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UNDERSTANDING SOCIAL SIGNALS: 
HOW DO WE RECOGNIZE THE 
INTENTIONS OF OTHERS?

The bartending robot JAMES in a social 
interaction with its customer and serving 
a drink at fortiss in Munich, Germany. 
Copyright: fortiss www.fortiss.org

Topic Editors: 
Sebastian Loth, Bielefeld University, Germany
Jan P. De Ruiter, Bielefeld University, Germany

Powerful and economic sensors such as high defi-
nition cameras and corresponding recognition 
software have become readily available, e.g. for 
face and motion recognition. However, designing 
user interfaces for robots, phones and computers 
that facilitate a seamless, intuitive, and apparently 
effortless communication as between humans is 
still highly challenging. This has shifted the focus 
from developing ever faster and higher resolu-
tion sensors to interpreting available sensor data 
for understanding social signals and recognising 
users’ intentions. 

Psychologists, Ethnologists, Linguists and 
Sociologists have investigated social behaviour 
in human-human interaction. But their findings 
are rarely applied in the human-robot inter-
action domain. Instead, robot designers tend 
to rely on either proof-of-concept or machine 
learning based methods. In proving the concept, 
developers effectively demonstrate that users are 
able to adapt to robots deployed in the public 
space. Typically, an initial period of collecting 
human-robot interaction data is used for iden-

tifying frequently occurring problems. These are then addressed by adjusting the interaction 
policies on the basis of the collected data. However, the updated policies are strongly biased by 
the initial design of the robot and might not reflect natural, spontaneous user behaviour. In 
the machine learning approach, learning algorithms are used for finding a mapping between 
the sensor data space and a hypothesised or estimated set of intentions. However, this brute-
force approach ignores the possibility that some signals or modalities are superfluous or even 
disruptive in intention recognition. Furthermore, this method is very sensitive to peculiarities 
of the training data. In sum, both methods cannot reliably support natural interaction as they 
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crucially depend on an accurate model of human intention recognition. Therefore, approaches 
to social robotics from engineers and computer scientists urgently have to be informed by studies 
of intention recognition in natural human-human communication. 

Combining the investigation of natural human behaviour and the design of computer and robot 
interfaces can significantly improve the usability of modern technology. For example, robots will 
be easier to use by a broad public if they can interpret the social signals that users spontaneously 
produce for conveying their intentions anyway. By correctly identifying and even anticipating 
the user’s intention, the user will perceive that the system truly understands her/his needs. Vice 
versa, if a robot produces socially appropriate signals, it will be easier for its users to understand 
the robot’s intentions. Furthermore, studying natural behaviour as a basis for controlling robots 
and other devices results in greater robustness, responsiveness and approachability. Thus, we 
welcome submissions that (a) investigate how relevant social signals can be identified in human 
behaviour, (b) investigate the meaning of social signals in a specific context or task, (c) identify 
the minimal set of intentions for describing a context or task, (d) demonstrate how insights from 
the analysis of social behaviour can improve a robot’s capabilities, or (e) demonstrate how a robot 
can make itself more understandable to the user by producing more human-like social signals.

Citation: Loth, S., De Ruiter, J. P., eds. (2016). Understanding Social Signals: How Do We Recognize 
the Intentions of Others? Lausanne: Frontiers Media. doi: 10.3389/978-2-88919-845-0
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The Editorial on the Research Topic

Understanding Social Signals: How DoWe Recognize the Intentions of Others?

Humans interact with each other seamlessly, smoothly, and without obvious effort. Social signals
are the basis of this highly effective communication. These signals are speech utterances, body
movements such as gestures, manipulations of objects, and combinations thereof. For example,
interlocutors typically position themselves in an F-formation (Goffman, 1963; Ciolek and Kendon,
1980; Kendon, 1990) and thereby signal to each other that they are part of that interaction. If
another participant joins that interaction, the interlocutors integrate her in a new F-formation. The
movements of each individual were comparably inconspicuous, but the intention for producing
them was easily recognizable to the recipient. Humans use these signals intuitively and without
conscious awareness. But in order to enable a robot to understand and respond appropriately
to social signals, their form and function have to be made explicit. This research topic presents
methods for identifying, understanding, and applying social signals in human–machine interaction.

Social signals are essentially multimodal but the analysis of human communication in
human–machine interaction is often limited to the literal content of verbal utterances. For example,
emotion has often been regarded as separate information that is specifically transferred through
non-verbal signals, e.g., smiling. ButMehu argues that emotion is an inherent property of any social
signal. The addressee would use the signal’s emotional and literal content for determining how to
respond to it. Identifying a signal’s content requires combining and interpreting information from
several modalities, taking into account the observer’s prior experience. For example, Saegusa et al.
show that a smiley next to a text message alters its perceived earnestness but its effect was more
pronounced in hearing than non-hearing participants. Children also rely on multimodal signals
for learning new words for objects. Hung et al. demonstrate that the children’s strategic use of
pointing gestures and spoken words depends on their linguistic experience, in particular if the
gestures’ reliability has been manipulated. Robotic recognizers have to combine data from sensors
such as cameras and microphones for identifying objects and actions; a human is perceived as an
entity with properties such as distance, body direction, and recent utterances. Similar to human
observers, a robot requires detailed prior knowledge about social signals in order to interpret
them. In a so-called “Ghost-in-the-Machine” study, Loth et al. show that human participants can
identify social signals from the recognizer data of a robotic bartender. The study also shows that
non-verbal signals were most important for initiating an interaction, whereas verbal signals were
most important when placing an order. Multimodal signals unfold over time, and some features
are available earlier than others. For example, the speaker’s eye gaze reliably indicates the target of
a selection task and preceded corresponding verbal utterances by almost 2 s in Huang et al.’s study
of dyadic interactions. Thus, humans and robots can use this time for forming expectations about
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the verbal utterance and planning ahead. Understanding social
signals is important for fulfilling a task, e.g., serving a drink. In
addition to task performance, Shalev and Oron-Gilead argue that
social signals are also crucial in regulating the assertiveness of
companion robots, i.e., should the robot take the initiative or wait
for being prompted.

Industrial robots do not socially interact with humans but
operate as a tool repeating precisely the same actions. Sciutti
et al. suggest to use the robot’s ability to exactly reproduce
behavior in order to investigate social signals in controlled
natural settings, e.g. what kind of object manipulation a
participant expects from a hand position. Furthermore, this
enables research in dynamic environments, allowing Katevas
et al. to investigate social signals with a robot stand-up comedian.
They found that the robot’s gaze behavior was an important signal
for eliciting laughter. In contrast to comedy, questionnaires
of the US census have been standardized with the aim of
eliciting accurate responses independently of the interviewer’s
performance. However, Conrad et al. show that the verbal skills
but not the facial animations of a virtual interviewer influence the
accuracy of the participants’ responses.

Interactions can and often do go wrong. However, if problems
are repaired swiftly, the interaction is still perceived as smooth.
Schegloff (Schegloff et al., 1977; Schegloff, 1992) argued that the
speaker can repair a problem in her own utterance immediately
(first position repair) or the hearer would try to initiate the repair
(second position repair). In a third position repair, the hearer’s
response revealed a problem to the speaker allowing her to
repair this in her next turn. Importantly, repairs require that the
problem has been detected in the first place. After analyzing video
recordings of human–robot interactions, Giuliani et al. conclude
that users initially stopped moving when they encountered a
problem. This could be used as a signal for the robot to initiate
a first position repair immediately. The user’s second position
repairs involved many head gestures and lots of smiling signaling
the robot that there was a problem. Some of the speakers’
behaviors typically synchronize during an interaction such that
a de-synchronization can indicate a communication error. For
example, Andrist et al. show that the speakers’ eye gazes typically
settle on particular objects in a selection task. A deviation from
this pattern indicates that a problem in the communication had
occurred which required an explicit repair later in the interaction.

Thus, detecting this cue allows both humans and robots to
initiate a first position repair and resolve the problem instantly.
Similar to gaze behavior, body movements synchronize during
an interaction. Avril et al. augment a play session of children and
their care-givers with sensors typically used in human–machine
interaction. They show that prolonged periods of avoidance
behaviors and asynchrony of body movements could indicate
severe conditions such as child neglect.

All studies in this research topic underscored the fact
that human communication is based on the exchange of
social signals that are essentially multimodal. If these signals
deviated from expected patterns, this indicated problems in the
communication. The pattern of deviation identified the type of
problem suggesting how to repair it. Furthermore, the absence
of social signals can indicate severe psychological conditions.

Thus, social signals are highly diagnostic, both in “normal” and
problematic communication. They provide intuitive means for
controlling the robot’s current task and its relation to its user.
However, understanding and producing social signals depends
on prior knowledge in both humans and robots. To summarize,
this research topic combines the research of psychologists
and robot designers to contribute to our understanding of
social signals and applies these insights to human–machine
interaction.
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The integration of emotional and
symbolic components in multimodal
communication
Marc Mehu*

Department of Psychology, Webster Vienna Private University, Vienna, Austria

Human multimodal communication can be said to serve two main purposes: information
transfer and social influence. In this paper, I argue that different components of
multimodal signals play different roles in the processes of information transfer and
social influence. Although the symbolic components of communication (e.g., verbal
and denotative signals) are well suited to transfer conceptual information, emotional
components (e.g., non-verbal signals that are difficult to manipulate voluntarily) likely
take a function that is closer to social influence. I suggest that emotion should be
considered a property of communicative signals, rather than an entity that is transferred
as content by non-verbal signals. In this view, the effect of emotional processes on
communication serve to change the quality of social signals tomake themmore efficient at
producing responses in perceivers, whereas symbolic components increase the signals’
efficiency at interacting with the cognitive processes dedicated to the assessment
of relevance. The interaction between symbolic and emotional components will be
discussed in relation to the need for perceivers to evaluate the reliability of multimodal
signals.

Keywords: emotional communication, multimodal communication, social signals, ethology, non-verbal
communication, pragmatics

Introduction

This article revolves around two ideas that have stayed, in my opinion, on the fringes of
research in human communication. The first idea is that the primary function of social
signals is to influence perceivers, i.e., to produce responses in others that are beneficial
to signalers. This idea has been discussed extensively in the field of animal behavior
(Owren et al., 2010; Stegmann, 2013), but less so in human communication (for an
exception, see Owren and Bachorowski, 2003). The second idea defended in this paper
is that multimodal communication has emerged as the result of an interaction, over
human evolutionary history, between signaler and perceiver roles (for a similar argument
in animal communication research, see Guilford and Dawkins, 1991; Rowe, 1999). In
particular, I will argue that different elements of multimodal signals have evolved to
address the selective pressures presented by two cognitive strategies perceivers use to
process and respond to signals: an evaluation of relevance and an assessment of reliability.
The goal of this article is to call for an integration of information transfer and social
influence accounts of communication in a coherent framework informed by evolutionary
theory.
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Information Transfer and Social Influence
in Human Communication

Social signals have been studied in many disciplines and the
range of definitions for this concept is relatively broad (Mehu
et al., 2012a). Borrowing the terminology developed by ethologists
to define animal signals (see Maynard Smith and Harper,
2003), Mehu and Scherer (2012) have proposed a definition
of human social signals that integrates the symbolic character
of human communication with the more evolutionarily ancient
properties of animal signals: “human social signals are acts or
structures that influence the behavior or internal state of other
individuals, that evolve because of that effect, and that are effective
because the perceiver’s response has also evolved; signals may
or may not convey conceptual information or meaning” (p.
399). In this framework, human social signals are tangible units
of communication that can be perceived as visual, auditory,
olfactory, or tactile stimuli. As such, the physical properties of
social signals constitute raw information on the basis of which
perceivers take social decisions. These decisions can be adaptive
for the perceiver if the signal’s physical properties correlate with
some psychobiological processes in which a perceiver has an
interest (e.g., reproductive state, behavioral intentions, attitudes,
cognitive evaluations, physiological reactions, subjective feelings,
etc.). Although the material properties of social signals can
be correlated with unobservable psychobiological processes, to
conflate signals and their possible referents is inadequate as it
does not help understand the complexity of communication. For
example, it is hard to conceive that unobservable psychobiological
processes are at the same time social signals and the referents of
non-verbal communicative units. A more plausible assumption
is that social signals are the means with which psychobiological
processes like cognition, emotion, and attitudes are implemented
in everyday social interactions.

Another aspect of social signals is their evolutionary function,
i.e., how social signals increase survival and reproductive success
of the individual who displays them. In the framework presented
here, a signal’s function is to produce a response in the perceiver
that is adaptive to the signaler. I argue that a signal fulfills its
function in a number of ways, and the diversity of these ways
results from an evolutionary processwhereby perceivers (themain
targets of signals) have placed selective pressures on signalers
in order to maximize adaptation to the social environment and
to avoid social exploitation. The pairing between conceptual
information and physical properties of non-verbal behavior is
one way social signals achieve their function of social influence.
Therefore, information transfer is a way social signals fulfill their
function of social influence rather than a separate function in itself
(see also Scarantino, 2013).

The mainstream view on non-verbal communication posits
that signalers encode information relative to internal states
(emotion, cognition, attitudes, social motives, and dispositions)
in a signal, and that the signal is decoded by perceivers who then
retrieve the information. Although the inference of a signaler’s
internal states is important for perceivers inmost social situations,
the faithful encoding of these states may not always be adaptive
for signalers themselves because perceivers may act against a

signalers’ goals (Grammer et al., 1997). Inmy opinion, the fact that
it is so important for perceivers to form a reliable representation of
the social environment has inflated the importance, in the eyes of
psychologists, of the disclosure of unobservable psychobiological
processes by signalers. There are many situations in which
signalers have an advantage either in concealing information that
could be used by the perceiver to act at the expense of the signaler,
or in using deception. As a general rule, when there is a conflict
of interest between signalers and perceivers, it is expected that the
signaler will (a) retain valuable information, (b) try to influence
perceivers to its own advantage, or (c) use deceptive signals
(Maynard Smith and Harper, 2003). On the other hand, when
a given interactive outcome is advantageous for both signalers
and perceivers it is expected that reliable transfer of information
will take place because none of the parties involved would benefit
from deceiving the other. Krebs and Dawkins (1984) have argued
that the nature of signals should depend on these contextual
aspects. For example, when signaler and perceiver have conflicting
interests, signals will tend to be more intense in order to be
more effective in producing a response in perceivers; while signals
will be less conspicuous when signalers and perceivers both
benefit from reliable disclosure of internal states and behavioral
intentions. Therefore, contextual factors determine whether it is
adaptive for a signaler to accurately convey internal states, or
to make strategic efforts to either conceal their intentions or
use manipulation tactics. This implies that inferences made by
perceivers will not only be based on the signal itself but also on
how the signal interacts with situational cues.

Amodel of communication that is purely based on information
transfer is unlikely to help us understand the complexity of
communication (Wilson and Sperber, 2006; Owren et al., 2010;
Scott-Phillips and Kirby, 2013). More specifically, such a model
would fail to recognize that the roles of signaler and perceiver,
although complementary, have different functions. On the one
hand, signalers produce signals that have a high impact on
perceivers and, on the other hand, perceptual systems optimize
the use of information that can be gleaned from the situation
in which communication takes place. This idea is based on
Owings and Morton’s (1997) model of animal communication
whereby communication is seen as a dynamic process that entails
the management and assessment of the social environment by
signalers and perceivers. In this model, information transfer is
seen as secondary and is considered adaptive in only a fraction
of the situations in which people communicate (Owren et al.,
2010), namely when signalers and perceivers would both benefit
from the reliable transfer of information. Therefore, depending on
the situation, the communication process does not serve signalers
and perceivers in the same way. Although in most cases the
signaler should benefit from producing a desired response in the
perceiver, the latter should mostly benefit from gaining adaptive
social information. The signaler would only benefit from sending
reliable signals when perceivers make their responses conditional
on the acquisition of relevant and reliable information. It is
the task of the researcher to determine whether the situation
favors reliable transfer of information or social influence. This is
likely to depend on the costs incurred by perceivers to respond
to a signaler’s displays. Consequently, the interaction between

Frontiers in Psychology | www.frontiersin.org July 2015 | Volume 6 | Article 961 | 8

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Mehu Emotional and symbolic components in multimodal communication

information transfer and social influence will depend on the
respective costs incurred by signalers and perceivers in a given
context.

The Complexity of Human Communication
is Reflected in Multimodal Signals

The concept of multimodal communication follows the
observation that social signals are complex and cover several
sensory modalities (Johnstone, 1996; Partan and Marler, 1999;
Rowe, 1999). Signals can also have multiple components within
a particular modality. For example, visual signals entail motor
components (movements produced by muscular activity),
morphological components (structure and shape of particular
body parts), or color components (e.g., skin or hair coloration).
Within the framework of information transfer, multimodal signals
have been proposed to function in two different ways (Johnstone,
1996): By redundantly encoding the same information in
several channels, and by varying the nature of the information
conveyed in the different channels. The first solution (backup
signals) ensures that the message is transmitted, even when
environmental circumstances prevent one of the channels to
operate (e.g., in poor light conditions, or in noisy environments).
The second solution (multiple messages) increases the amount
of information transferred by using different channels to convey
additional information. From a social influence perspective,
multimodal signals could be more efficient at influencing
perceivers because their complex structure makes them better at
interacting with perceivers’ psychological mechanisms. Evidence
from the field of animal communication suggests that multimodal
signals are more easily detected, discriminated, and memorized
(Rowe, 1999). In humans, the presentation of audio-visual signals
appear to have a different impact on perceivers than the separate
presentation of single modalities (Mehu and van der Maaten,
2014).

The present article defends the idea that the combination
between different components or modalities of a signal has
evolved to meet the requirement imposed by assessment systems.
Perceivers’ social decisions have relied increasingly on mental
inferences involving the interaction between multiple indicators
(mostly cues and signals emitted by signalers as well as
situational features). Such inferences could function to resist
social exploitation and manipulation by signalers and to optimize
social decision making. Increasing cognitive complexity in
primates (Dunbar and Shultz, 2007) placed a selective pressure
on signals to become more efficient at interacting with perceiver’s
filtering mechanisms. On the other hand, evolutionary in-built
robustness in primate signals could be a fertile bed for the
evolution of more complex signals, which components could
take on new functions in communication (Ay et al., 2007). I
consider the transfer of abstract and conceptual information as
one of these new functions, which is fulfilled by the symbolic
components of multimodal signals. The symbolic components
cut across the visual and auditory modalities (visual symbols and
speech are two examples of these components in two different
modalities) and their form is relatively arbitrary with regards
to their function, which is to interact with representational

structures of the mind. The evolution of the symbolic component
of human communication has paralleled the development of
voluntary motoric capabilities necessary for the production of
communicative units at the acoustic (speech) but also the visual
level (e.g., gestures). The increased voluntary control over this
component facilitated signal production and the expression of
intentions, but it also created a new opportunity for signalers to
take advantage of perceivers’ assessment systems and produce
potentially deceptive signals.

The integration of symbolic components in communication
enhances the efficiency of signals at producing desired responses
in perceivers because such components allow signalers to provide
information which perceivers have an interest in. By using
symbolic components, signalers can also clarify the type of
response sought in perceivers. By bringing elements that are
absent in the current situation but nonetheless relevant to
it, the symbolic component of a signal also broadens the
communication context and the perceivers’ opportunities to
pose adaptive actions. Symbolic communication is therefore
adaptive for signalers because it helps them influence perceivers
more efficiently. Due to the increased potential it offers
for assessment of the physical and social environments, this
mode of communication is likely to have been selected by
perceivers during evolutionary history. The increased voluntary
control over signal production (in particular over the symbolic
components) allows more flexibility in communication and a
better relationship with cognitive executive functions such as
memory and planning. It also gives more opportunities for
signalers to deceive perceivers by sending false information. This
created a selective pressure on perceivers to develop resistance
mechanisms designed to evaluate the reliability of the source. It
has been argued that, in addition to the evaluation of an utterance’s
relevance, humans have developed cognitive mechanisms to
evaluate a signaler’s reliability (Sperber et al., 2010). I argue
that when evaluating the trustworthiness of a signal, perceivers
use other cues or indices present in the signal that are difficult
to manipulate or control voluntarily, for example emotional
components.

Emotional expressions have been found to strongly influence
person perception (Knutson, 1996; Hess et al., 2000). In line with
the idea that emotions are essential to maintain commitment
to social contracts (Hirshleifer, 1987; Frank, 1988) it was found
that emotional expressions could function as reliable indicators
of behavioral intentions and interpersonal dispositions such as
prosociality (Brown et al., 2003; Mehu et al., 2007) or threat
(Reed et al., 2014). The reason why perceivers would rely on
emotional cues tomake adaptive social decisions is that these cues
reflect automatic psychobiological processes that are responsible
for the production of adaptive behavior that may also have
implications for the perceiver’s adaptation. Therefore, the initial
stages of emotion-based behavioral sequences are informative as
they allow to predict future behavior and anticipate adjustment
to a situation. It is therefore adaptive for perceivers to react
emotionally to a range of observed emotional cues, and to
consider these cues as important sources of social information
(van Kleef, 2009). Inferences about the behavioral intentions of
signalers is an important goal for perceivers and the accuracy of
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these inferences likely determines whether reactions to emotional
displays of others are adaptive in the long run. Facial signs of
enjoyment displayed in parallel to verbally expressed intentions
to cooperate can be predictive of cooperative moves (Reed et al.,
2012), suggesting that emotional signals could be used to evaluate
the reliability of verbal claims. Therefore, when evaluating
multimodal signals that contain symbolic components, perceivers
could give particular attention to the emotional components of the
signals as the latter may ensure the reliability of the former (Mehu
and Scherer, 2012).

Emotional signals lead to emotional reactions in perceivers
(Forgas, 1998; Owren and Bachorowski, 2003; van Kleef, 2009),
and these emotional reactions canmodify the perceiver’s thoughts
and behavior to the advantage of the signaler (van Kleef et al.,
2004). I argue that emotionality is a property of multimodal
communication that makes it more efficient at producing
responses in perceivers that are adaptive to signalers. In this
view, emotion does not represent the content of a signal that
is encoded by a signaler in order to be decoded by a perceiver,
but one of a signal’s properties, which is activated by a series of
automatic cognitive and physiological processes that are difficult
to control voluntarily. There are two ways emotional processes
make a signal more efficient. The first is bymodifying the physical
properties of the signal and making it more intense, more salient,
and more variable, hence more difficult for perceivers to resist
to, to ignore, or to habituate to. Second, emotional processes
make a signal more efficient by acting on the cognitive processes
which function is to evaluate a signal’s authenticity. In support
to this view, perceived authenticity of an expression is related
to the intensity of the facial cues that are more difficult to
control voluntarily (Mehu et al., 2012b). In this context, emotional
authenticity can be conceived as the likelihood that the signal
is associated with the cognitive, physiological, and experiential
processes involved in the coordination of adaptive responses
(Scherer, 2005). In other words, an emotionally authentic signal
is a good predictor of the signaler’s tendency to react in a
particular situation. In day-to-day communication, emotional
signals act in parallel to symbolic signals to make the overall
multimodal signal appear more salient in the eyes (or ears)
of perceivers and to make the information content of the
symbolic component more reliable. Rather than to transfer
information about emotional states, the function of emotional
signals is therefore to optimize the effect of multimodal signals on
perceivers.

Conclusion

The question of what is transmitted in non-verbal communication
has kept researchers busy for the last decades. Looking for
information about emotion or its components (Ekman et al.,
1980; Scherer and Grandjean, 2008), information about social
motives (Fridlund, 1994; Parkinson, 2005), information about
personality (Hall et al., 2005), or information about attitudes
(Mehrabian, 1971), non-verbal communication research has been
on an incessant quest for signal meaning. In my opinion, the
strong focus on questions of meaning is based on excessive
reliance on the view that communication mostly functions to
transfer information. Models of information transfer are useful
to understand certain aspects of symbolic communication, but
they have to be complemented with models that emphasize social
influence. Such integration implies that we recognize the different
functions associated with the roles of signaler and perceiver in
communication. Although these two roles interact to a great
extent and have co-evolved during human evolutionary history,
one cannot necessarily assume that signalers’ goals are to serve
perceivers’ goals. With this in mind, research should pursue
questions related to what is achieved by communicative signals
and by perceivers’ assessment mechanisms, along with a careful
analysis of the contextual factors and interactive consequences of
multimodal displays.

I propose that multimodal signals that include both symbolic
and emotional components are advantageous for signalers in
that they are more likely to produce the adequate response
in perceivers because (a) they contain information necessary
for perceivers to evaluate the signal in relation to context
(they target perceiver’s evaluations of relevance) and (b)
they show appropriate correlation with social information
adaptive to perceivers (they target perceivers’ evaluation of
the trustworthiness of the source). Future research needs to
clarify the processes involved in the production of multimodal
signals (for example the appraisal processes underlying
emotional communication, Mortillaro et al., 2013) as well
as the role of abstract, language-based, representational
structures as possible meditators of perceivers’ responses to
signals. Finally, investigating the costs and benefits for signaler
and perceiver that are inherent to the context in which
communication takes place should also constitute an important
element of future study designs in social signal processing
research.
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In interpreting verbal messages, humans use not only verbal information but also non-
verbal signals such as facial expression. For example, when a person says “yes” with a
troubled face, what he or she really means appears ambiguous. In the present study,
we examined how deaf and hearing people differ in perceiving real meanings in texts
accompanied by representations of facial expression. Deaf and hearing participants
were asked to imagine that the face presented on the computer monitor was asked
a question from another person (e.g., do you like her?). They observed either a realistic
or a schematic face with a different magnitude of positive or negative expression on a
computer monitor. A balloon that contained either a positive or negative text response
to the question appeared at the same time as the face. Then, participants rated how
much the individual on the monitor really meant it (i.e., perceived earnestness), using
a 7-point scale. Results showed that the facial expression significantly modulated the
perceived earnestness. The influence of positive expression on negative text responses
was relatively weaker than that of negative expression on positive responses (i.e., “no”
tended to mean “no” irrespective of facial expression) for both participant groups.
However, this asymmetrical effect was stronger in the hearing group. These results
suggest that the contribution of facial expression in perceiving real meanings from text
messages is qualitatively similar but quantitatively different between deaf and hearing
people.

Keywords: smileys, text interpretation, chat, social signals, earnestness, deaf, hearing

Introduction

Interpreting verbal messages, perceiving others’ real meaning, and responding to them appropri-
ately are important in successful communication. In some cases, the meanings are communicated
directly in a verbal form, but in most cases, we infer them by cues that are provided explicitly or
implicitly (Duncan, 1969). Most of the cues that signal the real meanings might be in visual or
auditory modalities. For instance, expressions of emotion in the face and through body movement
would be cues in the visual modality, whereas prosody such as speed, intonation, and accent
of the voice would be cues in the auditory modality (Scherer et al., 1991; Banse and Scherer,
1996).

The recent increase of human–computer interaction and human–human communication via
computer requires a person to use similar yet slightly different communication styles than a face-to-
face communication. The major difference is the amount of information and relative contribution
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of different sensory modalities that are being accessed. For exam-
ple, in a computer-mediated communication such as e-mails and
online chats, we convey our thoughts mainly with text messages.
Thus, there are fewer non-verbal cues for emotion that would
otherwise play an important role in inferring real meaning in
face-to-face communications. Emoticons and avatars are used to
replace non-verbal cues in computer-mediated communications.
It has been reported that emotional expression by such methods
can modify inference of meanings from text messages (Derks
et al., 2008).

Indeed, facial expression is a rich source of information on
emotional states for the beholder and is considered the most
important cue. It has been proposed that the perception of human
facial expression is universal regardless of culture in most cases
(Ekman et al., 1969; Ekman and Friesen, 1971), with some cogni-
tive and behavioral differences in interpreting facial expressions,
for example, with regard to perceiving the intensity of emotions
(Ekman et al., 1987), integrating social context into emotion
judgment (Masuda et al., 2008), mental representations (Jack
et al., 2012), and fixation maps (Jack et al., 2009). Since there are
many cultural differences in the cognitive process in addition to
the difference in cognition of facial expression of emotion (for
review, Nisbett and Masuda, 2003), the findings may reflect a
general difference in cognitive process across cultures rather than
differences specific to facial expression. Facial expression is useful
not only for perceiving emotional states of the communicator but
also in judging deception (Feldman et al., 1979). For instance,
Ekman and Friesen (1974) demonstrated that people utilized both
facial and body cues when detecting deception from videotaped
interviews in which models acted out both honest and deceptive
responses.

Similar to the cross-cultural commonalities and differences,
deaf people and people with normal hearing share a common per-
ception of expression of emotion, while using different eye move-
ment paths in collecting information from the face (Watanabe
et al., 2011). In addition, previous research has demonstrated dif-
ferences between deaf people and hearing people in the perceptual
and cognitive processing of faces when memorizing (Arnold and
Murray, 1998) and discriminating faces, especially in discriminat-
ing the local features of faces (Bettger et al., 1997; McCullough
and Emmorey, 1997). As McCullough et al. (2005) discussed,
such differences might be due to deaf people’s constant attention
to componential facial features versus hearing people’s constant
attention to holistic facial information, and these differences
might influence and/or be influenced by other cognitive processes,
for example, how the facial expression information is integrated
with information from other modalities.

Although facial expression is essential to understanding the
emotional state of others, it is rarely used independently. Rather,
it is integrated with other information. For example, in the per-
ception of real intention based on verbal, vocal, and visual input,
the perception of positivity in the affective message expressed in
onemodality is discountedwhen there is contradictory input from
othermodalities (Bugental et al., 1970; Friedman, 1979). However,
the difference in the cognitive processing of facial expression
between deaf and normal hearing people may result in a different
usage of facial expression information when integrating it with

information from other modalities to infer real meanings from
text messages made by others.

Thus in the current study, we aimed to improve understanding
of how the use of facial expression in perceiving real mean-
ings from text messages differs between deaf and hearing adults,
depending on combinations of verbal information presented as
texts together with facial expressions of emotion to convey either
consistent or contradictory contents.

We had two hypotheses for the current study. The first refers to
the communication strategy in deaf people. In addition to the dif-
ference in gaze strategy during processing emotional expression of
the face (Watanabe et al., 2011), there are a few reports suggesting
a difference between deaf and hearing people in the usage of non-
verbal cues when communicating with others (Barnett, 2002).
For example, it was reported that differences in interpreting non-
verbal gestures including body posture and facial expression may
lead to misunderstandings between a deaf patient and his or her
hearing physician (Barnett, 2002). However, to our knowledge, the
exact contexts and situations for such misunderstandings remain
unclear. In the current study, we investigated how facial emotion
expression on a computer monitor would affect the inference of
real meaning behind the explicitly presented text responses. Our
prediction was that deaf people regard visual facial expressions
as more useful sources for interpreting the text messages because
they have less access to auditory cues (e.g., prosodic sounds).
The second hypothesis refers to the politeness assumption (Brown
and Levinson, 1987); that is, how a participant assumes the per-
son/agent in the conversation as being polite may depend on the
conversation context. The communication strategy might differ
depending on the situation, especially when the response is a
negative one. In order to examine this, we chose the following
two questions: Asking someone for a favor and asking about
liking another person. Asking someone for a favor occurs in a
conversation between two persons. A negative response would
not be desirable for the questioner. Such a situation requires the
assumption that the answerer would avoid explicitly expressing a
negative response but would employ an implicit way (e.g., negative
facial expression). On the other hand, asking about liking another
person who is not present in the conversation would threaten
the relationship between the pair less although it might still not
be socially desirable. Therefore, we expected that the influence
of emotion expression as a non-verbal cue would be smaller.
We further predicted that, if the response was positive, such a
difference between emotion expressions would not be observed.

In our experiment, both realistic and schematic faces were
investigated because we assumed that, irrespective of hearing
ability and history, there might be a general difference in the
amount of emotional signals that can be extracted from these types
of faces (Wallraven et al., 2007) and a difference in strategy that
observers take while seeing them. For example, it was reported
that gaze behavior for recognizing schematically drawn faces and
natural-looking faces is different, and that schematically drawn
faces facilitate analytical processing (Schwarzer et al., 2005). Fur-
ther evidence for the different strategies can be found in face
recognition (Rosset et al., 2010) and in emotional processing of
schematic faces in patients with autistic spectrumdisorder (Rosset
et al., 2008). In addition, understanding the possible differences
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between face types would be informative when applying these
findings to human–computer interaction because the agents on
the computer are often abstract representations of a person.

Although a computer-generated (CG) face is not animated
and thus may not have an intention as in the pragmatic and
philosophical literature (Grice, 1969; Sperber and Wilson, 2002),
humans tend to extractmeaning fromwhat is displayed on the face
(Öhman, 2002). Thus in the current study, we investigated percep-
tion of the real meaning of what was conveyed via verbal message
and emotion expression of the face with different levels of consis-
tency. We were especially focused on whether participants’ infer-
ences of the meaning that is explicitly (e.g., verbally) explained
would be affected by emotional valence that is displayed on the
face.

Materials and Methods

Participants
The participants included 20 deaf Japanese people and 36 Japanese
people with normal hearing function. All deaf participants were
undergraduate students at the Tsukuba University of Technology,
where hearing loss of 60 dB or more is one of the requirements
for admission. Data from five hearing participants were excluded
because the session for expression rating was not completed.
The remaining data from 20 deaf participants (6 males and 14
females; mean age= 21.1 years old, SD= 1.0) and 31 participants
with normal hearing function (20 males and 11 females; mean
age = 21.2 years old, SD = 1.6) were used for the analyses.

Visual Stimuli
Schematic faces and CG faces with a stepwise emotional expres-
sion manipulation were used in the experiment (Figure 1). In
the schematic faces, to express positive and negative emotions,
the shapes and height of the eyebrows and mouth line were
manipulated. For positive expressions, the middle points of the
eyebrows were placed above the ends of the eyebrows, and the
middle point of the mouth line was placed below the ends of the

mouth. Conversely, for negative expressions, the middle points
of the eyebrows were placed below the ends of the eyebrows, and
that of the mouth line was placed above the ends. The heights of
themiddle points were systematically manipulated and connected
with the end points (of eyebrows or mouth line) by using a spline
curve. For CG faces, a face generated by the FaceGen Modeler 3.3
(Singular Inversions, Toronto, ON, Canada) with average race and
average gender was used as default. Then, the face was morphed
by changing to “SmileClosed” to generate positive expressions or
changing to “Disgust” to generate negative expressions. “Smile-
Closed” and “Disgust” are parameters defined in the FaceGen
Modeler.

To determine the optimal range of emotion expression to be
used in the experiment, we conducted a preliminary experiment
with faces with 11 levels of emotion expression. Thirteen hear-
ing participants inferred the meaning behind the text messages
displayed along with the face in an analogous way to the main
experiment. For CG faces, negative emotion expressions were
created with changing levels of “Disgust” in the FaceGen Modeler.
Positive emotion expressions were created with changing levels
of “SmileClosed.” Thus, the set of CG faces consisted of 11 faces
including 5 negative and 5 positive expressions and one neutral
expression. The results of the preliminary experiment indicated
that participants’ evaluation drastically changed even with the
mild expressions and that for the stronger expressions the eval-
uations tended to saturate. Thus, based on these results, we chose
the range of emotion expressions being used in our main exper-
iment. The range of expressions selected for CG faces consisted
of emotion expression magnitudes of 0.13, 0.27, and 0.40 for
both “Disgust” and “SmileClosed” within the settings of FaceGen
Modeler in addition to the original neutral face. For the schematic
faces, levels 5 and 8 used in the preliminary experiment (with 1
the most negative and 11 the most positive emotion expression
of the faces that were used) were selected as the minimum and
maximum expressions, respectively, and seven levels of emotional
expressions were prepared to be distributed evenly within the
range.

FIGURE 1 | Facial stimuli used in the experiment.
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FIGURE 2 | Sample screen for evaluating earnestness. The texts were
presented in Japanese in the experiment.

Procedure
The experiment consisted of two blocks. In the first experimental
block, for each trial, a schematic or a CG face was presented
at the center of the monitor, with a question directed to the
face presented at the top and a response to the question in a
cartoon balloon. Participants were asked to rate whether the
response shown in a cartoon balloon represented the person’s
genuine feeling based on a 7-point Likert scale from 1 = false to
7 = real (perceived earnestness; see Figure 2). There were two
sets of questions and responses (positive and negative) used in
the experiment. All the questions and responses were presented
in Japanese. In one set, the question was “Do you like her? (kanojo
no koto suki? in Japanese),” and a positive response was “Yes
(suki)” while a negative response was “No (kirai)” (negative). In
the other set, the question was “Would you do this task? (kono
shigoto yatte kureru?),” and a positive response was “Yes (iiyo)”
while a negative response was “No (iyada).” The types of face
stimuli (schematic or CG) and questions were fixed in sub-blocks
in which seven levels of expression of emotion from negative
to positive and two types of response (negative/positive) were
presented in a randomized order. The order of sub-blocks was
counterbalanced among participants. This was followed by the
second experimental block, where the same faces as in the first
block were presented one by one on the monitor, and participants
were asked to judge how positive the emotion expressed on each
face was, using a 7-point Likert scale ranging from 1 = nega-
tive to 7 = positive. This experimental block consisted of two
sub-blocks, in which schematic and CG faces were presented
separately. Each individual face was presented twice within a
sub-block in randomized order. Experiments were written in
Matlab using the Psychophysics Toolbox extensions (Brainard,
1997; Pelli, 1997; Kleiner et al., 2007). The instructions were
given in written texts for both groups of participants. Although
the specific situations of the contexts were not described in the
instruction, most participants reported that they spontaneously
took the situation as representing the messages and faces cre-
ated by a third party in a face-to-face scenario. The procedure
was approved by the internal review board of the University of
Tokyo.

Results

Ratings of Emotion Expressed on the Faces
To check if the emotional expression manipulation was success-
ful, effects of pre-assigned emotion expression level (1: the most
negative to 7: the most positive), type of face (schematic/CG),
and participants’ hearing status (deaf/hearing) were examined
by a three-way repeated measure analysis of variance (ANOVA),
conducted on the ratings for positivity/negativity of emotions
expressed in the faces.

Ratings of perceived positivity/negativity of emotion expressed
in the schematic and CG faces increased as the pre-assigned level
of expressed emotion increased (Figure 3). This indicated the
manipulation of the expression of emotion was successful both in
schematic faces and in CG faces. Results of the ANOVA demon-
strated that the main effect of pre-assigned level of expressed
emotion on the ratings was significant [F(3.31, 162.2) = 607.6,
p< 0.001,η2

p = 0.93, usingGreenhouse–Geisser corrected degrees
of freedom], such that faces manipulated to appear more pos-
itive were perceived as more positive. A significant interaction
effect was found between stimulus type and emotional expression
level [F(4.69, 229.9) = 4.08, p < 0.01, η2

p = 0.078] while the
main effect of stimulus type was not significant [F(1, 49) = 0.63,
p = 0.43, η2

p = 0.013]. This indicates that the perceived positivity
of the expressed emotionsmight differ betweenCG and schematic
faces. Neither main effect nor interactions associated with partic-
ipants’ hearing status were significant: F(1, 49) = 1.46, p = 0.23,
η2

p = 0.029 for the main effect of hearing status, F(1, 49) = 1.78,
p= 0.19, η2

p = 0.035 for the interaction between stimulus type and
hearing status, F(3.31, 162.2) = 1.41, p = 0.24, η2

p = 0.028 for the
interaction between pre-assigned emotion expression level and
hearing status, and F(4.69, 229.9)= 1.03, p = 0.40, η2

p = 0.021 for
the three-way interaction, using Greenhouse–Geisser corrected
degrees of freedom in calculating the latter two F-values.

To further examine if there were differences in emotion expres-
sion recognition between deaf and hearing participants, we per-
formed a regression analyses within each participant on the
ratings of perceived emotion with the pre-assigned emotion
expression level a descriptive factor, separately for schematic and
CG faces. Then, the coefficients of the pre-assigned level were
compared across stimulus type and participant groups with a
repeated-measure Bayesian ANOVA with using JASP 0.5 (Love
et al., 2014). The results indicated neither significant effects of
stimulus type (BF10 = 0.25; substantial evidence for H0), par-
ticipant group (BF10 = 0.12; substantial evidence for H0), nor a
significant interaction between these two factors (BF10 = 0.11;
substantial evidence for H0). The results supported that deaf and
hearing participants did not differ in interpreting facial emotional
expression of the faces used in the experiment.

Inferring Real Meaning from Text Messages
Accompanied with Facial Expression
For perceived earnestness, the ratings for the trials where the facial
character responded negatively to the questions (i.e., response was
“No”) were inverted before being used in the analyses. Thus, in
the ratings after this manipulation, one indicates that participants
estimated the response’s real meaning as negative, while seven
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FIGURE 3 | Ratings of facial expressions. Error bars represent standard errors of means.

indicates that participants estimated the response’s real meaning
as positive, regardless of congruency between the response shown
in the balloon and the estimated realmeaning. Then, the influence
of the facial expression on the participants’ interpretation of the
text response shown in the balloon (positive or negative) and
the influence of the participants’ hearing status were examined
by a mixed-design ANOVA with stimulus type (schematic or
CG), question asked, text response (positive or negative), and pre-
assigned level of expressed emotion as within-participant factors
and participants’ group (deaf or hearing) as between-participants
factor.

Generally, as shown in Figure 4, the texts with positive facial
expression were interpreted as havingmore positive real meaning,
regardless of stimulus type, question, or response presented in the
balloon. The ANOVA results that demonstrated the significant
main effect of the pre-assigned level of emotion expressed on
the face [F(2.12, 103.8) = 189.3, p < 0.001, η2

p = 0.79, using
Greenhouse–Geisser corrected degrees of freedom] supported
this finding. Regarding the effect of response type, the main
effect of response type and the interaction between response
type and expressed emotion level were both significant [F(1,
49) = 5.10, p < 0.05, η2

p = 0.094, for the main effect; F(2.30,
112.7) = 18.4, p < 0.001, η2

p = 0.273 for the interaction, using
Greenhouse–Geisser corrected degrees of freedom], suggesting
that the effect of facial expression differed depending on whether
the response was positive or negative. When the response was
negative (dashed lines in Figure 4), the ratings tended to be
low. This indicates that if the response was negative, the real
meaning was judged as negative irrespective of the facial expres-
sion. Further, this interaction significantly differed between the
participant groups [F(2.30, 112.7) = 6.15, p < 0.005, η2

p = 0.112,
using Greenhouse–Geisser corrected degrees of freedom]. Thus,

this indicates a difference between deaf people and hearing peo-
ple in how facial expression was integrated into the evaluation
of perceived earnestness (and negativity of the text messages).
The ANOVA results also demonstrated a significant interaction
between face type and expressed emotion level [F(6, 294) = 7.55,
p < 0.001, η2

p = 0.13], but this might be an artifact from the
different interpretation of emotion depending on face type found
in the positivity/negativity ratings of the expressed emotion. The
interaction between face type, context, and participants was also
significant [F(1, 49) = 5.06, p < 0.05, η2

p = 0.094]. All remaining
main effects and interactions, including the main effect of partici-
pants’ hearing status [F(1, 49)= 0.067, p= 0.80, η2

p = 0.001], were
not significant or only marginally significant.

We also conducted separate ANOVAs for each group to
interpret the significant interactions. The main effect of facial
expression was significant both in hearing [F(1.97, 59.1) = 94.2,
p< 0.001, η2

p = 0.76] and deaf participants [F(1.97, 37.5)= 102.2,
p < 0.001, η2

p = 0.84; both using Greenhouse–Geisser corrected
degrees of freedom]. Thus, it was confirmed that the emotion
expression had a significant influence on how the text response
was interpreted.

The main effect of the response type was significant only in
hearing participants [F(1, 30) = 6.61, p < 0.05, η2

p = 0.18 for
hearing; F(1, 19) = 0.63, p = 0.44, η2

p = 0.032 for deaf]. This
might reflect that a significant interaction between response type
and expression level was found in hearing participants [F(2.07,
62.0)= 23.3, p< 0.001, η2

p = 0.44], while the interaction was only
marginally significant in deaf participants [F(2.67, 50.8) = 2.41,
p = 0.084, η2

p = 0.11]. These results may indicate that the rating
was differently influenced by emotional expressions depending on
the content of verbal response in hearing participants and resulted
in the significant main effect of the response type.
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FIGURE 4 | Perceived real meaning inferred from the combination
of text and facial expression for schematic faces (A) and for
computer-generated faces (B). Blue lines are for the question “Do you like
her?” with a positive response “Yes” (blue solid lines) and a negative

response “No” (blue dashed lines). Red lines are for the question “Would you
do this task?” with a positive response “Yes” (red solid lines) and a negative
response “No” (red dashed lines). Error bars represent standard errors of the
means.

Significant interactions between face type and expression level
were found in both participant groups [F(6, 180)= 5.19, p< 0.001,
η2

p = 0.15 for hearing; F(6, 114) = 3.26, p < 0.01, η2
p = 0.15 for

deaf]. As already discussed, the influence of pre-assigned expres-
sion level on perceived positivity/negativity differed between face

types. Thus, the interactions between face type and expression
level in the rating might reflect the significant interaction in eval-
uation of facial expression itself rather than the difference in the
process of integrating the facial emotion expression to interpret
the real meaning.
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Only in deaf participants, significant interactions between face
type, context, and response type [F(1, 19) = 5.03, p < 0.05,
η2

p = 0.21] and between context, response type, and emotion
expression of the face [F(6, 114) = 2.44, p < 0.05, η2

p = 0.11]
were found. Post hoc comparisons of these interactions indicated
that the ratings of schematic faces in the situation where a positive
response was given to the question “Do you like her?” were signifi-
cantly higher than those of CG faces [difference ofmean= (−0.39,
95% CI (−0.70, (−0.075), p< 0.05], while the ratings for different
face types were not significantly different for the question “Would
you do this task?” [difference of mean = 0.27, 95% CI (−0.20,
0.73), p = 0.231, both with Bonferroni correction]. The ratings
with the two most positive emotion expressions were significantly
higher when interpreting positive verbal responses than when
interpreting negative responses but only in the trials with CG faces
[difference of mean = 0.68, 95% CI (0.14, 1.21), p < 0.05 for the
second-most positive expression; difference of mean = 0.55, 95%
CI (0.019, 1.08), p < 0.05 for the most positive expression]. These
differences were not foundwhen interpreting the verbal responses
presented with schematic faces.

An Ordinal Logistic Regression Model
for Predicting Perceived Real Meaning of the
Verbal Responses
To investigate possible factors that affected the ratings of positivity
of the real meaning, an ordinal logistic regression analysis was
performedwith all the possible factors (participant group, context,
type of face, and type of text response), covariate (emotion expres-
sion level of face), as well as all possible interactions between
them. Then, we restructured the model by using the factors that
had significant impacts on our first model. Extracted factors were
participant group (i.e., hearing ability), emotion expression level,
interaction between participant group and emotion expression
level, interaction between participant group and type of text
response (i.e., “yes” or “no”), interaction between hearing ability,
type of text response, and emotion expression level. The results
confirmed what we found in the ANOVAs.

Overall, the ratings were more positive in hearing participants
than in deaf participants [odds ratio = 2.54, 95% CI (1.66, 3.89),
Wald χ2(1) = 18.3, p < 0.001]. The higher ratings of positivity
were associated with more positive emotion expression with an
odds ratio of 1.94 [95% CI (1.80, 2.10), Wald χ2(1) = 280.9,
p < 0.001]. The effect was smaller in hearing participants than in
deaf participants with an odds ratio of 0.73 [95% CI (0.67, 0.81)],
Wald χ2(1) = 40.4, p < 0.001.

Hearing participants perceived the positive text response (i.e.,
“yes”) as more positive than they perceived negative (i.e., “no”)
as negative with an odds ratio of 0.21 [95% CI (0.14, 0.31), Wald
χ2(1) = 63.1, p < 0.001]. In contrast, deaf participants did not
show such an asymmetry [odds ratio = 0.75, 95% CI (0.47, 1.20),
Wald χ2(1) = 1.45, p = 0.23].

Furthermore, significant interactions between response type
and emotion expression level were found both in hearing and
deaf participants. In both groups, the increase of ratings with
increasing emotion expression level was steeper for positive than
for negative text response [odds ratio = 1.75, 95% CI (1.60, 1.90),
Wald χ2(1) = 158.1, p < 0.001 for hearing participants; odds

ratio = 1.15, 95% CI (1.03, 1.27), Wald χ2(1) = 6.41, p < 0.05
for deaf participants].

Discussion

The present results showed that there was no significant effect
related to participant hearing status in the judgment of facial
expression, suggesting that the way hearing and deaf participants
interpreted expression of emotion on faces did not differ. Past
research has also suggested no difference between deaf and hear-
ing participants in interpreting the emotional valence of facial
expression using human facial pictures depicting various emo-
tions (Watanabe et al., 2011). Our findings are consistent with
these results and extended the understanding to non-realistic
human faces (i.e., schematic faces and CG faces).

The findings from the present study also indicate that in terms
of inferring real meaning of the verbal response, the emotion
expressed on the face might qualify the meaning of what is
explicitly stated as a verbal response to the question. For exam-
ple, when the verbal response was “yes,” the real meaning was
rated at approximately two and thus interpreted as “no” for the
faces expressing the highest levels of negative emotion. Facial
expressions serve as strong non-verbal cues in recognizing oth-
ers’ intention (Ekman and Friesen, 1974; Friedman, 1979). The
significant interactions between response type and facial emo-
tion expression in the ANOVA and the ordinal regression model
indicate an asymmetry in the contribution of facial expression
depending on the response. In other words, we rely on facial
expression in interpreting the text messages more when interpret-
ing a positive than a negative response. This may indicate that we
spontaneously assume that others may hide their real feeling in
order to behave kindly or politely to us (politeness assumption),
and thus in such a situation, we may tend to integrate non-verbal
cues other than their direct response presented verbally. When
others respond negatively, we tend to interpret their responses as
their real meaning and thus make less use of non-verbal cues such
as facial expression, as there is no reason for others to pretend to
be unsociable.

As for the commonality and difference between deaf and hear-
ing participants, the current results showed that (1) there was
no difference in interpreting emotional valence from faces, (2)
both groups were influenced by the facial expressions to infer
the real meaning behind the text response, (3) the influence of
facial expression was smaller when interpreting the text response
that was expressing negative contents to the questioner in hear-
ing participants, and (4) there was no such difference in deaf
participants. For the influence of face type and conversational
context, the ordinal logistic regression analysis showed that (5)
no influence of facial type or conversational context was found in
both participant groups, while (6) the interactions between facial
type, context, and response or between context, response, and
expression level were suggested for deaf participants only. Post
hoc analyses following ANOVAs suggested that the influence of
response type was observed only in CG faces in deaf participants.

In our results, the most pronounced difference in communica-
tion style between deaf and hearing people was the effect of pos-
itive emotion expression on interpreting the negative responses.
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Hearing participants tended to interpret negative response as
having negative meaning, irrespective of the positivity of emo-
tion expression (i.e., “no means no”). However, deaf participants
tended to be influenced more by positive facial expression when
interpreting the negative responses.

One possible reason could be that deaf people consider non-
verbal visual cues (including facial expression) as more useful
sources for interpreting verbal messages because they usually have
less access to auditory cues. Hearing people integrate face and
voice information in understanding others in everyday situations
(Campanella and Belin, 2007), while the degree of cross-modal
influence between facial expression and voice depends on culture
(Tanaka et al., 2010). In the current study, our experimental con-
dition provided verbal information as written texts presented on
themonitor and thus did not provide prosodic sound information
that could be used to infer emotion. However, this did not prevent
participants from imagining the prosody of each verbal stimulus.
Hearing people may weigh visual information differently than
deaf people because they usually have access to auditory cues
(e.g., prosodic sounds). More specifically, visual facial expressions
might be more useful sources for deaf people for understanding
emotions. This in turn might explain the smaller asymmetry
(i.e., the relatively larger effect of positive facial expression on
the negative messages). However, there are other possibilities
that might explain the current findings, such as difference in
conceptualization of politeness and exploratory strategy (e.g., eye-
movement). Further research will be required to clarify this
issue.

Our results suggested that there was no significant difference
between face types. This implies that even simple schematic faces
can be as strong non-verbal cues for modifying interpretations
of text messages as realistic CG faces, which is consistent with
research on emoticons and avatars (Walther and D’Addario, 2001;
Derks et al., 2008). However, our results also showed that the
influence of facial expression on interpretation of the text message
differed depending on hearing experience or ability of participants
and that this difference was found in particular when the text
response was expressing negative content to the questioner. These
findings indicate the inhomogeneous effect of facial emotion

information on text messages and its interaction with the com-
munication strategy of the receiver. Therefore, caution should be
exercised when emoticons or expressive avatars are used as non-
verbal cues in human–computer interaction and human–human
interaction via information systems. Although, in the current
study, we focused on the difference between hearing and deaf
people, our findings that the integration of emotion expression
might rely on the presumption of politeness might be extended to
possible differences between cultures. Perception or expectation
of politeness and how it is conceptualized in the conversation
might differ between cultures (Matsumoto, 1988; Haugh, 2004).
In particular, as Matsumoto (1988) reported, the concept of “face”
(in pragmatics) in Japanese culture may differ from that of other
cultures, and this might represent a consideration for the present
findings.

In conclusion, facial expressions influenced the interpretation
of the response that was verbally presented as text. The influence
of positive facial expressions on the perception of negative verbal
response was smaller compared to that of negative facial expres-
sions on the perception of positive verbal response. Although the
perception of facial expression did not differ depending on hear-
ing status, the influence of positive/negative emotion expressions
on the perception of negative/positive verbal response was less
asymmetrical in deaf participants compared to that in partici-
pants with normal hearing. This difference might be due to the
difference in availability and usage of prosodic sound and facial
expression (i.e., feature/holistic processing of faces in deaf/hearing
participants) in inferring the real meanings from verbal mes-
sages. Although we focused on the effect of facial expression on
interpretation of text messages in the current study, our results
could also be interpreted in other ways, that is, text messages may
affect the interpretation of the facial emotion expressions. These
possibilities require further investigations.

Acknowledgments

This work was partly supported by JSPS KAKENHI 24300279,
Cosmetology Research Foundation, Japan, and CREST, Japan
Science and Technology Agency.

References

Arnold, P., and Murray, C. (1998). Memory for faces and objects by deaf and
hearing signers and hearing nonsigners. J. Psycholinguist. Res. 27, 481–497. doi:
10.1023/A:1023277220438

Banse, R., and Scherer, K. (1996). Acoustic profiles in vocal emotion expression. J.
Pers. Soc. Psychol. 70, 614–636. doi: 10.1037/0022-3514.70.3.614

Barnett, S. (2002). Communication with deaf and hard-of-hearing people: a
guide for medical education. Acad. Med. 77, 694–700. doi: 10.1097/00001888-
200207000-00009

Bettger, J., Emmorey, K., McCullough, S. H., and Bellugi, U. (1997). Enhanced facial
discrimination: effects of experience with American Sign Language. J. Deaf Stud.
Deaf Educ. 2, 223–233. doi: 10.1093/oxfordjournals.deafed.a014328

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision 10, 433–436. doi:
10.1163/156856897X00357

Brown, P., and Levinson, S. C. (1987). Politeness: SomeUniversals in LanguageUsage.
Cambridge: Cambridge University Press.

Bugental, D. E., Kaswan, J. W., and Love, L. R. (1970). Perception of contradictory
meanings conveyed by verbal and nonverbal channels. J. Pers. Soc. Psychol. 16,
647–655. doi: 10.1037/h0030254

Campanella, S., and Belin, P. (2007). Integrating face and voice in person percep-
tion. Trends Cogn. Sci. 11, 535–543. doi: 10.1016/j.tics.2007.10.001

Derks, D., Fischer, A. H., and Bos, A. E. R. (2008). The role of emotion in computer-
mediated communication: a review. Comput. Hum. Behav. 24, 766–785. doi:
10.1016/j.chb.2007.04.004

Duncan, S. J. (1969). Nonverbal communication. Psychol. Bull. 72, 118–137. doi:
10.1037/h0027795

Ekman, P., and Friesen, W. V. (1971). Constants across cultures in the face and
emotion. J. Pers. Soc. Psychol. 17, 124–129. doi: 10.1037/h0030377

Ekman, P., and Friesen, W. (1974). Detecting deception from the body or face. J.
Pers. Soc. Psychol. 29, 288–298. doi: 10.1037/h0036006

Ekman, P., Friesen, W., O’Sullivan, M., Chan, A., Diacoyanni-Tarlatzis, I., Heider,
K., et al. (1987). Universals and cultural differences in the judgments of facial
expressions of emotion. J. Pers. Soc. Psychol. 53, 712–717. doi: 10.1037/0022-
3514.53.4.712

Ekman, P., Sorenson, E., and Friesen, W. (1969). Pan-cultural elements in facial
displays of emotion. Science 164, 86–88. doi: 10.1126/science.164.3875.86

Feldman, R., Jenkins, L., and Popoola, O. (1979). Detection of deception in adults
and children via facial expressions. Child Dev. 50, 350–355. doi: 10.2307/
1129409

Frontiers in Psychology | www.frontiersin.org April 2015 | Volume 6 | Article 383 | 19

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Saegusa et al. Interpreting messages with facial expression

Friedman, H. (1979). The interactive effects of facial expressions of emotion and
verbal messages on perceptions of affective meaning. J. Exp. Soc. Psychol. 15,
453–469. doi: 10.1016/0022-1031(79)90008-8

Grice, H. (1969). Utterer’s meaning and intention. Philos. Rev. 78, 147–177. doi:
10.2307/2184179

Haugh, M. (2004). Revisiting the conceptualisation of politeness in English and
Japanese. Multilingua 23, 85–109. doi: 10.1515/mult.2004.009

Jack, R. E., Blais, C., Scheepers, C., Schyns, P. G., and Caldara, R. (2009). Cul-
tural confusions show that facial expressions are not universal. Curr. Biol. 19,
1543–1548. doi: 10.1016/j.cub.2009.07.051

Jack, R. E., Garrod, O. G. B., Yu, H., Caldara, R., and Schyns, P. G. (2012). Facial
expressions of emotion are not culturally universal. Proc. Natl. Acad. Sci. U.S.A.
109, 7241–7244. doi: 10.1073/pnas.1200155109

Kleiner, M., Brainard, D., and Pelli, D. (2007). What’s new in psychtoolbox-3?
Perception 36, ECVP Abstract Supplement. doi: 10.1068/v070821

Love, J., Selker, R., Verhagen, J., Smira, M., Wild, A., Marsman, M., et al. (2014).
JASP (Version 0.5) [Computer software].

Masuda, T., Ellsworth, P., Mesquita, B., Leu, J., Tanida, S., and Van de Veerdonk, E.
(2008). Placing the face in context: cultural differences in the perception of
facial emotion. J. Pers. Soc. Psychol. 94, 365–381. doi: 10.1037/0022-3514.94.3.
365

Matsumoto, Y. (1988). Reexamination of the universality of face: politeness phe-
nomena in Japanese. J. Pragmatics 12, 403–426. doi: 10.1016/0378-2166(88)
90003-3

McCullough, S., and Emmorey, K. (1997). Face processing by deaf ASL signers:
evidence for expertise in distinguishing local features. J. Deaf Stud. Deaf Educ.
2, 212–222. doi: 10.1093/oxfordjournals.deafed.a014327

McCullough, S., Emmorey, K., and Sereno, M. (2005). Neural organization for
recognition of grammatical and emotional facial expressions in deaf ASL
signers and hearing nonsigners. Cogn. Brain Res. 22, 193–203. doi: 10.1016/
j.cogbrainres.2004.08.012

Nisbett, R. E., and Masuda, T. (2003). Culture and point of view. Proc. Natl. Acad.
Sci. U.S.A. 100, 11163–11170. doi: 10.1073/pnas.1934527100

Öhman, A. (2002). Automaticity and the amygdala: nonconscious responses to
emotional faces.Curr. Dir. Psychol. Sci. 11, 62–66. doi: 10.1111/1467-8721.00169

Pelli, D. G. (1997). The videotoolbox software for visual psychophysics: trans-
forming numbers into movies. Spatial Vision 10, 437–442. doi: 10.1163/
156856897X00366

Rosset, D. B., Rondan, C., Da Fonseca, D., Santos, A., Assouline, B., and Deruelle,
C. (2008). Typical emotion processing for cartoon but not for real faces in
children with autistic spectrum disorders. J. Autism Dev. Disord. 38, 919–925.
doi: 10.1007/s10803-007-0465-2

Rosset, D. B., Santos, A., Da Fonseca, D., Poinso, F., O’Connor, K., and Deruelle,
C. (2010). Do children perceive features of real and cartoon faces in the same
way? Evidence from typical development and autism. J. Clin. Exp. Neuropsyc.
32, 212–218. doi: 10.1080/13803390902971123

Scherer, K. R., Banse, R., Wallbott, H. G., and Goldbeck, T. (1991). Vocal cues
in emotion encoding and decoding. Motiv. Emot. 15, 123–148. doi: 10.1007/
BF00995674

Schwarzer, G., Huber, S., and Dümmler, T. (2005). Gaze behavior in analytical and
holistic face processing. Mem. Cogn. 33, 344–354. doi: 10.3758/BF03195322

Sperber, D., andWilson,D. (2002). Pragmatics,modularity andmind-reading.Mind
Lang. 17, 3–23. doi: 10.1111/1468-0017.00186

Tanaka, A., Koizumi, A., Imai, H., Hiramatsu, S., Hiramoto, E., and de Gelder, B.
(2010). I feel your voice. Cultural differences in the multisensory perception of
emotion. Psychol. Sci. 21, 1259–1262. doi: 10.1177/0956797610380698

Wallraven, C., Bülthoff, H. H., Cunningham, D. W., Fischer, J., and Bartz, D. (2007).
Evaluation of real-world and computer-generated stylized facial expressions.
ACM Trans. Appl. Percept. 4. doi: 10.1145/1278387.1278390

Walther, J., and D’Addario, K. (2001). The impacts of emoticons on message
interpretation in computer-mediated communication. Soc. Sci. Comput. Rev. 19,
324–347. doi: 10.1177/089443930101900307

Watanabe, K., Matsuda, T., Nishioka, T., and Namatame, M. (2011). Eye gaze
during observation of static faces in deaf people. PLoS ONE 6:e16919. doi:
10.1371/journal.pone.0016919

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2015 Saegusa, Namatame and Watanabe. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org April 2015 | Volume 6 | Article 383 | 20

http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


ORIGINAL RESEARCH
published: 10 June 2015

doi: 10.3389/fpsyg.2015.00796

Edited by:
Sebastian Loth,

Universität Bielefeld, Germany

Reviewed by:
David Sobel,

Brown University, USA
Diane Poulin-Dubois,

Concordia University, Canada

*Correspondence:
W. Q. Yow,

Humanities, Arts and Social Sciences,
Singapore University of Technology

and Design, 8 Somapah Road,
Singapore 487372, Singapore

quin@sutd.edu.sg

Specialty section:
This article was submitted to

Cognitive Science,
a section of the journal
Frontiers in Psychology

Received: 18 February 2015
Accepted: 27 May 2015

Published: 10 June 2015

Citation:
Hung W-Y, Patrycia F and Yow WQ

(2015) Bilingual children weigh
speaker’s referential cues

and word-learning heuristics
differently in different language

contexts when interpreting
a speaker’s intent.

Front. Psychol. 6:796.
doi: 10.3389/fpsyg.2015.00796

Bilingual children weigh speaker’s
referential cues and word-learning
heuristics differently in different
language contexts when interpreting
a speaker’s intent
Wan-Yu Hung, Ferninda Patrycia and W. Q. Yow*

Humanities, Arts and Social Sciences, Singapore University of Technology and Design, Singapore, Singapore

Past research has investigated how children use different sources of information such
as social cues and word-learning heuristics to infer referential intents. The present
research explored how children weigh and use some of these cues to make referential
inferences. Specifically, we examined how switching between languages known (familiar)
or unknown (unfamiliar) to a child would influence his or her choice of cue to interpret
a novel label in a challenging disambiguation task, where a pointing cue was pitted
against the mutual exclusivity (ME) principle. Forty-eight 3-and 4-years-old English–
Mandarin bilingual children listened to a story told either in English only (No-Switch),
English and Mandarin (Familiar-Switch), English and Japanese (Unfamiliar-Switch), or
English and English-sounding nonsense sentences (Nonsense-Switch). They were then
asked to select an object (from a pair of familiar and novel objects) after hearing a
novel label paired with the speaker’s point at the familiar object, e.g., “Can you give
me the blicket?” Results showed that children in the Familiar-Switch condition were
more willing to relax ME to follow the speaker’s point to pick the familiar object than
those in the Unfamiliar-Switch condition, who were more likely to pick the novel object.
No significant differences were found between the other conditions. Further analyses
revealed that children in the Unfamiliar-Switch condition looked at the speaker longer
than children in the other conditions when the switch happened. Our findings suggest
that children weigh speakers’ referential cues and word-learning heuristics differently in
different language contexts while taking into account their communicative history with
the speaker. There are important implications for general education and other learning
efforts, such as designing learning games so that the history of credibility with the
user is maintained and how learning may be best scaffolded in a helpful and trusting
environment.

Keywords: mutual exclusivity, bilingualism, code-switching, word-learning, communicative signals, pragmatic
cues
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Introduction

Existing research in developmental psychology has shown that
children use various strategies such as word-learning heuristics
to help narrow down potential objects when trying to identify
referents (Clark, 1988; Markman and Wachtel, 1988; Markman,
1994; Landau et al., 1998). An example of a word-learning
heuristic is the mutual exclusivity (ME) principle that assumes
a one-to-one correspondence between a label and an object,
such that a novel label refers to a novel object rather than a
familiar object (ME hereafter; Markman and Wachtel, 1988).
Children by the age of two are also able to use a speaker’s
cues, such as point and gaze, as clues to understanding the
speaker’s referential intents (e.g., Lempers, 1979; Leung and
Rheingold, 1981; Baron-Cohen, 1989; Franco and Butterworth,
1996; Povinelli et al., 1997). More recently, research has shown
that a change in language contexts, such as code-switching
(the alternate use of two languages in a single discourse), can
heighten bilingual children’s use of a speaker’s point and gaze
when determining a target referent object (Yow and Hung,
2013).

Research suggests that language environment such as growing
up bilingually may affect how children weigh the importance of
ME to understand referential intents, and that ME is typically
more relaxed among bilingual children than monolingual
children (Davidson et al., 1997; Byers-Heinlein and Werker,
2009; Houston-Price et al., 2010). By comparing infants from
different language backgrounds, Byers-Heinlein and Werker
(2009) found that infants from a monolingual background
showed the strongest use of ME (e.g., looking significantly
longer at an unknown object than at a familiar object when
a novel label was used), followed by infants from a bilingual
background and, finally, infants from a trilingual background,
who showed the weakest use of ME (see Davidson et al., 1997,
for a similar pattern in bilingual and monolingual preschool
children). Other studies also found that when ME was pitted
against other referential cues, such as pointing, bilingual children
were more likely to violate ME in favor of pointing, as opposed
to monolingual children who showed a more robust use of
ME (Jaswal and Hansen, 2006; Yow and Markman, 2007;
Healey and Skarabela, 2008; but cf. Grassmann and Tomasello,
2010).

There have been theoretical attempts to explain why bilingual
children are more willing to suspend ME in the presence
of other referential cues. One account suggests that living
in a bilingual environment involves frequent encounter of
situations where the same object can be named differently in
different languages (e.g., house in English vs. casa in Spanish).
It is believed that such experiences violate the assumption
of the one-to-one word-referent mapping in ME and hence
bilingual children are likely to perceive ME as a less helpful
word-learning heuristic compared with referential cues such
as pointing (Au and Glusman, 1990; Davidson et al., 1997;
Healey and Skarabela, 2008). Another account suggests that
bilingual children are flexible in perspective-taking and are adept
at taking another person’s referential cues to learn about a
novel situation or determine a target referent when there is

a conflict with their own assumptions such as ME (Genesee
et al., 1975; Rosenblum and Pinker, 1983; Healey and Skarabela,
2008). Thus, this bilingual advantage of perspective-taking is
largely due to the demands of living in a bilingual environment,
which requires assimilation and accommodation of different
linguistic perspectives that are unique to individual languages
(e.g., every French noun has a grammatical gender but English
nouns have no grammatical gender associated with them). For
instance, Bassetti (2007) found that while Italian monolingual
children tended to attribute female voices for objects that are
feminine in Italian, Italian–German bilingual children tended
to hold more balanced views toward object gender, especially
for objects with conflicting grammatical gender in different
languages (e.g., clock is masculine in Italian but feminine in
German).

We propose that bilingual children’s inclination to suspend
ME could also be related to their frequent encounters with
complex conversations in either language and code-switching
(the alternate use of two or more languages in the context of
a single conversation). Bilingual children have to often figure
out what language a speaker is using and how to interact
appropriately to avoid a potential communication breakdown.
They may pay greater attention to a speaker’s referential cues
(e.g., point and gaze) to determine the speaker’s communicative
intent (Yow and Markman, 2011; Brojde et al., 2012). Bilingual
children may thus rely more on a speaker’s referential cues
than general word-learning heuristics (e.g., ME) to determine
the speaker’s referential intent in a challenging communicative
context. Yow and Hung (2013) found that bilingual preschoolers
who heard a speaker code-switched in a mixture of known and
unknown languages were better able to utilize the speaker’s point
and gaze than those who did not, possibly to accommodate
the extra communicative demands. Our study seeks to examine
how an exposure to a code-switching scenario would influence
bilingual children’s use of referential cues and ME in a
challenging context where these two cues are pitted against each
other.

Research has shown that exposure to code-switching may
influence word learning and language processing in a number
of aspects, such as receptive vocabulary (e.g., Byers-Heinlein,
2013), speed of lexical access (e.g., Macnamara, 1967; Grosjean,
1988), reading comprehension (e.g., Beauvillain and Grainger,
1987; Thomas and Allport, 2000), and naming and reading aloud
(e.g., Kolers, 1966; Meuller and Allport, 1999). Nonetheless,
the existing studies on this topic are predominantly about
code-switching in languages that are spoken in one’s family
(i.e., familiar code-switching). Little is known about how such
language processes may be influenced by exposure to languages
that are unknown to the listener (i.e., unfamiliar code-switching).
This distinction between familiar and unfamiliar code-switching
from a listener’s perspective could be important because there
may be significant differences in the efforts required for
comprehending these two types of code-switching. In the present
study, we distinguished code-switching as either familiar or
unfamiliar from the listener’s point of view (i.e., switch between
languages known to the listener, or switch between a language
known to the listener and another language unknown to the
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listener, respectively). As unfamiliar code-switching involves a
language unknown to the listener, it is likely to incur some
form of communication breakdown. The extent of efforts
required for comprehending unfamiliar code-switching may
be much greater than comprehending familiar code-switching.
Therefore, unfamiliar code-switching may trigger children to
pay attention to other referential cues (e.g., point) than solely
depend on language-related heuristic, such asME, in a conflicting
situation.

To date, it remains relatively unknown whether these
two types of code-switching would influence children’s word-
learning in a context where both referential cues and ME
are available. This study attempts to address this question
by using a word disambiguation task to examine bilingual
children’s choice of cue (ME or point) under different code-
switching conditions. English–Mandarin bilingual children first
heard a storytelling episode either in English only (No-Switch),
English andMandarin (Familiar-Switch), or English and Japanese
(Unfamiliar-Switch), followed by a disambiguation task, where
pairs of familiar and novel objects were presented to them
and an experimenter requested for an object using a novel
label while pointing to the familiar object. Since communication
breakdown may be incurred in the unfamiliar code-switching
condition but not the other two conditions, children may
weigh and use the ME and point differently when trying
to figure out the target referent. We predicted that children
who heard unfamiliar code-switching would make use of the
speaker’s point more than ME when interpreting the novel
label compared to children who heard familiar or no code-
switching.

Study 1

Participants
Thirty-six 3- and 4-years-old English–Mandarin bilingual
children from three different childcare centers in Singapore
participated in this study (17 females, 19 males; Mage = 3;11,
range 3;0–4;10). Prior to the experiment, parents filled a
language background questionnaire that asked about their
general demographic information and their children’s language
use at home (see Table 1). Children were randomly assigned
to one of three code-switching groups: No-Switch, Familiar-
Switch, or Unfamiliar-Switch (see section on Storytelling), with
the constraint that in the Unfamiliar-Switch group, we only
included children who did not have any exposure to Japanese
language to ensure that the children were indeed unfamiliar with
the language.

Materials
Parents’ Code-Switching Questionnaire
This questionnaire was used to obtain information about parents’
code-switching behavior during their daily communication with
the child. It contained eight items and was constructed based on
the Bilingual Switching Questionnaire (Rodriguez-Fornells et al.,
2012). The items asked parents how frequently they code-switch
both in general and within a sentence, how frequently they

TABLE 1 | Demographic information and language use: means (SD).

No-Switch Familiar-
Switch

Unfamiliar-
Switch

Age 3;11 (0;7) 4;1 (0;8) 3;10 (0;8)

SES (Father)a 3.67 (0.99) 3.50 (0.67) 3.42 (0.67)

SES (Mother)a 3.50 (1.17) 3.50 (0.67) 3.42 (0.67)

Exposure to English (%)b 58.67 (20.64) 65.00 (12.25) 62.92 (16.58)

Exposure to Mandarin (%)b 34.17 (20.76) 32.08 (11.57) 29.42 (11.62)

Parental code-switchingc 2.71 (0.40) 2.34 (0.54) 2.43 (0.38)

Working memoryd 4.75 (1.36) 5.83 (1.34) 5.08 (1.44)

Inhibitory controle 13.08 (3.73) 13.58 (2.84) 12.75 (2.53)

Total N = 36. Seven children had exposure to a third language for at least 10% of
their time, which includes Tamil (n = 1), Hindi (n = 1), Malay (n = 1), Thai (n = 1),
Japanese (n = 1), Cantonese (n = 1), and Hokkien (n = 1). These children were
distributed across the three conditions.
aSES = Socioeconomic status measured by education level, in a range from 0
(none or no formal education) to 5 (postgraduate degree).
bAverage amount of exposure in a typical week in percentage.
cTwo parents did not complete this questionnaire (one from the No-Switch
condition and one from the Unfamiliar-Switch condition).
dWorking memory was measured by the forward digit-span test.
e Inhibitory control was measured by the day–night Stroop task.

code-switch for certain topics or issues, and how frequently they
think they unintentionally code-switch during their conversation
with their child. For each item, parents were asked to rate on a
5-point frequency scale (1 = never to 5 = always). A mean score
of these items was calculated for each child.

Picture Books
We created two A5 size wordless color picture books
(pictures were modified from de Bezenac, 2010a,b; http://
www.freekidsbooks.org). Each picture book consisted of five
pictures printed on five separate pages. The two picture books
were matched on contents and the number of characters
involved.

Objects and Labels
Six pairs of objects and six novel labels were used in the
disambiguation task (see Appendix A). Each pair consisted of
a familiar object and a novel object of similar size and of
comparable visual attractiveness.

Forward Digit Span Task
This task was adapted from the Wechsler Intelligence Scale
for Children-Revised (Wechsler, 1974) and was used to ensure
that children in the three conditions were comparable in their
working memory capacity. In this task, an experimenter read
out a string of digits one at a time, and the child was asked to
repeat them in the same order as the experimenter had recited
them. The length of the digit strings started from two and
increased by one digit after every two trials. The trials continued
until two consecutive errors were made in trials of the same
digit length. A list of 16 strings of digits was used and the
longest string consists of eight digits. The total score reflected the
number of strings the child repeated correctly, and ranged from
0 to 16.
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Day–Night Stroop Task
We used the day–night Stroop task (adapted from Gerstadt et al.,
1994) to ensure that children from the three conditions did not
differ in inhibitory control capacity. We presented each child with
a series of cards in a pre-determined random order (Siegal et al.,
2009), each with either a picture of a moon or a sun on it. The
child was instructed to say “day” on seeing a moon card and
“night” for a sun card. There were two practice trials, followed
by 14 test trials. The experimenter explained the rule again and
restarted with the first two trials if the child failed either of the
first two trials. Once the child successfully answered both practice
trials, the experimenter continued to administer the remaining 14
trials. The total score ranged from 2 to 16.

Procedure
This study was approved by Institutional Review Board (IRB)
of the Singapore University of Technology and Design (SUTD).
Children whose parents had given informed consent for their
participation were tested individually in a quiet room at their
childcare center. Each of them received a session of storytelling,
a disambiguation task, a forward digit span task, and a day–night
Stroop task, in this order.

Storytelling
An experimenter first introduced the child to one of the two
wordless picture books by saying, “Look at this picture book!
I am going to tell you a story.” She then proceeded with a
story that consisted of five sentences, which corresponded to
each of the five pictures in the picture book. For the No-Switch
group, the experimenter told the story completely in English.
For the Familiar-Switch group, the experimenter alternated the
descriptions of the pictures in English and Mandarin (i.e., in
this sequence: English–Mandarin–English–Mandarin–English).
For the Unfamiliar-Switch group, the experimenter alternated the
descriptions in English and Japanese in the same sequence as in
the Familiar-Switch group. All the sentences were of comparable
length (see Appendix B). The experimenter presented the picture
book in front of the child on the table they shared, and helped
turn the pages without pointing to any part of the pictures so as
not to prime the child to attend to the experimenter’s point in
the subsequent disambiguation task. The experimenter did not
provide any feedback to the child throughout the storytelling
episode. The child was given sufficient time to glance through the
picture on each page before the experimenter continued to the
next page.

Disambiguation Task
After the storytelling session, the same experimenter conducted
six trials of the disambiguation task adapted from Jaswal and
Hansen’s (2006) procedures. For each trial, the experimenter
first presented the child with a pair of one familiar object and
one novel object, and directed the child’s attention to both
objects equally without labeling them (e.g., “Look at these!”).
The experimenter then placed the two objects on the table half
way between herself and the child, slightly more than shoulder
length apart, and asked the child to give her one of the objects
by using a novel label, “Can you give me the blicket?” The

FIGURE 1 | An experimenter pointing to the familiar object of a pair of
familiar and novel objects (familiar object: clock; novel object:
mosquito coil).

task was made challenging by the experimenter pointing subtly
but unambiguously to the familiar object while providing the
novel label (see Figure 1). To draw the child’s attention, the
experimenter made a gentle tap on the table twice every time
before making the request. The experimenter kept her gaze
direction neutral by looking straight at the child until a response
was made. We counter-balanced the pairings of novel labels and
object pairs, and the presentation order of the novel labels. For
half of the children, the task started with the familiar object on
the left. For each child, the familiar objects appeared on the child’s
left side half of the times.

Results
One-way between-subjects Kruskal–Wallis tests confirmed that
children of the three code-switching groups were matched on age,
amount of exposure to English andMandarin, parental education
level, reported amount of parental code-switching with child,
working memory, and inhibitory control, all ps > 0.10. Non-
parametric tests were used because the scores of the control
variables were not normally distributed.

We hypothesized those bilingual children who heard
unfamiliar code-switching would likely use the speaker’s point
more often than children who heard familiar or no code-
switching to interpret the novel label. Thus, responses of the
disambiguation task were coded as “1” if the child chose the
familiar object according to the experimenter’s point, or “0” if the
child used ME to choose the novel object instead. The total score
across the six trials ranged from 0 to 6.

A one-way between-subjects ANOVA showed that the three
groups of children performed differently in the disambiguation
task [F(2,33) = 4.33, p = 0.021, Cohen’s d = 1.73]. Bonferroni
post hoc comparisons revealed that there was a significant
difference between the Familiar-Switch and Unfamiliar-Switch
groups, but not between the No-Switch and Familiar-Switch
groups, or between the No-Switch and Unfamiliar-Switch groups
(see Table 2). This suggests that bilingual children’s choice of
cue (ME or point) was not influenced by the presence of code-
switching per se, but rather by the type of code-switching used
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TABLE 2 | Average frequency of accepting the pointing cues to pick
familiar objects (out of six trials).

Condition Mean SD

No-Switch 2.92 1.73

Familiar-Switch 4.08 2.07

Unfamiliar-Switch 2.00 1.35

Total N = 36.

to communicate with them. Contrary to our hypothesis, the
Unfamiliar-Switch group was less likely than the Familiar-Switch
group to use the experimenter’s point to interpret the novel
label. Two-tailed one-sample t-tests showed that while the No-
Switch group performed at chance level [t(11) = −0.17, p = 0.87,
Cohen’s d = −0.048], the Familiar-Switch group tended to use
the experimenter’s point over ME to disambiguate the novel
label, [t(11) = 1.82, p = 0.097, Cohen’s d = 0.53], and the
Unfamiliar-Switch group significantly chose ME rather than the
experimenter’s point above chance when disambiguating the
novel label, [t(11) = −2.57, p = 0.026, Cohen’s d = −0.74].
A closer look at the distribution of children’s responses revealed
that across the six trials, 33.3% of the No-Switch group used ME
and point equally (three trials each), 41.7% used mostly ME (in
four or more trials), and 25% used mostly point (in four or more
trials). On the other hand, 8.3% of the Familiar-Switch group
used ME and point equally, 25% used mostly ME and 66.7% used
mostly point. In contrast, 41.7% of the Unfamiliar-Switch group
used ME and point equally, 50% used mostly ME, and only 8.3%
used mostly point.

An additional analysis was conducted on the children’s
looking time toward the experimenter during the storytelling
session. If extra efforts were required to comprehend the foreign
sentences, we would expect the Unfamiliar-Switch group to look
at the experimenter for interpretation more often than the other
groups when the code-switched sentences were uttered. We
calculated how long a child spent on looking at the experimenter
when she code-switched. Two independent coders coded offline
the proportion of time a child looked at the experimenter
when the second and fourth sentences were uttered, i.e., where
instances of code-switching took place for the Familiar-Switch
and Unfamiliar-Switch groups (inter-rater reliability r = 0.99,
p < 0.001). Looking time of one participant from the Unfamiliar-
Switch group and one from the No-Switch group could not
be coded due to technical problems during recording. A one-
way between-subjects ANOVA showed that the three groups
were significantly different in their looking time [F(2,31) = 7.59,
p = 0.002, Cohen’s d = 1.65], with the Unfamiliar-Switch group
showing the longest look (M = 43.12%, SD = 25.95%), followed
by the Familiar-Switch group (M = 19.14%, SD = 16.00%),
and the No-Switch group (M = 12.01%, SD = 15.64%).
Bonferroni post hoc comparisons revealed that the looking time
difference was significant between the Unfamiliar-Switch and
Familiar-Switch groups and between the Unfamiliar-Switch and
No-Switch groups, but not between the Familiar-Switch and No-
Switch groups. This finding reveals that the Unfamiliar-Switch
group indeed paid more attention to (i.e., looked longer at)
the experimenter when they heard unfamiliar code-switching

compared to the Familiar-Switch and No-Switch groups. This
supports our speculation that children in the Unfamiliar-Switch
group are looking for some clarification or assistance from
the experimenter when they do not understand the foreign
utterances. It is to be noted that the experimenter in our study
remained focused on telling the story based on her scripts and
did not respond to the children at all. If children had expected the
experimenter to clarify or provide clues to her foreign utterances
but were “ignored” (i.e., experimenter did not respond), then it is
possible that the Unfamiliar-Switch group subsequently chose to
use ME to determine the referent in the disambiguation task as
they believed that the experimenter’s point would not be helpful
anyway.

In summary, this study showed that the type of code-switching
differentially influenced children’s choice of cue (ME or point)
in a disambiguation task. Unexpectedly, bilingual children in the
Unfamiliar-Switch condition showed a significant tendency to
use ME over the point compared to bilingual children in the
Familiar-Switch condition. Children’s increased looking time to
the experimenter during the unfamiliar code-switched sentences
implied that they might have expected the experimenter to
clarify her utterances when they did not understand her. Hence,
when the experimenter failed to repair the breakdown in the
communication during the storytelling session, children in the
Unfamiliar-Switch condition might have subsequently chosen to
rely on other strategies (i.e., ME) instead of her point to interpret
the novel label in the disambiguation task. Nonetheless, it is
also possible that this preference could be due to an abrupt
phonological change involved in unfamiliar code-switching. The
sudden change in phonological makeup of the utterances may
have prompted children to default to word-learning heuristics
to select a referent. To tease apart these two possibilities, Study
2 used a nonsense English storytelling condition to induce
comparable semantic barriers as unfamiliar code-switching. If
communication barriers dictated children’s performance, we
predicted that children who heard nonsense English would
similarly choose to rely on ME over the speaker’s point to
interpret the novel label as those in the Unfamiliar-Switch group
in Study 1. Alternatively, if the type of code-switching provides
a unique communicative signal over and beyond semantic
familiarity and comprehension, the two groups would differ in
their choice of cues in the disambiguation task.

Study 2

Participants
Twelve other 3- and 4-years-old English–Mandarin bilingual
children from the same childcare centers as Study 1 participated
in this study (six females, six males;Mage = 4;0, range= 3;6–4;10;
see Table 3).

Materials
The children were presented with the same materials as in Study
1, except that a similar but different picture book was used
(pictures were modified from de Bezenac, 2010c; http://www.
freekidsbooks.org). This picture book and the picture books
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TABLE 3 | Demographic information and language use: means (SD).

Nonsense-Switch
(Study 2)

Unfamiliar-Switch
(Study 1)

Age 4;0 (0;6) 3;10 (0;8)

SES (Father) 4.00 (0.43) 3.42 (0.67)

SES (Mother) 3.92 (0.67) 3.42 (0.67)

Exposure to English (%) 65.00 (14.62) 62.92 (16.58)

Exposure to Mandarin (%) 32.67(13.93) 29.42 (11.62)

Parental code-switching 2.31 (0.56) 2.43 (0.38)

Working memory 5.92 (0.79) 5.08 (1.44)

Inhibitory control 11.00 (4.71) 12.75 (2.53)

Total N = 24. Five children had exposure to a third language for at least 10% of
their time, which includes Tamil (n = 1), Malay (n = 1), Teochew (n = 1), Hokkien
(n = 1), and other Chinese dialect (n = 1). These children were distributed across
the two conditions.

used in Study 1 were matched on contents and the number of
characters involved.

Procedure
This study was approved by IRB of the SUTD. Study 2
followed the same procedure as Study 1 except that the story
was told in alternate English and English-sounding nonsense
sentences (Nonsense-Switch). The sentences were comparable
to those sentences used in Study 1 in length (see Appendix B).
The nonsense words were chosen from two nonsense poems,
Jabberwocky (Carroll, 1872), and The Faulty Bagnose (Lennon,
1965).

Results
Mann–Whitney U tests using Bonferroni adjusted alpha levels
of 0.01 per test (0.05/8) showed that children in the Nonsense-
Switch group in Study 2 did not differ significantly from the
Unfamiliar-Switch group in Study 1 on all the control variables.
Non-parametric tests were used because the scores of the control
variables were not normally distributed.

An independent-samples t-test between the Nonsense-Switch
group in Study 2 and the Unfamiliar-Switch group in Study 1
confirmed that there was no significant difference in performance
between the two groups [t(22) = −1.22, p = 0.24, Cohen’s
d = −0.50; see Table 4]. Two-tailed one-sample t-tests also
found that the Nonsense-Switch group performed at chance level
[t(11) = −0.30, p = 0.77, Cohen’s d = −0.086]. Recall that in
Study 1, the Unfamiliar-Switch group significantly usedMEmore
than the experimenter’s point [t(11) = −2.57, p = 0.026, Cohen’s
d = −0.74]. This suggests that although overall, the Nonsense-
Switch group did not differ significantly from the Unfamiliar-
Switch group, they, in fact, used ME and the experimenter’s
point equally often to interpret the novel label, compared to the
Unfamiliar-Switch group who used ME over the experimenter’s

TABLE 4 | Average frequency of accepting the pointing cues to pick
familiar objects (out of six trials).

Condition Mean SD

Nonsense-Switch (Study 2) 2.83 1.95

Unfamiliar-Switch (Study 1) 2.00 1.35

point. A more detailed examination of the children’s responses
revealed that 41.7% of the Nonsense-Switch group used ME and
point equally (three trials each), 33.3% used mostly ME (in four
or more trials out of six), and 25% used mostly point (in four or
more trials of six). While 41.7% of the Unfamiliar-Switch group
in Study 1 also used ME and point equally, 50% of them used
mostly ME, and only 8.3% used mostly point.

We also coded the proportion of time each child looked
at the experimenter at both instances of code-switching
(during the second and fourth sentence of the story). An
independent-samples t-test revealed that the difference between
the two groups were marginally significant [t(21) = 1.75,
p = 0.094, Cohen’s d = −0.73; MUnfamiliar-Switch = 43.12%,
SDUnfamiliar-Switch = 25.95%, MNonsense-Switch = 24.81%,
SDNonsense-Switch = 24.19%). The Nonsense-Switch group
tended to look less at the experimenter when they heard the
nonsense sentences compared to the Unfamiliar-Switch group.

In summary, while children in the Nonsense-Switch group
seemed to perform similarly as those in the Unfamiliar-Switch
group in their choice of cue in a disambiguation task, their
behavior was less consistent than the Unfamiliar-Switch group in
relying on ME over the experimenter’s point. They also looked
less at the experimenter when hearing the nonsense sentences
compared to the Unfamiliar-Switch group when hearing the
unfamiliar sentences. This result suggests that the unfamiliar
code-switching effect found in Study 1 cannot be attributed to
semantic barriers per se, and there is something unique about
the communicative intent of a speaker when switching between
familiar and foreign utterances.

General Discussion

This research sought to answer whether exposure to a language
switch, in particular, the specific types of switch, would influence
bilingual children’s choice of cue (ME or point) in understanding
referential intents. Our study showed that, indeed, the type
of code-switching influenced the children’s choice of cue. The
No-Switch and Nonsense-Switch groups were equally likely
to use the experimenter’s point and ME to interpret a novel
label. This finding of the No-Switch group was consistent with
Yow and Markman (2007) where they found a proportionate
use of the speaker’s point and ME among bilingual children
in an analogous disambiguation task without prior episodes
of code-switching. While the Familiar-Switch group showed
a tendency to use the speaker’s point instead of ME, the
Unfamiliar-Switch group significantly used ME instead of the
speaker’s point. Although this seems to contradict our prediction
that children who heard unfamiliar code-switching would pay
more attention to a speaker’s referential cues to overcome
communicative challenges and thus rely on the speaker’s point
over ME to interpret a novel label, our analysis of the children’s
looking time revealed otherwise. The Unfamiliar-Switch group
did look at the experimenter significantly longer when they heard
the unfamiliar code-switched sentences than those who heard
only English sentences, familiar English–Mandarin sentences,
or English and nonsense English sentences. This suggests that
unfamiliar code-switching provides a distinctive signal in the
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communication process, possibly above and beyond the semantic
difficulties in comprehension experienced in other types of
language use (such as nonsense English words).

We reasoned that the bilingual children looked at the
experimenter longer when hearing the unfamiliar code-switching
because they were expecting the experimenter to provide some
clarification to help them understand her utterances, or at least
some cues as to what these unfamiliar utterances were about. This
is because code-switching usually serves as a way to contextualize
daily conversation, for example, in quoting someone (Gardner-
Chloros et al., 2000), to acquire the conversational turn
in overlap multiparty play episodes (Cromdal, 2001), or to
mark topic changes and text-to-text connection during book-
reading activities (Kabuto, 2010). It is likely that children in
the Unfamiliar-Switch group were expecting the experimenter
to contextualize the unfamiliar language switch during the
storytelling episode.

Yet, the experimenter gave no feedback to the child
and provided no explanation to the code-switched sentences
throughout the storytelling episode. The Unfamiliar-Switch
group might have perceived that the experimenter was unhelpful
and unreliable because the communication breakdown was left
unresolved. The Unfamiliar-Switch group might then assume
that the experimenter’s point during the disambiguation task
would not be helpful or reliable in interpreting the novel label
after all. Studies have shown that children tended to judge a
person as unhelpful or tended to avoid choosing the person as
a source of help if the person had previously provided insufficient
or incomplete information to them (Gweon et al., 2011; Gillis
and Nilsen, 2013). Consistent with our results, Krogh-Jesperson
and Echols (2012) also found that children’s willingness to
accept second labels depended on the perceived credibility of the
speakers. This could explain why the Unfamiliar-Switch group
chose to use their own ME assumptions over the experimenter’s
point to interpret the novel label instead, even though they have
paid more attention to her earlier.

One possible interpretation of our results is that because
the Unfamiliar-Switch group assumed the experimenter’s point
would not be helpful, they chose to avoid following the referential
cue rather than chose to use the ME principle. We argue that
the Unfamiliar-Switch group was more likely to use the ME
principle rather than choose to avoid using the cue because
word-learning heuristics are robust assumptions that children
use to help narrow down potential objects (e.g., Jaswal and
Hansen, 2006). That said, further studies could tease these two
possible interpretations apart. For example, a three-object-choice
paradigm could be used with the disambiguation task instead of
a two-object-choice, that is, children are asked to choose between
two familiar and one novel objects. If children were using ME
rather than avoiding the experimenter’s cue, then they would
choose the novel object significantly more often than the other
familiar object not pointed at. If children were avoiding following
the experimenter’s cue rather than using ME, then they would
be equally likely to choose the novel object or the other familiar
object not pointed at.

Nevertheless, our studies showed that there are nuances in
the use of different cues when trying to understand a speaker’s

referential intent. Bilingual children are generally willing to relax
ME and use the speaker’s point to label a familiar object with
a novel name. But this strategy may change, depending on
the social communication process bounded by the context of
a language switch. Bilingual children may perceive the social
cues of the speaker as unhelpful or unreliable if the speaker did
not behave according to the social rules surrounding language
use. In this case, children may default to using word-learning
heuristics to select a referent instead. Earlier unresolved social
communication challenges may impact on how the social cues
given by the same person will be interpreted and used later.

Our study demonstrated how the same information (e.g.,
gesture) might be utilized differently based on the experiences
people previously had (e.g., violation of social expectation).
Children tend to return to their default learning strategy as
compared to possibly more effective methods provided by
the speaker if they perceive the speaker as not helpful. This
provides important implications for other domains that involve
interactions between people and even those that involve learning
applications. For example, the initial trust between learners and
learning software may be undermined with a few instances of
violation of expectation. The entire learning process may then
lose its projected effectiveness as the learner starts to perceive
the software as not helpful or unreliable. Thus, learning software
and learning games may have to be designed in such a way that
their credibility with the user is not lost as learning strategy
changes.

In summary, we found that bilingual children were selective
in their choice of cue to interpret a novel label depending on
the surrounding language context (e.g., familiar or unfamiliar
code-switching). We argued that bilingual children pay increased
attention to the speaker when hearing unfamiliar code-switching
partly for the purpose of overcoming communication challenges.
Despite this, we found that bilingual children did not necessarily
use the speaker’s point to interpret a novel label. They would
weigh the various sources of information available to them and
rely more on their own ME assumptions if they regarded the
speaker as unhelpful according to their past interaction with the
speaker. Future studies could examine whether bilingual children
would regard a speaker who code-switches in an unfamiliar
language as an unhelpful informant, and how this perception
of unhelpfulness might influence their willingness to accept the
speaker’s communicative cues to interpret a novel label. Further
studies could also examine how children’s perceived helpfulness
of the speaker would generalize to other learning contexts, such
as from adults vs. from educational software, pointing cues vs.
paralinguistic cues, etc. This may have important implications on
general education and how learning can be best scaffolded in a
helpful and trusting environment.
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We used a new method called “Ghost-in-the-Machine” (GiM) to investigate social
interactions with a robotic bartender taking orders for drinks and serving them. Using the
GiM paradigm allowed us to identify how human participants recognize the intentions
of customers on the basis of the output of the robotic recognizers. Specifically, we
measured which recognizer modalities (e.g., speech, the distance to the bar) were
relevant at different stages of the interaction. This provided insights into human social
behavior necessary for the development of socially competent robots. When initiating
the drink-order interaction, the most important recognizers were those based on
computer vision. When drink orders were being placed, however, the most important
information source was the speech recognition. Interestingly, the participants used only
a subset of the available information, focussing only on a few relevant recognizers while
ignoring others. This reduced the risk of acting on erroneous sensor data and enabled
them to complete service interactions more swiftly than a robot using all available sensor
data. We also investigated socially appropriate response strategies. In their responses,
the participants preferred to use the same modality as the customer’s requests, e.g.,
they tended to respond verbally to verbal requests. Also, they added redundancy to
their responses, for instance by using echo questions. We argue that incorporating the
social strategies discovered with the GiM paradigm in multimodal grammars of human–
robot interactions improves the robustness and the ease-of-use of these interactions,
and therefore provides a smoother user experience.

Keywords: human–robot interaction, social behavior, eye tracking, interaction strategies, social signals, intention
recognition

INTRODUCTION

Robotic agents are increasingly used for interacting with humans in public spaces, e.g., for
providing information as a museum guide (Yousuf et al., 2012) or serving snacks (Lee et al.,
2009). We used the bar scenario as challenging example for a social environment. The robot acts
as bartender that accepts drink orders from human customers and serves drinks (see Figure 1).
Thus, the robot has to complete the task (i.e., serving the correct drink) and, importantly, it
has to understand and produce socially acceptable behavior. The bartending robot is located at
a fixed position behind the bar. Typically multiple customers are in close proximity in front of
the bar. First, the robot has to identify the customers who would like to initiate an interaction
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FIGURE 1 | Robotic bartender JAMES serving drinks to a customer.

(Loth et al., 2013). Once the interaction has been established,
the robot has to sense the customer’s dialog moves, reason
about them and produce an appropriate response (Petrick and
Foster, 2012). That means that the robot has to have an
understanding of the user’s engagement behavior (Sidner and
Lee, 2003; Sidner et al., 2005), recognize the user’s intentions
(Gray et al., 2005), and produce socially appropriate responses
(Petrick and Foster, 2012; Breazeal et al., 2013). Thus, reliable,
robust, and social interaction policies are crucial for enabling
users to interact intuitively with a robot (Goodrich and Schultz,
2007). Additionally, users enjoy interacting with a social robot
to a greater extent than with a purely task-oriented system
(Foster et al., 2012; Giuliani et al., 2013). In order to develop
empirically driven and socially appropriate interaction policies
for the robotic bartender, we tested (a) whether the recognizer
data are sufficient for entertaining a socially credible interaction,
(b) which recognizer modality was the most informative at each
stage of the interaction, and (c) what kind of repair strategies
humans employ in a social interaction. We used the Ghost-
in-the-Machine paradigm (GiM; Loth et al., 2014) because the
results can be transferred directly into robot policies as the
human participants are presented the same recognizer data as the
robotic planner.

RELATED WORK

Human–human interaction is highly fluent and can be regarded
as the gold standard for human–robot interaction. Thus, we
briefly review the mechanisms involved in human–human
interaction and how they can be modeled in a robotic agent.
Typically empirical studies were designed for investigating
particular aspects of robotic interaction policies. We review
previous studies with respect to how transferable their results
are. In particular, we focus on whether the data that the human
participants observed in the study were comparable to the kind of
data that the robotic planner has access to. We highlight potential
problems in these studies before describing our GiM study in
more detail.

Social Signals
Interacting with other humans is perceived as most natural
and intuitive compared to robotic or virtual agents. Thus, in
order to improve the interaction with the robotic bartender, we
have to understand how humans communicate their intentions
in a social environment. Levinson (1995) argued that humans
recognize the intentions of others from communicative actions.
These are composed of one or more observable, basic actions
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in several modalities (e.g., Levinson, 1995; Vinciarelli et al.,
2012). We refer to these observable actions as social signals.
These basic actions are the starting point for human and robotic
recognition. Humans identify basic actions such as walking
by matching the percept against a representation in memory
(Jeannerod, 2006). But it is not clear how humans understand
the intention of somebody who is walking (Levinson, 1995). In
robots, sensor data are typically categorized by trained classifiers
into one type of action. For example, the computer vision
recognizes dynamic actions such as waving, walking, and running
(for review, see Poppe, 2010). Also, the user’s pose (Shotton
et al., 2013), hands and faces can be tracked (Baltzakis et al.,
2012; Gaschler et al., 2012) for identifying deictic gestures in
(close to) real-time (Pateraki et al., 2014). The automatic speech
recognition (ASR) aims to recognize the user’s utterance by
matching it against a dictionary (or a grammar and a dictionary).
In general, recognizers transform a constant stream of data from
the sensors (e.g., microphone, camera) into distinct events such
as an instance of waving or a specific speech utterance. However,
robotic recognizers generally require a substantial amount of
computation. Additionally, a dimly lit and noisy bar location
challenges them such that their results tend to be more error-
prone. Human bartenders face a similar problem as they cannot
constantly monitor each potential customer in a busy place given
that their cognitive resources are limited (e.g., Broadbent, 1969).
This holds especially for monitoring within a single sensory
modality1 (Allport et al., 1972; Mcleod, 1977). Thus, the human
bartenders have to employ heuristics, for instance by focussing on
distinctive aspects of the scene (e.g., the distance of customers to
the bar).

Humans select the relevant aspects by relying on prior shared
knowledge about the expected behavior and signals of both
partners in the interaction (Levinson, 1995). These expectations
also determine the attentional focus of the partners. Once the
signal is identified, humans evaluate plausible intentions, i.e., the
human recipient tries to attribute a plausible social intention
to the signal (Grice, 1957; Levinson, 1995). This is essential
as it makes an action meaningful. But correctly identifying
social signals and understanding other’s intentions is logically
intractable and thus, prior shared knowledge and heuristics are
required (Levinson, 1995). For a robotic agent, this knowledge
has to be explicated and formalized, e.g., in scripts that capture
the conventionalized sequence of events (Schank and Abelson,
1977; Abelson, 1981) or the computational AIRBUS model that
combines prior expectations, knowledge about conventions, and
recognized signals during interactions (De Ruiter and Cummins,
2012). By explicating this implicit social knowledge, we can
improve the robustness and the perceived quality of human–
robot interaction. At the same time, the computational efforts
can be limited to extracting only the necessary information by
identifying the relevant recognizer modalities. For example, in

1In Psychology, the term modality refers to sensory modalities such as vision. In
robotics, a modality tends to refer to a particular variable of the recognizer output.
For example, the customer’s distance to the bar and her/his body orientation
form two robotic modalities even though both are derived from the human visual
modality. In order to avoid confusion, we distinguish sensory modality (e.g.,
vision) and recognizer modality (e.g., distance to the bar).

the bar scenario customers signal to a member of staff that they
would like to place an order by positioning themselves very
close to the bar and turning toward the counter or a member
of staff (Loth et al., 2013). Thus, only these two modalities
have to be attended in order to identify new customers reliably.
Furthermore, the participants only attended the body posture
of potential customers if they were close to the bar whereas the
body posture was irrelevant for customers whowere further away.
This reduces the cognitive load of understanding the scene for a
human observer even further. Using this hierarchical rule-set is
also advantageous to the robot. By analysing the body posture
of customers who are close to the bar only, the line of sight is
less likely to be obstructed by objects and other customers and
thus, the recognizer works more reliably with less computational
efforts. Additionally, the robotic recognizers are subject to noise.
By reducing the number of noisy data sources, the amount of
potentially misleading recognizer data is also reduced. Thus,
our central aim is to provide an empirical method for reliably
identifying social signals and the relevant recognizer modalities
they are signaled in.

Our review of human social cognition suggests that using
prior knowledge and focussing on particular aspects of the scene
(recognizer modalities) can reduce errors and computational
efforts. However, this is achieved by ignoring substantial amounts
of data which may sound counter-intuitive. But this is a general
finding in human cognition. Humans focus on task-relevant
aspects of the scene and ignore other events in the visual
(inattentional blindness; Mack and Rock, 1998) and auditory
domain (inattentional deafness; Dalton and Fraenkel, 2012). For
example, Simons and Chabris (1999) asked their participants to
count the number of passes played by a basketball team and
argued that the frequent failures to notice a man in a gorilla
costume who walked through the scene were due his irrelevance
to the task. Thus, by selecting the aspects of the scene (recognizer
modalities) appropriately, the robot’s performance becomesmore
human-like and more predictable to its human users. In turn, we
aimed to identify which aspect of the scene is relevant before and
during an interaction at the bar.

In a social interaction, producing socially acceptable behavior
is equally important as understanding it. For example, in a task
requiring users to sort blocks that were handed to them by a
robot, they sorted the blocks on their own strategy, e.g., by
color. Only if a short delay was included between stretching
the robot’s arm and releasing the block, the users attended
the robot’s gaze and used it as a sorting instruction (Admoni
et al., 2014). Thus, the delay formed a social signal to attend
the robot’s gaze direction. Also, users smile more often if the
robot smiles at them (Krämer et al., 2013). In general, interacting
with a robot that acts socially appropriately is perceived as more
pleasing than with a purely task-oriented robot (Giuliani et al.,
2013). Thus, we aim to identify social signals to be displayed
by robotic bartenders that can be reliably interpreted by its
customers.

Methods of Deriving Interaction Models
Interaction models can be hand-crafted but are often partly based
on empirical data. For example, hand-crafted models are typically
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adapted after an initial testing period in the wild such that the first
model serves as test and data collection device. Other methods of
gathering empirical data are computer games and the Wizard-of-
Oz paradigm (WOz). In this review, we focus on how the relevant
recognizer modalities were identified.

For detecting whether visitors intended to interact with
a robotic receptionist, Michalowski et al. (2006) based their
interaction model on proxemics (Hall, 1969). This hand-crafted
model triggered a greeting as soon as a potential user was
sufficiently close to the robot. But passers-by who accidentally
came close to the robot felt disturbed when the robot greeted
them out of the blue (Michalowski et al., 2006, p. 766). Thus, Rich
et al. (2010) and Holroyd et al. (2011) used several multimodal
cues that were partly inspired by research on human–human
interaction (Schegloff and Sacks, 1973), e.g., the point of gaze.
This is a highly informative cue but it can be difficult to
measure in the wild. Importantly, it might not be accessible
to humans in a busy environment and thus, not be part of
the conventionalized social signals that we aim to identify. For
example, in the bar setting less fine grained aspects of the scene
such as the distance to the bar and the body or head orientation
were most relevant (Loth et al., 2013). An initially hand-crafted
interaction model can also be adapted to the user behavior
during a test period of real-world interactions. For example,
Bohus and Horvitz (2009a,b,c,d, 2010, 2011) implemented a
number of sensors and recognizers in their static receptionist
and trivia quiz platform, and more recently in a direction-
giving robot (Bohus et al., 2014). They refined their engagement
models constantly but they could not accommodate all user
behavior (Bohus and Horvitz, 2009a). In particular, multiple
users formed a challenge for these accounts (Michalowski et al.,
2006; Bohus and Horvitz, 2009c) whereas our bar scenario
typically involves multiple customers. Goodrich and Schultz
(2007) classified these accounts as proof-of-concept because the
users interacted with a given system and adapted their behavior.
This was illustrated by the graphically simple WAITER game
(Xu et al., 2010). Even though the manager participant had
only indirect evidence, this participant adapted quickly to the
abilities of the waiter participant that were manipulated by the
game engine. This suggests that proof-of-concept approaches do
not investigate what is intuitive to the users but how well they
adapt to a given system. However, identifying the underlying
psychological principles of natural behavior and designing the
robot’s policies around them is more useful (Goodrich and
Schultz, 2007).

Games with a purpose (GWAP; von Ahn and Dabbish,
2008) and in particular online games allow acquiring large data
sets, e.g., as training data for machine learning accounts. In
The-Restaurant-Game, users could engage online as waitress or
customer (Orkin and Roy, 2007, 2009). Orkin and Roy (2009)
derived a sequential graph of actions that was argued to reflect
collective intelligence. After training the virtual agents on these
data, they worked reasonably but also produced some errors, e.g.,
asking for selecting a starter after starters had just been served.
Even though the players had an intentional structure inmind, this
method did not capture this structure from the surface behavior
(Orkin and Roy, 2009, p. 392).

The WOz paradigm is typically used for investigating the user
behavior while s/he believes to interact with a real robot. But
in fact, an informed assistant or another participant acts as a
‘wizard’ that controls the robot (Kelley, 1984; Fraser and Gilbert,
1991; Dahlbäck et al., 1993). For maintaining the illusion of a real
robot and providing swift responses, the workload of controlling
the robot sometimes has to be divided between several wizards
which may cause inconsistencies in the robot’s behavior (Green
et al., 2004; Rieser and Lemon, 2009). Several WOz studies also
investigated the behavior of a single wizard. For example, for
investigating when wizards asked for clarifications (Rieser and
Lemon, 2009) and which mode of information presentation they
selected (Rieser et al., 2011). In these studies, the distortion of
an ASR was simulated by a typist translating the user’s speech
into text and deleting or replacing words. However, in more
than 80% of WOz studies, the wizards had access to immediate,
unfiltered video and audio data of their users (Riek, 2012). In
contrast, the robotic planner has to rely on the robot’s recognizers
introducing delays, losses, and misinterpretations of data. This
difference can impair the transferability of the findings into
robotic decision policies. For example, Lee et al. (2009) collected
WOz data and designed a script for their Snackbot. But the
real-life evaluation showed that half of their script phrases were
unsuitable (Lee et al., 2009, p. 11). Thus, it is important to ensure
that the wizards and the robotic planner operate on the same
type of data. For example, semantically analyzed data of the
ASR component was presented to the wizards of a restaurant
information system (Liu et al., 2009). This method is similar to
our GiM approach (Loth et al., 2014) and we expand on this in
our study.

Lichtenthäler et al. (2013) introduced the Inversed Oz of
Wizard for investigating how a wizard would avoid a collision
between a confederate and the robot under her/his control. In
this setting, the wizard observed the confederate and the robot
from the same room. Thus, the human observer could have
subconsciously interpreted subtle cues in the motion patterns
of the confederate that the robotic recognizers are not able to
interpret reliably, e.g., by observing the motion preceding an
attack in volleyball (Schorer et al., 2013) or a penalty kick in
football (Noël et al., 2014), athletes can anticipate the actions of
their opponents (also see Abernethy et al., 2007). This is more
pronounced in everyday behaviors of groups as they tend to
synchronize by subtly communicating their next movements to
each other (Néda et al., 2000; Richardson et al., 2007; Lakens and
Stel, 2011). Thus, especially in settings with multiple users such
as the bar scenario, the robotic planner would not have access to
the information that was essential to the human performance. In
order to avoid this missing link, we carefully designed the GiM
interface such that the human participant has access to the same
information as the robotic planner.

MATERIALS AND METHODS

We aimed to (a) identify the social signals and relevant recognizer
modalities in the bar scenario, (b) learn how the robotic bartender
should respond to its customers in a socially appropriate way,
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and (c) combine these insights for developing strategies for
recovering from false or inconclusive recognizer data that are
socially acceptable and, specifically, less annoying to the customer
than repeatedly asking for clarifications. Thus, we used the
GiM paradigm (Loth et al., 2014). In this paradigm, the main
participant (ghost) observes the scene through the eyes and ears
of the robot, i.e., the ghost has access to the recognizer data
but no direct video or audio link to the customers. Hence, the
ghost and the robotic planner use the same data. In order to
interact with the customers, the ghost has to select actions from
the robot’s repertoire. In contrast to the typical WOz studies
that focus on the user’s behavior, we are primarily interested
in the behavior of the ghosts. For assessing the reliability of
this paradigm, we compared our findings to earlier empirical
studies that relied on real world observations (Brouwer et al.,
1979) and experiments using natural stimuli (Loth et al., 2013,
2015).

In order to avoid confusion, we refer to the main participants
as ghosts and to the participants who ordered drinks as customers.

Participants
Thirty-one participants were recruited as main participants
from the departmental participant pool (formed of linguistics
and other students as well as university staff) in Bielefeld,
Germany. They received €5 and a chocolate bar in exchange for
their time and effort. The eye tracker could not be calibrated
with two participants and their data were not included in the
results.

The experiment and all procedures were approved by
University Bielefeld’s Ethics Committee (EUB) under approval
No
¯
4807. An informed written consent was collected prior to the

experiment.

Apparatus
The participants were seated in front of a typical office computer
screen (50 cm × 32 cm, 1920 × 1200 pixel) with a viewing
distance of approximately 70 cm. Their eye gaze was recorded
using a head-free faceLAB Eye Tracker (2009) positioned below
the center of the screen. A dedicated JAVA application (Java
Runtime Environment, 2012) presented the recognizer data
and recorded the ghosts’ responses entered through a standard
keyboard and mouse. We positioned the control screen for the
eye tracker such that the participants could not see the display in
order to avoid distraction. An experimenter checked whether the
eye tracker worked as intended but was seated such that it was
obvious to the participant that s/he was not observed. The setup
is shown in Figure 2.

Ghost-in-the-Machine Design
The ghosts were presented the output of the robotic recognizers
by visualizing the variables using arrows and traffic lights.
However, we were careful not to add any information that the
planner cannot access. The ghosts responded to their customers
by selecting actions from the robot’s repertoire that met their
own expectations of appropriate behavior. In the following,
we describe the control and information panels, their content
and how this relates to a typical robotic architecture in more
detail.

The user interface for the ghosts consisted of three frames on a
computer screen. On the left and right hand side of the screen, an
information panel for each of the two customers was presented.
At the bottom center of the screen, the control panel showed the
robot’s repertoire (see Figure 3).

In the architecture of the robot, the sensors (e.g., camera or
microphone) transmit their data to recognizers. These software

FIGURE 2 | Setup of the Ghost-in-the-Machine (GiM) study with the ghost participant, eye tracker and GiM user interface on the left hand side, and
the eye tracking control screen on the right hand side.
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FIGURE 3 | Full screen shot of the GiM interface showing information panels for up to two customers and the control panel for selecting actions.

programs analyze the raw data and extract information, e.g., the
presence of a face or the words spoken. A component called
the social state estimator collects these data and produces an
updated state representation to the robotic planner if a major
change was detected (Foster et al., 2013; Petrick and Foster,
2013). The updates slice the continuous data from the sensors
and recognizers into distinct, temporally ordered updates of the
scene. Each update formed a turn in this GiM study. A turn
comprised of (a) an update of the information panels, and
(b) a response by the ghosts. The next update was presented
after the ghosts confirmed their selected actions (or explicitly
selected no action) without time limit. Thus, the time span
between recorded updates and presented updates could differ
but their temporal order was unchanged. This turn-by-turn cycle
continued until the trial was terminated. Since we used pre-
recorded customer data in this study, the ghosts’ actions were
recorded but never enacted by a robot and we did not try
to convey otherwise. Thus, there was a potential discrepancy
between the customer’s and ghost’s actions. This was addressed
according to the experimental condition (see Materials and
Conditions for details).

The user interface aimed at presenting the abstract recognizer
data intuitively to the ghosts. The recognizer updates for each
customer comprised of six binary variables (is visible, is close to
bar, location to left/right, face looks at bar, body faces bar, seeks
attention), three continuous numeric variables (body orientation
and face orientation in degrees of angle, and the coordinates

of the customer’s face position) and one variable dedicated to
the customer’s speech. The values of the binary variables are
computed by the social state estimator. For this, the social
state estimator has built-in knowledge about the geometry of
the robot’s bar and an interpretation mechanism that computes
whether a customer is seeking the robot’s attention based on
the his/her body posture and location at the bar (Foster et al.,
2013).

The binary variables were presented in the style of a traffic
light indicating that these variables could be true (green) or
false (red). For the customer’s location, the same design was
used with a left and right pointing arrow. If data for one
indicator were not available, both lights were switched off. For
example, if only one customer was visible in the scene, the other
information panel was ‘switched off’. The angles of the body and
face orientation (if available) were presented as arrows such that
pointing downward represented a face/body looking straight at
the counter. The position of the customer’s face was represented
as a dot in a rectangle representing the space above the bar
counter. Finally, the output of the ASR was presented at the
bottom of each information panel. If speech was detected, this
component showed the final speech hypothesis and its confidence
level.

The control panel listed the robot’s repertoire in several groups
with radio button selectors. The ghosts could use a free text
field for speaking to the customers. The ghosts could make the
robot look at one of the customers, the bottles, or the robot’s
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hands. They could select to nod or to shake the robot’s head
and select a happy or a sad face. The panel also offered to serve
one out of the three available drinks. Finally, the panel offered
an option to do nothing and wait for the next update. This
was a check box that had to be explicitly selected in order to
hinder the ghosts from just clicking through the trials. In order
to proceed to the next turn, the ghosts had to select at least one
action or tick the Do nothing and wait-check box and confirm
their selection. The interface hindered the ghosts from using
impossible combinations (e.g., making a happy and a sad face
at the same time). The selected action could be as complex as
desired, e.g., looking at a customer, saying ‘Here is your drink,’
smiling and serving the drink.

Materials and Conditions
The recognizer data were pre-recorded during an evaluation of
the real robot inMunich (Foster et al., 2012). The evaluation trials
included up to two customers in several configurations: both
customers order drinks, one of the customers orders both drinks,
and only one customer orders a drink with a bystander. For the
evaluation, naïve participants were recruited and instructed to
order a drink from the robotic bartender in English. The menu
consisting of water, coke, and juice was introduced to them but no
further instructions were given, i.e., there was no directive with
regards on how to approach, speak to or take the drinks from
the robot. After the participants placed an order, they evaluated
the robot in a questionnaire (for further details, see Foster et al.,
2012). Examples of the recognizer recordings are presented in the
Supplementary Material.

This GiM study included an intention and a speech
recognition condition. The intention recognition trials focussed
on how interactions between customers and the robotic agent
were initiated. We assessed the validity of the GiM paradigm
by directly comparing its results to findings from an experiment
with natural data (Loth et al., 2013). The speech recognition trials
investigated how the ghosts identified which drink to serve. We
were especially interested in socially appropriate repair strategies
if the ASR hindered the robot from identifying an order or caused
long delays.

We selected two practice and six experimental trials per
condition. Based on the video recordings of the evaluation in
Munich, the practice and two experimental trials per condition
were selected to be relatively easy. That means that the
recognizers provided clear data and in turn, the robot performed
well without producing long delays or repeatedly asking the
customers for their orders. The remaining four trials represented
difficult cases that aimed at eliciting repair strategies. They
included long delays in the interaction, failures to gather correct
sensor data and/or failures of the robot’s decision policies.
Alternating easy and difficult trials aimed at hindering the ghosts
from treating less accurate data (e.g., very low confidence levels
of the ASR) as if they were normal rather than thinking about
strategies. All data presented to the ghosts were real recognizer
data and thus, subject to noise, inaccuracies and sensor failures.
This was explained to ghosts in the instructions in order to make
clear that the displayed information was not ground truth but that
data can be false or conflicting.

The intention and speech recognition trials differed in how
the trials were organized. Since the main focus of the intention
recognition trials was at the very beginning of the interaction,
the respective recognizer data were presented starting from the
first update of the recorded customer–robot interaction. Our aim
was to establish how the ghosts identified whether a customer
intended to place an order and how the existing computational
account should be adapted. Since the indicator Seeking attention
reflected the existing computation and could have biased the
ghosts, it was switched off. The trials were terminated as soon
as the ghost selected an action other than Do nothing and wait.
Thus, we tracked when and how the ghosts first acknowledged
a new customer. Since we used pre-recorded data, the ghosts
may have selected an action that differed or occurred earlier than
the robot’s actions during the evaluation. In turn, the customer’s
response would not match the ghost’s actions. We minimized
this risk by terminating the trials quickly. In contrast, the speech
recognition trials aimed at a later stage in the interaction. Thus,
we had to ensure that the ghost did not undertake any actions
that mismatched with their customer until the order was placed.
At the same time, the ghost had to be informed about what
has happened until then. Thus, we presented the recognizer
updates from the beginning but altered the control panel such
that only a Continue button was available. Clicking Continue
updated the indicators to the next update. As a result, the ghosts
observed what has happened during the trial but were unable
to deviate from the pre-recorded actions. As soon as one of the
customers made a speech utterance, the control panel was rolled
back and allowed the ghosts to select any of the actions. The
trials terminated as soon as the ghost served a drink or there
were no more updates to display. This possibly long interaction
increased the risk of a discrepancy between the ghost and its
customers. However, we suspected that the ghosts would aim to
understand the drink order and we knew from the recordings
that the customers repeated their drink order in various ways.
We report on this in the results and discussion sections. In all
trials, the ghost was informed about the end of a trial by a pop-up
message and removing all panels from screen. Once the message
was confirmed, the panels appeared on screen and the next trial
started.

RESULTS

We report the results of the intention and speech recognition
trials separately. In each section, we summarize (a) the recognizer
data displayed in the information panels, (b) the turn duration
and summed dwell time on screen, (c) the dwell time on each
indicator, and (d) the selected response. The analyses of the
recognizer and eye tracking data refer to the addressed customer.
For example, if the ghost selected to look at Customer 1, the
recognizer data of Customer 1 were analyzed.

In general, the ghosts experienced the experiment as very
immersive. This was the case even though the customer data
were pre-recorded, there was no actual customer feedback and
the interface was comparably simple. For example, some ghosts
apologized for having made jokes to their customers after the
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experiment or complained about the unresponsiveness of their
customers if the recognizers did not show any new information.
However, some ghost participants trialed how well our design
would respond to unexpected behaviors and tried to take
advantage of the pre-recorded nature of the data. These trials are
listed in detail with regards to each condition.

Intention Recognition Trials
The experiment comprised a total of 174 intention recognition
trials from 29 participants. Three ghosts repeatedly selected Do
nothing and wait until the ASR unequivocally identified an order.
Their data and two additional trials showing a similar pattern
were excluded (in total 20 trials, 11.5%). One additional trial
was excluded because the ghost ignored the customers and did
not respond at all. Thus, the following analyses cover the 153
remaining trials. Each trial was a customer–staff interaction
of one or more turns. The customers’ actions were presented
through an update of the indicators and the ghosts responded by
selecting a robot action which completed the turn. The intention
recognition trials continued with another turn if the ghosts
selected Wait and do nothing (No response) and were terminated
with the ghosts’ first selected action (Response). Thus, each of
the 153 trials comprised one Response turn. The total of 117 No
response-turns distributed over 69 trials.

Recognizer Data
The data in Table 1 summarize the recognizer data by listing
the state of the traffic light and arrow indicators as well as the
presence of detected speech in the information panel of the
addressed customer (see Figure 3). Please note that the indicator
Seeks attention was switched off in all intention recognition
trials (see Materials and Conditions). The arrow shaped indicator
showing the Face orientation was never active due to a technical
problem during the data acquisition. For the same reason, the
binary indicator Face to bar either showed no value or false, i.e.,
this indicator never showed true. Thus, the information from
both indicators was potentially misleading and we return this
when discussing the results.

The continuous indicator Body orientation was recoded as a
binomial variable such that we distinguished whether the arrow
was displayed (known) or not (unknown). We opted for this
simplification because the recognizer was only able to compute
the angles from the camera image if the customers faced the
camera to some degree. If the customer turned away especially
when turning outward, the recognizer could not determine the
angle. The recorded angles ranged between 76◦ and –36◦, i.e.,
the indicator never showed that a customer was turned away
from the bar. Thus, by recoding the variable into known and
unknown, we created a very lenient version of the Body to bar
indicator. Entering both variables in the analysis allowed us to
distinguish whether a stricter metric as applied by the social
state estimator for the Body to bar variable or a more lenient
coding as in the recoded Body orientation variable was more
appropriate. Similarly, we recoded the Face position indicator’s
values into known and unknown. This indicator was only active
if the customer’s face was directed toward the bar and if it was
within the observable area in front of the camera.

By grouping the state of the indicators into No response and
Response updates, the data in Table 1 shows a summarized
history of the trials. The ghosts acknowledged customers in
the Response turns whom they have not acknowledged in the
preceding No Response turns. Thus by identifying how these
groups differ, we can understand which indicator changes were
crucial to the ghosts to initiate a customer–staff interaction.
Most of the indicators were highly interdependent, e.g., the
body orientation could only be measured if the customer
was visible to the system. Thus, we designed a multinomial
regression model using the nnet package (Ripley and Venables,
2014) of R development core team (2007). The binary variable
distinguishing between Response and No response was used as
the dependent variable and the variables coding the state of
the indicators (see Table 1) served as predictors (independent
variables). Thus, the regression used the state of all indicators
to distinguish whether an update was part of the history
(No response) or whether it triggered an acknowledgment
(Response). The predictor variables were excluded from the
regression model if the more parsimonious model did not differ
statistically significantly from the full model. Thus, only the set
of predictors that could distinguish most effectively between a
No response and a Response turn would remain in the model,
i.e., the indicators that had the greatest influence in the ghosts’
decision.

TABLE 1 | State of the indicators of the addressed customer as a function
of whether the ghosts acknowledged the new customer (Response) or not
(No response).

Indicator State No response Response

Number Percent Number Percent

Visible Unknown 48 41% 4 3%

False 2 2% 2 2%

True 67 57% 147 95%

Close to
bar

Unknown 48 41% 4 3%

False 42 36% 52 34%

True 27 23% 97 63%

Location Unknown 48 41% 4 3%

Known 69 59% 149 97%

Body
orientation

Unknown 58 50% 19 12%

Known 59 50% 134 88%

Face
orientation

Unknown 117 100% 153 100%

Known 0 0% 0 0%

Body to
bar

Unknown 48 41% 4 3%

False 56 48% 57 37%

True 13 11% 92 60%

Face to
bar

Unknown 48 41% 4 3%

False 69 59% 149 97%

True 0 0% 0 0%

Seeks
attention

Unknown 117 100% 153 100%

Known 0 0% 0 0%

Face
position

Unknown 51 44% 11 7%

Known 66 56% 142 93%

Speech Said nothing 117 100% 153 100%

Said something 0 0% 0 0%
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The data in Table 1 show that the customers never said
anything, i.e., the ghosts always acknowledged the customer
before s/he said something. Thus, the speech was excluded as
triggering the ghosts’ response and did not enter the regression
model. After excluding all predictors but the Close to bar, Body
to bar, and the Face position indicators, the multinomial model
had a Cox and Snell R2 = 0.334 compared to R2 = 0.335 of the
full model. Excluding the Face position resulted in a statistically
significant difference. But the model based on the Close to bar
and the Body to bar indicators explained almost as much of the
variance R2 = 0.321 as the model including these three variables2.
We concluded that the Close to bar and the Body to bar indicators
had the greatest impact on the ghosts’ decisions in the intention
recognition trials.

Turn Duration and Dwell Time
The user interface measured the time span between an update and
the corresponding response of the ghost, i.e., the time required to
complete a turn (see Table 2). The data reflect a comparison of
153 acknowledgments (Response) and 117 intermediate updates
(No response). If a trial included several intermediate turns, their
duration and dwell times were averaged before entering the
analysis. Thus, 69 intermediate updates contributed to the turn
duration. Three trials (one No response and three Response turns)
were excluded from the analysis of the dwell times because the
eye tracker was unable to record any data. The dwell times were
determined by mapping the point of gaze and duration provided
by the faceLAB software to the components of the display. The
dwell time on the control panel is possibly underestimated due
to its position at the bottom center of the screen. First, the noise
of the eye tracker could have resulted in falsely detecting gazes at
lower parts of the panel as outside the screen. Secondly, glasses
are more likely to reflect the IR illuminator such that the eyes are
covered by the reflection if the participant looks straight toward
the illuminator below the center bottom region of the screen.
However, this design allowed us to position the information
panels that we analyzed in more detail with a maximum distance
to this area.

The turn duration and dwell times were analyzed with JASP
(Love et al., 2014). We report the BayesFactors from a Bayesian

2The other combinations showed the following results: Face position and Body to
bar R2 = 0.303 with no statistically significant difference to the single predictor
Body to bar R2 = 0.296, Face position and Close to bar R2 = 0.243 with no
statistically significant difference to the single predictor Close to bar R2 = 0.244.

TABLE 2 | Average turn duration, dwell time on the information and control
panels as a function of whether the ghost acknowledged a new customer
(Response) or not (No response).

Time No response Response

Time
in ms

SD in
ms

Time
in ms

SD in
ms

Turn duration 12728 6540 18105 10095

Dwell time addressed customer 2179 1988 3774 3017

Dwell time other customer 2304 1870 828 1145

Dwell time on control panel 2089 1741 4609 3956

t-test (Rouder et al., 2009; Morey et al., 2014) alongside the
respective standard t-test statistics. A Cauchy distribution with
scale parameter 1√

2
served as the prior for the effect size (see

Rouder et al., 2009). The advantage of using Bayesian t-tests
is that they also allow researchers to evaluate the amount of
evidence for the null hypothesis, which is not possible with
standard, frequentist statistical tests. The effect sizes of the
standard t-tests were computed using G∗Power (Faul et al., 2007).
The independent samples comparison of the turn durations
showed that if the ghosts acknowledged a customer they took
statistically significantly longer compared to selecting to wait
for the next update [t(220) = 4.054, p < 0.001, BF10 = 246.6,
d = 0.57]. Also, the ghosts dwelled longer on the information
panel of the customer whom they addressed [t(216) = 3.983,
p < 0.001, BF10 = 190.2, d = 0.56] and the control panel
[t(216) = 5.033, p < 0.001, BF10 = 12765, d = 0.70] if they
acknowledged the new customer. In contrast, the ghosts attended
the information of the other customer less if they made an
acknowledgment [t(216) = 7.158, p < 0.001, BF10 = 6.03∗108,
d = 0.94].

Dwell Time on Indicators
The data in Table 3 summarize the ghosts’ dwell times on
each indicator of the information panel corresponding to the
addressed customer. For accommodating the absolute differences
in turn duration, we computed the relative dwell time on each
indicator by normalizing with the summed dwell time of the
respective information panel (see Table 2).

We analyzed which indicators received more or less of the
ghosts’ attention in the Response-turns, i.e., the relative dwell
times during their decision to acknowledge a new customer. If
the ghosts looked randomly at the information panel, we would
expect an even distribution of the relative dwell time of 0.1 across
the ten indicators. Thus, one-sample t-tests and corresponding
Bayesian tests were performed against an expected mean of 0.1.
There was a statistically significant difference for the Body to
bar-indicator [t(149) = 7.061, p < 0.001, BF10 = 1.23∗108,
d = 0.58] indicating that the ghosts attended this indicator
longer than expected. The Face orientation [t(149) = 22.466,
p < 0.001, BF10 = 2.20∗1046, d = 1.81] and the Speech
indicators [t(149) = 17.076, p < 0.001, BF10 = 4.58∗1033,
d = 1.39] were avoided compared to a random gaze pattern.
There was no statistical difference for all other indicators [all
t(149) < 2.0, all p > 0.05] and the BayesFactor indicated their
relative dwell times were equal to a random distribution (all
BF10 < 0.3).

Responses
The ghosts acknowledged their customers by selecting a
response from the control panel (see Figure 3). The options
that the ghosts selected in 153 trials are summarized in
Table 4.

In the vast majority of cases, the ghosts selected to look at their
customer and in one third of the cases made a happy face. Only
one quarter of the responses included a verbal utterance. This was
either a greeting (e.g., “Hello?”), a prompt to place an order (e.g.,
“What would you like?”), or both.
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TABLE 3 | Mean dwell times for each indicator of the addressed customer as a function of whether the ghosts acknowledged a new customer
(Response) or not (No response).

Indicator No response Response

Dwell time
in ms

SD in
ms

Relative
dwell time

SD in pp Dwell
in ms

SD in
ms

Relative
dwell time

SD in pp

Visible 328 513 15.5% 17.9 399 678 11.2% 17.3

Close to bar 367 545 16.4% 16.9 485 775 11.2% 12.7

Location 181 268 7.3% 9.2 329 543 10.8% 15.0

Body orientation 160 246 6.1% 8.3 290 407 9.8% 14.4

Face orientation 68 90 4.0% 5.8 100 174 2.4% 4.2

Body to bar 401 491 18.2% 14.5 816 983 20.7% 18.5

Face to bar 205 301 9.8% 10.2 395 609 9.1% 12.1

Seeks attention 191 384 9.2% 12.1 386 560 10.7% 12.9

Face position 239 343 12.6% 15.2 520 887 12.3% 17.2

Speech 16 45 0.9% 2.1 56 109 2.0% 5.8

TABLE 4 | Number and percent of the selected actions for acknowledging
a new customer.

Action Number Percent

Say something 40 26%

Greeting 25 63%

Prompt to order 19 48%

Looking at something 142 93%

At customer 136 96%

At bottles 4 3%

At hands 2 1%

Make head gesture 4 3%

Nodding 4 100%

Shaking 0 0%

Make facial expression 59 39%

Happy 58 98%

Sad 1 2%

Serve a drink 0 0%

Speech Recognition Trials
In total 174 speech recognition trials were presented to 29
participants. In two trials, the ghost did not serve a drink and
the trial was terminated after the pre-recorded customer data ran
out. These trials were excluded from all further analyses. In sum
172 drinks were served (one per valid trial) and 553 intermediate
updates and their corresponding No serving-responses (turns)
were recorded. They were distributed unevenly across the trials:
M = 3.2, SD = 5.9, Mdn = 1.0, Max = 38, Min = 0. In 12
trials the ghosts served a drink in their first response. Thus,
No serving-responses occurred in 160 trials. In 98 trials one No
serving-response occurred and another 37 trials included three
No serving-responses.

Recognizer Data
The recognizer data of the addressed customer in the speech
recognition trials are summarized in Table 5. These recognizer
updates were either followed by the ghost serving a drink
(Serving) or the ghost decided to continue the interaction without

a serving (No serving), e.g., by asking a question. Please note that
the Face orientation and Face to bar indicators did not work as a
result of a failure to record the data during the evaluation. The
variable Body orientation was recoded into known and unknown
as in the intention recognition trials. The range of the recorded
angles was between 22◦ and –59◦ and was smaller compared to
the intention recognition trials.

The data in Table 5 compare the state of all indicators
when the ghosts served a drink to an average of earlier updates
during the course of their interaction. This comparison can
identify which change in the available information made the
ghosts serve a drink. The data show that the customers were
almost always detected as seeking attention, their face position
was known and a speech utterance was recognized when the
ghosts served a drink. The majority of customers was close
to the bar. But the data also suggest that customers were less
likely to be served if they were visible. In order to determine
which of the indicators influenced the ghosts’ decision to serve
a drink (No serving vs. Serving), we designed a multinomial
regression model using the state of all indicators as predictors
and eliminated them if the more parsimonious model did not
differ significantly from the full model. This regression model
aimed at identifying the indicators that can distinguish most
effectively between an update that occurred at some point in
the interaction and the update that triggered the ghosts to serve
a drink. After removing all predictors but the Body orientation
and the Speech indicators, the multinomial model had a Cox
and Snell R2 = 0.266 compared to R2 = 0.269 of the full model.
Removing the Body orientation indicator resulted in a statistically
significant difference, but the loss of explained variance was
about one percent R2 = 0.256. We concluded that the customer’s
speech had the greatest impact on the ghost’s decision to serve a
drink.

The customer’s speech was presented together with the
confidence level of the ASR. We compared the confidence
levels of the customers’ orders (Ntotal = 232, Mtotal = 49.43,
SDtotal = 30.03, Mdntotal = 42.00) when the ghosts served
a drink (Nserving = 154, Mserving = 59.73, SDserving = 28.54,
Mdnserving = 73.00) and when they did not (Nnoserving = 78,
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TABLE 5 | State of the indicators of the addressed customer as a function
of whether the ghosts served a drink.

Indicator State No serving Serving

Number Percent Number Percent

Visible Unknown 1 0% 1 1%

False 95 17% 54 31%

True 457 83% 117 68%

Close to bar Unknown 1 0% 1 1%

False 80 14% 32 19%

True 472 85% 139 81%

Location Unknown 1 0% 1 1%

Known 552 100% 171 99%

Body orientation Unknown 8 1% 5 3%

Known 545 99% 167 97%

Face orientation Unknown 553 100% 172 100%

Known 0 0% 0 0%

Body to bar Unknown 1 0% 1 1%

False 250 45% 85 49%

True 302 55% 86 50%

Face to bar Unknown 1 0% 1 1%

False 552 100% 171 99%

True 0 0% 0 0%

Seeks attention Unknown 1 0% 1 1%

False 14 3% 5 3%

True 538 97% 166 97%

Face position Unknown 1 0% 1 1%

Known 552 100% 171 99%

Speech Said nothing 375 68% 18 10%

Greeting 100 18% 0 0%

Order 78 14% 154 90%

Mnoserving = 29.09, SDnoserving = 21.35, Mdnnoserving = 24.00).
This reflects a comparison of the 78 orders without a serving
and the 154 servings in the bottom row of Table 5. The
independent samples test revealed a statistically significant
difference [t(230)= 8.366, p< 0.001, BF10 = 1.01∗1012, d = 1.02]
indicating that the confidence level was higher when the ghosts
served a drink compared to when they did not.

Turn Duration and Dwell Time
The turn durations (time between update presented on screen
and response) are presented in Table 6. The data reflect a

TABLE 6 | Average turn duration, dwell time on the information and control
panels as a function of whether the ghost served a drink.

Time No serving Serving

Time in
ms

SD in
ms

Time in
ms

SD in
ms

Turn duration 25374 15632 25250 16809

Dwell time addressed customer 3083 1561 2623 2664

Dwell time other customer 1540 2066 791 1094

Dwell time on control panel 7081 6149 8754 7496

comparison of 172 servings (Serving) and 553 intermediate
updates (No Serving). If a trial included several intermediate
turns, the duration and dwell times were averaged before entering
the analysis such that 160 data points contributed to No serving-
data.

The turn duration and dwell times were analyzed as above.
The independent samples comparison of the turn durations
showed that there was no statistically significant difference
between servings and intermediate updates [t(330) = 0.069,
p= 0.945, BF10 = 0.087]. Also, there was no such difference in the
dwell time on the information panel of the addressed customer
[t(330) = 1.599, p = 0.111, BF10 = 0.302]. However, the ghosts
dwelled statistically significantly less on the information panel
of the other customer if they served a drink [t(330) = 4.167,
p < 0.001, BF10 = 350.9, d = 0.45]. There was a tendency
indicating that the ghosts attended the control panel longer if
they served a drink [t(330) = 2.214, p = 0.028, BF10 = 0.941,
d = 0.24]. The t-test indicated a statistically significant difference.
But the BayesFactor did not and the effect size was comparably
small. Thus, we do not consider this difference as significant.

Dwell Time on Indicators
The eye tracking data were analyzed as in the intention
recognition trials. The data in Table 7 reflect the information
panel of the addressed customer. The data and analyses below
refer to the average of 172 servings and intermediate updates in
160 trials.

The relative dwell times of the Serving-turns were analyzed as
above using a one-sample t-test against a mean value of 0.1 across
the ten indicators. The ghosts attended the indicators Visibility
[t(171) = 18.791, p < 0.001, BF10 = 1.36∗1040, d = 1.43], Close
to bar [t(171) = 5.642, p < 0.001, BF10 = 1.22∗105, d = 0.43],
Body orientation [t(171) = 3.939, p < 0.001, BF10 = 97.379,
d = 0.30], Face orientation [t(171) = 11.832, p < 0.001,
BF10 = 7.34∗1020, d = 0.90], and Face to bar [t(171) = 9.081,
p < 0.001, BF10 = 2.06*1013, d = 0.68] statistically significantly
less than expected by a random distribution. The relative
dwelling times on the indicators for Location [t(171) = 1.646,
p = 0.102, BF10 = 0.230], Body to bar [t(171) = 0.683, p = 0.495,
BF10 = 0.076] and Seeking attention [t(171) = 1.374, p = 0.171,
BF10 = 0.154] did not differ from a random distribution. In
contrast, the indicators for the Face position [t(171) = 4.982,
p < 0.001, BF10 = 6113.811, d = 0.38] and the Speech
[t(171) = 7.497, p < 0.001, BF10 = 1.88∗109, d = 0.57] received
more attendance than at random. It should be noted that the
face coordinates of Customer 2 were closely located to the
control panel. Their distance was the shortest on the entire
screen. Thus, if the ghosts dwelled on the serving options of
the control panel a misattribution of the point of gaze could
occur between the panel and the Face position of Customer 2 but
not of Customer 1. The difference in the relative dwell times of
this indicator of Customer 1 [M = 16.7%, SD = 26.8pp] and
Customer 2 [M = 36.9%, SD = 34.2pp] during the Serving-
turn supported this assumption. Thus, we repeated the one-
sample analysis in Servings to Customer 1 only [t(131) = 2.844,
p= 0.005, BF10 = 3.392, d= 0.25]. After excluding the potentially
misattributed points of gaze, the effect size was smaller but the
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TABLE 7 | Mean dwell times for each indicator of the addressed customer as a function of whether the ghost served a drink.

Indicator No serving Serving

Dwell time
in ms

SD in
ms

Relative
dwell time

SD in pp Dwell in
ms

SD in
ms

Relative
dwell time

SD in pp

Visible 161 354 4.5% 7.7 131 344 2.7% 5.1

Close to bar 161 375 4.4% 6.7 198 465 5.3% 11.0

Location 189 268 9.2% 15.5 166 315 7.9% 16.7

Body orientation 167 254 5.2% 6.1 111 233 5.4% 15.3

Face orientation 57 120 2.1% 5.4 53 157 2.1% 8.8

Body to bar 481 591 16.7% 17.5 331 581 10.8% 15.0

Face to bar 130 215 4.2% 8.4 116 299 3.5% 9.5

Seeks attention 428 517 16.1% 17.2 316 316 11.7% 16.0

Face position 608 974 17.3% 20.5 560 980 21.3% 29.9

Speech 700 1093 20.3% 26.6 641 807 29.4% 33.9

result was still compatible with our initial analysis indicating that
the ghosts dwelled longer on the Face position indicator than
expected with a random distribution.

The greater number of intermediate turns in the speech
recognition trials allowed us to address whether the ghosts’
attention changed in terms of relative dwell times during the
course of the trials. We compared the relative dwell times of the
information panel of the addressed customer in the No serving
and Serving-turns. An independent samples test showed that the
relative dwell time on the Speech was larger in the Serving-turns
[t(330) = 2.714, p = 0.007, BF10 = 3.082, d = 0.29]. The relative
dwell times reduced for the Body to bar indicator [t(330) = 3.329,
p < 0.001, BF10 = 18.173, d = 0.36]. This tendency was also
found in the Visibility [t(330) = 2.482, p = 0.014, BF10 = 1.726,
d = 0.26] and Seeks attention indicators [t(330) = 2.426,
p = 0.016, BF10 = 1.512, d = 0.28]. In these cases, the t-test
showed a statistically significant difference but the BayesFactor
was not conclusive. There was no statistical difference for all other
indicators [all t(330) < 2.0, all p > 0.05] and the BayesFactor
provided evidence in favor of the relative dwell times being equal
in Serving and No serving-turns (all BF10 < 0.3).

Responses
The ghosts responded to their customers by selecting a response
from the control panel (see Figure 3). The data in Table 8

summarize the responses to 553 intermediate updates (No
serving) and 172 servings.

The ghosts made the robot look at the customer in the majority
of their responses. In particular, when serving a drink almost
all ghosts selected that the robot should look at the customer.
About half the responses were accompanied by speech during
the interaction. These utterances were mainly prompting the
customers either to place an order (e.g., “What would you like?”)
or asking the customers to repeat their order using one out of
two strategies. First, the ghosts just asked their customer to repeat
their utterance (e.g., “Could you say this again?”). Secondly,
they repeated the name of the drink that the ASR presented as
the most likely guess (e.g., “A water for you?”). Both strategies
were used in about half of the cases (see Table 9). The ghosts
used similar utterances when serving a drink. Either they said

something friendly to confirm that the order is about to be served
(e.g., “Here you are.”) or they included the name of the drink in
their utterance (e.g., “Here is your water.”). Both options were
used in about half the cases (see Table 9). The servings were also

TABLE 8 | Number and percent of the selected actions during the
interaction and accompanying the serving of a drink.

Response No serving Serving

Number Percent Number Percent

Say something 290 52% 121 70%

Greeting 48 17% 0 0%

Prompt to order 118 41% 0 0%

Prompt to repeat 123 42% 0 0%

Confirming serving 17 6% 116 96%

Looking at something 395 71% 161 94%

At customer 390 99% 156 97%

At bottles 4 1% 4 2%

At hands 1 0% 1 1%

Make head gesture 59 11% 77 45%

Nodding 49 83% 77 100%

Shaking 10 17% 0 0%

Make facial expression 209 38% 121 70%

Happy 199 95% 119 98%

Sad 10 5% 2 2%

Total 553 172

TABLE 9 | Number and ratio of echo questions and statements in prompts
to repeat the order and confirmations to serve the drink as a function of
whether the ghosts served a drink.

Response No serving Serving

Number Percent Number Percent

Prompt to repeat 123 0

Echo question 56 46% 0 0%

Confirming serving 17 116

Echo statement 2 12% 52 45%
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accompanied by more expressive face and head movements. Two
thirds of the servings included a happy face compared to only one
third of the intermediate responses. Also, almost half the servings
included a nodding but only 10% of the intermediate responses
was accompanied by a head gesture at all.

The data in Table 8 suggest that in 17 trials the serving of a
drink was verbally confirmed but not actually served. Thus, we
inspected these cases more closely. In eight cases, the drink was
served in the next turn, i.e., not immediately after confirming the
order but at the next opportunity. The other nine trials involved
an utterance that is ambiguous if used without punctuation
marks (“Bitteschön”). In Table 8, this was categorized as a
polite German confirmation (“Bitteschön.” [Here you are.]). This
would imply that the ghosts have forgotten to serve the drink.
However, in the seven cases that did not repeat the name of
the drink, it could also invite to place an order (“Bitteschön?”
[What can I do for you?]). This implies that the ghosts ignored
the customer’s utterance and used an expression for inviting to
place an order out of the blue. We cannot decide whether one of
these interpretations was intended by the ghosts. But the closer
analysis showed that the ghosts rarely used a verbal confirmation
to serve a drink without actually serving it. In all cases, the trial
continued until the ghost served a drink. It should be noted that
the customers had to repeat their orders several times with the
real robot. Thus, if the ghosts did not use the next turn for serving
a drink, they served it with another drink order later in the trial.

DISCUSSION

Most of the ghosts reported that they experienced GiM as
very immersive and experienced a turn-by-turn role-game. They
invested great efforts into establishing a social interaction with
their customers despite the fact that their behavior was pre-
recorded and displayed in a number of indicators. First, the
number of trials and the time spent illustrates the ghosts’ efforts.
The majority of trials involved three or less turns but the
ghosts used up to 38 turns if necessary. The variance in the
number of turns illustrates that they adapted to each customer
in order to entertain a socially credible interaction. Secondly,
the human ghosts were more efficient on the same data than
the actual robot. Since each trial of the pre-recorded data had
a maximum number of turns defined by the original robot–
customer interaction, the ghosts would have been unable to
complete the trial if they required more data than the robot.
This occurred only three times compared to the 325 trials that
entered our analyses. During the evaluation, the robot had a
real-time interaction with its customers such that it could ask
questions and elicit a direct response. In contrast, the ghosts
communicated with pre-recorded customers whom could not
respond to, e.g., a clarification question. Thus, the ghosts used
their social knowledge to outperform the robotic bartender,
e.g., the ghosts’ responses indicated that they interpreted their
customers’ responses in the context of their own questions and
utterances which were not present at the time of recording.
Thirdly, the results of the intention recognition trials are
compatible with findings from observations in the real world and

experiments using natural stimuli. Thus, we conclude that the
ghosts made credible efforts and that the results reflect human
social behavior that can reveal strategies for improving human–
robot interactions. We discuss the results in more detail starting
with the intention recognition trials and secondly, the speech
recognition trials.

Intention Recognition Trials
The results of the intention recognition trials showed that ghosts
relied on the Close to bar and Body to bar indicators for
identifying new customers. This finding replicates the results
of an experiment using natural videos and snapshots from real
bars where the participants detected that customers bid for
the attention of bar staff if they were close to the bar and
their body and/or head was directed to the bar (Loth et al.,
2013). This behavior was also observed at ticket counters in
Amsterdam Centraal station. Similar to the bartending robot,
a member of staff sits at a fixed position behind the counter
and waits for customers. The interactions were initiated if a
customer approached the counter and looked at the assistant
(Brouwer et al., 1979; Clark, 2012). As in our results, the distance
to the counter and head/body direction were essential in this
setting. That means that the interactions were initiated by the
placement (Clark, 2003) of the customer’s body. More specifically,
this was described as asking a wordless question (Clark, 2012).
Furthermore, implementing this strategy for detecting customers
with the intention to place an order produced more reliable
and more stable results than other classifiers (Foster, 2014).
Thus, the social signal for initiating an interaction is formed
by these two components. The results of this GiM study
supported that finding and demonstrated that we can obtain
reliable and valid results with this paradigm (also see Loth et al.,
2014).

The ghosts’ detection strategy relied on only two recognizer
modalities (distance to bar and body orientation) whereas other
modalities were not relevant including the customer’s speech.
However, this finding could be attributed to the customer’s
speech being (a) irrelevant, or (b) relevant, but there was
no speech detected during the data recording and speaking
coincided with other cues in the natural data experiments. The
design of this GiM study enabled us to distinguish between
these possibilities. First, in the natural data experiment the
participants had to judge whether a particular snapshot showed
a customer bidding for attention. In contrast, the control panel
of the GiM interface offered the ghosts to wait for another
update that may include additional cues such as a speech
utterance. Thus, the ghosts decided when they responded to a
new customer. However, the ghosts never waited for a speech
utterance. Secondly, the eye tracking data allowed us to identify
which recognizer modality was attended by the ghosts. They
dwelled on the Speech indicator less than expected with a
random gaze pattern. Rather, they focussed on the information
about the customer’s pose and position, especially the binary
indicator Body to bar. It could be argued that the ghosts did not
gaze at the Speech indicator because speech was not displayed
and thus, they looked at something else. But this was not
the case. The Seeks attention indicator would have provided a
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straight forward hint for the ghosts but it was disabled. Hence,
the Seeks attention and Speech indicators equally showed no
information. However, the ghosts dwelled on the potentially
relevant Seeks attention indicator about 10% of their relative dwell
time but only 2% on the Speech indicator (see Table 3). Thus,
the ghosts deliberately ignored the Speech indicator whereas
there was no clear pattern of ignoring or focussing on the
Seeks attention indicator. Together, this provided converging
evidence that modalities other than the distance to the bar
and the head/body orientation were not relevant for detecting
the intention to place an order, and generally to initiate an
interaction.

Using this strategy indicates that the ghosts subconsciously
accessed their knowledge of initiating an interaction and
specifically scanned the panels for the expected social signal.
In turn, they could ignore most of the recognizer data without
risking to ignore a customer. However, it appears counter-
intuitive to ignore information since there was no time pressure
that could have hindered the ghosts from scanning the entire
display. This could be attributed to the fact that the human
cognitive resources are limited in general (Broadbent, 1969)
and in particular within one sensory modality such as vision
(Allport et al., 1972; Mcleod, 1977). Thus, the ghosts used their
social knowledge for limiting the information that they attended
to a few relevant indicators. For example, the GiM interface
included two indicators for the customer’s body orientation. The
arrow shaped indicator Body orientation provided an analog
display of recognizer data and was larger than the Body to bar
indicator which depicted a binary value computed by the social
state estimator. Despite the fact that the binary indicator was
smaller on the display, the ghosts attended and relied on this
to a greater extent compared to the analog version. First, one
of the indicators was sufficient and thus, the ghosts limited
their attention to one of them. Secondly, the ghosts consistently
selected the binary indicator. One of the differences between the
two indicators is the required effort for using the information.
For interpreting the arrow indicator the ghosts would have to
evaluate the angle of the customer’s body orientation themselves
whereas the binary indicator was simpler and provided this
interpretation.

The ghosts not only ignored redundant information and relied
on the most convenient display, they also ignored irrelevant data.
The results showed that they almost exclusively focussed on the
customer’s distance to the bar and their body orientation. This
pattern was not an artifact of our GiM design. For example,
the participants in the natural data experiment only analyzed
the body posture of customer who were close to the bar but
not of other customers (Loth et al., 2013). A similar focus on
task-relevant aspects was observed in intentional blindness in
the visual (Simons and Chabris, 1999) and auditory domain
(Dalton and Fraenkel, 2012). Thus, focussing on those aspects
that are relevant for detecting an expected social signal reflects
general cognitive processes in social interactions. Identifying
these strategies is crucial for human-robot interaction as it
allows to discard possibly misleading data, e.g., a speech
utterance from another customer. Using these social strategies
saves computational effort, improves the robot’s reliability and

makes its performance more predictable by being more human-
like.

The GiM paradigm also allows the manipulation of very
specific pieces of information, e.g., for investigating the relevance
of a particular modality and for eliciting recovery strategies
in sensor failures. The customer’s face data were not recorded
during the robot evaluation resulting in an apparent sensor
failure. Thus, the indicator Face orientation never worked and
the binary Face to bar indicator either indicated that the face
was not detected or that it did not look toward the bar. Thus,
attending and using this information could have misled the
ghosts. They could have assumed that the customer looked
away from the bar and has not intended to interact with them.
However, the ghosts did acknowledge their new customers.
Thus, we concluded that the ghosts recognized that the face
related information was unreliable, discarded this information
and recovered from that sensor failure by relying on data
about the customer’s body instead, specifically the Body to bar
indicator. These results do not allow us to decide whether
the head or body orientation took priority if both sensors
operated as desired. However, a deliberate manipulation can
reveal repair strategies if sensors fail and thereby, provide insight
into the structure and redundancies in human social signals.
In this experiment, the available information was sufficient to
the ghosts to identify and serve customers. Thus, a robot could
rely on the body orientation only and would not require a high
resolution camera and face tracking. For example, a mobile robot
could save on energy by using cameras and trackers only when
needed.

In addition to understanding the user’s behavior, the GiM
paradigm allows us to determine which actions constitute a
socially appropriate response. In the intention recognition trials,
the ghosts had to communicate that they have noticed the
customers and are ready to take their drink orders. Almost all
ghosts decided to look at their customers, i.e., they visibly shifted
the robot’s attention to the customer. This reflects the first part
of a visual handshake. The customer can accept this invitation
and complete the visual handshake by looking at the (robotic)
bartender. The first part of offering a visual handshake and the
second part of accepting it form an adjacency pair (Schegloff,
1968; Schegloff and Sacks, 1973) in a non-verbal modality. If
completed, the handshake ensures that both sides are ready to
begin a verbal communication. Argyle and Dean (1965) argued
that mutual eye contact signals to both sides that the channel
of verbal communication is open. Furthermore, establishing eye
contact puts some pressure on the assistant to respond to the
customer who has caught their eye (Goffman, 1963, p. 94). Vice-
versa, avoiding eye contact is an effective method of avoiding a
conversation in the first place (Goffman, 1963). However, looking
at the customers could also be attributed to a visual inspection of
the scene. But if the ghosts decided to look at something it was
coherently the customer (96% of cases, see Table 4). Additionally,
the dwell times provided evidence in favor of an intended action.
First, the time spent on the control panel doubled if the ghosts
acknowledged a customer. Secondly, the dwell times doubled
on the addressed customer and reduced to one third for the
other customer just before the ghosts initiated the handshake.
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Thirdly, 40% of the responses included a happy face that was
directed toward the customer. This indicates that the ghosts
invested additional efforts in a meaningful action rather than a
casual visual inspection. Finally, the ghosts rarely selected actions
other than a visual handshake. Only 19 times (12% of cases) a
customer was prompted to place an order and only four times
(3% of cases) a nodding head gesture was selected. In sum, a
socially appropriate response to a new customer is to smilingly
offer a visual handshake. The customer is then free to accept it
by looking at the (robotic) bartender or to ignore it. This is very
effective and at the same time less annoying than (repeatedly)
inviting customers to place an order. Furthermore, this finding
resembles observations in natural scenes and strengthens our
conclusion that the GiM paradigm provides reliable insights.
Thus, a robotic agent should employ this simple, effective but not
annoying socially appropriate signal.

Speech Recognition Trials
The speech recognition trials posed a greater challenge to the
ghosts than intention recognition as evidenced by more and
longer turns as well as longer dwell times on the panels (see

Tables 2 and 6). We attributed this to the difficulty of interacting
with pre-recorded customers and eliciting their orders. The pre-
recorded nature of the customers also included the risk that the
customers appear ignorant to the ghosts’ actions, specifically if
they asked questions. However, the ghosts were as efficient as or
better than the real robot andmanaged to serve a drink in 172 out
of 174 interactions. This shows that (a) the ghosts performed well
under challenging conditions, and (b) their responses can reveal
useful strategies that improve interactions with service robots.

The analysis of the recognizer updates and the eye tracking
data showed that once the interaction was initiated, the attention
focus shifted from physical properties to the customer’s Speech
(see Figure 4). For example, Body to bar was the most attended
indicator in the intention recognition trials. In the intermediate
speech recognition turns, its relative dwell time was reduced and
reduced further during the Serving-turns such that it was not
different from a random gaze pattern. At the same time, the
dwell times on the Speech indicator increased. Thus, the closer
the ghosts were to serving a drink, the more they shifted their
attention away from physical properties in the visual sensory
modality toward the customer’s speech in the verbal modality.

FIGURE 4 | Comparison of relative dwell times on each indicator in the Response-turns in the intention recognition trials (left hand side) and the
Serving-turns in the speech recognition trials (right hand side). The color denotes whether the indicator attended less than (blue), equal to (green), or more
than (red) expected by a random gaze distribution.
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As a result the customer’s speech was the single most attended
indicator (see Table 7). As in the intention recognition trials,
the ghosts subconsciously identified the most relevant modality
from their social knowledge. In case of the orders, the social
signal is essentially verbal and thus, the ghosts reduced their
cognitive load by focussing on the Speech. The ghosts further
reduced their load by focussing on the customer whom they
would serve and spending significantly less time on the other
customer especially when serving a drink (see Table 6). This adds
converging evidence to our conclusion that the ghosts specifically
scan for the expected social signals and thereby reduce their
cognitive load.

Focussing on the socially relevant modality not only reduces
the workload, it also prevents mistakes, e.g., abrupt terminations
of the interaction. In one fifth of the servings the recognizers
suggested that the customer was not close to the bar, in one third
of the servings s/he was not visible, and her/his body was not
oriented to the bar in half of the servings. In these cases, the
ghosts would not have acknowledged a new customer but yet
they served them a drink. In contrast, the robotic bartender at
the evaluation assumed that customers must be visible and did
not serve a drink. Instead, the robot terminated the interaction,
waited until the customer was visible again and treated her/him
as a new customer. Thus, the ghosts achieved a greater efficiency
than the robot by continuing their interaction and serving the
drink. We attribute this to the fact that the ghosts expected
some closing to their conversation (Schegloff and Sacks, 1973),
e.g., saying “Thank you”, rather than a sudden disappearance of
the customer. Thus, the ghosts accepted the order even if the
misleading data suggested the customer was (temporarily) not
visible to the recognizers. In conclusion, a robot cannot expect
to detect the customers as bidding for attention throughout the
interaction. For example, if the customer moves or leans onto the
bar, the recognizers can fail temporarily. However, the robot can
expect some closing to the interaction and should not abruptly
terminate the interaction as in the evaluation (Foster et al., 2012)
and in a direction giving robot (Bohus et al., 2014). The robot
still maintains its ability to detect whether the customer has
actually left, e.g., if there is no speech input and the recognizers
cannot detect the customer. Although it may be counter-intuitive
to discard data, a smart weighting and ignoring some data can
improve the robustness of a robotic agent and prevent abrupt
terminations. In addition to improving the robot, focussing on
the socially relevant modalities reflects cognitive principles in
social interactions.

The ghosts strongly focussed on the Speech indicator. But
another comparably large share of the relative dwell time was
spent on the Face position indicator (see Table 7). Our analysis
showed that this was partly due to the fact that the selector
for serving a drink was spatially very close to the Face position
of Customer 2. After accommodating for this confound, the
ghosts attended the Face position reliably more than expected if
their gaze randomly distributed across the information panel. It
could be argued that the ghosts tried to establish eye contact to
the customer by looking at a dot that depicted the customer’s
face. This could be attributed to the fact that maintaining
some level eye contact is important in a conversation because

markedly looking away could signal that one is not an interested
recipient (Schegloff and Sacks, 1973; Goodwin, 2000). However,
maintaining eye contact would have been reasonable throughout
the interaction and, importantly, whether or not the ghosts
observed the dot was not visible to the customers. Thus, we
cannot identify how the ghosts have particularly benefitted from
the Face position indicator immediately before serving a drink
(Serving-turns).

In the speech recognition trials, the ghosts predominantly
tried to elicit which drink the customers ordered using verbal
utterances in particular if the customer’s verbal utterance was
unclear or recognized with a low confidence level. That means
that the ghosts responded verbally to a verbal customer request.
In contrast, the ghosts acknowledged a new customer by
changing physical properties of the robot in the intention
recognition trials, e.g., they manipulated the robot’s looking
direction, but they did not speak. Thus, the ghosts preferred to
respond in the same modality that was used by the customer.
That means that the ghosts responded non-verbally to non-
verbal actions and verbally to verbal actions. There was only
one exception from this rule. If the ghosts served a drink, they
responded with a physical action to a verbal request. However,
this action was often accompanied by a verbal utterance (70% of
the cases) and the customer specifically asked the bartender to
serve a drink. In sum, the ghosts showed a strong preference to
respond to a request within the same modality. Thus, a robotic
agent should copy this human preference unless the user asked
for a specific action.

The analysis of the ghosts’ responses after the customer placed
an order revealed two strategies that contributed to their greater
efficiency compared to the robotic bartender. As the robotic
bartender, the ghosts decided in accordance with the confidence
level of the ASR whether to serve the drink or to ask for a
clarification. But their threshold for servings (Mserving = 59%,
Mclarification = 29%) was lower than the 80% of the robotic
bartender (Foster et al., 2012). Thus, firstly this threshold should
be lowered to about 50% in order to serve the drink quicker.
Secondly, the ghosts used echo questions in about half of their
123 clarification questions, i.e., they repeated the most likely
guess of the ASR as a question (e.g., “A coke for you?”).
A typical response would be a short confirmation (e.g., “Yes,
please.”) or a correction (e.g., “No, I have ordered a juice.”). This
strategy is particularly useful if the ASR has low confidence levels
because the next challenge is to correctly identify the customer’s
reply. Corrections tend to be delayed, prefaced, qualified and/or
mitigated by an apology or an indirect form (Schegloff et al.,
1977; Heritage, 1984). Thus, detecting whether the customer
responded affirmative or with a correction could be achieved by
simply analysing the length of the customer’s response. In this
study, we used pre-recorded customer data. Thus, the customers
could not respond to an echo question. But the data included
the responses to the robot’s repeated prompts for an order (i.e.,
“What would you like?”). In turn, the ghosts perceived that
their customers responded by repeating or slightly reformulating
the original order with repeatedly low ASR confidence levels.
Since the next turn after a question is typically perceived as a
response (Schegloff, 1972; Sacks et al., 1974), a repetition such
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as “A coke, please. Confidence level 15%.” was perceived as more
meaningful in the context of an echo question. Thus, the ghosts
accepted the repetitions as positive answer and served the drink.
Effectively, the ghosts retrospectively loaded their customer’s
answer with an additional social meaning (Clark, 2012). But
this strategy increased the redundancy in the interaction by
repeating what has been said. However, this did not delay the
serving but speeded the interaction and offered the customer
to detect and correct communication errors. With a similar
effect, the ghosts repeated the name of the drink in about
half the servings (e.g., “Here is your coke.”) This allows the
customer to silently accept this or to correct the robot in the
last minute while the actions are already in preparation. In
sum, the analysis of the confidence levels of ASR showed that
about 50% is sufficient as a threshold. Furthermore, clarification
requests and utterances accompanying (robot) actions such as
servings should be formulated as echo questions or statements.
Introducing redundancy by echoing essential information is
socially appropriate and helps in achieving a smooth interaction,
especially if the ASR confidence levels are low or in a noisy
environment.

In addition to verbal utterances, the ghosts selected to look
at the customer in most of their responses. This was the case
if they asked for clarification, served a drink and even if they
selected no other action. They maintained visual contact despite
the fact that the control panel was reset after each update
and required the ghosts to explicitly select this option in each
response. Thus, we concluded that this option was important.
Since the ghosts initiated the interaction by establishing visual
contact to their customers, removing it could be interpreted
as ending the interaction (Schegloff and Sacks, 1973; Goodwin,
2000). The ghosts almost constantly selected to look at their
customers, but other options such as smiling and nodding were
used more restrictedly. In particular, the ghosts nodded and
smiled when confirming an order. Thus, they used these actions
as an additional signal to confirm that the order was understood.
As a result, confirming a drink order was a highly multimodal
signal comprising of facial expressions, head gestures, verbal
utterances and the serving itself. In this rich signal, the head
gestures and facial expressions are redundant from a task-
oriented perspective. However, they served the social purpose
of clearly marking the serving to their customers. In sum, the
ghosts maintained visual contact to their customers throughout
the interaction. In contrast, nodding and smiling were used more
restrictedly to confirm that the order was understood.

CONCLUSION

The GiM paradigm is a reliable method for understanding the
social behavior of users and the responses that they expect
in a human–robot interaction setting. We demonstrated that
results obtained with the GiM paradigm replicate findings
that were obtained in the analyses of natural scenes, video
recordings of natural scenes and in experiments using natural
stimuli (Goffman, 1963; Argyle and Dean, 1965; Brouwer et al.,
1979; Goodwin, 2000; Clark, 2012; Loth et al., 2013, 2015).

In addition to experimenting with natural stimuli, the GiM
paradigm allowed us to separately identify each single aspect of
the scene (represented by a recognizer modality) that the ghost
participants dedicated their overt attention to and its impact on
their actions.

Our results showed that our ghost participants focussed on
a small number of socially relevant modalities and ignored
other, potentially misleading data. We argued that this is due to
the ghosts scanning for particular social signals for recognizing
the user’s intention and a general limitation of their cognitive
resources (Broadbent, 1969; Allport et al., 1972; Mcleod, 1977).
We also found that ignoring other data is advantageous as it
hinders being distracted by misleading information that can lead
to e.g., abrupt terminations of the interaction (Bohus et al., 2014).
Thus, we demonstrated how fundamental principles of human
cognition operate in social settings and also showed how a robotic
agent can be improved by incorporating these principles.

Our study investigated two aspects of the bar setting: initiating
the interaction, and ordering and serving the drink. The
relevance of the modalities shifted as ghosts expected different
social signals at each stage from their prior knowledge. When
the customer tried to get the attention of the robotic bartender,
her/his position and pose were most important. In contrast, the
verbal modality was the most important for orders and servings.
Thus, we have to identify which social signals are expected at
each stage of an interaction and adapt the robotic policies to
attend the relevant modalities. Furthermore, our findings showed
that the ghosts preferred to respond in the same modality that
the customer has used, i.e., changing the robot’s pose if the
user signaled to them through their pose and position, and
speaking if the user spoke to the robot. Thus, a multimodal
grammar has to incorporate: (a) a method for focussing on the
expected social signals and the relevant modalities, (b) keeping
track of changes in expected signals and modalities, and (c)
a preference to respond in the same modality as the user’s
signal.

This GiM study revealed communication strategies that are
simple, effective and socially appropriate. In acknowledgments,
we showed that the robot should offer a visual handshake to
the customers by looking at them and inviting them to join
the interaction by looking at the robot, rather than annoy
them by repeatedly inviting them to place an order. During
the interaction, our ghost participants created redundancy by
echoing salient parts of the customer’s utterance such as the
drink order. Even though redundancy implies longer and more
turns, this socially appropriate strategy required fewer turns and
fewer clarification questions (cf. Giuliani et al., 2013) especially in
cases involving inconclusive recognizer data. In sum, we found
simple strategies for a smoother human–robot interaction that
can enhance the robot’s multimodal grammar.

The ghost participants enjoyed the game-like interface of
our GiM software and invested efforts and time into building
a socially appropriate interaction with their customers. Thus,
we concluded that our results reflect reliable, replicable insights
in human social behavior and cognitive principles. Our initial
study delivered substantial improvements for human–robot
interaction policies by making the robot’s performance more
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robust, human-like and in turn, more predictable and enjoyable
to its users. In our study, we used pre-recorded user data. But the
GiM paradigm can be advanced into a real-time research tool in
order to investigate the entire interaction. Furthermore, specific
pieces of information or modalities can be manipulated in order
to elicit repair and compensation strategies. The GiM interface
can be adapted to various settings and its game-like experience
makes it an ideal research tool for deriving multimodal grammars
including strategies for recovering from inconclusive sensor data.
Thus, the GiM paradigm is an effective, simple, and highly
versatile method for understanding human social behavior that
has the potential to revolutionize the field of social robotics.
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Using gaze patterns to predict task
intent in collaboration

Chien-Ming Huang*, Sean Andrist, Allison Sauppé and Bilge Mutlu

Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI, USA

In everyday interactions, humans naturally exhibit behavioral cues, such as gaze and

head movements, that signal their intentions while interpreting the behavioral cues

of others to predict their intentions. Such intention prediction enables each partner

to adapt their behaviors to the intent of others, serving a critical role in joint action

where parties work together to achieve a common goal. Among behavioral cues, eye

gaze is particularly important in understanding a person’s attention and intention. In

this work, we seek to quantify how gaze patterns may indicate a person’s intention.

Our investigation was contextualized in a dyadic sandwich-making scenario in which

a “worker” prepared a sandwich by adding ingredients requested by a “customer.”

In this context, we investigated the extent to which the customers’ gaze cues serve

as predictors of which ingredients they intend to request. Predictive features were

derived to represent characteristics of the customers’ gaze patterns. We developed

a support vector machine-based (SVM-based) model that achieved 76% accuracy in

predicting the customers’ intended requests based solely on gaze features. Moreover,

the predictor made correct predictions approximately 1.8 s before the spoken request

from the customer. We further analyzed several episodes of interactions from our data

to develop a deeper understanding of the scenarios where our predictor succeeded and

failed in making correct predictions. These analyses revealed additional gaze patterns

that may be leveraged to improve intention prediction. This work highlights gaze cues

as a significant resource for understanding human intentions and informs the design of

real-time recognizers of user intention for intelligent systems, such as assistive robots

and ubiquitous devices, that may enable more complex capabilities and improved user

experience.

Keywords: intention, eye gaze, support vector machine, gaze patterns, intention prediction

1. Introduction

In daily interactions, humans frequently engage in joint action—a collaborative process that
involves parties working together to coordinate attention, communication, and actions to
achieve a common goal (Clark, 1996; Sebanz et al., 2006). For example, movers carrying a
large piece of furniture, an instructor training students in a chemistry lab, or a server taking
customer orders at a deli counter must coordinate their behaviors with one another. To achieve
successful joint action, people monitor each others’ actions and task progress, predict each
others’ intentions, and adjust their own actions accordingly (Sebanz and Knoblich, 2009). Such
action monitoring and intention prediction are integral to the establishment of common ground
between parties engaged in joint action. As a result, parties consciously and subconsciously exhibit
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behavioral cues, such as eye gaze and gestures, to manifest
intentions for others to read while interpreting others’ behavioral
cues to understand their intention, thereby facilitating joint
action. These behavioral cues are a gateway to understanding
a person’s mental states, including attention, intentions, and
goals. Moreover, increasing evidence from neuroscience and
developmental psychology has shown that action monitoring
allows people to use their behavior repertoire and motor
system to predict and understand others’ actions and intentions
(Blakemore and Decety, 2001; Buccino et al., 2001; Rizzolatti and
Craighero, 2004).

Among other behaviors, gaze cues are particularly informative
in the manifestation of mental states. Deictic gaze toward an
object, for instance, may signal the person’s interest in the
object and has been found to be temporally coupled with the
corresponding speech reference to the object (Meyer et al., 1998;
Griffin, 2001). Moreover, people use gaze cues to draw others’
attention toward an intended object in the environment in order
to establish perceptual common ground (Sebanz et al., 2006). The
ability to understand and follow such cues is critical for sharing
mental states in an interaction (Butterworth, 1991). Gaze cues
may also signal planned actions; empirical evidence has shown
that gaze cues indicate action intent and lead motor actions that
follow (Land et al., 1999; Johansson et al., 2001).

While prior research has highlighted the link between gaze
cues and intention, the current work aims to develop a model
quantifying how patterns of gaze cues may characterize and
even predict intentions. To this end, we collected data of dyadic
interactions in which a “customer” and a “worker” engaged in
a sandwich-making task and analyzed how the customers’ gaze
patterns indicated their intentions, which we characterized as
the ingredients they chose. Conceptually, this interaction can be
characterized as involving three processes: (1) the customer looks
at possible ingredients to make a decision about which ingredient
to request (Hayhoe and Ballard, 2014); (2) the customer signals
their decision via behavioral cues (Pezzulo et al., 2013); and (3)
the worker observes the customer’s gaze behaviors to predict
their intentions (Doshi and Trivedi, 2009; Ognibene andDemiris,
2013; Ognibene et al., 2013). Our goal is to quantify how
much information the customer’s gaze provides about their
intentions in the first two processes. We built and tested a
machine learning model that predicted customer intentions from
tracked eye gaze data. Specifically, we developed a support
vector machine-based approach that predicted the customers’
intention—choice of ingredients—based on their exhibited gaze
patterns. The effectiveness of the predictor was evaluated using
the collected gaze data. Our model and findings contribute to
our understanding of the relationship between gaze cues and
intent and to design guidelines for emerging technologies, such
as assistive robots and ubiquitous devices, that utilize real-time
intention prediction to provide their users with effective and
anticipatory assistance.

This paper is organized as follows. Section 2 reviews
behavioral signals of human intentions and action monitoring
for intention understanding. We present a computational model
that quantifies the relationship between gaze cues and human
intentions and an evaluation of the effectiveness of the model

in Section 3. We discuss our results, potential applications, and
limitations of this work in Section 4.

2. Background

In everyday interactions, from carrying furniture to successfully
navigating in a crowded space, people engage in an implicit form
of coordination (Sebanz et al., 2006). This coordination relies on
the successful communication and recognition of intent by the
parties involved in the interaction and enables each person to
adapt their behavior to accommodate their partner’s intentions.
While communicating intent can be achieved through a number
of behavioral channels (Morris and Desebrock, 1977; White,
1989; Clark and Brennan, 1991; Shibata et al., 1995; Bangerter,
2004), gaze has been identified as crucial in understanding the
intentions of others, as the direction of gaze indicates where
a person is directing their attention and the actions that they
may subsequently perform (Baron-Cohen et al., 2001; Meltzoff
and Brooks, 2001). Below, we review research into how humans
develop an understanding of intent in themselves and others and
utilize gaze cues to communicate intent.

2.1. Human Intent
The concept of intentionality is defined as the commitment of
a person to executing a particular action (Malle and Knobe,
1997). The formulation of an intent is often driven by the
individual’s desire to achieve a particular goal (Astington, 1993).
This formulation requires a variety of other skills, including
forethought and planning, to appropriately fulfill an intention
(Bratman, 1987). What differentiates an intent from a desire is
this level of planning in preparation to turn the intention into an
achievable reality (d’Andrade, 1987).

From an early age, children begin to attribute intent to the
actions of others. For example, children at 15 months of age
are capable of understanding the intentions of others in physical
tasks, even when the goal is not achieved (Meltzoff, 1995). Later,
children learn how behaviors are driven by intent (Feinfield et al.,
1999), contributing to the development of an ethical system
where intentionality is used as a factor to establish the culpability
of an individual.

Prior work suggests that, after developing a capacity for
understanding intent, humans also develop Theory of Mind
(ToM)—the ability to attribute mental states to others (Leslie,
1987). The development of ToM enables people to understand
that other humans they interact with may have intents that can
differ from their own (Leslie, 1987; Blakemore and Decety, 2001).
ToM then shapes the way people interact with one another
in a way that is most easily observable in physical tasks, such
as moving a table together or navigating through a crowd.
In these scenarios, humans rely on ToM abilities to attribute
intent to other participants and to adapt their own behaviors
to accommodate the intent of others, resulting in seamless
interactions.

2.2. Communicating Intent via Gaze
While the ability to attribute intent to others is important in joint
action, discerning what the intentions of other participants are
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with a high degree of reliability can be difficult without some
amount of evidence. One approach people subconsciously use
to infer the intent of others is by observing their behavioral
cues (Blakemore and Decety, 2001). Humans employ a number
of behavioral cues, such as gaze and gestures, when working
with others on a task (Morris and Desebrock, 1977; White,
1989; Clark and Brennan, 1991; Shibata et al., 1995; Baron-
Cohen et al., 2001; Meltzoff and Brooks, 2001; Bangerter, 2004).
These cues aid in their partner’s understanding of and fluency
in the task, enabling their partner to adjust their behavior
accordingly to accommodate intended actions (Blakemore and
Decety, 2001). While a number of behavioral channels can be
used to understand intent, gaze is considered preeminent among
them due to the clarity with which it can indicate attention; for
instance, partners would assume that an area being gazed toward
will be the next space to be acted upon (Baron-Cohen et al., 2001;
Meltzoff and Brooks, 2001).

Gaze behavior is crucial to human communication of intent
throughout the development of social behavior. During infancy,
children can follow the gaze cues of adults, which serve as the
basis of joint attention (Butler et al., 2000), and use their own gaze
to communicate an object of interest (Morales et al., 1998). Older
preverbal children can employ gaze in conjunction with gestures
to communicate more concretely (Masur, 1983). The use and
understanding of gaze becomes more complex and nuanced with
age, allowing humans to better identify targets of joint attention
(Heal, 2005). This development of gaze understanding mirrors
the development of understanding of intent and ToM discussed
above, allowing humans to gradually develop a more complex
intuition of others and their intentions.

During an interaction, gaze behavior can indicate one’s intent
in a variety of ways, such as communicating a future action
or an emotional state. During a joint task, awareness of a
partner’s gaze behavior helps enable effective task coordination
between participants (Tomasello, 1995). Prior work by Brennan
et al. (2008) used head-mounted eye trackers to examine gaze
patterns during a joint search task. Awareness of a partner’s gaze
behavior was not only sufficient for completing the task, but
it also resulted in significantly faster search times than verbal
coordination did. Additionally, participants who were aware of
their partner’s gaze behavior offered more precise help during the
task when it was necessary. Adams and Kleck (2005) conducted
a controlled laboratory study where participants were presented
with photographs of people who were either gazing toward or
away from the participant. Results showed that participants’
perceptions of the photographed person’s emotional state were
affected by the person’s gaze direction.

Gaze behavior can be used in conjunction with other attributes
or behavioral cues to more accurately predict intent. Ordering
of gaze fixations has been used to infer the type of visual
task a person is performing, such as memorizing a picture vs.
counting the number of people photographed in a picture (Haji-
Abolhassani and Clark, 2014). Prior work used eye gaze and
its associated head movements as input for a sparse Bayesian
learning model (McCall et al., 2007) to predict a driver’s
future actions when operating a motor vehicle (Doshi and
Trivedi, 2009). Additionally, work by Yi and Ballard (2009)

built a dynamic Bayesian network from a user’s gaze and hand
movements to predict their task state in real time during a
sandwich-building task.

While prior work has examined the connection between gaze
and intent in a variety of situations, the current work aims to
provide an empirical approach to modeling gaze behavior to
predict task intent during collaboration. Specifically, it extends
prior work in two ways. First, the current work investigates the
relationship between gaze cues and task intent in a collaborative
context, whereas prior work employed tasks that involved only
one person completing them, e.g., making a sandwich (Yi and
Ballard, 2009) or driving a car (Doshi and Trivedi, 2009).
Second, the prior predictive models utilized multiple sources
of information, while this present work focuses on using gaze
cues only. A related problem to the focus of the present work is
how to use the predicted intention of others to direct one’s own
focus (e.g., gaze fixation). For example, Ognibene and Demiris
(2013) and Ognibene et al. (2013) utilized people’s motions to
predict their intentions and used these predictions to control the
attention of a robotic observer.

3. Prediction of Human Intentions

In this section, we describe our process for understanding and
quantifying the relationship between gaze cues and human
intentions. This process includes collecting human interaction
data, modeling the characteristics of gaze patterns from our data,
and evaluating the effectiveness of the computational model. In
addition to the quantitative evaluation, we provide qualitative
analyses of the circumstances under which our model succeeds
and fails in predicting user intentions.

3.1. Data Collection and Annotation
Our data collection involved pairs of human participants engaged
in a collaborative task. We used this study both to collect data for
ourmodel as well as to build an intuition as to how joint attention
is coordinated through both verbal and non-verbal cues in day-
to-day human interactions. During the data collection study,
participants performed a sandwich-making task in which they
sat across from each other at a table that contained 23 possible
sandwich ingredients and two slices of bread. The initial layout
of the ingredients was the same for each pair of participants
(Figure 1). One participant was assigned the role of “customer,”
and the other was assigned the role of “worker.” The customer
used verbal instructions to communicate to the worker what
ingredients he/she wanted on the sandwich. Upon hearing the
request from the customer, the worker immediately picked up
that ingredient and placed it on top of the bread.

We recruited 13 dyads of participants for the data collection
study. All dyads were recruited from the University of
Wisconsin–Madison campus and were previously unacquainted.
The protocol for the data collection study was reviewed and
approved by the University of Wisconsin–Madison’s Education
and Social/Behavioral Science Institutional Review Board (IRB).
Prior to the experiment, participants completed a written consent
of participation. Each dyad carried out the sandwich-making
task twice so that each participant acted as both customer and
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FIGURE 1 | Data collection of dyadic interactions in a

sandwich-making task. Left: Two participants, wearing gaze

trackers, working together to make a sandwich. Middle: The

participant’s view of the task space from the gaze tracker. The

orange circle indicates their current gaze target. Right: The layout

of ingredients on the table. The ingredients, from top to bottom,

left to right, are lettuce1, pickle1, tomato2, turkey, roast beef,

bacon2, mustard, cheddar cheese, onions, pickle2, ham, mayo, egg,

salami, swiss cheese, bologna, bacon1, peanut butter, lettuce2,

pickle3, tomato1, ketchup, jelly.

worker. The customer was instructed to request 15 ingredients
for their sandwich. Participants kept their own count of the
number of ingredients ordered, stopping when they had reached
15. The customer was further instructed to only request a single
ingredient at a time and to refrain from directly pointing to or
touching the ingredients. Upon completing the first sandwich, an
experimenter entered the study room and reset the ingredients
back to their original locations on the table, and the participants
switched roles for the second sandwich.

Throughout the data collection study, both participants wore
mobile eye-tracking glasses developed by SMI1. These eye-
trackers perform binocular dark-pupil tracking with a sampling
rate of 30 Hz and gaze position accuracy of 0.5◦. Each set of
glasses contains a forward-facing high-definition (HD) camera
that was used to record both audio and video at 24 fps. The gaze
trackers were time-synchronized with each other so that the gaze
data from both participants could be correlated.

Following data collection, the proprietary BeGaze software
created by SMI was used to automatically segment the gaze data
into fixations—periods of time when the eyes were at rest on
a single target—and saccades—periods of time when the eyes
were engaged in rapid movement. Fixations were labeled with
the name of the target fixated upon. Possible targets included
the sandwich ingredients (Figure 1), the slices of bread, the
conversational partner, and elsewhere in space. Speech was also
transcribed for each participant. Customer requests for specific
objects were tagged with the ID of the referenced object.

3.2. Intention Modeling
In this work, we considered the customers’ intentions to be their
chosen ingredients. Informed by the literature, we hypothesized
that the customers’ gaze patterns would signify their intent of
which ingredients they wanted on their sandwich and aimed
to develop a model to accurately predict intentions based on
their gaze patterns. Our data collection resulted in a total of
334 episodes of ingredient requests. We excluded episodes where
more than 40% of the gaze data was missing before verbal
requests, yielding 276 episodes for data analysis and modeling.

1http://www.smivision.com/en/gaze-and-eye-tracking-systems/home.html

A naive, but plausible, strategy to predict a person’s intent is
solely based on his or her current gaze, which may indicate the
person’s current attention and interest (Frischen et al., 2007).
To evaluate the efficacy of this strategy, we built an attention-
based intention predictor that performed predictions according
to which ingredient the customer most recently fixated on. An
evaluation of the 276 episodes showed that the attention-based
predictor achieved 65.22% accuracy in predicting the customers’
choice of ingredient. This strategy outperformed random guesses
of the ingredient, which were between 4.35 (i.e., 1/23) and 11.11%
(i.e., 1/9), depending on howmany potential ingredients were still
available at that point in the interaction.

While the attention-based method was reasonably effective
in predicting the intended ingredients, it only relied on the
most recently glanced-at ingredient and omitted any prior
gaze cues. However, the history of gaze cues may provide
richer information for understanding and anticipating intent.
In particular, we made two observations from the 276 episode
analysis. First, participants seemed to glance at the intended
ingredient longer than other ingredients. Second, participants
glanced multiple times toward the intended ingredient before
making the corresponding verbal request. These observations,
along with significance of attention, informed our selection of
characteristic features, as listed below, to represent patterns of
participant’s gaze cues. Each of the four features was computed
for all potential ingredients in every episode of an ingredient
request.

Feature 1: Number of glances toward the ingredient before the
verbal request (Integer)

Feature 2: Duration (in milliseconds) of the first glance toward
the ingredient before the verbal request (Real value)

Feature 3: Total duration (in milliseconds) of all the glances
toward the ingredient before the verbal request (Real
value)

Feature 4: Whether or not the ingredient was most recently
glanced at (Boolean value)

We applied a support vector machine (SVM) (Cortes and
Vapnik, 1995)—a type of supervised machine learning approach
that is widely used for classification problems—to classify
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the participants’ gaze patterns into two categories, one for
the intended ingredient (i.e., positive) and the other for the
non-intended, competing ingredients (i.e., negative). In this
work, we used Radial Basis Function (RBF) Kernels and the
implementation of LIBSVM (Chang and Lin, 2011) for the
analysis and evaluation reported below.

To evaluate the effectiveness of our model in classifying
gaze patterns for user intentions, we conducted a 10-fold cross-
validation using the 276 episodes of interaction. For each
episode, we calculated a feature vector, including Features 1–
4, for each ingredient that the customer looked toward before
making a verbal request. To train the SVM, if an ingredient
was the requested ingredient, the classification label was set to
1; otherwise, it was set to −1. In the test phase, the trained
SVM determined the classification for each ingredient glanced at.
On average, the SVMs achieved 89.00% accuracy in classifying
labels of customer intention. Feature selection analyses (Chen
and Lin, 2006) revealed that Feature 3 was the most indicative in
classifying intentions, followed by Feature 4, Feature 1, and then
Feature 2.

3.3. Intention Prediction
The SVM classifier was further modified to predict the customers’
intentions. The input to our SVM predictor was a stream of gaze

fixations. As the interaction unfolded, we maintained a list of
candidate ingredients, their corresponding feature vectors, and
the estimated probabilities of the ingredient being the intended
request, calculated using the method based on Wu et al. (2004).
When a new gaze fixation on an ingredient occurred, we first
checked whether or not the ingredient was in the candidate list. If
the ingredient was already in the list, we updated its feature vector
and estimated probability; otherwise, we added a new entry for
the ingredient to the list.

A traditional SVM was used to classify an ingredient to be the
potential request if the estimated probability was greater than 0.5.
If more than one ingredient was classified as a potential request,
the traditional SVM predictor picked the ingredient with the
highest probability as the final prediction. If, however, none of
the ingredients were classified as potential requests, the predictor
made no prediction. The effectiveness of such a traditional SVM
predictor was assessed via a 10-fold cross-validation using our
276 episodes. For this evaluation, a prediction was considered
to be correct only when the prediction matched the actual
request. Note that this intention prediction was different from the
classification of gaze patterns reported in the previous section.
The accuracy of intention prediction was assessed by whether
or not the predicted ingredients matched the requested ones,
whereas the accuracy of intention classification was based on
comparisons of classified labels, including both positive and
negative, with actual labels. The traditional SVM predictor on
average reached 61.52% accuracy in predicting which ingredients
the customer would pick. Further analysis revealed that 28.99%
of the time the SVM predictor made no predictions. However,
when it made predictions (i.e., 71.01% of the time), the SVM
provided predictions at 86.43% accuracy. This accuracy could be
interpreted as the confidence of the traditional SVM predictor in
predicting intention when it had a positive classification.

We defined an anticipation window as the time period
starting with the last change in the prediction and ending
with the onset of the speech utterance (see Figure 2 as an
example). This anticipation window allowed us to understand
how early the predictor could reach the correct predictions.
For the traditional SVM predictor, the anticipation window for
the correct predictions was on average 1420.57 ms before the
actual verbal request, meaning that the predictor could anticipate
the intended ingredient about 1.4 s in advance. The interaction

FIGURE 2 | Illustration of episodic prediction analysis. Each illustrated

episode ends at the start of the verbal request. The top plot shows

probabilities of glanced ingredients that may be chosen by a customer. Note

that the plotted probability was with respect to each ingredient. By

calculating the normalized probability across all ingredients, we can

determine the likelihood of which ingredient will be chosen. The bottom plot

shows the customer’s gaze sequence. Ingredients are color coded. Purple

indicates gazing toward the bread. Black indicates missing gaze data. An

anticipation window is defined as the time period starting with the last

change in the prediction and ending with the onset of the speech utterance.

The beginning and end probabilities are the probabilities of the predicted

ingredient at the beginning and end of the anticipation window.
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duration before the verbal request for the episodes with correct
predictions was on average 3802.56 ms (SD = 1596.45).

The predictive accuracy of the traditional SVM predictor
was largely impaired by the frequency with which it made
no predictions. To address this issue, we ensured that our
SVM-based predictor always made a prediction, choosing
the ingredient with the highest probability. A 10-fold cross-
validation using the 276 episodes showed that our SVM-
based predictor on average reached 76.36% predictive accuracy
and could make those correct predictions 1831.27 ms ahead
of their corresponding verbal requests (Interaction duration
M = 3802.56, SD = 1596.45). Table 1 summarizes these
results. Moreover, we analyzed the probabilities of the chosen
ingredients that were at the beginning and end of the anticipation
window (see Figure 2). On average, the beginning and end
probabilities for the correct predictions were 0.36 and 0.75,
respectively, whereas the beginning and end probabilities for
the incorrect predictions were 0.28 and 0.43, respectively. These
probability parameters indicate the confidence of our SVM-based
predictor in making a correct prediction. For example, when
the probability of an ingredient is over 0.43, the ingredient is
likely to be the intended choice. We note that this threshold
(0.43) is lower than the threshold used by the traditional SVM
(0.50). Similarly, if the probability of an ingredient is lower
than 0.36, the ingredient is less likely to be the intended choice.
These parameters allow the construction of a real-time intention
predictor that anticipates the customers’ choices on the fly.

In the next section, we provide examples and further analyses
of when our SVM-based predictor made correct and incorrect
predictions. These analyses revealed gaze patterns that may
provide additional insight into understanding the customers’
intentions.

3.4. Qualitative Analysis
To further understand how our intention predictor made correct
and incorrect predictions in the collected interaction episodes, we
plotted the probability of each glanced-at ingredient over time,
aligned with the corresponding gaze sequence received from the
gaze tracker, for each interaction episode (see Figure 2 for an
example). These plots facilitated a qualitative analyses of gaze
patterns and further revealed patterns that were not captured
in our designed features but may signify user intentions. In
the following paragraphs, we present our analyses and discuss
exemplary cases.

3.4.1. Correct predictions

Two categories—one dominant choice and the trending choice—
emerged from the episodes with correct predictions (see
examples in Figure 3).

TABLE 1 | Summary of our quantitative evaluation of the effectiveness of

different intention prediction approaches.

Predictive accuracy Anticipation time

Chance 4.35–11.11% N/A

Attention-based 65.22% N/A

SVM-based 76.36% 1831 ms

3.4.1.1. One dominant choice
In this category, customers seemed to be focused toward one
dominant ingredient, which was apparent in their gaze cues
(Figure 3, Top). In particular, we found two types of gaze
patterns. In the first, participants looked toward the intended
ingredient for a prolonged time. In the second, they looked
toward the intended ingredient multiple times in the course
of their interaction. For both patterns, the intended ingredient
received the majority of the gaze attention relative to other
ingredients. This dominance allowed the predictor to give correct
predictions.

3.4.1.2. Trending choice
In contrast to the previous category, there were situations in
which customers did not seem to have a single ingredient
in mind. In these situations, the customers exhibited a
“shopping” behavior by looking toward multiple ingredients
to decide which one to order. These situations usually
involved the participants’ visual attention being spread
across multiple candidate ingredients. However, the
customers generally looked toward the intended ingredient
recurrently compared to other competing ingredients
throughout the interaction. This recurrent pattern resulted
in the intended ingredient becoming a trending choice,
as illustrated in the bottom examples of Figure 3. The
SVM-based predictor was observed to capture this pattern
effectively.

3.4.2. Incorrect predictions

From the 10-fold evaluation of the SVM-based predictor,
there were a total of 62 episodes resulting in incorrect
predictions. In the following paragraphs, we describe the
characteristics of four identified categories of these incorrect
predictions.

3.4.2.1. No intended glances
Among the incorrect predictions, there were 23 episodes
(37.10%) during which the customers did not glance at the
intended ingredients (Figure 4, First row). There are three
reasons that might explain these cases. First, the customers had
made their decisions in previous episodes. For example, when
they were glancing around to pick an ingredient, they may
have also decided which ingredient to order next. Second, their
intentions were not explicitly manifested through their gaze
cues. Third, the gaze tracker did not capture the gaze of the
intended ingredient (i.e., missing data). In each of these cases, the
predictor could not make correct predictions as it did not have
the necessary information about the intended ingredients.

3.4.2.2. Two competing choices
Sometimes, customers seemed to have two ingredients they were
deciding between (Figure 4, Second row). In this case, their
gaze cues were similarly distributed between the competing
ingredients. Therefore, gaze cues alone were not adequate
to anticipate the customers’ intent. We speculate that the
determinant factors in these situations were subtle and not well-
captured via gaze cues. Therefore, the predictor was likely to
make incorrect predictions in these situations.
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FIGURE 3 | Two main categories of correct predictions: one dominant

choice (top) and the trending choice (bottom). Green indicates the

ingredients predicted by our SVM-based predictor that were the same as the

actual ingredients requested by the customers. Purple indicates gazing

toward the bread and yellow indicates gazing toward the worker. Black

indicates missing gaze data.

3.4.2.3. Multiple choices
Similar to the case of two competing choices, the customers
sometimes decided among multiple candidate ingredients
(Figure 4, Third row). As gaze cues were distributed across
candidate ingredients, our predictor had difficulty in choosing
the intended ingredient. Additional information, either from
different behavioral modalities or new features of gaze cues,
is necessary to distinguish the intended ingredient from the
competing ones.

3.4.2.4. Favoring competing choices
In situations where the customers looked toward competing
ingredients more frequently as compared to the intended
ingredient, our predictor made incorrect predictions (see
examples in Figure 4, Fourth row). One potential explanation
for this type of gaze pattern is that the customers changed
their decision after quick glances at the intended ingredients.
For instance, as shown in the bottom examples of Figure 4,
while the customers looked longer and multiple times at the red
ingredient, they requested the blue ingredient with smaller gaze
attention. Our features failed to capture such quick decisions,
likely resulting in incorrect predictions.

3.4.3. Special patterns

In analyzing the efficacy of our SVM-based intention
predictor, we observed some special, potentially informative
gaze patterns that were not explicitly captured in our derived

features emerge. We discuss these patterns in the following
paragraphs.

3.4.3.1. Initiating joint attention
Initiating joint attention is the process of using behavioral cues
to direct the other’s attention to a shared artifact. One such
behavioral instantiation involves alternating gaze cues—looking
toward the intended ingredient, looking toward the worker, and
then looking back at the intended ingredient (Mundy andNewell,
2007). We found such patterns of initiating joint attention in
our data, as shown in the first row of Figure 5. This pattern
usually emerged toward the end of the episode, serving as a
signal to the worker that the intended ingredient had been
chosen.

3.4.3.2. Confirmatory request
The inverse pattern of initiating joint attention is that
of the customer looking toward the worker, toward the
intended ingredient, and then back toward the worker.
Conceptually, we can characterize this pattern as a confirmatory
request, meaning that the customer sought the worker’s
attention, directed their attention, and checked if the
intention was understood. From our data, this pattern
of confirmatory request seemed to signify intention.
As illustrated in the second row of Figure 5, the single
ingredient between fixations at the worker was the intended
ingredient.
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FIGURE 4 | Examples of incorrect predictions. Red indicates the prediction made by the SVM-based predictor, whereas blue indicates the actual ingredient

requested by the customers. Purple indicates gazing toward the bread whereas yellow indicates gazing toward the worker. Black indicates missing gaze data.

3.4.3.3. Goal referencing
Another pattern that emerged from the data was visual references
to the goal, which in our context was the bread where ingredients
were moved. This type of reference was found in a variety of
combinations. It could be found before, after, or in between

choosing the intended ingredient. Examples are provided in the
third row of Figure 5. There may be different meanings to these
combinations. For instance, the customers might have checked
which ingredients had been added to the sandwich and used that
information to decide which ingredient to pick next.
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FIGURE 5 | Examples of special gaze patterns. Green indicates the

ingredients predicted by our SVM-based predictor that were the same

as the actual ingredients requested by the customers. Blue lines

indicate the ingredients that the customers picked. Red lines are our

predictions. Purple indicates gazing toward the bread, whereas yellow

indicates gazing toward the worker. Black indicates missing gaze data.

4. Discussion

To quantitatively investigate the relationship between exhibited
gaze cues and intentions, we contextualized our investigation
in a sandwich-making scenario in which a worker made
a sandwich using ingredients requested by a customer. We
characterized intentions as the ingredients requested by the
customers and hypothesized that the customers’ gaze patterns
would predict their choice of ingredients. We developed an
SVM-based intention predictor using four features that aimed
to represent characteristics of the customers’ gaze patterns. The
SVM-based predictor was demonstrated to outperform the basic
attention-based predictor in predicting the customers’ choices
of ingredients. Moreover, the SVM-based predictor could make
correct predictions approximately 1.8 s before the requests.
Furthermore, we qualitatively analyzed the instances of correct

and incorrect predictions made by the SVM-based predictor
to better understand its performance in boundary cases. In
this section, we discuss implications of our qualitative analyses,
potential applications of our intention predictor, and limitations
of the present work.

4.1. Implications of Qualitative Analyses
Our qualitative analyses (Section 3.4) provided not only insight
into how the SVM-based predictor made correct and incorrect
predictions, but they also revealed special patterns thatmay signal
intentions via visual references to the other person and the goal.
Signaling is an intentional strategy that people use to manifest
actions and intentions in a way that is more predictable and
comprehensible to interaction partners (Pezzulo et al., 2013). For
example, parents exaggerate intonation in infant-directed speech
(Kuhl et al., 1997). The use of signaling strategies facilitates the
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formation of common ground. The special patterns initiating
joint attention and confirmatory request involved interleaving
gaze cues between the partner and the intended ingredient. These
displays of interleaving gaze may serve as an intentional signaling
strategy, highlighting the relevance of the intended ingredient.
Similarly, the visual references to the goal, which is the bread in
our scenario, may be signaling the intentional link between the
bread and the intended ingredient, as shown in the pattern goal
referencing.

The four features of gaze cues explored in this work were
based on statistical measures of the customers’ gaze sequences.
While these features seemed to capture how the distribution
of gaze cues may indicate intentions, they did not explicitly
encode sequential structures from gaze sequences. However,
sequential structures—such as gaze toward the target, then
partner, and then the target again—may encapsulate particular
semantic meanings, such as directing the partner’s attention
toward the target. The capability to recognize these sequential
structures as those of initiating joint attention, confirmatory
request, and goal referencing, could reveal the underlying
meanings of gaze sequence and potentially improve the efficacy
of the SVM-based predictor. For example, the last plot of the
examples of confirmatory request showed that the intention
predictor could benefit from recognizing the sequential human-
target-human pattern. One way to recognize such sequential
structures is through template matching, which has been
explored to recognize communicative backchannels (Morency
et al., 2010).

However, the special patterns, identified in Section 3.4.3,
should be used with caution when predicting intentions. The
last plot in Figure 4 illustrated a contradictory example; even
though there was a clear pattern of confirmatory request, it did
not signify the intended ingredient. Further research is necessary
to investigate how the incorporation of sequential structures into
the predictive model may enhance predictive performance.

4.2. Applications
The capability to interpret others’ intentions and anticipate
actions is critical in performing joint actions (Sebanz and
Knoblich, 2009; Huber et al., 2013). Prior research has explored
how reading intention and performing anticipatory actions
might benefit robots in providing assistance to their users,
highlighting the importance of intention prediction in joint
actions between humans and robots (Sakita et al., 2004;
Hoffman and Breazeal, 2007). Building on prior research,
this work provides empirical results showing the relationship
between gaze cues and human intentions. It also presents
an implementation of an intention predictor using SVMs.
With the advancement of computing and sensing technologies,
such as gaze tracking systems, we anticipate that an even
more reliable intention predictor could be realized in the
foreseeable future. Computer systems such as assistive robots
and ubiquitous devices could utilize intention predictors to
augment human capabilities in many applications. For example,
robot co-workers could predict human workers’ intentions by
monitoring their gaze cues, enabling the robots to choose
complementary tasks to increase productivity in manufacturing

applications. Similarly, assistive robots could provide necessary
assistance to people by interpreting their gaze patterns that
signal intended help. In addition to applications involving
physical interactions, recommendation systems could provide
better recommendations to users by utilizing their gaze patterns.
For instance, an online shopping website could dynamically
recommend products to customers by tracking and interpreting
their gaze patterns.

4.3. Limitations
The current work also has limitations that motivate future
investigations. First, we employed SVMs for data analysis
and modeling to quantify the potential relationship between
gaze cues and intentions. Alternative approaches, such as
decision trees and hidden Markov models (HMMs), may also
be used to investigate such relationships and interaction
dynamics. However, similar to most machine learning
approaches that are sensitive to the data source, our results
were subject to the interaction context and the collected
data. For instance, the parameters of the predictive window
(e.g., size) might be limited to our present context. Yet,
in this work, we demonstrated that characteristics of gaze
cues, especially duration and frequency, are a rich source for
understanding human intentions. Furthermore, we used a toy
set of sandwich items as our research apparatus. Participants
working with the toy sandwich may have produced different
gaze patterns then they would when working with real sandwich
materials.

Second, we formulated the problem of intention prediction
in the context of sandwich-making as the problem of using the
customers’ gaze patterns to predict their choices of ingredients.
Intention is a complex construct that may not be simply
represented as the requested ingredient. While our work focused
solely on using gaze cues to predict customer intent, workers
in this scenario may rely on additional features, including
facial expressions and other cues from the customer, and other
forms of contextual information, such as preferences expressed
previously toward particular toppings or knowledge of what
toppings might “go together.” Disentangling the contributions of
different features to observer performance in these predictions
would significantly enrich our understanding of the process
people follow to predict intent. However, our findings were in
line with literature indicating that gaze cues manifest attention
and lead intended actions (Butterworth, 1991; Land et al., 1999;
Johansson et al., 2001). In addition, the sequences of gaze
cues, as inputs to our predictive model, were obtained via
a gaze tracker worn by the customers. Future research may
consider acquiring the gaze sequences from the perspective of
the worker. This approach may be beneficial in developing an
autonomous robotic assistant (Ognibene and Demiris, 2013;
Ognibene et al., 2013) that can leverage its onboard camera to
obtain the different items human users gaze toward. Future work
may also compare the performance of human observers and
the types of errors they make to those of our machine learning
model. Such a comparison may inform our selection of features
or learning algorithms in building systems that recognize user
intent.
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5. Conclusion

Eye gaze is a rich source for interpreting a person’s intentions.
In this work, we developed a SVM-based approach to quantify
how gaze cues may signify a person’s intention. Using the
data collected from a sandwich-making task, we demonstrated
the effectiveness of our approach in a laboratory evaluation,
where our predictor provided improved accuracy in making
correct predictions of the customers’ choices of ingredient (76%)
compared to the attention-based approach (65%) that only relied
on the most recently glanced-at ingredient. Moreover, our SVM-
based approach provided correct predictions approximately 1.8
s before the requests, whereas the attention-based approach did
not afford such intention anticipation. Analyses of the episodic
interactions further revealed gaze patterns that suggested
semantic meanings and that contributed to correct and incorrect

predictions. These patterns informed the design of gaze features
that offer a more complete picture of human intentions. Our
findings provide insight into linking human intentions and gaze
cues and offer implications for designing intention predictors
for assistive systems that can provide anticipatory help to
human users.
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The use of domestic service robots is becoming widespread. While in industrial settings robots
are often used for specified tasks, the challenge in the case of robots put to domestic use is to
afford human-robot collaboration in a variety of non-predefined and different daily tasks. Herein,
we aim at identifying and understanding the conditions that will facilitate flexible collaboration
between humans and robots. Past research of social and personality psychology was mainly focused
on individual’s self-regulation, defined as the ability to govern, or direct attention, resources, or
action toward the realization of a particular goal (Higgins, 1989; Kruglanski et al., 2002). There
is evidence that pursuing goals with the presence of others influences self-control (Fishbach and
Trope, 2005), however only little is known on dyadic processes of self-regulation. Additionally,
whereas research of goal pursuit in social psychology has mainly been associated with general
processes of the structure and function of goals (Gollwitzer and Bargh, 1996; Carver and Scheier,
1998; Kruglanski et al., 2002; Fishbach and Ferguson, 2007; Custers and Aarts, 2010), human-robot
interaction involves pragmatic interpersonal dilemmas such as how to coordinate human-robot
activity and what knowledge should be shared between humans and robots over the course of
action. To fill this gap, in what follows, we will define the unique characteristics of what we term
as human-robot coupled self-regulation, which has the unique features of a dyadic asymmetric team
aimed to increase the affordances of an individual in different activities.We will describe the unique
characteristics of human-robot interaction and its special challenges toward goal pursuit.

Human and Robot are a Dyadic Instrumental Asymmetric Team

Our first assumption is that self-regulation of a human-robot couple could be conceptualized
as a unique team configuration. A team is “a distinguishable set of two or more people
who interact, dynamically, interdependently, and adaptively toward a common and valued
goal/objective/mission, who have each been assigned specific roles or functions to perform, and
who have a limited life-span of membership” (Salas et al., 1992, p. 4; Salas et al., 2010). Team
members have differentiated responsibilities and roles (Cannon-Bowers et al., 1993). Therefore,
essential for a team’s successful performance is the understanding of the abilities and behaviors of
its members that fit their experience and unique expertise for the task at hand.

Because humans and robots differ in their level of agency (the capacity to act and do) and their
level of experience (the capacity to feel and sense), (Gray and Wegner, 2012), we argue that their
contribution to the team is not symmetric. Based on the reasoning that genuine authorship of
an action or situation may not always be clear (Dijksterhuis et al., 2008), we suggest that defined
requirements of person, robot, and situation are essential to reduce the expectation gap.

Our perspective is that human-robot collaboration should be viewed in terms of functionality, to
extend possibilities for the kinds of goals that humans want to pursue. These instrumental relations
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between a person and her tool, used to increase the fit between
person and environment, are termed affordances (Gibson,
1979). Following this view, we argue that robots can be
perceived as self-regulatory tools to increase affordances across
different situations (Koole andVeenstra, 2015). Our instrumental
relational approach enables flexibility in tuning the robot’s level of
responsiveness and dominance in human-robot social contexts.
For example, whereas the human member of the team holds
a fixed ownership position, the robot’s level of dominance
could vary by user demands, or depending on the situation.
To understand the usefulness of this principle, let us take for
example 80 year old Mrs. Brown. She is physically fragile, but
it is important for her to maintain an independent life style.
This is why she has “Rupert,” a multi-functional platform robot
that serves as her aid. When she leaves the house she may want
“Rupert” to lead and find the safest walking path to the store,
thus she may set it to high dominance and responsiveness, in case
she startles. At home, she may not desire high level of proactive
care-taking and leave “Rupert” to be on call.

Concrete Level of Human-robot

Negotiation

Our second assumption is that human-robot coupled self-
regulation is based on concrete rather than abstract level of
agreement. Carrying out human-robot joint actions demands
continuous coordination on at least five elements: (1) who takes
part; (2) what is the role of each member; (3) what is the joint
goal; (4) how does each team member contribute to the timing
and synchronization; and (5) where the actions take place (Clark,
2005). To address this, the robot should identify where the focus
of attention of the human is, to what degree the attention of the
human is focused on team actions, and how to convey feedback.
Similarly, the human needs to calibrate expectations from the
robot, i.e., be invested in the robot’s immediate action or approval
of action, and how to respond to the robot’s requests (Alami et al.,
2005).

Coupled self-regulation of goals requires agreement on goal
setting and goal striving as two basic phases in goal pursuit
(Gollwitzer and Oettingen, 2011). Whereas, robots may act
automatically from initiation to completion of the task, humans’
possible reflection on their performance may involve conscious
awareness and create new representations of behavior, thus
leading to communication gaps (Baumeister and Bargh, 2014).
According to the action identification theory, a specific action
can be verbally identified and interpreted from different levels of
abstraction, ranging from low-level identities that specify how the
action is performed, to high-level identities that signify why the
action is performed. For instance, a person who “drinks water”
can identify it as “holding a glass” (low level), or as “relieving
thirst” (high level) (Vallacher and Wegner, 1987, 1989). This
helps explain why different action identifications by human and
robot may lead to dissimilar systems of goals and means of
attainment (Kruglanski et al., 2002; Shah et al., 2002).

To address these challenges, we suggest the use of multiple
human-robot forms of communication to pursue the joint

goal. Lohan et al. (2014) proposed a distinction between two
kinds of actions: path-oriented and manner-oriented, that can
be communicated via two different linguistic utterance styles.
Whereas, in path-oriented utterances the goal is stressed,
in manner-oriented utterances, the means of motion are
emphasized (e.g., Talmy, 1991). In our example, Mrs. Brown
and “Rupert” carry a recliner to the porch (Path-“let’s move the
chair to the porch” or Manner-“I want to read my book on the
porch”). Suddenly the phone rings and Mrs. Brown wants to go
and answer ((Path-“let me go get the phone” or Manner-“I need
to answer this call”). “Rupert” must understand that the goal has
changed and pause.

Continuous and Various Communication

Forms Over Goal Pursuit

Research indicates that professional and social interactions
between team members can develop the team’s social cognition
(Klimoski and Mohammed, 1994). There is evidence that a
team’s fluent on-going communication regarding goal pursuit
reduces the need for preexisting knowledge (Kozlowski and Bell,
2003). In social HRI, it is critical to generate many levels of
interaction with the automation. Hence, the robot should always
be present and aim to facilitate the goal, even if only to provide
recommendations. In civil aviation, for example, communication
is key especially if things turn out unexpectedly. In the Northwest
2009 incident in Minneapolis the automation had the capability,
but was not designed to point out that the task was not performed
as planned and that the pilotsmissed their destination. To borrow
from our previous example, let us suppose Mrs. Brown wants
to grab a pillow from the upper cabinet. The robot may not be
able to reach so high, but it should continue to collaborate by
providing feedback and advice; I cannot reach the uppermost
cupboard (failure to complete task) but it is too dangerous for
you to try to reach it on your own, if not urgent, perhaps we
should call your son, or is there another pillow on a lower
shelf?

Much of human communication over goal pursuit is based
on social cues (e.g., gestures, and mimicry) that automatically
generate social judgment and behavior (Chartrand and Bargh,
1999; van Baaren et al., 2003; Leander et al., 2010). Similarly,
translation of social cues to social signals leads to inference
of human intentions by robotic agents (Fiore et al., 2013).
The relevance of automatic embodied cues for joint goal
pursuit was demonstrated in human-human and human-
robot synchronicity, suggesting that physical synchronicity is
associated with experience of responsiveness and empathy
(Sebanz and Knoblich, 2009; Cohen et al., 2010; Paladino et al.,
2010; Boucher et al., 2012; Hoffman et al., 2014). Embodied
communication is not only “used” by robots, but integrated in
them to support both the recognition of the human’s behavior
and the generation of their behavior. Research of social signal
processing and modeling multimodal communication, suggests
that social and behavioral cues may be detectable from amachine,
hence perceivable. Likewise, models of behavior are integrated in
a way that a robot exhibits a more natural behavior, aiming at
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a more successful interaction with the human (Pentland, 2007;
Vinciarelli et al., 2012).

However, despite emerging findings from the field of
embodied cognition on the potential of physical and social cues
as an alternative route for communication, it was also claimed
that embodied cognition cues can lead to different patterns of
activation across different contexts (Loersch and Payne, 2011),
thus prediction of behavior may be difficult (Shalev, 2015). A
possible way to address this limitation is to use robots in fixed
context, where interpretation to human’s embodied signals is less
ambiguous. For example Loth et al. (2013), have demonstrated
that bar staff responded to a set of two non-verbal signals. Foster
(2014), indicated that robotic sensors can similarly detect and
respond to these signals.

Addressing the Human-robot

Communication Gap over Goal Pursuit

Individuals frequently use embodied cues for functional self-
regulatory purposes (Balcetis and Cole, 2009; Schnall et al.,
2010; Bargh and Shalev, 2012; Shalev, 2014). However, using
embodied cues as diagnostic inputs (Williams et al., 2009;
Ackerman et al., 2010; Meier et al., 2012; Robinson and
Fetterman, 2015; Winkielman et al., 2015) may lead to human-
robot miscommunications. For example, human speakers expect
co-located listeners to link visually perceivable objects and the
verbally described references to them. Thus, humans may expect
a co-located robot to have the same visual-verbal linking abilities
(e.g., look at the green object on the right), thus developers
must integrate the robot’s visual system with natural language
components to enable this flow of communication (Kopp, 2010;
Cantrell et al., 2012; Vollmer et al., 2013).

Furthermore, there is also anecdotal evidence of human-
human communication misunderstandings in complex scenes.
For example orientation can be relative to egocentric, or
exocentric (absolute or relative) locations. Soldiers for example,
are taught to communicate via the exocentric coordinates of the
compass rose. However, most humans tend to naturally orient
relative to their egocentric perspective, which may be difficult
for robots to depict. Interestingly, Cassenti et al. (2012) found
that instructors used exocentric references to direct the robot and
that it improved their performance relative to egocentric-only
commands.

To address this communication gap, we argue that shared
database, sensors and multiple types of displays and interaction
means (e.g., physiological measures, eye tracking, voice, touch,
text, button presses etc.) can enrich the robot’s capacity of
perception and expression. Similarly, to reduce expectation
issues, technology can shape the way the user acts on the robot,
how individuals understand what to expect from it, and how they
can interact with a robot to refine their mutual understanding of
the task at hand. Providing the relevant information about the
current state of the robot, the progress of the task, and of the
surrounding environment, can facilitate successful performance.
Similarly, education efforts need to convey the ambiguity of
ongoing human-robot communication, particularly the robot’s

physical and data-driven limitations, and to encourage problem
solving and novelty seeking.
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The ability to interact with other people hinges crucially on the possibility to anticipate
how their actions would unfold. Recent evidence suggests that a similar skill may
be grounded on the fact that we perform an action differently if different intentions
lead it. Human observers can detect these differences and use them to predict the
purpose leading the action. Although intention reading from movement observation is
receiving a growing interest in research, the currently applied experimental paradigms
have important limitations. Here, we describe a new approach to study intention
understanding that takes advantage of robots, and especially of humanoid robots.
We posit that this choice may overcome the drawbacks of previous methods, by
guaranteeing the ideal trade-off between controllability and naturalness of the interactive
scenario. Robots indeed can establish an interaction in a controlled manner, while
sharing the same action space and exhibiting contingent behaviors. To conclude, we
discuss the advantages of this research strategy and the aspects to be taken in
consideration when attempting to define which human (and robot) motion features allow
for intention reading during social interactive tasks.

Keywords: motor cognition, second-person interaction, contingency, kinematics, intention reading, human–robot
interaction

Reading Intentions from Others’ Movement

The ability to attend prospectively to others’ actions is crucial to social life. Our everyday, common-
sense capability to predict another person’s behavior hinges crucially on judgments about that
person’s intentions, whether they act purposefully (with intent) or not, as well as judgments about
the specific content of the intentions guiding others’ actions – what they intend in undertaking a
given action (Baldwin and Baird, 2001).

Humans rely on several sources to understand others’ intention (Figure 1). For instance, by
looking at the context of the surrounding environment we are often able to infer what is another
person’s intention. If a closed bottle of wine is on the table and a person reaches for a drawer,
we guess that he is more probably looking for a bottle opener than for a fork. Under similar
circumstances, the information provided by the context would allow an observer to constraint
the number of possible inferences, thus facilitating the action prediction process (Kilner, 2011).
But actions can also take place in contexts that do not provide sufficient information to anticipate
others’ intention. In such cases it has been demonstrated that others’ gaze behavior may be a
suitable cue to anticipate the intention to act (Castiello, 2003) as well as the specific goal of an
action (Ambrosini et al., 2015). Moreover, there is a growing body of evidence indicating that, in
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FIGURE 1 | An illustrative picture of human–robot interaction with the humanoid robot iCub. The mutual and spontaneous information exchange is
mediated by context (i.e., the game on the touch screen that the two partners are playing) and by the agents’ gazing behavior, but also by the intention information
embedded in their movement properties. Copyright photo: Agnese Abrusci, Istituto Italiano di Tecnologia© IIT.

absence of gaze or contextual information, intentions can be
inferred from body motion. But how is this possible?

How another agent moves can represent a cue to infer his
intention because the way he moves is intrinsically related to
his intention. In keeping with previous evidence (e.g., Marteniuk
et al., 1987), recent studies have shown that in humans different
motor intentions translate into different kinematics patterns
(Ansuini et al., 2006, 2008; Sartori et al., 2011b). For instance,
Ansuini et al. (2008) asked participants to reach for and grasp
the very same object (i.e., a bottle) to accomplish one of four
possible actions (i.e., pouring, displacing, throwing, or passing).
Kinematic assessment revealed that when the bottle was grasped
with the intent to pour, the fingers were shaped differently than
in the other conditions. Further studies have extended these
effects to the domain of social intention, reporting that not
only the presence of a social vs. individual intention (Becchio
et al., 2008b), but also the type of “social” intention (compete
vs. cooperate) has an effect on action kinematics (Becchio et al.,
2008a; see also Georgiou et al., 2007).

Recent evidence suggests that observers are sensitive to
early differences in visual kinematics and can use them to
discriminate between movements performed with different
intentions (Vingerhoets et al., 2010; Manera et al., 2011; Sartori
et al., 2011a; Stapel et al., 2012). For instance, Sartori et al. (2011a)
tested whether observers use pre-contact kinematic information
to anticipate the intention in grasping an object. To this end,
they first analyzed the kinematics of reach-to-grasp movements
performed with different intents: cooperate, compete against an
opponent, or perform an individual action at slow or fast speed.
Next, they presented participants with videos representative of
each type of intention, in which neither the part of the movement
after the grasping, nor the interacting partner, when present, were
visible. The results revealed that observers were able to judge the

agent’s intent by simply observing the initial reach-to-grasp phase
of the action.

The above findings suggest that intentions influence action
planning so that different kinematic features are selected
depending on the overarching intention. The observer is sensitive
to this information and can use it to anticipate the unfolding of
an action. Reading intention by observing movement therefore
enables humans to anticipate others’ actions, even when other
sources of information are absent or ambiguous.

Research on the topic of understanding intention from
movement has been traditionally the domain of psychology and
neuroscience. However, there is growing interest in applying
these ideas to computer vision, robotics, and human–robot
interaction (e.g., Strabala et al., 2012; Shomin et al., 2014; Dragan
et al., 2015). Unfortunately, the methodologies and paradigms
currently used present important limitations. In the next sections,
we will first briefly describe the methods traditionally applied
to investigate this topic, and we will point out their potential
shortcomings. Thereafter we will propose a new potential role for
robots: before becoming anticipatory companions, robots could
serve as suitable tools to overcome these limitations in research.

Barriers to Investigation of
Intention-from-Movement
Understanding

Reading intention from movement observation has been
traditionally investigated with video clips used as stimuli. In
these paradigms, for instance, temporally occluded goal-oriented
actions are shown and the participant is asked to watch
them and guess which is the actor’s intention. This approach
guarantees full control on the stimulation in all its aspects: timing,
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information content, and perfect repeatability. Moreover, with
video manipulation it is also possible to create behaviors that
are impossible or unnatural, by modifying selectively relevant
properties of the action. However, when looking at a video
presentation, the subject is merely an observer, rather than
a participant in the interaction. In other words, the use of
videos eliminates some fundamental aspects of real collaborative
scenarios, including the shared space of actions, the physical
presence, the possibility to interact with the same objects
and even potential physical contact between the two partners.
Furthermore the video paradigm progresses in a fixed design
and does not react to the action of the participant. It therefore
precludes the possibility to build a realistic interactive exchange.
Hence, the use of movie stimuli provides a fundamental way to
investigate how others’ actions and intentions are processed, but
it should be used to complement other approaches that allow for
actual interaction and contingent behavior.

More recently, the use of virtual reality systems has been
proposed as a tentative solution to this problem.With this kind of
settings it is possible to create virtual characters, or avatars, that
respond contingently to participant’s behavior (e.g., his gaze or
his actions), while still maintaining the proper controllability of
video stimuli. This type of methodology has strong potential, but
it also has the limitation of detaching the participant from the
real world. The resulting subject’s behavior might then be affected
not only by actions of the avatar, but also by being immersed
in an environment that is not his everyday reality and which
might not feature the same physical laws (e.g., gravity). Many
aspects of our movements may derive from an optimization or
a minimization of energy expenditure computed over life-long
interaction with environmental constraints (e.g., Berret et al.,
2008). Thus, removing the real environment from the equation
could actually cause important changes in the performance of
even simple interactions such as passing an object back and forth.

To summarize, the use of video stimuli allows full
controllability, but it lacks of the possibility of contingent
reaction and compromises the investigation of reading
intention-from-motion in the context of a real interaction.
On the other hand, virtual reality provides a certain degree of
action contingency, but forces the participant to be immersed in
a reality, that is different from his everyday experience. Thus, a
new tool that goes beyond these limitations and allows an actual
interaction with a high level of control is needed. In our opinion,
the application of robots may meet these requirements. In the
following, we propose a brief description of the main properties
that would make robots, especially humanoids, a valuable
instrument to investigate human ability to read intentions from
others’ movements.

Humanoid Robots as New Tool to
Investigate Intention Understanding

Second-Person Interaction
As mentioned above, current paradigms investigating intention
understanding are often based on a “spectator” approach
to the phenomenon. However, social cognition differs in

three important ways when we actively interact with others
(‘second-person’ social cognition) compared to when we merely
observe them (‘third-person’ social cognition; Schilbach and
Timmermans, 2013). First, being involved in an interaction has
an emotional component that is missing in a detached action
observation setting (Schilbach and Timmermans, 2013). Second,
it changes the perception of the environment, which is processed
in terms of the range of possible actions of the two partners
rather than those of the single participant (e.g., Richardson
et al., 2007; Doerrfeld et al., 2012). Third, it is characterized
by a higher flexibility, as the partners can adaptively change
their actions during the interaction itself (e.g., Sartori et al.,
2009). Robots provide the unique opportunity to investigate
second-person social cognition, by engaging the participant
in a face-to-face interaction without losing the controllability
of the experiment or the shared environment. Although an
experimenter or a human actor can be used as co-agent in a real
interaction, the very fact that two people interacting influence
each other in a complex way would easily result in behaviors
that go beyond experimental control (see Streuber et al., 2011).
Moreover, the automatic processes that constitute a great part
of implicit communication (e.g., unintentional movements or
gazing) are very difficult to restrain. As suggested by Bohil et al.
(2011), “an enduring tension exists between ecological validity
and experimental control” in psychological research. A robotic
platform might provide a way out of this dilemma because
it could sense the ongoing events and elaborate the incoming
signals through its onboard sensors so to be able to react
contingently to the behavior of the human partner, according to
predefined rules.

Modularity of the Control
A further advantage of the use of robotic platforms relates
to the possibility to isolate the contributions of specific cues
that inform intention-from-movement understanding. When we
observe other’s actions, the incoming flow of sensory information
provides multiple sources of evidence about the agent’s goal,
such as their gaze direction, arm trajectory, and hand pre-
shape. The contribution of these factors in isolation is indicated
by several empirical studies (e.g., Rotman et al., 2006; Manera
et al., 2011). However, how these factors contribute together to
mediate intention understanding remains unclear (Stapel et al.,
2012; Furlanetto et al., 2013; Ambrosini et al., 2015). It is
difficult in practice to separate and independently manipulate
individual cues. For instance, the temporal dynamics of eye-
hand coordination in a passing action or the relationship
between the speed of a reaching movement and its accuracy are
not independently planned by a human actor (see Ambrosini
et al., 2015). Conversely, on a robot these aspects can be
separated, distorted, or delayed, to assess the relative importance
of each feature of the motion. For instance, we know that
the unfolding of an action kinematics occurs within a specific
temporal structure, e.g., the peak deceleration occurs at around
70–80% of a reach-to-grasp movement (Jeannerod, 1986). The
robot allows the experimenter to selectively manipulate the
time of peak deceleration to assess precisely which temporal
deviations from human-like behavior could be tolerated by
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an observer, without hindering the possibility to infer other’s
intentions.

Shared Environment
Robots are embodied agents, moving in our physical world, and
therefore sharing the same physical space, and being subject to
the same physical laws that influence our behavior. In contrast
to virtual reality avatars, robots bring the controllability and
contingency of the interaction into the real-world, where actual
interaction usually occurs. Furthermore, robots with a humanoid
shape have the advantage of being able to use the tools and objects
that belong to a human environment and have been designed
for human use. These properties make robots more adaptable to
our common environments. In addition, the human shape and
the way humans move are encoded by the brain differently with
respect to any other kind of shape and motion (Rizzolatti and
Sinigaglia, 2010). Consequently, humanoid platforms can probe
some of the internal models naturally developed to interact with
humans and allow studying exactly those basic mechanisms that
make human–human interaction so efficient.

Necessary Robot Features to Investigate
Human Ability to Read Intentions

When using a robot to investigate intention understanding in
humans, some potential issues have to be considered. It could
be objected, for instance, that the ability to anticipate others’
intentions is strongly related to the properties of the human
motor repertoire (Rizzolatti and Sinigaglia, 2010) and a robot
does not exactly replicate the shape or the movements of human
agent.

Although some researchers have succeeded in copying
human appearance quite precisely (Nishio et al., 2007), human
movement is indeed much harder to reproduce. This is due,
for instance, to the materials and actuators with which robots
are built, which are quite dissimilar from human elastic tissues
and muscles, and to the complexity of human articulations. Still,
entire research areas are devoted to build new robots that more
closely resemble motor control and actuation of a human body
(e.g., Kenshiro robot, Kozuki et al., 2013).

It is worth noticing that robotic platforms currently available
offer interactive contexts in which robotic motion could be
sufficiently similar to humanmotion. In this respect, investigation
of reading intention-from-movement is particularly suitable
for the use of humanoid robots, because it is traditionally
focused on simple actions such as reaching to pass, grasping,
transporting, or handing-over an object. This choice derives
from the observation that most everyday collaborative behaviors
are made of combinations of these simple acts. With this
“vocabulary” as the focus of interest, it is possible to find
existing robotic platforms that allow for human-like visuo-
manual coordination, i.e., a control of gaze and manual actions
that resembles that of a human (e.g., iCub, Metta et al., 2010,
see Figure 2). Additionally, an approximate human-like shape,
at least in the apparent humanoid structure of the robot body
(e.g., torso, arm, hand, neck, head), might be required. This way

FIGURE 2 | It is possible to replicate simple movements with a
humanoid robot that are sufficiently similar to those of a human actor.
Here we show an example where the robot approximates a previously
recorded human reaching. (A) Snapshots of the humanoid robot iCub
reaching for a bottle with the aim to pour its content (i.e., pouring intention).
(B) Sample trajectories of the palm of the hand on the horizontal (X) and
vertical (Y) planes of the motion. Blue lines represent robot actions while red
lines indicate human motions. Each line refers to a single movement. Data
from ten trials are reported. It can be noticed that robot motion is highly
repeatable and reflects quite accurately the average trajectory of the human
action to be reproduced (dashed red line). Image by Oskar Palinko.

humans can easily match their own bodily configuration with
that of the robot and it is also simpler for experimenters to
design robot behaviors approximating human motions both in
end-effector and joint trajectories.

Since a robot is not an exact replica of a human, the doubts
remain about whether a humanoid actually elicits in the human
observers the same class of phenomena that are activated when
they are observing a fellow human. A general answer to this
question is not available yet (see Sciutti et al., 2012 for a review
on the topic). However, there is some evidence suggesting that
a humanoid robot exhibiting properly programmed motions can
evoke the same automatic behavioral reactions as a human – at
least in the context of the simple motions listed before.

One of these phenomena is the automatic anticipation of the
action goal of another agent. Such prediction is associated to the
activation of the observer’s motor system (Elsner et al., 2013) and
therefore does not occur when an object is self-propelling toward
a goal position with the same predictable motion (Flanagan and
Johansson, 2003). In an action observation task in which the
humanoid robot iCub transported an object into a container, the
observers exhibited a similar degree of automatic anticipation as
for a human actor, suggesting that a comparable motor matching
(and goal reading) occurred for both agents (Sciutti et al., 2013a).
This result was replicated with another behavioral effect related
to motor matching, namely automatic imitation (Bisio et al.,
2014). When witnessing someone else performing an action,
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humans spontaneously adapt their speed to that of their partner.
It has been demonstrated that a similar unconscious adaptation
occurs also after the observation of a humanoid robot action,
but only if robot motion complies with the regularities of human
biological motion. Additionally, humans process humanoid and
human lifting actions in a similar manner. In line with this, it
has been shown that observers are able to infer the weight of
an unknown lifted object with the same accuracy both when
looking at a human actor or at the iCub robot performing the
lifting (Sciutti et al., 2013b, 2014). These results expand previous
studies that showed that other behavioral phenomena associated
to motor resonance (i.e., the activation of the observer’s motor
system during action perception) can generalize to humanoid
robot observation, such as priming (Liepelt et al., 2010) and
motor interference (Oztop et al., 2005).

Taken together, this evidence indicates that, as far as simple
collaborative behaviors are concerned, humanoid robot actions
are processed similarly to human actions and trigger a similar
response in the human partners. Hence, using a humanoid
robot as stimulus could give us insights not only about which
mechanisms could facilitate human–robot interaction, but also
about the laws subtending the dynamics of human–human
interaction.

Conclusion

We predict that the use of robots as tools for investigating the
phenomenon of reading intentions from movement observation
will have a substantial impact not only on cognitive science

research, but also from a technological standpoint. The tangible
benefits for psychology and cognitive science of using humanoid
robots to investigate intention reading consist in adding to the
research the controllability of each single aspect of interaction
(modularity of control), a property which is well beyond the
possibilities of a human actor, while at the same time preserving a
real reciprocity and involvement (second-person interaction), also
in terms of space (shared environment). In turn, the possibility
to have robots that move so as to seamlessly reveal their intents,
would result in a more efficient, safe, and fluent human-robot
collaboration. Indeed, by exploiting the same subtle kinematics
signals that enable the timely and rich mutual understanding
observed among humans, the implicit reading of robot intentions
would happen naturally, with no need of specific training or
instructions. Hence this line of research will allow us to build
better, more interpretable robots and at the same time to
deepen our understanding of the complex field of human–human
interaction.

Acknowledgments

The research presented here has been supported by the
CODEFROR project (FP7-PIRSES-2013-612555) – https://www.
codefror.eu/. CA and CB were supported by the European
Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013)/ERC grant agreement
n. 312919. Authors would like to thank Oskar Palinko for his help
in figure and robot motion preparation and Matthew Tata for his
help in proofreading the manuscript.

References

Ambrosini, E., Pezzulo, G., and Costantini, M. (2015). The eye in hand: predicting
others’ behavior by integrating multiple sources of information. J. Neurophysiol.
113, 2271–2279. doi: 10.1152/jn.00464.2014

Ansuini, C., Giosa, L., Turella, L., Altoè, G., and Castiello, U. (2008). An object for
an action, the same object for other actions: effects on hand shaping. Exp. Brain
Res. 185, 111–119. doi: 10.1007/s00221-007-1136-1134

Ansuini, C., Santello, M., Massaccesi, S., and Castiello, U. (2006). Effects
of end-goal on hand shaping. J. Neurophysiol. 95, 2456–2465. doi:
10.1152/jn.01107.2005

Baldwin, D. A., and Baird, J. A. (2001). Discerning intentions in dynamic
human action. Trends Cogn. Sci. 5, 171–178. doi: 10.1016/S1364-6613(00)01
615-1616

Becchio, C., Sartori, L., Bulgheroni, M., and Castiello, U. (2008a). Both your
intention and mine are reflected in the kinematics of my reach-to-grasp
movement. Cognition 106, 894–912. doi: 10.1016/j.cognition.2007.05.004

Becchio, C., Sartori, L., Bulgheroni, M., and Castiello, U. (2008b). The case of Dr.
Jekyll and Mr. Hyde: a kinematic study on social intention. Conscious. Cogn. 17,
557–564. doi: 10.1016/j.concog.2007.03.003

Berret, B., Darlot, C., Jean, F., Pozzo, T., Papaxanthis, C., and Gauthier, J. P. (2008).
The inactivation principle: mathematical solutions minimizing the absolute
work and biological implications for the planning of arm movements. PLoS
Comput. Biol. 4:e1000194. doi: 10.1371/journal.pcbi.1000194

Bisio, A., Sciutti, A., Nori, F., Metta, G., Fadiga, L., Sandini, G., et al. (2014).
Motor contagion during human-human and human-robot interaction. PLoS
ONE 9:e106172. doi: 10.1371/journal.pone.0106172

Bohil, C. J., Alicea, B., and Biocca, F. A. (2011). Virtual reality in neuroscience
research and therapy. Nat. Rev. Neurosci. 12, 752–762. doi: 10.1038/nrn3122

Castiello, U. (2003). Understanding other people’s actions: intention and attention.
J. Exp. Psychol. Hum. Percept. Perform. 29, 416–430. doi: 10.1037/0096-
1523.29.2.416

Doerrfeld, A., Sebanz, N., and Shiffrar, M. (2012). Expecting to lift a box together
makes the load look lighter. Psychol. Res. 76, 467–475. doi: 10.1007/s00426-011-
0398-394

Dragan, A. D., Bauman, S., Forlizzi, J., and Srinivasa, S. S. (2015). Effects of
robot motion on human-robot collaboration. Proceedings 15, 1921–1930. doi:
10.1145/2696454.2696473

Elsner, C., D’Ausilio, A., Gredebäck, G., Falck-Ytter, T., and Fadiga, L.
(2013). The motor cortex is causally related to predictive eye movements
during action observation. Neuropsychologia 51, 488–492. doi:
10.1016/j.neuropsychologia.2012.12.007

Flanagan, J. R., and Johansson, R. S. (2003). Action plans used in action
observation.Nature 424, 769–771. doi: 10.1038/nature01861

Furlanetto, T., Cavallo, A., Manera, V., Tversky, B., and Becchio, C.
(2013). Through your eyes: incongruence of gaze and action increases
spontaneous perspective taking. Front. Hum. Neurosci. 7:455. doi:
10.3389/fnhum.2013.00455

Georgiou, I., Becchio, C., Glover, S., and Castiello, U. (2007). Different action
patterns for cooperative and competitive behaviour. Cognition 102, 415–433.
doi: 10.1016/j.cognition.2006.01.008

Jeannerod, M. (1986). The formation of finger grip during prehension. A cortically
mediated visuomotor pattern. Behav. Brain Res. 19, 99–116. doi: 10.1016/0166-
4328(86)90008-90002

Kilner, J. M. (2011). More than one pathway to action understanding. Trends Cogn.
Sci. 15, 352–357. doi: 10.1016/j.tics.2011.06.005

Kozuki, T., Motegi, Y., Shirai, T., Asano, Y., Urata, J., Nakanishi, Y., et al. (2013).
Design of upper limb by adhesion of muscles and bones - Detail humanmimetic

Frontiers in Psychology | www.frontiersin.org September 2015 | Volume 6 | Article 1362 | 70

https://www.codefror.eu/.
https://www.codefror.eu/.
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Sciutti et al. Investigating intention reading with robots

musculoskeletal humanoid kenshiro. IEEE Int. Conf. Intel. Rob. Syst. 935–940.
doi: 10.1109/IROS.2013.6696462

Liepelt, R., Prinz, W., and Brass, M. (2010). When do we simulate non-
human agents? Dissociating communicative and non-communicative actions.
Cognition 115, 426–434. doi: 10.1016/j.cognition.2010.03.003

Manera, V., Becchio, C., Cavallo, A., Sartori, L., and Castiello, U. (2011).
Cooperation or competition? Discriminating between social intentions
by observing prehensile movements. Exp. Brain Res. 211, 547–556. doi:
10.1007/s00221-011-2649-2644

Marteniuk, R. G., MacKenzie, C. L., Jeannerod, M., Athenes, S., and Dugas, C.
(1987). Constraints on human arm movement trajectories. Can. J. Psychol. 41,
365–378. doi: 10.1037/h0084157

Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., et al. (2010).
The iCub humanoid robot: an open-systems platform for research in cognitive
development.Neural Netw. 23, 1125–1134. doi: 10.1016/j.neunet.2010.08.010

Nishio, S., Ishiguro, H., and Hagita, N. (2007). “Geminoid: teleoperated android
of an existing person,” in Humanoid Robots: New Developments, ed. A. C. de
Pina Filho (Vienna: I-Tech Education and Publishing), 343–352. doi: 10.5772/
4876

Oztop, E., Franklin, D. W., and Chaminade, T. (2005). Human – humanoid
Interaction: is a humanoid robot perceived as a human. Int. J. Humanoid Robot.
2, 537–559. doi: 10.1142/S0219843605000582

Richardson, M. J., Marsh, K. L., and Baron, R. M. (2007). Judging and actualizing
intrapersonal and interpersonal affordances. J. Exp. Psychol. Hum. Percept.
Perform. 33, 845–859. doi: 10.1037/0096-1523.33.4.845

Rizzolatti, G., and Sinigaglia, C. (2010). The functional role of the parieto-frontal
mirror circuit: interpretations and misinterpretations. Nat. Rev. Neurosci. 11,
264–274. doi: 10.1038/nrn2805

Rotman, G., Troje, N. F., Johansson, R. S., and Flanagan, J. R. (2006).
Eye movements when observing predictable and unpredictable actions.
J. Neurophysiol. 96, 1358–1369. doi: 10.1152/jn.00227.2006

Sartori, L., Becchio, C., Bulgheroni, M., and Castiello, U. (2009). Modulation of the
action control system by social intention: unexpected social requests override
preplanned action. J. Exp. Psychol. Hum. Percept. Perform. 35, 1490–1500. doi:
10.1037/a0015777

Sartori, L., Becchio, C., and Castiello, U. (2011a). Cues to intention:
the role of movement information. Cognition 119, 242–252. doi:
10.1016/j.cognition.2011.01.014

Sartori, L., Straulino, E., and Castiello, U. (2011b). How objects are grasped:
the interplay between affordances and end-goals. PLoS ONE 6:e025203. doi:
10.1371/journal.pone.0025203

Schilbach, L., and Timmermans, B. (2013). Toward a second-person neuroscience.
Behav. Brain Sci. 36, 393–414. doi: 10.1017/S0140525X12000660

Sciutti, A., Bisio, A., Nori, F., Metta, G., Fadiga, L., Pozzo, T., et al. (2012).
Measuring human-robot interaction through motor resonance. Int. J. Soc.
Robot. 4, 223–234. doi: 10.1007/s12369-012-0143-141

Sciutti, A., Bisio, A., Nori, F., Metta, G., Fadiga, L., and Sandini, G. (2013a).
Robots can be perceived as goal-oriented agents. Interact. Stud. 14, 1–31. doi:
10.1075/is.14.3.02sci

Sciutti, A., Patanè, L., Nori, F., and Sandini, G. (2013b). “Do humans need
learning to read humanoid lifting actions?,” in Proceedings of the Conference
2013 IEEE 3rd Joint International Conference on Development and Learning and
Epigenetic Robotics, ICDL 2013 – Electronic, Osaka. doi: 10.1109/DevLrn.2013.
6652557

Sciutti, A., Patanè, L., Nori, F., and Sandini, G. (2014).Understanding object weight
from human and humanoid lifting actions. IEEE Trans. Auton. Ment. Dev. 6,
80–92. doi: 10.1109/TAMD.2014.2312399

Shomin, M., Vaidya, B., Hollis, R., and Forlizzi, J. (2014). “Human-approaching
trajectories for a person-sized balancing robot,” in Proceeding of the IEEE
International Workshop on Advanced Robotics and Its Social Impacts. Evanston,
IL. doi: 10.1109/arso.2014.7020974

Stapel, J. C., Hunnius, S., and Bekkering, H. (2012). Online prediction of others’
actions: the contribution of the target object, action context and movement
kinematics. Psychol. Res. 76, 434–445. doi: 10.1007/s00426-012-0423-422

Strabala, K., Lee, M. K., Dragan, A., Forlizzi, J., and Srinivasa, S. S. (2012).
Learning the communication of intent prior to physical collaboration.
Proc. IEEE Int. Work. Robot Hum. Interact. Commun. 968–973. doi:
10.1109/ROMAN.2012.6343875

Streuber, S., de la Rosa, S., Knoblich, G., Sebanz, N., and Buelthoff, H. H. (2011).
The effect of social context on the use of visual information. Exp. Brain Res. 214,
273–284. doi: 10.1007/s00221-011-2830-9

Vingerhoets, G., Honoré, P., Vandekerckhove, E., Nys, J., Vandemaele, P., and
Achten, E. (2010). Multifocal intraparietal activation during discrimination of
action intention in observed tool grasping. Neuroscience 169, 1158–1167. doi:
10.1016/j.neuroscience.2010.05.080

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Sciutti, Ansuini, Becchio and Sandini. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org September 2015 | Volume 6 | Article 1362 | 71

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


ORIGINAL RESEARCH
published: 25 August 2015

doi: 10.3389/fpsyg.2015.01253

Frontiers in Psychology | www.frontiersin.org August 2015 | Volume 6 | Article 1253 |

Edited by:

Sebastian Loth,

Universität Bielefeld, Germany

Reviewed by:

Candace L. Sidner,

Worcester Polytechnic Institute, USA

Martina Mara,

Ars Electronica Futurelab, Austria

*Correspondence:

Kleomenis Katevas,

Cognitive Science Research Group,

School of Electronic Engineering and

Computer Science, Queen Mary

University of London, Mile End Road,

London E1 4NS, UK

k.katevas@qmul.ac.uk

Specialty section:

This article was submitted to

Cognitive Science,

a section of the journal

Frontiers in Psychology

Received: 15 March 2015

Accepted: 05 August 2015

Published: 25 August 2015

Citation:

Katevas K, Healey PGT and Harris MT

(2015) Robot Comedy Lab:

experimenting with the social

dynamics of live performance.

Front. Psychol. 6:1253.

doi: 10.3389/fpsyg.2015.01253

Robot Comedy Lab: experimenting
with the social dynamics of live
performance
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The success of live comedy depends on a performer’s ability to “work” an audience.

Ethnographic studies suggest that this involves the co-ordinated use of subtle social

signals such as body orientation, gesture, gaze by both performers and audience

members. Robots provide a unique opportunity to test the effects of these signals

experimentally. Using a life-size humanoid robot, programmed to perform a stand-

up comedy routine, we manipulated the robot’s patterns of gesture and gaze and

examined their effects on the real-time responses of a live audience. The strength

and type of responses were captured using SHORETM computer vision analytics. The

results highlight the complex, reciprocal social dynamics of performer and audience

behavior. People respond more positively when the robot looks at them, negatively

when it looks away and performative gestures also contribute to different patterns

of audience response. This demonstrates how the responses of individual audience

members depend on the specific interaction they’re having with the performer. This work

provides insights into how to designmore effective, more socially engaging forms of robot

interaction that can be used in a variety of service contexts.

Keywords: human robot interaction, affective computing, humanoid robots, live performance, social signals

1. Introduction

Not everyone knows how to tell a joke. A good joke depends as much on the quality of the
delivery as it does on the quality of the material. Intonation, posture, gaze, gesture, expression,
and timing all contribute to successful comic delivery. Moreover, effective delivery is not just a
matter of what the speaker does, it also depends on the reciprocal dynamics of the speaker–listener
interaction. The fluency of speakers’ performance in conversation depends on the moment-to-
moment responsiveness of their audience and, in turn, on the speakers’ ability to concurrently
accommodate and adjust to these responses while they are speaking (Goodwin, 1979; Bavelas et al.,
2000). If addressees appear to be bored or distracted, speakers become disfluent. Conversely, an
appropriately timed smile or raised eyebrow by an addressee provides useful feedback that speakers
can use to adapt their message.

Our basic hypothesis is that these interactional dynamics should be just as important to the
mass interaction involved in performing in front of a live comedy audience as they are to telling
a joke to a friend. Ethnographic studies of stand-up comedy and street performance support this
idea. Gardair (2013) demonstrated the pervasive relevance of interaction to the achievement of
a successful street performance. Street performances are actively established and managed using
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patterns of interaction similar to those used to establish and
maintain conversational clusters or “F-formations” (Kendon,
1990). Street performers use variations of body position,
orientation and gaze to manage engagement and define
the performance space (Gardair et al., 2011). They invest
considerable effort in orchestrating, explicitly eliciting and in
some cases actively training the audiences’ responses. This
process appears to be key to the development of a collective sense
of audience membership and often takes up more than 90% of
the performance time. It also appears to play a critical role in
obtaining money from the audience (Gardair, 2013).

Rutter (1997, 2000) argued that stand-up comedy is also
defined by interaction: the performance is an interactive
organization and delivery of material constantly informed by
audience responses; for an audience, becoming involved in the
developing flow of the act engenders not just an active and
responsive manner but one where all can be held to account.
We assume that it is these interactional processes that contribute
to the distinction that performers make between “good” and
“bad” audiences for the same performance. Furthermore, it is the
same processes that underpin people’s experience of moments of
“crackle”, “movement” and “lift”, or “drop” and “drift” that are
part of the practical language of performance (Healey et al., 2009).

Embodied robots provide a unique opportunity to experiment
with these interactional processes by enabling the introduction
of controlled manipulations directly into a live performance.
Although robots have the disadvantage of eliciting responses that
may be different from those of a human performer, they can
hold the “content” of the routine constant (e.g., the prosody,
semantics and syntax of the jokes) while selectively manipulating
aspects of delivery (e.g., body orientation, gaze, and gesture). This
strategy of using embodied robots as tools for human interaction
experiments has precedents in work byMacDorman and Ishiguro
(2006), Sidner et al. (2005), and Knight and Simmons (2013).
These studies use robots to experiment with different aspects
of overt robot behavior, including gaze and gesture, as a means
of probing the detailed organization of social interaction. This
enables direct comparisons of the effects of different behaviors on
interaction and can provide a principled basis on which to design
robots that can engage successfully with humans.

Previous work has also specifically made use of embodied
robots to tell jokes. Hayashi et al. (2005) created a robot–
robot dialogue system so that two robots could enact Japanese
“Manzai” routines in front of an audience. Although the robot’s
movements were scripted, the timing of their jokes was sensitive
to audience responses. Sjöbergh and Araki (2009) used the
Robovie-i platform to show that the same jokes delivered by a
robot are rated as funnier on average than when delivered in text
form only. They also showed a larger effect of robot responses
(positive or negative) on perceived funniness of jokes. Knight
et al. (2011) used the Nao robot to explore how the choice of
jokes from a larger repertoire could be customized according to
the strength of audience responses. These studies effectively held
the non-verbal delivery of each joke constant.

Here we use a robot to explore specific non-verbal elements
of performer-audience interaction in comic delivery. In order
to motivate the choice of experimental manipulations we briefly

describe a pilot study of a stand-up comedy performance.
Building on the observations from this study and previous
ethnographic work on performer-audience interaction, we
describe the “Comedy Parser” system we developed to support
performative gaze and gestures in a commercial robot platform
(Katevas et al., 2014). The impact of these manipulations was
analyzed in a live performance experiment conducted over two
nights at the Barbican Centre in London. As far as we are aware
this is the first attempt to use a robot to probe the moment-by-
moment, embodied aspects of how stand-up comedians “work”
an audience.

2. Comic Observations

A pilot observational study was made using video data taken
from a “Comedy Lab” hosted in the Performance Lab at
Queen Mary University of London. The aim of this study was
to extend previous ethnographic observations of performer-
audience interaction in street performance (Gardair et al., 2011;
Gardair, 2013) to the specific context of stand-up comedy. In
particular, to get a more detailed sense of some of the elements of
non-verbal delivery required from a robot to “read” and respond
to an audience.

The Comedy Lab session featured live stand-up performances
by two professional comedians: Tiernan Douieb (compère) and
Stuart Goldsmith (main act), with 25 audience participants
recruited through social media channels. Douieb provided a
5min “warm-up” and then introduced Goldsmith who did a
15min set (Figure 1). Full-HD audio-visual recordings were
made using fixed cameras approximating the audience’s view
of the performer and the performer’s view of the audience. All
data collection and analysis was made with informed consent
and approved by the Queen Mary University of London research
ethics committee (Reference: QMREC1199b).

The video recordings of the performer and audience were
imported into ELAN, a multimedia annotation tool (Wittenburg
et al., 2006). A simple qualitative analysis of the performer’s and
audiences’ use of non-verbal signals was made using multiple
passes over the tape using ELAN to control speed of playback and
to code significant events.

FIGURE 1 | Comedy Lab with Stuart Goldsmith, at Queen Mary

University of London.
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2.1. Comic Delivery
Patterns of performer-audience interaction are complex and
a detailed analysis is outside the scope of the current
paper, however several observations are relevant to the robot
behaviors described below. First, the gaze of the performer was
predominately either to the floor or to an audience individual.
Second, the performer’s gaze tended to shift at the end of every
sentence, and sometimes between phrases, in a pattern similar
to that observed in conversation where speakers use gaze to
elicit responses from their addressees (Kendon, 1967; Goodwin,
1979). The performer would also focus their gaze on an audience
participant accompanied by a pointing gesture and reference to
the participant in the talk, making it clear that a specific audience
member was being addressed.

Punchlines were typically distinguished by faster delivery and
a short pause and change of gaze. In such cases, the change of gaze
was always onto an audience member. In addition, the performer
usually followed their punchlines with a smile and sometimes
laughter. Resumption following a punchline appeared to be
primarily contingent on the audience response. The duration
of pause after the punchline was determined by whether and
how quickly laughter ensued. If the laughter was significant,
the performer would remain silent until the laughter started to
subside—a pattern also noted for Japanese Manzei performances
by Hayashi et al. (2005). Audience laughter was marked not only
by facial displays but also large visible body movements of the
head and upper body. Audience members directed their gaze
mostly at the performer, occasionally to each other or the floor.

As with street performance, the comedians also occasionally
used large gestures (Figure 1) designed to promote a stronger
or more prolonged audience response similar to the applause
elicitation gestures described by Gardair (2013). Another
interesting shared feature with street performance is the stand-up
comics’ use of explicit commentaries on the character of audience
responses as a way to generate more active engagement, e.g.,
complaining about isolated or weak laughter (Gardair et al., 2011;
Gardair, 2013).

Drawing on these findings our experiment manipulated the
robot’s gaze at audience members and the production of specific
performative gestures (see Section 3.3.2) and then assesses their
impact on the audience responses.

3. Experimental Study

3.1. Study Overview and Predictions
“Comedy Lab: Human vs. Robot” was conceived as a
performance experiment, carried out in an arts venue in
front of a live audience (Figure 2). The basic rationale was to use
a robotic performer to perform a predetermined comedy script
while different aspects of the delivery were manipulated and live
audience responses gathered for analysis.

Our first manipulation involves gaze: we dynamically
allocated different audience members as gaze targets for the
robot during the performance. Although it seems intuitive that
people simply smile when they are happy, displays of positive
affect are conditioned by social context. Following Bavelas et al.
(1986) we assumed that even in the somewhat anonymized

FIGURE 2 | Comedy Lab with RoboThespianTM at the Barbican Centre

in London.

context of a live performance, the overt responses and facial
expressions produced by audience members are communicative
displays designed for specific recipients. This is a relatively strong
assumption because we are proposing that the principal recipient
of the audiences’ facial displays in this context is the robot. This
lead to the prediction that audience members should display
more positive affect when they believe the robot is attending
to them and less when they believe it is not. Note that this is
independent of how funny they find the jokes themselves.

Our second manipulation involves gesture: a number of
special gestures were programmed as exceptions to the default
“canned” movements delivered by the robot platform. Drawing
on our pilot observational study (Section 2.1) and observational
studies of street performances (Gardair, 2013), we opted to test
the effects of four specific gestures that appeared to be designed
to elicit positive audience responses (illustrated in Section 3.3.2).
The first of these was a raised arm “welcome” gesture, the second
an “emphasis” gesture, the third a pointing gesture, and the
fourth an applause eliciting gesture. If these gestures are effective
in promoting stronger engagement this should be evident in their
effects on measures of positive affect in the audience responses.

We also tested our basic assumption that the experiment
succeeds in creating a credible stand-up performance by assessing
whether the jokes themselves, written by the compère Douieb,
elicit positive responses. Although not central to the questions
about delivery that are the main concern of this paper, this is an
important issue for the validity of the study. It also provides a test
of whether people responded to the specifics of the performance
rather than adopting a generic positive (or sceptical) attitude due
to the novelty of seeing a robot performing. Other studies showed
robot performers may elicit similar or stronger positive responses
than their human counterparts (Hayashi et al., 2005).

3.2. Materials and Methods
Before proceeding to describe the design of the study we first
introduce the computer vision software and robot platform that
were used in this study.

3.2.1. Measures of Audience Response

To obtain fine-grained real-time response measures and
automatic measures of facial display and position, we used
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sentiment analysis techniques developed in computer vision
research. Fraunhofer SHORE™ (Sophisticated High-speed
Object Recognition Engine) was selected for this purpose.

Provided with video imagery, SHORE™ detects faces within
each frame and provides properties for each of them. In our tests
we found SHORE™ able to detect audience faces when seated
under low (but under our control) lighting conditions and filmed
from the front, and able to do so in real-time. The properties the
software produces for each identified face, and so makes available
for experimental measures, are the following:

• Location of the face in the space.
• Position of the eyes, nose and mouth.
• Gender classification (“Male”, “Female”, or “Unknown”).
• Age estimation in years.
• Facial expression recognition, expressed as percentages of

“Happy”, “Sad”, “Angry”, and “Surprised”.
• Identify whether the eyes are open or closed.
• Identify how much the mouth is open.
• Detection of up to 60◦ of face rotation.

Most of the above features have been validated using external data
sets (Ernst et al., 2009). The face detection has been validated
using the CMU+MIT data sets and showed good accuracy
relative to other classificationmethods (91.5% detection rate with
a 1 in 10 miss rate). The gender classification has been validated
using the BioID data set (94.3% recognition rate) as well as the
Feret fafb data set (92.4% recognition rate). Finally, the happiness
analyzer has been validated on the JAFFE data base (95.3%
recognition rate). Note that none of these test datasets were used
as training sets for the framework. Further information can be
found on the Fraunhofer IIS website: http://iis.fraunhofer.de.

3.2.2. The Robot Platform

RoboThespian™ is a humanoid robot designed for interaction in
public places created by Engineered Arts Ltd. (see Figures 2, 4).
Following a human body model, it consists of a robotic head, two
arms with hands, the robot’s torso as well as the two legs. The
robotic head has two rectangular LCD screens for eyes as well
as embedded LED lighting in the cheeks that allows it to make
facial expressions as it talks. The mouth can only move vertically,
a process that is automated and synchronized with the speech
engine. The two arms and hands canmove fast and fluently, while
the torso’s movement is relatively limited and slow. The robot
cannot walk by itself as it only has passive leg movement. It also
uses the Acapela Text-To-Speech engine from Acapela Group
Babel Technologies SA, providing voice synthesis in customizable
voices, as well as control over speed, timing, volume, and shape
(sound pitch).

To provide the robot platform with the capabilities required
for the experiment we built a “Comedy Parser” system that
controls the robotic behavior including its interaction with
the audience (Katevas et al., 2014). Provided with a specially
marked-up script, it delivers the content while enacting the
behaviors described in Section 2. It uses SHORE™ computer
vision software to analyze the audience in real-time and identify
each person’s location in the space as well as to capture
characteristics such as gender, age and moment-by-moment

display of “happiness”. The complete source-code, licensed under
an MIT License, is available at https://github.com/minoskt/
ComedyParser.

3.2.3. Procedure

Two performances were staged as part of the “Hack the Barbican”
event at 6 p.m. on 7th and 8th of August 2013 at the Barbican
Centre in London. The club stage that was used is freely accessible
to the public. Each performance comprised the compère’s warm
up, and the (human) comedian’s act followed by the robot
act. The compère’s warm-up lasted approximately 10 min, the
comedian’s lasted 13min, and the robot’s 8min. Two professional
stand-up comedians, Tiernan Douieb and Andrew O’Neill, were
recruited for the compère and comedian roles, respectively. This
format was used both to widen the appeal of the event and
to help create a more convincing stand-up comedy context.
Although the compère and comedian made normal stage entries
and exits the robot cannot walk and therefore its position
and the control desk were fixed throughout (see Figure 2).
During the robot’s performance, an experimenter monitored
the control equipment, visible to the side at the rear of the
stage.

Figure 3 shows the configuration of the staging, with the seat
placement, the position of the performers, as well as the position
of the two speakers, the tracking camera and the three directional
microphones. The tracking camera was an inconspicuous Gig-E
Vision camera positioned high at the back of the stage with a field
of view that encompassed the seated area.

An audio-visual recording of each performance was obtained
by placing an HD video camera toward the back of the
audience area. SHORE™ software analyzed video imagery
from the tracking camera and passed the output to the
Comedy Parser. Comedy Parser also archived all dynamic
aspects of the performance, in particular the robot’s gaze
and point.

Participants were informed that they were being captured on
video for research purposes and all data capturing and handling

FIGURE 3 | Barbican Comedy Lab configuration.
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procedures were audited by the Queen Mary University of
London research ethics committee (Reference: QMREC1199b).

3.2.4. Participants

Audience participants were recruited by advertising “Comedy
Lab” through social media channels of the two performers, the
venue (The Barbican Centre, London), research group (Cognitive
Science, Queen Mary University of London) and “Hack the
Barbican”. The following context was provided in the advert:

What makes a good performance? By pitting
stand-up comics Tiernan Douieb and Andrew O’Neill
against a life size robot in a battle for laughs,
researchers at Queen Mary University of London hope
to find out more— and are inviting you along.

A collaboration between the labs of Queen Mary’s
Cognitive Science Research Group, RoboThespian’s
creators Engineered Arts, and the open-access spaces
of Hack The Barbican, the researchers are staging a
stand-up gig where the headline act is a robot as a live
experiment into performer-audience interaction.

This research is part of work on audience
interaction being pioneered by the Cognitive Science
Group. It is looking at the ways in which performers
and audiences interact with each other and how this
affects the experience of “liveness”. The experiment
with RoboThespian™ is testing ideas about how
comedians deliver their material to maximize comic
effect.

Approximately 50 people attended each performance on each
night. Data from SHORE™ were captured for 22 people for the
first night (15 men and 7 women between the ages of 28 and 64
years,M = 46.4, SD = 8.0) and 19 for the second night (13 men
and 6 women between the ages of 27 and 60 years, M = 46.2,
SD = 8.1).

3.3. Results
The measures of “Happiness”, “Anger”, “Surprise”, and “Sadness”
produced by SHORE™ showed substantial inter-correlations.
For example, in our data “Happiness” and “Sadness” are
negatively correlated for: Pearson’s r(121) = −0.484, p < 0.01
(Note: N = 121 because there are three measures for each of 48
people corresponding to Before, During and After a punchline,
discussed in more detail below); and so are “Happiness” and
“Anger”: Pearson’s r(121) = −0.433, p < 0.01. These correlations
make these measures partially redundant and we therefore
report results only for the “Happiness” measure in the following
analysis.

Throughout we report computed probabilities for
completeness but adopt a criterion level of p < 0.05 for
inferences. We use Generalized Linear Mixed Model (GLMM)
analyses to model the combined random effects, categorical
and interval fixed effects and repeated measures involved in the
audience responses measured in this study.

3.3.1. Punchlines

To test if audience members respond selectively to the jokes, their
facial displays of “Happiness” were averaged over three “Response

Phases”: “Before”, “During”, and “After” defined as, 2 s before the
punchline, the duration of the punchline delivery and 2 s after.

Average “Happiness” displayed by the audience was analyzed
in a GLMM using a Linear Model. This treated Response
Phase (Before/During/After) as a fixed factor and Audience
Member nested within Night as random factors. It shows a
main effect of Response Phase [F(2, 120) = 5.66, p < 0.01].
Planned, pairwise comparisons show that people displayed more
happiness after the punchlines than before them [t(120) =

3.32, p < 0.01] or during them [t(120) = 2.67, p = 0.01]
but no difference in displayed happiness before and during
the punchlines [t(120) = −0.86, p = 0.39]. The estimated
means and standard errors are summarized in Table 1. Fixed
(B) coefficients provide estimates of effect size: After = 2.3,
(95% CI lower = 0.6, upper = 4.0); Before = −0.59, (95%
CI lower = −1.9, upper = 0.7). During is the reference
category.

3.3.2. Gestures

During each performance, RoboThespian™ used four specific
performative gestures. Due to timing issues, the first “welcome”
gesture (Figure 4A) was not obvious to the participants as they
were still applauding, welcoming RoboThespian™ on stage.
Consequently this gesture is excluded from the analysis. The
following three gestures are analyzed:

1. Gesture B: A reprise “I said hello” gesture that emphasizes
the expected return of greetings suggested by Gardair’s (2013)
analysis of street performances (Figure 4B).

2. Gesture C: A pointing gesture while saying “you go first”,
inspired by our observational study of stand-up comedy
(Figure 4C).

3. Gesture D: The applause elicitation gesture “Thank you, and
good night,” inspired by Gardair’s (2013) analysis of street
performances (Figure 4D).

As the gestures are qualitatively different in their effects we
analyze them separately.

3.3.2.1. Gesture B
A GLMM Linear Model analysis of average displayed Happiness
in response to Gesture B with Response Phase (Before vs. During
vs. After) as a fixed factor and Night (1 vs. 2) and Audience
Member as random factors showed no main effect of Response
Phase [F(2, 99) = 1.63, p = 0.20]. Planned pairwise comparisons
also showed no difference between the different response phases
{Estimated Means: Before = 37.0, During = 42.6, After = 41.4;
Pairwise Comparisons: Before vs. During: t(99) = −1.71, p =

TABLE 1 | Estimated means and standard errors for “Happiness” before,

during and after punchlines.

Response phase Estimated mean Std. error

Before 44.2 3.17

During 44.8 3.13

After 47.1 3.12

Frontiers in Psychology | www.frontiersin.org August 2015 | Volume 6 | Article 1253 | 76

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Katevas et al. Robot Comedy Lab

FIGURE 4 | Performative Gestures used during the live performance. (A) “Welcome” gesture, (B) Reprise “I said hello” gesture, (C) Pointing gesture,

(D) Applause elicitation gesture.

TABLE 2 | Estimated means and standard errors for “Happiness” before,

during and after execution of Gesture C.

Response phase Estimated mean Std. error

Before 42.3 4.3

During 52.2 4.1

After 51.1 4.0

0.09, Before vs. After = [t(99) = −1.34, p = 0.18], During vs.
After [t(99) = 0.34, p = 0.73]}.

3.3.2.2. Gesture C
A GLMM analysis with the same factors as above showed
a different pattern of responses. For Gesture C there was a
significant main effect of Response Phase [F(2, 106) = 6.11, p <

0.01]. The estimated means are provided in Table 2. Pairwise
comparisons show that displayed happiness increased during
and immediately after the production of Gesture C but were
not reliably different while the gesture was produced and
immediately after: Before vs. During: t(106) = −3.23, p < 0.01,
Before vs. After = [t(106) = −3.1, p < 0.01], During vs. After
[t(106) = 0.44, p = 0.66]. Fixed (B) coefficients: Before = −8.7,
(95% CI lower = −14.4, upper = −3.14); During = 0.44, (95%
CI lower= −3.8, upper= 6.0). After is redundant.

3.3.2.3. Gesture D
The parallel GLMM analysis for Gesture D shows no main effect
of Response Phase: F(2, 92) = 2.13, p = 0.13. Planned pairwise
comparisons showed no reliable differences between the three
response phases: Before vs. During t(92) = −1.11, p = 0.27;
Before vs. After t(92) = 0.44, p = 0.66 During vs. Before t(92) =
1.12, p = 0.27.

Overall, only Gesture C produced a reliable positive response.
The three different Gestures are, of course, designed to achieve
different effects. Gesture B is designed primarily to prompt
applause and cheering. Gesture C works to underline the point
of a joke and responses seem to be closely tied to the timing of
the gesture delivery. For Gesture D the aim is to elicit applause.
Unfortunately we do not have robust quantitative measures of
these different responses.

TABLE 3 | Estimated means and standard errors for “Happiness” before,

during and after robot gaze.

Response phase Estimated mean Std. error

Before 45.1 4.3

During 45.1 4.3

After 42.1 4.3

3.3.3. Gaze

A total of 14 unique individuals in the audience were randomly
fixated a total of 153 times by the robot over the two nights. Three
people were fixated only once and are excluded from the analysis.

The effect of Gaze on displayed “Happiness” is analyzed in a
GLMM linear model with Audience Member as a random factor
and Gaze Phase (2 s Before, During and 2 s After) a fixed factors.
The robot’s fixation points were not exact so the distance in
pixels between a participant’s actual location in the video and
the fixation point of the robot is included as a co-variate. This
analysis shows a main effect of Gaze Phase [F(2, 238) = 14.5, p <

0.01] and a main effect of Distance [F(1, 242) = 5.19, p < 0.05].
The estimated means are provided in Table 3. Planned pairwise
comparisons of Gaze Phase show no difference in the fixated
person’s displayed “Happiness” before and during the fixation
[Before vs. During t(238) = 0.02, p = 0.99] but a significant drop
afterwards [After vs. Before t(238) = −4.68, p < 0.01, After vs.
During t(238) = −4.96, p < 0.01]. Fixed (B) coefficients for Gaze
Phase: Before= 5.8, During = 5.8, After= 3.2.

The fixed coefficient (B) for the distance co-variate of −0.12
additionally showed that the further an audience member’s face
was from the center of the robot’s fixation point the lower the
estimated facial display of “Happiness”.

3.3.4. Human vs. Robot

Although direct comparison of the human and robot performers
was not part of the original study design (and is in some respects
problematic see Section 4 below) it is interesting to compare the
overall “Happiness” response evoked by the compère, comedian
and robot.

A post-hocGLMM linear model analysis of average percentage
happiness of each audience member on each night with
Performer (Compère vs. Human Comedian vs. Robot) as a fixed
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factor and Audience Member and Night as a random factors
shows a main effect of Performer [F(2, 227) = 9.37, p < 0.01].
Planned pairwise comparisons show people responded more
positively to the human comedian than the compére [t(227) =

4.33, p < 0.01] but no other comparisons were significant
[Compère vs. Robot t(227) = 1.85, p < 0.1; Comedian vs. Robot
t(227) = 1.37, p < 0.2]. As Table 4 shows, people’s responses to
the Robot were essentially intermediate between the two human
performers.

4. Discussion

At the broadest level these results demonstrate the viability
of using embodied robots to study the social dynamics
of live performance. The ability to make controlled, fine-
grained manipulations of gaze and gesture while holding other
aspects of performance constant creates exciting possibilities for
future research that go beyond what is possible using human
confederates; people are simply unable to selectively control their
own performances to the same degree as a robot (Kuhlen and
Brennan, 2013). Balanced against this are the issues that arise
from the fact that the performer is plainly a robot.

Anecdotally, our observation and personal discussions with
people afterwards suggested that audience members on the two
nights of Comedy Lab found the jokes generally amusing despite
the restricted prosody and cadence of the robot platform’s speech
synthesis. However, audience responses might have been biased
by the novelty of the situation. For example, Hayashi et al. (2005)
provided evidence that people are more sympathetic to a robot
comedian than a human comedian, although in this work a
live robot performance was compared with a recorded human
performance. Audience bias might also run in the opposite
direction; our audience was explicitly recruited for a robot vs.
human “Comedy Lab” and contained some journalists and people
with a technical interest in robotics. Consequently, they might
be atypical of a stand-up comedy audience and more interested
in the technical than the comic material. We note that both
comedians said informally that they found the audience harder
to engage than a typical stand-up comedy club.

The present study does not provide data that enables us to
assess audience bias directly. The finding that people responded
as positively to the robot as they did to the human stand-
up suggests that any potential bias was limited. However, we
note that this comparison is confounded by differences in,
amongst other things, staging, materials and delivery. We avoid
this problem here by focusing our analysis on the comparison
of audience responses to the robot before, during and after
the specific manipulated behaviors. This allows us to broadly

TABLE 4 | Estimated means and standard errors for “Happiness”

response to each performer.

Response phase Estimated mean Std. error

Compére 38.2 4.1

Comedian 45.6 4.0

Robot 42.6 4.1

discount the potential influence of people’s generic dispositions
toward robot performers; positive or negative.

Importantly, the results showed that audience responses are
closely co-ordinated with the delivery of the punchlines and
robot gaze. Specifically, displays of positive affect peaked just after
the punchlines but declined after gaze. This showed that people
were selectively responsive to both the content and delivery.
Audience members appeared to be particularly sensitive both
to whether the robot was looking at them and to the specific
angle of the robot’s gaze. The more closely they were fixated
by the robot, the more positive affect they displayed. The robot
was treated as a social agent that successfully elicited social
response patterns typical of human interactions. This finding
supports our hypothesis that performers use gaze as a means of
eliciting audience responses (Kendon, 1967). It is also consistent
with prior work that has noted the importance of social gaze
in storytelling performances by embodied robots (Mutlu et al.,
2006) and humans (Goodwin, 1979).

The pattern of results for the manipulated gestures is less
clear. Only the pointing gesture (see Figure 4C) had a statistically
significant effect. There may be several reasons for this. It might
be due to a lack of measures appropriate to each gesture, e.g., the
emphasis gesture may have caused a louder or more emphatic
response that would not necessarily show up in the measures of
facial affect. It might be due to problems in the execution of the
gestures that made them difficult to interpret or it might be that
the gestures simply do not function in the way we expected.

Overall, the results demonstrate a fine-grained link between
specific aspects of delivery and specific audience responses.
This is consistent with the general hypothesis that part of
what underpins the experience of live performance is the
social dynamics of audience-performer interactions (Rutter,
2000; Gardair et al., 2011; Gardair, 2013). As noted in the
introduction, laughter, smiles and other displays of affect are
themselves performances designed for audiences including our
conversational partners (Kraut and Johnston, 1979; Bavelas
et al., 1986; Fernández-Dols and Ruiz-Belda, 1995). The
data presented here show how this use of displays of
affect extends to live comedy audiences and, in particular,
to specific moments of engagement between performers
and individual audience members. Like the observational
studies described in the introduction it provides evidence that
performers modulate audience responses not only through large
performative gestures but also through the use of fine-grained
mechanisms such as eye contact. Moreover, it shows that these
mechanisms lead to different patterns of response for different
audience members. Understanding specific moment-by-moment
processes that underpin these interactional dynamics is key to
developing more compelling live experiences and more engaging
robots.

This exploratory study needs to be replicated and extended. A
larger repertoire of gestures and other non-verbal signals needs
to be tested together with a richer set of response measures. An
obvious limitation here is the possible influence of the specific
audience and context. Testing alternative patterns of delivery
across a wider range of audiences would help to establish how
general these patterns are. Greater realism could be achieved
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by using motion capture sequences from a human comedian to
drive the robot. These sequences could provide the basis for more
naturalistic manipulations of different non-verbal elements of
performance and would also support more credible robot-human
comparison.

The Comedy Parser platform (Katevas et al., 2014)
demonstrates how robot performances can use the
computational vision capabilities provided by systems like
SHORE™ to make the details of delivery contingent on how
each individual in an audience is responding in real-time. We
note that this goes beyond what a human comic can do. This
approach can be extended to other modalities such as automatic,
real-time audio processing to sense oral responses, applause
and more subtle cues such as collective inbreaths or rustling
paper. There is also potential for experimenting with speech
rhythm and intonation. Alternative speech engines provide some
interesting capabilities. For example, CereVoice is capable of
changing of the voice’s “mood” into “happy”, “calm”, or “joke”
(Aylett and Pidcock, 2007).

5. Conclusion

This paper demonstrates how humanoid robots can be used
to probe the complex social signals that contribute to the
experience of live performance. Using qualitative, ethnographic
work as a starting point we can generate specific hypotheses
about the use of social signals in performance and use a robot
to operationalize and test them. This can provide a principled
basis on which to give humanoid robots the capabilities needed
to interpret and respond to the social dynamics of massed
audiences.

Moreover, this paper provides insight into the nature of live
performance. We showed that audiences have to be treated as
heterogeneous, with individual responses differentiated in part
by the interaction they are having with the performer. Equally,
performances should be further understood in terms of these
interactions. Successful performance manages the dynamics of
these interactions to the performer’s- and audiences’-benefit.
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This study investigates how an onscreen virtual agent’s dialog capability and facial

animation affect survey respondents’ comprehension and engagement in “face-to-face”

interviews, using questions from US government surveys whose results have far-reaching

impact on national policies. In the study, 73 laboratory participants were randomly

assigned to respond in one of four interviewing conditions, in which the virtual agent

had either high or low dialog capability (implemented through Wizard of Oz) and

high or low facial animation, based on motion capture from a human interviewer.

Respondents, whose faces were visible to the Wizard (and videorecorded) during the

interviews, answered 12 questions about housing, employment, and purchases on the

basis of fictional scenarios designed to allow measurement of comprehension accuracy,

defined as the fit between responses and US government definitions. Respondents

answered more accurately with the high-dialog-capability agents, requesting clarification

more often particularly for ambiguous scenarios; and they generally treated the

high-dialog-capability interviewers more socially, looking at the interviewer more and

judging high-dialog-capability agents as more personal and less distant. Greater

interviewer facial animation did not affect response accuracy, but it led to more displays

of engagement—acknowledgments (verbal and visual) and smiles—and to the virtual

interviewer’s being rated as less natural. The pattern of results suggests that a virtual

agent’s dialog capability and facial animation differently affect survey respondents’

experience of interviews, behavioral displays, and comprehension, and thus the accuracy

of their responses. The pattern of results also suggests design considerations for building

survey interviewing agents, which may differ depending on the kinds of survey questions

(sensitive or not) that are asked.

Keywords: virtual agent, survey interviewing, social signals, comprehension, dialog capability, facial animation

INTRODUCTION

An important source of knowledge about society is what people report in survey interviews that
produce the data for official (government) statistics, e.g., population estimates on employment,
health and crime. Data from such survey interviews, which provide essential input for policy
decisions, are administered on a very large scale; for example, more than 60,000 US households
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per month are recruited to participate in the Current Population
Survey, from which the US unemployment rate is calculated,
and for the European Social Survey (ESS) in 2012, 54,600
standardized face-to-face interviews were carried out in 29
countries (Ferrin and Kriesi, 2014). Results from these interviews
can have far-reaching consequences: even small changes in
reported US unemployment rates, for example, can affect world
financial markets, and results from the ESS make “a major
contribution to the creation of effective social and economic
policies in Europe” (Geoghegan-Quinn, 2012). So understanding
what leads to accurate responses, and to participants’ willingness
to engage in such surveys, is societally important (Schober and
Conrad, 2015).

Although survey interviews have traditionally been
administered by humans either face-to-face or on the telephone,
the landscape is changing: surveys are increasingly “self-
administered” (that is, administered by automated systems,
as in online surveys in a web browser possibly on a mobile
device; Mavletova and Couper, 2014), and new human and
automated modes are being explored (Conrad and Schober,
2008), e.g., videomediated interviewing (Anderson, 2008), text
message surveys (Schober et al., 2015), and speech dialog system
surveys (Bloom, 2008; Johnston et al., 2013). Exploring new
ways of administering surveys is sensible given declining survey
response rates and the growing expenses of carrying out human-
administered interviews (see, e.g., Groves, 2011; Keeter, 2012;
Massey and Tourangeau, 2013), but the task is complex: new
interviewing methods will only be adopted if they lead to high
quality data (accurate responses, and response and completion
rates comparable to or better than those in other modes) and to
respondents satisfied with their experience.

One new interviewing technology that has been proposed
to promote high quality data—as measured by disclosure
of sensitive information and (presumably more) honest
responding—uses animated virtual humans to ask questions and
capture responses (Lucas et al., 2014; see also DeVault et al., 2014;
Gratch et al., 2014). The promise is that virtual interviewers
can promote rapport and engagement with participants while
simultaneously providing a feeling of safety and anonymity that
is much more difficult to achieve with a human interviewer, and
at the same time allowing users to display (and even learn to
improve) the social cues they display in interaction with humans
(Baur et al., 2013). And some of the findings are promising:
Lucas et al. (2014) found that people in a semi-structured
clinical health screening interview disclosed more sensitive
information in open-ended responses to a virtual interviewer
they believed was automated than to one that was clearly
operated by a human. von der Pütten et al. (2011) found that a
more talkative interviewing agent led students to reveal more
personal information and to produce more words in answering
some open-ended questions on love and relationships.

The evidence on how virtual interviewers might affect
responses in surveys that produce social science and government
data, on the other hand, is less promising with respect to
disclosure. The one study thus far (Lind et al., 2013) focused
on responses to questions about sensitive and potentially
embarrassing topics (alcohol and drug use, sexual behavior)

and questions about personal behaviors (exercise, religious
attendance); such questions can lead at least some respondents
to answer in ways that present themselves in a more positive
light in survey interviews where human interviewers ask the
questions compared to when a computer presents textual or
spoken questions (Tourangeau and Smith, 1996; Turner et al.,
1998; Kreuter et al., 2008). The finding was that automation
did increase disclosure relative to a human interviewer,
but only with the audio-only (no facial representation)
interface; there were few if any differences in responses
to the virtual interviewers relative to a human interviewer
(Lind et al., 2013).

Here we explore how virtual interviewers affect answers to the
kinds of questions about facts and behaviors (e.g., “How many
bedrooms are there in your house?” “Last week did you do any
work for pay?”) that are especially common in survey interviews
that produce official statistics and that, in most cases, are not
particularly threatening or embarrassing to answer. Because
these questions generally concern non-sensitive, mundane topics,
we are not focused on how virtual human interviewers might
affect disclosure. Instead, we explore how and whether virtual
human interviewers promote conscientious task performance—
accurate survey responding, which depends on comprehending
the questions in the way the survey designers intended—and
respondent engagement in these particular kinds of interviews.
In our experiment we varied two features (among the many other
potentially manipulable features of a virtual survey interviewer,
see Lind et al., 2013)—the interviewer’s dialog capability and
facial animation—and explored whether they have independent
or compound effects.

Background
The kinds of survey interviews we examine here have
particular features that distinguish them from other kinds of
interaction (Schaeffer, 1991; Houtkoop-Steenstra, 2000; Schober
and Conrad, 2002), as well as from other kinds of interviews.
The survey interview is an interactive situation in which (usually)
the interviewer, as a representative of the survey designers
(researchers), initiates the dialog and “drives” the interaction
according to a script (Suchman and Jordan, 1990), asking the
respondent questions (that usually specify the answer categories)
about her opinions and behaviors.

This kind of standardized wording and administration
procedure is intended to make responses comparable across
interviews. In the most strictly standardized interviews,
interviewers are required to ask questions exactly as scripted
and use only “neutral probes” like “Let me repeat the question”
or “Whatever it means to you” if respondents say anything
that isn’t an acceptable answer (e.g., something other than a
response option included in the question), so as to ensure that
all respondents receive the same stimulus and to avoid the
possibility that interviewers will bias responses (Fowler and
Mangione, 1990). This can lead to perverse interactions in which
interviewers thwart respondents’ efforts to understand what
they are being asked by refusing to provide the clarification that
respondents seek (Suchman and Jordan, 1990), and in which
interviewers violate ordinary norms of conversation by failing
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to “ground” the meaning of utterances they themselves have
produced (Schober and Conrad, 2002).

Analyses of these kinds of survey interviews demonstrate that
respondents can misinterpret ordinary expressions in questions
(like “bedroom” and “work for pay”)—that is, interpret them
differently than the survey designers intend—much more often
than one might think (Conrad and Schober, 2000), because
the mapping or “fit” between their circumstances and the
question concepts may not be straightforward (consider someone
whose room originally designed as a den is being used as a
bedroom, or whose freelance work included pay-in-kind). This is
particularly a problem when interviews are strictly standardized;
in more collaborative or “conversational” interviews, where
interviewers and respondents work together to make sure
respondents understand questions as intended (e.g., Schober and
Conrad, 1997; Conrad and Schober, 2000), respondents generally
interpret questions much more accurately. The best response
accuracy, overall, seems to result not only when respondents
request clarification if they believe they need it (“What do you
mean by work for pay exactly?”), but when interviewers can
also volunteer clarification when they believe respondents need
it (Schober et al., 2004).

When designing a virtual interviewer for these kinds of
surveys, a key consideration is, therefore, which features will best
help respondents understand the questions as they are intended.
Based on what is known about respondent comprehension in
human-administered interviews, a virtual interviewer that can
clarify question meaning when explicitly asked to do so and
when it determines the respondent would better understand
the question if its meaning were clarified—what we will call
here a virtual interviewer with greater dialog capability—should,
in principle, lead to more accurate comprehension. Whether
this is actually the case with a virtual interviewer has not been
demonstrated. Evidence from other automated implementations
of survey interviews suggests that it could be the case, but
it is not a foregone conclusion that it will be. For example,
respondents’ accuracy in a text-based web survey (Conrad et al.,
2007) and in a (wizarded) spoken dialog survey system (Ehlen
et al., 2007) improves when the system can provide clarification
after a long period of inactivity or silence, but it does not improve
in conditions where the only way to obtain clarification is to
explicitly request it.

Whether high dialog capability interviewing systems with a
facial representation will similarly promote comprehension is
unclear. The addition of a face to the interface could make
respondents even more reluctant to request clarification about
ordinary words like “bedroom” and “job,” as they sometimes
seem to be with human interviewers (Schober et al., 2004). Or,
on the other hand, it could make them think the automated
interviewer has greater agency and capabilities, and is thus
better positioned to engage in clarification dialog. Because users’
attributions about animated agents are likely to vary depending
on the characteristics of the face—both static and dynamic
(e.g., McDonnell et al., 2012; Piwek et al., 2014)—one might
expect that survey response accuracy could be affected by
how an animated virtual interviewer is visually implemented:
survey respondents may evaluate the agent’s competence and

its likelihood of being able to provide useful clarification as
greater when it behaves in a more human-like way. That is,
they might assume that a more human-like face on a virtual
interviewer means that the interviewer will comprehend requests
for clarification better, and that the interviewer may better
perceive the respondent’s paralinguistic and facial displays of need
for clarification (Schober et al., 2012).

Hypotheses
In the study reported here, we test the following hypotheses about
how a virtual survey interviewer’s dialog capability and facial
characteristics affect respondents’ comprehension (as measured
by the accuracy of their answers—our primary measure of task
success). We also test how these factors affect respondents’ social
engagement with the interviewer, as measured by their behavioral
displays as well as their subjective assessments of the interviewer.
The facial characteristic that our hypotheses focus on is motion
or facial animation: whether the face moves in a more or less
human-like way, that is, with more or fewer channels of motion.
We examine facial animation because this strikes us an attribute
that is particularly likely to affect respondents’ interpretation of a
virtual interviewer’s humanness; this is consistent with evidence
in other task contexts that users interpret an embodied agent’s
intentions based more on audio and animation than on the
render style of the character (McDonnell et al., 2012).

Hypotheses about Comprehension

Hypothesis 1: Dialog capability and comprehension. A virtual
interviewer with greater dialog capability will improve
respondents’ comprehension of survey questions, particularly
when the fit between terms in the survey questions and
the circumstances respondents are answering about is not
straightforward.

This hypothesis will be supported to the extent that respondents
treat a virtual interviewer with high dialog capability as better
able than a low-dialog-capability virtual interviewer to interpret
(1) their explicit requests for clarification and (2) indirect
evidence of comprehension difficulty, both spoken and visual.
If dialog capability affects comprehension in this way, its effect
should be measurable both by response accuracy and by the
number of requests for clarification. The basic mechanism is
that more clarification should correct more misconceptions and
resolve more ambiguities; the effect of dialog capability should be
most evident when comprehension problems of this sort aremost
frequent, i.e., when the virtual interviewer asks questions about
concepts that correspond in an ambiguous way to respondents’
circumstances or whose definitions run counter to respondents’
intuitions. We manipulate this experimentally in the study
reported here.

The evidence to date that evaluates the effect of virtual
survey interviewers on the quality of responses does not provide
evidence about whether dialog capability works the same way
or to the same extent with human and virtual interviewers. For
example, while the Lind et al. (2013) study concerned survey
interviews, the authors did not design the virtual interviewers to
provide clarification; moreover the interaction was not entirely
spoken: the interviewing agents asked questions orally but
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respondents answered by clicking or typing. If clarification does
not work the same way—if respondents don’t solicit or interpret
clarification in the same way—with virtual interviewers in a
spoken dialog interview as they do with human interviewers,
the hypothesis will not be supported. This could occur if, for
example, respondents do not treat the virtual interviewer as
conversationally competent—which might be affected by the
interviewer’s facial animation.

Hypothesis 2: Facial animation and comprehension. A
virtual interviewer with more facial animation will improve
respondents’ comprehension of survey questions.

This hypothesis will be supported if survey respondents attend
better or try harder at the survey response task when an
interviewer seems more human-like, which can result from
a virtual agent’s increased motion (Hyde et al., 2013; Piwek
et al., 2014). The evidence is that perceiving another person’s
facial motion can improve at least some kinds of task success.
For perceptual tasks, for example, people tend to be better at
detecting a speaker’s identity when presented with a moving than
a static face (see Xiao et al., 2014, for a review), and they can
comprehend speech even in noisy conditions better with facial
(especially mouth) motion cues than without (Alexanderson and
Beskow, 2014). In avatar-mediated communication, participants
are better able to detect truth and deception when an avatar has
realistic eye motion (Steptoe et al., 2010).

On the other hand, in a survey interview setting where the
measure was disclosure of sensitive information rather than
comprehension accuracy, Lind et al. (2013) found less disclosure
to a high-motion virtual interviewer than to a low-motion
interviewer for some survey questions, and no difference in
disclosure for others. To the extent that these disclosure findings
are relevant to comprehension and response accuracy for non-
sensitive survey questions, increased facial motion in a virtual
interviewer may not improve survey task performance, and this
hypothesis will not be supported.

Hypothesis 3: Interactive effects of facial animation and
dialog capability on comprehension. A virtual interviewer
with more facial animation may improve respondents’
comprehension of survey questions particularly when the
interviewer has greater dialog capability. To put it another
way, a virtual interviewer’s dialog capability may improve
comprehension particularly when the interviewer’s facial
animation is consistent with greater dialog competence.

If a virtual interviewer’s greater facial animation suggests
that it has greater dialog competence, respondents may be
particularly more likely to seek clarification (explicitly request
it) or to provide indirect evidence of their need for clarification
(paralinguistic or facial), and thereby comprehend and answer
more accurately, than if an interviewer has less facial animation.
If so, this would predict an interaction: greater clarification-
seeking or evidence of need for clarification, and thus improved
response accuracy, with a high-animation agent in a high-dialog-
capability condition.

On the other hand, greater facial animation could lead to
unrealistic expectations that the agent’s dialog competence is
fully human, which could subsequently conflict with the agent’s

actual abilities; in this case, greater facial animation could,
paradoxically, lead to poorer comprehension if the respondent
relies solely on the interviewer to diagnose need for clarification.
One could also imagine other interactive effects: an interviewer
with low facial animation might lead users to underestimate
the dialog capability of high-dialog-capability agents, and thus
request clarification or produce indirect evidence of need for
clarification less often than would be optimal.

Although hypotheses about interactive effects of a virtual
interviewer’s dialog capability and facial animation have not been
tested before, the plausibility of such effects is strengthened by
the finding that survey respondents in face-to-face interviews
produce more paralinguistic displays of need for clarification
(speech disfluencies) and avert their gaze more often for
unreliable answers in high-dialog-capability (conversational)
than low-dialog-capability (strictly standardized) interviews
(Schober et al., 2012). Of course, human interviewers have high
facial animation in the sense we are exploring here, unless
their facial mobility is impaired from neurological illness or
cosmetic interventions, and yet when they conduct standardized
interviews they are required to restrict their ordinary dialog
capability; so a mismatch between facial animation and
dialog capability is not unusual in human-administered survey
interviews. On the other hand, if comprehension in surveys
depends mostly on the conceptual content conveyed by dialog,
the interviewer’s facial animation will not interact with dialog
capability in affecting respondents’ comprehension.

Hypotheses about Engagement

Independent of comprehension or clarification-seeking behavior,
a virtual interviewer’s dialog capability and facial animation could
have independent or interactive effects on survey respondents’
engagement with the interview, as evidenced by their social
behaviors during the interaction (e.g., time spent looking at
the virtual interviewer, nods and verbal acknowledgments, and
smiles) and by how they experience the interview subjectively.

Respondents’ engagement in survey interviews—their
involvement, attentiveness, and conscientiousness—is critical
for obtaining accurate data. But respondents can be less engaged
in the interview task than would be desirable, perhaps because
most do not ask to be interviewed (the researchers invite them
via an interviewer). In conventional survey modes, evidence of
respondents’ lack of engagement can be seen in their terminating
an interview before it is completed (see Peytchev, 2009 for a
discussion of breakoffs in online questionnaires) and in their
least-effort “satisficing” as they answer questions, for example
selecting the same response option again and again in a battery
of questions (e.g., Chang and Krosnick, 2010). Our focus here
is on respondents’ behavioral displays of engagement during
the course of a virtual interview—their gaze, their spoken and
visual acknowledgments, and their smiles—and their reported

post-interview assessments of their interview experience.
With this focus, we test the following hypotheses:

Hypothesis 4: Dialog capability and engagement. A virtual
interviewer whose interaction is more like everyday
conversation—who can clarify the questions—will engage
respondents more than a virtual interviewer with low dialog
capability.
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One might expect that when survey respondents interact with a
virtual interviewer with more human-like capabilities they will
behave more as they do in ordinary conversation: they will look
at their interlocutor more, acknowledge their understanding
more (nod, produce backchannels like “okay”), display social
cues (smile), and rate the interaction as more positive. To our
knowledge this has not been examined directly, but accounts of
frustration experienced by respondents whose standardized
interviewers are prevented from providing clarification
(e.g., Suchman and Jordan, 1990) are consistent with this
hypothesis.

Hypothesis 5: Facial animation and engagement. A virtual
interviewer whose facial movement is more human-like will
engage respondents more than a virtual interviewer with low
facial animation.

From other domains of interaction with virtual agents, the
evidence is that people judge agents with more (bodily) motion
as more acceptable and human (Piwek et al., 2014), and that
realistic characters that move more are judged more positively
(Hyde et al., 2013). The benefits of more human-like behavior
may well extend to the survey context: Conrad et al. (2013)
demonstrated that people invited to participate in (human-
administered) telephone survey interviews were more likely to
agree to participate when the interviewers spoke less robotically
(with more disfluencies) during the invitation interaction.
And Foucault Welles and Miller (2013) demonstrated that
respondents in face-to-face (human-administered) survey
interviews reported feeling greater rapport (which is presumably
related to their feelings of engagement) when interviewers
nodded and smiled more, and when they gazed at respondents’
faces less.

Hypothesis 6: Interactive effects of facial animation and
dialog capability on engagement. A virtual interviewer
with more facial animation may increase respondents’
engagement particularly when the interviewer has greater
dialog capability.

Any effects of dialog capability and facial animation on
respondents’ display of social cues or assessment of the
interviewer could be independent, or they could interact. The
same range of possible interaction effects exists for measures
of engagement as for comprehension. The combination of
low dialog capability and low facial animation could lead to
particularly unengaging or alienating interaction. High facial
animation could lead to unrealistic expectations about an
interviewer’s dialog capability, which when thwarted could
lead respondents to be less engaged with the interviewer.
Low facial animation could lead to underestimation of a high
dialog capability interviewer’s competence, which could lead
respondents to attend less fully to or disengage with the
interviewer.

MATERIALS AND METHODS

Our strategy in this study was to bring participants to our
laboratory to respond to 12 questions about housing, work

and purchases taken from US government surveys, which
they answered on the basis of scenarios describing fictional
circumstances. This allowed us to directly assess the accuracy of
their responses—which also measures the extent to which their
comprehension of the terms in the survey questions fits what
the official definitions of those terms would require. Participants
(respondents) were randomly assigned to be interviewed by
a (Wizard-of-Oz) interviewing agent with either high or low
facial animation (many channels/points of motion vs. few) and
high or low dialog capability (conducting interviews in either a
collaborative or strictly standardized style). For each respondent,
half the fictional scenarios were designed to map onto the survey
questions in a straightforward way and half in a complicated way.
Thus, the experimental design was 2× 2× 2.

Although having respondents answer about fictional scenarios
as opposed to about their own lives reduces ecological validity,
it has the advantage of allowing direct assessment of accuracy
of comprehension during the interviews. In other studies
with human interviewers we have used post-interview self-
administered questionnaires (Suessbrick et al., 2000; Schober
et al., 2012) and human-administered re-interviews (Conrad and
Schober, 2000; Suessbrick et al., 2000) as alternate (less direct)
methods for assessing comprehension and survey response
accuracy, under the logic that response change when respondents
are provided with a standard definition of a survey term is likely
to reflect the correction of a misinterpretation in the original
interview; the findings in those studies are highly consistent with
the findings produced when responses are based on fictional
scenarios, and so in the current study we use fictional scenarios.
The questions and scenarios in the current study are the same as
those used in previous laboratory studies of telephone interviews
(Schober and Conrad, 1997; Schober et al., 2004) and of online
text- and speech-based interviewing systems (Conrad et al.,
2007; Ehlen et al., 2007). Although the participant sample and
time frame for this experiment make a comparison with those
studies not entirely parallel, they provide relevant context for
evaluating respondents’ performance with a virtual interviewer
in the current study.

Experiment Materials
Survey Questions

The 12 survey questions were adapted to apply to the fictional
scenarios that respondents would be answering about, rather
than about the respondent’s own circumstances: four questions
about employment from the US Current Population Survey
(e.g., “Last week, did Chris do any work for pay?” filling in
the name of the fictional character Chris in the question “Last
week, did you do any work for pay?”), four questions about
purchases from the Current Point of Purchase Survey (e.g., “Has
Kelly purchased or had expenses for household furniture?”), and
four questions about housing from the Consumer Price Index
Housing Survey (e.g., “How many bedrooms are there in this
house?”). Each question had a corresponding official definition
for its key concepts developed by the sponsoring agency. For
example, for the question “Has Kelly purchased or had expenses
for household furniture,” the official definition of household
furniture is this:
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Tables, chairs, footstools, sofas, china cabinets, utility carts,
bars, room dividers, bookcases, desks, beds, mattresses,
box springs, chests of drawers, night tables, wardrobes,
and unfinished furniture. Do not include TV, radio, and
other sound equipment, lamps and lighting fixtures, outdoor
furniture, infants’ furniture, or appliances (US Bureau of the
Census and US Bureau of Labor Statistics, 1993).

(Supplementary Table 1 includes all questions and the official
definitions relevant to each question).

The questions were ordered for the experiment to correspond
with the order in which they appeared in the survey from
which they were drawn, and counterbalanced across domains for
different respondents to make sure that any effects observed in
the experiment could not be attributed to the order in which
the virtual interviewer asked about the different domains. So
one respondent would answer purchase questions followed by
housing questions followed by employment questions, another
would answer housing questions followed by employment
questions followed by purchase questions, etc.

Respondent Scenarios

Fictional scenarios on the basis of which respondents were
to answer the questions were assembled into paper packets,
with one page per scenario. In actual surveys respondents most
often answer based on their recall and self-assessment; using
scenarios is more similar to situations when respondents answer
by consulting their personal records, and, more importantly,
allows us to isolate and focus on comprehension—there is
no autobiographical recall involved when respondents answer
based on scenarios. For factual questions about respondents’
behaviors or circumstances, the outcome of each exchange—
an answer to a survey question—is either accurate or not (e.g.,
the respondent either has or has not done any work for pay in
the last week). In principle this could be independently assessed
if researchers were to have independent evidence about the
respondent’s circumstances (e.g., trustworthy records from the
respondent’s place of employment), but of course, in many cases
(e.g., for many personal behaviors and for respondents’ opinions)
there is no independently verifiable evidence about the accuracy
of responses.

The scenarios, which were not seen by the interviewing
Wizard during the interview, consisted of work descriptions,
purchase receipts, and floor plans. Two alternate scenarios were
created for each question, one describing situations that mapped
onto questions and the corresponding official definitions in
a straightforward way (“straightforward mappings”) and one
describing situations that mapped onto questions and official
definitions in a complicated way (“complicated mappings”)—
for which respondents might well need clarification in order to
answer the question in a way that fit the definition. For example,
for the question about household furniture, the straightforward
scenario was a receipt for the purchase of an end table. The
complicated scenario was a receipt for the purchase of a floor
lamp. The official definition—which was not part of the materials
given to the respondents, but could only be presented orally
by a high-dialog-capability virtual interviewer—clarified that for
the purposes of this survey, a floor lamp is not to be counted

as a household furniture purchase, and thus the answer to this
question should be “no.” (The answer for the straightforward
scenario should be “yes,” as an end table counts as a furniture
purchase).

The selection of these scenarios thus allowed direct evaluation
of whether the respondent had comprehended the question in a
way that fit the official definitions. A respondent who answers
“yes” to the household furniture question with a floor lamp
receipt, or “no” with an end table receipt, is not interpreting the
question as the survey designers intended; these responses can be
classified as incorrect.

Scenario packets were assembled for each respondent that
included half (6) straightforward and half (6) complicated
scenarios, with two straightforward and two complicated
scenarios per domain (employment, purchases, housing). The
orderings of mappings were counterbalanced across respondents,
such that the particular combination of straightforward and
complicated mappings for one respondent was the complement
of the combination for another. Across all respondents, both
straightforward and complicated scenarios were presented
equally often and in different orders, both so that the interviewing
Wizard could not anticipate which scenario a particular
respondent was encountering and so that any effects observed in
the experiment could not be attributed to a particular sequence
of mappings.

Additional Interviewer Utterances

In addition to the survey questions and the full definitions of
relevant terms in the questions, all other allowable interviewer
utterances in low and high dialog capability interviews were
scripted. These included several introductions of the interview
(e.g., “Hello, my name is Derek and today I will be asking
you a few questions about housing, jobs and purchases.”), pre-
interview practice material, neutral probes (e.g., “Is that a yes or a
no?”), partial definitions (just the text that resolves the ambiguity
in the corresponding complicated scenario), clarification offers
(“It sounds like you’re having some trouble. Can I give you a
definition that might help?”), utterances to manage the dialog
(e.g., “Yes,” “No,” “Please wait one moment”), and utterances to
run the experimental session (“Please turn to the next page of
your packet”; “I am going to ask the research assistant to help
you. Just a minute please”). Supplementary Table 2 lists the full
set of additional scripted utterances.

Developing the Virtual Interviewers
The virtual interviewers for the four experimental conditions
were created using famous3D’s ProFACE video software (version
2.5) to make variants of a single 3D model of a head. We first
video- and audio-recorded a human interviewer (a male graduate
student in survey methodology who spoke American English)
administering all survey questions, prompts, clarifications, and
additional interviewer utterances, with 21 green and blue dots
affixed to his face to capture 21 different motion channels
(forehead, outer and inner brows, furrow, upper eyelids, region
below the eyes, cheeks, right and left sides of nose, right and left
lower lips, chin, etc.). With the ProFace software we captured
his facial motion and mapped it to a face template, which could
then be projected onto one of ProFace’s existing models (Derek,
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in our case; see Figure 1) either using all motion channels (for
the high facial animation conditions) or a subset (for the low
facial animation conditions). All audio files used in the low
dialog capability conditions were also used in the high dialog
capability conditions; there were, of course, extra speech files
(and accompanying video) for high dialog capability conditions
(e.g., offers of clarification).

Note that because all four virtual interviewers were based on
the same headmodel, the interviewer’s base level of visual realism
or naturalism, which can affect how users judge and respond to
virtual agents in other task contexts (e.g., Baylor and Kim, 2004;
MacDorman and Ishiguro, 2006; Gong, 2008; MacDorman et al.,
2009), was the same across all four conditions. In a job interview
training task, Baur et al. (2013) found that interviewees criticized
their interviewer as not looking realistic enough; our interviewer
has a level of realism that reflects the photographic origins of the
model, and is more realistic than the more cartoon-like survey
interviewer in Lind et al. (2013), but there is simply not enough
evidence in survey tasks about the optimal levels of realism for a
virtual survey interviewer.

Also note that because the interviewers differed behaviorally
on more than one feature, any effects on respondents must be
attributed to bundles of behavioral features rather than individual
features.

Facial Animation

Table 1 summarizes the major features of motion in the high and
low facial animation interviewers. For the low facial animation

FIGURE 1 | The Derek model that formed the basis of the four virtual

interviewers.

conditions, sevenmotion channels were projected onto the Derek
model: chin, left and right lower lips, left and right corners
of mouth, and left and right peaks of lip. The low animation
interviewer head and face do not move, the eyes do not blink, and
the mouth does not change shape as the interviewer speaks—it
just opens and closes.

For high facial animation conditions, in addition to the
21 channels of captured motion the interviewer’s head and
face move (applying ProFace’s jitter function) at all times
(even while waiting for responses, to give the appearance of
listening), and his eyes blink. The interviewer’s mouth forms
appropriate shapes for the sounds he is producing; to improve
the correspondence between the interviewer’s mouth movements
and speech, additional keyframes were added by hand beyond
the captured motion at a fine level of granularity, with particular
combinations of motions for different consonants and vowel
sounds in the recordings, based on the judgments of an animator.
Finally, stationary shoulders were added to make the head
movements look more realistic.

See Supplemental Data for video examples of low and high
facial animation introductions to the interview (Videos 1, 2) and
for low and high facial animation variants of Purchases Question
3 (Videos 3, 4).

Dialog Capability

Table 2 summarizes the major features of dialog capability in
the high and low dialog capability interviewers. These were
implemented by an experimenter behind the scenes (the Wizard)
following protocols for which interviewer files (questions, neutral
probes, definitions, etc.) were to be played to respondents
in which sequence and in response to which respondent
behaviors (see Wizard protocols below). In all cases the virtual
interviewers presented the same questions, and (from the

TABLE 1 | Facial animation features of virtual interviewers.

Low facial animation High facial animation

Head moves No Yes, even when “listening”

Face moves Only mouth Yes

Eyes move No Yes

Eyes blink No Yes

Mouth movement Only opens and closes

during speech, but does not

change shape

Mouth forms appropriate

shapes for sounds being

produced

TABLE 2 | Dialog capability features of virtual interviewers.

Low dialog capability High dialog capability

Reads question as worded Yes Yes

Understands spoken answers Yes Yes

Repeats question if asked Yes Yes

Understands explicit requests for clarification Yes Yes

Provides clarification when explicitly requested No: presents neutral probe (e.g., “Whatever it means to you”; “Let

me repeat the question”)

Yes: reads definition

Offers clarification when it seems needed (based on respondent’s

verbal and visual behavior)

No Yes
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respondents’ perspective) they could comprehend and register
spoken answers.

The low dialog capability protocol was to administer a strictly
standardized interview, as implemented in previous studies in
this line of research (e.g., Schober and Conrad, 1997; Schober
et al., 2004). The virtual interviewer presented the questions
exactly as worded and could repeat questions if asked, but if
a respondent explicitly requested clarification the interviewer
would only provide a neutral probe (of theWizard’s choosing, just
as in human-administered standardized interviews; see Video 5
in Supplementary Materials for an example).

The high dialog capability protocol was to administer
“conversational” interviews, again as in Schober and Conrad
(1997). After reading the question exactly as worded, the
(wizarded) interviewer (a male graduate student) did whatever
he thought was needed to make sure that the respondent had
interpreted the question as intended—to “ground” the meaning
of terms in survey questions, to use Clark and colleagues’ term
(e.g., Clark and Wilkes-Gibbs, 1986; Clark and Schaefer, 1987;
Clark, 1996). In other words, the interviewer’s task was to make
sure that the respondent’s interpretation fit the official definition.
This included not only providing the full official definition if the
respondent explicitly requested it but also offering clarification
if the interviewer (Wizard) got the sense that the respondent
might need it (see Video 6 in Supplementary Materials for an
example). Given the nature of the video files and wizarding
protocols, this implementation of conversational interviewing
is not as fully flexible as human interviewers can provide,
because our virtual interviewers could not provide fully tailored
partial definitions or improvise unscripted dialog, but it is on
the most flexible end of the continuum (see Schober et al.,
2004).

Pre-study: Verifying Distinctiveness of Virtual

Interviewers

In order to increase our confidence that we had successfully
manipulated what we hoped to in creating the virtual interviewer

videos, we collected ratings of all 130 video clips in the
experiment, both low and high facial animation versions.
The clips included all questions, probes, definitions, and
introductions to be used by both the low and high dialog
capability virtual interviewers. Thirteen raters (11 female, two
male; mean age 28.8, ranging from 24 to 34; all with bachelors’
degrees, six graduate students in survey methodology) each
rated 65 high- and low-animation video clips in one of two
group viewing sessions. For each clip, each rater judged the
virtual interviewer on a ten point scale for warmth (“How
warm was Derek, with 0 being Not At All Warm and 10
being Very Warm?”), naturalness (“How natural was Derek,
with 0 being Not At All Natural and 10 being Very Natural?”),
and similarity to an actual interviewer (“To what degree did
Derek seem like an actual interviewer, with 0 being Not At
All Like An Interviewer and 10 being Very Much Like An
Interviewer?”).

The ratings confirmed that the high facial animation virtual
interviewers were, in the aggregate, perceived to be reliably
warmer [4.58 vs. 2.78 on the 10-point scale, F(1, 12) = 28.56,
p < 0.001, η

2
= 0.704], more natural [5.23 vs. 2.95 on the 10-

point scale, F(1, 12) = 36.24, p < 0.001, η2
= 0.751], and more

like a human interviewer [6.24 vs. 4.36 on the 10-point scale,
F(1, 12) = 21.35, p = 0.001, η

2
= 0.640] than the low realism

versions. The same pattern was observed for most individual
clips, though not all. Although none of the ratings reached the top
of the 10 point scale, these strongly reliable differences suggested
to us that these implementations of virtual interviewers would be
suitable for the experiment.

Wizarding Protocols
The virtual interviewers were controlled by mapping each video
file to a key on the computer keyboard using ArKaos VJ software.
This allowed the Wizard to present the next relevant file to the
respondent by pressing a key, according to the relevant protocol
for high or low dialog capability interviewing (see Table 3 for the
Wizard’s decision rules). Using the VJ software allowed seamless

TABLE 3 | Wizard’s decision rules.

Low dialog capability High dialog capability

Give respondent 3min to familiarize him/herself with packet, and ignore respondent

if he/she says he/she is ready

Give respondent 3min to familiarize him/herself with packet, but begin interview if

respondent says he/she is ready

Wait 10 s between transition and question clip, despite respondent behavior Wait for respondent to look at virtual interviewer before presenting next question

clip

Do not modify presentation of clips based on respondent’s gaze or attention Stop presenting a clip if respondent stops looking at virtual interviewer

Send research assistant to help respondent if in trouble Use virtual interviewer to assist respondent if in trouble. If not successful send

research assistant

If respondent seems hesitant or confused, do nothing If respondent seems hesitant or confused, then offer help

If respondent asks for help, then present neutral probe If respondent asks for help not related to scenario, then present neutral probe

If respondent asks for help pertaining to scenario, then present entire definition

If respondent asks for help with specific mention of key concept, then present

partial definition

If respondent interrupts virtual interviewer, then finish presenting clip. Wait for

respondent to repeat him/herself

If respondent interrupts virtual interviewer, then present waiting clip and address

respondent’s concern immediately
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presentation of the video clips, so that the virtual interviewer
appeared to the respondent to be acting on its own. The Wizard
sat in a control room with a one-way mirror and live video feed
view of the respondent. The control computers were set up so that
the Wizard could view the respondent from a frontal overhead
position and could also see the video file of the virtual interviewer
as it was playing for the respondent.

The use of a Wizard allowed us to implement the high and
low dialog capability virtual interviewers without programming
a full survey dialog system with speech recognition and dialog
management, which was beyond the scope of the current study
[In other projects we have implemented a standardized survey
spoken dialog system for mobile devices (Johnston et al., 2013)
and experimented with an automated telephone system that
implements conversational interviewing, including modeling
respondents’ paralinguistic displays of need for clarification
(Ehlen et al., 2007)]. Because the same Wizard manipulated
the virtual interviewers in this study across all conditions, his
detection of and judgments of the meaning of respondents’
facial and bodily displays and verbal behavior were likely to
be consistent in the different conditions. This means that
across the high and low facial animation conditions, the
timing of turn transitions (the point at which speakers and
listeners trade roles in conversation), which has been shown
to affect perceptions of (in particular rapport with) virtual
humans (Huang et al., 2011), were deployed based on the
same human Wizard judgments, appropriately for either the
high or low dialog conditions. Thus, although by necessity the
Wizard needed to be informed about respondents’ experimental
conditions (so that he could deploy the appropriate video
files), the particular linguistic and interactive intuitions that the
Wizard brought to the experiment did not differ across the
conditions.

Post-interview Measures
After completing the interview, respondents filled out an
online questionnaire in which they reported their subjective
experience interacting with the virtual interviewer on a number
of dimensions (e.g., “How much did you enjoy interacting
with Derek?”, “Would you say that Derek acted more like a
computer or a person?”, “How often did Derek seem to act
on his own?”). They also provided information about their
technological experience (“How often, on average, do you
use a computer?”) and their demographic and linguistic
background (e.g., “Is English your native language?”).
The full questionnaire is presented in Supplementary
Table 3.

Participants
Seventy-five participants (respondents) were recruited from the
local site of the Craig’s List online forum (https://annarbor.
craigslist.org/) (n = 51) and through word of mouth (n = 21);
for three respondents we do not have records about how they
heard about the study.

Respondents, who were paid $35 for participating, were each
randomly assigned to an experimental condition, except for
two who were recruited specifically to replace two respondents

(one in each high-dialog-capability condition) who expressed
suspicion that the virtual interviewer was wizarded (the replaced
and replacement respondents were all recruited through Craig’s
List). This led to a final data set with 18 respondents in three
of the four conditions and 19 in the high-dialog-capability-high-
facial animation condition.

In the final data set, the composition of the four groups did
not differ reliably in age (F < 1), nor in recruitment source (p-
values for all X2

> 0.15.) The respondents ranged in age from
18 to 67 years (mean = 36.8); 38 were female and 35 were male.
56.2% of respondents reported being White, 20.5% Black, 16.4%
Asian or Pacific Islander, and 5.5% reported being members of
other groups. 37.4% of respondents reported their highest level
of education as less than a bachelor’s degree, 42.5% as a bachelor’s
degree, and 19.2% as a graduate or professional degree. As a
group they were highly computer literate, with 84.9% reporting
using a computer 5–7 days per week. 89% reported that English
was their native language.

All procedures that respondents followed, and all materials
that were presented to them, were reviewed and approved by the
University of Michigan IRB-HSBS (Institutional Review Board—
Health Sciences and Behavioral Sciences).

Procedure
Each respondent was escorted to a first room where he or she
signed consent forms and was handed the packet of experimental
scenarios on the basis of which he or she would be answering
survey questions. A research assistant instructed respondents
using the following script:

In this study, you will be asked 12 questions about fictional
purchases, housing, and jobs. This interview is not like typical
interviews. We will not be asking you about your own
experiences but about the information contained in scenarios
in this packet, so we can assess the accuracy of your responses.
On each page there is one scenario, which corresponds
to one question. You should answer each question based
only on information in the corresponding scenario. Each
scenario is independent of each other, so you should not use
information from the previous page to answer a subsequent
question. Some of the scenarios are dated; consider the date
in the packet to be current, rather than responding based on
today’s date. You will receive additional information about
this procedure once the interview begins. Let’s enter the room
now to start the interview.

Respondents were then led to a second room, which contained
two mounted cameras, a chair, a table, a computer, a monitor
displaying the virtual interviewer, a microphone on the table,
and (in the high-dialog-capability conditions) a non-functioning
web camera trained on the respondent to increase the plausibility
that the virtual interviewer could sense the respondent. The
room was free of other distractions. If a respondent asked
about any of the equipment, the research assistant answered
by saying, “I will be happy to answer your questions after
the interview.” The research assistant then pointed at the
monitor with the virtual interviewer and gave the following
instructions:
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You are going to be interviewed by Derek. Derek will speak
to you, and you should respond aloud. Please look at Derek
when he’s speaking to you. Okay?

When I leave the room, Derek will introduce himself and give
you the opportunity to familiarize yourself with the scenario.
Please use all the available time to fully acquaint yourself with
the entire packet. You may also want to review each scenario
before answering its respective question.

This is a new way to conduct interviews and, therefore,
might be a little rough around the edges. Please bear with
us if there are any problems. Let me know if you experience
any difficulty with the equipment. I am leaving now, but
please feel free to knock on the door if you need my help.
The interview will begin as soon as I leave the room. Any
questions?

In the high-dialog-capability conditions, the research assistant
presented the following additional instructions:

Please look at Derek when you are ready for the next question.
Derek can hear and see you.

Sometimes, survey questions use ordinary words in
unexpected ways. To be sure you understand the question,
you may need to ask Derek to clarify particular words so
please ask for clarification if you are at all unsure about what
they mean. In fact, you may need to get clarification from
Derek in order to answer accurately. Unlike what happens in
some survey interviews, Derek is able to help you when you
indicate you need help. So you should be sure to ask Derek
for clarification if you are at all unsure about what a word
means.

This description of the respondent’s role in conversational
interviews parallels the additional instructions in Schober and
Conrad (1997).

The research assistant then left the room and the interview
proceeded, starting with a first training question and scenario to
familiarize the respondent with the task. The research assistant,
who monitored the video and audio of the interview along with
theWizard, was available to enter the room if there were technical
difficulties or if the respondent gave evidence of not having
understood the instructions (e.g., about turning the page in their
scenario packet for each next survey question).

After the interview, the research assistant escorted
respondents to another lab room, where they filled out the
on-line post-experiment questionnaire. Finally, they were
asked whether they felt they were indeed interacting with a
computer (to give them the opportunity to voice any suspicions
that the virtual interviewer was wizarded), debriefed about
the actual Wizard-of-Oz experiment setup, and paid for their
participation.

The reported analyses are based on the 73 respondents who
gave no evidence in the experiment debriefing of suspecting
that the virtual interviewer was wizarded. From transcripts of
the interviews, we know that no participant ever expressed
any suspicion or asked any questions about how the virtual
interviewer worked during the interview.

RESULTS

Comprehension
To test our Hypotheses 1–3 about comprehension, we first focus
on response accuracy and then on respondents’ and virtual
interviewers’ clarification behaviors. We adopt conventional
thresholds for alpha, with levels of p < 0.05 as statistically
significant (reliable) and 0.05 < p < 0.10 as marginal.

Response Accuracy

Respondents’ comprehension was measured by observing, for
each response, whether it matched what the official definition of
the survey term would require.

As Figure 2 shows, Hypothesis 1 was supported: virtual
interviewers with high dialog capability led to significantly
greater response accuracy (74.3%) than virtual interviewers
with low dialog capability (60.2%), F(1, 69) = 21.69, p <

0.001, η
2
= 239. This was entirely driven by the effect of

dialog capability on response accuracy for complicated mapping
scenarios (50.9% for high dialog capability and 25.9% for low
dialog capability interviewers); in contrast, for straightforward
mappings there was no effect of interviewer dialog capability on
response accuracy (response accuracy was uniformly high in all
conditions), as demonstrated by the interaction of mapping by
dialog capability F(1, 69) = 15.38, p < 0.001, η2

= 0.182.
Figure 2 also shows that, contrary to Hypothesis 2, there was

no evidence that the virtual interviewer’s facial animation affected
response accuracy, F(1, 69) = 0.15, p = 0.70, η

2
= 0.002. To

further investigate whether there really was no effect of facial
animation on response accuracy, we computed a Bayes10 factor
(using the JASP, 2015 package) comparing the fit of the data
under the null hypothesis (no effect of facial animation) and
the alternative (see Jarosz and Wiley, 2014 for an account of the
underlying logic). An estimated Bayes10 factor (alternative/null)
of 0.193 suggested that the data were 5.18:1 in favor of the
null hypothesis, that is, 5.18 times more likely to occur under
a model without including an effect of facial animation, rather
than a model with it (in comparison, an estimated Bayes factor
[alternative/null] for dialog capability is 2.092 in favor of the
alternative hypothesis).

Contrary to Hypothesis 3, and further supporting the
interpretation that the virtual interviewer’s dialog capability was
entirely responsible for response accuracy, is the finding that the
interaction between response accuracy and facial animation was
not significant, F(1, 69) = 0.006, p= 0.94, η2

= 0.000; the Bayes10
factor for the interaction between dialog capability and facial
animation is 0.386, suggesting that the data are 2.59:1 in favor
of the null hypothesis.

Clarification Behaviors

So that we could examine direct and indirect requests
for clarification and their relationship with respondents’
comprehension, complete transcripts of the survey question-
answer sequences in each interview were created and coded. A
coding scheme for all interviewer and respondent moves (see
Supplementary Table 4) was adapted from our previous studies
with human interviewers (Schober et al., 2004) that included
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FIGURE 2 | Response accuracy (percentage of survey responses that matched what the official definition would require) for straightforward and

complicated scenarios (error bars represent SE’s).

codes for the behaviors we expected to differ between high-
and low-dialog-capability interviews (e.g., offering clarification,
providing definitions, providing neutral probes). In order to
verify reliability of the coding, the majority of the question-
answer sequences (86.6%) were coded again by a different coder;
agreement between these two sets of codes was measured with
Cohen’s kappa, which at 0.988 was “almost perfect” by Everitt and
Haye’s (1992, p. 50) characterization.

Consistent with Hypothesis 1, respondents only ever
requested or received clarification in the high dialog capability
conditions, and not at all in the low dialog capability conditions.
This makes sense because of course any requests with a low-
dialog-capability virtual interviewer would be met with a neutral
probe (e.g., “Let me repeat the question” or “whatever it means
to you”) rather than substantive clarification (e.g., “In this survey
we do not include floor lamps as furniture”).

Also consistent with Hypothesis 1 (see Table 4), respondents
with the high-dialog-capability virtual interviewers explicitly
requested clarification more often—nearly twice as often—for
complicated scenarios than for straightforward scenarios, and
they correspondingly received clarification more than twice as
often for complicated scenarios. The virtual interviewer also was
more likely to comment on the respondent’s need for clarification
for complicated scenarios. Compared to explicitly requesting
clarification, respondents indirectly indicated that they were
having comprehension trouble (e.g., “I don’t know whether to
count that or not”) far less frequently, and they did not do this
at different rates for different scenario types.

Contrary to Hypothesis 2 (see Table 4), there was no
evidence that respondents in the high dialog capability conditions
explicitly requested clarification any more often when the

virtual interviewer had high than low facial animation, nor
did they reject clarification or receive definitions any more
often.

Even though there was no evidence that the virtual
interviewer’s facial animation affected respondents’ requests
for clarification, respondents with high animation virtual
interviewers did have different clarification dialog experiences
in a few other ways. Respondents with the high animation
virtual interviewer were marginally more likely to be presented
with a comment about their confusion (“It sounds like you’re
having some trouble”) than respondents with the low animation
virtual interviewer. This is potentially consistent with Hypothesis
2, to the extent that respondents’ non-verbal or paralinguistic
evidence of confusion (beyond explicit or implicit verbal
requests for clarification) differed enough between high and
low animation virtual interviewers so as to affect the Wizard’s
presentation of such comments. On the other hand, Hypothesis
2 seems clearly contradicted by the less interpretable finding
that respondents with a high facial animation virtual interviewer
were reliably less likely to be offered unsolicited clarification. This
would make sense if we saw other evidence that respondents
requested clarification or provided evidence of confusion more
with the low facial animation interviewer, but that is not what
we observe. In any case, although we see little evidence for
Hypothesis 2, the fact that clarification dialog can proceed
differently when the interviewer has high or low facial animation
suggests that the impact of facial animation on clarification dialog
deserves further exploration.

Analyses of potential interactive effects of the interviewer’s
dialog capability and facial animation on respondents’ requests
for clarification and receiving clarification are not significant.
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TABLE 4 | Percentage of question-answer sequences in which clarification and related speech occurred (SE’s in parentheses).

Scenario mapping Effect Facial animation Effect

Straight forward Complicated Low High

Respondent explicit requests for clarification (“What do

you mean by ‘furniture’?”)

18.1 (3.7) 35.2 (5.2) F(1, 35) = 20.74, 29.2 (5.9) 24.1 (5.8) F(1, 35) = 0.37,

p < 0.001, p = 0.55,

η
2

= 0.372 η
2
= 0.011

Respondent implicit requests for clarification (“I don’t

know whether to count that or not”)

6.3 (1.8) 4.4 (1.8) F(1, 35) = 0.88, 4.6 (2.1) 6.2 (2.1) F(1, 35) = 0.27,

p = 0.354, p = 0.605,

η
2
= 0.025 η

2
= 0.008

Virtual interviewer comments on respondent’s confusion

(“It sounds like you’re having some trouble.”)

3.6 (1.2) 8.9 (1.7) F(1, 35) = 8.08, 4.2 (1.6) 8.4 (1.6) F(1, 35) = 3.42,

p = 0.007, p = 0.073,

η
2

= 0.188, η
2

= 0.089

Virtual interviewer offers clarification (“Can I help you?”) 25.8 (3.4) 25.2 (3.2) F(1, 35) = 0.022, 31.5 (3.8) 19.6 (3.7) F(1, 35) = 4.98,

p = 0.882, p = 0.032,

η
2
= 0.001 η

2
= 0.124

Respondent rejects offer 5.3 (1.6) 3.2 (1.1) F(1, 35) = 1.36, 5.1 (3.4) 3.4 (1.4) F(1, 35) = 0.67,

p = 0.251, p = 0.42,

η
2
= 0.037, η

2
= 0.019

Virtual interviewer presents definition 16.3 (3.5) 36.6 (4.5) F(1, 35) = 26.55, 29.6 (5.1) 23.3 (5.0) F(1, 35) = 0.80,

p < 0.001, p = 0.38,

η
2

= 0.431 η
2
= 0.022

Statistically reliable and marginal differences are in bold face.

Consistent with the response accuracy evidence, Hypothesis 3 is
not supported by evidence from clarification behavior.

Respondents’ Engagement
To test our Hypotheses 4–6 about respondents’ engagement, we
first focus on respondents’ gaze at the virtual interviewers, and
then on their acknowledgment behaviors, smiles, and subjective
assessments of the virtual interviewer.

Gaze at the Virtual Interviewer

From the video recordings of respondents’ faces, we used
Sequence Viewer (http://www.sequenceviewer.nl/) to code
whether respondents were looking at the screen (i.e., at the
virtual interviewer), at their paper packet, or elsewhere at
every moment in each interview (from the research assistants’
observations of video monitors during the pre-interview
training sessions, we knew that respondents had all looked at
the virtual interviewer for several minutes before the survey
interview, as instructed). Respondents looked almost exclusively
at their scenario packet and the virtual interviewer; they looked
elsewhere in the room so rarely (less than 1% of the time) as to
be negligible (see Figure 3).

Consistent with Hypothesis 4, respondents spent a greater
proportion of the interview time looking at the high-dialog-
capability virtual interviewers (29.8% of the time) than the low-
dialog-capability virtual interviewers (21.1%), F(1, 69) = 6.73, p =

0.012, η2
= 0.089. In order to further explore this phenomenon

(that is, to further understand how respondents’ engagement
as measured by gaze connected with clarification dialog), we
examined respondents’ gaze at the virtual interviewers for
complicated and straightforward scenarios, because it was only
in complicated scenarios that clarification dialog ever occurred.
As Figure 3 shows, respondents looked slightly but reliably less at
the virtual interviewer (and more at their scenario packets) when
the mappings between questions and scenarios were complicated
(24.7% of the time) rather than straightforward (26.3% of the
time), F(1, 69) = 4.20, p < 0.05, η

2
= 0.057. This overall

difference resulted particularly from the low-dialog-capability
conditions (19.2% of the time for complicated scenarios and
23.1% for straightforward) rather than the high-dialog-capability
conditions, where there was no difference in the proportions of
time spent looking at the virtual interviewer based on scenario
mappings (30.1 vs. 29.6%), interaction F(1, 69) = 7.16, p <

0.01, η
2
= 0.094. Our interpretation is that in the low-dialog-

capability conditions respondents were left to their own devices
to figure out the right answer to the survey question, and so
the only available useful information, if the virtual interviewer
would not provide clarification, could come from examining the
scenarios more closely. In the high dialog capability conditions,
engagement with the virtual interviewer through gaze was greater
and not related to the content of the scenarios1.

1This pattern of findings rules out an interpretation that greater gaze at the high-

dialog-capability virtual interviewer resulted simply from respondents looking at

the interviewer more at turn transitions, which is a well-documented phenomenon
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FIGURE 3 | Percentage of time that respondents looked at the virtual interviewer and the scenario packet, on average, across the four conditions,

broken down by whether they were answering questions that mapped onto the scenario in a straightforward (lighter shades) or complicated (darker

shades) way. Gaze elsewhere (not at the virtual interviewer or scenario packet) was so rare (less than 1% of the time in all conditions) that it is not plotted.

Contrary to Hypothesis 5, there is not sufficient evidence
that respondents looked more at the virtual interviewers with
high facial animation than those with low facial animation,
F(1, 69) = 1.22, p= 0.27, η2

= 0.017. An estimated Bayes10 factor
(alternative/null) of 0.669 suggested that the data were 1.49:1 in
favor of the null hypothesis, that is, 1.49 times more likely to
occur under a model that does not include an effect of facial
animation, rather than a model that does include it.

Contrary to Hypothesis 6, the virtual interviewer’s facial
animation did not interact with its dialog capability in affecting
respondents’ gaze behavior, F(1, 69) = 0.50, p = 0.48, η2

= 0.017.
An estimated Bayes10 factor (alternative/null) of 1.771 does not
rule out the possibility that the data may favor Hypothesis 6, but
it seems unlikely.

There are at least two possible explanations for this pattern of
results—that gaze increased with high-dialog-capability but not
high-facial-animation interviewers—given that our experimental
conditions varied on more than one feature. One is that
respondents with a high-dialog-capability virtual interviewer
found the content of the interviewer’s contributions (e.g.,
clarification dialog) compelling and human-like enough to spend
a greater proportion of their time looking at the interviewer.
Another is that respondents with a high-dialog-capability
virtual interviewer fully trusted what they were told about the
interviewer’s perceptual capacity in the experiment instructions:
that the high-dialog-capability interviewer could perceive their
facial expression and gaze. The fact that respondents in the
high-dialog-capability conditions were explicitly instructed to

in human dialog (e.g., Kendon, 1967). If this were the case, then there should be

more looking at the interviewer for complicated than straightforward scenarios

with the high dialog capability interviewers, because complicated scenarios

involved more transitions (because of more clarification).

look at the interviewer when ready for the next question
makes disentangling this more difficult, but we note that the
increase in looking time at the high-dialog-capability interviewer
is proportional, and occurs along with a substantial increase
in interview duration; high-dialog-capability interviews took
7.26min on average (SE 0.36min) compared with low-dialog-
capability interviews (5.53min, SE 0.37min), F(1, 69) = 11.23,
p = 0.001, η2

= 0.140. So the increase in looking time seems to
us unlikely to result only from looking at the interviewer during
transitions between survey questions, which would need to be
quite long (a full minute of the interview, or a full 5 s at each
question transition) to account for the effect.

Although respondents in this experiment did look at their
paper packets a substantial proportion of the time during the
interview (which means that at those moments they could only
have been listening to—not watching—the virtual interviewer),
we consider the proportions of time looking at the virtual
interviewer observed here to be sufficient to allow us to detect
potential effects of the virtual interviewer’s facial animation even
in the conditions with less looking time. The fact that we did
observe significant differences in multiple measures based on
facial animation corroborates this judgment.

Acknowledgment Behaviors

In face-to-face interactions interlocutors can acknowledge each
other’s utterances verbally and visually: they can use back
channel utterances (e.g., “okay,” “all right,” “got it,” “thank you”;
Yngve, 1970) and they can nod, shake their heads, shrug their
shoulders, raise their eyebrows, etc., in order to communicate
continued attention and possible understanding (Allwood et al.,
1992; McClave, 2000). Verbal and visual acknowledgments
can be seen as part of an integrated multimodal system
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(Carter and Adolphs, 2008) that displays engagement in an
interaction.

To examine acknowledgments in our virtual interviews, we
counted respondents’ verbal back channel utterances from the
interactional moves we had coded (see Supplementary Table
4). We also coded head movements (nods, head shakes, other
head movements like tilts), and other body or facial movements
(like shoulder shrugs and eyebrow raising), using Sequence
Viewer, based on the video recordings of the interviews. Just
as reliability was measured for the interactional move coding
(86.6% of question-answer sequences double-coded, see Section
Comprehension), it was measured for these behaviors as well.
Each of the individual behaviors was relatively rare in our sample,
but coders’ level of agreement was high: for head movements the
coders’ judgments agreed 92.5% of the time, and for other body
movements they agreed 94.1% of the time [Cohen’s kappas for
these reliabilities were low, at 0.32 and 0.27, but as Viera and
Garrett (2005) demonstrate, kappa can easily be a misleading
index of agreement when the occurrence of what is coded is rare].

In our tests of Hypotheses 4–6, we first looked at verbal
backchannels alone, head movements alone, and particular
body and facial movements alone. Because backchannels and
particular head movements and particular body and facial
movements occurred rarely enough that there was a risk that we
would miss patterns relevant to our hypotheses given our sample
size, we also aggregated across nods, head shakes, other head
movements, and other body and facial movements.

For Hypothesis 4 (effects of interviewer’s dialog capability
on respondent engagement), we see only suggestive evidence in
support of it. Respondents did not produce many backchannels
(and many produced none), but they produced marginally more
of themwith the high dialog capability agents (0.32 per interview)
than with the low-dialog-capability agents (0.18 per interview),
F(1, 69) = 2.82, p = 0.098, η2

= 0.039. Analyses of all facial and
bodily movements do not show any significant effects.

The evidence for Hypothesis 5 (effects of interviewer facial
animation on respondent engagement) is also suggestive.
Respondents were marginally more likely to produce one
of these movements when the virtual interviewer had high
facial animation (averaging 0.13 occurrences per speaking turn)
than when virtual interviewer had low facial animation (0.08
occurrences per speaking turn, F(1, 69) = 3.21, p = 0.078,
η
2
= 0.039. But support for Hypothesis 5 becomes stronger if

we also include verbal back channel utterances, taking Carter and
Adolphs’ (2008) multimodal view of acknowledgment behavior.
As Figure 4 shows, respondents were nearly twice as likely to
display our aggregated acknowledgment behaviors (visual and
verbal) when the virtual interviewer had high facial animation
(at a rate of 0.18 occurrences per speaking turn) than when the
virtual interview had low facial animation (0.11 occurrences per
speaking turn), F(1, 69) = 4.29, p < 0.05, η2

= 0.059.
Hypothesis 6 predicted an interaction of the form

that respondents would produce disproportionately more
engagement behaviors with high-dialog-capability high-facial-
animation virtual interviewers, and proportionately fewer with
low-dialog-capability low-facial-animation interviewers. We see
partial evidence in support of this hypothesis in one significant

interaction of interviewer dialog capability and facial animation
with respect to nods, F(1, 69) = 5.81, p = 0.019, η

2
= 0.078.

Partially consistent with Hypothesis 6, respondents nodded least
with the low-dialog capability low-facial-animation interviewer
(0.05 times per interview), but (unexpectedly) most with the
high-dialog-capability low-facial animation-interviewer (0.26
times per interview). There were no other significant interaction
effects.

Smiles

Another measure of respondents’ engagement with the virtual
interviewers is their frequency of smiling.

We thus coded respondents’ smiles in order to compute
smile frequency and duration. The coder (one of the authors)
had been certified in the Facial Action Coding System (FACS;
Ekman and Friesen, 1978). We determined coding reliability for
all the question-answer sequences for a subsample of 20% of
the respondents, equally distributed in the four experimental
conditions, as independently coded by a second coder (four
respondents had to be excluded from this analysis because the
resolution of the video was not sufficient for this level of facial
coding). Coders’ level of agreement on smile frequency was high
(92.1%), with a Cohen’s kappa of 0.66. Coders’ judgments on
smile duration were also highly correlated, r = 0.835, p <

0.0001 (considering all sequences) and r = 0.762, p < 0.0001
(considering only those sequences in which at least one smile was
found by at least one coder).

Regarding Hypothesis 4, there were no reliable effects of the
interviewer’s dialog capability on smiles.

Regarding Hypothesis 5, respondents interacting with a high
facial animation virtual interviewer smiled marginally more
often (2.25 times over the course of their interview, SE 0.55)
than respondents interacting with a low facial animation virtual
interviewer (0.78 times, SE 0.55), F(1, 68) = 3.62, p = 0.061,
η
2
= 0.050. Respondents interacting with a high facial animation

virtual interviewer also smiled marginally longer (11.5 s over the
course of the interview, SE 3.1) than respondents interacting
with a low facial animation virtual interviewer (3.0 s, SE 3.1),
F(1, 68) = 3.67, p = 0.060, η2

= 0.051.
Regarding Hypothesis 6, there were no significant interactive

effects of virtual interviewers’ dialog capability and facial
animation on respondents’ smiles.

Respondents’ Self-reported Subjective Experience

A final set of measures of respondents’ engagements was
their responses to the post-experiment questionnaire in which
they reported how they felt about and evaluated the virtual
interviewers.

Table 5 presents the average ratings as well as ANOVA
statistics for tests of Hypotheses 4–62. Note that all of these
ratings are lower than one would expect if the respondents

2We report parametric statistical analyses on these rating scale data so as to

straightforwardly test our hypotheses about our two experimental factors and

potential interactions. This approach is supported by Norman’s (2010) arguments

and evidence about the robustness of parametric analyses for interval data.

But this does not mean that we are claiming that our participants treated the

distances between intervals on our scales as equal, which is, of course, unknowable

(Jamieson, 2004); we simply are claiming that higher ratings are higher.
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FIGURE 4 | Respondents’ rates of aggregated acknowledgment behaviors (verbal back channels, nods, head shakes, other head movements, and

other body and facial movements) per speaking turn (error bars represent SE’s).

evaluated the virtual interviewer as being very human-like.
But given the constraints of a standardized interviewing
situation, it is also plausible that human interviewers who
implemented these interviews would not be rated as particularly
autonomous, personal, close, or sensitive, and they might also
be rated as more robotic than human (the term “robotic” is
sometimes used to caricature the behavior of rigidly standardized
interviewers, for example in survey invitations, see Conrad et al.,
2013).

As detailed in Table 5, Hypothesis 4 is supported on several
fronts. Respondents with an interviewer high in dialog capability
reported enjoying the interview more, and they rated the
interviewer as more autonomous, more personal, less distant,
and more sensitive than respondents with an interviewer low
in dialog capability3. They also rated the interviewer as less
like a computer. Unexpectedly, respondents with high dialog
capability interviewers reported a greater decrease in comfort
across the interview than respondents with the low dialog
capability interviewers.

In contrast to the predictions of Hypothesis 5, there were
significant effects of facial animation suggesting that interviewers
with low facial animation were in some ways preferred.
Respondents with low facial animation interviewers reported
marginally greater comfort with the interviewer at the start of the
session, and they rated the interviewer asmarginallymore natural
and as reliably more autonomous (acting on his own), than did
respondents with high facial animation interviewers.

3We interpret the finding that autonomy was rated as lower for low-dialog-

capability agents as reflecting respondents’ assessment of the virtual interviewer’s

ability to reason and think (“act on his own”), as opposed to reflecting a judgment

that the virtual interviewer had a human operator rather than being stand-alone

software. While we can’t, of course, rule out this possibility, the fact that the

patterns of ratings are consistent on more items beyond the question about

autonomy supports this view.

The pattern uncovered in tests of Hypothesis 6 is consistent
with that found for acknowledgments. Respondents with low
facial animation interviewers were more likely (albeit marginally)
to rate the interviewer as autonomous when the interviewer had
high dialog capability (seeTable 5). These same respondents were
also particularly more likely to rate the low facial animation
interviewer as more personal, as less distant (closer), and as
marginally more like a person than a computer. In other words,
respondents found the interviewer to be particularly autonomous
and personal when he looked more robotic (displayed less facial
movement) but could converse like a human. The fact that the
mean ratings in this condition (low facial animation/high dialog
capability) stand out from the others, along with the (marginal)
interaction effects, suggests that part of what is driving the main
effects of dialog capability and facial animation on these items are
the perceptions of this subgroup.

DISCUSSION

Summary
The findings reported here document that two important
elements of human face-to-face interaction—dialog capability
and facial movement—implemented in virtual survey
interviewers differently affect respondents’ comprehension
and the nature of their engagement with the virtual interviewer.
As tested in Hypotheses 1 and 4, respondents who interacted
with a virtual interviewer with greater dialog capability (that
is, which could help respondents interpret the questions as
intended) provided more accurate answers and took more
responsibility for their comprehension, requesting clarification
more often. They looked at high-dialog-capability interviewers
more, they produced marginally more backchannel responses,
and they reported enjoying the interview more and finding
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the interviewer to be more personal and less distant. As tested
in Hypotheses 2 and 5, respondents who interacted with a
virtual interviewer with more facial animation displayed more
evidence of engagement—more verbal back channels and visual
acknowledgments of the interviewer’s utterances, and marginally
more smiles. They also reported less comfort with the high
facial animation interviewers and rated these interviewers as
less natural. In testing Hypotheses 3 and 6, we observed that
respondents (unexpectedly) nodded more and rated the virtual
interviewer as more personal and less distant if it had high dialog
capability and low facial animation.

The current findings extend work on people’s reactions and
behaviors when they talk with interviewing agents, for example
telling stories to an agent that exhibits listening behavior (e.g.,
Gratch et al., 2006; von der Pütten et al., 2010), answering open-
ended questions asked by a peer (e.g., Bailenson et al., 2006) or
answering open-ended questions asked by a deception-detecting
kiosk agent (Nunamaker et al., 2011), to the task of a survey
interview for social measurement that uses closed categories as
response options and that is designed tomake statistical estimates
of a population. The findings also extend work on disclosure
of sensitive information in a survey interview with a virtual
interviewer (Lind et al., 2013) to an interview with non-sensitive
questions that have verifiably correct and incorrect answers, and
in which accurate comprehension of the terms in the questions
is critical. Because of the nature of this survey task, our measures
focus on aspects of the interaction and of respondents’ behavior
(e.g., response accuracy, smiles, acknowledgments) that have
not been the focus in previous studies, where users’ nuanced
interpretation of what the virtual interviewer is asking is less
essential.

While it is unclear where exactly our survey task fits into
a taxonomy of tasks for which virtual humans have been
designed, what is clear is that for this task the two features
we experimentally manipulated have quite distinct effects. We
assume this is because they engage different channels of
communication (the exchange of spoken vs. visual information)
and manifest themselves over different time scales—a virtual
agent’s facial animation is visible to users as soon as any talking
starts, while evidence of the agent’s dialog capability unfolds
more incrementally over time as the interviewer does or does
not respond to the user’s need for clarification. We hypothesize
that our findings should generalize to other interactive tasks
with virtual agents that share the central features of the current
task: a need for grounding interpretation of terms in an agent’s
utterances and a need for the user to be sufficiently engaged to
complete a task that someone else has initiated (Schober et al.,
2003).

While our experimental design allows us to see effects of
what we manipulated, it does not allow us to disentangle the
relative contributions of the bundled features that comprise the
different agents. Of course, our agents’ particular features could
have been implemented differently (e.g., the agents could have
had different vocal or visual attributes, or been unnamed or have
had different names), and it is unknown how our findings would
generalize to different implementations. Our experimental design
also does not allow inference about potential (and intriguing)

causal connections between our different measures. For example,
we do not know whether respondents’ attributions about the
high-dialog-capability interviewer result from or cause or are
independent of their improved comprehension: did respondents
answer more accurately with a high dialog capability virtual
interviewer because they enjoyed the interview more and found
the interviewer more perceptive and responsive? Or did they
enjoy the interview more because they were confident that they
had comprehended the questions as intended? Did respondents
smile more often and longer with a high facial animation
virtual interviewer because they felt more engaged, as one might
expect given Krämer et al.’s (2013) finding that users who were
engaged in small talk with a virtual agent smiled more when
the virtual agent smiled more? Or, alternatively (and consistent
with our respondents’ reports of less comfort), did they smile
more because their smiles reflected distress or discomfort (e.g.,
Ansfield, 2007)? The fact that respondents’ subjective experience
of a virtual survey interviewer—their level of comfort, their
enjoyment, how natural they feel the interaction to be—can be
correlated with their disclosure of sensitive information (Lind
et al., 2013) makes it plausible that users’ affective reactions could
be causally connected with their comprehension and behavioral
displays even with non-sensitive survey questions of the sort
asked here, but the current data only allow speculation.

Designing Virtual Survey Interviewers
Animating virtual interviewing agents that could be used
in, for example, a web survey with textual response is
becoming increasingly straightforward with off-the-shelf tools.
Instantiating dialog capability and speech recognition is a
greater challenge, but the constrained nature of the survey
interview task (a finite set of possible turns that can occur,
standardized wording of questions, closed response options
with limited vocabulary that a speech recognition system
can handle, definitions of key terms already existing) can
make implementing clarification dialog in a textual or speech
interviewing system more plausible than in more open-ended or
free-form conversational domains (Johnston et al., 2013; Schober
et al., 2015).

Given the many possible ways to instantiate a virtual
interviewer—a range of possible expressivity, sensing capabilities
and responsiveness to respondents’ signals, and a range of more
and less human-like facial motion and detail—we propose the
following design considerations for building virtual interviewers
for actual surveys that produce population estimates:

• Designing to maximize participation: Potential respondents are
likely to vary in whether they will consent to interact with a
virtual interviewer, for example, in an online survey. Perhaps
the greatest deterrent is uncanniness (e.g., MacDorman et al.,
2009). The fact that participants in the current study reported
that the virtual interviewers with more facial animation made
them less comfortable and were less natural than virtual
interviewers with less facial movement could result from
people’s finding the increased realism of high facial animation
to be eerie, and this might reduce participation in virtual
interviews by some samplemembers. But for others, this might
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not affect participation; in the Lind et al. (2013) study with
a more cartoon-like interviewer, different respondents had
completely opposite affective reactions from each other to the
very same interviewing agent, and this correlated with their
willingness to disclose sensitive information.

• Designing to maximize completion: Although in this study
we did not include an interviewing condition without
a facial representation, the increased engagement (more
acknowledgments and smiles) that we observed with the high
facial animation interviewers could translate to increased
completion of questionnaires compared to self-administered
online questionnaires without any virtual interviewer.
Engagement could promote completion if respondents apply
social norms from face-to-face interaction in which it would
be rude to break off a conversation midstream, or because a
moving talking face simply makes the task more interesting.
To investigate this, one would need to carry out a study outside
the laboratory (e.g., online) with naturalistic incentives (rather
than our laboratory method with payment).

• Designing to maximize comprehension: As we have proposed
for human interviewers (Schober and Conrad, 1997; Conrad
and Schober, 2000), enabling virtual survey interviewers to
engage in clarification dialog is likely to improve respondents’
understanding of questions and thus the quality of the data
collected in the survey. There are a number of ways to
instantiate clarification dialog in a virtual interviewer, from
providing scripted (spoken or even textual) definitions only
when respondents request them to diagnosing the potential
need for clarification based on respondents’ disfluencies and
gaze aversion (e.g., Ehlen et al., 2007; Schober et al., 2012).
The findings in the current study suggest that system-
initiated clarification is likely to be important for maximizing
comprehension.

• Designing the interviewer’s appearance and voice: It is
essentially impossible to design a virtual human interviewer
without creating the perception of some demographic
characteristics. If the virtual interviewer communicates by
speaking, its speech will inevitably have attributes such as
dialect, a pitch range, prosody, and vocal quality. How
the current findings, which are based on one 3D head
model with particular visual and linguistic attributes, will
generalize to virtual interviewers with other visual and
linguistic attributes, will be a key design question: how a
virtual interviewer’s visual attributes (skin shade, eye color,
hair style, facial features, clothing, hair covering, etc.) or
speech style (accent, vocabulary, pronunciation) will affect
respondents’ judgments about the interviewer’s perceived
“social identity” (gender, race, social class, education, religious
affiliation) and potentially respondents’ answers to questions
on some interview topics. It is well known that demographic
characteristics of human interviewers can (undesirably) affect
the distribution of responses (e.g., Hatchett and Schuman,
1975) even in telephone interviews where only voice attributes
are available (e.g., Cotter et al., 1982; Finkel et al., 1991). There
is preliminary evidence that this kind of interviewer effect may

also appear with virtual interviewers (Conrad et al., 2011),

and that gender and nationality attributions can occur for
embodied agents more generally (Eyssel and Hegel, 2012;
Eyssel and Kuchenbrandt, 2012).

• Designing for different types of survey questions: The current
research suggests that virtual interviewers implemented with
high dialog capability may promote accurate answers to
factual questions aboutmundane topics for which complicated
mappings are possible. However, it has been shown (Lind
et al., 2013) that when virtual interviewers ask questions
about sensitive topics, respondents seem to answer most
questions less truthfully (disclose less sensitive information)
than when the same questions are spoken by a disembodied
(audio) interviewer. If a survey investigates both non-sensitive
and sensitive topics, one could imagine implementing the
virtual interviewer for only the non-sensitive questions. To
our knowledge this has never been attempted; much is
unknown about how the intermittent display of a virtual
interviewer might affect respondents’ affective responses and
whether removing an interviewer—after being present—could
convincingly create a sense of privacy.

• Giving respondents a choice of interviewer? One potential
advantage of implementing virtual survey interviewers is that
one could let respondents choose an interviewer with the
attributes (appearance, speech style) that they prefer, which
is not a possibility with human interviewers. It is entirely
unknown which attributes respondents would most want to
be able to choose, whether providing choices will increase
respondents’ engagement and data quality, or how choosing an
interviewer that makes respondents most comfortable might
affect their effort in producing accurate responses.

Considering factors such as these, as well as those raised by
Cassell and Miller (2008), will be essential if virtual survey
interviewing systems are to be effective. The need for accurate
survey data will continue; the question will be what kinds
of interviewers and interviewing systems will best promote
accurate data and respondent engagement in new technological
environments (Schober and Conrad, 2008), and what role
embodied interviewing agents might best play.
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Systematic analysis of video data
from different human–robot
interaction studies: a categorization
of social signals during error
situations

Manuel Giuliani *, Nicole Mirnig, Gerald Stollnberger, Susanne Stadler, Roland Buchner

and Manfred Tscheligi

Department of Computer Sciences, Center for Human-Computer Interaction, University of Salzburg, Salzburg, Austria

Human–robot interactions are often affected by error situations that are caused by either

the robot or the human. Therefore, robots would profit from the ability to recognize

when error situations occur. We investigated the verbal and non-verbal social signals that

humans show when error situations occur in human–robot interaction experiments. For

that, we analyzed 201 videos of five human–robot interaction user studies with varying

tasks from four independent projects. The analysis shows that there are two types of

error situations: social norm violations and technical failures. Social norm violations are

situations in which the robot does not adhere to the underlying social script of the

interaction. Technical failures are caused by technical shortcomings of the robot. The

results of the video analysis show that the study participants use many head movements

and very few gestures, but they often smile, when in an error situation with the robot.

Another result is that the participants sometimes stop moving at the beginning of error

situations. We also found that the participants talked more in the case of social norm

violations and less during technical failures. Finally, the participants use fewer non-verbal

social signals (for example smiling, nodding, and head shaking), when they are interacting

with the robot alone and no experimenter or other human is present. The results suggest

that participants do not see the robot as a social interaction partner with comparable

communication skills. Our findings have implications for builders and evaluators of

human–robot interaction systems. The builders need to consider including modules

for recognition and classification of head movements to the robot input channels. The

evaluators need to make sure that the presence of an experimenter does not skew the

results of their user studies.

Keywords: social signals, error situation, social norm violation, technical failure, human–robot interaction, video

analysis
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1. Introduction

The interaction between humans and robots is often affected
by problems that occur during such interactions. Human users
interact with robots based on their mental models, expectations,
and previous experiences. When problems occur, users are often
confused. Their expectations are violated and they do not know
how to react. In the worst case, such problems can even result
in a termination of the interaction (Scheutz et al., 2011). The
users, most likely, attribute the error to the robot, and these
problems are in fact often caused by the robot. Some examples
for occurring problems are insufficient or defective sensor data,
errors due to misinterpretation of sensor data from the robot’s
reasoning module, and general implementation errors (Goodrich
and Schultz, 2007). In some cases, however, an interruption of the
interaction may also be caused by the human, for example, if the
human interaction partner wants to perform a task that is not
within the capability of the robot. Irrespective of the origin, the
human interaction partner gets confused and the continuation of
the interaction is at stake.

Ample evidence for the occurrence of the above described
problems can be found in the data of human–robot interaction
(HRI) user studies, in which humans directly interact with robots.
The matter of interest in these studies is often an envisioned
flawless interaction. Therefore, data of problematic interactions
may get discarded from further analysis or the problem itself is
not part of the analysis. We argue that these data potentially bear
valuable insights and ideas for improving future HRI. We are
interested in the following questions: what are the social signals
that humans display in the event of these errors and what kind of
error situations do arise in human–robot interactions?

1.1. Social Signals
The term social signal is used to describe verbal and non-verbal
signals that humans use in a conversation to communicate their
intentions. Vinciarelli et al. (2009) argue that the ability to
recognize social signals is crucial to mastering social intelligence.
In their view, the recognition of social signals will be the next
step toward a more natural human-computer and human–robot
interaction. Ekman and Friesen (1969) define five classes of
human non-verbal behavior. Emblems are gestures that have a
meaning for members of a group, class, or culture, e.g., the
thumbs up sign that means positive agreement in many western
countries. Illustrators are gestures or movements that are directly
tied to speech and are used to illustrate what has been said
verbally, e.g., humans forming a triangle with their fingers
while speaking about a triangular-shaped object. Affect displays
are signals used to convey an emotional state, often by facial
expressions or body posture. Regulators are signals used to steer
the conversation with a conversation partner, e.g., to regulate
turn taking. Finally, adaptors are actions used on objects in the
environment or on oneself, e.g., lip biting or brushing back
hair. The social signals that we detected in our video analysis
are mostly affect displays, regulators, and adaptors (see Section
3). For annotating social signals, we are not following Ekman’s
taxonomy. Instead, we separate the signals into the body parts
that the participants in the HRI studies used to express the signal,

which makes it easier to annotate combinations of social signals
(see Section 2.4).

In recent years, more and more researchers worked on the
automatic recognition of social signals, an area that is called social
signal processing. Vinciarelli et al. (2012) give an overview of the
field. They classify social signals with a similar taxonomy that we
are using in the annotation scheme in Section 2.4. According to
Vinciarelli et al. (2009), human social signals come either from
physical appearance, gesture and posture, face and eyes behavior,
space and environment, or vocal behavior. The authors also
review early work from social signal processing. In human–robot
interaction, social signal processing also receives more attention
by researchers from different areas. Jang et al. (2013) present a
video analysis that is similar to our work. In the analysis, they
annotated recordings of six one-on-one teacher–student learning
sessions, in order to find the social signals with which students
signal their engagement in the interaction. The goal of this work
is to implement an engagement classifier for a robot teacher.
Tseng et al. (2014) present a robot that automatically recognizes
the spatial patterns of human groups by analysing their non-
verbal social signals in order to appropriately approach the group
and offer services.

A second area of interest to HRI, is the generation of
social signals by robots. Bohus and Horvitz (2014) presented
a direction-giving robot that forecasts when the user wants to
conclude the conversation. This robot uses hesitations (e.g., the
robot says “so. . . ”) when it is not certain about the user state in
order to get more time to compute a correct forecast and also
to convey the uncertainty of the robot. Bohus and Horvitz did
not report an improvement in disengagement forecasts for their
robot which used hesitations. This might have been due to the
conservative strategy they were using in their study, which was
tuned to avoid false disengagements. Sato and Takeuchi (2014)
researched how the eye gaze behavior of a robot can be used to
control the turn taking in non-verbal human–robot interactions.
In their study, three humans played a game with a robot that
was programmed to look at the other players during the game.
The study shows that the robot’s gaze can influence who will
be the next speaker in the conversation. In another eye gaze
generation study, Stanton and Stevens (2014) found that robot
gaze positively influences the trust of experiment participants
who had to give answers to difficult questions in a game,
but negatively influences trust when answering easy questions.
However, robot gaze positively influences task performance for
easy questions, but negatively influences task performance for
difficult questions. Stanton and Stevens discuss that robot gaze
might put pressure on the experiment participants. Carter et al.
(2014) presented a study, in which participants repeatedly threw
a ball to a humanoid robot that attempted to catch the ball. In one
of the study conditions, when the robot did not catch the ball, it
generated social signals, e.g., it shrugged its shoulders. The study
results show that participants smile more when the robot displays
social signals and rate the robot as more engaging, responsive,
and human-like.

1.2. Error Situations
In the videos of the experiments that we annotated for this
work, we found two different kinds of error situations. On one

Frontiers in Psychology | www.frontiersin.org July 2015 | Volume 6 | Article 931 | 102

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Giuliani et al. Social signals in HRI error situations

hand, there were situations in which unusual robot behavior led
to a violation of a social norm; on the other hand, there were
error situations because of technical failures of the robot. In this
section, we will review related work on both of these areas to
define our notion of the term error situation.

We follow the definition of Sunstein (1996) that social norms
are “social attitudes of approval and disapproval, specifying what
ought to be done and what ought not to be done” (Sunstein,
1996, p. 914). Human interaction is defined by social norms.
For example, they define how one should ask for directions
on the street or how you should behave in a bar. Schank and
Abelson (1977) showed that everyday social interactions have
an underlying social script, a definition of interaction steps to
which humans usually obey. The order of these interaction
steps is guided by social signals. Loth et al. (2013) found that
customers use two combined non-verbal social signals to signal
bartenders that they would like to order a drink: they position
themselves directly at the bar counter and look at a member of
staff. We define a violation of a social norm as a deviation from
the social script or the usage of the wrong social signals. For
example, in our videos there are instances in which the robot
executed unexpected actions in the interaction (e.g., asking for
directions several times although the human already gave correct
instructions and the robot acknowledged the instructions) or
showed unusual social signals (e.g., not looking directly at the
person it is talking to).

The second class of error situations in our experiment videos
arises from technical failures of the robot. Interestingly, we can
resort to definitions of technical failures of humans interacting
withmachines, in order to classify these errors, since all robots we
observed are autonomous agents. Rasmussen (1982) defines two
kinds of human errors: execution failures happen when a person
carries out an appropriate action, but carries it out incorrectly,
and planning failures happen when a person correctly carries
out an action, but the action is inappropriate. To transfer these
definitions to autonomous robots and to make the definitions
clearer, consider the following two examples. The robot makes
an execution failure, when it picks up an object, but loses it while
grasping it; the robot has a planning failure, when the decision
mechanism of the robot decides to ask the human for directions,
although it already did so and the human correctly gave the
information. Execution failures are also called slips or lapses,
while planning failures are mistakes1.

To summarize these two definitions (further described in
Section 3), we found two types of error situations in the videos we
annotated. The robots either violated social norms by executing
interaction steps at the wrong time or by showing unusual social
signals, or they had obvious technical failures. It is interesting to
note that social norm violations often arise of planning failures by
the robot, while technical failures are usually execution failures.

Social neuroscientists have studied error situations and how
they are perceived by humans. Forbes and Grafman (2013) define
social neuroscience as “The systematic examination of how social
psychological phenomena can be informed by neuroscience
methodologies, and how our understanding of neural function

1A good depiction of human error types can be found at http://www.skybrary.aero/

index.php/Human_Error_Types.

can be informed by social psychological research” (Forbes and
Grafman, 2013, p. 1). In recent years, several neuroscientists
conducted studies to research the neural correlations when
humans observe error situations.

Berthoz et al. (2002) conducted a study to find the neural
systems that support processing of intentional and unintentional
social norm violations. They used event-related functional
magnetic resonance imaging (fMRI) to compare the neural
responses of humans listening to stories describing either
normal behavior, embarrassing anecdotes, or social norm
violations. Berthoz et al. found that the neural systems involved
in processing social norm violations are the same as systems
involved in representing mental states of others and in
responding to aversive emotional expressions. The authors
conclude that the findings have implications for understanding
the pathology of patients who exhibit social behavioral problems
associated with the identified neural systems.

de Bruijn et al. (2011) conducted a study to research whether
humans represent the task of a co-actor during error monitoring
in joint action. The authors showed through measurement of
electroencephalogram (EEG) signals and behavioral data that the
study participants show increased amplitudes on the response-
locked error-related negativity, an event-related brain potential
that is generated after an erroneous response (Falkenstein et al.,
1990), and longer reaction times following own errors in a social
go/no-go task. The findings show that people incorporate the
tasks of others into their own error monitoring and adjust their
own behavior during joint action.

Radke et al. (2011) investigated brain activities in humans
when monitoring errors that only influenced themselves or also
had implications for others. They found in an fMRI study that
monitoring errors that have implication for others activates
the medial prefontal cortex, a part of the mentalizing system.
The authors conclude from the results that this for example
explains symptoms of patients with obsessive-compulsive
disorder, who have fears that their own actions will harm
others.

Ridderinkhof et al. (2004) conducted a meta-analysis of
primate and human studies as well as of human functional
neuroimaging literature. The analysis showed that the detection
of unfavorable outcomes, response errors, response conflict,
and decision uncertainty enhances brain activity in an extensive
part of the posterior medial frontal cortex. This indicates
that performance monitoring, including error monitoring, is
associated with this brain region. Koban et al. (2013) recently
showed in an event-related fMRI study that error monitoring is
integrated with the representation of pain of others. The results
of their study show that the same brain regions are involved
in error monitoring and empathy for pain and that the brain
activity in these regions is enhanced when the pain of the other
person is caused by oneself.

In this paper, we perform a systematic analysis of video data
from different HRI user studies. The first goal for this analysis
is to identify those situations in interactions between humans
and robots that lead to problems and create error situations.
Such problems include long dialogue pauses, repetitions in the
dialogue, misunderstandings, and even a complete abruption of
the interaction. In the next step, we categorize the detected error
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situations into problems resulting from social norm violations
and problems that occur due to a technical error. Based on this
categorization, we analyse the social signals that humans produce
during the problematic situation, in order to map situations
and social signals. We distinguish verbal and non-verbal social
signals, e.g., speech, gaze, head orientation, and body posture.

For the analysis, we use video data from a variety of HRI
user studies. The videos were taken from different projects,
providing us with a wide spectrum of robots, robot tasks,
and experimental settings. The JAMES project (Joint Action
for Multimodal Embodied Social Systems2) used a stationary
bartender robot with social skills, presenting humans with
socially appropriate interaction; the JAST project (Joint-Action
Science and Technology3) used a stationary robot that cooperates
with a human in an assembly task; the IURO project (Interactive
Urban Robot4) used a mobile, wheeled robot that autonomously
navigates through densely crowded inner-city environments and
actively asks information from pedestrians; and the RPBD project
(Robot Programming by Demonstration) used a NAO robot to
research kinesthetic robot teaching in an industrial environment.

In our data analysis, we peruse three goals: (1) provide a
ranked categorization of social signals including their frequency
of occurrence; (2) develop a mapping between error types and
social signals in order to understand if there are particular social
signals that are typically evoked either by social norm violation
or technical failure; and (3) explore the influence of independent
variables (e.g., presence of experimenter during the interaction,
single vs. group interaction) on the display of social signals.

2. Methods and Materials

Figure 1 shows the work flow of the method that we applied
in this paper. First, we executed five HRI user studies5, from
which we collected a video corpus of 201 interactions. We then
annotated the videos in two steps. We introduce the HRI user
studies in Section 2.1. Following that, we give an overview of
the video corpus in Section 2.2 and information on the study

participants in Section 2.3. Finally, we describe the annotation
process in more detail in Section 2.4.

2http://www.james-project.eu.
3http://www6.in.tum.de/Main/ResearchJast.
4http://www.iuro-project.eu/.
5To be clear: we did not carry out the user studies specifically for this paper. We

are revisiting the results from prior studies and analyse them from a different

viewpoint in this work.

2.1. Human–Robot Interaction Studies
Our video analysis of social signals in error situations is based on
videos from five human–robot interaction studies. These studies
were carried out as part of the projects JAMES, JAST, IURO, and
RPBD. Each of the studies had a different task for human and
robot, except for the two JAMES studies. This enables us to study
social signals in the context of a variety of tasks with robots that
have different appearances. We have three different humanoid
robots (Figure 2), from which one robot is stationary and two
robots are mobile. Furthermore, we have four different scenarios,
the bartender scenario from JAMES, the joint assembly scenario
from JAST, the direction asking scenario from IURO, and the
robot teaching scenario from RPBD.

All user studies have in common that the robots were able
to understand and produce speech, and that they had visual
perception modules for person tracking. The studies were carried
out either in Germany or Austria. A majority of the spoken
interactions were in German, for the rest human and robot
spoke English. We received ethical approval for all of the studies.
All study participants signed an informed consent and gave us
permission to use the videos taken from the studies for further
analysis. The JAMES studies complied to the ethics standards
of fortiss (2012, 2013). The JAST study complied to the ethics
standards of the Technical University of Munich (2010). The
IURO study complied to the Ethics standards of the University
of Salzburg (2015). The RPBD study complied to the Ethics
standards of the University of Salzburg (2014). For more details
on each of the studies, please refer to the publications that we cite
for each study in the respective section.

In the following sections we shortly introduce all four projects
and describe the user studies from which we used videos.
Figure 2 shows images of all four robots.

2.1.1. JAMES, Stationary Robot Bartender

The goal of the JAMES project was to implement successful
joint action that is based on social interaction. The task of the
JAMES robot was that of a bartender. It had to take drink
orders from customers and to hand out the correct drinks
to the person who ordered it. Figure 2A shows the robot
interacting with a customer. The bartender robot consisted of
two industrial robot arms with humanoid hands, mounted in
a position to resemble human arms. Furthermore, the robot
has an animatronic talking head, the iCat (van Breemen, 2005),
which is capable of producing lip-synchronized speech as well as

FIGURE 1 | Chronological steps for the work we carried out in this paper. First, we executed five human–robot interaction user studies; second, we collected

the videos from these studies to form a video corpus; third, we annotated the videos in a two-step process.
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FIGURE 2 | The four robots used in the human–robot interaction studies. Pictures show interactions from the studies. (A) JAMES robot, (B) JAST robot, (C)

IURO robot, and (D) RPBD robot

expressing basic facial expressions such as smiling and frowning.
The robot was mounted behind a bar, which could be reached
by the robot arms. Furthermore, the robot was able to hand over
bottles to its customers.

The videos that we are using in this work are from two user
studies that were executed with the robot. Foster et al. (2012)
researched how the behavior of the robot has to change when
interacting with either single customers or groups of customers.
Giuliani et al. (2013) compared how user groups perceive the
robot when it shows only task-based actions or when it also uses
social actions. Both user studies used the same instructions for
the study participants, they were simply asked to walk up to the
robot and to order a drink. An experimenter was visible at all
times during both JAMES studies.

2.1.2. JAST, Stationary Robot with Assembly Task

The goal of the JAST project was to develop jointly-acting
autonomous systems that communicate andwork intelligently on
mutual tasks in dynamic unstructured environments. The task of
the JAST robot was to assemble target objects from a wooden toy
construction set together with a human partner. Figure 2B shows
the robot. It is the same robot system that was used in the JAMES
project. The robot had a table in front of it on which the different
assembly parts were laid out. It was able to recognize the objects
and to hand them over to the human.

The videos we are using in this work are from the user
study reported by Giuliani et al. (2010). The task of the study
participants and the robot was to jointly construct two target
objects. In the experiment, the authors compared two different

strategies for generating referring expressions to objects, a
traditional strategy that always generated the same expression
for the objects and an adaptive strategy that made use of the
situated context knowledge of the robot. The participants worked
together with the robot in one-on-one interactions. During the
study, participants were not able to see the experimenter, whowas
sitting behind a poster wall.

2.1.3. IURO, Mobile Robot Asking for Directions

The goal of the IURO project was to develop a robot that
navigates and interacts in densely populated, unknown human-
centred environments and retrieves information from human
partners in order to navigate to a given goal. The IURO robot
was developed to autonomously navigate in an unstructured
public-space environment and proactively approach pedestrians
to retrieve directions. Figure 2C shows the robot interacting
with a pedestrian in the city center of Munich, Germany.
The IURO robot was designed with anthropomorphic, but not
entirely humanoid appearance. A humanoid head is combined
with a functionally designed body. The head is able to produce
lip-synchronized speech and express basic facial expressions
(Ekman, 1992). Additionally, the robot has two arms, but no
hands (to avoid wrong expectations, since the robot is not able
to grasp objects). A pointing device for indicating directions is
mounted above the robot head.

The videos we used for annotating social signals in error
situations were taken from the field trial of the IURO robot in
which the final set-up of the robot was validated. To ensure
the final robot version running at the best possible set-up, the
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robot platform was subject to manifold evaluation on different
interaction aspects at different points in the project. For a detailed
overview on the evaluation set-ups, timeline, and results which
led to the final robot prototype, refer to Weiss et al. (2015). The
IURO robot interacted with single users and groups of users.
During the interactions, the experimenters were mostly, but not
always, visible to the participants.

2.1.4. RPBD, Mobile Robot with Kinesthetic Teaching

The videos of the last user study that we are evaluating for error
situations in this work, were taken from amaster’s thesis. The goal
of this master’s thesis was to determine user acceptance factors
of robots with different appearances. Specifically, the thesis
researches how kinesthetic teaching with an anthropomorphic
robot in an industrial context is perceived by users with different
backgrounds (programmers vs. naïve users).

The videos we are using in this work are from the user study
reported by Stadler et al. (2014). The authors implemented a
kinesthetic teaching approach on the humanoid robot platform
NAO. The robot was able to record and replay a behavior—
a pick-and-place task—taught by the participants. During the
experiment, human and robot had direct contact via kinesthetic
teaching. Furthermore, the robot was able to recognize and
produce speech, and had visual object recognition based on
landmark and color detection. Figure 2D shows an experiment
participant in interaction with the robot. All study participants
interacted alone with the robot, but an experimenter was visible
to them at all times.

2.2. Video Corpus
Our video corpus consists of 201 videos, fromwhich 129 are from
the two JAMES user studies, 34 are from the JAST user study, 27
are from the IURO user study, and 11 are from the RPBD user
study. We chose only those videos from all user studies that show
at least one error situation in which the robot either violated a
social norm or had a technical failure. Overall, the videos show
272 individual interactions between a single user or a group of
users. The difference between numbers of videos and numbers of
interactions is because the videos of the JAST and IURO studies
show more than one interaction. The interactions between the
study participants and the robots are on average 108.467 s long
(standard deviation 47.927 s). During the interactions, 578 error
situations occurred in total.

2.3. Participants
The videos feature 137 unique study participants, who
interacted individually or in groups with the robots. Ninety-four
participants were male, 43 were female. Although all experiments
took place either in Germany or in Austria, the robot spoke in
German with 86 participants, and English with the other 51
participants.

2.4. Annotation
For data analysis, we annotated our video corpus using the video
coding tool ELAN (Wittenburg et al., 2006). Figure 3 shows an
example of an ELAN annotation of a video of one of the JAMES
user studies using our annotation format.

For annotating the videos, we followed a two-step process. In
the first step, we annotated all passages in the videos in which an
error in the interaction occurred. For example, when the robot
did not understand what a participant had said. We labeled these
instances as error situation. Since not every error situation is
easy to recognize, we coded the error situations in each video
file by two independent raters. Afterwards, we calculated the
percentage of overlap for the annotated error situations between
the two raters. For videos which had less than 75% coding
agreement, the two coders looked at the data material again,
discussed the differences and reached a consensus on the error
situations.

There were two main reasons why coding differed between
the two raters. On one hand, one coder annotated the data from
a more technical perspective, while the other coder considered
the material from a more social viewpoint. For example, if the
robot says that it did not understand the study participant it could
either mean that the speech recognition module failed (technical
perspective) or it could be considered as socially appropriate
(social perspective: people sometimes inquire when they do not
understand an utterance). From a technical perspective, the
utterance would likely be coded as an error situation, while
from a social perspective it might be considered as socially
acceptable and not an error situation. On the other hand, for
correctly identified error situations, the coders did not always
agree on when exactly the error situation begins or ends. For
example, in case of the bartender robot, one coder started
annotating the situation as soon as the robot hand moved toward
the bottles, whereas the other coder only started after it was
clear that the robot would actually grasp the wrong bottle. At
the end, the annotators agreed that all codings should be done
from the viewpoint of the study participant, which means that
in the example the error situation would start from where the
participant can see that the robot will grasp the wrong bottle.

In the second coding step, we annotated the actions the robot
performed during the error situations, together with the social
signals the study participants exhibited at the same time. For
annotation of the social signals we used the following five classes,
that we chose in order to be able also to annotate social signals
that occur in parallel:

• Speech: verbal utterances by the participants, including task-
related sentences for the task given in the user study, questions
that the participants ask to the robot, a group member or the
experimenter, and statements the participants make.

• Head movements: instances where the participant looks to the
robot, a groupmember, or the experimenter. Headmovements
can also be nodding, shaking, and tilting the head.

• Hand gestures: movements that participants make with their
hands, including pointing gestures, emblems, instances where
the participants manipulate an object, or when they touch
themselves on the body or in the face.

• Facial expressions: expressions as for example smiling that
can be observed on the participants’ faces. These also include
signals like rising the eyebrows or making a grimace.

• Body movements: all movements that the participants make
with their whole body, including leaning toward or away from
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FIGURE 3 | Screenshot of an error situation in the ELAN annotation tool.

the robot,moving toward or away from the robot, and changes
in body posture.

We annotated the social signals that occur during the error
situations in our videos according to these five classes. In the next
section, we present the results of these annotations.

3. Results

Table 1 shows an overview of all annotated verbal and non-
verbal social signals that occurred during the error situations in
our study videos. In the category head movements we found
that participants often look back and forth between robot and
experimenter or a group member if present. Depending on the
study task, they also look back and forth between the robot
and objects in front of them. The participants also sometimes
nod, shake, or tilt their head. We annotated 947 items in the
speech category. We subdivided the speech utterances into task-
related sentences, sentences that the study participants said
to the robot to move the given task forward, statements that
participants made to comment on the situation to either the
robot or another human, questions that participants asked to the
robot or a human, audible laughter, and other utterances, for

example attempts to speak or hesitation sounds. One participant
whistled at the robot to get its attention. In the category facial

expressions, we found that participants often smiled in error
situations. Sometimes the participants grimaced, for example
when they showed a concerned look or pouted. Quite often,
the participants raised their eyebrows. When interacting with
the robot, we found that participants mostly stand still and
do not show much body movement. For the majority of body
movements, participants leaned toward or away from the robot,
less often they completely stepped away from the robot or
changed their posture. In comparison to other social signals,
we found only a few hand gestures. Participants often touched
themselves in the face or put their hands on the hips. If they
had an object in reach, they manipulated that object. Pointing
gestures and iconic gestures were quite rare, we annotated only 1
thumbs up gesture and 9 persons, who waved at the robot. Other
hand gestures include for example drumming with the fingers on
a surface, raising one or both hands, and making a fist with the
hand.

Next, we performed a statistical analysis to compare the
differences in shown social signals for three dependent variables:
social norm violation vs. technical failure; experimenter visible
vs. experimenter not visible; and group interaction vs. single
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TABLE 1 | Counts for all annotated social signals in the categories head movements, speech, facial expressions, body movements, and hand gestures.

Head movements 1279 Speech 947 Facial expressions 484

Look at robot 434 Task-related sentence 487 Smile 314

Look at experimenter 230 Statement 170 Grimace 124

Look into a direction 230 Question 111 Raise eyebrows 46

Look at group member 151 Laugh 98

Tilt head 83 Correction 20

Look to object 72 Other 61

Nod 40

Shake head 39

Body movements 272 Hand gestures 248

Lean 191 Touch own body 45

Move 33 Manipulate object 61

Other 48 Pointing 21

Emblem 10

Other 111

user interaction. For that, we first performed an analysis of our
data and found that all variables are not normally distributed.
Therefore, we chose to compare the data populations with a
Wilcoxon–Mann–Whitney test. Furthermore, we extracted the
data for each error situation individually from the annotations
in order to be able to group them by the dependent variables. The
error situations had an average duration of 18.314 s (standard
deviation 20.861 s). These numbers indicate that many of the
error situations are either quite short or last very long. From the
578 annotated error situations, 427 are social norm violations and
151 are technical failures, in 420 error situations the experimenter
was visible and in 158 situations the experimenter was not visible,
and we annotated 257 group interactions and 321 single user
interactions.

Table 2 shows the result of theWilcoxon–Mann–Whitney test
for the dependent variable social norm violation vs. technical
failure. We only show the social signals for which we found
statistically significant results. The results show that study
participants more often smile and laugh audibly during technical
failures than during social norm violations. The participants
more often look back and forth between the robot head and
objects in front of them during social norm violations. In contrast
to that, they lookmore often to the experimenter during technical
failures. The other statistically significant differences we found

fall into the range of verbal social signals. During social norm
violations, the participants in general speak more, they say task-
related sentences to the robot and also repeat these sentences
more often than during technical failures. However, during
technical failures, the participants comment the situation more
often and make statements to group members.

Table 3 shows the result of theWilcoxon–Mann–Whitney test
for the dependent variable experimenter visible vs. experimenter
not visible. We only present the social signals for which we
found statistically significant results. The results show that the
study participants display much more non-verbal social signals

when the experimenter is visible, for example tilting the head,
making hesitation sounds, smiling, laughing audibly, nodding,
and leaning back. Overall, the participants also talk more when
the experimenter is visible, they say more task-related sentences
to the robot, make more statements, and ask more questions. In
contrast to that, the participants more often look back and forth
between robot hand, robot head, and objects in front of them
when the experimenter is not visible.

Finally, Table 4 shows the result of the Wilcoxon–Mann–
Whitney test for the dependent variable group interaction
vs. single user interaction. Similar to the variable experimenter
visible/not visible, we found that the participants show much
more non-verbal signals, when interacting in groups with the
robot. They laugh audibly, smile, and tilt their heads more
often, when in an error situation. The participants look more
often to the experimenter or a group member, when in a group
interaction, but they look more often back and forth between the
robot and an object, when they interact alone with the robot. We
also found that the participants say more task-related sentences
and make more statements commenting the situation when they
are in a group. However, the participants ask more questions to
the experimenter when they are in a single interaction with the
robot.

After the presentation of the results, we now discuss their

meaning and the implications for HRI in the following section.

4. Discussion

While annotating, we found that the difference in change
of behavior during error situations and non-error situations
is sometimes visible even in single user study instances. For
example, during one of the studies of the JAMES project (Giuliani
et al., 2013), one of the study participants had already ordered
a drink and watched a group member ordering his drink. The
bartender robot did not understand the other group member
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TABLE 2 | Social signals shown during social norm violations and technical failures.

Social signal Social norm violation Technical failure Wilcoxon–Mann–Whitney

Mean (std) Mean (std) p-value W

Laughter 0.10 (0.42) 0.33 (1.02) <0.0001 28346.0

Smile 0.46 (0.97) 0.69 (1.03) 0.0004 26997.5

Look to robot head 0.53 (1.39) 0.35 (1.64) 0.0009 36378.5

Look to object 0.17 (0.73) 0.03 (0.18) 0.0308 33934.0

Look to experimenter 0.27 (0.71) 0.54 (1.21) 0.0124 29161.5

Say task-related sent. 0.37 (0.70) 0.24 (1.00) 0.0012 36552.5

Repeat task-related sent. 0.36 (1.12) 0.26 (0.98) 0.0026 35808.5

Make statement to group 0.04 (0.27) 0.11 (0.41) 0.0079 30524.5

We annotated 427 social norm violations and 151 technical failures. We present for each social signal the mean number of occurrences per interaction and the standard deviation in

parenthesis. Higher results are marked in bold.

TABLE 3 | Social signals shown when the experimenter is visible during an interaction or not.

Social signal Exp. visible Exp. not visible Wilcoxon–Mann–Whitney

Mean (SD) Mean (SD) p-Value W

Tilt head 0.16 (0.52) 0.05 (0.29) 0.0048 30636.0

Make sound 0.08 (0.50) 0.09 (0.33) 0.0468 34547.5

Smile 0.56 (1.00) 0.41 (0.95) 0.0342 30063.5

Laughter 0.22 (0.74) 0.01 (0.08) < 0.0001 28720.0

Raise eyebrows 0.06 (0.29) 0.14 (0.43) 0.0038 35322.0

Nod 0.08 (0.32) 0.02 (0.14) 0.0345 31748.5

Lean back 0.07 (0.28) 0.01 (0.08) 0.0038 31255.5

Attempt to take object 0.00 (0.00) 0.07 (0.80) 0.0212 33600.0

Look to experimenter 0.43 (1.00) 0.08 (0.32) <0.0001 27085.5

Look to group 0.35 (0.91) 0.00 (0.00) < 0.0001 26860.0

Look to object 0.02 (0.15) 0.44 (1.15) < 0.0001 39812.5

Look to robot hand 0.14 (0.88) 0.63 (1.76) < 0.0001 38557.5

Look to robot head 0.19 (1.00) 1.27 (2.07) < 0.0001 46870.5

Say task-related sent. 0.32 (0.85) 0.39 (0.63) 0.0159 36427.5

Make statement to robot 0.09 (0.51) 0.01 (0.11) 0.0397 31933.0

Make statement to group 0.09 (0.36) 0.00 (0.00) 0.0011 31047.0

Make statement 0.13 (0.47) 0.03 (0.16) 0.0044 30840.0

Question to experimenter 0.11 (0.43) 0.01 (0.11) 0.0016 30748.0

Question to group 0.04 (0.26) 0.00 (0.00) 0.0255 32153.0

Question to robot 0.05 (0.36) 0.00 (0.00) 0.0255 32153.0

The experimenter was visible in 420 and not visible in 158 situations. We present for each social signal the mean number of occurrences per interaction and the standard deviation in

parenthesis. Higher results are marked in bold.

and repeatedly kept asking for the order. Because of this,
the participant repeatedly had to smile and even sometimes
laughed audibly. He furthermore kept looking back and forth
between the other group member and the robot. This behavior
changed completely as soon as the experimenter resolved the
situation by declaring that there was an error with the system.
Following this statement, the experiment participant did not
smile any more and kept looking to the experimenter, although
the robot kept asking for the order. This instance clearly
shows how the behavior of the participant changed in seconds
when coming from a social norm violation to a technical
failure.

The counts of social signals in our annotations, that we show
in Table 1, reveal three interesting results: firstly, there were
many examples for error situations in which participants kept
looking back and forth between robot and a group member, or
robot and experimenter, or robot and objects in front of them.
This is an indicator that the experiment participants are quite
literally “looking” for a solution to resolve the error situation.
The recognition and analysis of headmovements are typically not
part of the input modalities of human–robot interaction systems.
Our results suggest that developers of input modalities for HRI
systems should also look into expanding into this direction.
Secondly, we found that participants do not use many hand
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TABLE 4 | Social signals shown during single user and group interactions.

Social signal Group Single user Wilcoxon–Mann–Whitney

Mean (SD) Mean (SD) p-Values W

Tilt head 0.20 (0.57) 0.07 (0.37) 0.0002 45010.5

Smile 0.71 (1.14) 0.37 (0.82) <0.0001 48209.0

Laughter 0.30 (0.86) 0.05 (0.35) < 0.0001 47453.5

Change posture 0.02 (0.15) 0.08 (0.36) 0.0337 39755.0

Look to experimenter 0.44 (1.03) 0.26 (0.73) 0.0030 45377.0

Look to group 0.57 (1.11) 0.00 (0.00) <0.0001 54088.5

Look to object 0.03 (0.20) 0.21 (0.83) 0.0002 37957.5

Look to robot head 0.18 (1.19) 0.73 (1.60) <0.0001 31272.5

Say task-related sent. 0.46 (1.03) 0.24 (0.51) 0.0075 45263.5

Rephrase task-related sent. 0.22 (0.94) 0.04 (0.28) 0.0006 43924.5

Make statement to group 0.14 (0.45) 0.00 (0.00) < 0.0001 45582.0

Make statement to robot 0.14 (0.64) 0.01 (0.11) 0.0002 43800.0

Make statement 0.06 (0.38) 0.13 (0.44) 0.0068 38765.5

Attempt to speak 0.05 (0.23) 0.01 (0.11) 0.0226 42502.0

Question to experimenter 0.05 (0.25) 0.12 (0.44) 0.0456 39535.5

Question to group 0.06 (0.32) 0.00 (0.00) <0.0001 43335.0

We annotated 257 group interactions and 321 single user interactions. We present for each social signal the mean number of occurrences per interaction and the standard deviation in

parenthesis. Higher results are marked in bold.

gestures during error situations. Furthermore, the majority of
hand gestures do not fall into the categories that typically are
studied in gesture communication.We found only a few pointing
gestures and emblems, which questions the importance of these
gesture categories for human–robot interaction. Also, we argue
that the hand gestures that fall into the categories touch own body,
manipulate object, and other, are not used by the participants
to communicate their intentions. Thirdly, the participants often
smiled during error situations, more often when they experienced
technical failures and less often during a social norm violation.
Work by Hoque et al. (2012) shows that humans smile in
frustrating situations. They recorded the faces of participants
who filled out a web form that was designed to elicit frustration.
90% of the participants smiled in these frustrating situations. We
have no subjective data that could tell us whether the participants
experienced frustration during the error situations with our
robots. However, our video analysis indicates that they were
frustrated, even more in the case of technical failures than when
experiencing a social norm violation.

We often observed in the experiment videos that the
participants kept standing still without moving at the beginning
of an error situation. In psychology literature, this is referred to
as “freezing.” It is known that humans stop moving in certain
situations. For example, Witchel et al. (2014) showed that the
absence of non-instrumental movements can be a sign for the
engagement of humans withmedia. It is also known that humans,
as well as animals, freeze as a response to fear or stress (Hagenaars
et al., 2014). We argue that the participants in our videos shortly
freeze as response to the stress induced by the error situation and
the presence of the experimenter. In future work, we will analyse
how often, how long, and in which situations the participants
kept standing still in our studies.

Our statistical evaluation of the error situations ordered by
situation type in Table 2 has to be interpreted with the tasks
of the annotated user studies in mind. Of course, the users
say more task-related sentences during social norm violations,
because they want to solve the given task during the study. For
example, many of the task-related sentences are said when the
robot does not understand the participant so that the participant
has to repeat the sentence. This indicates that speech is the
most influential channel to resolve an error situation. However,
it is interesting to see that the participants significantly talk less
during technical failures.

We believe that the study participants are able to recognize if
an error situation is purely technical and, therefore, stop saying
task-related sentences to the robot. As we mentioned above, our
results also show that the participants smile more often during
technical failures, which may be elicited by the frustration they
experience (Hoque et al., 2012). The participants also look more
often to the experimenter. This suggests that they are looking for
guidance from an authority figure during a situation they did not
experience before (Smith et al., 2014).

Finally, the results of the statistical analysis in Tables 3, 4 in
our opinion contain the most interesting result of our analysis.
The participants show far more non-verbal signals, when they are
in a group and/or can see the experimenter. This suggests that
participants do not see the robot as an interaction partner that
can interpret the same signals as a human. This is also supported
by the fact that the participants make more statements about
the error situation when they interact in a group with the robot
or when the experimenter is visible. Of course, we also have to
mention that some of the results for the conditions experimenter
visible vs. experimenter not visible and group interaction vs. single
user interaction are not surprising. For example, the participants
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look less often to the experimenter when he/she is not visible,
although they still attempt to look at him/her. This serves as a
good test for the validity of our annotations.

5. Conclusion

Our video analysis of social signals in error situations during
human–robot interaction experiments shows three main results.
(1) The participants use head movements as a social signal to
indicate when an error situation occurs. The participants do not
usemany hand gestures during these situations. Furthermore, the
participants often smile during error situations, which could be
an indication for experienced frustration. (2) The participants
try to resolve social norm violations through speech. They
can recognize technical failures of the robot, but they look
for guidance by the experimenter in these situations. (3) The
participants see the robot as an interaction partner that cannot
interpret non-verbal social signals, such as smiling, laughing,
nodding, shaking and tilting the head.

These findings have implications for the design and
evaluation of HRI systems. HRI system builders should
consider implementing modules for the automatic detection and
interpretation of head movements, especially as an indicator
for user engagement or confusion. This modality is not often
used as an input channel for robots, but would be fairly
easy to implement with modern sensors and image processing
technology. It is known that humans use body posture to
communicate their intentions (Bull, 1987; Clark, 2003). There
is, however, not much work on the interpretation of head
movements in particular. The importance of head movements
is also supported by research from the cognitive sciences and
neuropsychology that shows that head movements play a vital
role in recognizing faces (O’Toole et al., 2002), especially for
patients with congenital prosopagnosia, a condition that makes
it difficult for an individual to recognize someone from his or her
face (Longmore and Tree, 2013).

Evaluators of HRI systems should not discard the data of study
trials in which errors occurred, because this data can contain

valuable information, as our results show. Our analysis design
also shows that the analysis of data from different HRI studies
is possible and produces valuable results, when the study data
can be coded in abstract categories. Furthermore, when designing
the evaluation, one needs to thoroughly consider whether the
experimenter or other humans should be present during the
study or not, especially whenmeasuring the social signals of study
participants toward the robot. Our data clearly shows that the
presence of other humans during an HRI study influences the
social signals that the participants show. This is also supported by
research in psychology, which has shown that study participants
change their behavior when they are aware of being recorded
(Laurier and Philo, 2006).

In future work, we plan to analyse parts of our video corpus
in more detail. Specifically, we will execute a linguistic analysis
of the task-related sentences, statements, and questions that the
study participants said during the experiment. Furthermore, we
will analyse the temporal connection between robot actions and
the onset of the reactions of the participants during the error

situations. As mentioned in the discussion, we will measure,
how often and how long the participants freeze when they
experience error situations. Finally, we plan to implement an
automatic head movement analysis that interprets the head
movements of humans, which is based on the findings of our
analysis.
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When conversing and collaborating in everyday situations, people naturally and
interactively align their behaviors with each other across various communication
channels, including speech, gesture, posture, and gaze. Having access to a partner’s
referential gaze behavior has been shown to be particularly important in achieving
collaborative outcomes, but the process in which people’s gaze behaviors unfold over
the course of an interaction and become tightly coordinated is not well understood. In
this paper, we present work to develop a deeper and more nuanced understanding
of coordinated referential gaze in collaborating dyads. We recruited 13 dyads to
participate in a collaborative sandwich-making task and used dual mobile eye tracking
to synchronously record each participant’s gaze behavior. We used a relatively new
analysis technique—epistemic network analysis—to jointly model the gaze behaviors of
both conversational participants. In this analysis, network nodes represent gaze targets
for each participant, and edge strengths convey the likelihood of simultaneous gaze
to the connected target nodes during a given time-slice. We divided collaborative task
sequences into discrete phases to examine how the networks of shared gaze evolved
over longer time windows. We conducted three separate analyses of the data to reveal
(1) properties and patterns of how gaze coordination unfolds throughout an interaction
sequence, (2) optimal time lags of gaze alignment within a dyad at different phases of the
interaction, and (3) differences in gaze coordination patterns for interaction sequences
that lead to breakdowns and repairs. In addition to contributing to the growing body
of knowledge on the coordination of gaze behaviors in joint activities, this work has
implications for the design of future technologies that engage in situated interactions
with human users.

Keywords: referential gaze, epistemic network analysis, conversational repair, social signals, gaze tracking

1. Introduction

The key to successful communication is coordination, which in conversations enables participants
to manage speaking turns (Sacks et al., 1974) and to draw each other’s attention toward objects of
mutual interest using actions such as pointing, placing, gesturing, and gazing (Clark, 2003; Clark
and Krych, 2004). Through the course of an interaction, interlocutors mimic each other’s syntactic
structures (Branigan et al., 2000) and accents (Giles et al., 1991), and their bodies even begin to
sway in synchrony (Condon and Osgton, 1971; Shockley et al., 2003). These acts of coordination
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are critical to ensuring that joint activities, including conversation
and collaboration, flow easily and intelligibly (Clark, 1996;
Garrod and Pickering, 2004).

Of particular importance to successful interaction is the
coordination of gaze and attention across a shared visual space
(Clark and Brennan, 1991; Schober, 1993; Clark, 1996; Brown-
Schmidt et al., 2005). Gaze coordination has been succinctly
defined as a coupling of gaze patterns (Richardson et al., 2009).
This coupling does not result from interlocutors explicitly aiming
to synchronize their gaze movements, but instead gaze patterns
become aligned over time due the need for coordination in
joint activities. Mechanisms of gaze coordination, including
mutual gaze and joint attention, serve as primary instruments of
prelinguistic learning between infants and caregivers (Baldwin,
1995) and play a crucial role throughout life in coordinating
conversations (Bavelas et al., 2002). Beyond coordination, gaze
contributes to a larger number of important processes in
everyday human interaction, including conveying attitudes and
social roles (Argyle and Cook, 1976).

Although a large number of studies over the past several
decades has investigated gaze behavior and the crucial role it
plays in communication, how tightly coordinated gaze behaviors
unfold over the course of an interaction is not well understood.
For example, previous work has examined the timings of when
people look toward referents—objects to which they or their
interlocutors verbally refer (Tanenhaus et al., 1995; Griffin,
2004; Meyer et al., 2004). However, these investigations are
generally one-sided, looking at each person’s gaze in isolation,
and do not capture the intricate coordinative patterns in which
partners’ referential gaze behaviors interact. Previous work has
also investigated gaze alignment, exploring the extent to which
conversational partners gaze toward the same targets at various
time offsets (Richardson and Dale, 2005; Bard et al., 2009).
However, existing research still lacks a more nuanced description
of how gaze alignment changes over the different phases of the
interaction.

In this paper, we present work to develop a deeper
understanding of coordinated referential gaze in collaborating
dyads. We are particularly interested in how the gaze behaviors
of two collaborating participants unfold throughout a reference-
action sequence in which one participant makes a verbal reference
to an object in the shared workspace that the other participant
is expected to act upon in some way. We collected data
from 13 dyads outfitted with mobile eye-tracking glasses in a
sandwich-making task; one participant (the instructor) made
verbal references to visible ingredients they would like added
to their sandwich while the other participant (the worker)
was responsible for assembling those ingredients into the
final sandwich (Figure 2). We chose this task to represent
collaborative interactions that contain a large number of
reference-action sequences. Because these behavior sequences are
common and frequent across many kinds of interactions, we
believe that the results of the analyses discussed in this work
will generalize beyond the specific sandwich-making task to any
interactions that involve reference-action sequences.

Due to the highly dynamic and interdependent nature of
the data we collected, we utilized a relatively new analysis

technique—epistemic network analysis (ENA)—to analyze and
visualize the gaze targets of both participants as a complex
and dynamic network of relationships. Our overall analysis was
shaped by three research questions: (1) How do a collaborating
dyad’s gaze behaviors unfold over the course of a reference-action
sequence? (2) How does the alignment of gaze behaviors shift
throughout the different phases of a reference-action sequence?
(3) How do coordinated gaze behaviors differ in sequences which
include breakdowns and/or repairs?

To answer these three research questions, we conducted three
separate analyses of the dyadic gaze data using ENA. In the
first analysis, we used ENA to characterize different phases
of a reference-action sequence, discovering clear differences
in gaze behavior at each phase. This analysis also revealed a
consistent pattern of gaze behavior that progresses in an orderly
and predictable fashion throughout a reference-action sequence.
In the second analysis, we explored the progression of gaze
alignment between the interacting participants throughout a
reference-action sequence. In general, we discovered a common
rise and fall in the amount of aligned gaze throughout a sequence,
as well as a back and forth pattern of which participant’s gaze
“led” the other’s. In the third analysis, we explored the difference
in gaze behaviors arising during sequences with repairs—verbal
clarifications made in response to confusion or requests for
clarification—vs. sequences without such repairs. ENA revealed
detectably different patterns of gaze behavior for these two types
of sequences, even at very early phases of the sequences before
any verbal repair occurs.

In the next section, we review the relevant background on
shared gaze in collaborative interactions. We also review cross-
recurrence analysis, a common analytical tool used in prior
work to analyze two-party gaze behaviors, in order to motivate
our introduction of a newer approach. In the following section,
we present network analysis, specifically epistemic network
analysis (ENA), as an alternative to cross-recurrence analysis
with a number of desirable properties for studying shared
gaze in dyads. We then describe the data collection in the
sandwich-making task, followed by the three analyses conducted
in ENA. We conclude the paper with a discussion of the
patterns of coordinated gaze uncovered in our analyses and
their implications for interactive technologies and future research
within this space.

2. Background

Previous research has revealed a significant amount of detail
about the eye movements of speakers and listeners in isolation.
In general, people look toward the things they are speaking
about (Griffin, 2004; Meyer et al., 2004), toward the things they
hear verbally referenced (Tanenhaus et al., 1995), and toward
the things they anticipate will soon be referenced (Altmann and
Kamide, 2004). For example, when speakers are asked to describe
a simple scene, they fixate the objects in the order in which
they mention them and roughly 800–1000 ms before naming
them (Meyer et al., 1998; Griffin and Bock, 2000). Although
fixation times are heavilymodulated by context, research suggests
that listeners will fixate an object roughly 500–1000 ms after
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the onset of the spoken reference, which includes the 100–
200 ms needed to plan and execute an eye movement (Fischer,
1998). When listeners view a scene containing referents for
what they are hearing, their eye movements show that they can
recognize a word before hearing all of it (Allopenna et al., 1998)
and use visual information to disambiguate syntactic structures
(Tanenhaus et al., 1995).

When collaborating over a shared workspace, conversational
partners use each others’ gaze to indicate attention toward and
understanding of verbal references to objects in the shared
environment (Gergle and Clark, 2011). Partners show increased
shared gaze toward referents while they speak about those objects
(Bard et al., 2009). Referencing is often a multimodal process,
with objects being evoked through a speaker’s actions, movement,
or other pragmatic contextual cues such as gestures or head
nods (Gergle and Clark, 2011). Speakers often under-specify
their referents, relying on the listener to seek clarification if
more information is needed to uniquely identify a particular
referent (Campana et al., 2001). Previous research has shown
that speakers look toward their addressees in order to check
their understanding of references to new entities (Nakano et al.,
2003) and that addressees rely on the speaker’s gaze as a cue for
disambiguating references, often before the reference could be
disambiguated linguistically (Hanna and Brennan, 2007). This
use of gaze has the effect of minimizing the joint effort of the
participants in an interaction by reducing the time speakers must
spend specifying referents.

Most previous research on gaze in interaction makes
a simplifying assumption of pseudounilaterality—the implicit
assumption that a behavioral variable is unilaterally determined
by the actions of the participant expressing that behavior
(Duncan et al., 1984). This assumption results in erroneously
interpreting data on a participant’s actions as representing
the unilateral conduct of that participant, overlooking the

partner’s contribution to those data. A primary cause of
pseudounilaterality is the use of simple-rate variables—generated
by counting or by timing the occurrence of an action during an
interaction and dividing that number by some broader count
or timing. These variables do not contain information on the
sequences in which actions occur in interaction.

Mobile dual eye-tracking is a relatively recent approach to
capturing gaze behaviors that allows researchers to overcome
problems of pseudounilaterality and develop more nuanced
and ecologically valid accounts of how interlocutors coordinate
their gaze during natural, situated conversations (Clark and
Gergle, 2011). They have provided great opportunities for
researchers to better understand the role of gaze as a coordination
mechanism in conversation. Dual eye-tracking methods can be
used to better understand the role gaze plays as a conversational
resource during reference—how people specify the person,
object, or entity that they are talking about (Clark and Gergle,
2012).

Cross-recurrence analysis is a commonly used technique for
analyzing gaze data captured from participant dyads, as it permits
the visualization and quantification of recurrent patterns of
states between two time series, such as the gaze patterns of two
conversational participants (Zbilut et al., 1998) (Figure 1). This
analysis approach can reveal the temporal dynamics of a dataset
without making assumptions about its statistical nature. The
horizontal and vertical axes of a cross-recurrence plot specify the
gaze of each of the two partners in interaction. Each diagonal on
the plot (lower-left to upper-right) corresponds to an alignment
of the participants’ gaze with a particular time lag between
them. A point is plotted on the diagonal whenever the gaze
is recurrent—their eyes are fixating at the same object at the
given time. The longest diagonal, from bottom-left to top-right
of the plot, represents the gaze alignment at a lag of 0. Diagonals
above and below that line represent alignments with positive and

FIGURE 1 | Cross-recurrence plots adapted from work by Richardson
and Dale (2005). Horizontal and vertical axes specify the gaze of a speaker
and a listener. Diagonal slices (lower-left to upper-right) correspond to an
alignment of the participants’ gaze with a particular time lag between them. A

point is plotted on the diagonal whenever the gaze is recurrent. These plots
visually compare a “good” listener (well aligned with the speaker’s gaze) to a
“bad” listener (not as well aligned). They also show the poor alignment of
random gaze with a speaker’s gaze.
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negative offsets, shifting one of the participants’ time-series gaze
data in relation to the other participant.

Previous research utilizing cross-recurrence analysis has
successfully expanded knowledge on gaze coordination. For
example, research has shown that a listener’s eye movements
most closely match a speaker’s eye movements at a delay of 2 s
(Richardson and Dale, 2005) (Figure 1). In fact, the more closely
a listener’s eye movements are coupled with a speaker’s, the better
the listener does on a comprehension test. These results were
later extended to find that eye movement coupling is sensitive
to the knowledge that participants bring to their conversations
(Richardson et al., 2007). The presence of the visual scene and
beliefs about its perception by others also influence language
use and gaze coordination in remote collaborations (Richardson
et al., 2009). Gaze is not always well aligned; when speakers’
referring expressions ignore listeners’ needs, dyads show poor
coordination of visual attention (Bard et al., 2009). Dyads whose
members more effectively produce referring expressions better
coordinate their attention better and in a way linked to the
elaboration of the referring expressions.

Although cross-recurrence analysis has yielded some success
in studying gaze coordination, it is best suited for examining
data from short time windows and one pair at a time. Cross-
recurrence plots do not support aggregating data from numerous
dyads over long time spans in order to abstract away individual
differences and discover generalizable patterns of interaction.
These plots can also be difficult to interpret visually and
lack the sophistication to represent the complex, dynamic
relationships that characterize coordinated gaze over a shared
physical workspace. In the next section, we present a particular
instantiation of network analysis—epistemic network analysis—
as an alternative analytical tool that overcomes these issues.

3. Epistemic Network Analysis

Studying gaze coordination and the temporal unfolding of
collaborative gaze behaviors is difficult due to the highly dynamic
and interdependent nature of the data. In order to explore
this type of data, we were inspired to use an approach that is
similar to social network analysis, which provides a robust set of
analytical tools to represent networks of relationships, including
complex and dynamic relationships (Wasserman, 1994; Brandes
and Erlebach, 2005). However, social network analysis was
developed to investigate relationships between people rather than
relationships within discourse, gaze behaviors, or other indicators
of cognitive processes.

Epistemic network analysis (ENA) is a relatively new analysis
technique that is based in part on social network analytic models.
ENA extends social network analysis by focusing on the patterns
of relations among discourse elements, including the things
people say and do. ENA networks are characterized by a relatively
small number of nodes in contrast with the very large networks
that techniques from social network analysis were designed to
analyze, which often have hundreds, thousands, or even millions
of nodes. In ENA networks, the weights of the connections
between nodes (i.e., the association structures between elements)
are particularly important, as are the dynamic changes in the

weights and in the relative weighting of the links between
different nodes.

ENA was designed to highlight connections among “actors,”
e.g., people, ideas, concepts, events, and behaviors, in a system.
It was originally developed to measure relationships between
elements of professional expertise by quantifying the co-
occurrences of those elements in discourse and has been used for
that purpose in a number of contexts (Rupp et al., 2009; Shaffer
et al., 2009; Rupp et al., 2010; Orrill and Shaffer, 2012). However,
ENA is a promising method to effectively analyze datasets that
capture the co-occurrence of any behaviors or actions in social
interactions over time.

The data within ENA are represented in a dynamic network
model that quantifies changes in the strength and composition
of epistemic frames over time. An epistemic frame is composed
of individual frame elements, fi, where i represents a particular
coded element in a specified window of time. For our purposes,
“coded elements” of the epistemic frame are annotated gaze
targets for each participant in the interaction, and these elements
are represented as nodes in a network. For any dyad, p, in any
given reference-action sequence, s, each segment of interaction
discourse, Dp,s, provides evidence of which epistemic frame
elements (gaze targets) were active (being gazed toward). For this
work, each segment of interaction represents 50 ms of time in the
interaction.

Each segment of coded data is represented as a vector of
1 or 0 s representing the presence or absence, respectively, of
each of the codes. Links, or relations, between epistemic frame
elements are defined as co-occurrences of codes within the same
segment. To calculate these links, each coded vector is converted
into an adjacency matrix, Ap,s, for dyad p. For our purposes, co-
occurrence of two codes is equivalent to the recurrence of gaze to
the gaze targets represented by the codes. For any two gaze codes,
the strength of their association in a network is computed based
on the frequency of their co-occurrence in the data.

Ap,s
i,j = 1 if fi and fj are both in Dp,s

Each coded segment’s adjacency matrix, Ap,s
i,j is then converted

into an adjacency vector and summed into a single cumulative
adjacency vector for each dyad p for each unit of analysis.

Up,s =
∑

Ap,s

For each dyad, p, and each reference-action sequence, s, the
cumulative adjacency vector, Up,s, is used to define the location
of the segments in a high dimensional vector space defined by
the intersections of each of the codes. Cumulative adjacency
vectors are then normalized to a unit hypersphere to control for
the variation in vector length, representing frequencies of co-
occurring code pairs, by dividing each value by the square root
of the sum of squares of the vector.

nUp,s = Up,s/

√∑
(Up,s)2

A singular value decomposition (SVD) is then performed to
explore the structure of the code co-occurrences in the dataset.
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The normalized cumulative adjacency vectors are first projected
into a high dimensional space such that similar patterns of
co-occurrences between coded elements would be positioned
proximately. The SVD analysis then decomposes the structure of
the data in this high dimensional space into a set of uncorrelated
components, fewer in number than the number of dimensions
that still account for as much of the variance in the data as
possible, such that each accumulated adjacency vector, i, has a
set of coordinates, Pi, on the reduced set of dimensions. The
resulting networks are then visualized by locating the original
frame elements, i.e., the network nodes, using an optimization
routine that minimizes ∑

(Pi − Ci)2

where Pi is the projection of the point under SVD, and Ci is
the centroid of the network graph under the node positioning
being tested. This operation produces a distribution of nodes
in the network graph determined by the loading vectors that
contain them in the space of adjacency vectors. Links are then
constructed between the positioned network nodes according to
the adjacency matrix.

The mean network for a group of networks can be calculated
by computing the mean values of each edge weight in the
networks. We can also conduct t-tests between groups of
networks to determine if one group’s networks (group A) are
statistically different from a second group’s networks (group B).
The t-test operates on the distribution of the centroids of each
group on one dimension. For example, we can determine if
group A is statistically different from group B on the x-axis by
calculating the means of each group’s centroid projected to the
x-axis and then conducting a t-test with a standard alpha level
of 0.05.

4. Method

In order to gain a better understanding of how gaze coordination
unfolds over reference-action sequences in dyadic collaborations,

we conducted a data collection study in which pairs of
participants engaged in a collaborative sandwich-making task. In
this section, we present the collection of the data, followed by
a number of analyses and visualizations conducted on that data
using ENA.

4.1. Data Collection
We recruited 13 previously unacquainted dyads of participants
from the University of Wisconsin–Madison campus. This
data collection study was approved by the Education and
Social/Behavioral Science Institutional Review Board (IRB) of the
University of Wisconsin–Madison and all participants granted
their written informed consent at the beginning of the study
procedure. Participants sat across from each other at a table on
which were laid out a number of potential sandwich ingredients
and two slices of bread (Figure 2). One participant was assigned
the role of instructor, and the other was assigned the role of
worker. The instructor acted as a customer at a deli counter,
using verbal instructions to tell the worker what ingredients they
wanted on their sandwich, and the worker carried out the actions
of moving the desired ingredients to the bread.

Each dyad carried out the sandwich-making task twice so
that each participant would have a turn as both instructor and
worker, resulting in 26 dyadic interactions. The experimenter told
the instructor to request any 15 ingredients for their sandwich
from among 23 ingredients laid out on the table. The choice of
ingredients was left to the instructor; no list was provided by the
experimenter. The instructor was asked to only request a single
ingredient at a time and to refrain from pointing to or touching
the ingredients directly. Upon completion of the first sandwich,
an experimenter entered the study room to reset the ingredients
back to their original locations on the table, and the participants
switched roles for the second sandwich.

During the study, both participants wore mobile eye-tracking
glasses developed by SMI1. These eye-trackers perform binocular
dark-pupil tracking with a sampling rate of 30 Hz and gaze
1http://www.smivision.com/en/gaze-and-eye-tracking-systems.

A

C

B

FIGURE 2 | (A) The setup of the data collection experiment in the sandwich-making task. (B) A view from one participant’s eye-tracking glasses, showing their scan
path throughout a reference-action sequence. (C) A timeline view of the gaze fixations to ingredients, the partner, and the bread shown in the scan path in (B).
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position accuracy of 0.5◦. Each set of glasses contains a forward-
facing high-definition camera that was used to record both audio
and video (24 fps). The gaze trackers were time-synchronized
with each other so that the gaze data from both participants could
be correlated.

Following data collection, the proprietary BeGaze software
created by SMI was used to automatically segment the gaze
data into fixations—periods of time when the eyes were at rest
on a single target—and saccades—periods of time when the
eyes were engaged in rapid movement. Fixation identification
minimizes the complexity of eye-tracking data while retaining its
most essential characteristics for the purposes of understanding
cognitive and visual processing behavior (Salvucci and Goldberg,
2000). BeGaze uses a dispersion-based (spatial) algorithm to
compute fixations, emphasizing the spread distance of fixation
points under the assumption that fixation points generally occur
near one another. Eye fixations and saccades are computed in
relation to a forward-facing camera located in the bridge of
the eye-tracking glasses worn by the user. Thus, these fixations
and saccades are defined within the coordinate frame of the
user’s head, and user head movements do not interfere with the
detection of eye movements.

Gaze fixations are characterized by their duration and
coordinates within the forward-facing camera view. Area-
of-interest (AOI) analysis, which maps fixations to labeled
target areas (AOIs) is a common method for adding semantic
information to raw gaze fixations (Salvucci and Goldberg, 2000).
In this work, all fixations were manually labeled for the target
of the fixation. These labeled AOIs serve as the input data for
ENA, rather than the raw gaze fixations. Possible target AOIs
included the sandwich ingredients, the slices of bread, and the
conversational partner’s face and body. Around 80% of gaze
fixations were mapped to these AOIs (79.47% for instructors,
81.65% for workers), and the remainder of gaze fixations were
found to be directed elsewhere in space (e.g., to a spot on the
table without a sandwich ingredient). Speech was also transcribed
for each participant. Instructor requests for specific objects were
tagged with the ID of the referenced object, and worker speech
was labeled when it was either confirming a request or asking for
clarification.

To make successful reference utterances, the speaker needs
some form of feedback from the addressee. Despite the
best efforts of speakers, there will inevitably be instances of
breakdowns—misunderstandings or miscommunication—that
can either impede ongoing progress of the interaction or lead to
breakdowns in the future (Zahn, 1984). To correct breakdowns,
humans engage in repair, a process that allows speakers to correct
misunderstandings and helps ensure that the listener has the
correct understanding of the relayed information (Zahn, 1984;
Hirst et al., 1994). In the current data collection, if an instructor
provided extra clarification for an initially inadequate reference,
possibly prompted by the worker’s request for clarification, that
sequence was marked as containing a repair.

Following data collection, each interaction was divided into
a set of reference-action sequences, such as a verbal request for
bacon followed by the action of moving the bacon to the bread.
Each sequence was further divided into five discrete phases:

pre-reference, the time before any verbal reference has been
made; reference, the time during the verbal request for a specific
sandwich ingredient; post-reference, the time directly after the
verbal reference and up until the worker’s action; action, the
time during the worker’s action of moving the ingredient to the
target bread; and post-action, the time immediately following this
action.

We note that these phases are defined according to verbal
and physical actions, not according to gaze behaviors, which are
analyzed within each of these phases. The pre-reference phase
(average length= 1.90 s) ends at the onset of the verbal reference.
The reference phase (average length = 1.32 s) ends with the end
of the utterance of the verbal reference. The end of the post-
reference phase (average length = 0.78 s) is marked by the start
of the physical action, which involves picking up the referent,
particularly the moment it is first touched. The action phase
(average length = 1.68 s) ends with the end of the physical
action, which involves moving the ingredient to the bread and
is marked by the moment it is let go. Finally, the end of any
feedback provided by the instructor or the beginning of some
preparatory utterance for the next reference, e.g., “so, uh, next
I’ll have...,” marked the end of the post-action phase (average
length= 0.81 s).

4.2. Analysis
As a first step of our analysis, we calculated common descriptive
statistics for the gaze data. Unsurprisingly, we found very little
mutual gaze during the reference-action sequences (0.92%) and
a fairly large amount of simultaneous shared gaze toward the
same target (31.16%). Instructors produced their verbal reference
utterance on average 1.31 s after first fixating on it, although
they made on average 1.93 fixations to the reference object before
verbalizing it. Workers fixated on the reference object on average
1.65s after the verbal reference. Previous research has found that
referential gaze in speech typically precedes the corresponding
linguistic reference by approximately 800–1000ms, and people
look at what they hear after about 2000ms (Meyer et al., 1998;
Griffin and Bock, 2000). Our data seems to yield statistics close
to these findings, and the slightly longer time offset between the
gaze fixation and verbal reference among instructors may be due
to occasionally having to search for an object, rather than having
one already in mind at the beginning of the interaction.

4.2.1. Analysis 1
We analyzed the entirety of our collected data using ENA
(Figure 3). For our first analysis, we considered each dyad
(n = 26; 13 dyads × two interactions each) and phase
(n = 5; pre-reference, reference, post-reference, action, or post-
action) as the units of analysis. Each point in the central plot
of Figure 3 represents the centroid of a network for a single
dyad’s interaction in one of the five phases, collapsed across
all reference-action sequences that occurred in the interaction.
Solid squares represent the centroid of the mean network for all
dyads in each of the five phases. These mean network centroids
are surrounded by squares representing the confidence interval
along both dimensions. A clear separation between each of the
five phases can be observed, indicating that the patterns of gaze
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coordination are significantly different in each of the five phases.
We can also observe a clear cyclical pattern through the two-
dimensional ENA space as we progress through each of the five
phases in the reference-action sequence.

Figure 3 also plots the full mean networks for each of the five
phases. As mentioned previously, nodes represent gaze targets,
and edge weights represent the relative amount of recurrent
gaze to those targets. There are four gaze target nodes for each
participant: (1) the reference object for the sequence, (2) the
interaction partner, (3) the action target (the bread to which
ingredients are moved), and (4) all other objects. In these
networks, edges only connect instructor and worker gaze target
nodes, as simultaneous gaze within one person toward different
targets is not possible. The naming conventions and meanings of
all network nodes are explained in Table 1.

By examining the placement of nodes in the mean networks,
we can develop an intuitive sense of the meaning of each axis in
ENA space. As can be observed in the mean networks shown
in Figure 3, ENA keeps the node positions identical across all
plots for a given analysis. Nodes placed at extreme edges of
the space, far from the center, are the most informative for
intuitively labeling axes. In this respect, three nodes stand out:
W.Gaze_Other,W.Gaze_Reference, andW.Gaze_Target. We can
therefore recognize that networks with centroids located high
on the y-axis are most characterized by strong connections to
W.Gaze_Other. In other words, these networks include more
worker gaze toward non-referents. In general, moving from high
to low along the y-axis seems to indicate a shift from worker
gaze toward non-referents to worker gaze toward the referent.
Similarly, moving from right to left along the x-axis seems to
indicate a shift from worker gaze toward sandwich ingredients
(referents or non-referents) to worker gaze toward the target
bread.

In each of the mean networks plotted in Figure 3 for
each of the five phases, the key differences to note are the
shifting edge strengths between nodes. In the pre-reference
phase, we can observe that the network—which has a centroid
high along the y-axis in the central plot of Figure 3—has
particularly strong connections between W.Gaze_Other and
I.Gaze_Other and betweenW.Gaze_Other and I.Gaze_Reference.

TABLE 1 | ENA network node names and meanings.

I.Gaze_Reference Instructor gazing at reference ingredient
Analysis 1, 2,
3

I.Gaze_Other Instructor gazing at non-reference ingredient
I.Gaze_Target Instructor gazing at target bread
I.Gaze_Person Instructor gazing at the worker

W.Gaze_Reference Worker gazing at reference ingredient
Analysis 1, 3 W.Gaze_Other Worker gazing at non-reference ingredient

W.Gaze_Target Worker gazing at target bread
W.Gaze_Person Worker gazing at the instructor

Analysis 2
W.Same Worker gazing at same object as instructor
W.Different Worker gazing at different object than

instructor

Naming convention and meanings of all network nodes used throughout the different
analyses.

These connections tell us that the pre-reference phase is
characterized mostly by the worker looking toward non-referents
while the instructor scans the objects, including the object that
they will verbally indicate as the referent in the next phase of
the sequence. In the reference phase, we can observe a growing
connection between W.Gaze_Reference and I.Gaze_Reference,
pulling the network centroids lower along the y-axis. In the
post-reference phase, this connection is now strongest, and
connections with W.Gaze_Other (the worker gazing to non-
referents) have become much weaker, pulling these network
centroids yet lower along the y-axis.

In the action phase, a strong connection between
W.Gaze_Target and I.Gaze_Target appears, signaling
simultaneous gaze toward the target, which, in this case, is
the bread toward which the selected sandwich ingredient
is being moved, pulling the network centroids left along
the x-axis. Finally, the post-action phase retains the strong
connection between W.Gaze_Target and I.Gaze_Target,
with a new strong connection between W.Gaze_Target and
I.Gaze_Other, indicating that the instructor has started to
scan other objects in anticipation of the next reference-
action sequence while the worker finishes gazing toward the
target.

Our first analysis gives us an overall picture of the unfolding
gaze patterns in dyadic collaborations throughout a reference-
action sequence. We found the clear separation of shared gaze
networks between each of the five phases in the reference-action
sequence and the orderly cyclical pattern throughout the two-
dimensional ENA space to be particularly striking. We highlight
that, although the phases themselves are defined in terms of the
temporal location of the reference speech and movement action,
ENA is acting only upon the gaze data. Thus, patterns of shared
gaze are uniquely different across the different phases of the
sequence, e.g., before a verbal reference, during the reference,
immediately after that reference, and so on. Furthermore, these
patterns change and mutate in an orderly way through the
abstract space defined by ENA. Theoretically, a mapping from the
gaze networks back to the phases can be built. Given a segment
of gaze, the phase of the reference-action sequence it came from
could be predicted by computing the ENA network for that
segment and plotting it in this space.

To validate and demonstrate the promise of the ENA analysis
for prediction, we carried out a simple test that involved
computing the ENA network as described above, but leaving
out data from one of the 13 dyads, which resulted in an ENA
space very similar to that shown in Figure 3. From the left-out
dyad, 200ms and 1000ms segments of gaze data were randomly
selected. Each of these segments were then modeled as adjacency
vectors and projected into the ENA space constructed from data
from the other 12 dyads. The predicted phase for each of the
projected segments was labeled according to the nearest centroid
of phase segments in the ENA space. Table 2 illustrates the
results from this analysis in the form of a confusion matrix.
Rows are the actual phase that each segment of data is from,
and columns are the predicted phase. As can be seen in the
table, prediction appears to be fairly accurate except for some
confusion in the shorter phases of reference and action. In realistic
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TABLE 2 | Predicting phase from segments of gaze data.

Predicted phase (200ms segments) Predicted phase (1000ms segments)

Pre-reference Reference Post-reference Action Post-action Pre-reference Reference Post-reference Action post-action

A
ct
ua

lp
ha

se

Pre-reference 117 3 10 60 16 31 3 1 2 4

Reference 50 5 76 38 3 10 2 18 4 0

Post-reference 6 0 31 6 0 0 2 7 0 0

Action 7 1 46 52 54 2 0 10 7 13

Post-action 7 0 0 33 61 0 0 0 2 18

To demonstrate how ENA analysis can be used for prediction, segments of gaze data were projected into the ENA space, and their phase was predicted according to the nearest
centroid of phase networks. Rows are the actual phase that each segment of data is from, and columns are the predicted phase. Cells are colored in a gradient from dark green to
white according to the quantity of segments in each cell. Prediction appears to be fairly accurate except for some confusion in the shorter phases of reference and action.

FIGURE 4 | Percentage of gaze alignment between the instructor and worker at each of the five phases, plotted at offset lags from −2 to 2 s. Positive
lags indicate instructor lead, while negative lags put the worker ahead of the instructor.

prediction scenarios, prediction accuracy can be improved by
using more sophisticated methods than the one employed here
for demonstrative purposes, such as dynamically updating phase
predictions as segments of gaze data are collected over time
or assigning confidence weights to predictions based on their
distance from phase centroids.

4.2.2. Analysis 2
In the second analysis, we were interested in finding the optimal
lag of gaze alignment within each of the five phases. In other
words, which participant’s gaze leads that of the other, and by
how much, in each phase? For this analysis, two new ENA
codes were created: same, which is active if the worker and
instructor are gazing at the same target (person, reference, target,
or other), and different, which is active otherwise. For each phase
of the reference-action sequence, across all dyads, we shifted the
instructor’s gaze from−2000 to 2000ms in 50ms increments and
computed the value for each of the new codes. To find the optimal
overlap, we divided the sum of the same code by the total number
of increments in order to find a measure of “alignment” at each
time lag. These alignments for each of the five phases are plotted
in Figure 4.

The peak of the line graph for each of the five phases
represents the optimal time lag at that phase. These lags, as well
as the amount of gaze alignment that occurs at those lags, are
summarized in Table 3. Positive lags put the instructor ahead
of the worker, indicating that the instructor is “driving” the
gaze patterns, while negative lags indicate that the worker is
driving the gaze patterns. As can be observed, the pre-reference
phase is characterized by neither participant driving the gaze
patterns (t = 0 s) and a relatively low amount of gaze alignment
(alignment = 22.5%). However, during the reference phase, the
instructor starts to lead the gaze patterns (t = 700 ms), and the
alignment increases (alignment = 27.6%). In the post-reference
phase, the worker begins leading (t = −300 ms), and the dyad is
most aligned (alignment = 36.1%). The action phase involves
a slight lead by the worker (t = −50 ms) and slight drop in
alignment (alignment = 34.6%). In the post-action phase, the
instructor is once again leading (t = 300 ms), and the alignment
has dropped further (alignment = 27.0%).

We next shifted the gaze streams in each phase of the
reference-action sequence by that phase’s optimal time lag
(Table 3) and conducted an analysis in ENA by modeling from
the instructor’s perspective (Figure 5). Four nodes represent the
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possible gaze targets for the instructor as before, but there are
only two nodes for the worker: W.Same, signifying whether
the worker is looking at the same target as the instructor, and
W.Different, indicating a different target than the instructor.

By examining the placement of nodes in the mean networks
shown in Figure 5, we can again develop an intuitive sense of the
meaning of each axis in this new ENA space. Along the x-axis,
we can observe I.Gaze_Reference far to the left and I.Gaze_Target
far to the right, indicating as a progression from referent-directed

TABLE 3 | Optimal lag and alignment percentage.

Pre-reference Reference Post-reference Action Post-action

Optimal
Lag (ms)

0 700 −300 −50 300

Alignment
(%)

22.5 27.6 36.1 34.6 27.0

Optimal time lags identified in Analysis 2 and the percentage of alignment at each offset.

gaze to target-directed gaze in this dimension, as the phases move
from left to right along the x-axis.

For the y-axis, I.Gaze_Person is the lowest node, but the
mean networks throughout the five phases in Figure 5 show only
a few strong connections with I.Gaze_Person, indicating that
the instructor’s gaze is not directed toward the worker. Instead,
connections with W.Same get stronger as the phases move from
pre-reference to reference to post-reference and then weaker again
as they move to action and post-action. Strong connections with
W.Same pull the network centroids lower along the y-axis in
the central plot of Figure 5, suggesting an interpretation that
this axis signifies “alignment.” We can observe a rise and fall of
alignment in the phases as their corresponding networks fall and
rise respectively along the y-axis. This observation matches what
we see in Table 3 where the alignment percentages rise and fall
throughout the five phases.

4.2.3. Analysis 3
In our third and final analysis, we were interested in the
differences between phases of reference-action sequences that

FIGURE 5 | Centroids and mean networks from the ENA that used
gaze data from each phase that was shifted by the optimal lag for
that phase. The data is modeled from the perspective of the instructor.
Four nodes represent the possible gaze targets for the instructor as
before, but there are only two nodes for the worker, signifying whether
the worker is looking at the same target or a different target. W_Different

and W_Same are largely vertically separated. Networks that are low on
the y-axis have strong connections to W_Same, while networks high on
the axis have strong connections to W_Different. Thus, the y-axis can be
interpreted as signifying “alignment,” and we can observe a rise and fall
of alignment in the phases as their corresponding networks fall and rise
respectively in the ENA space.
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included a repair—in which the instructor had to provide a
clarification to their first verbal reference, possibly at the explicit
verbal request of the worker—from phases that did not include
such repairs. The purpose of this analysis was to answer the
following questions. Do the patterns of coordinated gaze in
ENA look different during typical sequences vs. those involving
repair?More importantly, can the gaze patterns from early phases
(pre-reference, reference, and post-reference) be used to predict
breakdowns later in the sequence, e.g., before the worker or the
instructor offers repair or during repair?

For this analysis, we included “repair” (n = 2; repair or no-
repair) as another unit of analysis in addition to the “dyad” and
“phase” units we had before. As can be observed in Figure 6,
gaze networks are significantly different between repair and no-
repair along the y-axis for each of the first three phases in the
reference-action sequence. The centroids of the mean networks
(solid squares) for these phases are separated along the y-axis, and
there is little vertical overlap in their confidence intervals. These
phases, which occur before or during any possible repair, are thus
potentially distinguishable along this dimension.

For the pre-reference phase, networks with repair are
significantly higher on the y-axis than networks without repair,
(meanno−repair = −0.46, meanrepair = −0.36, t = −2.17, p =
0.036, Cohen’s d = −0.25). Based on an inspection of the mean
networks on the left side of Figure 6, this difference appears to be
mostly due to the stronger connection between I.Gaze_Reference
and W.Gaze_Target in the sequences with repair, which pulls
the network centroids higher along the y-axis. This connection
denotes a situation in which the worker is looking toward the
target bread while the instructor is looking toward the referent.
Here, the worker may still be cognitively engaged in the previous
reference-action sequence, i.e., still looking toward the bread after
moving the previous reference object there, while the instructor
is already preparing their reference utterance for the current
reference-action sequence, leading to an eventual breakdown in
the interaction.

On the other hand, networks with repair are lower on
the y-axis than networks without repair for the reference
(meanno−repair = 0.057, meanrepair = −0.15, t = 2.12, p = 0.04,
Cohen’s d = 0.37) and post-reference (meanno−repair = 0.42,
meanrepair = 0.18, t = 2.79, p = 0.008, Cohen’s d = 0.45)
phases. These differences appear to be mostly due to stronger
connections with W.Gaze_Other (situated very low on the y-
axis) in the sequences with repairs, as shown in Figure 6. In
other words, the worker is gazing more toward non-referents
in these sequences. Also, the networks coming from sequences
without repairs appear to have stronger connections between
I.Gaze_Reference andW.Gaze_Reference, pulling these networks
higher along the y-axis. This observation implies that, when both
the instructor and worker are fixated on the reference object,
repairs are less likely to happen.

This analysis revealed that the pattern of coordinated gaze
identified in Analysis 1 shows both similarities and differences
during sequences involving a repair. More interestingly, the gaze
behaviors from phases early in the sequence, particularly the
pre-reference and reference phases, are visibly different when
a repair occurs later in the sequence than when a repair does

not occur later in the sequence. Thus, the need for repair can
theoretically be anticipated in advance by observing the pattern
of gaze behaviors early in a reference-action sequence.

5. Discussion

The overall goal of our analyses was to develop a more detailed
and nuanced understanding of coordinated referential gaze
patterns arising in physical dyadic collaborations. In particular,
we sought answers to three research questions: (1) How do a
collaborating dyad’s gaze behaviors unfold over the course of a
reference-action sequence? (2) How does the alignment of gaze
behaviors shift throughout the different phases of a reference-
action sequence? (3) How do coordinated gaze behaviors differ
in sequences that include breakdowns and/or repairs? Due to
the highly complex, dynamic, and interdependent nature of
coordinated two-party gaze behavior, we turned to a relatively
new analysis technique in order to explore these questions.
Epistemic network analysis is ideally suited for analyzing datasets
that capture the co-occurrence of social cues, including the gaze
behaviors of multiple participants.

Each of the three analyses we conducted revealed important
properties and patterns of coordinated referential gaze behavior
in relation to the three research questions. In the first analysis,
ENA was able to characterize and separate the five phases
of a reference-action sequence (pre-reference, reference, post-
reference, action, and post-action). We observed clear and
significant differences in shared gaze behavior across these
phases. This analysis also revealed a consistent cyclical pattern
of gaze behavior that progresses in an orderly and predictable
fashion through the two-dimensional abstract space created by
ENA. An important implication of this analysis is that the
tracked gaze of a collaborating dyad could be used in situ to
track their progression through a reference-action sequence. By
continuously applying ENA to segments of shared gaze behavior,
these segments could potentially be classified according to their
location within the ENA space as visualized in Figure 3.

In the second analysis, we explored the degree of alignment
between the gaze behaviors of interacting participants
throughout a reference-action sequence. We discovered a
general rise and fall in alignment throughout a sequence, as well
as a back and forth pattern of which participant was leading
the interaction in terms of their gaze behavior. The worker’s
gaze follows the instructor’s gaze during the beginning and end
of the sequence when the instructor is leading the interaction
by producing the verbal reference or preparing for the next
sequence. In contrast, the instructor’s gaze follows the worker’s
gaze during the middle of the sequence (post-reference and
action phases) when the instructor appears to monitor the
worker’s behaviors as the worker attempts to fixate on the
reference object and act on it appropriately.

In the third analysis, we explored the differences in gaze
behavior between sequences with and without repairs. ENA
revealed similar, but characteristically different, patterns of
gaze behavior for these two types of sequences. An important
implication of this analysis is that, by tracking the shared gaze
of a collaborative dyad, repairs can potentially be anticipated
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well in advance of their realization. By detecting when the
sequence has entered the repair cycle, steps could be taken
to quickly resolve any ambiguity or errors and move the
interaction back to the non-repair cycle characterizing successful
interactions.

There are a number of potential applications that could benefit
from the properties and patterns of coordinated gaze discovered
in this work. In particular, embodied artificial agents—including
social robots and virtual characters—could utilize this knowledge
to better align their gaze with human interlocutors and improve
coordination in collaborative interactions. This application
would require a shift from the descriptive analyses that we
carried out in the current work to the development of
synthesizing models that generate coordinative gaze behaviors.
By synthesizing gaze behaviors appropriately in coordination
with the detected gaze of a human interlocutor, the agent could
attempt to produce gaze behaviors that follow the same cyclical
pattern of natural humanlike gaze coordination as observed in
Analysis 1.

The analyses presented in this paper yield insights that could
be directly used to build computational models that generate
appropriate gaze cues seen in natural conversations. For example,
one such computational model could take the form of a state
machine where states are represented by possible gaze targets
(reference object, target object, conversational partner, etc.),
and transitions in this state machine would be triggered either
probabilistically (e.g., a high probability of gazing toward the
referent during the reference phase) or directly by events (e.g.,
gazing toward the target object in reaction to the conversational
partner’s gaze toward it). These probabilities and event triggers
would be updated from phase to phase according to the cyclical
pattern of phases involved in a reference-action sequence as
discovered in Analysis 1.

Analyses 2 and 3 similarly have specific implications for
modeling and generating gaze behaviors for embodied artificial
agents. Analysis 2 sheds light on the role of gaze in “mixed
initiative” conversations (Novick et al., 1996). Specifically, the
analysis suggests that the agent should shift between leading
with its gaze (producing gaze behaviors to which the user is
expected to respond) and following the user’s gaze (gazing in
response to the detected gaze behaviors of the user), as the
interaction progresses through the phases of a reference-action
sequence. Similarly, following the results of Analysis 3, an agent
could recognize misunderstandings by the user before a repair
is explicitly and verbally requested, potentially resulting in a
more seamless interaction. Furthermore, the agent could make
efforts to entirely avoid the patterns of gaze behavior that are
characteristic of sequences involving disruptive breakdowns and
repairs.

5.1. Future Work
The current work contributes to a growing body of knowledge on
the coordination of gaze behaviors in joint activities and points
toward a number of opportunities for more exploration within
this space. For example, future work may explore other types of
interactions, such as conversational or competitive interactions.
Another avenue of future research is exploring the tangible

implications of observed differences in gaze coordination for the
overall success of the interaction. These differences could take
the form of deviations from the observed cyclical pattern of
Analysis 1 or from the alignments of Analysis 2. For example,
there may be differences in participants’ comprehension or
task success, as was found in cross-recurrence analyses by
Richardson and Dale (2005). Future work should also seek
to uncover the ways in which gaze coordination can break
down, and how breakdowns manifest themselves in ENA
beyond our basic consideration of repairs in Analysis 3. This
work may include the development of verbal and nonverbal
strategies for bringing the interaction back on track when
a diversion in the desired pattern of gaze coordination is
observed.

Future work should also further investigate the temporal
aspects of the gaze behaviors observed in reference-action
sequences. The current work divides a reference-action sequence
into an ordered sequence of five phases, but the gaze fixations
within these phases are aggregated, and the low-level ordering
of fixations is lost. While scanpath analysis is commonly used
for analyzing temporal characteristics of gaze, scanpaths that
result from this analysis only represent the gaze behaviors
of individuals. Our analysis attempted to extract generalizable
patterns of gaze behavior by aggregating data across multiple
dyads and abstracting away the variability in gaze that results
from individual differences and changing contextual factors.
However, future work with ENA has the potential to extend
our findings by retaining the information on the order of gaze
fixations by moving from the bi-directional network graphs
used in the current work to uni-directional network graphs
and splitting each network node into a “sending” node and a
“receiving” node. In this representation, a connection from, e.g.,
a partner-fixation (sending) node to a target-fixation (receiving)
node would indicate a gaze fixation toward the target after a gaze
fixation toward a person.

6. Conclusions

In this paper, we presented work to develop a deeper
understanding of coordinated referential gaze in collaborating
dyads. The behavioral context for our analyses was the reference-
action sequence, a pattern of interaction in which one member
of the dyad makes a verbal reference to an object in the
shared workspace that the other member is expected to act
upon in some way. We chose a dyadic sandwich-making task
to study collaborative interactions that contain a large number
of such sequences. A series of analyses of data collected in
this task revealed how gaze coordination unfolded throughout
an interaction sequence, how the gaze behaviors of individuals
aligned at different phases of the interaction, and what gaze
patterns indicated breakdowns and repairs in the interaction.
We argue that our characterization of these patterns will
generalize beyond this specific task to any interactions that
involve reference-action sequences, as these sequences are
commonly observed across many kinds of interactions. In
addition to contributing to the growing body of knowledge on the
coordination of gaze behaviors in joint activities, this work offers
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a number of design implications for technologies that engage in
dyadic interactions with people.

We used epistemic network analysis for the investigation
presented in this paper and demonstrated the promise of ENA
as a general tool that could be used for analyses that target not
only gaze, but also gestures, language use, facial expressions,
cognitive states, and so on. The use of this powerful analytical
tool in different settings and in explorations of a variety of social
behaviors can significantly expand our knowledge on the nuances
of the coordination that naturally arises in successful joint human
activities. Additionally, these explorations will enable us to design
future technologies that utilize the newfound knowledge in order
to more effectively coordinate and collaborate with human users.
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Studying early interactions is a core issue of infant development and psychopathology.
Automatic social signal processing theoretically offers the possibility to extract and analyze
communication by taking an integrative perspective, considering the multimodal nature and
dynamics of behaviors (including synchrony).This paper proposes an explorative method to
acquire and extract relevant social signals from a naturalistic early parent–infant interaction.
An experimental setup is proposed based on both clinical and technical requirements. We
extracted various cues from body postures and speech productions of partners using
the IMI2S (Interaction, Multimodal Integration, and Social Signal) Framework. Preliminary
clinical and computational results are reported for two dyads (one pathological in a situation
of severe emotional neglect and one normal control) as an illustration of our cross-
disciplinary protocol. The results from both clinical and computational analyzes highlight
similar differences: the pathological dyad shows dyssynchronic interaction led by the infant
whereas the control dyad shows synchronic interaction and a smooth interactive dialog.The
results suggest that the current method might be promising for future studies.

Keywords: early parent–infant interaction, feature extraction, multimodal computational analysis, RGB-D sensor,

synchrony, social signal processing

INTRODUCTION
Parent–child interactions are crucial for learning, later psycholog-
ical traits, and psychopathology (Cohen, 2012). In many species,
including mammals, parent–child interactions are based on close
relationships that are characterized by (i) infant dependency on
caregivers and (ii) a specific communication dynamic associated
with a caregiver’s adaptation and infant maturation. However, this
type of study is complex, requiring the perception and integra-
tion of multimodal social signals. Combining several approaches
within a multidisciplinary perspective at the intersection of social
signal processing, computational neuroscience, developmental
psychology, and child psychiatry may efficiently investigate the
meaning of social signals during early parent–child interaction
(Meltzoff et al., 2009). Exploring normal and pathological inter-
actions during this early period of life has many implications
including the possibility of understanding what the baby partner
cannot explicitly express due to immaturity.

The Syned-Psy project (Synchrony, Early Development and
Psychopathology, http://synedpsy.isir.upmc.fr/) aims to improve
the synergy among three fields: child psychiatry, developmen-
tal psychology and social signal processing. The idea is to
understand the clinical relevance of synchronic and dyssyn-
chronic dyadic interactions and to develop automatic algorithmic
tools to detect these phenomena in natural settings. Origi-
nally conceptualized and studied by developmental psychologists,
the concept of synchrony is now relevant to many different
research fields including social signal processing, robotics and

machine learning. According to its conceptual framework, syn-
chrony can be defined in many ways (Leclère et al., 2014).
Delaherche et al. (2012) recently proposed that in most cases, one
should distinguish between what is assessed (i.e., modalities such
as body movement, gaze, smile, and emotion) and how the
temporal link between partners’ different modalities of inter-
action are assessed (i.e., speed, simultaneity, and smoothness).
In the rest of the manuscript, we will follow this definition of
synchrony.

The aim of this work was to characterize synchrony/
dyssynchrony in parent–infant interactions occurring in situations
of severe emotional neglect and to select interaction metrics that
may be used in future clinical trials. To do this, we proposed
to automatically detect and analyze behaviors. These behaviors
are selected by considering clinical and technical requirements.
Furthermore, the objective of our approach was to explore the
capacity of new technological devices and tools to understand
early parent–child interactions.

RELATED WORK IN PSYCHOLOGY
The quality of the parent–child relationship impacts children’s
social, emotional and cognitive development (Harrist and Waugh,
2002; Saint-Georges et al., 2013). Describing parent–child behav-
ioral interactions is not a simple task because there are multiple
modalities of interaction to explore. First, the interactive partner-
ship between an infant and caregiver (usually called a “dyad”) has
to be defined and explored as a single unit. Second, given that
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the relationship between an infant and their caregiver is bidirec-
tional in nature, the dyad should be thought of as a dynamically
interacting system (Sameroff, 2009). Third, given the dynamic
relationship between an infant and their caregiver, a specific inter-
est in the flow characterizing the exchange of information during
infant-caregiver interactions has emerged (Weisman et al., 2012,
2013), leading to the study of rhythm (Berry et al., 1974; Condon,
1986; Stern, 2009), reciprocity (Lebovici, 1985; Bråten, 1998), and
synchrony (Feldman, 2007). The recent discovery of both bio-
logical correlates of behaviorally synchronic phenomena (Dumas
et al., 2010) and statistical learning (Kuhl, 2003; Saffran, 2003)
has validated the crucial value of studying synchrony during child
development (Feldman, 2007; Cohen, 2012). It appears that syn-
chrony should be regarded as a social signal per se as it has been
shown to be valid in both normal and pathological populations.
Better mother–child synchrony is associated with familiarity (vs.
unknown partner), a healthy mother (vs. pathological mother),
typical development (vs. psychopathological development), and a
more positive child outcome (Leclère et al., 2014).

In the field of human interactions, interactional synchrony
can be defined as “the dynamic and reciprocal adaptation of
the temporal structure of behaviors between interactive part-
ners” (Delaherche et al., 2012). Here, behaviors include verbal
and non-verbal communicative and emotional behaviors (e.g.,
gestures, postures, facial displays, vocalizations, and gazes).
Synchronous interactions entail coordination between partners
and intermodality. Caregivers and their children are able to
respond to each other using different modalities starting from
birth (Vandenberg, 2006; Hart, 2010). Thus, synchrony differs
from mirroring or the chameleon effect. Instead, synchrony
describes the intricate “dance” that occurs during short, intense,
playful interactions; it builds on familiarity with the partner’s
behavioral repertoire and interaction rhythms, and it depicts
the underlying temporal structure of highly aroused moments
of interpersonal exchange that are clearly separated from the
stream of daily life (Beebe and Lachmann, 1988; Tronick and
Cohn, 1989; Fogel et al., 1992; Bråten, 1998; Stern, 2009). There-
fore, synchrony has been measured in many different ways due
to its broad range of theoretical applicability. The most com-
mon terms referring to synchrony are mutuality, reciprocity,
rhythmicity, harmonious interaction, turn-taking and shared
affect; all terms are used to characterize the mother–child
dyad. Three main types of assessment methods for study-
ing synchrony have emerged: (1) global interaction scales with
dyadic items; (2) specific synchrony scales; and (3) micro-coded
time-series analyzes (for a detailed review, see Leclère et al.,
2014).

RELATED WORK IN COMPUTATIONAL PROCESSING
Many studies have been conducted (Gatica-Perez, 2009) to assess
social interactions using automatic and computational methods,
including automatic extraction of non-verbal cues and/or mod-
els of the multimodal nature of interaction. These studies have
been performed in various contextual applications including role
recognition (Salamin et al., 2009), partner coordination during
interaction (Hung and Gatica-Perez, 2010), automatic analysis
of meeting (Campbell, 2009; Vinciarelli et al., 2009), studying

interactive virtual agents (Prepin and Pelachaud, 2011), and
understanding of early development (Meltzoff et al., 2009). In the
health domain, these applications include recognition or classifica-
tion of psychopathological states (Cohn, 2010), psychotherapeutic
alliance (Ramseyer and Tschacher, 2011), classification of autis-
tic dimensions (Demouy et al., 2011) or the recognition of early
expression of autism (Cohen et al., 2013).

Signals that have been investigated during social interactions
are specific because they are not semantic in nature and often
occur without consciousness. They include amplitude, frequency
and duration for the non-verbal signals such as fillers, backchan-
nels or gestures. Vinciarelli et al. (2009) distinguish five categories
of cues: (1) physical appearance; (2) gesture and posture; (3)
gaze and facial behaviors and mimics; (4) vocal cues; and (5)
behavior related to the space and environment. Regarding audio
signals, some cues have been better studied such as pitch, inten-
sity and vocal quality (Batliner et al., 2011), intonation (Ringeval
et al., 2011), rhythm (Hogan, 2011), motherese (Saint-Georges
et al., 2013), and perceived emotion (Schuller et al., 2010). Regard-
ing video signals, cues usually investigated include the quantity
of body movements (Altmann, 2011; Ramseyer and Tschacher,
2011; Paxton and Dale, 2014) or facial movements (Carletta et al.,
2006), the study of hand movements (Marcos-Ramiro et al., 2013;
Ramanathan et al., 2013) or finger movements (Dong et al., 2013),
the study of gaze (Sanchez-Cortes et al., 2013), and data with a
higher level of annotation including smiling (Rehg et al., 2013),
facial expressions (Bilakhia et al., 2013), posture (Feese et al., 2012)
or the emotional body language (McColl and Nejat, 2014). In the
era of RGB-D sensors (e.g., Kinect), online extraction of the skele-
ton is now available and has enabled the study of action recognition
based on the joint architecture of the human body (Aggarwal
and Xia, 2014; Chan-Hon-Tong et al., 2014). As a consequence,
new body movement cues have been proposed based on the posi-
tion of articulated arms, the trunk, head, and legs (Caridakis and
Karpouzis, 2011; Yun et al., 2012; Anzalone et al., 2014a).

Some cues have been extracted to assess social characteris-
tics and interaction at the level of the dyad (Yun et al., 2012;
Ramanathan et al., 2013). Several studies (Campbell, 2009; Dela-
herche et al., 2012; Bilakhia et al., 2013; Rolf and Asada, 2014) have
considered the multimodal nature of social signals and simul-
taneously studied several modalities. Various authors have used
different metrics and modeling techniques to study synchrony
(Delaherche et al., 2012), including correlation (Altmann, 2011),
recurrent analysis (Varni et al., 2009), regression models (Bilakhia
et al., 2013), quantity of mutual information (Rolf and Asada,
2014), or influence models (Dong et al., 2013).

PAPER CONTRIBUTION AND ORGANIZATION
The aim of this paper is to describe our methodology and to
test its feasibility. Here, we present a pilot study in which we
extracted and analyzed behavioral features in two case reports,
one pathological situation of severe emotional neglect and one
normal control, to study the feasibility and the coherence of the
method. From an experimental point of view, the particularity of
this work is to employ a computational setup in a clinical setting,
where both needs and constraints had to be completed. The acqui-
sition application had to preserve a natural free-play interaction
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between pathological dyads and be usable by a non-expert. All
the interactive scenarios and the applications have been designed
in collaboration with psychologists. This collaboration has con-
tinued with the selection of relevant behavioral features from the
raw data and their interpretation. The rest of the paper is orga-
nized as follows: in section 2, we present the method used to set
up a computational system in a clinical setting and how we ana-
lyzed data acquired during the interactions. In section 3, results
of clinical and computational analysis are presented for two rep-
resentative dyads, and in section 4, the method and results are
discussed.

MATERIALS AND METHODS
In this section, we focus on the integration of a computational
setup in a clinical study and how the data recorded during the inter-
action can be treated. From a clinical point of view, the protocol
aims to offer an optimal acquisition of parent–infant interactions
and to preserve the natural interaction. The method of acquiring
data must be as minimally intrusive as possible. From a techni-
cal perspective, the acquisition must be sufficiently efficient and
robust to be able to collect significant and exploitable data for
off-line processing.

CLINICAL PROTOCOL
The current protocol is part of a clinical study conducted in
a French perinatal ambulatory unit “Unité Petite Enfance et
Parentalité Vivaldi” of the Pitié-Salpêtrière University Hospital.
The main objective of the study, named “ESPOIR Bébé Famille,”
is to evaluate the relevance of an early intensive intervention pro-
gram for dyads in severe child neglect (CN) situations. CN is
the persistent failure of the caregiver to meet the child’s basic
physical and/or psychological needs, resulting in interaction dis-
orders (Glaser, 2002) and serious impairment of the child’s
development with short and long term negative impacts on the
child’s cognitive, socio emotional, behavioral and psychologi-
cal development and emotional regulation (Rees, 2008). Thus,

a severe neglectful situation presents interaction difficulties and
dyssynchrony.

The inclusion criteria were as follows: (1) Dyads consisted of
mothers (or fathers) with their children whose age varied between
12 and 36 months. At 12 months, the interactive pattern of the
dyad is already built, and data extraction is facilitated because the
child is able to sit in a small chair. The oldest age accepted was
36 months because that is the age limit for the parent child health
care in this unit. (2) Mothers (or fathers) have been referred to the
unit by social services or court petitions due to CN. (3) Clinical
confirmation of CN is based on a child psychiatrist’s assessment
using the PIRGAS scale (Parent–Infant Relationship Global Assess-
ment Scale, Axe II of DC 0-3 R), a clinical intensive scale of
parent–child interaction quality. A control group of dyads with
normal development and without interactional difficulty was also
recruited.

The clinical evaluation of these dyads included interviews,
questionnaires and filmed play sessions used for clinical anno-
tations. Specifically, to assess synchrony, we used the coding
interactive behavior (CIB), which is one of the most often used
and validated global interaction scales (for a review of clini-
cal instruments see Leclère et al., 2014). The CIB includes 43
codes rated on a 5-point Likert scale, divided into parent, child
and dyadic codes. Codes were averaged into eight composites
that were theoretically derived, concerned with diverse aspects
of early parent–infant relationships and showed acceptable to
high levels of internal consistency (Feldman et al., 1996; Keren
et al., 2001). The French version has been validated and offers
the same factorial distribution (Viaux-Savelon et al., 2014). The
composites and items used in the present study are presented in
Table 1.

The proposed computational system has been used in the
filmed play sessions where parents and infants have a natural
interaction. Play session are composed of three stages to capture
the dyad behaviors in different contexts: (1) Free interactive play
(4 min): parent and infant are invited to play together with toys

Table 1 | CIB relative items according to the eight composite subscores.

Composites Relatives items

Parental sensitivity Acknowledging; imitating; elaborating; parent gaze; positive affect; vocal appropriateness, clarity; appropriate range of

affect; resourcefulness; praising; affectionate touch; supportive presence; infant led interaction

Parent intrusiveness Forcing-physical manipulation; overriding, intrusiveness; parent negative affect, anger; parent anxiety; criticizing; parent-led

interaction

Parent limit setting Consistency of style; resourcefulness; appropriate structure, limit setting

Child compliance Compliance to parent; reliance on parent for help; on-task persistence

Child withdrawal Child negative emotionality, fussy; withdrawal; labile affect; avoidance of parent

Child engagement Joint attention; child positive affect; affection to parent; alertness; fatigue; vocalizations, verbal output; initiation; competent

use of the environment; creative-symbolic play; infant-led interaction

Dyadic joint negative state Parent negative affect, anger; hostility; child negative emotionality, fussy; withdrawal, labile affect; fatigue; constriction;

tension

Dyadic reciprocity Parent gaze; positive affect; praising; affectionate touch; joint attention; child positive affect; vocalization, verbal output;

initiation; dyadic reciprocity; adaptation-regulation; fluency
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as usual. The goal is to create an interaction that is as natural as
possible; the only directive given is “play as if you were at home.”
(2) Directed game (2 min): a complex game is given to the child (a
puzzle for example) to encourage the parent to help them. With a
difficult game, the purpose is to determine how the child will solicit
the parent and how the parent will respond. In addition, this situ-
ation will incite the parent to intervene spontaneously during the
game. (3) Free play while the parent is occupied (2 min): a ques-
tionnaire is given to the parent while the child is playing with toys.
In this final situation, the aim is to observe how the child solicits
the parent and how the parent shares their attention between the
task and their infant.

Play sessions take place in a consultation room, controlled
by a psychologist, where the parent and infant are invited to sit
around a small table to play. Although a face-to-face disposi-
tion facilitates interactions, it complicates the data acquisition.
Thus, the parent and infant are placed at 90◦ to one another
around the table. To collect information from the interac-
tion, two synchronized RGB-D sensors are placed in front of
each participant and connected to a computer. This will run
an acquisition application to record scene data. Additionally,

a camera is used to film the scene for the clinical evalua-
tion. Figure 1A shows the hardware setup in the consultation
room.

Given our aim to run a study in a clinical setting, the acquisi-
tion application has to be easy to use and robust. Indeed, dyads
with emotional neglect present interaction difficulties and thus
the play sessions are subject to variations due to the child’s (e.g.,
standing on a chair, looking for other toys) and parent’s behavior
(e.g., difficulty in controlling their child, wearing a large coat, hid-
ing their face). Moreover, the psychologist has to leave the room
each time the play session takes place. To reach these needs: (i)
the hardware system is hidden to offer the most natural envi-
ronment possible and avoid interest and distraction from the
participants. (ii) The psychologist had to prepare the parent for
the presence of a camera that is sometimes problematic. (iii) The
hardware and the acquisition application were computed to be
easily setup.

ACQUISITION APPLICATION
To respond to all of the technical and clinical constraints cited
above, an acquisition application has been implemented with a

FIGURE 1 | Data recording and extraction. (A) Play room and materials; (B) 3D-calibration with a chessboard; (C) Time synchronization with a hand clap; (D)

Skeleton coordinates pre-processing pipeline.

Frontiers in Psychology | Cognitive Science December 2014 | Volume 5 | Article 1437 | 131

http://www.frontiersin.org/Cognitive_Science/
http://www.frontiersin.org/Cognitive_Science/archive


Avril et al. SSP in parent–infant interaction

robust and efficient framework and the ability to collect the max-
imum amount of significant data while remaining easy to use by a
non-professional.

As mentioned above, the scene is recorded by two Kinects,
low-cost RGB-D sensors designed by Microsoft. These devices,
mainly used for gesture recognition, offer the possibility to record
many signals from a scene with only one device. The setup
incorporates a color camera, depth sensor based on a struc-
tured light technique and a microphone array. Coupled with
the Microsoft SDK for Kinect, the setup allows the user to
directly extract color images, depth images and also 3D coordi-
nates of the skeletons and faces of the participants from a scene
in real time. In our case, participants still are too far from the
Kinect, so face tracking features are not used. Moreover, as par-
ticipants are seated, only the upper-body skeleton tracking is
activated.

The two Kinects are optimally placed in front of each partic-
ipant to capture as much information as possible. However, 3D
coordinates are obtained in a Kinect centered basis, therefore,
trackers record different positions for each sensor. Thus, a spa-
tial calibration of the Kinects is necessary, which is performed by
chessboard calibration; a chessboard is placed in the field of view
of the Kinects (laid on the gaming table) while the Kinects record
the 3D coordinates of significant points of the chessboard (cor-
ners of squares). Figure 1B shows the calibration step with axis
representation. These coordinates will be used later to compute
the roto-translation matrix between the two Kinects to transform
3D points tracked into the same spatial basis.

A temporal synchronization is also needed for the Kinects. The
internal sensor’s clock starts when the device is connected to the
computer. As it is impossible to start the two sensors at the exact
same time, a temporal synchronization is performed from the
microphone outputs. When the Kinects detect a powerful sound
for the first time (applause), they record the current timestamp as
the beginning of the recording (see Figure 1C for a graphical view
of the timelines). Then, each Kinect will have the same detection
times.

Data captured by the Kinects must be recorded for offline pro-
cessing. To avoid computer overload during the acquisition (and
offer the most efficient recording rate), minimal online processing
is performed, and the raw data are saved in a lightweight format.
For each sensor, saved data include:

• Color stream in an .avi video file (XVID codec) + timestamp
for each image in an .xml file

• Depth stream in an .avi video file (XVID codec) + timestamp
for each image in an .xml file

• Audio stream in an audio file (.wav)
• Audio source angle in an .xml file
• Skeleton tracked points (position and orientation) in an .xml

file
• 3D calibration data in an .xml file

To facilitate the use of the acquisition application by a non-
expert user, a graphical interface has been added. The graphical
interface is divided into two windows, one for the visualization of
the Kinect stream and the other for parameter management. In
the first window, the user can display the Kinect stream, start and

stop the recording and also modify the sensor tilt. A message field
to display current acquisition status is proposed. In the second
window, the user can choose the path to save the recorded data,
such as the name of the folder, if tracked skeletons are displayed, or
the number of squares on the calibration chessboard. This inter-
face simplifies the use of the acquisition application and allows the
verification and correct execution of the recordings.

COMPUTATIONAL ANALYSIS
To extract and analyze the recorded data during the game ses-
sion, a lightweight framework developed by the IMI2S ISIR
group is used (Anzalone et al., 2014b). This framework is a
distributed computing software platform that copes with the
high level of complexity by simplifying the functional decom-
position of the problems through the implementation of highly
decoupled, efficient, and portable software. The developers imple-
mented complex solutions using simple, small, and basic operative
units that are able to interact between each other. Such basic
modules are executed as independent computational units able
to solve a particular problem. Inputs and outputs of differ-
ent modules are then connected to exploit the main, complex
problem.

In this study, the IMI2S framework is used to divide records
into three segments of data according to the three types of game
sessions, preprocess 3D skeleton data and, eventually, to extract
behavioral features.

Skeleton preprocessing
As previously described, the use of two RGBD-sensors requires
a basis change to obtain 3D coordinates in the same Cartesian
space. In addition, to retain a maximum amount of infor-
mation, data from each sensor must be merged before any
treatment. Figure 1D presents the pre-processing pipeline for
skeleton data from the two displaced sensors. Skeleton data of
the parent and child from both sensors are corrected to belong
to the same Cartesian space; each skeleton is then labeled, iden-
tifying the two users in the scene, the parent and the child.
Finally, the data are merged into a unique stream, inconsis-
tent skeletons are suppressed (for example if the tracked skele-
ton is misplaced) and the data are smoothed through average
filtering.

Skeleton processing
After smoothing and cleaning of the skeleton data, several features
can be extracted with IMI2S Framework. With 3D coordinates
of 10 significant body points for each participant in a unique
basis, distances and orientation features can be computed. Many
examples of relevant skeleton features will be presented in the
section “Results.”

Speech processing
We focused on voice activity detection (VAD) estimated through
the OpenSmile framework (Eyben et al., 2010). When this fea-
ture was combined with the IMI2S framework, we obtained the
probability of VAD.

In addition, when the method used by Galatas et al. (2013)
was combined with the skeleton localization in space, it was
possible to determine an audio source in the 3D space of the
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clinical room. Consequently, if a sound was detected, it could
be associated with a user, even though distinguishing voices from
other sounds (moving a toy, moving chair, etc.) is not currently
efficient.

SELECTION OF RELEVANT FEATURES
We deliberately reduce the number of features using a consen-
sus multidisciplinary approach to select the most relevant ones.
This was done by going back and forth between engineers and
psychologists. First, engineers listed a series of features available
from skeleton and audio processing for each partner. Second psy-
chologists discussed with engineers how combining each partner
feature could be related to a relevant clinical dimension in terms
of communication. We focused on features related to proximity,
motor and audio activity, and attention to the task and/or to the
partner (see Result). Finally, we determined together higher level
features related to synchrony and engagement during the inter-
action with the aim of selecting a limited number of features for
clinical assessment.

RESULTS
The current results focus only on two case reports, one patholog-
ical dyad in a severe emotional neglect situation and one control
dyad with no interaction difficulty. The pathological dyad is com-
posed of a 25-year-old mother and her 35-month-old boy. The
interaction quality is rated as a 45 on the PIRGAS scale (DC 0-3
R). The control dyad is composed of a 29-year-old father and his
19-month-old boy. The interaction quality is rated as a 95 on the
PIRGAS scale.

The analyzes were performed for the first phase in the ESPOIR
protocol, the free play, where the parent and child are invited to
play as they would at home to create as natural of an interaction
as possible in the experimental scenario. It should be noted that in
these experiments, the psychologist was present in the room with

the dyad and stood at the bench between the two computers (see
Figure 1A). Thus, she was a possible point of attraction during the
experiment.

We present successively (1) the clinical assessment; (2) features
related to proximity and motor activity; (3) features related to
attention to the task and/or to the partner; and (4) participation
to the task. Please note that natural interaction does not allow us
to extract behavioral features during the entire time of the video
session. For instance, data are missing when the child moves from
the chair and is off-camera or when he climbs on his parent’s
knees. A blank or a cross line in figures indicates uncollected data.
By convention, results concerning parents are in green, and results
concerning children are in blue.

BLIND ASSESSMENT OF THE INTERACTION WITH THE CIB
As expected (Figure 2), the control dyad presented significantly
higher scores in the CIB positive domains (parental sensitivity, par-
ent limit-setting, child compliance, child engagement, and dyadic
reciprocity), and the pathological dyad presented higher scores in
the negative domains (Dyadic joint negative state and Child with-
drawal). The only domain showing a limited difference was Parent
intrusiveness.

PROXIMITY AND ACTIVITY FEATURES
In this paragraph, we present low level features related to physi-
cal proximity during the task and motor activity. The main idea
is to assess (1) how close partners are to one another and (2)
how close partners are to the table where part of the interac-
tions should occur. Several skeleton features have been developed
in the IMI2S Framework to extract information concerning the
proximity between the parent and child during the game session.
Furthermore, these features reveal the general body activity of the
participants. Figure 3 offers a visual representation of (1) the dis-
tance between the shoulder center of a participant and the center

FIGURE 2 | Coding interactive behavior results for the pathological and control dyads.
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FIGURE 3 | (A) Shoulder center and hand distance to the table center features; (B) Shoulder orientation feature – top view representations.

of the gaming table. The shoulder center is the geometrical middle
between the left and right shoulders. (2) The distance between
each hand of the dyad (parent’s left hand-child’s right hand and
parent’s right hand-child’s left hand).

The results are presented in Figures 4A,B, respectively. The
pathological dyad is on the left, whereas the control dyad is on the
right. Table 2 summarizes the conclusions for these features.

ATTENTION TO THE TASK AND THE PARTNER
Here, we present higher-level features related to each partner’s
attention during the task and whether attention is oriented to the
task or to the partner. These features are based on the assump-
tion that if a person’s torso faces an area, the person’s attention is
focused on this area. For example, if the parent’s chest is parallel
to the table, it indicates that the parent is interested in the action
occurring on the table. With the 3D reconstruction from the skele-
ton features, it was possible to determine the attention of the dyad
to the gaming task and the parent’s attention to their child and
vice versa by measuring each partner’s shoulder orientation and
the relative shoulder orientation during the interaction.

Shoulder orientation results
To determine the torso orientation of a person, the angle between
the line formed by the two shoulder points tracked and the line
of the z axis has been computed (see Figure 3B for a graphical
representation). In the current situation, if the person is oriented
toward the gaming table, the formed angle will be ∼45◦ (red line
in graphs). Moreover, if the person looks at their partner’s spot,
the angle will be ∼90◦ (purple line in graphs). Figure 4C displays
shoulder orientation for the two dyads.

Relative shoulder orientation results
It is possible to determine the relative orientation between two
persons using the same method used for the shoulder orienta-
tion. This was defined as the angle between the line formed by

the parent’s shoulders and the child’s shoulders (see Figure 5
for a graphical representation). Therefore, if parent and child
are face to face, the angle will be close to 0◦ (red line in graphs,
Figure 5C), while if they are facing the same area, the angle will
be oscillate between 45 and 90◦ (green and purple lines in graphs,
Figure 5B). The results for this feature are available in Figure 6.
The interpretations are summarized in Table 3.

PARTICIPATION IN THE TASK
In this section, we present higher level features related to synchrony
and engagement during the interaction. First, as the shoulder cen-
ter distance to the table center captures the attention to the task,
the hand distance to the table center can express the involvement
in the task. Second, by combining distance or audio features with
motion energy or speaker localization, we assume that we assessed
partner engagement during the interaction.

Hand distance to the table center results
As explained above, the shoulder center distance to the table center
captures the attention to the task because the hand distance to
the table center can express the involvement in the task. If hands
are close to the table, we can assume that the person is playing
and therefore involved in the task. Unlike the shoulder centers
distance feature, it is not the distance between the centers of the
two hands that is studied, but the distance between the closest
hand and the center of the gaming table (see Figure 3A for a top
view representation of the feature). Figure 7 shows the results for
this feature. In the pathological dyad, only the child’s hand was
close to the table and showed much activity. In contrast, in the
control dyad, both the parent’s and child’s hands were close to the
table and showed much activity.

Contribution to global movement
Contribution to the movement determines which partner par-
ticipates in the global movement, and by studying the distance
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FIGURE 4 | (A) Evolution of the distance between the shoulder
center and the table center during the interaction. (B) Evolution of the
distance between the parent’s and child’s hands during the interaction.
(C) Evolution of shoulder orientation during the interaction (Left:

pathological dyad; Right: control dyad). A blank or a cross line in
figures indicates uncollected data. By convention, results concerning
parents are in green, and results concerning children are in blue
(A,C).

variations, it is possible to extract the type of movement in which
the partner participates (avoidance or approaching). The objec-
tive of this feature is to detect when a movement is performed and
who initiates it. In other words, if we look only at changes of the
distance between the hands of the dyad (Figure 4B), we can see
that there is some hand activity, but we cannot tell if the varia-
tion is due to movement of the parent or the child. To assess who
engaged in changes in hand, head or torso distances, we defined a
new parameter labeled contribution to the movement. When the
distance between two points is tracked, the contribution is defined
as the ratio between the velocity amplitude of one point and the
sum of the velocity amplitudes of the two points.

This parameter has been computed with the distance between
the parent and child heads feature. The results are presented
Figure 8. At a given time, if the column is completely blue,
it means that the current movement is due to the child, and
conversely, if it is totally green, the parent is responsible for

the movement. Moreover, if the distance (red line) increases, it
means that the parent and child move away from each other,
and if the distance decreases, they are approaching each other.
Figure 8 shows that in the pathological dyad, the heads were far
apart and the child was the leader of the interaction. In con-
trast, in the control dyad, the heads were close and both the
parent and child were the leaders of the changes during inter-
action, resulting in a motor dialog or movement turn taking. A
detailed interpretation of this feature is given in the caption of
Figure 8.

Sound activity associated with a participant
The sound activity associated with a participant is a feature
that parallels the visual modality in the contribution to global
movement feature that we described above. In this feature,
we combined audio activity with source localization that, in
the context of the 3D-reconstruction, determines the speaker.
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Table 2 | Proximity and body activity features – results analysis.

Pathological dyad Control dyad

Shoulder center distance to the table

center

Mother far from the table (average = 80 cm) and is

not moving

Child near the table (average = 40 cm)

Parent near the table (average = 50 cm)

Distance between hands (please note

that partners’ asymmetry is also a

consequence of the seating position)

Few hand contacts (N = 20). Hands are far and

distances between parent’s left hand-child’s right hand

(average = 80 cm) and parent’s right hand-child’s left

hand (average = 40 cm) represent partners’

asymmetry during the task

Not many hand contacts (N = 25). Hands are

closer, and more importantly, distances

between parent’s left hand-child’s right hand

(average = 60 cm) and parent’s right

hand-child’s left hand (average = 50 cm) break

partners’ asymmetry

Conclusion Pathological parent moves less and stays farther from their child than the control parent. Control dyad seems

to interact more closely

FIGURE 5 | Relative shoulder orientation feature. (A) General case; (B) Same point of attention case; (C) Face to face case – top view representation.

Figure 9 shows the results and a detailed analysis in the cap-
tion. In the pathological dyad, the majority of the sounds
were due to the child. In contrast, in the control dyad, both
partners contributed to the sound activity, and most impor-
tantly, many speech turns occurred, leading to an audio
dialog.

DISCUSSION
SUMMARY OF THE RESULTS AND CROSS CORRELATION
We have developed an explorative method to acquire and
extract relevant social signals from a naturalistic early parent–
infant interaction in a clinical setting. We have extracted
various cues from body postures and speech productions of
each partner using the IMI2S Framework. Preliminary clin-
ical and computational results for two dyads (one patho-
logical in a situation of severe emotional neglect and one
normal control) show that the absence of such interac-
tive social signals indicates behavioral patterns that might be
pathologically relevant: the pathological dyad shows dyssyn-
chronic interaction led by the infant whereas the control

dyad shows synchronic interaction and a smooth interactive
dialog.

The goal oriented aspects (i.e., solving the task) are not
affected whereas both the clinical assessment (CIB; Figure 2)
and the computational feature extraction have revealed clear dif-
ferences between the pathological and control dyads concerning
the body/movement and sound activities of the parent and their
involvement in the task and regarding the proximity and joint
activity in the dyad. In other words, we can distinguish these
two components and provide objective measures for when and
how social communication is affected. The pathological parent
avoided the activity and the child. This could be interpreted as
avoidance of an interaction (Viaux-Savelon et al., 2014), mean-
ing that the parent is less involved in the task and appears to be
withdrawn. In contrast, the control dyad was characterized by a
clearly distinguishable different dynamic: (1) distances between
partners were mediated by movements toward and away from
the partner in both the parent and child and (2) the num-
ber and regularity of speech turns was high, as in a dialog.
These characteristics result in an illustration of synchrony and
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FIGURE 6 | Evolution of relative shoulder orientation during the

interaction (Left: pathological dyad; Right: control dyad). In this graph, we
report the shoulder orientation according to the relative angle between the
two partners’ shoulders over time. When the angle is equal to 0◦, the partners
are facing. When to the angle is 45 to 90◦, both shoulders are oriented in the

direction of the table that is a point of interest in the given task. In the left
graph, the pathological dyad is focused essentially on the task, as partners
are facing only three times. In contrast, the control dyad had many face to
face positions and showed clear turns between task focusing and other
partner focusing. A blank or a cross line in figures indicates uncollected data.

Table 3 | Attention to the task and the partner features – results analysis.

Pathological dyad Control dyad

Shoulder orientation Mother mostly oriented toward table and bench

Child focused almost exclusively on the table

Parent moves between table, bench and his child

Child moves a lot, focuses on parent, table and bench

Relative shoulder orientation Dyad focused essentially on the task, just three periods

when they are facing

Many face to face interactions

Dyad oscillates between task focusing and other partner

focusing

Conclusion Shoulder orientation of the child and parent in the pathological dyad is less mobile than the control dyad. That could be

interpreted as a poorer ability to share attention while alternating the focus of attention. The control dyad illustrates a fluid

alternation of attention

engagement switching during harmonious interactions (Dela-
herche et al., 2012).

The clinical assessment and the computational features do not
share the same time scale. By this we mean that the CIB pro-
vides a summary of the whole interaction whereas the IMI2S
data provides a much a more fine grained scale of the temporal

flow. However, we propose the following cross correlation: (i)
The “Parental Sensitivity” score of the CIB shows that the par-
ent neglected his child and focused almost entirely on the task
in the pathological dyad. CIB “Parental sensitivity” score may be
associated with the parent’s shoulder distance to the table and
the distance between the hands. Indeed, this clinical characteristic

FIGURE 7 | Evolution of the distance between the closest hand and the table center during the interaction (Left: pathological dyad; Right: control

dyad). A blank or a cross line in figures indicates uncollected data. By convention, results concerning parents are in green, and results concerning children are
in blue.
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FIGURE 8 | Evolution of the distance between parent and child heads

with each partner’s contribution to the global hand movement during

the interaction (Left: pathological dyad; Right: control dyad). In this
graph, we report the distance between the parent’s and child’s heads with
each partner’s contribution to the global hand movement during the
interaction over time. At the same time, we are able to follow how close or
distant partners are and who is moving the most in the previous frames, in
other words, who is contributing the most to changing the distance. On the

left graph, the pathological dyad showed a large head distance (minimum
distance = 50 cm). Movements were initiated mostly by the child, except on
two occasions. In contrast, the control dyad showed a smaller head distance
(maximum distance = 75 cm). Movement contribution was distributed
between the parent and child and the rhythm of the interaction appeared to be
a motor dialog with many turns during the course of the interaction. A blank
or a cross line in figures indicates uncollected data. By convention, results
concerning parents are in green, and results concerning children are in blue.

FIGURE 9 | Sound activity by participant during the interaction (Left:

pathological dyad; Right: control dyad). In this graph, we combined
sound activity and source localization and report sound activity by
participant during the interaction over time. In the left graph, the
pathological dyad showed a clear disequilibrium. The majority of the
sounds were produced by the child. The mother nearly always stayed

silent. The dyad only had four speech turns during the entire interaction.
In contrast, the control dyad showed no disequilibrium. Sounds were due
equally to the child and the parent. Additionally, as in the motor analysis
(see Figure), the rhythm resembled a dialog with numerous speech turns.
By convention, results concerning parents are in green, and results
concerning children are in blue.

could be interpreted as the parent’s capacity to remain engaged
in the interaction with a proximity adapted to child’s move-
ments. (ii) The “Dyadic Reciprocity” score of the CIB clearly
distinguishes the two dyads (not much enthusiasm, common
involvement, reciprocal affection in the pathological dyad). By
definition, a harmonious dyadic reciprocity means smooth and
synchronous interaction entailing coordination between partners
and intermodality (Feldman,2007). CIB“Dyadic Reciprocity”may
be related to the partners’ contributions to movement or speech
turns that are equally distributed (Figures 8 and 9). (iii) Joint
attention (a key item of the CIB “child’s engagement” score) can
be illustrated by shoulder orientation and relative shoulder ori-
entation (Anzalone et al., 2014a,b). For instance, a parent whose
shoulders are oriented toward the same point for a majority of
the time (see the pathological dyad in Figures 4C and 6) can
reveal a lack of adaptation to the child, preventing the occur-
rence of joint attention. In contrast, the control dyad showed a

large variation of shoulder orientation, which can predict a good
adjustment of attention between partners and shared attention
(meaning attention of both partners toward a common object)
during interactions.

In conclusion, for the current two case reports, computational
feature extraction seems to provide the same results as clinical anal-
ysis, but allows a finer understanding of interactions by changing
the time scale (from a summary of the whole interaction toward
a more fine grained scale of the temporal flow) and by providing
quantitative features that may be used in large comparison group
data or single case longitudinal studies.

LIMITATIONS
Even if the conclusions presented above are promising, the current
results are subject to some limitations. First, given the exploratory
nature of this study, any generalization of the findings is pre-
vented; only two case-studies are compared, and even if they
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are paradigmatic, they cannot be statistically relevant and no
statistics was applied. Second, the two cases were not matched
for age or gender of the interactive parents but were chosen
for their extreme PIRGAS scores. Third, at a group compari-
son level, it is likely that each pathological dyad would present
different patterns of dyssynchrony such as intrusive or under
involved styles. In this study, our pathological case was under-
involved. Finally, extracted features (skeleton and audio) do not
include every facet of the interaction (e.g., motherese). As a
consequence, they could not be matched with all the subscores
of the CIB.

FUTURE STUDIES
This exploratory study encourages us to pursuing the study of
the presented methodology and experimentation in new scenar-
ios. This first work with these two dyads permits us to develop
relevant sensor features in a clinical setting and a computational
extraction system that can now be tested on a larger population.
The next goal will be to accomplish a complete and statisti-
cally relevant comparison between the two groups by collecting
data from a relevant number of dyads. In our future work, we
will be specifically exploring intrusive or under involved par-
enting because the clinical validity should be tested in these
different pathological patterns. We believe that the two fea-
tures called “evolution of the distance between parent and child
heads with each partner’s contribution to the global hand move-
ment during the interaction” (Figure 8) and “sound activity by
participant during the interaction” (Figure 9) will be clinically
relevant at a group comparison level offering quantitative met-
rics for under involved parenting. Exploiting low-level signal
exchanges allows proposing quantitative metrics without impos-
ing meanings on the signals, which could be not only difficult
but also limitative in clinical settings. Various metrics could be
investigated ranging from information-based to machine-learning
based (Delaherche et al., 2012). Possible metrics could be measur-
ing entropy of individual activities (both infant and caregiver)
for individual behavior characterization, mutual information
between these activities for inter-personal synchrony character-
ization. We expect low values of synchrony metrics in patho-
logical dyads whereas it should be higher in harmonious control
dyads.

Furthermore, to complete the computational analysis, new fea-
tures will be implemented in the IMI2S Framework. For example,
the video stream recorded with the RGB-D sensor will be ana-
lyzed to extract the body activity of each participant or their
head orientations (Anzalone et al., 2014a). Additionally, we will
include a motherese classifier to better delineate parenting emo-
tional prosody (Cohen et al., 2013). Our future hypothesis would
be that these new features will confirm and improve the previ-
ous results. In particular, a combination of multimodal features
will offer the ability to interpret and understand synchrony and
dyssynchrony during early interactions in the context of neglected
parenting (Glaser, 2002).
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