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Editorial on the Research Topic
Climatic and associated cryospheric and hydrospheric changes on the
Third Pole - Volume II

The Third Pole (TP) region refers to the high lands in Asia, including the Tibetan
Plateau, Himalayas and their surrounding mountains, as well as the Pamir Plateau, the
Tianshan Mountains and the Altai Mountains (Yao et al., 2022). It is home to more than
100,000 km2 of glaciers, containing the largest volume of ice outside the Arctic and Antarctic
(Yao et al., 2012).

The warming rate of the TP is twice the global average in the past half century (Chen
et al., 2015; Pepin et al., 2015). Climate warming has altered the water vapor supply and
regional climate characteristics of the TP (Yang et al., 2014). The changes in cryosphere such
as glacier retreat, permafrost degradation, and snow-to-rain in precipitation (Kang et al.,
2010) have also greatly changed the hydrological cycle (Yang et al., 2011) and land surface
conditions (such as vegetation, soil, lake, and geomorphology), leading to prominent
differences among major TP river basins in various components of changes, including
actual evapotranspiration, terrestrial water storage, and river runoff (Bibi et al., 2018; Yao
et al., 2019). Due to the complex land surface environment and the influence of atmospheric
circulation in the TP, river runoff components (rainfall-runoff, ice and snow melting, soil
freezing/thawing) could be also largely different. These changes have a profound impact on
the regional water cycle, changing the spatiotemporal patterns of available freshwater supply
(Immerzeel et al., 2010; Lutz et al., 2014). However, up to now, the quantification of the
atmosphere, cryosphere, biosphere and hydrosphere over the TP still has large uncertainties,
due to a lack of necessary ground-based observations (across a range of different
hydrometeorology and cryosphere variables) and advanced satellite technology (e.g., new
sensors for permafrost ice monitoring, and atmospheric ice monitoring).
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This Research Topic aims to cover recent climate changes over
the TP (or comparable cold regions) and its associated impacts on
the cryosphere and hydrosphere. Different from “Climatic and
Associated Cryospheric and Hydrospheric Changes on the Third
Pole-Volume I,” this Research Topic (“Climatic and Associated
Cryospheric and Hydrospheric Changes on the Third Pole-Volume
II”) tends to quantify the atmosphere, cryosphere, biosphere and
hydrosphere of the TP in different aspects with acceptable
accuracies, based on in situ observations, satellite remote
sensing, and numerical modeling. These studies address changes
in atmospheric ice, seasonal snow cover, mountain glaciers,
permafrost, lakes, vegetation, evapotranspiration, terrestrial
water storage as well as water-related disasters, and examine
how these changes are linked to climate change across different
spatial scales (from a catchment to the whole TP). Results
from these studies will improve our understanding of
cryosphere–hydrosphere–atmosphere interactions over the TP.

This Research Topic includes nine original research articles and
one brief research report. This is a multidisciplinary Research Topic
bridging the gaps in cryosphere, climatology, hydrology,
geomorphology, biogeochemistry, and remote sensing sciences.

Liu et al. present a low-cost approach by integrating remote
sensing data and limited underwater surveys for lake volume
estimation on the TP, by coupling the lake hypsometric curve
and bottom elevation. Their studies on nine TP lakes with
different sizes and geometric characteristics show an overall bias
in volume estimate of about 15%. The method proposed by their
paper is expected to provide a simplified but efficient solution for
estimating the lake water volume on the TP and other ungauged
areas.

Liu et al. examine the hydrological budgets and their driving
forces of closed Chinese inland basins. In their study, trends and
magnitudes of precipitation, terrestrial water storage, and actual
evapotranspiration were detected by the rank-based non-parametric
Mann–Kendall test method. Their results showed that both
precipitation and actual evapotranspiration significantly increased
in the Chinese inland basins. Moreover, the annual terrestrial water
storage in the Chinese inland basins significantly decreased mainly
due to the increased actual evapotranspiration, in which
approximately 60% was attributed to increased irrigation diversions.

Yang et al. evaluate the total mass, spatial distributions, and
long-term trends of atmospheric ice over the TP. Based on the
estimations using multiple satellite datasets (Aqua, Terra, the Suomi
National Polar-orbiting Partnership, and NOAA-20), they
concluded that the total mass of atmospheric ice could be up to
0.26 ± 0.03 Gt over the TP from 2013 to 2020. In general, the
southwest and northeast TP were the low-concentration areas (0.
05 kg/m2 on average), while the southeast TP was the high-
concentration area (0.09 kg/m2 on average). The plentiful water
vapor transported by the Southwest Summer Monsoon and steep
topography could be the major contributors to the rapid growth and
the higher ice concentration of atmospheric ice in southeast TP.

Half of the annual water discharge in the upper Indus Basin is
contributed from the glacier and snow-fed basins in the Hindu
Kush, Karakoram, and Himalayan regions, which are sensitive to
climate change. Moazzam et al. indicates that the snow cover area in
Astore (Western Himalayas) and Shigar (Karakoram region) has an
increasing trend with a rate of 11.16 km2/year and 4.27 km2/year,

respectively. The increasing annual precipitation and decreasing
annual mean temperature also support the phenomenon of
expanding snow cover area in these areas. Their further analyses
on snow cover changes with elevation reveal that snow cover area
was decreasing on foothills while increasing at the valley top.

Liu et al. explore the spatial-temporal changes in the lake area on
the northeastern TP from 1988 to 2019 and their driving factors
based on Landsat images, meteorological data, and glacier and
permafrost data. It suggests that the lake areas increased at rates
of 0.01–16.03 km2/year from 1988 to 2019. In more detail, the
change was featured by a decrease during 1988–2000, a moderate
increase during 2000–2012, and an accelerated increase during
2012–2019. The precipitation (other than glacial meltwater) was
the primary driving factor for this dramatic change in the lake area
of this region, while the permafrost degradation further intensified
the lake expansion.

Park et al. implement a water age calculation scheme into a
coupled hydrological and biogeochemical model to assess the
mechanisms through which climate warming affects the soil
water storage–evapotranspiration–water age feedback cycle in a
boreal forest. Their results suggest that permafrost warming
(characterized by earlier soil thawing and later freezing) induced
higher evapotranspiration, thereby shortening the residence time of
precipitation-sourced water in the active layer and further
rejuvenating water in soil layers and in evapotranspiration.
Under future climate warming conditions, this effect is expected
to intensify and the water cycle will be accelerated.

Deng et al. explore the relationship between changes in
terrestrial water storage and vegetation on the TP to understand
further the role of vegetation in the changes of water systems in
alpine mountains. They combine terrestrial water storage anomalies
data and vegetation indices to determine how they interact. Their
results indicate a significant warming rate of 0.44°C/decade over the
TP from 1980 to 2020, while evapotranspiration and precipitation
trended upward significantly (12.9 and 15 mm/decade, respectively).
Under the current climate change state (the increased rate of
precipitation is faster than actual evapotranspiration), vegetation
change has an insignificant impact on the changes in terrestrial
water storage; in contrast, changes in terrestrial water storage
(surplus/deficit) significantly affect vegetation changes (greening/
browning) in parts of the TP.

Mountains glacier, as one of the most important components of
terrestrial water storage, effectively regulates and stabilizes surface
water resources. However, how much the mountain glacier mass
balance contributes to terrestrial water storage changes around
mountain regions is unknown. Li et al. combine multi-source
datasets to quantify the contribution rate over high-elevation
mountain regions. They find that the glacial melting mass loss is
equivalent to about 49% of the total terrestrial water storage decline
during 2006–2015 at a global scale. There are larger contributions in
the regions with more glaciers. Glacier mass together with other
storage components play diverse roles in changing terrestrial water
storages across different mountain regions and watersheds, but
factors with great influence are glaciers, groundwater, soil water,
reservoirs, and lakes.

Gao et al. develop a multi-source data fusion snow cover dataset
for the TP, and conduct snow zonation and comparative snow
variability analysis. They find that from 2000 to 2021, 23.0% of TP
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has experienced a significant decrease in snow cover days (mainly in
the southeast) and 4.9% has experienced a significant increase
(mainly in the northwest). The contrasting change in the
snowpack on the TP, with a large decrease at lower elevations
and an increase at higher elevations, will bring new challenges to
water resources management in the region.

Finally, a study of the water-related extreme disaster on the TP is
reported by Wang et al. Global warming is inducing dramatic
changes in fluvial geomorphology and reshaping the hydrological
connections between rivers and lakes. The water level and area of the
Salt Lake have increased rapidly since the Zonag Lake outburst in the
Hoh Xil region of the TP in 2011, threatening the downstream
infrastructure. Wang et al. extract the long time series of the Salt
Lake areas and analyze its spatiotemporal variation from 1973 to
2021, and finally assess the overflow risk of Salt Lake that is a
downstream closed lake. They found that, the area change of the Salt
Lake was consistent with the variation in precipitation before the
outburst event. After that, it showed a remarkable area expansion
(circa 350%), especially in the southeast direction. Without the
construction of the emergency drainage channel, their simulation
results indicated that the earliest and latest times of the Salt Lake
overflow event are predicted to occur in 2020 and 2031, respectively.
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A Low-Cost Approach for Lake
Volume Estimation on the Tibetan
Plateau: Coupling the Lake
Hypsometric Curve and Bottom
Elevation
Kai Liu, Chunqiao Song*, Pengfei Zhan, Shuangxiao Luo and Chenyu Fan

Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of
Sciences, Nanjing, China

The widespread lakes on the Tibetan Plateau (TP) are key components of the water cycle,
thus the knowledge of their spatial distribution and volume is crucial for understanding the
hydrological processes under ongoing climate change. Many previous studies focus on
investigating surface elevation, inundation area variations and water volume changes for
these lakes. However, how much water is stored in lakes across the TP remains relatively
unexplored. It is because of the incapacity of satellite remote sensing methods in lake
depth measurements and the high cost of field bathymetric measurement. This study
developed a low-cost approach by integrating remote sensing data and limited underwater
surveys. The observed lake areas and surface elevations generated the elevation-area
relationship. Underwater surveys were conducted to detect the potentially “maximum”

lake depths using three optimized survey routes. With the constraint of lake-bottom
elevation, the lake-bottom zone area could be estimated for calculating the lake volume.
Experiments on nine TP lakes with different size and geometric characteristics
demonstrate that the optimized survey line along the lake short axis is well balanced in
efficiency and accuracy, with an overall volume bias of 15% approximately. The proposed
hypsometric curve method coupled with the bottom elevation measurement is expected to
provide a simplified but efficient solution for estimating the lake water volume on the TP,
which could be applicable to ungauged lakes in other harsh environments.

Keywords: lake volume, Tibetan plateau (TP), hypsometric curve, water-depth survey, remote sensing

1 INTRODUCTION

Lakes play a critical part in the water cycle and provide wide-ranging ecosystem services (Pekel et al.,
2016; Busker et al., 2019; Woolway et al., 2020; Liu et al., 2021b). Remote sensing observations
indicated more than 100 million lakes worldwide with uneven distribution (Verpoorter et al., 2014).
As one of the most concentrated areas of lake distribution, the Tibetan Plateau (TP) hosts more than
1330 lakes (>1 km2) in 2020, with a total area of ~5 × 104 km2 (Zhang et al., 2021a). Lakes on the TP
are highly sensitive to climate change because of minimal disturbances from human activities. Many
previous studies have examined the lake dynamics by using various remote sensing techniques (Lei
et al., 2013; Yang et al., 2018; Yao et al., 2018; Li et al., 2019a; Qiao et al., 2019b; Liu et al., 2021a;
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Cheng et al., 2022). However, the satellite remote sensing-based
studies focus on investigating variations of surface elevation,
inundation area and water storage for these lakes. Lack of the
underwater depths for most of the Tibetan lakes is a major
obstacle for calculating absolute lake volume of this region.
Thus, to answer how much water is stored in the high-altitude
deep lakes of the TP is still a very challenging task due to the harsh
environment and high cost of field investigation (Zhang et al.,
2020).

Field measurement using the onboard sonar is the most
reasonable method for generating the bathymetric map
(Bandini et al., 2018; Qiao et al., 2019a; Coggins and
Ghadouani, 2019). However, the labor cost and low efficiency
limited the large-scale underwater lake surveys over the TP. To
overcome the disadvantage of the traditional survey, some
researchers attempted to derive the bathymetric map using
remote sensing technologies (Getirana et al., 2018; Li et al.,
2019b, 2020). Both the optical images and satellite altimetry
were used to derive the underwater topography of inland or
coastal waterbodies (Armon et al., 2020; Xu et al., 2022), yet being
restricted in deep or turbid water conditions (Saylam et al., 2017;
Bandini et al., 2018). Some spatial prediction and modeling
methods were gradually proposed to overcome such difficulties
mentioned above by predicting underwater bathymetry using
exposed lake-surrounding terrains (Hollister et al., 2011;
Heathcote et al., 2015; Cael et al., 2017; Getirana et al., 2018).
For example, Messager et al. (2016) developed a geo-statistical
model based on available bathymetric data of 12,150 natural lakes
to estimate the lake volume globally. This approach is believed to
derive reasonable results on a global scale. However, the
uncertainty for lake individuals varies considerably.

Given the high cost of field measurement in full coverage and
the low accuracy of the spatial prediction method for local scale,
this study aims to propose an efficient method for water volume
estimation for lakes on the TP. Inspired by the application of the
lake hypsometric curve method in monitoring lake volume
change trajectory (Yigzaw et al., 2018; Fassoni-Andrade et al.,
2020; Li et al., 2021), we tried to estimate the lake volume by
extrapolating the hypsometric curve fitting to the near-bottom
constrained by the minimized water depth surveys. The most
commonly used hypsometric curve method is to combine the
water area estimations from satellite imagery (e.g., Landsat and
MODIS) with elevations from altimetry datasets (e.g., Hydroweb,
G-REALM, and DAHITI) (Crétaux et al., 2011; Busker et al.,
2019). Recently, Li et al. (2019a) developed a novel approach to
establishing the lake elevation-area (E-A) relationship by
projecting the lidar-based elevation profile (i.e., ICESat-2) onto
the surface water occurrence generated from long-term water
classifications, and this method has been applied to the global
scale (Li et al., 2020). In this study, the hypsometric curve of the
lake E-A relationship was derived from the satellite observation of
the historically inundated areas and corresponding water levels.
Subsequently, an optimized survey line over the lake was designed
for determining the bottom depths (elevations) with limited
underwater surveys. The lake-bottom elevation was further
used for constraining the hypsometric curve to predict the
near-bottom area. Finally, after obtaining the water depth and

area of the bottom zone, the lake elevation-volume (E-V) curve
can be generated along with the estimated lake water volume.

2 STUDY AREA AND DATASET

The Tibetan Plateau is the highest and most extensive highland
worldwide, with an average elevation exceeding 4000 m above
sea leave (Chen et al., 2020). The TP is widely acknowledged as
the Asian Water Tower because more than ten large rivers
originate from the TP and adjacent mountain ranges
(Immerzeel and Bierkens, 2012), where are distributed with
about 50,000 km2 of lakes. The TP lakes are mainly concentrated
in the endorheic basin and are sensitive to climate change. Many
previous studies have investigated the long-term trend and
spatial pattern of lake dynamics over the TP (Song et al.,
2013; Li et al., 2019a). This study targets to demonstrate the
approach of estimating absolute lake volume. Three items of
criteria were considered in selecting the case lakes. First, the
bathymetric data is available for evaluating the accuracy of lake
water volume estimates. Currently, only nearly 30 lakes on the
TP have open-access bathymetry. Second, the long-term satellite
altimetry data can be accessed for deriving the lake level series.
Last, the selected lakes should be roughly representative in the
area, morphology, location, and surrounding topography. We
eventually chose nine lakes based on the above-mentioned
criteria, including Aksai Chin Lake, Bangda Co, Eling Lake,
Manasarovar Lake, Kusai Lake, Pung Co, Tangra Yumco, Taro
Co, and Zharinam Co. (Figure 1). The basic information about
the case lakes is listed in Table 1.

We collected the bathymetric maps of the nine case lakes from
the published literature, which were generated based on full-
coverage measurements using the boat-mounted depth meter.
The high-quality lake bathymetry data can provide the reference
data for the performance assessment of volume estimation. The
hypsometric curve construction requires the paired time series of
lake areas and water levels in the (near-) synchronous
measurement periods. Landsat-7 ETM+ and Landsat-8 OLI
images were employed for lake extent mapping. Lake level
series were derived from the satellite altimetry data, including
ICESat/ICESat-2 and Hydroweb dataset. In addition, the digital
elevation model (DEM), which depicts the lake surrounding
terrains, was also used. Among all the available DEMs over
the TP, MERIT, the improved version of the SRTM DEM was
selected due to its high accuracy and early acquisition time
(February 2000) (Yamazaki et al., 2017; Liu et al., 2019).

3 METHODS

This study proposes a low-cost and simplified method for lake
volume estimation. As shown in Figure 2, the method includes
four main steps. First, the hypsometric curve of the “Elevation-
Area (E-A)” relationship was constructed based on the (near-)
synchronous lake area and water level series. Next, the
underwater survey was conducted along with the optimized
survey line for determining the lake bottom elevation. Then,
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with the constraint of the lake bottom, the lake-bottom area was
predicted by extending the hypsometric curve to the permanently
inundated area. Last, the year 2000 was selected as the
benchmark, and the total lake volume in 2000 can be
estimated by calculating the volume of a frustum based on the
solid geometry formula. The details of the above four steps are as
follows.

3.1 The E-A Relationship Construction
The E-A relationship is a widely-used metric for capturing the
morphologic features of lakes and reservoirs, which is
constructed by pairing up the lake areas and corresponding
elevations (water levels) information from in-situ

measurements or satellite observations. As all selected lakes
are ungauged in this study, the ICESat/ICESat-2
measurements and the altimetry data provided by
Hydroweb were jointly used for monitoring lake level
changes. Our previous studies have revealed two-generation
ICESat mission data coverage over the TP lakes (Luo et al.,
2021), among which seven study lakes are included. The long-
term change of these seven lakes was determined by
integrating ICESat/GLAH14 and ICESat-2 ATL13 version 4
data. We collected the orthometric heights in the EGM96
datum by subtracting geoid heights from ellipsoidal heights.
The other two lakes, Pung Co and Kusai Lake, have the
altimetry data provided by the Hydroweb.

FIGURE 1 | Distribution of nine selected lakes and their bathymetric data. The lakes are in order as follows: Aksai Chin Lake, Bangda Co, Eling Lake, Kusai Lake,
Manasarovar Lake, Pung Co, Tangra Yumco, Taro Co, and Zharinam Co.

TABLE 1 | Basic information of the selected lakes.

Lake
name

Latitude/
longitude

Area*
(km2)

Lake
level
(m)

Circularity Mean
slope

(1000m)

Mean
depth
(m)

Maximum
depth
(m)

In-situ
data

Aksai Chin Lake 35.21°N/
79.83°E

170.75 4846.43 0.18 2.63 9.18 20.78 Qiao et al. (2017)
287.32

Bangda Co 34.95°N/
81.56°E

109.25 4904.74 0.44 2.26 11.56 29.83 Qiao et al. (2017)
159.63

Eling Lake 34.90°N/
97.70°E

619.59 4269.67 0.31 3.47 13.08 28.89 Shen et al. (2016)
675.08

Kusai Lake 35.74°N/
92.86°E

261.47 4475.48 0.16 2.93 12.24 49.77 Jia & Liu, (2019)
327.91

Manasarovar Lake 30.68°N/
81.47°E

413.37 4585.32 0.80 4.46 35.79 70.35 Wang et al. (2013)
413.54

Pung Co 31.50°E/
90.97°E

153.91 4530.77 0.23 3.66 18.69 49.04 Zhang et al. (2021b)
175.28

Tangra Yumco 31.07°N/
86.61°E

834.23 4536.09 0.09 8.65 83.61 219.41 Wang et al. (2010)
850.45

Taro Co 31.14°N/
84.12°E

482.04 4567.74 0.22 8.07 59.39 120.07 Ma et al. (2014)
492.91

Zharinam Co 30.93°N/
85.62°E

967.77 4613.14 0.26 3.97 18.30 65.92 Wang et al. (2010)
1045.90

*We provided lake areas in 2000 and 2020, respectively. The other lake parameters were calculated based on the circa-2000 lake extent.
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According to the time slots of our obtained lake levels, we
collected the temporally corresponding images for mapping the
lake areas. We employed the Landsat-7 ETM+ and Landsat-8 OLI
images to extract multi-temporal lake inundation extents. The
common-used normalized difference water index (NDWI) was
applied in this study along with a two-step threshold
segmentation strategy to extract the water extent area based
on our previous studies (Sheng et al., 2016; Song et al., 2018).
Lake mapping was performed in the Google Earth Engine
platform, reducing the time cost of preparing the source
imagery. After generating long-term surface elevation and
surface areas, the hypsometric curves of the E–A relationship
can be derived for each lake.

3.2 Determination of the Optimized Survey
Line for Searching the “Maximum” Lake
Depth
Water-depth measurement is necessary for this method to
determine the lake-bottom elevation. However, the full-
coverage survey is not recommended due to its high cost and
low efficiency. The key step of our proposed method is to design
an optimal survey route that can go through the lake bottom zone
using limited underwater surveys. Three strategies are considered
and compared in this study, including the survey line along the

lake centerline (SLC) and optimized survey lines along the lake
long axis (SLA) or lake short axis (SSA). Lake centerline
determination is initialized by searching the starting and
ending points of the bathymetric survey, which are usually
generated from the intersection points between the lake
boundary and its bounding rectangle. The two points split the
lake boundary into two arcs. Then, the Euclidean allocation
algorithm is applied to allocate the cells to one side based on
the closest proximity. After turning proximity regions into
polygons, the lake centerline can be determined as the shared
boundary.

The underlying assumption of the SLC is that the maximum
lake depth is in the points farthest from shore. However, the
spatial heterogeneity of the lake topography may cause an
asymmetric distribution of the bathymetric map, and the
deep-water zones tend to approach the shore with steep
terrains. Thus, the lake shoreline topography is considered in
the optimization of the survey line, which is implemented by
two procedures. First, the vertical direction of each pixel along
the lake shoreline is determined by aligning its adjacent pixels
within a certain distance (ten pixels were used in this study)
(Figure 3A). Second, the gradient value for each shoreline pixel
is calculated for representing the vertical drop per mile of
longitudinal reach. The default buffer size is set to 600 m in
this study (Figure 3B) (The influences of different buffer sizes

FIGURE 2 | Workflow of the proposed method.
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will be discussed below). The generated gradient map of the lake
shoreline can indicate the difference in surrounding terrains.
Subsequently, lake cross-sections that are approximately
perpendicular to the lake’s major axis were generated. As
shown in Figure 3C, the starting and ending points split the
lake boundary into the left and right sides. Each side is further
sampled by a certain number, determining how many cross-
sections need to be generated. Each selected pixel on the left side
is connected to its corresponding pixel with the same relative
distance on the right side. After connecting the two pixels, a
cross-section is generated. The next step is to determine the
possible deepest point in each cross-section. It can be roughly
assumed that the steepness of the lake’s exposed terrains is an
extension of the inundated area within certain distances. The
elevation profile is thus generated by extending the lakeside
slope towards the underwater area. The deepest point along the
cross-section is selected as the candidate point for creating the
survey route. A distance threshold with the value of 1 km is
suggested to remove the point close to the lake shoreline. Finally,
the optimized survey line is created after connecting all the
remaining deep points.

Both the SAC and SLA are along the lake’s major axis, leading
to a great deal of survey work, especially for the long-sharp lake.
To improve the practicability of the proposed approach, whether
the underwater surveys along the short axis can ensure the
estimation accuracy is also investigated by using the SSA
strategy. The SSA is easy to generate with a two-step process.
The first step is to detect the lake-shoreline pixel with the highest
gradient value. As the underwater topography is a spatial
extension of the exposed terrains, the deepest zone of a lake is
likely to be close to the lake shoreline with the steepest
surrounding landscapes. Hence, the second step generates a
perpendicular line to the lake boundary direction. As shown
in Figure 3E, the created SSA is much shorter than SLA.
Meanwhile, its straight direction is another advantage in
practical application.

3.3 Lake Bottom Area Prediction and
Volume Estimation
Both lake-bottom elevation and the corresponding lake area are
essential for estimating the lake volume. Unfortunately, the lake-
bottom site is hard to measure with limited underwater surveys. It
is predicted using the constructed E-A relationship (Figures
4A,B) and the measured “maximum” lake depth (transferred
to lake-bottom elevation). However, the differences in lake
geometry and topography between water-fluctuated and
underwater regions may cause the uncertainty of lake area
prediction, even leading to a negative value. This study used
an alternative method by referring to the ratio between survey
length within the bottom zone and the total length. As shown in
Figure 4C, after detecting the point with the maximum depth, all
the points with a relative elevation of fewer than 1 m are labeled as
the lake bottom. The ratio of the lake-bottom area is assumed to
be approximately equal to the percentage of lake-bottom length.
Hence, the lake bottom area can be calculated by multiplying the
lake surface area and the bottom length ratio.

After obtaining the lake-bottom area and elevation
(Figure 4D), the total lake volume can be estimated by
calculating the difference value between the bottom zone and
the referenced lake extent. Although the direct calculation is not
infeasible due to the lack of lake bathymetry, we adopted the solid
geometry method assuming that a lake can be simplified as a
frustum (Abileah and Vignudelli, 2011). In this case, the volume
between two conical surfaces can be calculated using the
following equation: (eq. 1):

V � 1
3
(Href −Hbottom) × (Aref + Abottom +

�����������
Aref × Abottom

√ )
(1)

whereV is the lake volume,Href andHbottom are the water levels in the
referenced time and that of bottom area, respectively, and Aref and
Abottom represent the lake areas. The accuracy of the adopted

FIGURE 3 | Steps for generating the optimized survey lines along the major axis and minor axis. (A) Vertical angle of the center pixel (red point) is calculated using
two adjacent points (green points). (B) Gradient calculation using different buffer sizes. (C) Cross sections generation. (D) The predicted deepest points in each cross
section were used for creating the optimized survey line along themajor axis. (E) The pixel along the lake shoreline with the largest gradient value was selected to develop
the optimized survey line along the minor axis.
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hypsometric analysis has been proven by the comparationwith in-situ
measurement of lake volume change forNamCo. (Zhang et al., 2011).

As most lakes on the TP experienced a rapid expansion trend
in the 21st century, the newly inundated area can be captured by
the SRTM DEM collected in February 2000. Hence, the total lake
volume in 2000 is regarded as the benchmark data which remains
to be estimated in this study.

4 RESULTS

4.1 Measured Lake-Bottom Elevation and
Predicted Lake-Bottom Area
There are strong linear relations between lake levels and area
changes, with R2 values larger than 0.9 for all study lakes
(Figure 5). To obtain the lake-bottom area by employing the
constructed E-A relationship, a constraint value of lake depth is
necessary based on the underwater measurements with the
optimized survey lines. Both SLC and SLA are along the lake’s
major axis (Figure 6). SLA is more zigzagged and longer than the
SLC because its generation considers the influence of surrounding
topography. The depth bias is used to evaluate whether the survey
line had gone through the deepest zone. Table 2 indicates that the
SLC is generally acceptable, with a bias of less than 10% in all
cases except the Bangda Co. The SLA further reduces the depth

bias in the case of Aksai Chin Lake, Bangda Co, Kusai Lake, and
Pung Co. However, SLA even achieves a larger bias in another
four lakes (Tangra Yumco, Manasarovar Lake, and Zharinam
Co), although more complex and longer underwater surveys need
to be conducted. There is no doubt that the SSA exhibits a huge
advantage in reducing the survey work. For example, the length of
the SSA in Kusai Lake is only 4.14 km, reducing about 90% of
survey work compared with those created by SLA or SLC.
Nevertheless, the simplified survey line is challenging in
detecting the deepest area. Fortunately, most lakes agree with
the assumption that the deepest underwater area is close to the
steepest lake shoreline, except for Kusai Lake and Zharinam Co
Particularly in the case of Kusai Lake, the water depth estimated
based on SSA has an underestimation bias of 28.33%.

After deciding the lake bottom elevation, the corresponding
lake area was calculated based on the constructed E-A
relationship. The lake-bottom areas were predicted based on
the assumption that the E-A relationship within the water-
fluctuating region could be extended to the permanently
inundated area. It should be noted that the predicted lake area
cannot be accepted if the value is less than zero. In this case, the
expected bottom area was calculated using the lake surface area
and lake-bottom ratio. As shown in Table 2, such an alternative
solution was used in the case of Aksai Chin Lake, Tangra Yumco,
Kusai Lake, and Taro Co.

FIGURE 4 |Workflow for predicting the lake-bottom area (A,B) Lake extent mapping and lake level extraction are conducted to pair up E-A relationship. (C) Vertical
profile along the survey line was generated as the lowest elevation was selected as the lake-bottom elevation. (D) Lake-bottom area was predicted by using the
measured elevation and the E-A relationship.
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4.2 Estimated Lake Volumes
In this study, we calculated the lake volume of each lake based on
the circa-2000 lake map and the corresponding lake level. The
comparison of the predicted volumes among three different
survey strategies is listed in Table 3. The bias of lake volume
between referenced data derived from the lake bathymetry and
the estimated value by using the proposed method was used for

accuracy assessment. Generally, the bias of the lake volume in
most cases is less than 30%. The mean bias values of SLC, SLA,
and SSA are 22.97, %, 23.83%, and 15.99%. Although the SSA is
restricted in survey length, its performance accuracy is even
higher than the other two survey strategies. SSA achieved the
lowest bias in the case of Aksai Chin Lake, Bangda Co, Pung Co,
Tangra Yumco, and Zharinam Co. This strategy balanced well

FIGURE 5 | E-A relationship of nine selected lakes.

FIGURE 6 | The generated survey line using three different strategies. The lakes are in order as follows: Aksai Chin Lake, Bangda Co, Eling Lake, Kusai Lake,
Manasarovar Lake, Pung Co, Taro Co, Zharinam Co, and Tangra Yumco.
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TABLE 2 | Measured lake depth and predicted lake bottom area under different survey strategies.

Lake name Survey type Measured depth
(m)

Depth bias Predicted bottom
area using

E-A relationship
(km2)

Predicted bottom
area using

elevation profile
(km2)

Length of
survey line

(km)

Aksai Chin Lake SLC 19.42 6.55% <0 11.46 21.55
SLA 20.59 0.91% <0 9.17 23.21
SSA 20.76 0 <0 60.89 8.25

Bangda Co SLC 24.81 16.84% 42.34 17.44 15.46
SLA 29.82 0 27.38 5.45 17.17
SSA 24.82 16.77% 42.29 43.6 7.06

Eling Lake SLC 29.79 0 43.84 111.53 41.70
SLA 29.79 0 43.84 130.11 55.67
SSA 29.79 0 43.84 192.07 14.16

Kusai Lake SLC 48.50 2.56% <0 7.32 45.22
SLA 49.77 0 <0 7.06 50.51
SSA 35.67 28.33% <0 52.29 4.14

Manasarovar Lake SLC 70.35 0 138.62 40.51 26.58
SLA 60.37 14.19% 176.83 24.80 47.37
SSA 70.33 0.03% 138.70 45.57 14.25

Pung Co SLC 45.76 9.25% 14.62 18.63 27.65
SLA 47.03 2.27% 3.49 0.92 32.40
SSA 47.70 0.94% 1.37 18.42 8.22

Tangra Yumco SLC 208.78 6.97% 25.43 4.76 74.20
SLA 200.72 8.73% 56.65 65.07 92.81
SSA 219.36 0.25% <0 70.91 28.35

Taro Co SLC 119.85 0.22% <0 41.94 41.54
SLA 119.81 0.22% <0 74.23 49.99
SSA 96.85 19.33% <0 48.69 14.40

Zharinam Co SLC 60.39 8.38% 358.91 27.08 54.97
SLA 58.05 11.94% 384.00 46.45 76.30
SSA 46.16 29.97% 511.33 301.94 15.05

TABLE 3 | The predicted lake volumes (108 m3) and the volume bias under different survey strategies.

Lake name Lake level (m) Survey line along
long axis (SLA)

Survey line along
short axis (SSA)

Survey line along
lake centerline (SLC)

Aksai Chin Lake 4846.43 12.35 16.03 11.8
−18.99% 5.14% −22.62%

Bangda Co 4917.388 13.58 12.54 12.53
7.85% −0.45% −0.49%

Eling Lake 4269.67 65.9 65.9 65.9
−29.53% −29.52% −29.52%

Kusai Lake 4475.48 44.55 37.31 43.45
39.65% 16.96% 36.22%

Manasarovar Lake 4585.32 118.77 129.42 129.43
−19.59% −12.38% −12.37%

Pung Co 4530.77 25.34 25.68 23.53
−10.23% −9.01% −16.65%

Tangra Yumco 4536.09 596.08 661.86 609.62
−14.38% −4.94% −12.44%

Taro Co 4567.74 209.27 179.6 212.03
−27.11% −37.44% −26.15%

Zharinam Co 4613.14 261.58 227.60 267.09
47.17% 28.05% 50.27%
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between efficiency and accuracy and is strongly recommended for
determining the lake-bottom elevation in the proposedmethod. It
is worth noting the volume bias is negative for most of the lakes,
suggesting that the proposed method trends to achieve an overall
underestimation of lake volume. This phenomenon should not be
entirely ascribed to the missing of the deepest zone. For example,
all the three strategies of the water-depth survey line can search
the deepest elevation of Eling Lake. However, its water volume
estimate is still highly underestimated. It is inferred that the
unconformity between the variation of lake geometry and the
simplified processing may induce uncertainties in lake volume
estimation. Besides estimating the lake volume in 2000, the
elevation-volume (E-V) relationship was also constructed by
using ten equal interval elevations from the lake bottom to
lake level in 2000 (Figure 7). The constructed E-V
relationship can estimate the lake volume when the lake level
is below that of 2000.

This study does not attempt to extrapolate the E-V curve to
the lake level above the benchmark value obtained in 2000. As
the SRTM DEM can capture the newly exposed region, the
gained lake volume since 2000 can be calculated directly. After
adding the benchmark volume in 2000, we can estimate the
lake volume in any period with a higher lake level. Beneficial

from the available topography in the newly flooded region, the
bias of the estimated volume is likely to decline when a higher
lake level is adopted. For example, the estimated lake volume of
Zharinam Co based on the SSA strategy was obviously
overestimated in 2000, with a volume bias of 28.05%. After
experiencing a dramatic lake expansion, the estimated volume
increased from 22.76 Gt to 27.98 Gt. Meanwhile, the bias of the
estimated volume dropped to 22.77%.

5 DISCUSSION

5.1 Uncertainties Analysis of the Proposed
Method
To facilitate potential applications of our proposed method, we
here discuss how the lake volume estimation could be influenced,
including the buffer size in lakeside slope calculation and the
simplification of lake morphology.

Buffer size determines the width of the exposed terrains
around a lake used for calculating the shoreline gradient value.
The variation of the estimated gradient value will further lead to
different survey routes. This study suggests the default buffer size
of 600 m based on previous studies (Liu and Song, 2022). We also

FIGURE 7 | Comparations of E-V relationships between the predicted results and the reference data.
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investigate the influences of the buffer selection on the survey line
generation. As shown in Figure 8, four buffer sizes ranging from
300 to 1200 m were used to generate the survey routes by taking
Pung Co and Manasarovar Lake as examples. The generated SLA
becomes more zigzag as the increase of buffer size. It can be
explained by the potentially greater difference in topographic
relief between two sides when a large buffer size was used. The
varying buffer size could also lead to the change of detected SSA.
It should be noted that only the deepest value along the survey
routes was further used for lake volume calculation. In this case,
the variation of survey routes has little impact on the final results,
except for the generated SSA when the buffer size was set to 1200.

Another factor that may cause the uncertainty of the
proposed method is the simplified processing of the lake’s
geometric shape. In this study, the underlying assumption of
the E-A relationship application in estimating the lake-bottom
area is that the lake was approximated as a cone. However, the

spatial heterogeneity of the lake geometry between the water-
fluctuating region zone and permanently standing water region
may cause biased predictions of the lake-bottom area. We also
noticed its potential influences as the negative lake area
appeared in a few cases. Therefore, an alternative method
was adopted by calculating the ratio of bottom area to lake
surface area using the measured elevation profile. Such similar
simplification may also bring uncertainties in lake total volume
calculation. As the lake bathymetry mapping is not the target of
this study, the water volume estimation in which a cone
approximation provides the mathematics method. However,
the reported studies indicated that the lake waterbody could
be approximated by various geometric shapes such as box,
triangular prism, ellipsoid, and the cone (Khazaei et al.,
2022). The unified treatment of a cone shape has improved
the efficiency, while the oversimplification restricted its
performance for effective representation in some cases.

FIGURE 8 | The generated survey lines (in long and short axis) using four different buffer sizes (A,B) Pung Co and (C,D) Manasarovar Lake.

TABLE 4 | Comparation between the proposed hypsometric curve method and the results provided by Bathymetric method and HydroLAKES.

Lake name Method Survey length Volume (108 m3) Bias

Aksai Chin Lake Hypsometric curve 8.25 10.35 5.14%
Bathymetric method 21.55 15.04 −1.38%
HydroLAKES - 15.89 4.20%

Bangda Co Hypsometric curve 7.06 12.54 −0.45%
Bathymetric method 15.46 12.89 2.41%
HydroLAKES - 9.1 −27.72%

Kusai Lake Hypsometric curve 4.14 37.31 16.96%
Bathymetric method 45.22 33.7 5.64%
HydroLAKES - 43.49 36.33%

Mapangyong Co Hypsometric curve 14.25 129.42 −12.38%
Bathymetric method 26.58 144.65 −2.07%
HydroLAKES - 185.37 25.50%

Pung Co Hypsometric curve 8.22 25.68 −9.01%
Bathymetric method 27.65 31.50 11.62%
HydroLAKES - 18.06 −36.00%

Taro Co Hypsometric curve 14.40 179.6 −37.44%
Bathymetric method 41.54 234.32 −18.38%
HydroLAKES - 161.52 −43.74%
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5.2 Comparison With the Existing
Approaches
To better understand the characteristics of the proposed method,
a comparison with the existing approaches was further conducted
(Table 4). HydroLAKES provided the estimated lake volume
globally by utilizing the geo-statistical model based on the
connection between lake mean depth and lake surrounding
terrains (Messager et al., 2016). In this study, Zharinam Co
and Tangra Yumco were excluded from the comparison as
their volumes were collected from literature records rather
than the modeling estimates according to the data
specification in HydroLAKES. In comparison, the predicted
water volumes for the other seven lakes in HydroLAKES have
larger errors than the proposed method. Without any constraint
from underwater surveys, the HydroLAKES volume values of
Kusai Lake, Pung Co, and Taro Co’s are biased greater than 30%.
For Longmu Lake, a case not involved in this study, the estimated
volume (1.03 Gt) is even less than half of the referenced volume
(2.52 Gt).

A comparison was also conducted between this study and the
our pervious study, in which the lake bathymetry was constructed
based on the machine-learning method and the limited
underwater surveys along the lake centerline (Liu and Song,
2022). Generally, the performance of the lake volume based on
the constructed bathymetry is better, with the volume bias less
than 20% for all the selected lakes. Specifically, eight of the
selected lakes achieved a higher volume bias based on the
proposed method, except for Bangda Co. However, sufficient
underwater surveys are not feasible for all the lakes on the TP due
to the limitation of time cost and weather conditions. The
advantage of the proposed method is its minimized cost of
underwater surveys. The optimized survey line along the short
axis is likely to achieve the deepest underwater elevation at a
minimal cost. Hence, this method could effectively complement
the large-scale lake investigation in the TP or similar harsh
environments.

6 CONCLUSION

In order to overcome the challenges in lake volume estimation
over the TP, this study aims to propose an efficient method by
integrating the remote sensing data and limited underwater
surveys. Lake bathymetry, the base data for a commonly-used
method for lake volume estimation, is no longer a prerequisite in
this method. Instead, this study estimates the lake volume by
coupling the lake hypsometric curve and bottom elevation based
on the minimal field survey of water depths. The key issue of this
method is how to detect the lake-bottom zone without full-
coverage measurements. Three survey route strategies were
designed, including the lake centerline and the optimized
survey lines along the lake’s long axis and short axis. The
performances of the proposed methods were demonstrated on
nine typical lakes over the TP. Generally, the proposed method

with three survey strategies can produce acceptable estimates of
lake water volume. The mean value of the estimated bias is
approximately 20% for the three strategies. An optimized
survey line along the lake short axis is highly recommended
because its survey work is much less than the other two strategies,
with a good balance between efficiency and accuracy.

This study provides a practical approach for simplifying the
lake volume estimation and has the potential to narrow the
knowledge gap in quantifying the lake volume of the TP.
Although the uncertainties of this approach in some specific
lakes cannot be ignored, it is still a necessary supplement for the
ongoing project of lake bathymetry measurement across the TP.
In addition, this approach is promising to be applied in other
remote and data-scarce areas for investigating the lake volume
with limited filed work. A better representation of the lake
physical characteristics will provide essential information for
understanding hydrological fluxes andmanaging water resources.
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The Chinese inland basins (CIBs) are vulnerable to global warming and human

activities due to low precipitation and high potential evaporation. Terrestrial

water storage (TWS) is an important component of the hydrological cycle and

essential for evaluating the water resource security of the CIBs. Although some

studies have focused onwater storage trends in sub-basins of the CIBs, only few

studies have analyzed water storage trends in the CIBs as a whole. In this study,

trends and magnitudes of precipitation, TWS, and actual evapotranspiration

(AET) were detected by the rank-based non-parametric Mann–Kendall test and

trend magnitude method. Based on the hydrological budget of the closed

inland basin, the monthly series of AET were simulated and the main factors

affecting TWS changes in the CIBs and each closed basin were identified.

Results showed that both precipitation and AET significantly increased in the

CIBs. Precipitation decreased from the northwest and southeast regions to the

central region in the CIBs. Moreover, the annual TWS in the CIBs significantly

decreased mainly due to the increased AET. Approximately 60% AET increase

was attributed to increased irrigation diversions. At the basin scale, similar to the

CIBs, changes in AET were the predominant factor influencing changes in TWS

in the Tarim basin (TRB), Turpan basin (TPB), and Hexi Corridor basin (HCB).

Qiangtang Plateau basin (QPB)Qaidambasin (QDB) the increase in precipitation

contributed more than 60% increase in TWS glacier melting and irrigation

diversion.
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1 Introduction

Terrestrial water storage (TWS), which includes snow water

storage, canopy water storage, surface water storage, soil

moisture storage, and groundwater storage, comprehensively

reflects regional precipitation, runoff, evapotranspiration,

groundwater, and human activities (Scanlon et al., 2018). It is

an important variable for global hydrological cycle observation

(Liu et al., 2016; Deng and Chen, 2017). Although TWS accounts

for only 3.5% water in the global hydrological cycle, it is an

important component of the terrestrial and global water cycle

that provides important control over water, energy, and biotic

ecosystem processes (Hu et al., 2018; Chen et al., 2022), and thus

plays an important role in the global climate system (Bierkens,

2015). TWS and their components control various

hydrometeorological, ecological, and biogeochemical processes

on different spatial and temporal scales (Koster et al., 2004;

Seneviratne et al., 2010; Dong et al., 2022), and thus there is great

spatial and temporal heterogeneity in the global scale (Güntner

et al., 2007; Güntner, 2008).

In the past decades, extreme climatic events (such as

droughts and floods) and human activities (such as

groundwater extraction) have influenced TWS beyond normal

thresholds on a global scale. For example, TWS has significant

decreased due to groundwater over-exploitation in Illinois (Yeh

et al., 2006), the Central Valley (Famiglietti et al., 2011; Scanlon

et al., 2012; He et al., 2017), northern India (Xiang et al., 2016),

the Middle East (Voss et al., 2013), and northern China (Feng

et al., 2013). In addition, severe droughts in the southern U.S.

High Plains (Scanlon et al., 2012), eastern Texas (Long et al.,

2013), Brazil (Getirana, 2016), and southeastern and northern

Africa (Ramillien et al., 2014; Rodell et al., 2018) have

significantly decreased TWS, particularly groundwater storage.

On the contrary, TWS has also increased at other regions,

including the Qaidam basin (QDB) (Bibi et al., 2019; Meng

et al., 2019) and Qiangtang Plateau basin (QPB) (Liu et al., 2019;

Meng et al., 2019) in the Chinese inland basins (CIBs). However,

only few studies have examined the attributes of the underlying

factors driving these trends.

Remote sensing products, such as gravity recovery and

climate experiment (GRACE) satellite data, are widely used

to assess global hydrology. GRACE satellites have been

likened to giant weighing scales in the sky that monitor

monthly changes in mass as water storage increases or

decreases due to climate variability and human impacts

(Scanlon et al., 2018). GRACE satellites provide global

total water storage anomaly (TWSA) data since their

launch in 2002. These satellites provide a more direct

estimate than global TWSA change models derived from

monitoring the time variable gravity field (Wahr et al., 2004).

The coarse spatial resolution of GRACE data (~100,000 km2)

may actually be beneficial when estimating changes in TWSA

at continental to global scales.

Inland basins, also referred to as endorheic basins, are

defined as regions where runoff in the basin has no direct

hydraulic connection with the ocean (Liu, 2022). Thus, inland

river basin runoff is isolated from the ocean and eventually enters

inland lakes or is absorbed by evapotranspiration. These areas are

among the most sensitive to climate change and human activities

(Huang et al., 2016; Wang et al., 2018). The CIBs are located in

the hinterland of Asia. Accurately monitoring the TWSA changes

of a large area is difficult by traditional stations. GRACE satellite

monitoring becomes a feasible solution in this case. Since the

CIBs have temperate continental climate characterized by low

precipitation and high evapotranspiration, the hydrology and

ecosystem of CIBs are sensitive to changes in precipitation, actual

evapotranspiration (AET), and TWSA. Therefore, analysis of

terrestrial TWSA variability and attribution in the CIBs is

important for water resource management, ecosystem health,

and sustainable irrigated agriculture in China. However, few

studies have focused on the variation and attribution of CIBs as a

whole. In addition, there were some inconsistent conclusions on

the TWSA trends in CIB sub-basins. Wang et al. (2020) reported

that TWSA decreased during 2002–2016 in the Hexi Corridor

basin (HCB) using one TWSA product. Cao et al. (2018) found

that the basin TWSA significantly increased during

2002–2013 using another TWSA product. Thus, opposite

results might be detected from different datasets. This study

used multiple GRACE datasets to reduce the uncertainty caused

by using only a single dataset. The hydrological budget

(hydrologic gains and losses) is effective for analysis at the

basin scale (Liu et al., 2014; Liu et al., 2016). Unlike outflow

basins, which include AET and runoff in hydrologic losses,

inland river basins include only AET. In other words, the

hydrologic budget in inland river basins can only be expressed

in terms of precipitation, AET, and TWSA. Therefore, this

method is more suitable for analyzing the TWSA variability

and its main attribution in inland river basins.

This study uses multi-source of data in the CIBs and each

closed basin to simulate the monthly AET series of each inland

basin using the hydrologic budget method, detect the

spatiotemporal characteristics of annual and monthly

precipitation, TWSA, and AET in each basin using a non-

parametric test, and identify the main attributes of TWSA

change in each closed basin using the water balance principle.

The results obtained in this study could be useful to regional

water resource management, ecosystem health, and sustainable

agricultural irrigation in China.
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2 Study area

The CIBs are located in northwest China (Figure 1), covering

2.61 × 1011 km2 area, accounting for 27% Chinese land area;

however, it takes up only 5.5% total water resource of China. It is

one of the most arid regions worldwide and includes five closed

inland basins: the Turpan basin (TPB), QDB, QPB, HCB, and

Tarim basin (TRB) (Figure 1). The terrain within the basin is

complex. The landform is mainly plateau and inland basin. The

CIBs are affected by the plateau monsoon and East Asian

monsoon climate systems. The climate is complex and

changeable. Except in Yili and Tacheng in northern CIBs,

annual precipitation in most areas is less than 200 mm. The

annual precipitation in the CIBs is 164.5 mm. The annual

precipitation of TPB, QDB, QPB, HCB, and HCB are 86.2,

147.8, 264.8, 153.3, and 112.9 mm, respectively.

3 Materials and methods

3.1 Gravity recovery and climate
experiment data

3.1.1 The RL06 spherical harmonics
The GRACE satellites, launched by National Aeronautics and

Space Administration (NASA) and Deutsches Zentrum für Luft-

und Raumfahrt in March 2002, allows us to measure large scale

TWSA trends with monthly temporal resolution. Temporal

variations in the gravity field over land are primarily due to

TWSA, which is the vertically integrated measure of

groundwater, soil moisture, snow, ice, and surface water.

This study uses data from March 2002 to February 2021

(39 months of data are missing). The gridded GRACE TWSA

data were obtained from the Center for Space Research at the

University of Texas (CSR), the Geo-Forschungs-Zentrum in

Potsdam (GFZ), and the Jet Propulsion Laboratory (JPL).

The spatial resolution of all three datasets is 1°.More than 300 grid

points covering the study area were chosen for estimating the values.

To reduce uncertainty, the missing data were obtained via simple

temporal interpolation using adjacent data (Andrew et al., 2017).

3.1.2 The global mascons
Mass concentration blocks (mascons) are another form of

gravity field basis function. Compared to the standard spherical

harmonic method of empirical post-processing filtering, “mascons”

eases the implementation of geophysical constraints and are a more

rigorous method (Watkins et al., 2015; Wiese et al., 2016). The JPL

mascons (JPLM) and CSR mascons (CSRM) solutions are available

at 0.5° and 0.25°. In this study, the GRACE TWSA solution was

compared for the period from 2002 to 2020.

3.2 Meteorological data

This study estimated the precipitation trend in the CIBs

from 2002 to 2020 using the China Monthly Surface

FIGURE 1
Location and distribution of each basin in the Chinese inland basins (CIBs). 1–5 represents the Turpan basin (TPB), Qaidam basin (QDB),
Qiangtang Plateau basin (QPB), Hexi Corridor basin (HCB), and Tarim basin (TRB), respectively.
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Precipitation 0.5°×0.5° Gridded Dataset V2.0 (http://data.

cma.cn/), which is a gridded dataset released by the

National Meteorological Information Center of the China

Meteorological Administration. This dataset was derived by

interpolating the observed precipitation data from

2,472 stations over China since 1961. Owing to the high

quality of this dataset, it has been widely used in the CIBs

(Zhu et al., 2015; Bueh et al., 2016; Zhang et al., 2017; Wang

et al., 2019).

3.3 Methodology

3.3.1 Monthly actual evapotranspiration
simulation

According to the hydrological budget in an inland basin, the

difference between precipitation and AET corresponds to the

variation in water storage in the basin; therefore, the monthly

AET in the basin can be simulated as (Liu, 2022):

AETi � Pi − ΔSi (1)

Where AETi, Pi, and Si are the monthly series (in mm) of AET,

precipitation, and storage change, respectively. The average

gridded precipitation and TWSA data series for each closed

basin was calculated based on each grid area weight within

the basin. The area weighting of the boundary grids was

shown by the proportion of the area within the basin boundary.

The consistency of the time series for each variable should be

considered while simulating monthly AET. Monthly AET and

precipitation are averaged within a month, calculating between

the beginning and end of the month. ΔS is the difference between
the water storage at the end and beginning of the month.

However, the TWSA data used in this study represent the

average water storage within a month. ΔS was calculated as:

Si � TWSi+1 − TWSi−1
2

(2)

where TSWAi+1 and TWSAi−1 represent water storage at the end

and beginning of the simulated month, respectively. The accuracy

of this calculation has been verified by Long et al. (2014).

3.3.2 Time series decomposition
The TWSA outputs reveal the monthly variations of total

water storage; therefore, seasonality should be first removed from

the original TWSA series to estimate TWSA trends (Andrew

et al., 2017). Precipitation and evapotranspiration data should be

processed similarly. The seasonal trend decomposition uses the

local regression to decompose the time series was proposed by

Cleveland and Cleveland (1990). In this study, local regression

was used to decompose the TWSA monthly time series. Local

regression smoothing is the key of the local regression method. It

fits the smoothed series Xj to the input time series Xj = Xtj, where

tj is the discrete sampling time series. The smoothed value for

each point j is given by the value of the polynomial at time tj
increased by j. The local regression consists of an outer and inner

loop with a sequence of smoothing operators and generates three

components from the time series:

Stotal � Slong−term + Sseasonal + Sresidual (3)

where Stotal indicates the original signal, Slong-term is the trend

signal, Sseasonal is the seasonal signal, and Sresidual is indicated as

the sub-seasonal signal and noise.

3.3.3 Trend detection and identification of its
main attribution methods

The Mann–Kendall (M–K) test, one of the commonly used

time series trend tests in meteorology and hydrology (Hirsch

et al., 1982), applied for trend detection in this study. It also

rejects a few outliers and the sample does not need to follow a

certain distribution and is suitable for non-normally distributed

data (Bibi et al., 2019).

Based on the hydrological budget in inland closed basins, the

main factors causing AET and TWSA variations were identified.

Based on the water source consumed by the AET, AET variation is

attributed to alterations in precipitation and the consumption of

other water supply sources. It can be calculated as follows (Liu, 2022):

ΔAET � ΔP + ΔOthers (4)

Where ΔAET, ΔP, and ΔOthers indicate changes in AET,

precipitation, and other water supply sources (such as irrigation

from ground water and glacial melt water), respectively.

Based on the hydrological budget within a closed basin,

changes in TWSA are mainly attributable to precipitation and

AET, while changes in AET aremainly caused by precipitation and

potential evaporation. Precipitation and potential evaporation

positively and negatively contribute to AET, respectively.

Furthermore, precipitation and AET positively and negatively

affect TWSA, respectively. Increased precipitation will promote

an increase in TWSA, whereas increased AET will exacerbate the

decrease in TWSA, and vice versa. Thus, the contribution of

precipitation and other factors to TWSA changes can be semi-

quantified by analyzing the trend between AET and precipitation.

The study roadmap for the entire study is shown in Figure 2.

4 Results

4.1 Trends and spatial distribution of
terrestrial water storage anomalies in the
Chinese inland basins

The TWSA time series in CIBs derived from five GRACE

solutions are highly consistent according to Figure 3A. Overall, the

TWSA decreased significantly. Specifically, the TWSA increased

during 2002–2005, continuously declined from 2005 to 2010,

slightly increased from 2010 to 2012, then decreased during
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2012–2016, further rising in a fluctuationway. Across the entire time

scale, the TWSA of CIBs decreased significantly by 26 km3/yr.

Figures 3B–F shows the monthly series of TWSA in each sub-

basin, obtained from different GRACE solutions. The TWSA

significantly increased in the QDB and QPB, while it

significantly decreased in other sub-basins. Specifically, the

TWSA of the TPB decreased with 0.15 km3/yr fluctuations

throughout the time scale. The TWSA of the HCB briefly

increased from 2002 to 2004, declined from 2004 to 2007, and

then continuously fluctuated from 2007 to 2020. Overall, the

TWSA of HCB decreased at 0.4 km3/yr throughout the time

scale. TWSA trend in the TRB is similar to that in the CIBs,

with TWSAdecreasing at 2.9 km3/yr over the entire time scale. The

TWSA trends for QPB and QDB significantly fluctuated from

2002 to 2020, with 1.2 and 1.5 km3/yr growth rates, respectively.

Figure 4 shows the spatial distribution of TWSA trends derived

from different GRACE solutions. The spatial distribution of the five

solutions were highly consistent. It showed a significant loss of water

storage at the northwestern and southwestern CIB regions during

the study period. Water storage significantly increased in the central

and southeastern CIB regions. According to the sub-basins, TWSA

significantly increased in the northeastern QPB and the entire QDB,

while it significantly decreased in the TPB and the HCB. Moreover,

the JPLM solution-produced TWSA series deviated from the other

four solution-produced TWSAs in the CIBs (Figure 4). This finding

is also consistent with previous finding that decreasing and

increasing TWSA trends of JPLM solution are larger than those

of CSR, JPL, and GFZ globally (Scanlon et al., 2018).

Viewing the time change of the TWSA in the CIBs revealed that

the similarity between the five GRACE solutions started to decrease

from 2016 (Figure 3A). The periodic change of TWSA in sub-basins

also indicated that TWSA fluctuation increased in the five basins in

2016 for the five solutions (Figures 3B–F). Therefore, the TWSA of

GRACE were calculated according to the time for data variance and

median changes (Figure 5). From 2002 to 2007, the median GRACE

data continued to decline, while the variance increased and then

decreased. The median GRACE data began to rise but did not rise

above the originalmedian from2007 to 2011. The variance change did

not changemuch from the previous time period. ThemedianGRACE

data began to fluctuate around the initial median line from 2012 to

2016; however, the overall variancewas low. ThemedianGRACEdata

suddenly increased and reached the maximum in 2017.

Simultaneously, the variance reached the maximum. Then, the

median data continuously decreased from 2018 to 2020. The

median GRACE data was lower than the initial median value

since 2019, and the variance decreased gradually.

4.2 Trends and spatial distribution of
precipitation and actual
evapotranspiration simulation in the
Chinese inland basins

Figure 6 indicates the spatial distribution of precipitation

trends in the CIBs from 2002 to 2020. Macroscopically,

precipitation increased in the northeast, northwest and

FIGURE 2
The study roadmap.
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southeast edges of the CIBs, while it decreased in the inner

regions of the basin.

Precipitation significantly increased in the northern part of

the HCB, the eastern edge of the southwestern margin of the

QDB, the central-eastern part of the QPB, the central-western

and northwestern marginal regions of the TRB, and the

southwestern part of the TPB; however, it significantly

decreased in the central-eastern part of the HCB, the central

and southwestern marginal regions of the QPB, the central and

southeastern part of TRB, and the eastern marginal regions of the

TPB. Furthermore, it did not change significantly in the

remaining regions.

Overall, the annual precipitation significantly increased in

the CIBs (11.1 mm/10a), as well as all sub-basins except the QPB

(4.5 mm/10a). The increase was the highest in the HCB (9.7 mm/

10a). The TRB, QDB, HCB, QPB, and TPB contributed

approximately 40%, 30%, 20%, 8%, and 2% precipitation,

respectively.

Monthly AETs were simulated using precipitation data

and average monthly series of five GRACE products according

to the methodology of the hydrological budget (Figure 7).

Overall, the annual AET significantly increased in the CIBs

(20.3 mm/10a), as well as all sub-basins except the QPB

(3.6 mm/10a) and QDB (21 mm/10a). The increase was the

highest in the HCB (29.5 mm/10a). Since the increase in

precipitation is less than that in AET, combined with the

principle of water balance, precipitation in the CIBs was

insufficient to meet the demand from the AET during this

period.

4.3 The main attribution of the terrestrial
water storage anomalies and actual
evapotranspiration trends in the Chinese
inland basins

Figure 8 shows the TWSA, precipitation and AET M–K

significance and trends for the whole CIBs and each closed basin.

This study reports that the precipitation and TWSA of the whole

CIBs significantly increased and decreased, respectively (9 and

11 mm/10a, respectively). Based on the water balance of the

closed basin, quantifying the magnitude of the changes in

precipitation and TWSA showed that the decreased TWSA of

the whole CIBs was mainly due to AET increase. The main

factors affecting changes in AET changes were analyzed based on

the attribution identification method described in Section 3.3.3.

FIGURE 3
Total water storage anomaly (TWSA) trends and Gravity recovery and climate experiment (GRACE) product trend ranges in the Chinese inland
basins (CIBs) and its sub-basins. (A) The comparison of deseasonalized TWSA in the CIBs; (B–F) the TWSA trend range in the Turpan Basin, Hexi
Corridor Basin, Tarim Basin, Qiangtang Basin, and Qaidam Basin, respectively. The black dashed lines indicate their linear trends.
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FIGURE 4
The spatial pattern of total water storage anomaly (TWSA) trends (left) and significant (right) derived from different Gravity recovery and climate
experiment (GRACE) solution: TWSA trends and significant are calculated using M–K. (A,F) indicate the GRACE resolution of RL06 spherical
harmonics from the Center for Space Research at the University of Texas (CSR). (B,G) indicate the GRACE resolution of RL06 spherical harmonics
from the Geo-Forschungs-Zentrum in Potsdam (GFZ). (C,H) indicate the GRACE resolution of RL06 spherical harmonics from the Jet
Propulsion Laboratory (JPL). (D,I) indicate the GRACE resolution of mass concentration blocks (mascons) from the JPL. (E,J) indicate the GRACE
resolution of mass concentration blocks (mascons) from the CSR.
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Additionally, the contribution of precipitation and other water

sources to changes in the AET were semi-quantified by

comparing the trend magnitudes of AET and precipitation.

The increase in precipitation in the CIB accounted for 40%

AET, indicating that the increasing consumption of other

water sources was the dominant factor for increasing the AET

in the CIB. This increased consumption, which might be mainly

due to irrigation diversion from ground water and glacial melt

runoff, explained 60% AET increase. This increased

consumption may be due to a combination of mechanisms

including increased evaporation rates due to rising

temperatures and increased irrigation diversion from ground

water and glacial melt runoff, thus increasing AET. Interestingly,

60% AET increase was due to the increased precipitation and the

FIGURE 5
Trends of Gravity recovery and climate experiment (GRACE) total water storage anomaly (TWSA) data by time variance and median. Red line
indicated median of initial month data.

FIGURE 6
The spatial pattern of (A) M–K trends and precipitation significance (B) in the Chinese inland basins (CIBs).
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rest might be influenced by the glacial melting and river irrigation

in the basin.

The changes in AET primarily influenced the changes in

TWSA in each closed basin, similar to that in the CIBs. Among

them, the increased AET of the HCB, TRB, and TPB primarily

decreases the TWSA in the basin. Precipitation remains the main

reason for the increased AET in HCB (>60%). In the TRB and

TPB, the proportion of precipitation increase contributing to

AET increase was <20%. This indicates that increased

precipitation had made a relatively small contribution to the

AET increase. The glacier melting and irrigation diversion caused

by enhanced evaporation rates played a dominant role in AET

increase. In the QPB and QDB, AET reduction in the basins

increased TWSA. More than 50% AET decrease in the QDB is

caused by precipitation. This indicates that increased

precipitation had made a relatively small contribution to the

AET decrease. The decrease in the consumption of other water

sources caused by weakened evaporation rates played a dominant

role in AET decrease.

5 Discussion

5.1 Comparison with previous study
results

Although few studies have focused on the whole CIBs, some

studies have focused on the attribution of TWSA changes in the

CIB sub-basins. These results were verified with those of this

study.

The significantly increased TWSA in the QDB and QPB was

verified with the results of previous studies (Bibi et al., 2019; Liu

et al., 2019; Meng et al., 2019). However, the main reasons

attributed to this trend differed from those identified in

previous studies. Previous studies believed that the TWSA

increased in QDB primarily due to the increase of

precipitation, while the TWSA of QPB was dominated by

decreased AET. In this study, TWSA increase in the QDB is

mainly due to the decrease of AET, while the increase of TWS in

the QPB is mainly due to the increase of AET. One of the reasons

for the different results is that previous studies analyzed relatively

short TWSA time series (5–8 years), while this study focused on

the whole 19-year time series analysis.

The significantly decreased TWSA in the TRB has also been

confirmed by previous studies (Wang et al., 2021; Zuo et al.,

2021). Increased AET is also the main factor influencing changes

in the TWSA. However, previous studies have considered that

temperature is the main reason for the increase in AET, while the

increase of AET in this study was mainly due to the increase of

water consumption caused by human activities and glacier

retreat. Human activities were considered in this study as an

factor affecting AET.

FIGURE 7
The deseasonalized series of actual evapotranspiration (AET)
in the Chinese inland basins (CIBs) and each sub-basin. The results
were calculated based on water balance combined with five
Gravity recovery and climate experiment (GRACE) solutions
and precipitation data. TRB, TPB, QDB, QPB, and HCB indicates
Tarim Basin, Turpan Basin, Qaidam Basin, Qiangtang Basin, and
Hexi Corridor Basin, respectively.

FIGURE 8
Significance (left) and trend (right) of total water storage
anomaly (TWSA), precipitation and actual evapotranspiration (AET)
M–K in the Chinese inland basins (CIBs) and each closed basin. The
left side indicates the significance statistic obtained after M–K
calculation, the right side indicates the magnitude of change
obtained from M–K calculation. The red dashed line indicates the
cut-off line of significance. TRB, TPB, QDB, QPB, and HCB
indicates Tarim Basin, Turpan Basin, Qaidam Basin, Qiangtang
Basin, and Hexi Corridor Basin, respectively.
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5.2 Data uncertainty analyses

Due to the lack of actual measurement data for validation,

determining the product more suitable for the CIBs is difficult;

however, the correlation coefficient between the time series of the

five data sets in the first 15 years is >0.87 (Figure 3A). Moreover,

the five data sets are consistent according to the spatial distributionmap

(Figure 4). Interestingly, differences between the solutions were detected

when processing the five GRACE solutions (Figure 4). There was large

data fluctuation in different basins around 2017 (Figure 3). The

following attempts were made to explain this phenomenon.

For the differences of the five solutions, the overall

performance of the five solutions in the five basins was first

analyzed, and the variance of the tertiary solutions processed by

the first three institutions was statistically significantly smaller

than that of the last two mascons. Considering that the spherical

harmonic coefficient method removes some real geophysical

signals when smoothing through the empirical smoothing

function while processing the noise of the GRACE data signal,

the entire amplitude and variance of the data will be smaller than

that of the mascons method, which applies a priori knowledge

(Zhang et al., 2019). This can be corresponded to the results in

Figure 4, where the results of the first three products solved by the

spherical harmonic coefficient method are similar. The range of

trend of the last two products is significantly larger than that of

the first three. Therefore, using these two GRACE solutions to

integrate the analysis will not only increase the overall

information, but also cause errors in the final analysis results.

TheGRACE satellite started functioning in April 2002 (Figure 5).

The median value of that year was used as the starting reference and

data stability is increasing over time. From 2012 to 2016, the median

data fluctuated in the initial median line, probably because the

GRACE satellite data was more volatile than those of the previous

years as the satellite service life increased. The satellite data quality

fluctuation increased and reached the current maximum in

2017 because the satellite terminated the data in June 2017. Then,

the GRACE-FO satellite took over the GRACE satellite mission and

continued to transmit data from June 2018. Themedian data value in

2018was slightly higher than the initialmedian value, but themedian

data value immediately dropped below the initial median value in the

following 2 years, indicating that the quality of GRACE-FO satellite

data has been improving except for the first year.

Although the average sequence of five TWSA was used in this

study to reduce the uncertainty caused by a single solution, studies

on water resources research should consider a depth study of the

inversion of TWSA of GRACE. When simulating AET monthly

series,ΔS indicates the change ofmonthly water storage, that is, the

difference of water storage between the end and beginning of the

month. However, the TWSA of GRACE is the intra-month water

storage. In this study, the difference between the TWSA of the

previous month and the next month is used to represent the

monthly water storage variability within the basin, which increases

the uncertainty of the experiment to some extent.

6 Conclusion

Trends of annual and monthly precipitation, TWSA, and

AET were detected at each basin by the M–K test. The main

attribution of TWSA variability for the CIBs and each of its

closed basins was identified.

Annual precipitation in the CIBs increased from 2002 to

2020. It generally increased at the eastern, northwestern and

southeastern regions of the CIBs, while decreasing in the central

regions of the basin. It also increased in each sub-basin. The

increase was significant in all sub-basins except the QPB. The

magnitude of increase was highest in the HCB. The TRB received

the most precipitation with a weight of 40%, while the TPB

received the least.

The TWSA and AET showed significantly decreased and

increased in the CIBs and most of its sub-basins, respectively.

TWSA increased in the QPB and QDB. TWSA decreased in the

CIBs primarily due to the increased AET. Precipitation caused

more than 50% increased AET. Similar to that in the CIBs, AET

change was the main factor driving TWSA change in each

closed basin. In particular, the increased AET in the HCB, TRB,

and TPB was the main factor for the decreased TWSA in these

basins. The increased AET in the HCB was mainly due to

precipitation. However, melting glaciers and irrigation

diversion primarily caused the increased AET in the TRB

and TPB. Interestingly, AET reduction in the QPB and QDB

decreased TWSA. More than 50% AET reduction in the QDB

was caused by precipitation, while more than 70% AET

reduction in the QPB was caused by the decreased

consumption of other water resources.
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Trend of snow cover under the
influence of climate change
using Google Earth Engine
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(Western Himalayas) and Shigar
(Karakoram region)
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1Department of Civil Engineering, College of Ocean Science, Jeju National University, Jeju, South
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Freshwater resources present in the Upper Indus Basin (UIB) supply water to

Pakistan’s irrigation. Half of the annual water discharge in the UIB is contributed

from the glacier and snow-fed basins in the Hindu Kush, Karakoram, and

Himalaya (HKH) region, and it is currently under the threat of climate

change. Therefore, it is very necessary to study and monitor the

spatiotemporal changes in the snow cover area (SCA) and its response to

climate variables to efficiently manage water reservoirs. Thus, keeping this

problem in mind, we conducted this study using the Google Earth Engine

Application Programming Interface (GEE API) for Astore and Shigar. We used

mean annual Landsat data between 1991 and 2021 to derive the SCA using the

normalized difference snow index (NDSI). ASTER GDEM data was used to

extract the elevation and analyze the distribution of SCA on different

elevation zones. Eventually, we used the climate research unit (CRU) data

(rainfall and temperature) to analyze them with SCA. The results revealed

that SCA in Astore and Shigar has an increasing trend with a rate of

11.16 km2/year and 4.27 km2/year, respectively. Mean annual precipitation

and temperature also confirmed the increasing trend of SCA because mean

annual precipitation is increasing and temperature is decreasing in both regions.

SCA and elevation analysis revealed that SCA is decreasing on foothills while

increasing at the valley top. This is because temperature is increasing and

precipitation is decreasing from zone 1 to zone 3 and vice versa for zone 4. It is

found that Astore and Shigar in UIB have an increasing trend of SCA and are not

affected by global warming. Therefore, it is necessary to conduct studies on

large scale to efficiently evaluate the impact of climate change on SCA.
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Introduction

Hindu Kush, Karakoram, and Himalaya (HKH) regions are

the longest mountainous regions and are spread over various

countries including Afghanistan, Bhutan, China, India,

Myanmar, Nepal, and Pakistan. The HKH region stores a

huge amount of freshwater resources outside the polar region;

therefore, it is also known as the Third Pole or Water Tower of

Asia (Kehrwald et al., 2008). Many largest rivers in these

countries originate from the HKH region and are fed through

snow and glacier meltwater (Banerjee et al., 2021). Therefore, this

region supports the livelihood of people living downstream

through water supply (Sharma et al., 2013, Sahu and Gupta,

2020) and fulfills their essential needs in terms of agriculture

production, hydropower generation, drinking, and

industrialization (Jain et al., 2009; Hori et al., 2017). However,

due to climate change, glaciers and snow-covered areas are under

serious threat and consistently change with time (Wester et al.,

2019). Pakistan is an agro-economic country and largely

dependent on water supply from the Indus River System

(IRS) (SIHP, 1990), and the inflow of water in the Indus

River is mostly contributed by glaciers and snow meltwater

(Bookhagen and Burbank, 2010; Immerzeel et al., 2012).

Snow-covered mountains are not directly influenced by the

human population, but they are vulnerable to climate change,

and subsequently, the rising trend of temperature, decreasing

trend of snow cover duration, and changing pattern of snowfall

result in early melting of snow cover and influence river runoff in

the summer season (Krishnan et al., 2019; Notarnicola, 2020; Yi

et al., 2021). Eventually, it will result in scarcity of water,

landslide, drought, floods, and glacial lake outburst flood

(GLOF) (Tahir et al., 2019). Snow cover research on this

region usually revealed a decreasing trend of SCA; however,

Tahir et al. (2016), Shafiq et al. (2019), and Azizi and Akhtar,

2021) reported an increasing trend of SCA due to an increasing

trend of winter precipitation and decreasing trend of summer

temperature. Another study also projected an increasing trend of

precipitation in the HKH region during 1901–2099, while

temperature indices show an inter-annual decreasing trend

(Panday et al., 2015). Moazzam et al. (2022) recently studied

the precipitation projection of Gilgit-Baltistan for the 21st

century and revealed a significant increasing trend in the

midcentury (2021–2060) under representative concentration

pathway (RCP) 4.5 and RCP 8.5. Negi and Kanda, (2020) also

reported an increasing trend of SCA in the Northwest Himalayan

region due to the slowdown warming trend. Therefore, these

climate variabilities imply differences in SCA. Hence, it is

necessary to monitor the changing phenomena of snow cover.

However, a large area is at risk in the HKH region, and

knowledge of spatial variability of SCA is limited on a large scale.

In the past, it was very difficult to map the SCA because of

high altitude and tough terrains (Aniya et al., 1996; Jacobsen and

Theakstone, 1997), but, since the early 1960s, remote sensing

sensors have been designed to easily map the SCA with various

techniques and methodologies (Abid and Zia, 2019). Now

researchers are using various indices and methods for SCA

mapping, i.e., normalized difference snow index (NDSI),

normalized difference snow thermal index (NDSTI),

normalized difference water index (NDWI), normalized

difference principal component index (NDPSCI), normalized

difference debris index (NDDI), machine learning algorithms

[support vector machine (SVM), artificial neural network

(ANN), and random forest (RF)], and image classification

techniques. In this study, we used NDSI, which is one of the

widely used indices globally because of its satisfactory results in

mountain shadows.

It is a very challenging task to study the large snow-covered

area and manually filter the images with less amount of clouds,

download, make composite, and stitch the image which

consumes immense time. Therefore, we used a cloud

computing (Google Earth Engine) platform, which makes it

easy to perform all these tasks using JavaScript or Python

APIs. This study aimed to investigate the snow cover area of

Astore and Shigar using the normalized difference snow index

(NDSI) between 1991 and 2021. The snow cover area was

correlated with climate variables (temperature and

precipitation) and topographic parameters (elevation). The

significance of this study was to understand the SCA

relationship with the temperature and rainfall which is useful

for mountainous and low-lying glacier-dependent communities.

We chose Astore and Shigar in this study because previous

studies have been conducted on the comparison of Astore with

Hunza and Gilgit (Tahir et al., 2016); hence, there is a need for a

comparative study between other sub-basins of UIB. Therefore,

in this study, we evaluated Astore (West Himalayas; snow-fed)

and Shigar (Karakoram; glacier-fed) based onmeteorological and

topographical indicators. Astore and Shigar have distinct

geographical locations due to some basic features, i.e., both

districts are influenced by the same climate (westerlies) but in

a different way. Astore is largely dependent on winter rainfall at

low elevation, while Shigar depends on westerly circulated solid

precipitation. Shigar is located in the rain shadow of the Western

Himalayan region; therefore, it receives a very small amount of

monsoon precipitation (Ali et al., 2009), while Astore is located

on a north-facing slope in lower latitude and mid-altitude.

Therefore, we conducted this study based on these contrasting

features.

Study area

The Upper Indus Basin is located between 72o 03′–77 o 44′E
and 34o 16′–37 o 06′N. It splits the Karakoram from the Greater

Himalayan region (Bishop et al., 2010). The Indus River starts

from the Tibetan Plateau and flows toward the northern region of

Pakistan and supplies inflow to the Tarbela Dam (Farhan et al.,
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2015; Farhan et al., 2020). For this study we have chosen two

districts, namely, Astore and Shigar that lie in the Western

Himalayas and Karakoram region, respectively.

Astore is located in the extreme Western Himalayan region

of Northern Pakistan (Figure 1A). Astore covers an area of

5,233 km2 with 4.8% area covered with glaciers from

Randolph Glacier Inventory version 6.0 (RGI, 2017). The

elevation of Astore ranges from the valley floor to the highest

peaks, i.e., Nanga Parbat (1,150–8,056 m) (Figure 1B). The mean

annual temperature of Astore ranges between −2.9 and 9.9, while

precipitation ranges between 500–870 mm from higher to lower

altitude met stations (Farhan et al., 2015). Almost 75% of the

precipitation falls in winter and spring seasons due to westerly

circulation, while 25% falls in summer and autumn seasons from

monsoon and local jet streams (Farhan et al., 2020). The Astore

River discharge is influenced by winter rainfall together with

solid precipitation forced by westerlies (Tahir et al., 2015).

Shigar is located in the Karakoram region of Northern

Pakistan (Figure 1C). Shigar covers an area of 8,913. The

elevation of Shigar ranges between 1,967 and 8,611 m from

valley to high mountains (Figure 1D). According to

FIGURE 1
(A) Location map of Astore, (B) elevation zones of Astore, (C) location map of Shigar, and (D) elevation zones of Shigar.

FIGURE 2
Mosaiced image with 10 scenes in Google Earth Engine (GEE)
with false color composite and less than 10% cloud cover over the
study area.
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Koppen–Geiger’s climate classification, Shigar falls under the

cold desert region, and Shigar receives a little amount of

precipitation. Large glacier mountains make a barrier for

monsoon storms and enforce a modest impact of the storm

on the region (Khan et al., 2014). A considerable amount of

winter precipitation and temperature increased; however, the

summer season revealed a cooling pattern for the Skardu region

(Fowler and Archer, 2005; Hakeem et al., 2014). The Shigar River

discharge is dependent on solid precipitation forced by westerlies

that melts in the summer season and generates high discharge

(ICIMOD, 2005; Fowler and Archer, 2006; Hakeem et al., 2014).

Materials and methods

In this section, we discussed the detailed methodology of the

research. The methodological framework of this study was

designed following the objective of the study. The study is

based on a cloud computing platform (Google Earth Engine)

because it provides easy access to global remote sensing datasets

in a matter of no time using JavaScript or Python APIs (Gorelick

et al., 2017). The Landsat images used in this study were

atmospherically corrected, orthorectified, top of atmospheric

reflectance (TOA) calibrated, and georeferenced scenes with

an accuracy of 0.4 pixels (Zanter, 2016), available in the

dataset catalog of GEE. We acquired the Landsat data using

the Google Earth Engine (GEE) platform with JavaScript. A total

of 5 paths/rows and around 10 scenes were required to cover the

study area (Figure 2). We filtered the Landsat Tier-1 data by

applying themultiple queries [e.g., date (”2021-01-01”, “2021-12-

31”), cloud cover (<10%), and region of interest (Astore, Shigar)]

using the GEE image collection catalog.

The images selected in this study do not have a cloud

above the region of interest (ROI). We selected the mean

annual images to evaluate the yearly SCA variations. Next, we

pulled the shapefile of Astore and Shigar which was used to

mask the satellite images. Eventually, using the JavaScript

code in GEE, we performed NDSI analysis on the masked

images from 1991 to 2021, to extract the snow cover area for

Astore and Shigar. To evaluate the spatiotemporal variation in

SCA, snow and non-snow pixels were segregated using NDSI;

usually, a threshold of 0.4 was used which is suitable for

classifying the snow and non-snow pixels even in mountain-

shadowed areas (Burns and Nolin, 2014). Then, we reclassified

the satellite image into the snow and non-snow pixels, and

eventually the year-wise SCA was calculated using snow pixels

as follows:

NDSI � Green0.53 − SWIR1.65

Green0.53 + SWIR1.65
.

We acquired the rainfall and temperature data from the

climate research unit (CRU) for the study area with a spatial

resolution of 0.5o for the period of 1991–2021. We correlated the

SCA with rainfall and temperature on an annual basis to evaluate

the impact of climate change on SCA.

We also utilized the Advanced Spaceborne Thermal

Emission and Reflection Radiometer (ASTER) GDEM (30 m)

to extract the topographic parameters, i.e., elevation in GEE.

NDSI classified images, and the topographical parameter was

exported for the region of interest (Astore and Shigar) for further

analysis in ArcGIS software. In ArcGIS software, we reclassified

the NDSI-classified images and calculated the area covered by

snow for the study.

Afterward, the elevation was compared with NDSI-

reclassified images of Astore and Shigar to calculate the area

covered by snow on each elevation zone. Eventually, we prepared

the tables, maps, and graphs. The detailed methodological

framework of this study is presented in Figure 3.

Landsat data

In this study, Landsat data were acquired from 1991 to 2021

(mean annual images) for the study area because Landsat data are

freely available (Patel et al., 2019). Landsat has the longest time

series data with a multi-spectral and spatial resolution to evaluate

the snow cover (Rastner et al., 2019). All Landsat satellites

complete the circle around the Earth in 16 days; however,

their characteristics vary (Table 1). In this study, we used

Landsat 5 TM, Landsat 7 ETM, and Landsat 8 OLI data.

ASTER data

To evaluate the SCA with topographic parameters, it is

necessary to use the digital elevation model (DEM) because

elevation, slope, and aspect can be calculated from DEM.

Therefore, we used ASTER GDEM v3 data to calculate the

elevation and slope for further evaluation of SCA in this

study. ASTER DEM has a 30-m spatial resolution. The

version 3 data of ASTER has 1.8 million stereo pairs with

improved horizontal and vertical accuracy in comparison with

the previous version (Meetei et al., 2022). The elevation of Astore

and Shigar was divided into four zones (Table 2) to calculate the

elevation-wise SCA using the zonal statistics tool in the model

builder of ArcGIS.

Climate research unit data (rainfall and
temperature)

In this study, we also used climatic data (rainfall and

temperature). Due to the scarcity of meteorological station

data in this region, therefore, alternatively, we used the CRU

v4.05 dataset which was released on 17th March 2021 (Harris

et al., 2021) because the CRU dataset achieved better accuracy in
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the HKH region and it can accurately acquire the data in this

region (Kanda et al., 2020). Another study also suggested that

CRU and ERA-I datasets perform better, and both datasets

precisely capture the spatial distribution of temperature and

precipitation in the Greater Himalayas, Northwest Himalayas,

and Karakoram region (Negi and Kanda, 2020). CRU data was

developed by the climate research unit of the University of East

Anglia at the NERC collaborative center using the angular

distance weighting method at 0.5o resolution. In this study, we

acquired the CRU data [(https://crudata.uea.ac.uk/cru/data/hrg/

FIGURE 3
Research methodology.

TABLE 1 Details of satellite images.

Satellite mission Sensor Band Resolution (m)

Landsat 5 TM (1984–2013) 7 30/60 Optical/thermal

Landsat 7 ETM (1999–2016) 9 30/60

Landsat 8 OLI TIRS (2013–Present) 11 30/100

TABLE 2 Statistical details of topographic parameters for Astore and Shigar.

Astore Shigar

Elevation zone Elevation (m) Area [km2

(%)]
Elevation zone Elevation (m) Area [km2

(%)]

1 <2,500 410 (7.83%) 1 <3,500 1,105 (12.39%)

2 2,501–3,600 1,465 (28%) 2 3,501–4,600 2,611 (29.29%)

3 3,601–4,500 2,257 (43.13%) 3 4,601–5,500 3,663 (41.1%)

4 >4,501 1,102 (21.06%) 4 >5,501 1,535 (17.23%)

Total 5,233 (100%) 8,913 (100%)
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cru_ts_4.05/ge/) (accessed on 15 May 2022)] between 1991 and

2021 (Harris et al., 2020; Harris et al., 2021). The climatic data

were used to estimate the influence of changing climate on SCA.

Results and discussion

Annual snow cover area

In this study, the SCA for Astore and Shigar was computed

through Landsat data between 1991 and 2021 in GEE. The

mean annual SCA was calculated for both regions as presented

in Figures 4A,B. It was observed that SCA varies greatly in

both regions due to high variability in precipitation and

temperature (Khan et al., 2014; Tahir et al., 2015). Astore

SCA varies between 36.7% (1998) and 92.7% (1991)

(Supplementary Figures S1,S2), while in Shigar it varies

between 47.4% (1997) and 89.18% (2019) (Supplementary

Figures S3,S4). A huge variation of SCA can be reflected

through the high discharge of Astore River and Shigar

River basins. Hakeem et al. (2014) revealed that Shigar

River basin runoff is mainly contributed by seasonal and

annual SCA. It was observed that Astore and Shigar have

an increasing trend of SCA with a rate of 11.16 km2/year and

4.27 km2/year, respectively. Tahir et al. (2015) and Tahir et al.

(2016) also revealed an increasing/stable trend of SCA in the

Western Himalayas and Central Karakoram region. River

basins in the UIB are highly dependent on SCA and

glaciers; therefore, this increasing trend of SCA can highly

contribute to the Astore River and Shigar River in the future.

The increasing trend of precipitation and decreasing trend of

temperature feed the mountainous region and reduce the

snow melt resulting in a stable/increasing trend of SCA.

The results of this study are similar to Gilgit River and

Hunza River basins.

It was also observed that the annual SCA was decreasing

during 1991–2005 (−38.04 km2/year) in Astore because the

temperature was increasing and precipitation was decreasing,

while, in the latter part of the study (2006–2021), the results

revealed that SCA was increasing (25.76 km2/year) because the

temperature was decreasing and precipitation was increasing. It

was observed in Shigar that in both periods annual SCA was

increasing because the precipitation has an increasing trend and

the temperature has a decreasing trend. A similar increasing

trend in precipitation and decreasing trend in temperature was

observed by Tahir et al. (2015) and Tahir et al. (2016).

FIGURE 4
Inter-annual SCA variability for (A) Astore and (B) Shigar.

FIGURE 5
Elevation-zone wise mean SCA (1991–2021) of (A) Astore, (B)
Shigar, (C) Astore elevation zones, (D) Shigar elevation zones.
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Topographic parameter and snow cover
area

Topographic parameters, i.e., elevation, slope, and aspect

play a significant role in snow cover changes (Li and Li, 2014;

Bhambri et al., 2017) because the process of accumulation and

melting can be controlled by topography and atmospheric

conditions. The air and surface temperatures are increasing at

higher altitudes which can significantly affect the SCA (Huang

et al., 2017). Many researchers studied elevation-dependent

warming and concluded that it will have a significant impact

on hydrological cycles due to the huge and early snow melt

process (Pepin et al., 2015; Thakuri et al., 2019). Therefore, in this

study, we correlated elevation and SCA. It was observed that

elevation zone 1 covers 7.83% of the total area of Astore, and

usually, in this zone, the precipitation falls in the form of rainfall;

hence, on average, this zone covers 0.9% of SCA. The

temperature of this zone varies from −8.07 C in January to

12.50 C in August. The snow accumulation period of this

zone is comparatively shorter; consequently, this zone

occupies only a small portion of SCA (Figure 5A); on

contrary, zone 4 of the elevation class covers 21.06% of the

total area which is mainly covered with glaciers above the

5,000 mean sea level (m.s.l) (Figure 5C). The areal extent of

permanent SCA is mostly situated at zone 4 because at higher

altitudes the precipitation falls in the form of snowfall and the

temperature of this zone varies from −10.70 C in January to

11.50 C in August. In this zone, the below-freezing temperature

remains until April, and the snow melt period becomes shorter.

Therefore, zone 4 has weaker snow cover variations (S = 0.03%/

year, tau’s = 0.97) (Figure 6A) (Tahir et al., 2015; Misra et al.,

2020). Zone 4 of the elevation class covered 27.4% of SCA

(Figure 5A). Zone 2 and zone 3 of the elevation class cover a

large portion in Astore; similarly, they cover 21% and 50.7% of

SCA, but we observed high year-to-year variation in these zones

because these zones receive a large amount of precipitation in the

form of snow during the accumulation season, but in the melt

season the precipitation falls in the form of rain and heavy

rainfall in the monsoon season (rain on snow), leading to rapid

melting of snow cover. Another reason for the decreasing trend

of SCA is that SCA is highly exposed to high temperatures

(S = −0.83 and -0.71%/year; tau’s = 0.86 and 0.77).

Particularly, in this study, we observed that zone 2 and zone

3 have an increasing trend of temperature and decreasing trend

of rainfall, which is the reason for decreasing trend of SCA

(Supplementary Table S4). Annual SCA at mid-altitude zones

decreases but insignificantly which is closely related to the

elevation-dependent temperature change as compared to

precipitation (Misra et al., 2020; Shen et al., 2021)

(Supplementary Table S4).

Many previous research studies suggested that snow

accumulation and snow melt were significantly based on the

topography, latitude, and weather conditions of the area (Woo

and Thorne, 2006; Jain et al., 2009; Kour et al., 2016). Therefore,

FIGURE 6
Mann–Kendall trend of annual SCA derived from Landsat data in four elevation zones of (A) Astore and (B) Shigar over a 31-year period
(1991–2021). Kendall tau, “tau’s”; Sen’s slope, “S.”
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the elevation of Shigar was correlated with SCA in this research to

examine its impact. The valley floor (zone 1) and high altitude

(zone 4) of Shigar cover an area of 12.39% and 17.23%,

respectively. At high altitudes, snow is the main form of

precipitation and represents a glaciated area, while the valley

floor receives precipitation in the form of rainfall. The

temperature of zone 1 remains below the freezing point for

5 months in Shigar, while at high-altitude zone 4 the freezing

temperature remains for 7 months, which represents the snow

accumulation and snow melting period and variations of SCA in

zone 1 and zone 4. At high altitudes, less temperature can be

examined with a high amount of precipitation which can turn it

into snow accumulation (Supplementary Table S4).

Subsequently, elevation with climate variables greatly affects

the snow cover distribution (Jain et al., 2009). The mid-

altitude zones cover 70% of the total area and occupy 75.2%

of SCA. This huge portion of SCA at mid-altitude is sensitive and

exposed to high temperature in the melt season resulting in high

discharge in the river and also presents high SCA variations

(Hasson et al., 2014a; Hakeem et al., 2014) (S = −0.09 and 0.03%/

year; tau’s 0.54 and 0.38) (Figure 6B).

Trends in annual SCA were computed for a period of

31 years in four elevation zones of Astore and Shigar (Table 2;

Figure 6). Low-altitude zones of both regions revealed a

decreasing trend, but the trend was insignificant, while, at

high-altitude zones of Astore and Shigar, the trend was

insignificantly positive (Figure 6; Supplementary Tables S4,S5).

The tau values at high elevation for Astore and Shigar were

0.97 and 0.17, while S-values were 0.03% and 0.01%/year,

respectively (Figures 6A,B). On contrary, the tau values for

mid-altitude zones of Astore were 0.86 and 0.77, while

S-values were −0.83% and −0.71%/year (Figure 6A;

Supplementary Table S4). Similarly, the tau values of Shigar at

mid-altitude were 0.54 and 0.38, while S-values were −0.09% and

0.03%/year. (Figure 6B; Supplementary Table S5).

Climate variables and snow cover area

For a better interpretation of the snow cover area, we

compared SCA with climate variables (temperature and

precipitation) for the period of 1991–2021. The rainfall and

temperature patterns were examined to see the response of

SCA to the changing climate. The mean annual temperature

and rainfall of Astore and Shigar were computed, and it was

revealed that the mean annual temperature of Astore and

Shigar was decreasing, while precipitation was increasing in

both regions (Figures 7, 8). A linear trend value for Astore

(Shigar) was 0.025 mm/year (0.028 mm/year) for

precipitation and −0.003 °C/year (−0.017 °C/year) for

temperature was found over the studied period

(1991–2021) (Figures 7, 8). The increasing and decreasing

trends of precipitation and temperature indicate the reason

for the stable/increasing trend of SCA because the increasing

trend of precipitation feeds the mountainous area and

influences the SCA.

In this study, we analyzed the seasonal trend of temperature

and precipitation to understand which climatic variable led to an

increasing or stable trend of SCA in Astore and Shigar. Long-

term (1991–2021) precipitation and temperature data were used

to compute the trend. The results revealed that winter

precipitation in Astore have an insignificant positive trend

(tau’s = 0.84; S = 0.04 mm/year); however, the summer season

has an insignificant negative trend of precipitation (tau’s = 0.61;

−0.097 mm/year) (Table 3). While it was noticed that the

summer season temperature has an insignificant decreasing

FIGURE 7
Annual SCA, rainfall, and temperature of Astore.
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trend, the winter season temperature has an increasing trend.

The increasing and decreasing trends of precipitation and

temperature in both seasons can be a possible reason for the

stable/increasing trend of SCA in Astore because winter

precipitation is increasing which can bring more snowfall in

the region and summer season temperature is decreasing which

restricts snow melt (Archer and Fowler, 2004; Hewitt, 2007). The

increasing trend of precipitation in Asia was also reported by

Hartmann et al. (2013). Recently, Moazzam et al. (2022) also

revealed that precipitation will increase in the northern region of

Pakistan (Gilgit-Baltistan) under representative concentration

pathway (RCP) 4.5 and RCP 8.5 (Moazzam et al., 2022).

In contrast, it was observed that, in Shigar, precipitation is

increasing in winter (tau’s = 0.86; S = 0.034 mm/year) and

summer seasons (tau’s = 0.66; S = 0.019 mm/year), while

temperature is also increasing in both seasons (Table 4). The

increasing trend of SCA in Shigar may be influenced by the

increased winter precipitation due to the western disturbance

(Ahmad et al., 2019). A recent book published by ICIMOD also

reported an increasing trend in winter precipitation (Krishnan

FIGURE 8
Annual SCA, rainfall, and temperature of Shigar.

TABLE 3 MK trend analysis of climate variables of Astore for summer and winter seasons for the period of 1991–2021.

Trend Precipitation Temperature

Winter (DJF) Summer (JAS) Winter (DJF) Summer (JAS)

Linear regression y = 0.04x + 38.3 y = −0.02x + 40.4 y = 0.034x–11.9 y = −0.007x + 7.6

Tau’s 0.84 (p > 0.05) 0.61 (p > 0.05) 0.44 (p > 0.05) 0.79 (p > 0.05)

Sen’s Slope 0.04 mm/year −0.097 mm/year 0.009 (oC/year) −0.033 (oC/year)

TABLE 4 MK trend analysis of climate variables of Shigar for summer and winter seasons for the period of 1991–2021.

Trend Precipitation Temperature

Winter (DJF) Summer (JAS) Winter (DJF) Summer (JAS)

Linear regression y = 0.03x + 27.4 y = 0.07x + 9.5 y = 0.015x–12.7 y = 0.03x + 7.6

Tau’s 0.86 (p > 0.05) 0.66 (p > 0.05) 0.34 (p > 0.05) 0.81 (p > 0.05)

Sen’s Slope 0.034 mm/year 0.019 mm/year 0.013 (oC/year) 0.037 (oC/year)
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et al., 2019). The increasing probability of western disturbance-

induced rainfall and snowfall in the winter season will impact an

increase in SCA (Midhuna et al., 2020).

Discussion

In this study, we analyzed the snow cover changes of

Astore and Shigar using Landsat data in the Google Earth

Engine (GEE) platform for the period of 1991–2021. The

normalized difference snow index (NDSI) was used in this

study for the extraction of snow cover because in previous

studies (Burns and Nolin, 2014; Shafique et al., 2018; Tong

et al., 2020) NDSI revealed a better accuracy in shadowed and

mountainous regions. In this study, it was found that the snow

cover area is increasing in Astore and Shigar which is in line

with some previous studies (Tahir et al., 2015; Tahir et al.,

2016; Anjum et al., 2019; Shafiq et al., 2019). The increasing

trend of SCA nourishes the glaciers and makes a positive

contribution to the mass balance of glaciers in the Karakoram

region which was reported previously (Scherler et al., 2011;

Nüsser and Schmidt, 2021; Bhambri et al., 2022), not like

other mountainous regions around the globe because the

temperature is decreasing and precipitation is increasing in

this region. Similarly, IPCC Fifth Assessment Report

indicated an increase in SCA due to a positive trend of

precipitation (Hartmann et al., 2013) which is also

supported by another study that the frequency and

occurrence of westerlies-induced precipitation will increase

up to 2,100 (Ridley et al., 2013). Moazzam et al. (2022) also

revealed an increasing trend of precipitation until mid of this

century. The cooling phenomena of the summer season are

also a reason for the increasing trend of SCA (Fowler and

Archer, 2006). The increasing trend of SCA in the Astore

region is unexpected because previous studies reported a

decreasing trend of glacier mass balance in the Himalayan

region (Ali et al., 2015; Bajracharya et al., 2015; Hayat et al.,

2019). Astore is located in the extreme Western Himalayan

region and has a different climate from the Eastern Himalayan

region and receives westerlies-induced precipitation due to

the vicinity of the southern Karakoram region; hence, the

winter precipitation of Astore is somewhat similar to Shigar

precipitation (Tables 3, 4). Therefore, the climate variability

trend plays a significant role in the increasing or decreasing

trend of SCA in the Central Karakoram and Western

Himalayas region (Tahir et al., 2015). A seasonal analysis

was performed for the winter and summer seasons’

precipitation and temperature of Astore and Shigar

(Figure 7). The precipitation and temperature (winter) of

Astore have an increasing trend but not significantly, while

in the summer season both temperature and precipitation

have a decreasing trend. The results of this study support a

study conducted by Archer and Fowler, (2004) who explained

an insignificant decreasing trend in the summer season, while

in Shigar it was noted that precipitation and temperature in

winter and summer seasons have an insignificant increasing

trend. The increasing trend of winter temperature still persists

negatively in high-elevation zones (Tahir et al., 2016). Archer

and Fowler, (2004) stated an increasing trend of summer and

winter precipitation in the Upper Indus Basin. The increasing

trend of SCA in Astore is clearer than that in Shigar (Tables 3,

4) because summer temperature in Astore has a decreasing

trend [ tau’s = 0.79; S = −0.033 (oC/year)]. Fowler and Archer,

(2006) stated that the summer season’s temperature plays a

key role in SCA and glacier melt; another study also stated that

the pre-monsoon and monsoon temperature of the high

mountain area is decreasing (Hussain et al., 2005). The

elevation and SCA were also analyzed, and it was found

that zone 1 of both regions has a decreasing trend (Qureshi

et al., 2017; Ali et al., 2021), while zone 4 has a slightly

increasing trend of SCA because the high-altitude region is

less exposed to solar radiation as compared to foothills (Saydi

and Ding, 2020). The higher altitude regions have consistently

below-freezing temperatures throughout the year; therefore,

increasing precipitation can possibly feed the high-altitude

region, and hence SCA expands (Tahir et al., 2011; Hasson

et al., 2014b). Worldwide glaciers are decreasing due to an

ongoing climate change prognosis, whereas in some valleys of

Karakoram and Himalayan regions its increase is a good sign

which has been previously noted in a number of studies under

the title of the Karakoram anomaly (Hewitt, 2005; Farinotti

et al., 2020; Dimri, 2021). The glacier of the study region feeds

the flow in the Indus River, which is a resource and sometimes

becomes a hazard for 220 million people in low-lying areas.

The increase in glacial mass has also increased river flow in

Shigar and Astore rivers (Khalida et al., 2015) which is also a

positive sign for the low-lying agricultural land.

Conclusion

Spatial and temporal SCA changes have been calculated

using Landsat data with the GEE platform and analyzed with

climate variables (rainfall and temperature) and elevation for the

Astore and Shigar regions. The results of this study have been

evaluated, and it is concluded that SCA in both regions has an

increasing trend due to the increasing trend of precipitation and

decreasing trend of temperature in the studied period. The results

also indicated that the SCA was decreasing (−38.04 km2/year)

during 1991–2005 in the Astore region, while in the same period

Shigar had an increasing trend. In the latter part of the study

(2006–2021), the results revealed an increasing trend of SCA in

both regions. The annual SCA varies greatly due to the influence

of rainfall and temperature. The minimum annual SCA was

observed in the years 1998 (36.7%) and 1997 (47.4%) in Astore

and Shigar, while maximum SCA was observed in the years 1991
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(92.7%) and 2019 (89.18%) in Astore and Shigar, respectively. A

thorough investigation of SCA and elevation revealed that the

lowest and highest altitudes have insignificant decreasing and

increasing trends of SCA in both regions. SCA and climate

variables indicated that precipitation is increasing and

temperature is decreasing with time which is a possible reason

for the increasing trend of SCA in both regions. The increasing

SCA is a positive sign of water resources for the future and

agricultural activities in the study region as well as the region

relying on water resources from Astore and Shigar rivers. The

increasing precipitation, especially decreasing temperature in the

study region is in contrast to the current global climate warming,

and this needs to be further investigated at the microlevel. This

study can help improve the knowledge and understanding of

water resource management.
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A component of terrestrial water storage, vegetation is also an influential driver

of changes in terrestrial water storage. In the context of warming on the Tibetan

Plateau, it is essential to explore the relationship between changes in terrestrial

water storage and vegetation in this region to understand further the role of

vegetation in the changes of water systems in alpine mountains. Our study

combines terrestrial water storage anomalies data and vegetation indices to

determine how their interact. The results indicate a warming rate of 0.44°C/

decade (p<0.01) over the Tibetan Plateau from 1980–2020, while

evapotranspiration trended upward (12.9 mm/decade, p<0.01), which is

slower than precipitation (15 mm/decade, p<0.01). On the Tibetan Plateau,

spatial-temporal differences in temperature, precipitation, and

evapotranspiration dominate the variations in terrestrial water storage. The

change in terrestrial water storage was relatively stable from 2003 to 2011, but

decreased from 2012 to 2016. Terrestrial water storage increased in endorheic

basins while decreasing in exorheic basins. Partial correlation analysis indicates

a negative correlation between the terrestrial water storage anomaly and the

temperature. It is found that terrestrial water storage and net precipitation are

positively correlated in the Yangtze River Basin and the northeast of the

endorheic basins. However, the Qaidam Basin and the north part of the

Yellow River Basin are negatively correlated. Under the current climate

change state (the increased rate of precipitation is faster than actual

evapotranspiration), vegetation change has an insignificant impact on the

changes in terrestrial water storage. In contrast, changes in terrestrial water

storage (surplus/deficit) significantly affect vegetation changes (greening/

browning) in parts of the Tibetan Plateau. The study contributes to a deeper

understanding of the relationship between water system changes and

vegetation on the Tibetan Plateau.
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1 Introduction

The Tibetan Plateau is known as the " Asian Water Towers "

because it has substantial both solid water resources (mainly

glaciers and snow) and liquid water resources (mostly lake

water). In the context of global warming, the Tibetan Plateau

is undergoing a decrease in solid water storage and an increase in

liquid water storage (Yao et al., 2022; Xiong et al., 2019).

Essentially, glacier retreat, snow melt, and permafrost

degradation are only transitions in water body states and do

not affect the overall terrestrial water storage changes on the

Tibetan Plateau. Temperature, evapotranspiration, and runoff

have increased, resulting in glaciers and snow melt water loss.

These factors contribute to an imbalance in water storage on the

Tibetan plateau.

Terrestrial water storage (TWS) is a crucial indicator for

quantitatively assessing the dynamics of the regional water

balance, which consists of glaciers, snow, soil moisture,

groundwater, surface water (rivers and lakes), and vegetation

canopy water (Syed et al., 2008). Global warming has resulted in

glacier retreat, snow melt, permafrost degradation, and lake

expansion on the Tibetan Plateau, significantly affecting

terrestrial water storage (Che et al., 2019; Wang et al., 2018).

Assessing water balance changes on the Tibetan Plateau based on

traditional hydrological methods has considerable uncertainty

because of the region’s large gap in hydro-meteorological

observations (Kang et al., 2020), especially in the endorheic

basins. The development and advancement of remote sensing

monitoring technologies in the last 2 decades, especially the

Gravity Recovery and Climate Experiment (GRACE) gravity

satellite launched in March 2002 and the GRACE second-

generation satellite GRACE Follow On (GRACE-FO) in May

2018, have provided the opportunity to monitor terrestrial water

storage changes (Sun et al., 2014; Pokhrel et al., 2021).

Since its launch, the GRACE gravity satellite has been widely

used to study the terrestrial water storage changes on the Tibetan

Plateau and surrounding areas (Matsuo and Heki, 2010; Long

et al., 2014). There are apparent spatial differences in terrestrial

water storage changes on the Tibetan Plateau (Li et al., 2022). The

decrease in terrestrial water storage in the southern part of the

Tibetan Plateau is caused by rising temperatures and decreasing

precipitation (Jacob et al., 2012; Wang et al., 2020). Terrestrial

water storage increased in the Sanjiangyuan area due to soil

moisture rising (Meng et al., 2019), but surface water storage in

the region is declining (Liu et al., 2020). The southeastern part of

the Tibetan Plateau shows an overall decreasing trend in

terrestrial water storage (-2.4 mm/a), especially the region’s

most severe water storage deficit in the Salween River basin

(Zhu et al., 2020). Terrestrial water storage in the inner Tibetan

Plateau is on the rise, with the increase in lake water storage being

the main contributor in terms of water storage components

(Song et al., 2015; Zhang et al., 2019) and the increase in

precipitation in terms of the water cycle (Deng et al., 2018;

Meng et al., 2019).

The southeastern part of the Tibetan Plateau has high

vegetation cover and is an area of forest distribution. In

contrast, the central and northwestern parts have low

vegetation cover and are areas of scrub or herbaceous

distribution. The change in vegetation to either greening or

browning in the context of warming of the Tibetan Plateau

(Shen et al., 2013; Cai et al., 2015; Zhang et al., 2017) will

have a significant impact on terrestrial water storage: firstly,

vegetation canopy water is a component of terrestrial water

storage; secondly, changes in vegetation transpiration will also

affect evapotranspiration. Thus, it is necessary to clarify the

interaction between changes in terrestrial water storage and

changes in vegetation on the Tibetan Plateau due to global

warming. It will contribute to a better understanding of the

mechanisms underlying changes in terrestrial water storage on

the Tibetan Plateau. However, this aspect has received little

attention in the current research.

Therefore, based on the changes in temperature,

precipitation, and evapotranspiration of the Tibetan Plateau,

this study analyses the terrestrial water storage changes. Then

explains the interrelationship between terrestrial water storage

changes and vegetation. It answers whether there is an interactive

feedback mechanism between terrestrial water storage changes

and vegetation changes on the Tibetan Plateau. Section 2

describes the study area, data, and methods; Section 3

includes temperature, precipitation, evapotranspiration, and

terrestrial water storage changes before examining the

mechanisms explaining terrestrial water storage change and

vegetation change. Section 4 provides detailed discussions, and

Section 5 presents the conclusions.

2 Data and methods

2.1 Study area

The Tibetan Plateau covers an area of about 254 × 104 km2

and is the highest plateau in the world, with an average altitude of

more than 4,000 m (Figure 1A). The Tibetan Plateau has a wide

distribution of solid water resources (mainly glaciers, snow, and

permafrost) and large liquid water reserves (especially lake

water). It is the source of many major rivers in Asia,

including the Yellow, Yangtze, Lancang- Mekong, Ganges, and

Indus rivers. As a result, it is known as the “AsianWater Towers.”
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The average annual temperature of the Tibetan Plateau is about

6.1°C, with the average temperature in summer being above 15°C

and the average temperature in winter below -5°C (Figure 1B).

The average annual precipitation on the plateau is about 596 mm,

with rainfall mainly occurring between May and September

(Figure 1C).

2.2 Data sources

2.2.1 Climate data
Temperature and precipitation datasets were obtained from

the China National Meteorological Information Center

(CNMIC, https://data.cma.cn/). The period covered from

January 1961 to December 2020, with a spatial resolution of

0.5° × 0.5° (CN05). The accuracy of the CN05 dataset was

assessed using strict quality control, which included cross-

validation and error analysis. We calculated the temperature

and precipitation for winter (December; January and February

the following year), spring (March-May), summer (June-

August), and autumn (September-November). The seasonal

division here refer to Cai’s result (Cai et al., 2017).

Evapotranspiration (ET) and vegetation transpiration data

were collected from the Global Land Evaporation Amsterdam

Model (GLEAM v3.5; https://www.gleam.eu/), which is based on

satellite and reanalysis data (ERA5 net radiation and air

temperature) and has a temporal span of January 1980-

December 2020, with a spatial resolution of 0.25°.

2.2.2 Vegetation index
The Normalized Difference Vegetation Index-third

generation (NDVI) data using the Global Inventory

Monitoring and Modeling System (GIMMS), GIMMS

NDVI 3 g (https://ecocast.arc.nasa.gov/data/pub/gimms),

with the time range of 1981–2015, spatial resolution 1/12°

(roughly 8 km). In this study, NDVI data for 2002–2015 is

used to reveal the vegetation index variation characteristics

of the Tibetan Plateau. NDVI <0.3, represent low coverage;

0.3 ≤ NDVI <0.5, moderate coverage; 0.5 ≤ NDVI, high

coverage.

2.2.3 GRACE data
In this study, the GRACE Level-2 data was released by the

University of Texas Center for Space Studies (UTCSR, http://

www2.csr.utexas.edu/grace/) for April 2002- June 2017 from

the mass concentration blocks (Mascons) method, with a

spatial resolution of 0.25°. The dataset comprised

data from 183 months with 20 missing values (June-2002,

July-2002, July-2003, January-2011, June-2011, May-2012,

October-2012, March-2013, August-2013, September-2013,

February-2014, July-2014, December-2014, June-2015,

October-2015, November-2015, April-2016, September-

2016, October-2016, and February-2017). The missing

values of terrestrial water storage anomaly

(TWSA) were filled using the multiyear mean of a

missing month and the TWSA of its nearest month (Long

et al., 2015).

FIGURE 1
Study area (A), boundary data for the Tibetan Plateau provided by the Global Change Science Research Data Publishing System (http://www.
geodoi.ac.cn/WebCn/doi.aspx?Id=135), glacier vector data from the National Center for Glacial Permafrost Desert Science and Data (http://www.
ncdc.ac.cn)[33], and lake data from Wan et al. (2016)[34]. (B–C) Mean monthly temperature and precipitation based on the CN05.
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2.3 Methodology

2.3.1 Terrestrial water storage calculations
The GRACE twin satellites, launched in March 2002,

collaborate with the US space agencies (NASA) and the German

aerospace center (DLR). The satellites use a precise microwave

ranging system, based on the satellite-to-satellite tracking in the low-

low model (SST-LL), to measure the distance between themselves

due to gravitational acceleration. Onboard GPS instruments

determine the exact position of the satellites over the Earth. The

GRACE measures changes in Earth’s gravity field,

which after deducting tidal effects (including sea tides, solid

tides, and polar tides generated by the Earth’s rotation), as

well as non-tidal atmospheric and oceanic effects, the

signal changes largely reflect changes in total water storage

on the seasonal scale (Rodell and Famiglietti, 1999).

In this study, the monthly TWS anomaly (TWSA) data of

GRACE RL06 Mascon solutions (version 02) from the Center

for Space Research (CSR RL06 v02). The solutions with all the

appropriate corrections applied (ellipsoidal correction, C20,

degree 1, GIA, etc.) in 0.25° grids. The ellipsoidal correction of

CSR RL06 v02 for mass anomaly grid representation has been

applied as described by Ditmar (2018). The C20 (degree two

order 0) coefficients are replaced with the C20 solutions from

satellite laser ranging (SLR) (Loomis et al., 2019) for

consistency with all the other solutions. The degree-1

coefficients (Geocenter) corrections are applied using the

estimates in TN-13a (available at https://podaac-tools.jpl.

nasa.gov/drive/files/allData/grace/docs/TN-13_GEOC_CSR_

RL06.txt). A glacial isostatic adjustment (GIA) correction

has been applied based on the model ICE6G-D

(Peltier et al., 2018). On this basis, the TWSA in

the endorheic of the Tibetan Plateau during March 2002-

June 2017 (the basis period of anomaly is January 2004-

December 2009, and the observation series of this

period without missing value) is obtained, and then

to analyze the seasonal and interannual variations of TWSA.

2.3.2 Net precipitation calculation
Net precipitation is a key hydrological variable directly

related to water resources. The net precipitation (net pre) is

equal to the precipitation (P) minus the evapotranspiration

(ET) (Equation 1). As precipitation data for the CN05 are

spatially resolved at 0.5°, evapotranspiration data are spatially

resolved at 0.25°, so we resample the evapotranspiration data

to 0.5° here. Resampling is performed here using Matlab’s

griddata function.

net pre � P − ET (1)
Where net pre represents net precipitation (mm), P is

precipitation (mm), and ET is evapotranspiration (mm).

2.3.3 Trend rate estimate
In this study, we applied the Mann-Kendal (M–K)

nonparametric method to detect trends of temperature,

precipitation, evapotranspiration, transpiration, and NDVI in

the Tibetan Plateau. Furthermore, the trend rate was estimated

using Sen’s (1968) nonparametric trend estimator.

3 Results

3.1 Recent climate change in Tibetan
Plateau

In this study, we first analyze the climate change (including

temperature, precipitation, and evapotranspiration) in the

Tibetan Plateau during 1961–2020 due to climate warming

being the main driving force for changes in TWSA on the

Tibetan Plateau. Figure 2A shows that the warming rate of

temperature was 0.35°C/decade (p<0.01) during 1961–2020,

while it reached 0.44°C/decade (p<0.01) during 1981–2020,

which was nearly 0.1°C/decade faster. The results of the

Tibetan Plateau temperature anomalies (the basis period of

anomaly is 1981–2010) during the past 60 years indicate that

the anomalies were negative before 1990 and positive after 2000

FIGURE 2
The anomalies of climate variables in the Tibetan Plateau
from 1961 to 2020, (A) temperature anomalies, (B) precipitation
anomalies, and (C) evapotranspiration (ET) anomalies (from
1980 to 2020). The base period of anomalies is 1981–2010.
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(Figure 2A). The anomaly in the 1960s was about -1°C while it

reached 1°C in the 2010 s, indicating that the average temperature

of the Tibetan Plateau has increased by 2°C in recent 60 years.

Precipitation has also increased on the Tibetan Plateau over

the past 60 years. The precipitation anomaly was mainly negative

before 1990 and positive after 1990 (Figure 2B). The increased

rate of precipitation is 15.0 mm/decade (p<0.01) from 1980 to

2020 was nearly twice as fast as that from 1961 to 2020 (8.8 mm/

decade, p<0.01). The increased water vapor content caused by

temperature rise is essential for the annual average precipitation

increase over the Tibetan Plateau. At the same time, it has also

been pointed out that there are significant spatial differences in

precipitation on the Tibetan Plateau (Yao et al., 2022), with a

decrease in precipitation in the monsoon-controlled southern

and southeastern exorheic river basin and an increase in

precipitation in the westerly-controlled northwestern

endorheic basin (Zhu et al., 2019). Meanwhile, the

evapotranspiration on the Tibetan Plateau shows an

increasing trend (12.9 mm/decade, p<0.01) during the period

1980–2020 (Figure 2C), which is slower than the rate of increase

in precipitation during the same period.

The trend rates of temperature, precipitation, and

evapotranspiration for different climatic periods are shown in

Table 1. The results showed that the temperature warming rate

was 0.17°C/decade (p<0.05) in 1961–1990 and 0.23°C/decade

(p<0.05) in 1971–2000, respectively, while the precipitation

increased or decreased is insignificant. During the period

1981–2010, the temperature warming rate reached 0.59°C/

decade (p<0.01), and the precipitation increase rate was

13.4 mm/decade (p<0.05). The rapid increase in temperature

during this period accelerated the increase in evapotranspiration

to 16.5 mm/decade (p<0.01), which exceeded the increase in

precipitation. During the period 1991–2020, the warming rate of

temperature was 0.44°C/decade (p<0.01), the rate of increase in
precipitation reached 26.9 mm/decade (p<0.01), and the rate of

increase in evapotranspiration slowed down (11.4 mm/decade,

p<0.01). The rapid increase in precipitation during this period

slowed the rate of warming during this period, which in turn

affected the changes in evapotranspiration.

The average temperature of the Tibetan Plateau increased

steadily in all seasons, but the warming rates of different

seasons differed in different periods (Figures 3A,B). During

1961–1990, the warming rates of winter and autumn were

higher than in spring and winter. The warming rates of

summer and autumn were faster than winter and spring

from 1971 to 2000. During 1981–2010, the warming rate

exceeded 0.4°C/decade, more than other periods, especially

in winter, nearly to 0.8°C/decade. During 1991–2020, the

warming rate in winter and autumn exceeded 0.6°C/decade

faster than in spring and summer (<0.4°C/decade).
The mean summer precipitation on the Tibetan Plateau has

steadily risen over the four climatic periods, while the other

season’s precipitation has remained relatively stable (Figure 3C).

During 1961–1990, except for a slight decrease in summer

precipitation, the other seasons showed an upward trend

(Figure 3D). Precipitation increased in winter and autumn

from 1971–2000 but declined in spring and summer.

Meanwhile, precipitation increased in spring and summer but

decreased in winter and autumn from 1981 to 2010. From

1991 to 2020, except for winter, which showed a slightly

declining trend, all other seasons showed an upward trend,

especially summer, nearly 15 mm/decade. Therefore,

precipitation increased on the Tibetan Plateau in summer but

decreased in winter.

In the context of increasing temperature and precipitation,

the actual evapotranspiration on the Tibetan Plateau also tends to

rise (Figure 3E). The actual evapotranspiration for all seasons on

the Tibetan Plateau in 1991–2020 is higher than in 1981–2010

(Figure 3F). However, the increasing trend of evapotranspiration

in 1991–2020 is slower than in 1981–2010, except for winter,

which is faster than in 1981–2010.

There are apparent seasonal differences in the changes in

precipitation and actual evapotranspiration under the ongoing

warming of the Tibetan Plateau. The increasing trend of

precipitation in spring and summer is greater than the rising

rate of actual evapotranspiration, while it is the opposite in

autumn and winter. Therefore, it will aggravate the water

storage deficit in the winter half-year on the Tibetan Plateau.

TABLE 1 The average values and trend rates (per decade) of temperature (°C), precipitation (mm), and actual evapotranspiration (mm) in different
periods of the Tibetan Plateau.

Temperature Precipitation Evapotranspiration

Average Trend Average Trend Average Trend

1961–1990 -2.49 0.17** 365.1 3.0 - -

1971–2000 -2.15 0.23** 369.0 -3.5 - -

1981–2010 -1.75 0.59*** 374.9 13.4** 277.5 16.5***

1991–2020 -1.30 0.44*** 387.4 26.9*** 290.1 11.4***

Note: Temperature and precipitation data are collected from 1961 to 2020, and actual evapotranspiration data is collected from 1980 to 2020. “***” indicate that the results pass the

significance test at the 0.01 confidence level (p < 0.01), and “**” denotes that the results pass the significance test at the 0.05 confidence level (p < 0.05). “-” represent no data record.
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3.2 TWSA changes in Tibetan Plateau

The changes in TWSA on the Tibetan Plateau have

noticeable stage differences (Figure 4A). From 2003 to 2012,

the changes in TWSA were relatively stable, with positive

anomalies in summer and autumn and negative anomalies in

winter and spring; from 2012 to 2016, annual and seasonal

variations of TWSA showed a downward trend. The results in

Figure 4B show that the seasonal TWSA has a corresponding

good relationship with net precipitation. The net precipitation in

June-September is positive, and the connected water storage is

positive. In contrast, the net precipitation from October to the

following January is negative, but the TWSA in these 4 months is

also positive due to the summer’s surplus effect of summer

positive TWSA. From February to April, the net precipitation

was negative, the corresponding TWSA was negative, and the net

precipitation in May was favorable. The TWSA was negative,

mainly affected by the winter’s deficit effect in winter negative

TWSA. Therefore, in general, the response of terrestrial water

storage changes to net precipitation is leg 1–3 months over the

Tibetan Plateau.

Figure 5A shows that the TWSA negative anomalies occurred

in the southern and eastern parts of the Tibetan Plateau and the

southern part of the endorheic basin. The most significant

negative anomalies in TWSA at the Yarlung Zangbo River

bend. The northern part of Inner TP and Qaidam basin are

positive anomalies in TWSA. According to the results of

Figure 4A, the whole study period can be divided into two

stages: 2003–2011 and 2012–2016. From 2003 to 2011, the

spatial range of positive and negative anomalies in TWSA was

similar (Figure 5B). However, from 2012 to 2016, the spatial

range of positive anomalies in TWSA was narrowed to the

endorheic basin, while most region of the Tibetan Plateau was

a negative anomaly, especially at the Yarlung Zangbo River bend,

which reached -500 mm (Figure 5C). Similarly, seasonal TWSA

also shows the same spatial pattern (Supplementary Figure S1).

This indicates that the extent and scope of the TWSA deficit are

increasing on the Tibetan Plateau, reflecting the increasingly

profound impact of climate warming on the water system on the

Tibetan Plateau.

The spatial pattern of the annual (Figure 6A1) and

seasonal (Figures 6B1–E1) TWSA variation is consistent,

FIGURE 3
Seasonal changes of climate variables in the Tibetan Plateau. From left to right: results for averaged value and trend. From top to bottom: results
for temperature (A–B), precipitation (C–D), and evapotranspiration (E–F).
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both showing an increase in the endorheic basins and a

decrease in the exorheic basins. We calculate the TWSA

relationship with temperature and net precipitation using

partial correlation analysis. In addition, we resample TWSA

data to 0.5° since temperature and net precipitation have a 0.5°

spatial resolution. The partial correlation analysis result shows

that the negative correlation between annual TWSA and

temperature in the Tibetan Plateau, except for the

endorheic basin (Figure 6A2). Figure 6A3 indicated that the

positive correlation between annual TWSA and net

precipitation in the Yangtze River basin and the

northeastern part of the endorheic basins. In contrast, a

negative correlation is found between the Qaidam Basin

and the north part of the Yellow River basin (Figure 6A3).

In winter, the TWSA positively correlates with temperature

(Figure 6B2) and net precipitation (Figure 6B3) in the exorheic

basins. In contrast, those in the endorheic basins and the

Qaidam Basin negatively correlate with net precipitation. In

spring, the change of TWSA is negatively correlated with

temperature in most regions of the Tibetan Plateau

(Figure 6C2), except for the northeastern endorheic basins

and the western part of the Qaidam Basin. In summer, the

variation of TWSA in the endorheic zone is positively

correlated with temperature (Figure 6D2), while it is

positively correlated with net precipitation in the exorheic

basins (Figure 6D3). In autumn, the decreasing TWSA region

has a significant negative correlation with temperature

(Figure 6E2), and the increasing TWSA region positively

correlates with temperature and net precipitation

(Figure 6E3). Overall, temperature determines the spatial

pattern of TWSA variations, as plateau warming accelerates

the retreat of the cryosphere, changes in precipitation

types, and vegetation changes, which in turn drive changes

in TWSA.

The warming rate over most regions of the Tibetan Plateau

exceeded 0.04°C/yr from 2000 to 2019 and even exceeded

0.06°C/yr (Figure 7A). During this period, increasing

precipitation in most regions (Figure 7B), including the

Yangtze River basin, Yellow River basin, Qilian Mountains,

and the western and northern parts of the endorheic basins,

while decreasing precipitation was observed in the

southeastern part of the endorheic basins, Yarlung Zangbo

River Basin, and the Hengduan Mountains. The

evapotranspiration in most areas of the Tibetan Plateau

shows an increasing trend. In contrast, the endorheic zone,

the Yellow River, and the Yangtze River Basin show a

decreasing trend (Figure 7C). Net precipitation

(precipitation minus actual evapotranspiration) increases

mainly in the Yellow River and Yangtze River basins and

the western part of the endorheic basins (Figure 7D) due to the

increase in precipitation and decrease in evapotranspiration.

FIGURE 4
The TWSA in the Tibetan Plateau from 2003 to 2016. (A) is
annual and seasonal TWSA, and (B) is monthly TWSA and net
precipitation (precipitation minus actual evapotranspiration). The
anomalies base period of TWSA and net precipitation is
between January 2004 and December 2009.

FIGURE 5
The spatial pattern of average annual TWSA in the Tibetan Plateau. (A) is averaged TWSA in 2003–2016, (B) is averaged TWSA in 2003–2011, and
(C) is averaged TWSA in 2012–2016.
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The reduction in net precipitation in the southern part of the

Tibetan Plateau, the Hengduan Mountains, the Yarlung

Zangbo River Basin, and the eastern part of the endorheic

basins is mainly due to the decrease in precipitation. The

reduction in net precipitation in the Qaidam Basin and the

northeastern part of the endorheic basins is due to the increase

in evapotranspiration that exceeds the increase in

precipitation.

The empirical orthogonal function (EOF) analysis the

mode of TWSA shows in the Figure 8. The first mode of

TWSA represents the characteristics of TWSA changes in the

Tibetan Plateau (Figure 8A), i.e., a surplus in the endorheic

basins and a deficit in the exorheic basins. The second mode of

TWSA represents the TWSA deficit in the northern part of the

Tibetan Plateau after 2012 (Figure 8B). The third mode means

the TWSA deficit in the western part of the endorheic basins

(Figure 8C). Figure 8D show that the cumulative variance

contribution of the first, second, and third modes reached

87%. On this basis, the correlation analysis results in Table 2

showed that the first mode of TWSA was mainly influenced by

air temperature, while the second mode of TWSA was

significantly negatively correlated with NDVI (r=-0.68,

p<0.05). It indicates that air temperature determined the

spatial pattern of the spatial variation of TWSA on the

Tibetan Plateau, and vegetation change may also be an

essential factor.

FIGURE 6
The spatial pattern of TWSA changes across the Tibetan Plateau from 2003 to 2016. From left to right: results for TWSA changes, the partial
correlation between TWSA and temperature, and partial correlation between TWSA and net precipitation. From top to bottom: results for Annual,
winter, spring, summer, and autumn. The black dots represent significance at the 0.1 confidence level (p < 0.1).
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FIGURE 7
The spatial changes of temperature (A), precipitation (B), actual evapotranspiration (C), and net precipitation (D) across the Tibetan Plateau
during 2000–2019.

FIGURE 8
The spatial modes of TWSA in the Tibetan Plateau, (A) is EOF1, (B) is EOF2, (C) is EOF3, and (D) is variance contribution rate and error bar using
the North test.
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3.3 The relationship between TWSA
changes and vegetation

Transpiration is an essential component of actual

evapotranspiration and is directly related to vegetation.

Figure 9A shows that the vegetation index (NDVI value) is

higher in the eastern and southeastern parts of the Tibetan

Plateau (NDVI > 0.5) and lower in other regions (NDVI <
0.3). Meanwhile, using 2004–2009 as a base period of

anomaly (which is consistent with the TWSA), the results

showed that the anomaly of NDVI in most regions of the

Tibetan Plateau was between -0.025 and 0.025 NDVI

(Figure 9B), but reached -0.1 NDVI at the Yarlung Zangbo

River bend in the southern part of the Tibetan Plateau. The

vegetation index changes in most areas of the Tibetan Plateau are

not noticeable (-0.005 - 0.005 NDVI/yr) (Figure 9C) but

significantly increased in the northeastern part of the Tibetan

Plateau, the northeast part of the endorheic basins. The

vegetation index decreased in the southern part of the Tibetan

Plateau (-0.1 NDVI/yr), which is closely related to the TWS

deficit. The transpiration change is directly related to the

vegetation cover under warming in the Tibetan Plateau. In the

higher vegetation cover area (NDVI>0.5, Figure 9C), when

vegetation indexes decline, vegetation transpiration may be

reduced (i.e., Yellow River Basin and Yangtze River Basin) or

increased (southern Tibetan Plateau) (Figure 9D). However, in

the lower vegetation cover area (NDVI<0.3), when the vegetation

index decreases (i.e., the endorheic zone and the Qaidam Basin),

vegetation transpiration will decrease (Figures 9C,D); when the

vegetation index increases (i.e., northeastern endorheic basins,

western Yarlung Tsangpo River Basin, and Indus Basin),

vegetation transpiration will increase (Figures 9C,D).

In the Tibetan Plateau, the low proportion of vegetation

canopy water to TWS means vegetation mainly influences

TWSA through transpiration. Therefore, we analyzed the

pattern of relationship between TWSA and transpiration on

the Tibetan Plateau based on the singular value decomposition

(SVD) method. The SVD decomposition results showed that

the variance contribution of the first mode of TWSA reached

60.27% (Supplementary Figure S2). The spatial pattern of the

first mode of TWSA was positively correlated in the endorheic

basins and negative in the exorheic basin. Meanwhile, the

TABLE 2 The correlation between the time coefficient of EOF modes
and climate factor.

EOF1 EOF2 EOF3

Temperature 0.49* 0.29 -0.045

Net precipitation -0.11 -0.03 -0.14

NDVI 0.33 -0.68** 0.30

Note: * p<0.1; ** p<0.05.

FIGURE 9
The changes in vegetation index and vegetation transpiration on the Tibetan Plateau between 2002 and 2015. (A) an annual average of NDVI; (B)
an annual average of anomalies of NDVI are based on 2004–2009, with a similar base period for TWSA anomalies; (C) NDVI changes during
2002–2015; and (D) vegetation transpiration trends from 2002 to 2015.
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spatial pattern of the first mode of transpiration was positive in

the endorheic basin and negatively correlated in the exorheic

basin. The heterogeneous correlation results show that the

correlation coefficients of the right field (transpiration) to the

left field (TWSA) are all negatively related (Figure 10A), which

indicates that the increase in transpiration is causing

terrestrial water storage loss. However, the correlation is

insignificance (p>0.05). It suggests that the transpiration

increase will not contribute to the TWSA deficit under the

current precipitation conditions (precipitation is more

significant than actual evapotranspiration). The

heterogeneous correlation coefficient of the left field

(TWSA) to the right field (transpiration) (Figure 10B)

shows a positive correlation in the northeastern part of the

endorheic basins, while the exorheic basins and the western

part of the endorheic basins show a negative correlation. It

indicates that transpiration tends to increase in the TWSA

surplus region while transpiration tends to decrease in the

TWSA deficit region.

Therefore, there is a close relationship between TWSA and

vegetation on the Tibetan Plateau. Under the current climatic

conditions (the rate of increase in precipitation is faster than

the increase in evapotranspiration), the effect of transpiration

change on the TWSA is negative but insignificant. However,

the impact of TWSA changes on vegetation transpiration is

positively correlated, mainly occurring in the endorheic basin.

The TWSA surplus in the northeastern endorheic zone is

causing greening vegetation and increasing transpiration. In

contrast, the TWSA deficit in the southern part of the

endorheic basin is an important reason for the browning of

vegetation and the decrease of transpiration.

4 Discussion

Increasing temperatures and precipitation on the Tibetan

Plateau in the context of global warming have exacerbated

uncertainties in the hydrological cycle processes in the region

(Yao et al., 2019a). Since the mid-20th century, temperature

and precipitation have increased on the Tibetan Plateau. The

warming rate in the northern part of the Tibetan Plateau is

faster than in other regions (Guo andWang, 2012). The annual

mean temperature warming rate on the Tibetan Plateau is

faster than the global warming rate over the same period

(Deng et al., 2017; Pepin et al., 2019). At the same time, the

warming rate on the Tibetan Plateau increases with altitude,

i.e., there is elevation-dependent warming (Yan et al., 2016;

Pepin et al., 2019; You et al., 2020a), especially for below

5,000 m regions (Gao et al., 2018). This elevation-dependent

warming will continue in the future (Guo et al., 2016; You

et al., 2019). Precipitation increased at a rate of 1.4 mm/yr on

the Tibetan Plateau during 1960–2014 (Deng et al., 2017).

Meanwhile, snowfall increased in the Karakorum region and

decreased in the Himalayas (Kapnick et al., 2014; You et al.,

2020b).

In the context of global warming, the water storage of the

Tibetan Plateau is undergoing dramatic imbalance, such as

glacier retreat, snowpack reduction, permafrost degradation,

lake expansion, and runoff increase (Chen et al., 2015; Yao

et al., 2019b), which have received widespread attention from

the scientific community. Glacier changes are sensitive to

the response to plateau warming (Zhao et al., 2019).

Spatially, glacier retreat rates are decreasing from the

southeastern part to the inner Tibetan Pleau (Wang et al.,

2019). In the last 50 years, glaciers on the Tibetan Plateau have

been in negative mass equilibrium (Yao et al., 2019a),

especially since the 1990s. From 2003 to 2009, the glacier’s

mass retreated across the Tibetan Plateau to -15.6 ± 10.1 Gt/yr

(Neckel et al., 2014).

Spatial differences in temperature and precipitation

variations on the Tibetan Plateau trigger spatial differences in

glacier retreat, snowmelt, and terrestrial water storage, leading to

regional differences in river runoff changes. Changes in TWSA

on the Tibetan Plateau are closely related to precipitation; for

example, increased water storage in the Yangtze River Basin and

Yellow River Basin is associated with an increase in precipitation

(Meng et al., 2019; Yang et al., 2019), while decreased TWSA is

closely associated with decreased precipitation in the Yarlung

Tsangpo River Basin (Deng et al., 2018). The TWSA (Figure 6A1)

FIGURE 10
Heterogeneous correlation maps between the first mode of
TWSA (A) and vegetation transpiration (B). The black plus
represents significance at 95%.
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and net precipitation (Figure 7D) increased in the Yangtze River

Basin headwaters and northeast of the endorheic basin. Thus,

Figure 6A3 shows a positive correlation between TWSA and net

precipitation. TWSA increased in the Qaidam Basin and the

northern Yellow River Basin (the Datong River) due to glaciers

and snow melting from surrounding mountains. Therefore,

TWSA and net precipitation negatively correlate in the

Qaidam Basin and the northern Yellow River Basin

(Figure 6A3). Runoff increased in the Yangtze and Lancang

River source areas due to rising temperatures (Li et al., 2013),

while the Yellow River source area runoff decreased due to

evapotranspiration and precipitation increased (Cuo et al.,

2013). The runoff changes in the Yarlung Tsangpo River were

determined by temperature and precipitation, but

temperature played a more significant role than precipitation

(Liu et al., 2018).

Vegetation is a vital medium for coupling the atmosphere-

pedosphere- hydrosphere, and changing will impact the

hydrological system. On the Tibetan Plateau, vegetation

changes are strongly influenced by the Asian monsoon,

particularly seasonal variations (Zhong et al., 2010). Thus,

vegetation’s spatial distribution is consistent with precipitation

distribution, i.e., the vegetation index decreases from southeast to

northwest (Figure 9A). Meanwhile, vegetation changes in

response to precipitation with a 1-month lag (Zhong et al.,

2010). On the Tibetan Plateau, the vegetation greening season

advanced at a rate of 1.04 days/yr from 1982 to 2011 due to

climate change (Zhang et al., 2013; Zhang et al., 2012). Different

vegetation types will respond differently to climate change: alpine

meadows and desert vegetation will shrink while shrubs and

forests will expand (Zhao et al., 2011). During the growing

season, the Tibetan Plateau may experience a slower rate of

warming due to increased transpiration (Shen et al., 2015).

In the Tibetan Plateau, the low proportion of vegetation

canopy water to TWSmeans vegetation mainly influences TWSA

through transpiration (Deng et al., 2022). There, there is a

complex correlation between changes in TWSA and the

vegetation on the Tibetan Plateau. The impacts of vegetation

changes on the TWSA is negative and insignificant under current

climate change condition (precipitation increased rate faster than

actual evapotranspiration increased). However, the effects of

TWSA on vegetation changes were significant in the

northeastern part of the endorheic basins. Thus, in the

context of current climate change, the impact of vegetation

change on TWSA on the Tibetan Plateau is relatively small

compared to other climate factors.

5 Conclusion

There was an increase in annual temperatures,

precipitation, and evapotranspiration on the Tibetan

Plateau. Over the period 1961–2020, temperatures and

precipitation increased at rates of 0.35°C/decade and

8.8 mm/decade, respectively. Over the decades 1980–2020,

the Tibetan Plateau warmed by 0.44°C/decade, precipitation

increased by 15.0 mm/decade, and evapotranspiration rose

by 12.9 mm/decade. In spring and summer,

precipitation increases faster than evapotranspiration. In

contrast, precipitation increases slower than

evapotranspiration in winter and autumn. It will exacerbate

the TWSA deficit in the Tibetan Plateau throughout the winter

half-year.

There are evident stages and spatial variability in TWSA

on the Tibetan Plateau. TWSA changes were relatively stable

from 2003 to 2011 but decreased from 2012 to 2016. Tibetan

Plateau TWSA changes are laggards to net precipitation by

approximately 1–3 months. Positive anomalies of TWSA

occur in the northeastern endorheic basins, while negative

anomalies occur at the Yarlung Zangbo River bend (less than

-500 mm). TWSA changes on the Tibetan Plateau are

negatively related to temperature because temperature rise

accelerates the melting of solid water bodies. TWSA positively

correlates with net precipitation in the Yangtze River basin

and the northeastern endorheic basins while negatively

correlates in the Qaidam and Yellow River basins. Overall,

the Tibetan Plateau’s TWSA spatial pattern is determined by

temperature variation.

In areas with low vegetation cover (NDVI <0.3),
transpiration decreases as the vegetation index decreases

(i.e., in the western and southern portions of the endorheic

basins and the Qaidam Basin), while transpiration increases as

the vegetation index increases (i.e., in the northeastern part of

the endorheic basins and on the Tibetan Plateau). SVD

analysis indicates that the heterogeneous correlation

coefficient of the right field (transpiration) to the left field

(TWSA) indicates a negative correlation (but it is

insignificant), indicating that even though increased

transpiration does not result in a deficit of TWSA under

the current climate change conditions (the increase in

precipitation is faster than the increase in

evapotranspiration). The heterogeneous correlation

coefficient of the left field (TWSA) to the right field

(transpiration) shows a positive correlation (p<0.05) in the

northeastern part of the endorheic basins, while the western

part of the endorheic basins and the exorheic basins show a

negative correlation. It indicates that transpiration tends to

increase in areas with TWSA surpluses and decrease in areas

with TWSA deficits.
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Water age is a useful metric to evaluate the influence of anthropogenic and

natural forcings on the terrestrial water cycle. Current climate warming is

enhancing the warming of permafrost soil in the Arctic. Although permafrost

is a crucial component of the Arctic terrestrial water cycle, its influence on

processes regulating the fluxes and ages of Arctic terrestrial water, particularly

soil storage and evapotranspiration, is not well understood. In this study, a water

age calculation scheme was implemented into the coupled hydrological and

biogeochemical model (CHANGE) to assess the mechanisms through which

climate warming affects the soil water storage–evapotranspiration–water age

feedback cycle in a boreal forest. Continuous air temperature increase from

1980 to 2016 caused earlier snowmelt and soil thawing, inducing decreasing

age trends in snow- and rain-sourced water. The younger water contributed to

higher spring evapotranspiration. In summer, the higher evapotranspiration

dried the surface soil layer. In turn, the drier surface layer increased the loss

of fresh rainwater. Autumn precipitation, preserved in the frozenwinter soil until

the following spring, became an additional source of water and enhanced plant

transpiration in the following summer. This increase accounted for 4.2% of the

annual total transpiration. These results suggest that permafrost warming,

characterized by earlier soil thawing and later freezing, induced higher

evapotranspiration, thereby shortening the residence time of precipitation-

sourcedwater in the active layer and further rejuvenating water in soil layers and

in evapotranspiration. Under future climate warming conditions, this effect is

expected to intensify and the water cycle will accelerate.

KEYWORDS

evapotranspiration, permafrost, water age, tracer module, climate warming

1 Introduction

Water age is defined as the time interval between the moment a water molecule enters

the hydrological system and the moment it flows out (Sprenger et al., 2019). It is a useful

metric to assess changes in water storages–fluxes interactions within the hydrological

system (Pfister et al., 2017; Sprenger et al., 2018). In the Arctic terrestrial system, the
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hydrological processes regulating water storages and fluxes are

completely different in winter, when soil freezes, and in summer,

when soil thaws. Thus, the hydrological system, dormant during

winter, experiences considerable phase changes in warmer

seasons. These seasonal changes are driven primarily by air

temperature. Meteorological observation data have revealed an

increasing temperature trend in the Arctic over the past several

decades, with particularly marked warming during spring

(Bekryaev et al., 2010). Warmer air temperatures affect

snowmelt (Kim et al., 2015; Zhang and Ma, 2018), soil

thawing (Park et al., 2016a), and vegetation phenological and

physiological activity (Ohta et al., 2014). In turn, such changes

enhance water flux variations, increasing water loss via

evapotranspiration and runoff (Holmes et al., 2015; Wang

et al., 2021; Zhang et al., 2021). Water cycle alterations are

reflected in water age variations (Hrachowitz et al., 2016).

Previous studies have estimated the non-stationary age of

stream water by directly measuring inputs and outputs of

isotopic tracers at catchments (Tetzlaff et al., 2014; Birkel and

Soulsby, 2015; Rinaldo et al., 2015). Several process-based

numerical models have also been developed, in which the

incorporation of isotopic tracers effectively allowed scientists

to estimate water ages in the absence of direct in situ

measurements, and to better understand the physical

processes for runoff generation in global catchments under

different climates (Maneta and Silverman, 2013; Stadnyk

et al., 2013; van Huijgevoort et al., 2016; Ala-aho et al., 2017,

2018; Piovano et al., 2019). Water loss by evapotranspiration to

the atmosphere is a crucial process affecting terrestrial water

storages and fluxes and, ultimately, water ages. Few water age

studies have focused on evapotranspiration rather than on

stream water. However, evapotranspiration measurements

have shown an isotopic connection to groundwater sources

(Good et al., 2015), while water ages have been estimated

from evapotranspiration with process-based, coupled

ecohydrological models incorporating isotopic tracers to

calculate the energy balance in the atmosphere–vegetation–soil

system (Sprenger et al., 2015; Kuppel et al., 2018). Other

modeling studies have evaluated the influence of cold-region

processes on evapotranspiration and source water ages (Smith

et al., 2019). Unfortunately, quantitative information on the

influence of permafrost on water flux ages in northern cold

regions, using observations or tracer-based models, remains

limited.

Permafrost is an important component of the hydrological

system in the terrestrial Arctic. It has been increasingly affected

by climate-change-induced warming and thawing (Biskaborn

et al., 2019). Permafrost warming during summer caused an

increase in the active layer thickness (ALT), defined as the

maximum soil thawing depth (Li et al., 2022), thereby

increasing water storage capacity in the active layer and,

possibly, enhancing evapotranspiration (Suzuki et al., 2021).

Observations also showed the sensitivity of evapotranspiration

to higher soil moisture in the active layer of a Siberian boreal

forest (Ohta et al., 2014; Kotani et al., 2019). Active-layer soil

moisture depends primarily on inputs from snow meltwater in

spring and precipitation in summer (Ma and Zhang, 2022), and

on outputs from evapotranspiration. In addition, the water

content of the active layer before soil thaws in spring is

representative of moisture conditions from the preceding

autumn (Park et al., 2021). Similarly, active-layer soil moisture

conditions reflect climatic and ecohydrological events. This

suggests that calculating the water age of evapotranspiration

generated by this moisture might provide valuable

information on the influence of permafrost warming on the

soil freezing/thawing process, thus on evapotranspiration and

soil moisture variations.

We have developed a water age calculation module, which

uses five water isotopic tracers as modeling targets, and coupled it

to our process-based land surface model (Park et al., 2021). The

main objective of this study was to quantify, using the modified

land surface model, the influence of climate-driven permafrost

variations on model-simulated water storages, fluxes, and ages,

particularly evapotranspiration water ages, of a boreal forest in

1980–2016. Using the model-simulated water ages, this study

specifically investigated an important property of permafrost: the

delay it induced on the response of soil water from precipitation

to hydrometeorological forcings.

2 Materials and methods

2.1 General model description

This study used the process-based, coupled hydrological and

biogeochemical land surface model (CHANGE: Park et al., 2011).

CHANGE incorporates principles of hydrology, biology, ecology,

geochemistry, and physiology to calculate momentum, heat,

water and carbon quantities and partitioning, and tracer

fluxes in the atmosphere–vegetation–snow–soil system,

including all interactions between components and processes

within the system (Park et al., 2011, 2018). The energy budget is

calculated for the canopy, snow, and soil surface separately. The

resulting available energy is used to derive evapotranspiration,

snowmelt, and ground heat flux, as well as canopy, snow, and soil

temperature. The mass conservation principle is also applied to

solve the water budget for the surface layer. During snowmelt or

precipitation events, the water input in the surface soil layer is

divided into infiltration and surface runoff. The infiltrated water

becomes a source of soil moisture and plant transpiration and

generates a subsurface flow evacuated either in the permafrost

table or at the bottom boundary layer. CHANGE explicitly

represents water dynamics and heat fluxes in a soil column

with a depth of 70 m and accounts for the freezing/thawing

phase changes and the effects of organic carbon on the soil

hydrothermal properties. The simulated ice content in frozen soil
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layers increases their impedance to water flows. The layer

impedance is parameterized as the soil moisture stress

conditions associated with drying or freezing. Then, it is

coupled to stomatal conductance and to the maximum

carboxylation rate, which controls plant productivity and

phenology. CHANGE also includes a coupled dynamic

vegetation module that mechanistically simulates

biogeochemical processes, including the carbon and nitrogen

cycles in vegetation, litter, and soil, across multiple biomes.

Moreover, CHANGE includes a water isotope tracer module

designed to characterize the spatiotemporal variability of isotopes

and water sources, originating from precipitation and ground ice,

in the hydrological system (Park et al., 2021).With this module, it

is possible to quantify the contribution of ground ice meltwater

induced by permafrost thawing to soil water storages and to the

subsequent subsurface flow and evapotranspiration, especially

the water footprint of permafrost degradation caused by climate

warming.

2.2 Water age module

In a hydrological system, water input/output variations

directly affect the water fluxes, thereby influencing the water

age. In the new CHANGE module, water ages in storages

(i.e., canopy, snowpack, and soil) are estimated along the one-

dimensional water flow direction, with a scheme (Figure 1)

similar to that used for tracer flux calculation (Park et al.,

2021). The volumetric water age (Ai) variation in the lower

storage (i), following an input of water (Wi) from the upper

storage (i−1) at time step (t), is expressed as:

At
i � At−1

i−1 − ai−1Fw,iΔt (1)
Wt

i � Wt−1
i−1 − Fw,iΔt (2)

ai−1 � Ai−1/Wi−1 + Δt (3)

where ai−1 is the water age in the upper storage, Fw,i is the water

flux from the upper storage, △t is the time step, and

t−1 represents the previous time step. Conversely, the water

age variation in the upper storage, induced by an upward water

flux from the lower storage, is calculated with Eq. 4 and 5 of Park

et al. (2021).

The simplifying assumption is that the water flux between

storages is fully mixed, because the model essentially considers

bulk tracer content values in fully mixed storages. The water

mixing assumption is also applied to water age. In the water age

calculation, the precipitation input age is set to zero. For example,

the age of water intercepted by a dry canopy is zero, and thus the

drip and evaporation rates are also zero. However, the age of

water remaining on the canopy increases after each time step, so

FIGURE 1
Schematic diagram of the water age calculation scheme for a one-dimensional water flow. Downward arrows represent water fluxes from
upper to lower water storage pools, initiated in the atmosphere; upward arrows show water losses by evapotranspiration in individual storage pools.
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that new precipitation results in a younger canopy water age. Soil

evaporation and plant transpiration remove water from a storage.

The volumetric water age for evaporation (AEi) from a storage (i)

to the atmosphere at time step (t) is expressed as:

AEt
i � AEt−1

i−1 + aiEw,iΔt (4)

where Ew,i represents the evaporative flux from the lower storage.

Eq. 4 is also used to calculate water age variations from plant

transpiration, derived using a partitioning function, and runoff.

The age of water extracted by plant roots in each soil layer

depends on the model-simulated plant transpiration and on soil

water age. Therefore, the water age for plant transpiration is

obtained by integrating over the individual layers. Additionally,

dew formation is treated as an additional water input, resulting in

younger water ages in the storages. For the snowpack, however,

sublimation from the snow surface limits the production of snow

meltwater, thus the snow age decreases. The snowpack age is also

influenced by snowmelt and snowfall events.

The water flow between components of the hydrological

system (i.e., canopy, snow, and soil) in the land surface scheme

occurs sequentially downward, from the canopy to the snow

then to the soil (Figure 1). Water ages for individual

components are updated at each time step depending on

the water fluxes. In permafrost, there is no water flux, thus

the water age continuously increases. The water age scheme

also assumes that the seasonal freezing/thawing phase change

in the active layer does not affect soil water age. However,

when the active layer thickens, the water age of the new active

layer is expectedly younger, because of mixing with water

from the upper layers or soil water loss by subsurface outflow.

In our simulations, the water age of each soil layer was

initialized to zero, because age observation data for frozen

water or permafrost ice were not available. Therefore,

simulated water ages for the permafrost layers below the

active layer were nearly identical.

2.3 Study site and observations

The study site is located in eastern Siberia (62.2°N, 128.5°E),

approximately 20 km north of Yakutsk. Climatological records

at the study site from 1998 to 2010 indicate an annual mean air

temperature (Ta) of −10.4°C and an annual mean precipitation

(PG) of 260 mm. Annual mean snowfall during winter

(October–March) represents 40% of the annual mean

precipitation, yielding a maximum snow depth of

approximately 60 cm. Observations of the

hydrometeorological variables at the study site were

described by Kotani et al. (2019) and Hiyama et al. (2021).

The study site is representative of a typical boreal forest

landscape. A species of larch (Larix cajanderi) dominates the

overstory, with a mean tree height of 18 m. The forest floor is

covered by dense cowberry (Vaccinium vitis-idaea) and

underlain by continuous, ice-rich permafrost. The study site

has coarse humidified permafrost soils on heterogeneous

sandy–loamy carbonate ground, textured by sand (74%), clay

(15%), and loam (11%) with soil organic carbon content of

20 kg m−3.

Meteorological records at the study site cover a limited time

period and include dates without observations. These issues limit

the model applicability for long-term simulations. To

complement the observation records, the meteorological data

were combined with ERA-Interim reanalysis data from the

European Centre for Medium-Range Weather Forecasts (Dee

et al., 2011). Continuous daily data from ERA-Interim were

selected to reflect the local climatic conditions and to construct

the primary forcing data for CHANGE by assimilating the

observations acquired at the study site. Generation of the

daily forcing data was described by Miyazaki et al. (2015).

2.4 Model simulations

A static land cover type, the boreal deciduous needleleaf

forest, was set up for the CHANGE simulations. Vegetation

phenology and physiology were prognostically estimated from

the model output for carbon and nitrogen contents. Vertical

profiles of thermal and hydraulic soil parameters were explicitly

estimated on the basis of the measured soil texture fractions,

which were then updated at each time step to account for the

simulated soil organic carbon variations. The spin-up CHANGE

simulation was conducted over 1,200 years with the detrended

forcing data of the first 20 years and a CO2 atmospheric

concentration of 350 ppm. Dynamic equilibrium of the carbon

and nitrogen contents for the total ecosystem was reached during

the spin-up period. In this study, the hydrogen and oxygen

isotopic ratios (δ2H and δ18O) were excluded from the

modeling variables, because dedicated CHANGE simulation

results for δ2H and δ18O have previously been analyzed and

validated (Park et al., 2021). Water ages were initialized to zero in

all soil layers then updated by water exchanges caused by

precipitation and evapotranspiration events during the spin-

up period, to minimize the influence of initialization values

on the simulation results, at least in the active layer.

The warming of the Arctic climate, particularly significant

in the cold seasons (Bekryaev et al., 2010), is a major forcing

factor affecting terrestrial hydrological processes. The Arctic

terrestrial air temperature has increased by approximately

1.5–2.0°C during the past 4 decades (Bekryaev et al., 2010;

Park et al., 2017). The study site has also recorded extreme

increases in summer precipitation of 30–70 mm during

2004–2008 relative to the average of 150 mm during

1979–2013 (Iijima et al., 2016). These rates of change were

adopted as thresholds for investigating the model sensitivity

to extreme climatic events as well as plant responses to such

changes. To investigate the sensitivity of water age to climate
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warming, four simulations were conducted for the period

1980–2016, with the settings of the original simulation but

with perturbed values of the air temperature and precipitation:

a constant increase of the daily mean Ta by 2°C and 4°C

(simulations EXT2 and EXT4, respectively), a combined

increase of Ta by 2°C and PG by 30% (simulation

EXT2C_P30), and a simulation based on EXT2 but with a

root depth increased to 1.06 m from the original depth of

0.58 m (EXT2_RT). We also conducted an additional

simulation to investigate the influence of autumn

precipitation on evapotranspiration in the following year,

also based on EXT2 but with PG values reduced by 30% in

August–September. The simulation results were then

compared with the reference simulation.

3 Results

3.1 Soil moisture and water age

Climatological daily averages (averages for the same day over

the whole study period) were calculated from the simulation

results from 1980 to 2016, for the ALT and for vertical profiles of

the soil moisture and of the water age. Their seasonal variations

are presented in Figure 2. The ALT results showed typical

seasonality, with soil thawing starting in mid-April and

reaching its maximum in early October (Figure 2A). In April,

snow began to melt at the study site. Snow meltwater infiltrated

the soil and saturated the surface layer down to a depth of

approximately 0.1 m (Figure 2B). Surface layer water was

displaced downward by incoming precipitation in the growing

season, when the active layer develops. The maximum daily

mean ALT remained within 1.4–1.9 m from 1980 to 2016. In

summer, the soil depth of approximately 0.6 m was

comparatively drier than the deeper layers, because of soil

water loss caused by higher plant transpiration and soil

evaporation (Park et al., 2021). In autumn, when

evapotranspiration was quite low, the surface soil layer of

0.1 m depth was wetted again. Water remained in the surface

layer as frozen water until the following spring (Figure 2B).

The vertical profile of the simulated soil water age exhibited a

clear monotonous distribution in all seasons, with younger ages

in the surface layer and increasingly older ages with increasing

depth (Figure 2C). At the study site, plant roots were primarily

distributed within the 0–0.6 m surface soil column (Park et al.,

2021). At these depths, water uptake by plant roots (Figure 2B)

enhanced mixing of the existing water with fresh rainwater in

summer, yielding younger water ages with a clear seasonal

variability. Evaporation from the soil surface also increased

water mixing and rejuvenation. The estimated water age in

the surface soil column indicated full replacement of surface

soil water by precipitation water within 1 year. Higher

evapotranspiration also reduced infiltration of precipitation

water into deeper soil layers. Thus, infiltration was effectively

limited to depths of 0.8 m or less in summer (Figure 2B). The

resulting limited mixing in deeper soil layers prevented

rejuvenation and the stored water aged continuously. For

example, the soil water age at a depth of 1.0 m was older than

10 years (Figure 2C). In permafrost, at depths of 1.9 m and below,

water flow rarely occurred. The simulated water ages increased

constantly, up to the length of the spin-up period (1,200 years).

3.2 Evapotranspiration and water age

Seasonal variations of the simulated climatological daily

mean snow water equivalents (SWE), evapotranspiration

subcomponents (plant transpiration, canopy interception and

soil evaporation) separated according to the water sources (snow

FIGURE 2
Seasonal variability, for the reference simulation, of
climatological (1980–2016) daily averages for (A) the active layer
thickness, and for the vertical profiles of (B) soil moisture and (C)
water age. The vertical scale for the 0–0.4 m soil layer in
Panels (B)–(C) is logarithmic.
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and rain), and the corresponding simulated water ages are

displayed in Figure 3. The SWE showed typical seasonality,

with accumulation starting in early autumn and reaching its

maximum in March, concurrently with the maximum snow

water age (80 days, Figure 3A). Snow began to melt at the end

of March (Figure 3A), thus initiating soil evaporation (ES,

Figure 3B) when the ES water was oldest (160 days), which

reflected the water age of the surface soil layer. In April, the

water age for soil evaporation sharply decreased to less than

20 days despite few rainfall events (Figure 3A), but a notable

amount of water evaporated from the soil surface, explaining a

surface soil layer age younger than in March (Figure 2C). From

late April, the fraction of rain-sourced water evaporating from

the surface markedly increased, while water ages decreased to less

than 10 days in summer, indicating frequent precipitation events.

Lower evapotranspiration and intermittent soil-freezing in

October resulted in slightly older winter water ages for soil

evaporation (Figure 3B). Annual mean water ages for

interception by the vegetation canopy were considerably

younger than those calculated for soil evaporation (Table 1).

Plnt roots extracted a large fraction of rain-sourced water

from soil layers, accounting for 72% of the annual plant

transpiration value (ET). The ET variations showed typical

seasonality, peaking in June–July then decreasing, consistently

with both the snow-sourced and rain-sourced transpiration

values. In May, when the transpiration-induced water flux

started, the corresponding water age increased rapidly. The

deepening of the active layer in May allowed plant roots to

reach deeper layers and extract older soil water. Subsequently,

transpiration-induced water ages decreased continuously

FIGURE 3
Seasonal variability, for the reference simulation, of climatological (1980–2016) daily averages for (A) the snow water equivalents (gray curve),
and for the contributions of snowfall and rainfall to (B) soil evaporation and (C) plant transpiration. Daily mean water ages are indicated by red dots.
Panel (A) also shows the climatological monthly average snowfall and rainfall amounts.
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FIGURE 4
Seasonal variability, for the reference simulation, of climatological (1980–2016) daily average trends in (A) air temperature, (C) snow-sourced
water age, (D) active layer thickness, (E) soil evaporation, (F) plant transpiration, (G) water age for soil evaporation, and (H) water age for plant
transpiration. Panel (B) shows the climatological monthly average trends in snowfall and rainfall. The thin gray and thick black curves represent the
original data and the 3-day average, respectively. Blue asterisks indicate statistically significant data (p < 0.1).

TABLE 1 Climatological (1980–2016) annual average water flux (mm yr−1) and age (days) for transpiration (ET), interception (EI), and soil evaporation
(ES) in the reference and sensitivity simulations. Here, the averaged ages represent the daily flux-weighted annual median water ages for each
evapotranspiration subcomponent.

Simulation ET EI ES

flux age flux age flux age

CNTR 128.4 148.0 39.1 0.18 62.3 11.0

EXT2 144.7 131.5 39.7 0.17 62.5 10.8

EXT4 158.6 117.3 39.8 0.16 62.0 9.9

EXT2_P30 146.5 127.3 45.6 0.19 73.5 8.3

EXT2_RT 144.8 181.3 39.7 0.17 62.1 10.9
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during the growing season. In turn, summer precipitation

wetted the soil previously dried by higher plant transpiration.

The alternating drying and wetting phases rejuvenated soil

water in summer, explaining the relatively younger transpiration

water age. Soil freezing in the cold season caused the younger soil

water to age, capturing it until the following spring (Figure 2C).

Daily flux-weighted annual median water ages, for transpiration

and soil evaporation in the reference simulation, were 148 days and

11 days, respectively (Table 1). For comparison, previous model

simulations yielded transpiration water ages of 200 ± 10 days and

150–360 days in northern Sweden (Smith et al., 2019) and in the

Scottish Highlands (Kuppel et al., 2020), respectively.

3.3 Trends

In this study, trends were calculated with the Mann–Kendall

test for the water age module variables shown in Figure 4 (blue

symbols represent statistically significant values, p < 0.1). Air

temperature is an important driver of Arctic hydrological

processes. Statistically significant warming trends were

identified in the climatological daily mean Ta values in spring,

autumn, and winter (Figure 4A). The warmer Ta caused stronger

sublimation and earlier snowmelt in spring, explaining the

decreasing trend in the snow water age (Figure 4C). Snow

meltwater saturated the surface soil layer (Figure 2B). Snow-

sourced water contributed to soil evaporation in spring

(Figure 4E) and to the decreasing trend of the corresponding

water age in April (Figure 4G). There was no perceptible

transpiration water age trend (values within ±0.1 day yr−1) in

summer (Figure 4G). In October, when ES was lowest

(Figure 3B), the soil evaporation water age showed a

persistent, statistically significant negative trend (Figure 4G),

indicating that water age was directly influenced by the

increasing rainfall (Figure 4B).

Once the snow cover had completely melted, the frozen soil

began to thaw. The warmer Ta hastened soil thawing and induced

a significant thickening trend in the active layer in summer, with

a maximum ALT increase of 4 cm yr−1 in mid-October when the

active layer extended to its maximum depth (Figure 4D). In

spring, the active layer also thickened under the influence of the

warming climate, which enhanced the ice–liquid water phase

change. Under climate warming conditions, the phenological

and physiological vegetation activity also increased, with plant

roots extracting markedly more moisture from the soil

(Parazoo et al., 2018). Plant transpiration exhibited a

significant increasing trend in early May (Figure 4F),

explained by the earlier start of plant transpiration and a

deficit of snow meltwater (Figure 4B) under warmer Ta

conditions, resulting in older ET water ages. In late May, the

ET water age became rapidly younger (Figure 4H), because the

increasing rainfall (Figure 4B) enhanced the mixing of young

rain water with older soil moisture. Summer climatological

trends of daily mean ET and of ET water age (Figures 4F,H,

respectively) were alternately positive and negative, reflecting

the influence of precipitation events.

Warming air temperatures also modified the soil freezing and

thawing dates at the study site. In this study, freezing and thawing

dates in the 0–5 cm topmost soil column were determined with

the method of Park et al. (2016b). The simulated spring thawing

date showed an overall negative trend of −0.21 days yr−1 (p <
0.04) over the 1980–2016 study period (Figure 5), indicating

earlier soil thawing in response to increasing Ta (Figure 4A). The

Ta warming trend also delayed soil freezing significantly

(0.35 days yr−1, p < 0.01). As a consequence of earlier soil

thawing and later soil freezing, the growing season length

(defined as the number of non-freezing days in 1 year)

showed a statistically significant (p < 0.01) increasing trend

over the study period (Figure 5), which resultantly contributed

to the annual evapotranspiration (sum of ES and ET) increasing

trends (r = 0.19, p < 0.28; Ma et al., 2022).

3.4 Sensitivity simulations

Four sensitivity simulations, characterized by specific

perturbations of Ta and PG and described in Section 2.4,

were conducted to investigate the influence of climate

warming on evapotranspiration and water age within the

hydrological system. Figure 6 shows the seasonal variability

of the anomalies, defined as the differences between the

sensitivity simulation results and the reference simulation.

Warmer air temperatures (+2°C and +4°C for Ta in

FIGURE 5
Interannual variability (1980–2016) of the simulated freezing
and thawing anomalous dates and of the growing season length
(yearly number of non-freezing days), and corresponding
temporal trends (dashed lines) in the reference simulation.
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simulations EXT2 and EXT4, respectively) enhanced sublimation

from the snowpack while reducing the contribution of snowfall

to PG, explaining lower SWE during the cold season

(October–March) and earlier spring snowmelt than in the

reference simulation (Figure 6A). As expected, a

precipitation increase (+30% for PG, simulation EXT2_P30)

compensated the influence of warmer Ta on the snowpack,

resulting in positive SWE anomalies (Figure 6A). Modifications

of the snow-related processes relatively to the reference

simulation yielded consistently larger ES values and earlier

start dates in spring (Figure 6C), and younger ES water ages

(Figure 6E). Warmer Ta also induced an ET increase caused by

earlier vegetation activity (Figure 6D). Conversely, this

enhanced activity dried the surface soil layer (Figure 6B),

explaining the negative ES anomalies in summer (Figure 6C).

Soil dryness (magnitude of the negative anomaly) was directly

related to the Ta increase, as illustrated by the larger negative

anomalies for simulation EXT4 (Figure 6B), combined with

higher losses by canopy interception (EI in Table 1).

Similarly to its influence on the snowpack, a PG increase

(EXT2_P30) could compensate the summer soil drying

induced by higher Ta values (Figure 6B). Furthermore, under

climate warming conditions, plants largely used rain-sourced

soil water for transpiration, yielding larger ET anomalies for

larger temperature increases, as shown in Figure 3C.

Earlier vegetation phenological activity caused by warmer Ta

was also closely implicated to earlier and deeper soil thawing in

spring. The resulting increase in plant water extraction from the

active layer explained the anomalously older ETwater age in early

spring (Figure 6F). This higher ET quickly dried the soil

(Figure 6B), which was then wetted again by increased

precipitation. Therefore, under warming conditions, ET was

associated with anomalously younger water ages (Figure 6F).

Climate warming possibly causes the root biomass and the

rooting depth to increase. To investigate the influence of root

depth on water ages, a fourth simulation was conducted on the

basis of EXT2, but with a root depth extended to 1.06 m

(EXT2_RT). This resulted in anomalously older ET water ages

(Figure 6F), because a downward water flux generally requires

longer transit time to reach deeper soil layers.

4 Discussion

In this study, the CHANGE model was coupled with a water

tracer module to assess the influence of climate warming on

FIGURE 6
Seasonal variability (1980–2016) of daily average anomalies (differences between the sensitivity simulation results and the reference simulation)
for (A) the snow water equivalents, (B) the 0–1 m soil column water content, (C) soil evaporation, (D) plant transpiration, (E) water age for soil
evaporation, and (F) water age for plant transpiration.
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evapotranspiration regimes and the subsequent soil water budget

variations in a boreal forest. The tracer module, originally

designed to isolate the contributions of each water source to

hydrological processes, was modified to incorporate water age

dynamics. Dedicated model simulations were conducted to

quantify the influence of climate warming on water

fluxes–storages–ages interactions in the evapotranspiration

process.

4.1 Influence of climate warming on
evapotranspiration and water age

At the study site, the climate-induced evapotranspiration

increase was larger in spring than in autumn, despite consistent

Ta increases in both seasons (Figure 4A), possibly because solar

radiation levels are higher in spring than in autumn (nearly

reaching the yearly maximum) and because vegetation

transitions from winter dormancy to the onset of the active

growing season. The earlier start of the growing season, induced

by warmer air temperatures, relaxes the low-temperature

constraints on photosynthesis and on gas and water

exchanges on the canopy, and enhances plant growth

(Parazoo et al., 2018). Earlier vegetation activity and soil

thawing allow plant roots to access soil water earlier in spring,

yielding larger ET values (Figure 6D). These findings are generally

consistent with a previous study that demonstrated high

correlation between the spring thawing date and the

evapotranspiration intensity, using freezing/thawing records

derived from satellite-based microwave remote sensing

observations in the Northern Hemisphere high latitudes

(Zhang et al., 2011). The positive influence of the earlier

growing season onset on evapotranspiration was reinforced by

the increase in snow meltwater availability, which limited plant

moisture stress. The inflow of snow-sourced water into the

surface soil layer showed a rejuvenating trend, explained by a

shorter snowpack period and increased sublimation. The shorter

freezing period (Figure 5) and the larger spring rainfall

(Figure 4B) both contributed to surface soil water

rejuvenation. Consequently, water ages for the spring

evapotranspiration showed a decreasing trend over the study

period (Figures 4G,H).

Conversely, this earlier and larger evapotranspiration in

spring enhanced soil water loss, thus soil drying, in early

summer (Figure 6B). The warming-driven leaf growth

enhancement resulted in a larger quantity of canopy leaves

that increased water losses by interception, thereby decreasing

precipitation throughfall and causing the soil to dry. The low-

soil-moisture constraint on evapotranspiration generally induced

daily negative trends in summer (Figures 4E,F). However,

rainwater from precipitation events, after reaching the dried

soil, mixed with the older soil water. In turn, the mixed water

was used for evapotranspiration (Tetzlaff et al., 2021), which

explains the younger water ages calculated for soil evaporation

and plant transpiration. This feedback cycle was enhanced under

warming conditions, as confirmed by the sensitivity simulations

in which warmer Ta induced considerable ES and ET increases

(Figures 6C,D). Soil dryness is projected to increase further under

future climate warming conditions (Andresen et al., 2020). Thus,

more precipitation water will be consumed by plant

transpiration, resulting in younger ET water ages (Figure 6F).

In autumn, plants enter the dormancy or senescence stage. In this

case, the influence of warmer air temperatures or larger

precipitation on photosynthesis and plant transpiration is

mitigated by the seasonally lower solar radiation and shorter

photoperiod. Warmer autumn air temperature delayed snow

accumulation and soil freezing (Figure 5). This delay also

contributed to the decreasing age trends calculated for soil

water and plant transpiration in the following spring. Our

FIGURE 7
Comparison between the reference simulation and a
simulation with a 30% reduction in August–September
precipitation for (A) the seasonal variability (1980–2016) of daily
average plant transpiration anomalies and (B) monthly
average vertical profiles of plant transpiration water ages.

Frontiers in Earth Science frontiersin.org10

Park et al. 10.3389/feart.2022.1037668

68

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1037668


results suggest that subarctic climate warming has accelerated the

terrestrial water cycle by increasing same-season use of

precipitation-sourced young water for evapotranspiration.

4.2 Influence of permafrost warming on
evapotranspiration and water age

Soil freezing in winter increased soil water ages (Figure 2B).

This was reflected in the early spring ES variations when mixing

of the frozen, older soil water with younger snow meltwater and

rain water induced a rapid decrease of the water ages for the

surface soil layer (Figure 2B) and the ES (Figure 3B). Conversely,

seasonal variability of the ET water ages was completely different,

particularly at the onset of plant transpiration in May, with ET
values reaching their maximum within 1 month (Figure 3C). In

CHANGE, the soil moisture stress associated with drying or

freezing is represented by a normalized parameter (values within

0–1) and coupled to the plant photosynthetic and physiological

processes. The ET water age variations in the early growing

season reflected the reduction of soil freezing stress after the

active layer developed (Figure 3C). This was inconsistent with the

ET water age variation pattern identified in a non-permafrost

Scottish Highlands site, characterized by winter soil frost and

snow cover (Smith et al., 2019). On the contrary, the pattern

identified by Smith et al. (2019) showed similar seasonality with

our ES water age estimates. The maximum ET water age

(approximately 200 days, Figure 3C), reached at the start of

the growing season at the study site, clearly showed a

connection between plant roots and the water accumulated

during the preceding autumn. The ET water ages then

continuously decreased over the growing season, indicating

the ecohydrological transition to a rainfall-driven phase

during which the surface soil layer water storage was

recharged by summer rainfall. Rain-sourced water accounted

for a large fraction of the ET water (Figure 3C). Analyzing the

seasonal variability of ET water ages has provided valuable

insights into water dynamics associated with the active layer

freezing/thawing process. It has also contributed to uncertainty

reduction and better characterization of the relative

contributions of model-estimated water sources to the ET
water. These contributions had not been validated with

observational data prior to this study.

Winter freezing preserves the soil water conditions,

established in the preceding autumn, until the following

spring. This preserved water status represents the initial

conditions for the growing season and strongly influences

the related ecohydrological processes. An additional

simulation was conducted to investigate the influence of

autumn precipitation on evapotranspiration in the following

year, with PG values reduced by 30% in August–September

based on EXT2. Differences with the reference simulation were

consistently negative during the growing season (Figure 7A).

The lower PG values reduced the ET by 4.2% relatively to the

reference values, demonstrating the influence of autumn

precipitation on the ET water ages. Monthly mean ET ages

differences (Figure 7B) between the reference (solid curves) and

the additional simulation (dashed curves) were mostly found in

soil layers below the surface but not deeper than 0.8 m

(Figure 7B). In summer, ET and ES often caused the surface

soil layer to dry. The remaining surface soil moisture was nearly

fully displaced by the frequent precipitation inflow. This

consistently occurs in the reference and additional

simulations, regardless of the soil moisture level in early

spring, consequently low ET water age differences. In the

additional simulation, the drier soil probably enhanced

mixing of soil water with younger precipitation water

infiltrated from the upper layers (Park et al., 2021). Water

mixing and mobilization produced younger soil water in soil

layers below the surface layer (Figure 7B). The presence of

younger ET water under a dried soil layer was broadly verified

by the temperature-only sensitivity simulations EXT2 and EXT4

(Figure 6F). These results suggest that autumn precipitation

water trapped in the soil by winter freezing causes deviations of

the evapotranspiration and water ages from the

hydrometeorological forcings in the following growing

season. Sugimoto et al. (2003) established, in a larch forest

of eastern Siberia, that the autumn soil water stored in the

0–1.2 m active layer column contributed to ET in the following

summer. A 1-year delayed correlation between soil water and

evapotranspiration was also identified at the Kolyma watershed

in eastern Siberia, underlain by continuous permafrost (Zhang

et al., 2019; Suzuki et al., 2021). However, the warmer

temperature increases permafrost thawing, leading to wetted

surface layers and thus greater evapotranspiration. The

increased evapotranspiration ultimately causes a drier

surface, which is in turn fed back as a limitation on

evapotranspiration. This feedback might become

strengthened under the influence of future climate change.

Climate models have projected long-term drying of the

surface soil in permafrost regions (Andresen et al., 2020).

4.3 Model limitations and scope of the
study

Previous observational studies investigated the climate-

induced winter snow increase at the same study site and the

influence of the resulting soil wetness on vegetation activity and

on evapotranspiration (Ohta et al., 2014; Kotani et al., 2019). In
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CHANGE, ecohydrological interactions are reproduced by a

numerical model that includes a water tracer module to

analyze the dynamics of precipitation-sourced water storages

in the surface–subsurface system. The model calculated high

contributions of summer rainwater to the increased

evapotranspiration at the study site and characterized the

evaporation-induced water isotopic enrichment, validated by

observational data (Park et al., 2021). However, in this study,

although a lack of observational data for water flux age

calculations prevented us from validating the simulated

evapotranspiration water ages, the coupling of the new water

age calculation module with CHANGE produced encouraging

results. The seasonal variability of evapotranspiration water ages

was clearly associated with the active layer freezing/thawing

process.

Simulated soil water ages were older in the deeper layers,

because of the low water exchange at these depths (Figure 2).

There was no indication of water movement by capillary rise

from the deeper soil layers toward the upper layers under

current climate conditions, because moisture conditions

within the upper layers remained beyond the wilting point

in summer (Figure 2B). This result was also verified for future

climate warming scenarios. In the EXT4 simulation, for

example, anomalous ET water ages were younger than in the

reference simulation (Figure 6F), indicating a larger

dependence of ET on summer precipitation than on water

upwelling from deep soil layers. Moreover, when considering

a plant root depth larger by 50 cm than that of the reference

simulation (simulation EXT2_RT), anomalous ET water ages

remained approximately 20 days older than the reference

throughout the growing season (Figure 6F) as a result of

increased extraction by the plant roots of older water from

deeper soil layers. Evidence of the root depth influence was also

identified by comparing the EXT2 and EXT2_RT simulations. The

comparison showed ET water age differences of approximately

40 days despite an identical Ta increase of 2°C in both

simulations (Figure 6F). Under future climate warming

scenarios, root depth extension, larger spatial heterogeneities,

and ALT increase are nearly certain. In such conditions,

increased connection between plant transpiration and

permafrost-sourced water is expected. Therefore, the root

profile, as currently configured, is a likely source of

uncertainties in simulations of ecohydrological processes

associated with the model-simulated water sources and ages.

Furthermore, the Ta and PG perturbation defined in our

simulations are not sufficient to characterize future climate

warming conditions, which also depend on complex variations

of meteorological variables such as humidity, surface solar

radiation, or wind speed (Carvalho et al., 2022). In that

sense, the sensitivity simulations presented in this study are

not sufficiently realistic for accurate projections of

evapotranspiration and water ages under future climate

warming scenarios. Nevertheless, the main objective of this

study was not the evaluation of future projections for

evapotranspiration and water ages, but the analysis of

evapotranspiration and water age responses to current

climate warming conditions. Therefore, uncertainties on the

forcing data should not preclude meaningful analyses with the

newly implemented water age calculation scheme.

5 Conclusion

We incorporated a new water age calculation scheme into

the tracer module of the process-based land surface model

CHANGE and examined the influence of hydrological process

modifications induced by permafrost warming on

evapotranspiration and water ages. Climate warming caused

earlier snowmelt and soil thawing, thereby enhancing soil

evaporation and plant transpiration that, in turn, consumed

increasingly younger water in spring. The progressively

younger water ages for evapotranspiration in summer and

autumn illustrated the dependence of the evapotranspiration

on precipitation, because of the drying soil. These findings

were consistent with our sensitivity model simulations. We

also established that winter soil freezing contributed to

summer plant transpiration by storing older soil water

from the preceding autumn. However, climate warming

shortened the freezing period. Thus, the early spring flux

water ages became gradually younger. Our results

demonstrated that climate warming strengthened the

connection between evapotranspiration and precipitation-

sourced freshwater in the soil system. Future climate-

induced temperature increases will enhance permafrost

warming and increase the contribution of summer rainfall

to precipitation, also resulting in larger evapotranspiration.

Therefore, we expect that future evapotranspiration increases

will further accelerate the water cycle in boreal forests, with

increasingly larger loss of younger precipitation water, a

phenomenon that we identified under current climate

conditions.
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Contrasting changes of snow
cover between different regions
of the Tibetan Plateau during the
latest 21years

Yang Gao1*†, Huaiwei Dong1,2†, Yufeng Dai1, Naixia Mou2 and
Wenfan Wei1

1State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute
of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China, 2College of Geodesy and
Geomatics, Shandong University of Science and Technology, Qingdao, China

The spatial and temporal resolutions of snow remote sensing data have been

increasing, but the unique snow characteristics such as thin snow depth and high

frequency of change on the Tibetan Plateau have limited their applicability in this

region. In this study,five commonly used snow remote sensingdatawere evaluated

based on snow observations at 139 stations during the latest 20 years, and the

advantages of each data were integrated to develop a multi-source data fusion

snow cover dataset for the Tibetan Plateau. Based on these data, we conducted

snow zonation and comparative snow variability analysis on the Tibetan Plateau.

The results indicated that the snow cover days on the Tibetan Plateau are not only

influenced by the longest snow cover duration (SCD) but also controlled by the

short-term snow cycles. More than 70% of the annual snow cover days come from

short-term snow cycles, except the Amu Darya and Indus. From 2000 to 2021,

23.0% of the plateau has experienced a significant decrease in snow cover days

(mainly in the southeast) and 4.9% has experienced a significant increase (mainly in

the northwest). As the altitude increases, the area andmagnitude of the decreased

and increased snow cover increases, and at high altitude the areas with increased

snow are greater than that with decreased. The significant reduction in the snow

cover days over large areas of the plateau stems from the superimposed effect of

the simultaneous reductions in the longest SCD and the short-term snow cycles,

but the reduction in the Amu Darya and Indus comes mainly from the reduction in

the short-term snow cycle. The significant increase in the snow cover days in the

Amu Darya, Indus, Tarim, and Hexi mainly comes from the increase in the longest

SCD, while that in the Yellow River and Qaidammainly comes from the increase in

the short-term snow cycles. This contrasting change in the snowpack on the

Tibetan Plateau, which decreases in the southeast and increases in the northwest,

with a large decrease at lower elevations and an increase at higher elevations, will

bring new challenges to water resource management in the region.

KEYWORDS

multi-source data fusion, contrasting snow change, snow cycle, the longest snow
cover duration, Tibetan Plateau
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1 Introduction

Snow cover is a special form of land cover caused by low-

temperature snowfall, snow transport, and accumulation in the

process of melting (Che Z et al., 2008). It is an important part of

the cryosphere, which is mainly distributed in the high-latitude

and -altitude regions (Henderson et al., 2018). Snow cover has a

large-scale cooling effect on the global climate system (Flanner

et al., 2011), and its high reflectivity affects land–air energy

exchange. Meanwhile, the changes in its status also affect

water circulation processes. With an average altitude over

4,000 m, the Tibetan Plateau is the highest plateau in the

world, which is covered by a large amount of seasonal and

perennial snow. Rivers originating from the plateau provide

domestic and production water for dozens of neighboring

countries and regions, and snowmelt water is one of the

important supplies for these rivers (Immerzeel et al., 2009;

Smith et al., 2017; Hill et al., 2020). Climate warming causes

rapid changes in snow cover on the Tibetan Plateau, which affects

the annual distribution of runoff, local ecosystem, and disaster

prevention. Therefore, comprehensive observation of snow cover

and accurate acquisition of its dynamic changes are of great

practical significant for water resource management.

Ground snow observation is usually carried out manually or

automatically using a snow ruler or ultrasound for snow depth

and a snow core tube or snow pillow for snow water equivalent.

Studies based on ground-observed snow depth data show that

snow on the Tibetan Plateau has different trends during different

periods. Observation at 60 stations indicates a general increasing

trend of snow on the Tibetan Plateau from 1957 to 1990 (Ke et al.,

1997). Observation at 94 stations shows a significant decrease of

snow cover days on the Tibetan Plateau from 1981 to 2010.

Observation at 115 stations shows that a

decreasing–increasing–decreasing trend in the eastern part of

the plateau for three phases 1972–1987, 1987–1998, and

1998–2016. Although snow observations on the plateau are

increasing and more and more stations are being used for

snow studies (Chen et al., 2022), the majority of stations are

located in the eastern part of the plateau, which does not allow for

a comprehensive and accurate understanding of the snow over

the whole plateau.

Remote sensing data have the characteristics of less

restriction by the ground environment, wide coverage, and

abundant information (Merz et al., 2013). The remote sensing

data widely applying in snow studies can be divided into three

categories according to spatial resolution. High-resolution snow

cover data, including VIIRS/NPP Snow Cover Daily L3 Global

375 m SIN Grid (375 m, 2012–present) (Riggs and Hall, 2020),

MODIS/Terra Snow Cover Daily L3 Global 500 m SIN Grid

(MOD10A1) (500 m, 2000–present), MODIS/Aqua Snow Cover

Daily L3 Global 500 m SIN Grid (MYD10A1) (500 m,

2002–present) (Chelamallu et al., 2013; Mishra et al., 2016)

and related de-clouded data (Muhammad and Thapa, 2021;

Gyawali and Bárdossy, 2022; Mattar et al., 2022), and IMS

Daily Northern Hemisphere Snow and Ice Analysis data

(IMS) (1km, 2014–present) (Chiu et al., 2020), can be used

for basin-scale snow studies. Medium-resolution snow data,

including IMS (4 km, 2004–present), daily 5-km Gap-free

AVHRR snow cover extent product over China (AVHRR)

(5 km, 1981–present) based on the advanced very-high-

resolution radiometer (AVHRR), can be used for regional-

scale snow studies. Low-resolution snow data, including

weekly snow cover data developed by NOAA based on

AVHRR (160 km, 1966–present) (Brown et al., 2014), daily

snow cover data based on the Special Sensor Microwave/

Image (SSM/I) (25 km, 1995–present), long-term series of

daily snow depth dataset in China (CSD) (25 km, 1979–2021)

(Che Z et al., 2008), and IMS (24 km, 1997–present) (Ramsay,

1998), can be used for global or continental scale snow studies.

The more widely used data in the study of the Tibetan Plateau

include high-resolution MODIS, IMS data, medium-resolution

AVHRR data, and low-resolution CSD data. The evaluation

results of MOD10A1/MYD10A1 on the Tibetan Plateau from

2002 to 2014 show that the total accuracy under clear sky can

reach 85.0%, while more than 52.3% is covered by cloud (Yu

et al., 2017). The total accuracy of 4 km and 1 km IMS snow and

ice data on the plateau from 2010 to 2019 can reach 80.1% and

83.0%, respectively (Chu et al., 2021). The total accuracy of

AVHRR snow cover data from 1985 to 2013 on the plateau

can reach 87.4% (Li et al., 2022). The total accuracy of 25 kmCSD

from 2003 to 2014 on the plateau is 66.7% (Dai et al., 2017).

At present, a large number of remote sensing data have

been applied to the monitoring of snow cover on the Tibetan

Plateau. MODIS eight-day combined snow cover data

MOD10A2 shows a significant decreasing trend of snow

cover in the southeast and northwest of the plateau (Yang

et al., 2017). The MODIS and IMS fusion data indicate that

from 2002 to 2012, the areas with significantly earlier and later

snow cover onset account for 18.1% and 8.5%, and the areas

with earlier and later snow cover end account for 23.2% and

6.9%, respectively. The cloud-free MODIS snow data

developed by the triple spline interpolation show that from

2000 to 2020, the snow cover onset of 14.4% region is delayed

2.3 days per year (d/y), and end of 15.5% is advanced 1.7 d/y

(Tang et al., 2013). Previous studies focus more on the snow

cover days, the start and end dates of snow cover (Dietz et al.,

2013; Notarnicola, 2020), while little is known about the

short-period snow cover on the Tibetan Plateau. Moreover,

the reliability of snow monitoring is directly related to the

used remote sensing data. High-resolution data can capture

snow accurately, but most of them are obtained from optical

sensors and affected by cloud. Multi-source data fusion is an

effective method to integrate the respective advantages of

different snow data. Targeted fusion strategies based on

regional snow characteristics can significantly increase the

adaptability of new products in the region.
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This study plans to evaluate and comparatively analyze the

five commonly used snow cover data based on unified data and

indexes, to generate the Tibetan PlateauMODIS dataset using the

suitable NDSI snow recognition threshold based on the snow

characteristics of this region, to formulate multi-source data

fusion strategies based on the performance of each data on

the Tibetan Plateau, and to develop a multi-source data fusion

snow dataset with high spatial resolution at the day scale. Based

on this, the snow cover days and their changes on the Tibetan

Plateau has been analyzed, and the longest snow cover duration

(SCD) and the number of snow cycles have been

comprehensively considered to understand the snow and its

dynamic changes. The second part of this paper introduces

the study area and data. The third part introduces the

evaluation index, fusion strategy, snow cover parameters, and

variation analysis methods. The fourth part analyzes the data

fusion effect, spatial difference, and contrasting changes of snow

cover on the Tibetan Plateau. The fifth part is the conclusion.

2 Study area and data

2.1 Study area

The Tibetan Plateau is the largest snow-covered area on the

Earth except for the poles, which is the birthplace of dozens of

large rivers and is known as the “Asia water tower.” The plateau is

mainly influenced by the Indian monsoon and westerlies, with

cold regions in the northwest and warm regions in the south and

central parts. The precipitation over the plateau shows a

decreasing trend from southeast to northwest. The Tibet

Plateau is dominated by natural geomorphology, taking into

account the elevation, mountain integrity, and river

geomorphology, and is divided into 12 major basins: Indus,

Amu Darya, Tarim, Hexi, Qaidam, Yellow River, TP interior,

Yangtze, Lancang River, Nujiang River, Yarlungzangbo, and

Ganges (Figure 1), and the proportion of each elevation area

is 6.4% (<1500 m), 4.3% (1,500–2000m), 4.1% (2000–2500 m),

7.8% (2500–3000 m), 8.2% (3000–3500 m), 10.3%

(3500–4000 m), 17.4% (4000–4500 m), 26.4% (4500–5000 m),

and 15.1% (>5,000 m), respectively.

2.2 Data

2.2.1 Remote sensing data
Remote sensing data used in this study include

MOD10A1/MYD10A1 snow cover data, IMS snow and ice

data, AVHRR snow area data, and CSD (Figure 2). All data

have been pre-processed for format conversion and numerical

unification.

MODIS data version 6 before 31 August 2021, including

MOD10A1 and MYD10A1, has been downloaded from the

National Snow and Ice Data Center (NSIDC, https://nsidc.

org). Different form version 5, which only provides “snow”

and “no snow” binary maps, version 6 snow dataset provides

normalized difference snow index (NDSI) and data quality

parameters (Hall et al., 2002). According to the snow

characteristics of different regions, users can define the

recognition threshold suitable for the region to obtain more

accurate snow data. The data have been acquired between 10:

30 a.m. and 1:30 p.m., respectively. The consistency of these two

FIGURE 1
Study area and locations of 139 snow observation sites.
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data is stronger in winter and the weakest in summer (Painter

et al., 2009).

The IMS snow/ice data are a multi-source fusion dataset of

snow and sea ice for the Northern Hemisphere, distributed by the

NSIDC. The source datasets include data from NOAA’s very low

orbit, Geostationary Operational Environmental Satellites,

Geostationary Meteorological Satellite, United States

Department of Defense Polar Satellites Orbiters, Multi-

Function Transport Satellites, and European Meteorological

Satellites. Also, the data of various radar sources from

European countries, Japan, China, South Korea, Canada, and

the United States and snow observations in many countries were

combined (Ramsay, 1998; Helfrich et al., 2007). This study used

data from 1 September 2000 to 31 August 2021.

The AVHRR snow data are obtained by quality control,

cloud detection, snow identification by multi-layer decision tree,

and gap filling. Based on normalized vegetation index (NDVI),

NDSI, and DEM, the snow has been identified based on different

thresholds for different surface conditions (Hao et al., 2021). The

data within 16–56°N and 72–142°E can be obtained from the

National Tibetan Plateau Data Center (TPDC, http://www.tpdc.

ac.cn/en/). Data from 1 September 2000 to 31 May 2019 were

used in this study.

The CSD is a snow depth dataset developed based on the snow

characteristics in China (Che T et al., 2008; Dai et al., 2015; Dai et al.,

2017), which can be downloaded from TPDC. The source data are

passive microwave data SMMR (1979–1987), SSM/I (1987–2007),

and SSMI/S (2008–2020). To ensure the consistency of the data in

time, the data from different sensors are first cross-calibrated. Then,

Chang’s snow depth algorithm is fitted and revised based on the

snow depth observations in China, and a snow depth inversion

algorithm suitable for China is developed. According to different

surfaces such as sand, permafrost, and cold desert, different snow

recognition algorithms are developed. Data from 1 September

2000 to 31 August 2021 were used in this study.

2.2.2 Auxiliary data
The snow depth records from 1 September 2000 to 31 August

2020 at 139 stations, operated by China National Meteorological

Administration, have been viewed as true values (Figure 1). Daily

snow depth is measured by professionals using a ruler at 8 a.m.

When the snow depth is greater than 1 cm, the snow depth is

recorded as the integer centimeter. In this study, the samples with

a snow depth of 1 cm or more have been defined as “snow,” and

samples with snow depth less than 1 cm have been defined as “no

snow.” The elevation of these stations range from 1,220 to

5,285 m; 82.0% of these stations are located between

2,000 and 4,500 m, accounting for 47.8% of the Tibetan

Plateau. Nine stations are located at altitudes greater than

4,500 m, accounting for 21.6%. Therefore, these measured

snow depth data can well represent the snow cover in the

study area. Meanwhile, SRTM DEM (the Shuttle Radar

Topography Mission, https://srtm.csi.cgiar.org) with spatial

resolution of 90 m is used for hypsometry of each basin.

3 Methods

3.1 Evaluation metrics of remote sensing
data

Three metrics, overall accuracy (OA), snow accuracy (SA),

and snow omission error (SOE), have been used to evaluate the

accuracy of the source data and the performance of the data

fusion (Painter et al., 2009; Rittger et al., 2013). The overall

accuracy is defined as the ratio of the number of correctly

classified samples to the total number of samples, and thus

represents the overall accuracy for recognition in the data

corresponding to “snow” and “no snow.” The snow accuracy

is defined as the ratio between the number of correctly recognized

“snow” samples and the number of “snow” samples identified by

FIGURE 2
Remote sensing data used in this study.
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the remote sensing data, representing the correct snow

recognition. The omission error is the ratio of the number of

samples that misjudged “snow” as “no snow” based on remote

sensing retrieval vs. the number of snow samples verified by

ground observations, thus giving a measure of the snow missed

by remote sensing observation.

3.2 MODIS snow recognition and multi-
source data fusion

The “step-by-step iterative test” has been used to define a

suitableMODIS NDSI threshold for snow recognition. The NDSI

threshold was based on carrying out 99 iterations between 0 and

1 in the steps of 0.01. The snow recognitions under each

threshold were evaluated based on the ground observations by

three metrics, i.e., the OA, SA, and SOE. The optimal threshold of

MODIS NDSI has been determined by comparing and analyzing

these parameters. In this study, the Tibetan Plateau has been

classified into 96 types, according to the month and altitude

interval, and the corresponding NDSI threshold has been

determined for each type (Supplementary Table S1). When

the NDSI value is greater than or equal to the threshold, it is

identified as “snow,” and when it is less than the threshold, it is

identified as “no snow."

Multi-source data fusion is an important method to remove

cloud masking of optical data and to combine the advantages of

different types of data (Gafurov and Bardossy, 2009; Gao et al.,

2010; Dietz et al., 2013). For the three spatial resolutions of the

IMS, we have divided the five data into three periods:

1 September 2000–23 April 2004 (period 1), 24 April

2004–2 December 2014 (period 2), and 3 December

2014–31 August 2020 (period 3). The accuracies of these five

data have been comprehensively evaluated and compared.

According to the evaluation results of each data in these three

periods, the corresponding fusion strategy has been formulated

and adopted. According to different strategies, multi-source data

fusion has been carried out and the new snow cover dataset has

been generated. The specific fusion strategies are defined in

Section 4.1.

3.3 Snow parameters definition and snow
cover zoning

To provide a comprehensive understanding of the snowpack

status, three parameters including the annual snow cover days,

the longest snow cover duration (SCD), and the number of snow

cycles have been used. The annual snow cover days is the sum of

the number of snow days within a snow year (from September

1 in this year to August 31 in the next year). The process of “no

snow–snow–no snow” in an area is defined as a snow cycle. SCD

means the duration of a snow cycle. The number of snow cycles,

i.e., how many such cycles are within a snow year, includes not

only the long-term snow processes (more than 30 days) but also

all the short-term snow processes (less than 30 days) (Zhang and

Zhong, 2014). The longest SCD is the duration of the longest

snow cover cycle.

Based on the annual snow cover days and the longest SCD,

the Tibetan Plateau can be divided into four types: persistent,

stable, unstable, and ephemeral snow covers (Li et al., 2022). The

regions meeting any of the conditions of more than 180 days of

annual snow cover days or more than 60 days of the longest SCD

are defined as persistent snow cover. Outside the persistent snow

cover, the regions meeting any of the conditions of annual snow

cover days more than 60 days and the longest SCD more than

30 days are defined as the stable snow cover. Outside the

aforementioned two types, regions with annual snow cover

days or the longest SCD more than 10 days are defined as the

unstable snow cover. Areas outside the aforementioned three

types are defined as the ephemeral snow cover.

3.4 Trend analysis of snow cover changes

The trend of snow cover changes has been analyzed using the

Mann–Kendall trend test algorithm (M–K algorithm). This

method is a non-parametric test method. It does not require

samples to follow a certain distribution and can overcome the

interference of a few outliers, so it is widely used in climate trend

testing and prediction. First, for the stationary and independent

series, Xt (t = 1, 2, 3, . . . , n; n is the sequence length) defines the

statistic S (1).

S � ∑n−1
i�1

∑n
j�i+1

Sgn(xi − xj), (1)

where Sgn (xi-xj) for

Sgn(xi − xj) � 1 (xi − xj > 0)
0 (xi − xj � 0)
−1 (xi − xj < 0)

⎧⎪⎨⎪⎩ .

For n≥10, the variance of the statistic S (approximately

normally distributed) is Var(S) (2) and the standardized test

statistic is Z (3).

Var S( ) � n n − 1( ) 2n + 5( )
18

, (2)

Z �

S − 1								
Var S( )√ S> 0( )

0 S � 0( )
S + 1								

Var S( )√ S< 0( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

Here, Z represents the upward or downward trend of the

series, where Z>0 indicates an upward trend and Z<0 indicates a
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downward trend. For a given significance level α, if |Z| ≥ Z1- α/2, it

means that at the level of significance test α, Xt has an obvious

upward or downward trend; 1.96 and 1.28 correspond to the

critical values at significance levels (P) of 0.05 and 0.20,

respectively. The calculation process is as follows: α = 0.05 as

an example, Z1- α/2=Z0.975, the query standard normal

distribution table Z0.975=1.96, so when |Z| ≥ 1.65, the

sequence passes the 95% significance test. In this study,

p≤0.05 and 0.05<p≤0.2 were defined as significant and weakly

significant change, respectively. Only significant and weakly

significant change has been analyzed in the following sections.

4 Results and discussion

4.1 Snow data evaluation and fusion
results

The accuracy of the original and multi-source fusion snow

cover data have been evaluated based on snow observations at

139 stations from 2000 to 2020 (Figure 3). Among the five

original data, the overall accuracies of MOD10A1, MYD10A1,

and AVHRR are above 90%. Snow accuracies are the highest

for MOD10A1 with 48.2–67.2%, AVHRR with 39.8–46.1%,

and MYD10A1 with 31.5–40.6%. The snow omission error

rates are MOD10A1, AVHRR, and MYD10A1 in order from

low to high, above 50%, 60%, and 70%, respectively. It can be

seen that the applicability of these three data on the Tibetan

Plateau is MOD10A1, AVHRR, and MYD10A1 in a

descending order, but the spatial resolution of

MOD10A1 and MYD10A1 is much higher than that of

AVHRR. The overall accuracy of IMS data is only 77.5% in

period 1, but above 90% in periods 2 and 3. Similarly, its snow

accuracy is only 20.3% in period 1, but more than 40% in

periods 2 and 3. In the latter two periods, the snow accuracies

of IMS data are higher than that of AVHRR data, but the

accuracy of IMS no snow part is lower than AVHRR.

Compared with other data, the CSD data have lower overall

accuracy (74.8–77.6%) and lower snow accuracy

(11.6–20.3%), although its snow omission error is lower.

FIGURE 3
Accuracy evaluation of original and multi-source fusion snow cover data. (A) Overall accuracy. (B) Snow accuracy. (C) Snow omission error.
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Considering the aforementioned analysis and spatial

resolution of the data, two multi-source data fusion strategies

have been determined to develop the Tibetan Plateau multi-

source data fusion snow cover dataset (TPMFSCD). The specific

fusion process is shown in Supplementary Figure S1. In the

fusion process, the MODIS data are used as the benchmark to

calculate the center coordinates of each pixel, and then the pixel

values from other data in the corresponding positions under the

same coordinate system (WGS84) are obtained to participate in

data fusion. Before 24 April 2004, i.e., period 1, the fusion has

been performed in the order of MOD10A1 cloud-free part,

MYD10A1 cloud-free part, AVHRR identified part, IMS, and

CSD. In periods 2 and 3, the fusion has been performed in the

order of MOD10A1 cloud-free part, MYD10A1 cloud-free part,

IMS snow part, AVHRR identified part, IMS no snow part, and

CSD. The validation of the fusion results shows that the overall

accuracy of the newly developed data is higher than 92%, and the

snow accuracies range from 42.5% to 48.3%. Although the snow

accuracy of the new data is lower than MOD10A1, it is higher

than other data. At the same time, the snow omission error of the

new data is effectively reduced, especially in the two periods after

2004. Compared to the existing cloud-free data AVHRR and

IMS, the snow omission error of the new data is reduced by

4.1–15.9% and 15.4–22.5%, respectively. It can be seen that the

newly developed TPMFSCD not only integrates the high snow

accuracy of MODIS data in cloud-free condition but also

improves the snow omission error. The TPMFSCD is

completely cloud-free data with high spatial and temporal

resolutions, which can reflect all the snow cover conditions on

the Tibetan Plateau.

4.2 Spatial differences in snow cover on
the Tibetan Plateau

The snow distribution on the Tibetan Plateau has obvious

spatial heterogeneity (Figure 4). Percentage of the longest SCD is

the ratio of the longest SCD to snow cover days, which is used to

reflect the contribution of the longest snow cover period to the

annual snow. The Amu Darya and Indus in the western part of

the plateau have the longest average snow cover days, reaching

186 and 160 days, respectively. The longest SCD in these two

basins last 5–9 months, with the average of 130 and 99 days,

respectively, accounting for more than 60% of the snow cover

days. The average snow cover days in the Tarim, Lancang River,

Nujiang River, Yarlungzangbo, and Ganges are 89, 83, 106, 78,

and 72 days, respectively. The longest SCD in most areas range

from 25 to 35 days, and more than 70% of the snow cover comes

from short-term snow cycles less than 5 days. Other basins,

including the Hexi, Qaidam, TP interior, Yellow River, and

Yangtze, have annual snow cover days of less than 2 months,

53, 47, 52, 58, and 56 days, respectively. The longest SCD is also

short, at around 2 weeks, and more than 80% of the snow cover

comes from the short-term snow cycles lasting less than 3 days.

The snow cycles is ~5 times in areas below 2,000 m at the edge of

the plateau, and ~20 times in areas above 2,000 m, except for the

south of the TP interior and the upper reaches of the

Yarlungzangbo. The snow cycle is more than 35 times at high

altitude of the Tarim, Lancang River, Nujiang River, and Ganges.

All of these indicate that the contribution of the longest SCD to

the snow cover is limited, and the short-term snow cycles and

their variation should be considered simultaneously when

understanding the snow cover on the Tibetan Plateau.

As the altitude increases, the annual snow cover days and the

longest SCD increase, while the number of snow cycles first

increases and then decreases (Figure 5, Supplementary Figure

S2). The snow cover in high-altitude areas is relatively stable,

since the low temperature conditions here are more conducive to

preserving the snow cover, even in summer. According to the

annual snow cover days and the longest SCD, the plateau has

been divided into persistent, stable, unstable, and ephemeral

snow covers (Figure 6). The persistent snow cover is

5.84×105 km2 (16.2%), mainly distributed in the Indus

(5.5%,>2900 m), Amu Darya (3.6%, >3300 m), Tarim

(1.6%,>5100 m), Ganges (1.7%,>5100 m), and Yarlungzangbo

(1.1%, >5500 m). The three northern regions have the annual

snow cover days of 253–316 days, the longest SCD of

176–218 days, and the snow cycle of 15 times, all of which in

the two southern regions is ~300 days, ~140 days, and 22 times.

The stable snow cover is 9.45×105 km2 (26.2%), mainly

distributed in the TP interior (4.7%, 5,300–5800 m), Yangtze

(4.6%, 4,200–5500 m), Yellow River (3.3%, 3,600–4900 m), and

Tarim (2.6%, 3,300–5100 m). The annual snow cover days is

~100 days, with the longest SCD of ~30 days, and snow cycle of

23–27 times. The unstable snow cover is 1.64×106 km2 (45.5%),

mainly distributed in the TP interior (12.7%, <5300 m), Yangtze

(6.9%, 2500–4200 m), Yellow River (6.1%, <3600 m), and Tarim

(4.5%, 3300 m), with the annual snow cover days of 25–43 days.

The longest SCD lasts ~10 days, and the snow cycle is 8–17 times.

The ephemeral snow cover is 4.36×105 km2 (12.1%), mainly

distributed in the area below 2,000 m of the Ganges and

Yangtze and in the Qaidam. Compared with previous studies

(Li and Li, 1983; Zhang and Zhong, 2014; Li et al., 2022), this

study has fully considered the spatial and temporal continuities

of snow cover and clarified the snow classification in different

basins and their altitude dependences.

In terms of basins, the Amu Darya and Indus are dominated

by persistent snow cover. The Lancang River and Nujiang River

are dominated by stable snow cover, and other basins are

dominated by unstable snow areas, followed by stable snow

areas. Controlled by geographical location and climatic

background, the altitude of each basin to reach the persistent

and stable snow cover are different. The AmuDarya and Indus in

the northwestern direction of the plateau are at high latitude and

directly controlled by the westerly, reaching the persistent snow

cover at ~3,000 m. Other areas of the plateau do not have the
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persistent snow cover until at least 5,000 m. In the TP interior

and the upper reaches of the Yarlungzangbo, the persistent snow

cover will not appear until at least 6,000 m. Similarly, the Amu

Darya and Indus can have the stable snow cover at ~2,000 m, and

the Ganges, controlled by the Indian monsoon, has the stable

snow cover at 3,000 m. The Tarim, Hexi, and the Yellow River

with higher latitude have the stable snow cover at ~3,500 m. The

Qaidam, Yangtze, Lancang River, Nujiang River, and the middle

and lower reaches of the Yarlungzangbo, which are inland or at

lower latitudes, have the stable snow cover at ~4,200 m, and the

stable snow cover does not occur until even above 5,300 m on the

TP interior.

4.3 Contrasting changes of snow cover on
the Tibetan Plateau

During the period from 2000 to 2021, we estimate a

significant decrease in in the snow cover days for the large

region on the Tibetan Plateau (23.0%), and significant

increasing accounting 4.9%, with a trend of −1.5 and 2.1 d/

y(Figure 7A). The areas with snow decreasing are mainly in

the Yangtze, Lancang River, Nujiang River, Yarlungzangbo,

and Ganges, located in the southeastern and south part of the

plateau. The gradual rise of the snowline height in these areas

from 1995 to 2016 (Liu et al., 2021) also confirms the

decreasing trend of snow cover. Areas of increasing and

decreasing snow coexist in the Amu Darya, Indus, Tarim in

the northwestern part of the plateau, and in the Qaidam and

Yellow Rivers in the northeast. The area of snow reduction

increases with elevation, from 4.4% (<2,500 m) to 8.4%

(2,500–4,000 m) to 10.3% (>4,000 m), and that of increased

snow also increases from 0.2% (<2,500 m) to 1.0%

(2,500–4,000 m) to 3.6% (>4,000 m) (Supplementary Figure

S3A). The corresponding snow reductions range

from −0.7 to −1.3 to −1.9 d/y, and the increases range from

0.4 to 2.0 to 2.2 d/y (Figure 7B). It can be seen that the change

of snow cover is more pronounced, and the magnitude is

greater at higher altitude. The reduction of snow cover at high

elevation may aggravate the warming of the TP interior

(Zhang et al., 2022).

During the same period, the longest SCD decreases in 17.4%

and increases in 5.8% of the Tibetan Plateau (Supplementary

Figure S3D), with the rate of −0.4 and 2.5 d/y (Figures 7C,D). The

areas with large reduction in the longest SCD are located in the

Yangtze, Lancang River, Nujiang River, and Brahmaputra rivers,

and that of the increase are located in the Amu Darya and Indus.

Number of snow cycle decreases in 27.6% and increases in 3.7%

of the plateau (Supplementary Figure S3F), with the rate

of −0.2 and 0.1 time per year (n/y) (Figure 7E). The number

of snow cycle is significantly reduced in most snow-covered areas

of the Tibetan Plateau, except for the central part of the Yellow

River and the upper reaches of the Yarlungzangbo. Similarly, the

area andmagnitude of changes in the longest SCD and number of

snow cycles increases with elevation (Figure 7F, Supplementary

Figure S3).

FIGURE 4
TPMFSCD observed snow characteristics on the Tibetan Plateau. (A) Snow cover days, (B) longest snow cover duration (SCD), (C) percentage of
the longest SCD, and (D) number of snow cycles.
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FIGURE 5
Snow cover days, the longest SCD, and number of snow cycles in each basin of the Tibetan Plateau.

FIGURE 6
Snow cover zoning of the Tibetan Plateau.
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Figures 8, 9 illustrate the percentage of increase and decrease

area and trends in snow cover of each basin. In the latest 21 years,

the snow cover days in all the basins dominated by the significant

reductions, and the area with significant decrease is much larger

than the area with significant increase. Compared to other basins,

the basins with the largest proportion of snow increase are the

Amu Darya and Indus. The snow cover days decrease in 21.2% of

the basins and increase in 10.4%, with the rate of -1.9 and 1.8 d/y,

respectively. Almost all the increasing areas are located above

3,000 m. As the altitude increases, the area of increasing snow

cover days increase, and the area of increased snow cover days

above 4,500 m is more than decreased. It is noteworthy that in

both basins above 3,000 m, the areas and magnitude of the

increased longest SCD are more than that of the decreased

(14.4%, 4.0 d/y vs 6.4%, and −2.3 d/y). In the area less than

3,000 m, the longest SCD is dominated by a decrease of −0.9 d/y.

For the snow cycle, 27.0% of the area decreases and 6.0%

increases. The snow cycle increases by less than 1.3% at all

elevation intervals. Therefore, the decrease of snow cover days

on the Amu Darya and Indus are mainly due to the reduction of

short-term snow cycles. Meanwhile, the increase of snow cover

days over 3,000 m is mainly due to the increase of the longest

SCD, while the short-term snow cycles also decreases. From the

period of 2001–2005 to 2016–2021, the longest SCD on the Amu

Darya increases from 128 to 138 days, and on the Indus from

84 to 109 days. The number of snow cycles on the Amu Darya

decreases from 18 to 15, while that on the Indus decreases from

19 to 17. In addition, there is an increase in the longest SCD in

some areas of these two basins, along with a decrease in the short-

term snow cycles, which leaves the snow cover days unchanged.

In Tarim and Hexi, the areas and magnitudes of decreased

and increased snow cover days are 23.0%, −1.4 d/y and 3.8%,

2.5 d/y, respectively. The areas and magnitudes of decrease and

increase in the longest SCD are 18.4%, −0.3 d/y and 4.4%, 2.5 d/y,

FIGURE 7
Changes in snow cover days (A), longest SCD (C), number of snow cycles, (E) and corresponding values in different elevation zones (B,D,F).
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respectively, while that of the snow cycles are 28.2%, −0.2 n/y and

2.0%, 0.2 n/y, respectively. The decrease in snow cover days,

mainly located below 4,500 m, is not only related to the decrease

of the longest SCD but also the decrease in the short-term snow

cycles brings a greater impact. The area of increased snow cover

days are located above 4,500 m, and there are more areas of

increase than decrease, mainly influenced by the increase in the

longest SCD, but the short-term snow cycles still decrease, which

is identical to that of the Indus and Amu Darya.

In Qaidam, the Yellow River and TP interior, the snow cover

days decrease and increase by 14.4% and 4.4% (-0.5 vs 2.2 d/y),

respectively. The areas of increased snow cover days occur above

4,000 m. The longest SCD decrease and increase by 12.7% and

4.3% (- 0.1 vs 0.8 d/y), respectively, and the number of snow

cycles decreases and increases by 18.9% and 4.5% (- 0.1 vs 0.2 n/

y), respectively. The decrease in snow cover days in these regions

is related to both the decrease in the longest SCD and the short-

term snow cycles, and the increase in snow cover days is also the

superposed effect of the increase in the longest SCD and short-

term snow cycles. But the increase of the snow cover days in the

Yellow River mainly comes from the increase of short-term snow

cycles.

The most significant reduction of snow cover days is

observed in the Yangtze, Lancang River, and Nujiang River.

FIGURE 8
Percentage of snow cover increase and decrease areas in each basin.
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The snow cover days decreased in 35.0% (-1.8 d/y) of these

regions and increased in only 3.3% (3.0 d/y). Most of the

increased areas are located above 4,000 m, but the increased

areas are much smaller than the decreased. The areas with

decreased and increased longest SCD are 26.6% and 2.4%

(-0.3 vs 1.8 d/y), respectively, while that snow cycles are 40.7%

and 2.0% (-0.2 vs. 0.1n/y), respectively. The combination of the

reductions in the longest SCD and the decreases of snow cycles

over the large areas, has resulted in the reduction of the snow

cover days.

The snow cover days in the Yarlungzangbo and Ganges also

predominantly decreased, with 22.0% of the area decreasing and

only 5.8% increasing in snow cover days, and the magnitude is

-2.1 and 1.5 d/y, respectively. Unlike other basins where the

increased and decreased snow cover are located in the same

mountains, the increased snow in this region is mainly located in

the middle and upper reaches of the Yarlungzangbo, mainly related

to the increase in short-term snow cycles. The decreasing areas are

mainly located in the Himalayas and Tanggula Mountains of this

region. The areas of the decreased and increased longest SCDs are

FIGURE 9
Trends in snow cover of each basin.
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11.4% and 5.6% (-0.5 vs 2.1 d/y), respectively and that of snow cycles

are 26.7% and 5.4% (-0.2 vs 0.1n/y). The reduction of the snow cover

days in these two regions is related to the decrease of the longest

SCD, while the reduction in short-term snow cycles also plays a

more important role.

5 Conclusion

The snowpack on the Tibetan Plateau not only provides an

important freshwater resource for the surrounding region but its high

albedo also governs the energy exchange of the ground–air system

and thus influence climate change in Asia and globally. In recent

years, the spatial and temporal resolutions of snow remote sensing

data have been increasing, but the unique snow characteristics such as

thin snow depth and high frequency of change on the Tibetan

Plateau, as well as the complex and rugged land surfaces have limited

their applicability in this region. This study comprehensively

evaluated the applicability of five commonly used snow data,

namely, MOD10A1, MYD10A1, IMS, AVHRR, and CSD on the

Tibetan Plateau based on snow observations at 139 stations from

2000 to 2020. According to the evaluation of each snow data at

different periods, two fusion strategies were developed and adopted

to generate the Tibetan Plateau multi-source data fusion snow cover

dataset from2000 to 2021. The dataset with high spatial and temporal

resolutions is completely cloud-free and have an overall accuracy

of 92.7%.

The new data show that the annual snow cover days on the

Tibetan Plateau is not only influenced by the largest SCD but is also

controlled by the short-term snow cycles. The number of snow

cycles is ~20 times per year in most areas of the plateau, and over

35 times at higher elevations. The Amu Darya and Indus in the

western part of the plateau have the longest average annual snow

cover days, greater than 160 days, and the longest SCD accounts for

more than 60% of the snow cover days. The Tarim, Lancang River,

Nujiang River, Yarlungzangbo, and Ganges have more than 70 days

of snow cover days, but more than 70% comes from short-term

snow cycles lasting less than 5 days. Other areas including Hexi,

Qaidam, TP inland areas, Yellow River, and Yangtze have short

snow cover days of 60 days, and more than 80% comes from short-

term snow cycles lasting less than 3 days. The areas of persistent,

stable, unstable, and ephemeral snow covers on the Tibetan Plateau

are 16.2%, 26.2%, 45.5% and 12.1%, respectively. The persistent

snow cover is mainly distributed in the Indus and Amu Darya.

Under the direct effect of the westerly, the persistent snow cover

occur above 3,000 m in these two basins. In contrast, the other areas

do not have persistent snow cover until at least 5,000 m or more.

Stable snow cover is mainly distributed above 3,500 m in the Tarim

and Yellow River, above 4,200 m of Yangtze, and above 5,300 m in

the TP interior.

Over the last two decades, 23.0%, 17.4%, and 27.6% of the

Tibetan Plateau have experienced a significant decrease in the snow

cover days, the longest SCD, and the number of snow cycles, with

the rate of −1.5 d/y, −0.4 d/y, and −0.2 n/y, respectively. In contrast,

4.9%, 5.8%, and 3.7% of the regions have a significant increase in the

snow cover days, the longest SCD and the number of snow cycles,

with the rate of 2.1 d/y, 2.5 d/y, and 0.1 n/y. All basins have a

predominantly significant reduction in snow cover days, and the

areas with the decrease are much greater than the increase.

Compared to other basins, the Amu Darya and Indus in the

northwest have the largest proportion of snow increase, while the

Yangtze, Lancang River, andNujiang River in the southeast have the

largest proportion of decrease. As the altitude increases, both the

area and magnitude of increasing and decreasing snowpacks

increase. The significant reduction in the snow cover days on the

Tibetan Plateau stems from the superimposed effect of the

simultaneous reduction in the largest SCD and the short-term

snow cycles, while the reductions in the Amu Darya and Indus

mainly comes from the reduction in the short-term snow cycles. The

significant increase of snow cover days in the Amu Darya, Indus,

Tarim, andHeximainly comes from the increase of the longest SCD,

and that in the Yellow River and Qaidam mainly comes from the

increase in the short-term snow cycles. The significant increase is

mainly distributed at the high-altitude area, and the area with

increased snow is greater than that with decreased above

4,500 in the Amu Darya, Indus, Tarim, and Hexi or above

4,000 m in the Yellow River and Qaidam. This contrasting

change in the snowpack on the Tibetan Plateau, which decreases

in the southeast and increases in the northwest, with a large decrease

at lower elevations and an increase at higher elevations, will bring

new challenges to water resource management in the region.
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Changes in snow, ice, and ecological system over the Tibetan Plateau (TP) are

extremely sensitive to local precipitation and radiation budget, which are largely

modulated by the atmospheric ice. However, how much ice is there in the

atmosphere over the TP and how it is distributed are still unclear. The total mass,

spatial distributions, and long-term trends of atmospheric ice over the TP were

evaluated by using four sets of satellite retrieval data (Aqua, Terra, the Suomi

National Polar-orbiting Partnership (Suomi NPP), and NOAA-20) and

ERA5 reanalysis data from 2003 to 2020. Based on the estimations using

multiple satellite datasets, we concluded that the total mass of atmospheric

ice could be up to 0.26±0.03 Gt over the TP from 2013 to 2020. The spatial

distributions of atmospheric ice derived from various datasets were highly

consistent. In general, the southwest and northeast areas of the TP were the

low-concentration areas (0.05 kg/m2 in average), while the southeast area was

the high-concentration area (0.09 kg/m2 in average), and this spatial pattern

was most evident in summer. The high values around (0.15 kg/m2) were

centered over Linzhi and its surrounding areas. The plentiful water vapor

transported by southwest summer monsoon and steep topography jointly

led to rapid growth of atmospheric ice in Southeast Tibet, which was the

dominant reason for the higher ice concentration in this area.

KEYWORDS

aerial cryosphere, spatial–temporal variability, ice water path, multi-source data,
Tibetan Plateau

1 Introduction

As a sensitive area of climate change, the air temperature of the TPhad increasedmuch faster

than that of the other areas at the same latitude (Liu and Chen, 2000), and the mass and energy

balance of ice and snow in this area are greatly influenced by radiation and precipitation

associated with the aerial cryosphere. The aerial cryosphere is composed of all ice bodies in the

atmosphere, including those in clouds (ice clouds and ice crystals) and those under clouds
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(snowflake and hail) (Qin et al., 2018). It is an element with the largest

coverage in the cryosphere, which has an important impact on the

radiation budget and water cycle in the climate system (Dou et al.,

2020). Previous studies have indicated that the atmospheric ice

dominated the distribution and lifetime of ice clouds and mixed-

phase clouds over the TP (Long, 2016; Li et al., 2018; Zhao et al., 2021),

thus profoundly affecting the surface radiation budget. Therefore, it is

of great significance to investigate the spatial–temporal variability of

the atmospheric ice over the TP.

With the rapid progress of satellite remote sensing technology and

the improvement of data assimilation, the remote sensing data and

reanalysis data were increasingly used to explore the pattern of

different phases of water in the atmosphere in the past few decades

(Liljegren et al., 2001; Horváth and Davies, 2007; O’Dell et al., 2008;

Lebsock and Su, 2014; Khanal et al., 2020;Qi et al., 2022). Some studies

suggested that the cloud water path (CWP) increased in most regions

of the TP from the 1980s to the beginning of this century (Li et al.,

2008; Yue et al., 2016). The annual average of the ice water path (IWP)

had been relatively stable from2000 to 2015without any obvious trend

(Li et al., 2018). In contrast, on the seasonal scale, the IWP in the

premonsoon season (March to May) and winter showed a significant

upward trend in the western TP, while in monsoon season (June to

September), a significant downward trend in the western TP was

observed (Zhao et al., 2021).

Earlier studies estimated the total mass (Dou et al., 2020; Xu et al.,

2022) and investigated the spatial–temporal distribution of

atmospheric ice on a global scale using multiple sets of satellite

remote sensing data and high-quality reanalysis data (Duncan and

Eriksson, 2018; Dou et al., 2020; Xu et al., 2022). However, the total

mass and spatial–temporal distribution of atmospheric ice over the TP

are poorly understood, and there is also a lack of uncertainty analysis

based on the multi-source data. Here, we used four sets of satellite

retrieval products, namely, Aqua, Terra, the Suomi NPP, and NOAA-

20 in CERES_SSF_1deg-Month L3 data and ERA5 reanalysis to carry

out a quantitative study of atmospheric ice over the TP and reveal the

main controlling factors of its spatial pattern. Note that acronyms and

abbreviations used in this study are given in Table 1.

2 Data and methods

2.1 Data

2.1.1 Boundary data
The boundary data on the TP in this study were downloaded

from the National Tibetan Plateau Scientific Data Center

(TPDC). The TP is about 3,360 km from east to west and

1,560 km from south to north, ranging from 25°59′30″N to

TABLE 1 Acronyms and abbreviations used in this study.

Acronyms and abbreviations Full name

ANN Artificial neural network

CERES Clouds and the Earth’s Radiant Energy System

CWP Cloud water path

ECMWF European Centre for Medium-Range Weather Forecasts

FM Flight model

GEBCO General Bathymetric Chart of the Oceans

IWC Ice water content

IWP Ice water path

LWP Liquid water path

MODIS Moderate Resolution Imaging Spectroradiometer

Suomi NPP Suomi National Polar-orbiting Partnership

TP Tibetan Plateau

TPDC National Tibetan Plateau Scientific Data Center

VIIRS Visible Infrared Imaging Radiometer Suite

TABLE 2 The multi-year mean mass of aerial cryosphere over the TP derived from three satellite products and ERA reanalysis from 2013 to 2020
(Unit: Gt).

Spring (MAM) Summer (JJA) Autumn (SON) Winter (DJF) Average

Aqua 0.28 0.34 0.26 0.23 0.28

ERA5 0.27 0.30 0.19 0.20 0.24

Terra 0.24 0.26 0.22 0.21 0.23

S-N-N 0.29 0.36 0.27 0.23 0.29
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40°1′0″N and 67°40′37″E to 104°40′57″E, with a total area of

3.08 million km2 (Zhang et al., 2002; Zhang et al., 2021a; Zhang

et al., 2021b).

2.1.2 Topography data
The topography data we used were produced by The

General Bathymetric Chart of the Oceans (GEBCO), which

showed a global terrain model for the ocean and land,

providing elevation data in meters, on a 15 arc-second

interval grid (Group, 2019).

2.1.3 Remote sensing retrieval data
The remote sensing products were retrieved by the Terra,

Aqua, Suomi NPP, and NOAA-20 satellites from the

CERES_SSF_1deg-Month L3 data. Clouds and the Earth’s

Radiant Energy System (CERES) was a NASA project that

looked into the role of cloud and radiation feedback in the

climate system (Wielicki et al., 1996). When coupled with the

global climate model, these data contributed to a better

understanding of how clouds and radiation interacted with

atmospheric thermodynamics. There were currently five

satellites carrying CERES instruments, and four satellites

being employed in this study were sun-synchronous. The

Terra satellite crosses the equator from south to north, and

because it does so, at about 10:30 a.m., it is also known as the

“Morning Satellite.” It has two CERES instruments, Flight

Model 1 (FM1) and Flight Model 2 (FM2), as well as a

Moderate Resolution Imaging Spectroradiometer (MODIS).

A MODIS has 36 bands with a wavelength range of

0.412–14.45 μm and a spatial resolution of 250–1,000 m,

allowing it to cover the entire globe in 2 days (Barnes et al.,

2003). The Aqua satellite crosses the equator from north to

south at about 1:30 p.m., and so it is known as the “Afternoon

Satellite.” It has two CERES instruments, FM3 and FM4, and a

MODIS. The “Afternoon Satellite” Suomi NPP is also

equipped with the CERES instrument FM5 and the Visible

Infrared Imaging Radiometer Suite (VIIRS). The VIIRS

contains 22 imaging and radiation bands with a wavelength

range from 0.41 to 12.5 μm and a spatial resolution of

370–750 m (Cao et al., 2014). NOAA-20, the successor of

the Suomi NPP, which is also an “Afternoon Satellite,” is

equipped with the FM6 CERES instrument and VIIRS (Cao

et al., 2018). The four satellites mentioned previously were

equipped with advanced spectral imagers so as to provide 24-h

day-time and night-time IWP monthly average data

CERES_SSF_1deg-Month L3 data, with a spatial resolution

of 1°×1°. These products had the advantages of long time

series, wide application range, and high space coverage. We

chose 24-h day-time and night-time IWP data because it

better represented the whole IWP in the research area even

though the retrieval algorithms used during the day-time and

night-time were different. Meanwhile, because the time series

of the Suomi NPP and NOAA-20 satellite products were short,

the payloads carried by them were the same, and their orbits

were similar, so they were merged into one new product with

the time series from 2013 to 2020.

2.1.4 Reanalysis data
The reanalysis data used here were ERA5, which was the

fifth-generation reanalysis data product made by the

European Centre for Medium-Range Weather Forecasts

(ECMWF). A new data assimilation system, known as the

ECMWF Integrated Forecasting System “Cy47r3” 4D-var,

was applied for ERA5 by ECMWF. It was based on

numerical calculation of the model and assimilation of a

large amount of observation data. Due to these advantages,

ERA5 contain detailed records of the global atmosphere,

surface, and ocean waves since 1950. It had a significant

improvement in the spatial resolution and numerical

accuracy of variables when compared to the previous

reanalysis data product ERA-Interim (Hersbach et al.,

2020). We selected the monthly averaged ERA5 on single

levels from 1979 to the present as the research data and

employed the combination of two variables, total column

cloud ice water and total column snow water, as the IWP to

characterize the total ice content.

2.2 Methodology

IWP (g/m2) is a primary indicator for calculating the

atmospheric ice concentration. It was defined as the vertical

integral of the ice water content (IWC) (g/m3) in the atmospheric

column (Holl et al., 2014).

The CERES_SSF_1deg-Month L3 data assumed that the

atmosphere was plane parallel, and the whole cloud

column was composed entirely of ice. Hence, the IWP

value was the product of the effective size and optical

thickness of ice crystals. The specific algorithm was as

follows:

IWP � 2ρReτ /3Q , (1)

where ρ is the density of ice (−0.9 g cm−3), Re is the effective

radius, τ is the optical depth, and Q is the extinction efficiency,

which depends on Re and ranges from 2.01 to 2.11 (Tian et al.,

2018).

3 Results

3.1 Total mass

The three satellite retrieval products (Aqua, Terra, and

the Suomi NPP-NOAA-20) during 2013 and 2020 were used

to estimate the total mass of atmospheric ice over the TP by

considering the area weight because the Suomi NPP and
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NOAA-20 products were only produced since 2013 (Table 2).

The total mass of atmospheric ice calculated based on Aqua

and Suomi NPP-NOAA-20 was very close (~0.28 Gt) during

this period, which is larger than that from Terra (0.23 Gt).

The reason for this condition might be the difference in their

orbits. The Aqua and Suomi-NPP were both A-train

satellites. Combined with the estimation results of all

satellite datasets, we concluded that the multi-year average

total mass of atmospheric ice was 0.26 ± 0.03 Gt (~2.6 ×108

tons) over the TP, which accounted for approximately 5‰ of

the global aerial cryosphere. The total mass of atmospheric

ice had a significant seasonal variation, with a maximum of

0.32 ± 0.05 Gt in summer and a minimum of 0.22 ± 0.01 Gt in

winter. In general, the result of ERA5 (total mass 0.24 Gt) was

comparable with that of Terra and smaller than those of

Aqua and Suomi NPP-NOAA-20. This is also applied on a

global scale, and the mass of atmospheric ice given by the

reanalysis data was also on the low side. The main reason was

that the current atmospheric models did not perform well

enough in describing the ice formation mechanism, ignoring

the secondary ice formation mechanism and

underestimating the number concentration of ice

condensation nuclei (ECMWF, 2021).

3.2 Spatial distribution and seasonal
variability

The ice concentration ranged from 0.05 to 0.15 kg/m2 over the

TP, with an average of 0.08 kg/m2. As shown in Figure 1, the spatial

variability of atmospheric ice over the TP was obvious. Three sets of

satellite retrieval products consistently revealed the spatial pattern of

high ice concentration in the easternTP and low ice concentration in

the western TP (Figures 1A,C,D). ERA5 generally underestimated

the spatial heterogeneity of atmospheric ice content, and there are

only a few high-value areas in the southeast edge of the TP

(Figure 1B). All the four datasets observed the high-value center

of the ice concentration around Linzhi City in southeast Tibet, where

the value was up to 0.15 kg/m2. Additionally, the IWP over the

southern slope of the TP was relatively higher than those of other

areas. Overall, the spatial distributions derived from various satellite

datasets were consistent, particularly between Aqua (Figure 1A) and

Suomi NPP-NOAA-20 (Figure 1D).

In order to clarify the reasons for the spatial difference of

atmospheric ice over the TP, the vertical profile of wind field,

relative humidity at 95°E, 30°N, and the IWP of corresponding

grids were analyzed from 2003 to 2020 combined with the

topography (Figure 2). A large amount of water vapor was

FIGURE 1
Spatial distributions of atmospheric ice over the TP retrieved by (A) Aqua, (B) ERA5, (C) Terra and (D) Suomi NPP NOAA-20 from 2013 to 2020.
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FIGURE 2
Vertical profile of wind field (stream lines), relative humidity (shaded areas), and topography (black waves) at the domain of 25°N–40°N and
70°E–110°E from 2003 to 2020. (A) Cross section of 95°E; (B) cross section of 30°N. The vertical velocity w was enlarged by 100 times because it is
2–3 orders of magnitude smaller than the horizontal velocity. The gray bars denote the IWP values at different latitudes and longitudes.

FIGURE 3
Spatial distributions of atmospheric ice over the TP in different seasons retrieved by the Aqua satellite from 2003 to 2020. (A) Spring (MAM), (B)
summer (JJA), (C) autumn (SON), and (D) winter (DJF).
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transported to the southeast of the TP (around 27°N) through the

Bay of Bengal channel, with the relative humidity exceeding to 65%

at 850 hPa in this area, which provided a sufficient water vapor

condition for the formation of atmospheric ice. In addition, strong

updraft carried abundant water vapor to high altitudes, producing

lots of atmospheric ice through condensing. The previous two

FIGURE 4
Spatial distributions of atmospheric ice over the TP in the different seasons given by ERA5 from 2003 to 2020. (A) Spring (MAM), (B) summer
(JJA), (C) autumn (SON), and (D) winter (DJF).

FIGURE 5
Time series of the atmospheric ice mass over the TP from 2003 to 2020. (dash line is the average value line).
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factors are themain reasons for the high-value center of atmospheric

ice in southeast Tibet. The terrain blocking prevented water vapor

from northward penetration, resulting in the low ice concentration

in northern TP.

Affected by southwest monsoon, the content of

atmospheric ice in summer and autumn was generally

higher than that in the other two seasons, especially for the

eastern TP (Figure 3). This led to higher annual mean ice

concentrations in the eastern TP. The seasonal distributions of

the ice content derived from various satellite retrieval

products were also consistent, only with slight differences

in the central and western TP inland areas (Figure 3,

Supplementary Figure S1, S2). For example, the IWP of the

Aqua satellite in winter was slightly higher than those of Terra

and Suomi NPP-NOAA-20 in this region during the same

period (Figure 3D; Supplementary Figures S1D, S2D).

ERA5 reanalysis could basically capture the seasonal

variations of the atmospheric ice content derived from satellite

retrieval products, although there were still some discrepancies in

the amount of ice. In summer, the ice content tended to decrease

from the east to west but that from the ERA5 reanalysis tended to

decrease from southeast to northwest, and the IWP was

overestimated by −0.02 kg/m2 in the southeast Tibet

(Figure 2B, Figure 3B, Supplementary Figures S1B, S2B).

However, in winter, ERA5 underestimated the IWP value in

most areas of the TP, except for the northwest TP (Figure 2D,

Figure 3D, Supplementary Figures S1D, S2D).

3.3 Annual variability and long-term trend

As shown in Figure 5, the variability of the atmospheric

ice content over the TP within a year presented a distinct

single peak structure, with an upward tendency in the first

half of the year, peaked in summer, and then began to

decline. Among them, the growth of atmospheric ice was

more “twists and turns” than its reduction process (a tiny

maximum would arise around March–May), and this pattern

was noticeable across all satellite products. For the annual

maximum value of the ice content, Aqua was close to Suomi

FIGURE 6
Interannual variations of the seasonal variations over the TP from 2003 to 2020. (A) Spring (MAM), (B) summer (JJA), (C) autumn (SON), and (D)
winter (DJF).
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NPP-NOAA-20 and ERA5, and higher than Terra. As for the

minimum value, the three sets of satellite data were relatively

close and significantly higher than ERA5 (Figure 5),

indicating that the underestimation of the atmospheric ice

content over the TP by ERA5 was mainly caused by the

simulation deviation of ice growth in winter due to the

underestimation of water vapor over the TP during this

season.

The atmospheric ice content showed no obvious trend over

the TP before 2017 whether for satellite products or reanalysis

data, while the annual minimum ice content has increased in

recent years (Figure 5). Similarly, the annual average ice

content also increased from 2017, except for the result of

Aqua (Figure 5). Dou et al. (2020)pointed out that the total

mass of the global atmospheric ice showed an increasing trend

with climate warming in the past decades. However, this study

indicated that the mass of atmospheric ice in the TP had not

completely followed this law but showed certain regional

characteristics, although it seemed to have increased over

the last few years.

From the time series of the atmospheric ice content in

different seasons, there were great differences between

various datasets, which were not only reflected in the IWP

value but were also reflected in the change trend. In general,

Aqua was close to Suomi NPP-NOAA-20 and higher than the

other two datasets. Terra was close to ERA5 in spring and

summer, while it is significantly higher than ERA5 in autumn

and winter (Figure 6). The interannual variability of various

datasets was relatively consistent in autumn and winter, but

there were obvious discrepancies in the other seasons.

Additionally, all sets of data showed a consistent increasing

trend in winter in recent years, although there were some

differences in the ice mass. In spring and autumn, Suomi NPP-

NOAA-20 and ERA5 showed a consistent increasing trend,

while the other two datasets showed a weak decreasing trend

(Figure 6).

In view of the increasing trend of the atmospheric ice

content in winter in the past few years, we further analyzed the

spatial manifestation and the possible causes of this trend. By

comparing the spatial distribution of the atmospheric ice

content in 2017 (low-value year) and 2019 (high-value

year), it can be seen that the increase of atmospheric ice

was reflected in most areas except the northeast TP

(Figure 7). Specifically, the increase in the ice content based

on Suomi NPP-NOAA-20 is the most significant, with an

increase of 0.08 kg/m2 in the central and southwest regions of

the TP. It can be seen from the moisture flux in winter that the

water vapor convergence was clearly intensified over the TP

since 2017 (Supplementary Figure. S3), which provided

sufficient water vapor for the growth of ice crystals,

resulting in the overall increase of the atmospheric ice

content in winter during recent years.

FIGURE 7
Spatial difference of atmospheric ice in winter between 2017 and 2019 retrieved by the three products. (A) Aqua, (B) Terra, and (C) Suomi NPP-
NOAA-20.
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4 Discussion and conclusion

This study applied four sets (Suomi NPP was merged with

NOAA-20, and there are actually three datasets) of satellite

retrieval products and ERA5 reanalysis to estimate the total

mass, spatial-temporal distribution, and long-term trend of

atmospheric ice over the TP, analyzed the causes of spatial

differences, and discussed the uncertainties of the results. This

study indicates for the first time that the total mass of

atmospheric ice over the TP was to be 0.26 ± 0.03 Gt, with

the maximum in summer (0.32 ± 0.05 Gt) and the lowest in

winter (0.22 ± 0.01 Gt). This result was obtained from three sets

of satellite data, and there were some differences among them.

For two datasets using the MODIS instruments, according to the

quality summary, the Aqua satellite did not have calibration

anomalies, but Terra’s band 1 (central wavelength of 0.65 μm)

had two calibration anomalies in 2003 and 2009 and one in band

5 (central wavelength of 1.2 μm) in 2002 (CERES, 2021). Coupled

with the difference of their orbits, these factors will result in the

difference of retrieval values of the IWP. In comparison with

ground-based, ship-based, and airborne observations and other

high-quality satellite data (e.g., CALIPSO data), Aqua-MODIS

satellite data showed the highest performance, and Suomi NPP-

VIIRS data were overall comparable to Aqua-MODIS and would

gradually replace Aqua and Terra MODIS retrieval data

completely in the future (Minnis et al., 2016; CERES, 2021).

In conclusion, although there are some differences among

various datasets, the total mass of atmospheric ice over the TP

estimated based on them is close and thus, has high reliability.

Under the influence of monsoon, the water vapor on the TP

is more abundant in summer and autumn, especially in southeast

Tibet, resulting in a higher atmospheric ice content in these two

seasons and a spatial pattern of low concentration in the west and

high concentration in the east. The high-value center (0.15 ±

0.035 kg/m2) was located in Linzhi City and its surrounding area,

which could be well captured by ERA5 reanalysis. In terms of

spatial distribution, the results of different satellite data and

ERA5 reanalysis are consistent, although the latter slightly

underestimates the spatial heterogeneity. For the ice content,

the value given by Aqua is comparable with that of Suomi NPP-

NOAA-20 and is larger than those of the other two datasets in the

eastern TP. ERA5 is close to Terra in the description of the

atmospheric ice content.

From the time series of atmospheric ice over the TP, it can be

seen that the annual variation is unimodal. Since 2017, the annual

minimum increased, and the annual amplitude declined. This might

affect the frequency and distribution of ice clouds over the TP, which

needed further study. There was no evident long-term trend before

2017, while after that, apart from Aqua, the other datasets showed

that the mass of atmospheric ice has increased over the TP in recent

years. It is to be noted that, in winter, all four datasets show a

consistent increasing trend since 2017, and this trend is reflected in

most areas except the small area of the northeast TP. Since 2017,

there is a significant increase in the moisture convergence over the

TP, which promotes the growth of atmospheric ice, leading to an

increasing trend of the ice content during this period. The largest

uncertainty of this study comes from the discrepancies among

different satellite products. Next, it is necessary to verify the

reliability of the present satellite products by using the in situ

measurement, ground radar observations, or other high-quality

satellite data. It is also necessary to use the new generation of

weather radar, terahertz sensors, and lidar to retrievemore advanced

atmospheric ice products.
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The lakes on theQinghai–Tibetan Plateau have undergone substantial changes.

As intensive cryospheric components change, the response of the lake

dynamics to climatic factors, glacier-snow melting, and permafrost thawing

has been complex. Based on Landsat images, meteorological data, and glacier

and permafrost data, the spatial-temporal changes in the lake area on the

northeastern Tibetan Plateau between 1988 and 2019 were analyzed and the

driving factors behind the lake changes were further explored. The results

suggest that the regional lake area increased from 1988 to 2019 at rates of

0.01–16.03 km2/yr. It decreased during 1988–2000, quickly increased during

2000–2012, and rapidly increased during 2012–2019. The most significant lake

expansion occurred in sub-region I, which is the source region of the Yangtze

River Basin. There was a sharper increase during 2012–2019 than during

2000–2012 in sub-region II (the source region of the Yellow River Basin and

the Qinghai Lake Basin) and sub-region III (the Qaidam Basin). The significant

lake expansion occurred about 12 years earlier in sub-region I than in sub-

regions II and III. This dramatic change in the lake area was closely associated

with the annual precipitation, and precipitation was the primary driving factor.

Although serious glacier retreat occurred, most of the lakes in the sub-regions

were non-glacier-fed lakes. The correlation between glacier ablation and the

change in the lake area was poor, which suggests that glacial meltwater was not

the replenishment source ofmost of the lakes in this region. Amore accelerated

increase in the active layer thickness occurred (1.90 cm/yr), which was

consistent with the more rapid lake expansion, and the permafrost

degradation further intensified the lake expansion.

KEYWORDS

lake area, spatial-temporal changes, influencing factors, northeastern Tibetan Plateau,
permafrost impact
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1 Introduction

The Qinghai–Tibetan Plateau (QTP) is the source of several

large rivers in China and east Asia, and therefore, it is known as

the Asian water tower (Zhang et al., 2019; Wang et al., 2021). It

contains more than 1,000 lakes (areas of >1 km2), with a total lake

area of about 41,800 km2. These lakes account for 39.2% and

51.4% of the total number of lakes and lake area in China,

respectively (Zhang et al., 2014). They play a crucial role in

regulating the balance between the regional surface water and

groundwater. In recent decades, the QTP has experienced

significant changes, which were mainly characterized by

climate warming-wetting (Yang et al., 2011; Duan et al.,

2015), glacier melting (Bolch et al., 2010; Yao et al., 2012),

and permafrost thawing (Wu et al., 2010; Cheng et al., 2019;

Zhao et al., 2020). Due to cloud-radiation feedback, an

accelerated warming trend occurred on the Tibetan Plateau

during 1998–2013 (0.25°C decade−1), compared with that

during 1980–1997 (0.21°C decade−1) (Duan and Xiao, 2015).

The annual retreat rate of the Basu Glacier in the Karakorum

Mountains is nearly 50 m/yr and that of the Large Dongkemadi

Glacier in the Tanggula Mountains is 4.6 m/yr (Yao et al., 2012).

With continued climate warming, as well as accelerated glacier

ablation and permafrost degradation, a succession of

hydrological changes is anticipated to occur, which will have

intensive impacts on the hydrological processes (Cheng et al.,

2021; Ding et al., 2021; Gao et al., 2021). In particular, the lakes

on the QTP have undergone substantial changes, including

significant lake expansion, since 2000 (Lei et al., 2013; Li

et al., 2014; Song et al., 2014; Yang et al., 2017; Zhang et al.,

2019, 2021; Liu et al., 2021). The relationship between the lake

dynamics and climate mechanism has been explored in many

studies, but the dominant driver behind these lake changes is still

under debate (Phan et al., 2013; Song and Sheng, 2016; Yao et al.,

2018). Furthermore, the permafrost was not taken into

consideration in these studies.

Permafrost is widely distributed on the QTP, with a total area of

1.06 × 106 km2 (Zou et al., 2017), and the total volume of the ground

ice in the permafrost regions is 9,528 km3 (Zhao et al., 2010).

Permafrost degradation has accelerated due to the rising air

temperature, resulting in reduced permafrost coverage (Zou et al.,

2017), increased permafrost ground temperature (Wu et al., 2010),

thickening of the active layer (Li et al., 2012), a decrease in the depth

of the zero annual amplitude of the ground temperature of the

permafrost (Xie et al., 2015; Liu et al., 2016), intensified thawing-

freezing processes in the active layer (Zhu et al., 2022), and even a

decrease in the ground ice content (Zhao et al., 2010). Long-term

monitoring data have revealed that theActive Layer Thickness (ALT)

along the Qinghai–Tibet Highway has increased at a rate of

1.33–1.90 cm/yr (Li et al., 2012). Permafrost temperatures at a

depth of 15 m have decreased at a rate of 0.57°C per 100m of

altitude increase and 0.79°C per degree latitude northward (Wu et al.,

2010). The effect of the presence of ice-rich permafrost and its

thawing on the hydrological regimes of catchments has been

commonly detected in the sub-basins in the QTP (Song et al.,

2020) and typical basins in northwestern China (Niu et al., 2011;

Li et al., 2016; Wang et al., 2018). Permafrost degradation has caused

increases in the amount of ground ice meltwater, aquifer thicknesses,

and the amount of surface water infiltration, which has impacted the

movement patterns of the surface water and groundwater and

enhanced the hydraulic exchange between the surface water and

groundwater, further resulting in an important contribution to rive

runoff (Kurylyk et al., 2014; Walvoord and Kurylyk, 2016). An

increasing number of studies have suggested that the spatial trend

in the lake changes in recent years has been closely related to the

existence of permafrost and its accelerated degradation, which have

contributed to the increase in lake volume in permafrost catchments

(Zhang et al., 2017a; Liu et al., 2020).

In addition, intensive changes in cryospheric components and

increases in climate extremes, especially accelerated glacier ablation

and permafrost degradation, are playing increasingly significant roles

in influencing the hydrological regimes and water resources in cold

regions. Lake changes are one consequence of these influencing

factors; and theymay be related to the permafrost and glaciermelting

distribution rather than to a direct climatic mechanism such as

increased precipitation. Many previous studies have extensively

explored the lake variation across the endorheic basin on the

QTP (Song et al., 2014; Yang et al., 2017; Yao et al., 2018; Liu

et al., 2021) or focused on single large lakes (Qinghai Lake, Selin Co,

Num Co) (Lei et al., 2013; Tang et al., 2018; Liu et al., 2022), but less

research focuses on that on the northeast QTP. In fact, the

northeastern QTP contains many lakes, and most of these lakes

are distributed in the Yangtze River Basin (489 lakes, 38.29%), the

Yellow River Basin (265 lakes, 20.75%), and the Qaidam Basin

(164 lakes, 12.8%). Due to the large differences in the landforms,

climate, hydrological conditions, and topography at the basin scale, as

well as significant human interventions on lakes, especially lakes in

the Qaidam Basin, the responses of the lake dynamics to climatic

factors, glacier-snow melting, permafrost thawing, and water input

from other lakes have been more complex. Therefore, a

comprehensive analysis of many factors behind lake change for

different geomorphologic units is necessary and of importance. In

this study, the spatial-temporal trend of the lake area across the

northeastern QTP between 1988 and 2019 was analyzed, and the

potential driving factors were further explored. The results of this

study provide a comprehensive understanding of the major

mechanism controlling the lake dynamics.

2 Data and methods

2.1 Study area

The northeastern QTP (89°35′–103°04′N, 31°39′–39°19′E),
the coverage of the whole Qinghai Province in this paper, has a

total area of 72.23 × 104 km2, a west-east length of 1,200 km, and
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a north-south width of 800 km. It is characterized by an alpine

continental climate with a Mean Annual Air Temperature

(MAAT) of −5.6°C to 8.6°C and a mean Annual Precipitation

(AP) of 15–750 mm. The precipitation mainly occurs from May

to September. As shown in Figure 1, the average elevation is

3,000 m above sea level (a.s.l.). The areas with elevations

of <3,000 m a.s.l., 3,000–5,000 m a.s.l., and >5,000 m a.s.l.

account for 26.3%, 67%, and 5% of the total area, respectively.

The terrain is high in the southwest and low in the east. It is the

source region of the Yangtze River, Yellow River, and Lancang

River; so, it is also known as the river source region. There are

1,277 lakes with areas greater than 0.01 km2, with a total area of

14,370.2 km2, accounting for 1.99% of the total area of Qinghai

Province (Pi et al., 2018). Qinghai Lake (99°37′–100°44′N,
36°33′–37°14′E) is the largest inland salt lake on the QTP,

with a lake area of 4,165 km2, a surface elevation of 3,193 m,

and a water volume of 71.6 km3 (Tang et al., 2018). It has a

maximum length of 101 km, a width of 76 km, and a depth of

25.5 m. The annual river runoff in the region is 63.34 km3,

accounting for 2.34% of the total annual river runoff in

China. Modern glaciers have grown, covering an area of

5,225.38 km2 and having a glacial storage of 3,705.92 km3,

accounting for 9.2% and 12.5% of the total glacier area and

storage in China, respectively (Pi et al., 2018). Permafrost is

widely distributed with coverage of 336,783 km2, its area

accounts for 46.6% of the entire study region and 31.7% of

the total permafrost area on the QTP, respectively. The

permafrost temperature is low, with a lowest value

of −13.58°C; and the permafrost thickness is large, with a

maximum value of 139 m in the Qilian Mountains, which

may provide the occurrence conditions and resource

background for the formation of a large amount of natural

gas hydrates. The region studied is classified as alpine

meadow, alpine steppe, and alpine desert.

2.2 Satellite images

Landsat data (http://glovis.usgs.gov) are widely used to

delineate lakes. Landsat Thematic Mapper (TM), Enhanced

Thematic Mapper Plus (ETM+), and Operational Land

Imager (OLI) images with no or small fractions of cloud

coverage (<10%) were selected to extract the lake surface areas

to create a continuous time series of the area changes from

1998 to 2019. All of these images had a 30 m spatial resolution

and were acquired each October because the lake areas were

relatively stable in October. The data window was also extended

to September and November if insufficient data were available for

October (Zhang et al., 2017b). Manual visual interpretation was

used to delineate the lakes. The false color compositions of the

raw Landsat images for each lake using the ENVI 5.3 software

were processed to identify lake boundary (bands 5, 4, and 3 as

red, green, and blue, respectively, for Landsat TM/ETM+ and

bands 7, 6, and 5 for Landsat OLI), which satisfactorily

distinguished the water areas from the non-water areas. Then,

visual examination and manual editing of the lake boundaries

FIGURE 1
Schematic representation of the study area. The digital elevation model was obtained from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) version 2.0, with a spatial resolution of 30 m; the glacier area shown is from
the SecondGlacier Inventory Dataset of China; the drainage networks and drainage basins were extracted from theHydroSHEDS dataset to calculate
the glacier area in each basin; and the lake areas shown in 2019 are from this paper.
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based on false color compositions images (also called lake

digitization) were conducted to delineate the lakes and the

calculated geometry of lake boundary shapes were

subsequently carried out in ArcGIS 10.2 software. The

accuracy of the manual digitization was controlled within one

pixel. All image data were projected into the UTM coordinate

system Zone 45 using the WGS-84 geodetic datum.

2.3 Climate data

The air temperature and precipitation recorded at the

Wudaoliang (93.08°E, 35.21°N, 4,612 m a.s.l.), Tuotuohe

(92.43°E, 34.21°N, 4,433 m a.s.l.), Maduo (98.21°E, 34.91°N,

4,272 m a.s.l.), Gonghe (100.61°E, 36.26°N, 2,835 m a.s.l.),

Geermu (94.9°E, 36.41°N, 2,807 m a.s.l.), and Nuomuhong

(96.41°E, 36.43°N, 2,790 m a.s.l.) meteorological stations, as

well as the pan evaporation from a 20-cm pan by using a data

set recorded at the Tuotuohe, Maduo, and Geermu

meteorological stations on the QTP, were used to analyze the

influences of the climatic condition on the lake changes. These

climate data were provided by the National Meteorological

Information Center (NMIC), China Meteorological

Administration (CMA) (http://cdc.cma.gov.cn).

2.4 Glacier and permafrost data

The glacier and permafrost data were used to analyze the

influence of the cryosphere changes on the lake dynamics under

the background of climate warming. The glacier areas (http://

www.tpedatabase.cn/portal/Login.jsp) in 1980 and 2010 were

extracted from the First Glacier Inventory of China (images

taken during 1950–1980) and the Second Glacier Inventory of

China (images taken during 2006–2010), respectively. The spatial

distribution of the permafrost types, Mean Annual Ground

Temperature (MAGT), and ground ice content over the study

area, as well as the long-term averaged ALT along the

Qinghai–Tibet Highway (available at http://www.crs.ac.cn/),

were provided by the Cryosphere Research Station on the

QTP, Chinese Academy of Sciences. The MAGT and ground

ice content over the study region were extracted from the MAGT

and ground ice content across the QTP calculated by Zhao and

Sheng. (2019). The spatial distribution MAGT was modeled by

using an improved Noah land surface model (LSM). The ground

ice content was calculated by the formula:Gi �∫ ρd(Z)θ(Z)dzDs , where Gi was ground ice content (kg),

ρd(Z) was bulk density of the soil (kg·m−3), θ(Z) was

gravimetric water content of the soil (%), Z was permafrost

thickness (m) and S was permafrost area (m2). Based on the

parameters from borehole drilling and permafrost area of 1.

06×106 km2, the calculated ground ice content in permafrost on

the QTP was 12,700 km3. The long-term averaged ALT during

1981–2017 was calculated by Li et al. (2012) using active-layer

monitoring data recorded at more than 10 observation sites and a

long sequence of meteorological variables using a multiple

regression method.

The freezing and thawing depths were subsequently

calculated using Stefan’s equation, as follows:

Z �
�������������
2K · DDF/DDT

QL

√
�

�������������
2K · DDF/DDT
Lρ(ω − ωu)

√
,

DDF � ∑t
t�0
(T0 − Tt),   Tt <T0,

DDT � ∑t
t�0
(Tt − T0),   Tt >T0,   (1)

where Z is the depth of the frost or thaw (m), K is the appropriate

frozen or thawed thermal conductivity (W·m−1°C−1), ρ is the dry

soil density (kg·m−3), ω is the soil’s water content (%), ωu is the

unfrozen water content (%), L is the latent heat of the fusion of ice

(3.3×105 Jkg−1), and DDF/DDT stands for the annual degree-

days of freezing/thawing, i.e., the sum of the daily mean

temperatures below (above) 0°C. In this study, these physical

parameters in equation were derived from soil profile borehole

and field investigation data during summer for a site around

Maduo meteorological station; ω and ωu are 19% and 5%

respectively, ρ is 1,240 kgm−3, K is 0.88 W·m−1°C−1.

3 Results

3.1 Spatial-temporal changes in lake areas

Figure 2 shows the spatial-temporal changes in the areas of

the lakes in the northeastern Tibetan Plateau from 1988 to 2019.

Overall, the lakes experienced dramatic changes. Although the

shrinkage of some of the lakes weakened, the regional lake area

tended to increase. The areas of 75.7% of the lakes increased at

rates of 0.01–16.03 km2/yr; and the areas of only 24.2% of the

lakes decreased at rates of 0.01–3.52 km2/yr (Figure 2D).

Specifically, this change trend exhibited three stages between

1988 and 2019. During 1988–2000, the lake area decreased

sharply; and the areas of 54.5% of the lakes decreased slightly

at rates of 0.01–2.27 km2/yr. In addition, the areas of 45.6% of the

lakes increased at rates of 0.01–8.53 km2/yr (Figure 2A).

However, after 2000, the lake area increased quickly. The

areas of 75.7% of the lakes increased at rates of

0.01–20.74 km2/yr from 2000 to 2012 (Figure 2B), and the

areas of 72.7% of the lakes increased at high rates of

0.01–32.80 km2/yr from 2012 to 2019 (Figure 2C). The

prevailing lake expansion in this region since 2000 was also

commonly observed for the inland lakes in the endorheic basin

on the QTP and has been reported in many studies (Li et al.,

2014; Song et al., 2014; Yang et al., 2017; Liu et al., 2021).
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Figure 2 also shows the large spatial differences in the lake

area changes in the three sub-regions (I–III). These large spatial

differences in the lake area changes were observed during the

same period. Generally, from 1988 to 2019, the most significant

lake expansion occurred in sub-region I, which is the source

region of the Yangtze River Basin (Figure 2D). In sub-region I,

most of the lakes are mainly distributed in the northwestern part

of the source region of the Yangtze River in the unpopulated,

high-altitude area. The areas of most of the lakes exhibited an

obvious decreasing trend during 1988–2000, an abrupt

increasing trend during 2000–2012, and a relatively slow

increasing trend during 2012–2019. Similar to sub-region I,

most of the lakes in sub-regions II and III have increased

since 2000, with significant area increases and rates. However,

in sub-region II, which is the source region of the Yellow River

and the Qinghai Lake Basin, the lakes exhibited sharper increases

during 2012–2019 than during 2000–2012. In sub-region III, in

the northern part of Qinghai Province (mainly the Qaidam

Basin), the lake area shrunk dramatically before 2000, but it

began to expand rapidly and substantially in 2012. There was a

more rapid increasing trend during 2012–2019 than during

2000–2012. The lake expansion occurred in sub-region I

about 12 years earlier than in sub-regions II and III.

Compared with the results for the period before

2000 obtained by Huang et al. (2011), widespread decreases

occurred in the abundance and areas of inland lakes in the

entire source area of the Yellow River and the southeastern

part of the source area of the Yangtze River, while the western

and northern parts of the source area of the Yangtze River

exhibited completely opposite trends. The spatial difference in

the lake expansion and contraction in sub-region II was not fully

reflected, which may be related to the delimitation of only the

large lakes (>10 km2) and not the small lakes (<10 km2) in this

study.

3.2 Changes in typical lakes

Seven typical expanding large-lakes with great area-increase

from 1988 to 2019 in the three sub-regions were selected to

present dramatic lake changes, and the annual area changes of

these lakes are shown in Figure 3. Overall, in spite of the small

lake areas in some years, the trends in the areas of the seven lakes

were highly consistent with the overall trend in the lake area on

the northeastern QTP, which decreased before 2000 and

increased after 2000. In detail, during 1988–2019, Qinghai

Lake experienced the greatest increase of 452.11 km2 at a rate

of 15.96 km2/yr. The areas of the Xijinwulan Lake, the

FIGURE 2
Spatial patterns of the trends in the lake area from (A) 1988 to 2000, (B) from 2000 to 2012, (C) from 2012 to 2019, and (D) from 1988 to 2019.
The blue and red dots indicate lake expansion and lake shrinkage, respectively. The red line is the boundary of the drainage-basin of the river source
region.
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Wulanwula Lake, and the Mingjing Lake increased by

370.17 km2, 118.36 km2, and 125.09 km2, respectively, at rates

of increase of 10.31 km2/yr, 5.46 km2/yr, and 4.70 km2/yr,

respectively. The areas of these three lakes exhibited similar

trends, and the changes occurred in three stages: decreasing

during 1988–2000, sharply increasing during 2000–2012, and

increasing since 2012. The areas of the Gyaring Lake and the

Ngoring Lake increased by 43.58 km2 and 92.97 km2,

respectively, at rates of 0.77 km2/yr and 2.27 km2/y,

respectively. Their areas decreased obviously during

1988–1996, rapidly increased during 1996–2012, and slightly

decreased during 2012–2019. In addition to increased

precipitation, the expansion of the lakes’ surface areas was

primarily due to the construction of a hydropower station

near the outlet of the Ngoring Lake. The areas of the

Dongtaijinaier Lake increased by a large amount (278.23 km2)

but at a slow rate of 4.33 km2/yr. Its change trend was different

from those of the other lakes, was mainly attributed to increasing

imbalance between precipitation and evaporation, with Annual

Evaporation (AE) of 3,560 mm and AP of 21.9 mm. The area

change was W-shaped: decreasing during 1988–1996, increasing

during 1996–2003, decreasing during 2003–2012, and decreasing

more rapidly during 2012–2019. Similar to the Qinghai Lake, a

sustainable expansion has occurred in recent years (since 2012).

The Zonag, Kusai, Hedin Noel, and Yanhu lakes are independent

inland lakes in the Hoh Xil region of the QTP. After the outburst

of the Zonag Lake in September 2011, the flood waters flowed

through the Kusai Lake and the HedinNoel Lake and eventually

into the Yanhu Lake, leading to rapid shrinkage of the Zonag

Lake and the continuous expansion of the Yanhu Lake. The

temporal changes of the four lakes involved in this event were

examined and discussed in detail by Liu et al. (2019).

3.3 Controlling mechanism of lake
changes

3.3.1 Influence of climatic conditions
Both the AP and MAAT recorded at the meteorological

stations exhibited overall increasing trends, with rates of

2.37 mm/yr and 0.06°C/yr, respectively, from 1988 to 2018

(Figures 4A, 5A). The AE exhibited a decreasing trend

(14.31 mm/yr) during the same period (Figure 6A). During

the same period, the P/E (the ratio of annual precipitation to

annual evaporation) tended to increase continuously

(Figure 7A). The climate has exhibited a warming and wetting

trend with significant accelerated increases in theMAAT, AP and

P/E over the last 30 years. These climatic characteristics are

consistent with the warming-wetting of the climate in most

regions of the QTP in recent decades (Yang et al., 2011). In

FIGURE 3
The annual area changes of seven typical lakes that expanded from 1988 to 2019.
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general, the AP and P/E decreased before 2000 but rapidly

increased after 2000, which well explains the lake shrinkage

during 1988–2000 and the lake expansion during

2000–2019 in the study area. The continuous decrease in the

AE indicates an actual increase in potential evaporation, which

suggests that the lake evaporation and the evaporation in the lake

basin increased, theoretically exerting a positive effect on the lake

water budget and contributing to the enhanced lake growth.

However, it appears that the decrease in the AE was not

significantly correlated with the change in the lake area.

Under the continuous decrease in the AE, the lake area

significantly decreased before 2000 and significantly increased

after 2012.

More importantly, the large spatial variations in the AP,

MAAT, and AE resulted in a regional discrepancy in the lake area

changes. In sub-region I, the lake area responded well to the

decrease in the AP and increase in the AE as reducing MAAT

during 1988–2000, the significant increase in the AP and

decrease in the AE during 2000–2012, and the increase in the

AP during 2012–2019 (Figures 4B2212;Figures 6B). Slightly

different from that in sub-region I, the lakes in sub-region II

expanded more rapidly during 2012–2019 in response to the

most significant increase in the AP, in spite of no obvious trend in

the AE and MAAT (Figures 4C2212;Figures 6C). Most of the

lakes in sub-region III have expanded before 2012 was mainly

attributed to significant increase in the AP (0.47 mm/yr) and

sharp rising MAAT (0.04–0.05°C/yr), in spite of the decreasing

AE (−39.69 mm/yr) (Figures 4D2212;Figures 6D). Since 2012,

the accelerated lake expansion was mainly caused by climate

change and human activities, such as water consumption in the

catchment, blocking rivers and lakes connection around the lake,

brine mining utilization, constructions of solar ponds. What’s

more, a strong positive relationship between lake area change and

precipitation increase was observed; lake area increases more

than 0.5 km2/yr agrees fairly well with precipitation increase rates

(R2=0.18, p<0.05). These results suggest that the expansion of

most of the lakes in the study area was more closely related to the

changes in the AP than the changes in the AE, and precipitation

was the primary factor influencing the lake area changes. The

good correlation between the regional precipitation and the

changes in the areas of the lakes in the study area, as well as

over the entire QTP, has also been confirmed by

other researchers (Li et al., 2010; Huang et al., 2011; Duan

et al., 2015).

FIGURE 4
The changes in the average values of annual precipitation for the meteorological stations (A) and the annual precipitation recorded at
meteorological stations in the three sub-regions from 1988 to 2019 (B–D).
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3.3.2 Glacier melting
The total glacier area in Qinghai Province was 5,381.56 km2

in 1980 and 4,464.93 km2 in 2010, i.e., a significant decrease of

916.62 km2 (17.03%). The spatial variation in the glacier area

differed obviously in the sub-regions of Qinghai Province. The

glacier area in sub-region II decreased the most (22%), followed

by that in sub-region III (19%) (Figure 8). The glacier area in sub-

region I decreased relatively little (14%). This spatial pattern of

the change in the glacier area did not agree well with the spatial

pattern of the lake area changes in the three sub-regions due to

the presence of glacier-fed lakes and non glacier-fed lakes, as well

as the different responses of the glacier-fed lakes to the regional

glacial meltwater. In sub-region I, only four large lakes

(Lexiewudan Lake, Kekexili Lake, Xijinwulan Lake and

Wulanwula Lake) that expanded were glacier-fed lakes, which

were fed by the Malan Glacier and the Hantaishan Glacier,

respectively, with accelerated area decreases of 6.04% and

5.4%, respectively, from 1973 to 2010 (Jiang et al., 2012). The

Xijinwulan Lake and Wulanwula Lake, the glacier-fed lakes,

glacier areas in basins greatly decrease by 58.492 km2 (39.7%)

and 23.193 km2 (48.8%) from 1988 to 2019, but the Mingjing

Lake, the non-glacier-fed lakes, its area change exhibited same

trends as theses two lakes. This was not consistent with the

significant lake expansion, and this further suggests that glacial

meltwater was not the replenishment source of most of the lakes

in the source area of the Yangtze River. Similarly, in sub-regions

II and III, although significant glacier retreat occurred, all of the

lakes were non-glacier-fed lakes, except for the Qinghai Lake. In

spite of large glacier shrinkage in the Qinghai Lake basin, i.e., a

decrease of 19.191 km2 (29.12%), the recharge from the glacier

meltwater was small (5 × 106 m3/yr), contributing <2% of the

water supply and a small increase in the lake volume (297.67 ×

106 m3/yr). This suggests that the glacier melting caused by the

rising temperature contributed little to the recent lake expansion

in this region, and it was not the dominant driving factor of the

recent lake expansion in Qinghai Province.

3.3.3 Permafrost degradation
The study area has a total permafrost area of 0.336 × 106 km2,

accounting for approximately 31.7% of the total permafrost area

on the QTP. The total volume of ground ice in the permafrost is

4,142 km3, with contents of 2.0–185.8 km3, accounting for 32.6%

of the total ground ice content in the QTP. The permafrost in the

study area was mainly distributed in sub-region I (the hinterland

of continuous permafrost on the QTP), followed by sub-region II

(the eastern boundary of continuous permafrost on the QTP).

81.3% of the total expanding lakes were distributed in continuous

permafrost region, and the area increased by 1,673.85 km2,

accounting for 74.3% of the total area increase. A dramatic

lake expansion was observed in the continuous permafrost

FIGURE 5
The changes in the average values of mean annual air temperature for the meteorological stations (A) and the mean annual air temperature
recorded at meteorological stations in the three sub-regions from 1988 to 2019 (B–D).
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region, which has exhibited large spatial differences. (Figure 9A).

The spatial pattern of the lake expansion in the continuous

permafrost region agreed well with the spatial patterns of the

MAGT and the ground ice content of the continuous permafrost.

The lakes in the continuous permafrost region with a large

amount of ground ice and a low MAGT expanded

significantly, whereas the lakes in the continuous permafrost

with little ground ice and a high MAGT only expanded slightly

(Figures 9B,C). The statistical result showed that 79.5% of the

total expanding lakes and even all lakes with increase rate larger

than 5 km2/yr in continuous permafrost region distributed in

cold permafrost (MAGT<−1.5°C) with high-ground ice content

(>10×106 m3). This is also supported by the fact that the

permafrost characteristics and degradation trends were closely

related to the lake changes in the endorheic basin in the QTP (Liu

et al., 2020). The lake expansion in the continuous permafrost

region was mainly due to the presence of ice-rich permafrost with

a high permafrost coverage, which acted as a barrier layer due to

its low hydraulic conductivity and permeability. This layer

impeded the infiltration of liquid water and the interaction

between the surface water and groundwater, which finally

resulted in more direct surface runoff of both rain and snow-

melt and the lack of a water storage buffer effect compared to the

non-permafrost regions. This was followed by the melting of the

ground ice in the shallow permafrost due to the accelerated

permafrost degradation, which was a significant potential source

in the water balance of the lakes in this cold region.

The permafrost was significantly degraded in the continuous

permafrost region, as well as on the QTP, due to the increase in

temperature in recent decades. Long-term monitoring data

collected along the Qinghai–Tibet Highway reveal that the

average ALT increased from 181 cm in 1981 to 238 cm in

2017 at a rate of 1.90 cm/yr. Notably, an accelerated increase

has been observed since 2000. The rate of increase during

2000–2017 (2.60 cm/yr) was higher than that during

1981–2000 (1.44 cm/yr). Specifically, the rate during

2000–2012 (2.89 cm/yr) was higher during 2012–2019

(2.29 cm/yr) (Figure 9D), which is consistent with the more

rapid lake expansion during 2000–2012 than during

2012–2019 in sub-region I. The calculated thawing index and

ALT of the permafrost in the source area of the Yellow River

Basin also exhibited increasing trends, with rates of 7.50°Cd/yr

and 0.13 m/yr, respectively (Figure 10). Due to the permafrost

degradation, the larger amount of meltwater from the ground ice

due to permafrost degradation was a major supply of water for

the lake growth. In addition, as the ground ice began to melt, the

permeability of the soil increased and the hydraulic exchange

between the surface water and the suprapermafrost groundwater

was enhanced. Thus, aquifer activation arising from permafrost

degradation may have increased the recharge and groundwater

FIGURE 6
The changes in the average values of annual evaporation for the meteorological stations (A) and the annual evaporation recorded at
meteorological stations in the three sub-regions from 1988 to 2019 (B–D).
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FIGURE 7
The changes in the average values of the P/E for the meteorological stations (A) and the P/E based on annual precipitation and evaporation
recorded at meteorological stations in the three sub-regions from 1988 to 2019 (B–D).

FIGURE 8
The changes in the total glacier area in the different sub-regions.
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discharge to the rivers and lakes, further accelerating the lake

expansion. Thus, the permafrost degradation may have partially

contributed to the increase in the lake surface area in the study

area, especially in sub-region I.

Moreover, the analysis of infuential factors in basins for

several typical lakes showed that lake changes were mostly related

to AP. The Xijinwulan Lake andWulanwula Lake, the glacier-fed

lakes with large decrease in glacier area, presented same area-

change trends as the Mingjign Lake, which was consistent with

the decrease in the AP and increase in the AE during 1988–2000,

the significant increase in the AP and decrease in the AE during

2000–2012, and the increase in the AP in spite of slight

decreasing AE during 2012–2019 recorded at Tuotuohe

meteorological station. Similar to the Gyaring Lake and

Ngoring Lake, the area-change trends also showed well

corresponding response to AP. For the Qinghai Lake, with

little contribution of glacial meltwater to water budget, its

sustainable expansion, especially in recent years (since 2012)

FIGURE 9
(A) The permafrost distribution; (B–C) the spatial patterns of the mean annual ground temperature and the ground ice content of permafrost,
respectively; (D) the annual change in the active layer thickness from 1981 to 2017 along the Qinghai–Tibet Highway.

FIGURE 10
The annual changes in the thawing index and active layer thickness of the permafrost from 1988 to 2014 in the source region of the Yellow River
Basin.
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showed closer covariation with significant increasing AP

(226 mm/yr) and MAAT (0.03°C/yr) than with slight

decreasing AE (−0.98 mm/yr) from 1988 to 2019 recorded at

Gangcha meteorological station.

4 Discussion

4.1 Impact of permafrost degradation on
lake changes

The source region of the Yellow River is underlain by

seasonally frozen ground, as well as continuous,

discontinuous, and sporadic permafrost in the northeastern

QTP. Since the 1980s, significant regional permafrost

degradation due to warming has occurred, along with

decreased permafrost area, decreased permafrost thickness,

and expansion of taliks. The lower limit of the permafrost has

risen by 50–80 m. The average maximum depth of the frost

penetration has decreased by 12 cm in the areas of seasonally

frozen ground (Jin et al., 2010). The maximum frozen soil depth

decreased from 3.2 m in 1980 to 2.8 m in 2000 and further

decreased to 2.4 m in 2008. The temperature at the depth of the

zero annual amplitude of the permafrost increased by

0.03–0.20°C during 2010–2017 (Luo et al., 2020). Thermokarst

ponds (ground subsidence induced by the degradation of ice-rich

permafrost causes the formation of thermokarst lakes) (French,

1974), which are a significant sign of local permafrost

degradation, are the most widespread evidence of accelerating

permafrost thawing in the source region of the Yellow River.

There are a variety of thermokarst ponds dotting the

predominantly continuous permafrost region. There are

477,518 thermokarst lakes in the permafrost region in

2021 with a total area of 190.22×106 m2. Water bodies

consisting of lakes, thermokarst ponds, and depressions are

widely distributed in this region and occasionally form

clusters of ponds in the same geographical unit. Adjacent

thermokarst ponds and depressions are sometimes

interconnected by ditches and troughs, indicating the melting

of ground ice in the permafrost table.

Moreover, due to the thawing of discontinuous permafrost

under the present climate and warmer climate conditions, the

evolution of the hydrogeological conditions also dramatically

affects the lake dynamics. Although most of the lakes in the

source region of the Yellow River are still distributed in the

continuous permafrost region, these lakes may still shrink or

disappear when the permafrost in the lake region and its

surrounding area undergoes a transition from continuous to

discontinuous-isolated permafrost, and some isolated permafrost

areas may have already been converted to seasonally frozen

ground. Further intensified permafrost degradation will lead

to thinning and eventual breakage of the permafrost beneath

the lakes, greatly facilitating their drainage into the subsurface

zone via taliks (Smith et al., 2005). Newly formed open taliks can

facilitate groundwater movement into subpermafrost aquifers at

lower heads and can thereby drain lakes, leading to decreased

groundwater levels and lake shrinkage. The phenomenon of

significant lake expansion in the continuous permafrost region

is in sharp contrast to the lake shrinkage in the island-

discontinuous permafrost region that is widespread

throughout the endorheic basin in the QTP (Liu et al., 2020)

and the Mongolian Plateau (Zhou et al., 2019). Lake shrinkage

has become a common feature in the island-discontinuous

permafrost region, especially, the shrinkage or disappearance

of thermokarst lakes in the discontinuous permafrost region in

the Arctic and in subarctic regions (Yoshikawa and Hinzman,

2003). This phenomenon was well described by Smith et al.

(2005) and Riordan et al., 2015: initial permafrost warming led to

the development of thermokarst lakes and lake expansion,

followed by lake drainage as the permafrost degraded further.

In addition, the groundwater in the island-discontinuous

permafrost region and the adjacent area became connected

and was mutually transformed. The increased recharge and

discharge supplied the groundwater in the adjacent regions at

low heads with a low elevation through taliks (activated

aquifers), which caused lake expansion instead. Thus, the

coexistence of lake expansion and shrinkages in one

geographic unit in this region, and even over the entire

QTP, will occur and become a common feature of the

permafrost region. This is manifested as the broad

geographic pattern, in which permanently drained lakes are

commonly found alongside unchanged neighboring lakes. In

the island-discontinuous permafrost region, Southern Seling

Co has expanded, while in the continuous permafrost

boundary, Northern Seling Co has expanded (Liu et al.,

2022). Lake expansion in the continuous permafrost region

and losses where the permafrost is thinner and less contiguous

have been observed in Siberia (Smith et al., 2005). This also

suggests a spatially patchy process, rather than a direct

climatic mechanism such as increased precipitation and

decreased evaporation.

4.2 Effect of lake changes on regional
climate conditions and permafrost

Even though regional climate conditions were the main

drivers of the dynamic changes of the lakes, recent research

has also revealed that the lakes have had an important influence

on the local temperature and precipitation and are also regulators

of the regional climate. The lakes are strong heat sinks in the

daytime and heat sources at night in summer, and they are weak

heat sinks in the daytime and strong heat sources at night in

autumn (Dai et al., 2020). After the outburst of the Zonag Lake on

14 September 2011, the influences of this event on the permafrost

surrounding it and the permafrost surrounding the Yanhu Lake
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were investigated. Observations revealed that new permafrost

had formed in the exposed lake bottom, accompanied by various

periglacial landscapes. The permafrost aggradation in the

exposed bottom of the lake was rapid, and the permafrost

base reached 4.9, 5.4, and 5.7 m in the first 3 years. The

simulated results indicate that the permafrost in the exposed

lake bottom is likely to continue to develop, quickly at first and

then slowly (Zhang et al., 2022). In contrast, the continuous

expansion of the Yanhu Lake significantly accelerated the

degradation of the surrounding permafrost. It resulted in the

obvious thermal disturbance of the underlying permafrost and

lateral thermal erosion of the surrounding permafrost. Such

degradation may have been due to the thermal alteration of

the thawing-freezing cycle of the permafrost and the melting of

the ground ice, along with the resulting changes in the

hydrological connectivity and soil permeability (Lu et al., 2020).

The permafrost hydrological processes on the QTP are

complex, and they affect soil water movement, rainfall-

runoff, base flow, and evaporation (Gao et al., 2021).

Although several in situ observation stations have been

established to gather long-term measurements, given the

vast area of the QTP, the permafrost hydrology research in

this region remains far from adequate. Due to the different

scales of the permafrost coverage, the thermal conditions and

the amount of ground ice melting in the different watersheds

in the study area, and the different changes in the streamflow

characteristics, it is difficult to determine the specific

contribution of the permafrost degradation to the lake

changes in each lake basin, as well as those of the glacier

ablation and climate factors. Therefore, permafrost

hydrological modeling is a powerful tool for quantifying

the effects of the spatiotemporal variations in the

permafrost on the basin-scale hydrology because it can

incorporate landscape and topographical data in order to

sufficiently represent the horizontal heterogeneities. There

are some developing hydrological models which considers

both snow and frozen ground processes describe interactions

between cryosphere, hydrosphere, biosphere, and

atmosphere. These model have been applied in many river

basins in cold regions and performed very well. The

HydroSiB2-SF model coupled snow and frozen ground

physics was developed based on a hydrologically improved

land surface model (HydroSiB2), and indicated good

performance at two typical sites on the QTP (Zhou et al.,

2015; Wang et al., 2017). Based on the Water and Energy

Budget-based Distributed Hydrological Model (WEB-

DHM), the WEB-DHM-SF model incorporating both

three-layer snow and frozen ground physics successfully

reproduced the basin-wide daytime and nighttime land

surface temperature as well as snow depth in basin-

averaged time series and spatial distributions at the upper

Yangtze River Basin under widespread snow cover and frozen

ground (Qi et al., 2019). The cryosphere-hydrology-lake-dam

model was recently used to quantify the different

contributors to the rising water levels at Lake Yanhu. This

well-performing model reproduce the volume of Lake Zonag

satisfactorily, with an RMSE (root mean square error) of

0.012–0.062 km3, which can well used for reproduce the

following simulations and predictions of lake change

(Wang et al., 2022). Determining the balance point

between model simplicity and catchment complexity is

likely one of the most important scientific challenges yet

to be resolved in permafrost hydrological modeling on the

QTP, which will be investigated in our next study.

5 Conclusion

Overall, from 1988 to 2019, the lakes in the northeastern

Tibetan Plateau experienced rapid expansion. The total area of

75.7% of the lakes increased at rates of 0.01–16.03 km2/y. In

detail, the lake area generally decreased during 1988–2000,

quickly increased during 2000–2012, and rapidly increased

from 2012 to 2019. Large spatial differences in the lake area

changes were observed in the three sub-regions, and the most

significant lake expansion occurred in sub-region I. In sub-region

I, the lake area significantly decreased during 1988–2000, quickly

increased during 2000–2012, and slowly increased during

2012–2019. Similarly, most of the lakes in sub-regions II and

III have continued to increase since 2000, with significant lake

area increases and rates of increase. The lakes in sub-region II

exhibited sharper increasing trends during 2012–2019 than

during 2000–2012. In sub-region III, the lakes shrank

dramatically before 2000 but have expanded rapidly and

substantially since 2012. There was a sharper increasing trend

during 2012–2019 than during 2000–2012. The lake expansion

occurred in sub-region I about 12 years earlier than in sub-

regions II and III.

The AP decreased before 2000 but rapidly increased after

2000, which explains the lake shrinkage during

1988–2000 and the lake expansion since 2000 in the study

area. The expansion of most of the lakes in the study area was

closely related to the AP, and precipitation was the primary

factor influencing the lake area changes. Although significant

glacier retreat occurred, most of the lakes in the sub-regions

were non-glacier-fed lakes. This is inconsistent with the

significant lake expansion, further suggesting that glacial

meltwater was not the replenishment source of most of the

lakes in the study area. An accelerated increase in the ALT has

occurred since 2000. The increase rate was higher during

2000–2017 (2.60 cm/yr) than during 1981–2000 (1.44 cm/yr).

Specifically, the rate was higher during 2000–2012 (2.89 cm/

yr), which is consistent with the more rapid lake expansion

during 2000–2012 than during 2012–2019 in sub-region I.

Permafrost degradation further intensified the lake

expansion.
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Spatiotemporal variations and
overflow risk analysis of the Salt
Lake in the Hoh Xil Region using
machine learning methods

Rui Wang1,2, Lanlan Guo2,3, Bo Chen1,2,3, Yuting Yang4,
Hao Zheng1,2, Fang Deng5 and Jifu Liu1,2*
1Key Laboratory of Environmental Change and Natural Disasters, Ministry of Education, Beijing Normal
University, Beijing, China, 2Faculty of Geographical Science, Beijing Normal University, Beijing, China,
3State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Beijing Normal
University, Beijing, China, 4Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, China,
5Emergency Material Reserve Center of Hainan Province, Haikou, China

Global warming is inducing dramatic changes in fluvial geomorphology and
reshaping the hydrological connections between rivers and lakes. The water
level and area of the Salt Lake have increased rapidly since the outburst of
the Zonag Lake in the Hoh Xil region of the Qinghai–Tibet Plateau in 2011,
threatening the downstream infrastructure. However, fewer studies have focused
on its spatiotemporal variation and overflow risk over long time series. Here,
we used three machine learning algorithms: Classification and Regression Trees
(CART), Random Forest (RF), and Support Vector Machine (SVM) to extract the
area of the Salt Lake for a long time series, analyzed its spatiotemporal variation
from 1973 to 2021, and finally assessed the overflow risk. The Kappa coefficient
(KAPPA) and the overall accuracy (OA) were used to evaluate the performance
of the models. The results showed that Random Forest performs superior in lake
extraction (KAPPA = 0.98, overall accuracy = 0.99), followed by Classification
and Regression Trees and Support Vector Machine. normalized difference water
index is the relatively important feature variable in both RF and CART. Before the
outburst event, the area change of the Salt Lake was consistent with the variation
in precipitation; after that, it showed a remarkable area increase (circa 350%) in all
orientations, and the main direction was the southeast. Without the construction
of the emergency drainage channel, the simulation result indicated that the earliest
and latest times of the Salt Lake overflow event are predicted to occur in 2020 and
2031, respectively. The results of this paper not only demonstrate that RF is more
suitable for water extraction and help understand the water system reorganization
event.

KEYWORDS

Salt Lake, spatiotemporal variation, overflow risk, remote sensing, machine learning

1 Introduction

The evolution of lakes is essential for a better understanding of regional climate
change and anthropogenic factors (Vorosmarty et al., 2000; Subin et al., 2012; Tao et al., 2015).
Additionally, lakes are considered important sources of greenhouse gases in the atmosphere
(Wang et al., 2021). The Qinghai–Tibet Plateau (QTP), designated by scholars as the Third
Pole (Qiu, 2008; Zhang et al., 2019; Zheng et al., 2021), has a large number of lakes widely
spread over it. There are almost 1,200 lakes larger than 1 km2 on the QTP, with a total
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area of 46,201.62 km2 (Zhang et al., 2021), which is more than half
the overall lake area in China (Ma et al., 2011). Because of the lack
of direct human intervention and their predominant distribution in
endorheicwatersheds, these lakes are an important indicator of climate
change (Zhang et al., 2020), and they have been regarded as research
hotspots in studies of global surface water changes (Donchyts et al.,
2016a; Pekel et al., 2016).

Global climate change has intensified and stimulated the global
water cycle (Huntington, 2006; Huntington et al., 2018; Ficklin et al.,
2019). Surface water systems in polar regions have been affected by
these hydrological changes (Lu et al., 2021). As a region sensitive
to global warming, the QTP (the Third Pole) warmed faster
than other continental areas between 1970 and 2018, with a
warming rate of 0.36°C/decade in contrast to the global average of
0.19°C/decade (Zhang et al., 2021).The hydrological characteristics in
the region have experienced significant changes due to the warmer
climate (Chen et al., 2015). Noticeable degradation of permafrost and
accelerated glacier retreat has not only influenced the security of the
local infrastructure but also provided ample water for glacial lakes,
causing them to rupture to form glacial lake outburst floods (GLOFs)
(Yao T. et al., 2012; Ran et al., 2018; Shean et al., 2020; Veh et al., 2020;
Yin et al., 2021). The imbalance between liquid (lakes and rivers)
and solid (snow and glaciers) water has augmented since the 1980s,
together with glacier retreat, lake water gain, and increasing runoff
(Yao et al., 2022). Changes in hydrology and geomorphology caused
by this imbalance affect drainage pattern reorganization and trigger
the endorheic-exorheic transition, threatening the ecosystem and
infrastructures (Milner et al., 2017; Liu et al., 2021). For example, In
mid-September 2011, the Zonag Lake in the Hoh Xil region burst,
causing a large amount of lake water to overflow, resulting in a sharp
reduction in the area of theZonag Lake, accompanied by the formation
of permafrost in the following years (Liu et al., 2016; Liu W. et al.,
2019; Zhang et al., 2022). A large amount of lake water flowed into
the Kusai Lake, causing its water to flow into the Haiding Nor Lake
(Yao X. et al., 2012). The flood waters eventually flowed into the Salt
Lake, accelerating permafrost degradation (Wu and Niu, 2013). The
Salt Lake is predicted to overflow by 2026 based on data from 2014
to 2015 (Yao et al., 2018). The possibility of the Salt Lake overflowing
needs to be reassessed because of its faster area growth in subsequent
years. The expanded Salt Lake is less than 10 km from China’s key
infrastructure, like the Qinghai-Tibet Highway and Railway (Lu et al.,
2020), a latent outburst of the Salt Lake may cause destructive floods
and further destroy these two engineering structures that link Tibet
and Qinghai Province (Yao et al., 2018). Therefore, it is crucial to
analyze the spatiotemporal trends of the Salt Lake and evaluate the
risk of lake water overflow.

The extraction of water bodies based on remote sensing
technology first appeared 40 years ago (Work and Gilmer, 1976).
Since then, the methods used to detect and extract surface water from
space have expanded dramatically (Huang et al., 2018; Zhang et al.,
2018; Zhang et al., 2020). The basis of extracting surface water from
multispectral (satellite) imagery is the distinct lower reflectance
of water in infrared channels because of its strong absorption
compared to other land cover types. Hence, single-band methods
based on infrared channels were initially used to derive a water map
(Rundquist et al., 1987; Frazier and Page, 2000). Nevertheless, these
kinds of methods may cause classification errors in topographically
complex environments. Afterwards, multi-band methods such as

water indices were widely developed, based on the calculation of
two or more bands, to distinguish between water and non-water
areas (Huang et al., 2018). Normalized difference vegetation index
(NDVI), which is calculated from the red band (R) and near-
infrared band (NIR) to improve water features, has been used to
delineate the extent of water bodies in studies (Townshend and Justice,
1986; Domenikiotis et al., 2003). While NDVI is actually a vegetation
index, it can only infer water’s existence through identifying above-
ground biomass but does not present direct information about water
(McFeeters, 1996). To rectify this problem, normalized difference
water index (NDWI) was introduced to preferably highlight water
bodies considering its high and low values of spectral reflectance
for the green band (G) and the NIR band (McFeeters, 1996).
However, theNDWI cannot efficiently delineate water bodies in urban
areas. Hanqiu Xu (Xu, 2006) found that the reflectance of water
in the Short-wave Infrared (SWIR) band is lower than that in the
NIR band and substituted the SWIR band for the NIR band and
proposed the modified NDWI index (MNDWI). One disadvantage
to MNDWI is that it cannot distinguish between water and snow
because the reflectance of snow in all visible and infrared channels
is generally higher than that of water (Huang et al., 2018). In general,
NDWI and MNDWI are widely used for water extraction, but many
researchers have tried to develop new spectral indices to better
monitor surface water, such as NDWI3 (Ouma and Tateishi, 2006),
Automated Water Extraction Index (AWEI) (Feyisa et al., 2014),
Water Index (WI 2015) (Fisher, 2016), and so on. Although the effect
of water extraction has improved, all of these spectral indices face the
threshold selection problem (Huang et al., 2018; Zhang et al., 2018).
When using NDWI and MNDWI indices to extract water bodies, the
threshold is usually greater than 0. However, static threshold values
may lead to misclassification of surface water boundaries because
the threshold values usually change with satellite sensor view angle,
atmospheric conditions, topography, and image acquisition quality
(Jain et al., 2005; Ji et al., 2009). It is challenging and time-consuming
when thresholding either the planetary-scale analysis that covers a
considerable amount of water bodies or a time series of images that
include the same water body.

In recent decades, machine learning (ML) algorithms have
become a prevalent method of solving hydrological problems
recognized in previous research (Shen et al., 2018; Bijeesh and
Narasimhamurthy, 2020; Yang et al., 2022). These ML methods
include K-means clustering (Lu and Weng, 2007), Iterative Self-
Organizing Data Analysis Technique (ISODATA) (Zhang et al.,
2017), Maximum Likelihood Classification (MLC) (Frazier and
Page, 2000; Manaf et al., 2016), Support Vector Machine (SVM)
(Rokni et al., 2015; Paul et al., 2018; Liu et al., 2020), Artificial Neural
Network (ANN) (Isikdogan et al., 2020), Tree-based classification
(Donchyts et al., 2016b; Wang et al., 2018; Li and Niu, 2022), and
so on. Several studies have demonstrated that Classification and
Regression Trees (CART), Random Forest (RF), and SVM have
performed well in surface water extraction (Huang et al., 2015;
Donchyts et al., 2016b; Liu et al., 2020). For example, Donchyts et al.
(2016b) used CART to remove the mountain shadows and snow/ice
to refine the surface water map. Wang et al. (2018) analyzed the long-
term dynamic changes of surface water based on RF in the middle
Yangtze River Basin. Liu et al. (2020) designed a river water mapping
algorithm based on SVM, which can quantify the uncertainties of its
result.
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In this paper, three advanced machine learning methods, namely
CART, RF, and SVM,were applied to construct themonitoringmodels
for the Salt Lake using remote sensing data in the Hoh Xil Region. We
prepared separate training and testing sets for the construction of the
models. Models were trained using randomly and repeatedly sampled
training set, while accuracy evaluation used a testing set. Models were
compared by accuracy evaluation metrics, and the most stable and
reliable model was selected to generate water maps for the Salt Lake.
Then, the spatiotemporal variations and the overflow risk for the Salt
Lake were analyzed. Here, the main objectives of this paper are: (1)
to develop an appropriate model for delineating water bodies; (2) to
quantify the contributions of the feature variables to the extraction of
lakes using ML methods; (3) to analyze the spatiotemporal variations
of the Salt Lake from 1973 to 2021; (4) to judge the risk of the Salt Lake
water overflow and simulate its scenario.

2 Materials and methods

2.1 Study area

The Salt Lake is located in Zhidoi County, Qinghai Province.
It lies in the northeastern section of the Hoh Xil National Nature
Reserve in the hinterland of QTP (Figure 1). The Hoh Xil region,
recorded on theWorld Heritage Sites, is noted by an average elevation
of about 4,600 m above sea level (Lu et al., 2020). The Salt Lake
originates from the Tertiary continental down-faulted basin among
the Kunlun Mountains, surrounded by monadnocks comprised of
Tertiary-Pliocene continental strata (Yao et al., 2018).The topographic
features vary remarkably within the drainage basin, characterized
by high terrain in the west and low terrain in the east. An alpine
semi-arid continental climate dominates the lake region with a mean
annual air temperature and precipitation of -4.72°C and 320.42 mm,
respectively (Liu W. et al., 2019). Alpine meadow, alpine steppe, and
alpine desert comprise this region’s three major types of vegetation.
Permafrost and periglacial landforms are broadly developed around
this neighborhood.

The Salt Lake was primarily supplied by seasonal rivers. Until
September 2011, the Salt Lake’s water volume remained stable. There
are three lakes northwest of the Salt Lake: Haiding Nor, Kusai Lake,
and Zonag Lake (Figure 1), which belonged to typical endorheic
lakes before the outburst of the Zonag Lake in September 2011
(Liu et al., 2016). The Zonag Lake is mainly supplied by glacial melt
water through the Zonag River. The Kusai River is the main water
source of the Kusai Lake. The Haiding Nor is fed by the surface
runoff and intermittent stream. After the outburst, the lake water
flowed eastward successively through the Kusai Lake and the Haiding
Nor. Finally, it flooded into the Salt Lake, resulting in the hydraulic
connection of the four lakes with newly-formed channels. The Salt
Lake has experienced rapid expansion since 2011. Figure 2 shows the
considerable growth of the Salt Lake area from 9 November 2011
to 11 November 2012 through the Landsat seven imageries, severely
threatening the engineering constructions.

2.2 Data preparation

2.2.1 Lake inventory dataset
As one of the most eminent satellite series, Landsat has been

observing the Earth for 50 years since 1972, which provides medium-
resolution images for scientific research (Wulder et al., 2022). The
Landsat eight is one of the newest Landsat satellites, and its data has
been widely used for surface water detection (Donchyts et al., 2016a;
Pekel et al., 2016; Albarqouni et al., 2022). Herein, the Landsat eight
satellite imagery was used to obtain lake occurrences for machine
learning modeling via visual interpretation. As a planetary-scale
platform for geospatial analysis, Google Earth Engine (GEE) collects
a large amount of remote sensing data and powerful algorithms
(Gorelick et al., 2017) and was used for the preprocessing of Landsat
eight satellite images in this research. Additionally, we specially
prepared separate training data and testing data from different periods
and regions to effectively evaluate the machine model’s ability to resist
overfitting. We selected the subset of the Inner Tibetan Plateau (Inner
E), where the Salt Lake is located, as the sampling location for training

FIGURE 1
The spatial distribution of the Zonag Lake and the Salt Lake drainage basin.
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FIGURE 2
The variation of the Salt Lake (yellow box) as observed via the Landsat 7 images.

data. A detailed description of the area can be found in this paper
(Wan et al., 2016). We obtained images with a cloud cover percentage
of less than 5% in September and October in the Inner E from 2013
to 2021 and calculated the mean value of the images. Afterwards,
the lakes were manually delineated and converted into sample points
using the algorithm of GEE. Finally, the total number of lake points
was 101,045. Likewise, we collected 124,580 non-lake points. For the
testing data, the images from July to November 2020 in the central
Tibetan Plateau were acquired for mosaicing, and then 537 lake points
and 674 non-lake points were visually interpreted.

2.2.2 Feature variables
The feature variables are crucial for the training of machine

learning models. The variables were selected considering the water
characteristics and data availability. Image bands, water indices, and
topographic variables were finally chosen, referring to the information
in the existing literature (McFeeters, 1996; Frazier and Page, 2000;

Ouma and Tateishi, 2006; Xu, 2006; Feyisa et al., 2014; Yin et al.,
2021). A total of 13 feature variables were selected for surface water
extraction—-namely, the blue band (B), G, R, NIR, SWIR1, SWIR2,
NDWI, NDWI3, MNDWI, AWEIsh, AWEInsh, Slope, and Aspect. For
quick reference, Table 1 lists the water indices mentioned above.
Note that Blue, Green, NIR, SWIR1, and SWIR2 represent top-
of-atmosphere reflectance for corresponding Landsat eight bands.
In this paper, the Landsat five and Landsat eight images from
1986 to 2021 (except 2011 and 2012) were acquired based on the
principle of low cloud cover, and the water indices were calculated
through GEE. All satellite images used in the study are listed in
Supplementary Table S1. Without suitable data from the satellites
mentioned above, we downloaded data from satellite seven in 2011
and 2012 via the United States Geological Survey (USGS, https://
earthexplorer.usgs.gov/, accessed on 3 October 2021), whose imagery
was partially missing due to the Scan Line Corrector (SLC) failure.
Afterwards, the partial images were interpolated locally to obtain
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TABLE 1 Water indexmethods using Landsat OLI data.

No Index Equation Source

1 NDWI (Green—NIR)/(Green + NIR) McFeeters (1996)

2 NDWI3 (SWIR1—NIR)/(SWIR1 + NIR) Ouma and Tateishi (2006)

3 MNDWI (Green—SWIR1)/(Green + SWIR1) Xu (2006)

4 AWEIsh Blue +2.5 × Green—1.5 × (NIR + SWIR1)—0.25 × SWIR2 Feyisa et al. (2014)

5 AWEInsh 4 × (Green—SWIR1)—0.25 × NIR +2.75 × SWIR2 Feyisa et al. (2014)

the complete images, and the lake vector polygons were delineated
through visual interpretation. In addition, we downloaded the earliest
imagery covering the Salt Lake (acquired in 1973) from the USGS
website and visually interpreted it. The Shuttle Radar Topography
Mission (SRTM) data was employed to calculate topographic variables
(i.e., Slope and Aspect).

2.3 Methods

In this study, we used three machine learning models–exactly
CART, RF, and SVM–to extract water. Lake volume and the likelihood
of lake water overflow were calculated using the SRTM data. The
flowchart for thewater extraction and analysis is presented inFigure 3.
The main steps are described as follows.

1) Firstly, we constructed a lake inventory using GEE. This inventory
included separate training and testing data. Five strata were
introduced for better separation of lake samples from non-lake
samples (i.e., cloud, glacier, shadow, land, snow). Regarding feature
selection, SRTM DEM and satellite images were prepared to
construct 13 feature variables. Then, Pearson’s correlation (r) was
employed to assess the correlations between these variables.

2) Secondly, the training and testing data were created according to
a binary variable, where one and 0 represent the lake point and
non-lake point, respectively. The training data was first shuffled
and then randomly sampled at a percentage ratio of 10%. The
testing data was used to measure the performance of the three
models. The models were run 100 times with different sample
combinations using CART, RF, and SVM, and each time, the
training samples were split randomly with a ratio of 10%. After the
models were trained, accuracy evaluation and model comparison
was performed using KAPPA and OA.

3) Thirdly, after the model capabilities were compared, evaluation
metrics for the three models were calculated, the relative
importance of the feature variables for the tree-based models was
obtained, and the best performing model was used to extract the
water body extent.

4) Finally, we conducted a spatiotemporal analysis of the Salt Lake to
assess its changes from 1973 to 2021. Climate characteristics were
analyzed using temperature and precipitation data. In addition, the
watershed in the basin where the Salt Lake is located was derived
through hydrology analysis. The maximum boundary of the Salt
Lake was simulated by iterating DEMuntil its water overflowed the
watershed. The overflow potential of the Salt Lake was assessed by
calculating the increment of the water volume.

CART, RF, and SVMwere employed for lake extraction by relating the
lake inventory dataset to feature variables. All the machine learning
algorithms were implemented using the cloud-based platform–GEE.
Hydrology analysis of the Salt Lake was performed via the geographic
information system (GIS) software. Detailed depictions of the three
machine learning models and hydrology analysis are presented as
follows.

2.3.1 Classification and regression trees
CART belongs to a kind of Decision Trees (DTs) algorithm, which

was first proposed by Breiman et al. (1984). CART is a supervised
classification algorithmwhose input data can be continuous or discrete
variables. Unlike other decision tree algorithms (i.e., ID3, C4.5), CART
can handle both classification and regression tasks (Quinlan, 1986;
Salzberg, 1994). In the classification problem, a simple decision rule
is learned from features in the data to develop a model that predicts
the target variable. Compared to other machine learning techniques,
the principle of CART is simple to understand, and its decision tree
can be visualized. In addition, the input data for CART requires little
data preparation, such as normalization, blank values removal, and
dummy variables creation. In the process of dealing with classification
problems, CART can also yield the importance of each input variable
by the Gini index.

2.3.2 Random forest
RF is an ensemble learning approach that aggregates a large

number of CART decision trees to generate a single model with a
more accurate prediction (Breiman, 2001). RF has been a widely used
model in both classification and regression tasks (Belgiu and Drăguţ,
2016). When handling classification tasks, these CART decision trees
are generated based on different subsets of the training dataset,
which contain randomly selected features and samples (i.e., bootstrap
sample with replacement) (Yin et al., 2021). After RF is established,
samples are first evaluated individually by each decision tree in the
model and then determined by the majority of those decision trees.
As a frequently used bagging model, RF is resistant to overfitting
by combining ensemble learning and bootstrap sample (Guan et al.,
2013). Like the decision tree algorithm, RF can also generate the
importance of each feature variable by the Information Gain (IG),
Information Gain Ratio (IGR), or Gini index when dealing with
classification problems.

2.3.3 Support vector machine
SVM is one of the supervised learning methods widely used for

classification and regression tasks (Cortes and Vapnik, 1995; Vapnik,
1999). The optimal classification hyperplane and the kernel function
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FIGURE 3
Flowchart of the proposed methodology for water extraction in this work.

are the two central principles of SVM (Yao et al., 2008). Optimizing
the classification hyperplane aims to correctly differentiate between
the positive and negative samples while maximizing the classification
margin. The role of the kernel function is to transform the initially
non-separable data into linearly separable data in a higher dimensional
feature space. During the training process, SVM can ignore outliers
and focus on the maximum margin by adjusting the regularization
parameter (Sarp and Ozcelik, 2017). Additionally, SVM can also
effectively handle datasets with more features than samples.

2.3.4 Lake water volume calculation
In order to assess the risk of Salt Lake water overflow, the SRTM

DEM was employed to construct equations between the area and
the volume. In the calculation formula, ΔV represents the change of
lakewater volume in two periods, A1 and A2 represent the area of the

lake in different periods, respectively, with lake areaA1 and levelH1 for
the previous period and lake area A2 and level H2 for the later period.
Thismethod has been frequently used in estimating lake water volume
(Liu et al., 2021; Lu et al., 2021).

ΔV = 1
3
(A1 +A2 +√A1 ×A2)× (H2 −H1) (1)

2.4 Factor importance

Factor importance refers to the relative importance of each
feature variable, indicating the role of each variable in the modeling
process. Measuring the relative importance of each factor is crucial
to understand the modeling process. RF can be utilized to assess the
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relative importance of each feature variable (Yin et al., 2021), as can
CART. In this paper, the relative importance of factors was obtained
according to 100 rounds of RF andCARToutput results, accumulating
the normalized results of factor importance for the modeling in each
round.

2.5 Model performance and accuracy
assessment

The performance of the three models was evaluated through 100
rounds of accuracy evaluation results. In this study, the extraction of
the Salt Lake based on machine learning models is a classification
problem with binary results of the presence and absence of lake pixels.
In classification problems, a confusion matrix, which combines the
actual class of the sample and the model’s predicted class, is obtained
to compute evaluationmetrics such as commission error and omission
error (Liu et al., 2020). In this paper, the Kappa coefficient (KAPPA)
and the overall accuracy (OA), derived from the confusion matrix,
were mainly considered indicators to measure the overall model
performance (Warrens and Pratiwi, 2016; Liu et al., 2020).

3 Results

3.1 Evaluation of the models

According to the accuracy evaluation results in Figure 4, the RF
model had the best outcome in terms of KAPPA and OA, followed
by CART and SVM. The mean KAPPA for the 100-round RF model
was 0.9876, and the mean OA was 0.9939. The higher values of the
two evaluation indicators mean the better accuracy of the model.
As shown in Figure 4, the values of the evaluation indicators of the
three models were all higher than 0.85, indicating that these models

had good performance in water extraction. The distribution of the
two evaluation indicators for the RF model was very concentrated,
which proved that it was very stable in 100 rounds of modeling.
Although the results of the two evaluation indicators showed good
accuracy for the CART model, the distribution of the results was not
concentrated, indicating that it was not as stable as the RF model. The
SVM model had relatively low accuracy and its accuracy distribution
approximated a normal distribution. After the comprehensive
evaluation, the RF model was selected for the extraction of the
Salt Lake.

3.2 Factor contribution analysis

In this paper, the Pearson correlation coefficient was calculated
between the feature variables to check the multicollinearity of the
data (Figure 5). The result shows that there was strong collinearity
between the feature variables (absolute value greater than 0.7). For
example, NDWI and MNDWI, which are widely employed in water
body extraction, had a correlation coefficient value of 0.84, indicating
that these two water indices could be used as substitutes for each
other.

In the factor contribution analysis experiment, if there are strongly
correlated feature variables, any one of themcan be used as an excellent
feature to participate in the construction of the model. Once one
of these correlated feature variables is selected, the mean decrease
impurity is occupied by this variable, resulting in the reduction of the
importance of other feature variables. In order to solve this problem,
we randomly sampled the training dataset to set up the machine
learning models. In addition, we also accumulated the results of the
machine learning models for 100 experiments because the results of
a single experiment cannot indicate whether the experimental results
are reliable. According to the relative importance analysis results in
Figure 6, NDWI was considered the most important feature variable

FIGURE 4
Evaluation metrics regarding the performances of different models.
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FIGURE 5
Pearson’s correlations between feature variables.

FIGURE 6
The relative importance of each feature variable from RF and CART.

in the lake extraction by RF andCARTmodels, while AWEInsh seemed
to be the least important feature variable.

3.3 Spatiotemporal variations of the Salt
Lake

The long-term evolution of the Salt Lake between 1973 and 2021
is shown in Figure 7. During the period 1973–1987, the Salt Lake area
showed an enormous 53% reduction, from 41.09 in 1973 to 19.30 km2

in 1987. Until 1989, the Salt Lake area went back to its previous size.
Between 1989 and 1995, the Salt Lake area declined in a linear fashion,

almost to its area value in 1989. Slow growth in the Salt Lake area
occurred from 1995 to 2010. After the outburst of the Zonag Lake in
September 2011, the Salt Lake area reached 73.32 km2 in November
2011, showing a 57% area increase compared to the 46.54 km2 of the
Salt Lake area inNovember 2010. From2010 to 2019, the Salt Lake area
experienced a dramatic expansion, then a steady increase, and finally
a rapid expansion, and eventually, it reached a maximum area value of
209.43 km2 in 2019, showing an astonishing 350% area increase. The
most recent 3 years (2019–2021) were relatively stable periods with a
slight decline, possibly due to the construction of the artificial drainage
channel.

Temperature and precipitation data from the nearest China
meteorological station (Wudaoliang) to the Salt Lake are shown in
Figure 8. Temperature observations from 1980 to 2017 revealed a
warming rate of 0.05°C/a (p <0.05), with annual average temperatures
almost always higher than the multi-year average temperature since
1998 (Figure 8A). Precipitation also showed an overall increasing
trend (p <0.05), especially after 1996 (Figure 8B). After the collapse
of the Zonag Lake (circa 2011), the Salt Lake, as a tailwater lake, was
heavily recharged by the upstream lakes. Therefore, the response of
the Salt Lake to climate was mainly focused on the period from 1986
to 2010. Overall, the fluctuation of precipitation matched the change
in the Salt Lake area well, compared with the temperature (Figure 9).
For example, high precipitation in 1989 and 2008–2010 was associated
with high lake areas, whereas low precipitation from 1990 to 1995
coincided with small lake areas. Pearson’s correlation analysis was
conducted between the lake area variable and the precipitation variable
from 1986 to 2010. A correlation coefficient value of 0.603 (p <0.01)
indicated a significant correlation between the variables.

Maps of the Salt Lake in 1973 and 2010 were selected as reference
data before and after the Zonag Lake outburst, and the area changes of
Salt Lake in different directions were analyzed based on the geometric
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FIGURE 7
Changes in the Salt Lake area from 1973 to 2021.

FIGURE 8
Climate variations from 1980 to 2017: (A) time series of annual average temperature change and (B) time series of annual precipitation change.

center of these reference maps (Figure 10). From 1973 to 2010,
the Salt Lake area increased from 41.09 km2 to 46.54 km2, and the
main directions of area expansion were the east, south, north, and
northwest, but the area growth did not exceed 1 km2. Between 2010
and 2012, the Salt Lake, affected by the lake overflow, expanded in
all directions by more than 5 km2, of which the main expansion
directionwas the southeast, and the expansion area reached 17.80 km2,
followed by the southwest, west, and south, with an expansion area
of all more than 10 km2. During the period from 2012 to 2019, the
Salt Lake area reached a maximum value of 209.43 km2 and expanded
in all directions, with the main orientations including southeast,

south, and west. In the last 2 years (2019–2021), the area of the Salt
Lake decreased slightly in all directions, with an area of no more
than 1 km2.

3.4 Scenario of water overflow from the Salt
Lake

Theoverflow condition of the Salt Lake is that its boundary crosses
the watershed between the Salt Lake and Qingshui Lake, which can
be simulated through the iteration of the lake water level. The water
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FIGURE 9
Changes in lake area and climate fluctuations from 1986 to 2010: (A) lake area, (B) precipitation and (C) temperature.

FIGURE 10
Changes in different directions of the Salt Lake before (A) and after (B) the outburst of the Zonag Lake.

level corresponding to the inundation area was calculated as the mean
value of the SRTM DEM grids intersecting the lake shoreline. To
minimize the uncertainty of SRTMDEM, three times the Normalized
Median Absolute Deviation (NMAD) was employed to filter out
outliers (Höhle and Höhle, 2009; Leys et al., 2013). Figure 11 shows
the maximum expansion area of the Salt Lake when it meets the
overflow condition.The area and elevation of the overflowed Salt Lake-
simulated were 220.09 km2 and 4,471.42 m, respectively. According to
the lake area time series inFigure 7, the lake area changes from2012 to

2019 were selected to assess the risk of Salt Lake water overflow. In the
case of slow growth in the area of the Salt Lake (from 2012 to 2016), the
water level continued to rise at a vertical rate of 0.84 m/a (0.12 billion
m3/a), and the water level is predicted to reach its watershed overflow
elevation of 4,471.4 m by 2031 (assuming the 0.12 billion m3/a rate
keeps the same). From 2016 to 2019, the water level of the Salt Lake
rose rapidly at a rate of 2.96 m/a (0.54 billion m3/a), and the Salt Lake
is projected to reach its maximumwater capacity in 2020. Fortunately,
the emergency drainage channel between the Salt Lake and Qingshui
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FIGURE 11
The maximum expansion area of the Salt Lake before overflow.

Lake was completed in 2019 (Figure 11) (Lu et al., 2021). Since then,
this artificial channel has been connected with the tributary of the
Yangtze River, resulting in the endorheic-exorheic transition of the Salt
Lake catchment.

4 Discussion

4.1 Comparison between the machine
learning methods

The three applied methods, CART, RF, and SVM, are very popular
machine learning methods in the field of earth sciences (Huang et al.,
2015; Donchyts et al., 2016b; Liu et al., 2020). In this paper, the
results showed that tree-based algorithms, especially the RF model,
outperformed the SVM model in terms of KAPPA and OA, and the
excellent capability of the RF model has been facilitated by other
studies (Huang et al., 2015; Belgiu and Drăguţ, 2016). Compared with
the SVM model, tree-based models (i.e., CART and RF) can directly
output the importance order of feature variables, which can help
researchers explore the relationship between feature variables and
target variables. The difference between SVM and tree-based models
is mainly the basic framework. SVM is developed from statistical
learning theory, with structural risk minimization as its principle
(Chapelle et al., 1999). SVM is appropriate for image classification
with a small number of training samples and a high-dimensional
feature space (Melgani and Bruzzone, 2004). Tree-based algorithms,
one of the most frequently used supervised classification methods
(Rokach and Maimon, 2005; Belgiu and Drăguţ, 2016), have multiple
interior nodes and leaf nodes, representing the feature and target
variables, respectively (Huang et al., 2015).

In this study, both the CART algorithm andRF algorithmhad high
accuracy andoutput the importance ranking of feature variables.There
are two differences between the two algorithms: one is that the results
of the RF algorithmweremore robust, and the other is that the relative
importance results of the RF algorithm were more reasonable without
the bias of feature variables. This is because the RF method is based

on the idea of ensemble learning, integrates multiple decision trees to
construct a model, and has two aspects of randomness. In comparison
to a single decision tree, it can improve prediction accuracy (Ho,
1998). Taking multiple aspects of the model into consideration, RF is
recommended for the extraction of lakes in the Hoh Xil region.

4.2 Implications of the endorheic-exorheic
transition

Since the lake outburst event in 2011, the four lakes (i.e., the
Salt Lake, Haiding Nor, Kusai Lake, and Zonag Lake) have been
hydrologically connected with newly-formed channels (Liu W. et al.,
2019). Although these reorganization events occurred in the endorheic
basins, the results showed that the significant increase in the Salt
Lake water volume could overflow to the adjacent exorheic basin,
seriously threatening the engineering construction. In the worst-case
scenario, the outburst flood from Salt Lake can destroy engineering
infrastructure within 6 hours (Liu et al., 2021). In the end, to reduce
the impact of the potential Salt Lake outburst, the local government
constructed a drainage channel to divert the lake water into the
Qingshui River, which also led to the endorheic-exorheic transition
(Lu et al., 2021).

The construction of the emergency drainage channel can reduce
the potential damage of an outburst flood, and the impact of the
endorheic-exorheic transition requires special attention. The highly
mineralized lake water is continuously discharged into the Qingshui
River, which not only influences the stability of the permafrost
around the water system but also impacts the northernmost source
of the Yangtze River water quality (Liu M. et al., 2019; Liu et al., 2021;
Lu et al., 2021). In addition, studies have shown that the total area
of lakes on the Inner Tibetan Plateau will continue to expand from
2016 to 2035 (Yang et al., 2018; Zhang et al., 2020). Therefore, it is
indispensable tomonitor whether the drainage of the artificial channel
is sufficient to cope with the large amount of water from the Salt Lake.
Further, it is necessary to consider whether there are similar cases in
other basins.
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4.3 Limitations and future works

In this work, three machine learning models were implemented
1,000 times to compare performance using different subsets of the
training dataset. Finally, the best performing random forestmodel was
trained using 70% of the entire training data and applied to the long-
term lake extraction. The current research also has some limitations.
Our study area is located on the QTP, where there is less human
activity. For this reason, the training samples were selected on the
QTP, and themachine learningmodelwas trained using these samples.
Therefore, the results of the relative importance of features may not be
suitable for lakes in urban areas.

TheQTP is distributed in numerous lakes, which are an important
part of the Asian Water Tower (Zhang et al., 2021; Yao et al., 2022).
These lakes are subject to little human intervention and respond
exceptionally quickly to climate change (Zhang et al., 2020). Abnormal
climate events such as El Niño and La Niña significantly impact the
global climate. However, the response of lakes on theQTP to abnormal
climate events is less involved (Lei et al., 2019). In addition, water
system reorganization events are expected to increase by 20 from 2019
to 2030 (Liu et al., 2021), and these accelerated evolutions and impacts
should be continuously monitored and confirmed in future work.
Currently, research on lake area changes on the QTP mainly focuses
on inter-annual changes (Zhang et al., 2020; 2021). With the launch
of remote sensing satellites in the future, the intra-annual variations of
the lake should be studied to understand its response to climate change
better.

5 Conclusion

In this study, we used machine learning models to extract the Salt
Lake area in the Hoh Xil region. Meanwhile, based on the long-term
lake area data, we analyzed its response to meteorological data and
simulated the Salt Lake water overflow scenario. The conclusions are
as follows.

1) This study usedKAPPA andOA to evaluatemodel performance and
found out that RF is the best performing model compared to CART
and SVM.Themean accuracy of KAPPA and OA for the 100-round
RF model were 0.9876 and 0.9939, respectively.

2) Therewas a strong correlation betweenmost water indices.Through
the factor contribution analysis, it was found that NDWI was the
most important feature selected by RF and CART for the area
extraction of the Salt Lake.

3) Before the Zonag Lake outburst, the area change of the Salt Lakewas
consistent with the variation of precipitation, and the correlation
coefficient value reached 0.603. After that, the area of the Salt
Lake expanded at an alarming rate in all orientations, and the
primary expansion directions were southeast, west, southwest, and
south.

4) The area of the overflowed Salt Lake-simulated was 220.09 km2.The
simulation result indicated that the earliest and latest times for the
Salt Lake to overflow were 2020 and 2031, respectively.

The results of this paper improve the understanding of the impact
of water system reorganization on downstream lakes. Continued
research in this region is required due to the endorheic-exorheic

transition in the future. In addition, the intra-annual variation of the
Salt Lake needs to be considered, and the reasons for the variation
need to be quantitatively analyzed. Herein, we suggest that other areas
of the QTP with water system reorganization need to be studied to
gain a better understanding and reduce the disasters caused by lake
outbursts.
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Mountain is called the water towers of the world. Due to high sensitivity and
vulnerability to climate change, more attention is paid to the change of water
resources in mountain regions, where provide water for environmental and
human demands downstream. Mountains glacier, as one of the most important
components of terrestrial water storage (TWS), effectively regulates and stabilizes
surface water resources. TWS appears to be trending below previous ranges in
recent years, and glacier retreating is becoming the primary cause of TWS
depletion in mountain regions. However, how much mountain glacier changes
contribute to TWS changes around mountain regions is unknown. Here, we
combine multi-source datasets to quantify the contribution rate over high-
elevation mountain regions. On a global scale, the glacial melting is equivalent
to about 49% of the total TWS decline during 2006–2015. TWS and glacier show
decreasing trends in most of mountain regions and watersheds of the Third Pole
and surroundings (TPs), but the contribution ranges from −23% to 728% in
mountain regions and −21% to 99% in watersheds of TPs. There are larger
contributions in regions with more glaciers, while smaller in less glacier-
covered regions. Glacier together with other storage components play diverse
roles across different mountain regions and watersheds, but factors with great
influence are glacier, groundwater, soil water, reservoirs and lakes.

KEYWORDS

terrestrial water storage, mountain glacier, global hydrological model, GRACE satellite,
contribution

1 Introduction

As the water towers of the world, mountains provide water for environmental and
human demands downstream. Mountains have high sensitivity and vulnerability to climate
change (Viviroli et al., 2011) and are experiencing faster warming than low-elevation areas.
Glacier, one of the most important components of mountains terrestrial water storage
(TWS), effectively regulates and stabilizes surface water resources. TWS appears to be
trending below previous ranges around the global regions and is dominated by different
factors (Rodell et al., 2018; Huang et al., 2021). Mountain glaciers retreating in response to
climate change is becoming the primary cause of TWS depletion in mountain regions (e.g.,
Jacob et al., 2012). However, how much mountain glacier changes contribute to TWS
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changes around mountain regions is unknown. Therefore,
quantifying the contribution of melting glaciers to TWS changes
from regions to watersheds is important because TWS changes have
important implications for water resources assessment, climate
change, and ecosystem dynamics.

With the release of GRACE satellites, many studies have focused
on TWS changes at varied spatial scales (e.g., Hu et al., 2020). TWS
changes can exert influence on sea-level rise due to glacier melting,
natural resources and disasters (e.g., groundwater depletion),
ecological environment (e.g., vegetation dependent on
groundwater) and construction projects (e.g., land subsidence).
About 20%–35% of the recent decadal sea-level rise was
attributed to the net TWS change that integrates changing
mountain glacier, groundwater and mass in other stores (Reager
et al., 2016). A study shows that the contribution of net TWS decline
in endorheic basins to a potential sea level rise matched the
contribution of nearly half of the land glacier retreat (excluding
Greenland and Antarctica) (Wang et al., 2018). Generally speaking,
mountain glacier melting and groundwater exploitation had positive
contributions to sea-level rise, while changes in reservoir storage had
negative effects (Wada et al., 2016; Zemp et al., 2019).

The contribution of storage components to TWS changes
presents a remarkable regional difference. For inland river basins,
TWS changes are mainly from surface waters, soil moisture and
groundwater (Wang et al., 2018). The decline of water storage in arid
and semi-arid areas is mainly due to groundwater overexploitation
(Rodell et al., 2018). Snow also has an important impact on TWS
changes, such as for the river basins of Canada (Bahrami et al., 2020).
Groundwater overexploitation is one of the main factors affecting
TWS changes around the plain areas. For the Tibetan Plateau, water
storage is extremely sensitive to climate change (Wang et al., 2020),
followed with a significantly spatial difference. TWS decline in
exorheic basins is mainly caused by the glacier retreat and the
decline of soil and groundwater reserves, while the increase in
endorheic basins is mainly caused by the expansion of lakes and
the increase of glaciers in the Karakoram-West Kunlun Mountains
(Li et al., 2022).

Mountain glaciers are key indicators of climate change for high-
elevation mountain areas (Immerzeel et al., 2020), and their mass
changes can alter the Earth’s hydrological cycles at multiple scales,
by regulating and stabilizing runoff. Recent studies have discovered
mountain glaciers are diminishing in response to climate change,
affecting the TWS changes and water availability. Because of the
accelerated melting rate of most mountain glaciers around the
world, the mountain glacier mass budget estimates have raised
more concerns about the sustainability of water supply in many
parts of the world. Therefore, clarifying the contribution of
mountain glaciers to TWS is conducive to the quantity of the
impact of glacier changes on freshwater availability.

Owing to existing data’s coarse spatial resolution and
availability, attribution of the TWS changes, especially from
mountain glaciers, has been challenging. Here, we investigate the
contributions of mountain glaciers changes to the total TWS
changes from a global perspective to a watershed scale, aiming to
enhance the understanding of the spatial differences of TWS’s
contributing factors. We combine multiple GRACE products,
glacier mass balance data and global hydrological model outputs
to investigate the mass-budget changes of storage components, and

focus on the impacts of glacier changes on water storage over high-
elevation mountain regions on the Earth.

2 Materials and methods

2.1 Study area

The study regions include Western Canada and United States
(WCA), Central Europe (CE), Caucasus and theMiddle East (CME),
the Third Pole and surroundings (TPs), Low Latitudes (LL) and
Southern Andes (SA) except for Antarctica and Greenland
periphery (Figure 1). This region has an area of about
483,155 km2 and total glacier volume is equal to about 221 ±
23 mm sea level (Hock et al., 2019). The glaciers range from the
sea level (e.g., southeast Alaska) to the Himalayas and Karakoram
mountains with an altitude of more than 8,000 m across the different
climatic regions. Therefore, their mass budget largely depends on the
balance between snow accumulation and melt at the glacier surface,
driven primarily by atmospheric conditions. In the past 10 years,
annual total precipitation has changed (Table 1), which will affect
the TWS changes.

As the Asian water tower, TPs contain the largest number of
glaciers outside the Polar Regions (Vaughan et al., 2013). These
glaciers are at the headwaters of many prominent Asian rivers and
are an important contributor to river flow. TPs has 95,536 glaciers
with an area of about 97,605 ± 7,935 km2 (Pfeffer et al., 2014; RGI
Consortium, 2017). Eight typical river basins are chosen to study the
contribution of mountain glacier changes to TWS changes. And they
are the Syr Darya, Ili, Tarim, Amu Darya, Ganges, Brahmaputra,
Indus, and Yangtze basins, respectively (Figure 2). The first four
belong to endorheic basins, and the others are the exorheic basins.

2.2 Data

Data used in the study include the TWS from GRACE, storage
components from WaterGAP Global Hydrology Model (WGHM)
outputs and glacier mass-budget data (Table 2). In addition, global
monthly precipitation products from GPCP (Adler et al., 2018),
CMAP (Huffman et al., 1997), ERA5-Land (Muñoz Sabater, 2019),
GPCC (Markus et al., 2011) and Princeton (Sheffield et al., 2006) are
used to investigate the possible reasons of TWS changes.

Eight GRACE products are used to calculate TWS changes,
including GRAVIS, MASCON_CSR05, MASCON_CSR06,
MASCON_JPL05, MASCON_JPL06, SH_JPL, SH_CSR, and SH_
GFZ (Table 2). Considering the continuity and quality of data, we
selected TWS anomaly (TWSA, which represents the TWS deviation
relative to the 2004–2009 time-mean baseline) from January 2003 to
December 2015 from eight products. All GRACE products were
resampled from 1° or 0.5° to 0.1° by nearest neighbor interpolation to
calculate domain-averaged TWS changes.

Data from the WaterGAP Global Hydrology Model (WGHM)
(v2.2d; Müller et al., 2021) was used to analyze the variations of TWS
components and explore the contribution of storage components to
TWS changes except for glaciers. The WaterGAP WGHM not only
can simulate human use of groundwater and surface water, but also
can separately simulate each storage component, including canopy
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interception (canopy), groundwater storage (groundwater), soil
moisture (soil), snow water equivalent (snow), river runoff
storage (river), global lake storage (global lakes), global wetland
storage (global wetlands), local lake storage (local lakes), local
wetland storage (local wetlands) and reservoir storage
(reservoirs). Previous studies have proved that WGHM is a
qualitatively good-performing global hydrological model,

especially for quantifying global scale water resources and
assessing water stress (Masaki et al., 2017; Zhao et al., 2017).
More details about the WGHM products can be referenced in
Döll et al. (2014) and Müller et al. (2021).

The glacier mass-budget estimates from the United Nation’s
Intergovernmental Panel on Climate Change (IPCC) report on the
Ocean and Cryosphere in a Changing Climate (SROCC) (Hock

FIGURE 1
Locations of regions covered by mountain glacier and comparisons of estimated annual meanmass changes (Gt yr-−1) between the terrestrial water
storage (△TWS) and the glacier (△glacier) (A) and the values of△TWS and all storage components (Gt yr-1) (B) in six typical mountain regions. All storage
components data except for glacier are bias-corrected fromWaterGAP Global Hydrology Model (WGHM) outputs. Regional△TWS is average calculated
from annual-averaged GRACE values after removing maximum and minimum during 2006–2015. Global △TWS is similar to regional ones, but for
regions except for Greenland and Antarctic periphery. Global and regional glacier mass changes are from IPCC SROCC. The shaded black areas represent
the glacier distribution. WCU, CE, CME, TPs, LL, SA representWestern Canada and United States, Central Europe, Caucasus andMiddle East, the Third Pole
and surroundings, Low Latitudes and Southern Andes, respectively. The figure in the lower right corner is from the global result.
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et al., 2019) are used to study the contribution of the changes of
mountain glaciers to the changes of TWS on the global and regional
scales, and from Brun et al. (2017) using time series of DEM derived
from satellite stereo-imagery for the typical river basins of TP.

2.3 Methods

The primary TWS anomaly from GRACE and TWS
components from WaterGAP WGHM reflect the monthly
variations in TWS and its each storage component in the
Earth’s climate system. For TWS from GRACE, the difference
in mass balance between the last month of the last year (here it is
December) and the first month of the first year (here it is January)
is regarded as the mass changes of TWS during the study period,
which is then used to compare with the glacier mass-balance
changes. Different GRACE products have different
performances. To eliminate the extreme influence from
GRACE products and reflect the reasonable amplitude, we
firstly remove the maximum and minimum from eight
calculated TWS changes, and the remaining values are then
used to calculate the TWS mean TWS and its standard
deviation for global, regions and river basins. Similar method
is used to monthly TWS and components from WaterGAP
WGHM to calculate the mass changes in the study period.

Bias-correction method is used to correct TWS components
from WaterGAP WGHM. Both of GRACE and WaterGAP

WGHM simultaneously output TWS anomaly. Müller et al.
(2021) found the underestimation phenomenon among
WaterGAP WGHM outputs. So in this study, we regard the
TWS change averaged from GRACE as the true value to
correct the TWS change from WaterGAP WGHM, and then
correct each storage component assuming that the simulation of
components is reasonable in WaterGAP WGHM. In addition,
linear regression is used to calculate the trends of precipitation.

3 Data comparison and bias correction

3.1 Comparison of mass balance from eight
GRACE products

In this study, eight GRACE products are chosen to reveal the
mass-balance changes of TWS. To validate the performance of
eight GRACE products over the same region, we compare
their ability in reproducing annual variability. We calculate
the mass-balance changes of global averaged TWS except for
Greenland and Antarctica during 2006–2015 (Supplementary
Figure S1). All GRACE products show consistent decreasing
trends but with different amplitudes of variation, ranging
from 1411.08 to 224.70 Gt yr−1. Removing the maximum
(1411.08 Gt yr−1) and minimum (224.70 Gt yr−1), the calculated
global mean mass change is −452.67 ± 310.52 Gt yr−1 during
2006–2015.

TABLE 1 Information of regions and river basins including the regional area, glacierized information with glacier area and ratio of glacier area to total area, and
linear trends (mm decade−1) of annual total precipitation during the study period. The study period is 2006–2015 for six regions, 2003–2015 for eight river basins.
Glacierized areas are from IPCC SROCC (Hock et al., 2019) and Brun et al. (2017). Data of precipitation come from ERA5-Land, the Princeton Global Meteorological
Forcing Dataset, GPCP, CMAP, and GPCC.

Region/basin name Region/basin information Trend of precipitation (mm yr-1)

Total area
(104 km2)

Glacierized area
(104 km2)

Ratio
(%)

ERA5-
land

Princeton GPCP CMAP GPCC

Central Europe 192 0.21 0.11 2.09 0.87 0.12 0.11 1.05

Caucasus and the Middle East 189 0.13 0.07 1.66 −1.81 −2.08 −2.84 0.14

the Third Pole and
surroundings

1299 9.77 0.75 1.18 0.12 −1.86 4.23 2.98

Low Latitudes 1462 0.23 0.02 1.75 −0.92 −7.64 −4.60 −4.11

Southern Andes 154 2.94 1.91 1.89 −1.19 2.48 3.21 0.65

Western Canada and
United States

1464 1.45 0.10 1.59 6.10 −3.46 −3.14 −0.56

Brahmaputra 61 0.95 1.56 −3.14 −3.38 −13.91 −13.24 −10.08

Amu Darya 104 1.08 1.04 −1.97 −1.50 3.79 −4.67 −0.20

Ganges 105 0.83 0.79 −2.24 7.19 −5.18 −4.98 1.45

Ili 79 0.43 0.55 −3.20 0.54 4.95 2.18 1.72

Indus 102 2.47 2.42 6.25 4.79 13.86 4.87 13.98

Yangtze 223 0.14 0.06 0.72 4.90 5.14 4.77 5.30

Tarim 120 1.84 1.53 −1.26 −2.60 0.72 1.02 0.28

Syr Darya 162 0.23 0.14 −3.36 −0.45 2.93 −0.21 −0.74
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The mass budget estimates of TWS from eight GRACE products
in six typical regions covered by mountain glaciers are shown in
Supplementary Figure S1. Eight products show consistent results
except for the Third Pole and surroundings and Southern Andes.
Most of the mountain regions have mass losses indicated by all
GRACE products except for Western Canada and United States.

Removing the maximum and minimum at each region, the
calculated mean mass change is shown in Figure 1. Similar
comparison based on river basins is investigated (Supplementary
Figure S2). We also can find that nearly all products display
consistent results except for GRAVIS and SH_GFZ, which
mainly happens in the northwest of TP (Tarim, Syr Darya and

FIGURE 2
Locations of river basins around the Third Pole and surroundings covered by mountain glacier and comparisons of estimated annual mean mass
changes (Gt yr−1) between the terrestrial water storage (△TWS) and the glacier (△glacier) (A) and the values of△TWS and all storage components (Gt yr−1)
(B) in eight river basins of the Third Pole. All storage components data except for glacier are from WaterGAP Global Hydrology Model (WGHM) outputs.
Eight river basins are Yangtze, Brahmaputra, Ili, Tarim, Ganges, Amu Darya, Syr Darya and Indus. The endorheic basins are in blue and the exorheic
basins are in red. The shaded black areas represent the glacier distribution. △TWS is average calculated from annual-averaged GRACE values after
removing maximum and minimum during 2003–2015. The shaded white areas represent the glacier distribution. Glacier mass balance are from Brun
et al. (2017) in the Supplementary Material.
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Amu Darya). Around the southern TP (Ganges, Brahmaputra and
Yangtze), results from eight GRACE products are consistent. The
mean mass changes are calculated and shown in Figure 2 after
removing the maximum and minimum. In short, eight GRACE
products give consistent results and the ensemble mean can be used
to reveal the TWS changes in the glacier-covered mountain areas.

3.2 Bias correction of TWS from WaterGAP
WGHM

During the process of model evaluation and validation, the
underestimation phenomenon among WaterGAP WGHM
outputs was discovered (Müller et al., 2021). The comparison
between TWS changes from GRACE and the sum of TWS
changes from WGHM and glacier mass budget is shown in
Supplementary Figure S3. Both results are comparable and
WGHM underestimates the TWS changes compared with
GRACE in most of the regions. And GRACE considers glacier
changes while WaterGAP does not simulate glaciers. To ensure
accuracy, a bias-correction method is used to correct all storage
components amongWaterGAPWGHM outputs. Firstly, we assume
that the TWS changes from GRACE products (except for glaciers)
are reasonable and reliable and regarded as true values to correct the
storage changes amongWaterGAPWGHM outputs. In addition, we
believe that the proportion among all storage components is

reasonable in WaterGAP WGHM outputs. Thus, the ratio of
TWS changes between the GRACE products after removing
glaciers and the WaterGAP WGHM outputs is used for each
storage component to eliminate the underestimation or
overestimation phenomenon. After the bias correction, all storage
components in WaterGAP WGHM outputs are improved and then
applied to investigate the contribution of storage components to
TWS changes in the regions and river basins.

4 Results

4.1 Global contribution

On a global scale, TWS changes have obvious spatial
heterogeneity and locations where TWS appears to be decreasing,
where glaciers are diminishing and groundwater is being withdrawn
(Rodell et al., 2018). The calculated global mean mass changes of
TWS is −452.67 ± 310.52 Gt yr−1 during 2006–2015, while the
globally-averaged glacier mass change from IPCC SROCC
is −220.00 ± 30.00 Gt yr−1 with a glacier area of 483,155 km2

(excluding Greenland and Antarctic). Thus, the glacial melting is
equivalent to about 49% of the total TWS decline on a global scale
during 2006–2015 (Figure 1A). In other words, mountain glacier
melting accounts for almost half of the TWS decline in the major
mountains of the Earth. Other storage factors (groundwater, rivers,

TABLE 2 Data sources of the terrestrial water storage, storage components, glaciers, precipitation used in this study.

Datasets Data source Temporal
extent

Spatial
resolution

GRACE GFZ GravIS RL06 Level-3 http://gravis.gfz-potsdam.de/land 2003–2015 1.0° × 1.0°

CSR GRACE
RL05 mascons

http://www2.csr.utexas.edu/grace 0.5° × 0.5°

CSR GRACE
RL06 mascons

JPL GRACE
RL05 mascons

http://podaac.jpl.nasa.gov/grace 0.5° × 0.5°

JPL GRACE
RL06 mascons

JPL GRACE RL05 SH https://grace.jpl.nasa.gov 1.0° × 1.0°

CSR GRACE RL05 SH

GFZ GRACE RL05 SH

WaterGAP WGHM http://www.watergap.de 2003–2015 0.5° × 0.5°

Glacier mass balance https://www.ipcc.ch/srocc/ 2006–2015 \

Published reference in Brun et al. (2017) 2000–2016

Precipitation GPCP https://gpcp.umd.edu 2003–2015 2.5° × 2.5°

ERA5-Land https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-
means?tab=overview

0.1° × 0.1

GPCC https://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html 1.0° × 1.0°

Princeton http://hydrology.princeton.edu/data.php 0.25° × 0.25°

CMAP https://psl.noaa.gov/data/gridded/data.cmap.html 2.5° × 2.5°
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global wetlands, local lakes and reservoirs and so on) account for
51% of TWS changes (Figure 1A), but each storage factor plays a
different role in various regions (Rodell et al., 2018).

4.2 Regional contribution

Glaciers are mainly distributed in high-altitude mountain areas.
To better understand the impact of glaciers on TWS, we choose six
mountain regions to quantitatively assess the contribution of
glaciers to TWS changes (Figure 1A). All mountain regions have
mass losses indicated by most of GRACE products (Supplementary
Figure S1). The impact of glacier melting on TWS changes shows
significant spatial heterogeneity. There are greater contributions of
glacier changes to TWS changes in the Third Pole and surroundings
(TPs, 41%) and in Central Europe (CE, 30%) owing to a large
proportion of glaciers, while smaller in Caucasus and Middle East
(CME, 3%) and Low Latitudes (LL, 1%) due to less glacier coverage.
In Western Canada and United States (WCU), both TWS and
glacier changes display opposite variability, so the contribution of
glacier changes to TWS changes is negative (−23%). In the Southern
Andes (SA), the glacier and TWS changes are −25 and −3.43 Gt yr−1,
respectively. The TWS changes are far less than the changes in
glacier mass due to a large glacier coverage, appeared in Rodell et al.
(2018). So the contribution is 728% in this region. The glacier
melting can be converted to storage of soil, lakes and reservoirs
(Figure 1B). In short, the contribution of glaciers to TWS is not
negligible in the glacier-covered mountain regions.

To better clarify the relationship between TWS and each storage
component in the mountain regions, mass-budget estimates of
storage components are bias corrected based on GRACE TWS
results. Bias-corrected storage components in six regions are
shown in Figure 1B. Each storage component plays different
roles in different regions (Supplementary Figure S4). In CE, the
glacier and snow are the main factors to cause a TWS decrease as
indicated by a positive effect (Supplementary Figure S4), but the
opposite is true for groundwater. The soil moisture increases
together with river runoff increase caused by precipitation
increase offset the TWS decrease. The glacier mass decrease, far
greater than other factors, is the main factor to influence TWS
decline in SA, and then supporting the increase of other storage
components and offsetting the TWS decline. In CME, a significant
decline in the groundwater, resulted from a combination of recent
drought and consequent increases in groundwater demand, is the
main factor of TWS decrease, and the glacier and other factors have
a small influence on the TWS decline. In TPs, except for the glacier
melting, the sharp decline in groundwater is an important factor for
the TWS decrease, while the increased storage in rivers, reservoirs
and soil were most likely caused by the glacier melting. The influence
of glacier changes in LL seems to be negligible, while the water
storage decline in rivers, groundwater, soils and reservoirs, due to
decreased precipitation (Table 1), is the main factor for the TWS
decrease. Previous studies find that the groundwater changes,
drought and glacier retreating lead to TWS changes in parts of
WCU (Rodell et al., 2018), which is demonstrated again in this
study. Both glacier and TWS have opposite variations, and nearly all
storage factors except for glaciers display increase trends and are

helpful to TWS increase. The changes in groundwater, lakes and
wetlands are the main factors for TWS changes.

4.3 Watershed contribution

TPs, covered with the largest number of glaciers outside the
Polar Regions, has unusually high spatial variability of glaciers
induced by climate change (Huang et al., 2022), which affects the
water discharge of large rivers (e.g., Liu et al., 2020) and the TWS
changes (e.g., Wang et al., 2021). More and more attention has been
paid to the influence of glacier melting on the surface water
resources. Eight glacier-covered river basins are chosen to
compare mass-budget changes of TWS and glaciers during
2003–2015 (Figure 2A). The mass changes of TWS display a
decrease except for the Yangtze. And the mass changes of
glaciers are negative except for the Tarim. Except for the Tarim
and Yangzte basins, the glacier mass changes in other basins show
positive effects on TWS changes. There are greater contributions of
glacier changes to TWS changes in the Brahmaputra (53%), Indus
(99.89%), Amu Darya (28%) and Ili (37%) basins than in the Ganges
(13%) and Syr Darya (7%). For the Tarim and Yangtze basins, there
are opposite trends in glaciers and TWS, which may be related to the
glacier increase in the KunlunMountain and decreased precipitation
in the Tarim basin, and less glacier melting and more increased
precipitation in the Yangtze basin (Table 1), respectively. In
addition, we find that the groundwater plays a key role in most
of the river basins, especially around the southern TPs.

Bias-corrected mass changes of other storage components are
presented in Figure 2B. The glacier mass changes have great
contributions to TWS changes in most of the river basins, although
the contribution rates vary with basins (Supplementary Figure S5). In
the Amu Darya basin, the glacier-snowmelting and storage decrease in
lakes and reservoirs are an important factor in the TWS decline, likely
owing to the decreased precipitation (Table 1). Conversely, the glacier-
snow melting can replenish the increased water storage in rivers and
soils in this basin. The mass budget changes in Ili are mainly influenced
by glacier melting and decreased water storage in reservoirs and lakes.
Storage decreases in soils, lakes and groundwater are the main reasons
for TWS changes in the Syr Darya basin, while storage increase in
reservoirs induced by human activities offsets the TWS decreases. For
the Brahmaputra basin, the main influence factor is glacier melting, and
others (groundwater, rivers, and snow) play a limited role. In the
Ganges basin, the groundwater decline, extracted to irrigate crops
(Rodell et al., 2018), is the main factor for TWS decreases, and the
second is glacier-snowmelting. In the Tarim basin, the glacier increases
dictated the TWS decline, and the decrease of water storage in
groundwater, snow and rivers had a positive influence on TWS
decline. The influence of glacier changes on TWS is negligible in the
Yangtze basin, while the reservoirs are the main factor to the TWS
increases, and other factors induced by precipitation increases also
contributed to the TWS increases. The TWS appears a decrease trend in
the Indus basin in 2003–2015, agree well with results from Zhu et al.
(2021), and the glacier mass changes are nearly equal to TWS decline
and the influence fromother factors is negligible (Supplementary Figure
S5). In the other words, the glacier melting dominates the changes of
TWS in this basin.
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5 Conclusion and discussion

This work quantified the effect of glacier changes on TWS
changes using multi-source datasets over mountain regions. TWS
and glacier mainly present decreasing trends in the mountains, but
the contribution rates of glacier changes to TWS changes are
spatially heterogeneous. On a global scale, the glacial melting is
equivalent to nearly half of the total TWS decline during 2006–2015.
For regions and watersheds, the contribution rates range from −23%
to 728%, −21% to 99%, respectively. There are larger contributions
in more glacier-covered regions, while smaller in less glacier-covered
regions. Except for glaciers, other storage components play a
significant role in TWS changes.

Accurate accounting of changes surface water resources
availability is essential for environmental and human demands,
regionally sustainable development of society, especially for
mountain regions and its downstream. With the global warming,
mountain glacier has gradually become a non-ignorable factor
affecting surface water resources. Previous studies projected that
glaciers could almost disappear in some mountain ranges in this
century with the present mass-loss rates, and thus, its contribution
to TWS changes will become more and more important and then
influences the changes in surface water resources.

It is worth mentioning that our study is limited by several
factors. First, the glacier data and TWS data, although an
improvement derived from reliable data and reasonable
method, are still uncertain due to the lack of the validation
from a large number of field observations. Second, our study
period focuses on recent 10 years, which is not long enough to
allow for an investigation into interannual or decadal variations.
Third, the main factor to influence TWS changes is precipitation
for most of regions. In our study, we investigated the influence
from domain-averaged annual precipitation. But due to the
different performance of precipitation data, five datasets
display different trends. In the future research, precipitation
data should be validated and then conclude the quantitative
and unified precipitation trends. Fourth, the application of
results is limited due to the restriction of our research in of
space and time. The current results only give a quantitative
understanding about the contribution of glacier changes to
TWS changes around the mountain regions. Despite these
limitations, our study improved accounting of changes in
freshwater availability, providing new knowledge for integrated
water resources management for mountain regions in the context
of global changes.
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