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Not only developed countries, but also most 
developing areas of the world, have experienced 
a surge in obesity prevalence over recent 
decades. Obesity complications are now among 
the leading causes of premature mortality, 
encompassing conditions such as coronary 
heart disease, stroke, and type 2 diabetes. 
This places a heavy burden on contemporary 
healthcare systems. While rodent models have 
limitations as experimental models of human 
obesity-related disease, study of rats and mice 
either spontaneously prone - or resistant - to 
obesity, or genetically engineered to illuminate 
underlying mechanisms has yielded key 
information about the metabolic defects linked 
to obesity, and their associated diseases. This 
topic includes both original research studies 
and reviews of the use of animal studies in 
specific areas of obesity-related disease. Various 
methodological approaches are discussed, with 
evaluation of the extent to which use of animal Cover image: Emilia Stasiak/Shutterstock.com
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models has facilitated progress, or, conversely, has proved a cul de sac in investigation of human 
disease mechanisms. Consideration is also given to future strategies to use such rodent models 
optimally to enhance comprehension and treatment of pandemic human obesity-related 
diseases.

Citation: Even, P. C., Virtue, S., Morton, N. M., Fromentin, G., Semple, R. K., eds. (2018). Are Rodent 
Models Fit for Investigation of Human Obesity and Related Diseases? Lausanne: Frontiers Media. doi: 
10.3389/978-2-88945-425-9

3Frontiers in Nutrition and Frontiers in Endocronology February 2018 | Are Rodent Models Fit for Investigation of Human Obesity

http://www.frontiersin.org/Nutrition
http://www.frontiersin.org/Endocrinology/
http://journal.frontiersin.org/researchtopic/3368


06 Editorial: Are Rodent Models Fit for Investigation of Human Obesity and  
Related Diseases?

 Patrick C. Even, Sam Virtue, Nicholas M. Morton, Gilles Fromentin and  
Robert K. Semple

08 Knowledge Gaps in Rodent Pancreas Biology: Taking Human Pluripotent Stem 
Cell-Derived Pancreatic Beta Cells into Our Own Hands

 Munirah Mohamad Santosa, Blaise Su Jun Low, Nicole Min Qian Pek and  
Adrian Kee Keong Teo

17 Mouse Models of Human GWAS Hits for Obesity and Diabetes in the Post 
Genomic Era: Time for Reevaluation

 Samantha Laber and Roger D. Cox

22 The Importance of Context: Uncovering Species- and Tissue-Specific Effects of 
Genetic Risk Variants for Type 2 Diabetes

 Soren K. Thomsen, Mark I. McCarthy and Anna L. Gloyn

28 How Useful Are Monogenic Rodent Models for the Study of Human  
Non-Alcoholic Fatty Liver Disease?

 Jake P. Mann, Robert K. Semple and Matthew J. Armstrong

39 Genetic Rodent Models of Obesity-Associated Ovarian Dysfunction and  
Subfertility: Insights into Polycystic Ovary Syndrome

 Isabel Huang-Doran and Stephen Franks

49 Relationships between Rodent White Adipose Fat Pads and Human  
White Adipose Fat Depots

 Daniella E. Chusyd, Donghai Wang, Derek M. Huffman and Tim R. Nagy

61 Mechanisms of Comorbidities Associated With the Metabolic Syndrome:  
Insights from the JCR:LA-cp Corpulent Rat Strain

 Abdoulaye Diane, W. David Pierce, Sandra E. Kelly, Sharon Sokolik, Faye Borthwick, 
Miriam Jacome-Sosa, Rabban Mangat, Jesus Miguel Pradillo, Stuart McRae Allan, 
Megan R. Ruth, Catherine J. Field, Rebecca Hutcheson, Petra Rocic,  
James C. Russell, Donna F. Vine and Spencer D. Proctor

73 Obesity in the Otsuka Long Evans Tokushima Fatty Rat: Mechanisms and  
Discoveries

 Sheng Bi and Timothy H. Moran

78 Modeling Diet-Induced Obesity with Obesity-Prone Rats: Implications for  
Studies in Females

 Erin D. Giles, Matthew R. Jackman and Paul S. MacLean

91 Animal Models for the Study of the Relationships between Diet and Obesity:  
A Focus on Dietary Protein and Estrogen Deficiency

 Tristan Chalvon-Demersay, François Blachier, Daniel Tomé and Anne Blais

Table of Contents

4Frontiers in Nutrition and Frontiers in Endocronology February 2018 | Are Rodent Models Fit for Investigation of Human Obesity

http://www.frontiersin.org/Nutrition
http://www.frontiersin.org/Endocrinology/
http://journal.frontiersin.org/researchtopic/3368


104 Consumption of Substances of Abuse during Pregnancy Increases  
Consumption in Offspring: Possible Underlying Mechanisms

 Kinning Poon and Sarah F. Leibowitz

117 Hedonics Act in Unison with the Homeostatic System to Unconsciously  
Control Body Weight

 Heike Münzberg, Emily Qualls-Creekmore, Sangho Yu, Christopher D. Morrison and 
Hans-Rudolf Berthoud

122 The Use of Rat and Mouse Models in Bariatric Surgery Experiments
 Thomas A. Lutz and Marco Bueter

132 Increased Hydration Can Be Associated with Weight Loss
 Simon N. Thornton

140 Increased Cost of Motor Activity and Heat Transfer between Non-Shivering 
Thermogenesis, Motor Activity, and Thermic Effect of Feeding in Mice Housed 
at Room Temperature – Implications in Pre-Clinical Studies

 Patrick C. Even and Anne Blais

153 Normocaloric Diet Restores Weight Gain and Insulin Sensitivity in Obese Mice
 Giovanni Enrico Lombardo, Biagio Arcidiacono, Roberta Francesca De Rose,  

Saverio Massimo Lepore, Nicola Costa, Tiziana Montalcini, Antonio Brunetti,  
Diego Russo, Giovambattista De Sarro and Marilena Celano

5Frontiers in Nutrition and Frontiers in Endocronology February 2018 | Are Rodent Models Fit for Investigation of Human Obesity

http://www.frontiersin.org/Nutrition
http://www.frontiersin.org/Endocrinology/
http://journal.frontiersin.org/researchtopic/3368


December 2017 | Volume 4 | Article 586

Editorial
published: 01 December 2017
doi: 10.3389/fnut.2017.00058

Frontiers in Nutrition | www.frontiersin.org

Edited by: 
Maurizio Muscaritoli,  

Sapienza Università di Roma,  
Italy

Reviewed by: 
Maurizio Crestani,  

Universita` degli Studi di Milano,  
Italy

*Correspondence:
Patrick C. Even  

even@agroparistech.fr

Specialty section: 
This article was submitted  

to Clinical Nutrition,  
a section of the journal  

Frontiers in Nutrition

Received: 09 October 2017
Accepted: 13 November 2017
Published: 01 December 2017

Citation: 
Even PC, Virtue S, Morton NM, 

Fromentin G and Semple RK (2017) 
Editorial: Are Rodent Models  

Fit for Investigation of Human  
Obesity and Related Diseases? 

Front. Nutr. 4:58.  
doi: 10.3389/fnut.2017.00058

Editorial: are rodent Models Fit for 
investigation of Human obesity and 
related diseases?
Patrick C. Even1*, Sam Virtue2, Nicholas M. Morton3, Gilles Fromentin1  
and Robert K. Semple2,3

1 UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris Saclay, Paris, 
France, 2 Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, 
Cambridge, United Kingdom, 3 University/BHF Centre for Cardiovascular Sciences, Queens Medical Research Institute, 
University of Edinburgh, Edinburgh, United Kingdom

Keywords: obesity, disease, rodent models, non-alcoholic fatty liver disease, type 2 diabetes mellitus

Editorial on the Research Topic

Are Rodent Models Fit for Investigation of Human Obesity and Related Diseases?

Mice and rats provide the primary model systems in which the pathophysiology of obesity and its 
associated pandemic diseases are investigated. Rodent models have been instrumental in the gar-
nering of numerous insights into fundamental pathophysiological mechanisms that are conserved 
across species. Nevertheless, in key respects rodent physiology is distinct from that of humans, and 
uncritical overreliance on rodent findings risks impeding translational progress toward improving 
human health. This research topic aimed to assess whether current use of mouse and rat models 
is appropriate to maximize generalizable insights and to minimize erroneous conclusions being 
drawn about human disease. It solicited 16 publications, encompassing 14 opinions or reviews and 
2 original research articles, describing or evaluating many aspects of current research performed 
using rats or mice, covering both causes and consequences of obesity.

Type 2 diabetes is the main focus of three articles. Santosa et al. discuss the use of the rodent 
pancreatic beta cell to understand the signaling pathways involved in human beta cell differentiation. 
Laber and Cox and Thomsen et al. consider the successes for rodent modeling of human genome 
wide association studies for adiposity and type 2 diabetes mellitus (T2DM), encompassing similari-
ties and differences between mouse and human genomes. They consider how animal models can be 
developed as more precise disease models of T2DM by targeted gene manipulation in the correct 
developmental and tissue context. Significant limitations of this strategy are also discussed.

Rodent modeling of two major obesity associated diseases, namely non-alcoholic fatty liver 
disease (NAFLD) and polycystic ovary syndrome (PCOS), is the focus of two articles. The use of 
monogenic mouse models to interrogate the pathophysiology and genetic predisposition to NAFLD 
is discussed by Mann et al. This points to interspecies differences and variability in experimental 
protocols as a limit for the extent to which results from rodent models can currently be extrapolated 
to humans. Huang-Doran and Franks reviewed the characteristics of the PCOS and assessed the 
adequacy of rodent models for investigation of this complex pathology. They highlight the variable 
recapitulation of the PCOS phenotype in rodents, and the relative lack of insulin resistance-related 
PCOS, quite unlike humans.

Rat models have been used for three decades to study facets of nutrition, endocrinology, 
the metabolic syndrome, obesity, lipid metabolism, vascular myocardial pathophysiology and 
pharmacology, and are the primary focus of several articles in the topic. Chusyd et al. review the 
physiological properties and metabolic profiles of rodent white adipose fat pads and compare 
these to white adipose depots in humans. The authors also elaborate on sexual dimorphism in 
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adipose tissue depots and attempt to explain why premenopausal 
women generally have a healthier metabolic risk profile than 
men. Diane et al. discuss how the JCR:LA-cp rat has contributed 
to understanding of the gut’s contribution to increased produc-
tion of chylomicron particles, and how ruminant-derived trans 
fatty acids participate in regulating lipid metabolism. The 
authors also consider modeling of PCOS in this strain of rat.  
Bi and Moran focused on the insights into the neural basis of 
food intake and body weight control that have been yielded by 
studies of the obese OLEF-T rat, a CCK-1 receptor knockout 
model. The OLEF-T rat has also been valuable in dissection of 
interactions among exercise and food intake, and in investigat-
ing the role of the DMH in energy balance.

Giles et al. report lessons learned from study of the OP/OR 
rat, including the observation that OP rats have disturbances in 
hypothalamic signaling pathways involved in energy homeostasis 
before obesity develops, and while still on a low-fat diet. They also 
highlight the sexual dimorphism of obesity and point out that this 
is often ignored because most preclinical studies are performed 
on male rodent models. The authors have extended the study of 
the obese rat model to address the menopause and breast cancer 
using surgical ovariectomy in OP/OR female rats to mimic loss of 
ovarian function. Surgical ovariectomy was also used in mice by 
Chalvon-Demersay et al. to address the consequences of estrogen 
deficiency, however they suggest that differences observed even 
between rats and mice imply that extrapolations to humans must 
be made with caution. In the same article, the authors also discuss 
the “protein leverage hypothesis,” which proposes that insufficient 
protein intake may be a key factor in obesity development. The 
authors discuss in detail mechanisms whereby dietary protein 
levels may affect food intake.

The brain is the focus of two further articles. Poon and 
Leibowitz discuss the various techniques used for the adminis-
tration of substances to rodents in studies of the neuronal and 
molecular mechanisms determining the behavioral outcomes of 
gestational exposure to non-illicit substances of abuse, such as 
excessive dietary fat, ethanol, and nicotine. Münzberg et al. sug-
gest that environmental factors and genetic predisposition, rather 
than personal choices, are at the root of the obesity pandemic, 
and critically evaluate how rodent models can help to understand 
the contribution of hedonic neural processes to body weight 
regulation. They summarize how these models helped to solidify 
the new view that homeostatic and hedonic controls are closely 
interrelated, often acting in unison at the unconscious level to 
affect biologically adaptive responses.

Lutz and Bueter review the advantages and limitations of 
studying mechanisms underlying the benefits of bariatric surgi-
cal approaches to obesity treatment (Roux-en-Y gastric bypass 
and vertical sleeve gastrectomy) in rats and mice. They conclude 
that most animal models recapitulate remarkably well findings in 
humans, but indicate that animals larger than rats and mice may 
offer additional specific advantages.

Thornton reviews experiments in favor of the specific hypoth-
esis that increased hydration leads to body weight and fat loss 
through a decrease in feeding. The hypothesis derives from a 
broad association between chronic dehydration, raised levels of 
angiotensin II and chronic diseases such as obesity, diabetes, can-
cer, and cardiovascular diseases. Proposed mechanisms involve 
an increase in metabolism due to expansion of cell volume by 
hydration.

Two original studies were published in this topic. Even and 
Blais sound a cautionary methodological note by demonstrat-
ing that the cost of thermoregulation in mice housed at room 
temperature strongly affects attempts to estimate thermogenic 
responses to feeding accurately, due to heat transfer between 
diet-induced thermogenesis and non-shivering thermogenesis. 
They suggest that these observations undermine the use of mice 
housed below thermoneutrality to model human disorders 
of energy balance. Finally, Lombardo et  al. show that use of a 
simple standard diet, without additive agents and without caloric 
restriction, is sufficient to rescue high-fat feeding-induced insulin 
resistance and prevent the evolution of diabetes without the need 
for a hypocaloric diet.

The articles in this topic offer a cross section of current 
approaches to studying obesity and its associated diseases in 
rodents. They highlight successes and failures, as well as illus-
trating important methodological issues and some emerging 
hypotheses in the field. Collectively, they attest to the enduring 
utility of highly tractable rodent models of complex human 
metabolic disease and to the importance of continued and careful 
adjustment of rodents to the disease being modeled. They further 
raise awareness of areas where species-specific pathophysiology 
appears irrevocably distinct. Appropriately critical use of rodent 
models will remain vital to interrogation of pandemic human 
metabolic disease.
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Biology: Taking Human Pluripotent 
Stem Cell-Derived Pancreatic Beta 
Cells into Our Own Hands
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In the field of stem cell biology and diabetes, we and others seek to derive mature 
and functional human pancreatic β cells for disease modeling and cell replacement 
therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas 
developmental biology research involving human pluripotent stem cells (hPSCs). While 
much has been learnt from rodent pancreas biology in the early steps toward Pdx1+ 
pancreatic progenitors, much less is known about the transition toward Ngn3+ pancre-
atic endocrine progenitors. Essentially, the later steps of pancreatic β cell development 
and maturation remain elusive to date. As a result, the most recent advances in the 
stem cell and diabetes field have relied upon combinatorial testing of numerous growth 
factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature 
and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach 
appears to have made some headway in maturing human pancreatic β cells in  vitro, 
its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss 
some of these late-stage signaling pathways that are involved in human pancreatic β 
cell differentiation and highlight our current understanding of their relevance in rodent 
pancreas biology. Our efforts here unravel several novel signaling pathways that can be 
further studied to shed light on unexplored aspects of rodent pancreas biology. New 
investigations into these signaling pathways are expected to advance our knowledge in 
human pancreas developmental biology and to aid in the translation of stem cell biology 
in the context of diabetes treatments.

Keywords: pancreas, islet, beta cell, human, pluripotent stem cell

inTRODUCTiOn

In the field of stem cells and diabetes, many scientists are actively pursuing the generation of insulin-
secreting pancreatic β cells from human pluripotent stem cells (hPSCs) for β cell transplantation/
replacement and treatment of diabetes (1–3). While insights from rodent pancreas developmental 
biology has guided the generation of PDX1+ pancreatic progenitors from hPSCs, the specific 
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developmental principles thereafter remain murky. Henceforth, 
research groups have relied upon the transplantation of pancreatic 
progenitors, derived in vitro, into rodents for in vivo maturation 
(4–6). However, there has been considerable progress toward the 
generation of mature and functional human pancreatic β cells 
in vitro in the recent years. These β cells purportedly co-express 
cardinal β cell markers, such as PDX1, NKX6.1, musculoaponeu-
rotic fibrosarcoma oncogene homolog A (MAFA), prohormone-
processing enzymes, insulin, and C-peptide. Importantly, they 
are also monohormonal and glucose responsive.

Developmental biologists believe that there is much to be 
learnt from rodent developmental biology to guide hPSC-based 
generation of clinically useful cell types, such as pancreatic β cells. 
Owing to such efforts, the progression of definitive endoderm 
(DE) germ layer to PDX1+ pancreatic progenitors has been well-
explored. However, the investigations on the later steps of pancre-
atic endocrine development and β cell maturation have not been 
quite fruitful. The most substantial advances in stem cell biology 
have relied upon an arbitrary approach of iterative trial-and-error 
testing to achieve mature and functional pancreatic β cells in vitro 
(7). Therefore, several pertinent questions remain: why were we 
not able to extrapolate rodent developmental principles and apply 
them on hPSCs to derive mature and functional pancreatic β 
cells? Are there differences between rodent and human pancreas 
development that prevent such an application? In this review, we 
look at signaling pathways that have been activated or repressed 
in stem cell biology and retrospectively revisit existing knowl-
edge about rodent pancreas biology. Our efforts highlight novel 
aspects of signaling pathways that can be further investigated in 
our translational efforts for diabetes.

inHiBiTiOn OF TRAnSFORMinG 
GROwTH FACTOR-β SiGnALinG in THe 
LATeR STAGeS OF PAnCReATiC 
DiFFeRenTiATiOn

The transforming growth factor-β (TGF-β) superfamily of pro-
teins regulates pancreas development and function (8). TGF-β1, 
TGF-β2, and TGF-β3 are expressed in pancreatic epithelial cells at 
E12.5 in mice. Thereafter, they become localized in the acinar cells 
(9). TGF-β1 can promote the development of mouse pancreatic 
β cells from pancreatic buds (10). Perplexingly, it also indirectly 
inhibits the formation of mouse pancreatic epithelial cells (11). 
In tandem, TGF-β2 has been demonstrated to inhibit Hnf1β and 
Pdx1 gene expression. Hence, TGF-β can purportedly restrain 
the specification of pancreatic cell fate (12). TGF-β signaling 
effector SMAD3 can bind the Ins gene promoter to suppress its 
expression. In agreement, Smad3-deficient islets exhibit an active 
insulin signaling pathway (13). Collectively, these evidences sug-
gest the requirement to inhibit TGF-β signaling for the derivation 
of mature and functional pancreatic β cells (Figure 1A).

In 2011, Nostro et  al. used small molecule SB431542 (14), 
an Activin/TGF-β receptor antagonist, in their pancreatic dif-
ferentiation protocol. SB431542 inhibits activin receptor-like 
kinases (ALK) 4/5/7 and the downstream TGF-β/Activin/Nodal 
signaling. SB431542 treatment was demonstrated to increase 

INS gene expression and the development of C-peptide+ cells 
(15). Similarly, Cho et  al. also utilized SB431542, in the pres-
ence of retinoic acid (RA), for pancreatic differentiation (16). 
Alternatively, Schulz et al. used TGF-βRI kinase inhibitor IV to 
obtain pancreatic progenitors from CyT49 hPSCs (17). Rezania 
et al. identified that the use of 2-(3-[6-Methylpyridin-2-yl]-1H-
pyrazol-4-yl)-1,5-naphthyridine (ALK5iII) can effectively induce 
the expression of NGN3, NEUROD1, INS, and GCG transcripts 
to promote pancreatic endocrine specification (18). Rezania et al. 
further demonstrated that 1  μM ALK5iII is necessary for the 
induction of NEUROD1+ cells, but it suppressed the proportion 
of NKX6.1+ cells (4), a hallmark of functional β cells (19). Most 
recently, Rezania et  al. compared the effects of several ALK5 
inhibitors at a later phase of differentiation of hPSCs and found 
that only ALK5iII downregulated NGN3 while increasing INS, 
GCG, and SST transcripts (6). Furthermore, 10  μM ALK5iII 
induced the expression of nuclear v-maf MAFA transcript, a criti-
cal mature β cell transcription factor, in diabetic rodents (20–22). 
Rezania et al. (6) concluded that ALK5iII was the most effective 
and specific inhibitor as it inhibited ALK5 but had minimal inhi-
bition of other kinases. Similarly, Pagliuca et al. also employed 
10 μM Alk5iII to derive mature and functional human pancreatic 
β cells from hPSCs (7) (Figure 1B; Table 1).

Overall, the inhibition of ALK5/TGF-βRI with ALK5iII 
appears to be more desirable as compared to the general inhibi-
tion of TGF-β signaling via the use of SB431542. Further studies 
are certainly required to investigate the intricacies of TGF-β 
signaling during pancreas development and β cell maturation.

PROTein KinASe C SiGnALinG 
enHAnCeMenT

Protein kinase C (PKC) is a family of serine/threonine kinases 
that are involved in diverse cellular processes, including survival, 
apoptosis, cell cycle regulation, proliferation, migration, and 
differentiation (23). In maturing neonatal rat islets, PKCα was 
only found in β cells, PKCγ in α cells, and PKCϵ in δ cells (24). 
This differential expression of PKC isoenzymes (25) hints that 
PKC signaling may play a role in the functional maturation of 
pancreatic endocrine progenitors (Figure 1A).

Chen et  al. (26) was the first to demonstrate that 300  nM 
(−)-indolactam V (ILV) or PKC agonists {500  nM [(2S,5S)-
(E,E)-8-(5-(4-(trifluoromethyl)phenyl)-2,4-pentadienoylamino) 
benzolactam (TPB)] or 14 nM phorbol-12-myristate-13-acetate 
(PMA)} can efficiently increase the formation of PDX1+ pancre-
atic progenitors from hPSCs via the activation of PKC signaling. 
ILV treatment resulted in an increased gene expression of several 
pancreatic progenitor markers, including SOX9, PDX1, PTF1A, 
HNF6, and PROX1, and endocrine progenitor markers, including 
NGN3, NKX2.2, and NKX6.1. The protein expression of pancreatic 
progenitor markers FOXA2, PTF1A, HNF6, and NKX6.1 were 
increased, whereas the expression of intestinal marker CDX2 and 
liver marker AFP were suppressed (26). In addition, they also 
found that ILV and PKC agonists, TPB or PMA, can synergize 
with FGF10 signaling to promote the proliferation of PDX1+ cells 
derived from hPSCs. Interestingly, ILV treatment also works on 
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FiGURe 1 | A summary of the pivotal stages of pancreatic differentiation. (A) Mammalian pancreas development based on knowledge from both rodent and 
human studies. The signaling pathways suggested to be positively regulating the differentiation process are highlighted in green, while those found to be inhibited in 
order to drive differentiation toward pancreatic lineage are shown in red. (B) An in vitro pancreatic differentiation timecourse generating β-like cells from hPSCs. The 
signaling pathways (green) and antioxidants (pink) that are positively regulating the differentiation process at each phase of development are highlighted. Stage-
specific signaling pathways that are inhibited to drive differentiation toward pancreatic lineage are shown in red. The decreasing doses of RA used during the 
differentiation process [as described by Rezania et al. (6) and Pagliuca et al. (7)] are represented by the decreasing shades of green. The differing colors co-existing 
in an aggregate illustrates the heterogeneity of cells prevalent in such a differentiation scheme. While some of the cells will transit from being endocrine progenitors 
(light orange) to Pdx1+ insulin-producing β-like cells (brown), the end-product will include an assortment of maturing endocrine cell types (represented by orange and 
light orange).
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mouse embryonic stem cells, suggesting a conservation of signal-
ing pathway in both mouse and human cells (26) (Table 1).

Subsequently, Rezania et al. (4) employed two PKC activators 
in the mid-late stage of hPSC differentiation; 50 nM TPB (safer 
profile) and phorbol 12,13-dibutyrate (PDBu) (27), demonstrating 
that the activation of PKC signaling induces the gene expression 
of pancreatic lineage markers PTF1A, NGN3, NEUROD1, and 
NKX6.1 while suppressing the expression of intestinal (CDX2) 
and liver (ALB) markers (4). This demonstrated that PKC signal-
ing enriches the development of pancreatic progenitors while 
inhibiting intestinal and hepatic lineages. Similarly, Pagliuca et al. 
used 500 nM PDBu in their pancreatic differentiation protocol 

(7) (Figure 1B; Table 1). Although these data are encouraging, 
more studies remain to be done to thoroughly clarify the role of 
PKC signaling and the specific mechanisms in the maturation of 
pancreatic endocrine progenitors.

LOweR LeveL OF ReTinOiC ACiD 
SiGnALinG AS PAnCReATiC 
DiFFeRenTiATiOn PROGReSSeS

It is well-established that RA signaling plays critical roles in 
the early and late stages of pancreas development (28). RA is a 
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TABLe 1 | Summary of some novel signaling pathways perturbed during pancreatic differentiation of hPSCs.

Molecules Mechanism induction of pancreatic lineage markers Reference Humans Rodents

TGF-β inhibition SB431542 Inhibits ALK 4/5/7 Upregulates INS gene expression and C-peptide+ cells Nostro et al. (15) √
SB431542 + RA Upregulates PDX1 gene expression Cho et al. (16) √
TGF-βRI kinase inhibitor IV Induces pancreatic progenitors from hPSCs Schultz et al. (17) √
1 μM ALK5iII Inhibits ALK5 Downregulates NGN3. Upregulates NEUROD, INS, GCG, and SST transcripts

Induces Mafa transcript expression in diabetic rodents
Rezania et al. (4, 6, 18) √ √

10 μM ALK5iII Pagliuca et al. (7) √

Protein kinase C 
signaling

 300 nM ILV Activates PKC
Synergizes with 
FGF10 signaling

Upregulates gene expression of pancreatic progenitor markers SOX9, PDX1, PTF1A, 
HNF6, PROX1

Chen et al. (26) √ √

Upregulates gene expression of endocrine progenitor markers including NGN3, NKX2.2, 
and NKX6.1

500 nM TPB
14 nM PMA

Upregulates protein expression of FOXA2, PTF1A, HNF6, and NKX6.1 √
√Downregulates protein expression of endoderm markers CDX2 and AFP

50 nM TPB Activates PKC Upregulates gene expression of pancreatic lineage markers NGN3, NEUROD1, PTF1A, 
and NKX6.1
Downregulates gene expression of intestinal marker CDX2 and liver marker ALB

Rezania et al. (4) √

500 nM PDBu Pagliuca et al. (7) √

Low retinoic acid 
(RA) signaling

1–3 μM RA Activates RA 
receptors

Various √
3 nM TTNPB Schulz et al. (17) √
1 μM → 100 nM → 50 nM RA Rezania et al. (7) √
2 μM → 100 nM → 25 nM RA Pagliuca et al. (7) √

 γ-secretase/Notch 
inhibitor

DAPT Inhibits Notch 
signaling

Upregulates NGN3 mRNA and protein expression in adult islets Dror et al. (36) √ √
Upregulates NGN3 and NEUROD1 gene expression Rezania et al. (18) √

GSiXX Upregulates expression of β cell maturation genes Rezania et al. (6) √
Downregulates expression of pancreatic exocrine marker PTF1A

GSiXX + T3 Upregulates NKX6.1+insulin+GCG- β-like cells Rezania et al. (6) √
1 μM XXI Upregulates β cell gene expression Pagliuca et al. (7) √

T3 0.1 μM T3 Activates MAPK/
ERK signaling 
pathway

Induces rodent pancreatic β cell proliferation Kim et al. (42) √
1 μM T3 Upregulates expression of INS and mature β cell markers Rezania et al. (6) √

Enhances co-expression of NKX6.1 and INS protein Pagliuca et al. (7)

AXL 2 μM BGB324 (R428) Inhibits AXL Upregulates MAFA protein expression Rezania et al. (6) √
GAS6 Activates AXL Downregulates Mafa gene expression Haase et al. (48) √

Antioxidants GPx-1 Antioxidants Maintains protein expression of nuclear MAFA in diabetic rodents Harmon et al. (22) √
√
√

NAC Harmon et al. (21)
Ebselen Mahadevan et al. (20)
1–2 mM NAC Upregulates nuclear MAFA protein expression Rezania et al. (6) √
0.25 mM vitamin C Generates mature and functional human pancreatic β cells Pagliuca et al. (7) √

Betacellulin BTC Binds to ErbB-1 
and ErbB-4 
receptors to initiate 
PI3K/Akt, MAPK, 
STAT, and mTOR 
signaling pathways

Upregulates insulin secretion Dahlhoff et al. (65)  
 
 

√

√
√
√

Upregulates mRNA and protein expression of IRS-2 Oh et al. (68)
Induces Pax4 gene expression in rat islets Brun et al. (70)
Sustains PDX1 expression and induces β cell differentiation from hESCs Cho et al. (71)

10 ng/ml BTC Upregulates Pdx1 gene expression and insulin production Thowfeequ et al. (72) √
Downregulates amylase and glucagon production in mouse embryonic pancreas explants

20 ng/ml BTC Induces pancreatic differentiation Pagliuca et al. (7) √
50 ng/ml EGF Preserves cell mass Schulz et al. (17) √

BTC, Betacellulin; DAPT, N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester; GPx-1, glutathione peroxidase-1; GSiXX, γ secretase inhibitor XX; ILV, (−)-indolactam V; NAC, N-acetylcysteine; PDBu, phorbol 
12,13-dibutyrate; PMA, phorbol-12-myristate-13-acetate; T3, l-3,3′,5-Triiodothyronine; TPB, [(2S,5S)-(E,E)-8-(5-(4-(trifluoromethyl)phenyl)-2,4-pentadienoylamino) benzolactam].
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lipid-soluble vitamin A derivative synthesized from the oxida-
tion of retinaldehyde via enzymes retinaldehyde dehydrogenase 
1 (RALDH1), RALDH2, and RALDH3. RA produced at the 
splanchnic lateral plate mesoderm and Raldh2 expressed in 
the dorsal pancreatic mesenchyme promote Pdx1 induction in 
the dorsal foregut endoderm (Figure 1A). Raldh2 mutant mice 
exhibit dorsal pancreatic bud agenesis (29) as they fail to form 
pancreatic progenitors, indicated by the loss of Pdx1, Prox1, 
altered Isl1, and reduced Hlxb9 expression (29, 30).

Many existing protocols differentiating hPSCs into pancreatic 
cells utilize 1–3 μM RA. As an alternative, Schulz et al. replaced 
RA with 3 nM TTNPB/arotinoid acid – a more stable retinoid 
analog that can selectively activate RA receptors (RARs) (17). 
Interestingly, Rezania et  al. started out using 1  μM RA during 
the early posterior foregut differentiation, subsequently reducing 
to 100 nM RA during pancreatic endoderm phase and further 
reducing to 50  nM during the pancreatic endocrine phase (6). 
Pagliuca et al. also reported a similar pancreatic differentiation 
protocol in which a decreasing dose of RA was used, starting with 
2 μM followed by 100 nM RA at later stages, which was eventually 
reduced to 25 nM (7) (Figure 1B; Table 1).

While it is widely accepted that RA is crucial for pancreatic 
specification, using progressively lower doses of RA as prac-
ticed by Rezania et al. (6) and Pagliuca et al. (7) raises questions 
about the importance of RA concentrations during pancreas 
development both in vitro and in vivo. RA signals by binding 
RARs and retinoid X receptors (RXRs); so it is postulated that a 
decrease in RA signaling may be more conducive for subsequent 
pancreatic endocrine specification since retinoid receptors are 
upregulated in the pancreatic exocrine (31). However, given the 
lack of understanding in this regard, the significance of the dose 
of RA during human pancreas development warrants further 
studies.

inHiBiTinG γ-SeCReTASe/nOTCH FOR 
ACCeLeRATeD PAnCReATiC 
enDOCRine DiFFeRenTiATiOn

Notch signaling is essential for the proper development of 
pancreatic endocrine progenitors as it regulates their decision 
between differentiation and proliferation (32). The reduction 
of Notch signaling is known to promote accelerated pancreatic 
endocrine differentiation (33). Similarly, the inhibition of Notch 
signaling via γ-secretase (an intra-membrane protease) inhibitor 
can downregulate the expression of Notch target Hes-1, an inhibi-
tor of pro-endocrine gene Ngn3 (34) (Figure  1A). Conversely, 
the activation of Notch in PDX1+ pancreatic progenitors prevents 
pancreatic differentiation (35).

N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine 
t-butyl ester (DAPT) is a commonly used γ-secretase inhibi-
tor with an IC50 in the nM range. The inhibition of Notch 
signaling with DAPT can increase Ngn3 mRNA and protein 
expression in adult islets (36). Likewise, DAPT increases NGN3 
and NEUROD1 gene expression in hPSC-derived pancreatic 
progenitors (18). In recent protocols developed by Pagliuca 

et al. (7) and Rezania et al. (6), other γ-secretase inhibitors have 
been employed to retard Notch signaling. Rezania et  al. used 
γ-secretase inhibitor XX (GSiXX) that has an IC50 in the low 
nM range. They showed that GSiXX can induce the expression 
of β cell maturation genes but inhibit the expression of PTF1A, a 
marker of pancreatic exocrine lineage (6). GSiXX can also act in 
concert with triiodothyronine (T3) to increase the percentage of 
NKX6.1+INS+GCG− β-like cells (6). Alternatively, Pagliuca et al. 
employed the use of XXI at 1 μM (7), which has an IC50 in the 
picomolar range, and demonstrated that XXI worked with other 
factors to improve β cell gene expression (Figure 1B; Table 1). 
However, it remains unclear whether there are differences 
between DAPT, GSIXX, or XXI in the induction or suppression 
of key pancreatic transcription factors for the eventual promo-
tion of pancreatic β cell formation.

TRiiODOTHYROnine COULD PROMOTe 
PAnCReATiC β CeLL MATURATiOn

Studies in the 1980s suggest that thyroid hormones regulate 
insulin secretion, possibly via control over glucose oxidation and 
calcium uptake rates (37). T3, a thyroid hormone, can potenti-
ate insulin signaling and increase insulin synthesis in diabetic 
rodents (38), in rodent islets (39), and in a rodent pancreatic β cell 
line (40) (Figure  1A). Mechanistically, T3 phosphorylates and 
activates AKT in pancreatic β cells, improving their survival (39, 
41); 0.1 μM of T3 can increase rodent pancreatic β cell prolifera-
tion via the MAPK/extracellular signal-regulated kinase (ERK) 
signaling pathway (42). Interestingly, T3 apparently induces 
the transdifferentiation of human pancreatic ductal cell line 
(hPANC-1) into β-like cells, with an increased expression of INS 
transcripts (43). T3 can also increase both the mRNA expression 
of pro-endocrine gene Ngn3 and the number of β cells, indirectly 
inducing endocrine differentiation from exocrine cells; possibly 
via Akt signaling (44).

Of late, T3 has been shown to promote pancreatic β cell 
maturation and proliferation in rats (45). Based on these findings, 
Rezania et al. went on to demonstrate that 1 μM of T3 can actu-
ally induce the expression of INS and mature β cell markers, and 
enhance the co-expression of NKX6.1 and INSULIN protein (6). 
Similarly, Pagliuca et al. employed the same dose of 1 μM T3 in the 
later stages of their pancreatic differentiation protocol to generate 
human pancreatic β cells from hPSCs (7) (Figure 1B; Table 1). 
While the biology and role of T3 in pancreatic β cell maturation 
remains to be explored further, its inclusion in pancreatic dif-
ferentiation protocols appears to serve a positive function.

inHiBiTiOn OF TYROSine KinASe 
ReCePTOR AXL inDUCeS MATURe 
PAnCReATiC β CeLL MARKeR (MAFA) 
eXPReSSiOn

AXL is a member of the Tyro3-Axl-Mer (TAM) trans-
membrane receptor tyrosine kinase (RTK) family that plays 
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an important role in essential cellular processes, such as cell 
survival, growth, proliferation, and differentiation. Its ligand, 
growth arrest specific 6 (Gas6), binds AXL to activate down-
stream signaling, including the phosphoinositide 3-kinase 
(PI3K), ERK, and signal transducer and activator of transcrip-
tion 3 (STAT3) signaling (46). Interestingly, Rezania et  al. 
performed small molecule and growth factor library screening 
to identify compounds that can induce mature β cell marker 
MAFA from hPSC-derived pancreatic progenitors and found 
that 2  μM BGB324 (R428), an inhibitor of AXL, can induce 
MAFA protein expression (6) (Figure 1B; Table 1). However, 
there is little information linking AXL to pancreas develop-
ment and β cell maturation.

In 1999, Augustine et al. reported that the overexpression of 
AXL results in diabetes in mice. Furthermore, the administra-
tion of exogenous Gas6 exacerbated the condition (47). Haase 
et  al. recently confirmed that GAS6 is expressed in pancreatic 
tissues and found that GAS6 reduced Mafa gene expression in 
rodents (48), likely due to the activation of AXL (Figure 1A). This 
corresponds with the increase in MAFA expression observed by 
Rezania et  al. after the inhibition of AXL signaling (6). While 
there seems to be a bona fide association between AXL signaling 
and pancreas development, the cellular mechanism(s) remain a 
mystery.

AnTiOXiDAnTS MAY BeneFiT 
PAnCReATiC DiFFeRenTiATiOn

Excessive levels of reactive oxygen species (ROS) have 
been implicated in glucotoxicity-induced pancreatic β cell 
destruction and dysfunction. In this regard, antioxidants 
play important defensive roles against ROS. In the endocrine 
pancreas, the antioxidant vitamin C is known to be an effective 
co-factor for the peptidyl α-amidation of several biologically 
active peptides and is necessary for optimal insulin secretion 
from pancreatic β cells (Figure 1A). In fact, high concentra-
tions of ascorbic acid (vitamin C) were found in neonatal 
rat endocrine pancreas (49). Mechanistic studies involving 
other antioxidants, such as glutathione peroxidase-1 (GPx-1), 
N-acetylcysteine (NAC), and ebselen, were reported to main-
tain the protein expression of mature β cell marker MAFA 
(20–22) (Table 1).

Interestingly, Rezania et al. used 1–2 mM NAC during their 
pancreatic differentiation and found that it also increased nuclear 
MAFA protein expression (6). However, this was not replicated 
with another antioxidant, vitamin E. Pagliuca et  al. also relied 
upon the use of 0.25 mM of vitamin C throughout S1–S5 phase of 
their pancreatic differentiation protocol to generate mature and 
functional human pancreatic β cells (7) (Figure  1B; Table  1). 
While the metabolism of vitamins C and E are altered before 
the onset of diabetes in rats, their contribution to the pancreas 
is unclear (50). Antioxidant treatments may preserve β cell func-
tion, exerting positive effects in diabetes (51), but their role in 
pancreas development and β cell maturation certainly remains 
elusive.

BeTACeLLULin DiReCTS A PAnCReATiC 
β CeLL FATe

Betacellulin (BTC) is a member of the epidermal growth factor 
(EGF) family that plays a role in the differentiation of pancreatic 
β cells (52) (Figure 1A). It is largely expressed in the liver, kidney, 
small intestine, and pancreas (53), and is specifically expressed 
in 9- to 24-week-old human fetal pancreas (54). BTC binds to 
ErbB-1 and ErbB-4 receptors (55) to initiate downstream sign-
aling pathways involving PI3K/Akt, MAPK, STAT, and mTOR 
signaling pathways (56).

Betacellulin appears to direct a pancreatic β cell fate. It can con-
vert exocrine cells (57) and α cells (58) into insulin-secreting cells. 
It can also induce β cell neogenesis from ductal cells in diabetic 
mice (59). Li et al. demonstrated that exogenous BTC can promote 
β cell regeneration in 90% pancreatectomized rats (60) and convert 
δ to β cells in STZ-induced diabetic mice (61). Also, Yamamoto 
et  al. observed that long-term administration of BTC reverses 
STZ-induced hyperglycemia in mice (62). Surprisingly, the loss of 
BTC in mice yielded no overt defect (63) despite their active roles 
in the pancreas. This could be explained by compensatory effects 
exhibited by the other EGFR ligands (64). The overexpression of 
BTC in transgenic islets does not affect islet structure, endocrine 
cell ratio, or β cell mass but enhances glucose-stimulated insulin 
secretion (65). However, ubiquitous overexpression of BTC in 
mice results in various pathologies (66). Intriguingly, gene vari-
ants and polymorphisms in the BTC gene have also been found to 
be associated with types 1 and 2 diabetes (54, 67).

The induction of β cell development/differentiation by BTC (52) 
could be an outcome of the downstream increase in insulin recep-
tor substrate-2 (IRS-2) expression (68), an important mediator of 
β cell function (69). BTC can induce Pax4 gene expression in rat 
islets, promoting β cell functionality (70). It can also sustain PDX1 
expression and induce β cell differentiation from hPSCs (71). Ten 
ng/ml BTC are sufficient to increase Pdx1 gene expression, insulin 
production, and to inhibit amylase and glucagon production in 
mouse embryonic pancreas explants (72). Lately, Pagliuca et  al. 
employed 20  ng/ml BTC in the later stages of their pancreatic 
differentiation protocol (7). Similarly, 50 ng/ml EGF was added to 
preserve cell mass (17) (Figure 1B; Table 1). These data strongly 
indicate that BTC and/or other EGF ligands are of importance in 
pancreas development and β cell maturation. Nonetheless, more 
detailed molecular mechanisms remain to be uncovered.

COnCLUDinG ReMARKS

Relating to the current most advanced human pancreatic β cell 
differentiation protocols, the biological mechanisms involved in 
the later stages of β cell development and maturation still remain 
elusive. The fact that the postnatal stage in rodents is grossly 
equivalent to the third trimester in human pancreas development 
(73) invites new approaches to study this aspect of β cell biology. 
In this review, we revisited some of the least-understood devel-
opmental signaling pathways in rodent pancreas biology. Our 
efforts unraveled interesting aspects of these signaling pathways 
that demand to be thoroughly elucidated at the mechanistic level. 
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Future studies should seek to highlight how immature β cells 
transit into mature and functional β cells. This would certainly 
advance our knowledge of human pancreas developmental biol-
ogy and boost translational efforts in the use of stem cells for 
diabetes treatment.
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In recent years, genome-wide association studies (GWAS) have identified hundreds of loci and thou-
sands of single-nucleotide polymorphisms (SNPs) associated with type 2 diabetes mellitus (T2DM) 
and obesity traits [such as body mass index (BMI) and waist–hip ratio (WHR)] in the human popula-
tion (1–4). The vast majority of these SNPs are in non-coding regions of the genome and distal to 
promoters, suggesting they act through gene regulation which makes their functional interpretation 
challenging (5). Collectively, comparing the epigenetic landscape between mouse and human has 
established new pathways involved in obesity and diabetes, and in fact, inter-species conservation 
has successfully been used as criteria in finding functional and disease-relevant elements (6–8). By 
contrast, genome-wide comparative analysis of the mouse and human epigenome across tissues has 
highlighted the presence of cis-regulatory divergence (9, 10). New mouse engineering approaches 
together with bioinformatics dissection of trait-associated regions, for example, epigenetic modifica-
tions and genome interactions hold great promise to fully understand the underlying mechanisms 
of human disease-associated non-coding variants in T2DM and obesity.

THE COnTEXT-SpECiFiC nATURE OF HUMAn GWA SiGnALS  
in HUMAn

Over 80% of loci identified by GWAS are in intergenic and intronic regions and many of these genetic 
risk regions are enriched for histone modifications (5), suggesting they act as regulatory elements 
which appear to function in a highly cell-selective manner. Due to the tissue specificity as well as 
the developmental and epigenetic complexity of gene regulation, functional approaches require the 
study of the relevant tissue and cell type as well as genetic and bioinformatics approaches that reliably 
assess the regulatory role of non-coding variants (7, 11, 12). Ongoing progress in high-throughput 
sequencing and the development of new experimental tools are greatly advancing our capacity to 
study chromatin biology and genome function. In particular, ChIP-seq allows identification of 
transcription factor binding sites and chromatin states; chromosome conformation capture-based 
techniques (including 3C, 4C, 5C, CaptureC, and HiC) allow the study of chromatin interactions; 
and DNase hypersensitivity or ATAC-seq can identify accessible chromatin (13–16). Additionally, 
tools like HaploReg (17), Enlight (18), RegulomeDB (19), and The Islet Regulome Browser (11) are 
emerging that allow the integration of GWAS results with genetic and epigenetic annotations that 
can be used to dissect the gene regulatory networks that underpin genomic association signals.

By integrating the information gained from functional genomics efforts such as the ENCODE 
(5) and Roadmap Epigenomics projects (20) together with expression quantitative trait loci (eQTL) 
results and functional studies, it becomes increasingly clear that adipose tissue is one of several key 
effectors of genetic risk loci for T2DM and obesity trait associations, particularly for WHR signals 
(2, 7, 21, 22). However, there is currently still a lack of comprehensive maps linking distal elements 
that harbor disease-associated variants with their target genes in relevant tissues and developmental 
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stages. Furthermore, extensive fine-mapping of risk associations 
is crucial in order to narrow down the association signal to the 
likely causative variants which can then be functionally investi-
gated (23). This has resulted in many studies being performed 
assuming that the closest gene to a given disease-associated 
signal is the causative one. Traditionally, target genes based on 
proximity to a signal were selected to model in the mouse using 
global or tissue-specific gene knockout or overexpression alleles 
to characterize gene function (24). However, with this approach, 
many target genes for GWA signals have potentially been over-
looked, for example, in the case of the BMI-associated variants 
in Fto (25, 26). An additional level of complexity comes with the 
possibility for an association signal—that usually harbors dozens 
of SNPs—to potentially contain a number of disease-causing 
variants that might act in different tissues and/or at different 
times, affecting different genes. For example, there is currently 
evidence for intronic FTO risk variants to alter the expression 
of nearby genes in both adipose tissue and brain. An eQTL in 
human cerebellum links re9930509 to altered IRX3 expression 
(25), rs1421085 has very convincingly been shown to be located 
within an enhancer for IRX3 and IRX5 in adipocyte precursors (7, 
26) and rs1421085 and rs8050136 have been proposed to selec-
tively alter FTO and RPGRIP1L expression in human-induced 
pluripotent stem cell-derived neurons (27). Therefore, mouse 
models which could help pinpoint variants, target genes, and 
relevant tissues would prove invaluable in the mechanistic dis-
section of human disease-associated sequence variants. However, 
whether it is possible to use the mouse for modeling regulatory 
variants (which is essential to capture the relevant spatiotemporal 
effects) will depend on the functional conservation of the regula-
tory circuitry of a given signal in human and mouse.

COnSERVATiOn BETWEEn HUMAn  
AnD MOUSE

It is estimated that our last common ancestor with the mouse was 
about 90 million years ago (28). At this point, many of the core 
physiological regulatory mechanisms had evolved, for example, 
mouse and human share the same basic mechanisms for control-
ling food intake via leptin and hypothalamic anorexigenic and 
orexigeneic neurons, and similarly insulin and glucagon are core 
effectors in glucose homeostasis. However, there have clearly 
been many evolutionary changes over this long period of time. 
At the level of the genome, chromosome number and organiza-
tion have changed, although it is striking how large tracts of 
DNA have conserved their order of genes and show high coding 
sequence conservation (29). Thus, if we wish to use the mouse 
as model of human metabolic disease we can rely on much of 
the core conservation of ancient metabolic pathways and their 
regulation but cannot ignore the fact of their continued evolution 
that adapts and changes these mechanisms for the survival of 
two very different organisms. The mouse ENCODE Consortium 
reported that comparative gene expression data from human and 
mouse reveals that some sets of genes tend to cluster more by 
species than by tissue and vice versa (29). More recently, it has 
been suggested that gene clustering by tissue rather than species 

is much stronger than originally thought (30). Interestingly, 
single-cell sequencing of human and mouse pancreatic alpha and 
beta cells showed good cross-species correlation of transcrip-
tomes although with some important species differences (31). 
Finally, Breschi et al. (32) describe how transcriptomes show a 
continuum of variation from species dominated clustering to 
organ dominated clustering. Importantly, for modeling GWA 
signals in other species, genes that varied little between species 
(and are more organ-specific) are more likely to overlap with 
human risk variants (32).

EpiGEnOMiC COnSERVATiOn BETWEEn 
HUMAn AnD MOUSE—inSiGHTS FROM 
THE MOUSE EnCODE COnSORTiUM

Some of the other key findings of ENCODE in the mouse 
genome were that human and mouse trans-regulatory networks 
(transcription factor networks) are considerably more conserved 
than the cis-regulatory landscape, which in fact accounts for the 
majority of regulatory plasticity between human and mouse (28, 
29). At the same time, the degree of divergence of regulatory ele-
ments varies widely between different types of elements that are 
active in different tissue contexts (9, 28). The Mouse ENCODE 
Consortium (29) demonstrated that 79.3% of mouse candidate 
enhancers (predicted by patterns of histone modifications) 
and 66.7% of transcription factor binding sites have sequence 
orthologs in humans. Further, 61.5% of tested candidate 
mouse-specific enhancers also show enhancer activity in human 
embryonic stem cells in a reporter assay (29), suggesting a degree 
of functional conservation between human and mouse gene 
regulation. Based on this level of conservation, it is intriguing 
to ask the question whether mouse chromatin states could be 
used to identify potential sites for functional characterization in 
mouse for human GWAS hits. Mapping 4,265 SNPs from human 
GWAS studies onto the mouse genome using 15 mouse samples 
revealed that human GWAS hits are associated with specific 
chromatin states in relevant mouse tissues (29). For example, 
in mouse kidney, H3K4me1 is enriched in specific GWAS hits 
associated with urate levels and metabolites. For mouse liver-
specific H3K36me3, GWAS hits related to HDL cholesterol and 
triglyceride levels are enriched. Together, 55% of mapped SNPs 
overlapped with at least one histone mark in mouse (29). These 
results suggest that histone modification marks can be used to 
inform about human risk variants and for the identification of 
candidate functional sequences for characterization of human 
GWAS hits in mouse.

Furthermore, SNPs with high regulatory potential are 
enriched in conserved transcription factor binding sites (19). 
Cheng et  al. (33) show that conserved sequences occupied by 
orthologous transcription factors in human and mouse are 
enriched for GWAS variants. When investigating whether this 
is true for individual phenotypes, they found that SNPs associ-
ated with type I diabetes and several other traits are significantly 
enriched in conserved transcription factor binding sites, with 13 
out of 20 type 1 diabetes SNPs being in conserved binding sites. 
By contrast, all of the SNPs associated with pulmonary function 
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FiGURE 1 | Functional validation of variants in human and mouse. An integrative approach for the generation of meaningful and informative mouse models of 
human Genome-Wide Association Study (GWAS) signals. Deciphering the underpinnings of an association signal in the human context is essential. For mechanistic 
studies in vivo, a human-to-mouse epigenomic comparison can guide the choice of a relevant mouse model, e.g., in the case of low or insufficient functional 
conservation of a regulatory site (or the lack of data sets that can determine the latter) a classical tissue-specific target gene manipulation can prove valuable; in the 
case of a high functional conservation (based on genomics and bioinformatics dissection of the loci), a model that selectively manipulates the regulatory region can 
in principle be useful. Comparing the human–mouse epigenome can be expected to become increasingly powerful with the improvement of quality as well as the 
comprehensiveness of genomic data sets and tools. The translational utility will depend on the mouse model chosen and the information gained can feedback and 
help interpret human GWAS signals.
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were found to be human-specific, suggesting that besides GWAS 
SNPs generally being enriched in conserved regulatory elements, 
that this enrichment is dependent on the trait (33). Whether this 
is the case for T2DM and obesity traits association is yet to be 
investigated. With continuous efforts and the increase in available 
mouse genome data sets, it will become possible to draw conclu-
sions about the human–mouse conservation of transcription fac-
tor occupancy and enrichment of GWAS SNPs in adipose tissue. 
Indeed, on a cellular level, a systematic comparison between the 
human and mouse epigenome during adipocyte development and 
in different fat depots is largely missing, and Mouse ENCODE 
has currently only limited adipose tissue datasets that could be 
matched to human. Though, Mikkelsen et  al. (34) generated a 
comparative analysis of chromatin state maps together with gene 
expression profiles from human adipose tissue and mouse 3T3-
L1 at four time points during differentiation. They showed that 
although a significant amount of open chromatin in orthologous 
regions were shared between the two models (15–30%), most of 
them were species-specific. While we are not proposing that this 
affected the key findings of this study, it is worth pointing out that 

comparing a mouse cell line and primary human tissue-derived 
pre-adipocytes with their accompanying ontogenetic differences 
can potentially hinder the interpretation when using these data 
sets for dissecting specific GWAS loci with the aim to establish 
relevant functional sites.

Taken together, although the cis-regulatory landscape has 
substantially diverged between human and mouse on a global 
level, human trait-associated SNPs are enriched in sites that 
are conserved between the two species for the majority of traits 
investigated.

THE pOTEnTiAL FOR nEW STRATEGiES 
in MOUSE MODEL EnGinEERinG

With our current knowledge of the context-specificity of gene 
regulation and consequently the many layers of complexity 
of most GWAS signals, it becomes increasingly clear that it is 
necessary to study and understand the underlying regulatory 
network in the relevant human tissue (Figure  1). In the past, 
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a successful approach to studying the function of individual 
candidate genes in vivo has been achieved by generating global 
knockout and overexpression models (24). However, these 
models do not resemble the tissue-specific nature of alterations 
in regulatory elements. Tissue-specific target gene manipula-
tion using CRE drivers can be a powerful tool to overcome this 
problem. However, another challenge comes with the current lack 
of reliable pre-adipocyte-specific CRE lines that can be used to 
assess the tissue-specific effect of identified target genes in cases 
of pre-adipocyte-specific signals. Recent advances in genome 
engineering, namely CRISPR/Cas9, opened the opportunity to 
conveniently alter any regulatory sequence of interest (35). In 
other words, it is now possible to genome edit transcription fac-
tor binding sites and enhancer elements in the mouse which in 
principle has the potential to create mouse models of human risk 
variants that (i) are cell type-specific; (ii) alter all target genes; 
(iii) alter target genes at the relevant level and direction; and (iv) 
alter target genes at the relevant time of development (Figure 1).

COnCLUSiOn AnD FUTURE DiRECTiOnS

The majority of human genetic variants associated with common 
metabolic disease traits are located within distal regulatory ele-
ments. With our current knowledge of gene regulation and the 
context-specificity of the signal, it is necessary to understand the 
signal in human. Identifying targets and context is crucial in engi-
neering a relevant mouse model. A comprehensive human-to-
mouse epigenomic comparison can be informative about human 
risk variants. Although intriguingly, whether manipulation of 
regulatory elements will become a tool to dissect human obesity/
T2DM risk variants in the mouse will depend on the functional 
conservation of a given signal. This is yet to be established and 
offers an exciting avenue to explore.

GLOSSARY

ATAC-seq—assay for transposase-accessible chromatin followed 
by high-throughput sequencing. This technique allows the iden-
tification of open chromatin.

BMI—body mass index. A measure of body weight that takes 
account of an individual’s size and calculated by dividing body 
weight by height squared.

ChIP-seq—chromatin immunoprecipitation followed by 
high-throughput sequencing. This technique allows the identi-
fication of DNA fragments that are bound by a specific antibody.

Cis-regulatory—non-coding DNA sequences in or near a 
gene required for its spatiotemporal expression that characteristi-
cally contain transcription factor binding sites.

CRE—Cre recombinase recognizes DNA sequences known 
as LoxP sites and when a pair of sites is provided in the same 

orientation this leads to deletion of the intervening sequence. In 
this way, a segment of DNA such as a key exon (said to be floxed) 
can be deleted resulting in, for example, a null mutation. This can 
be done in vivo by gene editing to place LoxP sites in the required 
location and then crossing animals that carry this modification 
to Cre recombinase strains, which then results in recombination. 
The expression of Cre recombinase can be driven by a promoter 
of choice either as a transgene or knocked into an endogenous 
gene promoter. Thus, the recombinase can be expressed in specific 
tissues as required allowing cell- or tissue-specific recombination, 
i.e., for the generation of a conditional knockout.

Epigenome—a network of chemical compounds (for example, 
DNA methylation or histone modifications) surrounding DNA 
that modify the genome without altering the DNA sequence 
itself. These modifying elements play a role in determining which 
genes are active in a particular cell at a particular time.

eQTL—expression quantitative trait loci are genomic loci that 
contribute to variation in the expression levels of mRNAs. For 
example, in individuals in a population inheriting SNP allele A, 
the expression of gene Y is found to be quantitatively increased 
or decreased on average relative to the other SNP alleles inherited 
across the population assayed. This is a correlated trait rather than 
a direct functional link between a SNP and the expression of a 
gene. Further, any particular SNP marks a haplotype (a linked 
co-inherited group) of SNPs and as such represents a locus.

GWAS—Genome-Wide Association Study.
iPSC—induced pluripotent stem cell.
SNP—single-nucleotide polymorphism.
T2DM—type 2 diabetes mellitus.
Transcriptome—the entire mRNA expressed from the genes 

of a cell.
Trans-regulatory—in the context of transcriptional regula-

tion, a trans-acting element is usually a DNA sequence that con-
tains a gene. This gene encodes for a protein (or other molecules 
such as microRNA) that will regulate another target gene.

WHR—waist-to-hip ratio.
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Genome-wide association studies (GWAS) have been highly successful in identifying genetic 
variation associated with type 2 diabetes (T2D) risk and related quantitative traits (1–3). The vast 
majority of association signals are located in non-coding regions of the genome, influencing nearby 
genes through regulation of transcriptional, translational, or splicing activity (4). Due to the highly 
context-dependent nature of gene expression, the effects of many risk variants are restricted to spe-
cific cell types and produce more subtle effects than those observed in organism-wide (or “global”) 
knockouts. In addition, identification of the underlying causal genes and target tissues is often a 
major challenge, hindering translation into disease mechanisms. Recent studies have shown that 
the intersection of genetic data and genomic annotations can be used to produce a cellular atlas 
with which to understand the phenotypes of GWAS signals. Through the generation of directed 
hypotheses, this integrated framework has the potential to bridge the gap between association signals 
and disease biology.

THE BASiS FOR TiSSUE SpECiFiCiTY

Across the human population, differences in complex traits, such as height and disease suscepti-
bility, are influenced by the presence of single-nucleotide polymorphisms (SNPs). Some of these 
genetic variants modulate binding of transcription factors (TFs), which in turn drive differences 
in gene expression (5, 6). TF binding is also influenced by co-factors and chromatin state, which 
are highly dependent on cell type and developmental stage. To establish and maintain cellular 
identity, cell-type-specific TFs tend to bind in clusters, often referred to as cis-regulatory modules 
(7–9). Intriguingly, association signals for T2D have been found to show a significant overlap with 
islet-selective enhancer clusters (9, 10). Although other tissues have also been implicated in T2D 
susceptibility, this is consistent with physiological studies establishing islet dysfunction as a central 
mechanism of disease-associated variants (1, 11–13).

The overlap between T2D signals and enhancer clusters suggests that the effect of risk variants 
could be subject to the same tissue specificity observed at the level of regulatory activity (11). In other 
words, a motif-altering allele would only be expected to produce a molecular phenotype in those 
contexts (cell type or developmental stage) where the binding site has the potential to be occupied. 
In support of this notion, T2D risk variants were found to be enriched for nearby binding sites of 
the pioneer TF FOXA2 in islet and liver (14). T2D-association signals also show a significant overlap 
with SNPs affecting islet expression of regional transcripts, so-called cis-expression quantitative trait 
loci (cis-eQTL), most of which are not found to be eQTLs in other tissues (15). Together, these 
general observations outline some of the context-dependent effects that T2D risk variants can be 
subject to.
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COnTEXT SpECiFiCiTY OF CAUSAL 
MECHAniSMS FOR T2D SUSCEpTiBiLiTY

Recent studies have provided more specific evidence to support 
the notion that context specificity is a key aspect of GWAS causal 
mechanisms. The following cases collectively provide examples 
of mechanisms where studying the right tissue, species, and 
developmental stage proved critical to uncovering the relevant 
phenotypes.

At the MTNR1B locus, a convergence of evidence has pointed to 
effects of a non-coding T2D-association signal on the pancreatic 
β cell. Physiological studies have revealed a phenotype indicative 
of β-cell dysfunction in risk-variant carriers, with some evidence 
for additional effects on insulin action (12, 16, 17). Fine-mapping 
efforts identified a single likely causal variant that overlaps active 
islet and liver enhancers, and a cis-eQTL for MTNR1B in islets 
(14, 15, 18, 19). The risk allele, which increases islet MTNR1B 
expression, was predicted to create a NEUROD1 binding site and 
shown to selectively bind this key TF in human β cells. These 
results establish a likely causal mechanism for the non-coding 
risk allele, and illustrate how motif-altering alleles can generate 
highly tissue-specific effects. Surprisingly, exon re-sequencing of 
the MTNR1B gene has also shown coding loss-of-function (LOF) 
mutations to be associated with increased risk of T2D (20). The 
reason for the opposite directions of effect observed for coding 
and non-coding risk variants is unclear but may reflect differ-
ences between global and islet-specific roles of MTNR1B.

In the case of PTF1A, studying the right tissue proved neces-
sary but not sufficient to elucidating the underlying mechanism 
for non-coding mutations in the region. Previous work had 
identified a group of patients suffering from unexplained isolated 
pancreatic agenesis, which includes neonatal diabetes as a clinical 
feature (21). To filter causal mutations from incidental variation, 
one study used pancreatic endoderm to define regulatory regions 
that are active during pancreatic development (22). Their strategy 
identified a distal enhancer that harbors mutations abolishing 
enhancer activity toward PTF1A (23). Coding LOF variants in 
PTF1A had previously implicated the gene in syndromic pan-
creatic agenesis, characterized by severe neurological features in 
affected individuals. The observation that the identified enhancer 
region is not active in any cell type other than pancreatic endo-
derm provides a plausible explanation for the absence of any 
cerebral defects (22). Remarkably, even adult pancreatic tissue 
did not show active chromatin marks in the region, highlighting 
that studying the right developmental stage was critical to the 
success of the approach.

The mechanisms underlying GWAS signals are sometimes 
studied using individuals that carry LOF mutations in positional 
candidate genes. The observed phenotypes will be a function of 
global effects across all the tissues where the gene is expressed, 
which may confound or mask the more context-dependent 
actions of regulatory risk alleles. At the CDKN2A locus, non-
coding T2D signals have been robustly associated with measures 
of islet dysfunction, and a number of studies have established 
effects of CDKN2A on insulin secretion and cellular senescence 
in β-cells (12, 24, 25). By contrast, coding LOF mutations in 
CDKN2A, which are a cause of familial melanoma, were recently 

shown to result in a metabolic phenotype consistent with effects 
on both liver and β-cells (26). This discrepancy was proposed 
to arise from islet-specific TF binding of the enhancer region 
containing the T2D signals.

In animal studies, context-dependent knockouts can provide 
improved spatial and temporal resolution for targeting candidate 
causal genes. Even so, the disease relevance of the observed 
phenotypes is determined by the confidence with which the 
target tissue of the risk allele is known. One example is provided 
by an intronic T2D signal at the TCF7L2 locus, which has been 
the focus of conflicting observations. Tissue-specific knockout 
studies have demonstrated primary roles of TCF7L2 in a number 
of different tissues, including liver and islets, whereas the non-
coding GWAS signal has been consistently associated with a 
relatively narrow insulin secretion defect. Genomic annotations 
provide a clue as to the underlying reason, with the risk variants 
being located in an islet-specific region of open chromatin (8, 10, 
27). Furthermore, the region has chromatin marks indicative of 
regulatory activity in islets, but not in a wide range of other tissues 
(10). The annotations can, thus, be applied as a filter to exclude 
non-disease-relevant tissues, and guide efforts to study the effect 
of the risk allele in the most appropriate context.

Coding GWAS variants can also produce context-dependent 
mechanisms through the restricted expression of gene isoforms. 
A striking example of this is provided by a coding variant 
identified in the TBC1D4 gene in a small founder population 
of Greenlandic Inuit (28). The risk allele, which produces a 
truncated transcript that results in nonsense-mediated decay, is 
positioned in an exon excluded from the short isoform of the 
transcript. Unlike the widely expressed short isoform, the long 
form is predominantly expressed in skeletal muscle (29). The 
decreased insulin sensitivity resulting from reduced expression 
of TBC1D4 is, therefore, selectively imposed on muscle tissue. As 
a result, the risk variant has a different effect on fasting glucose 
from that observed in individuals carrying LOF mutations affect-
ing both isoforms (28).

Similar to alternative spliceforms, gene homologs can con-
tribute to concealing the primary effect of a GWAS signal in a 
specific context. At the ADCY5 locus, T2D risk alleles have been 
linked to both decreased islet expression of the ADCY5 gene and 
β-cell dysfunction, though the underlying molecular mechanism 
remains unclear (12, 15). Expression studies in rodents have 
shown Adcy5 to be nearly undetectable compared with the closely 
related homolog Adcy6 (30, 31). By contrast, human islets show 
roughly equal expression of these orthologous genes, hinting at a 
non-conserved function of ADCY5 between the species (30, 32). 
It also highlights an underlying species-specificity that makes 
rodents less well suited as models for mechanistic studies.

LiMiTATiOnS OF TRADiTiOnAL 
AppROACHES

The examples above demonstrate that the molecular pheno-
types of GWAS signals can be modulated by a multitude of 
context-dependent factors. In the case of non-coding variants, 
tissue- or developmentally restricted activity of the surround-
ing chromatin can limit effects on gene expression. For coding 
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FiGURE 1 | Translating GWAS signals into disease mechanisms using traditional and integrative approaches. The top panel shows a schematic 
representation of a GWAS locus with a non-coding association signal for T2D risk located near two genes, A and B. The left-hand side represents the traditional 
approach followed for elucidating the causal mechanisms leading to a T2D phenotype. This approach can produce a range of phenotypes that are difficult to 
translate into causal GWAS mechanisms, because the selected genes are often knocked out globally (bottom left panel), or in a tissue-specific context that is 
irrelevant to understanding the effects of the T2D susceptibility phenotype (bottom center panel). Sequencing approaches can also be used to identify gain-of-
function mutations (not shown), which are subject to the same limitations. The right-hand side outlines an alternative approach using integration of emerging 
datasets to produce directed hypotheses. For optimal resolution, several types of genetic and genomic datasets can be integrated, including TF binding, enhancer 
regions (defined based on chromatin state), and cis-regulatory relationships (e.g., identified by cis-eQTL or chromatin-conformation capture studies). In this example, 
the GWAS signal is observed to disrupt an enhancer cluster with cis-regulatory activity toward gene B. Importantly, the disruption exclusively affects enhancer 
activity in disease-relevant tissues. This proposes a follow-up experiment for manipulation of gene B in a specific context (bottom right panel), producing a 
phenotype that is likely to be directly relevant to understanding the molecular basis of T2D susceptibility.
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variants, alternative splicing or expression of homologs can mask 
a broader phenotype to produce context-dependent effects. These 
insights have important implications for how we design studies to 
translate genetic signals into molecular mechanisms.

Traditionally, particular genes have been selected for follow-
up studies based on a combination of known candidate-gene 
biology and proximity to the GWAS signal (Figure 1, left). For 
whole-organism gene knockouts, this could involve engineering 
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of animal models or using genetic testing to identify individu-
als carrying LOF variants. As discussed, the relevance of these 
approaches for delineating disease-relevant mechanisms is 
limited by the potential for unspecific global phenotypes. Tissue-
specific knockouts provide higher spatiotemporal resolution but 
require the target tissue(s) of the GWAS signal to be known. 
Human physiological associations can narrow down the list of 
likely relevant tissues, but these measures are often too crude to 
pinpoint specific cell types.

In principle, using animal models to target non-coding 
regions could produce more precise disease models, but this 
strategy is constrained by the low conservation at the level of 
regulatory architecture. In a study of the Cdkn2a locus in mice, 
targeted deletion of a 70  kb non-coding interval established 
enhancer activity toward nearby genes, but the relevance to 
humans has been questioned by subsequent findings (33, 34). 
The region encodes a long non-coding RNA that has no clear 
ortholog in rodents, highlighting the possibility of divergent cis-
regulatory mechanisms. More generally, TF binding sites have 
been shown to diverge even faster than the underlying sequence 
itself (35). For two key liver TFs, the majority of binding events 
were shown to be species specific, while only 10–30% of hepatic 
enhancer clusters have corresponding rodent orthologs (36, 37). 
Although subsets of conserved clusters may aid in the prioritiza-
tion of causal variants, these observations suggest that a different 
approach is required to delineate GWAS mechanisms (37, 38).

Even in those cases where animal models do provide targeted 
gene manipulation in an appropriate context (whether through 
tissue-specific knockout or transcriptional dysregulation), the 
resulting phenotypes may not be directly relevant for under-
standing human disease. Though rodent models continue to be 
an important tool for studying type 2 diabetes pathogenesis, it has 
become increasingly clear that murine pancreatic islets differ in a 
number of ways from their human counterparts (39–41). Certain 
monogenic forms of diabetes are, therefore, not well recapitulated 
in rodents, and molecular mechanisms elucidated in animal 
models should be interpreted with caution (42).

TOWARD An inTEGRATED 
UnDERSTAnDinG OF GWAS SiGnALS

To successfully study disease-relevant phenotypes, experimental 
designs can be guided by the integration of genetic association 
data and genomic annotations (Figure 1, right). At the core of this 
framework is the overlaying of a static dataset – a list of variants 
linked to disease susceptibility and/or physiological traits – with 
layers of highly dynamic functional information that provide 
spatial and temporal dimensions. These layers encompass diverse 
datasets, and include information centered on single variants, 
such as histone marks and TF binding sites, and higher-order 
information that signifies relationships between distinct ele-
ments, such as chromatin interactions and cis-eQTL data.

Genomic annotations provide a cellular atlas with which to 
navigate and interpret genetic data in the context of specific cell 
types and developmental stages. For instance, if a set of likely 
causal variants has been identified from GWAS or fine-mapping 
studies, the tissue of action may be inferred from comparing 
chromatin states across cell types (8–11, 43–46). Conversely, 
if the target tissue is known from physiological associations, 
the causal mechanism can be pinpointed by overlaying with 
relevant functional annotations (14, 22, 47–51). This process 
generates a plethora of directed hypotheses that can be fol-
lowed up with specific functional experiments. Increasingly, 
such studies are likely to be focused on differentiated cells 
derived from human stem cells, which can provide disease 
models and chromatin maps that are both functionally and 
developmentally relevant.

The broader applicability of this approach is, in part, deter-
mined by the tractability of individual loci. For regions with 
extensive linkage disequilibrium, the arising complexity can 
hinder experimental follow-up. Starting from a limited set of 
credible variants is, thus, essential. More generally, the value 
in taking an integrative approach is dictated by the extent to 
which genomic annotations for disease-relevant tissues have 
been made available (or can be obtained). The construction 
of a truly integrated framework is an incremental and monu-
mental effort, facilitated by the Encyclopedia of DNA Elements 
(ENCODE) and the NIH Roadmap Epigenomics project, which 
together cover hundreds of tissues and epigenetic annotations. 
Since each dataset is merely a snapshot of a given cell type in 
a particular metabolic and developmental state, this on-going 
process will continue to produce an atlas with ever-finer spa-
tiotemporal resolution. For many hard-to-obtain organs, such 
as pancreatic islets, power to detect relevant genomic features 
is still limiting.

Even so, chromatin landscapes for tissues relevant to T2D have 
begun to emerge in recent years, enabling biological inferences 
to be made. As we have seen, this has successfully uncovered 
tissue- and species-specific effects of T2D risk variants. The 
insights have also provided compelling evidence to demonstrate 
that context-dependent phenotypes are not the exception but, in 
fact, a fundamental aspect of GWAS biology. In the coming years, 
we need to build on this paradigm to accelerate the translation of 
genetic findings into molecular mechanisms.
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Improving understanding of the genetic basis of human non-alcoholic fatty liver  disease 
(NAFLD) has the potential to facilitate risk stratification of affected patients, permit 
personalized treatment, and inform development of new therapeutic strategies. Animal 
models have been widely used to interrogate the pathophysiology of, and genetic predis-
position to, NAFLD. Nevertheless, considerable interspecies differences in intermediary 
metabolism potentially limit the extent to which results can be extrapolated to humans. 
For example, human genome-wide association studies have identified polymorphisms in 
PNPLA3 and TM6SF2 as the two most prevalent determinants of susceptibility to NAFLD 
and its inflammatory component (NASH), but animal models of these mutations have 
had only variable success in recapitulating this link. In this review, we critically appraise 
selected murine monogenic models of NAFLD, NASH, and hepatocellular carcinoma 
(HCC) with a focus on how closely they mirror human disease.

Keywords: steatosis, animal model, metabolic syndrome, steatohepatitis, genetic models

iNTRODUCTiON

Non-alcoholic fatty liver disease (NAFLD) is a pandemic disorder associated with premature 
morbidity and mortality. Its etiology is multifactorial, with both genetic predisposition and envi-
ronmental factors playing important parts (1). Animal models have been central to recent major 
translational research efforts, serving as discovery tools to identify new candidate pathogenic 
mechanisms, as a means of testing hypotheses arising from human studies, and as pre-clinical mod-
els in which to assess potential therapeutic strategies (2). There are multiple different experimental 
perturbations known to trigger NAFLD in animal models, which have been used to generate all 
components of the NAFLD spectrum (3–10). Such perturbations include genetic manipulation 
(e.g., ob/ob mouse), pro-steatotic or pro-inflammatory diets [e.g., methionine–choline deficient 
(MCD) diet], and toxic insults (e.g., streptozotocin injection). Combinations of these may be 
used to reflect the multifactorial nature of the human disease (e.g., ob/ob mice fed a MCD diet); 
however, a detailed discussion of rodent diets is beyond the scope of this review.

While animal models do potentially give key insights into the disease process that cannot be 
obtained through any other means, it is necessary to temper appreciation of this utility with under-
standing of the limitations of each of the models used.
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We, now, briefly review the current understanding of the 
genetic architecture of human NAFLD, and the major approaches 
adopted to modeling it in animals, while critically appraising the 
utility of these models.

OveRview OF NON-ALCOHOLiC FATTY 
LiveR DiSeASe PATHOGeNeSiS

Human NAFLD is defined by the presence of macrovesicular 
steatosis in more than 5% of hepatocytes in individuals with 
a history of less than 20  g/day ethanol intake (11). The dif-
ferentiation of macrovesicular from microvesicular steatosis is 
a qualitative histological assessment, and the two may coexist 
in more advanced disease (12). NAFLD exists as a pathological 
spectrum ranging from non-alcoholic fatty liver (NAFL, also 
known as “simple” steatosis), which denotes hepatic steatosis 
in the absence of steatohepatitis, through to non-alcoholic 
steatohepatitis (NASH), in which there is histological evi-
dence of inflammatory infiltrates, hepatocyte ballooning 
(featuring Mallory-Denk bodies), and commonly fibrosis of 
varying severity. Cirrhosis can develop at the most severe end 
of the spectrum, conferring increased risk of hepatocellular 
carcinoma (HCC), portal hypertension, and liver failure (13). 
Longitudinal studies have shown 10–20% of patients with each 
stage of disease to progress to the following stage in, while 
there is also an element of reversibility, particularly in NAFL 
and NASH (14, 15).

A “two-hit hypothesis” has been suggested to account for the 
pathogenesis of advanced NAFLD, whereby the first “hit” drives 
development of steatosis and the second triggers inflammation 
and its sequelae, critically including fibrosis (16).

In principle, hepatic steatosis may result from pre-hepatic 
derangements, intra-hepatic derangements, or both, as illus-
trated in simplified form in Figure 1. A comprehensive review 
of pathways leading to hepatic steatosis is beyond the scope 
of this article and is provided elsewhere (17–19). In brief, 
pre-hepatic pathogenic factors encompass increased substrate 
flux to the liver (e.g., non-esterified free fatty acids (NEFA), 
monosaccharides, or amino acids) and dysregulation of hor-
mones that act directly on hepatocyte metabolism (e.g., insu-
lin, glucagon and related peptides, and adipokines). Increased 
“preload” in the form of NEFA delivery generally results from 
failure of adipose tissue adequately to buffer positive energy 
balance. This may be a consequence of hyperphagic obesity, in 
which even normal adipose buffering capacity is overwhelmed, 
or lipodystrophy, in which adipose energy buffering capacity 
is pathologically constrained. In some situations, a mixture 
of these is at play, as in generalized lipodystrophy, where the 
harmful results of absent adipose tissue are potentiated by 
concomitant lack of leptin.

Many pre-hepatic hormonal factors also influence propen-
sity to NAFLD by acting on adipocytes to modulate lipolysis 
and/or through direct actions on hepatocytes (e.g., insulin, 
glucagon, glucagon-like peptides). There has been a particular 
focus on the ability of high levels of insulin, secondary to 
peripheral insulin resistance, to drive hepatic de novo lipo-
genesis. Another emerging influence on liver metabolism is 

the gut microbiome, which may affect gut hormone release 
and also signal directly through flux of bacterial metabolites 
such as acetate (20, 21).

Hepatocyte-autonomous (intra-hepatic) defects may also 
lead to triglyceride accumulation. Such defects may broadly be 
classified into: those increasing de novo synthesis of triglyceride; 
those perturbing lipid droplet dynamics, triglyceride mobiliza-
tion and lipoprotein assembly or secretion; and those impairing 
catabolism of fatty acids by beta-oxidation. Although reduced 
ability to catabolize fatty acids via beta-oxidation (e.g., due to 
Mendelian disorders in key catabolic enzymes, or mitochondrial 
dysfunction) does result in hepatic steatosis, however, this is 
usually microvesicular in appearance and has a distinct clini-
cal profile that often includes hypoglycemia, liver failure, and 
encephalopathy (22). These disorders will, thus, not be discussed 
further here.

Development of NASH is multifactorial; a comprehensive 
review of the inflammatory and fibrotic sequelae of hepatic lipid 
accumulation can be found elsewhere (23–26). Key elements of 
pathogenesis include oxidative stress (from lipid peroxidation and 
mitochondrial dysfunction) and activation of pro-inflammatory 
pathways (e.g., NF-κB) in hepatocytes, but other cellular path-
ways, including the endoplasmic reticulum stress response, have 
also been implicated (27). Coactivation of Kupffer cells, sinusoi-
dal endothelium, and hepatic stellate cells gives rise to cytokines 
that augment inflammation [e.g., tumor necrosis factor alpha 
(TNFα), interleukin-1/-6] and drive fibrosis [e.g., transforming 
growth factor beta (TGFβ)] (19, 28, 29). These processes are also 
exacerbated by pre-hepatic factors, such as adipose inflamma-
tion/lipotoxicity, gut bacterial translocation, and endogenous 
alcohol production.

HUMAN GeNeTiCS OF NAFLD

In the vast majority of patients, NAFLD is a multifactorial con-
dition rooted in obesity and insulin resistance, based on strong 
clinical association and natural history studies in humans. 
Pandemic, idiopathic NAFLD is often referred to as “primary” 
NAFLD (30). Genetics can play a role in each stage of the patho-
physiology of NAFLD, as illustrated both by rare monogenic 
conditions that feature severe NAFLD, and by the association 
of much more frequent single nucleotide polymorphisms 
(SNPs) with “common” NAFLD (31–33). The proliferation of 
recent human genetic findings puts their detailed treatment 
beyond the scope of this discussion; however, we select a series 
of mechanistically informative sentinel examples to appraise 
against rodent models.

“PRe-HePATiC” NAFLD

Monogenic Hyperphagic Obesity
Flux of substrates, such as free fatty acids, amino acids, and 
lactate, provide the building blocks for hepatocyte triglyceride 
accumulation as well as the energy required for activation 
of anabolic pathways (see Figure  1). Excess flux can thus be a 
potent driver for NAFLD. Most attention has been paid to flux 
of free fatty acids, the product either of lipolysis of triglyceride 
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FiGURe 1 | Factors implicated in hepatic steatosis. Pre-hepatic factors lead to increased substrate flux to the liver by both increased load (e.g., raised fatty 
acid delivery) and altered composition (e.g., increased fructose). Hyperphagia causes provision of excess macronutrients, which contributes to overload of white 
adipose tissue (via obesity). Lipodystrophy causes functional or anatomical failure of adipose, with the resulting spill over of substrates passing to the liver. Insulin 
resistance contributes to hormonal changes (e.g., raised insulin, low adiponectin) that alter intra-hepatic metabolism of lipids. Intestinal dysbiosis influences both 
substrate delivery to the liver and generation of gut-derived hormones (e.g., elevated GLP-1). Key: hormones are in blue, examples of genes involved in monogenic 
disorders are in green, and examples of genes with pro-steatotic common polymorphisms are in red.
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in adipose tissue or lipolysis of triglyceride in triglyceride-rich 
lipoproteins such as chylomicron remnants. Key determinants of 
free fatty acid flux to the liver are thus the dietary intake of fat 
and the efficiency of fatty acid trapping and storage in adipose 
tissue. Correspondingly, in states of hyperphagia or adipose tissue 
insufficiency, free fatty acid flux may be pathologically increased. 
Of note, “adipose tissue insufficiency” may arise from overload 
of adipose tissue that is normal or increased in amount, or may 
arise from frank anatomical deficiency of adipose tissue, or 
lipodystrophy.

Several human examples of monogenic hyperphagia exist. The 
first to be discovered was congenital leptin deficiency (34), with 
loss-of-function mutations in the leptin receptor gene discovered 
later (35). Leptin is an adipose-derived peptide adipokine that 
acts on the hypothalamus to signal replete energy stores and sup-
press appetite (36). It is expressed and secreted by white adipose 
tissue (WAT) in direct proportion to WAT volume, and serum 
levels fall commensurately with depletion of adipose stores dur-
ing starvation. Primary leptin deficiency produces severe, hyper-
phagic obesity from a young age; however, liver fat accumulation 
has only rarely been commented on in published studies. In one 
study, severe NAFLD was identified in an obese leptin-deficient 
child that resolved quickly on introduction of recombinant leptin 
therapy (37). The long-term hepatic outcome of untreated human 

leptin deficiency or leptin receptor mutation is not known; how-
ever, leptin receptor polymorphisms have been associated with 
NASH and insulin resistance in patients with NAFLD (38, 39).

Several other forms of human monogenic obesity are now 
known. In contrast to genetic leptin or leptin receptor loss-of-
function, which are extremely rare, heterozygous mutations in 
the melanocortin-4-receptor (MC4R) are the most common 
monogenic cause of obesity, accounting for around 6% of severe, 
early-onset obesity (40). There are no published reports of the 
impact of heterozygous MC4R mutations on hepatic steatosis in 
monogenic obesity, while polymorphisms in MC4R have been 
associated with alanine aminotransferase and BMI (41), but not 
with hepatic fat content in population-wide studies (42). Several 
other genes have been implicated in human monogenic obesity; 
however, in aggregate, these affect only a very small number of 
patients, and there is little information on the liver phenotype. 
Moreover, some of the gene products involved, such as prohor-
mone convertase 1 and pro-opiomelanocortin have pleiotropic 
roles, not just in appetite control but also in the action of key 
peripheral hormones (peptide and steroid hormones respec-
tively) which have independent effects on liver fat accumulation, 
so shall not be considered here.

The sparse attention paid in published human reports to the 
natural history of NAFLD in human monogenic obesity is likely 
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to be attributable to the rarity of the diseases, to the fact that most 
patients identified are children in whom clinically overt liver 
NAFLD has not yet had time to develop and to that fact that, in 
leptin deficiency, curative therapy with recombinant human lep-
tin is the standard of care. This means that the long-term natural 
history of NAFLD in leptin deficiency will be extremely difficult 
to document in future, although determining the long-term liver 
outcome of MC4R loss-of-function should be both tractable and 
informative.

Monogenic Lipodystrophy
In the face of severe hyperphagia, the ability even of “normal” 
adipose tissue to buffer chronic positive energy balance by 
trapping and sequestering lipid is finite and is eventually 
overwhelmed, leaving the liver exposed to excess free fatty acid 
flux. However, some rare humans have a congenital deficiency 
of adipose tissue, which we shall consider only in its most 
severe, generalized form. In this situation, there is effectively 
absolute adipose failure, and complete lack of energy buffering 
is compounded by secondary lack of leptin and consequent 
hyperphagia, as the hypothalamus erroneously interprets very 
low or absent leptin as an indication of starvation. Around 95% 
of cases in humans congenital generalized lipodystrophy (CGL) 
are accounted for by biallelic mutations in either AGPAT2, 
encoding an enzyme involved in triglyceride synthesis, or in 
BSCL2, encoding an endoplasmic reticulum protein involved 
in lipid droplet regulation and adipocyte differentiation (43, 
44). A clinical hallmark of CGL is very severe NAFLD, with 
early development of inflammation, fibrosis, and HCC. Indeed, 
clinical experience and published case series suggest that com-
plications of advanced liver disease are among the major sources 
of mortality in CGL (45, 46). Observations in CGL and other 
acquired and genetic lipodystrophies establish unequivocally 
that primary disorders of adipose tissue are sufficient to cause 
the full spectrum of NAFLD in humans (47). This does not prove 
that adipose dysfunction is the primary mechanism at play in 
pandemic NAFLD; however, current population-wide data do 
not rule this out.

endocrine Drivers
Many hormones exert a major influence on lipid accumulation 
within hepatocytes, although in each case this is only possible 
in the context of adequate energy charge and substrate flux to 
the liver, so these cannot easily be teased apart. Hormones of 
proven importance in altering liver lipid accumulation include 
insulin, glucagon, and the incretin gut peptides (e.g., GLP-1). 
In humans, insulin has attracted particular attention as several 
lines of evidence suggest that insulin, acting through the insulin 
receptor, stimulates de novo lipogenesis sufficiently to make a 
major contribution to liver fat accumulation in NAFLD (48–50). 
Some negative evidence in support of this model comes from 
the observation that humans with loss-of-function mutations in 
the insulin receptor itself, although showing very severe insulin 
resistance, are protected from dyslipidemia and liver fat accumu-
lation (51). Preliminary evidence suggests that this also holds for 
patients with lipodystrophy and loss-of-function mutations in 

PIK3R1, a component of phosphatidylinositol-3-kinase involved 
in insulin signaling (52).

HePATOCYTe-AUTONOMOUS NAFLD

Lipid Trafficking Abnormalities
Some genetic abnormalities can influence development of 
steatosis by hepatocyte-autonomous mechanisms. One of these 
mechanisms is impaired assembly and export of lipoproteins 
from hepatocytes, leading to intracellular accumulation of tri-
glycerides. The best examples of this are heterozygous truncating 
mutations in APOB [encoding apolipoprotein B (ApoB)], causing 
hypobetalipoproteinaemia and biallelic mutations in MTTP 
(encoding microsomal triglyceride transfer protein), which cause 
abetalipoproteinaemia (53). These two conditions have a similar 
phenotype including NASH, low serum triglycerides, low LDL 
cholesterol, and neuropathy. Patients often develop progressive 
NASH with fibrosis even in the absence of diabetes, obesity, or 
other oxidative stresses (53, 54).

Further evidence in support of altered lipoprotein assembly 
and secretion as a significant player in NAFLD comes from 
GWAS of the commoner form of the disease. These have impli-
cated a SNP in TM6SF2 (encoding transmembrane 6 superfamily 
member 2), which is needed for secretion of very-low density 
lipoproteins (VLDL), in NAFLD. The risk allele is found in 
around 1% patients with NAFLD (55) and correlates positively 
with serum aminotransferase levels (33), hepatic steatosis (31), 
NASH activity, and fibrosis (but not HCC) (56). Importantly, 
patients with this SNP have lower circulating LDL cholesterol, 
lower triglycerides, and reduced incidence of atherosclerotic 
disease, providing an example of dissociation of NAFLD from 
dyslipidemia and cardiovascular disease (57). Data relating to 
the association with insulin resistance and type 2 diabetes are 
currently inconclusive (58).

Population-wide human genetics has also implicated funda-
mental abnormalities in lipid droplets in NAFLD: for example, 
the p.Ile148Met SNP in PNPLA3, whose product is patatin-like 
phospholipase domain-containing 3, is associated with all stages 
of NAFLD, from simple steatosis, NASH, fibrosis, and develop-
ment of HCC (59, 60). PNPLA3 (also known as adiponutrin) 
is a membrane-bound enzyme expressed at the surface of lipid 
droplets and on the smooth endoplasmic reticulum (61) and 
plays a role in lipid droplet dynamics. There has been conflict-
ing evidence on whether this polymorphism is associated with 
insulin resistance, however.

inflammation/Fibrosis
Inflammation and fibrosis are the hallmarks of complicated 
NAFLD, and a genetic basis for the susceptibility to these 
complications is often mooted as the “second hit” needed to 
drive progression from simple steatosis to inflammatory and 
fibrotic sequelae. Unsurprisingly, no single gene examples of 
a primary inflammatory or fibrotic disorders leading to end 
stage NAFLD have been reported (62, 63); however, the GWAS 
approach has identified common genetic variants associated with 
progression of fibrosis (e.g., near the gene for platelet-derived 
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TABLe 1 | examples of murine genetic models relevant to “pre-hepatic” NAFLD.

Model Obesity insulin resistance Hyper-lipidemia Liver steatosis NASH Fibrosis HCC

Hyperphagic models
Ob/ob (64) Y Y Y Y Y Y (mild) ?
Db/db (64) Y Y Y Y Y Y (mild) ?
Mc4r−/− on HFD (65) Y Y Y Y Y Y Y

Lipodystrophic models
Agpat2−/− (66) N Y N Y ? ? ?
Bscl2−/− N Y N Y ? ? ?
A-ZIP/F-1 (67) N Y Y Y ? ? ?
Adipose-specific Insr knockout (68) N Y Y Y Y Y Y

Liver insulin action
Liver-specific Pten knockout (69) N N N Y Y (mild) Y Y

Features are based on ad libitum standard chow diet, unless otherwise stated. ob/ob is a leptin-deficient mouse; db/db is a leptin-resistant mouse; MC4R−/− mouse is a mouse 
with hypothalamic hyperphagia; Agpat2−/− and Bscl2−/− are lipodystrophic mice with functional and anatomical failure of white adipose; A-ZIP/F-1 is a lipodystrophic mouse due to 
specific failure of white adipose differentiation; adipose-specific insulin-receptor (Insr) knockout causes lipodystrophy; and liver-specific phosphatase and tensin homolog (PTEN) 
knockout disrupts hepatocyte insulin signaling.
HCC, hepatocellular carcinoma; HFD, high-fat diet; NASH, non-alcoholic steatohepatitis; Y, yes; N, no; ?, insufficient data.

TABLe 2 | examples of murine genetic models relevant to “intrahepatic” NAFLD.

Model Obesity insulin resistance Hyper-lipidemia Liver steatosis NASH Fibrosis HCC

impaired lipoprotein synthesis/secretion
Apob−/− (70) N N Y Y Y Y N
Fatty liver Shionogi (FLS) (71) N Y N Y Y Y Y
FLS-ob/ob mouse (72) Y Y Y Y Y Y Y
Tm6sf2 knockdown (32) N Y Y Y N N N

Abnormal lipid droplet dynamics
Hepatic-specific PNPLA3 I148M expression (73) N Y N Y N N N

Features are based on ad libitum standard chow diet. Apob−/− mouse is unable to secrete VLDL from hepatocytes; fatter liver Shionogi mice are thought to also have impaired VLDL 
secretion; FLS-ob/ob are FLS mice crossed with leptin-deficient mice; Transmembrane 6 superfamily 2 (Tm6sf2) knockdown mice have reduced triglyceride secretion; hepatic-
specific expression of the human I148M allele of patatin-like phospholipase domain-containing 3 (PNPLA3) causes altered lipid droplet composition and storage.
NASH, non-alcoholic steatohepatitis; HCC, hepatocellular carcinoma; Y, yes; N, no.
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growth factor alpha) or with the development of lobular inflam-
mation (e.g., near genes encoding interleukin-6, or collagen type 
XIII alpha 1).

RODeNT GeNeTiC MODeLS OF NAFLD

The ideal “one stop” animal model of NAFLD would recapitulate 
the full progression from simple steatosis through NASH to 
fibrosis, cirrhosis, and HCC. Ideally, the disease process would 
progress rapidly (in contrast to the human condition) to maxi-
mize experimental tractability of the model. However, a valid 
alternative would be to have a series of different models for 
different stages of the disease sequence, which may be primar-
ily metabolic, inflammatory, or fibrotic. It has been suggested 
that the primary goal of rodent models should be to mimic the 
pathology of NAFLD, including the underlying histopathology 
(3). On this narrow basis, it has been argued that rodents do not 
accurately model human NAFLD because of differences in bal-
looning degeneration and distribution of inflammatory infiltrate 
in NASH (4).

Many animal models have been described in which different 
degrees of NAFLD are seen, and we shall consider selected models 
only as examples, classifying them into two groups according to 

the broad pathogenic mechanism at play: (1) models of “extrahe-
patic” NAFLD (Table 1) and (2) models of “intrahepatic” NAFLD 
(Table 2).

MURiNe “PRe-HePATiC” NAFLD

Hyperphagic Models
The severely obese ob/ob mouse strain arose spontaneously in 
1949, and was eventually discovered in 1994 to harbor a loss-of-
function mutation in the gene encoding leptin, thereby ushering 
in the modern era of investigation of the neuroscience of appetite 
control. Given an ad  libitum diet, ob/ob mice develop obesity, 
insulin resistance, hyperglycemia, and hepatic steatosis (74), and 
they have been become a highly popular model for many aspects 
of obesity and related disorders, either being studied in isolation, 
or crossed with other strains of interest in order to determine 
the effect of severe hyperphagia on mice with different genetic 
perturbations. The severe obesity of ob/ob mice is attributable 
to hypothalamic hyperphagia; however, several studies have 
provided evidence for additional peripheral effects of leptin to 
modulate insulin sensitivity and metabolism directly in tissues, 
such as muscle and liver. Whether such peripheral effects are also 
seen in humans remains to be established beyond doubt (75–77).
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The ob/ob mouse rapidly develops NAFL and at 20 weeks old 
early features of NASH are present (77, 78). NASH may been 
accelerated by a second “hit” of inflammatory/oxidative stress, 
using, for example, intraperitoneal injection of lipopolysaccha-
ride (LPS) (79), dietary stressors such as a MCD diet (80), or 
crossing with another NASH-prone strain, such as the fatty liver 
Shionogi (FLS) mice, which are discussed later (81). Notably, 
however, leptin is required for normal immune function, and 
its deficiency dampens down both innate and acquired immune 
responses in humans (82, 83), though it seems to play a pro-
inflammatory and pro-fibrogenic role in mice (78). This may 
explain why the inflammatory components of NAFLD appear 
relatively indolent in ob/ob mice than in more common NAFLD. 
On a related note, it has also be shown that the ob/ob mouse 
is relatively resistant to fibrosis (78, 80), partly due to reduced 
release of TNFα, which is necessary for activation of TGFβ, a key 
pro-fibrogenic molecule (84–86).

Collectively, these findings caution that, while the ob/ob mouse 
is a valuable model of primary hyperphagia-driven NAFLD, loss 
of specific actions of leptin on peripheral metabolism, coupled 
to some degree of immunosuppression, means that it is likely 
to deviate from pandemic NAFLD in key respects, especially 
related to the inflammatory and fibrotic end of the disease 
spectrum. Similar arguments may apply to leptin-resistant db/
db mice, which harbor a splice site mutation abolishing expres-
sion of the long form of the leptin receptor; however, db/db mice 
are reported to exhibit more severe NAFLD than ob/ob mice 
(64, 80). In practice, a secondary stressor is also usually applied 
when using db/db mice to study NAFLD, with the MCD diet 
being widely used (87).

Mice in which Mc4r is genetically ablated have also been widely 
studied. Their primary defect lies within hypothalamic appetite 
control pathways, as the melanocortin 4 receptor responds to the 
neuropeptide α-MSH, which is generated in response to leptin 
action. Mc4r-null mice feature hyperphagic obesity without 
pathologically suppressed leptin levels, suggesting that they 
have the potential to model the extended spectrum of NAFLD 
more faithfully than ob/ob mice. In keeping with this, it has been 
reported that Mc4r-knockout mice, when exposed to a high-fat 
diet, develop not only steatosis but also exuberant NASH with 
established fibrosis after 20 weeks, progressing to HCC in all mice 
studied by 1 year (65).

Lipodystrophic Models
Many different murine genetic models of lipodystrophy have 
been described. Where direct comparison is possible between 
mice and humans, it has been found that the common forms of 
CGL are well modeled in mice, while the situation for human 
genetic forms of partial lipodystrophy is more complex, and will 
not be discussed further here (45).

Both Agpat2- and Bscl2-knockout mice have been 
described (88, 89). Agpat2 encodes 1-acylglycerol-3-phosphate 
O-acyltransferase 2 and is needed for synthesis of triacylglycerols 
and glycerolphospholipids in white adipose. Many Agpat2−/− mice 
die in the first few weeks of life; however, the survivors accurately 
recapitulate the human condition of lipodystrophy with severe 
insulin resistance (66). Hepatic steatosis has also been reported 

to be a major feature of the mice before 16 weeks old, with liver 
weights twice normal, and modest inflammatory changes seen 
in addition to pronounced steatosis. More detailed time course 
studies of the liver disease in this model have not been reported, 
however.

Bscl2 encodes seipin, which is needed for both differentiation 
of white adipocytes and normal lipid droplet regulation, and 
deficiency has been suggested to shift the balance toward release 
of free fatty acids from adipocytes (89). Bscl2−/− mice display a 
lipodystrophic phenotype with near complete absence of WAT. 
Massive hepatic steatosis is a feature of all three Bscl2−/− models 
described. As in Agpat2 null mice, however, detailed natural 
history studies of liver pathology have not been reported: at 
12 weeks, there is no evidence of NASH but there are no reported 
data beyond this age (90).

Although not directly modeling human disease, some other 
murine models have provided powerful evidence for the impor-
tance of adipose tissue in protection from NAFLD. One impactful 
model is the A-ZIP/F-1 (or “AZIP”) mouse, which is an adipose-
deficient mouse generated by transgenic overexpression of an arti-
ficially engineered dominant negative protein that interferes with 
critical adipogenic transcription factors. This causes deficiency 
of white adipose, severe insulin resistance, and hepatic steatosis, 
although it was said not to feature inflammation at the relatively 
young age studied (67). It is not known whether these mice 
develop NAFLD-related fibrosis, in part because of the reduced 
survival of the mice, which are severely diabetic. A much more 
recent model featured knockout of the insulin receptor selectively 
in adipose tissue, knockout being mediated by cre recombinase 
driven by the adipose-specific adiponectin promoter (68). These 
mice developed severe lipodystrophy and fatty liver disease very 
early, and by 12 weeks old, livers demonstrated not only steatosis 
but also increased ROS, lipid peroxidation, ballooning degenera-
tion of hepatocytes, and elevated serum transaminase levels. By 
1 year old the liver accounted for 25% of body weight and showed 
highly dysplastic liver nodules in addition to worsened inflam-
mation and fibrosis. High fat feeding worsened the liver injury.

Liver insulin Action
Although it is impossible to mimic a primary increase in insulin 
without inducing complex and potentially confounding changes 
to systemic metabolism, liver-specific knockout of the insulin 
receptor does afford the opportunity to test the proposition 
that liver insulin action is necessary for the development of 
hepatic steatosis. Indeed, in 2008, it was reported that ablation 
of the insulin receptor in mouse liver, although inducing severe 
systemic insulin resistance, did not increase liver triglyceride or 
liver weight (91).

Conversely, liver-specific knockout of the phosphatase and 
tensin homolog (PTEN), which is a phosphatidylinositol-3,4,5-
triphosphate (PIP3) phosphatase that serves to antagonize 
insulin’s metabolic actions, produces macrovesicular stea-
tosis, NASH (including Mallory-Denk bodies), fibrosis, and 
HCC (69). Similarly, other modes of genetic activation of 
phosphatidylinositol-3-kinase pathway signaling also produce 
steatosis that progresses to HCC, but without such marked 
steatohepatitis (92, 93).
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HePATOCYTe-AUTONOMOUS 
MURiNe NAFLD

impaired Lipoprotein Synthesis/Secretion
Assembly and secretion of VLDL represents a major route for the 
final disposition of intrahepatocyte triglyceride. Apolipoprotein 
B (ApoB) is a core component of VLDL particles, and genetic 
partial deficiency in humans causes familial hypobetalipopro-
teinaemia. Homozygous loss-of-function mutations of ApoB in 
mice cause embryonic lethality due to exencephalus. However, 
several different lines of mice heterozygous for mutated ApoB 
have been described, and these accurately recapitulate the 
hepatic steatosis, low serum triglycerides, and low HDL choles-
terol of the human condition, although little fibrosis has been 
reported in the absence of additional pro-inflammatory stimuli 
(70, 94). Nevertheless, an important caveat is that natural history 
of liver inflammation and fibrosis has not been reported beyond 
12 weeks of age. Similar to humans with hypobetalipoproteinae-
mia, mice with reduced ApoB function do not show marked 
insulin resistance, which differentiates them from most patients 
with NAFLD.

The FLS mouse is a further NAFLD model, which arose 
spontaneously as a result of inbreeding. FLS mice are non-obese 
and only mildly insulin resistant, but show marked accumulation 
of macrovesicular triglyceride with mononuclear inflammatory 
infiltrate and fibrosis, which eventually results in development 
of HCC by 13–16 months even without additional carcinogenic 
stimuli (95, 96). The precise underlying genetic defect is not yet 
known; however, a defect in microsomal triglyceride transfer 
protein (MTTP) (97) has been suggested. Precisely, why this 
model is so susceptible to HCC is not known. Crossing of FLS 
mice with ob/ob mice results in a model with the full metabolic 
syndrome and progressive fibrosis (81, 98); this model most 
closely recapitulates the whole human spectrum of NAFLD in a 
practical, experimental timeframe.

As discussed, human GWAS have shown a SNP in TM6SF2 
to be associated with NAFLD (99). Reminiscent of hypobetali-
poproteinaemia, however, carriers of the risk-conferring T-allele 
seem relatively protected from atherosclerotic disease despite 
increased lipid fat content. TM6SF2 is a membrane-bound 
protein located on the endoplasmic reticulum involved in the 
secretion of VLDL from hepatocytes (100). Germline knockout 
of Tm6sf− has not yet been described in mice; however, adeno-
associated virus-mediated knockdown selectively in mouse liver 
resulted in increased hepatic triglyceride content and reduced 
VLDL secretion (32). Moreover transgenic hepatocyte-specific 
expression of human wild-type TM6SF2 in mice caused an 
increase in serum LDL cholesterol and lower HDL cholesterol 
(101); however, the full spectrum of NAFLD has not been dem-
onstrated in this model.

ABNORMAL LiPiD DROPLeT DYNAMiCS

The p.Ile148Met variant in human PNPLA3, found in around 
20% of the population, is associated with NAFLD progression 
(55). Therefore, efforts have been made to generate a rodent 

model that recapitulates this genetic predisposing factor and 
to  elucidate the role of PNPLA3 in NAFLD. PNPLA3 is 
expressed in many tissues in mice, including WAT and liver 
(102). Expression is suppressed upon fasting (103) and upregu-
lated following a carbohydrate load (104), which is believed to 
be mediated by steroid regulatory element-binding protein- 1c 
(SREBP-1c) and carbohydrate-response element-binding pro-
tein (ChREBP). PNPLA3 was initially thought to function as 
a lipase and be involved in the release of triglycerides from 
intracellular lipid droplets (105–107), so it was hypothesized 
that reduced activity would increase hepatocellular triglyceride 
content (108).

If reduced PNPLA3 activity was to accelerate NAFLD, Pnpla3 
knockout mice would be expected to have severely fatty livers; 
however, in fact, they have no evidence of NAFLD (109). Indeed, 
there is no discernible difference between Pnpla3−/− and wild-
type mice even when fed high-fat diet or crossed onto the Lepob/ob 
background. It should be noted, however, that mice show the 
highest Pnpla3 expression in WAT, unlike humans, in whom 
expression is highest in the liver.

In contrast to the knockout mice, mice with hepatic overex-
pression of human PNPLA3 p.Ile148Met show increased hepatic 
triglyceride content and fatty acid synthesis (73, 110). They 
develop steatosis only on a normal chow or sucrose diet, but not 
on a high-fat diet, which suggests that the mutant PNPLA3 acts 
upon de novo fatty acids, rather than re-absorbed circulating non-
esterified fatty acids (111). This is consistent with epidemiological 
data that suggests fructose-rich diets are more harmful than high-
fat diets (112).

The cumulative data from these mouse models suggest that 
PNPLA3 functions as a lysophosphatidic acid acyltransferase, 
and that the p.Ile148Met polymorphism increases this activity, 
stimulating development of hepatic steatosis (113, 114). This 
would have not been identified without the initially surprising 
finding in the knockout model. Although mice with hepatic 
expression of human PNPLA3 p.Ile148Met develop NAFLD, it is 
not known whether these mice develop HCC with age as reported 
studies extend to only 12 weeks, however.

CONCLUSiON

The spectrum of human NAFLD disease arises from complex 
environmental influences allied to genetic predisposition. 
Human monogenic diseases demonstrate unequivocally 
that adipose tissue failure and primary genetic defects in 
intrahepatocyte lipid handling can give rise to NAFLD and its 
sequelae. Genetic perturbation in rodents may be combined 
with a pro-inflammatory or pro-steatotic diet to accelerate liver 
injury and mimic the multifactorial nature of human NAFLD. 
In general, murine genetic models closely mimic monogenic 
forms of NAFLD, where mouse and human liver phenotypes 
have been described in sufficient detail to draw conclusions; 
however, many gaps exist in descriptions of the natural history 
of NAFLD associated with several of the monogenic diseases in 
mice or humans. Findings in both species indicate that there is 
more than one possible pathogenic route to NAFLD, meaning 
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that study of several different human conditions and their 
models will be important to tease out common mechanisms of 
liver damage. A critical advantage of mouse models over humans 
is that the tremendously powerful technologies available to 
perturb genes conditionally or in an organ-specific way permits 
isolation of only some parts of a highly interconnected system. 
So, while alignment of humans and their murine models could 
be further refined, murine models are a highly valuable tool in 
the study of NAFLD.
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Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting women 
and a leading cause of female infertility worldwide. Defined clinically by the presence 
of hyperandrogenemia and oligomenorrhoea, PCOS represents a state of hormonal 
dysregulation, disrupted ovarian follicle dynamics, and subsequent oligo- or anovulation. 
The syndrome’s prevalence is attributed, at least partly, to a well-established association 
with obesity and insulin resistance (IR). Indeed, the presence of severe PCOS in human 
genetic obesity and IR syndromes supports a causal role for IR in the pathogenesis of 
PCOS. However, the molecular mechanisms underlying this causality, as well as the 
important role of hyperandrogenemia, remain poorly elucidated. As such, treatment 
of PCOS is necessarily empirical, focusing on symptom alleviation. The generation of 
knockout and transgenic rodent models of obesity and IR offers a promising platform in 
which to address mechanistic questions about reproductive dysfunction in the context of 
metabolic disease. Similarly, the impact of primary perturbations in rodent gonadotrophin 
or androgen signaling has been interrogated. However, the insights gained from such 
models have been limited by the relatively poor fidelity of rodent models to human PCOS. 
In this mini review, we evaluate the ovarian phenotypes associated with rodent models of 
obesity and IR, including the extent of endocrine disturbance, ovarian dysmorphology, 
and subfertility. We compare them to both human PCOS and other animal models of the 
syndrome (genetic and hormonal), explore reasons for their discordance, and consider 
the new opportunities that are emerging to better understand and treat this important 
condition.

Keywords: androgen, fertility, insulin resistance, mouse models, obesity, PCOS

Abbreviations: FSH, follicle-stimulating hormone; GnRH, gonadotrophin-releasing hormone; IR, insulin resistance; LH, 
luteinizing hormone; PCOS, polycystic ovary syndrome; T2DM, type 2 diabetes mellitus.
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inTRODUCTiOn

The association between obesity, insulin resistance (IR), type 
II diabetes (T2DM), cardiovascular disease, and non-alcoholic 
fatty liver disease is well-established in the literature, discussed 
commonly in the clinic, and subject to intensive investigation in 
laboratories worldwide (1, 2). Perhaps less recognized is obesity’s 
association with ovarian dysfunction, most commonly in the 
form of polycystic ovary syndrome (PCOS). Diagnostic criteria 
of PCOS incorporate three key features: biochemical and/or 
clinical evidence of androgen excess (including acne, hirsutism, 
and alopecia), ovarian dysfunction or anovulation (manifesting 
as absent or irregular menstruation), and the appearance of 
multiple peripheral cysts on ovarian ultrasonography (3). Rarer 
causes of raised androgen levels (such as an androgen-producing 
tumor) are first excluded. Metabolic dysfunction is common 
but not invariable in women with PCOS and so, although 
cross-sectional and longitudinal studies support a significant 
role for IR in the etiology of PCOS, diagnostic criteria do not 
currently incorporate metabolic parameters. Nevertheless, not 
only is PCOS the most common cause of anovulatory infertil-
ity and menstrual irregularity but (since it often manifests in 
the second and third decades) young women with PCOS also 
represent a large, identifiable group who may be at increased risk 
of metabolic (4–6) and cardiovascular diseases (7–10). Indeed, 
PCOS is a strong predictor of future T2DM (11). Women with 
PCOS therefore represent an important target for research and 
prevention.

The heterogeneous nature of PCOS, along with a lack of con-
sensus over precise diagnostic criteria, has complicated efforts 
to understand its pathogenesis. Familial clustering studies and 
monozygotic twin concordance reveal an important genetic 
predisposition to the syndrome. Genetic variants identified from 
candidate gene screening and genome-wide association studies 
implicate insulin, growth factor, and gonadotrophin signaling, 
cellular proliferation, and DNA repair pathways; however, they so 
far account for less than 10 percent of the syndrome’s heritability 
(12). The presence of PCOS-like features in animals exposed 
prenatally to androgens suggests that PCOS may have important 
developmental origins (13). Genetic and developmental influ-
ences likely interact with environmental factors in adolescence 
and adulthood to produce the complex physiological dysregula-
tion that characterizes this syndrome.

Hormonal models, in which rodents, sheep, and non-human 
primates are treated during development or postnatally with 
androgens (testosterone, DHT, or DHEA), estrogens, aromatase 
inhibitors, or antiprogestins, are widely employed in PCOS 
research (14–19). Genetic rodent models offer a complementary 
albeit underutilized strategy in this field, allowing the contribu-
tion of individual genes to be evaluated on “clean” genetic back-
grounds and providing tractable and affordable models in which 
to interrogate disease pathways (14, 20–23). Their value, however, 
depends on the fidelity of the model to human physiology and 
disease and the relevance of single-gene perturbations. After 
summarizing some main concepts relating to the pathogenesis of 
PCOS (Figure 1), we describe key rodent models relevant to the 
study of ovarian dysfunction in metabolic diseases (Table 1) and 

explore why their interpretation may be more complicated than 
initially apparent.

KeY PLAYeRS in PCOS PATHOGeneSiS

Metabolic Features of PCOS
While PCOS is robustly associated with impaired insulin sen-
sitivity and hyperinsulinemia (Table  1), this is independent of 
body weight, and a significant proportion of insulin-resistant 
women with PCOS are lean (44, 45). However, it is recognized 
that increased body weight exacerbates hyperandrogenism, oli-
gomenorrhoea, and metabolic risk in PCOS (46, 47), and genetic 
studies have revealed a role for obesity-associated genes (48, 49).

Several observations suggest that IR, and associated com-
pensatory hyperinsulinemia, may play a key pathogenic role in 
PCOS. Firstly, IR is more common in women with both hyper-
androgenism and anovulation, compared to weight-matched 
hyperandrogenemic women with normal ovulatory cycles (50). 
Second, interventions that increase insulin sensitivity improve, 
independent of weight loss, ovulatory function, menstrual cyclic-
ity, fertility, and hyperandrogenism in lean and obese patients 
(51–55). Third, a severe PCOS-like syndrome is a prominent 
(often-presenting) feature in patients with severe, genetic 
forms of IR (56) and is also reportedly associated with pan-
creatic insulinomata and excessive exogenous insulin in type 1  
diabetes (57, 58).

Importantly, PCOS likely represents a state of “partial” IR, in 
which preserved insulin signaling in ovarian theca cells causes 
excessive androgen synthesis and theca cell proliferation, with 
subsequent hyperandrogenemia (Figure  1) (59–62). Other 
potential effects of hyperinsulinemia include reduced hepatic 
synthesis of sex hormone-binding globulin, thereby increasing 
free testosterone, hypersecretion of pituitary luteinizing hormone 
(LH), and reduced insulin-like growth factor-binding protein 
(63–65). This latter effect potentially modulates the paracrine 
growth factor-dependent regulation of early follicle development 
and dominant follicle selection (Figure 1).

Ovarian Dysmorphology
The abnormal appearance of the ovarian cortex in PCOS rep-
resents inappropriate and excessive initiation of follicle growth 
from the primordial follicle pool, followed by developmental 
failure and growth arrest at the medium-sized antral stage 
(5–10  mm) (66–68). Loss of coordinated follicle development 
results in fewer or absent ovulations, and therefore subfertility. 
Histologically, the ovary contains a reduced number of corpora 
lutea (representing fewer ovulations), more atretic follicles, stro-
mal hypertrophy, and increased ovarian weight. As mentioned, 
hyperthecosis is prominent, with in  vitro evidence suggesting 
that abnormal thecal cell proliferation contributes to excessive 
androgen biosynthesis (62, 69).

Hormonal Dysregulation
While IR and hyperinsulinemia may play a central, and in some 
cases primary, role in PCOS pathogenesis, the importance of 
hyperandrogenism should be stressed. Not only is it a defining 
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FiGURe 1 | Proposed pathogenic mechanisms in obesity-associated ovarian dysfunction and subfertility. Schematic showing the major metabolic and 
reproductive pathways involved in PCOS. Systemic insulin resistance, commonly due to adipose tissue dysfunction in the context of obesity, results in 
compensatory hyperinsulinemia. At the ovary, insulin synergizes with luteinizing hormone (LH) to drive androgen synthesis. Disrupted insulin, growth factor, 
gonadotrophin, and sex steroid signaling in the ovary leads to failure of follicle development and ovulation. Genetic and developmental influences are also likely to 
play an important role.
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feature of the syndrome, both in ovulatory and anovulatory 
women, but other conditions associated with excessive androgen 
exposure (such as congenital adrenal hyperplasia and androgen-
secreting tumors) also produce features of PCOS (70). Moreover, 
administration of androgens in rodents, sheep, and non-human 
primates results in pathophysiological changes that closely resem-
ble features of PCOS in women. Androgens act at the ovary to 
disrupt follicular development and dominant follicle selection by 
promoting excessive early follicular growth, while systemic effects 
include development of IR and metabolic dysfunction (71–77). 
The role of androgens in PCOS may be particularly important 
during key developmental windows before the onset of IR (13). 
Prenatally, androgenized rhesus monkeys and sheep demonstrate 
ovarian hyperandrogenism and IR in adulthood, with increased 
follicle numbers, anovulation, and LH hypersecretion (78–81).

Dysregulation and reprograming of the hypothalamus– 
pituitary–ovarian (HPO) axis is common in PCOS, potentially 
driven by androgen exposure in  utero and manifesting as 
hypersecretion of LH, persistently rapid LH pulse frequency, 
and below-normal levels of follicle-stimulating hormone (FSH) 

(82, 83). These alterations likely contribute to disrupted follicle 
development in PCOS, while high levels of LH also synergize 
with insulin to promote theca androgen production (Figure 1). 
However, it is noteworthy that many patients have normal LH 
levels, suggesting that elevated gonadotrophin levels is unlikely 
to be the primary defect in PCOS (84).

OvARiAn DYSFUnCTiOn in GeneTiC 
MODeLS OF MeTABOLiC DiSeASe

Rodent Models of Obesity
While there is no spontaneously occurring animal model of 
PCOS, transgenic and knockout rodent models widely used in 
metabolic research provide opportunities to study specifically the 
association between metabolic disease and ovarian dysfunction. 
However, it is important to note that key differences exist between 
human and rodent ovarian function. Whereas in humans, full 
follicular differentiation occurs in the later stages of fetal develop-
ment, in rodents this occurs postnatally. The mouse estrus cycle 
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TABLe 1 | Reproductive features of rodent models of obesity and insulin resistance.

Model Body 
weight

Associated 
metabolic 
phenotype

Sex 
steroids

Gonadotrophins Fertility Ovarian morphology Menstrual 
cyclicity

Comments Key 
reference

Human  
PCOS

↑ IR, ↑ insulin,  
T2DM, ↑ lipids 
(independent  
of BMI)

↑ T ↑ LH Subfertile Multiple small, cortical  
cysts due to follicular  
arrest, follicular atresia, 
↓ CLs

Oligo-/
amenorrhea

Insulin sensitizers 
improve menstrual 
regularity and 
hyperandrogenism.

(2)
↓ FSH

High-fat diet 
mouse

↑ IR, ↑ insulin, ↑ FBG N/R ↑ LH Subfertile Diminished follicular 
development, old CLs

Irregular Fertility restored 
after exogenous 
gonadotrophin 
(suggests HH).

(24, 25)
↑ FSH

ob/ob  
mouse

↑ IR, ↑ insulin, ↑ FBG, 
glucose intolerance, 
↑ lipids

↑ T LH → Infertile Ovarian atrophy, follicular 
atresia, ↓ CLs, no cysts

Acyclic, 
anovulatory

Ovarian interstitial 
cytolipema. Phenotype 
rescued with leptin.

(26–28)
↑ E2 ↓ FSH

db/db  
mouse

↑ IR, ↑ insulin,  
↑ FBG, glucose 
intolerance

↓ E2/P N/R Subfertile Ovarian atrophy, 
progressive follicular  
atresia

Irregular Ovarian interstitial 
cytolipema.

(29–32)

Zucker rat ↑ IR, ↑ insulin, ↑ FBG, 
glucose intolerance

↓ T LH → Subfertile ↑ total follicle numbers, 
follicular atresia

Irregular 
(prolonged 
diestrus)

(33, 34)
↓ E2 FSH →

Koletsky 
(JCR:LA-cp) 
rat

↑ ↑ insulin, ↑ FBG,  
↑ lipids

↑ T N/R Subfertile Ovarian atrophy, cystic 
follicles, follicular atresia, 
thin GC layer, ↓ CLs

Irregular (35, 36)
E2 →

NZO rat 
(polygenic)

↑ IR, ↑ insulin, ↑ FBG, 
↑ lipids

T → ↓ LH Subfertile ↑ ovarian volume, ↑ total 
follicle numbers, follicular 
atresia, ↓ CLs, no cysts

Irregular (37–39)
↓ E2 FSH →

Neuron-
specific IR 
deletion 
(mouse)

↑ Mild IR, ↑ insulin, 
↑ TGs

N/R N/R Subfertile Large, luteinized ovarian 
cysts, thecal-interstitial 
hyperplasia, ↓ CLs

Irregular (40)

IR/LepRPOMC 
(mouse)

↑ IR, ↑ insulin, glucose 
intolerance

↑ T ↑ LH Infertile Occasional cyst-like  
follicles

Acyclic, 
anovulatory

(41)

Neuron-
specific IRS2 
deletion 
(mouse)

↑ ↑ FBG, glucose 
intolerance

↓ T ↓ LH Infertile Small ovaries, ↓ total  
follicle numbers

Acyclic, 
anovulatory

(42)
↓ E2

AKT2 
deletion 
(mouse)

→ ↑ insulin (older  
mice only)

↑ T (older 
mice 
only)

LH normal Young mice 
fertile

Large luteinized cysts N/R Mice aged 120 weeks. (43)

CL, corpus lutea; E2, estradiol; FBG, fasting blood glucose; FSH, follicle-stimulating hormone; IR, insulin resistance; LH, luteinizing hormone; N/R, not reported; P, progesterone; 
PCOS, polycystic ovary syndrome; T, testosterone; T2DM, type 2 diabetes mellitus; TGs, triglycerides.
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lasts only 4–6 days, compared to 28 days in humans. Furthermore, 
rodents are polyovulatory, suggesting important differences in 
dominant follicle selection despite underlying similarities in the 
HPO axis.

In spite of these differences, various rodent models of obe-
sity do display reproductive phenotypes comparable to PCOS 
(Table 1). Diet-induced obesity in wild-type mice is associated 
with disrupted estrus cyclicity, fewer corpora lutea, reduced 
fertility, and metabolic dysfunction, supporting the notion that 
obesity-associated metabolic dysfunction may contribute to 
PCOS (24, 25, 85). Among the genetic models, female ob/ob and 
db/db mice, which, due to loss-of-function mutations in leptin 
and leptin receptor, respectively, are hyperphagic, severely obese, 
hyperinsulinemic, and hyperglycemic are also infertile, acyclic, 
and anovulatory (Table  1). Morphologically, they show utero-
ovarian atrophy, follicular atresia, apoptotic granulosa cells, 

deformed oocytes, absent corpora lutea, and no cystic structures 
(26, 27, 29–32). The endocrine profile of ob/ob mice includes 
elevated serum testosterone, estradiol, and progesterone, with 
reduced FSH but normal LH, while db/db mice have low estradiol 
and progesterone. The obese Koletsky and Zucker diabetic fat rats, 
both of which also lack functional leptin receptors, do exhibit 
estrus cycling (albeit irregularly) but are subfertile with increased 
follicle numbers, follicular atresia, and fewer corpora lutea. While 
androgen levels are elevated in the obese Koletsky, in Zucker, they 
are reportedly below normal (33–36). The New Zealand obese 
(NZO) mouse, notable for being a polygenic model of the human 
metabolic syndrome (37), also harbors leptin receptor variants 
and displays a reproductive phenotype similar to that of Zucker 
(Table 1) (38, 39).

In all of these models, reproductive dysfunction is at least 
partly attributable to loss of hypothalamic leptin signaling, 
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rather than obesity per se. Genetic leptin deficiency in humans is 
associated with low gonadotrophins and pubertal failure, which 
are restored with leptin replacement (86). Fertility, litter size, 
and estrus cyclicity of ob/ob mice were similarly ameliorated 
by human recombinant leptin (87, 88) or transplantation with 
wild-type adipose tissue (89, 90). Along with other peripheral 
signals, leptin is believed to modulate the activity of gonadotro-
phin-releasing hormone (GnRH) releasing neurons – and thus 
the entire HPO axis  –  in response to nutritional status (91). 
Indeed, low body weight is known to interfere with reproduc-
tive function and pubertal timing (92). Failure of central leptin 
action in rodent models of obesity therefore leads to infertility 
due to hypogonadotrophic hypogonadism and follicle develop-
ment (Figure 1). Indeed, human obesity is also associated with a 
degree of hypothalamic leptin resistance, which may contribute 
to HPO dysregulation in PCOS (93, 94). Reports of excess lipid 
accumulation in follicular cells of ob/ob mice and the obese 
Koletsky rat suggest an additional “lipotoxic” mechanism 
by which extreme obesity may produce ovarian dysfunction, 
although there are no reports of such a phenotype in PCOS (30, 
36).

In these models, the relative contribution of IR-associated 
hyperinsulinemia and central leptin resistance is difficult to 
disentangle, particularly since hypothalamic insulin signaling 
also regulates GnRH release and thus reproduction function 
(40, 41, 95–97). Mice with neuron-specific deletion of the insulin 
receptor gene (Insr) or hypothalamic POMC neuron-specific 
deletion of both leptin and Insr were hyperphagic, insulin 
resistant, and subfertile due to impaired follicular development 
(Table 1) (40, 41, 98). The combined knockout was notable for 
high levels of LH, hyperandrogenemia, and cyst-like follicles. 
POMC-specific deletion of leptin receptor alone produced 
only a subtle reproductive phenotype (99). Counterintuitively, 
pituitary-specific Insr knockout reportedly rescued the PCOS-
like phenotype associated with diet-induced obesity (24). These 
observations highlight complex interactions between leptin and 
insulin in their regulation of reproductive function. Indeed, 
studies in mammals and non-mammalian species reveal that 
nutritional status and reproductive capacity are tightly inter-
twined, ensuring that reproduction only proceeds if nutritional 
status is optimal (100).

Genetic Models of insulin Resistance
In humans, rare loss-of-function mutations in INSR not only 
cause extreme hyperinsulinemia but also oligomenorrhoea, 
hyperandrogenism, and excessive development of sex hormone-
dependent tissues (56). Common genetic defects in insulin sign-
aling are suggested to contribute to PCOS heritability (101, 102), 
and cellular studies reveal abnormalities in insulin-mediated 
insulin receptor autophosphorylation, IRS expression, PI3-kinase 
activation, GLUT4 expression, and insulin-stimulated glucose 
uptake in adipocytes and skeletal muscle from women with PCOS 
(103–107). However, the results of such studies are variable and 
need further verification.

Mice lacking functional insulin receptor develop profound 
metabolic abnormalities at birth and die within days. Of the 
tissue-specific knockouts, only those targeting the brain have a 

reported reproductive phenotype (108). Similar to the neuron-
specific Insr knockout, global deletion of Irs2 (but not Irs1) causes 
a combination of metabolic, reproductive, and ovarian features 
that likely result from disrupted central insulin and leptin action 
rather than abnormal systemic glucose metabolism (42) (Table 1). 
Thus, in addition to the impact of systemic hyperinsulinemia, the 
interpretation of global insulin signaling defects must consider 
the actions of insulin at the hypothalamus as well as disruption 
to the regulation of early follicle development by IGF1. There 
are no corresponding human syndromes of IRS dysfunction or 
deficiency with which to compare.

Downstream of IRS in the signaling pathway, non-functional 
mutations in human AKT2 result in ovarian hyperandrogen-
ism in the context of partial lipodystrophy, severe IR, diabetes, 
metabolic dyslipidemia, and fatty liver (109). In mice, global 
AKT2 deletion produced a somewhat comparable ovarian 
phenotype, with increased androgenic steroidogenesis in the 
theca-interstitium, theca-interstitial hyperplasia, hyperandro-
genemia, reduced corpora lutea, and ovarian cysts but normal 
LH levels (Table 1) (43). However, the large, luteinized, serous-
filled cysts were quite distinct from the ovarian morphology 
characterizing human PCOS. For unclear reasons, reproduc-
tive features were absent in younger mice, although could be 
induced by treatment with LH, perhaps due to synergism with 
hyperinsulinemia.

Other human lipodystrophy syndromes (genetic or acquired) 
are similarly characterized by severe IR, ovarian hyperandrogen-
ism, amenorrhea, and infertility (110–112). While genetic mouse 
models of generalized lipodystrophy manifest many metabolic 
features of the human diseases, “partial” lipodystrophy has 
been more challenging to model (113). Moreover, while the 
metabolic properties of these models have been interrogated in 
detail, their reproductive and ovarian phenotypes have not been 
reported widely. Studying these models may provide important 
new insights into the role of BMI-independent IR in PCOS-like 
ovarian dysfunction.

Genetic Models Targeting the HPO Axis
To better understand PCOS pathogenesis, rodent models of obe-
sity and IR should be considered alongside those in which other 
implicated systems are targeted. Transgenic mice with chroni-
cally elevated gonadotrophin levels have a thickened theca cell 
layer, similar to PCOS, with correspondingly increased estro-
gen and testosterone levels (23, 114). However, unlike PCOS, 
their ovaries contain large, hemorrhagic cysts, as do those of 
mice lacking LH receptor (114, 115). Global or theca-specific 
deficiency of estrogen receptor subunits ERα or ERβ, or global 
deficiency of aromatase, produces chronically elevated gonado-
trophins (due to lack of estradiol), arrested follicular growth, 
absent corpora lutea and anovulation (116–118). ERα knockout 
mice also show increased adiposity (without hyperphagia), IR, 
and diabetes (118, 119), whereas constitutive elevation of LH 
activity produces hyperphagic obesity with hyperleptinemia 
and hyperinsulinemia (120). These observations further illumi-
nate the complexity of nutritional and reproductive cross talk 
in humans, again challenging the value of simplified rodent 
models.
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TRAnSGeniC RODenTS AnD 
PCOS – nOT FiT FOR PURPOSe?

This discussion reveals that transgenic models of PCOS are 
complex, heterogeneous, and even the best examples deviate in 
important ways from the human syndrome. Models of obesity 
and IR have not typically been studied comprehensively from 
a reproductive perspective. Even when a reproductive deficit is 
noted, the ovarian and endocrinological phenotyping is often 
incomplete, with concerns raised over timing of the studies 
(relative to time of day, phase of the estrous cycle, and age of the 
animal), the rigor of morphological analyses, and the variability 
of ovarian appearances described as “cystic.” Furthermore, as 
outlined above, important differences exist between human and 
rodent ovarian function. Such differences may explain why the 
reproductive consequences of androgen exposure are less con-
sistent in rodents than in sheep or primates, and emphasize that 
results from rodent-based studies (genetic or hormonal) need to 
be extrapolated with caution to human PCOS (13, 23).

Emerging from this discussion is an important reminder 
that reproductive capacity and nutritional status are intertwined 
tightly through feedback and cross talk between reproductive and 
metabolic pathways. Across a wide range of species, including 
Caenorhabditis elegans and Drosophila, conserved mechanisms 
operate to regulate reproduction and energy homeostasis (121–
123). In rodent models of obesity, the same lesions that produce 
hyperphagia also directly impact on the HPO axis, thereby compli-
cating their interpretation. The bidirectional interaction between 
reproductive and nutritional signaling also operates systemically: 
while estrogen drives adipogenesis, and while testosterone drives 
food intake, both steroids in excess produce IR, hyperinsulinemia, 
high levels of circulating leptin, and reduced levels of adiponectin, 
all of which impact on the HPO axis and ovarian function. The 
hope of mimicking this complex network by perturbing single or 
a few genes is perhaps ambitious. Indeed, the notion that PCOS 
is precipitated by a single etiological factor is undoubtedly too 
simple. While monogenic perturbations in insulin signaling or 
adipose function in humans do produce PCOS-like syndromes, 
differences between human and rodent metabolism and repro-
duction mean that PCOS will not necessarily emerge from 
equivalent defects in mice. As in all complex human disease, the 
role of genetic, developmental, and environmental factors likely 
contribute heavily to the heterogeneity of human PCOS.

FUTURe OPPORTUniTieS

Complementary strategies are required to better understand 
this growing health problem. The combined use of hormonal 
treatments in transgenic animals may afford interesting, clini-
cally relevant insights. Primary follicular cell and whole follicle 

cultures, including from transgenic animals, facilitate the study 
of tightly regulated paracrine and autocrine networks in early 
follicle development that become disordered in PCOS (124). The 
ease and efficiency of CRISPR-Cas9-based gene editing tech-
nologies will doubtless prove invaluable, particularly to explore 
new susceptibility loci emerging from large GWAS studies (48, 
49, 101, 102, 125). Many of these loci implicate genes of largely 
unknown function. As they are investigated over the coming 
years, prudent selection of appropriate cell and animal systems 
will be imperative. The study of candidate genes in non-ovarian 
cell types is questionable, yet primary cultures are difficult to 
acquire and maintain, and ovarian cell lines are too atypical in 
their properties to be useful. Therefore, in spite of reservations 
highlighted above, transgenic rodent models will likely play an 
ongoing role in our effort to better understand and manage this 
challenging condition.

COnCLUSiOn

A clear relationship exists between obesity, metabolic dysregula-
tion, and ovarian dysfunction. However, the mechanisms of this 
association are poorly understood. Without detailed knowledge 
of the etiology of PCOS, management is limited to empirical and 
symptomatic treatment. While hormonal models of PCOS dem-
onstrate an important role for hyperandrogenemia, the reported 
genetic models incompletely replicate the PCOS phenotype. Their 
study has offered important insights into the interaction between 
metabolism and reproduction, but clear conclusions about PCOS 
pathogenesis have not been forthcoming. Nevertheless, specific 
models may prove useful for answering reductionist questions 
about aspects of the condition, such as disordered folliculogenesis 
or disruption of the HPO axis. Future efforts will benefit from 
ongoing combined study of humans, mouse models, and cells, 
driven by insights emerging from human genetic studies. These 
studies will continue to advance our understanding of this 
important condition and, with time, support new approaches to 
addressing both the metabolic and reproductive problems faced 
by affected women.
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The objective of this review was to compare and contrast the physiological and meta-
bolic profiles of rodent white adipose fat pads with white adipose fat depots in humans. 
Human fat distribution and its metabolic consequences have received extensive 
attention, but much of what has been tested in translational research has relied heavily 
on rodents. Unfortunately, the validity of using rodent fat pads as a model of human 
adiposity has received less attention. There is a surprisingly lack of studies demonstrat-
ing an analogous relationship between rodent and human adiposity on obesity-related 
comorbidities. Therefore, we aimed to compare known similarities and disparities in 
terms of white adipose tissue (WAT) development and distribution, sexual dimorphism, 
weight loss, adipokine secretion, and aging. While the literature supports the notion 
that many similarities exist between rodents and humans, notable differences emerge 
related to fat deposition and function of WAT. Thus, further research is warranted to more 
carefully define the strengths and limitations of rodent WAT as a model for humans, with 
a particular emphasis on comparable fat depots, such as mesenteric fat.

Keywords: rodents, humans, obesity, fat pads, fat depot, fat distribution

iNTRODUCTiON

Obesity has largely been defined by a body mass index (BMI) >30 kg/m2, or better still, a body fat 
percentage >25% in males and >35% in females (1). However, from a physiological standpoint, 
evidence indicates that body fat distribution, irrespective of BMI and/or body fat percentage, most 
strongly predicts risk of obesity-related diseases and complications (2). Risk can further be stratified 
by fat distribution, as individuals with a higher waist-to-hip ratio suffer disproportionately from 
obesity-related metabolic dysfunction (3). Indeed, individuals with gynoid obesity, characterized by 
subcutaneous fat in the gluteofemoral region, have minimal risk of developing metabolic dysfunc-
tion (3, 4); whereas individuals with the so-called android obesity, which is characterized by visceral 
fat accretion, suffer a greater risk of metabolic dysfunction (4, 5).

Abbreviations: BMI, body mass index; CR, caloric restriction; DSAT, deep subcutaneous adipose tissue; HOX, homeobox; 
IL-6, interleukin-6; SAT, subcutaneous adipose tissue; SSAT, superficial subcutaneous adipose tissue; TNF-α, tumor necrosis 
factor-α; VAT, visceral adipose tissue.
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FiGURe 1 | (A) Distribution of fat depots in the human. The white adipose tissue (WAT) is found in subcutaneous adipose tissue (SAT) abdominally (a), 
gluteofemorally (g), and intramuscularly (h). WAT is also found in the visceral adipose tissue (VAT). The visceral depots are omental (b), mesenteric (c), retroperitoneal 
(d), gonadal (e), and pericardial (f). Brown adipose tissue is found supraclavicularly (i) and in the subscapular region (j). (B) Those fat depots linked to increased risk of 
developing obesity-related morbidities and mortality are colored in red (13).
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The metabolic consequences of body fat and its distribution 
have received extensive attention in the literature. As rodents 
are by far the most commonly used pre-clinical model of human 
obesity (6–9), further validation of important commonalities and 
differences between rodent and humans are needed. Specifically, 
investigators should seriously consider to what extent their 
experimental approach and findings are translational. For 
instance, rodent adipose tissue deposition is strikingly dissimilar 
to humans, and adipocytes in these depots display metabolic 
heterogeneity and are intrinsically different within a species. 
As such, further research needs to focus on how specific rodent 
fat pads correspond, if at all, with fat depots in humans. To our 
knowledge, only two studies have compared gene expression in 
mouse fat pads to gene expression in analogous human fat depots 
(10, 11). Thus, given the general lack of information or discussion 
on this highly relevant topic, a systemic review of the literature in 
our view, is warranted.

FAT DePOTS veRSUS FAT PADS: 
ANATOMiCAL CONSiDeRATiONS

There are three main regional human anatomical fat depots: 
intra-abdominal, upper-body/abdominal subcutaneous, and 
lower body subcutaneous (Figure  1A) (12). Intra-abdominal 
refers to visceral adipose tissue (VAT), which surrounds the inner 
organs (13). VAT can further be divided into omental, mesen-
teric, retroperitoneal, gonadal, and pericardial. The upper-body 
subcutaneous adipose tissue (SAT) can be categorized depending 
on if it is situated superficial or deep to the fascia superficialis. 

The adipose tissue below the fascia is the deep subcutaneous 
adipose tissue (DSAT) compartment, whereas adipose tissue 
located superficially to this fascia is the superficial subcutaneous 
adipose tissue (SSAT) compartment (14, 15). Though SAT is 
distributed throughout the human body, the main depots are in 
the abdomen, buttocks, and thighs (16). The buttocks and thighs 
make up the lower body SAT and are termed the gluteofemoral 
depot (12, 13).

Like humans, adipose tissue in rodents is a multi-depot organ 
(Figure 2), but unlike humans, which have two main subcutane-
ous depots located in the abdominal and gluteofemoral region, 
rodents have two main subcutaneous pads located anteriorly and 
posteriorly. The anterior pad is located between the scapulae, 
descending from the neck to the axillae (17), while, the posterior 
pad, or inguinal fat pad, spreads from the dorsolumbar region to 
the gluteal region. The inguinal fat pad is comparable in terms 
of location to the large gluteofemoral subcutaneous depot in 
humans. Additionally, rodent SAT is separated from dermal 
adipose tissue by a smooth muscle layer, whereas, in humans, the 
SAT is continuous with dermal adipose tissue (17). Furthermore, 
there has been no evidence to our knowledge of multiple subcu-
taneous layers in rodents, such as is the case in humans.

Rodents harbor visceral fat pads in the perigonadal region, 
known as epididymal in males and periovarian in females, as well 
as retroperitoneal fat pads located on the kidneys, and the mesen-
teric fat pad located alongside the intestinal tract. The mesenteric 
fat pad is widely touted as the most analogous to human intra-
abdominal adipose tissue both in its location and biology, because 
it has access to the portal vein. However, this depot is not well 
studied in rodents due to limitations in its surgical manipulation 
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FiGURe 2 | Distribution of fat pads in the mouse. The fat is composed of two subcutaneous pads and several visceral pads. The main white adipose tissue 
(WAT) pads are the inguinal and epididymal, with the latter being the most frequent dissected pad. Brown adipose tissue (BAT) is distributed throughout the fat pads 
with the main BAT depot in the interscapular region (18).
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and separation from contaminating vessels. The perigonadal fat 
pads are typically the largest and most readily accessible fat pads 
and, for these and other reasons, they are the most frequently 
used in the literature (19–21). However, humans do not harbor a 
fat depot analogous to these fat pads, which has led to the sugges-
tion that these pads should be considered “peri-visceral” rather 
than true visceral fat pads. Another difference between the two 
species is the ambiguity when referencing the omental depot in 
rodents. Though it is clearly defined and developed in humans, it 
is less so in rodents, leading some investigators to not reference 
the omental depot at all (13). However, based on the literature, it 
seems that the omental depot is present in the mouse, albeit in 
small quantities, and is similarly connected to the stomach, as it 
is in humans (22). Thus, although adipose tissue is a multi-depot 
organ in both humans and rodents, there are anatomical differ-
ences that should be taken into consideration.

FAT PAD AND DePOT DiSTRiBUTiON iN 
HeALTH AND DiSeASe

In humans, increased VAT is associated with an increased risk 
for insulin resistance and dyslipidemias (23), while being an 
independent risk factor for type II diabetes (24), hypertension 
(25), and all-cause mortality (26) (Figure 1B). By contrast, SAT 
is associated with improved or preserved insulin sensitivity, and 
mitigated risk of developing type II diabetes and other metabolic 
derangements (27, 28). Alternatively, it has been challenged 
whether VAT accumulation increases the risk for metabolic dys-
function (29, 30). Some have asserted that abdominal subcutane-
ous fat plays an independent role in developing an unfavorable 
metabolic profile (14, 31), dependent on how the subcutaneous 
fat is distributed among abdominal and gluteofemoral subcu-
taneous fat depots. In rats and mice, respectively, employing a 

lipectomy model, whereby the epididymal and retroperitoneal 
fat pads are surgically removed, improves insulin action, reduces 
tumorigenesis and improves longevity, independent of con-
founding factors (32–35). It deserves mentioning that surgically 
ablating the mesenteric fat pad in rodents cannot be sufficiently 
performed with current techniques due to the heavy innervation 
and vascularization of this tissue. Thus, given the general senti-
ment that rodent mesenteric fat is most analogous to the human 
intra-abdominal depot, it is tempting to speculate that the true 
importance of VAT gleaned from rodent lipectomy studies, has 
if anything, underestimated the “true” hazards associated with 
visceral adiposity. By contrast, some studies have shown that 
removal of omental fat in obese men and women in conjunc-
tion with gastric bypass surgery provided no added benefit to 
metabolic endpoints (36, 37). However, unlike rodent studies, 
where ~75% of visceral fat was removed, the omentum in obese 
subjects likely accounts for a small fraction (<10%) of total 
visceral adiposity, an amount that may have been insufficient to 
observe meaningful benefits.

Mechanistically, the benefits associated with SAT may be 
attributed to its ability to act as a metabolic “sink” to buffer against 
the daily influx of nutrients by providing long-term energy storage 
(38), thereby protecting against ectopic fat deposition and asso-
ciated lipotoxicity (3). Indeed, gluteofemoral fat in humans has 
been shown to have a protective role, such that it is independently 
associated with lower triglyceride levels (39), and higher concen-
tration of high-density lipoprotein cholesterol (40, 41). Studies 
have shown that femoral fat is associated with an elevated adipose 
tissue lipoprotein lipase activity (40, 42). Though the mechanisms 
responsible for depot differences in metabolic profiles still remain 
unclear, speculatively, gluteofemoral fat secretes more beneficial 
adipokines, as supported by studies in rodents (43), thereby 
producing less pro-inflammatory molecules compared to VAT 
(3). Indeed, it is widely believed that the deleterious effects of 
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elevated VAT can be attributed in part to an enhanced secretion of 
pro-inflammatory cytokines and the release of FFA, which have 
direct portal access to the liver (41, 44).

In humans, Jensen et al. (5) demonstrated that in moderately 
obese women, body fat distribution is predictive of FFA dysfunc-
tion, such that upper body obese women, but not lower body 
obese women, had an increased adipose tissue FFA release, when 
normalized for lean body mass. Furthermore, upper body obese 
women released almost twice the amount of calories as lower 
body obese individuals. Speculatively, the differences in meta-
bolic function between these two states could also be attributed 
to adipocyte hypertrophy, which occurred in the upper body 
obese women during weight gain, as opposed to hyperplasia, 
which was observed in the lower body obese. Therefore, the 
adipocytes in the lower body obese were still of normal size 
with more restrained lipolysis, while the upper body adipocytes 
were enlarged with increased lipolysis. Importantly, many of the 
hazardous metabolic sequelae secreted from adipose tissue have 
been linked to enlarged hypoxic adipocytes (45, 46).

In rodents, surgically transplanting subcutaneous fat has dem-
onstrated either no deleterious effect or even proven beneficial to 
the recipient in some reports. By contrast, when subcutaneous 
fat was removed from mice, there was a significant increase in 
serum triglycerides and basal insulinemic index, which implies a 
quantitative role for subcutaneous fat acting as a metabolic “sink” 
(9, 47). Likewise, subcutaneous, but not visceral fat transplants, 
improved glucose metabolism in mice, particularly when they 
were placed in the viscera (43). It should be noted that large-
volume liposuction (~10 kg) of subcutaneous fat in humans nei-
ther improved nor harmed the metabolic (48) or cardiovascular 
risk profile (49). Importantly, a redistribution of fat stores is a 
hallmark of aging and is characterized by a depletion of subcuta-
neous fat stores in older rodents and humans, which contributes 
to a simultaneous expansion of visceral and ectopic fat stores in 
sites such as liver, pancreas, bone, and skeletal muscle (50). Thus, 
taken together, these observations suggest that subcutaneous fat 
may be beneficial in both rodents and humans, not only via its 
own secretions but also by mitigating the accretion of fat in other 
more harmful sites with obesity and aging, including visceral and 
ectopic stores.

Beyond the contribution of VAT per se, an emerging associa-
tion with specific sites of SAT have been linked with increased 
metabolic dysfunction in humans (30, 31, 51). As previously 
stated, subcutaneous fat is divided into two layers: superficial and 
deep (14, 15). Johnson et al. (15) investigated abdominal adipose 
tissue in obese women and determined that the area of DSAT was 
highly correlated with the area of VAT. Similarly, Kelley et al. (52) 
examined both lean and obese men and women, and found that 
DSAT and VAT were both strongly correlated with glucose, insu-
lin, HDL, and triglycerides, whereas SSAT had a much weaker 
association, and more closely mirrored gluteofemoral SAT. Smith 
et al. (14) found that DSAT was correlated with VAT, as well as 
with fasting insulin levels. Because DSAT follows a pattern more 
associated with VAT, and SSAT parallels gluteofemoral adiposity, 
the location of adipose tissue sampling, either above or below the 
fascia, needs to be taken into account as these conclusions sup-
port the hypothesis that SAT is heterogeneous, having different 

physiological effects depending on depot location. Rodents do 
not harbor fat pads that are clearly analogous to the DSAT layer, 
though it is possible that the so-called peri-visceral fat pads 
(gonadal, retroperitoneal), which tracks with mesenteric fat mass, 
may be relevant candidates to explore in future studies.

SeXUAL DiMORPHiSM iN ADiPOSe 
TiSSUe ReGULATiON AND FUNCTiON

It has been recognized that the development of adipose 
depots during positive energy balance differs according to sex. 
Independent of BMI, women typically carry 10% more body 
fat than their male counterparts (53, 54). Demerath et  al. (55) 
found that women typically have greater total body fat than men. 
Additionally, compared to men, women have greater SAT in the 
abdominal and gluteofemoral depots, independent of total body 
fat (55, 56).

Not only does SAT area and volume differ between sexes, but 
also the spatial distribution of SAT. Regardless of race, women 
tend to harbor greater SAT in the lower abdomen, and in general, 
have lower visceral content than men (55, 56). One explanation 
for the increase in subcutaneous adiposity in women may be 
attributed to preferential increases in SSAT rather than in DSAT. 
The area of the deep subcutaneous depot is inversely associated 
with fasting insulin levels (14) and, in general, women have lower 
visceral content than men (55, 56). This may partially contribute 
to why, on average, pre-menopausal women tend to have healthier 
metabolic risk profiles compared to men, irrespective of total fat 
content. Nevertheless, it is acknowledged that additional factors, 
such as reproductive hormones and differential racial responses, 
influence both fat quantity and distribution.

As stated previously, women have more SAT than men, while 
men have more VAT than women (57). Thus, it is not surprising 
that leptin is a better correlate for body fat in females (58), as SAT 
secretes more leptin than VAT. By contrast, insulin is a better cor-
relate for body fat in males (58), as insulin is more related to VAT 
than SAT (57). Because of the aforementioned sex differences in 
fat deposition, and their relation with various co-morbidities, it 
is important to consider whether these sex differences similarly 
exist in rodents, in order to promote their pre-clinical value as a 
guide for relevant translational research.

To date, the sexual dimorphism seen in humans is less docu-
mented in rodents (59, 60), although some inferences have been 
made. For example, similar to humans, female rats have higher 
plasma leptin levels compared to male rats (58), independent of 
body composition differences (61). Consistent with these obser-
vations is the brain sensitivity to these hormones, with male rats 
demonstrating greater central sensitivity to insulin, while females 
were more responsive to leptin (58).

Similar to humans, female rodents harbor greater fat mass 
compared to their male counterparts, but remain more insulin 
sensitive. Macotela et al. (60) showed that isolated adipocytes from 
subcutaneous fat of female mice were more insulin sensitive than 
male-derived subcutaneous fat. However, when further examin-
ing inter-depot insulin sensitivity in female mice, the periovarian 
fat pad proved to be more insulin sensitive than the inguinal fat 
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pad (60), a finding that is at odds with data from humans, where 
the gluteofemoral depot has proven to be the most sensitive SAT in 
females (62), and is also more insulin sensitive than the VAT (63).

An additional similarity between the species is spatial pat-
terning of the adipose tissue with changes in sex hormones. 
Postmenopausal women preferentially redistribute adipose tissue 
from the gluteofemoral region to the abdomen, which mirrors 
the accrual of visceral fat observed with aging in men. Likewise, 
Grove et al. (59) demonstrated that ovariectomized female mice 
demonstrated a significant increase in adiposity similar to adipose 
tissue accumulation patterning in males, including an increase in 
total and visceral fat. However, whether ovariectomizing young 
rodents truly recapitulates female menopause in humans, which 
occurs during late-middle age, is debatable, and thus should be 
interpreted with caution.

Though similarities exist, other notable differences in regards 
to sex differences have been observed between species. One 
example is the fat pad composition and location associated with 
sex hormones (i.e., estrogen and testosterone) in rodents. For 
instance, the inguinal white adipose tissue (WAT) of female mice 
contains mammary glands, while the gonadal fat pad is situated 
near the reproductive tissue. This is not the case in humans, 
where the mammary glands are located in the breast tissue. 
Furthermore, unlike their male counterparts, several strains of 
female mice are relatively resistant to obesity on a high-fat diet 
(64, 65), but this protection can be removed by ovariectomizing 
the animal (66, 67). Thus, while fat patterning in adult females 
seems to be influenced strongly by reproductive hormones, overt 
protection against weight gain and obesity does not seem to be a 
shared characteristic between female rodents and humans.

weiGHT LOSS

Regardless of sex, obese individuals undergoing weight loss 
preferentially decrease their VAT compared to SAT (68). Indeed, 
significant volumes of VAT are lost when subjected to caloric 
restriction (CR) and/or a physical activity intervention (69). 
Additionally, when SAT is mobilized in obese individuals, there 
is a greater increase in lipid mobilization in the abdominal region 
compared to the gluteofemoral region (8, 70, 71), which shows 
only a minimal change in mobilization (71). This preferential 
reduction in abdominal adipose tissue is consistent with the 
observation that adipocytes from the omental and mesenteric 
depots are more lipolytically active, when compared to adipocytes 
found in the gluteofemoral region (72–74).

When male rodents are subjected to CR or leptin treatment, 
an examination of weight loss effects on adipose tissue volume 
and spatial distribution (8, 75) reveals a preferential reduction in 
VAT compared with other adipose depots (76), while some have 
shown that male rodents lose both VAT and SAT (77). Similarly, 
female mice tend to conserve their SAT by preferentially reducing 
their visceral fat stores (77). This would be somewhat analogous 
to human studies, where both men and women reduce their vis-
ceral fat stores, with a greater extent occurring in men compared 
to women (78, 79).

Furthermore, as the majority of people who undergo diet-
induced weight reduction regain the lost weight over time, it 

is important to determine if the same phenomenon is seen in 
rodents. Male mice exposed to ad  libitum feeding following 
CR-induced weight loss demonstrated gains in both visceral 
and subcutaneous fat stores. However, female mice did not 
follow this same pattern, and were less capable of regaining 
visceral fat after weight loss (77). Speculatively, this may be 
attributed to reproductive hormones or to sex differences in 
leptin concentrations. Circulating leptin decreases with CR, 
but increases with ad libitum feeding in male mice, presumably 
due to increases in adiposity and food intake. In female mice, 
leptin patterns appear to differ from males. For example, while 
leptin concentrations are similarly reduced with CR in females 
(6, 80), they remain reduced after refeeding, as compared to 
ad  libitum-fed controls (80), while others have shown leptin 
levels unchanged in response to either CR or refeeding (77). 
Irrespective of weight loss and body composition, women have 
higher levels of leptin compared to men (55), but both obese 
men and women who undergo CR, proportionately decrease 
leptin levels with the reduction of total fat, as well as visceral 
and subcutaneous fat (68). Interestingly, in children, when 
adjusting for body composition and fat deposition, sex has no 
independent effect on leptin concentrations (81). In addition, 
adults attempting to lose weight tend to engage in multiple 
episodes of weight loss and regain (e.g., weight cycling); thus, 
it is important to examine the effects of this flux in body 
composition and fat deposition on leptin concentration in 
adult humans. Interestingly, the association between leptin 
concentration and weight cycling holds true for females, but 
not for males (82). Importantly, the fact that both female and 
male mice show an increase in fat deposition after CR in a 
manner reminiscent of humans during weight regain suggests 
that rodents may be an informative model toward elucidating 
many sexually dimorphic traits related to fluctuations in energy 
balance and storage (83).

LiPOLYSiS

Lipolysis, which is the active breakdown of triglycerides to 
FFAs and glycerol, has been widely studied in both rodents and 
humans. Many striking similarities in the regulation of lipolysis 
exist among species, including stimulation by catecholamines, 
growth hormone, testosterone, and cortisol (corticosterone 
in rodents), as well as inhibition by insulin. Lipolysis can be 
stimulated in rodents and humans under similar physiological 
contexts, including fasting, exercise, and stress. While, activation 
of the sympathetic nervous system and subsequent release of 
epinephrine, norepinephrine, and cortisol represents a major 
driver of lipolysis in humans (84) and rodents (85), important 
differences between rodents and humans exist in how some of 
these pathways drive lipolysis.

Catecholamine-driven lipolysis, which occurs by activating 
three different β-adrenergic receptor (AR) subtypes, β1, β2, and 
β3, provides one important example. ARs are coupled to a Gα 
subunit, and catecholamine induced activation leads to a cascade 
of events culminating in lipolysis, including increased cAMP by 
adenylyl cyclase, activation of protein kinase A, and activation of 
hormone-sensitive lipase, enabling its translocation to the lipid 
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droplets to catalyze the hydrolysis of triglycerides (86). Both 
β1-AR and β2-AR are ubiquitously expressed in rodents and 
humans, whereas β3-AR expression is more tissue and species 
specific, with expression confined to WAT in rodents, while only 
being marginally expressed in human adipocytes (87). Indeed β3-
adrenergic agonists induce a lipolytic response in rodents (88), 
but fail to significantly stimulate lipolysis in human adipocytes, 
in vitro (89) and in vivo (90).

In humans, α2-ARs, as compared to β-ARs, are highly 
expressed in SAT, and have a greater affinity for catechola-
mines (91), while this G-coupled protein receptor is absent in 
rodent adipocytes. In humans, α2-AR acts to inhibit lipolysis 
by decreasing cAMP levels. Indeed catecholamine activation 
of α2-ARs in non-obese humans has been shown to partially 
down regulate lipolysis in SAT (92). Further support of α2-AR 
regulating lipolysis was gleamed from rodent studies whereby 
the human α2-AR was expressed in transgenic mice on a β3-
AR knockout background. Specifically, these animals exhibited 
a blunted catecholamine-stimulated lipolysis response and an 
obese phenotype (93). Therefore, it appears a balance between 
α2-AR and β-AR is necessary for lipolysis regulation, at least in 
humans (87).

Historically, the major circulating factors regulating lipolysis in 
human WAT have been appreciated to be catecholamines, growth 
hormone, cortisol, testosterone, and ghrelin (94). However, more 
recently, it has been shown that natriuretic peptide [extensively 
reviewed in Ref. (95)] induces lipolysis in  vitro and in  vivo 
(96), independently of the catecholamine-AR pathway (97), 
via a cGMP-dependent mechanism (96). However, natriuretic 
peptide lipolysis is apparently primate specific. Sengenès and 
colleagues showed that only primate adipocytes (i.e., humans 
and macaques) showed natriuretic peptide-induced lipolysis, 
while this effect was absent in rats, mice, hamsters, and other 
non-rodent mammals.

In summary, important similarities exist in the biology 
of rodent and human adipose tissue lipolysis, but as we have 
discussed, many important distinctions have been identified 
that warrant consideration when utilizing rodent models. 
Such differences are apparent in the species specificity of β-AR 
expression on adipocytes, and the distinct roles of α2-ARs and 
natriuretic peptide in regulating human, but not rodent adipose 
tissue lipolysis. Likewise, some lipolytic agents active in rodent 
adipocytes fail to have similar effects in human adipocytes (91). 
For example, adrenocorticotropic hormone (ACTH) induces 
lipolysis in mouse (98) and rat adipocytes (99, 100), respectively, 
while alpha-melanocyte-stimulating hormone (αMSH) was also 
shown to modulate murine adipocytes (101). However, neither 
ACTH or αMSH – induce lipolytic activity in human adipocytes 
(98, 102). Therefore, it is important to balance and account for 
these important differences against commonalities in the biology 
of adipose tissue lipolysis among species.

FAT PADS AND FAT DePOTS AS AN 
eNDOCRiNe ORGAN

Adipose tissue, which is made up of numerous cell types, including 
pre-adipocytes, adipocytes, T cells, B cells, and stromovascular 

cells, is now appreciated as an active endocrine organ, capable 
of secreting numerous humoral factors. Indeed, systemic levels 
of adipokines, including leptin, interleukin (IL) 1-β, IL-6, and 
tumor necrosis factor-α (TNF-α), are actively secreted and levels 
rise with increasing fat mass. On the other hand, adiponectin has 
been linked to many beneficial effects, but levels correlate nega-
tively with increasing adiposity (103). Because these adipokines 
have pleiotropic actions, including extensive metabolic effects, it 
is important to determine if secretion is similar among humans 
and rodents with respect to depot location.

As mentioned previously, leptin is preferentially secreted in 
humans from peripheral subcutaneous depots at a higher rate 
than from VAT (103, 104), indicating that subcutaneous fat is a 
chief source of leptin production. Likewise, leptin expression was 
shown to be greater in rat inguinal as compared to epididymal fat 
pads (105). IL-6 is another important cytokine that is produced 
in significant amounts from adipose tissue. Mohamed-Ali et al. 
(106) showed that SAT is capable of producing IL-6, while Fontana 
et al. (103) demonstrated that IL-6 secretion is greater from VAT 
than from SAT in obese individuals (103). Furthermore, IL-6 
levels are elevated in middle-aged men with visceral adiposity, 
as compared to lean men, and adjusting for visceral fat accounts 
for the rise in IL-6 with visceral obesity (107). Other fat-derived 
factors, such as TNF-α, show similar secretion patterns in VAT 
and SAT in humans (103), but adipose-derived TNF-α has been 
suspected to act in more an autocrine/paracrine rather than 
endocrine manner.

The data are less clear for adiponectin secretion from different 
human depots. Phillips et al. (108) showed that SAT secretes more 
adiponectin compared to VAT, while obese individuals demon-
strate impaired total adiponectin secretion from SAT, but not from 
VAT depots (109). Meanwhile, some have reported no significant 
difference in total adiponectin secretion between subcutaneous 
and visceral adipocytes (103, 109), while others have shown that 
cultured visceral adipocytes secrete more adiponectin compared 
to subcutaneous adipocytes (104). Likewise, adiponectin expres-
sion from rat epididymal fat pads was significantly greater than 
that from inguinal fat (105).

In regard to evidence from rodents, a microarray study in 
isolated epididymal and inguinal fat pads from rats first showed 
marked differences in these tissues, including increased expres-
sion of resistin, angiotensinogen, adiponectin, and PPARγ in 
epididymal tissue, while inguinal fat demonstrated greater 
expression of PAI-1 and leptin. Studies have also assessed the 
effect of surgically removing the epididymal and perinephric 
fat pads on circulating levels of adipokines. Pitombo et al. (110) 
showed selective ablation of these fat pads restored insulin action 
and normalized TNF-α, IL-6, and adiponectin levels. By contrast, 
surgical removal of visceral fat pads in a male and female mouse 
model of intestinal cancer fed a high-fat diet led to sexually 
dimorphic responses. In males, lipectomy reduced adiponectin 
levels, but did not alter other adipokines, presumably due in part 
to a compensatory expansion of the mesenteric fat pad (6). By 
contrast, females had higher circulating levels of adiponectin 
than males, and while lipectomy reduced circulating levels, they 
remained at higher concentrations than observed in control 
males. Furthermore, no compensatory change was observed in 
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mesenteric fat pad mass in females, but leptin levels were sig-
nificantly elevated, suggesting the expansion of subcutaneous fat 
stores. Unfortunately, the literature does not provide additional 
information regarding adipokine secretion in rodent models in 
relation to specific fat pads.

Finally, almost all studies evaluating circulating levels of adi-
pokines are conducted according to clinical trial protocols, which 
often require the patient to fast overnight prior to blood sampling. 
However, measuring levels and expression patterns under basal 
conditions may be misleading as it is now recognized that nutri-
ents can provoke the expression and production of adipokines 
from adipose tissue. Indeed, most humans (and rodents) spend 
the majority of their day in the postprandial state, and as a result, 
the expression and secretion of adipokines from fat depots and 
fat pads may be severely underestimated. Einstein et  al. (111) 
first showed that when rats were exposed to hyperglycemia and 
hyperinsulinemia, expression of several peptides in fat, includ-
ing resistin, adiponectin, leptin, PAI-1, and angiotensinogen, 
was markedly increased by 2- to 10-fold in epididymal fat pads, 
but less dramatically in subcutaneous fat. Similar patterns were 
also observed when animals were challenged with glucosamine 
(112) or FFA (113), and some of these responses were further 
exaggerated in aging rats. Similarly, Kishore et al. (114) showed 
in humans that adipose-derived factors from subcutaneous fat 
potentiate PAI-1 secretion from macrophages in response to 
FFAs. Furthermore, this response is similarly exaggerated in 
macrophages obtained from middle-aged versus younger-adult 
subjects (115). Mechanistically, these effects have been linked to 
increased flux through the hexosamine biosynthetic pathway as 
well as TLR4 receptors. It is also important to keep in mind that 
these comparisons, while informative, are made on a per mil-
ligram tissue or mRNA basis and do not necessarily account for 
the absolute fat pad size and, hence, overall contribution to whole 
body levels in vivo. Thus, given the inherent size of the visceral 
pads in relation to the inguinal tissue in rodents, the contribution 
of visceral fat to these secreted factors, particularly in response to 
nutrients, could be quite large. However, the relative contribu-
tion of visceral fat-derived cytokine release to the overall nutrient 
response in vivo, has not been carefully evaluated. Nevertheless, 
based on the current literature, it appears that adipokine secretion 
patterns in humans are predominantly similar to what has been 
shown in rodent studies.

HORMONAL AND GeNeTiC FACTORS 
GOveRNiNG FAT PAD DeveLOPMeNT 
AND eXPANSiON

As mentioned, many uncertainties remain regarding the mecha-
nistic underpinnings responsible for the physiological differences 
among depots. During weight gain, different depots enlarge via 
hyperplasia, hypertrophy, or both (116), with new adipocytes 
generating more readily in some depots compared to others. 
The inter-depot physiological enlargement differences are likely 
influenced by both extrinsic and intrinsic factors.

Genetic factors have also been shown to influence the distri-
bution of adipose tissue (117–119). The BMI of an individual is 

highly heritable and can possibly account for as much as 70% of 
the variance (117). However, C57BL/6 mice, which are inbred, 
and theoretically should be identical genetically, demonstrate 
marked variance in body mass, adiposity, and feeding behavior, 
even when the mice are fed the same diet type (120), perhaps due 
to epigenetic effects (121).

Although genetic factors have been implicated in fat pad 
growth and expansion, the genetic underpinnings controlling 
these processes are not as well understood. A few investigations 
have been conducted to elucidate the gene(s) that moderate the 
distribution of adiposity. Recently, Loh et al. (122) showed LRP5 
is involved in fat distribution. Individuals with gain-of-function 
LRP5 mutations are characterized with increased lower-body fat 
accumulation, compared to age-, sex-, and BMI-matched con-
trols. However, more attention has focused recently on adipocytes 
from different depots, which have shown differential gene expres-
sion (105, 119, 123) and proliferative capacity (124, 125). When 
examining the transcripts that differed around a quarter were 
found to be developmental regulators (126–128), in particular 
the homeobox (HOX) superfamily of genes. Investigations have 
now started to actively examine differential HOX gene expression 
between depots in order to assist in determining the underpin-
nings of abdominal versus gluteofemoral adiposity (10, 123, 128, 
129). A summary of the HOX gene network in rodent and human 
adipose tissue is provided in Table 1.

In addition to genetic contributors, structural and hormonal 
regulators have been shown to influence fat distribution. Scherer 
and colleagues (132) examined extracellular matrix components 
of adipose tissue, specifically collagen VI, under different meta-
bolic conditions. In the absence of collagen VI, adipocytes were 
capable of unrestricted expansion, resulting in further lipid storage 
and a reduction in ectopic fat deposition (132). Interestingly, even 
with greater fat expansion, under both high-fat diet conditions 
and on an ob/ob background, collagen VI knockouts compared to 
controls had improved metabolic phenotypes. To determine if a 
similar relationship between increased collagen VI and metabolic 
stress existed in humans, Scherer and colleagues investigated 
an Asian Indian population due to their propensity to be more 
insulin resistant compared to BMI-matched Caucasians (133). 
Collagen VI alpha 3 (col6a3), a major adipocyte-derived secre-
tory protein with increased expression during states of metabolic 
stress in ob/ob and db/db mice, was compared between Asian 
Indian and control matched Caucasians. Similar to the rodent 
models, col6a3 expression was significantly greater in abdominal 
and gluteal subcutaneous adipose depots in the investigated 
Asian Indians (132). Collectively, there is evidence that in terms 
of collagen VI, there may be similar adipocyte physiology in both 
rodents and humans that may inhibit expansion of adipose tissue.

Similar to the collagen VI model, overexpression of adiponec-
tin in ob/ob mice lead to an increase in adipocyte cell number 
and, thus, increased adipose tissue mass, specifically SAT (134). 
However, even with the observed hypertrophy, the unrestricted 
expansion of adipose tissue associated with elevated adiponectin 
levels resulted in a major improvement in the overall metabolic 
phenotype, even in an obese state (134). The authors speculated 
that the improvement in metabolic parameters was partially 
attributed to increased PPARγ activity in adipocytes, leading 
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TABLe 1 | expression patterns of the HOX gene network in human fat 
depots and mouse fat pads.

Human Mouse

GeNe SubQ visceral SubQ visceral

HOXA1a

HOXA3a X
HOXA4a X X
HOXA5a X
HOXA10a

HOXA11a

HOXB1a X
HOXB2a X
HOXB5a X
HOXB8a X
HOXB13a X
HOXC4a

HOXC6a X X
HOXC11a X
HOXA10b X
HOXC6b X
HOXA2c X
HOXA3c X
HOXA4 X
HOXA5c X
HOXA9c X
HOXA10c X
HOXB7c X
HOXB8c X
HOXC8c X
HOXC13c X
IRX2c

HOXA5d X
HOXC8d X X
HOXC9 Xf Xd Xd

Nr2f1 X X
Gpc4d X X
Thbdd X X
shox2d X X
Tbx15d X X
En1d X X
Sfrp2d X X
EN1e X X
HOXA2e X
HOXA4 X
HOXA5e X
HOXA9e X
HOXA10e X
HOXC6e X
HOXC8e X
HOXC10e,f X

Data were obtained from Cantille et al. (130)a, Vohl et al. (123)b, Karastergiou et al. 
(128)c, Gesta et al. (10)d, Tchkonia et al. (126)e, and Brune et al. (131)f.
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to a redistribution of lipids from ectopic sites to SAT. Likewise, 
increased adiponectin levels may also play a role in human obesity. 
Bouatia-Naji and colleagues (135) investigated common single 
nucleotide polymorphisms (SNPs) in the ACDC adiponectin 
encoding gene in French Caucasians and concluded that hyper-
adiponectinemia may be associated with severe obesity.

Adiponectin levels are also increased in growth hormone 
receptor knockout (GHRKO) mice (136), likely because adi-
ponectin is negatively regulated by GH (137). Similar to the above 

transgenic models, GHRKO mice are characterized by greater 
relative amounts of body fat in both males and females, with a 
disproportionate amount of fat deposition in SAT (138). In spite 
of harboring greater amounts of adipose tissue, GHRKO mice 
are metabolically healthy, an effect attributed to their increased 
adiponectin levels (139). Interestingly, Laron dwarfism, which 
is a human syndrome characterized by defective GH signaling, 
is characterized by obesity, in spite of a small stature, but these 
individuals are protected against type 2 diabetes (140) and have 
elevated adiponectin levels (141). Thus, humans and rodents 
may have a similar response to reduced GH/IGF-1 signaling and 
associated increased levels of adiponectin on fat accretion and 
patterning as well as glucose metabolism.

Glucocorticoids also influence adipose tissue differentia-
tion, function, and distribution. High levels of glucocorticoids 
partially contribute to visceral obesity in conjunction with 
diabetes, hyperlipidemia, and hypertension (142, 143). One 
mechanism for the production of glucocorticoids is through the 
enzyme 11-β-hydroxysteroid dehydrogenase type 1 (11β HSD-
1). Interestingly, Masuzaki and colleagues (144) created a mouse 
model overexpressing 11β HSD-1 selectively in adipose tissue 
that reflected 11β HSD-1 levels observed in adipose tissue from 
obese humans, who are reported to have increased 11β HSD-1 
activity. They observed that a modest increase in 11β HSD-1 
activity was sufficient to induce hyperphagia and increased VAT 
accumulation. Furthermore, the increased VAT accumulation 
was attributed to significantly greater glucocorticoid receptor 
alpha isoform expression in mesenteric compared to SAT. In 
addition, increased corticosterone release into the portal vein 
of rodents may contribute to the observed rise in portal FFA 
levels, which parallels the increase in FFA levels in humans char-
acterized by high circulating cortisol and metabolic syndrome 
(145–148). Collectively, it appears that structural and hormonal 
factors associated with increases in adipose tissue are largely 
similar in both humans and rodents. Therefore, rodents appear 
to be a viable model of human adipose tissue regulation by many 
common hormonal factors.

CONCLUSiON

It is understood that not all obese individuals are at the same 
risk for developing metabolic perturbations and that body fat 
distribution is an important determinant of obesity-related 
complications. Individuals with increased upper-body adiposity 
are disproportionately burdened by obesity-related diseases, 
compared to lower-body obese individuals. Thus, it is paramount 
that studies continue to elucidate the pathways linking various 
adipose pads and depots in relation to health and disease, as 
well as the mechanistic underpinnings dictating how body fat is 
distributed in order to answer fundamental questions. Rodents 
are commonly used to model features of human metabolism 
and obesity, yet it is unclear to what extent rodent fat pads are a 
suitable model of human fat depots. Here, we have highlighted 
examples of both shared and divergent traits among rodent fat 
pads and human fat depots. Given some of the stark differences 
in adipose tissue location and function among species, we urge 
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careful consideration in experimental design and interpretation 
when attempting to draw definitive parallels between rodent fat 
pads and human fat depots.
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Obesity and its metabolic complications have emerged as the epidemic of the new 
millennia. The use of obese rodent models continues to be a productive component 
of efforts to understand the concomitant metabolic complications of this disease. In 
1978, the JCR:LA-cp rat model was developed with an autosomal recessive corpulent 
(cp) trait resulting from a premature stop codon in the extracellular domain of the leptin 
receptor. Rats that are heterozygous for the cp trait are lean-prone, while those that are 
homozygous (cp/cp) spontaneously display the pathophysiology of obesity as well as a 
metabolic syndrome (MetS)-like phenotype. Over the years, there have been formidable 
scientific contributions that have originated from this rat model, much of which has been 
reviewed extensively up to 2008. The premise of these earlier studies focused on char-
acterizing the pathophysiology of MetS-like phenotype that was spontaneously apparent 
in this model. The purpose of this review is to highlight areas of recent advancement 
made possible by this model including; emerging appreciation of the “thrifty gene” 
hypothesis in the context of obesity, the concept of how chronic inflammation may drive 
obesogenesis, the impact of acute forms of inflammation to the brain and periphery 
during chronic obesity, the role of dysfunctional insulin metabolism on lipid metabolism 
and vascular damage, and the mechanistic basis for altered vascular function as well as 
novel parallels between the human condition and the female JCR:LA-cp rat as a model 
for polycystic ovary disease (PCOS).

Keywords: obesity, thrifty genotype, metabolic syndrome, immune function, inflammation, cardiovascular 
diseases, pcos, JCR rat

iNTRODUCTiON

Obesity and the Clinical Problem for Our Generation
Obesity and its metabolic complications have emerged as the epidemic of the new millennia. 
Fueled by a caloric-dense (and nutrient-poor) food chain that is readily available in most developed 
countries, the current generation reflects the expression of a human phenotype plagued by the 
“obesogenic” environment. We have become so efficient at creating foods that target brain reward 
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pathways to stimulate addictiveness and palatability, that we now 
suffer from the health consequences of not being able to alter our 
behavior away from this food environment. So too, we are just as 
guiltily of bestowing this new found talent on the next generation 
of young adults.

For many scientists, this problem has become a life-long com-
mitment to understand how overnutrition and nutrient-poor 
choices on the backdrop of the existing food chain could result in 
such a devastating change to our metabolic prognosis in such a 
short period of time. Animal models have been a prominent tool 
in this endeavor. One such model, the JCR:LA-cp rat (re-derived 
in Edmonton, AB, Canada in 1978 by Dr. James C. Russell), has 
received significant attention. For the last three decades, this 
model has appeared in the literature every year, often in numer-
ous forms spanning facets of nutrition, endocrinology, metabolic 
syndrome (MetS), obesity, lipid metabolism, vascular myocardial 
pathophysiology, and pharmacology (Figure 1).

The JCR:LA-cp Rat
In 1978, at the fifth backcross to the LA/N strain [including 
elements of the corpulent (cp) trait], initial breeding stock was 
sent from National Institutes of Health (NIH) by Dr. Carl T. 
Hanson to the laboratory of one of the authors (James C. Russell) 

at the University of Alberta. These rats were the founders of a 
colony that retained ~3% of the genome derived from the obese 
spontaneously hypertensive rat (or SHROB). Unlike other NIH 
colonies, at the time, that were maintained inbred and congenic, 
the JCR:LA-cp strain has been maintained as a closed outbred 
colony at the University of Alberta to retain the unknown genetic 
elements leading to early development of cardiovascular disease 
(CVD).

The formidable contributions that have originated from this 
rat model have been well documented and reviewed extensively 
up to 2008 (1–3). The premise of the early studies focused on 
characterizing the pathophysiology of MetS-like phenotype that 
was spontaneously apparent in this model. Highlights of the work 
from this period included useful descriptions of the biochemi-
cal profile, careful reports of glucose and insulin metabolism, 
endothelial function and its impairment, and unique observa-
tions of early vascular atherogenesis.

Contributions of the JCR:LA-cp Rat and 
Recent Advancements
The purpose of this review is to celebrate the major contributions 
that this rat model has served over many years and to highlight 
recent advancements. In a unique way, this model has been 
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carefully studied, yet successfully pervasive into the broad areas 
of research that underpin our understanding of obesity and the 
MetS.

We wish to highlight areas of advancement made possible 
by this model including; emerging appreciation of the “thrifty 
gene” hypothesis in the context of obesity, the concept of how 
chronic inflammation may drive obesogenesis, the impact of 
acute forms of inflammation to the brain and periphery during 
chronic obesity, the role of dysfunctional insulin metabolism on 
lipid metabolism and vascular damage, the mechanistic basis for 
altered vascular function as well as novel parallels between the 
human condition and the female JCR:LA-cp rat as a model for 
polycystic ovary disease (PCOS).

OBeSiTY: TeSTiNG THe “THRiFTY GeNe” 
HYPOTHeSiS OF ADAPTATiON TO 
DieTARY eNeRGY iNTAKe

The prevalence of obesity is continuing to increase at an alarming 
rate in both economically advanced Western societies and devel-
oping countries in economic–nutrition transition (4). Obesity 
is linked to adverse short-term and long-term health outcomes, 
including increased risk of CVD and insulin resistance leading to 
overt type 2 diabetes (T2D) (5, 6). Genetic differences between 
individuals explain a major proportion of the within-population 
variation in body mass index (7). However, genetic susceptibility 
alone may not result in obesity without other environmental 
influences (8). A positive energy balance beyond meeting energy 
requirements results in excess dietary energy intake being prefer-
entially stored as triglycerides (TG) in adipose tissue, resulting in 
an increase in body weight and fat mass. Obesity can be viewed 
as a result of physiological dysfunction or perturbation in normal 
feedback mechanisms relating to feeding behavior and energy 
balance. The adaptive response or “thrifty gene” theory of obesity 
explains how genes favoring the efficient use of energy store in 
periods of feast followed by famine result in obesity in the food-
rich or “obesogenic” environment of prosperous societies (9, 10). 
This “thrifty gene” hypothesis has been the dominant theory of 
the developmental origins of obesity and related chronic disease. 
The “thrifty gene” hypothesis provides a potential explanation 
for the dramatic rate of T2D and obesity prevalence in Pima 
Indian population of Arizona relative to the genetically similar 
Pima Indians in Mexico (11). However, there are only limited 
experimental studies that have tested the adaptive-survival value 
of an obese-prone genotype. Our ongoing research is based on 
the JCR:LA-cp rodent model that expresses the corpulent (cp) 
autosomal recessive trait (cp), a nonsense Tyr763Stop mutation 
in the Ob-R gene, resulting in a total absence of functional 
leptin receptors (12). Animals that are homozygous for the cp 
trait (cp/cp) are obese-prone, hyperphagic, and develop features 
of the MetS, similar to the metabolic aberrations observed in 
the clinical setting (13). Animals that are heterozygous for the 
cp trait (+/cp) or wild type (+/+) are lean-prone, have normal 
food intake, and do not develop the MetS. To verify the adap-
tive response hypothesis that an obese-prone genotype confers 
a survival advantage when challenged with dietary energy 
restriction and food-seeking behavior induced activity, juvenile 

(35–40 days) male JCR:LA-cp rats (obese-prone and lean-prone) 
were exposed to 1.5 h/day of feeding and 22.5 h/day of voluntary 
wheel running (14). We have shown that this experimental design 
leads to increased wheel running or food-seeking behavior and 
self-starvation (14). Initial body weights were similar in both 
groups of animals; however, the obese-prone animals survived 
twice as long (8.2 ± 1.1 vs. 3.5 ± 0.2 days) and ran similarly, com-
pared to their lean-prone counterparts (14). A follow-up study 
showed that prior conditioning with dietary energy restriction 
for 1  week provided a survival advantage to the obese-prone 
JCR:LA-cp phenotype (15). Dietary energy restriction primed 
the animals to regulate energy homeostasis pathways following 
exposure to continued energy restriction and food-seeking-
related activity (15). The obese- and lean-prone phenotypes have 
metabolic differences, which we have shown are associated with 
alterations in feeding-related neuropeptide gene expression in the 
arcuate nucleus of the hypothalamus including NPY, Orexin A, 
CART, and POMC. In addition, hypothalmic pro-inflammatory 
cytokines and oxidative stress markers IL-6, Tnf-α, and NF-kβ, 
superoxide dismutase-1 (SOD1), glutathione reductase (GRx), 
glutathione peroxidase (GPx), and catalase mRNA are elevated 
in the obese-prone phenotype (16). Interestingly, when the 
obese- and lean-prone animals are exposed to the same degree 
of dietary energy restriction, these hypothalamic inflammatory 
and oxidative stress markers were improved in the obese-prone 
phenotype, while they are exacerbated in the lean-prone pheno-
type (16). These findings demonstrate that, in juvenile JCR:LA-cp 
rodents, the metabolic and neural adaptation to energy restriction 
are dependent on the phenotype, and this can confer a survival 
advantage (16). Overall, our research findings suggest that obesity 
is a developmental outcome dependent on the interrelationship 
of an obese-prone genotype and feeding conditions/“obesogenic” 
environment. The JCR:LA-cp rodent offers a unique opportunity 
to study the underlying mechanisms of the behavioral and physi-
ological pathways involved in the development of obesity and the 
possible conference of evolutionary survival traits.

CHARACTeRiZATiON OF THe ALTeReD 
iMMUNe FUNCTiON iN OBeSiTY USiNG 
THe JCR:LA-cp RAT MODeL: MODULATiON 
wiTH AGe AND DieTARY FAT

Obesity is often recognized as a chronic inflammatory state with 
altered immune responses, including T cell dysfunction (17–19). 
The JCR:LA-cp rat model of the MetS shares altered immune 
function, similar to that observed clinically in obese individuals 
(17–19). The obese-prone rodent model has chronic low-grade 
systemic inflammation (20–22) and, recently, has been shown 
to have inflammation in the brain (23, 24). Our group has also 
demonstrated significant alterations in the acquired immune 
system of the obese-prone phenotype (19, 25–27). The altered 
T cell function in the JCR:LA-cp rat appears to be dependent on 
the age of the animal and length of time of exposure to a high-fat 
diet. When a high-fat diet is introduced at 8 weeks of age and 
fed for 3 weeks, the obese-prone rats have fewer splenocytes (an 
indicator of the peripheral lymphopenia) compared to their lean-
prone counterparts (27). The obese-prone animals also have a 
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higher proportion of macrophages, T-cells (primarily CD8+ and 
CD4+) and CD4+CD25+ (T regulatory cells) (27). This inflam-
matory T cell response would contribute to the overall chronic 
inflammation observed in these animals. When splenocytes from 
the JCR:LA-cp rats are stimulated ex  vivo with Concanavalin 
A (ConA, polyclonal T cell mitogen), they produce the same 
amount of IL-2 (proliferative cytokine) but have increased levels 
of the inflammatory cytokine IL-6 (27). In mesenteric lymph 
nodes (MLN), which are part of the gut-associated lymphoid 
tissue and visceral adipose tissue, the obese-prone rats have a 
lower proportion of T-cells (both CD4+ and CD8+ cells) and 
fewer mature T cells (CD3+CD90+), with a higher proportion 
of CD4+CD25+ (T regulatory cells) (27). Despite lower T cell 
numbers, ex vivo, MLN from obese-prone rats produce higher 
amounts of IL-2, IL-10, IFN-γ, and Tnf-α after stimulation with 
Con A (27), suggestive of a highly reactive pro-inflammatory 
state in the intestine. When a high-fat diet was fed for 3 weeks 
to older JCR:LA-cp animals (aged 14  weeks), splenocytes had 
a lower inflammatory response in IL-6 and IL-10 production 
in the unstimulated condition. In stimulated conditions [with 
ConA, lipopolysaccharide (LPS), or pokeweed], a lower produc-
tion of IFN-γ and decreased IL-1β (LPS) and IL-10 (Con A) was 
observed (25). This suggests, similar to the human condition, that 
the animals have some degree of immunosuppression and which 
would make them susceptible to infection. In splenocytes, there 
was a greater number of CD4+ cells and fewer CD4+CD25+ 
cells, B cells, and macrophages in obese-prone animals. In MLN, 
a greater production of IL-4 following Con A stimulation, and 
IL-1β, IL-10, and IFN-γ after stimulation with LPS was observed 
(26), again suggestive of intestinal inflammation or increased 
exposure to antigens (perhaps microbiome) from the intestine. 
In addition, there was a higher proportion of CD3+CD8+ cells 
and a lower proportion of CD4+CD25+ in the obese-prone 
animals (26), consistent with chronic inflammation. When a 
high-fat diet is introduced at 3 weeks of age and fed for 13 weeks, 
the obese-prone rats have a lower proportion of CD3+ cells 
(both CD4+ and CD8+), a higher proportion of CD4+CD25+. 
In addition, these animals have naive or less mature CD4+ 
cells and activated B cells in the spleen compared to lean-prone 
control animals (20), which would leave the animals more prone 
to infection. With the exception of IL-2 production, which did 
not differ between obese- and lean-prone animals, the ex vivo 
production of cytokines after stimulation was exacerbated in this 
group compared to previous studies in older animals or fed for 
shorter periods of time. After Con A stimulation, splenocytes 
from obese-prone animals produced lower levels of IL-1β (43%), 
IL-4 (53%), Tnf-γ (31%), and IFN-γ (31%), and twofold greater 
IL-6 compared to lean-prone animals (20).

In summary, the obese-prone JCR:LA-cp rat displays an 
immune dysfunction that is similar to that reported in obese 
individuals (17–19, 28), which suggest lymphopenia and immu-
nosuppression and abnormal inflammatory responses to immune 
challenges. Differences in immune cell type and function are 
observed in both the intestinal lymphoid tissue and peripheral 
immune system suggesting that there is both systemic and intes-
tinal involvement. Interestingly, we have learned that the altered 
immune profile of the JCR:LA-cp rat is also modified by the age 

and length of feeding period of a high-fat diet. Additionally, we 
have also demonstrated that immune dysfunction in this model 
can be improved by dietary supplementation with long-chain 
polyunsaturated fatty acids (PUFA), including trans-vaccenic 
acid (20, 27) and fish oil containing docosahexanoic and eicosa-
pentanoic acid (25, 26).

iNFLAMMATiON, STROKe, AND 
iNFeCTiON iN OBeSiTY

We and others have contributed to the fact that high levels of cir-
culating biomarkers of inflammation are present in the obese state 
(29). We know that obese individuals are more likely to develop 
other chronic inflammatory conditions, including certain forms 
of cancer, diabetes, cardiovascular, and cerebrovascular disease. 
Mechanisms by which obesity alters immune and inflammatory 
responses and how these changes contribute to the development 
of other diseases are still not clear.

Stroke is a major cause of morbidity and mortality, and the 
incidence of an ischemic episode has been associated with periph-
eral and central immune dysfunction (30). Chronic systemic 
inflammatory conditions, such as infections, atherosclerosis, 
diabetes, and obesity are associated with increased risk of stroke, 
suggesting that these conditions and associated inflammation 
may contribute to the development of stroke (30). In this respect, 
aged JCR:LA-cp rats have been shown to have increased brain 
inflammation using PET imaging (23). Furthermore, patients 
with multiple risk factors for stroke, in the absence of any 
brain pathology, have also been shown to have increased brain 
inflammation, and this may be associated with increased risk for 
cerebral ischemia (23). Despite research efforts, there has been 
a lack of translation of these findings from bench to bed side in 
stroke patients. One reason for this may be the failure to consider 
clinical comorbidities in experimental models of stroke. IL-1 is 
altered peripherally in obesity and is also an important mediator 
of ischemic brain injury (31). IL-1 receptor antagonist (IL-1Ra) is 
protective against ischemic brain damage in healthy animals (31). 
After cerebral ischemia, aged JCR:LA-cp rats showed increased 
blood brain–barrier disruption and brain inflammation com-
pared to their lean-prone counterparts, and this was reduced fol-
lowing systemic administration of IL-1Ra. IL-1Ra treatment was 
also shown to significantly reduce the infarct volume (measured 
by MRI) in obese-prone animals, further supporting IL-1Ra as a 
lead candidate for the treatment of ischemic stroke (24).

Bacterial infections have been proposed to contribute to stroke 
development and may worsen ischemic event outcomes (32). 
In  this setting, a sustained pulmonary infection (Streptococcus 
pneumoniae isolate) induced in JCR:LA-cp was used to inves-
tigate the effect of infection on vascular and inflammatory 
responses prior to and after cerebral ischemia (33). The results 
showed that the pneumonia infection augmented atherosclerosis 
and exacerbated ischemic brain injury via IL-1 and platelet-
mediated systemic inflammation pathways (33). Targeting these 
mechanisms could be therapeutically useful to prevent infection-
induced thrombo-inflammatory responses that may predispose 
individuals to ischemic vascular events and adversely affect stroke 
outcomes.
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DeveLOPMeNT OF DYSLiPiDeMiA 
DURiNG OBeSiTY AND 
HYPeRiNSULiNeMiA: OveRPRODUCTiON 
OF LiPiDS BY THe iNTeSTiNe AND 
BiOACTive TRANS-FATTY ACiDS

intestinal Contribution to 
Hypercholesterolemia and 
Diabetic Dyslipidemia
One of the most significant advances that have occurred over 
the last 5 years with respect to intestinal lipid metabolism is the 
understanding of how the gut contributes to whole body cho-
lesterol homeostasis (34). In particular, we now appreciate how 
these intestinal-based mechanisms become dysfunctional under 
conditions of obesity and insulin resistance. Using the JCR:LA-cp 
rat model, we have shown that circulating hyperinsulinemia (as 
is the case during conditions of MetS or prediabetes) can lead to 
increased absorption of both lipid and sterol from intestine that 
can, in turn, exacerbate dyslipidemia and CVD risk. Specifically, 
we have demonstrated that insulin resistance results in a chronic 
overproduction and excessive secretion of intestinal-derived 
apoB48-containing chylomicron particles. This finding is consist-
ent with studies from the JCR:LA-cp rat (35), the hamster (36), 
and, more recently, humans (37).

Mechanisms responsible for the overproduction of intestinal-
derived lipoproteins have been reviewed elsewhere (38) but can 
include stimulation by excess free fatty acids, manipulation of 
both GLP-1 and GLP-2, increased circulating Tnf-alpha, increased 
stability of apoB48, and the downregulation of enterocytic insulin 
receptor (IR) substrate-1. Work from our own group utilizing the 
JCR:LA-cp rat has also confirmed that this is likely multifactorial 
resulting from; suppression of enterocytic Pparα (39), increased 
SREBP-1 (40), decreased ABCG5/G8 (39), and increased phos-
phorylation of JNK (41). New emerging data also suggest that 
increased enterocytic Tnfα may also contribute to increased apoB 
per se (42). In addition, Parnell and Reimer have elegantly shown 
that there is an increase in satiety hormone (proglucagon, PYY, 
and ghrelin) mRNA expression in the JCR:LA-cp rat gut that may 
potentially contribute to intestinal lipid overproduction (43).

Importantly, these observations provide valuable mechanistic 
explanation for why those with the MetS and diabetes typically 
have a unique lipoprotein phenotype. Left untreated, those with 
obesity and early insulin resistance develop atherogenic dys-
lipidemia that renders a significantly increased CVD risk profile. 
Other efforts from our laboratory have used the JCR:LA-cp rat 
to better understand potential nutritional means to curb these 
metabolic impairments.

impact of Dietary Long-Chain Fatty 
Acids, PUFA, and Ruminant Trans-Fatty 
Acids to Lipoprotein Metabolism in the 
JCR:LA-cp Rat
Pharmaceutical compounds that activate peroxisome prolifera-
tor-activated receptor (PPAR)-α and PPAR-γ (e.g., fibrates and 
thiazolidinedione, respectively) have been successful as potent 

lipid-lowering and insulin-sensitizing therapies for CVD and 
diabetes-related dyslipidemia (44, 45). Activation of PPAR-α 
can effectively reduce plasma hypertriglyceridemia possibly via 
modulating fatty acid oxidation and energy homeostasis path-
ways. Upregulation of PPAR-γ activity has also been shown to 
normalize insulin sensitivity, improve lipid metabolism, and the 
clearance of lipoproteins, as well as restore vascular contractility 
and endothelial function (46). We became interested in the fact 
that a number of natural PPAR-α ligands exist among which 
include long chain and PUFA (e.g., oleic acid, arachadonic acid, 
eicosapentaenoic acid, and docosahexaenoic acid) (47,  48). 
More specifically, conjugated linoleic acid (CLA) is another 
naturally occurring agonist of the PPAR-α pathway, which has 
been proposed to be a primary mechanism via which CLA elicits 
pleiotropic effects (49, 50). It has now been recognized that aside 
from being converted to c9,t11-CLA in vivo, its precursor vac-
cenic acid (VA) may also have independent bioactivity in regu-
lating lipid metabolism. However, few studies have attempted to 
explore the metabolic pathways that are potentially modulated 
by VA. Using the obese JCR:LA-cp rat, we have offered a number 
of contributions to better understand the potential role of VA 
in activating and thereby regulating lipid metabolism (51, 52). 
Most recently, our group has obtained data indicating that VA 
is a potent PPAR-α and PPAR-γ agonist and strongly binds to 
the ligand-binding domain of both receptors. In accordance, we 
found a substantial elevation in energy expenditure during both 
light and dark cycle in VA-supplemented obese JCR:LA-cp rats 
(40, 53). The observed change in energy metabolism may partially 
be accredited to enhanced citrate synthase activity (an indicator 
of fatty acid oxidation) in liver and adipose tissue of VA/CLA-fed 
obese rats. Our evidence implies an active involvement of these 
nuclear receptors in regulating lipid metabolism, which is shared 
by other bioactive fatty acids such as DHA and c9,t11-CLA. These 
findings have been important in understanding the role of rumi-
nant derived trans-fatty acids as a class, and how they differ from 
pro-inflammatory industrial produced trans-fatty acids through 
the partial hydrogenation of vegetable oils (54).

In addition to PUFA and ruminant trans-fatty acids, prebiotic 
fibres have also been proposed to promote weight loss and lower 
plasma lipids; yet, the mechanisms are not fully understood. 
By  using the JCR:LA-cp rat, Parnell and Reimer have demon-
strated that a 10% dietary blend of prebiotic fibres (inulin and 
oligofructose) can lower total cholesterol concentrations. The 
dietary blend is thought stimulate cholesterol excretion in the 
form of bile as well as reduce hepatic steatosis through a FAS 
independent mechanism (55).

ARTeRiOGeNeSiS iS MeDiATeD BY 
microRNA iN THe CARDiOvASCULATURe 
AND iS ASSOCiATeD wiTH iNTeSTiNAL 
LYMPHATiC LiPOPROTeiNS iN THe 
MeTABOLiC SYNDROMe

Coronary collateral growth (arteriogenesis) is an important 
adaptive process in transient, repetitive coronary artery occlu-
sion, and myocardial ischemia, which occurs in stable angina 
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pectoris. Well-developed collateral networks are associated with 
lower incidence and severity of myocardial infarction (56). 
In contrast to angiogenesis, which is characterized by new vessel 
(capillary tube) formation, arteriogenesis is defined by remod-
eling and enlargement of small arterioles (with very low blood 
flow) to connect with larger conducting arteries. This process 
critically depends on both normal endothelial (57, 58) and vas-
cular smooth muscle cell (VSMC) function (59). Arteriogenesis 
has shown to be severely impaired in animal models exhibiting 
endothelial dysfunction, including the Zucker obese pre-diabetic 
(ZOF) rat (60) and the MetS obese-prone JCR:LA-cp  rat (59, 61, 
62). Human patients with impaired endothelial function and the 
MetS also exhibit impaired arteriogenesis (63–65).

We have recently shown that microRNA (miR)-145 and miR-
21 are important regulators of arteriogenesis. miR-145 levels are 
reduced in the JCR:LA-cp obese-prone rat compared to the lean-
prone metabolically normal animal, and when miR-145 levels 
are upregulated in the obese-prone animal, the result is complete 
restoration of coronary collateral growth (59). This effect was 
mediated by conversion of the aberrant synthetic VSMC pheno-
type to the normal contractile VSMC phenotype in the obese-
prone model (59). miR-21 levels were markedly increased in the 
heart of obese-prone animals, shown to be positively correlated 
with VSMC proliferation (66) and decreased apoptosis of neutro-
phils (66). Conversely, downregulation of miR-21 to levels found 
in lean-prone animals resulted in significant collateral growth 
recovery in obese-prone animals, associated with a decrease 
in VSMC proliferation (66); concomitant with a restoration of 
apoptosis of neutrophils (67). miR-21 is well accepted as a major 
pro-survival and pro-proliferative miR. Moreover, elevated miR-
21 levels were shown to be positively correlated with: increased 
expression of pro-proliferative markers (G1/S and G2/M cyclins 
and cyclin-dependent kinases); low expression of “tumor sup-
pressors” (p21, p27, and pRb); high expression of anti-apoptotic 
Bcl-2/Bcl-2 dimers; low expression of pro-apoptotic Bcl-2/Bax 
dimers (caspases 9 and 3); and decreased cytochrome c release 
from the mitochondria. Collectively, this study established that 
miR-21 can regulate neutrophil apoptosis and is a required 
component for successful collateral enlargement.

A Role for the Lymphatic expression of 
microRNA in Lipid Metabolism?
Interestingly, miR-21 expression was also significantly increased 
in jejunal enterocytes isolated from obese-prone JCR:LA-cp rat. 
The concentration of miR-21 in these animals was also increased 
in intestinal lymph and in the high-density lipoprotein (HDL) 
fraction isolated from the lymph (66). miR-21 levels in enterocytes 
were examined because, in the obese-prone animal, the intestine 
has overproduction of lipids associated with increased secretion 
of chylomicrons (CM), and HDL is also found in the lymphat-
ics isolated from the intestine (68). This intestinal secretion of 
lipids contributes significantly to the lipid–lipoprotein content 
of the lymphatics (68). Our results further indicated that 95% of 
miRs in intestinal lymph was associated with the HDL fraction, 
rather than the CM fraction (68). HDL has also been identified 
as a major transporter of miRs in the circulation (69, 70). More 
recently, the lymphatic system was revealed to be critical for the 

metabolic turnover of HDL and the reverse cholesterol transport 
system (71). These results suggest that altered enterocyte lipid 
and lipoprotein metabolism and/or HDL-dependent lymphatic 
cholesterol transport may be inter-related to the elevated cardiac 
miR-21 levels observed in the obese-prone JCR:LA-cp model.

eARLY iNTiMAL ATHeROGeNeSiS, 
ARTeRiAL LiPiD ReTeNTiON, AND NOveL 
THeRAPeUTiCAL TARGeTS

impact of Remnant Dyslipidemia to 
Atherosclerotic vascular Disease during 
Obesity and insulin Resistance
One of the major complications of obesity and T2D is the 
dramatic increased risk for CVD [specifically, atherosclerotic 
vascular disease (ASVD)], the reasons for which are multifacto-
rial. We have been very interested in understanding the role that 
chronic metabolic disease has in exacerbating dyslipidemia and 
how this mechanistically translates into greater lipid deposition 
within the arterial wall. Atherogenic cholesterol-dense lipopro-
teins (for example, low-density lipoprotein, LDL-C) are thought 
to permeate both intact and/or damaged arterial endothelium, 
become entrapped within the sub-endothelial space, and 
accumulate, resulting in inflammation and atheroma (72, 73). 
Although the literature documents a significant epidemiological 
and/or genetic (i.e., GWAS) association between raised circulat-
ing fasting LDL-C and ASVD risk, a large proportion of subjects 
diagnosed with CVD are either normolipidemic (normal levels 
of LDL) or have substantial residual risk (74–76). These data 
suggest that clinically, atheromata-associated cholesterol is 
derived from alternate sources, including non-fasting remnant 
lipid fractions as originally proposed by Zilversmit (77). Indeed, 
the International Atherosclerosis Society has recognized non-
fasting measurements of remnant cholesterol as a major target 
in their “Global Recommendations for the Management of 
Dyslipidemia” (78).

Interestingly, a series of recent publications authored by the 
Copenhagen Heart Study group have provided evidence for a 
major shift in the paradigm of atherogenesis (and potentially its 
therapy), suggesting that remnant (non-fasting) cholesterol is a 
major causative factor for ischemic heart disease (IHD) (79, 80).

Using the JCR:LA-cp rat, we have also collected a substantial 
array of preclinical data showing that remnant lipoproteins carry 
substantially more cholesterol (due to their size and enrich-
ment) compared to other atherogenic fractions. Using well-
established arterial perfusion methodology, we have conducted 
comparative dual labeling lipoprotein experiments. Cy5-labeled 
remnants were isolated, purified, and perfused simultaneously 
with Cy3-labeled LDL (designed to expose equivalent LDL-
derived apoB100 and remnant-derived apoB48). We observed 
a significantly greater number of LDL particles delivered to the 
vessel (4.5 ± 1 × 10−9 µg/µm2 tissue) as compared to remnants 
(0.48 ± 0.15 × 10−9 µg/µm2 tissue) (81). However, after extensive 
washout (a further 60  min) with lipoprotein-free buffer (i.e., 
representing residual retention), we observed significantly 
fewer (55% decrease) LDL particles remaining in the tissue 
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(2.9 ± 0.42 × 10−9 µg/µm2 “retention” vs. 4.5 ± 1 × 10−9 µg/µm2 
“delivery,” p < 0.05). Additional studies have gone on to show 
that there is an increased deposition of remnant lipoproteins in 
arteries from JCR:LA-cp rats as demonstrated by arterial perfu-
sion of equivalent numbers of particles. Mechanistically, we have 
proposed that this phenomenon may be due to (a) dyslipopro-
teinemia and/or (b) perturbations in the vessel wall. Crossover 
perfusion experiments have revealed that increased retention 
of the number of remnant lipoproteins during insulin resistance 
was due to differences in arterial vasculature and independent of 
other factors effecting particle dysfunction per se.

impact of Obesity and insulin Resistance 
on the extracellular Matrix and Arterial 
Remodeling
Our group has also shown that intestinal-derived remnant 
lipoproteins can colocalize with arterial biglycan in an insulin-
deficient model of type I diabetes ex vivo (82). Subsequently, we 
have demonstrated, in the JCR:LA-cp rat, that in the prediabetic 
milieu, aortic biglycan protein core content increases significantly 
with age and correlates linearly with increasing hyperinsuline-
mia. We know that the expression of biglycan protein core has 
been shown to be increased with fatty acids (83, 84), angiotensin 
II (85), and transforming growth factor-β (TGF-β) (86, 87). 
Consistent with this, obese JCR:LA-cp rats have been shown to 
have elevated concentrations of TGF-β (88) and non-esterified 
free fatty acids (51).

Arterial Retention of Remnant 
Lipoproteins and Associated Cholesterol 
Deposition in Response to ezetimibe and 
Simvastatin
Ezetimibe (EZ) is a pharmaceutical compound that selectively 
reduces intestinal cholesterol absorption by inhibiting the 
Niemann-pick C1-like 1 (NPC1L1) transporter (89) while 
Simvastatin (SV) is a HMG-CoA reductase inhibitor. Using the 
arterial perfusion approach in the JCR:LA-cp rat, we have shown 
that EZ treatment can ameliorate the deposition of arterial rem-
nants and associated cholesterol ex vivo (90). It is also intriguing, 
that the addition of SV to EZ appeared to have an additional 
benefit reducing arterial cholesterol deposition, suggesting a 
synergism of independent modes of action.

Combination of ezetimibe with 
Simvastatin improves Fasting and 
Postprandial Lipids
A study by Bozzetto et al. reported that the combination of EZ 
with SV in T2D subjects can beneficially impact both fasting and 
postprandial triglyceride-rich lipoproteins (91). They found that 
the addition of EZ to SV reduced the number of circulating CM 
particles (apoB48) in the postprandial state, while also lowering 
both fasting and postprandial chylomicron cholesterol (88). 
Postprandial data from studies in JCR:LA-cp rats are consistent 
with benefits of either EZ + SV therapy on both remnant particle 
metabolism and corresponding cholesterol (81).

Ischemic myocardial lesions constitute a critical end point 
in CVD. Previous studies using the JCR:LA-cp rat strain have 
demonstrated a correlation between the frequency of myocardial 
lesions with hyperinsulinemia (92). Hearts isolated from JCR:LA-
cp rats treated with either EZ (−84%) or EZ + SV (−84%) have 
displayed a significant reduction in the frequency of early stage 
2 myocardial lesions or very recent ischemic lesions undergoing 
scavenging and repair, characteristic for this strain at this age.

eSTABLiSHiNG JCR:LA-cp RODeNT RAT 
AS A MODeL OF SPONTANeOUS LeFT 
veNTRiCULAR HeART DYSFUNCTiON

The JCR:LA-cp rat has previously been identified as a model that 
also includes pathological complications of endothelial dysfunc-
tion and myocardial ischemia, in addition to other dysfunctional 
complications consistent with the MetS (41, 92, 93). We have 
recently demonstrated that JCR:LA-cp rats exhibit significant 
cardiac dysfunction and present as a useful animal model of 
spontaneous LV dysfunction (94). JCR:LA-cp rats were subjected 
to Doppler echocardiography analysis (Vevo 770 Micro-Imaging 
system). 2-D parasternal long- and short-axis images of the left 
ventricle (LV) were obtained using a 25-MHz linear-array trans-
ducer and doppler probe in anatomical M-mode at the level of 
papillary muscles at a sweep speed of 150 mm/s. We observed that 
JCR:LA-cp rats exhibited distinct signs of cardiac dysfunction, 
and that hearts exhibited a marked increase (~40%) in LV mass 
vs. their lean counterparts. Echocardiographical analysis also 
revealed that hearts from JCR:LA-cp rats had an increased early 
(MV-E) filling velocity (~40%) and reduced late (MV-A) filling 
(~15%) velocity compared to age-matched lean rats. We further 
revealed that JCR:LA-cp rats had a restrictive filling pattern, shown 
by a significantly shortened isovolume relaxation time (IVRT) 
(~30% decrease). Finally, we found that JCR:LA-cp rats exhibited 
progressive worsening of diastolic filling properties, with a 1.6-fold 
increase in the ratio of early to late filling velocity (E/A).

THe FeMALe JCR:LA-cp RAT AS A MODeL 
OF POLYCYSTiC OvARY SYNDROMe 
AND CARDiOMeTABOLiC RiSK

The JCR:LA-cp Rat as a Spontaneous 
Model of PCOS
Polycystic ovary syndrome (PCOS) has become an increasing 
public health concern given its association with menstrual 
dysfunction, infertility, MetS, T2D, and CVD risk (95, 96). The 
syndrome afflicts 5–18% of women in their reproductive years, in 
adolescents to premenopausal women. PCOS is diagnosed by the 
presence of clinical or biochemical hyperandrogenemia, men-
strual irregularity, and/or polycystic ovaries (97). The incidence 
of PCOS is twofold to threefold greater in overweight-obese ado-
lescents and women and is coassociated with features of the MetS 
including obesity, impaired insulin sensitivity, and dyslipidemia 
predisposing women to increased risk of prematurely developing 
T2D and CVD (96, 98, 99). Animal models of PCOS have been 
used to further understand the role of androgens, in particular 
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testosterone, on the development of the metabolic aberrations in 
this condition, and the features of these models have been previ-
ously reviewed (100, 101). These models have primarily used 
testosterone to induce PCOS; however, the JCR:LA-cp rodent 
model is the only model to spontaneously develop PCOS in con-
ditions of the MetS (102). The significance of the JCR:LA-cp rat 
in this context is the similarity to the human condition in which 
the development of the PCOS phenotype is preceded by increased 
adiposity and insulin resistance. Interestingly, we have known, for 
some time, that female homozygous JCR:LA-cp rats are infertile 
but have only recently begun to appreciate the metabolic impac-
tions. In humans, females that carry a predisposition for insulin 
resistance due to family history often see a clinical presentation 
that antagonizes endocrine–reproductive dysfunction, a feature 
that is also observed in female JCR:LA-cp rats (96, 103, 104).

Cardiometabolic Risk, Dyslipidemia, and 
the Hypothalamic–Pituitary–Gonadal Axis
The pathogenesis of PCOS is linked to altered hypothalamic–
pituitary–gonadal axis function and perturbed insulin and 
testosterone metabolism (105, 106). One of the major areas of 
research in the PCOS-prone JCR:LA-cp rodent model is under-
standing the distinct mechanisms of androgens and insulin in 
the cardiometabolic manifestations, particularly dyslipidemia 
and CVD risk (102, 107, 108). Dyslipidemia occurs in greater 
than 70% of PCOS patients and is positively correlated with 
increasing quartile of plasma hyperandrogenemia (97, 99). We 
have characterized the dyslipidemic profile of the PCOS-prone 
JCR:LA-cp rodent model, which has markedly elevated fasting 
and non-fasting plasma TG, total cholesterol (TC), apoB48, and 
apoB100 (markers of intestinal CM and hepatic very low-density 
lipoprotein and low-density lipoproteins, respectively) compared 
to control animals (35, 104). PCOS-prone animals have twofold 
the intestinal triglyceride, cholesterol, and apoB48 secretion in 
the fasted state compared to their lean-prone control counter-
parts, and this is associated with increased mRNA expression of 
SREBP-2, LDLR, and apoB (102, 107). When given dietary lipid, 
this elevated CM lipoprotein particle (apoB48) and lipid (cho-
lesterol and TG) secretion is further exacerbated (107). We have 
further shown, in this model, that plasma testosterone and insulin 
are positively correlated with fasting and non-fasting plasma TG 
and apoB48, consistent with the role of these lipogenic mediators 
in the development of dyslipidemia in PCOS, insulin resistance, 
and obesity (106, 107, 109).

Intervention with flutamide, an androgen receptor (AR) 
inhibitor, has confirmed that testosterone action via the AR medi-
ates apoB-hyperlipoproteinemia and hypertriglyceridemia, and 
this appears to be independent of effects on insulin (110). Fasting 
plasma apoB100, apoB48, and TG concentrations were lowered by 
25–50% in animals treated with flutamide. Flutamide–metformin 
combination treatment similarly lowered these parameters; 
however, metformin treatment alone had no effect on fasting 
plasma lipids, indicating a predominant effect of the AR inhibitor 
to mediate lowering of plasma lipids. Additionally, the intestinal 
secretion of TG, cholesterol, and the cholesterol/apoB48 and 
TG/apoB48 (a marker of lipid per CM particle secreted from the 
intestine) were markedly reduced following flutamide treatment. 

Hepatic and intestinal lipogenic gene expression showed that 
flutamide may lower hepatic SREBP-1, LDLR, and HMGCR in 
PCOS-prone animals (110). Interestingly, PCOS-prone animals 
have reduced IR, MAPK1, AKT2, and PTPN1 mRNA expres-
sion in the intestine, but not the liver. However, flutamide and 
metformin treatment appeared to favor hepatic upregulation of 
the IR mRNA, as well as MAPK1 and protein kinase B (AKT2); 
however, in the intestine, MAPK1 was downregulated, and no 
effect on AKT2 mRNA expression was observed in PCOS-prone 
animals. Overall, these findings indicate that lipogenic and insu-
lin signaling gene expression is altered in PCOS-prone animals 
compared to lean-prone controls. Effects of AR inhibition and 
insulin-sensitizing treatments appear to modify these pathways 
in association with improvements in plasma and intestinal secre-
tion of lipids (110).

energy Restriction and exercise 
intervention in the Female JCR:LA-cp Rat
In the PCOS-prone model, we have shown that energy restriction 
and voluntary exercise intervention (4 h/day) at an early life stage 
can significantly attenuate reproductive and cardiometabolic 
aberrations (111). The combination of diet and exercise was 
shown to lower total body weight gain and body fat mass by 
30% in PCOS-prone animals. Consistent with our ongoing 
studies on dietary energy restriction and food-seeking-induced 
exercise (112, 113), we have also found that energy restriction 
independently induces food-seeking behavior related activity in 
the PCOS-prone animal, favoring an increase in energy expendi-
ture. In terms of cardiometabolic risk, the combination of energy 
restriction and exercise decreased fasting plasma TG and apoB48 
in PCOS-prone animals. In addition, the combination of exercise 
and dietary energy restriction increased serum hormone-binding 
globulin and free androgen index, and normalized mRNA 
expression of hypothalamic CART and Kisspeptin. Collectively, 
these findings were associated with improvements in follicular 
morphology and estrus cyclicity. In similar exercise conditions, 
we have shown that the addition of metformin–flutamide treat-
ment lowers total body weight and body fat-pad weight and tends 
to lower fasting plasma lipids. Interestingly, a combination of 
both metformin and flutamide treatment, in addition to exercise 
further reduces free Testosterone and improves estrus cyclicity 
compared to exercise alone (113).

The findings of this work have revealed voluntary exercise has 
modest effects on cardiometabolic risk factors, and the inclusion 
of medications that specifically target insulin resistance and 
dyslipidemia are required to modulate these risk factors in this 
obese PCOS-prone model. These results have also highlighted 
the necessity for early intervention with combinations of lifestyle 
and/or dietary pharmaceutical medication to modulate the hypo-
thalamic–pituitary–ovary axis.

iMPACT OF JCR:LA-cp RAT MODeL TO 
TRANSLATiONAL OUTCOMeS FOR OBeSiTY

One measure of impact for the appropriateness of animal 
models to research is the usefulness of preclinical outcomes for 
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clinical translation. Perhaps the most successful application of 
the JCR:LA-cp rat model has been its suitability to study the 
progression of metabolic disease from initial stages of over-
nutrition (without the need for dedicated high caloric diets), 
resulting in the development of insulin resistance through to 
the phenotypic complications of hyperinsulinemia and hallmark 
conditions of the MetS. Many of the advances discussed in this 
review have made an impact to a better understanding of the 
human clinical condition. One such example is the revelation of 
how the intestine integrates and coordinates whole body lipid 
metabolism more prominently than previously appreciated 
(114). The discovery that the intestine will contribute to dyslipi-
demia through unregulated overproduction of lipids has been 
confirmed clinically in those with insulin resistance and T2D 
(115, 116). This in turn has provided a new platform for modes 
of action of different classes of pharmaceutical compounds; 
including intestinal cholesterol transporter inhibition and incre-
tion blockade. At the same time, the understanding of remnant 
cholesterol metabolism and how this relates to early conditions 
of childhood obesity has also come to the fore in the context of 
potential subclinical risk of CVD (117, 118).

The vision for this research sector will be to continue to strive 
for ways to aid the younger generation to become more aware 
of the comorbidities of obesity in childhood, and how they will 

progress into adulthood. In order to achieve this, we will have 
to target methodologies that identify metabolic risk of obesity 
in the younger generation that can have usefulness in the clinic 
and beyond.
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Tokushima Fatty Rat: Mechanisms 
and Discoveries
Sheng Bi1 and Timothy H. Moran1,2*

1 Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA, 
2 Global Obesity Prevention Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

Understanding the neural systems underlying the controls of energy balance has been 
greatly advanced by identifying the deficits and underlying mechanisms in rodent obesity 
models. The current review focuses on the Otsuka Long Evans Tokushima Fatty (OLETF) 
rat obesity model. Since its recognition in the 1990s, significant progress has been made 
in identifying the causes and consequences of obesity in this model. Fundamental is a 
deficit in the cholecystokinin (CCK)-1 receptor gene resulting in the absence of CCK-1 
receptors in both the gastrointestinal track and the brain. OLETF rats have a deficit in 
their ability to limit the size of meals and in contrast to CCK-1 receptor knockout mice, 
do not compensate for this increase in the size of their spontaneous meals, resulting in 
hyperphagia. Prior to becoming obese and in response to pair feeding, OLETF rats have 
increased expression of neuropeptide Y (NPY) in the compact region of the dorsomedial 
hypothalamus (DMH), and this overexpression contributes to their overall hyperphagia. 
Study of the OLETF rats has revealed important differences in the organization of the 
DMH in rats and mice and elucidated previously unappreciated roles for DMH NPY in 
energy balance and glucose homeostasis.

Keywords: cholecystokinin, neuropeptide Y, CCK-1 receptor, dorsomedial hypothalamic nucleus, food intake, 
obesity

iNTRODUCTiON

Rodent obesity models have been critical to our understanding of the neural systems involved in 
the controls of food intake and body weight. Dissection of the genetics underlying the obesity of ob/
ob and db/db mice led not only to the discovery of leptin but also contributed greatly to the under-
standing of multiple hypothalamic peptide systems involved in energy balance. Another example 
of a genetic model that has increased our understanding of the neural systems involved in energy 
balance is the Otsuka Long Evans Tokushima Fatty (OLETF) rat. This rat obesity model was derived 
from a spontaneous obesity in an outbred colony of Long Evans rats. OLETF and a control Long 
Evans Tokushima Otsuka (LETO) lines were then developed by selective breeding. OLETF rats were 
initially studied primarily as a model of late onset type 2 diabetes, as older OLETF rats were not only 
obese but also hyperglycemic and insulin resistant (1).

Characterization of overall pancreatic function in OLETF rats demonstrated the absence of a 
pancreatic amylase response to administration of the brain gut peptide cholecystokinin (CCK) (2). 
Further studies revealed that OLETF rats had a >6 kbp deletion in the gene for the CCK-1 receptor 
that spanned the first and second exons and resulted in the absence of expression of a functional 
CCK-1 receptor (3). Thus, the OLETF rat is a CCK-1 receptor knockout model.
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CHOLeCYSTOKiNiN AND 
CHOLeCYSTOKiNiN ReCePTORS

Cholecystokinin is a gut/brain peptide that plays a variety of roles. 
Gut CCK is released from I cells in the upper intestine in response 
to the intraluminal presence of nutrients and plays a variety of 
roles in the overall digestive function. Exogenously administered 
and endogenously released CCK slow gastric emptying, modulate 
intestinal motility and stimulate gall bladder and pancreatic 
secretions. CCK also plays a role in the control of food intake 
by contributing to meal termination. Exogenously administered 
CCK reduces food intake and does so by reducing meal size (4–6). 
A role for endogenously released CCK in the controls of meal 
size is demonstrated by the ability of CCK receptor antagonists to 
increase food intake by prolonging eating – increasing meal dura-
tion and size (7, 8). The primary mechanism of action of CCK in 
the inhibition of food intake is paracrine, acting on local vagal 
afferent terminals in close apposition to the intestinal I cells (9, 
10). CCK receptors are expressed in vagal afferent cell bodies in 
the nodose ganglion and transported to abdominal vagal endings 
(11). CCK both directly activates vagal afferent fibers and also 
sensitizes vagal fibers to signals, transmitting information about 
gastric and intestinal luminal volume (12, 13).

In the brain, CCK acts as neurotransmitter/neuromodulator. 
CCK-producing neurons are widely distributed in the brain, 
and CCK neurons have been reported to be the most ubiquitous 
of all peptidergic neurons. Cell bodies are found throughout 
all layers of the cerebral cortex and are widely distributed 
throughout olfactory and limbic systems and in multiple hypo-
thalamic nuclei. In the midbrain, CCK cell bodies are found in 
the substantia nigra, the ventral tegmental area, and the raphe 
nucleus (14, 15), and CCK modulates both dopaminergic and 
serotonergic function (16).

There are two CCK receptor subtypes (17, 18). These were 
initially identified based on their relative affinity for various CCK 
fragments and analogs. CCK-1 receptors require the sulfated 
tyrosine, and these were originally characterized in rat and guinea 
pig pancreas. CCK-1 receptors exist in both low capacity, high 
affinity and high capacity, low affinity states. CCK-2 receptors 
have high affinity for unsulfated CCK and various CCK frag-
ments and were initially characterized in brain. Both receptors 
are members of the G-coupled super family of receptors. As 
well as found in pancreas and gall bladder, CCK-1 receptors 
are expressed in the nodose ganglion (and transported in vagal 
afferent fibers) and in a number of specific brain sites, including 
the dorsomedial hypothalamus (DMH) (17). There are important 
species-specific differences in the expression patterns of CCK-1 
and CCK-2 receptors, including the expression of CCK-2 and not 
CCK-1 receptors in human pancreas. However, the expression of 
CCK-1 receptors in vagal afferent neurons and in specific brain 
sites appears to be similar in rat and man (not in the mouse as 
will be discussed later).

The satiety actions of CCK depend on the interactions with 
CCK-1 receptors. Sulfated CCK-8 or sulfated longer forms (i.e., 
CCK-33, CCK-58) inhibit food intake in a dose-related fashion, 
while unsulfated CCK or shorter CCK fragments do not (4, 19). 
Furthermore, specific CCK-1 antagonist administration increases 

food intake while CCK-2 antagonists do not (7). This pharmaco-
logical specificity has been demonstrated across multiple species.

CHARACTeRiZATiON OF THe 
HYPeRPHAGiA iN OLeTF RATS

The initial discovery that OLETF rats had a deletion in the gene 
for the CCK-1 receptor led to experiments examining whether 
CCK could inhibit their food intake. OLETF rats lacking func-
tional CCK-1 receptors were shown to be insensitive to the 
feeding inhibitory actions of exogenously administered CCK. 
Characterization of their daily food intake revealed that OLETF 
rats ate meals that were about twice as large as those of LETO 
controls and, in response to this increase in the size of their meals, 
they at fewer meals. However, the decrease in meal frequency was 
not sufficient to normalize their food intake resulting in a chronic 
hyperphagia or overconsumption (Figure 1) (20). Evidence for 
the hyperphagia is evident even prior to weaning. In independ-
ent ingestion tests, in which rat pups are consuming milk off the 
floor of a test chamber, OLETF pups as young as 2 days of age 
consume significantly more sweetened milk than age-matched 
LETO controls (21). In tests assessing nursing behavior, OLETF 
pups also gain more weight during a suckling bout indicative of 
increased intake (22).

The food intake of OLETF rats is also characterized by higher 
preferences for high fat (23), sucrose and other sweet tastes (24). 
This can be demonstrated in both real feeding and sham feeding 
paradigms, implicating taste mechanisms in the preferences.

Pair feeding experiments in which the daily intake of OLETF 
rats was limited to that of paired LETO control rats revealed 
that the obesity in the OLETF rats was completely attributable 
to their hyperphagia. Pair feeding completely normalized their 
rates of body weight gain (Figure 2) as well as the size of their fat 
mass and their glucose regulation (20). Thus, the OLETF rat is an 
obesity model of disordered food intake.

CHARACTeRiZATiON OF HYPOTHALAMiC 
FUNCTiON iN OLeTF RATS

The lack of compensation for the increase in meal size in OLETF 
rats requires explanation. Chronic administration of CCK at meal 
onset results in chronic decreases in meal size but an increase in 
meal frequency such that overall food intake is not affected (5). 
These data suggest a role for CCK in meal termination, but not in 
overall food intake. Knockout of CCK-1 receptors in the mouse 
produces results that are consistent with this interpretation. 
CCK-1 knockout mice have increased meal size, but the decrease 
in meal frequency compensates for this so that CCK-1 KO mice 
have normal body weight (25, 26). Why does the absence of 
CCK-1 receptors result in obesity in the OLETF rat, but not in 
a mouse KO?

Part of the answer comes from the examination of hypo-
thalamic signaling in the OLETF rat. While mRNA expression 
for arcuate POMC and neuropeptide Y (NPY) was appropriate 
in obese or lean pair-fed OLETF rats [elevated POMC and 
reduced NPY in the obese state and normal expression in lean 
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OLETF rats pair-fed to amounts consumed by control LETO 
rats (27)], NPY expression in the compact subregion of the 
DMH was significantly elevated in pair-fed OLETF rats and 
normalized in ad lib-fed rats (27). These data suggested the 
possibility that elevations in DMH NPY might be driving the 
hyperphagia on OLETF rats. Analyses of NPY expression levels 
in juvenile OLETF rats prior to obesity were consistent with 
such an explanation. Five-week-old pre-obese OLETF rats had 
greatly elevated DMH NPY expression. Importantly, the same 
neurons expressing NPY in the DMH also expressed CCK-1 
receptors representing one of the populations of brain CCK-1 
receptors identified in the original autoradiography studies 
(27). Furthermore, direct injection of CCK into the DMH both 
reduces food intake and downregulates NPY mRNA expression 

without affecting ARC NPY expression, suggesting a role for 
CCK in modulating DMH NPY (28). In the absence of CCK-1 
receptors, DMH NPY is upregulated.

An examination of NPY expression in the mouse revealed that 
although NPY expression was evident in the ARC, its expression 
was not evident in the compact region of the DMH. NPY recep-
tors are evident in the dorsal and ventral medial subregions of 
the DMH, and NPY expression increases in response to exposure 
to a high-fat diet. A role for these in the lasting hyperphagia 
that occurs in diet-induced obesity has been suggested (29). In 
contrast to rats, mouse DMH does not contain CCK-1 receptors 
as neither binding activity nor mRNA expression, for CCK-1 
receptors are detected in the DMH (23). These data have led to 
the hypothesis that the obesity in the OLETF rats results from 
a combination of disordered satiety signaling due to the lack of 
vagal afferent CCK-1 receptors and an upregulation of DMH 
NPY that prevents complete compensation for the increased meal 
size. The CCK-1 receptor knockout mouse has similar deficits 
in the control of meal size, but in the absence of altered DMH 
signaling, appropriately compensates for chronically consuming 
larger meals.

This hypothesis was directly tested in the rat using viral-
mediated knockdown of DHM NPY in OLETF rats (30). Forty 
percent knockdown of DMH NPY mRNA expression in response 
to bilateral administration of an AAV-expressing short hairpin 
RNA (AAVshNPY) significantly reduced the food intake and 
weight gain trajectory of OLETF rats. The alteration in food 
intake was expressed as a partial reduction in the size of con-
sumed meals such that the meal size deficit in OLETF rats with 
DMH injections of AAVshNPY was similar to the meal size 
deficits in CCK-1 receptor KO mice. DMH NPY overexpression 
in control rats had the opposite effect. Overexpressing DMH NPY 
resulted in increased food intake, especially on a high-fat diet, 
and significantly elevated weight gain (30).
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eXeRCiSe AND OLeTF OBeSiTY

The study of the OLETF rat has led to a number of important 
insights about interactions between exercise and food intake and 
the role of DMH signaling in energy balance. Providing OLETF 
rats access to a running results in a normalization of their body 
weight (31) and prevention if hyperinsulinemia (32). This is not 
simply due to the increased energy expenditure as their daily 
food intake is also greatly reduced by running wheel access, and 
their meal patterns are normalized (33). The long-term effects 
of running wheel activity depend upon the timing of access. In 
adult OLETF rats, running wheel access normalizes food intake 
and body weight, but at the cessation of access, food intake greatly 
increases, and body weight returns to levels of comparably aged 
OLETF rats that did not have access to running wheels. Thus, the 
effects of exercise are temporary and only evident during the time 
of running wheel access. In contrast, providing access to running 
wheels for a 6-week period beginning at 8 weeks of age had long-
lasting effects on both food intake and body weight in OLETF 
rats. Although food intake and body weight increased somewhat 
when access to the running wheels was stopped, OLETF rats did 
not regain weight to levels of control OLETF rats without run-
ning wheel access (33). Effects of exercise on other rodent obesity 
phenotypes have now been demonstrated as well (34–36). The 
age-dependent aspect of the effects of exercise may depend on 
epigenetic effects in pathways undergoing maturation and thus 
increasing the possibility of lasting effects when the exposure is 
at a younger age.

NOveL ACTiONS OF DMH NPY

The observation of altered DMH NPY signaling in the OLETF rat 
and how DMH knockdown rescues the obese phenotype has led 
to extensive studies of the roles of DMH NPY in various aspects 
of energy balance. As mentioned above, overexpression of DMH 
NPY leads to increased food intake and body weight, especially 
when rats are presented with a high-fat diet (30).

These data led to a more careful examination of the conse-
quences of altered DMH NPY signaling. Knockdown of NPY in 
the DMH in normal weight Sprague-Dawley rats has been dem-
onstrated to reduce the size of fat depots and ameliorate high-fat 
diet-induced hyperphagia and obesity. Furthermore, DMH NPY 

knockdown resulted in the development of brown adipocytes in 
inguinal white adipose tissue that was characterized by increased 
uncoupling protein 1 expression. DMH NPY knockdown also 
increased energy expenditure and enhanced the thermogenic 
response to a cold environment. This knockdown also enhanced 
insulin sensitivity. These data identified novel roles for DMH NPY 
in modulating adipose tissue, thermogenesis, insulin sensitivity, 
and energy expenditure (37).

Further work has revealed a novel modulator of DMH NPY 
signaling. Gene expression profiling of the DMH in response to 
exercise revealed an elevation of the expression of transthyretin 
(TTR), best known as a blood and cerebrospinal fluid transporter 
of thyroxine and retinol. To test the hypothesis that TTR may 
play a role in modulating signaling-related energy balance in 
the DMH, we examined the effects of brain TTR on food intake 
and body weight and have further determined hypothalamic 
signaling that may underlie its feeding effect in rats. We found 
that icv administration of TTR in normal growing rats decreased 
food intake and body weight. Furthermore, TTR administration 
decreased NPY levels in the DMH. Chronic icv infusion of TTR 
in OLETF rats reversed their hyperphagia and obesity. Overall, 
these studies examining factors that might modulate DMH NPY 
demonstrated a novel anorectic action of central TTR in the 
control of energy balance (38), providing a potential novel target 
for obesity treatment.

SUMMARY

Work with the OLETF rat has not only been focused on identify-
ing the mechanisms underlying its obesity but also served as a 
vehicle for uncovering multiple novel mechanisms involved in 
the overall controls of energy balance.
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Obesity is a worldwide epidemic, and the comorbidities associated with obesity are 
numerous. Over the last two decades, we and others have employed an outbred rat 
model to study the development and persistence of obesity, as well as the metabolic 
complications that accompany excess weight. In this review, we summarize the strengths 
and limitations of this model and how it has been applied to further our understanding of 
human physiology in the context of weight loss and weight regain. We also discuss how 
the approach has been adapted over time for studies in females and female-specific 
physiological conditions, such as menopause and breast cancer. As excess weight 
and the accompanying metabolic complications have become common place in our 
society, we expect that this model will continue to provide a valuable translational tool 
to establish physiologically relevant connections to the basic science studies of obesity 
and body weight regulation.

Keywords: obesity resistance, weight regain, menopause, breast cancer, exercise, adipose, high-fat diet, 
sex differences

iNTRODUCTiON

Worldwide obesity rates have more than doubled since the 1980s, and in 2014 more than 39% of 
adults were overweight, and 13% were obese (1). This translates to an estimated 1.9 billion adults 
who are overweight, of whom more than 600 million are obese. Further, 41 million children under 
the age of 5 are also overweight or obese, making obesity a worldwide epidemic. While obesity was 
once only a problem for high-income countries, there are now more deaths worldwide attributed 
to overweight and obesity than underweight. Obesity negativity affects virtually every system of the 
body and increases the risk for cardiovascular disease, diabetes, osteoarthritis, and many cancers. 
While childhood obesity increases the risk of obesity in adulthood, it also poses immediate risks to 
children, such as breathing difficulties, increased risk of fractures, and psychological effects. Further, 
markers of metabolic disease that were once considered limited to adults are now appearing in 
children with obesity, including hypertension, insulin resistance, and early markers of cardiovascular 
disease. Clearly our current efforts to stop this growing epidemic are not working, and there is an 
urgent need to understand the etiology and to develop new strategies, interventions, and therapies 
to prevent and/or treat this disease.

It is generally accepted that the problem of obesity reflects the merger of environmental, 
biological, and psychosocial pressures (2). Underlying the biological component of this issue is 
the genetic and epigenetic foundation that establishes the systems controlling energy homeostasis 
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and body weight regulation. The heterogeneity of this founda-
tion imparts variability in how these systems function and 
respond to external challenges and stressors. Even in the cur-
rent obesogenic environment, not all individuals become obese. 
While some individuals have a predisposition to accumulate 
excess weight, others have a predisposition to remain lean. 
For the vast majority of the population, the variability in the 
predisposition for obesity is not linked to a single mutation 
or epigenetic insult. Rather, numerous genes and epigenetic 
events are involved in generating a polygenic predisposition 
that favors leanness, obesity, or some level of adiposity between 
the two extremes, when faced with obesogenic environmental 
pressures.

One environmental pressure believed to be promoting obesity 
is the availability of energy dense diets. In animal models, this 
has been shown to increase energy intake (3–6) and eventually 
leads to the development of obesity and insulin resistance (7–10). 
However, the susceptibility to obesity in response to this chal-
lenge is highly dependent upon the strain of the animal (11–18). 
The purpose of this review is to summarize the development, 
nuances, and applications of an approach that models this poly-
genic susceptibility to the development of obesity in response to 
the common environmental pressure of a freely available energy 
dense diet. This experimental paradigm has been, and continues 
to be, a valuable tool to translate the wealth of knowledge from 
basic science studies of energy balance to physiological relevant 
aspects of the human condition.

DieT-iNDUCeD OBeSiTY (DiO) FROM  
OBeSiTY-PRONe ANiMALS

DiO in the Context of Alternative 
Models of Obesity
Numerous types of animal models have been employed to 
study obesity. Certain mutations, as with leptin or the leptin 
receptor, give rise to monogenic forms of obesity with extreme 
phenotypes (19). These models have proven very valuable in 
elucidating the function of specific factors involved in energy 
homeostasis and body weight regulation. It has become clear, 
however, that the biological contribution to obesity in humans 
involves numerous factors in a number of tissues that coordi-
nately favor the accumulation and maintenance of an excess 
amount of adiposity. Translating these observations to the 
human condition requires applying this information in a more 
physiologically relevant context.

As an alternative, different strains of animals with a known 
genetic disposition for leanness or obesity have been studied. 
The Osborne–Mendel (OM) and S5B/P1 model is one such 
example. In studies comparing several strains of rats on a high 
fat (HF) diet, OM rats were identified as prone to the develop-
ment of obesity, while S5B/P1 rats were resistant (8). Using such 
models has helped researchers identify genetic differences that 
contribute to the predisposition to develop obesity. However, 
the heterogeneity between these two strains also imposes 
unwanted variability in comparative studies that may be irrel-
evant or confounding.

To overcome the potential confound of strain differences, 
we and others have utilized an approach that yields a range of 
adiposity phenotypes within the same strain. Because a diet high 
in fat has been linked to obesity in both humans and animal 
models, this has become the most common challenge used to 
select the extremes of adiposity phenotypes. The strengths of 
this approach are that the polygenic predisposition for obesity 
reflects a differential response to the diet, while minimizing the 
extraneous differences between strains. This general approach 
has been used with both inbred and outbred strains of rats 
and mice to select those that become lean or obese with the 
same dietary challenge. Selection from inbred strains, which 
are considered to be isogenic, provides a more modest range 
of phenotypes that presupposes less genetic variability and 
emphasizes epigenetic variability in driving the phenotype. In 
contrast, selection from outbred strains presupposes greater 
variability in both genetic and epigenetic differences, which 
likely better reflects the susceptibility to obesity in humans. The 
diet-induced obesity (DIO)/diet-resistant (DR) model of obesity 
that we emphasize in the discussion of this review are derived 
from outbred rats (15, 18).

Over the past two decades, some confusion has emerged in the 
terminology used in describing outbred models. We and others 
have often referred to them as obesity-prone (OP) and obesity-
resistant (OR), rather than DIO and DR. The two different nam-
ing schemes have often been used interchangeably, while others 
have inferred some distinction between them. Here, we propose 
that both classifications have value and are inherently related, in 
that the polygenic predisposition (OP/OR) ultimately leads to 
the respective phenotype (DIO/DR), when challenged with the 
obesogenic selection diet. To minimize the confusion in future 
studies, we propose the following definitions that distinguish the 
use of these terms:

• OP: a person or animal that has a predisposition to become 
obese when challenged with an obesogenic environmental 
pressure;

• OR: a person or animal that has a predisposition to remain 
lean when challenged with the same obesogenic environment;

• DIO: the OP person or animal that has become obese in 
response to the obesogenic diet; and

• DR: the OR person or animal that has remained lean in 
response to the obesogenic diet.

evolution of the Selection  
Process – A Historical Perspective
Selection and study of OP/OR phenotypes began over 25 years 
ago in both Sprague-Dawley and Wistar outbred rats (18, 20). In 
general, a relatively large group of outbred rats was challenged 
with a HF diet for a defined period of time, and the cohort was 
stratified by the amount of weight gained. For the early studies 
from Hill et al. (21, 22), Wistar rats were obtained from Harlan 
Laboratories (Madison, WI, USA; now Envigo). The low fat 
(LF) acclimation diet consisted of a 20% LF diet (20% kcal from 
fat; 20% protein; 60% carbohydrate) for 2  weeks. A 60% HF 
diet (60% kcal from fat; 20% protein; 20% carbohydrate) was 
then fed for 4–5 weeks, and the top and bottom 25% of weight 
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gainers were identified as either OP or OR. At the end of the 
10-week study, body composition and fat pad weights con-
firmed the DIO and DR phenotypes. Subsequent modifications 
to the protocol selected the top and bottom tertiles (rather than 
quartiles) to represent the extremes of weight gain (23). During 
a similar time period, Levin published similar findings using a 
different strain and a different obesity-inducing diet. In these 
studies, male Sprague-Dawley rats were fed a diet consisting 
of chow, corn oil, and sweetened condensed milk [~31% kcal 
fat and 45–53%  kcal carbohydrate (primarily sucrose)]. Like 
the Wistar rats, only about half of the rats consuming this diet 
for 3–5  months gained excess weight compared to chow-fed 
controls (20, 24–26).

Over the years, there have been a number of different modi-
fications to the design of the selection diet that are particularly 
relevant to note. Levin’s group has consistently employed a diet 
that contains sucrose, in addition to being high in fat. In some 
studies, Levin’s group also used the highly palatable liquid diet 
Ensure (27, 28). In contrast, Hill’s research team moved to LF 
and HF diets with 12 and 45%  kcal from fat, with the protein 
component held constant at 20%. Further, the sucrose component 
of the original HF diet was replaced with starch (29). Finally, in 
conjunction with a move to the University of Colorado in 1997, 
Charles River Laboratories (Wilmington, MA, USA) became the 
source for Wistar rats, while maintaining the 12 and 45% fat for 
the LF and HF diets, respectively (14).

In 1994, Pagliassotti et  al. modified the selection protocol 
to demonstrate that weight gain during the first week on the 
HF diet was highly predictive of weight gain over the four sub-
sequent weeks. Specifically, they reported a strong correlation 
between weight gain after 1 and 5 weeks of HF feeding (r = 0.87; 
n = 200) (12). Based on this finding, most subsequent studies 
have relied on this shorter duration of HF diet screening for 
identifying OP and OR rats. In collaboration with Hill’s group, 
a study out of the Leibowitz lab (30) used a similar model 
in Sprague-Dawley rats to identify measures in prepubertal 
animals that were predictive of adult adiposity. Similar to 
studies in Wistar rats from the Hill lab, they found that weight 
gain across a 5-day interval from 30 to 35 days of age on a HF 
diet (45–60%  kcal fat) was strongly and positively correlated 
(r2 = 0.71–0.82) with accumulated body fat in four depots after 
4–6  weeks of HF feeding. Screening in younger animals did 
not show this same correlation, suggesting that waiting until 
4–5 weeks of age is necessary to identify OP and OR phenotypes 
using this model (30). Similarly, Levin’s group have also shown 
that the DIO and DR phenotypes are not different between 3 
and 5 weeks of age (31).

Overall, the diet and the timeframe of selection has evolved 
and varied between groups over the past 25  years. A reduced 
time frame for selection allows for animals to be studied earlier 
in the development of the DIO/DR phenotypes. Diet composi-
tion has evolved to better reflect a more reasonable and relevant 
amount of fat (40–50% kcal), and either to include or not include 
sucrose as a portion of the carbohydrate component. It should 
be noted that the addition of sucrose can lead to more severe 
metabolic derangements in the DIO animals that are generated, 
even to the extent of developing diabetes in some cases.

Levin’s DiO/DR Model – Selective 
inbreeding
One limitation of a model that requires stratification based on 
weight gain is that differences between OP and OR phenotypes 
cannot be studied prior to the dietary challenge. To circumvent 
this limitation, Levin et  al. developed inbred lines of DIO and 
DR rats that were derived from OP and OR Sprague-Dawley rats. 
Briefly, outbred Sprague-Dawley rats that were either susceptible 
or resistant to weight gain after 2 weeks on a HF, high energy diet 
were identified and inbred (15). After five generations of selective 
inbreeding, the resultant lines breed true to their respective phe-
notypes, with a bimodal distribution of weight gain in response to 
the high energy diet. The resulting lines of animals were termed 
DIO or DR for those that were either susceptible or resistant to 
DIO, respectively. These valuable lines have provided the means 
to examine preexisting differences between OP and OR animals, 
as well as the differential responses that occur within the first few 
days of exposure to a HF and/or high energy diet.

Current Selection Protocol for DiO/DR 
Studies of Obesity
In recent years, we have employed a standardized dietary screen 
of outbred rats (Figure 1) to identify those rats that have a poly-
genic predisposition for resistance or propensity to become obese 
under environmental pressures that are thought to contribute to 
obesity in humans: consumption of a HF diet and limited physical 
activity (18, 32–35). While we typically use Wistar rats, outbred 
Sprague-Dawley rats have also been used with success. A number 
of vendors are available that commercially produce semi-purified 
diets, but we have typically used Research Diets D12344 and 
D11724 as our HF (46%) and LF (12%) diets, respectively.

As a general protocol, rats arrive at our facility at ~5 weeks 
of age. They are individually housed in wire bottom cages and 
provided free access to a LF diet for an acclimation period of 
~2 weeks. This allows time for any institution-required quaran-
tine, recovery from the stress of transport, and an opportunity to 
perform any baseline measurements. Following acclimation, rats 
are provided ad libitum access to the HF diet, which results in a 
heterogeneous distribution of body weight gain in the outbred 
animals. Rats have traditionally been ranked according to their 
change in body weight in response to HF feeding; those with the 
lowest weight gain are classified as OR, whereas those with the 
greatest weight gain are classified as OP. At this point, animals in 
the middle group are removed from the study. The HF diet is a 
critical component for the separation of rats into the OP and OR 
phenotypes as there is no difference in body weight gain when the 
animals are consuming an LF diet.

In addition to feeding a HF diet, another key requirement 
for emergence of the OP and OR phenotypes in this model is 
individual housing in wire bottom cages. Individual housing 
serves several purposes. First, it limits the physical activity of 
the animals compared to animals housed in a group environ-
ment (36), as group-housed animals are constantly engaged 
with one another. Second, it allows for more precise measures 
of food intake, which is often an outcome in studies of this 
nature. Third, it prevents dominant animals from influencing 
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FiGURe 1 | General screening procedure for selecting OP and OR rats. Outbred Wistar rats that arrive at ~5 weeks of age are placed in individual wire 
bottom cages that limit physical activity and allow for accurate measurement of food intake and spill. Food intake, body weight, and body composition are 
monitored for the duration of the study. Following a brief acclimation period, rats are provided ad libitum access to the HF diet, which results in a heterogeneous 
distribution of body weight gain in the outbred animals. Obesity-prone (OP) and -resistant (OR) animals are identified as described in the text and matured into 
diet-induced obese (DIO) and diet-resistant (DR) animals, respectively.
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food intake patterns of other rats in the group (37). Finally, it 
prevents coprophagia that can be common in studies of energy 
restriction and weight loss. In most of our studies, we use rat 
cages measuring ~9.25″(L) × 6.75″(W) × 6.75″(H), although we 
have also used slightly larger cages with success.

Developing the DiO/DR Model 
for Studies in Females
Sex-specific effects and sex differences in outcomes have received 
greater attention over the last decade as the scientific community 
has developed an appreciation for the importance of the biologi-
cal variable of sex. Barry Levin’s inbred DIO/DR lines have been 
valuable in this regard, as females could be derived directly from 
the respective inbred lines. The use of outbred strains presented 
a challenge with the selection of OP and OR rats, in that the 
unique aspects of female physiology and the associated vari-
ability confounded the screening process. Even so, the expense 
of maintaining Levin’s inbred lines and the tenuous nature of 
their commercial availability led us to develop a more consistent 
screening protocol for the more readily available outbred strains. 
Our initial goal with this work was to combine the OR/OP model 
with established approaches for studying the loss of ovarian func-
tion and mammary tumors to develop paradigm for examining 
the impact of obesity on postmenopausal breast cancer. In addi-
tion to our intended use, this model has applicability to the study 
of numerous obesity-associated comorbidities in females.

We used the same source for female Wistar rats as we had 
for male rats in our previous studies: Charles River Laboratories 
(Wilmington, MA, USA). Identical to our male protocol, the 

female rats were individually housed in metabolic caging designed 
to allow for monitoring food intake while minimizing physical 
activity. Rats were fed the same HF purified diet (46% kcal fat; 
Research Diets, New Brunswick, NJ, USA; RD#12344) with free 
access to water.

In early studies with females, Hill’s group successfully 
separated female rats into OP and OR after 4 weeks on a 60% 
fat diet containing sucrose (18). In more recent studies, we have 
observed that separating females into their respective pheno-
types is more complicated when the sucrose-free, 46% fat diet 
is used. In our group’s first published study in females (38), we 
stratified the rats into tertiles using the male-specific protocol 
based on change in body weight in response to HF feeding early 
in life. However, we found body composition in the mature 
females to be more variable than in the males, such that larger 
animal could have a lean phenotype and smaller animals could 
present with a higher level of adiposity. This necessitated the use 
of a retrospective analysis to identify rats as lean, mid-weight, 
and obese based on their weight gain from ~8 to 19 weeks of 
age. A 19-week time point was chosen because this was the time 
at which weight gain began to taper off, which we interpreted to 
indicate that the animals were fully mature and likely no longer 
depositing lean body mass.

In two subsequent studies with females (39, 40), we adjusted 
our approach and ranked animals by their rate of weight gain in 
the obesogenic environment from 10 to 18 weeks of age. Using 
this criteria resulted in a clean separation into obese and lean phe-
notypes in the mature animals (studied between 20 and 30 weeks 
of age), in which obese rats had significantly higher body weight, 

http://www.frontiersin.org/Nutrition
http://www.frontiersin.org
http://www.frontiersin.org/Nutrition/archive


FiGURe 2 | Screening strategies for OP and OR phenotype in female wistar rats. Female rats were individually housed in wire bottom cages and fed a HF 
diet (46% kcal fat) for the duration of the study. Body weight and body composition were measured throughout the study and was correlated with % body fat at the 
time of OVX (maturity; 26.5 ± 0.6 weeks of age). (A) Change in body weight early in life (8.5–9.5 weeks of age) is not a strong predictor of adult adiposity, but 
(B) % body fat at 14 weeks of age does predict adult adiposity.
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body fat, and circulating triglycerides when compared to their 
lean counterparts.

Although our 8-week screening protocol generated a clean 
separation of the OP and OR phenotypes, it was far more labor 
intensive and costly than the 1-week protocol used in males, 
where the middle tertile of animals could be transferred out of 
the study early in life, rather than at 4–5 months of age. Thus, 
as part of a recent large obesity/menopause/breast cancer study 
with >300 female rats spread over three cohorts (currently 
unpublished), we measured body weight and composition at 
several time points to determine the earliest and shortest period 
of time that could be used to predict the OP and OR phenotypes 
in females with an acceptable level of accuracy. Female Wistar 
rats were individually housed and fed our standard HF diet (46% 
fat) for the duration of the study. Body weights were measured 
weekly for the duration of the study, and body composition 
measurements (qMR, EchoMRI, Houston, TX, USA) were 
performed at 9, 14, and 18 weeks of age. Body composition was 
also measured in all animals immediately prior to undergoing 
surgical ovariectomy (OVX). This occurred at an average of 
26.5 ± 0.6 weeks of age and was therefore used as a measure of 
adult adiposity for the analysis.

As shown in Figure  2A, the correlation between the % BF 
at the time of OVX and weight gained from 8.5 to 9.5 weeks of 
age was poor (r  =  0.43). This improved slightly when change 
in body weight was measured over 2 weeks (8.5–10.5 weeks of 
age, r = 0.59, data not shown) and was further improved when 
extended to 8 weeks (8.5–18.5 weeks of age, r = 0.69, data not 
shown). However, these changes in body weight were still not 
as predictive of adult adiposity as the <1  week weight gain 
was in numerous studies in the males described above. Thus, 
we investigated other potential measures that could be used to 
accurately screen for the OP and OR phenotypes in females. 
Change in % BF over the various time points were measured, but 

these correlations were no better than changes in body weight 
(r  =  0.35–0.63, depending on the cohort of animals and time 
points measured). However, % BF at 14 weeks of age was highly 
correlated with adult adiposity (Figure 2B; r = 0.70–0.81, depend-
ing on the cohort). These correlations appeared to be stronger 
when controlling for the age at the time OVX body composition 
was analyzed (r = 0.79–0.84). At 18 weeks of age, the correlation 
strengthened even further (r = 0.89). However, in our opinion, 
the added time and cost associated with the additional month of 
animal housing to delay the separation is likely not warranted. 
Importantly, our data indicate that % BF early in life (9 weeks of 
age in this study) is not an accurate predictor of % BF at maturity 
(r = 0.54), and approximately one-third of rats would have been 
incorrectly categorized (OR, mid, OP) if this early marker of 
body composition was used. Additional studies will be required 
to further determine if a time point between 9 and 14 weeks is 
predictive of long-term adiposity. In the meantime, our approach 
is to refrain from screening until ~14 weeks of age to identify the 
OR and OP phenotypes in females.

LeSSONS LeARNeD FROM OP/OR RATS

Preexisting Differences That May 
Contribute to Their Predisposition for 
Obesity
As previously mentioned, one limitation of an OP/OR model that 
requires stratification based on weight gain is that it is difficult to 
assess differences between OP and OR phenotypes prior to the 
dietary challenge. However, an inherent assumption that has been 
repeatedly validated by our group is that once classified as either 
OP or OR, rats remain within their respective groups for the 
remainder of the experimental protocol, suggesting that there are 
likely preexisting differences between these animals even before 
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the obesogenic challenge. Although our data on differences in 
OP/OR rats prior to a HF diet challenge are limited, one study 
did examine preexisting differences in skeletal muscle, and it 
was observed that OR rats had a significantly higher proportion 
of type I muscle fibers in the medial head of the gastrocnemius 
muscle than OP rats (muscle biopsy), suggesting that differences 
in muscle fiber composition may play a role in determining 
susceptibility to diet-induced obesity (22).

Additional knowledge in this field comes from studies by 
Levin et al. Initially, they identified Sprague-Dawley rats as being 
prone to become DIO or DR on the basis of high vs. low 24-h 
urine norepinephrine (NE) output (26). Using this approach, 
DIO-prone rats were observed to have significant reductions 
in heart, pancreas, and hypothalamic NE turnover, potentially 
indicating that differences in NE metabolism may be involved in 
the development of DIO on high energy diets (41). DIO-prone 
rats also exhibited greater arcuate nucleus NPY mRNA expres-
sion, fewer arcuate nucleus projections, leptin resistance, and 
abnormalities in serotonin turnover compared to DR-prone rats 
under pre-obese chow-fed conditions (42–45). Similarly, leptin 
receptor mRNA expression (46), counter regulatory responses to 
insulin-induced hypoglycemia (47), and central insulin signaling 
(48) have all been observed to be lower in the inbred line of DIO 
rats compared to DR rats. Collectively, these observations are 
indicative of abnormalities in hypothalamic pathways involved in 
energy homeostasis, all of which may contribute to the develop-
ment of DIO when presented with a high energy diet.

While the research focus of Levin’s group has primarily been 
the brain, we have directed our efforts toward differences in whole 
body and the periphery. Briefly, we have observed that regardless 
of gender, LF diet fed inbred lines of DIO and DR rats do not dif-
fer with respect to total energy expenditure (TEE), food intake, or 
physical activity (49). Others have also observed no differences in 
physical activity across the DIO and DR phenotypes on chow diet 
(50). Interestingly, despite similar intakes and energy expenditure 
on the LF diet, a greater rate of lipid disappearance was observed 
in the DR rats compared to DIO rats, suggesting greater basal 
lipid oxidation in DR rats (49).

Differential Response to an 
Obesogenic Diet
In general, following provision of a HF diet, both OP and OR 
rats initially experience a positive energy imbalance. The OR rats, 
however, appear to sense the nutrient overload and adjust their 
food intake and increase their energy expenditure to reestablish 
energy balance. In doing so, OR rats exhibit an increase in the 
oxidation of dietary fat. In contrast, OP rodents continue to eat to 
excess until expenditure increases from their accumulated mass 
to reestablish energy balance. Although OP rats have a markedly 
higher food intake, greater intake explains some, but not all of the 
variance in body weight gain between the OP and OR phenotypes 
(18, 51). These differences in food intake suggest that there are 
preexisting differences in regions of the brain that regulate feed-
ing behavior. The findings from Levin’s group with respect to 
these neuronal differences are beyond the scope of this review; 
however, we will briefly summarize some of their key findings. 
One week of HF feeding results in OP rats having elevated leptin, 

insulin, triglycerides, and glucose, along with increased lipopro-
tein lipase activity (LPL) in adipose tissue and galanin expression 
in the paraventricular nucleus (30, 49, 51). It is also noteworthy 
that OP rats have lower skeletal muscle LPL activity and a decline 
in the ratio of beta-hydroxyacyl-CoA dehydrogenase to citrate 
synthase activity, indicating a rapid decline in the capacity for 
lipid transport and the muscle to metabolize lipids (30, 52). OP 
rats are also characterized by a preferential trafficking of dietary 
lipid to adipose tissue for storage, whereas OR rats have greater 
trafficking of dietary lipid to skeletal muscle after 1 week of HF 
feeding (52). After 4–5 weeks of HF feeding, OP rats continue to 
consume more than OR rats, have a higher 24-h respiratory quo-
tient (RQ) (indicating lower relative fat oxidation), and higher 
plasma levels of free fatty acids (FFA) (18). Insulin sensitivity is 
also lower in OP rats, which is the result of both lower glucose 
uptake and lower glucose disposal in skeletal muscle (18, 23). 
Although we have observed no differences in spontaneous physi-
cal activity (SPA) following 1 week of HF feeding (49), others have 
shown that DIO rats have lower SPA after both 4 and 10 weeks on 
a HF diet, findings that have been linked to the function or orexin 
signaling (50, 53, 54).

established Obesity – Differences between 
DiO and DR Rats
Once obesity has been established and the rate of weight gain 
declines, there are concomitant reductions in the differences in 
RQ and the measured energy imbalance between DIO and DR 
rats (51). Coincident, or possibly the cause of the normalization 
of energy and nutrient balances, is the finding that many hypo-
thalamic differences/abnormalities are also normalized between 
DIO and DR rats (44). Regardless, DIO rats generated from the 
aforementioned screening protocol exhibit many of the meta-
bolic derangements and hallmarks that are linked to obesity in 
humans, including insulin resistance, glucose intolerance, lower 
spontaneous physically activity, and impaired fat oxidation (40, 
49, 52, 55, 56).

DiO/DR Differences Unique to Females
Aside from the initial studies that showed no difference in EI, 
TEE, or activity levels between DIO and DR rats, our work 
with the female-specific aspect of this model has not specifi-
cally addressed the differences between male and female rats in 
terms of their propensity to become obese. We have, however, 
performed comprehensive metabolic studies of the mature 
lean and obese animals across the estrous cycle, and during the 
initial stages of weight gain following surgical OVX (40). We 
observed that obese animals experienced greater fluctuations 
in energy balance across the 4-day estrous cycle than their 
lean counterparts, and this was driven by greater variability in 
food intake across the cycle (Figure 3). A rise in estrogen levels 
during the proestrus phase of the cycle underlies a reduction in 
food intake, and this estrogen-mediated response appears to be 
delayed in obese animals (Figure 3). While circulating estradiol 
levels were not significantly different between the DIO and DR 
animals, we suspect that the inherent impairment in leptin and/
or insulin sensitivity in the obese may impart reduced sensitivity 
to the effects of estrogen at this stage of their cycle. Additional 
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FiGURe 3 | energy balance across the estrous cycle and following 
OvX in lean and obese rats. Energy balance (intake – expenditure) was 
measured in lean and obese rats during each phase of the estrous cycle 
[diestrus 1 (D1), diestrus 2 (D2), proestrus (P), and estrus (E)], immediately 
following surgical ovariectomy (OVX) while in energy balance (OVX-EB), and 
during OVX-induced rapid weight gain (OVX-Gain). Relative circulating 
estrogen levels across the cycle (D1–E) and corresponding follicular and 
luteal phases of the human menstrual cycle are indicated. Obese rats 
experience greater fluctuations in energy balance across the cycle compared 
to lean rats. A rise in circulating estrogens is associated with a decrease in 
food intake (and energy balance) in the lean; however, this response is 
delayed in the obese. *Significant difference between lean and obese groups 
(P < 0.05). Modified from Ref. (40).

FiGURe 4 | Rodent paradigm to study the metabolic propensity to 
regain weight after weight loss. This paradigm, employing obesity-prone 
rats, has well-defined primary and secondary outcomes that describe the 
metabolic propensity to regain weight after prolonged weight reduction. This 
approach can be applied to test weight reduction strategies for their ability to 
overcome the metabolic pressures driving weight regain by modifying the 
environmental conditions in the treatment phase and examining the response 
during the relapse phase.
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studies are needed to examine this possibility. We further found 
that cycling obese rats were less active, expended more energy 
per movement, and oxidized more carbohydrate than lean rats. 
Despite these phenotypic differences across the cycle, OVX 
induced a large positive energy imbalance in both obese and lean 
rats, which resulted primarily from an increase in energy intake 
in both groups. TEE was not altered in either group, despite the 
fact that they were eating more food. Our interpretation of these 
observations is that the increased thermic effect of food (from the 
greater food intake) is essentially balanced out by any reduction 
in the non-resting energy expenditure (NREE) that occurs from 
the decline in physical activity levels.

Characterizing the Metabolic Propensity 
to Regain weight after weight Loss
Over the past decade, we have employed the OR/OP model to 
study the phenomenon of weight regain after weight loss. The 
paradigm we developed to model the human condition is shown 
in Figure 4. Following the standardized screen to identify the OR 
and OP phenotypes described above, the young rats are main-
tained in the obesogenic environment (HF diet; limited physical 
activity) for 16 weeks, during which excessive weight gain occurs 
in what would be equivalent to childhood and adolescence. As the 
rats mature, growth rates slow, the gain in body weight and fat-free 
mass plateaus, and further weight gain comes slowly and primar-
ily in the form of fat mass. The rats are then given a two-step treat-
ment regimen (weight loss followed by weight maintenance) that 
reflects the most common approach used in humans: restricted 

consumption of an LF diet. The rats are fed a calorie-restricted 
LF diet that induces a 10–15% loss in weight that is primarily fat 
mass. A LF provision, adjusted on a daily basis, is given so that 
weight is maintained at this reduced level. In some studies, weight 
reduction has been sustained with intake-regulated maintenance 
for up to 16 weeks, a period of time that would reflect several 
years of weight reduction in humans (57). The propensity to 
regain weight is then characterized by allowing the rats to have 
free access to a specific diet while monitoring body weight, body 
composition, and pertinent aspects of metabolism as they relapse 
to the obese state. Our assertion is that this paradigm reflects the 
human condition with respect to:

(1) Genetic pressures – polygenic predisposition to become 
obese under obesogenic conditions;

(2) Obesogenic conditions during formative development – 
maturation in an obesogenic environment;

(3) The most common approach to weight reduction – restricted/
controlled intake of an LF diet; and

(4) The most common failure – not controlling intake.

In our first set of studies, we examined weight regain 
immediately after weight reduction and assessed how energy 
balance and fuel utilization were altered with prolonged 
weight reduction. As expected, the drive to regain could be 
described by an increased rate of gain and a return to the 
previous level of body weight and fat mass. We observed 
that prolonged (8-week) weight reduction was accompanied 
by a persistent reduction in TEE that was due in part to a 
sustained reduction in resting energy expenditure (REE). 
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FiGURe 5 | Drive to regain weight increases with time and is higher 
early in the relapse period. (A) Rats in the paradigm examining the length 
of time in weight maintenance vs. the drive to regain weight. Obesity-prone 
(OP) rats were maintained on a HF diet for 16 weeks to induce obesity. Rats 
were calorically restricted on an LF diet to induce 10–15% loss, maintained at 
this reduced weight for 0, 8, or 16 weeks, then allowed to relapse with free 
access to LF diet. (B) The rate of weight regain shown by time in 
maintenance at various times during the relapse period. The rate of weight 
regain for relapsed-obese rats is represented as the average for the first 
week, the second week, and the final 4 weeks of the relapse period. Data are 
expressed as means ± SE. With each time period, groups with the same 
letter designation are not significantly different. Modified from Ref. (34).
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By adjusting for the variability attributed to variations in 
fat-free mass, we observed an enhancement in metabolic 
efficiency, meaning the suppression in resting metabolic rate 
was greater than what would be predicted based the decreased 
mass of metabolically active tissues that occurred with weight 
reduction. Like adult humans that are obese, fluctuations in 
weight were primarily due to changes in fat mass rather than 
changes in fat-free mass. Furthermore, relapsing rats had a 
tendency to burn carbohydrate rather than fat. Importantly, 
this study established the weight loss/weight regain paradigm, 
describing the basic approach and technical tools used for its 
application (34).

The Role of Timing in the weight Regain 
Process
Length of Time in Weight Maintenance
Based upon observations from the National Weight Control 
Registry, the paradigm was applied to address whether increas-
ing the time of weight maintenance would attenuate the 
metabolic drive to regain weight. Given the sustained reduction 
in TEE with prolonged weight reduction in our prospective 
study, we were not overly optimistic that this would be the 
case. To better understand the aspects of metabolism promoting 
regain, we performed a large cross sectional study in male rats 
examining the weight reduced state at 0, 8, and 16  weeks of 
weight maintenance, before and after 8  weeks of relapse (34). 
The time in weight maintenance was equivocal to a weight-
reduced human keeping the weight off for ~10  years (57). A 
portion of these data is shown in Figure 5. We observed that 
the rate of regain increased with time in weight maintenance 
(Figure 5A), but the level of defended body weight and adiposity 
was drifting higher (obese rats switched to LF diet, dotted line). 
The animals were defending a target weight that was drifting 
upwards while they were weight reduced, an effect we attribute 
to age. Regardless, the increased rate of regain indicated that the 
metabolic pressures driving regain were greater as the time in 
weight maintenance increased. This effect on the rate of regain 
was most profound in the first week of the relapse period 
(Figure 5B). In addition, we observed that the decreased TEE 
and enhanced metabolic efficiency observed in our previous 
study remained unchanged when the length of time in weight 
maintenance increased. These metabolic adaptations that are 
thought to be contributing to the biological drive to regain 
weight did not resolve, even with long-term weight loss main-
tenance. While some similar mechanisms are likely to underlie 
the biological drive to regain weight in females, we know that 
there are many sex-specific differences that also likely exist. 
Our lab is currently performing these same studies in females 
to fully characterize the nature and extent of these differences, 
particularly with respect to (a) the extent and kinetics of the 
weight regain process and (b) the effects of menopause/loss of 
ovarian hormones on this process.

Prospective Analysis of Early Relapse
To examine this critical early period, energy balance, fuel utiliza-
tion, and regain were monitored prospectively through the first 
2 weeks of relapse. During this time, almost half of the lost weight 

had been regained (34). We observed that both an increase in 
drive to eat and a decrease in expenditure contributed to the large 
energy gap, and neither side of the energy balance equation had 
normalized by the end of 2 weeks. Enhanced metabolic efficiency 
persisted throughout this early period of relapse and contributed 
to the suppressed TEE. In other studies, we utilized nutrient trac-
ers in combination with metabolic phenotyping to examine fuel 
trafficking during the early stages of weight regain (58). During 
weight regain, we observed that the oxidation of dietary fat was 

http://www.frontiersin.org/Nutrition
http://www.frontiersin.org
http://www.frontiersin.org/Nutrition/archive


FiGURe 6 | Prospective analysis of the energy gap during weight 
regain with and without exercise. Energy balance [energy intake – total 
energy expenditure (EI-TEE)] is shown for obese, weight reduced, and 
relapsing rats either with (EX) or without (SED) treadmill exercise for several 
time periods during relapse. During weight regain, the energy gap (energy 
imbalance) resolves gradually as body weight is gained. Further, exercise 
reduces the energy gap both by suppressing EI and increasing TEE. 
*Significant difference between SED and EX rats during that time period, 
P < 0.05. Modified from Ref. (55).

FiGURe 7 | Propensity to regain weight following weight loss: 
summary of data from a meta-analysis of US weight loss studies. The 
percentage of lost weight that is regained over a 5-year period according to a 
meta-analysis of 29 human weight loss studies. Adapted from Ref. (61).
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substantially suppressed and that ingested fat was preferentially 
trafficked to adipose tissue for storage. Accompanying this 
shift in metabolism early in relapse was an increased number 
of small adipocytes, which would presumably provide an ideal 
receptacle for the excess ingested energy. When taken together, 
observation of DIO rats in this paradigm of weight regain suggest 
that adaptive changes in muscle and adipose tissue establish a 
metabolic context for rapid, energetically efficient weight regain. 
In subsequent studies, we have observed how regular exercise 
counters this metabolic drive to regain weight early in relapse; 
exercise decreases the energy imbalance or energy gap (Figure 6) 
both by reducing appetite and by increasing the level of expended 
energy during weight regain (55). Using nutrient tracers, we 
provided evidence suggesting that regular exercise increases the 
oxidation of dietary fat and traffics excess energy through more 
expensive pathways of deposition (59, 60). We have examined the 
tissue-specific mechanisms of these beneficial effects of exercise 
in both skeletal muscle (59) and adipose (60), and our analysis of 
the effects in liver will be forthcoming.

Prospective Analysis of Complete Relapse
Our studies of DIO rats in this weight regain paradigm have also 
examined the later stages of the relapse process to provide a more 
complete biological picture of weight regain after weight loss. 
We were interested in following the resolution of the energy gap, 
non-protein RQ, fuel utilization, and the energetic efficiency of 
weight regain. The pattern of regain in our rat paradigm reflected 
the pattern of regain in a meta-analysis of a large number of 
human regain studies (61), which some have suggested reflects 

a first-order relationship in the resolution of this biological drive 
(Figure 7). Our observations extended our previous findings by 
showing that the enhanced metabolic efficiency and suppressed 
TEE persist throughout the process of relapse. Both increased 
intake and suppressed expenditure led to a large energy imbal-
ance, or energy gap, which resolves gradually as the weight returns 
(Figure 7). While intake returns to levels observed before weight 
loss, TEE and REE never completely resolved even after the rats 
had returned to their previous weight. Both the reduction in feed 
efficiency and the elevation in non-protein RQ declined after week 
2, suggesting that this efficient weight gain and shift in fuel use 
was most profound early in relapse when much of the lost weight 
returns (56). As expected, we and others have observed, at least in 
males, that exercise and physical activity attenuates the biological 
drive to regain weight early in relapse and leads to a lower body 
weight and fat mass (55, 59, 60). These studies support the notion 
that in males, exercise attenuates the drive to eat and increases 
expended energy above and beyond the additional energetic cost 
of the exercise bout, and that these effects persist throughout the 
entire relapse process. However, we have also observed that these 
beneficial effects of exercise may be greatly diminished if weight 
regain occurs on an obesogenic diet (62).

Use of DIO/DR Rats for Studying Obesity 
Therapeutics
To date, we have used the DIO/DR rats to develop a broad picture 
of the biological drive to regain weight after weight loss, and we 
have used the experimental paradigm of weight regain in DIO 
rats to examine the impact of one of the most effective strategies 
for weight loss maintenance: regular physical activity. Given the 
importance of the biological adaptations in driving the weight 
regain process (2), we assert that the use of this model in this 
paradigm may provide valuable information about specific 
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therapeutic strategies or combinations of strategies that are 
designed to attenuate the biological drive to regain weight after 
weight loss. In addition, our data suggest that it is critical to 
assess the sex-specific differences in the biological drive to regain 
weight, as well as the sex-specific differences in the efficacy of 
therapeutics and strategies targeting these biological adaptations 
for weight loss maintenance. The development of a more effec-
tive screening process for females discussed earlier will greatly 
facilitate this important work moving forward.

DiO/DR Studies in Females
Obesity and the Loss of Ovarian Function
As previously stated, we have applied the DIO/DR model to 
study the effects of obesity on energy homeostasis in females 
(40). By merging the DIO/DR model with other common 
approaches used in preclinical research, we have extended the 
utility of the DIO model for studies of menopause and breast 
cancer. Menopause is a very complex transition accompanied by 
a wide array of metabolic derangements in numerous tissues of 
the body. While there are several groups that have performed 
elaborate clinical studies either across the natural menopause 
transition (63) or in studies of ovarian hormone suppression 
(64–66), it is generally difficult to study the menopause transi-
tion in women because of the wide variations in the length of 
time for this transition, the variable age of onset, and the fact 
that it is generally only identified retrospectively. To overcome 
these logistical challenges in preclinical studies, we have utilized 
surgical OVX to mimic the loss of ovarian function (38, 40, 67, 
68). This approach reflects some of the metabolic consequences 
of the menopausal transition, but it has the added advantage of 
a clear demarcation of the loss of ovarian hormone production 
for precise timing for follow-up analyses. We have specifically 
merged the DIO/DR model with this surgical intervention to 
study the impact of preexisting obesity on the loss of ovarian 
hormone production. Following OVX, we have shown that both 
DIO (obese) and DR (lean) rats exhibit a 3- to 4-week period 
of rapid weight gain that is accompanied by increased energy 
intake and reduced SPA levels (38, 40). While DIO and DR 
rats generally gain the same amount of weight, the weight gain 
appears to be somewhat slower or delayed in the DIO females 
(38). While activity levels are reduced after OVX in our model, 
our data suggest that in this paradigm, weight gain is primarily 
a result of increased food intake, rather than changes in energy 
expenditure (40).

Obesity and Postmenopausal Breast Cancer
One of the many comorbidities associated with overweight 
and obesity is an increased risk for, and mortality from, many 
cancers including breast cancer (69–72). Surprisingly, obesity’s 
impact on breast cancer prior to menopause is relatively modest 
and in some cases has even been shown to be protective (73). 
After menopause, however, obesity increases the incidence, 
progression, and eventual mortality from breast cancer by up 
to 40% compared to women at a healthy weight (74). The risk is 
highest in women with a history of weight gain throughout life, 
suggesting that a crisis in obesity-driven breast cancer is likely 
to occur with the current generation of youth, where obesity 

rates are approaching an unprecedented 20% (75). Despite the 
known link between obesity and postmenopausal breast can-
cer, the mechanisms underlying this association are not fully 
understood. This represents a significant gap in our knowledge, 
and identifying mechanisms of risk and targets for intervention 
is critical.

To pursue a deeper understanding of the biological aspects 
underlying this relationship, we merged the DIO–DR/OVX 
model with a common preclinical approach to studying 
mammary tumor biology. Prior to the OP/OR screening, a 
chemical carcinogen (MNU) is delivered during mammary 
gland development. The animals are then matured under obe-
sogenic conditions into DIO and DR rats, after which they are 
subjected to surgical OVX. Merging the models in this fashion 
has generated an experimental paradigm that can further our 
understanding of the impact of obesity on postmenopausal 
breast cancer.

Mammary tumors generated in these animals are reflec-
tive of the human condition with respect to the histological 
characteristics and estrogen receptor (ER) status of the tumors 
(38, 39). Further reflective of humans, the effect of obesity 
on mammary tumor incidence is minimal prior to OVX, and 
the emergence of an obesity effect occurs only after the OVX 
surgery. Specifically, in response to OVX, obese rats exhibit 
fewer tumors that regress, more tumors that progress, and 
more tumors that newly emerge (38). Of all the characteristics 
of the obese phenotype that were examined, the strongest 
relationship with tumor promotion was observed with the 
energetics of weight gain during the ~3- to 4-week period 
of rapid weight gain that followed OVX. During this time, 
both groups experienced a dramatic increase in the rate of 
weight gain. However, despite the two groups eating similar 
amounts of food, DIO rats gained less weight (p  <  0.01). 
Consequently, feed efficiency during this transient period of 
rapid gain was lower in DIO rats (p < 0.001). Feed efficiency 
during this 3-week period of rapid weight gain was inversely 
associated with the change in tumor multiplicity (r  =  −0.64, 
p < 0.001) and burden (r = −0.60, p < 0.001) over the entire 
post-OVX period. Rats that experienced a lower rate of weight 
gain and a lower efficiency of storing ingested fuels during 
this distinct time period after OVX also had a higher level of 
tumor progression. These observations suggest that the impact 
of OVX on energy balance and fuel utilization is different for 
DIO and DR rats in this paradigm and that this difference may 
affect the latency, survival, and growth of mammary tumors.

OVX-Induced Overfeeding – An Example of 
Metabolic Inflexibility
We subsequently performed a nutrient tracer study in DIO/DR 
rats during the early stages of OVX-induced weight gain. Tumor 
bearing DIO and DR rats were studied after OVX both while 
in energy balance, and while experiencing their natural OVX-
induced positive energy imbalance (and subsequent weight gain) 
(39). These studies were performed in a metabolic phenotyping 
system in which energy intake, expenditure, and tissue-specific 
nutrient trafficking could be carefully measured. In DR rats, the 
OVX-induced energy imbalance was accompanied by a higher 
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level of glucose uptake (3H-2-deoxyglucose) in the mammary 
gland adipose depot, and similar trends were seen in the liver, 
retroperitoneal adipose, and skeletal muscle. Overfeeding in 
this context had no effect on the glucose uptake in the tumors 
of DR rats. Our observations in DIO rats were in direct contrast 
to those in DR rats. Glucose uptake was unaffected by the OVX-
induced positive energy imbalance in all tissues of the DIO 
rats, with the exception of the tumors, where glucose uptake 
was increased. Changes in whole body fuel utilization (RER) 
and dietary fat oxidation in response to this caloric excess also 
tended to be blunted in the obese. Taken together, our studies 
of this critical period of OVX-induced overfeeding indicate 
that DIO rats have an inability to clear and store nutrients in 
peripheral tissues, but excess nutrients are readily taken-up by 
mammary tumors.

We have interpreted these observations from the perspec-
tive of metabolic flexibility, which we broadly define as the 
ability to change or adjust nutrient metabolism in response 
to a metabolic challenge. The challenge in this context is 
OVX-induced overfeeding. In the insulin-resistant DIO rats, 
their peripheral tissues exhibit a blunted or impaired response 
to the excess energy, while their tumors readily take up the 
excess energy. In the DR rats, their peripheral tissues exhibit 
greater flexibility in their response to the challenge and are 
more capable of clearing and metabolizing the excess energy. We 
would assert that this impaired ability to respond to metabolic 
stress may underlie many of the metabolic derangements and 
accompanying pathologies associated with obesity. Even so, 
metabolic flexibility is a concept that is difficult to specifically 
define and even harder to study. The DIO/DR model may prove 
a useful tool to study this important concept in well-defined 
metabolic contexts.

CONCLUSiON

Over the past two decades, the impact of obesity on overall health 
and wellness has emerged as a major crisis. The study of OP/OR 
and the DIO/DR rat model has proven to be a valuable tool in 

translating basic science studies of energy balance and body 
weight regulation to the human condition and in furthering 
our understanding of the physiologically relevant condition of 
obesity. The strengths of this approach are the polygenic nature 
of the adipose disposition, and that it has been shown to reflect 
the human condition in a number of ways. The Levin model of 
inbred lines has been particularly useful in that they have been 
used to study OP and OR phenotypes prior to and during the 
development of a particular adiposity phenotype. While the 
commercial availability of Levin’s valuable model continues to 
be questionable, researchers may continue to pursue the OP/
OR selection of outbred strains to produce the DIO/DR pheno-
types to further our understanding of obesity and its metabolic 
complications. Both the inbred and outbred strains have proven 
extremely valuable for obesity studies of female physiology and 
have elucidated critical sex-specific differences of obesity and its 
metabolic complications.
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Obesity is an increasing major public health concern asking for dietary strategies to limit 
weight gain and associated comorbidities. In this review, we present animal models, 
particularly rats and mice, which have been extensively used by scientists to understand 
the consequences of diet quality on weight gain and health. Notably, modulation of 
dietary protein quantity and/or quality has been shown to exert huge effects on body 
composition homeostasis through the modulation of food intake, energy expenditure, 
and metabolic pathways. Interestingly, the perinatal window appears to represent a 
critical period during which the protein intake of the dam can impact the offspring’s 
weight gain and feeding behavior. Animal models are also widely used to understand 
the processes and mechanisms that contribute to obesity at different physiological 
and pathophysiological stages. An interesting example of such aspect is the situation 
of decreased estrogen level occurring at menopause, which is linked to weight gain 
and decreased energy expenditure. To study metabolic disorders associated with such 
situation, estrogen withdrawal in ovariectomized animal models to mimic menopause 
are frequently used. According to many studies, clear species-specific differences exist 
between rats and mice that need to be taken into account when results are extrapolated 
to humans.

Keywords: animal models, obesity, body composition, dietary protein, food intake, energy expenditure, estrogen 
deficiency

iNTRODUCTiON

Obesity is a worldwide epidemic affecting over 400 million adults with serious comorbidities (1). 
Obesity develops when energy consumption exceeds energy expenditure and is defined as the 
accumulation of excess body fat to the extent that its results in health complications and reduces 
life expectancy (2). As obesity prevalence is rising, the quest to find new treatments to diminish its 
negative consequences is also increasing. Experimental research needs to determine the mechanisms 
by which obesity increase the risk of diseases. To investigate the interactions between the compo-
nents of the diet and the biological processes, epidemiological, experimental, and clinical studies 
are necessary.
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Regarding experimental studies, animal models are essential 
for in vivo and ex vivo experimental design. Nutrient and non-
nutrient components of food interact with many metabolic 
pathways at different levels including gene expression regulation. 
Experimental models, from cells to organoids and animals, are 
also essential to elucidate mechanisms by which food compo-
nents can modulate metabolic pathways. To be able to translate, 
at least partly, the information obtained from an animal model to 
humans, the choice of the appropriate animal model is a crucial 
step to avoid as much as possible misinterpretations.

Dietary interventions studies in animals are thus essential 
to understand the biological roles of specific nutrients before 
validation in human. In the last century, rats were the most used 
in biochemical research, but in the last two decades, its popular-
ity decayed due to the limitation to perform reverse genetics in 
rats. Mus musculus is probably the most popular model used to 
identify the mechanisms of food intake and energy regulation. 
Even if some extrapolation from mice to humans is hazardous, 
the mice model has helped us to develop some therapies for obe-
sity, metabolic syndrome, and insulin resistance (3). If mouse 
models obviously do not mimic all aspects of human diseases, 
they are, however, the most commonly used models. No other 
animal model offers such large possibilities of phenotyping in 
response to metabolic, genetic, and behavioral manipulations. 
Depending on the target, the most widely used mouse models 
are (i) spontaneously occurring obese mouse strains that are 
well characterized, (ii) high-fat diet that rapidly induce weight 
gain in mice, and (iii) transgenic or gene knockouts mice to 
determine the influence of a given gene in the development of 
obesity.

Animal models have thus been used extensively by the scien-
tific community to understand the role of diet quality on health. A 
better understanding of the relation between diet quality, and also 
physical activity and progression of chronic disease, such as obe-
sity as presented in this review article, is increasingly important 
with regard to the increase in the number of obese individuals 
worldwide.

This review will focus specifically on two typical situations 
in the rodent models: (i) the impact of protein quality/quantity 
and (ii) the impact of estrogen deficiency on body weight and 
composition. A short section on the pig model will conclude this 
article to summarize the advantages and limitation of this model 
versus the rodent models, in general terms and in terms of studies 
on obesity.

PROTeiN QUANTiTY/QUALiTY

Dietary intervention studies in animal models are essential to 
understand the biological roles of specific nutrients before valida-
tion in humans.

Dietary Protein intake
Protein is an essential dietary component in which recommended 
level is defined as the minimum intake required to maintain nitro-
gen balance; and as the amount of protein sufficient to prevent 
the catabolism of body protein stores. The recommended daily 
minimum intake of protein and amino acids (AAs) in adults is 

0.8 g/kg of body weight (4). However, recent studies using stable 
isotope suggest that current dietary protein recommendation 
may not be sufficient to promote optimal muscle physiology in 
all populations (5). Epidemiological studies support the notion 
that especially in the older population, a greater protein intake, 
up to 19% of the energy, better preserves lean body mass (LBM) 
(6). In industrialized countries, the main sources of protein 
are milk, eggs, and meat. The nutritional value of protein is 
influenced by several factors, especially the AA composition, 
protein digestibility, protein digestion kinetics, and the ability to 
transfer AA for protein synthesis. Diets based on either animal 
or vegetable products supply proteins of different quality in dif-
ferent quantities. Plant proteins are often lower in some specific 
indispensable AAs when compared to animal proteins. For 
instance, soy protein is reported as a “complete” protein, but its 
overall indispensable AA content is lower than the one measured 
in milk proteins (7). Thus, protein quality, which is defined as the 
capacity of dietary protein sources to satisfy the metabolic needs 
for protein, and as the content in essential AAs, is important 
when considering protein requirements. Correlations between 
protein nutrition and human health are becoming a highlighted 
research topic.

Low-Protein (LP) and High-Protein (HP) 
Diets
Studies have suggested that when rats are placed in food choice 
position, they regulate their protein intake, so that it corresponds 
to their nutritional needs (8). Consistent with these results, 
experiments have shown an increase in food intake when the 
diet protein content is decreased at the expense of carbohydrates 
(9). The “protein leverage hypothesis” issued by Simpson and 
Raubenheimer proposes that paradoxically, proteins, which only 
represent between 10 and 15% of the average energy intake in 
adults represent the key factor in body weight and composition 
regulation (10). These authors have observed that the ratio 
between the protein and other nutrients (carbohydrates and 
lipids) has dropped in the last years. Thus, people, according 
to their hypothesis, tend to consume more dietary proteins to 
cover their protein needs. This excessive consumption of HP and 
LP density food, may partly explain the weight gain and obesity 
measured in these individuals. This observation is in line with 
numerous animals studies showing that substitution of carbohy-
drates by proteins in HP diet reduce adiposity and food intake 
(11, 12), while LP diets are associated with an increase in food 
intake and fat mass (13–15).

Since LP and HP diets are commonly consumed, it is particu-
larly interesting to study consequences of those diets on human 
health. However, it should be underlined that the average amount 
of dietary protein consumed is generally above the recommended 
dietary intake in Western countries. For instance, in France, 
the average dietary consumption is 1.7-fold the recommended 
dietary intake (16). The consumption of HP diets, which can 
lead to the consumption of dietary protein up to four times the 
recommended dietary protein intake, are frequently used by 
individuals who wish to decrease their body weight. Although 
body weight diminution in overweight and obese individuals is 
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obviously associated with beneficial outcomes, some deleteri-
ous effects of HP diet have been suggested in several studies. 
Indeed, HP diets are contraindicated for individuals who are 
suffering or predisposed to kidney diseases (17). Regarding 
the intestinal physiology, in case of HP consumption, a part of 
dietary and endogenous proteins escapes full digestion in the 
small intestine and is transferred to the large intestine, where 
they are metabolized by the intestinal microbiota that produce, 
from AAs, various metabolites, some being beneficial, while 
most of them being deleterious when present in excess (18). An 
epidemiological analysis performed by Shoda et al. (19) in Japan 
showed a correlation between incidence of Crohn’s disease (an 
intestinal chronic inflammatory bowel disease) and increase 
intake of animal protein over a period of 20 years. A prospec-
tive cohort study carried out in women also reported a positive 
association between the level of dietary intake and risk of inflam-
matory bowel diseases (20). However, Spooren et al. have recently 
performed a systematic review of the epidemiological studies that 
have examined the links between protein intake and the risk of 
developing inflammatory bowel diseases and have reported that 
most studies performed found no significant association between 
these two parameters (21). When interpreting the results of these 
different studies, it is worth taking into consideration that, due 
to the high complexity of diet, it may appear difficult to collect 
robust dietary data. Then, it remains possible that the effects of 
the protein intake on the risk of developing inflammatory bowel 
diseases may have been biased in some studies by confounding 
factors.

Regarding the possible links between HP diet and the risk 
of colorectal cancer, the results obtained from epidemiologi-
cal and experimental studies do not allow to reach any robust 
conclusion, the results obtained being rather heterogeneous 
(22). Observational studies have reported that HP diet is linked 
with higher mortality due to cardiovascular disease (23, 24). 
However, as discussed earlier, increased protein consumption 
is commonly associated with high intake of other alimentary 
compounds like meat that contains notably heme, N-nitroso 
compounds, and heterocyclic amines, which have been reported 
to exert negative effects on various health aspects when present 
in excess. Therefore, these confounding factors do not allow to 
determine clearly the role of protein per  se on various health 
parameters.

Concerning LP diets, there is no clear definition for this type of 
diet. LP diets are often recommended for patients with anomalies 
of the AA metabolism including phenylketonuria and those with 
kidney or liver diseases (25, 26). Furthermore, in developing 
countries, children during fetal development, lactation, and after 
weaning are often fed with diets including high carbohydrate but 
LP level (27, 28). It is therefore important to determine the effects 
of LP diets on weight and body composition.

The consequences of HP and LP diets on body composition 
can be studied in animal models with no difference in energy 
content. For example, experimental HP diets usually contain 
less digestible carbohydrates but had exactly the same composi-
tion regarding lipids, undigestible carbohydrates, minerals, and 
vitamins (29). The use of animal models is suitable to reveal the 
underlying mechanisms.

Dietary Protein intake, Body weight, and 
Composition
Numerous studies have reported that HP diets allow reduction 
of adiposity while maintaining LBM in animals (30–32). In rats, 
it has been shown that HP diets, in which 50% of the energy is 
provided by proteins, drastically reduced after 6 months the white 
adipose tissue compared to a normal protein diet (30). Consistent 
with these results, Pichon et al. found that increasing protein level 
in the diet reduced weight gain more strongly than the reduction 
of carbohydrates/lipids ratio (32). Moreover, this decrease in 
weight gain was associated with decreased adipocyte size (11).

It has been shown that protein restriction can replicate the 
effects of calorie restriction over a short period of 8 weeks in mice, 
with a decrease in circulating insulin, glucose tolerance, and 
weight gain (15). However, consumption of LP diet over longer 
periods in mice is generally associated with increased weight, 
adiposity, and intrahepatic fat (14, 15). On the contrary, growing 
rats fed for 15 days with a LP diet exhibited a lower body weight 
but a greater adiposity (13), enlightening the importance of the 
dietary intervention duration.

Dietary Protein Level and Food intake
Mellinkoff, according to his aminostatic theory (33), was the first 
to hypothesize that the fluctuations of plasma AA concentrations 
could act on the control of food intake. Noting that «a rise in 
the serum amino acid concentration appears to be accompanied 
by a waning of appetite», he hypothesized that when plasma AA 
concentrations reach a threshold, satiety occurs. Furthermore, 
it is well known since several years that the AA content in the 
cerebrospinal fluid reflects circulating AA levels, itself linked to 
the dietary protein composition (34). Some of these AAs can also 
serve as precursor of neuropeptides that are directly involved in 
food intake regulation. This is the case for tryptophan, which is 
a precursor for serotonin, this latter neurotransmitter repressing 
food intake (35). Similarly, histamine is synthesized from histi-
dine, and high levels of histidine are thought to have a negative 
effect on food intake through histaminergic neurons activation 
(36). AA composition could therefore explain why some proteins 
have been reported to be more satiating than lipids and carbohy-
drates (37, 38).

Taken together, these observations support the concept that 
a HP diet decreases food intake, while a LP diet increases it. On 
the contrary, very LP diet generates an aversive phenomenon (39) 
that allows the individuals to direct its choice toward balanced 
food to maintain essential AAs homeostasis (40).

The effects of HP diets on food intake are especially observed 
during the first days after the introduction of the diet. Once 
the animals are accustomed to the HP diet, they tend to return 
to a food intake similar to the one observed in animals fed a 
control diet.

The effect of both HP and LP diet on food intake is mediated 
by gastrointestinal peptides. Thus, Batterham and colleagues 
observed an increase in the plasma levels of the anorectic pep-
tide PYY in mice following ingestion of an HP diet (41). In the 
same study, they have shown that mice deleted for the PYY gene 
no longer exhibit a decrease in food intake under a HP diet. In 
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humans, studies have reported that HP diet is also associated 
with increases in the concentrations of glucagon-like peptide-1 
(GLP-1), cholecystokinin (CCK), and a decrease in ghrelin 
concentration (42). Interestingly, LP diets are associated with 
small changes in CCK or ghrelin levels relative to control diets. 
Morrison and Laeger hypothesized that this blunted response 
may contribute to the hyperphagia observed in case of LP diet 
consumption (42).

The effect of LP diet on food intake is also mediated through 
FGF21 secretion. Indeed, the increase in food intake induced 
under a LP diet is suppressed in FGF21-KO mice (43).

Moreover, the supplementation of some AAs (histidine, 
phenylalanine, tryptophan, alanine, glutamine, and arginine) 
can partially mimic the satiating effect of HP diet on food intake 
and/or gastrointestinal peptides secretion (44–51). For example, 
oral glutamine or arginine increases the secretion of GLP-1 and 
improves glucose tolerance in rodents (50, 51). Branched AAs, 
particularly leucine, can reproduce the effects of a HP diet. 
Leucine supplementation in the diet or in the drinking water 
reduces food intake in rats and mice (46, 52). Furthermore, 
leucine icv injection, but not tryptophan, threonine, methionine, 
lysine, and serine, reduces food intake and body weight (43, 53), 
indicating that at least part of the anorectic signal induced by leu-
cine is generated centrally. Leucine and HP diet exert their effect 
via an increase of mTOR activity and a decrease of AMPK activity 
in the hypothalamus, which leads to an increase in the anorectic 
pro-opiomelanocortin and a decrease of the orexigenic NPY and 
AgRP in the arcuate nucleus of the hypothalamus (53–55).

Dietary Protein and Reorientation of 
Metabolic Pathways
Consumption of a LP diet, providing only 5–6% of the energy 
as protein, increases food intake, adiposity, and intrahepatic fat 
content compared to a control diet (14, 15). The increase of the 
hepatic lipogenesis is correlated to an increase in the SREBP-1c 
transcription factor and of glycerokinase activity by 30 and 50%, 
respectively (56). However, using diet in which 10% of the energy 
was provided by proteins, Henagan et al. found that consumption 
of a LP diet is associated with a decrease in liver lipogenesis, and 
in particular of the expression of stearoyl-coenzyme A desaturase 
(SCD-1), FAS, and SREBP-1c (57). The higher protein level used 
by Henegan may explain these conflicting results.

The triglyceride (TG) accumulation in adipocytes may also be 
related to a decrease in lipolysis. Indeed, Buzelle et al. showed that 
lipogenesis in adipocytes is usually lower under LP diet, and that 
these cells do not respond to the lipolytic action of noradrenaline 
(58). Thus, the disability to mobilize fat likely explains the accu-
mulation of TG in white adipose tissue.

As the adiposity reduction related to HP diet is partially medi-
ated by food intake reduction, it is necessary to use a pair-feeding 
group of animals to adjust the caloric intake of rats fed with a 
normo-protein diet with the one measured in rats fed with a HP 
diet (12). However, even if the rats fed with the standard diet are 
pair fed, they still exhibit a higher adiposity than the HP fed rats. 
These results support the view that the effects of HP diet involve 
the reduction of lipogenesis.

Fourteen days after the introduction of a HP diet, gene expres-
sion of FAS and ACC in the liver was suppressed (59). Moreover, 
the expression of FAS and SREBP-1c in the liver of rats fed for 
8 weeks with a HP diet compared to rats fed a NP or NP pair-fed 
diet was also reduced (11).

Studies have shown that under a normo-protein diet, all AAs 
that are deaminated are oxidized rapidly. By contrast, under a HP 
diet, only half of the deaminated AAs are oxidized, resulting in 
the generation of a “carbon skeleton reserve” in the form of α-keto 
acids (60, 61). Furthermore, high plasmatic AA level increases 
both insulinemia and glucagonemia, which stimulates gluconeo-
genesis. Indeed, several AAs, including cationic AAs, are known 
stimulators of insulin secretion (62, 63). Moreover, Veldhorst and 
colleagues observed an increase in gluconeogenesis in healthy 
men fed a HP diet (64). In rats, the increase in dietary protein 
induces the expression of PEPCK in the fasted and fed rats and 
of glucose 6-phosphatase, only in the fasted state. These results 
suggest an increase in hepatic glucose synthesis (65). Ketogenesis 
is another metabolic pathway by which the carbon skeletons 
derived from the AA deamination can be managed. In fact, in 
humans and animals, an increase in circulating ketone body 
levels (especially β-hydroxybutyrate) was observed in response 
to HP diet ingestion (64). Finally, HP diets also allow a renewal of 
glycogen stores and an increase in the conversion of dietary AAs 
into glycogen (60, 66, 67).

Dietary Protein and energy expenditure
Postprandial thermogenesis is defined as the increase in energy 
expenditure after a meal or after ingestion of a given nutrient. This 
parameter results from the energy cost corresponding to absorp-
tion, digestion, and metabolism of nutrients provided by the meal. 
In humans, it has been shown that postprandial thermogenesis is 
in the range of 15–30% of the ingested energy for protein, while 
for carbohydrates and lipids this value is, respectively, between 
5 and 10% and 0 and 3% (68, 69). Mikkelsen et al. showed that 
when protein energy contribution in meal is increased from 11 
to 29%, the energy expenditure is also increased of about 10% per 
day (70). The increase in energy expenditure associated with the 
consumption of protein may partly explain their satiating effect. 
Indeed, several authors have suggested that increased metabolism 
had an inhibitory effect on food intake (71, 72).

Recent studies report that in mice fed with LP or HP diets, 
the postprandial thermogenesis is increased compared to normo-
protein diet (73). Similar results are reported for total energy 
expenditure (14, 74, 75). In line with these results, it has been 
shown that the basal temperature is increased by 1.1°C in animals 
fed a LP diet, and that administration of norepinephrine is more 
efficient to increase the basal temperature (+0.2°C) in rats fed a 
LP diet when compared to rats fed a control diet (76).

The effect of LP and HP diets on total energy expenditure is 
mediated notably by a modulation of genes encoding uncoupling 
proteins (UCP). UCP are proton carriers that uncouple their 
return into the mitochondrial matrix for ATP production, thus 
decreasing energy production efficiency. The energy from sub-
strates oxidation is then dissipated as heat. Studies have reported 
an increase in UCP1 expression under LP (76) and HP diets 
(55). Another study found similar results in rats, showing that 
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an increase in dietary protein intake is able to upregulate UCP2 
expression in the liver. These changes that are associated with 
increased abundance in UCP are positively correlated to energy 
expenditure (75).

Both the effects of LP and HP diet on UCP expressions could 
be modulated by the restriction or supplementation of specific 
AAs, for instance, histidine supplementation increases the con-
tent of UCP1 in brown adipose tissue (44, 45).

On the other hand, Malloy et al. have shown that the energy 
expenditure in rats fed with a methionine-deficient diet was 
greater than that of rats fed ad libitum or in animals pair-feed to 
a control diet (77). Consistent with these findings, other studies 
have shown that methionine restriction was accompanied by an 
increase in energy expenditure, including thermogenesis and 
body temperature increase (78, 79).

Interestingly, the consumption of both LP and HP diets results 
in an increase in energy expenditure. The effects of the two types 
of diets are summarized in Figure 1 below.

LP Diet and Protein Quality
Recent studies, using a new scoring system to qualify dietary 
protein quality, namely the digestible indispensable amino acid 
score (DIAAS), allowed a better comparison of protein quality. 
Indeed, this score is not truncated compared to usual systems 
used to evaluate protein quality like the nitrogen balance meas-
urement. DIAAS classification is based on the relative digestible 
content of the essential AAs. This classification shows that dairy 
proteins have the highest quality (80). In accordance with this 
classification, a study in human volunteers has shown that milk 
proteins are more efficient to stimulate muscle protein synthesis 
than soy protein. The best effectiveness of milk protein for such 
an effect was correlated to the higher proportion of leucine (81).

Evaluation of the so-called ideal protein level to better main-
tain health is complex. Most animal studies designed to evaluate 
the impact of LP diet on health barely took into account protein 
quality, and this may explain discrepancy between different stud-
ies. A recent review of Le Couteur et al. (82) suggests that LP diets 
generate longer lifespans in ad libitum-fed mice. Interestingly, the 
same results were obtained using the ad  libitum insect model, 
suggesting that these effects of LP diets apply to very different 

animal models. However, the protein leverage induced by LP 
diet, which increases food intake and fat deposition, is not always 
integrated. Restriction of particular AAs, such as methionine, 
has been shown to extend life duration in mice (83) and rat (84), 
and lower serum level of IGF-1, insulin, glucose, and thyroid 
hormone in serum (85).

A recent study using Balb/C mice under moderate protein 
restriction shown that protein quality is an important factor for 
biological effects. Ingestion of low quality protein that reduces 
IGF-1 serum level is related to decreased LBM and bone quality 
(86). This study included a group of control mice feed with a 
control soy-based normal protein diet including 20% of the total 
energy as soy protein (NP-SOY) and two other groups receiving 
LP diets. The first one was a soy-based protein restricted diet, with 
6% of the total energy as soy protein (LP-SOY), while the second 
one was a casein-based protein restricted diet with 6% of the total 
energy as casein (LP-CAS). To avoid the protein leverage effect, 
a pair-feeding group corresponding to the LP groups was used. 
As all the diets were isocaloric, the pair feeding allowed to ensure 
that energy intake was similar in all the groups.

Over the duration of the experiment (60  days), total body 
weight of LP-SOY mice remained at the baseline value, while 
NP-SOY and LP-CAS mice gained weight. The difference in total 
body weight was related to a lower lean mass gain in LP-SOY 
when compared to LP-CAS and NP-SOY mice. Reduction of 
IGF-1 plasma level and bone quality related to reduce bone 
formation was observed in the LP-SOY group (Table 1) (86).

The comparison of the effects of LP-SOY and LP-CAS diets 
on various parameters thus indicates that protein quality is of 
prime importance in the case of moderate protein restriction. 
The observed effects on body composition and blood plasma 
parameters could be partly related to a difference in AA profile, 
as casein is richer than soy primarily in methionine, and also in 
proline, serine, threonine, glutamine, valine, tyrosine, isoleucine, 
and leucine (87–89). Previous studies suggested that reduction of 
particular AAs in the diet can extend lifespan in mice and rats. 
However, this study shows that reduced IGF-1 level, which is 
correlated with reduction of bone formation and LBM includ-
ing uterus weight, do have adverse consequences on health 
parameters (86). This latter study shows that LBM response to 
nutritional interventions, particularly dietary protein quality, 
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TABLe 1 | effect of a soy- or casein-based protein restriction on body 
composition, bone quality, and bone turnover markers after 60 days.

Diets

NP-soy Low-protein 
(LP)-CAS 6%

LP-soy 6%

Weight gain (g) 3.41 ± 0.48a 3.81 ± 0.36a 0.55 ± 0.40b

Lean mass gain (g) 2.05 ± 0.32a 1.57 ± 0.18a −0.63 ± 0.26b

Uterus (mg) 81 ± 5a 52 ± 3b 24 ± 1c

Femur cortical 
thickness (mm)

0.232 ± 0.003a 0.226 ± 0.002a 0.205 ± 0.002b

Femur length (mm) 15.72 ± 0.12a 15.62 ± 0.13a 15.00 ± 0.11a

Femoral BMD change 
(delta%)

14.5 ± 0.5a 13.8 ± 0.9a 6.7 ± 1.5b

IGF-1 325 ± 30a 302 ± 18a,b 247 ± 15b

PINP (bone formation 
marker)

1.76 ± 0.15a 1.30 ± 0.13a 0.65 ± 0.06b

Data are means ± SEM (n = 15). A one-way ANOVA followed by Bonferroni’s post hoc 
was performed. Means with different superscript letters (a, b, c) are significantly 
different (p < 0.05) according to a Bonferroni multiple comparison test (86).
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is a good marker of the minimal dietary protein needed in this 
experimental model. This endpoint may be especially important 
for the aging population, because reduced protein intake which is 
often observed in the elderly, and which reduces LBM and bone 
mass are associated with fracture, reduction of life quality, and 
lifespan. However, data in humans also indicate that reduced pro-
tein intake may become an important component of anticancer 
and antiaging dietary interventions (90, 91), indicating that LP 
intake may induce heterogeneous biological effects. As discussed 
earlier, the evaluation of the ideal protein level for optimal effect 
on the health maintenance is complex and needs thus the evalu-
ation of many health outcomes (80).

LP and HP Diet during Gestation, 
Lactation, and Perinatal Periods
The early-life period, starting even before birth, is a key deter-
minant of adult health. Environmental exposure, particularly 
nutrition, has a programming effect on later metabolic health.

Low protein and HP intakes during gestation and lactation 
are commonly viewed as stressors that can lead to changes in the 
body composition of the offspring.

Thus, it has been shown that feeding LP maternal diet during 
both gestation and lactation, or only during lactation, decreases 
the body weight and adiposity in both males and females (92, 93). 
By contrast, protein restriction only during gestation has no effect 
on males but leads to a lower LBM and higher body fat mass in 
females (93).

Interestingly, feeding pregnant rats with a LP diet results in a 
preference for high-fat foods in the offspring at the age of 12 weeks 
(94). In the same study, the authors reported that females, but not 
males, failed to adjust their energy intake and exhibited a higher 
adiposity. In line with these results, it was shown that a maternal 
LP diet results in low birth weight and subsequent adipose tissue 
catch-up growth when the offspring is fed a high-fat diet in male 
rats (95). Taken together, these results suggest that the exposition 
to a LP diet result in low birth weight and predispose to obesity 
when exposed to a high fat diet during the postnatal period.

Infant formulas have a higher protein content than breast 
milk, and the subsequent increase in protein intake of infants 
consuming formulas has been associated with increased risk of 
obesity (96). Thus, the impact of HP intake during the perinatal 
period needs further studies.

The effects of HP diet during gestation and lactation in animal 
models are controversial, leading to either no change or birth 
weight decrease (97–99). Likewise, HP diets can induce increase 
or decrease of body weight and adiposity (97, 100), depending on 
the experimental design.

High protein diets during gestation have been associated with 
higher adiposity and decreased energy expenditure in young male 
rats (101). Sex-specific effects of HP diets during both gestation 
and lactation predispose females, but not males, to higher body 
weight and adiposity (99, 102).

The protein source ingested by the mother during gestation 
and lactation can also influence body composition. Thus, it has 
been reported that when the maternal diet include soy protein, the 
offspring exhibit a higher body weight and adiposity compared to 
the offspring of dams fed with a casein-based diet. This is prob-
ably due to an alteration of food intake regulation in the offspring 
of dams fed a soy protein-based diet (103). Further experiments, 
including epigenetic modification measurement, are needed in 
order to decipher the underlying mechanisms explaining these 
latter results.

iMPACT OF eSTROGeN DeFiCieNCY ON 
BODY weiGHT AND PHYSiOLOGiCAL/
MeTABOLiC PARAMeTeRS: iMPACT OF 
DieTARY PROTeiN

The prevalence of metabolic syndrome, a constellation of abnor-
malities that includes obesity, hypertension, glucose intolerance, 
and dyslipidemia is higher in men than in women, but according 
to some epidemiological studies, this gender difference disap-
pears after menopause (104). Animal studies have also reported 
protection of female mice from development of diet-induced 
obesity compared to age-matched males (105). However, as 
mentioned earlier, this advantage is lost in women at menopause, 
and the estrogen level decline is associated with central adiposity, 
insulin resistance, decreased energy expenditure, and greater risk 
of cardiovascular diseases (106, 107). Estrogen withdrawal dur-
ing menopause is also associated with increased production of 
pro-inflammatory cytokines that are involved in many different 
diseases including osteoporosis, rheumatoid arthritis, and mul-
tiple myeloma (108). Figure  2 summarizes estrogen actions in 
the brain, adipose tissue, pancreatic islets, skeletal muscles, bone, 
liver, and macrophages, indicating the impact of estrogen on 
many tissues. These latter are known to act in synergy to promote 
glucose and lipid homeostasis.

As it is difficult, for obvious ethical reasons, to study in 
depth physiological and metabolic consequences of menopause 
in women, notably in a mechanistic perspective, surgical ova-
riectomy in animal models has been used to mimic estrogen 
deficiency. Ovariectomized (OVX) animal models have been 
widely used to study metabolic disorders associated with decrease 
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FiGURe 2 | Summary of the consequence of impaired estrogen action on the physiology of many target organs.
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of estradiol secretion in order to evaluate pharmacological and 
nutritional treatments that can safely reduce the consequences of 
menopause. Indeed, the use of OVX rats or mice to simulate the 
postmenopausal conditions is well established and represents a 
reproducible model. Notably, OVX animal models mimic meta-
bolic modifications related to estrogen deficiency over a relatively 
short period of time. Witte et al. (109) showed that female rats 
and female mice do not have similar metabolic and behavioral 
responses after ovariectomy, demonstrating species differences in 
this experimental model. The OVX-induced weight gain in rats 
is mediated both by hyperphagia and reduced locomotor activity, 
while in mice the OVX procedure reduced locomotor activity and 
metabolic rate. Such species differences in response to OVX need 
to be taken into account when results are tentatively extrapolated 
to humans.

The most commonly used mice strain used to mimic conse-
quences of estrogen withdrawal are C57BL/6J mice and C3H/Hen 
mice. One of the main consequences of the OVX procedure is 
an increase in the body weight. Incidentally, those models have 
been setup to study not only consequences of estrogen deficiency 
on obesity but also on various diseases including cancer, osteo-
porosis, cardiovascular diseases, and inflammation. Using the 
OVX C3H/Hen mice model to induce bone loss, studies (88, 
89) have shown that even when the surgery was performed at 3 
or 6 months, the procedure induced an increase in body weight 
related to an increase in the visceral and subcutaneous fat mass. 
However, when the OVX procedure was performed at 6 months, 
reduction of uterus weight was not observed compared to Sham 
mice. The spontaneous uterine atrophy observed in older Sham 
mice explains the absence of measurable difference. In the same 
study, the effect of raloxifene, a drug commonly indicated for 

osteoporosis which activates estrogen receptor (ER), prevented 
bone loss and the increase in body weight and fat mass observed 
following the OVX procedure (Table  2). However, raloxifene 
supplementation was not able to inhibit uterus weight loss. The 
preventive effect of raloxifene on weight gain in OVX C3H/Hen 
mice is in agreement with a recent study showing, in another 
mouse model, that selective activation of ER positively regulates 
mice metabolism (110).

Mutations of ER are correlated to different aspects of the 
metabolic syndrome. Reduced ERα levels in the adipose tissue 
of obese individuals compared to the non-obese counterparts 
support a role of estrogen signaling in the control of body weight 
(112). The impact of ER activation on metabolic dysfunction 
related to menopause has also been studied using mice strain 
with a specific deletion of the ERα. Those mice become obese, 
glucose intolerant, hyperinsulinemeic and have decreased energy 
expenditure, decreased locomotion, and increased secretion of 
pro-inflammatory factors. The fat mass increase is associated not 
only with a decrease of the energy expenditure and of fat oxida-
tion but also with an elevation of the circulating inflammatory 
markers (113, 114). Consequences of ERα deletion or ovariec-
tomy are similar, supporting that ERα regulates mice energy 
metabolism (113). Moreover, loss of ERα in the central nervous 
system has been shown to induce hyperphagia and to decrease 
energy expenditure (115). Estradiol (E2), the major biologically 
active form of estrogen, is also known to positively influence 
insulin action in mice (113). Moreover, estrogen protection 
of female mice from development of diet-induced obesity and 
insulin resistance compared to age-matched males has also been 
demonstrated (105). A recent study using the ovariectomized 
mice model has shown that stimulation of estradiol receptor 
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TABLe 2 | effect of ovariectomy, hormone replacement, or lactoferrin supplementation in OXv mice on body composition and bone mineral density 
after 12 weeks.

Groups

Sham OvX OvX + raloxifene OvX + LF

Initial body weight (g) 25.14 ± 1.18 24.20 ± 1.43 24.32 ± 1.06 24.70 ± 2.06
Final body weight (g) 35.50 ± 2.34a 41.74 ± 2.49b 34.61 ± 2.86a 42.68 ± 3.39b

Weight gain (g) 10.36 ± 1.84a 17.54 ± 2.21b 10.29 ± 1.43a 17.98 ± 2.48b

Uterus (mg) 253 ± 41a 131 ± 29b 127 ± 28b 160 ± 28b

Fat mass (g) 7.23 ± 1.63a 12.32 ± 2.03b 8.25 ± 1.35a 12.54 ± 2.15b

Carcass (g) 11.37 ± 0.59 12.87 ± 1.17 11.84 ± 0.72 12.54 ± 1.57
BMD gain (mg/cm2) 13 ± 2 8 ± 3a 13 ± 2 13 ± 2

The surgery was performed on 12-week-old C3H mice. Data are means ± SEM (n = 10). A one-way ANOVA followed by Bonferroni’s post hoc was performed. Means with different 
superscript letters (a, b) are significantly different (p < 0.05) according to a Bonferroni multiple comparison test [adapted from Ref. (88, 89, 111)].
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prevents weight gain, insulin resistance, and improved systemic 
metabolism.

Food intake and spontaneous physical activity have been 
measured in OVX C3H/Hen mice, and both parameters were 
reduced compared to Sham mice (Figure 3). As the spontaneous 
physical activity reduction of the OVX mice is able to explain only 
a small part of the reduced ingestion, it is likely that the increased 
body weight and adiposity is related to a 15% decrease of the rest-
ing metabolism in the OVX mice. The absence of increased food 
intake and the reduced metabolic rate have also been reported 
in C57BL/6J mice (109). However, in mice lacking ERα in the 
central nervous system, a hyperphagia and decreased energy 
expenditure have been reported (115).

Moreover, using OVX C3H/Hen mice, it has been also pos-
sible to demonstrate that the OVX procedure is associated with 
immunological dysregulation. Indeed, Malet et al. (111) shown 
that estrogen deficiency induces heightened immune response 
sensitivity and an inflammatory status that were correlated to bone 
loss. Estrogen withdrawal is associated with T cell activation that 
produces essential osteoclastic factor such as RANKL and TNFα 
(108, 116). Lactoferrin (LF) ingestion has been shown to reduce 
T cell activation, pro-inflammatory cytokines, and consequently 
bone loss (111). Interestingly, LF is as efficient as raloxifene for 
the maintenance of bone mineral density in OVX mice, but did 
not reduce weight gain. However, neither compounds were able 
to preserve uterus weight (Table 2).

The menopause transition is associated not only with an 
increase in total body fat mass, visceral fat mass, and decreased 
energy expenditure but also with the increase of many inflam-
matory markers. Such an increase has indeed consequences on 
the incidence of many other pathologies including osteoporosis. 
However, obesity has been considered to have some beneficial 
effects for bone health in humans by some authors (117). The 
increase body weight and the ability of adipose tissue to synthe-
size estrogen support this proposition (118, 119). Since it has 
been proposed that estrogen synthesized by adipose tissue may 
have some antiresorptive effect on bone, Cao and Gregoire (120) 
studied the effect of high-fat diet on bone quality in OVX mice. 
This study shows that OVX mice fed with a high-fat diet, gain 
more weight, and had a higher estradiol level than mice feed with 
a standard diet, raising the question of the origin of estradiol 
production. However, the high-fat diet was not able to mitigate 

the OVX-induced bone loss in mice. Then, authors proposed that 
estrogen, likely synthesized by adipose tissue, does not have the 
same antiresorptive effect on bone as estrogen secreted by ovaries.

Those studies indicate that many non-elucidated mechanisms 
are involved in energy homeostasis in OVX mice. However, as 
OVX mice have a reduced energy expenditure similar to the one 
observed in estrogen-deficient women, it appears that mice is a 
useful model in that topic. Regarding the effect of dietary protein 
on dysfunctions related to ovariectomy, there is a relative paucity 
of available data. It has been shown that supplementation with 
water-insoluble fish protein has a cholesterol lowering effect in 
ovariectomized rats (121). Another dietary protein source, that is 
soybean extract, has been found to modulate the level of serum 
TGs in ovariectomized rats fed a cholesterolemic diet (122).

THe PiG MODeL FOR ReSeARCH ON 
OBeSiTY

Regarding extrapolation to human situations, it is worth not-
ing that the pig model is often considered as a model closer 
to humans than rodents for several aspects of physiological 
and metabolic studies. Indeed, the pig model has emerged as a 
relevant non-primate experimental animal for extrapolation to 
humans because of numerous similarities regarding anatomy, 
development, nutrition, and physiology (123–126). Pigs are 
also an animal model that is truly omnivorous, which make 
spontaneously individual meals, and which display striking 
similarities with humans in terms of nutritional requirements 
(127). It is also worth noting that the gut in the newborn pigs, 
although more mature that in newborn rodents, is, however, 
less mature than in infants (128). Another advantage of the pig 
model is that it is possible to recover a large number of cells (for 
instance, absorptive intestinal cells from both the small and large 
intestine after dietary intervention), even in young animals, 
in order to measure the impact of such intervention on cell 
metabolism and physiology (129, 130). In the pig model, preterm 
delivery at 90% gestation is comparable to preterm infant born 
at approximately 75% gestation (30 weeks) (131), making the pig 
neonate an interesting model for pediatric studies. In contrast 
to the rodent models, the size of newborn pig easily allows for 
tissue sampling and experimental manipulations of nutritional, 
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FiGURe 3 | Daily food intake analysis (A) and spontaneous physical activity (B) of Sham and OvX performed 10 weeks after the OvX procedure. Data 
are means ± SEM (n = 8). Groups with different letters are significantly different (p < 0.05).
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physiological, and metabolic conditions. Finally, the pig model 
allows multi-catheterization and blood sampling without anemia 
thus allowing kinetics experiments (132).

However, even if the mini pig models, although relatively 
expensive, are increasingly used for research projects notably 
due to their limited size compared to regular farm pigs, the pig 
model present some drawbacks since it requires extensive areas 
for breeding, and is a source of abundant polluting compounds 
in biological fluids (fecal matter and urine), a situation incom-
patible with the use of the pig model in urban areas. As a matter 
of fact, in PubMed, the number of articles related to pig and 
obesity (798 articles) represents only about 2% of the number 
of articles related to rats/mice and obesity (35,318 articles). 
The readers are invited to refer to recent reviews regarding the 
pig model used for studies regarding the genetics of adiposity 
(133), the obese type 2 diabetes (134), the dietary modulation 
of gut microbiota and possible impact on obesity (135), the 
gastrointestinal hormones for eating control (136), and finally 
the establishment of food preferences and aversions (123) since 
these aspects will not be developed in this review. Regarding 
the specific aspect of the impact of the quantity and quality of 
dietary proteins on the gastrointestinal health in pigs, it has been 
shown that intestinal fermentation of the proteins results in the 
production of various potentially deleterious luminal products, 
which is often associated with growth of potential pathogens. In 
fact, excessive dietary protein intake (that mimic HP slimming 
diet) has been shown to stimulate in the pig model the growth of 
Clostridium perfringens and to reduce fecal counts of beneficial 
Bifidobacteria (137).

An increasing number of studies in pigs indicates that the 
gastrointestinal health is influenced by both the composition 
of the intestinal microbiota and its metabolic activity (138), 
this latter being impacted by the dietary composition, notably 
in terms of quantity and quality of dietary proteins (139). 
Indeed, the protein digestibility and protein AA composition 
are parameters that impact the profile of AA-derived bacterial 

metabolites in the large intestine. The use of fermentable car-
bohydrates to reduce deleterious protein-derived bacterial 
metabolites in pigs is well established (140), and for instance, 
soybean oligosaccharides have been shown to increase the 
presumably beneficial short-chain fatty acids while decreasing 
the protein-derived catabolites in the intestinal luminal con-
tent in weaned piglets (141). Last, interesting data have been 
recently obtained regarding the impact of the amount of dietary 
protein consumed by pigs on parameters like expression of AA 
and peptide transporters (125), or signaling pathways related 
to protein synthesis in muscles (142). Then, from these exam-
ples, it appears that using pig models for confirmation of data 
obtained in rodents represents a useful experimental strategy 
before further development of clinical studies implying dietary 
intervention with human volunteers, notably in overweight and 
obese individuals.

CONCLUSiON AND PeRSPeCTiveS

Animal models are necessary in order to understand the mecha-
nisms underlying the various biological parameters involved in 
the risk of obesity. Even if it is recognized that obesity results 
primarily from higher long-term energy consumption than 
energy expenditure, notably in case of low level of physical activ-
ity, we present here two situations in which animal models have 
been useful to understand how dietary (quantity and quality 
of dietary proteins) and physiological (menopause) modifica-
tions can impact parameters closely related to the development 
of obesity including body composition, food intake, energy 
expenditure, and tissue metabolism and physiology. Future 
research, notably in terms of mechanisms of action, using rel-
evant animal models on the impact of dietary modifications at 
the different periods of age (notably during gestation, lactation, 
and perinatal periods of life) should allow to better enlighten 
on the best strategy for limiting the risk of obesity in young and 
aging adults.
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Correlative human observational studies on substances of abuse have been highly 
dependent on the use of rodent models to determine the neuronal and molecular mech-
anisms that control behavioral outcomes. This is particularly true for gestational exposure 
to non-illicit substances of abuse, such as excessive dietary fat, ethanol, and nicotine, 
which are commonly consumed in our society. Exposure to these substances during the 
prenatal period has been shown in offspring to increase their intake of these substances, 
induce other behavioral changes, and affect neurochemical systems in several brain areas 
that are known to control behavior. More importantly, emerging studies are linking the 
function of the immune system to these neurochemicals and ingestion of these abused 
substances. This review article will summarize the prenatal rodent models used to study 
developmental changes in offspring caused by prenatal exposure to dietary fat, ethanol, 
or nicotine. We will discuss the various techniques used for the administration of these 
substances into rodents and summarize the published outcomes induced by prenatal 
exposure to these substances. Finally, this review will cover some of the recent evidence 
for the role of immune factors in causing these behavioral and neuronal changes.

Keywords: prenatal fat, prenatal ethanol, prenatal nicotine, inflammation, ingestive behavior

iNTRODUCTiON

Scientific research has relied heavily on the use of animal models to identify various characteristics 
of diseases and disorders found in humans. These animal models serve an important purpose when 
there is limited ability to ethically evaluate such disorders in humans. Most limiting in human 
research are studies of embryonic development and the effects produced by exposure to substances 
of abuse, such as alcohol, nicotine, and dietary fat, which occur as a result of voluntary maternal 
consumption. In humans, ingestion of alcohol during pregnancy triggers neurological disorders and 
increases the risk of fetal alcohol syndrome in the offspring (1, 2), effects subsequently confirmed 
and characterized using animal models (3–5). Also, smoking during pregnancy increases the risk 
of a decrease in birth weight (6, 7) and multiple behavioral problems (8), including attention deficit 
disorders (9) and increased propensity to abuse drugs (10, 11). In human observational studies, 
increased intake of dietary fats and obesity during pregnancy are found to increase the risk for 
dietary obesity in offspring (12–14).

Further testing of these physiological and behavioral changes using animal models exposed to 
substances of abuse have revealed disturbances in the development of neuronal circuits that modulate 
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both homeostatic and reward pathways (15–17). The main  players 
involved include a variety of neuropeptides that are found in vari-
ous regions of the hypothalamus and forebrain and are shown to 
modulate neuronal function that may ultimately contribute to 
the behavioral changes in offspring. These behavioral changes 
include an increased propensity to ingest these substances of 
abuse (15–18), with a significant crossover effect from one sub-
stance to another (19). Although great strides have been taken to 
characterize these changes in neurochemical systems that control 
behavior, the molecular mechanisms involved in producing these 
disturbances in the brain have yet to be determined.

In addition to these neurochemicals, the field of ingestive 
behavior has recently focused attention on immunology. These 
new studies build on prior research of neurological disorders and 
neurodegenerative diseases, which show the immune system to 
play a large part in the health, function, and development of neu-
rons and other cell types in the central nervous system (20–24), 
along with the development of embryos (25, 26). Recently, both 
human and animal observational studies have demonstrated that 
exposure to these substances of abuse, in addition to altering clas-
sical neuropeptide and neurotransmitter systems, also disturbs 
inflammatory systems in key regions of the brain that control 
ingestion and related behaviors (17, 27, 28). Prenatal inflamma-
tion itself has been shown to increase the risk of developing neu-
rological disorders and diseases, such as autism (29, 30) and other 
psychiatric disorders (31), which the offspring are at a higher risk 
of developing when exposed during gestation to substances of 
abuse (32–35).

To understand these neurochemical and immune systems 
affected by prenatal substance exposure and their possible role in 
promoting consummatory and other behaviors in the offspring, 
the use of animal models involving prenatal manipulations is 
clearly essential. This review will cover the current techniques 
used to perform prenatal studies using rodent models and their 
general conclusions about the neuronal changes induced by 
embryonic exposure to environmental substances. It will also 
summarize the current research linking these neuronal and 
neurochemical changes to inflammatory systems, focusing on 
the three most commonly abused substances, dietary fat, alcohol, 
and nicotine.

eXPeRiMeNTAL MeTHODS USeD TO 
iNTRODUCe eNviRONMeNTAL FACTORS 
iNTO PReGNANT RATS

There are a few factors that must be taken into consideration 
when designing an experiment using a rodent model. The first 
is to choose the appropriate rodent strain to use in your model, 
with various strains having different preferences for different 
substances. Rat strains with a preference for dietary fats include 
Sprague-Dawley (36), Brattleboro (37, 38), and Zucker (39), with 
the latter having an obese phenotype. In alcohol studies, several 
different strains are used, including outbred rats such as Wistar 
(40) and Long-Evans (41), and also genetically modified rats that 
have increased alcohol intake, such as ALKO alcohol (42), high 
alcohol drinking or HAD (40), and Sardinian preferring (sP) (43) 

rats. In nicotine research, rats have been found to show  differences 
in behavioral effects between different strains (44, 45) that are 
attributed to genetic variability. Some of the rat strains used in 
nicotine studies include Sprague-Dawley (46), Long-Evans (47), 
Lewis (48), Holtzman (49, 50), and Wistar (51).

The second factor is choosing the method for administering 
the substance of abuse. This can be broken down into two main 
paradigms, forced or choice. The forced paradigm does not give 
the animal a choice in intake, with the substance being the only 
option or its administration being forced. This is in contrast to a 
choice paradigm, whereby the animal has one or more competing 
substances to choose from, with one of the options generally being 
a control substance, such as chow or water. Studies on dietary fat 
have used both choice and forced paradigms, with some reports 
using a combination of the two. Generally, a high-fat and a low-fat 
diet are made available to the rat, with intake measured daily (52, 
53). In combination paradigms, rats are exposed to the high-fat 
diet in conjunction with their usual diet for a period of several 
days until acclimation to the new diet is achieved, after which the 
high-fat diet is given as the only choice (52, 53). Under forced 
conditions, rats may be given an oil emulsion via oral gavage 
(54). Studies of ethanol and nicotine, in choice paradigms have 
used both methods of self-administration (55, 56) and two bottle 
conditions (57–59). Generally, the concentration of ethanol or 
nicotine is given in intervals, ranging from a low to high con-
centration, until the desired concentration is reached (60, 61), 
with some groups combining palatable sucrose with ethanol or 
nicotine until voluntary drinking of the drug is established (62). 
Forced exposure methods, in contrast, include oral gavage, direct 
injection into the peritoneal cavity (61, 63), intravenous infusion 
(64), a liquid diet (65), or having the substance as a sole liquid 
source (66–69).

In studies relating inflammation to ingestive behavior, a 
specific inflammatory mediator or an agent that induces inflam-
mation, such as lipopolysaccharide, can be administered to any 
area of the rat through injection. This includes systemic infusion 
(70), intraperitoneal injection (71, 72), or use of an osmotic mini-
pump (73–75).

These methods are only a brief summary, with a wide range 
of models and rodents used to study the effects of prenatal 
exposure. Once a particular model is well established, further 
measurements of behavior in tissues and cells of different type can 
be extensively performed. The sections below will focus on our 
current understanding of how prenatal exposure to substances of 
abuse affect neuronal systems that control behavior in offspring 
and how the inflammatory response may be a factor in promoting 
those changes (Figure 1).

PReNATAL HFD eXPOSURe

Animal models investigating the effects of excessive HFD intake 
during pregnancy have revealed several changes in both the 
physiology and behavior of offspring. Prenatal exposure to a 
HFD has been shown to induce several effects in offspring. These 
include increased body weight, faster weight gain, and larger 
fat pads (15, 76–78), as well as behavioral changes that include 
increased ingestion (15, 52, 76), autism spectrum disorders (32, 
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FiGURe 1 | Cycle of substance exposure. The schematic depicts the 
current hypothesis of a simplified positive feedback loop involving prenatal 
exposure to substances of abuse that stimulate inflammatory systems. This 
inflammation may be involved in stimulating neuropeptides that further 
increase ingestive behavior, thus leading to a cyclical increase in exposure 
during the prenatal period with negative outcomes in the offspring.

FiGURe 2 | effects of prenatal HFD exposure on offspring brain. A schematic summarizing some of the changes that occur in the brains of offspring after 
being exposed to a HFD during gestation. GAL, galanin; ENK, enkephalin; OX, orexin; MCH, melanin-concentrating hormone; DA, dopamine; TH, tyrosine 
hydroxylase; MOR, μ-opioid receptor; CRF, corticotrophin releasing factor; BDNF, brain-derived neurotrophic factor; NGF, nerve growth factor.
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33), depression (79), and attention hyperactive disorders (80) 
along with a decrease in spatial memory acquisition (78,  81). 
Increased understanding of the neuronal systems involved 
in invoking these behavioral changes is made possible by the 
numerous animal models used to study these phenomena. These 
behavioral changes have been attributed to changes in the neu-
rochemistry of various brain regions involved in homeostatic, 
reward, emotional, and memory processes (Figure 2) and, more 
recently, to changes in inflammatory processes.

Prenatal HFD exposure Alters 
Hypothalamic Neurocircuitry
Changes in specific brain areas caused by prenatal HFD 
exposure seem to control different aspects of HFD intake. The 
change in homeostatic processes occurs in the hypothalamus, 
a region important in controlling ingestive behavior. Several 
lines of evidence show prenatal exposure to a HFD to produce 
changes in both the developing embryo and in adolescent and 
adult offspring. These include an increase in the neurogenesis of 

hypothalamic orexigenic peptide neurons (15, 82), with increased 
synthesis of the peptides that further induce HFD intake (15). 
These neuropeptides include galanin and enkephalin in the 
medial paraventricular nucleus (15, 83), orexin and melanin-
concentrating hormone in the perifornical lateral hypothalamus 
(15), and also ghrelin in the midbrain (84).

Prenatal HFD exposure Alters vTA–NA 
System in Offspring
The centers controlling the rewarding aspects of intake consist 
of the ventral tegmental area (VTA) and the nucleus accumbens 
(NA) core and shell, which contain the dopaminergic signaling 
system, μ-opioid receptors, and glutamatergic inputs that are 
activated by rewarding substances (85, 86). Similar to drug addic-
tion (85), prolonged intake of a HFD has been shown to block 
dopamine reuptake and enhance dopaminergic function (87). 
Similarly, exposure to this diet during the prenatal period has 
been found in adult offspring to increase the levels and expres-
sion of dopamine in the NA core and decrease the expression of 
tyrosine hydroxylase in the VTA, thus decreasing the formation 
of dopamine (88, 89). Reduced expression of the μ-opioid recep-
tor (89) and increased levels of enkephalin are also found in the 
VTA and NA regions, with injection of an enkephalin analog into 
the NA shown to increase HFD intake (90, 91). Similar changes 
in dopamine, dopamine transporter, and μ-opioid receptor 
have been found in other studies using maternal junk food or 
obesity-prone offspring (92, 93), in addition to a reduction in 
dopamine release in the nucleus accumbens and other terminal 
sites of dopamine release (92). These studies suggest that prenatal 
HFD exposure markedly alters the reward pathway, inducing a 
compensatory mechanism that leads the offspring to ingest exces-
sive amounts of dietary fat to obtain a rewarding feeling caused 
by the reduced dopamine function (88, 92). Epigenetic changes 
involving hypomethylation are also found for the dopamine 
transporter, μ-opioid receptor, and enkephalin, suggesting long-
term changes and consequences in offspring (89). While studies 
in the VTA–NA system have mostly focused on dopamine and 
agonists of the μ-opioid receptor, other targets are also involved. 
These include ghrelin, a neuropeptide, known to stimulate the 
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FiGURe 3 | Colocalization of CCR2 and enkephalin in hypothalamic 
neurons. Hypothalamic neurons extracted from chow-exposed embryos 
showing CCR2 to colocalize with the orexigenic peptide, enkephalin (orange). 
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rewarding effects of food intake (94) and promote the rewarding 
feeling of food intake (95), which is also abundantly expressed in 
the VTA and found to increase HFD feeding after injection into 
the VTA (84).

Prenatal HFD Has Global effects on Other 
Areas of the Brain in Offspring
Other brain regions also show permanent changes that affect 
behavior. In the hippocampus, prenatal HFD exposure in offspring 
decreases expression and levels of proteins that are involved in 
memory function, such as brain-derived neurotrophic factor, 
nerve growth factor, and synaptophysin, suggesting a delay in 
memory acquisition (78, 81). The transcription of genes control-
ling executive function in the prefrontal cortex is also markedly 
increased by dietary fat in offspring (96). The emotional aspect 
of feeding, controlled by the amygdala, has been found in adult 
rats to evoke several changes in neurochemical pathways (97, 98) 
that in turn may induce changes in anxiety as well as feeding. 
Although there are only a few studies of prenatal HFD exposure 
that have examined the amygdala, there is some evidence that 
altered functioning of this brain region is involved in emotional 
changes in offspring that may further promote consumption. 
Exposure to a fat-rich diet during the prenatal period causes in 
offspring an increase in corticosteroid receptors in the amygdala 
(99). This exposure also increases anxiety in an open field, an 
elevated plus maze, and during light–dark transition tasks, while 
increasing corticosteroid levels in response to stress (99), sug-
gesting an overall increase in the stress response and thus anxiety. 
These responses have been reported to increase ingestive behavior 
in attempt to reduce stress (100–102). These global brain changes 
affecting decision-making may be involved in both the impulsive 
and rational choice to overeat.

Prenatal HFD induces epigenetic Changes 
in Offspring
The effect of a HFD during the prenatal period on gene expression 
in developing neurons is thought to be attributed to epigenetic 
changes. In human adults, several studies in peripheral tissue 
reveal alterations in histone modification at promoters of proteins 
that are affected by dietary fat (103) and in methylation in specific 
tissue such as skeletal muscle (104). Prenatal exposure to a HFD 
has also been shown to alter methylation or microRNA expres-
sion in placental tissue (105) and adipose tissue (106, 107). That 
epigenetic changes may be transmitted to offspring is indicated 
by studies showing a generational effect on specific genes during 
dietary protein restriction (108, 109). While there is little evidence 
on the epigenetic effects of prenatal HFD exposure in neurons 
of embryos and postnatal offspring, several reviews exist that 
describe global metabolic epigenetic changes in the periphery 
(110, 111), indicating the need for more such studies in the brain.

Relationship between Dietary Fat and 
inflammation
While several studies examining the effects of acute and chronic 
inflammatory mediators in adult obese animals have revealed 
an increase in fat intake and weight gain (112), evidence from 

prenatal inflammatory studies is more limited. Early findings 
show chronic HFD intake to induce a systemic low-grade inflam-
mation characterized by an increase in cytokines and chemokines 
(113, 114). This HFD intake also increases the activation of several 
inflammatory signaling pathways, such as jun amino-terminal 
kinases, nuclear factor kappa light-chain enhancer, inhibitor of 
nuclear factor kappa-B kinase subunit beta, peroxisome prolifera-
tor-activator receptor, and toll-like receptors (115–118). Chronic 
treatment with an agent, such as lipopolysaccharide, that induces 
inflammation can increase body fat mass and caloric intake, and 
these effects are exacerbated by a HFD (119), suggesting a strong 
link between HFD and inflammation. More recent studies have 
uncovered a major role for chemokines, specifically CCL2, which 
is affected by a HFD and may also mediate neuronal function. 
This chemokine has been found early on to be increased in obese 
animals and during HFD intake (120) and, along with its recep-
tor CCR2, is found in all of the key brain areas involved in HFD 
ingestion (121, 122). Furthermore, blocking the CCR2 receptor 
with an antagonist is shown to improve symptoms of obesity and 
decrease food intake (123, 124). In limited studies, prenatal HFD 
exposure has been found to increase CCL2 in peripheral organs, 
such as the liver, in offspring (125).

Recent studies from our lab have found a positive relation-
ship between CCL2 and both the migration and expression of 
orexigenic peptide neurons in primary hypothalamic neurons 
(126). Exposing cultured embryonic hypothalamic neurons to 
increasing levels of CCL2 revealed a dose-dependent increase 
in migration as well as expression of the orexigenic peptides, 
enkephalin, and galanin in neurons (126). These hypothalamic 
enkephalin-expressing neurons are found to co-express the 
receptor, CCR2 (Figure 3), with CCL2 treatment increasing the 
number of colocalized neurons (126), suggesting an important 
role for this chemokine in neuronal growth during the prenatal 
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FiGURe 4 | effects of prenatal ethanol exposure on offspring brain. A schematic summarizing some of the changes that occur in the brains of offspring after 
being exposed to low levels of ethanol during gestation. GAL, galanin; ENK, enkephalin; OX, orexin; MCH, melanin-concentrating hormone; CRF, corticotrophin 
releasing factor; ACTH, adrenocorticotropic hormone; DA, dopamine; GABA, γ-aminobutyric acid.
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period. In addition, in rats exposed to a HFD during gestation, this 
chemokine system is found to be greatly altered (127). Prenatal 
HFD exposure decreases expression of CCL2 while increasing the 
expression of its receptors, CCR2 and CCR4, in the hypothalamus, 
and these HFD-exposed neurons are found to exhibit markedly 
reduced sensitivity to the actions of CCL2 on neuronal migra-
tion and peptide expression. With this limited evidence raising 
new but interesting questions, future studies using the prenatal 
HFD and prenatal inflammation models should shed light on the 
molecular mechanisms leading to the neuronal changes and, in 
turn, altering ingestive behavior in the offspring.

PReNATAL eTHANOL eXPOSURe

Original ethanol studies have shown that exposure during the 
prenatal period to high levels of alcohol is associated with develop-
ing fetal alcohol spectrum disorder in offspring (1–5), with many 
negative developmental, behavioral, and physiological outcomes 
(128, 129). These high levels of alcohol, within 20–30% or 6 g/kg/
day range, decrease the development of neurons in several brain 
areas (40, 130–132) and additionally induce epigenetic changes in 
fetal DNA (133–135). Currently unknown are the effects of low 
levels of alcohol consumption, within 5% or 1–2 g/kg/day range 
(16, 136–138), on fetal development and ultimately on offspring 
behavior. Recent studies have demonstrated that low levels of 
ethanol exposure during gestation induce several behavioral, 
neurochemical, and developmental effects, similar to prenatal 
HFD exposure that are caused by changes in brain regions 
involved in homeostasis, reward, emotional, memory, and inflam-
matory processes. These changes are thought to induce excessive 
drinking (16, 137–139), increased preference (17, 139, 140), and 
reinforcement (141, 142) for ethanol in offspring during the 
adolescent period to adulthood. These low levels have also been 
linked to other behavioral changes, such as hyperactivity (74). 
While ethanol has several targets in many brain regions, studies 
of low ethanol levels are lacking. This review will summarize 
some of the current findings in the field (Figure 4).

Low Levels of ethanol exposure Alters 
Hypothalamic Neurocircuitry in Offspring
In the hypothalamus, the same orexigenic neuropeptides 
known to stimulate HFD intake, namely enkephalin, galanin, 
orexin, and melanin-concentrating hormone, are also found to 
stimulate ethanol intake [for review, see Ref. (143); (17)]. While 
different neurochemical systems in the brain are known to be 
altered by prenatal exposure to ethanol (144–146), the stimula-
tory effects of prenatal ethanol on these specific neuropeptides 
are particularly notable, given the potency of their effects on 
behavior and the sensitivity of the peptide neurons to low doses 
of ethanol (16, 147). A study from our group has also found 
low levels of ethanol to increase the genesis of hypothalamic 
neurons containing enkephalin, orexin, galanin, and melanin-
concentrating hormone (16, 17). Additionally, prenatal ethanol 
exposure is shown to affect stress hormones in the hypothala-
mus, causing in adolescent and adult offspring an increase in 
the expression of corticotropin-releasing factor (CRF) in the 
hypothalamic paraventricular nucleus (144, 148–149) along 
with levels of corticosterone (144) and also adrenocorticotropic 
hormone in this same region (144, 150). Prenatal ethanol also 
increases the levels of these peptides and hormones in response 
to stress (151–154), with increased stress linked to further 
consummatory behavior (155–157). Not surprisingly, the CRF 
system has been linked to addiction of other substances of abuse 
(158), including dietary fat.

Low Levels of ethanol exposure Alters 
vTA–NA Center in Offspring
Several studies have linked low levels of ethanol during the prenatal 
period to changes in the mesolimbic area. Increased neurogenesis 
of enkephalin neurons is found in the NA shell (16), with overall 
increased levels of enkephalin in both the VTA (159) and NA 
core (147, 160). These changes may significantly increase ethanol 
intake in offspring, as high levels of enkephalin have been shown 
to activate dopamine terminals in the NA (161, 162). The effects 
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of prenatal ethanol on the dopaminergic system in these brain 
regions are also significant, with the VTA having an increased 
response to dopaminergic agonists and the NA having increased 
sensitivity to the stimulatory effects of alcohol in offspring (137, 
163, 164). Although ghrelin has been found to be involved in the 
rewarding feeling of alcohol (165), there are currently no studies 
on how low ethanol levels during the prenatal period affects this 
peptide and other neurochemical systems in these brain regions 
of offspring.

Prenatal ethanol Has Global effects on 
Other Areas of the Brain in Offspring
While there exists plenty of research describing the effects of high 
gestational ethanol exposure on the developing brain, there are 
only a few studies measuring the effects of low ethanol exposure 
on other brain areas not discussed above. Some of the findings 
include an ethanol-induced increase in progenitor cell prolifera-
tion in the basal ganglia (166) and a decrease in neural activity 
in the infralimbic cortex (164). They also include increased 
neurogenesis in regions of the hippocampus (167). The amygdala 
has been suggested to be affected by low levels of ethanol during 
the prenatal period. Offspring exposed to low ethanol display 
anxiety-like behavior when exposed to stressful conditions, and 
this behavior has been related to both an increase in synaptic 
connectivity in the basolateral amygdala (168) and a decrease in 
GABA inhibition (169), both of which stimulate the excitability 
of the amygdala (168, 169). Further studies on the effects of low 
ethanol concentrations in these other brain regions are needed 
to determine the extent of ethanol’s action on neuronal develop-
ment throughout the brain.

Prenatal ethanol induces epigenetic 
Changes in Offspring
There are several studies that reveal high ethanol exposure dur-
ing the prenatal period to induce dramatic epigenetic changes 
in offspring. The adult liver provides a clear example, with high 
levels of ethanol exposure found to alter DNA methylation related 
to alcoholic liver disease (170–172). Also, chronic maternal etha-
nol exposure is shown to decrease methylation at a gene called 
agouti viable yellow, which affects the color of their coat, that is 
passed down to offspring (173), while acute prenatal exposure to 
high levels of ethanol globally causes hypomethylation of DNA 
in embryos (133). Long-term prenatal exposure to high ethanol 
levels also induces changes in methylation and microRNA in 
hippocampal neurons (174). In light of these studies of high 
ethanol exposure, further investigations of epigenetic effects are 
clearly needed involving low concentrations of ethanol, which 
as described above have strong, stimulatory effects on neuronal 
development in the brain.

Relationship between ethanol and 
inflammation
Although only a few studies exist, ethanol intake has also been 
linked to inflammatory systems. The most commonly studied 
peripheral organ is the liver, with excessive drinking linked to 

alcoholic liver disease that increases inflammatory mediators 
(175, 176). More recent studies in adult animals have also shown 
ethanol exposure to stimulate inflammatory systems in the central 
nervous system. Endotoxin treatment after ethanol exposure has 
been found to induce a long-term inflammatory state in the brain 
(177) and increase nitric oxide synthase and cyclooxygenase, 
which lead to inflammation (178). This increase in inflamma-
tion has also been detected in offspring after prenatal exposure. 
Similar to prenatal HFD exposure, our lab recently found prenatal 
ethanol to induce several changes in the CCL2 chemokine system. 
We found low levels of ethanol during gestation to increase in 
the offspring the genesis of neurons that co-express CCR2 and 
melanin-concentrating hormone in the lateral hypothalamus (17), 
a neuropeptide implicated in excessive ethanol drinking (179). 
With current research showing low levels of ethanol exposure to 
increase drinking in offspring and produce changes in the immune 
system that ultimately affects neuronal function, future research on 
inflammatory systems could be very informative and important.

PReNATAL NiCOTiNe eXPOSURe

The effects of prenatal nicotine exposure are broad in nature, 
affecting both behavioral and neuronal development in several 
regions of offspring brain. Human studies show that children 
exposed to tobacco during gestation exhibit an increased risk for 
tobacco use, craving, and withdrawal (180), as well as depend-
ence (181). Animal studies similarly reveal increased nicotine 
self-administration and consumption in adolescent and adult 
offspring (182–185), along with increased ingestion of other 
substances including fat and ethanol (18). Additional behavioral 
problems include an increased risk of hyperactivity (186), impul-
sivity (185), and anxiety (34, 35). High levels of nicotine exposure 
are also associated with detrimental effects, such as growth retar-
dation (187). While these nicotine studies lead one to question 
whether these changes are attributed to certain chemicals from 
the tobacco (188, 189) rather than to nicotine itself and result 
from social smoking as well as chronic smoking, the overall 
evidence clearly demonstrates that prenatal nicotine exposure 
negatively affects offspring. Similar to prenatal HFD and ethanol 
exposure, these changes in physiology and behavior induced by 
nicotine or smoking may be attributed to neuronal changes in the 
offspring brain (Figure 5).

Prenatal Nicotine exposure Alters 
Hypothalamic Neurocircuitry
Similar to dietary fat and ethanol, prenatal nicotine exposure has 
been found to affect the neuronal architecture and function of 
the hypothalamus. Several neuropeptides have been found to be 
altered in offspring during exposure to both low and high levels of 
nicotine. Some of the findings include a decrease in CRF and an 
increase in glucocorticoid receptors in the hypothalamus (190). 
They also show an increase in several orexigenic peptides, includ-
ing neuropeptide Y, agouti-related peptide, and proopiomelano-
cortin in the arcuate nucleus (191), enkephalin in the medial 
hypothalamic paraventricular nucleus, and orexin and melanin-
concentrating hormone in the perifornical lateral hypothalamus 
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FiGURe 5 | effects of prenatal nicotine exposure on offspring brain. A schematic summarizing some of the changes that occur in the brains of offspring after 
being exposed to nicotine during gestation. GAL, galanin; ENK, enkephalin; OX, orexin; MCH, melanin-concentrating hormone; CRF, corticotrophin releasing factor; 
GCRs, glucocorticoid receptors; NPY, neuropeptide Y; AgRP, agouti-related protein; POMC, proopiomelanocortin; DA, dopamine; nAchRs, nicotinic acetylcholine 
receptors; GABA, γ-aminobutyric acid; GLUT, glutamate; BDNF, brain-derived neurotrophic factor.
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(18, 192). One of the more important findings from our lab shows 
that exposure to nicotine actually stimulates the genesis of neu-
rons that express enkephalin, orexin, and melanin-concentrating 
hormone in the offspring hypothalamus (18), with these peptides 
positively related to the intake of nicotine (193). A small number 
of epigenetic studies also show changes in DNA methylation of 
the gene encoding brain-derived neurotrophic factor in human 
studies (194, 195), revealing the need for further epigenetic stud-
ies of specific cell types.

Prenatal Nicotine exposure Alters  
vTA–NA Center in Offspring
Prenatal nicotine exposure has been found to varying degrees to 
change neurons in the VTA and NA in offspring. With regards 
to the mesolimbic dopamine system, prenatal nicotine exposure 
decreases the number of dopaminergic neurons in the VTA 
(196), dopamine release from the NA (197, 198), and the number 
of dopamine binding sites in the striatum (199), altering the 
rewarding effects of nicotine in offspring. Neuronal connections 
to the VTA are also affected, with orexin innervation from the 
lateral hypothalamus to the VTA found to be increased (192). 
Additionally, prenatal nicotine reduces the number of nicotinic 
cholinergic receptor expression in both the VTA and NA core 
(196). Similar to the neurogenesis effect in the hypothalamus, 
prenatal nicotine increases cell survival in the NA and inhibits 
cell death related pathways (200), with this increase in cell sur-
vival consistent with the finding that prenatal nicotine exposure 
increases the nerve growth factor, BDNF (201). Further studies 
on this reward region in offspring will shed more light on how 
prenatal exposure reprograms offspring to become more prone 
to abusing nicotine.

Prenatal Nicotine Has Global effects on 
Other Areas of the Brain in Offspring
Prenatal nicotine exposure has been found to affect several other 
brain regions in offspring. In the hippocampus, this exposure 

decreases the number of neurons (202) while increasing the 
number of astrocytes (202), and it also decreases the neuronal 
area and cell size (203, 204), suggesting decreased hippocampal 
function. Similar effects are also found in the cortex of early 
postnatal rats (205), pre-weaned rats (204), and embryos (206), 
with studies revealing fewer glutamatergic neurons (207). These 
changes in the cortex induced by prenatal exposure have been 
linked to cognitive deficits and impaired executive control, caus-
ing rats to be more impulsive (208). Similar to the VTA and NA, 
dopamine levels are also decreased in the cortex of postnatal 
offspring (209). In the amygdala, one study found nicotine 
exposure to reduce the size of the amygdala in adolescent off-
spring (210), while a recent study from our lab has described an 
increase in neurogenesis and expression of enkephalin neurons 
in the central amygdala (18). With nicotine intake shown to 
generally reduce anxiety, future studies with prenatal exposure 
that relate behavior to amygdaloid function in offspring, as well 
as to other brain regions involved in decision making, would be 
interesting.

Prenatal Nicotine induces epigenetic 
Changes in Offspring
Several studies show prenatal nicotine exposure to have epigenetic 
effects on peripheral organs in offspring. Prenatal nicotine has 
been found to decrease methylation on the promoter-expressing 
angiotensin receptor type 1a (211) and increase histone acetyla-
tion of the protein and fatty acid synthase in liver (212). Human 
studies have also reveal global changes in DNA methylation in 
offspring (213, 214). Evidence of a generational effect has also 
been shown in rat models, with maternal nicotine use and 
exposure during the prenatal period found to induce asthma and 
epigenetic changes in lungs of offspring that are two generations 
past the original exposure (215). This evidence suggests that the 
changes induced by prenatal nicotine exposure on brain neuro-
chemical systems may be related to epigenetic changes occurring 
during development.
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Relationship between Nicotine and 
inflammation
While reports of pure nicotine on adult systems generally reveal a 
reduction in inflammation (216, 217), several studies in humans 
show cigarette smoking to cause an increase in inflammation 
(218). Also, in a rat model, exposure to pure nicotine during the 
gestational period is found to increase the inflammatory media-
tors, IL-6 and TNF-alpha, in newborn blood serum (219). While 
this evidence is limited, it suggests the possibility that prenatal 
nicotine may have similar effects to HFD and ethanol exposure 
on inflammatory mediators, including CCL2.

GeNeRAL CONCLUSiON

The current knowledge of the neural control of ingestive behavior 
in offspring that are prenatally exposed to substances of abuse has 
come a long way from observational human studies. We are now 
only beginning to piece together how these changes in specific 

brain regions affect the overall neuronal communication within 
the brain. In addition, other systems of the central nervous system, 
such as glial cells, astrocytes, and oligodendrocytes, may also play 
a major role in this disturbed communication. More importantly 
is the emerging function of the immune system in the develop-
ment of these neuronal systems in offspring and how substances 
of abuse disturb its actions. Future studies using these prenatal 
animal models will provide much insight in both the molecular 
and neuronal network changes as well as the mechanisms leading 
to these changes.
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inTRODUCTiOn

With the global obesity crisis continuing to take its toll, the demand for solutions has increased. The 
discussion about nature vs. nurture and biology vs. psychology has culminated in declaring obesity 
as a disease by some medical organizations. Environmental factors and genetic predisposition, rather 
than personal responsibility are to blame, as for any other disease. This view implies that the biological 
processes regulating body weight are essentially operating at the unconscious realm. Although this 
has long been accepted for the so-called homeostatic regulation of energy balance, it is less clear for 
the hedonic controls. Here, we critically evaluate the important question how rodent models can help 
understand the contribution of hedonic neural processes to body weight regulation. When looking at 
the concepts of reward, reinforcement, motivation, pleasure addiction, and their neural mechanisms, 
in the context of eating and exercise, the new view emerges that homeostatic and hedonic controls are 
closely interrelated and often act in unison at the unconscious level to achieve biologically adaptive 
responses. Although the discussion of a body weight set point has been neglected in recent years, this 
topic becomes more pressing as an important aspect for effective treatment of obesity.

HEDOniC MECHAniSMS OVERpOWER HOMEOSTATiC 
REGULATiOn

When the body weight of animals and humans is disturbed by periods of either under- or overfeeding, 
it promptly returns to pre-perturbation levels through a process termed homeostatic regulation that 
involves the controls of both energy intake and energy expenditure (1, 2). The basic hypothalamic 
circuitry underlying this regulation has long been known (3) and was much refined, particularly 
over the last 20 years in the wake of the discovery of leptin. In brief, two distinct neural populations 
in the mediobasal hypothalamus act as primary energy sensors and engage a complex network of 
effector circuits controlling both energy-in and energy-out in a biologically adaptive fashion [for 
review, see Ref. (4–7)].

However, while most agree with such basic homeostatic regulation, there has been much 
 discussion regarding the exact level of defended body weight and the mechanisms involved 
(8–13). Clearly, there is no fixed set point around which mammalian species regulate their 
body weight. Rather, it is flexible, depending on both internal and external conditions 
including genetic and epigenetic predisposition, food availability, food palatability, and other 
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FiGURE 1 | Schematic representation of the (A) dichotomy and (B) integrative models of homeostatic and hedonic control of food intake and 
regulation of body weight. In the dichotomy model, homeostatic and hedonic mechanisms are largely independent. In the integrative model, the neural 
circuitries for internal nutrient sensing and hedonic processing act in concert to control eating and body weight and the hedonic system becomes part of the 
homeostatic system. Signals of both short- and long-term internal nutrient availability, such as leptin, gut hormones, and metabolites, are sensed by both, 
the hypothalamic nutrient sensor (pathway 1) and hedonic/reward processing centers (2), and these circuits communicate bidirectionally with each other (3 
and 4) to unconsciously affect eating. For simplicity, energy expenditure as effector mechanism in the regulation of body weight is not included. For details, 
see text.
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environmental factors (10). This is best illustrated by the sea-
sonably variable and homeostatically defended body weight 
set point of hibernators (14).

One factor that is widely believed to be very important for 
influencing the individual body weight set point is food hedon-
ics, particularly the shift toward higher body weight by highly 
palatable, calorie-dense foods (Figure 1A). The clearest example 
of this shift in defended body weight is the cafeteria diet-induced 
obese rat and mouse (15). Although it is suspected that the 
increased availability of highly palatable, energy-dense foods 
is also mostly responsible for the current obesity epidemic, it is 
much harder to prove, because of difficulties to strictly control 
energy balance and environmental conditions in humans over 
extended periods of time as it is possible in animal models.  
A widely accepted view is that in genetically and/or epigeneti-
cally susceptible individuals, the obesogenic food environment 
is able to establish a new, higher body weight set point that is 
similarly defended against forced fasting and overfeeding as in 
normal weight individuals (11). Therefore, one of the key issues 
in understanding body weight regulation is the neurological 
explanation for this shift in defended body weight. What are 
the neural mechanisms that allow availability and palatability of 
energy-dense foods to overpower the basic homeostatic defense 
system? Understanding these mechanisms could lead to the 
development of more specific drugs or behavioral interventions 
in the fight against obesity.

HEDOniC pROCESSinG iS An inTEGRAL 
pART OF THE HOMEOSTATiC 
REGULATORY SYSTEM

The view that the hedonic and homeostatic neural circuitries are 
not separate entities but are part of the same regulatory system 
is rapidly gaining traction. This is based on evidence for bidirec-
tional modulation of corticolimbic brain areas by interoceptive 

signals, and of the hypothalamus by exteroceptive signals and 
their cognitive and emotional correlates (Figure 1B).

Bottom-up Modulation of Corticolimbic 
Circuits of Cognition and Motivation by 
interoceptive Signals of nutrient 
Availability
The bottom-up control of hedonic and cognitive processes by 
internal signals is not a new insight. Given the crucial impor-
tance of nutrients for survival, it is a fundamental attribute of the 
expression of hunger and goes back to the beginning of evolution 
of the nervous system. Specifically, the hungry state is character-
ized by increased incentive salience attribution (the mechanism 
by which a goal object such as food is becoming highly desired 
and wanted  –  a behavioral magnet), which is neurologically 
manifested by heightened activity of the mesolimbic dopamine 
system (16–18). What is new, are some of the messengers and 
neural mechanisms shown to be involved. For example, it is 
now clear that one of the most eminent homeostatic regulators 
of body weight – leptin – modulates appetite by acting not only 
on the hypothalamus but also on components of the mesolimbic 
dopamine system (19–22) and on olfactory and taste sensory 
processing (23–25). Similarly, many other internal signals 
of nutrient availability, such as ghrelin, intestinal GLP-1 and 
PYY, and insulin, as well as glucose and fat, also partly act on 
corticolimbic structures involved in the cognitive and rewarding 
aspects of food intake control (26–36). Effects on cognitive func-
tions by these hormones are interesting in the context of human 
studies showing impairments of both cognitive and metabolic 
functions in obese patients (37–39). Although the common link 
is not yet known, a leading hypothesis suggest that intestinal 
dysbiosis resulting from an interaction between sub-optimal 
nutrition, gut microbiota, and the innate immune system with 
subsequent changes in gut-to-brain signaling and blood–brain 
barrier integrity are important (40–43).
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Top-down Modulation of the Classical 
Hypothalamic Regulator by Sensory, 
Cognitive, and Motivational Signals
The other driver of this integrated view is new insight into the 
top-down modulation of classical homeostatic circuitries by 
cognitive and emotional processing in corticolimbic systems 
(44). Cue-induced, conditioned food intake is thought to be an 
important mechanism in overeating by humans in an obesogenic 
environment (45, 46) and has been studied in rodents for quite 
some time (47). Some of the relevant pathways involved in this 
cognition-dependent food intake have been identified in the 
rat by demonstrating dependence on amygdala and prefrontal 
cortex-to-lateral hypothalamus projections (48, 49). Most 
recently, evidence for top-down modulation of AGRP neurons 
in the mediobasal hypothalamus, the epicenter of classical 
homeostatic regulation, was presented. These powerful neurons 
have been thought to be mainly controlled by circulating hor-
mones and metabolites in a relatively slow waxing and waning 
fashion commensurate with the fasted and fed states. Using 
modern, genetically based neuron-specific technology, it was 
demonstrated that activity of AGRP neurons is also controlled 
on a second-by-second basis by the conditioned expectation of 
imminent food ingestion (50, 51). This acute external sensory and 
cognitive control over AGRP neuron firing rate is likely accom-
plished by direct or indirect inputs from a number of cortical and 
subcortical areas as demonstrated by neuron-specific retrograde 
viral tracing (52).

COnTROL OF FOOD inTAKE AnD 
REGULATiOn OF EnERGY BALAnCE iS 
pREDOMinAnTLY SUBCOnSCiOUS

It is clear that the classical hypothalamic neural circuitry respon-
sible for the homeostatic regulation of energy balance and body 
weight, similar to homeostatic regulation of other bodily functions, 
such as blood glucose or blood pressure, is operating largely beyond 
awareness, at the unconscious level. In addition and as discussed 
above, the incentive sensitization mechanism by which interocep-
tive signals of energy depletion such as low leptin drive “wanting” 
through the mesolimbic dopamine system (16, 18, 53) is also largely 
operating outside awareness as demonstrated in human neuroim-
aging studies (54–56). Even in the absence of metabolic hunger and 
associated interoceptive sensitization signals, conscious awareness 
of the cue does not seem necessary. This has been shown in rats 
with cue-induced conditioned food intake (47, 48). Furthermore, 
the human brain can learn the value of monetary rewards and use 
it for decision-making without conscious processing of contextual 
cues (57). Although optimal decision-making requires self-
control, represented in the dorsolateral prefrontal cortex (58, 59), 
the transformation of reward-driven behavioral action is not under 
obligatory control of this brain area and often constrains the free 
will to act (60). Finally, neural activity in certain brain areas can 
be going on for quite some times before humans become aware of 
their own decision (61, 62), suggesting that much of the processes 
leading to a decision are taking place at the unconscious level.

Ingestive behavior in both humans and rodents appears to become 
particularly resistant to cognitive controls when it is highly habitual 
(63, 64). Under normal conditions, information about possible out-
comes is important for cue-induced goal-directed actions making 
such actions sensitive to devaluation. However, habitual behavior no 
longer depends on learned reward expectations and is thus largely 
insensitive to mechanisms of reward devaluation (64, 65). The neural 
circuits governing non-habitual behaviors are differently organized 
than those for habitual or automatic behaviors. Non-habitual behav-
iors heavily depend on the ventral striatum (nucleus accumbens) 
and the ventromedial prefrontal cortex, whereas habitual behaviors 
depend more on the dorsolateral striatum (65, 66). The memory 
storage and recall mechanisms are also different for habitual vs. 
non-habitual actions and behaviors. In distinction to declarative 
memories which require a conscious mind, procedural memories 
operate largely below the level of conscious awareness and storage is 
more distributed (67–69). As a consequence, procedural memories 
and the habitual ingestive behaviors they guide are relatively resist-
ant to inhibitory cognitive control and executive functions.

COnCLUSiOn

Animal models have been crucial for dissecting the complex 
mechanisms underlying predisposition to obesity. Given that the 
overwhelming majority of genetic loci linked to human obesity are 
associated with neural functions (70), it is not surprising that the 
neural controls of food intake and regulation of energy balance 
are a main component of these mechanisms. Although functional 
neuroimaging in humans is also starting to make important 
contributions, only the more invasive approaches in rodents have 
been able to provide mechanistic explanations. As a result, the 
traditional dichotomy between homeostatic and non-homeostatic/
hedonic systems responsible for the control of appetite and regula-
tion of body weight, although heuristically still useful, no longer 
adequately describes the extensive anatomical and functional 
interactions between the two systems. In addition, much of the 
output of this larger interactive system is bypassing awareness. The 
implications of these new insights are far reaching as they will guide 
not only future research but also the design of pharmacological and 
behavioral therapies for obesity and eating disorders.
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Animal models have been proven to be a crucial tool for investigating the physiological 
mechanisms underlying bariatric surgery in general and individual techniques in partic-
ular. By using a translational approach, most of these studies have been performed in 
rodents and have helped to understand how bariatric surgery may or may not work. 
However, data from studies using animal models should always be critically evaluated 
for their transferability to the human physiology. It is, therefore, the aim of this review to 
summarize both advantages and limitations of data generated by animal based experi-
ments designed to investigate and understand the physiological mechanisms at the root 
of bariatric surgery.

Keywords: RYGB, vSG, food intake, energy expenditure, rat, mouse, human

iNTRODUCTiON

Obesity and its related comorbidities have detrimental effects for the affected individual and pose a 
major challenge on public health systems worldwide. Despite the availability of a number of phar-
macotherapies, the best treatment option leading to clinically relevant and maintained body weight 
loss is bariatric surgery (1–6). Bariatric surgery leads to a long-term reduction in body weight and 
in obesity-related morbidity and is currently the only treatment modality with a proven mortality 
benefit (4). Several techniques are currently employed. The gold-standard since many years is the 
Roux-en-Y gastric bypass (RYGB), followed by vertical sleeve gastrectomy (VSG) and, with decreas-
ing numbers, adjustable gastric banding (AGB); the so-called mini-gastric bypass (MGB) has gained 
some popularity recently.

The treatment success of RYGB appears to be associated at least in part with changes in gastro-
intestinal hormones and bile acids that have been found to exert some role in the control of eating 
(7, 8). Despite the very different surgical approach, RYGB and VSG are associated with some extent 
with similar hormonal changes (9, 10). By contrast, reduced eating and weight loss after AGB is 
generally thought to result rather from mechanical restriction due to the reduced filling capacity 
of the stomach, although recent animal data suggest some role for gastrointestinal hormones, too 
(11). The MGB has been introduced ~20 years ago and has gained some popularity, in particular in 
non-academic surgical centers. However, surprisingly little research has been performed to study the 
underlying mechanisms that lead to body weight loss after MGB (12, 13).

Animal models have been proven to be a crucial tool for investigating the physiological mecha-
nisms underlying bariatric surgery in general and individual techniques in particular. By using a 
translational approach, most of these studies have been performed in rodents and have helped to 
understand how bariatric surgery may or may not work. However, data from studies using animal 
models should always be critically evaluated for their transferability to the human physiology. It is, 
therefore, the aim of this review to summarize both advantages and limitations of data generated by 
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animal-based experiments designed to investigate and understand 
the physiological mechanisms at the root of bariatric surgery.

ROLe OF BARiATRiC SURGeRY iN ANTi-
OBeSiTY THeRAPY

The number of non-surgical options to treat obesity are limited 
and the long-term success of dietary or life style interventions 
is minimal (2, 14). New drugs have recently been approved for 
obesity treatment, but long-term data are not available yet (1, 6). 
Insights into mechanisms of bariatric surgery, in particular RYGB 
and VSG, have opened up new treatment avenues against obe-
sity. Among these, gut hormone-based strategies represent the 
most promising approach and are mainly focused on analogs of 
glucagon-like peptide-1 (GLP-1), such as liraglutide (Saxenda®) 
(15, 16). However, combinations of different hormones, such as 
amylin and leptin analogs, have also delivered remarkable results 
(17, 18).

However, due to an enormous discrepancy between the 
number of performed bariatric interventions, on the one hand, 
and the number of formally eligible patients worldwide, on the 
other hand [e.g., a number of ~0.5 Mio operations worldwide 
performed in 2013 (19) compares to the number of obese indi-
viduals of about 100 Mio in the USA alone (20–22)], it is obvious 
that the obesity epidemic cannot be successfully addressed by 
surgical means alone and that other non-surgical methods with 
a similar or superior efficacy and safety profile are urgently 
needed.

In this regard, research with animal models has significantly 
helped to elucidate some of the potential mechanisms underlying 
bariatric surgery. In comparison to human studies where investi-
gating food intake is predominantly reliant on verbal report and 
dietary recall measures of patients, animal experiments allow the 
assessment of objective and unbiased data regarding postopera-
tive changes of food intake. Furthermore, employment of genetic 
knockout models or specific antibodies directed against specific 
gut hormones or their receptors can only be performed in animals 
and have, thus, helped to differentiate between associative and 
causative relationships of proposed mechanisms of bariatric sur-
gery. However, it needs to be emphasized that neither qualitative 
nor quantitative data generated in animals should be extrapolated 
to the human setting “one-to-one” and that animal studies unfold 
their additional value first of all in a translational experimental 
setting. In other words, it seems less relevant that weight loss 
rates are similar in rats and patients after RYGB, as long as the 
weight loss is mediated by similar physiological mechanisms in 
both settings.

Most animal research has been performed with RYGB and 
VSG interventions in rats or mice. Although the effect sizes of 
RYGB and VSG operations were found to show quantitative 
differences, it appeared that qualitative changes were remark-
ably robust between different studies. In other words, variables, 
such as surgical technique, pre-, peri-, and postoperative diet, 
baseline weight, and level of adiposity which all may affect the 
study outcome, were found to have a surprisingly little effect on 
the general information gain of these studies [discussed in Ref. 
(23, 24)].

ANiMAL MODeLS OF BARiATRiC 
SURGeRY TeCHNiQUeS

Although surgical methods to reduce body weight were first intro-
duced more than 50 years ago and have been used in increasing 
frequency ever since, it is surprising that researchers only recently 
started to develop greater interest in post-bariatric physiological 
mechanisms. Koopmans and colleagues were among the first 
scientists who systematically used animal models to investigate 
the underlying mechanisms of bariatric surgery. These authors 
were able to demonstrate that a method called ileal transposition 
was not only effective in treating both genetic and hypothalamic 
lesion-induced obesity in rats, but also that the loss of body weight 
and body fat was associated with a reduction in eating. They fur-
ther observed that ileal transposition caused hypertrophy of the 
small intestine and concluded that the early contact of the distal 
small intestine with undigested food and digestive enzymes may 
lead to an increased release of gastrointestinal hormones as one 
mediating factor (25–30).

Two other groups also made early contributions to the cur-
rent literature of rodent models of bariatric surgery. Atkinson 
and Brent demonstrated that blood circulating factors seem 
to be critical for the reduction in eating after intestinal bypass 
operations in rats (31), and Meguid et al. were among the first to 
study altered brain signaling post-RYGB (32, 33). More recent 
studies built on these seminal experiments and the explanations 
how bariatric surgery and in particular RYGB reduce eating 
and body weight are still manifold. Finally, only a few groups 
published research with models of the AGB [e.g., Ref. (11)], 
and even less animal research has been done using the MGB 
technique (12).

RYGB AND vSG iN RATS AND MiCe

The interest of the scientific community in post-bariatric physiol-
ogy has grown exponentially over the last decade and many groups 
contributed significantly to the growing knowledge regarding 
the underlying mechanisms of bariatric surgery by using animal 
models of RYGB and VSG [e.g., Ref. (9, 10, 24, 34–55)]. Many of 
the reported effects showed striking similarities to what has been 
observed in RYGB or VSG patients.

For example, RYGB and VSG in rats and mice typically 
induced a rapid and sustained body weight loss which was 
mainly due to a reduction in body fat mass (40, 51, 56, 57). Post-
surgical weight loss correlated to a large extent with reduced 
spontaneous eating, but an increase in energy expenditure may 
also play a role (51, 57, 58).

In addition, animal models also provided compelling argu-
ments against traditional concepts such as intestinal malabsorp-
tion and mechanical restriction. There is nowadays a large body 
of evidence indicating that neither malabsorption nor restriction 
are the only mechanisms that exclusively explain the overall 
reduction in caloric intake and body weight after bariatric sur-
gery (10, 51). In regard to caloric malabsorption, both animals 
and patients are able to digest and absorb ingested nutrients to a 
similar extent after RYGB than their respective controls. However, 
some reduction in fat digestibility has been described in rats and 
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mice after RYGB when postoperatively exposed to a high-fat 
diet (35, 57), and a recent study indicated that intestinal glucose 
absorption may also be reduced after RYGB as a consequence of 
reduced sodium delivery and sodium-dependent glucose absorp-
tion in the proximal parts of the reconstructed small intestine 
(59). Thus, some role of maldigestion and malabsorption for body 
weight loss after RYGB needs to be considered in this scenario.

In regard to mechanical restriction, various studies have 
shown that RYGB- or VSG-operated rats and mice are indeed 
able to ingest larger quantities of food if they are metabolically 
challenged, e.g., subsequent to temporary food restriction after 
surgery (10, 24) or during lactation in female reproducing ani-
mals (60). Other arguments against a major impact of mechanical 
restriction on reduced eating after RYGB surgery include the 
observation that RYGB rats do not increase prandial drinking 
that might suggest an attempt to overcome mechanical constraint 
through food dilution with water. Furthermore, food intake after 
RYGB can be increased in rats and humans by somatostatin 
analogs that block the release of gastrointestinal hormones but 
which do not alter the mechanical situation post-RYGB (61, 62). 
In addition, differences in food intake and body weight are not 
related to the size of the gastro-jejunostomy in RYGB rats (63).

It needs to be emphasized that it was certainly wrong to 
explain the observed changes in eating behavior after bariatric 
surgery entirely and exclusively with mechanistic concepts, such 
as restriction and malabsorption, but it might be equally incor-
rect to neglect their impact. A typical finding after both RYGB 
and VSG operations is a change in meal pattern. Similar to RYGB 
patients, rats typically eat smaller meals after RYGB, which is 
partly compensated by an increase in meal frequency. In more 
detail, the size of nocturnal meals has been found to be markedly 
reduced post-RYGB, while the size of diurnal meals was actually 
increased compared to sham-operated control animals (23, 42, 
51, 64). Furthermore, even if RYGB or VSG rats are metaboli-
cally challenged leading to high levels of total food intake (e.g., 
temporary food restriction; pregnancy and lactation), the rats do 
not seem to increase their meal size (10, 24, 60). Finally, a recent 
study showed that increased intake induced by antagonizing mel-
anocortin-4 (MC4) receptors in the hypothalamus was entirely 
dependent on an increase in meal number, but not meal size (65). 
In summary, the available data indicate that RYGB (or VSG) rats 
may be mechanically restricted in a sense that the amount of 
food that can be eaten in a single meal is limited, but that rats are 
able to adapt to specific metabolic situations by increasing meal 
frequency.

MeCHANiSTiC STUDieS TO eXPLAiN 
ReDUCeD eATiNG AND weiGHT 
LOSS AFTeR RYGB AND vSG

Animal experiments provide valuable insight into the mecha-
nisms that are at play after bariatric surgery and that lead not 
only to a reduction of body weight but also to long-term mainte-
nance of the lower body weight. The available data indicate that 
RYGB- or VSG-operated individuals develop a new set point of 
their body weight that is defended even if challenged by certain 

experimental conditions (e.g., temporary food restriction or 
forced overfeeding).

Leptin may play an important role in the control of this set 
point defense because leptin-deficient ob/ob mice do not exhibit 
the same benefits in body weight and metabolic control compared 
to control animals unless leptin is replaced (66). Thus, the bariat-
ric surgery procedure itself may be most critical for the extent of 
weight loss until the newly defended body weight may be reached. 
This may also indicate that further temporary manipulations 
(e.g., additional calorie restriction, alterations in food composi-
tion) may not necessarily result in additional long-term benefits.

The latter point is also important in a different context. Various 
studies showed that RYGB and VSG may lead to an alteration in 
food preference with rats and patients choosing to eat less high-fat 
and sugary foods in favor of less energy dense alternatives when 
offered a choice (42, 53, 57, 67–69). However, a recent review 
of the human literature found that reported changes in dietary 
macronutrients after RYGB were modest and only transient in 
nature (70). Although alterations in dietary selection could 
conceivably contribute to improved glycemia and body weight 
after RYGB and VSG surgery, it remains unclear whether they 
represent an essential contributor to these beneficial effects after 
surgery or not. Based on the findings reported in the previous 
paragraph, this may actually not be the case, with the respective 
consequences for dietary counseling.

Roux-en-Y gastric bypass and VSG lead to characteristic 
changes in the concentration of gut hormones and bile acids 
(8, 41, 71–73), which is a robust phenomenon consistently 
reported in basically all published studies. Nevertheless it needs 
to be stated that most attempts to establish a causal role of gut 
hormones and bile acids for the post-bariatric outcome have 
failed so far. For example, data obtained from GLP-1 receptor 
knockout animals or using GLP-1 receptor antagonists are nega-
tive in that RYGB- or VSG-induced effects did not differ from 
wildtype control animals (43, 74–76). Thus, while changes in 
gut hormones alone cannot explain the RYGB- or VSG-induced 
effects, it appears that rather a combination of multiple physi-
ological alterations and interactions are at play. These include 
elevations in basal or postprandial concentrations of many gut 
hormones [GLP-1, cholecystokinin (CCK), amylin, peptide YY 
(PYY), etc.], increased levels, and altered composition of bile 
acids, as well as alterations in the diversity and composition of 
gut microbiota after bariatric surgery (7, 35, 41, 71, 76–78).

The large number of studies describing changes in the 
periphery after bariatric surgery contrasts with the remarkable 
paucity of data addressing changes in central nervous system 
function that may explain the effects of bariatric surgery. The 
most in-depth studies described the potential contribution of 
MC4 receptor signaling that is an important center point for the 
control of energy balance in general. The published data indicate 
that there may be a species difference in the relevance of MC4 
signaling, because VSG effects were still present in MC4-deficient 
rats (46). By contrast, RYGB-induced changes differed between 
MC4-deficient mice and respective controls, and there appeared 
to be a gene dosage effect (34, 44, 79). The latter may also explain 
why RYGB or VSG patients with mutations in the MC4 gene 
typically still respond to bariatric surgery because they do not 
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correspond to a full receptor knockout. Interestingly, some rare 
mutations in the MC4 were associated with a bigger weight loss 
and a faster resolution of diabetes post-surgery (80) [but see Ref. 
(81)]. Recent data indicated that RYGB also changes signaling in 
feeding areas of the caudal hindbrain in RYGB rats (82) but no 
equivalent human data are currently available.

Future experiments need to be designed to mimic specific 
aspects of bariatric surgery and to define the causal role of 
specific mechanisms for the beneficial effects of bariatric surgery. 
Manipulations may, e.g., include the local infusion of nutrients 
in specific gut segments, manipulations of nutrient contact with 
the gut mucosa, diversion of pancreatic juices and bile acids, and 
perhaps also the transposition of specific gut segments, similar to 
the procedure that Koopmans and colleagues had used more than 
30 years ago (25, 29, 30).

COMPARiSON OF ANiMAL MODeLS iN 
BARiATRiC SURGeRY ReSeARCH wiTH 
THe CLiNiCAL SiTUATiON iN HUMANS

The validity of animal model data depends on the similarities 
in phenomena and mechanisms between humans and animals. 
For the most part, it seems safe to say that the similarities largely 
outnumber potential differences that may be more quantitative 
than qualitative.

The key effect of bariatric surgery seems to be a loss of excessive 
fat mass by resetting the system of body weight control in both 
animals and humans (10, 56, 66). In humans, loss of excessive 
body weight is typically more pronounced in more obese patients 
(83). On the other hand, diabetic patients with a body mass index 
between 22 and 35 lose on average ~20% of their total weight 
after RYGB (84), which is markedly less than the typical weight 
loss in heavier patients. Interestingly, a similar phenomenon is 
seen in animals where post-RYGB body weight loss also seems to 
correlate with the degree of preoperative obesity. Obese OLETF 
rats, i.e., rats that are obese because they overeat due to the lack 
of functional CCK1 receptors, lost markedly more weight com-
pared to their lean LETO controls after RYGB (49), and recent 
studies in mice with different degrees of obesity corroborated 
these findings (56).

One aspect that differs between rodents and humans is the 
difference in weight growth curves; i.e., in contrast to obese 
humans, where the “control condition” typically refers to a 
stable body weight, control groups of rats or mice often gain 
weight over the observation period of a study. Here, the effect of 
bariatric surgery may be a prevention of this weight gain rather 
than an absolute weight loss. However, animal models allow 
the detailed study of major components contributing to the 
body weight loss in standardized and reproducible conditions, 
i.e., reduced caloric intake, increased energy expenditure, or 
reduced energy availability from ingested nutrients. By contrast, 
data on food selection and intake in humans rely in most cases 
on self-reported food intake that is vulnerable to inaccuracy for 
several reasons (70).

A further advantage of animal models is the use of specific 
control groups for reduced caloric intake or weight loss in respect 

to the metabolic consequences of bariatric surgery; in other 
words, pair fed or body weight matched controls, or controls for 
specific metabolic situations allow to distinguish bariatric sur-
gery effects that are specific to the surgical manipulations, such 
as the anatomical re-arrangement of the small bowel anatomy 
versus effects that are rather a consequence of the induced weight 
loss (23, 24, 50, 51, 71, 85).

As discussed, body weight loss after bariatric surgery is mainly 
due to reduced energy intake and changes in meal patterns (42, 
51, 64), and alterations in food choice and taste preference may 
also play a role (38, 42, 47, 53, 67, 69, 86). Further important simi-
larities between animal models and humans undergoing bariatric 
surgery include changes in the postoperative profile of gut hor-
mones and bile acids, but also the metabolic beneficial effects of 
bariatric surgery. The latter comprise, e.g., rapid improvements of 
insulin sensitivity, insulin secretory capacity, and cardiovascular 
function [e.g., Ref. (36, 45, 50, 71, 87–99)]. Similar to the effects 
on energy balance, a large number of follow-up experiments were 
performed to study the potential mechanisms underlying the 
metabolic effects of bariatric surgery. This included the manipula-
tion of hormone systems or signaling cascades, and some studies 
clearly indicated that changes induced by bariatric surgery, e.g., 
elevated GLP-1 levels, do contribute to post-surgery metabolic 
effects in rats and humans (71, 93). However, other studies 
revealed rather disappointing results in a sense that blockade of 
GLP-1 signaling was often not able to offset the effects of bariatric 
surgery (75, 76).

Another contributing factor to weight loss after bariatric in 
humans and animal models may be the change in complexity 
and diversity in the gut microbiota. RYGB and VSG alter the 
composition of the gut microbiota and transplantation studies 
indicate that these alterations may also play a causal role in the 
improved metabolic status after bariatric surgery (35, 73, 100). 
For example, by colonizing germ-free mice with stools from the 
patients, Tremaroli et al. demonstrated that the surgically altered 
microbiota promoted reduced fat deposition in recipient mice. 
Mice also had a lower respiratory quotient, indicating decreased 
utilization of carbohydrates as fuel, suggesting that the gut micro-
biota may play a direct role in the reduction of adiposity observed 
after bariatric surgery (101).

Finally, not only the beneficial but also the negative conse-
quences of bariatric surgery seem to be recapitulated in animal 
models, similar to what is seen in human patients. To give just 
three examples, RYGB causes a demineralization of the skeletal 
system potentially leading to an increased risk in bone fractures 
(85, 102–104). The underlying reasons for this effect are not 
clear, but own results indicate that a more acidotic status post-
RYGB leading to increased calcium release from the bone may 
play a role. Second, RYGB may increase the risk for excessive 
alcohol intake in patients (105, 106) – a behavior which was 
also found in rats that did not prefer alcohol before the surgical 
intervention. Third, even though the metabolic status improves 
markedly in most diabetic patients after RYGB, some patients 
were found to have large fluctuations of their blood glucose 
concentration after RYGB surgery, especially in the periprandial 
phase paralleled by prolonged episodes of hypoglycemia. Similar 
findings have been reported in rodent RYGB models. The reason 
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for these larger than normal glycemic fluctuations is not entirely 
clear, but may be linked to increased secretion of GLP-1 leading 
to a strong increase of insulin release which then may require 
the compensatory release of counterregulatory hormones. In 
other words, despite the markedly improved general metabolic 
status, the fine tuning of glucose control may not be achieved by 
RYGB (50, 107–111).

NOTeS OF CAUTiON ON THe USe OF 
ANiMAL MODeLS iN BARiATRiC 
SURGeRY ReSeARCH

Not all findings reported in rodent bariatric surgery models find 
their direct equivalent in the clinical situation, or vice versa, but 
some of the differences among species may be more quantitative 
than qualitative. Four examples will be discussed here.

First, the weight loss of RYGB and VSG in rats and mice is due 
to a reduction in eating and an increase of energy expenditure 
(respectively, the prevention of its decrease in weight-reduced 
animals). The relative importance of the energy expenditure 
component seems to be bigger in mice than rats; in fact, in some 
mouse studies, increased energy expenditure appeared to explain 
most of the surgery induced weight loss because food intake in 
RYGB-operated mice was higher than that in sham-operated 
controls (40, 51). By contrast, only some studies in humans report 
an increase in total energy expenditure. However, similar to the 
increased diet-induced thermogenesis that has been reported in 
rats, postprandial energy expenditure also seems to increase in 
some RYGB patients (55, 112–115).

The reason for the real or apparent species differences in 
respect to energy expenditure after RYGB is not clear but it 
may be more a general phenomenon of biology and physiology 
rather than a specific finding after bariatric surgery. The control 
of energy balance via energy expenditure may be much more 
efficient in mice with their large body surface to body mass ratio; 
in humans, this ratio is opposite, and this may be reflected in the 
more important control of energy balance via energy intake. Rats 
may be between both extremes, and this may explain why both 
energy intake and energy expenditure are typically affected by 
bariatric surgery in rats.

Second, bariatric surgery and in particular RYGB and VSG 
also lead to changes in food selection, and some reports claim that 
consumption of high-fat and sweet foods decreases post-RYGB 
(70, 116, 117). Similar findings have been reported in rats and 
mice because they chose to ingest lower amounts of high-fat or 
high-sugar diets than sham-operated controls. This decrease in 
intake is progressive and is reminiscent of a learning process 
(conditioned avoidance) (40, 42, 53, 57, 68). Interestingly, the 
decrease in sugar intake may also be due to an altered taste 
sensitivity because RYGB has been shown to lower the sucrose 
detection threshold in patients after RYGB (67) [see also Ref. 
(117, 118)]. Furthermore, brief access tests in rodents often did 
not indicate reduced avidity for sucrose or high fat and rats’ 
voluntary work for sucrose or lipid solutions is not decreased 
(119–122). Nonetheless, whether the findings in animal models 
can be directly translated into the human situation is not clear, 
and only few objectively assessed data in humans are available. 

Changes in macronutrient intake in rats seem to be a long-term 
effect, while lasting changes in relative macronutrient intake in 
humans have typically not been observed. In other words, it is 
not clear whether the proportion of fat in the diet of post-RYGB 
individuals is decreased over extended periods of time, and it is 
also not clear if and for how long changes in diet composition 
contribute to reduced energy intake and weight loss in RYGB-
operated patients.

Third, a typical finding in RYGB-operated rats is a massive 
hypertrophy of the intestinal wall in the Roux limb and to a 
lesser extent in the common channel of the RYGB reconstruction 
(51, 77, 123–125). The hypertrophic small intestinal epithelium 
may contribute to the increase in total energy expenditure in 
rats, and it may contribute to sufficient nutrient digestibility and 
absorption despite the altered gut anatomy. Whether the human 
gut hypertrophies to a similar extent in RYGB patients is still a 
matter of debate and only few well-controlled studies have been 
performed. One recent study, however, clearly indicated that the 
small intestine in RYGB patients showed a clear hypertrophic 
response (126). Furthermore, anecdotal evidence also reports 
that gut hypertrophy may also occur in RYGB patients; in a rather 
dramatic recent case, a short common channel was associated with 
massive mucosal hypertrophy eventually leading to a functional 
ileus (personal observation, Marco Bueter). The general extent 
and underlying mechanisms of gut hypertrophy post-bariatric 
surgery will need to be defined in further well-controlled clinical 
studies.

Finally, potential influences of anatomical differences between 
rodents (or other animal models) and humans need to be con-
sidered even though evidence for an important impact of these 
differences on study outcome is limited. The gastrointestinal 
anatomy differs between humans and rodents in some aspects. 
Mice, e.g., have an extensive portion of their stomach covered 
by cutaneous mucosa (called “forestomach” by some), and the 
proventriculus in rats also has no human equivalent. Furthermore, 
mice but not rats have a gall bladder. Despite that, delivery of bile 
into the proximal small intestine is also dependent on CCK in rats 
and no principal difference seems to exist between mice, rats, or 
humans in respect to the elevation of circulating bile acids after 
RYGB and VSG (8, 59, 71, 73, 88, 127–130). Of note, there are also 
some differences in the bile acid profile post-RYGB in humans 
compared to rat or pig RYGB models. Some bile acid species, 
such as the free bile acids cholic acid, chenodeoxycholic acid, and 
deoxycholic acid were similarly increased, but glyco-conjugated 
bile acid species concentrations depended on the animal model, 
and no global increase in tauro-conjugated species was observed. 
These differences may be relevant because different bile acid 
species have different affinity and efficacy at the various bile acid 
receptors (130).

MODeLS OF BARiATRiC OPeRATiONS 
OTHeR THAN RYGB AND SG

Mini-Gastric Bypass
Knowledge from previous experiments can now be used for 
the optimized design to study mechanisms of more recently 
introduced bariatric surgery procedures. The so-called MGB 
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has gained some interest because it has the reputation to be 
an easier version of the classical RYGB. However, very little 
information about possible mechanisms of action is available. 
More importantly, data about the long-term effects and potential 
negative consequences are not available so far. Interestingly, this 
technique has been reported to lead to an increase rather than a 
decrease in eating. Energy expenditure has not been studied in 
detail after MGB, but it is generally assumed that maldigestion 
and malabsorption may be important components in the weight 
lowering effect of MGB (12, 13, 131, 132). If the latter were the 
case, the mechanisms of action would clearly differ between 
RYGB and MGB and would put a note of caution on the use 
of the MGB due to the potential of developing deficiencies in 
essential nutrients.

Biliopancreatic Diversion
The biliopancreatic diversion (BPD) introduced and developed 
by Scopinaro consists of a partial gastrectomy with a Roux-en-Y 
gastro-jejunostomy forming an alimentary limb and a duodeo-
jejunal biliopancretic limb anastomosed to the distal ileum. The 
operation leads to significant weight loss with normal absorp-
tion of bile salts, water and electrolytes (133). This operation is 
generally performed in much lower numbers than RYGB and SG 
and has its main indication in severely and mega-obese patients 
(19). Rat models of BPD revealed that serum protein, cholesterol, 
and triglycerides fell by 25–40% postoperatively (134), while the 
procedure was associated with intestinal hypertrophy and with 
increased GLP-1, GLP-2, and PYY levels (135).

Biliopancreatic Diversion with 
Duodenal Switch
To preserve physiologic gastric emptying and to prevent anasto-
motic ulcer after BPD by decreasing the effects of alkaline biliary 
reflux, Hess developed a modified BPD procedure with the 
alimentary limb being directly anastomosed to the post-pyloric 
duodenum (136). This operation is today known as BPD with 
duodenal switch (BPD-DS) and also includes a VSG, before the 
use of VSG as a stand-alone procedure (137). The BPD-DS is con-
sidered by some as the most efficient surgery in treating obesity 
and T2DM, but the rate of early complications is higher and it 
might also be associated with a higher perioperative mortality 
(138); for this reason, the BPD-DS is not extensively performed 
worldwide (19). BPD-DS operations in rats showed that the 
procedure is associated with an increased fecal energy loss as 
well as a (compensatory) intestinal hypertrophy with elevated 

levels of fasting and postprandial plasma GLP-1 and PYY (139), 
while there is a reduced expression of thermogenic genes in the 
interscapular brown adipose tissue (140).

OUTLOOK AND CONCLUSiON

Overall, rat and mouse experiments in bariatric surgery have 
been proven to be an important and relevant research tool that 
has led and will lead to important findings translatable into 
the clinical situation. Some differences have been identified, 
but careful experimental designs still allow clinically relevant 
conclusions. More studies are needed that directly compare 
effects and consequences of bariatric surgery procedures across 
species. This includes the assessment of similar parameters 
pre- and post-bariatric surgery in human patients and animal 
models, but also similarly designed experiments that yield 
mechanistic information in all relevant species. Only few exam-
ples are available in the literature [e.g., Ref. (67, 70, 121, 122, 
129, 130)]. Nonetheless, without animal models, our knowledge 
on how bariatric surgery works (or may not work!) would be 
very limited and the vast literature that is available indicates 
that most animal models seem to recapitulate remarkably well 
the findings in humans. Future research in animal models of 
bariatric surgery will most likely include the more frequent use 
of larger animal models, e.g., minipigs or dogs (129, 141, 142). 
Larger animals offer significant advantages compared to rats and 
mice; e.g., larger blood volumes can be collected over extended 
periods of time, and specific interventions in defined parts of the 
gastrointestinal tract may be easier to perform in larger animal 
models. Furthermore, specific aspects of energy expenditure 
may be more similar to humans in larger animals compared to 
small animals, in particular the mouse.
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increased Hydration Can Be 
Associated with weight Loss
Simon N. Thornton*

INSERM U_1116, Université de Lorraine, Vandoeuvre les Nancy, France

This mini-review develops the hypothesis that increased hydration leads to body weight 
loss, mainly through a decrease in feeding, and a loss of fat, through increased lipolysis. 
The publications cited come from animal, mainly rodent, studies where manipulations of 
the central and/or the peripheral renin–angiotensin system lead to an increased drinking 
response and a decrease in body weight. This hypothesis derives from a broader asso-
ciation between chronic hypohydration (extracellular dehydration) and raised levels of the 
hormone angiotensin II (AngII) associated with many chronic diseases, such as obesity, 
diabetes, cancer, and cardiovascular disease. Proposed mechanisms to explain these 
effects involve an increase in metabolism due to hydration expanding cell volume. The 
results of these animal studies often can be applied to the humans. Human studies are 
consistent with this hypothesis for weight loss and for reducing the risk factors in the 
development of obesity and type 2 diabetes.

Keywords: drinking, water, angiotensin, lipolysis, hypovolemia, hypohydration

inTRODUCTiOn

Increased water intake is associated with loss of body weight produced via two mechanisms, 
decreased feeding and increased lipolysis. The obverse also appears to be true. Mild, but chronic, 
hypohydration is correlated with increased body weight and its attendant dysfunctions (1). The 
common denominator likely is angiotensin II (AngII), the principal hormone of body fluid regula-
tion. In what follows, this hypothesis will be tested against the available evidence (2).

AngII acts on two, seven transmembrane domain peptide receptors, AT1 and AT2. Working 
through the AT1 receptor AngII stimulates thirst (the act of seeking out and drinking fluids, mainly 
water), an appetite for sodium, the release of anti-diuretic hormone (ADH or vasopressin) to con-
serve water via the kidneys, and vasoconstriction (conserving perfusion pressure to all organs and 
cells). The principal physiological signal for an increase in plasma AngII is extracellular dehydra-
tion (hypovolemia) (3). The responses listed above enable the rapid return of plasma volume to 
normal levels, thus reducing the signal for AngII generation. This is the physiological response to 
hypovolemia displayed by rodents.

However, chronically elevated AngII appears to be involved in several chronic human diseases 
(2). Antagonists of the renin–angiotensin system (RAS) are prescribed in 85% of cases to treat 
cardiovascular disease (4, 5). The same antagonists are used to treat obesity (6), diabetes (7, 8), 
cancer (9), and Alzheimer’s disease (10). These effects could result if a subsection of the population 
was chronically, but mildly, hypohydrated [e.g., Ref. (11)], i.e., chronically, but mildly, hypovolemic.

These chronic diseases also involve metabolic dysfunctions (12, 13). This has been observed 
for  cardiovascular disease (14, 15), obesity (16), diabetes (17–19), cancer (20), and Alzheimer’s 
disease (21). In other words, chronic hypohydration may be driving the continuous release of AngII 
and the metabolic dysfunction found in the chronic human diseases.

Given that in animals AngII stimulates appropriate drinking responses, why is that some humans 
appear not to respond appropriately to the same AngII signal? The influence of other, perhaps 
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cognitive, factors on appropriate drinking responses has been 
noted in kidney stone formation, where increased water intake is 
recommended as a preventative measure, but compliance is dif-
ficult (22, 23). The authors noted that “not knowing the benefits 
of water drinking,” “not liking the taste,” and “the need to urinate 
frequently” influenced patient’s behavior.

MeTHODS

This mini-review concentrates on angiotensin and metabolic 
function by looking at the effect of central and peripheral 
manipulations of the RAS that increase drinking, reduce food 
intake, decrease body weight, and produce fat loss through 
increased lipolysis. Literature searches used keywords: angio-
tensin, drinking, water intake, body weight loss, obesity, dia-
betes, RAS antagonists, metabolism, hydration, atrial peptides, 
UCP1, insulin resistance, and mitochondria. Research and 
clinical articles are cited where there is an associated increase 
in water intake, a decrease in body weight, a decrease in body 
fat, and/or a decrease in the markers of the risk of developing 
obesity and type 2 diabetes. There is a large literature on the 
RAS and body weight regulation as well as metabolism but 
not all articles measured water intake and thus are not cited.

CenTRAL Angii, DRinKinG, 
AnD weiGHT LOSS

Administration of AngII into the brain of behaving animals 
increases drinking. Rats can consume over 2  h up to 15  ml of 
water in response after a single injection of AngII, depending on 
the dose and the site of injection (24–30). A decrease in feeding 
following drinking stimulated by intracranial AngII was noted 
early on, but this appeared to fade as the drinking response waned 
(31). Furthermore, in rats, chronically administered AngII over 
several days or weeks increased drinking (at least a doubling in 
daily intake), which was associated with a small decrease in food 
intake and a decrease in body weight, mainly through loss of fat 
(32–35). The decrease in body weight following the AngII infu-
sion was greater than that in pair-fed rats.

Several mechanisms not necessarily related to the increased 
drinking have been suggested for this, AngII produces an increase 
in uncoupling protein I (33, 35). Others have suggested an 
increased thermic effect of food, an increased feeding hormone 
effect, or even an increased in stress hormone release (35). Both 
mechanisms imply a change in metabolic activity.

RAS AnTAGOniSTS DRinKinG 
AnD weiGHT LOSS

In other rodent models of obesity, using either angiotensin-
converting enzyme (ACE) inhibitors or AT1-specific antagonists 
increased drinking significantly with an associated decrease in 
food intake and body weight mainly through loss of fat. In some 
cases, the fat loss was specifically linked to increased lipolysis 
(36–41). The drinking responses ranged from a 30% increase to 
up to a doubling of normal intake in both rats and mice. With 

two AT1-specific antagonists, candesartan and losartan, this 
effect is observed in obese, rather than lean, rats (42, 43). Use of 
the renin inhibitor aliskiren in mice on both low-fat and high-fat 
diets demonstrated a significantly increased drinking response 
with a lower body weight gain and loss of body fat over a 43-day 
treatment period (44).

Increased drinking to RAS blockade may appear paradoxical, 
but it could be in response to blockade-induced increased urine 
flow (45, 46) or to peripheral blockade-induced increase in AI 
passing through the blood–brain barrier, converting to AngII in 
the brain, and activating hypothalamic AT1 receptors (47–49). 
It could also be in response to the hypovolemia produced by the 
RAS blockade, but no data were found to support this.

The same RAS inhibitors have been reported to be renoprotec-
tive, reduce obesity, and improve insulin sensitivity in rodents, but 
without recording water intakes (50–53). Similar results occurred 
in one human study (54), yet not in another (55), both without 
recorded fluid intakes. Hypohydration has been shown to lead to 
hyperglycemia (56), which is linked with the major problems of 
obesity and type 2 diabetes.

RAS “KnOCKOUT” MiCe DRinKinG 
AnD weiGHT LOSS

Similar “paradoxical” results are found when the renin gene is 
knocked out, mice drink copiously (2.4  ±  0.1 compared with 
9.2 ± 0.7 ml/day), are hyperactive, thin, have low body fat, and 
do not develop obesity (57). A decrease in body weight and % fat 
with an increase in activity was observed in renin-deficient mice 
on a high-fat diet, but no water intakes were given (58). Similar 
results occur in mice lacking the AT1 receptor (59, 60); however, 
no decrease in body weight was observed, despite a nearly three-
fold increase in drinking in these AT1-receptor KO mice (61). 
Furthermore, angiotensinogen-deficient mice exhibit a decrease 
in body weight and % body fat with an increase in activity. Water 
intakes were not reported in this study (62), but have been noted 
by others (63, 64). Similarly, in ACE gene knockout mice, water 
intake was doubled (from 4.2 ± 0.2 to 9.8 ± 0.5 ml/day), food 
intake was slightly decreased, whereas body weight and body fat 
were significantly decreased (fat by 10%) compared with intact 
controls (65).

Further details on studies on the role of the RAS in food intake 
and metabolic parameters are in the excellent reviews by Mathai 
et al. (37) and by de Kloet et al. (66). In nearly all human and 
animal studies, pharmacological blockade of the RAS decreases 
body weight, food intake, and body fat. Unfortunately, most, if 
not all, studies did not report measurements of water intake. This 
argues for clinical studies on the effects of hydration on body 
weight regulation.

MeCHAniSMS

what Physiological Link exists between 
increased Drinking and Lipolysis?
Work in humans with administration of hypoosmotic solutions 
showed that there was an increase in lipolysis (67–69). The 
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FiGURe 1 | Adipocyte metabolism (hypothesis). In the normally hydrated (euhydrated) adipocyte, triglycerides are formed from glucose and free fatty acid 
uptake, and as well broken down (lipolysis); the rate depending on the needs of the cell for ATP. Glycerol in excess is exported out of the cell. Free fatty acids (ffa) 
are either metabolized or exported (81). As the adipocyte gets more and more dehydrated, formation of triglycerides increases and the ffa are not able to be 
transformed into pyruvate and thence metabolized in the mitochondria. The glycerol transporter, aquaporin 9 (AQP9), increases, bringing in more glycerol to make 
more triglycerides. Glucose uptake is further stimulated by insulin, increasing also triglyceride synthesis. Black circle, cell nucleus; red structure, mitochondria; ffa, 
free fatty acid; aa, amino acid; AQP7 + 9, aquaporin 7 and 9; HSL, hormone-sensitive lipase.
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studies also show an increase in lipolysis with increased drink-
ing indicating and, by inference, an increase in metabolism. 
This produced the hypothesis that increased hydration leads to 
an increase in cell volume and from that to increased insulin 
sensitivity (70–72). Furthermore, the RAS has been linked also 
with mitochondrial dysfunction (73–75), and treatments with 
RAS antagonists improved mitochondrial function (76–80). 
Because the same treatment induces increased water intake, this 
suggests that an increased hydration may enhance mitochondrial 
function and thus metabolism. These mechanisms are illustrated 
in Figures 1 and 2.

Some studies report an increase in activity with increased 
hydration, but the authors did not look at activity alone in the 
overall effects on body weight decrease.

Another plausible mechanism is that increased water intake 
drives thermogenesis (83–87) that would lead also to a decrease 
in weight gain.

Physiologically, increased water intake leads to an increase in 
blood volume with an attendant increase in right atrium pressure. 
This would release atrial natriuretic peptide (ANP), which was 
one of the first identified natriuretic peptides (88). This family 
of cardiac natriuretic peptides activates uncoupling protein 1 
(UCP1) that increases fat metabolism and leads to a loss of body 
weight (89–95). A significant increase in UCP1 was observed in 
renin knockout mice fed a high-fat diet (58), and these animals 
drink copious amounts of water (57). Furthermore, receptors for 

atrial peptides have been demonstrated in brown adipose tissue 
(96, 97).

Physiologically, the presence of AngII is linked almost exclu-
sively to extracellular dehydration (or extracellular thirst). The 
physiological stimuli for thirst are known (3) and can be broken 
down to intracellular and extracellular deficits. Intracellular 
dehydration involves an increase in plasma osmolality (normal 
levels between 295 and 300 mosmol/kg water), leading to activa-
tion of hypothalamic osmoreceptors that stimulate drinking and 
the release of ADH that in turn conserves hydration by increas-
ing renal water reabsorption. This action should return plasma 
osmolality to normal levels, reduce the motivation to drink, and 
stop the release of ADH. Extracellular dehydration, or a decrease 
in blood (plasma) volume (hypovolemia), leads to renin release 
from the kidney, which acts enzymatically on angiotensinogen in 
the blood making angiotensin I (AngI). AngI is transformed by 
ACE into AngII. As mentioned in Section “Introduction,” AngII 
stimulates the seeking out and drinking of fluids (mainly water), 
an appetite for sodium, the release of ADH, and vasoconstric-
tion. These actions should return plasma volume to normal levels 
while reducing blood AngII levels, the motivation to drink, to eat 
salt (mainly sodium), and the release of ADH. Most hypohydra-
tion leads to a mixture of intracellular and extracellular stimuli 
that should stimulate the behavioral acts of drinking and sodium 
intake, as well as the release of ADH, thus allowing correct regula-
tion of body (and cellular) hydration.
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FiGURe 2 | normal cell metabolism (hypothesis). In a normally hydrated (euhydrated) cell, all substrates are taken up by their appropriate transporter 
mechanisms and enzymatically converted to pyruvate, transported into the mitochondria, converted to acetyl-CoA, which then enters the tricarboxylic acid cycle to 
generate ATP (82). As the cell gets more and more dehydrated, the metabolism of free fatty acids (ffa) and amino acids (aa) to pyruvate and/or acetyl-CoA decreases 
producing a dependence on glucose as the main fuel source [as has been reported for obesity (16)]. Furthermore, as the cell decreases in size, the ability of insulin to 
stimulate glucose uptake decreases, leading to insulin resistance. Black circle, cell nucleus; red structure, mitochondria; ffa, free fatty acid; aa, amino acid.
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Although thirst is an effective motivation in most animal stud-
ies, it may not be a sufficient or adequate stimulus for drinking in 
many humans, including the ill, the elderly, and infants (98). The 
increased blood levels of AngII indicate that part of the human 
population may be chronically, but mildly, hypohydrated. As 
suggested earlier, chronic hypohydration is driving continuous 
release of AngII and, by extension, the metabolic dysfunction 
found in cardiovascular disease, obesity, diabetes, cancer, and 
Alzheimer’s disease.

RODenT AnD HUMAn HYDRATiOn

In its homozygous form, the Brattleboro rat figures prominently 
in studies of metabolism. This animal does not produce ADH 
and thus urinates copiously and consequently drinks consider-
ably, up to 200  ml/day. These animals grow more slowly than 
their littermate controls with ADH for the same amount of food 
ingested (99–101). In the Brattleboro rat, this could be due to a 
significantly increased metabolism as observed in neurons when 
measuring fluorine 18-labeled fluorodeoxyglucose uptake with a 
PET scanner (102).

Human studies suggest a similar effect as an increase in water 
intake has been associated with a decrease in body weight in 
obese, overweight, and normal children, and adults (103–111). 
Furthermore, addition of 500 ml of water before eating breakfast 
or a hypocaloric meal reduces energy intake (112) or increases 
weight loss (113). In a recent random controlled trial, there was a 

significant weight loss between a group eating meals with a pre-
meal water load compared with the controls without a pre-meal 
water load (114).

DieTS, DRinKinG, AnD weiGHT LOSS

To take this further, in rodents, a high-protein diet is associ-
ated with weight loss (115, 116) and with increased drinking 
(117,  118). This increased drinking may reflect the increased 
urine output (119, 120) needed to excrete the added urea 
resulting from the additional dietary protein metabolism (121). 
Nevertheless, based on the evidence reviewed above, the weight 
loss observed while on not in a high-protein diet also could be 
a direct result of the increased water intake. Furthermore, an 
increased protein diet is also associated with an increase in size 
and number of functionally normal liver cell mitochondria (122, 
123). This would correlate with an increase in cell size following 
an increase in hydration as mentioned above. Finally, weight loss 
produced using a hypocaloric diet induces a significant (30%) 
increase in water intake in both young (4 months old) and old 
(9 months old) female mice (124).

DiSCUSSiOn AnD COnCLUSiOn

This brief review highlights the considerable evidence that an 
increase in water intake, i.e., increased hydration, leads to loss of 
body weight. In rodent studies, the effect is clear and consistent. 
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At the least, this requires that measurement of water intake 
must be included in an experiment concerning rodents and 
all aspects of body weight regulation, from ingestive behavior 
to metabolic function. An increase in metabolism is one likely 
mechanism for the weight loss effect (125) because this can lead 
to increased mitochondrial function. In adipocytes, ramping up 
mitochondrial activity increases lipolysis. Human studies should 
also address the question of hydration with the increased use 
of RAS antagonists in the treatment of insulin resistance (126). 
Body weight regulation is a complex process, and increased 
water intake should be part of the measures required to reduce 
the overall risk factors.

As mentioned in Section “Introduction,” the effects of 
chronic mild hypohydration extend beyond fostering obesity. 
Extracellular dehydration-induced AngII, and the attendant 
possible mitochondrial dysfunction, may contribute not only 
to obesity and diabetes but also to cardiovascular disease, 
cancer, and Alzheimer’s disease. Furthermore, there could 
be other “symptoms” linking these major health problems to 
hypohydration such as a decrease in brain volume that is also 
associated with Alzheimer’s disease, obesity, and diabetes and 
could be (127). A simple solution for reducing these modern 
chronic diseases would be to increase water intake across the 
general population. Given that hypohydration is a chronic 
circumstance, the effects of increased water intake would likely 

appear as younger groups age, as seen in schools to ameliorate 
childhood obesity (107, 110) and where dehydration is an issue 
at the start of the day (128, 129). Hypohydration occurs in 
France in that water intake is less than the National Nutrition 
Program recommendation of at least 1.5 l/day (130). The precise 
amounts of additional water needed and the relative importance 
of the different possible pathways and mechanisms remain to 
be specified. The implementation of such a policy would then 
require a public health initiative.

A limitation of this mini-review is that it concentrates mainly 
on papers dealing with the hypovolemia (or hypohydration)-
related hormone AngII and the stimulated water intake that 
has effects on body weight, lipolysis, and food intake. There are 
a large number of studies in both animals and humans looking 
at the effects of RAS antagonist treatments for reducing the risk 
of cardiovascular disease, obesity, diabetes, cancer, and even 
Alzheimer’s disease where water intake, or even thirst responses, 
is not reported.
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The components of energy expenditure, total metabolic rate (TMR), resting metabolic 
rate (RMR), thermogenic response to feeding (TEF), activity, and cost of activity were 
measured in fed and fasted mice housed at 22 and 30°C. Mice housed at 22°C had 
more than two times larger TMR and RMR. Mice at 22°C were less active when fasted 
but more active when fed. Cost of activity was nearly doubled in the fasted and in the 
fed state. Analysis of the short-term relation between TMR, RMR, and bouts of activity 
showed that, at 22°C, the bouts of activity induced a decrease in the intensity of RMR 
that reflected the reduced need for thermal regulation induced by the heat released from 
muscular contraction. This phenomenon induced a considerable underestimation of TEF 
and prevented its reliable measurement when mice were housed at 22°C. Correlation 
between TMR and activity measured across time in individual mice was very strong at 
both 22 and 30°C, but the correlation measured across mice was much weaker at 30°C 
and no longer significant at 22°C. We suspect that this phenomenon was due to the fact 
that RMR is a much more reliable predictor of TMR than activity. RMR is more variable 
at 22°C than at 30°C because of heat transfers between thermal regulation and heat 
released by other discontinuous processes, such as activity and TEF. Therefore, more 
noise is introduced into the correlations performed across multiple mice between TMR 
and activity at 22°C. On the other hand, it should be kept in mind that the doubling of 
TMR and RMR at 22°C is fueled by an increased non-shivering thermogenesis that can 
obviously modify how the mouse responds to pharmacological and nutritional challenges. 
Taken together, these results suggest that in pre-clinical studies, mice should be housed 
in conditions where thermal regulation is limited as is generally the case in humans. 
However, the increased sensitivity of mice to small changes in ambient temperature can 
also be used as a versatile tool to investigate the role of thermal regulation on the energy 
balance equation in humans.

Keywords: mouse, indirect calorimetry, spontaneous motor activity, cost of activity, thermal regulation

Abbreviations: AMR, activity metabolic rate; RMR, resting metabolic rate; RQ, respiratory quotient; TEF, thermic effect of 
feeding; TMR, total metabolic rate.
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inTrODUcTiOn

Obesity research to get a mechanistic understanding and to 
provide guidelines for clinical investigations has used mainly 
mouse models for experiments that are not ethical in humans. No 
other animal model offers such large possibilities of phenotyping 
in response to metabolic, genetic, and behavioral manipulations 
(1). However, it is important that mouse and human biology 
are similar in order to get reliable predictive values from mouse 
experiments.

Energy balance is determined by the equilibrium between 
energy intake and energy expenditure from basal metabolic rate, 
thermic effect of feeding, cost of activity, and thermoregulation. 
In obesity research, it appears that the cost of thermoregulation 
was until recently an underestimated component despite the fact 
that it is widely acknowledged that in small endothermic rodents 
energy demand to maintain body temperature can become an 
important component of the energy Budget (2). In contrast, 
humans who have a mass about 3000-fold larger than mice live 
predominantly close to thermo-neutrality. Humans maintain 
their body temperature without thermoregulatory effort, the heat 
generated by ongoing metabolism is the only process needed. The 
mouse is very sensitive to ambient temperatures that decrease 
below thermal neutrality (28–31°C) because of its small size, and 
therefore very large body surface area to mass ratio. To main-
tain their body temperature, mice rely heavily on thermogenic 
processes specifically devoted to heat production, which are 
mainly uncoupled respiration in brown adipose tissue (3, 4), but 
also depend on shivering thermogenesis and heat generated by 
muscular activity (5, 6).

In most cases, mice studies have been conducted at tempera-
tures of 20–22°C, which is far below their thermal neutrality (30–
32°C). This condition increases the cost of thermoregulation that 
can double energy requirements (7) and subsequently increases 
food intake, sympathetic activity, blood pressure, and heart rate. 
Therefore, the question is raised whether this large amount of 
energy produced to maintain body temperature can affect not 
only resting metabolism but also the amount and the cost of loco-
motor activity, the thermogenic response to feeding (TEF), and 
more generally the responses to various metabolic challenges. 
Indeed, the extra heat produced by the activity cost (physical 
work is only ~20% efficient) and TEF (enzymatic reactions are 
~60% efficient) can potentially reduce the energy required for 
thermoregulation. Therefore, it is possible to consider that heat 
released by activity or feeding will reduce the cost of thermoregu-
lation and can induce an underestimation of activity or feeding 
costs. This phenomenon was suggested in a previous paper which 
showed that TEE was correlated with activity when mice were 
housed at 30°C but not when they were housed at 20°C. At this 
lower temperature, energy expended from activity was masked by 
the reduction of the energy expended for thermoregulation (8). 
Moreover, evaluation of drug effects on energy expenditure may 
be altered when mice are housed at room temperature because 
the compensatory reduction in cold-induced thermogenesis can 
offset the drug-induced increase. It has been suggested also that 
when mice are housed below thermal neutrality, BAT thermo-
genesis may play an important role in food intake control and 

energy balance regulation (9). An inadequate response to cold 
was reported also in Lepob/Lepob mice (10), which may explain 
why it is only at temperatures below thermal neutrality that they 
have a lower energy expenditure than wild-type mice (11, 12).

According to these results, analysis of the preliminary results 
of a current study lets us suspect that ambient temperature could 
have profound effects on the mechanisms of adaptation of mice 
to low-protein diets. We extracted the control mice of this study 
to focus on the evolution of energy metabolism components 
when mice are acclimatized to the vivarium temperature (22°C) 
or at thermal neutrality (30°C). In this article, we report changes 
induced on resting and total metabolic rate (TMR), spontaneous 
motor activity, cost of activity, and the TEF.

MaTerials anD MeThODs

animals and housing
Twenty-one female Balb/cOlaHsd mice were singly housed in 
a conventional facility with a reversed 12:12-h dark–light cycle 
(lights on at 20:00 hours). All experimental procedures complied 
with institutional guidelines and policies to prevent pain and 
distress under license from the French Veterinary Service (Ethics 
committee agreement number 12-095 and 13-012). The mice 
were provided by Harlan Laboratories (France) at 7 week of age 
and were allowed 2 weeks adaptation to the laboratory conditions 
before any experimental manipulation.

The mice used in this study were the control mice of two dif-
ferent experiments performed in 2014 and 2016. Water and food 
were provided ad libitum during the two studies unless otherwise 
stated. Mice were fed either a soy protein or a casein diet [by 
energy: soy protein or casein 24%, carbohydrate 66% (56.4% corn 
starch, 9.6% sucrose), fat (soy oil) 10%]. Food quotient of the two 
diets was 0.93. The results of the casein and soy-protein fed mice 
were pooled after we controlled for the similar reactivity of the 
two groups to the differences in ambient temperature.

In the first study (n = 11, 6 soy and 5 casein), the mice were 
housed continuously at 22°C. In the second study (n = 10, 5 soy 
and 5 casein), the mice were first housed at 22°C during 5 weeks, 
then the room temperature was increased to 30°C, and the mice 
maintained under these housing conditions for four more weeks 
(Figure 1).

indirect calorimetry
The indirect calorimetry system used in this study was a custom 
designed system working in pull mode and described in detail 
in several previous publications (13–15). Respiratory quotient 
(RQ) was calculated as the ratio of CO2 production (VCO2) over 
O2 consumption (VO2). Metabolic rate was calculated in watts 
(W) using the Weir equation (14). Spontaneous activity was 
measured by force transducers located under the floor of the 
cage. Data acquisition and data processing were performed by 
computer programs developed in the laboratory and written in 
the LabVIEW®.

In a first study, TMR and spontaneous activity (Act) were 
measured in ad libitum-fed mice housed at 22°C, and the TEF was 
measured at 30°C. In a second study, mice followed the reverse 
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FigUre 1 | experimental design of the two studies.
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procedure, i.e., TEF was measured in mice housed at 22°C, and 
TMR and activity were measured under ad libitum conditions at 
30°C after the mice were accustomed for at least 10 days to this 
temperature (Figure 1).

Measurement of TMr, rMr, and activity 
under Ad Libitum conditions
Mice were previously accustomed for 3–4 days to the calorimetry 
procedure by being housed in the same cages as used for the 
calorimetry recording. For the recording, they were kept in the 
same cage, and the cages were connected to the calorimetry 
system.

VO2, VCO2, and intensity of spontaneous motor activity were 
recorded from five chambers (2.5 L volume, constant flow rate 
of 600  mL/min). Each chamber, then room air (to correct for 
background VO2–VCO2) was sampled during 100 s, so that each 
cage was sampled every 10 min. In the cages, a sheet of blotting 
paper was used as bedding. Water and food were freely available 
in small boxes fixed on the side of the chambers. Data acquisition 
was performed without interruption during 2  days. Day 2 was 
used for data analysis.

Analysis of the components of energy expenditure provided 
TMR and resting metabolic rate (RMR), RQ, and intensity of 
activity. The relation between TMR and activity was computed 
across time for each mouse. To improve the correlation between 
changes in the intensity of TMR and changes in the intensity of 
activity, a slight convolution of the activity signal was performed 
in order to reproduce the smoothing of the respiratory response 
induced by the dead space of the chambers (Figure 2A). RMR 
was obtained as the Y-axis intercept of the correlation between 
TMR and activity, and the cost of activity was computed as the 
slope of the correlation between TMR and activity (Figure 2B). 
The metabolic rate of activity (AMR) was computed as the differ-
ence between TMR and RMR.

The relations between TMR, AMR, and activity and TMR and 
RMR were also computed across multiple mice by using mean 
daily TMR, AMR, RMR, and activity values obtained in each 
mouse.

During experiment 1, temperature in the experimental 
room was regulated at 20°C in order to maintain a temperature 
of 21–22°C in the metabolic chambers. During experiment 2, 
mice were previously acclimatized for at least 1 week at a room 
temperature of 30°C, and temperature in the experimental room 
was maintained at 29°C in order to maintain a temperature of 
30–31°C in the metabolic cages.

Measurement of the Thermic response to 
Feeding and of the short-Term changes 
induced by activity on TMr, rMr, and rQ 
during a cycle of Fasting and refeeding
These measurements were performed by measuring VO2, VCO2, 
and spontaneous motor activity continuously on one single cage 
at 2 s intervals. The uninterrupted acquisition on one cage and 
the high frequency of data sampling were required to perform a 
detailed analysis of the short-term relation between changes in 
VO2 and VCO2 and intensity of activity in order to be able to 
precisely compute the energy cost of activity and subsequently 
to compute RMR and TEF without artifacts due to variability in 
spontaneous activity. This process is based on a filtering proce-
dure according to the method of Kalman and has been described 
in detail in several previous publications from our laboratory 
(14, 15) and more recently in one by Van Klinken and colleagues 
(16). Examples of results on individual mice are given Figure 3. 
Temperature in the cage was adjusted by decreasing room tem-
perature below the required value in the cage and heating the wall 
of the cage with a heating coil controlled by a temperature gage. 
This system allowed the temperature (±0.2°C) to be maintained 
stable in the cage.

Mice were housed in the cage between 17:00 and 18:00 hours 
with water but no food and were kept overnight (i.e., mostly dur-
ing their light period) in the metabolic cage (Figure 3). The next 
morning, a calibrated meal of 1 g (16 kJ) was introduced into the 
cage without interrupting data acquisition, and data recording 
was continued during 6–7 h. Average RMR and RQ during the 2 h 
that preceded the meal were used as baseline RMR and RQ values 
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FigUre 3 | example of results observed in response to ingestion of a meal-test after overnight (mainly during the light period for the mouse) food 
restriction (screen copies of the computer program developed in the laboratory to edit the calorimetry data). Top, mouse housed at 30°C (2014 study); 
bottom, mouse housed at 22°C (2016 study). VO2, VCO2, and activity data were initially recorded at 2 s intervals then processed by the method of Kalman to 
compute TMR and RMR. RQ was computed as VCO2/VO2. Vertical bars crossing the figures indicate time when the meal was introduced into the cage.

FigUre 2 | example of calculation of activity cost and rMr in mice under ad libitum conditions. Data were obtained from the multiplexed device. 
Acquisition was at 10 min intervals. (a) Changes in activity, TMR and RMR measured along the time. The original activity trace was slightly smoothed to better 
correlate with TMR. (B) Correlation between intensity of activity and TMR. Slope of the regression gives the cost of activity and origin gives RMR. RMR in (a) was 
computed as TMR (activity × cost).
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to calculate the changes induced by ingestion of the meal. TEF 
was computed in kJ as the cumulative increase above baseline 
RMR during 6 h after meal delivery. Short-term changes in TMR, 

RMR, and RQ in relation to the bouts of activity were studied 
by pooling activity periods extending from one hour before to 
one after well differentiated bouts of spontaneous activity that 
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TaBle 1 | components of energy expenditure in fasted-refed mice.

30°c (n = 11) 22°c (n = 10)

Mean ± seM Mean ± seM °c Time °c × T

Fasting 
RMR (W)

0.213 0.006 0.397 0.011 <10−9 – –

Fasting 
TMR (W)

0.273 0.015 0.492 0.015 <10−12 – –

TEF (kJ) 3.149 0.196 1.009 0.295 <10−15 <10−15 <10−12

TEF (% 
ingested)

19.68 1.22 6.309 1.845 <10−15 <10−15 <10−12

RQ 0.823 0.008 0.748 0.005 <10−6 – –
AUC RQ 4.374 0.205 3.644 0.276 <10−12 <10−2 0.99

TMR and RMR values are adjusted to 20 g BW. AUC, area under curve.
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occurred between 23:00 and 08:00 hours, i.e., in fasted mice in 
the post-absorptive state and after non-shivering thermogen-
esis (NST) had time to switch off in mice housed at 30°C (see 
Figure 3). Hourly changes in the intensity of activity were also 
computed to compare intensity of spontaneous activity during 
fasting and refeeding.

All experiments were performed in mice usually housed at 
22°C. During experiment 1, temperature in the metabolic cage 
was regulated at 30°C; during experiment 2, temperature was 
regulated at 22°C.

statistical analysis
Data are presented as mean ± SEM. Values at 22 and 30°C were 
compared using a Student’s t-test in Excel, or by two-way ANOVA 
in R® when means were compared in relation to a third parameter 
(time for TEF, distribution classes for TMR activity, and RQ). 
Significant ANOVA results were followed using post hoc Tukey 
tests. Significance was set at P < 0.05.

resUlTs

rMr, rQ, activity, and TeF  
in Fasted-refed Mice
Analysis of the changes in RMR and RQ during a cycle of fasting 
and refeeding showed large differences between mice housed at 
22°C compared to those at 30°C. RMR measured after an over-
night fast during the last 3 h before refeeding (~06:30–09:30) was 
nearly twice as large in mice housed at 22°C (Table 1; Figure 4A). 
Conversely, RQ was significantly lower attesting a greater reliance 
on fat derived substrates (Table 1; Figure 4D). During the fasting 
period (~23:00–10:00), activity was low and not significantly dif-
ferent at 30 and 22°C (Figures 3 and 5).

Meal-induced increase in RMR was greatly reduced in 
mice housed at 22°C (Table 1; Figure 4B), and therefore, TEF 
computed by extrapolating pre-meal RMR appeared three times 
smaller [Table  1; Figure  4C; 22°C(1)]. However, it appeared 
that post-meal RMR was lower than pre-meal RMR 4  h after 
the meal and onward, suggesting that during the post-prandial 
period, the extra heat released by activity and TEF decreased 
the extra-energy expended for thermal regulation. Therefore, 
computing TEF by extrapolating pre-meal RMR probably 
underestimated TEF at 22°C. If RMR measured 6 h after meal 

onset was used as baseline, then TEF at 22°C was similar to TEF 
at 30°C [Figure 4C, 22°C(2)].

The meal-induced increase in RQ was of similar amplitude 
at 22 and 30°C but was of significantly shorter duration in mice 
housed at 22°C (Table 1; Figures 4E,F). After ingestion of the test-
meal, and until the end of the experiment, spontaneous activity 
was significantly higher in mice housed at 30°C (Figures 3 and 5).

relation between TMr, rMr, rQ, and 
activity Measured across Time in Fasted 
and Fed Mice
Fasted Mice
In mice housed at 30°C, the mean peak intensity of the bouts 
of activity was ~40  U and occurred 15  min after the onset of 
activity (Figure 6A). Mean duration of the activity periods was 
30–40 min. The bouts of activity-induced parallel changes in the 
intensity of TMR, reflecting the metabolic cost of activity but 
only marginally modified the intensity of RMR. A very small but 
significant increase was however observed during the first min of 
activity [0.0347 ± 0.0037W, P < 10−5 (+17% vs. baseline)].

At 22°C, the mean peak intensity of the bouts of activity was  
very significantly reduced down to one half of the intensity 
observed at 30°C (~20  U) (Figure  6B). Activity increased 
TMR but also profoundly affected the evolution of RMR: RMR 
increased very significantly during the first 5  min of activity 
[0.146 ± 0.013 W, P < 10−16 (+ 37% vs. baseline)] then decreased 
progressively down to a value lower than before the onset of 
activity. The decrease lasted as long as the activity duration. After 
activity stopped, RMR increased progressively again and returned 
to pre-activity values in 30 min.

As we observed that the increase in TMR appeared of similar 
amplitude at 22 and 30°C despite the very significant decrease in 
the intensity of the bouts of activity, we calculated more precisely 
the cost of activity by processing the differences between RMR 
and TMR (δMR) in relation to activity (Figures 6C,D). This data 
processing confirmed that the cost of activity was higher at 22°C 
than at 30°C. The correlation between δMR and activity computed 
during the first 15 min of activity where the correlation was the best 
indicated a doubling of the metabolic cost of activity (Figure 6E).

As already quoted, RQ was significantly lower in mice housed 
at 22°C (Figure 6F) indicative of a greater reliance of fat derived 
energy. Activity induced transient changes of small amplitude 
that were similar at 22 and 30°C indicating that muscle contrac-
tion was fueled by the available substrate mix as used by the other 
tissues of the body.

Fed Mice
In fed mice, despite the fact that data acquisition was performed 
at a lower frequency and that the mice were fed, the correlations 
measured across time in each mouse between TMR and activ-
ity remained high (0.85 < R < 0.87) (Table 2, Figure 2B). This 
allowed the recording of fairly precise and reproducible values for 
RMR and cost of activity from the origin and from the slope of 
the correlations, respectively. TMR, RMR, and daily activity were 
significantly higher in mice at 22°C, and the cost of activity was 
approximately two times larger at 22°C than at 30°C (Table 2) as 
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FigUre 5 | hourly changes in the level of spontaneous activity (a) and mean activity values (B) before (pre-meal) and after (post-meal) delivery of 
the test-meal at 30°c (n = 11) and 22°c (n = 10). (a) Time effect, P < 10−15; temperature effect, P < 10−9; time × temperature effect, P < 10−4. (B) $, P < 0.01.

FigUre 4 | Meal induced changes in TMr, rMr (watts), and rQ in overnight fasted mice at 30°c (n = 11) and 22°c (n = 10). Test-meal (1 g, 16 kJ) 
given at t = 0. (a) Absolute TMR and RMR values, (B) TMR and RMR values relative to pre-meal values, (c) TEF computed as the cumulative increase in RMR over 
pre-meal values [30 and 22°C(1)] or after taking into account the possible decrease in RMR at 22°C [22°C(2)] [$: P < 10−5 vs. 30 and 22°C(2)]. See TEF in kJ 
Table 1. Red dashed lines – extrapolation of fasting RMR at 30°C. Blue dashed lines – estimated decrease in RMR induced by activity and TEF used to adjust the 
calculation of TEF at 22°C [22°C(2)] (D) Absolute RQ values. Black dashed lines – food quotient (0.93). Green dashed lines – figures the RQ value of 1. (e) RQ 
values above 1 imply that part of the ingested carbohydrates is converted to lipids (lipogenesis). RQ changes relative to pre-meal RQ values, (F) Area under curve 
(AUC) computed as the cumulative changes in RQ over pre-meal values.
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FigUre 6 | activity-induced changes in TMr and rMr in mice housed at 30°c (31 periods of activity from 11 mice) and 22°c (42 periods of activity 
from 10 mice). The periods of activity have been chosen as periods of well differentiated bouts of activity, preceded and followed by at least 1 h of quite 
complete rest that occurred during the overnight fast and the morning before the test-meal. The first 5 h of recording after the mice were housed in the metabolic 
chamber (18:00–23:00 hours) were discarded to focus on the response of mice in the post-absorptive state and adapted to the temperature in the cage 
(see Figure 3). (a,B) Absolute changes in TMR and RMR at 30 and 22°C. Blue dashed line: extrapolation of pre-activity RMR values. (c,D) Changes in δMR 
(δMR = TMR − RMR and reflects the true direct activity cost). (e) Correlation between activity and δMR changes at 30 and 22°C. (F) Absolute changes in RQ.
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already observed in fasted mice. The AMR computed as TMR 
minus RMR was also significantly increased.

relation between TMr, rMr, aMr, and 
activity Measured across Multiple Mice 
in Ad Libitum Fed Mice
We observed a significant effect of activity on AMR at both 22 
and 30°C (Figure  7A). However, activity did not significantly 
affect TMR at 22°C while the effect at 30°C was reduced and 

remained only borderline significant (Figure 7B). On the other 
hand, we observed a very strong correlation between TMR and 
RMR (Figure 7C), which may be related to the fact that RMR 
accounted for 68–74% of TMR (Table 2).

Distribution of TMr and rMr Values in 
Ad Libitum Fed Mice
Total metabolic rate and RMR values of ad libitum fed mice were 
more than doubled at 22°C (Table  2; Figure  8). This result is 
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TaBle 2 | components of energy expenditure in ad libitum fed mice.

30°c (n = 9) 22°c (n = 11)

Mean ± seM Mean ± seM P

TMR (W) 0.244 0.024 0.686 0.020 <10−9

RMR (W) 0.167 0.018 0.510 0.016 <10−10

RMR (% TMR) 68.02 1.56 74.43 0.72 <10−2

Activity (AU) 0.945 0.095 1.463 0.102 <10−2

AMR (W) 0.077 0.007 0.175 0.006 <10−8

AMR (% TMR) 31.98 1.56 25.57 0.72 <10−2

Cost of act (W/AU) 0.083 0.008 0.123 0.007 <10−3

Cor. Coef. between 
TMR and activity

0.869 0.015 0.856 0.008 NS

TMR and RMR are adjusted to 20 g BW. N = 9 instead of 10 at 30°C because 
recording of the activity signal failed on one cage.

FigUre 7 | correlation between aMr and activity (a), TMr and 
activity (B), TMr and rMr (c) in ad libitum fed mice housed at 30°c 
(n = 9) and 22°c (n = 11). Data are adjusted to 20 g BW. Despite the fact 
that intensity of activity affects significantly AMR, the consequences on TMR 
are not significant. The strongest predictor of TMR appears to be RMR.
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related to a strong shift to the right of the distribution frequency 
at 22°C. The distributions of TMR values are also less Gaussian 
than the distribution of RMR values, with a shift to the right that 
reflects the energy expended with activity, more pronounced in 
mice housed at 22°C. This shift induced a clear separation between 
mean and median activity values that was hardly visible on RMR. 
Unexpectedly, the distribution of RMR values at 30°C showed a 
peak at 0.15 W, i.e., at a value lower than RMR values measured 
after an overnight fast (Table  1), which suggests that at 30°C, 
under close to usual living conditions and despite continuous 
access to food, mice had possibly periods of very low metabolism.

Distribution of activity Values in 
Ad Libitum Fed Mice
Contrary to what was observed in food restricted mice, spontane-
ous activity was larger at 22°C when mice were fed ad  libitum 
(Figure 9C). This increase relies on both more activity of high 
intensity (above 3 U, Figure 9A) and on the fact that, at 22°C, 
the mice were never quite completely restless and therefore had a 
much smaller peak of low activity values than mice at 30°C. The 
strong shift to the left, down to 0.4 AU, of the median activity 
intensity when mice were housed at 30°C shows that they were 
completely inactive half of the time. Accordingly, Figure 9B shows 
that the occurrence of activities of very low intensities (between 
0 and 0.1) amounted to 38% of the time in mice housed at 30°C, 
while it was only 12% in mice housed at 22°C. In contrast, mice 
at 22°C exhibited increased occurrence of activities of intensities 
between 0.1 and 0.4 (27% of time vs. 12%, Figure 9B) testifying 
to a form of restlessness.

DiscUssiOn

This study confirms that energy expenditure is approximately 
doubled in mice housed singly at room temperature (22°C) 
vs. mice housed at thermal neutrality (30°C) (2, 17). The most 
significant results of this study are that (1) spontaneous activity 
in mice at 22°C is reduced when the mice have no access to food 
but increased when they are fed, (2) the energy cost of activity is 
doubled when the mice are housed at 22°C, (3) RMR is decreased 
during activity at 22°C, and (4) TEF is probably largely under-
estimated when measured at 22°C. Taken together, these results 

shed more light on how the energy expended with NST affects 
the components of energy expenditure and can undermine the 
use of mice housed below thermal neutrality as a model of human 
physiology.

spontaneous Physical activity
We observed that activity was reduced at 22°C when the mice 
were fasted, but increased when they were under ad libitum con-
ditions. Activity reduction in fasted mice at 22°C was primarily 
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FigUre 8 | TMr (a) and rMr (B) values distribution adjusted to 20 g BW in ad libitum fed mice housed at 30°c (n = 9) and 22°c (n = 11). Vertical lines: 
mean (solid) and median (dashed). $: P < 10−5.

FigUre 9 | activity values distribution in ad libitum fed mice housed at 30°c (n = 9) and 22°c (n = 11). Vertical lines: mean (solid) and median (dashed).  
(a) Overall distribution of the activity values (P < 10−6 22°C vs. 30°C). Inbox (B), zoom of the distribution on the lower intensities of activity values. (c) Mean activity 
values ($, P < 0.001).
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due to a strong decrease in the intensity of the bursts of activity 
and not in a reduction in the number of activity periods (Figure 3 
gives a typical example of this phenomenon). It was not possible 
to perform such a detailed analysis of the amplitude of the bursts 
of activity in ad  libitum fed mice because data acquisition was 
performed in a multiplexed design and measurements were per-
formed at 10 min instead of 2 s intervals. However, we observed 
that the average activity intensity in mice housed at 22°C was 
30% higher than in mice housed at 30°C. In addition, a percent 
cumulative frequency analysis of the activity data (18) indicated 

that fed mice housed at 22°C spent less time fully inactive and 
more time restless or highly active. It is probable that the low 
ambient temperature made the mice fell less comfortable and 
induced fidgeting that decreased the time spent fully inactive. 
On the other side of the distribution, the increased occurrence of 
high intensities of activity was probably related to the larger food 
intake induced by the increased energy requirements.

Brown and colleagues previously reported that, in fasted rats, 
activity was reduced at room temperature (21°C) vs. thermal neu-
trality (28°C) (19). They reported that video recordings indicated 
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a cold-defensive posture at 21°C in order to decrease convective 
and radiant heat transfer. In our study, we did not perform video 
recordings but it was visually obvious that fasted mice housed at 
22°C were huddled up on themselves and were rather reluctant to 
move. The decrease in activity in fasted mice at 22°C can therefore 
be the result of a behavioral adaptation to the cold to reduce heat 
losses in conditions where they had no opportunity to access food 
and refill their energy stores (20). In contrast, it seems that when 
under ad libitum feeding conditions, mice react to the decrease 
in room temperature by resting less, moving, and eating more. 
We were not able to analyze properly the food intake recordings 
in this study, but we observed no decrease in BW in the mice 
housed at 22°C during the calorimetric studies (mean δBW 
22°C = 0.19 ± 0.44), which implies that mice housed at 22°C ate 
approximately two times more than those housed at 30°C. In con-
trast, under ad libitum conditions, Kaiyala and colleagues (21) did 
not report any significant effect of temperature on spontaneous 
physical activity. The reason for this difference remains unclear. 
One possible explanation may be related to the fact that, because 
the difference in activity under ad libitum conditions relies on the 
lowest and largest activity levels, the less precise measurement of 
activity with red light-beams as used by Kaiyala and colleagues, vs. 
force transducers used here, may indicate that they missed these 
differences. However, the differences in TMR at 21 and 30°C was 
also smaller in the Kaiyala study than in this one, and therefore, 
the difference may also be due to the mouse strain or sex.

relation between activity, rQ, TMr, and 
rMr in Fasted Mice
Respiratory quotient was poorly affected by the occurrence of the 
bursts of activity at 22°C as well as at 30°C showing that muscle 
contraction was fueled by the available mixture of circulating 
glucose and fatty acids. Such lack of a specific increase in glucose 
oxidation and the strong correlation between activity and TMR 
probably reflects the fact that the bursts of activity were of low 
intensity and therefore that the work load on the muscles was 
low enough to be fueled by the current circulating mix of carbo-
hydrates and lipids.

The bursts of spontaneous activity induced a rapid doubling 
of TMR at both 30 and 22°C. This increase reflects the energy 
required to fuel muscular effort. In the experiments performed 
to measure TEF, the high rate of data acquisition combined with 
the data processing by the Kalman filtering (13–15) allowed us 
to perform a very detailed analysis of the short-term changes 
between activity, TMR, and RMR in fasted mice. This analysis 
showed that activity marginally increased RMR at 30°C but 
induced curvilinear changes in RMR when the mice were housed 
at 22°C. At this temperature, RMR increased during the first 
5  min then declined rapidly below the level measured before 
the onset of activity and finally reached a nadir at the end of the 
activity period. During the rest periods following the activity 
bursts, RMR returned to pre-activity values within ~30 min. The 
increase in RMR during the first 5 min of activity surprised us but 
was already described by Brown and colleagues (19), although 
not as precisely as here, which supports the idea that this increase 
was not a computational artifact. It has been suggested that the 
temperature set-point may be increased during activity (7) 

possibly to heat muscles and to improve muscular work, which 
may explain why this phenomenon is observed with more inten-
sity in mice housed at 22°C than in those housed at 30°C. The fol-
lowing decrease in RMR reflects obviously that the heat released 
by the working muscles reduced the cost of thermoregulation. 
Accordingly, when the mice stopped moving, the heat released 
from the muscles progressively decreased, therefore thermal 
regulation was progressively restored and RMR increased back 
to pre-activity values. This process was also suggested by Brown 
and colleagues in the rat (19). According to their calculations, 
the decrease in what they called “supplementary thermogenesis” 
lasted 1–1.5 h after the end of activity. The difference may be due 
to the inferred timing adjustment of their equations or because 
the measurement were done on rats in conditions where the cold 
stress induced a smaller response than what we report for mice 
in this study (heat production was increased by only 25% instead 
of 100% here). On the other hand, Kaiyala and colleagues (21) 
reported that the thermoregulatory effort of mice housed at 21°C 
was reduced during the light period when activity and feeding 
were the highest.

The relation between the TMR increase above RMR (δMR) 
and the activity signal intensity computed from data acquired at 
a high rate showed a strong linear correlation between δMR and 
activity and indicated a doubling of the activity cost in fasted mice 
housed at 22°C. This result was confirmed in mice fed ad libitum 
where the correlation between TMR and activity, despite a less 
precise fit, unambiguously pointed to a significant increase of 
the activity cost at 22°C. Again, this phenomenon was already 
observed in rats by Brown and colleagues (19) who reported 
that the increase in heat production induced by activity was of 
0.040 vs. 0.068 J/min/g0.67 at 28 and 21°C, respectively. Another 
study in which the cost of activity was investigated at different 
temperatures (7) also reported higher energy expended in the 
cold. The authors did not report directly the slope of the correla-
tion between TMR and activity but in their discussion quoted 
that the energy cost per unit of activity was increased when mice 
were housed at low temperature (4°C). Therefore, the results of 
this study line up with previous reports showing that the cost of 
activity is increased when rats or mice are housed below thermal 
neutrality.

Abreu-Vieira and colleagues (7) suggested that this increase 
was likely due to increased heat loss from the less compact body 
position and disruption of the unstirred air layer around the 
body. However, from our data and in particular from the analysis 
of the very short-term changes between activity and TMR, we 
could observe that the extra cost of activity remained strongly 
correlated to the intensity of the activity signal, and therefore 
was produced in line with the ATP production for muscular 
contraction. In this context, the most plausible mechanism is an 
increased uncoupling between respiration and ATP production, 
possibly sustained by an increased expression of UCP2 and/or 
UCP3 in muscles to assist thermal regulation (22). It has been 
suggested already that variations in gene expression of UCP2 and 
UCP3 in muscles may affect the energy cost of exercise (23, 24). 
Abreu-Vieira and colleagues (7) also suggested that mice defend 
a higher body temperature during physical activity and that such 
increased uncoupling at 22°C may be a way to help increase 
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FigUre 10 | correlation between aMr and activity (a), TMr and 
activity (B), TMr and rMr (c) in fasting mice housed at 30°c (n = 11) 
and 22°c (n = 10). Data were adjusted to 20 g BW. The small ranges of 
activity, TMR, and RMR values in fasting mice prevented results 
interpretation.
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muscle temperature. The reason for this uncoupling may be to 
warm the muscles and increase muscle performance at lower 
ambient temperatures (25). Another parameter in favor of this 
interpretation is, as discussed at the beginning of this section, 
the transient increase in RMR observed during the first 5 min of 
activity periods at 22°C but not at 30°C. This could be interpreted 
as an increased heat production by NST to warm-up the muscles 
at the onset of muscular effort.

relation between activity, and TMr 
in Fed Mice
Despite the fact that, in free-feeding mice, the relation between 
TMR and activity measured across time in individual mice 
remained very strong at 22°C as well as at 30°C, and that the cost of 
activity at 22°C was approximately two times higher than at 30°C 
(as observed in fasted mice), we observed that when measured 
across multiple mice, the level of activity did not affect any more 
TMR in mice housed at 22°C and strongly weakened the relation 
between activity and TMR at 30°C. However, both at 22 and 30°C, 
AMR still strongly correlated with the amount of activity. These 
results are fully in line with those previously reported by Virtue 
et al. (8) who observed in larger groups of mice (n = 27) that at 
30°C both total-EE and activity-EE correlated with activity while, 
at 24°C, only activity-EE correlated with activity. To explain the 
fact that the relation between TMR and activity decreases (but 
generally remains significant) at 30°C and is no longer observed 
at 22°C, one must take into account that the main determinant 
of TMR is RMR. In this study RMR accounted for more than 
70% of TMR and R2 between TMR and RMR was above 0.90 at 
both temperatures. Therefore, it is not surprising that on a daily 
basis the activity effect on TMR be reduced by the variability 
in RMR, and finally vanishes below thermal neutrality where 
RMR fluctuates more as a result of heat transfer between thermal 
regulation and heat released by other discontinuous processes, 
such as activity and TEF. In addition, as seen when comparing 
Figures 2, 6 and 7, the range of TMR values available to fit the 
correlation with activity is much larger when measured across 
time in a single mouse than when measured between mice, which 
further weakens the correlation [see also Ref. (8)].

Note that we performed this same analysis in fasted mice 
between 23:00 and 08:30 hours, i.e., when mice were in the post-
absorptive state and adapted to the temperature in the metabolic 
cage. However, in these mice the level of activity was very low 
(Figure 5) and consequently individual TMR clustered around 
the mean group value (30°C, Mean 0.232, CV 8.93%, 22°C, mean 
0.449, CV 7.48%). This prevented us from performing a precise 
analysis of the relation between TMR and activity across multiple 
mice and to reveal any effect of the activity level on TMR at 30°C 
as well as at 22°C (see Figure 10).

rQ, rMr, and TeF
Resting metabolic rate in fasted mice at 22°C was two times that 
at 30°C, a result in line with the increase reported previously in 
most studies (17). In contrast, the increase in RMR induced by 
ingestion of the test meal at 22°C, i.e., TEF, was only one third of 
the response observed in mice housed at 30°C. At first glance, this 
could be interpreted as a strong reduction in TEF in mice housed 

at 22°C but, taking into account the strong interplay between heat 
generation for thermoregulation and heat released by muscular 
contraction and TEF, it is highly probable that at 22°C, fasting 
RMR values decreased rapidly after meal ingestion. This was 
confirmed by the observation that at 22°C, post-meal RMR was 
lower than pre-meal RMR 4 h after the meal and onward. It was 
not possible to measure directly the time course of the decrease 
in RMR after meal ingestion, but if we refer to the fast pace of 
changes in RMR observed in response to bursts of activity, it 
is possible that the cost of thermal regulation decreased within 
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minutes after the meal was given. Therefore, at 22°C, the RMR 
value measured after ingestion of the test-meal was the result of 
the increase in RMR induced by TEF and the decrease in NST 
induced by the heat released from activity and TEF. In these 
conditions, pre-meal RMR cannot be extrapolated to compute 
TEF whereas this extrapolation is possible at thermal neutrality 
when pre-meal RMR is equal to basal metabolic rate and cannot 
be further decreased. An argument supporting the hypothesis 
that in our experimental conditions NST was much reduced by 
the combined effect of activity and TEF is that, when TEF was 
computed in reference to RMR measured 6 h after the meal, we 
obtained TEF values similar to those measured at 30°C. Thus, in 
mice at 22°C, the standard method to measure TEF cannot be 
applied. In conditions where it is not possible to measure pre-
cisely the decrease in NST induced by activity and TEF, it must be 
acknowledged that TEF cannot be accurately measured in mice 
housed at 22°C.

Respiratory quotient was significantly decreased after an 
overnight fast in mice housed at 22°C confirming that mice 
exhausted more quickly their glycogen stores and, after a few 
hours of fast had to rely on their lipid stores. The RQ response to 
feeding showed also that the overall increase in RQ was similar 
at 22 and 30°C, but that the increase was of shorter duration, 
reflecting the fact that mice housed at 22°C used more quickly 
the carbohydrates brought by the meal. Therefore not only the 
intensity of TEF but also the metabolic fate on the ingested 
nutrients is greatly affected by the increased energy demand of 
mice housed at 22°C.

These significant differences in TEF and RQ responses to 
ingestion of a test-meal at 22 and 30°C should be considered 
carefully because when TEF and RQ are measured in humans, 
great care is taken to avoid any thermal stress.

limitations of This study
A main limitation in the interpretation of the results of this 
study is the lack of measurement of body temperature and 
caloric intake during calorimetry studies. The absence of caloric 
intake data was partly compensated for by the fact that we 
observed no significant changes in BW during the calorimetry 
studies at 22°C as well as at 30°C, indicating that energy balance 

was preserved and thus that caloric intake equaled total energy 
expenditure. In contrast, continuous online measurement of 
body temperature would have helped to verify that mice did not 
decrease their temperature set point at 22°C to reduce the cost 
of thermoregulation. This would have necessarily influenced 
the response to activity and feeding and would have provided 
a possible explanation for the increased cost of activity and 
fluctuations of RMR at 22°C. Comparison of gene expression 
in muscles and in white and brown adipose tissue of mice 
acclimatized at 22 and 30°C would have been helpful too, but in 
the study framework from which these data were extracted, the 
mice acclimatized to 30°C were reacclimatized to 22°C before 
organ and tissue collection.

cOnclUsiOn

In mice housed at 22°C, resting energy expenditure is doubled 
by NST to maintain thermal regulation, and the cost of activity 
is also doubled. Intensity of NST is highest at rest and is rapidly 
tuned down when extra heat is released from muscular contrac-
tion and feeding. In this context, the respective roles of basal 
metabolic rate, NST, activity, and thermic effect of feeding in the 
energy balance equation are very difficult to decipher. NST in 
humans is most of the time close to 0. If the mouse is intended 
to serve as a model of human physiological regulation, it may be 
reasonable to house them close to thermal neutrality, in particular 
when they are singly housed without bedding for measurements 
of metabolic and behavioral parameters. On the other hand, if 
housing temperature is used as a tool, the mouse can be a very 
interesting model to study the possible role of NST in the energy 
balance equation.
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An increased incidence of obesity is registered worldwide, and its association with insulin 
resistance and type 2 diabetes is closely related with increased morbidity and mortality 
for cardiovascular diseases. A major clinical problem in the management of obesity is the 
non-adherence or low adherence of patients to a hypocaloric dietetic restriction. In this 
study, we evaluated in obese mice the effects of shifting from high-calorie foods to nor-
mal diet on insulin sensitivity. Male C57BL/6JOlaHsd mice (n = 20) were fed with high fat 
diet (HFD) for a 24-week period. Afterward, body weight, energy, and food intake were 
measured in all animals, together with parameters of insulin sensitivity by homeostatic 
model assessment of insulin resistance and plasma glucose levels in response to insulin 
administration. Moreover, in half of these mice, Glut4 mRNA levels were measured in 
muscle at the end of the high fat treatment, whereas the rest of the animals (n = 10) were 
shifted to normocaloric diet (NCD) for 10 weeks, after which the same analyses were 
carried out. A significant reduction of body weight was found after the transition from 
high to normal fat diet, and this decrease correlated well with an improvement in insulin 
sensitivity. In fact, we found a reduction in serum insulin levels and the recovery of insulin 
responsiveness in terms of glucose disposal measured by insulin tolerance test and 
Glut4 mRNA and protein expression. These results indicate that obesity-related insulin 
resistance may be rescued by shifting from HFD to NCD.

Keywords: insulin resistance, obesity, glut4, diet, glucose

inTrODUcTiOn

Modern lifestyle is often characterized by sedentary activities and overeating. As a consequence, 
in the last decades, this has been responsible for the increased incidence and prevalence of obesity 
and obesity-induced comorbidities, such as insulin resistance and metabolic syndrome (1, 2) that 
may contribute to type 2 diabetes mellitus (T2DM) and cardiovascular disease (3). Several studies 
have demonstrated that a healthy lifestyle can lead to weight loss and improve insulin sensitivity 
(4–7). In this regard, a crucial role is played by the nutrient composition of the diet, both in terms 
of total caloric intake and the variety of its components, with particular attention to the different 
types of fatty acids (8, 9). Unfortunately, most of anti-obesity interventions are often limited by 
the difficulty to maintain a low-calorie dietary regimen, especially when long-term treatments are 
required (10, 11). Thus, few anti-obesity programs have been found to be helpful.

http://www.frontiersin.org/Endocrinology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2016.00049&domain=pdf&date_stamp=2016-05-27
http://www.frontiersin.org/Endocrinology/archive
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://dx.doi.org/10.3389/fendo.2016.00049
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:brunetti@unicz.it
mailto:d.russo@unicz.it
http://dx.doi.org/10.3389/fgene.2016.00092
http://www.frontiersin.org/Journal/10.3389/fgene.2016.00092/abstract
http://www.frontiersin.org/Journal/10.3389/fgene.2016.00092/abstract
http://www.frontiersin.org/Journal/10.3389/fgene.2016.00092/abstract
http://loop.frontiersin.org/people/349975/overview
http://loop.frontiersin.org/people/104227/overview
http://loop.frontiersin.org/people/139062/overview
http://loop.frontiersin.org/people/149416/overview
http://loop.frontiersin.org/people/350018/overview


FigUre 1 | study design. A schematic representation of the study protocol 
and experimental plan is shown.
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To date, several animal models have been used to evaluate the 
effects of various dietetic regimens on body weight and meta-
bolic parameters. A validated experimental model is represented 
by mice fed with a high fat diet (HFD), which develop obesity, 
insulin resistance, and dyslipidemia (8–13).

In the present study, we evaluated the effects of the transition 
from HFD to normocaloric diet (NCD) (regular food with no 
additive agents or nutraceutical compounds) on body weight and 
insulin responsiveness in C57BL/6JOlaHsd mice, a strain of mice 
genetically prone to develop obesity and insulin resistance (14).

MaTerials anD MeThODs

animals and study Design
Five-week-old male C57BL/6JOlaHsd mice (n = 20), NCD and 
HFD, were purchased from Harlan Laboratories S.r.l (Udine, 
Italy). Mice were housed in individual cages and maintained on 
12-h light/dark cycle at 21 ± 1°C and 50 ± 5% humidity with 
free access to water and food ad libitum. Animals were fed with 
HFD containing 60.3% kcal fat, 21.3% kcal carbohydrate, and 
18.4% kcal protein (HFD group) for 24 weeks. After this period, 
10 mice were euthanized by cervical dislocation and the other 
10 were fed with NCD only (Teklad Global 18% kcal fat, 58% 
kcal carbohydrate, and 24% kcal protein) (NCD group) for the 
subsequent 10 weeks. A schematic representation of the study 
design is shown in Figure 1. Body weight, girth waist, and food 
intake were recorded at weekly interval for all animals (15). Liver, 
skeletal muscle, and abdominal fat were excised, weighted, and 
stored in liquid nitrogen. This study was performed following the 
Italian (D.M. 116/92) and ECC regulations (O.J. of E.C.L 358/1 
12/18/1986), in accordance with the guide for the care and use of 
laboratory animals and approved by the local ethical committee.

Biochemical analysis
Blood samples were collected after 12 h of fasting. Serum was sep-
arated by centrifugation at 1700 g for 10 min at room temperature 

and stored at −20°C, until use. Total cholesterol and triglycerides 
were measured using commercial reagents (Siemens Healthcare 
Diagnostics, Milano, Italy) and an automated biochemistry ana-
lyzer (Dimension EXL, Siemens Healthcare Diagnostics). Insulin 
levels were measured using ELISA kit (Rat/Mouse Insulin ELISA 
Kit, EMD Millipore Corporation, Darmstadt, Germany), accord-
ing to the manufacturers’ instructions.

insulin Tolerance Test
Insulin tolerance test (ITT) was performed in both HFD and 
NCD groups, as previously described (16). Animals were fasted 
for 12  h, weighed, and injected intraperitoneally with insulin 
(1 U/kg body weight Regular®, Novorapid, Novonordisk, Roma, 
Italy). Blood glucose levels were measured after 0, 15, 30, 60, and 
90  min using an automatic glucometer (Glucocard, Menarini 
Diagnostics, Firenze, Italy).

expression of glucose Transporter Type 4
Total RNA was isolated from quadriceps skeletal muscle using 
TRIzol reagent (Life Technologies, Monza, Italy), following the 
manufacturer’s recommended protocol and quantified with a 
NanoDrop Spectrophotometer (Thermo Fisher Scientific, Inc., 
Waltham, MA, USA). RNA levels were normalized against 18S 
ribosomal RNA in each sample, and cDNAs were synthesized 
from 1 μg of total RNA using the High Capacity cDNA Reverse 
Transcription Kit (Life Technologies). Primers for mouse Glut4 
and ribosomal protein S9 (RPS9) were designed according to 
sequences from the GenBank database. Relative quantification was 
made using a real-time thermocycler (Eppendorf Mastercycler ep 
realplex, Milano, Italy). In a 20-μl final volume, 1 μl of cDNA solu-
tion was mixed with SYBR Green RealMasterMix (Eppendorf) 
and 0.2  μM of each sense and antisense primers. SYBR Green 
fluorescence was measured, and relative quantification was made 
against either RPS9 or Gapdh cDNAs, used as internal standards. 
All PCR reactions were carried out in triplicates. Glut4 protein 
expression was measured in quadriceps muscle from six to eight 
mice of each group, using a rabbit anti-Glut4 polyclonal antibody 
as previously described (17).

statistical analysis
Results are expressed as mean ± SD. The independent t-test was 
used to evaluate intergroup differences. All statistical analyses 
were performed using GraphPad Prism version 5.0 statistical 
software (GraphPad Software Inc., San Diego, CA, USA). p values 
lower than 0.05 were considered statistically significant.

resUlTs

effects of normocaloric Diet on Body 
Weight and Biochemical Parameters
Twenty mice were fed with HFD (HFD group) for 24 weeks, reach-
ing a weight of approximately 43 g, with fasting plasma glucose 
levels between 90.5 and 117.7 mg/dL, which were consistent with 
a condition of impaired fasting glucose. After the 24-week period, 
half of the mice were fed with NCD for the following 10 weeks 
(NCD group). A significant decrease of body weight was observed 
in the NCD group compared to the HFD group (27%, p < 0.001), 
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TaBle 1 | Weight and waist in hFD and ncD mice.

hFD ncD p value

Liver (g) 1.24 ± 1.09 1.09 ± 0.09 <0.05
White adipose (g) 1.54 ± 0.31 1.29 ± 0.08 <0.05
Epididymis (g) 0.60 ± 0.16 0.33 ± 0.08 <0.01
Girth waist (cm) 10.55 ± 0.42 9.54 ± 0.17 <0.01

Values are expressed as mean ± SD.

FigUre 2 | effects on body weight, food, and energy intake in mice fed with high fat diet (hFD) for 24 weeks and with normocaloric diet (ncD) for 
other 10 weeks. A significant reduction of body weight and energy intake was observed in NCD mice (a,B), whereas no significant difference was detected in food 
intake (c). Body weight over the time is shown in the inset. Values are expressed as mean ± SD. *p < 0.001.
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as a result of the decrease in energy intake due to the less caloric 
supply derived from the NCD rather than the different food 
intake (Figure 2). In the NCD group, we also observed a decrease 
in liver size, fat depots, and girth waist (Table 1). Moreover, shift-
ing to NCD resulted in a significant decrease in plasma glucose 
levels (p < 0.05) and serum insulin levels (p < 0.01), as well as 
triglycerides (p < 0.05) and total cholesterol (p < 0.05) (Figure 3).

effects on insulin sensitivity
Next, we evaluated the effects of NCD on insulin sensitiv-
ity. ITT performed in mice before and after NCD showed a 

better response to insulin in terms of changes in blood glucose 
 concentrations in the NCD group than in the HFD group. 
In fact, the glucose-lowering effect of exogenous insulin was 
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FigUre 3 | Biochemical parameters. Blood samples were collected as indicated in Section “Materials and Methods.” After 10 weeks of feeding with a 
normocaloric diet (NCD), mice showed a significant reduction of plasma glucose levels and serum insulin levels, as well as a reduction in both triglycerides and total 
cholesterol when compared to the HFD. Values are expressed as mean ± SD. *p < 0.05.
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enhanced in NCD mice during ITT and was reduced in HFD 
mice (Figure 4). From a mechanistic point of view, the improve-
ment in insulin sensitivity in mice in response to NCD was 
dependent, at least in part, on an increase in Glut4 expression 
induced in skeletal muscle following the transition from HFD 
to NCD. To show such a molecular link between restoration 
of insulin sensitivity and NCD, total RNA was extracted from 
skeletal muscle of animals before and after shifting to NCD, after 
insulin stimulation, and Glut4 mRNA and protein levels were 
measured. As shown in Figure 5, both insulin-stimulated Glut4 
mRNA and protein expression were significantly increased in 
skeletal muscle of NCD mice as compared with that of HFD 
mice (p < 0.05).

DiscUssiOn

Obesity is a chronic disorder that can cause other health prob-
lems, such as diabetes, hypertension, hepatic steatosis, obstruc-
tive sleep apnea, and atherosclerosis (18). The association of 
obesity with T2DM is well established, due to the negative 
influence of excessive body fat on peripheral insulin action and 
hepatic function, leading to insulin resistance (19). Treatment 
of obesity includes hypocaloric diet, exercise, and lifestyle 
modifications, with dietary manipulation still representing the 
first-line therapeutic approach for this common disorder (20, 

21). However, it is still debated which is the more appropriated 
dietetic regimen to obtain a weight loss, which may be at the 
same time rapid, well tolerated, and sustainable for a long period 
of time. Although the importance of calorie restriction in this 
condition is well recognized, also for the positive psychological 
benefit for the patient and the family, there is no doubt that 
a major problem in treating obesity is still represented by the 
relatively low level of adherence of affected subjects to low/very 
low-calorie diets (22–24). Thus, many dietary strategies have 
been proposed to overcome such obstacles, but the results are 
not satisfactory enough in most of obese patients (25, 26). In 
these individuals, we hypothesized that shifting to normoca-
loric balanced diet, formulated to avoid excess fat, rather than 
hypocaloric diet  –  which would obtain a better compliance 
especially in view of long-term treatment – might be sufficient, 
in addition to physical exercise and lifestyle change, to get 
more satisfactory results in terms of weight loss and conse-
quent improvement in obesity-related insulin resistance. This 
hypothesis is well supported by the present finding in our mouse 
model of obesity and obesity-induced insulin resistance. In fact, 
shifting from HFD to NCD for 10 weeks, caused a significant 
reduction of body weight mainly due to the reduction of vis-
ceral fat, together with the overall reduction of triglycerides, 
total cholesterol, and, most importantly, restoration of insulin 
sensitivity, as reflected by the decline in fasting insulin levels. A 
similar approach treating obese mice with NCD has also been 
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FigUre 5 | expression of glut4. Glut4 mRNA levels were measured by 
qRT-PCR in skeletal muscle from HFD and NCD mice, after insulin 
stimulation. Results are the mean ± SD for six animals per group. *p < 0.05 
versus HFD mice. A representative Western blot (WB) of Glut4 in quadriceps 
muscle from six to eight mice of each group is shown in duplicate in the 
autoradiogram. Gapdh, control of protein loading.

FigUre 4 | insulin sensitivity. HFD and NCD mice fasted for 12 h were injected intraperitoneally with insulin (1 U/kg). Blood glucose levels were measured with a 
glucometer, as reported in Section “Materials and Methods.” Values are expressed as mean ± SD. *p < 0.05.
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used in a few other studies where, however, some nutraceutical 
compounds or other ingredients were added to regular food 
(27–30). This is slightly different than what we did in our study, 
in which NCD itself, without any additive agent, was able to 
improve insulin sensitivity and Glut4 expression.

Glut4 is the major insulin-dependent glucose transporter in 
muscle. Abnormalities at this level are a hallmark of peripheral 
insulin resistance (31). In the present study, the improvement 

in insulin sensitivity associated with increased Glut4 mRNA 
 expression in NCD mice provides a possible mechanistic expla-
nation as to how the normal calorie diet can improve insulin 
responsiveness and supports the hypothesis that rescue from 
insulin resistance and diabetes can be reached without the adop-
tion of a low-calorie diet. If confirmed in obese humans, such 
an approach, in association with adequate and individualized 
physical exercise programs, might be able to contribute to coun-
teract the long-term failure of the current therapeutic approaches 
adopted in these individuals, and this would confirm further the 
appropriateness of mouse models for studying human obesity. 
However, on the other hand, it is also known that marked inter-
species differences exist between human and mouse with respect 
to behavioral control of food uptake, tissue energy disposal and 
storage, weight, and weight loss, which emphasize the influence 
of non-genetic environmental factors and genetic modifiers in 
determining the phenotypic variations observed in humans and 
animal models of obesity. Thus, caution is required in general-
izing these findings. As a limitation of the present work, the fact 
is that mice of different ages were compared in our study.

In conclusion, numerous anti-obesity initiatives have been 
adopted up to now, which include lifestyle changes, drug treat-
ments, and surgery. However, because of the limited efficacy 
and the occurrence of adverse events in affected treated patients, 
alternative and complementary therapies for weight loss have 
been investigated, including acupuncture, dietary supplements, 
etc. Our findings in the current work provide valuable informa-
tion about the efficacy of shifting to NCD in restoring weight and 
insulin sensitivity in HFD-induced obese mice. Similar studies in 
obese humans would reveal whether this strategy, probably better 
accepted by patients, may be successful in correcting weight gain 
and obesity-related insulin resistance.
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