciated

that basophils accumulate in the lesions of urticaria, and that
Frontiers in Immunology 04
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blood basophil deficiency is a feature of CSU (60). Thus, it is

hypothesized that basophils recruited to the skin could

contribute to the pathogenesis of CSU. The role of basophils

in CSU is further suggested by a report that the number of

basophils in the blood of CSU patients increases after anti-IgE

mAb (omalizumab) treatment (60). Another study has revealed

that the surface expression of FcϵRI on basophils was lower in

CSU patients who showed better response to omalizumab (61).

In addition, it is known that IgE and FcϵRI trigger the migration

of murine mast cells toward antigens and that IgE and FcϵRI also
mediate human basophil migration in vitro (62–64). Thus, these

studies suggest that omalizumab may inhibit IgE-mediated

activation in basophils, resulting in decreased motility into the

skin. Future studies will be required to clarify this possibility.

However, the activation of basophils in CSU does not seem

to be exclusively explained by IgE- and FcϵRI-mediated

pathways. Antihistamines are the first-line therapy for CSU;

however, even high doses are insufficient in 54% of patients (65).

Anti-IgE therapy is the second-line strategy to which 40% of

patients with CSU are refractory as well (66). These therapeutic

gaps strongly suggest that other histamine- and IgE-independent

pathways are operative. In 2015, a seminal paper by McNeil et al.

identified that Mas-related G protein-coupled receptor B2

(MrgprB2), and its human ortholog, MRGPRX2 are key

receptors that respond to a host of cationic neuropeptides and

drugs that induce IgE-independent mast cell activation or

allergic-like reactions (67). Indeed, MRGPRX2 has been

identified as a possible biomarker in CSU (68). Although the

expression and function of MRGPRX2 were mainly studied in

mast cells, it has recently been reported that human basophils

also express MRGPRX2 (69, 70). Given the potential role of

MRGPRX2 on both mast cells and basophils, the heterogeneity

of the therapeutic response in CSU may be explained, in part, by

the overall composition of IgE-reactive vs. MRGPRX2-reactive

mast cells and basophils, respectively, in CSU. This remains a

major area of investigation to inform new pathways

for treatment.

MRGPRX2 is now emerging as a therapeutic target in the

field of allergy. However, MRGPRX2 expression on basophils

either at steady state or upon activation remains a major area of

controversy (71). It is hypothesized that MRGPRX2 is often

internalized in basophils but could be exposed upon activation

(71). In support of this, it has been shown that MRGPRX2

expression on human basophils was upregulated by cross-

linking of IgE, complement component 5a (C5a), natural N-

formyl peptide (fMLP) or IL-3 stimulation in vitro (69, 70). In

relation to mast cells, MRGPRX2 function was promoted by

TSLP but was dampened by SCF or IL-4 (72–74). Therefore, we

speculate that maturation and/or activating factors for basophils

including IL-18, IL-33, or TSLP could modulate MRGPRX2

expression on human basophils, contributing to their functional

heterogeneity (Figure 2). To this end, future studies are required

to determine the precise ligands and their effects on non-
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canonical basophil activation and function. We hypothesize that,

given MRGPRX2’s close association with skin-resident mast

cells, its expression on basophils likely marks their identity as

also being more skin-associated or homing.
Trafficking of basophils into the skin

Although we have discussed how immune dysregulation may

promote the emergence of a unique population of basophils that is

capable of responding to skin-derived signals, how basophils are

recruited into the skin remains a mystery. It is well-known that

basophils rapidly accumulate into peripheral tissues including the

skin in a variety of settings such as helminth infection, tick bite, or

allergic inflammation (11, 19, 75–77). However, there is still a

paucity of evidence on the specific chemokines or cellular processes

involved in basophil trafficking. Human studies ex vivo have

revealed that basophils can migrate toward numerous

chemokines (e.g., CCL2/3/5/7/11/13, and CXCL12/13), C5a,

Prostaglandin D2 (PGD2), Thromboxane B2, urokinase-type

plasminogen activator, and bacterial/viral peptides (fMLP and

gp41) (78–87). Notably, serum levels of CCL2 were found to be

elevated in a setting of venom- or food-induced anaphylaxis, which

correlated a decrease in circulating basophil numbers (88). In

addition, basophil accumulation in human skin or xenografted

skin was observed after intradermal injection of CCL2 or CCL17,

respectively (89, 90). Another study revealed increased migration of

basophils in patients with systemic lupus erythematosus toward

CXCL12 compared to those from healthy controls (91). A recent

study by Blom et al. revealed that human basophils activated by IgE,

C5a, or fMLP express various types of chemokine receptors
Frontiers in Immunology 05
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including CCR4, CCR10, CCR6, CCR8, XCR1 and CCX-CKR,

some of which are known as skin-homing receptors (6). In this

study, they also found a bimodal expression of certain chemokine

receptors such as XCR1, cutaneous lymphocyte antigen (CLA), or

CXCR4 even among the CD63+ activated subset, further supporting

phenotypic heterogeneity of human basophils upon activation.

Puan et al. revealed that FUT6 is essential to sialyl-Lewis x

(CD15s) expression on human basophils and its deficiency

severely reduces their rolling capacity on E-selectins and

cutaneous allergic symptoms (92). In mice, both PGD2 and

CXCL12 have also been shown to be important in basophil

trafficking to secondary lymphoid organs in a murine lupus

model, while other studies showed CCL7-dependent migration to

the draining lymph nodes in a context of pancreatic tumor or type 2

skin inflammation (91, 93–95). The accumulation of basophils in

the lymph nodes after helminth infection depends on IL-3 from

CD4+ T cells (96), while IL-3 supplied by skin-resident CD4+

memory T cells is essential for their recruitment to the skin in

the setting of tick bite (97). In the setting of AD-associated

inflammation, basophil recruitment to the skin is uniquely

dependent on TSLP (20); similar dependence on TSLP has also

been observed with intradermal injection of lipoteichoic acid (LTA),

a cell wall component of bacteria (98). Moreover, under TPA-

induced chronic skin inflammation, TSLP and IL-3 externalize

CXCR4 expression on basophils and their recruitment to the skin

depends on CXCL12-CXCR4 axis and IgE (99). Taken together,

these studies demonstrate that a number of factors have been

implicated in basophil trafficking in the past (Table 1). However,

future studies will have to be aimed at understanding the tissue-

specific signals that drive basophil migration into various organs

and their unique interactions in the context of disease.
FIGURE 2

Hypothetic characteristic activation of skin-homing basophils. TSLP enhances the response to IL-18 and IL-33 in basophils. IL-18 and IL-33
further activate basophils resulting in upregulation of conventional activation markers such as CD203c and enhancement of FcϵRI expression.
However, the effects of these skin-derived cues on MRGPRX2 expression in basophils are still unknown. We hypothesize that skin-derived cues
also upregulate or externalize MRGPRX2, which is considered to be internalized at steady state on human basophils.
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Additionally, it appears that basophils can exhibit

heterogeneous behavior even within the same tissue under the

same inflammatory condition. We have found that in vivo

stimulation with allergen in the skin results in the emergence

of two distinct populations of basophils - one that is enlarged

and immotile and another that is small and highly motile in the

setting of AD-associated acute itch flares (53). Although why

such heterogeneity of motility exists within the skin remains
Frontiers in Immunology 06
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unknown, these findings support the hypothesis that there are

likely numerous different subsets of basophils across tissues that

respond differentially to even the same signals. Thus, basophil

trafficking could be regulated in a subset-dependent manner,

indicating increasing complexity in terms of their regulation.

As noted above, there is significant evidence that basophils

imprint unique transcriptional and functional programs onto

macrophages in the skin and lung (21, 22). However, whether
TABLE 1 In vivo or ex vivo evidence for basophil trafficking to tissues.

Species Trafficking
sites Factor Tentative Source

Experimental or disease condi-
tion

Experiment
type Ref

Human N/A

CCL2, CCL5, CCL7

N/A

Transwell migiration

Ex vivo (78)

CCL5, CCL7, CCL11,
CCL13

Ex vivo
(79)

CCL2, CCL3, CCL5,
CCL11, CXCL12

Ex vivo
(80)

CCL2, CCL11, CXCL12,
IL-8

Ex vivo
(81)

CCL2, CCL11 Transendothelial migration Ex vivo (82)

C5a

Transwell migiration

Ex vivo (83)

Prostaglandin D2 Ex vivo (84)

Thromboxane B2 Ex vivo (85)

Urokinase-type
plasminogen activator

Ex vivo
(86)

fMLP or gp41 Ex vivo (87)

CD15s Rolling assay Ex vivo (92)

Human

N/A CCL2 Stromal cells? Anaphylaxis In vivo (88)

Skin CCL2 N/A Intradermal injection into human skin In vivo (89)

Skin CCL17
Endothelial cells,
Keratinocytes?

Intradermal injection into skin xenograft
of humanized mice In vivo (90)

Secondary
lymphoid organs CXCL12 N/A Systemic lupus erythematosus In vivo (91)

Skin? CD15s Basphils
Mosquito-bite or skin prick test to house
dust mite In vivo (92)

Murine

Skin IL-3 CD4+ T cells Tick-bite In vivo (97)

Skin TSLP N/A MC903-induced skin inflammation In vivo (20)

Skin TSLP Keratinocytes? Lipoteichoic acid injection In vivo (98)

Skin
TSLP/IL-3, CXCR4 and
IgE N/A TPA-induced skin inflammation In vivo (99)

Lymph nodes IL-3 CD4+ T cells Helminth infection In vivo (96)

Lymph nodes PGD2 N/A Lupus nephritis In vivo (91)

Lymph nodes CXCL12 N/A Lupus nephritis In vivo (93)

Lymph nodes CCL7 Monocytes Pancreatic cancer Ex vivo (94)

Lymph nodes CCL7 Dendritic cells Papain-induced type 2 skin inflammation In vivo (95)

N/A, not applicable.
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skin-resident macrophages recruit basophils into the skin via

reciprocal interactions remain to be shown. There is a large body

of work that suggests that other circulating granulocytes like

neutrophils are heavily influenced by tissue-resident

macrophage-derived signals upon tissue damage or pathogen

entry (100–102). Indeed, macrophages are capable of producing

various types of mediators which have been implicated in

basophil chemotaxis in vitro (e.g., CCL2, CXCL1, CXCL2,

C5a) (103, 104). Thus, we speculate that homologous

mechanisms likely underlie basophil recruitment as well in the

context of helminth parasite invasion or allergic barrier

disruption. Future studies will be required to determine the

full range of cellular and molecular cues that aid in the homing

of basophils into the skin.

Finally, whether specific populations of basophils go back into

the circulation and travel distally also remains poorly understood.

In the setting of helminth infection, it is reported that group 2

innate lymphoid cells (ILC2s) in the tissue are extruded to the

circulation to disseminate type 2 inflammation (105). Both skin-

homing basophils and ILC2s receive similar activation cues from

the skin (e.g., IL-18 or IL-33) to critically mediate type 2

inflammation, despite being rare populations. In light of our

speculation that skin-homing basophils acquire the ability to

survive much longer, it is possible that basophils could also move

from the skin into the circulation and on to other distal sites.

However, future studies will be required to fully understand the

importance of basophil movement into and out of the skin.
Conclusion

The unique characteristics of basophils have been greatly

informed in the last decade due the development of unique

tools. Studies using animal models have revealed their critical

involvement in a number of disease states in the skin including

helminth infection, tick bites, and AD (15–17, 106). However, in

addition to their ability to promote allergy, basophils are

increasingly appreciated for their dynamic ability to respond to

allergen, cytokines, and exhibit both proinflammatory and

restorative properties. By understanding how specific subsets of

basophils may have unique proinflammatory, survival, and

survival properties, we speculate that selectively targeting such

basophils may represent a highly effective therapeutic strategy for

a variety of skin diseases such as AD, or CSU.
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CD25 as a unique marker
on human basophils in
stable-mildly symptomatic
allergic asthma
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Background: Basophils in acute asthma exacerbation are activated as evidenced

by their increased expression levels of activation markers such as CD203c and

CD63. However, whether basophils of allergic asthmatics who are in stable phase

and have no asthma exacerbations display a specific and distinctive phenotype

from those of healthy individuals has yet to be well characterized.

Objective: We aimed to identify the phenotype of basophils from allergic

asthmatics in the stable phase and investigate whether such a phenotype is

affected by ex vivo allergen stimulation.

Methods:We determined by flow cytometry, the expression of surface proteins

such as CD25, CD32, CD63, CD69, CD203c, and CD300a and intracellular anti-

apoptotic proteins BCL-2, BCL-xL, and MCL-1. We investigated these markers

in blood basophils obtained from well-characterized patients with stable-

mildly symptomatic form of allergic asthma with no asthma exacerbation and

from healthy individuals. Moreover, we determined ex vivo CD63, CD69, and

CD25 on blood basophils from stable-mildly symptomatic allergic asthmatics

upon allergen stimulation.

Results: In contrast to all tested markers, CD25 was significantly increased on

circulating basophils in the patient cohort with stable-mildly symptomatic

allergic asthma than in healthy controls. The expression levels of CD25 on

blood basophils showed a tendency to positively correlate with FeNO levels.

Notably, CD25 expression was not affected by ex vivo allergen stimulation of

blood basophils from stable-mildly symptomatic allergic asthma patients.

Conclusion:Our data identifies CD25 as a uniquemarker on blood basophils of

the stable phase of allergic asthma but not of asthma exacerbation asmimicked

by ex vivo allergen stimulation.

KEYWORDS

CD25, basophils, immunophenotype, stable-mildly symptomatic allergic asthma, ex
vivo stimulation
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1 Introduction

Basophils are essential effector cells in T2-mediated allergic

immune responses. Although basophils account for ≤1% of

circulating leukocytes, they actively participate in allergic

reactions through the release of effector and immunoregulatory

mediators, including vasoactive amines (histamine), lipid

metabolites (leukotriene C4, LTC4), and T2 cytokines (IL-4 and

IL-13). The role of basophils in allergic responses has become

more evident with the recognition and in-depth understanding of

late-phase responses in chronic allergic inflammatory disorders

such as asthma and rhinitis. Several studies in humans and mice

identified that basophils infiltrate into lung tissues (1–4). Studies

on induced sputum and lung tissues showed that the numbers of

basophils in the airways of asthmatics are elevated (1), and they

were further increased during asthma exacerbation (2) or

following allergen challenge (3). Moreover, high levels of

basophil-derived IL-4 in the lung have been detected after

segmental allergen challenge (4). These findings thus confirm

that basophils are active players of airway inflammation in

allergic asthma.

Several studies from others and us reported that an allergic

inflammatory milieu, such as IL-3, IL-5, and GM-CSF,

transforms basophils into a primed state (5–7). Exposure to

these priming stimuli causes increased sensitivity to activation

and also enhances multiple biological functions such as

inflammatory cytokine release (IL-4, IL-13, IL-8), LTC4

formation, chemotaxis, and survival (8). Although other

cytokines can induce similar changes, IL-3 is considered the

most effective priming factor of human basophils to cause long-

term phenotypic and functional changes by itself and in synergy

with other stimuli (e.g. FceRI cross-linking, IL-33) (8–12). For
instance, IL-3 boosts the rapid upregulation of CD203c (13) and

CD69 (14) on human basophils. Interestingly, prolonged

continuous IL-3 receptor-mediated signaling induces the

expression of CD25 on human basophils (8).

In addition to its activating effect, IL-3 is also characterized

as a pro-survival factor of human basophils. Several studies have

indicated that resistance to apoptosis prevails in the allergic

airway inflammation of asthma patients (15, 16). Recently, we

showed that in the presence of IL-3, basophils are insensitive

towards apoptosis induced by IFN-a, extrinsic (TRAIL) (17),

and intrinsic (BH3-mimetics) (18) apoptotic stimuli.

Furthermore, using BH3-mimetics, we revealed that the

observed resistance of basophils to apoptosis in the presence

of IL-3 is achieved through the upregulation of anti-apoptotic

proteins such as BCL-xL and MCL-1 (19).

Suzuki et al. (20) recently demonstrated that airway

basophils show a more activated phenotype than circulating

basophils, as evidenced by increased CD203c expression on

sputum basophils. Similarly, CD203c was upregulated in blood

and sputum basophils after allergen challenge (21) and during
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asthma exacerbation (13). Thus, basophils undergo several

functional and phenotypic alterations during the acute phase

of allergic response and asthma exacerbation. Whether such

alterations persist during the steady-state of allergic asthma is

less well investigated. Hence, in the present study, we investigate

whether blood basophils in stable-mildly symptomatic allergic

asthma exhibit altered expression levels of surface markers

CD25, CD32, CD63, CD69, CD203c, and CD300a, and anti-

apoptotic proteins (BCL-2, BCL-xL, and MCL-1) in comparison

to blood basophils from healthy controls. Moreover, we study

the effect of ex vivo allergen challenge on the expression of CD63,

CD69, and CD25 on blood basophils from stable-mildly

symptomatic allergic asthmatics. Our data confirm that CD25

is a unique marker on human blood basophils in patients with

stable or mildly symptomatic of allergic asthma.
2 Materials and methods

2.1 Study design

Eighteen adults who have a history of stable-mildly

symptomatic asthma according to Global Initiative for Asthma

(GINA) criteria were recruited from the outpatient clinic of the

Department of Pulmonary Medicine, Inselspital, Bern University

Hospital, Bern, Switzerland. General inclusion criteria of the study

were volunteers of age above 18 years, non-smokers, and all

genders were eligible. Allergy was confirmed in this study by a

positive skin prick test (SPT) and the detection of specific IgE to

aeroallergens. A positive SPT was defined as a wheal of ≥3 mm

using the extracts of common aeroallergens such as Olea europea,

grass pollen (mixture), birch, hazel, beech, dog and cat epithelia,

Dermatophagoid pteronyssinus, rye (GREER Laboratories),

mugwort, short ragweed, adler, common ash, aspergillus,

Dermatophagoid Farinae, Cladosporium herbarum (if not

mentioned all from Bencard AG). The specific IgE to

aeroallergens (Sx1: timothy-grass, birch, dog and cat epithelia,

Dermatophagoid pteronyssinus, rye, mugwort, and Cladosporium

herbarum) was determined by ImmunoCap technology and

regarded as positive if it was ≥0.35 kU/L. Exclusion criteria were

infection of airways, use of systemic corticosteroids, and

immunosuppressants in the four weeks prior to sample

collection. In this study, patients with allergic rhinitis are not

included and patients with chronic obstructive pulmonary disease

or, allergic bronchopulmonary aspergillosis, or eosinophilic

granulomatosis with polyangiitis are excluded as well. The

healthy controls (n=10) were non-smokers and reported no

history of chronic respiratory disease, and their specific IgE to

aeroallergen was <0.35 kU/l. All subjects signed informed consent

forms approved by the Ethics Committee of the canton of Bern

(no. 2016-01571), and experiments were conducted according to

the Declaration of Helsinki.
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Included patients (n=18) had 1-2 visits during which blood

samples were collected. These blood samples were used to

determine counts of eosinophils, neutrophils and basophils

using an automated hematology analyzer (Sysmex XS-800i), to

analyze surface and internal marker expression in basophils by

flow cytometry, and to measure specific IgE against common

aeroallergens by ImmunoCap technology. In addition, on every

visit, asthma patients were evaluated by spirometry including

forced expiratory volume in 1 s (FEV1), forced vital capacity

(FVC)], asthma control test (ACT) questionnaire score, exhaled

nitric oxide fraction (FeNO).
2.2 Flow cytometry analysis of basophils
in peripheral blood

100µl of EDTA whole blood samples was prepared for flow

cytometric measurements using antibody panels as specified in

Table 1. Surface markers were stained for 15 min at room

temperature (RT). Subsequently, red blood cells were lysed

using BD Lysing Solution (BD Biosciences) for 15min at RT.

Afterward, samples were washed and resuspended in 600µl

Staining Buffer A, composed of 1xPBS supplemented with 2%

heat-activated FCS and 0.05% sodium azide (Merck Millipore).

For intracellular staining, samples were washed with

Staining Buffer B, consisting of 1xPBS supplemented with

0.5% BSA and 0.1% sodium azide and permeabilized with

Permeabilization solution 2 (BD Biosciences). Next, cells were
Frontiers in Immunology 03
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washed, and intracellular molecules were stained for 30min at

RT. Finally, samples were washed and resuspended in 600µl

Staining Buffer B. Samples were acquired using BD FACSCanto

II. Data were collected using FACSDIVA (all from BD

Biosciences) and analyzed by Flowjo software (Treestar Inc). A

minimum of 1000 basophils were acquired per sample. The

gating strategies used to identify basophils in peripheral blood

are described in Figures S1A–C.
2.3 Ex vivo stimulation of basophils

Reagents and protocols of Flow2CAST (Blühmann

Laboratories) with slightly modified settings (stimulation time,

individual antibodies) were used to activate basophils ex vivo.

The aeroallergens that elicited the strongest positive response in

SPT (birch, Dermatophagoid pteronyssinus, Dermatophagoid

farinae, grass, and rye) in the respective allergic asthma

patients were chosen for the ex vivo stimulation experiment.

Briefly, 50µl of EDTA blood from allergic asthma patients who

were sensitive was stimulated with either 50µl (100ng/ml) anti-

FceRI cross-linking antibody 29C6 (Roche), 50µl (20ng/ml or

100ng/ml) of the patient’s respective aeroallergen in 100µl (or

150µl for unstimulated control) stimulation buffer containing

IL-3 for 20min at 37°C, 5% CO2.

Cells were stained simultaneously with anti-CCR3 Alexa Fluor

647 (5E8; BioLegend), anti-CD63 V450 (H5C6; BD Biosciences),

anti-CD69 PerCP (FN50; BioLegend), anti-CD25 APC (BC96;
TABLE 1 Panels for flow cytometric analysis of blood samples.

Target Fluorochrome Clone

Panel #1 LIN (CD3, CD16, CD19, CD20, CD14, CD56) FITC SK7, 3G8, SJ25C1, L27, MfP9, NCAM16.2

CD123 PerCP-Cy5.5 7G3

CCR3 Alexa Fluor 647 5E8

CD203c PE 97A6

CD32 BV421 FLi8.26

Panel #2 LIN (CD3, CD16, CD19, CD20, CD14, CD56) FITC SK7, 3G8, SJ25C1, L27, MfP9, NCAM16.2

CCR3 APC-Cy7 5E8

CD300a PE MEM-260

CD63 V450 H5C6

CD69 PerCP FN50

CD25 APC BC96

Panel of Intracellular Staining LIN (CD3, CD16, CD19, CD20, CD14, CD56) FITC SK7, 3G8, SJ25C1, L27, MfP9, NCAM16.2

CD123 PerCP-Cy5.5 7G3

CCR3 Alexa Fluor 647 5E8

BCL-2 or BCL-xL or MCL-1 PE 124, 54H6, D2W9E
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BioLegend). Data were acquired using FACSCanto with FACS

Diva software. For gating strategy, debris and doublets were

excluded first, followed by gating for SSClow/CCR3pos basophils.

Within SSClow/CCR3pos basophils, the cells were further gated for

CD63pos/CCR3pos and CD63neg/CCR3pos for degranulated and

non-degranulated basophils, respectively as shown in Figure

S1D. CD69 and CD25 expression was subsequently analyzed in

CD63neg and CD63pos basophils, respectively.
2.4 Statistical analysis

Data were analyzed using GraphPad Prism 8.3 (GraphPad).

The alpha level was set to 0.05. If not mentioned, otherwise data

are represented as mean ± SEM. Statistical correlations were

evaluated by the Spearman rank test. For two-group

comparisons, two-tailed Student t-test, and Mann-Whitney

test were used. One-way ANOVA with Dunnett`s or

Bonferroni`s multiple comparison test was used when more

than two groups were analyzed. Results were considered

significant if P values were <0.05. P values were defined as ****

P< 0.0001, *** P<0.001, ** P<0.01 and * P<0.05. ns,

not significant.
3 Results

3.1 Patient characteristics

Demographic and clinical characteristics of the recruited

subjects are summarized in Table 2 and Supplementary Table 1.

The mean age of the study participants was 37 years (range: 18-59

years), and 72% of them were female. All participants had a

history of allergic asthma and were tested positive for at least one

among the 16 common aeroallergens (skin prick test, wheal ≥3

mm and ImmunoCap sx1>0.35kU/L). Only one out of eighteen

patients showed non-detectable specific IgE (ImmunoCap

sx1<0.35kU/L) during one of the visits (Supplementary

Table 2). No subject reported or had documented asthma

exacerbations during the study period. The asthma control test

(ACT) scores (20.97 ± 3.537, mean ± SD) showed that the patients

enrolled were suffering from a stable-mildly symptomatic form of

allergic asthma. The cut-off for ACT scores used were 20-25:

stable, 16-19: mild and < 15: severe. Asthmawas not under control

for three out of eighteen patients (for three patients in the first visit

and for one patient for every visits) (Supplementary Table 1). The

fractional exhaled nitric oxide (FeNO) values (28.28 ± 26.89, mean

± SD) indicated that the majority of the sample size (90%) did not

associate with severe/chronic lung inflammation (FeNO<50ppb,

Supplementary Table 1). Altogether, the ACT scores and FeNO

values indicated that the subjects enrolled in this study had stable-

mildly symptomatic form of allergic asthma during the majority

of visits (Supplementary Table 1).
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3.2 Unique upregulation of CD25
expression on blood basophils in patients
with stable-mildly symptomatic form of
allergic asthma

During asthma exacerbation, blood basophils display an

activated phenotype (13). Moreover, anti-apoptotic conditions

prevail in basophils under allergic conditions (17, 19). Whether
frontiersin.org
TABLE 2 Characteristics of the patient cohort.

Characteristics Values Sample size

Age, yrs 18

Mean (Range) 37.36 (18-59)

Gender, n 18

Female 13

Male 5

BMI, kg/m2 18

Mean ± SD 24.83 ± 4.524

% Atopy (skin prick test)* 100 18

Atopy (specific IgE), kU/L§ 18

Mean ± SD 24.96 ± 26.87

ACT score 18

Mean ± SD 20.97 ± 3.537

FeNO, ppb 18

Mean ± SD 28.28 ± 26.89

Blood basophils, G/L 18

Mean ± SD 0.042 ± 0.015

Blood eosinophils, G/L 18

Mean ± SD 0.246 ± 0.183

Blood neutrophils, G/L 18

Mean ± SD 3.262 ± 1.22

% FEV1 predicted 18

Mean ± SD 91.83 ± 13.92

% FVC predicted 18

Mean ± SD 100.8 ± 11.81

BMI, body mass index; FeNO, fractional exhaled nitric oxide; ppb, parts per billion;
ACT, asthma control test; G/L, 106 cells/L; FEV1, forced expiratory volume in 1 s;
FVC, forced vital capacity; Mean ± SD, mean± Standard deviation (For each clinical
parameter, the mean value for each individual during their 1-2 visits was first
calculated, and then the mean and standard deviation of these mean values were
determined).
*Atopy on skin prick test was defined by at least one positive test (wheal ≥3 mm)
against common aeroallergens such as Olea europea, grass pollen (mixture), birch,
hazel, beech, dog and cat epithelia, Dermatophagoid pteronyssinus, rye, mugwort,
short ragweed, adler, common ash, aspergillus, Dermatophagoid farinae,
Cladosporium herbarum.
§At least one of the IgE RAST ≥ 0.35 kU/L (Dermatophagoides pteronyssinis, cat and
dog dander, timothy, rye, Cladosporium herbarum, birch, mugwort).
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the activated and anti-apoptotic phenotype persist during the

steady-state of stable allergic asthma is less well investigated.

Hence, we compared the immunophenotype of basophils and

their predisposition to apoptosis in the stable-mildly

symptomatic allergic asthma patient cohort and healthy

controls. As shown in Figures 1A, B, flow cytometry analysis

revealed that CD25 expression on blood basophils was

significantly higher (P=0.0065 and P=0.0159) for the first and

second visit, respectively in stable-mildly symptomatic allergic

asthma patients than in healthy control subjects. The proportion

of basophils from our patient cohort and healthy controls were

comparable (Figure 1C). There was no significant difference in

CD25 expression when comparing the first and second visit of

the stable-mildly symptomatic allergic asthma patients. For all

other analyzed markers, particularly, the activation markers

CD63, CD69, CD203c and CD300a no significant difference

was observed (Figures 1D–H and Figures S2A-C). This

observation indicates that circulating basophils from stable-

mildly symptomatic asthmatics were not hyperactivated.

Correlation analysis between CD25 expression on blood

basophils and absolute counts (G/L) of eosinophils, basophils

and neutrophils, respectively, revealed no significance (Figures

S3A-C). FeNO levels of stable-mildly symptomatic allergic

asthmatics showed a weak positive correlation (r=0.5186;

P=0.0274) when comparing the CD25 expression levels on

circulating basophils of the first visit (Figure 1I, left), but not

of the second visit (r=0.2091; P=0.5393) (Figure 1I, right). This

inconsistent observation in the correlation between CD25 and

FeNO in the first and second visits could be due to the lower

sample number in the second visit (n=11) than in the first visit

(n=18). The levels of CD25 (P=0.03) were significantly higher

expressed in patients with intermediate FeNO values (FeNO ≥25

ppb; Figure 1J) according to American Thoracic Society

guidelines (22) than in patients with low FeNO (FeNO <25 ppb).
3.3 CD25 expression on basophils is not
affected by allergen challenge ex vivo

The surface expression of CD63, CD203c and CD69 is

commonly used to assess human basophil activation upon acute

hypersensitivity allergic reaction. This encouraged us to investigate

further whether the expression levels of CD25 on circulating

basophils of patients with stable-mildly symptomatic allergic

asthma are altered upon ex vivo allergen exposure. We confirmed

basophil degranulation by a significant increase in the surface

expression of CD63 in peripheral basophils, and the increment of

expression was found to be dependent on allergen concentration, as

shown in Figure 2A. In line with previous studies, CD69 expression

was significantly upregulated in CD63pos basophils compared to

CD63neg basophils (Figure 2B). Interestingly, the ex vivo

stimulation using both allergen and anti-FcϵRI cross-linking

antibody did not affect CD25 expression (Figure 2C). In
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summary, our data show that the level of CD25 expression is

increased in stable-mildly symptomatic allergic asthma but is not

affected by ex vivo allergen stimulation.
4 Discussion

There is growing evidence on the important functions of

basophils in T2-driven inflammation in asthma. Our current study

extends this knowledge by investigating the expression levels of

multiple surface and intracellular markers of basophils, which

indicate their effector and immunoregulatory function in allergic

asthma. This is the first report on identifying high levels of

spontaneous CD25 expression in circulating basophils in stable-

mildly symptomatic allergic asthmatics compared to healthy subjects.

Human basophils express CD25 under physiologic conditions.

Its expression at both mRNA and protein levels can be significantly

enhanced in the presence of IL-3 stimulation (8, 23). In our

previous study, we observed that a continuous IL-3 exposure for

up to 5 days was needed to induce CD25 expression. Thus, CD25

can be used as an activation marker to identify late IL-3 priming of

basophils. By combining our previous in vitro data and current in

vivo observations, we speculate that circulating basophils from

stable asthma patients are in continuous and prolonged exposure

to IL-3, secreted by activated T cells, mast cells, or basophils (24),

ultimately resulting in the upregulation of CD25. However, as an

evidence, the measurement of IL-3 in the sera from the mildly-

stable symptomatic allergic asthmatics will be necessary.

Nevertheless, we cannot rule out the effects of other cytokines on

the expression of CD25 in basophils. Although human basophils

express CD25 under physiological conditions, there is only limited

knowledge regarding its functional significance in human basophils.

A report by Zhao et al. recently showed that IL-2 binds to the CD25

receptor of human basophils, resulting in induced expression of

inflammatory cytokines like IL-5 and GM-CSF (23). Interestingly,

IL-5 and GM-CSF are also crucial for eosinophil infiltration into the

target tissue of allergic inflammation. Thus, such an “in vivo IL-3 or

IL-2-primed” effect of basophils may further recruit peripheral

eosinophils into the airways. Furthermore, in human eosinophils,

IL-2 induces enhanced release of eosinophil cationic protein from

CD25 expressing but not from CD25 negative eosinophils (25).

In contrast to other reports (13), we did not observe any

significant changes in the surface markers such as CD203c and

CD63 in our cohort of stable-mildly symptomatic allergic asthma

patients.We presume that this difference in the results may be due

to the difference in the study cohort, as upregulation of CD203c

and CD63 in blood basophils was observed in asthma patients

with exacerbation, but not in patients having stable phase of

allergic asthma. Furthermore, we stimulated blood basophils with

allergen ex vivo to mimic asthma exacerbation after allergen

challenge. In contrast to the increased CD63 and CD69 levels,

we observed no change in the expression levels of CD25 on

degranulated, CD63-positive basophils, upon ex vivo allergen
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stimulation. Furthermore, although we found a significant higher

expression of CD25 in stable-mildly symptomatic asthmatics

having FeNO >25ppb compared to patients showing

FeNO<25ppb, the correlation of FeNO and CD25 was not

consistent between the visits. Altogether, these results suggest

that CD25 is not a marker to monitor the asthma exacerbation
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after allergen challenge, but CD25 can be used as a unique marker

for stable-mildly symptomatic allergic asthma patients.

Daclizumab, a humanized monoclonal antibody against

CD25, improved pulmonary function and asthma control in

moderate to severe asthma patients by IL-2R blockade in

activated T cells (26). Its mode of action may also extend to
A B C

D E F

G H
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FIGURE 1

Relationship between expression levels of CD25 on basophils and FeNO levels in stable-mildly symptomatic allergic asthma patients. (A)
Representative histogram showing CD25 expression level (MFI) on blood basophils in stable-mildly symptomatic allergic asthma patient (gray
area) compared to healthy control (solid line) and FMO control (dotted line). (B, D-H) The expression levels of surface markers on blood
basophils of stable-mildly symptomatic allergic asthma patients for the first (n=18) and second visit (n ≤ 11) compared to healthy controls (n≥9)
measured by flow cytometry. Data are represented as mean ± SEM and reported as DMFI (MFI of test-MFI of FMO control) for CD25, CD63,
CD69 and as MFI for CD32, CD203c and CD300a. Results were analyzed by two-tailed unpaired Mann-Whitney test.**P=0.0065, *P=0.0159,
ns=non-significant (C) The relative percentage of blood basophils (dual positive for CD123 and CCR3) from stable-mildly symptomatic allergic
asthma patients during their first (n=18) and second (n=11) visits compared to healthy subjects (n=10) (I) Correlation between CD25 expression
levels (DMFI) and FeNO levels (ppb) in stable-mildly symptomatic allergic asthma patients of the first (left, n=18) and second visit (right, n=11).
Spearman`s rank test was used for correlation analysis. Spearman coefficient (r) and level of significance (P) are indicated within the graph.
(J) Surface expression levels of CD25 (DMFI) on blood basophils between <25 ppb (n=20) and ≥25 ppb FeNO level (n= 9) groups within stable-
mildly symptomatic allergic asthma patients. Data are represented as mean ± SEM and analyzed using two-tailed unpaired Mann-Whitney test.
*P<0.05. (B-J) Every patient is represented with specific symbol, while healthy controls are shown in closed black symbols. Patients who had
both 1st and 2nd visits are marked in purple and those who had only 1st visit are marked in green color. MFI, median fluorescence intensity; FMO,
fluorescence minus one; Healthy, healthy control subjects.
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other CD25-expressing effector cells such as basophils and

eosinophils. Further studies are warranted to examine the

impact of such treatments on basophils in vivo functions.

We identified CD25 as a novel biomarker for late in vivo

priming of human basophils in stable-mildly symptomatic

allergic asthma. Our findings highlight the importance of

basophils in the pathogenesis of allergic asthma. Further

studies are required to investigate the underlying mechanisms

and the efficacy of new CD25 and/or basophil targeted therapies.
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A B C

FIGURE 2

Effects of ex vivo allergen challenge on CD63, CD69, and CD25 expression in activated and non-activated basophils. Whole blood samples from
stable-mildly symptomatic allergic asthma patients (n=3) were stimulated with their respective allergen (20ng/ml or 100 ng/ml) or anti-FceRI cross-
linking antibody 29C6 (100 ng/ml). Unstimulated controls were exposed to stimulation buffer only. (A) Percentage of CD63pos basophils in
unstimulated controls, 20 ng/ml, and 100 ng/ml allergen and anti-FceRI cross-linking antibody stimulated samples. (B, C) MFI of CD69 (B) and DMFI
(MFI of test-MFI of FMO control) of CD25 (C) are shown on CD63neg (open symbols) and CD63pos basophils (closed symbols). (A-C) Patients 1, 2,
and 3 are represented as circle, square, and triangle symbols, respectively. Data are shown as mean ± SEM and analyzed using one-way ordinary
ANOVA tests, with Dunnett`s (A) or Bonferroni`s (B, C) multiple group comparison test. **P<0.01 and *P<0.05. ns, not significant.
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IgE-dependent human basophil
responses are inversely
associated with the
sarcoplasmic reticulum
Ca2+-ATPase (SERCA)

Anette T. Hansen Selnø1, Vadim V. Sumbayev1

and Bernhard F. Gibbs1,2*

1School of Pharmacy, University of Kent, Chatham Maritime, United Kingdom, 2Department of
Human Medicine, University of Oldenburg, Oldenburg, Germany
Basophils crucially contribute to allergies and other Th2-driven diseases by

rapidly releasing inflammatory and immunomodulatory mediators following

high-affinity IgE-receptor crosslinking. Although these basophil-mediated

responses depend on sensitization with antigen-specific IgE, this does not

necessarily predict clinical symptom severity. It is thought that the balance of

early stimulatory (e.g. SYK) and inhibitory (e.g. SHIP-1) intracellular signals are

associated with basophil responsiveness, which is also critically dependent on

calciummobilization. Previous studies suggest that the sarcoplasmic reticulum

Ca2+-ATPase (SERCA2), which regulates cytosolic calcium levels, may be

inversely associated with airway smooth muscle reactivity in asthma. Since

basophils are implicated in asthma severity, our aims were to address whether

SERCA2 is implicated in human basophil responses, especially following IgE-

mediated activation. Human basophils were obtained from buffy coats,

following research ethics approval, and further purified by immunomagnetic

cell sorting. Expressions of SERCA2, and other isoforms, were determined by

Western blotting in parallel to measuring IgE-dependent histamine releases

from the same donors. The effects of a SERCA-activator and inhibitor were also

assessed on their abilities to modulate basophil histamine release. We observed

an inverse correlation between basophil responsiveness to IgE-dependent

stimulation and SERCA2 expression. Thapsigargin, a highly-specific SERCA

inhibitor, stimulated basophil histamine release and potentiated IgE-

dependent secretion of the amine. Conversely, disulfiram, a SERCA activator,

inhibited IgE-dependent basophil activation. The results obtained from this

exploratory study indicate that SERCA2 may be an additional regulator of

basophil reactivity alongside early excitatory or inhibitory signal

transduction pathways.
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1 Introduction

Basophils contribute to the severity of allergic reactions by their

capacity to rapidly release histamine and leukotriene C4. They also

play a pivotal role in initiating and sustaining Th2-type pro-allergic

immune responses by releasing IL-4 and IL-13, alongside various

inflammatory cytokines such as TNFa. Despite their relative

scarcity, especially to mast cells with which they share the ability

to release pro-inflammatory mediators by IgE-dependent

mechanisms, animal models of allergy and immunity to parasites

have demonstrated that basophils play a non-redundant role in

initiating Th2 responses and in chronic allergic inflammation

(reviewed in (1). These immunomodulatory attributes are

thought to occur following the migration of circulating basophils

to tissues affected by allergic inflammation as well as to associated

lymphatic tissues. Mouse models have also shown that basophils

may also differentially contribute to anaphylaxis (2–4). In humans,

basophil activation tests and a rapid decline in circulating basophils

have shown a strong correlation to the severity of severe allergic

reactions to foods and insect venoms (5–7), further highlighting a

role for this cell type in anaphylaxis.

The crosslinking of IgE molecules bound to high-affinity IgE

receptors (FceRI) by allergens crucially determines basophil

activation in humans, whereas in mice IgG-mediated

anaphylaxis due to basophil activation may also occur (3),

underlining the importance for detailed studies of human

basophil function. Interestingly, although the degree of human

basophil sensitization with antigen-specific IgE is important for

enabling allergen-induced cell activation, the severity of clinical

symptoms of basophil-driven diseases crucially depends on the

basophil phenotype, especially in terms of the concept of

“releasability” (8). Previous studies have shown that the

releasability of basophils, regarding their strength of activation

to IgE-dependent triggers, is fundamentally regulated by various

intracellular signals. These include the expression and

phosphorylation of early stimulatory kinases, especially the

spleen tyrosine kinase SYK (9), and the subsequent activation

of downstream kinases such as phosphatidylinositol 3-kinase

(PI 3-kinase) (10, 11) and p38 mitogen-activated kinases

(p38 MAPK) (12). Basophil stimulation is, however, also

downregulated by inhibitory intracellular signals, notably

the Src homology 2 (SH2) domain containing inositol

polyphosphate 5-phosphatase 1 (SHIP1), which reduces both

basophil and mast cell function (13–17). SHIP-1 is also

associated with the concept of basophil non-releasers (16),

which is observed in up to 20% of donors at any given time

where basophils are unable to respond to IgE-dependent stimuli,

unrelated to the expression of IgE and FceRI per se (18). This

anergic state of human basophils may also be achieved by

targeting various inhibitory receptors such as CD300a (19, 20),

Allergin-1 (4), FcgRIIb (21) and siglec-7 (22). Basophil

responsiveness (releasability) is therefore intricately governed

by the balance of stimulatory and inhibitory signaling.
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SYK and PI 3-kinase phosphorylation ultimately leads to the

activation of phospholipase C and the subsequent synthesis of

inositol trisphosphate (IP3). IP3 is crucially responsible for the

increase in intracellular free calcium that drives the opening of

calcium-sensitive calcium channels, allowing for the influx of

extracellular calcium ions into basophils, without which no

mediator release occurs. Calcium mobilization in basophils is

therefore an essential step in determining basophil responses.

IP3-mediated leakage of calcium ions from intracellular stores,

such as the sarcoplasmic reticulum, is potentially offset by the

sarcoplasmic reticulum Ca2+-ATPase (SERCA2). Interestingly,

SERCA2 expressions in airway smooth muscle cells have been

reported to be inversely associated with airway inflammation

(23) and asthma severity (24). Moreover, it has long been known

that Ca2+-ATPase blocker, thapsigargin, activates human

basophils (25). These cells have been strongly implicated in

asthma severity, particularly during allergic late-phase reactions,

where their increased numbers within the lungs and their

activation are associated with severe outcomes, including death

(26, 27). It is notable that basophils from allergic asthma patients

displayed substantially higher magnitudes of histamine release

induced by thapsigargin than non-allergic controls (28),

indicating that SERCA2 may play a role in the severity of

symptoms in basophil-driven diseases. IgE-dependent basophil

activation is known to be greatly enhanced by priming cytokines,

such as IL-3, IL-5 and GM-CSF, which are elevated in allergic

asthma (29–31). Remarkably, these cytokines, which by

themselves are poor stimuli of basophil degranulation, can

cause substantial release of histamine from basophils in the

presence of sub-optimal concentrations of thapsigargin, further

indicating that depleting intracellular Ca2+ stores critically

activates human basophils receptor-mediated histamine

release (32).

Given the association of SERCA2 in asthma and that

basophils are implicated in asthma severity, our aims were to

address the principle of whether SERCA2 governs human

basophil responses, especially in relation to IgE-mediated

signaling. Our proof-of-concept study suggests that basophil

releasability to IgE-dependent activation is, at least in part,

determined by SERCA2 expression and possibly by other

SERCA isoforms.
2 Materials and methods

2.1 Isolation of human basophils

Basophils were obtained from buffy coats, following ethical

approval from the National Health Service (NHS) Research

Ethics Committee (reference number 07/Q1206/3), purchased

from the NHS Blood and Transfusion service. Basophils were

first isolated by Ficoll-density centrifugation (using Ficoll-Paque

Plus, GE Healthcare, Uppsala, Sweden) and purified further by
frontiersin.org
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immunomagnetic cell selection (negative selection) using

commercial isolation kits (EasySep Human Basophil

Enrichment Kit, STEMCELL Technologies, Grenoble, France)

as previously reported (33, 34). Basophil numbers and purities

were verified by light microscopy using alcian blue staining and a

Fuchs-Rosenthal haemocytometer. Mean basophil purity

obtained following immunomagnetic selection was 91.6 ± 1.2%.
2.2 Western blot analysis

Aliquots of purified basophils (1-2 x 105 cells) were pelleted

by centrifugation, and then lysed by vigorous mixing with lysis

buffer containing 50 mM Tris-HCl pH 7.5, 5 mM EDTA, 10mM

EGTA, 5 mM DTT, 1% Nonidet P-40, 1mM PMSF, 100 ug/ml

aprotonin, 20 ug/ml leupeptin and 10 mM benzamidine. An

equal volume of 2x-concentrated Laemmli sample buffer was

then added to the lysed basophils which were then heated to 99°

C, with agitation, for 2 min before storage at -80°C. Proteins

were separated by 12% sodium dodecyl sulfate–polyacrylamide

gel electrophoresis (SDS-PAGE) and then blotted onto nitro-

cellulose membranes. Prestained molecular weight rainbow

markers (Bio-Rad Laboratories Ltd, Watford, UK) were also

included for each SDS-PAGE run. Membranes were blocked for

4 h in 5% skimmed milk dissolved in TBST buffer (20 mM Tris-

HCl, pH 7.5, 137 mM NaCl, 0.1% Tween 20) with gentle

agitation. After 3 x 5 min washes in TBST, membranes were

incubated overnight (at 4°C) with primary antibodies, directed

against human SERCA2 (mouse monoclonal (ab2817)

purchased from Abcam, Cambridge, UK). Membranes were

then successively washed (4 x 5 min, TBST) followed by

incubation with anti-mouse horse radish peroxidase-

conjugated secondary antibodies for 2 h with gentle agitation.

After washing, unbound secondary antibody proteins were

visualized by autoradiography according to the manufacturer’s

instructions (ECL plus, Amersham, Buckinghamshire, UK).

After detection, membranes were stripped for 10-20 min using

Re-blot plus reagent (Chemicon, Chandlers Ford, UK), washed

in TBST (4 x 5 min) and reprobed. Beta-actin expressions

were measured in order to validate equal protein loading using

mouse monoclonal HRP-conjugated antibodies (ab20272).

Densitometric analysis was performed using ImageJ and the

relative band densities of SERCA were normalized to respective

band densities of b-actin and adjusted to control samples.
2.3 Cell treatments

The IgE-dependent reactivity of basophils from donors used

to detect SERCA expressions byWestern blot was determined by

assessing histamine release. Briefly, vials containing 50-100 x 104

basophils, resuspended in HEPES-buffered Tyrode’s solution

(buffer), were warmed for 15 min at 37°C before stimulation
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with 1 µg/ml goat anti-human IgE (ϵ-chain specific, Sigma-

Aldrich, St. Louis, USA) for 30 min, alongside unstimulated

controls. Reactions were then terminated by adding ice-cold

calcium-free buffer and centrifuging vials for 2 min at 1000 x g.

Histamine content in the supernatants and cell pellets, which

were diluted as required and lysed with perchloric acid (4%), was

assessed using a spectrofluorometric autoanalyzer, based on the

method reported by Shore et al. (35). Percentage histamine

releases were determined from the total histamine content in

the sum of pellet and supernatant tubes.

In a separate series of experiments, the effects of disulfiram

(a SERCA activator) on basophil histamine release were

investigated by preincubating isolated basophils with various

concentrations of disulfiram (together with buffer controls) for

15 min at 37°C before stimulation with anti-IgE and assessment

of histamine releases as described above. Part of the remaining

cell pellets were also subjected to MTS viability assays. Briefly,

cells were incubated with 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium

(MTS) and absorbance was measured at 490 nm using a plate

reader, according to the manufacturer’s instructions (Promega

UK Ltd., Southampton, UK).
2.4 Statistical analysis

Experiments were repeated using different basophil donors

and results were first tested for normal distribution using the

Shapiro-Wilk test. For normally-distributed data, a one-way

ANOVA followed by Holm-Bonferroni correction was

employed to assess statistically significant differences when

multiple comparisons were made and a paired Student’s t-test

when comparing two events. The potential association between

IgE-dependent basophil reactivity and SERCA2 expression was

analyzed using linear regression analysis as well as Spearman’s

rank correlation- and Pearson correlation coefficients. Statistical

probabilities (p) were expressed as *, where p < 0.05, **p < 0.01

and ***p < 0.001, unless shown otherwise.
3 Results

In agreement with previous reports (25, 28, 32), we first

confirmed that thapsigargin activates human basophils and, at

sub-optimal concentrations, potentiated IL-3-stimulated

basophil histamine release (Supplementary Figure 1). IgE-

mediated basophil activation was only weakly potentiated by

thapsigargin, whereas mediator secretion induced by the

bacterial peptide secretagogue, fMLP, was not at all enhanced.

We could further verify that thapsigargin induced substantial

calcium mobilization in basophils but, in contrast to the calcium

ionophore A23187, the kinetics of calcium mobilization were

slower in the presence of extracellular calcium (Supplementary
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Figure 2). Interestingly, in the absence of extracellular calcium in

the buffer, thapsigargin had very similar effects (and at the same

rate) compared to A23187, supporting its mode of action as an

intracellular calcium liberator due to SERCA blockade.

Our preliminary investigations indicated that human

basophils variably express SERCA2 and, to a lesser extent, also

SERCA3, but we failed to observe SERCA1 expressions in these

donors (Supplementary Figure 3). Because Mahn et al. (24)

previously reported that SERCA2 is inversely associated with

asthma severity, and given that basophils show relatively high

SERCA2 expressions compared to other isoforms, we wished to

more closely examine whether SERCA2 expressions in human

basophils is associated with their releasabilty to IgE-dependent

stimulation. Indeed, basophils isolated from healthy donor buffy

coat blood differentially expressed SERCA2 (Figure 1A) and,

overall, this expression appeared to be clearly inversely

associated with IgE-dependent histamine release from the same

donors (Figure 1B). The negative correlation between SERCA2

expression and corresponding IgE-dependent histamine release

was highly statistically significant, despite several outliers (see also

Supplementary Table 1 for a summary of all the data shown in

Figure 1). In contrast, spontaneous histamine secretion was not
Frontiers in Immunology 04
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significantly associated with SERCA2 expression (R2 = 0.1; p>0.2).

Because IgE-dependent basophil activation between different

donors (even from healthy individuals) is highly variable, we

grouped the donors into low, medium and high responders to

anti-IgE stimulation. We observed that the expression of SERCA2

was diminished most noticeably in the high responder group (net

histamine release >30%; Figures 1C, D), indicating that SERCA2

may, at least in part, be involved in governing low IgE responder

phenotypes in addition to other known regulatory signals

(especially SYK and SHIP-1).

Since the liberation of intracellular calcium is an essential

step for basophils to produce and release pro-allergic and other

inflammatory mediators, we hypothesized that agents which

activate SERCA could potentially inhibit IgE-mediated

basophil activation. We therefore used disulfiram which, in

addition to its well-known effects as an inhibitor of aldehyde

dehydrogenase, also reversibly stimulates SERCA. We observed

that disulfiram strikingly and significantly inhibited IgE-

dependent basophil histamine release (Figure 2A, B).

Disulfiram did not affect basophil cell viability (Figure 2C) and

did not markedly induce histamine release from basophils by

itself (Figure 2D).
A B

C D

FIGURE 1

SERCA2 expressions and IgE-dependent histamine release from human basophils are negatively correlated. (A) SERCA2 expressions in
unstimulated purified basophils, as determined by Western blotting, representative for a total of 19 separate basophil donors investigated. (B)
Densitometric analysis of SERCA2 expressions plotted against the corresponding net anti-IgE-induced histamine release from the same basophil
donors (n=19). (C) Histamine releasability to IgE-dependent stimulation grouped to low (<15% net release, n=5), medium (15 - 30% net release,
n=8) and high (>30% net release, n=6) responders which were employed in (D) showing that SERCA2 expressions are clearly and significantly
reduced in high responder basophils. Histamine data are shown as means ± SEM. * and ** indicate significant (p<0.05 and p<0.01, respectively)
differences as determined by a one-way ANOVA followed by Holm-Bonferroni correction. ns, not significant.
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4 Discussion

Our findings have identified an inverse association between the

ability of human basophils to respond to IgE-dependent stimulation

and the expressions of SERCA, particularly the SERCA2 isoform.

These observations highlight a potential further tier of control of

basophil releasability at the level of intracellular calciummobilization,

alongside other known key upstream signals such as SYK and the

inhibitory phosphatase SHIP1. In the histamine-releasing rat mast

cell line RBL-2H3, Dráberová et al. (36) reported that the non-T cell

activation linker (NTAL) regulates store-operated Ca2+ channels in

FceRI signalling. However, it is currently not known whether the

regulation mediator release to IgE-dependent triggers by the above

signals are linked in human basophils.
Frontiers in Immunology 05
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It has long been known that the SERCA inhibitor,

thapsigargin, activates human basophils (25) and potentiates

degranulation upon co-stimulation with basophil priming

cytokines, such as IL-3 (32), by depleting Ca2+ stores. Our results

also broadly confirm these earlier findings (Supplementary

Figure 1). The resulting increases in cytosolic free Ca2+ ions

open calcium release–activated calcium (CRAC) channels,

resulting in a substantial influx of extracellular calcium ions into

basophils.Without the influx of extracellular calcium, intermediary

signalling is considerably abrogated and mediator secretion from

basophils does not occur (12). Our investigations confirm that

blocking SERCA function by thapsigargin leads to a slow leakage of

intracellular calcium in human basophils which, in the presence of

extracellular calcium, results in substantial calcium influx which is
A B

C D

FIGURE 2

Disulfiram inhibits IgE-dependent histamine release from human basophils. (A) Basophils were preincubated with or without various
concentrations of disulfiram for 15 min at 37°C before stimulation with anti-IgE (1µg/ml) for 30 min (n=5). Results are expressed as relative
percentage histamine releases from which (B) the percentage inhibition of anti-IgE-induced histamine release was calculated from net
histamine releases (corrected for spontaneous release controls). aa denotes significant (p<0.01) differences between anti-IgE stimulated positive
controls from spontaneous release controls, * and ** indicate significant (p<0.05 and p<0.01, respectively) differences between anti-IgE alone
and basophils incubated with disulfiram at the indicated concentrations as determined by a one-way ANOVA followed by Holm-Bonferroni
correction. (C) Viability, relative to basophils incubated without anti-IgE or disulfiram, as determined by MTS assay, was not reduced by the
treatments (n=4). (D) Disulfiram did not significantly (ns; determined using a paired Student’s t-test) induce histamine release when incubated
with basophils for 45 min at 37°C alone (in the absence of anti-IgE; n=4). Results are expressed as means ± SEM for the indicated number of
independent experiments using different basophil donors.
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comparable to stimulation with the calcium ionophore A23187

(Supplementary Figure 2).

The pharmacological activation of SERCA by disulfiram led

to a significant inhibition of anti-IgE-stimulated basophils

(Figure 2), further indicating a role for SERCA in IgE-

mediated basophil activation. However, these findings need to

be interpreted with caution, since disulfiram is not only

a SERCA-specific activator but inhibits acetaldehyde

dehydrogenase, inositol 1,4,5-trisphosphate 5-phosphatase (37)

as well as vacuolar-type ATPase (V-ATPase) (38). In regards to

V-ATPase, Pejler et al. (39) showed that the V-ATPase inhibitor

bafilomycin A inhibited IgE-dependent beta-hexosaminidase

release from bone marrow-derived mouse mast cells. However,

these inhibitory effects were moderate (<50% inhibition) and

observed only after long (24h) preincubations with bafilomycin

A1. It therefore remains questionable whether the potential

inhibitory effects of disulfiram on V-ATPase in basophils is

relevant considering the short preincubations (15 min) used in

the present study where IgE-dependent histamine release was

inhibited within previously published concentrations of the drug

required for SERCA stimulation (40).

At the level of SERCA protein expression, the inverse

association between constitutive SERCA2 and IgE-induced

basophil degranulation clearly underlines a potential role for

SERCA2 in determining, at least in part, the magnitude of

basophil responses. From our exploratory investigation, this

appears to be the case for constitutive IgE-mediated

releasability in freshly isolated human basophils but it is not

presently clear whether SERCA plays a role in governing

basophil releasability in basophils which have been primed by

IL-3 or other cytokines (e.g. nerve growth factors, IL-33 etc.)

which enhance IgE-dependent mediator release. Importantly,

basophil releasability to other stimuli, such as the bacterial

peptide fMLP, does not correlate with IgE-mediated histamine

release, although the initial Ca2+ response (caused by a rise in

intracellular free calcium from intracellular stores) was reported

to probably arise from the same internal source of the ion (41).

This suggests that fMLP-induced basophil degranulation should

also be dependent on intitial calcium responses and

downregulated by SERCA. However, MacGlashan and Botana

previously reported that fMLP-induced histamine release does

not correlate with calcium responses (41) and, according to

previous reports (32) as well as our own data, are not

potentiated by thapsigargin. This suggests a differential

dependency on intracellular calcium mobilization and

subsequent SERCA input regarding basophil mediator

secretion caused by different secretagogues, a point which still

requires further clarification.

To the best of our knowledge, this is the first study to

implicate a role for SERCA in regulating the function of allergic

effector cells. A possible role for diminished SERCA expressions

in the context of allergic inflammation is currently not well

understood, where studies to date have focussed only on its role
Frontiers in Immunology 06
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in airway smooth muscle cells regarding asthma. Here, Mahn

et al. (24) reported that SERCA2 deficiency contributes to a

hyperproliferative airway smooth muscle phenotype in asthma

and is associated with moderate-severe asthma. These findings,

however, were disputed by Sweeney et al. (42) who failed to

observe differences in SERCA2 mRNA or protein expressions in

airway smooth muscle cells between asthmatic patients and

controls. Conversely, Qaisar et al. (43) also reported reduced

SERCA expressions in asthma and, in a guinea pig model of

asthma, reduced SERCA2b expression in airway smooth muscle

cells was recently reported to correlate with intrinsic airway

baseline tone (44). The proinflammatory cytokines, TNFa and

IL-13, which are heavily implicated in asthma severity, were

shown to decrease SERCA2 expressions in human airway

smooth muscle cells (23).

SERCA proteins are expressed in at least seven different

isoforms (SERCA1a/1b, SERCA 2a/2b, and SERCA 3a/3b/3c), of

which only SERCA2b and SERCA3 isoforms are expressed in

non-muscle cells (reviewed in (45). We primarily focussed on

SERCA2 since this isoform was implicated in asthma in previous

reports. However, our preliminary data suggest that human

basophils may also constitutively express SERCA3 isoforms

(Supplementary Figure 3). In contrast, in our preliminary

investigations, where we focussed only on constitutive

expressions in low or non-responder basophils to IgE-

dependent stimulation, we did not observe SERCA1 expression

in basophils. Our observations are, in part, supported by

previous findings regarding RNA-seq expressions of SERCA2

and 3 (46, 47), which are relatively highly expressed in basophils

in comparison to other immune cells (47). However, a gene

expression dataset published by Uhlen et al. failed to detect

SERCA2 expressions in various granulocytes (including

basophils) in contrast to relatively high granulocyte

expressions of SERCA3 (48). It is unclear whether the above

disparities of SERCA2 gene expressions are related to our

observations regarding differential SERCA2 protein

expressions with respect to IgE-mediated basophil activation.

However, given that human basophils also express SERCA3,

further studies are clearly required regarding the possible

functional consequences of the differential expressions of

various SERCA isoforms in basophils.

Our study was limited to focussing on basophils isolated

from buffy coat blood obtained from healthy donors. Further

studies are clearly required to determine whether the negative

association between SERCA expressions and IgE-mediated

basophil releasability has clinical implications, especially

regarding allergic diseases. From our exploratory study, there

is a clear inverse association between SERCA expression and the

ability of human basophils to respond to IgE-dependent

stimulation. It remains to be clarified whether SERCA may

serve as a new target for therapeutic regulation of basophil

responses and is implicated in the functional regulation of other

human allergic effector cell types.
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Mas-related G protein-coupled
receptor MRGPRX2 in human
basophils: Expression and
functional studies

Alessandro Toscano1,2,3, Jessy Elst1,2, Athina L. Van Gasse1,2,4,5,
Michiel Beyens1,2, Marie-Line van der Poorten1,2,4,5,
Chris H. Bridts1,2, Christel Mertens1,2, Michel Van Houdt1,2,
Margo M. Hagendorens1,2,4,5, Samuel Van Remoortel6,
Jean-Pierre Timmermans6, Didier G. Ebo1,2,7* and Vito Sabato1,2,7

1Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence,
Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium, 2Immunology,
Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium, 3Post-Graduate School of
Allergology and Clinical Immunology, University of Milan, Milan, Italy, 4Department of Pediatrics and the
Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp,
Antwerp, Belgium, 5Pediatrics, Antwerp University Hospital, Antwerp, Belgium, 6Laboratory of Cell
Biology and Histology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of
Antwerp, Antwerp, Belgium, 7Algemeen Ziekenhuis (AZ) Jan Palfijn Gent, Department of Immunology
and Allergology, Ghent, Belgium
Background: Occupancy of MRGPRX2 heralds a new era in our understandings of

immediate drug hypersensitivity reactions (IDHRs), but a constitutive expression of

this receptor by basophils is debated.

Objective: To explore the expression and functionality of MRGPRX2 in and on

basophils.

Methods: Basophils from patients with birch pollen allergy, IDHRs to moxifloxacin,

and healthy controls were studied in different conditions, that is, in rest, after

stimulation with anti-IgE, recombinant major birch pollen allergen (rBet v 1),

moxifloxacin, fMLP, substance P (SP), or other potential basophil secretagogues.

In a separate set of experiments, basophils were studied after purification and

resuspension in different media.

Results: Resting whole blood basophils barely express MRGPRX2 on their surface

and are unresponsive to SP or moxifloxacin. However, surface MRGPRX2 is quickly

upregulated upon incubation with anti-IgE or fMLP. Pre-stimulation with anti-IgE

can induce a synergic effect on basophil degranulation in IgE-responsive subjects

after incubation with SP or moxifloxacin, provided that basophils have been

obtained from patients who experienced an IDHR to moxifloxacin. Cell

purification can trigger a “spontaneous” and functional upregulation of

MRGPRX2 on basophils, not seen in whole blood cells, and its surface density

can be influenced by distinct culture media.

Conclusion: Basophils barely express MRGPRX2 in resting conditions. However,

the receptor can be quickly upregulated after stimulation with anti-IgE, fMLP, or

after purification, making cells responsive to MRGPRX2 occupation. We anticipate
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that such “conditioned” basophils constitute a model to explore MRGPRX2

agonism or antagonism, including IDHRs originating from the occupation of this

receptor.
KEYWORDS

basophils, allergy, CD63, CD203c, moxifloxacin, MRGPRX2, substance P.
1 Introduction

Human Mas-related G protein-coupled receptor member X2

(MRGPRX2) is expressed by various cell types, including dorsal

root ganglion neurons and tryptase- and chymase-containing

connective tissue mast cells (MCTC) (1), and can be activated by a

variety of basic small molecules, such as the tachykinergic

neuropeptide substance P (SP), anaphylatoxins, and compound 48/

80, leading to degranulation independent of cross-linking of the high-

affinity receptor for IgE (FcϵRI) (2, 3). Nonetheless, MRGPRX2 can

also be involved in immediate hypersensitivity reactions to drugs

(IDHRs), such as icatibant (4, 5), neuromuscular blocking agents

(NMBAs) (4, 6–9), fluoroquinolones (4, 6–11), cetrorelix (4, 5),

morphine (8, 9, 12), vancomycin (13) and many other

antimicrobials/antiseptics (14, 15). However, experimental

methodological heterogeneity has significantly hampered the

interpretation and generalization of observations on MRGPRX2

involvement in IDHRs. This is in part due to the different

experimental mutant animal models and transfected cell lines

employed, both human and nonhuman, which exhibit a different

level of MRGPRX2 expression, with variable receptor responsiveness

and affinity (16).

In this context, a more accessible humanmodel is cultured human

mast cells from peripheral blood-progenitor cells (PBCMCs) (9),

which has been successfully applied both with and without

comparative silencing of MRGPRX2 (8, 17).

Two other putative and attractive candidates for further human

MRGPRX2 studies were proposed by Wedi et al. (18), who showed

that basophils and eosinophils constitutively express functionally

active MRGPRX2 and are responsive to the fluoroquinolone

ciprofloxacin. However, with respect to basophils, these data

conflict with earlier preliminary findings, that is, whole blood

basophils barely express MRGPRX2 (19) and basophils from

uneventfully exposed control individuals do not degranulate non-

specifically in response to MRGPRX2 agonists such as NMBAs,
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opiates, fluoroquinolones, and vancomycin (11, 20, 21).

Alternatively, we demonstrated that anti-IgE and, to a lesser extent,

fMLP, enhance the surface expression of MRGPRX2 by

basophils (19).

Here, we investigate the discrepancies in basophilic MRGPRX2

expression and explore the effect of IgE/FcϵRI-dependent or

-independent stimuli on the surface expression and functionality.
2 Materials and methods

2.1 Peripheral blood cultured mast
cells (PBCMCs)

Human MCTC-like cells were cultured out of peripheral blood

progenitor cells according to a protocol earlier described (22), and

applied as a positive control for anti-MRGPRX2 staining. Briefly,

CD34+ progenitor cells were isolated using magnetic beads

(EasySep™ Human CD34 Selection Kit; Stemcell Technologies) and

cultured in a serum-free methylcellulose-based medium (MethoCult

SF H4236; Stemcell Technologies) supplemented with penicillin (100

units/mL), streptomycin (100 µg/mL) (Gibco, Thermo Fisher

Scientific), low-density lipoprotein (10 µg/mL, LDL; Stemcell

Technologies), 2-mercaptoethanol (55 µmol/L; Gibco, Thermo

Fisher Scientific), stem cell factor (SCF, 100 ng/mL; Miltenyi

Biotec) and interleukin-3 (IL-3, 100 ng/mL; PeproTech) during 4-

5 weeks.

MCs were stained with anti-human CD117-APC (clone 104D2;

BD Biosciences), and anti-human CD203c-PeCy7 (clone NP4D6;

BioLegend) and defined as CD117+ and CD203c+.

The PBCMC cultures employed had a purity of 80% for

CD117+CD203c+ cells (23). Before applying the PBCMCs to

perform the qPCR experiments, cell debris removal was performed

using the EasySep™ Dead Cell Removal (Annexin V) Kit

(Stemcell Technologies).

For membrane staining of MRGPRX2, 10 µL anti-human

MRGPRX2-PE (clone K125H4; BioLegend) was added before fixing

the cells and incubated on ice for 20 minutes in the dark. For

intracellular staining of MRGPRX2, PBCMCs were fixed with 4%

paraformaldehyde (BioLegend) for 30 minutes at room temperature.

Subsequently, cells were washed and permeabilized in PBS (Thermo

Fisher Scientific) with 0.05% Triton-X-100 (Avantor (VWR)) (PBS-

TX, pH 7.4). Then, 10 µL of anti-human MRGPRX2-PE diluted in

PBS-TX was added and incubated for 20 min at 4°C. Cells were

washed with 0.3 mL PBS-TX and resuspended in PBS with 0.1%

sodium azide (Avantor (VWR)).
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2.2 Peripheral whole blood basophils

Heparinized sterile whole blood samples were collected from

patients allergic to birch pollen (BPAs) (all presented with rhino-

conjunctivitis and/or asthma related to birch pollen exposure and

documented sensitization to Bet v 1, the major allergen from Betula

verrucosa), patients with an IDHR to moxifloxacin (MOXs) [IDHRs

to moxifloxacin have been defined in a previous study (11)], and

healthy control individuals (HCs) and used for immunophenotyping

and activation studies.

For all the activation studies, 200 µL of whole blood were

incubated with 200 µL of antigens and prewarmed at 37°C.

Reactions were stopped by placing the cells on ice and adding 1 mL

ice-cooled PBS-EDTA [10 mmol/L EDTA; Avantor (VWR)].

Supernatants were removed after spinning for 5 min (4°C, 200g).

Basophils were stained with 20 µL monoclonal anti-human IgE

(clone GE-1; Sigma Aldrich GmBH) labeled with AlexaFluor 405

(Molecular Probes; Thermo Fisher Scientific), 10 µL monoclonal anti-

human CD63-PE (clone H5C6; BD Biosciences), and 10 µL

monoclonal anti-human CD203c-APC (clone NP4D6; Biolegend)

and incubated on ice for 20 minutes in the dark. For membrane

staining of MRGPRX2, 10 µL anti-human MRGPRX2-PE (clone

K125H4; BioLegend), was added before fixing the cells and

incubated on ice for 20 minutes in the dark. Cells were lysed/fixed

with 2 mL BD FACS Lysing solution for 20 min at room temperature.

Cells were washed twice with PBS with 0.1% sodium azide and

measured. Basophils were gated as SSclowaIgE+ cells. Resting

basophils were defined as CD203c+CD63-, whereas degranulating

basophils were identified as CD203c++CD63+. Analyses were

performed at predetermined time points.

For intracellular staining of MRGPRX2, basophils were fixed with

2 mL Phosflow Lyse/Fix Buffer (BD Biosciences) for 20 min at 37°C.

Subsequently, cells were washed and permeabilized in PBS with 0.1%

Triton-X-100 (PBS-TX, pH 7.4). Then, 10 µL of anti-human

MRGPRX2-PE diluted in PBS-TX was added and incubated for 20

min at 4°C. Cells were washed with 0.3 mL PBS-TX and resuspended

in PBS with 0.1% sodium azide.
2.3 Purified basophils

Basophils were isolated from EDTA-anticoagulated whole blood

samples obtained from HCs using magnetic beads (EasySep™

Human Basophil Enrichment Kit; Stemcell Technologies) according

to the manufacturer’s instructions and used for a different set of

immunophenotyping and activation studies.

After purification, cells were resuspended in RPMI 1640 (Thermo

Fisher Scientific) 10% fetal calf serum (Thermo Fisher Scientific) +

gentamycin 0.5% (Thermo Fisher Scientific) + glutamine 1% (Thermo

Fisher Scientific) (RPMI medium) or in Tyrode buffer 10%

autologous serum (Thermo Fisher Scientific) (Tyrode medium) for

30 minutes before starting the experiments. For all the activation

studies, 100 µL of purified basophils were incubated with 100 µL of

antigens and prewarmed at 37°C before use. Reactions were stopped

by placing the cells on ice and adding 1 mL ice-cooled PBS-EDTA (10

mmol/L EDTA). Supernatants were removed after spinning for 5 min

(4°C, 200g). Basophils were stained before fixation with 20 µL
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monoclonal anti-human IgE (clone GE-1; Sigma Aldrich GmBH)

labeled with AlexaFluor 405 (Molecular Probes; Thermo Fisher

Scientific), 10 µL monoclonal anti-human CD63-PE (clone H5C6;

BD Biosciences), 10 µL monoclonal anti-human CD203c-APC (clone

NP4D6; Biolegend), and 10 µL anti-human MRGPRX2-PE (clone

K125H4; BioLegend). Cells were lysed/fixed with 2 mL BD FACS

Lysing solution for 20 min at room temperature. Cells were washed

twice with PBS with 0.1% sodium azide and measured. Basophils were

gated as SSclowaIgE+ cells. Resting basophils are defined as

CD203c+CD63-, whereas degranulating basophils are identified as

CD203c++CD63+. Analyses were performed at different

predetermined time points.
2.4 Experiments with peripheral whole
blood basophils

Basophils from BPAs and HCs were incubated with mouse anti-

human monoclonal anti-IgE antibodies (10 µg/mL, clone G7-18; BD

Bioscience) as a positive control or rBet v 1 (0.01 µg/mL, rBet v 1;

Biomay) to assess activation/degranulation through IgE/FcϵRI cross-
linking as previously described (24).

To study their IgE/FcϵRI-independent activation, basophils from
BPAs and HCs were stimulated with N-formyl-methionyl-leucyl-

phenylalanine (0.5 µg/mL, fMLP; Sigma-Aldrich), LPS (10 µg/mL;

Sigma-Aldrich, Merck) and staphylococcus enterotoxin B (SAB 1-100

µg/mL; Sigma-Aldrich, Merck) or incubated with IL-3 (10 ng/

mL; PeproTech).

To study the functionality of basophilic MRGPRX2 expression,

basophils from individuals who were responsive to positive control

stimulation with anti-IgE in the CD63 basophil activation test (BAT)

were separately or simultaneously stimulated with anti-IgE (10 µg/

mL) and the natural MRGPRX2 ligand SP (15 µmol/L, Sigma-

Aldrich, Merck). MRGPRX2-mediated activation/degranulation

induced by SP (1.5 µmol/L, 15 µmol/L, 150 µmol/L, and 300 µmol/

L) alone or after 20 minutes of priming with IL-3 (2 ng/ml and 10 ng/

ml) was also assessed.

To study moxifloxacin-induced activation/degranulation,

basophils from MOXs and HCs were separately or simultaneously

challenged with anti-IgE (10 µg/mL) and moxifloxacin (0.025 mmol/L

or 2.5 mmol/L, Sigma-Aldrich, Merck) as previously described (11).

Whole blood basophils were also separately or jointly incubated

with IL-3 (10 ng/mL), IL-33 (30 ng/mL, PeproTech), and moxifloxacin

(0.025 mmol/L and 2.5 mmol/L, Sigma-Aldrich, Merck).
2.5 Experiments with purified basophils and
preincubation with cytokines

Purified basophils were resuspended in RPMI medium or Tyrode

medium and analyzed via a BAT. Purified basophils resuspended in

the two different media were also stimulated with anti-IgE (10

µg/mL).

MRGPRX2-mediated activation/degranulation induced by SP

(1.5 µmol/L, 15 µmol/L, 150 µmol/L, and 300 µmol/L) alone or

after 20 minutes of priming with IL-3 (2 ng/ml and 10 ng/ml) was

assessed in purified basophils resuspended in RPMI medium.
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These were also separately or jointly incubated with IL-3 (10 ng/

mL), IL-33 (30 ng/mL), and moxifloxacin (2.5 mmol/L).
2.6 Flow cytometric analysis

Flow cytometric analysis was performed on a FACSCanto II™

flow cytometer (BD Immunocytometry Systems) equipped with three

lasers (405, 488, and 633 nm). Correct compensation settings for the

antibodies conjugated with fluorochromes were performed using BD

CompBeads (BD Biosciences). Fluorescence minus one (FMO)

samples were used to set a marker for positivity according to the

99th percentile. Flow cytometric data were analyzed using Kaluza

Analysis 2.1 software (Beckman Coulter). Flow cytometric

characterization of basophils relied upon a combination of side

scatter (SSC), anti-IgE and CD203c. At least 1,000 basophils were

counted and analyzed. Activation is expressed in net percentages of

upregulation of CD63, CD203c, and MRGPRX2, that is the percentage

of CD63, CD203c, and MRGPRX2 positive stimulated cells minus the

percentage of positive CD63, CD203c, and MRGPRX2 resting cells.
2.7 RT-qPCR and gel electrophoresis

RNA isolation from PBCMCs and purified basophils at rest or

after stimulation with anti-IgE (10 µg/mL) from 3 HCs was

performed using the Nucleospin RNA XS kit, according to the

manufacturer ’s protocol (Macherey-Nagel). Sample RNA

concentration and quality were determined using the Agilent

Bioanalyzer 2100 platform (Agilent Tech.). An RNA integrity

number (RIN) cut-off of 6 was applied to exclude inadequate

samples. A total of 200 ng RNA was reverse-transcribed using the

iScript cDNA synthesis kit (Bio-Rad Laboratories, Hercules), and the

resulting cDNA was diluted 1:5. Bio-Rad PrimePCR assays containing

validated primer pairs were used to perform a qPCR analysis on the

expression of the target gene MRGPRX2 (PrimePCR Assay ID

qHsaCID0023564), and two housekeeping genes, namely HPRT1

(PrimePCR Assay ID qHsaCID0016375) and RPS29 (PrimePCR

Assay ID qHsaCED0038808) (25), applied as positive controls.

Each sample was run in triplicate.

RT-qPCR was performed on 2 µL of cDNA using the SSO

Advanced Universal SYBR Green Supermix (Bio-Rad Laboratories),

with a total of 40 amplification cycles and the PCR protocol according

to the manufacturer’s instructions. Next, qPCR products underwent

2% agarose gel electrophoresis and UV visualization (GelRed Nucleic

acid stain, Biotium) to evaluate the presence of amplicons of the

expected band size.
2.8 Statistical analysis

Two-way analysis of variance (ANOVA), paired Student’s t-tests,

Tukey’s multiple comparisons test, Mann Whitney test and Pearson’s

correlation coefficient were applied, where appropriate, using JMP

Pro 13 (SAS, Cary, NC, USA). P-values < 0.05 were considered as

significant. Figures were developed in GraphPad Prism 7 (GraphPad

Software, La Jolla, CA, USA).
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3 Results

3.1 MRGPRX2 expression in resting basophils
and PBCMCs

Resting PBCMCs express MRGPRX2, both intracellularly and on

their surface membrane (Figure 1). In contrast, resting whole blood

basophils from BPAs and HCs invariantly show intracellular staining

for MRGPRX2, but barely express the receptor on their

surface membrane.

Whereas MRGPRX2 mRNA is detected in PBCMCs by qPCR, it

was not found in resting purified basophils at rest or after stimulation

with anti-IgE, as shown after gel electrophoresis of the qPCR products

(Supplementary Figures 1, 2).

For both housekeeping genes (HPRT1 and RPS29) qPCR was

successful and showed clear expression in all samples indicating that

positive control genes are clearly expressed in both PBCMCs and

resting or anti-IgE-stimulated purified basophils.
3.2 MRGPRX2, CD63, and CD203c
expression by activated whole
blood basophils

Stimulation with anti-IgE and fMLP induces an upregulation of

MRGPRX2. This significant upregulation peaks after 3 minutes and

reaches a plateau at 60 minutes. The appearance of the degranulation

marker CD63 and upregulation of CD203c display slightly dissimilar

time kinetics, since both events peak later, i.e., after 5 minutes

(Figure 2). MRGPRX2 upregulation after stimulation with fMLP is

significantly less pronounced compared to anti-IgE stimulation.

Representative plots of MRGPRX2 upregulation in HC and BPA

after 20 minutes stimulation with anti-IgE, fMLP, and Bet v 1 are

shown in Figure 3.

No difference in MRGPRX2 expression was observed between

resting basophils from BPAs (n=16; median 4%; range 0-14%) and

HCs (n=10; median 6%; range 4-20%). On the other hand, a

significantly higher MRGPRX2 upregulation was observed in anti-

IgE stimulated basophils from BPAs (n=16; median 50%; range 13-

99%) when compared to HCs (n=10; median 19%; range 12-31%) (p =

0.02, Mann Whitney test).

IL-3 triggers upregulation of CD203c without any upregulation of

MRGPRX2 or CD63 (Supplementary Figure 3). We could not detect

any upregulation of CD203c, CD63 or MRGPRX2 after stimulation

with LPS and Staphylococcus enterotoxin (data not shown).
3.3 Co-incubation experiments with anti-IgE
and substance P

In whole blood basophils from individuals who are responsive to

anti-IgE, SP alone does not induce upregulation of CD63, CD203c, or

MRGPRX2 surface expression. In contrast, co-incubation with anti-

IgE and SP exerts a numeric synergistic effect on CD63 upregulation

reaching significance after 3 minutes (p = 0.0104 at 3 minutes; p =

0.0017 at 5 minutes; p = 0.0026 at 20 minutes) (Figure 4).
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3.4 Co-incubation experiments with anti-IgE
and moxifloxacin

Based on the appearance of CD63, stimulation with anti-IgE

reveals two distinct basophil reactivity patterns, i.e., “CD63

responders” and “CD63 non-responders”. HCs and CD63-

responding MOXs show an anti-IgE-induced appearance of CD63

(Figures 5A, G) and upregulation of surface MRGPRX2 (Figures 5B,

H). CD63-non-responding MOXs fail to demonstrate an increase of

CD63 expression (Figure 5D) but also show surface upregulation of

MRGPRX2 (Figure 5E). In all three groups, upregulation of CD203c is

observed (Figures 5C, F, I).

Moxifloxacin alone does not induce degranulation with the

appearance of CD63 or surface upregulation of MRGPRX2 in either

MOXs, regardless of CD63-responding status, (Figures 5D, E, G, H)

or HCs (Figures 5A, B).

Like for SP, co-incubation of the cells with anti-IgE and moxifloxacin

0.025 mmol/L exerts a synergistic effect with enhanced upregulation of

CD63, which is strictly restricted to the CD63-responding MOXs and

reaches statistical significance from 5 minutes onwards (p = 0.0007 at 5

minutes; p = 0.004 at 20 minutes) (Figure 5G). In contrast, in CD63-non-

responding MOXs (Figure 5D) and in responsive HCs (Figure 5A), co-

incubation with anti-IgE and moxifloxacin 0.025 mmol/L does not result

in a CD63 expression higher than with anti-IgE alone. No significant

difference is observed in all three groups on the expression of MRGPRX2

(Figures 5B, E, H) and CD203c (Figures 5C, F, I) in comparison to

experiments with anti-IgE alone. A representative plot is shown in

Supplementary Figure 4.
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In contrast, coincubation with anti-IgE and moxifloxacin 2.5

mmol/L seems to have an antagonistic effect on anti-IgE-mediated

CD63 upregulation at 3 minutes in CD63-responding MOXs (p =

0.005), but not in CD63-non-responding MOXS, and from 3 minutes

onwards (p = 0.0241 at 3 minutes; p = 0.0026 at 5 minutes; p = 0.006 at

20 minutes) in responsive HCs (Figures 5A, D, G). Interestingly, the

magnitude of inhibition seems to be higher in HCs than in CD63-

responding MOXs. Furthermore, coincubation with anti-IgE and

moxifloxacin 2.5 mmol/L has a synergistic effect on MRGPRX2

upregulation at 3 minutes only in responsive HCs (p = 0.0256)

(Figure 5B). No correlation between the magnitude of the

inhibitory effect of coincubation with moxifloxacin 2.5 mmol/L on

anti-IgE-mediated CD63-upregulation and MRGPRX2 upregulation

was observed for any subpopulation (Supplementary Figure 5). With

respect to CD203c, coincubation with anti-IgE and moxifloxacin 2.5

mmol/L triggers significant synergistic upregulation only in CD63-

responding MOXs (p = 0.0019 at 1 minute; p = 0.0039 at 5

minutes) (Figure 5I).
3.5 MRGPRX2 expression in
purified basophils

As shown in Figure 6A and Supplementary Figure 5, purification

of basophils induces a significantly higher MRGPRX2 expression as

compared to whole blood basophils (p ≤ 0.0001).

Purified basophils, resuspended in both Tyrode medium and

RPMI medium, show upregulation of CD203c but not CD63.
FIGURE 1

Membrane and intracellular expression of MRGPRX2 in peripheral blood cultured mast cells (PBCMCs) and whole blood basophils. Representative plots
of membrane (green histogram) and intracellular (red histogram) MRGPRX2 expression in PBCMCs and resting whole blood basophils. FMO =
fluorescence minus one sample (blue histogram). PBCMCs = peripheral blood cultured mast cells.
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Purified basophils incubated in RPMI medium are no longer

stimulable with anti-IgE and their MRGPRX2 density is higher

than that observed for separated basophils suspended in Tyrode

medium (Supplementary Figure 7).
3.6 MRGPRX2 functionality in
purified basophils

Stimulation of purified basophils resuspended in RPMI medium

with SP, primed with two different concentrations of IL-3 for 20
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minutes, induces upregulation of CD63 after 3 minutes with a direct

SP-dependent dose effect that reaches significance for the highest

tested concentration of SP (p = 0.0275 for SP 300 µmol/L after

priming with IL-3 2 ng/mL compared to buffer after priming with IL-

3 2 ng/ml; p = 0.0042 for SP 300 µmol/L after priming with IL-3 10

ng/mL compared to buffer after priming with IL-3 10 ng/mL). At 20

minutes the effect is significant only for experiments conducted

jointly with the highest IL-3 and SP concentrations (p = 0.0394 for

SP 300 µmol/L after priming with IL-3 10 ng/ml compared to buffer

after priming with IL-3 10 ng/mL) (Figure 6B).

No significant SP-induced CD63 upregulation is observed in the

same set of experiments performed without co-incubation with IL-3 or

on whole-blood basophils (Figure 6C and Supplementary Figure 8).

Priming with IL-3 has no effect on MRGPRX2 expression, neither

on purified nor on whole blood basophils (Supplementary Figure 9).
3.7 Moxifloxacin-induced degranulation of
purified basophils

As shown in Figure 7, stimulation of whole blood basophils or

purified basophils resuspended in RPMI medium with moxifloxacin

alone results in a CD63 expression comparable to spontaneous

expression of CD63.

IL-3 and IL-33 separately can significantly (but slightly) increase

CD63 expression in purified basophils at 20 minutes with a (not

significant) synergistic effect when combined. In purified basophils,

co-incubation of IL-3 and/or IL-33 with moxifloxacin seems to cause

an additive effect on CD63 upregulation which is not

statistically significant.

Almost no upregulation of CD63 is observed in whole blood

basophils obtained from the same patients, regardless of incubation

with IL-3, IL-33, and/or moxifloxacin.

Co-incubation of both purified and whole blood basophils with

IL-3, IL-33, or both, fails to induce upregulation of MRGPRX2 after 3

and 20 minutes (Supplementary Figure 10).
4 Discussion

Here we confirm that human resting peripheral blood basophils

only rarely express functionally active MRGPRX2 on their surface

membrane and, consequently, are unresponsive to endogenous and

exogenous MRGPRX2 agonists. Although unclear, this probably

correlates with the lack of exposure to specific tissue factors and

allows the prevention of potent and potentially harmful nonspecific

activation of these cells, as MRGPRX2 can also be activated by various

exogenous and endogenous substances including serum albumin

fragments (26).

Our data are not in line with the observations by Wedi et al. (18),

who demonstrated that MRGPRX2 is constitutively expressed on

resting isolated basophils, ciprofloxacin induces basophil

degranulation, and basophils contain MRGPRX2 mRNA. Net of

methodological differences, our study confirms that basophils

express MRGPRX2. However, according to our results, extracellular

expression of the receptor and its engagement by endogenous and

exogenous ligands seems to require a previous conditioning (that can
FIGURE 2

Effect of anti-IgE and fMLP stimulation on membrane MRGPRX2
expression in whole blood basophils. (A) Representative plots on the
effect of anti-IgE and fMLP stimulation of 20 min on membrane
MRGPRX2 expression of whole blood basophils from one healthy
control. Resting cells are identified as IgE+CD203c+CD63- (green).
MRGPRX2+ expressing cells are indicated in purple. (B) Time kinetics
of MRGPRX2, CD63 and CD203c membrane expression of whole
blood basophils after stimulation with anti-IgE (red), fMLP (blue) or
buffer (grey) (n=8). * p<0.05; **p<0.01 ***p<0.001; ****p<0.0001
compared to the buffer. #p<0.05; ##p<0.01 compared to the anti-IgE
stimulation; Tukey’s multiple comparisons tests.
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also be elicited by the experimental conditions themselves). In fact,

constitutive surface expression of MRGPRX2 by basophils would be

difficult to align with previous results on moxifloxacin, other

fluoroquinolones, opioids, and neuromuscular blocking agents, all

known MRGPRX2 agonists (11, 20, 21, 27–32).

In support of our hypothesis, we show that cell purification with

magnetic beads actively induces surface expression of MRGPRX2 in

basophils. Furthermore, purified basophils resuspended in the same

culture medium as used byWedi et al. (18) showed a higher density of

MRGPRX2 than those resuspended in a different solution and became

unresponsive to an IgE-mediated stimulus. This might imply that this

specific culture medium may further enhance the expression of

MRGPRX2. However, even after purification and resuspension in

the same culture medium as that used by Wedi et al. (18), the

basophils in our experiments did not exhibit spontaneous surface

upregulation of CD63 and were still unable to degranulate after

stimulation with an MRGPRX2 agonist. Indeed, further

conditioning with IL-3 (and/or IL-33) was necessary to achieve

significant degranulation with substance P or moxifloxacin, but

neither IL-3 nor IL-33 was responsible for an increase in
Frontiers in Immunology 07101
MRGPRX2 expression that might have underpinned such

basophil activation.

Overall, some subtle differences in the two experimental settings

may have played a role in these discrepancies. However, as

demonstrated by the series of experiments performed with

substance P and moxifloxacin with whole blood basophils versus

purified basophils from healthy donors, MRGPRX2 ligands appear to

be able to selectively induce degranulation in purified basophils. This

suggests that cell purification is responsible for the expression of

functional MRGPRX2.

Unlike Wedi et al, but in agreement with the data from the

FANTOM 5 project (33), we could not demonstrate the presence of

MRGPRX2 mRNA in resting basophils. The reason for these

conflicting findings is unclear. The observation that the levels of

mRNA and protein are poorly correlated is not an infrequent

phenomenon. For example, it has been shown that the expression

of FcϵRI does not necessitate large numbers of mRNAmolecules (34).

The same could also be true for MRPGRX2 in basophils.

Alternatively, MRGPRX2 is confirmed to be ubiquitously and

abundantly expressed intracellularly in resting whole blood basophils
FIGURE 3

Effect of anti-IgE and fMLP stimulation on membrane MRGPRX2 expression in birch allergic patients. Representative plots on the effect of anti-IgE, fMLP
or Bet v 1 stimulation of 20 min on membrane MRGPRX2 expression of whole blood basophils from one birch pollen allergic individual. Resting cells are
identified as IgE+CD203c+CD63- (green). MRGPRX2+ expressing cells are indicated in purple.
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and surface expression is rapidly upregulated in response to IgE/

FcϵRI-dependent and IgE/FcϵRI-independent activation of the cells.

At present, the exact intracellular localization of MRGPRX2 in

basophils remains unknown. Its upregulation displays different time

kinetics and magnitudes depending on the activation mode. All three

readings, i.e., the ectoenzyme CD203c, the lysosomal degranulation

marker CD63, and MRGPRX2, reveal fMLP, which acts via FPR-1,

another G-protein-coupled receptor (GPCR) (35), to trigger a faster

but transient and significantly less pronounced activation of the cells

as compared to cross-linking of IgE/FcϵRI by anti-IgE or a relevant

allergen (e.g., rBet v 1 in BPAs). These data parallel the findings by

Knol et al. (36), who showed basophilic histamine release by IgE/

FcϵRI cross-linking to be slower than the almost instantaneous release

in response to fMLP and the observations in MCs by Gaudenzio et al.

(5), who demonstrated that IgE-independent activation triggers a

more rapid but transient degranulation as compared to IgE/FcϵRI
cross-linking. Furthermore, priming with IL-3 selectively induces

CD203c upregulation without upregulation of CD63 or MRGPRX2

and, in CD63-non-responding moxifloxacin hypersensitive patients,

MRGPRX2 upregulation occurs independently of CD63 appearance.

Collectively these data suggest that MRGPRX2 is localized in a third

intracellular compartment.

Furthermore, our experiments show that basophilic expression of

MRGPRX2 could also contribute to pathological conditions such as

IDHRs resulting from the off-target occupation of non-immune

receptors. At present, most studies on the ability of drugs to

activate MRGPRX2 have been conducted with murine MCs (4),

transfected HEK cells (4), and human MC lines (e.g., LAD2) (4, 6,

12), or in vitro CD34+-derived human MCs (5, 7–9, 22). Based on

these studies it has been proposed that the occupation of MRGPRX2

could be responsible for IDHRs to several drugs and that the murine

orthologue MrgprB2 might serve as a model for the development of
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therapeutic strategies aimed at preventing or treating a subset of

IDHR. However, a comparison of the data of McNeil et al. (4) with the

findings by Azimi et al. (6) and our own observations (8), reveals

significant species-specific differences, which might hinder the

translation of findings in mice to humans making this model not

suitable for the development of therapeutic strategies. Alternatively,

the LAD2 cells have been shown to be intermediately differentiated as

compared to human mature skin MCs and to variably express

MRGPRX2 (37).

Based on our data, we anticipate that “conditioned” basophils

could serve as a human model to explore IDHRs resulting from the

MRGPRX2 occupation. Moreover, as such MRGPRX2-dependent

IDHRs only occur in a minority of exposed individuals, and do not

necessarily involve all drugs with MRGPRX2-agonistic properties, our

approach using “conditioned” patients’ basophils could allow

capturing data that are inaccessible when using animal models or

techniques based upon cell lines or healthy donor cells. The reason

why not all individuals exposed to a substance capable of activating

MRGPRX2 react with an IDHR has not yet been elucidated with

certainty but is probably attributable to polymorphisms in the

receptor. For instance, mutations in the carboxyl terminus of

MRGPRX2, the portion responsible for phosphorylation and

desensitization of the receptor, can make mast cells more

responsive to ligands such as SP (38). Admittedly, using humanized

cell cultures expressing a specific variant of MRGPRX2, while not

equally easily accessible, could be another possibility for an

individualized study of the receptor.

In this context, we show that in patients with immediate

hypersensitivity to moxifloxacin, co-incubation of the basophils

with anti-IgE and moxifloxacin induces a more pronounced

degranulation as compared to IgE/FcϵRI cross-linking by anti-IgE

alone. This is in accordance with the recent findings that IgE-
A B

FIGURE 4

Co-incubation experiments with anti-IgE and substance P. (A) Representative plots of the effect of co-incubation of anti-IgE and SP on the membrane
expression of CD63 of whole blood basophils in comparison to anti-IgE alone. (B) Time kinetics of the effect of SP, anti-IgE and SP in co-incubation with
anti-IgE on the membrane expression of CD63 of whole blood basophils (n=10). SP = substance P. * p ≤ 0.05; ** p ≤ 0.01 anti-IgE compared to anti-IgE
+ SP at each time point; paired Student’s t-tests.
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mediated and MRGPRX2 activation can synergistically combine to

boost the exocytosis of cutaneous MCs (39).

Remarkably, even though IgE-mediated upregulation of

MRGPRX2 is observed in all the subjects, synergistic degranulation

is restricted to patients with immediate-type hypersensitivity to

moxifloxacin with a “CD63-responder” status of the basophils. The

reasons why patients with a “CD63-non-responder status” and

controls with a “CD63-responder status” do not show this

synergistic effect remain elusive. To some extent, the different

behavior between CD63-responding patients and CD63-responding

controls could relate to polymorphisms, mutations, and epigenetic

modifications affecting MRGPRX2-driven signaling (40–42).

Similarly unclear, there seems to be a conundrum with co-

stimulation with anti-IgE and moxifloxacin, with opposite findings

for low and high stimulation concentrations of this drug. The reasons

for the antagonistic effect of the highest tested concentration of

moxifloxacin on anti-IgE induced degranulation observed in CD63-

responders, regardless of their clinical status, remain elusive. Babina

et al. recently described a synergistic effect on the degranulation of

mast cells for low concentrations of two different MRGPRX2 ligands,
Frontiers in Immunology 09103
namely SP and codeine. Of note, for higher concentrations of the

same ligands, no agonistic effect on the degranulation of one stimulus

on the other was observed (39). Whether extremely high

concentrations of MRGPRX2 ligands could lead to the initiation of

a counterregulatory mechanism, which in our case may have

influenced IgE-mediated degranulation, remains speculative. The

existence of extensive crosstalk between IgE-mediated and non-IgE-

mediated pathways and their intracellular signaling has recently been

described in detail (43). For instance, despite the existence of a

redundant and overlapping signaling network between the two

pathways, calcium channels differentially affect PI3K activation in

FcϵRI- compared to MRGPRX2-mediated signaling, which is a crucial

intracellular signal transducer for both (44). This could result in a

counterregulatory mechanism that avoids noxious degranulation

(43). Particularly interesting is that while in HCs there is no

synergistic effect of moxifloxacin 0.025 mmol/L, moxifloxacin 2.5

mmol/L still manages to have an inhibitory effect on anti-IgE-

mediated degranulation; moreover, this effect is visibly higher than

that seen in CD63-responding patients. One could therefore speculate

that high concentrations of moxifloxacin succeed in stimulating
A B

D E F
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FIGURE 5

Time kinetics of co-incubation experiments with anti-IgE and moxifloxacin. Whole blood basophils are stimulated with anti-IgE and moxifloxacin (0.025
mmol/L and 2.5 mmol/L) alone or in co-incubation with anti-IgE. The figure shows the effect on CD63, MRGPRX2 and CD203c membrane expression
from CD63-responding HCs (n=6) (A-C), CD63-non-responding MOXs (n=5) (D-F) and CD63-responding MOXs (n=10) (G-I). For experiments with
moxifloxacin 2.5 mmol/L, alone or in coincubation with anti-IgE, in CD63-responding MOXs, n=7. aIgE=anti-IgE; Moxi: moxifloxacin; MOXs = patients
with immediate type hypersensitivity to moxifloxacin; HCs = healthy controls. Blue asterisks: statistical significance of aIgE + Moxi 0.025 mmol/L
compared to aIgE; orange asterisks: statistical significance of aIgE + Moxi 2.5 mmol/L compared to aIgE; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; paired
Student’s t-tests.
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MRGPRX2 in these healthy subjects without causing degranulation,

but with an exclusive counterregulatory effect, whereas a full

degranulation effect is already observed at lower concentrations in

patients. It might be precisely the result of residual MRGPRX2-

mediated degranulation that accounts for the lower inhibition

observed in CD63-responding patients. Not to be overlooked, a

direct pharmacological effect of high concentrations of moxifloxacin

on calcium channels may have led to this effect, because of their key

role and differential effects on IgE- and non-IgE-mediated pathways.

Fluoroquinolones can interact directly with calcium channels. In fact,
Frontiers in Immunology 10104
they induce a multi-ion channel–blocking action in the heart within

the supra-therapeutic dose range and can exert insulin secretion via

the Ryanodine receptor activation and the active influx of calcium

from the extracellular space in pancreatic b-cells (45, 46). Clearly,

MRGPRX2 signaling remains unclear and definitely is more than

currently meets the eye.

Admittedly, our ex vivomodel of co-incubation with anti-IgE and

moxifloxacin does not exactly mirror in vivo conditioning of the cells

during infection/inflammation. However, for the time being, except

for fMLP and rBet v 1 in patients with birch pollen allergy, we failed to
A

B

C

FIGURE 6

MRGPRX2 expression in whole blood vs purified basophils and MRGPRX2 functionality in purified basophils. (A) Effect on MRGPRX2 expression on the
surface membrane of basophils from HCs after purification using magnetic beads (n=12). **** p ≤ 0.0001; paired Student’s t-tests. (B) Membrane
expression of CD63 on purified basophils from HCs resuspended in RPMI medium, primed with IL-3 (2 ng/mL and 10 ng/mL) and subsequently
stimulated with SP for 3 and 20 minutes (n=6). * p ≤ 0.05; ** p ≤ 0.01 SP 300 µmol/L after priming with IL-3 compared to buffer after priming with IL-3;
paired Student’s t-tests. (C) Membrane expression of CD63 on purified basophils from the same HCs as in Figure 6B resuspended in RPMI medium,
without priming with IL-3, and stimulated with SP for 3 and 20 minutes (n=6). HCs = healthy controls. SP: substance P.
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identify other substances that promote surface upregulation of

MRGPRX2 by basophils. Neither LPS nor Staphylococcus

enterotoxin seems to have any effect. Similarly, no significant

upregulation of MRGPRX2 could be induced in MCs either, despite

numerous efforts (47). Wedi et al. described a dose-dependent

increase of MRGPRX2 surface expression in purified basophils after

30 minutes of incubation with IL-3, a well-established primer of

basophils (48). Upregulation of the receptor was observed also after

24 hours of incubation with IL-3, anti-IgE, C5a, or fMLP (18).

However, we failed to observe an IL-3 induced upregulation of

MRGPRX2, neither in whole blood nor in purified basophils.

In conclusion, we show that circulating basophils can be rapidly

“conditioned” to respond to the occupation of de novo MRGPRX2

surface expression. Moreover, since resting basophils of uneventfully

exposed control individuals do not respond non-specifically to drugs

requiring MRGPRX2 involvement (11, 20, 21, 28–32), it is tempting

to hypothesize that comparative studies with and without

“conditioned” cells might enable discrimination between IDHRs

from genuine cross-linking of IgE/FcϵRI and MRGPRX2 occupation.
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Basophils control T cell priming
through soluble mediators
rather than antigen presentation

Christian Möbs, Martin Salheiser, Fabian Bleise, Marie Witt
and Johannes U. Mayer*

Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
Basophils play an important role in the development of type 2 immunity and

have been linked to protective immunity against parasites but also

inflammatory responses in allergic diseases. While typically classified as

degranulating effector cells, different modes of cellular activation have been

identified, which together with the observation that different populations of

basophils exist in the context of disease suggest a multifunctional role. In this

review we aim to highlight the role of basophils play in antigen presentation of

type 2 immunity and focus on the contribution basophils play in the context of

antigen presentation and T cell priming. We will discuss evidence suggesting

that basophils perform a direct role in antigen presentation and relate it to

findings that indicate cellular cooperation with professional antigen-presenting

cells, such as dendritic cells. We will also highlight tissue-specific differences in

basophil phenotypes that might lead to distinct roles in cellular cooperation

and how these distinct interactions might influence immunological and clinical

outcomes of disease. This review thus aims to consolidate the seemingly

conflicting literature on the involvement of basophils in antigen presentation

and tries to find a resolution to the discussion whether basophils influence

antigen presentation through direct or indirect mechanisms.

KEYWORDS

basophil, dendritic cell, allergy, Type 2 immunity, antigen presentation
Introduction

Basophils were discovered by Paul Ehrlich in 1879 during staining experiments with

peripheral blood and represent the least common granulocyte population in mammals,

accounting for 0.5-1% of circulating leukocytes. They differentiate from hematopoietic

progenitor cells (Lin-CD34+FcϵRIhighc-kit-) in the bone marrow under the control of the

transcription factors C/EBPa andGATA-2 and leave the bonemarrow as mature circulating

basophils (1). Basophils were traditionally considered to be circulating counterparts of

tissue-resident mast cells based on their expression of the high-affinity IgE receptor (FcϵRI),
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mechanisms of degranulation and histamine release upon

activation. Facilitated by the discovery of distinct developmental

pathways that are controlled by the key transcription factor C/

EBPa (2), the distinct expression of c-kit/CD117 on human and

murine mast cells but not basophils (3), and the development of

basophil-specific transgenic knockout strains (4), a specialized role

for basophils in various diseases and protective immunity have

become better understood. Basophils have been shown to play an

important role in allergic diseases, autoimmunity, parasitic

infections and tissue homeostasis through the production of key

cytokines and their interaction with immune and non-immune

cells both in pro-inflammatory and anti-inflammatory contexts

(5). Basophils are best studied in the context of allergy, where they

have been implicated in several disease mechanisms, such as

delayed IgE-mediated chronic allergic inflammation (6, 7),

eosinophil entry (8), itch (9), and alternative macrophage

activation (10), but also wound healing (11) and microbial

dysregulation (12). Basophil activation is also used in the clinical

diagnosis of allergic diseases and in monitoring the therapeutic

response to immunomodulatory treatments (13). Basophils can be

activated via various IgE-dependent and -independent pathways

leading to the release of effector molecules like histamine,

amphiregulin, eicosanoids (e.g. LTC4), granzyme B and a variety
Frontiers in Immunology 02
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of different cytokines (e.g. IL-3, IL-4, IL-5, IL-6, IL-13, IL-25, IL-31)

(14) (Figure 1).

The ‘classical’ activation of human and murine basophils in

the context of allergy is caused by the crosslinking of FcϵRI via
IgE and leads to rapid degranulation and the release of

preformed histamines and proteases, followed by a secondary

de novo synthesis of lipid mediators and cytokines and their

secretion (15). Alternative activation is readily achieved in vitro

and independent of IgE crosslinking and mediated by innate

stimuli including epithelial derived inflammatory cytokines,

growth factors, eicosanoids, metabolites and TLR ligands (16).

Basophils can promote allergic immune responses by

producing substantial amounts of pro-allergic IL-4 and IL-13

upon allergen stimulation (17, 18), thus representing an

important accessory cell type to promote Th2-like responses

(19, 20). Basophils can also contribute to a Th2 bias in pro-

inflammatory environments, as basophil recruitment into

tumor-draining lymph nodes was found to correlate with Th2

inflammation and reduced survival in pancreatic cancer patients

(21). Basophils can however also contribute to pro-inflammatory

immune responses through the production of IL-6, influencing

Th17 immunity. In murine models of pro-inflammatory lung

inflammation basophils and their production of IL-6
FIGURE 1

Basophil activation and effector signals involved in direct or indirect allergen presentation. In this schematic only surface and secreted
molecules discussed within this review are shown. Basophil differentiation and development is controlled by TSLP and IL-3, which leads to the
differential expression of cytokine and chemokine receptors, such as CRTH2, IL-33R, IL-18R, different TLRs, CCR2, CCR3 or CXCR4. Basophils
can be activated by crosslinking of FcϵRI-bound IgE or by different soluble mediators, such as PGD2 or IL-33. Basophils are recruited into
peripheral tissues via CCL2, eotaxins or CXCL12, while CCL7 signaling or CCR7 and CD62L expression facilitate lymph node entry. While in
specific contexts basophils can express MHC-I and MHC-II, they are best known for the secretion of soluble mediators. IL-4 can influence the
differentiation of inflammatory dendritic cells (DC) and Th2 cells or activate innate lymphoid cell type 2 (ILC2), while IL-13 and TSLP secretion
activates DC and induces OX40L upregulation, indirectly influencing the priming of Th2 cells. This figure was created using biorender.
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contributed to the differentiation of Th17 cells (22), while in

models of kidney fibrosis CXCR2+ basophils, recruited into the

inflamed kidney, were an important source of IL-6 and

controlled the number of Th17 cells (23). In human patients,

basophils have also been identified in Th17-associated disorders,

such as kidney fibrosis (23), IBD (24) and cystic fibrosis (25),

indicating that basophils influence both Th2 and Th17

immunity through the release of key cytokines.

Beyond their role as cytokine-producing cells, basophils have

also been suggested to influence the priming of adaptive immune

responses by acting as unconventional antigen-presenting cells.

In this review we will therefore discuss if basophils can influence

antigen-presentation through direct and indirect mechanisms

and correlate experimental evidence obtained in murine studies

with clinical observations.
Subsets of basophils

Four populations of circulating basophils can be identified in

the blood of healthy individuals based on their surface marker

expression of CD16, CD244 and FceRI (26). FceRI-expressing

basophils are highly responsive to IgE and IL-3 stimulation,

while FceRIlow basophils respond poorly to those stimuli in vitro

(26). Resting and activated human basophils also express distinct

chemokine receptors, potentially supporting their migration

towards sites of inflammation or the draining lymph nodes

(dLN) (27). In the context of local inflammation, murine models

have shown that eotaxin-CCR3, CCR2-CCL2 and CXCR4-

CXCL12 interactions are the most common (28) (Figure 1).

Chemokine receptor upregulation can be induced by different

molecular mechanisms. CXCR4 upregulation is regulated by

thymic stromal lymphopoietin (TSLP) and IL-3, cytokines

essential for the development and activation of basophils (29,

30), and leads to basophil migration towards a CXCL12 gradient

in inflamed skin (31). In Lyn-/- lupus prone mice CXCR4 surface

expression is however controlled by PGD2 signaling and leads to

the accumulation of basophils in secondary lymphoid organs

impacting the severity of disease (32) (Figure 1).

Importantly, murine basophils can be differentiated into

distinct basophils subsets by in vitro stimulation with certain

cytokines, indicating that the cytokine milieu can influence

basophil maturation and effector function of basophils

differently. TSLP-cultured basophils showed higher expression of

IL-3R, IL-33R and IL-18Ra and less degranulation, while

producing higher levels of IL-4, IL-6, CCL3 and CCL12 in the

context of IL-3, IL-18 and IL-33 activation (33) (Figure 1). IL-3-

cultured basophils showed higher expression of CD11b and

CD62L, higher production of chemokines and produced more

TNFa, suggesting a pro-inflammatory differentiation (33). A

similar heterogeneity was observed in human basophils, which

developed in a TSLP-elevated environment during food allergy-

associated eosinophilic esophagitis (EoE) (30). While expression
Frontiers in Immunology 03
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levels of HLA-DR, CD28, CD40, CD86, CD69 and CD203c were

similar to those observed in healthy donors, basophils from EoE

patients expressed significantly higher levels of the IL-33R,

indicating that different basophil populations are associated with

an altered susceptibility to allergic inflammation (33). In patients

withmild to moderate asthma, basophils were strongly activated by

TSLP leading to secondary production of IL-3, suggesting that in

certain contexts TSLP and IL-3 can also act in concert (34).

Phenotypically different subgroups of basophils have also

been observed in patients with chronic urticaria when analyzing

both the frequency of peripheral basophils and their reactivity to

certain stimuli. Here, stimulation of peripheral blood basophils

with anti-FcϵRI revealed distinct reactivity patterns. While one

group of patients exhibited a concentration-dependent

activation of basophils (responders), FcϵRI stimulation failed

to activate basophils in the non-responder group (35, 36). This

incapability to induce IgE-mediated reactions despite sufficient

FcϵRI might be due to a lack of expressing the tyrosine kinase

Syk and/or an overexpression of the Src-homology 2-

containing-5’-inositol phosphatases (SHIP)-1 and SHIP-2,

pathways which control FceRI signaling (35, 37). Among the

nonreactive patients, a subgroup with pronounced basopenia

(basophils accounting for less than 0.1% of peripheral blood

cells) could been identified (38). The basophils of this clinically

most severely affected cohort were characterized by a

significantly augmented background activation, reduced

receptor-bound IgE and a decrease in surface expression of

FcϵRI (39). Basopenia was associated with more severe disease,

whereas the basophil responder phenotype was associated with

longer disease duration.

Decreased frequencies of circulating basophils are

furthermore observed in other disorders, such as allergic

contact dermatitis, bullous pemphigoid, systemic lupus

erythematosus or atopic dermatitis (AD) (40–42), and are

likely caused by their migration into the affected tissues or

secondary lymphoid organs (32). This is supported by

evidence that transient basopenia reflects basophil migration

to the skin during skin irritation (43) or the bronchoalveolar

lavage fluid upon aeroallergen challenge (44) and might be

controlled by similar or distinct chemotactic pathways

compared to anaphylaxis (45).

Within tissues, basophils not only drive classical symptoms

of allergic inflammation via histamine and leukotriene release,

but also impact a number of immunological mechanisms via

cytokine production, making them a highly immunologically

relevant cell type (46) (Figure 1).
Direct mechanisms of basophil-
enhanced antigen presentation

Whether basophils have antigen-presenting capacity is still

debated and has been reviewed before (47, 48). Mice deficient in
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interferon-regulatory factor 2, a transcription factor believed to

suppress basophil differentiation, show a marked increase in

basophil numbers and develop spontaneous Th2 responses (49).

Another molecule, Lyn kinase controls basophil GATA3

expression and Lin-/- mice exhibit basophilia and a basophil-

dependent Th2 bias (50), indicating an important role for

basophils in driving type 2 immunity. In Lin-/- mice but also

in the context of parasite infection and certain allergy models,

murine basophils have been reported to express MHC-II (20,

51–53), suggesting their involvement in antigen-presentation.

While MHC-II expression of murine basophils could also be

observed in certain hapten-induced models of type 2 immunity

(53, 54), basophils examined in models of airway and skin

allergy did not express MHC molecules (55, 56). Similar

observations were made in allergic patients, where no

expression of HLA-DR was observed in patients allergic to

house dust mite (HDM), birch pollen as well as in healthy

individuals before or after in vitro stimulation (57–60). Yet,

patients from an allergen-rich environment displaying aFUT6

deficiency (effectively reducing the ability of basophils to egress

from the blood stream and infiltrate tissues) developed reduced

itch sensitivity and lower amounts of HDM-specific IgE,

indicating that basophils influence Th2 immunity (61). While

the mechanisms of antigen-presentation were not investigated

further in this study, MHC-II expression by basophils might be

regulated by the cytokine milieu or affect the development of

distinct basophil subsets with distinct expression patterns.

However, the reported MHC-II surface expression in murine

basophils was several orders of magnitude lower than those

observed in B cells and dendritic cells (DC) (51), highlighting

that carefully controlled isolation and analysis protocols are

necessary to avoid contaminated readouts (62).

While the tools to assess antigen uptake in vivo are limited,

uptake of natural and model antigens has not been observed in

murine and human basophils (29, 55, 58), while antigen-

processing could be observed in certain in vitro settings (54,

63). Bone marrow-cultured murine basophils generated in vitro

using IL-3 and GM-CSF showed a substantial increase of MHC-

II molecules on their surface. While no corresponding increase

in MHC-II transcript levels could be measured in basophils, it

was observed that DC, which expressed high levels of MHC-II

and were also developing under the same culture conditions,

provided a possible source for MHC-II protein (47). Further

experiments between purified bone marrow-derived basophils

and DC confirmed that MHC-II molecules were derived from

DC and acquired by basophils through cell contact-dependent

trogocytosis (63) (Figure 2A). While the molecular requirements

facilitating basophil-specific trogocytosis are not well

understood, trogocytosis has been observed in other immune

cells, either involving uptake of cellular membrane from dead

cells, resulting in killing or active cellular membrane transfer

(64). The process most similar to trogocytosis observed between

basophils and DC is the interaction between T cells and DC.
Frontiers in Immunology 04
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Here, trogocytosis requires ligand-receptor interaction between

the T cell receptor (TCR) and a matching peptide-MHC

complex (65). This interaction leads to the formation of an

immunological synapse resulting in the internalization of the

TCR and the transfer of peptide-MHC complexes, together with

membrane fragments of DC onto the surface of the T cell (66,

67). This mechanism has been observed for both CD4+ and

CD8+ T cells (68) and TCR-mediated trogocytosis is dependent

on both actin polymerization and the TCR signaling pathway

(69) and can be impaired by blocking costimulatory molecules

or integrin interactions (70). While TCR-mediated trogocytosis

can be excluded as a mechanism for basophils, it remains to be

determined if integrin binding facilitates trogocytosis between

basophils and DC.

Trogocytosis might also enhance the expression of

costimulatory molecules by basophils. Naïve as well as

stimulated murine basophils can express several costimulatory

markers like CD40, CD80 and CD86 (20, 53, 71), but in contrast

to DC do not upregulate these markers upon stimulation (54).

While murine basophils constitutively express CD80 and CD86,

co-culturing with DC further increases surface CD86, which

might be linked to cell membrane trogocytosis (63). While

trogocytosis has not been studied in the context of human

basophils, basophils extracted from healthy individuals or

allergic patients did not express costimulatory molecules,

neither after being freshly isolated nor when stimulated with

cytokines, IL-3, antigens or TLR agonists (58–60).

Several studies have shown that basophils can drive Th2

polarization in vitro, when purified from immunized mice and

pulsed with OVA peptide (18, 20). While not being able to process

full length proteins, murine basophils can present and cross-

present OVA peptides efficiently and induce CD4 as well as CD8

T cell proliferation in vitro (53, 71), indicating that basophils have

a certain capacity for antigen presentation. After depletion of

basophils using an anti-FcϵRI-directed MAR-1 antibody, Th2

responses were also decreased in vivo in an MHC-II-dependent

manner (19, 20), suggesting a direct role of basophil-mediated

antigen presentation. However, Hammad et al. demonstrated that

in vivo basophil depletion with an anti-FcϵRI MAR-1 antibody

had strikingly different effects on subsequent Th2 challenge with

HDM allergen compared to anti-CD200R3 (Ba103) antibody

treatment, because of the depletion of FcϵRI+ inflammatory DC

(55). While originally classified as monocyte-derived DC, these

inflammatory DC have recently been identified as FcϵRI- FcgRIV-
expressing cDC2, which are depleted by the MAR-1 antibody due

to its cross-reactivity with FcgRIV (72, 73). More specific

depletion models of basophils using the anti-CD200R3 antibody

or transgenic mouse models under the control of Mcpt8 could

show that basophils were not required for the development of Th2

cells in models of parasite infection (29, 56, 74) and models of

airway or skin allergy (55, 75, 76), despite cellular interactions

between basophils and T cells being observed (77). These studies

made clear that DC were essential for T cell proliferation and Th2
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priming, disproving earlier claims (54). In addition, these results

also aligned with findings from patients samples, which showed

that antigen-pulsed basophils purified from PBMC of healthy

donors or allergic patients could not drive T cell proliferation in

CFSE assays in contrast to other antigen-presenting cells (57–60).

While these studies cannot exclude a cooperation between

basophils and other cell types, basophils seem to have a limited

capacity to drive T cell responses independently.
Indirect mechanisms of basophil-
enhanced antigen presentation

Several mechanisms have been reported, which describe how

basophils cooperate with other immune cells to enhance antigen

presentation. In particular, the cooperation between basophils

innate lymphoid cell type 2 (ILC2) and DC has been defined as

an important immune axis in type 2 immunity (Figure 2B).

Tissue ILC2 have been shown to play a complex role in allergic
Frontiers in Immunology 05
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inflammation of both the lung and the skin (78, 79) and are

found in close proximity with basophils in skin biopsies of AD

patients and in pre-clinical models of AD. It could be observed

that basophils and ILC2 form clusters in inflamed skin, with

basophil accumulation preceding ILC2 activation and

proliferation (80). Similar to IL-4-dependent accumulation of

lung ILC2 during parasite infection (81), skin ILC2

accumulation was dependent on basophil-derived IL-4 in the

murine MC903-induced model of AD (80). Basophil-derived IL-

4 also controls the function of ILC2 in allergic lung

inflammation through the production of IL-13 and the

recruitment of eosinophils (82). IL-13 has in turn been shown

to be major activator of DC both in the skin and lung (78, 83,

84), suggesting an indirect cooperation between basophils and

DC via ILC activation in the skin and lung.

Basophils have also been reported in dLN, where they are

localized within the T cell zone (19, 85). Basophils recruitment to

the dLN is driven by TSLP signaling, although it remains unclear

if TSLP acts on DC or T cells to recruit basophils or drives the
A B

C

FIGURE 2

Mechanisms of basophil-enhanced antigen presentation. (A) Basophils can cooperate with dendritic cells (DC) to prime T cells. While basophils
cannot take up and process complex antigens, they can trogocytose parts of cell membranes and antigen-loaded MHC-II complexes from DC
and thus directly influence Th2 cell differentiation. It remains unclear to what extent trogocytosis plays a role in vivo, but other mechanisms of
basophil-enhanced antigen presentation are well described. (B) In tissues, basophil-derived IL-4 activates murine innate lymphocytes type 2
(ILC2), which produce IL-13 and other mediators and activate DC to migrate to the draining lymph nodes. (C) Within lymph nodes, basophils
can enhance DC activation and OX40L expression, while also providing early IL-4 to support the differentiation of Th2 cells. Although the
requirement of early IL-4 for the differentiation of Th2 cells is debated, multiple studies provide evidence that basophils directly support the
priming of Th2 cells, at least in the murine system. This figure was created using biorender.
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development of a dLN-migratory basophil subset (33, 76, 86, 87).

Basophil entry into the dLN is facilitated by CD62L and CCL7,

which support basophil binding to high endothelial venules and

migration into the T cell zone (19, 75). Similarly, CD62L and

CCR7 were upregulated in basophils from newly diagnosed

systemic lupus erythematosus patients and associated with

their accumulation in secondary lymphoid organs (42).

Basophils have also been shown to enhance humoral

immunity and together with CD4+ T cells, profoundly

enhanced B cell proliferation and immunoglobulin

production (88).

It has been suggested that basophils can present antigen

under certain contexts, but this mechanism might be less

relevant for initial Th2 cell priming, as much fewer basophils

are found in the dLN compared to DC and are recruited to the

dLN at later timepoints (55). These findings are supported by

observations that basophils isolated from healthy human spleens

showed no expression of HLA-DR or costimulatory molecules at

steady state or after in vitro stimulation and could not drive T

cell proliferation, indicating that human basophil function is

restricted to the secretion of soluble mediators (89). However,

other studies have suggested that basophils provide help to DC

for optimal Th2 induction (75, 90, 91). As basophils are major

producers of IL-4, while DC are not (92), basophils could

provide an early source of IL-4 (93), especially in dLN

(Figure 2C). IL-4 has also been suggested to activate DC and

induce the differentiation of inflammatory DC (94) observed in

allergic and viral inflammation (55, 73). In vitro co-cultures

between IL-4-deficient basophils, DC and OT-II T cells showed

that Th2 cell differentiation was reduced and OX40L expression

by DC was decreased in the absence of basophils or basophil-

derived IL-4 (95). Furthermore, Di et al. underline the

importance of OX40L signaling by DC and basophils. Blocking

OX40-OX40L interactions with an anti-OX40L antibody

strongly reduced allergic airway inflammation following OVA

sensitization and adoptive transfers of OVA-challenged

basophils into OX40-/- mice or blockade of OX40L led to

reduced lung inflammation (96). As the requirement for an

initial source of IL-4 in Th2 priming continues to be critically

debated (97–100), regulation of OX40L expression through

basophils might represent an additional mechanism of how

basophils can influence antigen presentation (Figures 1, 2C).
Discussion

In the early 2000s an interesting hypothesis developed, which

suggested that basophils could drive Th2 immunity independently

of DC, and supply signals for antigen presentation, costimulation

and Th2 polarizing cytokine secretion (20, 54, 101). This led to

multiple studies investigating this hypothesis in different models of

parasite infection, skin and lung allergy, which found that

basophils could not process and present complex protein
Frontiers in Immunology 06
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antigens, where present in dLN in much lower numbers than

DC and arrived at later timepoints (55, 56, 74). Similarly, basophils

collected from allergic patients, were not able to internalize, process

or present allergen and thus failed to induce proliferation and

cytokine secretion in T cells (57, 58). In line with this, basophils are

unlikely directly involved in the priming of de novo Th2 cells, but

could enhance DC activation and Th2 priming through the

production of IL-4, the activation of ILC or other mechanisms of

cellular cooperation [as reviewed in (47, 89, 90, 102)].

In patients, different populations of basophils have been

observed in a range of human diseases including tumors,

fibrosis, infection and chronic inflammation (5), and it is

unknown if under certain conditions human basophils obtain

antigen-presenting capacities, especially in the context of antigen

challenge or chronic disease. Multiple murine studies have

shown that basophils enhance T cell responses after antigen

challenge (22, 103), yet little is known regarding human diseases,

due to limited studies in affected tissues. While many studies

agree that basophils do not express MHC-II or HLA-DR

transcript, cell contact-dependent acqusition of MHC-II

through trogocytosis could represent an additional molecular

mechanism that allows basophils to be involved in antigen

presentation. While trogocytosis has been studied in murine

bone marrow-derived basophils (63), it is unknown if it also

occurs in vivo, affects human basophils and also other surface

molecules reported on basophils, including costimulatory

molecules or MHC-I (20, 53, 71).

Additional studies to understand the molecular mechanisms

that lead to the differentiation of basophil populations in the

context of disease are therefore urgently necessary. While it is

difficult to follow basophil differentiation during the progression

of disease, seeding of basophils into tissue organoids from

control- or patient-derived samples might offer new

opportunities to study cellular differentiation and mechanisms

of cellular cooperation and trogocytosis.

As basophils represent very rare immune cells, improved

protocols to isolate basophils from affected tissues are also

necessary to characterize basophils with novel technologies like

single-cell sequencing. These analyses should however not only

focus on transcriptomic signatures (e.g. by using single-cell RNA

sequencing), but be combined with surface protein detection,

such as site-seq or high-dimensional flow cytometry, to capture

functional molecules that might have been acquired from other

cells types. These studies might highlight tissue- and disease-

dependent differences between basophil populations that

contribute to disease and indicate their relationship to

basophils within tissues in comparison to circulating basophil

populations (104). As basophils have a multifaceted

immunological role, these studies might ultimately define

subpopulations that drive specific disease phenotypes through

direct or indirect antigen presentation, cytokine secretion or

histamine/leukotriene release, and allow for their selective

targeting in the context of disease.
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25. Wakahara K, Baba N, Van VQ, Bégin P, Rubio M, Ferraro P, et al. Human
basophils interact with memory T cells to augment Th17 responses. Blood (2012)
120:4761–71. doi: 10.1182/BLOOD-2012-04-424226

26. Vivanco Gonzalez N, Oliveria JP, Tebaykin D, Ivison GT, Mukai K, Tsai
MM, et al. Mass cytometry phenotyping of human granulocytes reveals novel
basophil functional heterogeneity. iScience (2020) 23:101724. doi: 10.1016/
j.isci.2020.101724

27. Blom LH, Bartko EA, Møller TKR, Poulsen LK, Jensen BM. FcϵRI-activated
basophils express CCR4, CCR8, CCR9, CCX-CKR and XCR1. Allergy (2022).
doi: 10.1111/ALL.15488

28. Iikura M, Miyamasu M, Yamaguchi M, Kawasaki H, Matsushima K,
Kitaura M, et al. Chemokine receptors in human basophils: Inducible
expression of functional CXCR4. J Leukoc Biol (2001) 70:113–20.
doi: 10.1189/JLB.70.1.113
frontiersin.org

https://doi.org/10.1073/PNAS.0509148102
https://doi.org/10.1073/PNAS.0509148102
https://doi.org/10.1016/j.immuni.2013.06.012
https://doi.org/10.1182/BLOOD-2008-05-154773
https://doi.org/10.1182/BLOOD-2008-05-154773
https://doi.org/10.12688/f1000research.11697.1
https://doi.org/10.3389/FIMMU.2022.902494
https://doi.org/10.1016/j.immuni.2005.06.011
https://doi.org/10.1111/ALL.14362
https://doi.org/10.1084/JEM.20141671
https://doi.org/10.1016/J.CELL.2020.12.033
https://doi.org/10.1002/EJI.201445303
https://doi.org/10.1002/EJI.201445303
https://doi.org/10.1172/JCI136778
https://doi.org/10.1172/jci.insight.149953
https://doi.org/10.1111/ALL.14747
https://doi.org/10.1111/IMR.12627
https://doi.org/10.1016/S0065-2776(08)01004-3
https://doi.org/10.1016/S0065-2776(08)01004-3
https://doi.org/10.1073/pnas.2019524118
https://doi.org/10.1073/pnas.2019524118
https://doi.org/10.1084/JEM.177.3.605
https://doi.org/10.1182/BLOOD-2006-07-037739
https://doi.org/10.1038/ni1558
https://doi.org/10.1038/ni.1737
https://doi.org/10.1158/0008-5472.CAN-15-1801-T
https://doi.org/10.1038/srep41744
https://doi.org/10.1038/s41590-022-01200-7
https://doi.org/10.1038/s41590-022-01200-7
https://doi.org/10.1016/j.jaci.2014.05.025
https://doi.org/10.1182/BLOOD-2012-04-424226
https://doi.org/10.1016/j.isci.2020.101724
https://doi.org/10.1016/j.isci.2020.101724
https://doi.org/10.1111/ALL.15488
https://doi.org/10.1189/JLB.70.1.113
https://doi.org/10.3389/fimmu.2022.1032379
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Möbs et al. 10.3389/fimmu.2022.1032379
29. Kim S, Karasuyama H, Lopez AF, Ouyang W, Li X, Gros G, et al. IL-4
derived from non-T cells induces basophil- and IL-3-independent Th2 immune
responses. Immune Netw (2013) 13:249. doi: 10.4110/IN.2013.13.6.249

30. Noti M, Wojno EDT, Kim BS, Siracusa MC, Giacomin PR, Nair MG, et al.
Thymic stromal lymphopoietin-elicited basophil responses promote eosinophilic
esophagitis. Nat Med (2013) 19:1005–13. doi: 10.1038/NM.3281

31. Hayes MD, Ward S, Crawford G, Seoane RC, Jackson WD, Kipling D, et al.
Inflammation-induced IgE promotes epithelial hyperplasia and tumour growth.
Elife (2020) 9:e51862. doi: 10.7554/eLife.51862

32. Pellefigues C, Dema B, Lamri Y, Saidoune F, Chavarot N, Lohéac C, et al.
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Basophils have been recognized as a characterized cellular player for Th2

immune responses implicated in allergic diseases, but the mechanisms

responsible for basophil recruitment to allergic skin remain not well

understood. Using a hapten fluorescein isothiocyanate (FITC)-induced allergic

contact dermatitis (ACD) mouse model, we show that basophils in FITC-treated

IL-3-knockout mice are defective in crossing the vascular endothelium to enter

the inflamed skin. By generating mice in which IL-3 is selectively ablated in T

cells, we further demonstrate that IL-3 produced by T cells mediates basophil

extravasation. Moreover, basophils sorted from FITC-treated IL-3-knockout

mice exhibit a decreased expression of integrins Itgam, Itgb2, Itga2b and Itgb7,

which are potentially implicated in extravasation process. Interestingly, we

observed that these basophils had a reduced expression of retinaldehyde

dehydrogenase 1 family member A2 (Aldh1a2), an enzyme responsible for the

production of retinoic acid (RA), and administration of all-trans RA restored

partially the extravasation of basophils in IL-3-knockout mice. Finally, we validate

that IL-3 induces the expression of ALDH1A2 in primary human basophils, and

provide further evidence that IL-3 stimulation induces the expression of integrins

particularly ITGB7 in an RA-dependent manner. Together, our data propose a

model that IL-3 produced by T cells activates ALDH1A2 expression by basophils,

leading to the production of RA, which subsequently induces the expression of

integrins crucially implicated in basophil extravasation to inflamed ACD skin.
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Introduction

Basophils, one type of circulating granulocytes that account less

than 1% of peripheral blood leukocytes, represent a characteristic

cellular component in parasite infection and allergic skin

inflammation. Basophils complete their maturation in the bone

marrow, circulate in the blood and migrate to tissue under

inflammatory conditions. They have been shown to infiltrate skin

lesions in certain skin disorders such as allergic contact dermatitis

(ACD), acute atopic dermatitis (AD), prurigo, urticaria and bullous

pemphigoid, but are absent in other skin disorders like psoriasis

vulgaris (1).

Despite of being the least abundant circulating leukocytes,

basophils have been recognized to play important roles in

physiological and pathological contexts. Basophils are recruited to

inflamed tissues and activated in an IgE-dependent or -independent

manner to release a variety of effector molecules, such as histamine

and leukotriene C4, chemotactic factors, and cytokines including

IL-4, IL-13 that are involved in immediate and late-phase reactions

of the immune system (2). In addition, basophils were reported to

crosstalk with other inflammatory cells, for example to mediate

eosinophil recruitment to allergic skin (3, 4) or to confer an M2-like

phenotype on macrophages (5).

Although our knowledge on basophil function has been rapidly

expanded, how these cells infiltrate to inflammatory sites remains not

well understood. IL-3 has been implicated in basophil survival in vitro

(6), and activation (7, 8), in regulating basophil expansion in blood,

or basophil production from the bone marrow in Nippostrongylus

brasilensis (N.b.) parasite infection mouse models (9, 10). IL-3 was

also reported to play a role for basophil recruitment to the mesenteric

lymph nodes in N.b. infection (Kim et al., 2010), or to skin-draining

lymph nodes in an AD mouse model (11). Yet, it remained not

defined how important IL-3 is for basophil recruitment to allergic

skin site and what are underlying mechanisms.

Tissue inflammatory immune response develops upon the

extravasation of leukocytes into the tissue by crossing blood

vessels. For circulating leukocytes to enter a tissue under

inflammatory conditions, a cascade of events is required that

involves an interaction between the leukocyte and endothelial

cells (ECs), comprising essential sequential steps including

chemo-attraction, rolling, adhesion to the blood vessel wall and

trans-endothelial migration (TEM): first, triggering of the activation

of leukocyte rolling and adhesion by chemokines (12); second, the

binding of selectins (P-and E-selectins on the endothelium) to their

ligands such as P-selectin glycoprotein ligand 1 (PSGL-1) expressed

by leukocytes, and regulation of leukocyte rolling on the

endothelium; third, adhesion of leukocytes to blood vessels by

intergrins expressed on leukocyte surface to bind to their ligands

expressed on ECs (e.g. ICAM-1, VCAM-1…); finally, TEM where

leukocytes cross ECs lining the blood vessels (13, 14).

Integrins have been identified as important molecules

implicated in leukocyte extravasation. Integrins are composed of a

complex family of ab heterodimers that can assemble into different

receptors in vertebrates (15). For example, ITGAL/ITGB2 and

ITGAM/ITGB2 were shown to be involved in neutrophil

extravasation (16, 17) and ITGA4/ITGB7 for T cell migration
Frontiers in Immunology 02118
(18). As to basophil extravasation, in vitro studies have shown

that IL-3 receptor complex is expressed in ECs or basophils (19, 20),

and treatment of ECs (21) or basophils (22, 23) with IL-3 enhanced

basophil rolling, adhesion and TEM. Antibodies against PSGL-1, P-

selectin, ITGAM, ITGB2 or ITGB1 were shown to inhibit basophil

adhesion and migration to ECs (21–23). However, all these studies

were performed in vitro and there was little in vivo study to explore

basophil extravasation to inflamed tissues.

In this study, we investigated basophil recruitment in allergic

skin by using hapten FITC-induced ACD mouse model (24), where

basophil infiltration is a characterized feature. We demonstrate a

crucial role of IL-3 produced by T cells in mediating basophil

extravasation to the inflamed skin, and show that in the absence of

IL-3 signaling, basophils exhibit reduced expression of a number of

integrins that was accompanied by a reduced expression of retinoic

acid (RA)-producing enzyme ALDH1A2. We tested whether the

supplement of RA restores basophil skin extravasation in IL-3-

knockout mice, and further examined the potential role of RA

signaling in the regulation of integrins in IL-3-stimulated human

primary basophils. Our data thus provide insights on a central role

of IL-3 in the interaction between T cells, basophils and ECs in

mediating basophil extravasation to the inflamed skin.
Materials and methods

Mice

Wild-type BALB/c mice were purchased from Charles River

Laboratories. CD4-CreTg/0 mice (25) were purchased from the

Jackson laboratory and were backcrossed into Balb/c

background (>99%).

IL-3-ablated (Il3-/-) mice and -floxed (Il3L2/L2) mice (all in pure

Balb/c background) were generated by us at the Institut Clinique de

la Souris (ICS) (Figure S1). In order to obtain an Il3 “2 in 1” allele

(tm1a, Figure S1), we acquired and modified an IMPC plasmid

ETPG00275_W_2_F02 (https://www.mousephenotype.org/data/

genes/MGI:96552). This plasmid was digested with a RsrII

restriction enzyme to remove the LacZ and the 5’ region of the

NeoR cassette, and a DNA fragment containing the eGFP cDNA

and the deleted part (5’ region) of the NeoR cassette (ordered from

GeneArt) was amplified with primers containing 25 bps homology

for the IMPC vector and cloned to the plasmid using the SLIC

method (26). The resulting plasmid was fully sequenced to confirm

the presence of all the desired components including in frame eGFP,

Lox and FRT sites and NeoR cassette. After cutting with PvuI, the

linearized construct was electroporated in in-house derived

BALB/CN mouse embryonic stem cells (ESCs). After selection,

targeted clones were identified by PCR using external primers and

were further confirmed by Southern blot using both a Neo probe (5’

and 3’ digests) as well as a 3’ external probe. Two positive ES clones

were microinjected into C57BL/6N blastocysts. Resulting male

chimeras were bred with wildtype C57BL/6N females. Germline

transmission of the tm1a allele was obtained. The tm1c allele (or

“L2” allele) was obtained after breeding of the heterozygous animal

with a PHENOMIN-ICS BALC/CN Flp delete mouse line (Figure
frontiersin.org
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S1). The tm1b allele (GFP-KI/Il3-KO, or mutant “-” allele) was

obtained after breeding the heterozygous animals with a

PHENOMIN-ICS Cre deleter mouse line (Figure S1).

Breeding and maintenance of mice were performed under

institutional guidelines, and all of the experimental protocols were

approved by the animal care and ethics committee of animal

experimentation of the IGBMC n°017 and by the Ministère de

l’enseignement supérieur, de la recherche et de l’innovation.
FITC treatment

Fluorescein isothiocyanate (FITC, ≥97.5% (HPLC) (Sigma) was

first dissolved in acetone (to a concentration of 2%), then mixed with

equal volume of dibutyl phthalate (DBP, Sigma) to get a final

concentration of 1% FITC (in 1:1 DBP/acetone). Mice were

sensitized with 25 ml of FITC (in 1:1 DBP/acetone) on the left ear

(LE) followed by the challenge on the right ear (RE) with 25 ml of FITC
(in 1:1 DBP/acetone), as indicated in experimental schemes in figures.

RE thickness was measured using Digimatic Caliper (Mitutoyo).
All-trans RA treatment

All trans-RA (at-RA; MP Biomedicals) was dissolved in ethanol

for a stock solution (5 mg/ml; 16 mM). For topical treatment, at-RA

was diluted in ethanol to a final concentration of 40 mM and

topically applied on mouse ears (25 ml per ear); for intraperitoneal
(i.p.) injection, 0.1 ml of RA (5 mg/ml in ETOH) was mixed with 4.9

ml of sunflower oil; vortexed and sonicated to make a solution with

final concentration of 0.1 mg/ml for injection (10 ml/g mouse) (27).
Cell preparation for FACS analyses

For preparation of dermal cells, ears were split into two halves,

floated on a solution of Dispase (4mg/ml in PBS, Gibco) with

epidermis side up, and incubated at 37°C for 1 h. Dermis was then

separated from epidermis and was further incubated on an agitator at

37°C for 1 h in a solution containing 1 mg/ml collagenase D (Roche),

0.25 mg/mL DNaseI (Sigma) and 2.5% of foetal calf serum (FCS)

(ThermoFisher) in PBS, then passed through a cell strainer

(EASYstrainer 70 mm, Greiner bio-one). Cells were then centrifuged

at 1200 rpm, 4°C for 5 min, resuspended in FACS buffer (1% of FCS +

2 mM EDTA in PBS), counted and used for FACS staining (2x106

cells) or for sorting.

For preparation of blood cells, 400 ml of blood was collected

from mice by retro-orbital bleeding in EDTA-coated tubes, mixed

with the same volume of Dextran (2% in PBS, Sigma-Aldrich) and

incubated for 30 min at 37°C. The upper phase was transferred into

new tubes, 600 ml of FACS buffer was added, then centrifuged at

4000 rpm for 4 min at 4°C. The pellet was resuspended in 0.3 ml of

ACK lysis buffer (Ammonium-Chloride-Potassium: NH4Cl 0.15 M;

KHC03 1 mM; Na2EDTA 0.1 mM), incubated for 2 min at room

temperature (RT), and then added 1ml of FACS buffer and
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centrifuged 4000 rpm for 4 min at 4°C. The pellet was

resuspended in FACS buffer and used for FACS staining.
Antibody staining and FACS analyses

Cells were first incubated with anti-mouse CD16/CD23 (Fc

block) for 10 min on ice, then washed and stained with the surface

antibodies (Abs, listed below), starting with biotinylated Abs in 25

ml of FACS buffer for 10 min on ice, then washed and stained with

streptavidin mixed with other surface Abs in 25 ml of FACS buffer

for 10 min on ice (except for CD34 Ab which was incubated for 90

min on ice). Cells were then washed with FACS buffer, incubated for

3 min with DAPI (final concentration: 1 mg/ml) for exclusion of

dead cells before passing on LSRII (BD).

For intracellular staining, dermal cells were cultured in RMPI

medium w/o HEPES, + 10% FCS +1% P/S and 2 mM Glutamin, in

presence or absence of GolgiSTOP (BD) and Cell Stimulation

Cocktail (eBioscience) at 37°C for 2 h. Cells were then washed

with FACS buffer then incubated with anti-mouse CD16/CD23 (Fc

block) for 10 min on ice, then washed with FACS buffer and stained

with the surface Abs (listed below) as described above. Cells were

then washed and resuspended with 100 ml of Fixation/

Permeabilization solution (BD Cytofix/Cytoperm kit) for 20 min

on ice, then washed twice with the wash buffer (BD Cytofix/

Cytoperm kit). IL-3 Ab (listed below) was added and incubated

on ice for 30 min. After washing, cells were finally resuspended with

FACS buffer and passed on LSRII analyser.

Antibodies used for Flow cytometry are described in Table 1.
RNA extraction of cells sorted from ears
and quantitative RT-PCR

Ear dermal cells were prepared as described above. After

antibody staining, cells were FACS-sorted: Endothelial cells

(CD45-CD34+ESAM-1+), Hematopoietic cells (CD45+), TCRb
cells (CD45+TCRb+), Neutrophils (CD45+TCRb-Gr1hi),

Eosinophils (CD45+TCRb-Siglec-F+SSChi), Basophils (TCRb-

Siglec-F-Gr1-CD45loCD49b+). RNA was extracted with

NucleoSpin RNA XS kit following the manufacturer’s instruction.

RNA was reverse transcribed by using random oligonucleotide

hexamers and amplified by means of quantitative PCR with

LightCycler 480 (Roche Diagnostics) and QuantiTect SYBR Green

kit (Qiagen), according to the manufacturer’s instructions. Relative

RNA levels were calculated with hypoxanthine phosphoribosyl-

transferase (HPRT) as an internal control. Sequences of PCR

primers for mouse genes are described in Table 2.
Histology

Mouse ears were fixed overnight at 4°C in 4% paraformaldehyde

and embedded in paraffin. Sections (5 mm) were stained with

haematoxylin and eosin.
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TABLE 1 Antibodies used for Flow cytometry.

Name Fluorophore Clone Company Dilution

CD16/CD32 (Fc block) 93 eBioscience 0.5:25

CD49b-biotin DX5 eBioscience 0.5:25

IgE-biotin R35-72 BD Biosciences 0.5:25

Streptavidin BV605 Invitrogen 0.5:25

CD45 APC-eFluo780 30-F11 eBioscience 0.05:25

TCR-beta PerCP-Cy5.5 H57-597 eBioscience 1:25

Siglec-F Alexa Fluor647 E50-2440 BD Biosciences 1:25

Gr1 PE RB6-8C5 eBioscience 0.02:25

CD34 eFluor 700 RAM34 eBioscience 4:25

ESAM-1 APC 1G8/ESAM Biolegend 1.25:25

CD19 PerCP-Cy5.5 eBio1D3 eBioscience 1:25

CD3 FITC 145-2C11 eBioscience 1:25

CD45R/B220 PE-Cy7 RA3-6B2 Biolegend 1:25

IL-3 PE MP2-8F8 Biolegend 1.25:50

FcϵRIa Alexa Fluor 647 Fc23cpg eBioscience 1:25
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Immunohistochemistry staining

For immunohistochemistry (IHC) staining of major basic

protein (MBP) and mast cell protease 8 (MCPT8), 5 mm paraffin

sections were treated with 0.6% H2O2 to block endogenous

peroxidase activity before antigen retrieval with either Pepsin

(Life technologies; for IHC of MBP) or citric buffer (10 mmol/L

citric acid, pH 6; for IHC of MCPT8). Slides were then blocked with

normal rabbit serum (Vector Laboratories) and incubated overnight

with rat anti-mouse MBP (1:2000, provided by Dr James J Lee,

Mayo Clinic, Rochester) and rat anti-mouse MCPT8 (1:500, clone

TUG8, Biolegend). Slides were then incubated with biotinylated

rabbit anti-rat IgG (1:300) and treated with AB complex (Vector

Laboratories, Cat No. PK-6104). Staining was finally visualized with

AEC high-sensitivity substrate chromogen solution (Dako) and

counter-stained with hematoxylin.
In vitro culture of human basophils and
quantitative RT-PCR analyses

Human basophils were isolated from the buffy bags of healthy

donors (Centre Trinité, L’Établissement Français du Sang, Paris;

EFS-INSERM, 18/EFS/041) as previously described (28) by using

Basophil Isolation Kit (Miltenyi Biotec, Paris, France). Basophils

were then cultured in X-Vivo medium, with 100 ng/0.5 M cells/ml

of IL-3, or with 10 nM all-trans RA for 6 hr with or without prior

treatment with 1 µM each of retinoic acid receptors (RAR)

antagonists CD2665 (RARb/g antagonist; Tocris, Cat. 3800) and

BMS614 (RARa antagonist; Sigma, Cat. SML-1084) for 1 hr or with

RAR antagonists for 1h followed by IL-3 for 6h or with RAR
Frontiers in Immunology 04120
antagonists alone for 1h. Untreated basophils (Baso alone) were

used as control.

Total RNA from the different experimental conditions was

isolated using the RNeasy minikit (Qiagen, Hilden, Germany).

cDNAs were synthesized using a high-capacity cDNA reverse

transcription kit (Thermo Fisher Scientific, Courtaboeuf, France),

and quantitative PCR was performed with LightCycler 480 (Roche

Diagnostics) and QuantiTect SYBR Green Kit (Qiagen) using the

primers as described in Table 3. Relative RNA levels were calculated

with human glyceraldehyde-3-phosphate dehydrogenase

(hGAPDH) as an internal control.
Statistical analysis

Data were analysed using GraphPad Prism 9. Comparison of

two groups was performed either by Student’s two-tailed unpaired

t-test with Welch’s correction or the two-tailed Mann–Whitney

rank sum nonparametric test depending on results from the

Kolmogorov–Smirnov test for normality.
Results

Basophil accumulation in FITC-induced
ACD skin is dependent on
adaptive immunity

To induce allergic contact dermatitis (ACD) in mice, we

employed an experimental protocol (24) in which Balb/c wildtype

(WT) mice were first sensitized on one ear (left ear, LE) at Day (D)
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TABLE 2 Sequences of PCR primers for mouse genes.

Gene name Sequence 5’ to 3’

Hprt TGGATACAGGCCAGACTTTG
GATTCAACTTGCGCTCATCTTA

Il3 TGAAGGACCCTCTCTGAGGA
CGCAGATCATTCGCAGAT

Il4 GGCATTTTGAACGAGGTCAC
AAATATGCGAAGCACCTTGG

Il13 GGAGCTGAGCAACATCACACA
GGTCCTGTAGATGGCATTGCA

Il17a CCAGGGAGAGCTTCATCTGT
ACGTGGAACGGTTGAGGRTAG

Ifng AACGCTACACACTGCATCTTGG
GACTTCAAAGAGTCTGAGG

Ccr3 TAAAGGACTTAGCAAAATTCACCA
TGACCCCAGCTCTTTGATTC

Mcpt8 GTGGGAAATCCCAGTGAGAA
TCCGAATCCAAGGCATAAAG

Selp
(P-selectin)

AAAAGGTTCCTGGACGCCAA
GACGTCATTGAGGTGAGCGA

Sele
(E-selectin)

ACGGATAGAGAGAAGCAGGAGC
TCATGAGCTCACTGGAGGCA

Icam1 GCTCAGTATCTCCTCCCCA
GCTGTGCTTTGAGAACTGTG

Vcam1 CCCAAACAGAGGCAGAGTGT
CAGGACTGCCCTCCTCTAGT

Itgb1 GCTGGGTTTCACTTTGCTGG
TGTGCCCACTGCTGACTTAG

Itgb2 CAACAACGTCAAGAAGCTGGG
GCCTTCTCCTTGTTGGGACA

Itgb3 GTGTGGGCCTCAAGATTGGA
AGGCACAGTCACAGTCGAAG

Itgb7 GACGACTTGGAACGTGTGCG
TGGGTGGTGAAGCTTGGAGG

Itgam AAACAAGGATGCTGGGGAGG
GTCTCATCAAAGAAGGCACGG

Itgal CTGGACCTGCGTGAAGACC
GGTACCGTGGGGCTCCTG

Itga2b AGACACCAGTCAGCTGCTTC
CCTGACGGGGCTTCTGTAAG

Itga4 TAGCGAATCTTGGCGACATT
ACCAACGGCTACATCAACAT

Itga5 ATGCCCTGAAGCCAAGTGTT
TATTCCCGCTGCAAGAAGGT

Itgae AGCCGGGACATTAACGCCTC
ACCACCATGACCTTCAATGCTT

TABLE 3 Sequences of PCR primers for human genes.

Human Genes Sequence 5’ to 3’

GAPDH GTCAAGGCTGAGAACGGGAA
AAATGAGCCCCAGCCTTCTC

ALDH1A2 TATGTGGATTTGCAGGGCGT
ACATCAGCAGGGGGAAGTTC

ITGB2 CGACATCATGGACCCCACAA
GCATGGAGTAGGAGAGGTCC

ITGAM AGTGCTGGGGGACGTAAATG
CCCACTCAGTGACTGACCAA

ITGA2B CTCCTGCTGACTGGCACAC
TCAGCCCCTCACTCTGACC

ITGB7 ACAGGGGATGCCACAGAATG
GCCAGCAGCTCCTCTCGT
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0, 1 and 2, with fluorescein isothiocyanate (FITC, a hapten with

potential to induce ACD when combined to dibutyl phthalate

DBP), and challenged with the same solution on the other ear

(right ear, RE) at D6 (Figure 1A). This treatment led to an increase

in the thickness of RE from FITC-sensitized and challenged mice
Frontiers in Immunology 05121
(Figure 1B, compare untreated WT and WT+FITC), but not from

mice with only sensitization or only challenge (Figure S2).

Hematoxylin and eosin (H&E) staining of RE at D7 showed that

the FITC treatment induced an inflammatory response with an

epidermal hyperplasia and an immune infiltrate in dermis

(Figure 1C). Immunohistochemistry (IHC) analyses using an

antibody against MCPT8 (mast cell protease 8) (29) and an

antibody against MBP (major basic protein) (30) revealed the

dermal accumulation of basophils and eosinophils, respectively

(Figure 1C, compare untreated WT and WT+FITC). RT-qPCR

analyses showed an increase in RNA levels of cytokines IL-3, IL-4,

IL-13, IL-17A and IFN-g, as well as of MCPT8 (expressed by

basophils) and CCR3 (expressed mainly by eosinophils and

basophils) in RE from FITC-treated WT compared to untreated

WT mice (Figure 1D, compare untreated WT and WT+FITC).

FACS analyses of dermal cells showed an increased CD45+

hematopoietic cells in FITC-treated WT ears compared to

untreated ears. These include TCRb+ T cells (identified as

CD45hiTCRb+), eosinophils (identified as CD45hiTCRb-SiglecF+),
neutrophils (CD45hiTCRb-Gr1hi), basophils (identified as TCRb-

Gr1-SiglecF-CD45loCD49b+), as well as TCRb-Gr1-SiglecF-

CD45hiCD49b+ cells (which represent a heterogeneous resident

cell population containing skin mast cells, called hereafter

CD45hiCD49b+ cells) (Figures 1E, F, compare untreated WT and

WT+FITC).

It has been reported that in different inflammatory contexts,

basophil expansion and accumulation in tissues are adaptive

immunity dependent (11, 31–33) or independent (34, 35). To

examine whether basophil recruitment in FITC-induced ACD

skin is dependent on adaptive immunity, Rag1-/- mice which lack

mature T- and B-lymphocytes were subjected to FITC treatment.

Results showed that FITC-induced ACD inflammation was

abolished in Rag1-/- mice, with no increase in RE thickness

(Figure 1B), largely diminished accumulation of eosinophils,

basophils, neutrophils and CD45hiCD49b+ cells (which contain

mast cells) (Figures 1C, E, F), and no increase in cytokine

expression (Figure 1D). These results thus indicate that skin

recruitment of basophils, as well as other immune cells in FITC-

induced ACD are dependent on adaptive immunity.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1151468
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hachem et al. 10.3389/fimmu.2023.1151468
IL-3 is crucial for basophil accumulation in
FITC-induced ACD skin

Based on the above observation that IL-3 expression in ACD

skin was totally abolished in Rag1-/- mice, we next examined the role

of IL-3 in ACD skin inflammation. Il3-/- and their wildtype control

(CT) littermate mice were subjected to the FITC treatment.

Measurement of RE thickness showed a modest but significant

decrease in FITC-treated Il3-/- mice compared to FITC-treated WT
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mice (Figure 2A). FACS analyses showed that the number of

basophils was highly reduced in RE from FITC-treated Il3-/- mice

compared to that from FITC-treated CT mice (Figures 2B, C),

which was also confirmed by IHC staining for basophils and

eosinophils (see Figure 3A). In contrast, no decrease was observed

in the number of TCRb+ T cells, eosinophils, neutrophils or

CD45hiCD49b+ cells (which contain mast cells) (Figures 2B, C),

indicating a specialized requirement of IL-3 for basophil

recruitment and accumulation in ACD skin.
B

CD

E

F

A

FIGURE 1

FITC treatment induces basophil accumulation in ACD skin in Rag1-dependent manner. (A) Experimental protocol. Eight to twelve-week-old female
mice were sensitized with FITC on left ear (LE) at Day (D) 0, D1 and D2. Right ears (RE) were then challenged at D6 with FITC and sampled for
analyses at D7. (B) RE thickness at D7. (C) Hematoxylin and eosin (H&E) and immunohistochemistry (IHC) staining of RE sections. Arrow points to
one of the positive cells of IHC staining. Scale bar: 50 mm. (D) RT-qPCR analyses of cytokines in RE. ND, non-detected. (E) FACS analyses of dermal
cells of RE for CD45+ (hematopoietic cells), CD45+TCRb+ T cells, CD45+TCRb-Siglec-F+Gr1low-neg (eosinophils), and CD45+TCRb-Gr1hi (neutrophils),
CD45lowCD49b+Siglec-F-Gr1-(basophils) and CD45hiCD49b+Siglec-F-Gr1- cells (which contain mast cells). (F) Comparison of frequency of total cells
and total cel numbers. *P≤0.05 **P≤0.01, ***P≤0.001 (Student's t-test). Values are mean ± SEM [(B), n=7; (D, F), n=4 mice per group].
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In addition, RT-qPCR analyses of RE showed that RNA levels of

MCPT8, IL-4 and IL-13 were significantly decreased in FITC-treated

Il3-/- mice compared to FITC-treated CT mice (Figure 2D). As IL-4

and IL-13 have been reported to be produced by various cell types

including Th2 cells and basophils (36), we further investigated the

cells in which IL-4 and IL-13 expression was reduced in FITC-treated

Il3-/- skin. For this purpose, we bred Il3-/- mice with 4C13R dual

reporter mice (which have transgenic expression of the cyan

fluorescent protein AmCyan under the control of Il4 regulatory

elements and the red fluorescent protein dsRed under the control
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of Il13 regulatory elements) (37). FACS analyses of RE showed that

first, IL-4 (AmCyan) and IL-13 (dsRed) were detected in both TCRb+

T cells and basophils in FITC-treated CT/4C13RTg/0 mice

(Figures 2E, F); second, AmCyan (IL-4) and dsRed (IL-13)

expression in TCRb+ T cells was comparable between FITC-treated

CT/4C13RTg/0 and Il3-/-/4C13RTg/0 skin (Figures 2E, F). In contrast,

their expression in basophils was diminished in FITC-treated Il3-/-/

4C13RTg/0 skin (Figures 2E, F), indicating that basophils but not Th2

cells were responsible for the reduction of IL-4 and IL-13 expression

detected in RE from FITC-treated Il3-/- mice.
B
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FIGURE 2

IL-3 plays a crucial role for basophil recruitment to FITC-induced ACD skin. (A) Thick- ness of FITC-challenged right ear (RE) at D7. (B) FACS
analyses of dermal cells of RES from FITC-treated 113 and wildtype control (CT) littermate mice, for CD45+ hematopoietic cells, CD45+TCRb+ T
cells, CD45+TCRb-Siglec-F+Gr1low-neg (eosinophils), and CD45+TCRb-Gr1hi (neutrophils), CD45lowCD49b+TCRb-Siglec-F-Gr1- (baso- phils) and
CD45hiCD49b+TCRb-Siglec-F-Gr1- cells (which contain mast cells),. (C) Comparison of total cell numbers in RE. (D) RT-qPCR analyses of REs. ND,
non detectable. (E) FACS analyses of Amcyan (IL-4) and dsRed (IL-13) expression by CD45+TCRb+ T cells (left panel) and by CD45lowCD49b+

basophils (right panel), in the dermis of FITC-treated CT/4C13RTg/0 and Il3-/-/4C13RTg/0 mice. FITC-treated CT/4C13R0/0 was used to set the gating
for AmCyan and dsRed. (F) Comparison of frequencies of AmCyan (IL-4)+ cells and dsRed(IL-13)+ cells in TCRb+ T cells or in basophils. *P≤0.05
**P≤0.01, ***P<0.001 (Student's t-test). Values are mean ± SEM [(A), n=7; (C, D, F), n=4 mice per group].
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Together, these results suggested that in ACD skin, IL-3 was

specifically and crucially required for the accumulation of basophils,

which were the major cell type contributing to the induced

expression of Th2 cytokines IL-4 and IL-13 in FITC-induced ACD.
IL-3 is crucial for basophil extravasation to
ACD skin

To examine basophils in FITC-treated WT and Il3-/- skin in

histological level, we performed MCPT8 IHC staining. Of interest,

we observed that in addition to the decrease in basophil number, all

the detected basophils were strikingly restricted inside blood vessels
Frontiers in Immunology 08124
in RE of FITC-treated Il3-/- mice (Figure 3A; MCPT8-labled

basophils were immersed in red blood cells), indicating a defect

in basophils for crossing the vascular endothelium. In contrast to

basophils, no difference was observed in eosinophil extravasation to

skin between FITC-treated Il3-/- and CT mice (Figure 3A).

To examine whether this observation could reflect a delayed

basophil recruitment in Il3-/- mice, we performed FITC treatment

and analysed RE at later time points (D8, D9 and D10) (Figure 3B).

Similar phenotype (restriction of basophils inside blood vessels in

the skin) was observed as at D7, indicating that basophils in FITC-

treated Il3-/-mice were not able to cross vascular endothelium at any

of these time points (Figure 3C). Thus, basophil extravasation was

not delayed but defective in FITC-treated Il3-/- mice.
B C
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A

FIGURE 3

IL-3 is crucial for basophil extravasation to FITC-induced ACD skin. (A) HE and IHC staining of RE sections at D7. Red arrow points to one of
basophils inside blood vessels, whereas blue arrow points to one of basophils out of blood vessels. The green arrow points to red blood cells inside
the vessel. Dashed circles outline blood vessels. (B-C) Il3-/- and CT mice were sensitized at D0, D1 and D2 on LEs and challenged at D6 on REs,
which were analysed at D8, D9 and D10 (B) for Mcpt8 IHC staining (C). Scale bar, 50 mm. (D) Representative FACS plots of blood cells for CD19-

CD3-Gr1-SiglecF-IgE+ (basophils), CD19-CD3-Siglec-F+Gr1low-neg (eosinophils), and CD19-CD3-Gr1hi (neutrophils) from FITC-treated CT and Il3-/-

mice. (E) Comparison of frequency of basophils (left panel), eosinophils and neutrophils (right panel) in total cells. *P≤0.05 (Student's t-test). ns, non
significant. Values are mean ± SEM (n≥3 mice per group).
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Next, we performed FACS analyses of blood basophils, which

were identified as CD19-CD3-Gr1-Siglec-F-IgE+ cells (Figure 3D).

Blood eosinophils and neutrophils were identified as CD19-CD3-

Siglec-F+Gr1low-neg, CD19-CD3-Gr1hi, respectively (Figure 3D).

Results showed that first, the frequency of basophils in the blood

was comparable between untreated CT and Il3-/- mice (Figure 3E,

compare untreated CT with untreated Il3-/-), indicating that IL-3

was not necessary for the development of baseline levels of

basophils in mice, in agreement with previous reports (9, 38, 39);

second, the frequency of basophils in the blood of FITC-treated CT

mice was lower compared to untreated CT mice (Figure 3E,

compare CT+FITC with untreated CT), likely due to the skin

recruitment of basophils; and third, such decrease was not

observed in FITC-treated Il3-/- mice (Figure 3E, compare Il3-/- +

FITC with untreated Il3-/-), which was fitting with the observation

that basophils were not able to cross vascular endothelium to enter

the skin in these mice. In contrast to basophils, no difference was

observed for frequency of eosinophils and neutrophils in the blood

between FITC-treated Il3-/- and CT mice (Figure 3E). Altogether,

these data suggested that basophil extravasation to inflamed ACD

skin was defective in mice lacking IL-3.
IL-3 produced by T cells mediates basophil
extravasation to ACD skin

By performing intracellular staining, we showed that IL-3 was

detected in both TCRb+ T cells and basophils of FITC-treated WT

skin (Figure 4A). To examine whether IL-3 produced by T cells

mediates basophil recruitment to ACD skin, we generated mice in

which IL-3 is ablated selectively in both CD4+TCRb+ and

CD8+TCRb+ T cells, by breeding Il3L2/L2 with CD4-CreTg/0 mice

(25). Results showed that similar to what was observed in FITC-

treated Il3-/- skin, all basophils detected by IHC-MCPT8 were

confined inside blood vessels (Figure 4B). FACS analysis of FITC-

challenged CD4-CreTg/0/Il3L2/L2 skin showed a diminished

frequency of basophils, while no decrease was observed in TCRb+

T cells, eosinophils, neutrophils or CD45hiCD49b+ cells (which

contain mast cells) (Figure 4C). In addition, a higher frequency of

basophils in blood was seen in FITC-treated CD4-CreTg/0/Il3L2/L2

mice compared to FITC-treated wildtype CT mice (Figure 4D),

again suggesting a defective extravasation of basophils to ACD skin

in these mice. Together, these results indicated that IL-3 produced

by T cells was crucial for basophil extravasation in ACD skin.
Decreased expression of integrins in
basophils from FITC-treated Il3-/- skin

It has been recognized that leukocyte extravasation is regulated

by a concerted multistep actions between leukocytes and

endothelial cells (ECs) including rolling, adhesion and TEM (13).

IL-3 receptor was previously shown to be expressed by both human

ECs (19, 20) and human/mouse basophils (40, 41). In vitro studies

have suggested that basophils or ECs could respond to IL-3

signalling: IL-3 stimulation of human basophils enhances their
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adhesiveness to ECs (23) and their TEM (22); on the other hand,

stimulation of human ECs by IL-3 induced the expression of P-

selectin and selective basophil accumulation (21, 42).

We thus sorted ECs and basophils by FACS from FITC-

challenged mouse RE and analysed by RT-qPCR the expression

of molecules potentially implicated in basophil-EC interaction.

First, the expression of Selp (P-selectin), Sele (E-selectin), Icam1

and Vcam1 was much higher in ECs compared to CD45+

hematopoietic cells, however, no decrease in these genes was

observed in ECs from Il3-/- compared to CT mice (Figure S3). On

the other hand, analyses of the sorted basophils (note that basophils

sorted from the FITC-treated Il3-/- RE corresponded to those stuck

inside blood vessels) revealed a significant decrease in Itgam, Itgb2,

Itga2b and Itgb7 from FITC-treated Il3-/- compared to CT mice

(Figure 5), whereas no significant difference was observed for Itga4,

Itga5, Itgae, Itgb1, Itgal and Itgb3 (Figure 5). Importantly, the

decrease in Itgam, Itgb2, Itga2b and Itgb7 was specific for

basophils, as no change was observed for neutrophils, eosinophils

or TCRb+ T cells from FITC-treated Il3-/- compared to CT mice

(Figure 5). It is also notable that these genes were all highly

expressed in basophils compared to neutrophils, eosinophils and

TCRb+ T cells from FITC-treated CT mice (Figure 5). Together,

these data revealed an IL-3-dependent expression of integrins

ITGAM, ITGB2, ITGA2B and ITGB7 in basophils, which are

potentially implicated in basophil-EC interaction during the

extravasation process in FITC-induced ACD.
Retinoic acid signaling promotes basophil
extravasation to ACD skin

We next sought to explore how IL-3 signalling regulates the

expression of integrins by basophils. Of interest, it was previously

reported that in human basophils co-cultured with mast cells, mast

cell-derived IL-3 induces the expression of the retinaldehyde

dehydrogenease ALDH1A2 (also called RALDH2), an enzyme that

catalyses the last oxidative step of the cascade leading retinol to

produce retinoic acid (RA) (43). It was shown that RA produced by

basophils promotes the expression of ITGA4/ITGB7 heterodimer on

T cells in a paracrine manner, thus influencing T cell polarisation (43).

Other studies reported the induction of ALDH1A2 in human

basophils (44) or ALDH1A3 (also called RALDH3) in mouse

basophils (45) upon the stimulation of IL-3 and IL-33/IgE

stimulation, respectively. We then examined the expression of

Aldh1a1, Aldh1a2 and Aldh1a3 in basophils, eosinophils,

neutrophils and TCRb+ T cells sorted by FACS from FITC-treated

WT and Il3-/- RE. Results show that RNA levels for Aldh1a2, but not

Aldh1a1 or Aldh1a3, were significantly decreased in basophils from

FITC-treated Il3-/- compared to CT mice (Figure 6A), whereas its

levels in eosinophils, neutrophils or TCRb+ T cells were all low and

remained unchanged between FITC-treated Il3-/- and CT mice

(Figure 6A). These results thus suggested that Aldh1a2 expression

by basophils from FITC-treated skin is dependent on IL-3. Notably,

RT-qPCR analyses of naïve basophils sorted from spleen in steady

state showed thatAldh1a2was undetectable (qPCR cross point >50) in

basophils from both wildtype control (CT) and Il3-/- mice (Figure S4).
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In addition, RT-qPCR analyses showed that except for Itgam, which

was significantly lower in basophils from Il3-/- mice compared to CT

mice, the other ITGs analyzed including Itgb2, Itga2b, Itgb3, Itgae and

Itgb7 (a slight tendency; p=0.07) did not exhibit significant difference

between basophils from CT and Il3-/- mice (Figure S4). These results

thus suggested that in contrast to the inflamed context where IL-3

played a significant role in regulating the RNA expression of Aldh1a2

and ITGs, in steady state, IL-3-ALDH1A2 axis was minimally

implicated in regulating the expression of ITGs in basophils.

We further tested whether RA administration restores basophil

extravasation in Il3-/-mice. Wildtype CT and Il3-/-mice were treated

with FITC as described in Figure 1A, and all-trans RA (at-RA) was

either topically applied to RE 2 h before the FITC-challenge, or

injected i.p. 24 h before the FITC-challenge. Results show that upon

at-RA topical treatment, more basophils were accumulated in

FITC-treated CT skin (Figure 6B, compare CT +FITC w/o at-RA

and CT +FITC + topical at-RA). Moreover, while basophils were
Frontiers in Immunology 10126
stuck inside blood vessels in FITC-treated Il3-/- (w/o at-RA) mice,

at-RA topical treatment resulted in more basophils detected outside

the blood vessels (Figures 6B, C). Similarly, i.p. injection of at-RA

led to an increased number of basophils outside the blood vessels of

FITC-treated Il3-/- skin, although such effect appeared to be

relatively weaker compared to topical RA treatment (Figures 6B,

C). Taken together, these data suggested that the administration of

at-RA has an effect to restore basophil extravasation in Il3-/- mice.
IL-3 stimulation of human basophils
upregulates integrin particularly ITGB7 in
RA signaling-dependent manner

To examine the human relevance of the above findings in

mouse, we performed in vitro culture of human primary

basophils isolated from healthy donors. We first confirmed that
B

C D

A

FIGURE 4

IL-3 produced by T cells mediates basophil extravasation to FITC-induced ACD skin. (A) Intracellular staining of IL-3 in dermal cells of RES from
untreated or FITC-treated Balb/c WT mice. (B) IHC staining with Mcpt8 antibody in RE of FITC-treated CD4-Cre0/0/Il3L2/L2 (CT) and CD4-CreTg/0/
Il3L2/L2 mice. Red arrow points to one of basophils inside blood vessels and blue arrow points to one of basohils of our blood vessel. Dashed circles
outline blood vessels. Scale bar, 50mm. (C) FACS analyses of dermal cells of REs from FITC-treated CT and CD4-CreTg/0/Il3L2/L2 mice, for CD45+

hematopoietic cells, CD45+TCRb+ T cells, CD45+TCRb- Siglec-F+Gr1low-neg (eosinophils), and CD45+TCRb-Gr1hi (neutrophils),
CD45lowCD49b+Siglec-F-Gr1-(basophils) and CD45hiCD49b+Siglec-F-Gr1- cells (which contain mast cells). (D) FACS analyses of blood cells from
FITC-treated CT and CD4-CreTg/0/Il3L2/L2 mice for CD19-CD3-Gr1low-negSiglecF-IgE+ (basophils), CD19-CD3-Siglec-F+Gr1low-neg (eosinophils), and
CD19-CD3-Gr1hi (neutrophils). ***P≤0.001 (Student's t-test). Values are mean ± SEM (n=4 mice per group).
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ALDH1A2 expression was highly induced by IL-3 in basophils

particularly from Donor 1, 2 and 3, while the Donor 4 exhibited

relatively less induction of ALDH1A2 (Figure 7A). Further

examination of integrin expression showed that basophils from

Donor 1 and Donor 2 showed an increased expression of ITGAM,

ITGB2, ITGA2B and ITGB7 upon IL-3 stimulation (Figure 7A),

while the induction of aforementioned integrins was less clear in the
Frontiers in Immunology 11127
basophils from Donor 3 and Donor 4 (Figure 7A). Moreover, when

stimulated with RA, basophils from Donor 1 and Donor 2 also

showed an increased expression of these integrins, which was

reduced upon the treatment with RAR antagonists (Figure 7A).

Particularly, ITGB7 expression was increased in basophils from all

the 3 donors (Donor 1-3) upon RA stimulation, which was

antagonized by RAR antagonists (Figure 7A). Though Donor 4
FIGURE 5

Decreased expression of integrins by basophils sorted from FITC-treated Il3-/- skin. RT-qPCR analyses of the sorted basophils, neutrophils,
eosinophils and TCRb+ T cells. CT, wildtype controls. *P≤0.05 **P≤0.01 (Student's t-test). Values are mean ± SEM (n=3 mice per group).
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did not show a dramatic increase in ITGB7 expression, its

expression was completely antagonized by RAR antagonists.

In another set of experiment, basophils were treated with IL-3

plus RAR antagonists. As shown in Figure 7B, ALDH1A2

expression was induced by IL-3 and was not affected by the

addition of RAR antagonists. ITGB7 expression was induced by

IL-3, and such induction was suppressed by the addition of RAR

antagonists (Figure 7B). These data thus suggested that IL-3

stimulation upregulates ITGB7 expression in human basophils in

an RA signaling-dependent manner.
Discussion

In this study, we investigated basophil recruitment to allergic skin

with a hapten-induced ACD mouse model. Making use of our newly

generated IL-3-knockout and conditional knockout mouse lines, our

data demonstrated a crucial role for IL-3 produced by T cells in

mediating basophil extravasation to the inflamed skin. Moreover, we

found that basophils from FITC-treated IL-3-knockout mice had a

decreased expression of several integrins including Itgam, Itgb2,

Itga2b and Itgb7, which was associated with the failure of basophils
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in crossing ECs to enter inflamed skin site of these mice. Interestingly,

basophils from FITC-treated IL-3-knockout mice exhibited a reduced

expression of Aldh1a2, and administration of at-RA restored

basophils extravasation in these mice. Finally, we show that as

observed in mice, human primary basophils express ALDH1A2

upon IL-3 stimulation, and that IL-3-induced expression of

integrins particularly ITGB7 was dependent on RA signaling.

Our data point to a central role of IL-3 in basophil extravasation

into the inflamed ACD skin, which involves a cooperation between

T cells, basophils and ECs. Yet, it remains to be determined when

and how IL-3 is induced in CD4+ T cells upon the sensitization and

challenge. Though we show that IL-3-expressing TCRb+ T cells are

accumulated in RE from FITC-treated mice but not from untreated

mice, thus suggesting that IL-3 at the challenge phase is likely

responsible for its effect on basophil extravasation, it does not

exclude a possible role of IL-3 during the sensitization phase of

ACD. To explore this, temporal knockout of IL-3 (e.g. using

tamoxifen-inducible Cre-ERT2 system), or blockade of IL-3

signaling using neuralizing antibody or antagonists to IL-3 or IL-

3Ra (IL-3 specific receptor subunit), during sensitization or

challenge phase would be useful. This will also provide

information on the appropriate time window to target IL-3 axis
B C

A

FIGURE 6

All-trans retinoic acid treatment prior to FITC challenge promotes basophil recruitment to ACD skin. (A) RT-qPCR analyses of retinaldehyde
dehydrogenease genes Aldh1a1, Aldh1a2, and Aldh1a3 in basophils, neutrophils, eosinophils and T cells sorted from FITC-treated Il3-/- and CT ears.
**P≤0.01 (Student's t-test). Values are mean ± SEM (n=3). (B) Il3-/- and CT mice were FITC-sensitized and -challenged as described in Figure 1A.
Mice were either topically treated with all-trans retinoic acid (at-RA) on RE at 2 hr before FITC-challenge, or intraperitoneally (i.p.) administrated with
at-RA at 24 hr before FITC-challenge. RE sections from Il3-/- and CT mice were used for MCPT8 IHC. Blue arrows point to one of the positive cells
outside of blood vessels; red arrows point to one of the positive cells inside blood vessels; green arrows point to red blood cells inside the vessel.
Dashed circles outline blood vessels. Scale bar: 50 mm. (C) Comparison of total number of Mcpt8 basophils inside and ourside of blood vessels from
ear sections of Il3-/- mice treated with FITC, FITC+topical at-RA, or FITC+i.p. at-RA. Values are mean ± SEM (n=6).
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and to test their effects on blocking the recruitment of basophils to

inflamed skin, thereby modulating the established inflammation.

While IL-3 could exert multiple functions, our data revealed

that IL-3 signalling on basophils was crucial for these cells to

upregulate their RNA expression of integrins including Itgam,

Itgb2, Itga2b and Itgb7. Indeed, the upregulation of Itgam was

previously reported for mouse basophils stimulated in vitro with IL-

3 (34), and for human basophils (23), which enhances their

adhesiveness to ECs. In addition, in vitro studies suggested that

IL-3 could stimulate human basophil rolling and adhesion to ECs,

and blocking Abs against ITGB1, ITGB2, ITGAM and ITGAL

inhibited basophil rolling and adhesion to ECs (21–23). Here, our
Frontiers in Immunology 13129
data identified that in addition to Itgam and Itgb2 as previously

reported, Itgb7 and Itga2b were also regulated by IL-3 signaling.

Particularly, Itgb7 and Itga2b are highly expressed by basophils

compared neutrophils, eosinophils and T cells from FITC-treated

wildtype mice (Figure 4), and moreover, in our tests with human

primary basophils stimulated with IL-3, ITGB7 induction was most

reproducible, suggesting a potential role of ITGB7 in basophil

extravasation, which deserves further investigation.

Our data suggest a possible IL-3-RA axis through ALDH1A2

expression to regulate the gene expression of integrins in basophils.

First, we showed that in FITC-treated mice, Aldh1a2 expression by

basophils is diminished in IL-3-KO mice, while in human primary
B

A

FIGURE 7

RT-qPCR analyses of in vitro cultured human basophils. (A) Basophils isolated from 4 donors (Donor 1, 2, 3, 4) were cultured alone, or in the
presence of IL-3, all-trans retinoic acid (RA), or RA+RAR antagonists. (B) Basophils isolated from 3 donors (Donor 5, 6, 7) were cultured alone, or in
the presence of IL-3, RAR antagonist, or IL-3+RAR antagonists.
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basophils, IL-3 stimulation induces ALDH1A2 expression,

suggesting a conserved regulation of ALDH1A2 by IL-3 from

mouse to human. These data are in good agreement with previous

reports, which show that IL-3 induces ALDH1A2 expression and RA

production by basophils (43, 44). It should be noted that genetic

polymorphism in human IL-3Ra has been documented (46, 47), and

our previous data have also revealed variations among healthy

donors in their response to IL-3 (48), thus pointing towards

polymorphism in IL-3Ra as one potential factor, which

determines response of basophils to IL-3 and as a consequence,

induction of ALDH1A2. This could explain the difference in the

induction of ALDH1A2 in IL-3 stimulated basophils from different

donors in our human experiment (Figure 7A; donor 4 had much

lower ALDHL1A2 expression compared with other 3 donors). In

addition, genetic polymorphism of RAR/RXR (receptors for RA) or

RA response elements can impact the transcriptional regulation of

ITGs by RA signaling, which may also explain the differential

induction of ITG in IL-3-stimulated basophils among the donors

(Figure 7A). Interestingly, it was previously proposed that RA

produced by basophils promotes the expression of ITGA4/ITGB7

heterodimer on T cells in a paracrine manner thus influencing T cell

polarisation (43). In contrast, our study provides evidence that RA

promotes the expression of integrins particularly ITGB7 in human

basophils, and IL-3-induced ITGB7 could be suppressed by RAR

antagonists. Moreover, at-RA administration could restore at least

partially basophil extravasation to the skin in Il3-/- mice. Thus, RA

produced by basophils may act in an autocrine manner to regulate

the expression of integrins implicated in basophil extravasation.
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Based on these data, we propose a model illustrated in Figure 8:

upon hapten sensitization and challenge, T cells secrete IL-3, which

binds to IL-3 receptor complex on basophils and induces expression

of ALDH1A2, resulting in the production of RA by basophils; in

turn, RA activates RAR/RXR receptor heterodimer in basophils in

an autocrine manner, and thereby upregulates the expression of

integrins ITGAM, ITGB2, ITGA2B, and ITGB7, promotes the

interaction between basophils and ECs, and eventually permits

basophil extravasation to ACD skin. To fully determine the role

of IL-3-RA axis in basophil extravasation process, mice in which

Aldh1a2 is conditionally knocked out in basophils (breeding

Aldh1a2L2/L2 mice with Mcpt8Cre) will be useful to provide

evidence on whether this enzyme and RA production are crucial

for basophil extravasation. One might also envisage to use RARE

(RAR responding element) reporter mice to track RA production

and activity in basophils during inflammatory processes. Moreover,

it will be also interesting to test whether RAR antagonists could

block basophil recruitment to inflamed skin site. We could not

provide data at this stage with the in vivo administration of RAR

antagonists (CD2665 and BMS614) due to their toxicity in mice

(data not shown), but further investigation on the possible strategies

to block RA synthesis and signaling in basophils, as well as to target

key molecular players including integrins (e.g. using blockade

antibodies), should be further tested. Finally, it will be interesting

to examine whether the proposed mechanism applies generally to

basophil-related skin pathologies (1), such as allergen (e.g. house

dust mite)-induced atopic dermatitis or urticaria, which will help to

develop strategies for treating these diseases.
FIGURE 8

A schematic representation of the role of T cell-derived IL-3 in mediating FITC-induced basophil extravasation to ACD skin. Upon FITC treatment, T
cells secrete IL-3 (1), which binds to IL-3 receptor complex on basophils (2), and induces expression of ALDH1A2 (3), leading to the production of
retinoic acid (RA) by basophils (4). In turn, RA activates RAR/RXR receptor heterodimer in an autocrine manner, which upregulates the expression of
integrins such as ITGAM, ITGB2, ITGA2B, ITGB7 by basophils (5). The interaction between integrins (expressed by basophils) and their ligands
(expressed by endothelial cells, such as ICAM-1, ICAM-2, VCAM-1) is crucial for baso- phil extravasation to ACD skin through rolling, adhesion and
trans-endothelial migration (TEM) (6).
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Basophils beyond allergic and
parasitic diseases
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Antonio Di Salvatore 1, Amato de Paulis 1,2,3,
John T. Schroeder 5* and Gilda Varricchi 1,2,3,4*

1Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy, 2World
Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy, 3Center for Basic and Clinical
Immunology Research (CISI), University of Naples Federico II, Naples, Italy, 4Institute of Experimental
Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy, 5Division
of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore,
MD, United States
Basophils bind IgE via FceRI-abg2, which they uniquely share only with mast cells.

In doing so, they can rapidly release mediators that are hallmark of allergic

disease. This fundamental similarity, along with some morphological features

shared by the two cell types, has long brought into question the biological

significance that basophils mediate beyond that of mast cells. Unlike mast cells,

which mature and reside in tissues, basophils are released into circulation from

the bone marrow (constituting 1% of leukocytes), only to infiltrate tissues under

specific inflammatory conditions. Evidence is emerging that basophils mediate

non-redundant roles in allergic disease and, unsuspectingly, are implicated in a

variety of other pathologies [e.g., myocardial infarction, autoimmunity, chronic

obstructive pulmonary disease, fibrosis, cancer, etc.]. Recent findings strengthen

the notion that these cells mediate protection from parasitic infections, whereas

related studies implicate basophils promoting wound healing. Central to these

functions is the substantial evidence that human and mouse basophils are

increasingly implicated as important sources of IL-4 and IL-13. Nonetheless,

much remains unclear regarding the role of basophils in pathology vs.

homeostasis. In this review, we discuss the dichotomous (protective and/or

harmful) roles of basophils in a wide spectrum of non-allergic disorders.

KEYWORDS

alarmins, allergy, autoimmunity, basophil, cancer, COVID-19, myocardial infarction
1 Basic concepts of basophils

Basophils are rare blood cells, accounting for 1% or less of the circulating leukocytes-a

feature evident both in humans and mice. Basophils share several morphological and

functional characteristics with tissue-resident mast cells. Most recognized are the

cytoplasmic granules that each cell possesses and that stain so predominantly with basic

stains. Phenotypically, both cell types s uniquely express the abg2 structure of the high-
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affinity receptor (FceRI) for IgE, which enables both cells to rapidly

release pre-formed histamine and newly generated cysteinyl

leukotriene C4 (LTC4), upon encountering relevant allergen (1, 2).

Accordingly, basophils were initially viewed, incorrectly, as blood-

circulating mast cells, which prompted the notion of using them as

surrogates to study tissue mast cells, which proved far more difficult

to obtain (2). However, it is now widely accepted that basophils and

mast cells profoundly differ in several fundamental aspects (3). For

example, the lifespan of basophils (~days) is much shorter than the

months estimated for mast cells (4). Transcriptionally, basophils are

more closely related to eosinophils than mast cells (5, 6). These

differences (among many more discussed elsewhere (7) suggest that

basophils have unique pathophysiological roles different from those

of mast cells.

IL-3 is central to the growth, differentiation, priming, and

overall activation of both human and mouse basophils (8, 9). It

does so by binding, with high-affinity, to the a subunit of its

receptor (IL-3Ra/CD123) highly expressed on basophils (10).

Many cell types are implicated in producing the IL-3 that impacts

basophil development and function, including T cells (11, 12), B

cells (13), human eosinophils and neutrophils (14), but also mast

cells and even basophils (15, 16). Although the IL-3 receptor is

highly expressed on basophils (17–28), mice incapable of producing

IL-3 and/or deficient in IL-3Ra/CD123 reportedly develop all blood
lineages, including basophils and mast cells (29–31). In this regard,

thymic stromal lymphopoietin (TSLP) is also reported to regulate

mouse basophil development (32, 33) and activation (9) in vivo and

may therefore represent an important early growth factor for these

cells. In contrast, numerous studies show that IL-3 is quite sufficient

in promoting the in vitro growth of functional human and mouse
Abbreviations: ACPA, anticitrullinated protein antibody; AIP, autoimmune

pancreatitis; AM, alveolar macrophage; BAFF, B cell activating factor; BAP,

basophil progenitor; CAF, cancer-associated fibroblast; CD, Crohn disease; CKD,

chronic kidney disease; COPD, chronic obstructive pulmonary disease; CMP,

common myeloid progenitor; CRTH2, chemoattractant receptor-homologous

molecule expressed on Th2 cells; CT, cholera toxin; CXCR4, CX-C motif

chemokine receptor 4; DC, dendritic cell; DMBA, 7,12-dimethylbenz[a]

anthracene; dsDNA, double-stranded DNA; DT, diphtheria toxin; EAE,

experimental autoimmune encephalomyeli t i s ; EGPA, eosinophi l

granulomatosis with polyangitis; EoE, eosinophilic esophagitis; FceRI, high

affinity IgE receptor; GMP, granulocyte-macrophage progenitor; HSC,

hematopoietic stem cell; IBD, inflammatory bowel disease; IFN-g, interferon- g;

IgG4-RD, IgG4-related disease; IL, interleukin; IM, interstitial macrophages;

LTC4, cysteinyl leukotriene C4; MI, myocardial infarction; MCTD, mixed

connective tissue disease; MRI, magnetic resonance imaging; MS, multiple

sclerosis; NK cell, natural killer cell; NSCLC, non-small cell lung cancer; OVA,

ovalbumin; PAD, peptidyl arginine deiminase; PDAC, ductal adenocarcinoma;

PDGFB, platelet derived growth factor subunit B; PDGFBR, platelet derived

growth factor subunit B receptor; PGD2, prostaglandin D2; PT, proximal tubular

cell; RA, rheumatoid arthritis; RBL, rat basophil cell; SLE, systemic lupus

erythematosus; TDLN, tumor-draining lymph node; TGF-b, transforming

growth factor-b; TME, tumormicroenvironment; TPA, tetradecanoylphorbol-

13-acetate; Treg cell, T regulatory cell; TSLP, thymic stromal lymphopoietin; UC,

ulcerative colitis; UUO, unilateral ureter obstruction; WT, wild type.
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basophil-like cells from progenitors. TSLP is reported to activate

human basophils from asthmatic subjects by promoting histamine

release and cytokine secretion, along with inducing cell surface

expression of CD203c and IL-3Ra (34). In contrast, several other

investigators have since reported that TSLP does not activate

human basophils isolated from healthy subjects or allergic

patients (9, 10, 35). In light of the latter findings, TSLP may have

very different effects on human versus mouse basophils (9). Finally,

IL-3 is well known for its capacity to mediate synergistic (or

priming) effects when combined with a diverse array of co-stimuli

(9, 36–40).
It has been shown in mice that basophils originate from

hematopoietic stem cells (HSCs) in the bone marrow (41, 42). So-

called granulocyte-macrophage progenitors (GMPs), which develop

later than the HSCs giving rise to most of the common myeloid

progenitors, are thought to be the relevant basophil progenitors

(BaPs (43). Common basophil-mast cell progenitors are also

present in the spleen (43, 44). Single-cell transcriptomic analyses

have highlighted the differentiation pathways of various cell lineages

in mice (45–47). Single-cell culture of mouse bone marrow

progenitors generated FcϵRI+ basophils and erythroid cells (48).

The erythroid trajectory is close to that of basophils/mast cells, both

in mice (49) and humans (50–53). Human CD131+ CMP

progenitors in the bone marrow can differentiate into basophil/

mast cell/eosinophil and erythroid/megakaryocyte populations

(51). Likewise, studies of human bone marrow cells using single-

cell transcriptome analysis found the basophil trajectory to be more

linked with that of the megakaryocyte and erythroid lineages, rather

than those of granulocytes/monocytes (52). It is likely that the

differentiation pathways of basophils and mast cells are more closely

linked to those of the erythroid/megakaryocyte lineages, rather than

to granulocytes/monocytes, both in mice and humans.
Several analytical tools for the study of mouse basophil biology have

been developed in recent years. In particular, the use of antibodies capable

of depleting basophils in vivo (54, 55) as well as mice that are genetically

altered to be deficient of basophils (56–61), which includes reporter mouse

models (58, 61), and basophil-specific Cre-expressing mice (58, 62, 63).

The results obtained with these different models have demonstrated non-

redundant roles of basophils in experimental Th2-type inflammation,

comprising certain aspects of various allergic responses (3, 64, 65).

Likewise, these models have substantiated the long-held belief that

basophils help mediate immunity against parasitic infections (66–69).

Some of these analytical tools have been employed to evaluate the role

of mouse basophils in myocardial infarction (MI) (70), renal fibrosis (71),

cancer (72–75), autoimmune disorders (76, 77), and chronic obstructive

pulmonary disease (COPD) (62). Table 1 lists the antibody-mediated and

geneticmodels for analyzing the in vivo contribution ofmouse basophils in

various pathophysiological conditions.
Several outstanding reviews have discussed the roles of mouse

and human basophils in allergic disorders (1, 64, 74, 81, 82) and

parasitic infections (66–68). Increasing evidences indicate that

basophils also play relevant roles in several other types of

responses, including autoimmunity (83, 84), myocardial

infarction (70), fibrosis (70, 71, 85), cancer (86–88), and COVID-

19 (89). In this review, we discuss the recent basophil contribution

to the pathogenesis of several non-allergic inflammatory diseases.
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2 Basophils in myocardial infarction

Myocardial infarction (MI) occurs when coronary arteries that

supply oxygen and nutrients to the heart become obstructed by

atherosclerotic arterial walls (90). The consequence is an ischemic

injury that mobilizes a repertoire of innate and adaptive immune

cells (91, 92). Shortly, after ischemic occurs, resident cardiac mast

cells release their preformed mediators (93), resident macrophages

and cardiomyocytes produce cytokines and chemokines (94, 95),

fibroblasts release growth factors (96) and endothelial cells are

activated. These events typically cause an influx of various

immune cells, including neutrophils, monocytes, macrophages

(92, 97), and mast cells (98, 99).

The inflammatory response following MI deeply affects

subsequent cardiac remodeling and fibrosis (100, 101). The

composition of immune cell types identified in the infarcted

myocardium consists mostly of macrophages, monocytes,

neutrophils, DCs, B and T cells, and NK cells (70, 97). Using a

mouse model, Sicklinger and coworkers demonstrated that

basophils infiltrate infarcted hearts, reaching a peak between days

3 and 7 and reverting to baseline on day 14 (70). The administration

of the monoclonal antibody (mAb) anti-FcϵRI (MAR-1) depleted

basophils in the heart, peripheral blood, and spleen. In contrast,
Frontiers in Immunology 03135
mast cells and a subset of DCs expressing FcϵRI were not altered

following MAR-1 administration. Depletion of basophils reduced

left ventricular ejection fraction 4 weeks after MI and increased

heart weight compared to control. Moreover, basophil-depleted

mice showed reduced scar thickness.

Sicklinger et al. also studied the inflammatory response after MI

in Mcpt8-Cre-transgenic (Baso-KO) mice constitutively deficient in

basophils (57). In this model, the infarct size did not differ between

Baso-KO compared to WT mice. However, 28 days after inducing

the MI, the basophil-deficient mice developed cardiac dysfunction

and increased heart weight compared to their WT littermates.

Finally, Baso-KO mice showed increased scar thinning compared

to controls. MI in genetic basophil ablation mice was associated

with an altered cellular inflammatory response in infarcted hearts.

Four days after MI, there was a change in the composition of

monocyte subpopulations in the infarcted myocardium of the

basophil-depleted mice, namely a shift from reparative Ly6Clo

macrophages toward inflammatory Ly6Chi monocytes. This

proinflammatory response could be reversed by the adoptive

transfer of basophils into the basophil-deficient mice. The absence

of basophils was associated with lower concentrations of cardiac IL-

4 and IL-13, two cytokines typically released by mouse (9, 57, 102–

105) and human basophils (9, 16, 36–38, 106–108). The authors
TABLE 1 Antibody-mediated and genetic depletion models for the in vivo study of basophils in different pathological conditions.

Methods to deplete basophils Examined pathological conditions References

Antibody-mediated

Monoclonal antibody (mAb) anti-FcϵRI (MAR-1) IgE-mediated chronic allergic dermatitis (IgE-CAI) (54)

mAb anti-CD200R3 (Ba103) Description of the mAb (78)

mAb MAR-1 Allergic inflammation (79)

mAb MAR-1 Myocardial infarction (MI) (70)

mAb anti-CD2003 (Ba103) Emphysema (62)

mAb MAR-1 Kidney fibrosis (71)

Genetically engineered mice

Mcpt8Cre mice N. brasiliensis infection
IgE-CAI
Systemic anaphylaxis

(57)

Mcpt8DTR mice Tick-borne disease (56)

Runx1 IgE-CAI
Strongyloides infection

(59)

BasTRECK IgE-CAI (59)

BasoDTR mice IgE-CAI (60)

Basoph8xiDTR mice Skin allergic inflammation (61)

Mcpt8Cre/DTR mice Kidney fibrosis (71)

Mcpt8DTR mice Emphysema (62)

Mcpt8iCreERT2Stim1fl/fl IgE-CAI (63)

Mcpt8Cre mice MI (70)

CT-M8 mice Systemic Lupus Erythematous (80)
DTR, diphtheria toxin receptor; IgE-CAI, IgE-mediated chronic allergic dermatitis; mAb, monoclonal antibody; MI, myocardial infarction.
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concluded that the IL-4/IL-13 secreted by basophils infiltrating

these lesions is critical in the transition from inflammatory

monocytes to reparative macrophages (81, 109) Figure 1

illustrates the proposed mechanisms by which basophils influence

the inflammatory response following myocardial infarction.

The authors also evaluated the cytokines produced in the heart

3 days after the MI event, both in the Baso-KO and WT mice.

Among the cytokines commonly reported to be produced by mouse

basophils (IL-4, IL-13, IL-6, TNF-a), there was a reduction only of

IL-4 in the injured heart tissue of the basophil-deficient mice. Mice-

deficient in IL-4/IL-13 showed a higher proportion of inflammatory

Ly6Chi monocytes and worsened cardiac function following MI. In

contrast, the increased release of IL-4 by basophils following the

administration of the glycoprotein IPSE/a-1 (a known stimulus of

these cytokines from basophils) resulted in enhanced post-MI

healing. The authors concluded that myocardial basophils are

activated to produce IL-4 following MI and that this response is

critical in healing the damaged myocardium (70). What currently

remains unknown, however, is the exact mode of stimulation in the

myocardium responsible for inducing basophils to produce IL-4.

These experimental results were supported by observations that

human subjects presented with decreased blood basophil numbers

within the first week following an MI event, and that this basopenia

associated with an increased scar size, as measured by late

gadolinium enhancement cardiac MRI after one year of follow-up

(70). Importantly, this correlation persisted after the adjustment of

possible confounders (e.g., initial infarct size, systemic
Frontiers in Immunology 04136
inflammation, cardiovascular risk factors). The authors suggested

that basophils may also influence cardiac remodeling after MI

in humans.

These studies, emphasizing the protective role of basophils

following MI, might have translational relevance. For example, a

growing number of allergic patients (e.g., asthma, atopic dermatitis)

are being treated with biologics that block the IL-4/IL-13 axis (e.g.,

dupilumab, an anti-IL-4Ra mAb) (82, 120). Thus, the possible

protective role of basophil-derived IL-4/IL-13 in MI should

stimulate further mechanistic studies to investigate possible links

between these therapies and whether they might impact myocardial

healing following MI.
3 Basophils in kidney fibrosis

Chronic kidney disease (CKD) is a final manifestation of renal

fibrosis and its incidence is increasing (121). Various inflammatory

stimuli, including chronic infections, tissue injury, autoimmune

disorders, chemical insults, and radiation result in kidney fibrosis

(117, 122). Chronic low-grade inflammation is a crucial promoter

of fibrosis (117, 123), but immune pathways orchestrating kidney

fibrosis are largely unknown. Doke and collaborators investigated

the interactions between altered renal tubules and basophils in a

mouse model of kidney fibrosis by employing single-cell RNA-seq

analysis (71). In this model of CKD, mice experienced either a sham

operation or underwent unilateral ureter obstruction (UUO)
FIGURE 1

Proposed mechanism by which basophils influence the inflammatory response to promote wound healing and tissue repair following myocardial
infarction (MI). MI is caused by the rupture of an atherosclerotic plaque causing the occlusion of a coronary artery, which then results in cardiac
tissue damage due to ischemia (90). It has been shown in mice that several immune cells [e.g., monocytes/macrophages, neutrophils, dendritic cells
(DCs), B and T cells, and natural killer (NK) cells, basophils and eosinophils infiltrate the heart after experimental MI (70, 97, 110). For basophils, this
infiltration into the heart is evident 3 days following MI and peaks 7 days after the MI event (70). Monocytes/macrophages represent the most
prevalent immune cells after MI. Cardiac resident macrophages contribute to the initial neutrophil infiltration into the ischemic area (111). Resident
macrophages are reduced in murine models 1 day post-infarction (112). Within 1-3 days infiltrating bone marrow- and spleen-derived Ly6Chi

monocytes are recruited into the injured cardiac tissue and differentiate to Ly6Clow macrophages facilitating clearance of necrotic cardiomyocytes.
At approximately 5-7 days post MI, macrophages adopt a reparative phenotype, contributing to the resolution of inflammation and fibrotic tissue
formation (70). By day 3, infiltrating basophils into the injured cardiac tissue release IL-4 and IL-13, which induce phenotypical and functional
changes within macrophages expressing anti-inflammatory and tissue repair genes (70). Formation of neovessels in the healing infarct play an
important role in repairing the infarcted myocardium (113). Basophils (114), macrophages (115–117), and cardiac mast cells (118, 119), are major
sources of angiogenic factors. Collectively, results in mice models of MI indicate that basophils infiltrating infarcted heart promote resolution of
cardiac inflammation and scar formation.
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surgery. Injured tubular cells (PTs) expressed several cytokines and

chemokines known to induce the recruitment of basophils and

other immune cells. PTs also released platelet-derived growth factor

B (PDGFB), which upon binding to its receptor (PDGFBR) on

fibroblasts induces these cells to release TGF-b. CXCL1, secreted by

profibrotic tubules, recruited CXCR2+ basophils. The density of

basophils (FcϵRI+CD200R3+CD49b+ cells) was markedly increased

in UUO kidneys compared to sham operation. Using antibody-

mediated and genetic approaches to delete basophils, the authors

explored the role of these cells in this model. In the latter model,

injection of diphtheria toxin (DT) into Mcpt8Cre/DTR mice

induced depletion of basophils in the kidney and mitigated

fibrosis in UUO kidney. Single-cell analysis and in situ

hybridization demonstrated overexpression of Il6 by basophils in

UUO kidneys, indicating that mouse basophils are a source of this

cytokine in UUO kidneys. In the other model, basophil depletion

was mediated by MAR-1 administration into WT mice, followed by

UUO surgery and kidney examination 7 days later. MAR-1-treated

mice showed a reduction of the fibrosis markers induced by the

UUO surgery. These results from two complementary models of

basophil depletion highlight the importance of these cells in the

development of experimental kidney fibrosis.

There is evidence that TH17 cells contribute to renal fibrosis

(124). For example, basophils were shown to directly interact with

TH17 cells and macrophages (104, 125). Both TH17 cell number and

IL-17A expression were increased in UUO, but they were lower in

UUO kidneys of basophil-depleted mice. Single-cell RNA-seq

analysis indicated a shift toward TH17 cells in fibrosis. Basophil-

derived IL-6 contributed to enhanced TH17 cell differentiation from

CD4+ T cells in UUO kidney (126). Moreover, the expression of

Il17a and Tgfb1 were higher in UUO kidneys and were lower in

UUO kidneys of basophil-depleted mice. Mice treated with an anti-

IL-6R antibody were partially protected from renal fibrosis.

To evaluate the relevance of the above experimental findings to

human kidney fibrosis, Doke and collaborators examined human

kidneys, comparing those from healthy controls and CKD subjects

using single-cell RNA-seq (71). They found that basophil numbers

were increased in the kidney of patients with CKD, compared to

healthy controls. Moreover, a correlation between renal fibrosis and

basophil density was evident in the kidneys of CKD patients. There

was also a positive correlation between IL6 expression and the

severity of renal fibrosis, which further showed a negative

correlation between IL6 and kidney function. Moreover, renal IL6

correlated with CKD severity. Collectively, the above results reveal

several correlations between both basophil density and their

function and renal fibrosis. Figure 2 schematically illustrates the

contribution of basophil-derived cytokines and TH17 as

downstream mediators in kidney fibrosis.
4 Basophils in cancer

There is mounting evidence showing that basophils are an

important component within the tumor microenvironment

(TME) of several human (72, 88, 131, 132) and mouse
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experimental cancers (72, 73, 132, 133). Moreover, these studies

indicate that basophils may play an active role in the onset and

development of both solid and hematologic tumors (74, 86, 134).

The results from these studies reveal that basophils can have both

pro-tumor and antitumor effects depending on the context and type

of tumor.

In particular, immune profiling studies show that basophils

constitute a portion, albeit small, of the immune landscape in

human non-small cell lung cancer (NSCLC) tumors (131) and in

the immune infi ltrate seen in the early stage of lung

adenocarcinoma (132). Several studies additionally show that

mouse and human basophils support the development and

expansion of M2-like monocytes/macrophages (127–130), which

are often prevalent in the TME favoring tumorigenesis. An in vivo

study in mice points to the importance of IL-4/IL-13, promoting

carcinogenesis by reducing Th1-like immunity (72). Likewise,

basophils are known to secrete vascular endothelial growth factor-

A (VEGF-A) (114) and cysteinyl leukotriene C4 (LTC4) (18, 19)

with the latter more recently implicated in tumorigenesis and

metastasis formation (135). In particular, both tumor growth and

metastases were reduced in mice deficient in the cysteinyl

leukotriene 2 receptor (CysLT2R). Moreover, administration of a

CysLT2R antagonist reduced tumor growth and metastases in WT

mice (135).

In exploring the immune cells involved in human pancreatic

cancer (PC), IL4-expressing basophils were identified in the tumor-

draining lymph nodes (TDLNs). Moreover, their presence was a

negative prognostic marker of patient survival (72). To further

investigate the underlying mechanisms of this association, the

Mcpt8Cre basophil deficient mouse strain (57) and WT mice were

implanted with PC cells. Strikingly, 80% of the WT mice developed

PC-like cancer, but this was not observed in the basophil-deficient

mice (72). The authors reported that TSLP released from basophils

and cancer-associated fibroblasts (CAFs) within TDLNs activated

CD4+ T cells to produce IL-3. CCL7, derived from DCs and

monocytes, promoted basophil recruitment into TDLNs. IL-3-

activated basophils exerted a pro-tumorigenic role by secreting

IL-4, which induced the polarization of Th2 and M2 cells. Thus,

these results not only confirmed/supported the notion that

basophil-derived IL-4/IL-13 promote Th2 and M2-like cells, but

also demonstrated that these cells actively participate in

promoting PC.

With the concept that various basophil-derived products (e.g.,

IL-4, IL-13, VEGF-A, LTC4) promote tumorigenesis, an equally

important issue pertains to the stimuli mediating their release.

Schroeder and colleagues have shown that human basophils

release copious amounts of histamine, IL-4 and IL-13 when co-

cultured with the human lung adenocarcinoma cell line A549 (16).

These responses were dependent on basophils expressing IgE, since

removal/depletion of this immunoglobulin prevented basophil

activation. Since pharmacologic inhibitors of FcϵRI signaling also

suppressed these responses, it seemed clear that basophils were

being activated via IgE/FcϵRI crosslinking to secrete these

cytokines. Importantly, direct contact between basophils and

A549 was necessary and occurred even if the adenocarcinoma

cells were fixed with paraformaldehyde prior to co-culture. In a
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follow-up study, the IgE-binding lectin, galectin-3 (Gal-3) expressed

on the A549 cells, proved crucial for basophil activation in these co-

cultures, as A549 clones lacking Gal-3 failed to activate basophils

(136). Gal-3 is widely implicated in various cancers and is a marker

of chronic inflammation (137). These findings reveal a potentially

new mechanism by which Gal-3 expressed by human lung

adenocarcinoma cells can activate basophils to release cytokines

and pro-inflammatory mediators that promote tumorigenesis.

Additional investigations are required to fully understand all

aspects of this mechanism and how it might be targeted for

therapeutic intervention.

By utilizing a model whereby the skin of mice were topically

exposed to the proinflammatory 12-0-tetradecanoylphorbol-13-

acetate (TPA), Hayes et al. showed that serum IgE increased in

these animals, which was accompanied by increased numbers of

IgE-bearing basophils that promoted skin tumorigenesis (73). In a

similar model of epithelial carcinogenesis involving the use of [7,12-

dimyethylbenz(a)anthracene (DMBA) and subsequent exposure to
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TPA], mice lacking IgE (lgh7-/-) developed less tumors compared to

WT mice. The influx of basophils into skin was promoted by

CXCR4, TSLP and IL-3. IgE-signaling played a key role in

basophil activation and infiltrating tissue basophils expressed

Cxcr2, Cxcr4, and Ptgdr2 (CRTH2, the PGD2 receptor). Tumor

development was markedly reduced when conducting the same

experiment in Mcpt8Cre/+ mice, which were made deficient in

basophils but retained normal mast cell numbers (57).

Collectively, these in vivo results further indicate that FceRI-
signaling in basophils promotes inflammation-driven epithelial

hyperplasia and tumor growth. While the role of galectin-3 in

this tumorigenesis was not investigated, it seems worthy of future

investigation, as mechanisms of this response are further elucidated.

In contrast to the belief that basophils contribute to

tumorigenesis, association studies have shown evidence that

higher expression of basophils (i.e., CD123+, CCR3+, FceRI+) in

tumors correlated with better overall survival (88). In particular,

increased basophil numbers are associated with beneficial outcomes
FIGURE 2

Kidney and wild-type mice subjected to unilateral ureter obstruction (UUO) surgery revealed the presence of neutrophils, monocytes/macrophages,
dendritic cells (DCs), and basophils (71). Injured proximal tubular cells (PTs) in UUO kidney express Il34, Cxcl10, and the key profibrotic factor (71),
platelet derived growth factor subunit B (PDGFB). PDGFB released by injured tubular activates the PDGFB receptor (PDGFBR) on fibroblasts to
release TGF-b. Profibrotic PT cells participate in the recruitment of myeloid and lymphoid cells and the local fibroblast activation. CXCL1 released
from PT cells induces the recruitment of basophils through the engagement of CXCR2. Basophils in UUO kidney can be activated by IL-33 and IL-18
released from the stroma to secrete IL-6. This cytokine favors TH17 differentiation from CD4+ T cells in UUO kidneys. IL-17A and TGF-b released
from TH17 cells contribute to renal fibrosis. IL-4 and IL-13 released from activated basophils can contribute to macrophage activation (127–130).
PDGF released from injured PT cells activates the PDGFR on myofibroblasts causing the release of TGF-b. Macrophages are also a major source of
IL-6. Collectively, these findings indicate that basophils and their mediators contribute to kidney fibrosis.
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in several cancers, including sarcoma, lung, and breast. While

several additional markers (e.g., CD63, CD203c) indicated that

these tumor-associated basophils were, indeed, activated, relevant

mediators commonly released by these cells (histamine, LTC4, IL-4,

IL-13) were not investigated. Thus, the exact contribution of

basophils in the increased survival rates remains challenging to

interpret at this time. Likewise, the same group has reported

evidence that the in vitro responses of peripheral blood basophils

from cancer patients can predict survival rates. While such

correlations are intriguing, the exact mechanisms by which

basophils contribute to increased survival rates is an area

requiring further elucidation.

In agreement with the concept that basophils mediate a

beneficial role in cancer, evidence from a mouse melanoma

model showed that basophils released CCL3 and CCL4, which

induced CD8+ T cell recruitment and promoted tumor rejection

(75). MAR-1 administration in these melanoma-bearing mice

depleted basophils and prevented melanoma rejection. However,

it is important to note that basophil depletion using the MAR-1 is

also reported to deplete/activate other immune cells expressing

FcϵRI, including mast cells, monocytes and DCs (138, 139).

Whether these cells were also depleted and possibly involved in

tumoricidal activity remains unclear.

IL-33 has been shown to promote tumoricidal activity mediated

by eosinophils (140, 141), possibly by upregulating granzyme B

(142). As noted, this cytokine also activates both human and mouse

basophils (9, 36, 38, 143–145). Hence, IL-33-activated basophils co-

cultured with B16.F10 melanoma cells were shown to inhibit tumor
Frontiers in Immunology 07139
growth compared to melanoma cells co-cultured with un-

stimulated basophils (142).

Overall, there are several studies indicating that basophils

promote tumorigenesis (72, 74). In this instance, the tumor cells

cause basophils to release cytokines/chemokines that may facilitate

the development of protumorigenic TME (Figure 3). Interestingly,

many of the same TME elements involved in this activity (e.g., IL-4,

IL-13, galectin-3, VEGF-A, M2 and Th2 cells) are also implicated in

promoting wound healing. Conversely, in certain tumors (e.g.,

melanoma), basophils mediate anti-tumor effects (75, 88, 154)

(Figure 4). The mechanisms underlying the protective effects of

basophils remain largely unknown. It has been suggested that

certain mediators (e.g., TNF-a and granzyme B) released by

basophils exert tumoricidal effect. In addition, other molecules

(e.g., CCL3 and CCL4) can favor the recruitment of cytotoxic

CD8+ T cells (74). Collectively, these findings highlight some

apparently conflicting results regarding the role that basophils

potentially exert in different models of tumorigenesis, and thus

warrant further investigation.
5 Basophils in autoimmune disorders

5.1 Systemic lupus erythematosus

With the discovery of IgE (168, 169), immunologists focused

their attention on understanding its relevance for allergic disorders

and host defense against parasitic infestations (2, 64, 81, 170).
FIGURE 3

Basophils can promote tumor progression through different mechanisms. Galectin-3 (Gal-3) is a lectin expressed by several cancer cells (137), including
the A549 adenocarcinoma cell line (EC-Gal-3). Gal-3 activates human basophils to release IL-4 and IL-13 (16, 136), which are widely known to promote
M2-like macrophages, the major players in the TME (127–130). IL-4+ basophils have been found in the TME of human and experimental pancreatic
cancer (72). Human and mouse basophils also secrete VEGF-A and angiopoietin 2 (ANGPT2) that can promote tumor angiogenesis (114, 146–148).
Basophils can promote IL-6 and IL-8 release from epithelial cell lines through a mechanism requiring cell-to-cell contact (149) (JTS, unpublished).
Tumor cell-derived IL-6/IL-8 play a critical role in metastasis formation (150). Dendritic cells and monocytes activated by EC-Gal-3 release TNF-a and
IL-6 in vitro (151). These cytokines, combined with M2 cell-derived IL-10 and TGF-b induce T-cell exhaustion by up-regulating checkpoint inhibitors (i.e.,
PD-1), which interact with tumor cell-associated PD-L1 to decrease cytotoxic T cell activity (152, 153). These results suggest that basophils can promote
tumorigenesis in certain experimental and clinical conditions. Adapted from Poto et al. (74).
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However, circulating IgE autoantibodies in rheumatoid arthritis

and SLE patients had been reported as early as the late 70’s (171).

While these early studies were conducted mostly using small

cohorts of patients, they did confound the thought at the time

that atopy was generally limited to patients suffering from allergic

disease and/or parasitic infestations.

Systemic lupus erythematosus (SLE) is an autoimmune disorder

associated with circulating self-reactive antibodies (172) (i.e., IgG

anti-double-stranded DNA: anti-dsDNA). Several studies reported

increased serum IgE in SLE, which correlated with severe disease

manifestations (76, 173–175). A portion of the circulating IgE in these

SLE patients was determined to be self-reactive, binding to nucleic

acids, as was often the case for most IgG autoantibodies (176). In fact,

several studies identified IgE against at least one autoantigen in SLE

patients (171, 173, 177–182). Importantly, IgE anti-dsDNA

ant ibodies are assoc ia ted with disease ac t iv i ty and

hypocomplementemia (177). Moreover, the levels of IgE anti-

dsDNA proved to be an independent risk factor for SLE activity,

even after excluding the levels of IgG anti-dsDNA (178). One study

reported that IgE anti-dsDNA antibodies are found in ~ 70% of lupus

patients, and are possibly linked to kidney damage (178). In a Franco-

American cohort, IgE anti-dsDNA antibodies did associate with

lupus nephritis, whereas IgE against other nucleic acid–containing

autoantigens (Sm, SS-A/Ro, and SS-B/La) did not associate with

disease (177). These findings suggested that IgE autoantibodies could

play a role in the pathophysiologic mechanisms of lupus nephritis.
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The French-American collaborative study identified IgE

autoantibodies against three new autoantigens: APEX nuclease 1,

N-methylpurine DNA glycosylase and CAP-Gly domain-containing

linker protein family member 4. These autoantigens specifically

elicited IgE autoantibodies but not IgG autoantibodies (177).

Collectively, these results indicate that IgE autoantibodies are

prevalent in lupus nephritis patients and are associated with disease

activity. Likewise, these findings provided the impetus for treating

SLE patients in a randomized clinical trial using anti-IgE mAb

(omalizumab) (NCT01716312).

Charles et al. first demonstrated mechanistic evidence that

basophils are implicated in the pathobiology of lupus nephritis by

using a spontaneous murine model of SLE (Lyn-/- mice) (76). This

observation was subsequently confirmed using a model of pristane-

induced lupus-like nephritis (183) as well as in a cohort of SLE

patients (181). Basophils from SLE patients express significantly

higher levels of the basophil activation marker, CD203c, compared

to healthy controls (76). It was also found that the basophil density

in both lymph nodes and spleen of SLE patients was higher than

controls. Basophil-derived IL-4 reportedly induced B cell class

switching toward IgE, and the autoreactive IgE produced was

determined to be a relevant inducer of lupus (177, 178, 181, 184).

Basophils from human patients with SLE and from two different

lupus-like mouse models, overexpress both PGD2 receptors

(PTGDR-1 and PTGDR-2) and CXCR4, the receptor for CXCL12

(185). Basophils seemingly contribute to SLE pathobiology by
FIGURE 4

Basophils can promote tumor suppression through different mechanisms. Vascular endothelial growth factors (VEGFs) released by tumor and
immune cells in the TME (e.g., macrophages, mast cells) (155–159) induce basophil recruitment via the activation of VEGFR2 on these cells (155).
IL-3, released from intratumoral lymphocytes, mast cells and tumor cells (10, 160, 161), is the major growth, differentiation, priming and activating
factor for both human and mouse basophils via the activation of the IL-3 receptor (IL-3Ra/CD123) (8–10). Intratumoral basophils secrete CCL3 and
CCL4 which favor CD8+ T cell infiltration in TME, favoring melanoma rejection in mice (75). IL-33 produced by epithelial and tumor cells, plays a
critical role in tumorigenesis (162) by upregulating granzyme B mRNA and the surface expression of CD63 in basophils. Mouse basophils activated by
IL-33 cause melanoma cell death in vitro (142). Mouse (104, 163) and, in certain conditions, human basophils (164, 165) release TNF-a and granzyme
B (142, 166), which exerts cytotoxic activity on cancer cells (102, 167). Tumor resident basophils overexpressing CD123, CCR3, CD63, CD203c
mRNAs are associated with improved outcome in ovarian cancer (88, 154). These findings indicate that, under specific experimental and clinical
circumstances, basophils can play an anti-tumorigenic role. Adapted from Poto et al. (74).
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migrating to secondary lymphoid organs in a prostaglandin D2

(PGD2)- and CXCL12-dependent manner (185). These basophils

can then support plasma cell functions by amplifying the

production of autoantibodies and circulating immune complexes

(76, 183, 185). Figure 5 schematically illustrates the mechanisms

presumably linking IgE and basophils to SLE.
5.2 Rheumatoid arthritis

Rheumatoid arthritis (RA) is a systemic autoimmune disease

primarily involving inflammation of the joints (187). On a genetic

background (i.e., HLA-DR4 found in ~ 70% of RA patients

compared to 30% of controls), post-translational citrullination of

several self-proteins generates altered self-antigens that activate

CD4+ T cell responses in RA patients. Citrullination occurs via

the conversion of arginine into citrulline by peptidyl arginine

deiminases (PADs). Anti-citrullinated protein antibodies

(ACPAs) are specific and predictive for RA and are implicated in

the pathogenesis of RA (187).

IgE antibodies against citrullinated fibrinogen were detected in

the serum of ~ 60% of ACPA+ RA patients (188). These authors

reported that basophils from ACPA+ RA patients can be activated

by citrullinated protein, whereas basophils from healthy controls

were not activated. Serum from IgE-ACPA+ RA patients passively

sensitized human FcϵRI+ expressing rat basophil cells (RBL) for

activation by citrullinated proteins. These finding indicate that

basophils from IgE-ACPA+ RA patients can be activated by

citrullinated antigens. The results of this original study deserve to

be extended using citrullinated proteins specific for RA patients.
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5.3 Autoimmune encephalomyelitis

Experimental autoimmune encephalomyelitis (EAE) is an

animal model widely used to investigate the mechanisms

underlying multiple sclerosis (MS) (189). EAE differs from MS in

needing to be induced rather than occurring spontaneously,

although recent transgenic mouse models have indicated

spontaneous development of EAE (189, 190). However,

inoculation with central nervous system antigens and adjuvant or

passive transfer of lymphocytes reactive with these antigens are

often employed to induce EAE in many animal strains (189).

Yuk and collaborators have investigated the mechanisms by

which basophils can contribute to TH17 differentiation and EAE

pathogenesis (126). For example, IL-17 is highly expressed in MS

lesions (191) and TH17 cells mediate blood-brain barrier disruption

and the expression of IL-17 and IL-22 (192). TH17 differentiation

requires IL-6 and TGF-b (193), yet whether basophils promote

TH17 induction in EAE had remained unknown. To address this

possibility, Yuk and coworkers demonstrated that IgE cross-linking,

or the use of cholera toxin (CT), induced the release of IL-6 and IL-4

from bone marrow-derived basophils (126). Moreover, they found

that basophils mediate TH17 differentiation through IL-6 secretion.

The authors also examined whether basophils contribute to TH17

polarization in vivo. WT and IL-6-deficient mice were challenged

with CT plus antigen. IL-17A producing CD4+ T cells were reduced

in IL-6 deficient animals, suggesting that IL-6 is critical for the

antigen-induced TH17 response. The role of basophils was also

examined in basophil-deficient mice. The authors found that

basophil-derived IL-6 cooperates with DCs to promote the

differentiation of CD4 T cells into TH17 cells. TH17 responses
FIGURE 5

Proposed mechanism linking IgE basophils to autoimmunity in systemic lupus erythematosus (SLE). Serum IgE levels are increased in SLE and
correlate with severe disease manifestations (76, 173–175). IgE against several autoantigens have been reported in SLE (171, 173, 177–182). Basophils
from SLE patients show an activated phenotype in overexpressing CD203c (76), the prostaglandin D2 (PGD2) receptor [chemoattractant receptor-
homologous molecule (CRTH2) expressed on Th2 cells], and CXCR4, the receptor for CXCL12 (185). Once recruited to the secondary lymphoid
organs, activated basophils release IL-4, which drives B cell isotype switching toward IgE and autoreactive IgE (177, 181). Dendritic cells (DCs) in
lymph nodes also act on B cells, triggering their differentiation into plasma cells and potentiating the formation of self-reactive autoantibodies (186).
IgE immune complexes contribute to basophil activation. Deposits of IgG and IgE autoantibodies in the kidney play a major role in lupus nephritis.
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were reduced in the absence of basophils or IL-6. Collectively, these

findings suggest that basophil-derived mediators (e.g., IL-6) are

involved in TH17 cell differentiation, allowing TH17 cells to migrate

to the site of inflammation mediating pathogenic functions in EAE.

These studies identify basophils and their mediators as candidates

for investigating pathogenic mechanisms in MS patients. It should

be noted that EAE pathology is not driven exclusively by TH17 and

IL-17; other cells (e.g., CD8+, T cells, gd T cells) and cytokines may

also be involved (194).
5.4 Mixed connective tissue disease

Mixed connective tissue disease (MCTD) is a rare systemic

autoimmune disease (incidence ~ 2 per 100,000 adults) affecting

mainly women (~ 90%) (195). Its clinical manifestations often

overlap with other connective tissue disorders, including SLE,

systemic sclerosis, or myositis (196). The defining immunological

feature of MCTD is the presence of autoantibodies recognizing the

70-kDa subunit of the U1 small nuclear ribonucleoprotein (U1-

snRNP 70k) in the absence of IgG against dsDNA or to Sm, two SLE

hallmarks (197). The pathophysiology underlying MCTD remains

poorly understood, but posttranslational modifications of U1-

snRNP are known to generate neoepitopes that may contribute to

the disease (198). These neoepitopes can result in T cells

recognizing U1-snRNP, which ultimately lead to the induction

and proliferation of autoreactive B cells synthesizing

autoantibodies (199). Immune complexes made of anti-U1snRNP

antibodies and their antigen can activate endothelium and immune

cell via a variety of receptors (e.g., Fc, complement, and Toll-like

receptors, TLR), resulting in vascular disease and tissue injury (200–

203). Pulmonary involvement characterizes more than 70% of

MCTD patients (197). A mouse model has been described

whereby mice immunized with human U1-snRNP develop a

MCTD-like lung disorder (204).

Lamri and collaborators observed that basophils from patients

with MCTD present an activated phenotype (77), sharing some

features with basophils from SLE patients (i.e., overexpression of

CD203c, CXCR4) (76, 185). In addition, basophils from MCTD

expressed increased surface markers such as CCR3, yet unchanged

expression levels of CD62L (77). A similar basophil phenotype was

found in a MCTD-like mouse model in which activated basophils

infiltrated in the lungs and lymph nodes. To study the contribution

of basophils in the development of lung pathology in this model,

basophils were depleted through the injection of DT in female

Bcpt8DTR mice. Basophil depletion reduced the cellular infiltrates

(e.g., CD4+ T cells) in the lungs. The authors also examined the

MCTD-like lung disease in IgE-deficient mice (Igh7-/-). Similar to

that seen with basophil depletion, IgE deficiency also protected mice

from developing immune cell infiltration and lung fibrosis. These

results indicate that basophils play a major effector role in inducing

lung fibrosis via an IgE-dependent mechanism. The authors

suggested that basophils, activated by the U1-snRNP antibodies
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complex, accumulate in the airways, where they release IL-4

contributing to lung fibrosis development. In this scenario, IgE-

mediated basophil activation may play both immunoregulatory and

effector roles in the development of MCTD lung disease. These

mouse models identify basophils, and IgE as candidates for

investigating pathogenic mechanisms in patients with MCTD.
6 Basophils in IgG4-related disease

IgG4-related disease (IgG4-RD) is a rare multi-organ disorder

characterized by lympho-plasmacytic infiltration, fibrosis, and

obliterative phlebitis (205, 206). This condition is characterized by

IgG4+ plasma cell infiltration in different organs (e.g., biliary tree,

pancreas, retroperitoneum, salivary and lacrimal glands, and lymph

nodes) (207, 208). The disease was first described in 2003 in a

cohort of seven patients with a diagnosis of autoimmune

pancreatitis (AIP) associated with IgG4+ plasma cell infiltration

(209). Although the pathogenic mechanisms underlying IgG4-RD

remain elusive (206), an increased production of Th2 cytokines (IL-

4, IL-5, IL-13) has been identified in IgG4-related cholangitis and

pancreatitis (210). These cytokines favor IgE production and

eosinophil recruitment. It has also been reported that in patients

with IgG4-RD, there is an accumulation of T regulatory cells

(Tregs) in the blood, along with evidence that these cells infiltrate

affected tissues, showing overexpression of IL-10 and TGF-b (211,

212). TGF-b released from Tregs can stimulate fibroblasts to

produce collagen. IL-10 produced by Tregs can also stimulate

secretion of IgG4 from plasma cells. The involvement of IL-10

and TGF-b secreting basophils has been suggested in patients with

IgG4-related submandibular gland disease (213). B cell activating

factor (BAFF) and APRIL, in combination with IL-21, can promote

the expansion of IgG4-committed B cells (214, 215).

Two studies performed by different investigators in Japan

proposed a possible mechanism whereby basophils are stimulated

via a TLR-dependent activation involving IgG4-RD (214, 216).

When activated by TLR2/TLR4 agonists, basophils from healthy

donors induced B cells to produce IgG4 and IgG1 (214). TLR4

activation of basophils induced the release of IL-13 and BAFF.

Basophils from IgG4-RD patients, upon activation with TLR2 and

TLR4 ligands, induced more IgG4 than IgG1 when co-cultured with

B cells. The authors suggested that the activation of TLRs in

basophils play a role in IgG4-RD development (214).

Another study examined the role of basophils from peripheral

blood and pancreatic tissue in patients with autoimmune

pancreatitis (AIP) (216). AIP is a manifestation of IgG4-RD

(208). Basophil density in the pancreas of AIP patients was higher

than in alcoholic pancreatitis (216). In some of these patients,

peripheral blood and intrapancreatic basophils were TLR2 or TLR4

positive. The authors suggested that basophils activated by TLRs

could play a role in AIP. At present, the possible involvement of

basophils and their mediators in the pathogenesis of different

localizations of IgG4-RD remains unknown.
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7 Basophils in chronic obstructive
pulmonary disease

Chronic obstructive pulmonary disease (COPD) is a primary

cause of morbidity and mortality worldwide (217). COPD is

characterized by chronic inflammation, progressive airflow

limitation and emphysema. Relative to asthma, the cellular and

molecular mechanisms of COPD remain ill defined (117). It also

differs in being characterized by a non-reversible airway obstruction

(82, 218).

Shibata and collaborators elegantly investigated the potential

role of basophils and their mediators in an elastase-induced murine

model of COPD (62). Intranasal elastase elicited the recruitment of

monocytes to the lung, followed by differentiation into interstitial

macrophages (IMs) rather than alveolar macrophages (AMs).

Matrix metalloproteinase-12 (MMP-12) played a key role in

developing elastase-induced emphysema and was mainly

expressed by IMs. The expression of Il4, but not Il10, Il13, or

Tgfb was upregulated in the lung after the instillation of elastase.

Expression of Il4 mRNA was detected mainly in basophils, which

accumulated in the lung. The authors used two complementary

methods to deplete basophils in vivo, namely: diphtheria toxin (DT)

treatment ofMcpt8DTR mice and anti-CD200R3 antibody treatment

of WT mice. Using these models, they demonstrated impaired

emphysema formation in basophil-depleted mice. They suggested

that basophil-derived IL-4 promoted the differentiation of

infiltrating monocytes into MMP-12–producing IMs that caused

the alveolar wall destruction and emphysema formation. The

authors concluded that the basophil-derived IL-4/monocyte–

derived IM/MMP-12 axis plays a role in emphysema

development. They also proposed that this novel cellular and

humoral axis may be a potential target for COPD treatment.

In other findings, both eosinophils and basophils have been

detected in several lung compartments of COPD patients,

particularly in very severe COPD (219). Eosinophilic infiltration

was patchy, and mainly confined eotaxin signatures with CCL11+

fibroblasts and CCL24+ macrophages. Basophils were preferentially

localized in lymphoid tissue. These studies identify basophils and

perhaps eosinophils as candidates for future investigations on their

role in the pathogenic mechanisms of COPD.
8 Basophils in COVID-19

The current COVID-19 pandemic is caused by the novel severe

acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) (220). A

dysregulated innate immune response is a key driver of clinical

complications culminating in COVID-19 (221, 222). High levels of

several cytokines (e.g., IL-1, IL-6, TNF-a, CXCL8) are detected

early after viral infection, and many of these mediators are

associated with granulocyte activation (223). The recombinant S1

subunit of the SARS-CoV-2 Spike protein activated in vitro human

peripheral blood monocytes to release several cytokines (e.g., IL-6,
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IL-1b, TNF-a) and chemokines (e.g., CXCL10/IP-10, CCL3/MIP-

1a, CCL4/MIP-1b) linked to COVID-19 (224). In this study, the S1

subunit did not induce any of these cytokines/chemokines from

highly purified basophils (224). Another study reported that live

SARS-CoV-2 virus induced IL-4 and IL-13 release in vitro from

unprimed and IL-3-primed basophils (225). Although basophils

have been implicated in the host response to other viruses (119,

226–229), the in vivo significance of basophil-derived cytokines/

chemokines in the pathogenesis of COVID-19 remains unclear.

A detailed analysis at the single-cell resolution of granulocyte

diversity in peripheral blood of COVID-19 patients demonstrated

an increased level of both mature and immature neutrophils (230).

By contrast, decreased basophils and eosinophils are often

associated with severe COVID-19 (230, 231). Moreover, the

emergence of PD-L1 expression on peripheral blood basophils (as

defined as CD11b+SSlowCrTH2+ cells) has been associated with

COVID-19 severity (232). It should be pointed out that in vitro

incubation of live SARS-CoV-2 with basophils purified from

normal donors did not induce the expression of PD-L1 (225),

whereas INF-g increased PD-L1 expression on IL-3-primed

basophils (233). High basophil counts are associated with a lower

risk of developing severe COVID-19 (234). Collectively, these

interesting results potentially implicate that basophils and/or their

mediators play a protective role in COVID-19.
9 Basophils in inflammatory
bowel diseases

Crohn’s disease (CD) and ulcerative colitis (UC) are the most

common chronic inflammatory bowel disorders (IBDs) (235, 236).

The inflammatory infiltrate in IBDs is canonically characterized by

activated T cells, macrophages, DCs, neutrophils, and TH17 cells

(236). Basophils were identified in the inflamed mucosa of IBD

patients that also expressed IL-33 (125). When activated by IL-3

and IL-33, basophils amplified TH17 cytokine expression in T cells.

Basophils, but not mast cells, accumulated in inflamed CD and UC

tissues compared to non-inflamed mucosa (237). No basophils were

detected in colons of healthy control donors, indicating selective

recruitment and/or survival of these cells at inflamed mucosal sites

in patients with IBDs. The accumulation of basophils occurred in

colons of untreated patients as well as in patients treated with 5-

aminosalicylate acid or immunomodulators (e.g., glucocorticoids

and/or immunosuppressive agents and/or biologics). Activated T

cells infiltrate inflamed colons and are a major source of IL-3 (10)

that may contribute to the infiltration and/or survival of basophils

locally (238). Basophils increased IL-17 production and promoted

the differentiation of IL-17+ cells. Collectively, these results

demonstrate that basophils accumulate in the inflamed colon in

patients with the two most frequent IBDs and may thus contribute

to CD and UC pathogenesis. Figure 6 schematically illustrates the

potential mechanisms by which basophils, together with other

immune cells, contribute to IBD.
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10 Basophils in eosinophilic
granulomatosis with polyangiitis

Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare

systemic disease characterized by eosinophilic asthma, sinus and

pulmonary infiltrates, and eosinophil vasculitis (245). Lung biopsies

are rarely done in EGPA and adequate animal models are not

currently available. Therefore, the lung immunopathology of this

disorder has not been carefully examined. Basophils were detected

in four offive EGPA open lung biopsies (246), whereas no basophils

were identified in seven control lung biopsies. Mast cell density was

increased in EGPA patients compared to the control lungs. These

preliminary data show that EGPA lung immunopathology includes

infiltrates of eosinophils, basophils, and mast cells. Further studies

appear necessary to identify possible interlinks between basophils

and IgE and delineate the protective versus rather harmful effects of

these conditions in EGPA.

Therapeutic management of EGPA is based on glucocorticoids

alone and often in combination with immunosuppressive agents

(247). Several observational studies have evaluated the role of

omalizumab on maintenance therapy in EGPA (247–249). The

results of these studies suggest that omalizumab may be clinically

beneficial for EGPA patients improving asthma symptoms, lung

function, and may have a glucocorticoid-sparing effect (247–249).

There is the possibility that the effects of omalizumab in EGPA
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patients may be related, at least in part, to its effects on human

basophils (250).
11 Basophils in eosinophilic
esophagitis

Eosinophilic esophagitis (EoE) is a chronic, food-driven allergic

disease characterized by esophageal eosinophilia that affects

children and adults (251–253). The histopathological and clinical

features of EoE have been attributed to overproduction of the type 2

cytokines IL-4, IL-5 and IL-13, which mediate profound alterations

in the esophageal epithelium (254–256). The esophageal epithelium

likely has an important role in the initiation of EoE via production

of the epithelium-derived cytokines thymic stromal lymphopoietin

(TSLP) and IL-33 (257, 258). EoE is associated with polymorphism

in the gene that encodes TSLP in children (259, 260). In a mouse

model, EoE-like disease developed independently of IgE, but was

dependent on TSLP and basophils (257). Targeting TSLP or

basophil depletion during the sensitization phase limited disease

and improved established EoE-like disease. Interestingly, increased

TSLP expression and basophil responses were demonstrated in

esophageal biopsies of patients with EoE (257). Collectively, these

results suggest that the TSLP-basophil axis contributes to the

pathogenesis of EoE.
FIGURE 6

Hypothetical mechanisms by which dysregulated epithelial cells and inflammatory signaling by lamina propria immune cells in response to
microbiota, contribute to inflammatory bowel disease (IBD) pathogenesis. Intestinal epithelial cells separate the lamina propria and deeper tissues
from the luminal environment containing the intestinal microbiota (239). Increased intestinal permeability can potentiate immune-mediated systemic
and intestinal inflammation in IBD (240). Damaged epithelial cells release alarmins (IL-33, TSLP, and IL-25) (115, 123, 241), which then regulate
underlying immune cells (242), including basophils (9), macrophages (157), and DCs (243). Macrophages can damage epithelial cells directly by TNF-
a secretion. Basophils accumulate in inflamed IBD compared to non-inflamed mucosa and to colon of healthy controls (125). Activated T cells
infiltrate inflamed colons and release IL-3 which can contribute to the attraction and/or survival of basophils locally (238). Specific components of
gut microbiota induce the emergence of intestinal TH17 cells. Basophils may also promote TH17 responses (125). Activated T cells release IL-23,
which converts homeostatic TH17 cells to pathogenic TH17 cells, and play a major role in Crohn’s disease (244).
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In another model of EoE-like disease, mice were epicutaneously

sensitized with ovalbumin (OVA), followed by intranasal OVA

challenge (258). This procedure promoted eosinophilic esophagitis,

upregulation of Th2-like cytokines and the IL-33 receptor (ST2). In

vivo basophil depletion or disruption of the IL-33-ST2 axis mitigated

these features. These results suggest that basophils mediate

experimental EoE through IL-33-ST2 interaction. These authors also

found that pediatric patients with EoE have increased expression of

IL33 and IL1RL1 (encoding ST2) in esophageal biopsies (258).

Taken together, these studies endorse the paradigm that

epithelium-derived cytokines (i.e., TSLP and IL-33) play a role in

the pathogenesis of EoE through the activation of basophils and the

development of type 2 inflammatory milieu.
12 Concluding remarks
and perspectives

Basophils are extremely rare cells, accounting for 1% or less of

the circulating blood leukocytes, both in humans and mice. As a

result, there was limited capacity to investigate the biology of these

immune cells for several decades following their discovery in 1879

(261). However, advances during the past ~30 years have increased

interest with compelling new evidence that they represent

important effector cells in allergic inflammation (1, 64, 81, 82)

and exert a protective role in parasitic infections (66–68). The

development of new murine genetic tools and different models of

inflammation has also generated novel insight into the potential

contribution of basophils to an increasing spectrum of diseases. In

particular, basophils and their mediators are now implicated as

important participants in pathophysiologic conditions never before

considered, including MI (70), kidney fibrosis (71), several

autoimmune disorders (76, 77, 126), different cancers (72, 73, 75),

COPD (62), and COVID-19 (230–232, 234).

In several pathological conditions, such as kidney fibrosis (71),

autoimmune disorders (76, 77, 125, 126), some cancers (72, 73), COPD

(62), IgG4-RD (208), IBD (125, 237), and EoE (257, 258) basophils and

their mediators play a harmful role. In other inflammatory disorders,

such as MI (70), certain cancers (154) (75), and COVID-19 (230–232,

234), basophils appear to play a protective role. The dichotomous

pathogenic role of basophils is intriguing and will undoubtedly be the

subject of future investigations. There is the possibility that, like mast

cells (262–266), macrophages (104, 132, 267, 268), neutrophils (269–

272), and eosinophils (273, 274), subpopulations of basophils may also

exist. In this regard, distinct phenotypic and functional basophil

subpopulations have been described in human peripheral blood

(275). Moreover, it has already been demonstrated that tissue-

resident basophils differ from circulating basophils in mice (276) and

possibly in humans. Finally, basophils might possess a high degree of

plasticity and can modify their phenotype and functional

characteristics when exposed to different local environments.

Whatever the case, the possible existence of basophil subpopulations

and the disease-specific heterogeneity of these cells need to be

thoroughly and accurately explored in both humans and mice by

novel analytical tools (e.g., single-cell RNA seq, CyTOF).
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Finally, several biologics have been approved for the treatment

of severe allergic disorders and are showing remarkable efficacy

(218). Those designed primarily to target mast cells, eosinophils,

and Th2 cells (e.g., omalizumab, mepolizumab, benralizumab and

dupilumab) also target human basophils and/or their products (250,

277). Thus, there is the possibility that these biologics could prove

efficacious in helping to combat other unsuspected conditions/

diseases (e.g., cancer, autoimmunity, fibrosis) where basophils are

recently implicated. In contrast, with mounting evidence that

basophils and their mediators also play critical homeostatic and

protective roles (70, 75, 226, 230–232, 234), caution may be

warranted when these therapeutic interventions are used.
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Basophils are rare cells in the peripheral blood which have the capability to

infiltrate into the skin. Invasion of basophils has been detected in pruritic skin

diseases, including atopic dermatitis, bullous pemphigoid, chronic spontaneous

urticaria and contact dermatitis. In the skin, basophils are important players of the

inflammatory immune response, as they release Th2 cytokines, including

interleukin (IL)-4 and IL-13, subsequently inducing the early activation of T-

cells. Further, basophils release a multitude of mediators, such as histamine and

IL-31, which both play an important role in the initiation of the pruritic response

via activation of sensory nerves. Chronic pruritus significantly affects the quality

of life and the working capability of patients, though its mechanisms are not fully

elucidated yet. Since basophils and neurons share many receptors and channels,

bidirectional interaction mechanisms, which drive the sensation of itch, are

highlighted in this review.

KEYWORDS
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Introduction

Basophil granulocytes are named due to their affinity to basic dyes (1). The diameter of

basophils is 10 - 14 μm (2) and basophils are the least abundant type of granulocytes in

human blood, where they comprise less than 1% of all leucocytes (1). After differentiation

from hematopoietic stem cells in the bone marrow, fully matured basophils enter the blood

stream (2). Basophils do not proliferate (3) and have a short lifespan of 60 - 70 h in mice (4).

In humans, lifespans of up to 11 days have been reported (5). During helminth elimination,

basophils are involved in protective mechanisms and also play a significant role in enhancing

inflammation (6). Basophils are an important early source of Th2-type cytokines such as

interleukin (IL)-4 and IL-13 in inflammation (Figure 1) (7). Moreover, basophils release the

pruritic cytokine IL-31, and express its receptor complex consisting of the IL-31 receptor A

(IL-31RA), and the oncostatin M receptor b (OSMRb) (Figure 1, Table 1) (21). Stimulating

basophils with IL-31 induces basophil chemotaxis and promotes the secretion of Th2

cytokines (21). Another itch mediator is histamine. The pruritogen is released after
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activation of the high-affinity IgE receptor FcϵRI (Figure 1) (33). A
specific characteristic of human basophils is the potentiation of

mediator release after stimulation with priming factors. In the

pathogenesis of inflammatory diseases, enhancing factors, such as

IL-3, nerve growth factor (NGF), IL-5 and granulocyte macrophage-

colony stimulating factor (GM-CSF), modulate the functional activity

of basophils. IL-3 is the most potent activator of basophils and also

promotes basophil differentiation (35). Its receptor a-chain CD123 is

expressed by basophils (Figure 1) (13–17). Another priming agent for

basophils is the neurotrophin NGF, which induces the release of

histamine and the synthesis of leukotriene C4 (LTC4) after
Frontiers in Immunology 02153
stimulation with agonists (Figure 1) (36). NGF has similar effects

on basophils as IL-5 and GM-CSF (36). While IL-5 belongs to the

group of Th2 cytokines (37), GM-CSF is a monomeric glycoprotein

that is present at sites of tissue inflammation (38). Both are produced

by basophils and promote inflammation (39). Activation of basophils

is associated with upregulation of the cell surface markers CD13,

CD45, CD63, CD203c (40), and CD69, for which increased

expression is mostly observed after stimulation with IL-3 (41). A

method to assess human basophil activation is to determine changes

in the amount of these surface proteins. The most reliable activation

markers are CD63 and CD203c (40). CD63 is a membrane protein,
FIGURE 1

Expression of receptors and release of cytokines in human basophils. Basophils interact with other immune cells and neurons through inflammatory
mediators and receptor expressions. Interleukin (IL)-31, as well as its receptor complex consisting of the IL-31 receptor A and the oncostatin M receptor
b, are expressed by basophils and contribute to pruritus. Stimulation with IL-31 leads to the secretion of the pro-inflammatory cytokines IL-4 and IL-13.
Their respective receptors are IL-4R and IL-13R. Basophils express the high-affinity receptor FcϵRI. Upon crosslinking of the receptor with IgE, histamine
is released, mediating itch. The hormone receptors are present on the cell surface, with the histamine 4 receptor being the most highly expressed.
Activation of the neurokinin 1 receptor through substance P (SP) also causes histamine release. Basophils can be primed by IL-5, IL-3 and granulocyte
macrophage-colony stimulating factor (GM-CSF). The respective receptors are CD125 and CD131 for IL-5, CD123 and CD131 for IL-3 and the GM-CSF
receptor consists of GM-CSFRa and GM-CSFRb. Activation of these receptors leads to increased histamine release. Another priming factor is nerve-
growth factor, which binds to the tyrosine kinase A receptor on the cell surface. Basophils express the Mas-related G protein-coupled receptor X2
(MRGPRX2), which is part of the signaling cascade in inflammation and serves as a receptor for SP. Another pruritogen is thymic stromal lymphopoietin
(TSLP), which binds to the TSLP receptor complex consisting of TSLP receptor and IL-7 receptor a and is proposed to cause itch. Whether basophils
respond to TSLP is controversial. The lipid mediator sphingosine-1-phosphate (S1P) is stored in granules and its receptor S1P receptor 1 is expressed on
the cell surface. It is proposed to have an anti-inflammatory effect on basophils. The leukotriene C4 (LTC4) is released by basophils and its receptor
cysteinyl leukotriene receptor (LTCR) is expressed by basophils. GM-CSF: granulocyte macrophage-colony stimulating factor; GM-CSFRa: GM-CSF
receptor a; GM-CSFRb: GM-CSF receptor b; H1/H4: histamine 1/4 receptor; IL: interleukin; IL-4R: IL-4 receptor; IL-5R: IL-5 receptor; IL-7RA: IL-7
receptor a; IL-13R: IL13 receptor; IL-31RA: IL-31 receptor A; LTC4: leukotriene C4; LTCR: cysteinyl leukotriene receptor; MRGPRX2: Mas-related G
protein-coupled receptor X2; NK1R: neurokinin 1 receptor; OSMRb: oncostatin M receptor b; trkA: tyrosine kinase receptor A; TSLP: thymic stromal
lymphopoietin; TSLPR: TSLP receptor; SP: substance P; S1P: sphingosine-1-phosphate; S1PR1: S1P receptor 1.
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that is associated with histamine containing granules. After

anaphylactic degranulation (42, 43), CD63 is translocated to the

cell surface of activated basophils as a result of histamine release (43).

The ectoenzyme CD203c (pyrophosphatase/phosphodiesterase) is

weakly expressed on resting basophils (44). Whereas CD63

externalization is closely related to basophil degranulation (44).

Upon activation, CD203c, which is not associated with mediator

release, is upregulated rapidly (43). Basophil infiltration has been

observed in atopic dermatitis (AD), bullous pemphigoid (BP),

chronic spontaneous urticaria (CSU) and contact dermatitis (7), all

of which are pruritic inflammatory skin diseases. The mechanism

how basophils are recruited into the skin remains to be fully

elucidated. It is assumed that basophils are attracted by a variety of

mediators present in the skin, i.e. the chemokines, CCL2, CCL5,

CCL11, CXCL12, and prostaglandin D2 (45). Basophils express the

respective receptors, CCR4 for CCL2 and CCL5, CCR3 for CCL11,

CXCR4 for CXCL12 and chemoattractant receptor-homologous

molecule expressed on Th2 cells (CRTH2) for prostaglandin D2

(45, 46). CCL11 is produced by dermal fibroblasts and CRTH2 is

elevated in AD (46). Other potential chemoattractants of basophils

are thymic stromal lymphopoietin (TSLP), IL-3, IL-31, histamine,

substance P (SP) and sphingosine-1-phosphate (S1P). TSLP and IL-3

cause the upregulation of CXCR4 and thereby lead to infiltration of

basophils into the skin (47). The pruritogen IL-31 has been shown to

induce chemotaxis in basophils in vitro (21). Upon histamine release

from mast cells, murine basophils are recruited to the site of allergen

exposure in nasal tissue (48). SP has also been shown to chemoattract

basophils, resulting in the infiltration of basophils into the skin of

healthy individuals (49). Recently, it was shown that in healthy

donors, basophils migrate towards S1P which was observed in an

in vitro study, while in AD patients a chemorepulsive effect was

detected (31). It has however, so far not been described if basophils,

that migrated into the skin, return to the blood or travel to draining

lymph nodes (45, 50). Pruritus elicits the desire to scratch the skin

and is categorized into acute and chronic pruritus. Chronic itch, by

definition, lasts longer than 6 weeks, and strongly impairs patients’

quality of life. Although its complete mechanism has yet to be

elucidated, complex crosstalk between the stratum corneum,

keratinocytes, immune cells, and nerve fibers (Figure 1) plays an

important role in the initiation and maintenance of pruritus. Itch can

originate in the skin or have neuropathic, psychogenic or systemic

causes (51). Histamine, IL-31, SP, LTC4, IL-4, IL-13, NGF, brain-

derived neurotrophic factor (BDNF), and TSLP, which all are

released by or affect basophils (Figure 1), have been reported to

cause itch (7, 12, 21, 52–54) and are described in the chapter

“Basophils and neuro-immune interactions”. Current therapies for

itch target different receptors on basophils, such as IL-31RA,

neurokinin 1 receptor (NK1R), tropomyosin-receptor kinase A

(trkA), or released mediators, i.e. IL-13. The monoclonal IL-31RA

antibody nemolizumab binds to IL-31RA and thereby interrupts IL-

31 itch signaling in basophils. A trial from Japan in which

nemolizumab was administered, found improvements in pruritus

and quality of life, leading to the approval of the drug for AD (55).

NK1R is expressed in basophils and its antagonists inhibit pruritic

signaling and decrease itch in patients. However, the inhibitors are

not licensed for use (56). In mice, treatment with signal transducer
Frontiers in Immunology 03154
and activator of transcription 6 (STAT6) inhibitors led to decreased

scratching. IL-13 targets STAT6, inducing pruritus (57). Janus kinase

(JAK) inhibitors interrupt the JAK-STAT signaling pathway. This

disruption, which occurs after treatment with JAK inhibitor

upadacitinib, leads to improvement of pruritus in patients (58).

Application of the trkA inhibitor CT327 resulted in a significant

decrease of pruritus in psoriasis patients (59). The role of basophils as

important effector cells in different inflammatory skin diseases and

their involvement in pruritus, are described in the following chapters.
Atopic dermatitis

Atopic dermatitis (AD) is an inflammatory skin disease,

associated with recurrent dry skin, and the main bothersome

symptom, itch (60). In patients with AD, infiltration of basophils

into the skin and peripheral blood has been observed, although not

in as high numbers as in other skin diseases (46, 61). In one study,

significantly less basophil numbers could be detected in peripheral

blood of AD patients than in healthy controls (62). Interestingly,

increased basophil count is suggested to be a potential causal risk

factor for AD (63). Basophils were found to exhibit increased

externalization of the activation markers CD63 and CD203c in

AD patients (61). This indicates possible involvement of basophils

in the pathogenesis of AD. Basophils can be primed by NGF

(Figure 1), which is produced by a variety of cells, such as

keratinocytes (53), eosinophils (64), T cells (65), and mast cells
TABLE 1 Shared receptors of basophils and neurons with their
respective ligand.

Shared receptor Ligand References

GM-CSFRa/b GM-CSF (8, 9)

H1/H4 Histamine (10, 11)

IL-4R IL-4 (12)

IL-3R IL-3 (13–18)

IL-5R IL-5 (19, 20)

IL-13R IL-13 (12)

IL-31 receptor complex IL-31 (21, 22)

LTCR LTC4 (23)

MRGPRX2 SP (24, 25)

NK1R SP (12, 26, 27)

trkA NGF (28, 29)

TSLP receptor complex TSLP (12, 30)

S1PR1 S1P (31, 32)

FcϵRI IgE (33, 34)
GM-CSF, granulocyte macrophage-colony stimulating factor; GM-CSFRa/b, GM-CSF
receptor a and b; H1/H4, histamine 1/4 receptor; IL, interleukin; IL-3R: IL-3 receptor; IL-
4R: IL-4 receptor; IL-5R, IL-5 receptor; IL-7RA, IL-7 receptor a; IL-13R, IL13 receptor; IL-
31RA, IL-31 receptor A; LTC4, leukotriene C4; LTCR, cysteinyl leukotriene receptor;
MRGPRX2, Mas-related G protein-coupled receptor X2; NK1R, neurokinin 1 receptor;
OSMRb, oncostatin M receptor b; trkA, tyrosine kinase receptor A; TSLP, thymic stromal
lymphopoietin; TSLPR, TSLP receptor; SP, substance P; S1P, sphingosine-1-phosphate;
S1PR1, S1P receptor 1.
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(66). NGF has been shown to be either increased (53), or

significantly decreased in AD patients, correlating with disease

severity when compared to healthy subjects (67). In lesional skin

of subjects with AD, the number of NGF positive nerve fibers is

increased (68). Whether basophils are a source of NGF, has yet to be

elucidated. In the epidermis, the lipid mediator sphingosine-1-

phosphate (S1P) plays an important role regarding structure, lipid

signaling and the regulation of keratinocytes. Our group recently

discovered that isolated basophils of atopic patients exhibited

decreased S1PR1 expression, and possessed intracellular S1P in

isolated basophils (31). Furthermore, in the stratum corneum of AD

patients, the lipid is decreased, which might alleviate colonization

with Staphylococcus aureus (69). The lipid, as well as mRNA

expression of the S1P receptors (S1PR) S1PR1, S1PR2, S1PR3 and

S1PR4, have been observed in human basophils (Figure 1) (31). The

presence of S1PR1 was also confirmed at the cell surface (31)

(Table 1). S1PR1, S1PR2 and S1PR4 have been detected in the

brain (32), indicating another point of neuro-immune crosstalk.

Due to the inhibiting effect of the lipid mediator on chemotaxis, S1P

is proposed to have an anti-inflammatory effect on basophils (31).

In both mice and humans, significant upregulation of FcϵRI on

basophils during AD has been observed, indicating that IgE might

also be an important factor in pruritus (70). The pro-inflammatory

effect of basophils in AD might be reduced by treatment with

dupilumab. The monoclonal IgG4 antibody, which binds to IL-4Ra,
showed success in reducing symptoms, such as itch, of AD patients

(71). Since the antibody binds to IL-4Ra, the assumption arises, that

the cytokines which contribute to the disease are partially derived

from basophils (71). Aside from their pro-inflammatory properties,

basophils can aid in the resolution of AD. The expansion of M2-like

macrophages was promoted by murine basophils, as well as

epidermal repair (72), which additionally affirms the role of

basophils in AD.
Bullous pemphigoid

Bullous pemphigoid (BP) is a blistering skin disease, that most

commonly occurs in elderly people and only rarely affects

adolescents or children. An autoimmune reaction against the

hemidesmosomal proteins BP180 and BP230 leads to the

formation of blisters (73). A case study showed that basophil

infiltration took place in early- as well as late-stage lesions (74).

The twofold involvement of basophils in BP was shown by Kimura

et al. (75). During the early stage of BP, basophil infiltration was

correlated with eosinophil infiltration. Cell-to-cell contact was

observed, indicating that Th2 immunity is promoted by

eosinophils and basophils (75). A case study detected the

colocalization of basophils and eosinophils in urticarial plaques

(74). The presence of basophils was also demonstrated, as well as

eosinophils, underneath the subepidermal cleft during the late-stage

of BP (74). Basophils in BP were shown to be present with a high

density, similar to that observed in urticaria, but higher than that in

AD (46), and increased compared to skin healthy controls (76).

Circulating basophils from untreated BP patients were stimulated

with BP180, resulting in significantly higher histamine release than
Frontiers in Immunology 04155
those basophils of treated BP patients or healthy controls (77). This

suggests an important role for basophils in the development of BP.

The amount of anti-basement membrane zone antibodies was

positively correlated with IgE serum levels (78). Treatment with

the anti-IgE monoclonal antibody omalizumab resulted in the

downregulation of FcϵRI on basophils in two cases (79).

Activation of basophils was determined through measuring

CD203c expression. The expression was evaluated before and

after treatment with two doses of prednisolone and three sessions

of plasma exchange, and found to be significantly reduced after

treatment (74). These observations indicate that basophils play a

role in the development of BP. In BP, itch is an important factor,

which is confirmed as itch severity correlates with the increased

numbers of basophils present in the blisters (76). Thus, basophils

seem to play an important role in pruritus, blister development and

inflammation in BP.
Chronic spontaneous urticaria

Chronic spontaneous urticaria (CSU) presents in patients as

pruritic hives, angioedema or a combination of both (80). Patients

suffering from CSU often present with peripheral basopenia, where

low amounts of basophils are present in the blood, probably due to

the infiltration into the skin (81). An inverse correlation between

disease severity and the amount of basophils in the blood has been

observed (81). Moreover, significantly more infiltrating basophils

are present in lesions of CSU patients than in nonatopic subjects

(82). Basophil degranulation has also been observed in the skin of

CSU patients. Therefore, the reactivity in CSU seems to be partially

regulated by basophils (82). Substance P (SP) was shown to be

positively correlated with the number of basophils in the peripheral

blood of CSU patients (26). Interestingly, basophil numbers were

increased in CSU patients compared to healthy controls, in contrast

to findings of other studies. These basophils exhibited higher

expression levels of SP, as well as its associated receptor NK1R,

than those from healthy controls. When activated by its agonist,

NK1R mediated up to 41% net histamine release, which is

comparable to that induced by anti-IgE and the chemoattractant

N-formylmethionyl-leucyl-phenylalanine (fMLP) (26). A similar

effect was confirmed in mice. Blood basophil numbers increased

after injection with SP. Sensitization with ovalbumin resulted in

elevated basophils numbers as well as increased SP and NK1R

expression on basophils (26). As itch is a significant symptom of

CSU, its origin is important. One causative factor might be IL-31,

which is elevated in this disease (83). Basophils have been reported

to be the main source of IL-31 in skin lesions of CSU (Figure 1) (21).

In CSU, patients can be categorized in three groups; responders,

nonresponders and basopenics, depending on how much histamine

is released from basophils after stimulation with anti-IgE (84).

Upon application of anti-IgE, basophils of responders release high

amounts of histamine and exhibit increased CD63 externalization.

Nonresponders are characterized by low histamine secretion and

CD63 externalization, while almost no reaction can be observed in

basophils of basopenics (84). Responders, those with high histamine

release, seem to suffer from CSU longer than the other groups.
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However, the number and size of hives, as well as the itch score were

highest in basopenics (84). Another study confirmed that the

duration of the disease is longer in responders. The same group

of patients also reported increased itch (85). Treatment with the

anti-IgE monoclonal antibody omalizumab showed a decrease of

symptoms in CSU patients (86). Furthermore, the number of

peripheral blood basophils increased as a result of treatment with

omalizumab (87). Whether the monoclonal antibody inhibits

basophil migration into the skin, or promotes the release of new

basophils from the bone marrow has yet to be investigated.

Basophils of CSU patients exhibited significantly higher amounts

of CD63, than those of healthy controls. CD203c expression

however was unchanged (88). In contrast, another study revealed

no difference of activation marker levels in CSU patients in

comparison with healthy subjects. However, histamine release was

reported to be higher in patients with CSU than in controls (89). In

CSU patients in remission, basophils were more activated, as

determined through the presence of CD63 and CD203c, than in

healthy control (90). This shows that basophils are crucial in the

development of CSU.
Contact dermatitis

Irritant contact dermatitis is characterized by non-allergic,

pruritic skin inflammation, where basophils infiltrate into the

tissue (91). In human and murine irritant contact dermatitis skin

lesions, basophils were located in proximity to eosinophils, which

were recruited to the site by the basophils (91). Furthermore, in

mice, direct cell-to-cell contact of basophils with eosinophils seems

to lead to the activation of eosinophils, enhancing the development

of irritant contact dermatitis (91). Allergic contact dermatitis,

however, is caused by contact with an allergen, which also

induces basophil migration. Interestingly, infiltration lasts for

several days, where basophils can be detected after 25 hours and

then increase in number in allergic contact dermatitis (92).

Basophils represent 16% of the infiltrate in allergic contact

dermatitis at day 16, resulting in delayed hypersensitivity (92). In

accordance with this finding, degranulation of basophils was

observed to occur over 72 hours, where approx. 60% of granules

were found to be at least partially depleted (93). Eosinophil

infiltration occurs after basophil infiltration, indicating that

basophils play a role in eosinophil recruitment in contact

dermatitis (92). Thus, basophils play an important role in the

aspects of cell infiltration and pruritus during the development of

irritant and allergic contact dermatitis.
Basophils and neuro-immune
interaction

Interactions between the immune system and the nervous

system play an important role in inflammatory skin diseases and

pruritus. These neuro-immune interactions stem from intense

crosstalk between neurons and immune cells, which are located in
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close proximity to one another. Upon allergen challenge with the

irritant calcipotriol and the allergen ovalbumin, murine basophils

migrate into the skin, and are consistently observed to be located in

close proximity to sensory nerve fibers (Figure 1), indicating

neuroimmune interactions (70). The initiation and maintenance

of itch is characterized by many mediators expressed by basophils,

including IL-31, SP, LTC4, histamine, IL-4 and IL-13. Other

pruritic mediators, such as TSLP, NGF and BDNF also affect

basophils. It is assumed, that basophils interact bidirectionally

with neurons through cytokines and neurotrophins, as they share

various channels and surface receptors (Figure 1, Table 1). While

IL-31RA is present on most basophils, OSMRb can only be found

on a small subpopulation (21). IL-31RA is expressed on half of

dorsal root ganglia (DRG) with a size up to 30 μM (22), and its

ligand can act as a neurotrophin on DRG neurons (94). Through

activation of IL-31RA (22) on peripheral nerves, itch signals are

transmitted to the central nervous system (21).

The Mas-related G-protein-coupled receptor (MRGPR) X2 is

expressed on human basophils (Figure 1, Table 1) (24) and DRG

(25), and evokes allergic, as well as nonallergic hypersensitivity (32).

In mice, the transient receptor potential ankyrin 1 (TRPA1) channel

is necessary for MRGPR- and TSLP-mediated pruritus (95). Upon

activation, the channel is opened and induces itch (95).

Basophils release the inflammatory mediator LTC4. Its receptor

cysteinyl leukotriene receptor 2 (CysLTR2) is expressed on

basophils and DRG (23).

After priming with IL-3, human basophils express the TSLP

receptor, while expression of the IL-7 receptor a was not detectable

(96). In contrast, mice express TSLPR and IL-7 receptor a on

basophils (Figure 1), which together form the TSLP receptor

complex (30). Stimulation of basophils with TSLP has been

shown to cause histamine release, and increase intracellular IL-4

and IL-13 expression, as well as induce the upregulation of TSLPR

in patients with allergic asthma (97). In contrast to this study, Guen

et al. reported that basophils from healthy and allergic patients did

not respond to TSLP (98). The TSLP receptor complex has also

been confirmed in DRG. Observations in mice revealed TSLP

secretion from basophils and activation of neurons through the

cytokine (12). TSLP activates TRPA1 expressing neurons and

causes itch (99). Secretion of TSLP by human basophils has not

yet been investigated.

Basophils and peripheral nerve endings express the tachykinin

neurotransmitter SP and its receptor NK1R (Figure 1) (12, 26, 27).

The neuropeptide is involved in inflammation and itch (12).

Furthermore, SP induces histamine release from basophils,

indicating possible interactions between the nervous system and

the granulocytes (26, 27), as basophils are able to communicate with

neurons via histamine. Basophils express the histamine-1 receptor

and histamine-4 receptor (H4R; Figure 1) (10), which have also

been confirmed to be expressed in the central nervous system (11).

When H4R is activated on basophils, it mediates chemotaxis.

However, activation can also lead to basophil silencing, as CD63

and CD203c surface content has been observed to be suppressed

and the production and release of sulfidoleukotrienes reduced (10).

In mice, knockout of H4R resulted in reduced inflammation and

treatment with H4R antagonists alleviated itch (12).
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Secretion of IL-4 and IL-13 from basophils (Figure 1), indicates

communication between basophils and neurons in pruritus. Their

respective receptor subunits IL-4Ra and IL-13Ra are expressed in

basophils, as well as in DRG (12). In a murinemodel, injection of IL-4

caused scratching, suggesting that IL-4 induces pruritus in mice (12).

Neurotrophins play an important role in the communication

between basophils and neurons. Basophils and the central nervous

system express tyrosine kinase receptor A (Figure 1) (100, 101), to

which NGF binds. NGF is also a priming factor for basophils,

demonstrating the influence of the neuronal system on basophils.

To conclude, interaction between basophils and the neuro-immune

system occurs through a variety of channels and mediators,

highlighting the importance of basophils in neuro-immune

interaction mechanisms.
Conclusion

Basophils play a crucial role in many pruritic inflammatory skin

diseases. In these conditions, basophils are among the first cells to

infiltrate into the skin. At this location, basophils secrete Th2

cytokines and are drivers of the inflammation. The pruritic effect

is further mediated by IL-4, IL-13, IL-31, histamine, SP, TSLP,

BDNF and NGF, of which most are released by basophils. IL-31 is a

key mediator in itch, its expression being increased in inflammatory

and pruritic skin diseases. Basophils also recruit eosinophils to sites

of inflammation in BP and CSU, further increasing the

inflammation. Moreover, basophils are able to establish cell-to-

cell contact with sensory neurons, and enable neuro-immune

interaction through the release of inflammatory mediators, such

as IL-31. Thus, basophils seem to be major drivers of inflammation

and itch in diseases such as AD, BP, CSU and contact dermatitis,

which was summarized in this review.
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