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Editorial on the Research Topic

Advances and trends in nutraceutical and functional plant-based food

The production of large amounts of animal-based foods (such as meat, fish, eggs,

and milk) has been suggested as one of the negative impacts on global environmental

sustainability. Traditional livestock production for food typically causes more pollution

and water use, which cause higher greenhouse gas emissions and lead to greater losses

in biodiversity. As a result of environmental, ethical, and health concerns, the market for

plant-based food is expanding rapidly, and the food industry is creating a new generation

of plant-based products to meet this demand. Plant-based foods are commonly classified

into vegetables, cereals, legumes, fruits, and nuts, and their derived processed counterparts

such as baked goods, pasta, breakfast cereals, vegetable preserves, fermented fruits and

vegetables, meat analogs, plant-based emulsions, gels, oils, and other delivery systems. Algae

and mushrooms are also being explored as sources of novel foods.

Compared to animal-based food, there has been increasing scientific research on

plant-based foods because of their potential sustainability and health-related benefits as

foods rich in starch, proteins, lipids, dietary fiber, and phytonutrients. From microalgae to

legumes, the potential health benefits of these vegetable ingredients are being explored and

tested (1, 2). Cutting-edge techniques such as nanotechnology and encapsulation are being

used to enhance the efficacy and bioavailability of components, making them even more

attractive to consumers (3). The main challenge is to achieve nutrition and functionality

in these plant-based foods using healthy and sustainable plant-derived ingredients with

desirable appearance, flavor, sensory, and other physicochemical attributes (2, 3). It is also

argued that large quantities of nutraceuticals and functional foods have to be consumed to

achieve the alleged health benefits, despite the fact that the safety and health implications of

plant bioactive compounds are not fully clear.

Eleven quality papers, eight research articles, and three review articles are published

on this Research Topic. The following topics were investigated: “Citrus peel flavonoid

extracts—potential beneficial bioactivities and regulation of intestinal microecology in vitro”

(Li et al.); the role of macelignan in inhibiting Tau phosphorylation and Aβ aggregation in

the cell model (Gu et al.); the potential benefits of using soybean press cake as an effective
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substrate for the commercial production of conjugated linoleic

acid and eicosapentaenoic acid by Bifidobacterium lactis (Azari

et al.); chrysanthemum flavonoids’ main components, luteolin

and luteoloside, and their potential hypolipidemic mechanism

(Sun et al.); the potential antidepressant effects of chlorella and

lion’s mane mushroom complex as a dietary supplement (Chou

et al.); the improvement of maize grain filling through novel

high planting density and varying nitrogen application rate (Ren

et al.); the assessment of golden-flowered tea (Camellia nitidissima

Chi) fractions and their anti-non-small cell lung cancer (NSCLC)

effects in vitro and in vivo (Wang et al.); “The nutritional

value of the extrusion-processed, micronutrient-fortified corn snacks

enriched with protein and dietary fiber” (Shah et al.). The reviews

include a summary of the phytochemistry, pharmacology, and

promising traditional uses of Lagenaria siceraria Molina (Standl.)

fruit (Saeed et al.); ethnobotanical and pharmacological aspects

of Allium sativum L. (garlic), with notes on its phytochemistry,

ethnopharmacology, toxicological aspects, and clinical studies

(Tudu et al.); and the advances in the study of Syzygium

aromaticum (L) Merr. Perry, an aromatic plant in tropical

regions worldwide, including information on its composition,

phytochemistry, bioactive substances, and potential applications

(Xue et al.).

In conclusion, the present Research Topic provides several

examples of nutraceutical and functional plant-based foods and

their applications. We hope it can provide new insights into

innovative scientific understanding in this area and promote

interest in further work and studies required for the development

of nutraceuticals and functional plant-based foods.
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Inhibitory Effects of Macelignan on
Tau Phosphorylation and Aβ
Aggregation in the Cell Model of
Alzheimer’s Disease
Liang Gu 1,2†, Nan Cai 1,2†, Meiting Li 1, Decheng Bi 1,3, Lijun Yao 1, Weishan Fang 1, Yan Wu 4,

Zhangli Hu 1, Qiong Liu 1, Zhijian Lin 5, Jun Lu 1,3,6,7* and Xu Xu 1*

1 Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant
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Auckland, New Zealand, 4 Instrumental Analysis Center, Shenzhen University, Shenzhen, China, 5Department of Neurology,

Peking University Shenzhen Hospital, Shenzhen, China, 6 School of Public Health and Interdisciplinary Studies, Faculty of

Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand, 7Maurice Wilkins Centre for

Molecular Discovery, Auckland, New Zealand

Alzheimer’s disease (AD) is a neurodegenerative disorder mainly affecting old population.

In this study, two Tau overexpressing cell lines (SH-SY5Y/Tau and HEK293/Tau),

N2a/SweAPP cell line, and 3×Transgene (APPswe/PS1M146V/TauP301L) mouse

primary nerve cell lines were used as AD models to study the activity and molecular

mechanism of macelignan, a natural compound extracted from Myristica fragrans,

against AD. Our study showed that macelignan could reduce the phosphorylation of

Tau at Thr 231 site, Ser 396 site, and Ser 404 site in two overexpressing Tau cell lines. It

also could decrease the phosphorylation of Tau at Ser 404 site in mouse primary neural

cells. Further investigation of its mechanism found that macelignan could reduce the

phosphorylation of Tau by increasing the level of autophagy and enhancing PP2A activity

in Tau overexpressing cells. Additionally, macelignan could activate the PERK/eIF2α

signaling pathway to reduce BACE1 translation, which further inhibits the cleavage of

APP and ultimately suppresses Aβ deposition in N2a/SweAPP cells. Taken together, our

results indicate that macelignan has the potential to be developed as a treatment for AD.

Keywords: Alzheimer’s disease, macelignan, AMPK pathway, autophagy, PERK/eIF2α pathway

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder with a global public fitness priority
identified by the World Health Organization (1). In the past few decades, four United States Food
and Drug Administration (FDA)-approved medications have been used for managing cognitive
impairment and dysfunction symptoms of AD (2). However, these clinical medicines can only
alleviate the symptom of AD rather than remedy it (3). There are presently >100 compounds in
AD clinical trials (4). Although a lot have been known about the pathogenesis since the first report
of AD in 1907 (5), there is no effective treatment to date. Searching for new treatment is still an
on-going task for scientists and physicians.
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The pathological features of AD encompass amyloid plaques,
neurofibrillary tangles (NFTs), and neuroinflammation (6).
Amyloid plaques and NFTs are typical pathological facets. NFTs
mainly consist of intracellular paired helical filaments (PHFs)
of the abnormal hyperphosphorylated form of tau protein (7).
Under normal circumstances, Tau promotes the assembly and
steadiness of microtubules and the transport of vesicles in
neuro cells (8). When Tau encounters the released kinase, it
is hyperphosphorylated. The hyperphosphorylated Tau further
leads to Tau oligomerization. These hyperphosphorylated Tau are
converted to a range of filaments, such as PHFs, which aggregate
into NFTs (2). The existence of NFTs in the cytoplasm of
neurons leads to the loss of communication and signal processing
between neurons, causing neuronal apoptosis (9). Based on this,
methylene blue has been used in an AD clinical trial with
promising outcomes (10). The mechanism study in a tauopathy
mouse model suggests that methylene blue could reduce Tau
fibrillization and aggregation, and induce autophagy to alleviate
neuron dying (11).

Amyloid plaques are formed through the precipitation
of amyloid β-protein (Aβ) outside nerve cells. Aβ peptide
is produced when β-amyloid precursor protein (APP) is
sequentially cleaved by β-secretase and γ-secretase. The
aberrancy cleavage of APP and the mutations of γ- and β-
secretase all account for the abnormal manufacturing of Aβ

peptide, which may increase the neuron loss and synaptic
damage, and amyloid plaques (12). Many pharmaceutical
companies have committed resources to develop Aβ-targeted
drugs. However, many compounds, such as Verubecestat and
Avagacestat, have failed in phase 3 clinical trials. Owing to the
elusive pathogenesis of AD, the single-target anti-AD drugs
appear to be unsuccessful based on failed clinical trials (13, 14).
Hence, multi-target drugs are now proposed to fight against
AD (15).

Natural compounds are gaining attention due to their
bioactivities. Myristica fragrans (M. fragrans) is a tropical
evergreen tree native to Indonesia and cultivated in India,
Iran, the West Indies, and South America. Mace is the seed
of nutmeg plant, M. fragrans, containing components such as
flavonoids, neolignans, and lignans. Among these components,
lignan has shown great therapeutic potential in various diseases
(16). Macelignan (MLN, CAS 107534-93-0) is a sort of lignan
derived from M. fragrans mace. Pharmacological studies have
shown that MLN possesses a broad range of properties, such
as anti-inflammatory (17), anti-cancer (18), anti-bacterial (19),
and hepatoprotective activity (20). Studies have found that MLN

Abbreviations: AD, Alzheimer’s disease; Aβ, amyloid β-protein; APP, β-

amyloid precursor protein; AMPK, AMP-activated protein kinase; BSA, bovine

serum albumin; CCK, cell counting kit; DAPI, 4′,6-Diamidino-2-Phenylindole,

Dihydrochloride; DMEM, Dulbeco’s modified Eagle’s medium; FBS, fetal bovines

serum; FDA, United States Food and Drug Administration; HEK293, human

embryonic kidney 293; HRP, orseradish peroxidase; LC3, microtubule-associated

protein II light chain3; LKB1, liver kinase B1; MLN, macelignan; mTOR1,

mammalian target of rapamycin; NC, nitrocellulose filter; NFTs, neurofibrillary

tangles; PBS, phosphate-buffered saline; PFA, paraformaldehyde; p-AMPK,

phospho-AMPK; p-LKB1, phospho-LKB1; RIPA, radioimmunoprecipitation

assay; SIRT1, silent information regulator of transcription 1; SPF, specific

pathogen-free; ThT, thioflavin T.

could effectively reduce the hippocampal microglial activation
induced by lipopolysaccharide in rat’s brain, and suppress the
spatial memory impairments caused by lipopolysaccharide in
mice (21). Nevertheless, MLN’s effect on the pathophysiology of
AD is still unknown.

In this study, the anti-AD activity of MLN and its
possible mechanism of action were investigated through Tau
hyperphosphorylation and Aβ production in a number of AD
cell models.

MATERIALS AND METHODS

Materials
MLN was bought from Selleck Chem (Houston, TX,
United States). Thioflavin T (ThT), Dimethyl Sulfoxide,
Paraformaldehyde (PFA) and 4’,6-Diamidino-2-Phenylindole
(DAPI) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Fetal bovine serum (FBS) was procured from Gibco
(Grand Island, NY, USA). Gluta MAX, L-glutamine, B27
supplement, Dulbecco’s Modified Eagle’s medium (DMEM),
trypsin, opti-MEM, penicillin, neurobasal medium, MEM
Non-Essential Amino Acids Solution (MEM NEAA), and
streptomycin were purchased from Biological Industries
(Kibbutz Beit Haemek, Israel). Bicinchoninic acid (BCA), cell
counting kit (CCK)-8 and cell lysis buffer were obtained from
KeyGen Biotech (Nanjing, Jiangsu Province, China). Phosphate-
buffered saline (PBS) and Hank’s balanced salt solution (HBSS)
were purchased from Hyclone (Logan, UT, USA). Antibodies
of AMP-activated protein kinase [AMPK (2532)], p-AMPK
(2535), liver kinase B1 [LKB1 (3047)], p-LKB1 (3482), silent
information regulator of transcription 1 [SIRT1 (9475)], p62
(5114), Beclin-1 (3495), mechanistic target of rapamycin [mTOR
2983)], p-mTOR (2971), p70 S6K (2708), p-p70 S6K (9205),
microtubule-associated protein II light chain3 [(LC3, 12741)],
eIF2α (9722), p-eIF2α (9721), PERK(3192), p-PERK(3179) and
β-actin (3700) were procured from Cell Signaling Technology
(Beverly, MA, USA). Antibodies of Tau-5 (ab80579), pS396-Tau
(ab109390), pS404-Tau (ab92676), pT231-Tau (ab151559),
MAP2 (ab5392), PP2Aα (ab137825), PP2Aα+ β (ab32104), APP
(ab32136), BACE1 (ab2077) and horseradish peroxidase (HRP)-
conjugated secondary antibodies were bought from Abcam
(Cambridge, UK). Antibodies of Aβ (803002) was procured from
Biologend (Signet, USA). Bovine serum albumin (BSA) and
other chemical reagents used in this study were purchased from
Shanghai Macklin Biochemical (Shanghai, China).

Cell Culture
SH-SY5Y/Tau cells were durably transfected with the longest
human Tau 441 cDNA from human neuroblastoma SH-SY5Y
cells (Shanghai Cell Bank of the Chinese Academy of Sciences,
Shanghai, China). DMEM/F-12 medium blended with 10% FBS,
1% GlutaMAX, 1% MEM NEAA and 1mM sodium pyruvate
were used to culture SH-SY5Y/Tau cells. Human embryonic
kidney 293 (HEK293) cells with stable expression of the longest
human Tau 441 cDNA were created and named as HEK293/Tau,
a gift from Professor Jianzhi Wang of Tongji Medical College,
Huazhong University of Science and Technology. HEK293/Tau
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cells were cultured in the medium containing 90% DMEM,
10% FBS, and G-418 antibiotics (0.2 mg/mL). Swedish mutant
APP overexpressed in mouse neuroblastoma N2a cells. The
cells have been named N2a/SweAPP cells. The cell line was
a gift and provided by Professor Yunwu Zhang from Xiamen
University. N2a/SweAPP cells were cultured in 50% DMEM
medium blended with 40% opti-MEM medium and 10% FBS.
All cell culture media were added with 100 unit/mL penicillin
and 100µg/mL streptomycin. All cells were maintained under a
humidified environment of 95% air and 5% CO2 at 37

◦C.

Primary Neuron Acquisition and Culture
Mice were stably transfected with mutant human
APPswe,TauP301L genes and mutant mice gene PS1M146V
(called 3× Transgene-ADmouse) were bought from the Jackson
Laboratory (JAX order number 3591206, Bar Harbor, ME, USA).
The 3× Transgene-AD mice were bred at 12 h mild 12 h darkish
stipulations of specific pathogen-free (SPF) circumstances. All
animal experiments were conducted with the approval of the
Laboratory Animal Ethics Committee of Shenzhen University
(Permit Number:SYXK 2014-0140) and in accordance with
the guidelines and regulations for animal experiments. The
hippocampus of the new-born (within 24 h) 3 × Transgene-AD
mice was used to obtain the primary neuron cells. The pre-cold
HBSS was used to wash the dissected hippocampal tissues,
then hippocampal tissues were cut into small portions using a
surgical blade. These fragments were transferred to a new plate
containing papain (2 mg/mL) and digested for 30min at 37◦C.
The digested cells were filtrated and then centrifuged at 1,000
g for 5min. After discarding the supernatant, the cell pellets
were resuspended in medium and plated on poly-L-lysine (0.1
mg/mL)-coated plates. A neurobasal medium containing 2%
B27 supplement, 1% L-glutamine, 100 unit/mL penicillin, and
100µg/mL streptomycin was used to culture the primary neuron
cells in a humidified 5% CO2 environment at 37◦C.

Cell Viability Assay
Cells (5 × 103 cells/well) were incubated in a 96-well plate with
different concentrations (0, 10, 15, and 20µM) of MLN for
24 h. After the treatment, supernatant was removed, and 100
µL solution containing 10% CCK-8 solution and 90% DMEM
medium was added to each well. The absorbance of each well
was measured at 450 nm using a Spectra Max microplate reader
(Thermo Scientific, Hudson, NH, USA) after 2 h incubation
at 37◦C.

Immunofluorescence Assay
Cells were uniformly seeded in confocal dishes, incubated
overnight, and then stimulated with 20µM MLN for 24 h.
Cold PBS was used to rinse the cells for three times and then
4% PFA was added to cells at room temperature for 15min.
Cells were blocked by PBS solution containing 10% (w/v) goat
serum and 0.1% Triton X-100 at room temperature for 1 h.
After that, primary antibodies were added to the cells and
incubated for 24 h at 4◦C. Cells were then washed thrice with PBS
and incubated for 1 h with Alexa Fluor-conjugated secondary
antibody at the room temperature. Cell nuclei were stained with

DAPI. Confocal microscope (Carl Zeiss, Thornwood, NY, USA)
was used to examine the stained samples. Images were acquired
and processed by using the ImageJ software (https://imagej.nih.
gov/ij/).

Transmission Electron Microscopy
Analysis
Samples containing R3-Tau (20µM), and heparin (16µM) were
incubated for 24 h at 37 ◦C with or without MLN (20µM).
After the incubation, each sample was blanketed on a 230-
mesh copper grid (Beijing Zhongjingkeyi Technology Co.) and
incubated at room temperature for 2min. Then, after washed
twice with distilled water, 5 µL of 1% uranyl acetate (w/v, H2O)
was dropped on the copper mesh and stained for 1min. Filter
paper was used to remove unbond uranyl acetate. Samples were
dried at room temperature. A JEM-1230 transmission electron
microscope (JEOL, Tokyo, Japan) was used to obtain images of
the samples at a magnification of 50,000x.

Thioflavin-T Fluorescence Assay
Freshly prepared R3-Tau, heparin, and ThT were dissolved in
50mMPBS and blended with 5, 10, 15, 20µMMLN, or Dimethyl
Sulfoxide (Ctrl group). And Blank group was added with heparin,
Dimethyl Sulfoxide and ThT. Each well of the cell seeding 96-well
plate was added with 200 µL of the above mixture and incubated
at 37◦C. A microplate reader (Fluoroskan Ascent FL, Thermo
Scientific) was used to excite the samples at 440 nm and record
absorbance at 485 nm filter. The intensity of the fluorescence of
each sample at one-of-a-kind time points was recorded.

Western Blot Analysis
After being treated with MLN, cells were gathered and washed
with cold PBS three times. Cell lysis buffer containing 1%
PMSF (100mM), 1% protease, and phosphatase inhibitor was
added to the cells on ice for 30min. Protein concentrations of
lysates were measured using the BCA kit. Proteins were then
separated through SDS-PAGE. After strolling of SDS-PAGE,
the proteins were transferred onto a nitrocellulose filter (NC)
membrane (Merch/Millipore, Schwalbach, Germany). The NC
membranes were blocked with 5% BSA solution for 1 h and
incubated with primary antibodies for 24 h at 4◦C. TBST (Tris-
buffered saline, 0.1% Tween 20) solution was used to wash the
membranes for three times. HRP-conjugated secondary antibody
was added and incubated at the room temperature for 1 h. After
washing membranes three times with TBST, the specific binding
proteins were shown by LAS3000 luminescent image analyzer
(Fujifilm Life Science, Tokyo, Japan) after adding an enhanced
chemiluminescence solution.

Statistics
Results were presented as mean ± standard deviation (SD)
of at least triplicate independent experiments in every group.
Statistical analyses were carried out by using the GraphPad
Prism 5.0 software (GraphPad Software, San Diego, CA, USA).
Unpaired Student’s-test was used for the comparison of two
groups. The values of ∗ p < 0.05, ∗∗ p < 0.01, and ∗∗∗ p < 0.001,
stand for statistically significant differences.
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RESULTS

MLN Suppressed the Aggregation of Tau in

vitro
Tau can be induced to form Tau fibers by heparin sodium in
vitro, thus imitating the nerve fiber tangles formed by abnormal
aggregation of Tau in vivo. Thioflavin T could bind to the
beta structure of nerve fibers to emit fluorescence. In order to
investigate the effects of MLN on Tau aggregation intuitively,
we used the fluorescence assay of ThT and TEM. As shown
in Figure 1A, the intensity of fluorescence of R3-Tau increased
as time progress. In contrast, the intensity of fluorescence
in the MLN treatment group was significantly suppressed in
a concentration-dependent manner. The inhibition of R3-Tau
aggregation by MLN could be more directly observed with TEM
analysis. The TEM images confirmed that the nerve fiber tangles
in the MLN were much less than that in the control (Figure 1B).
Results of TEM and ThT experiments indicated that MLN had a
suppression effect on Tau aggregation.

MLN Reduced Tau Phosphorylation in Tau
Overexpressing Cells and 3 × Tg-AD
Mouse Primary Neuron Cells
SH-SY5Y/Tau and HEK293/Tau cells are two nerve cell lines
that could overexpress Tau. 3 × Tg-AD mouse primary neurons
are able to fully simulate the pathological features of AD, hence
are considered to be the ideal cell model for studying AD.
In this study, the effects and the mechanism of MLN on Tau
phosphorylation were investigated by using these cells. After
being incubated with different concentrations (0, 5, 10, 15,
20µM) ofMLN for 24 h, the cell viability assay showed that MLN
were not cytotoxic to both SH-SY5Y/Tau and HEK293/Tau cells
(Figure 2A). Total Tau and phosphorylated Tau in SH-SY5Y/Tau,
HEK293/Tau, and 3×Transgene-ADmouse primary neuron cells
were measured. As shown in Figures 2B,C, the protein levels
of pS396-Tau/Tau, pS404-Tau/Tau, and pT231-Tau/Tau were
substantially diminished at a dose-dependent manner in Tau
over-expressing cells. The immunofluorescence staining results
were consistent with that of western blot (Figure 2D), which
confirmed that MLN had an inhibitory effect on pS404-Tau
expression in HEK293/Tau cells. Results in the 3×Transgene-
AD mouse primary neurons were similar to that of Tau over-
expressing cells. After treatment with 20µM MLN, the intensity
of green fluorescence, which represented the levels of pS404-
Tau, in primary neuron cells was decreased significantly, and the
total Tau showed no significant change, which suggests that MLN
treatment can reduce phosphorylated Tau levels (Figure 2E).

MLN Promoted PP2A Activity in Tau
Overexpressing Cells
PP2A is a kind of phosphatase that regulates the phosphorylation
of Tau, which is closely related to the Alzheimer’s disease (22).
Studies have shown that sodium selenate could enhance PP2A
activity and improve cognitive impairment in a PP2A-dependent
manner in AD models with the aid of dysregulating Tau
phosphorylation (23). The effects of MLN on PP2A activity was

investigated in this study. Results were shown in Figures 3A,B.
PP2A α and PP2A α + β activities were significantly enhanced at
a concentration-dependent manner. In general, MLN treatment
promotes PP2A activity in Tau over-expressing cells.

MLN Enhanced Autophagy in Tau
Overexpressing Cells
Autophagy is an essential degradation pathway in mammalian
cells to eliminate abnormal protein aggregation and accountable
for protein homeostasis and neuronal health. Autophagy is
associated with many neurodegenerative diseases (24). Beclin-
1, LC3 and p62 are usually regarded as specific markers of
autophagy, and the adjustments in their expression are often
associated with the changes in autophagy. In this study, the
effects of MLN on autophagy was investigated. As shown in
Figures 4A,B, the expressions of Beclin-1 and LC3 II/LC3 I
increased significantly by MLN treatment, while the expression
of p62 decreased. These autophagy-related protein expression
adjustments demonstrated that MLN could activate autophagy.

MLN Activated the AMPK/MTOR Signal
Pathway to Enhance Autophagy
To understand the mechanism by which MLN activates
autophagy, the related signal pathways were investigated. Cell
extracts from SH-SY5Y/Tau and HEK293/Tau were analyzed
using Western blot for the expression and phosphorylation
level of AMPK, mTOR, and p70 S6K. As shown in Figure 4C,
the protein levels of p-AMPK increased in a dose-dependent
manner with MLN treatment. The phosphorylation of mTOR
and p70 S6K were dose-dependently reduced. However, the
expressions of AMPK,mTOR, and p70 S6K showed no significant
changes. These changes indicated that MLN could upregulate the
AMPK/mTOR signal pathway to promote autophagy. AMPK is
a vital nutrient sensor. The changes in AMPK phosphorylation
are always linked to energy metabolism. Thus, the variations in
the AMPK upstream regulation proteins SIRT1 and LKB1 were
examined. As shown in Figures 4C,D, the protein levels of SIRT1
and p-LKB1 increased when treated with MLN. In summary,
after MLN treatment, the AMPK/mTOR signal pathway in SH-
SY5Y and HEK293/Tau cells were upregulated, which activated
the cellular level of autophagy.

MLN Enhanced PERK/eIF2α Signal
Pathway to Decline Aβ Aggregation in
N2a/SweAPP Cells
Since Aβ deposition is one of pathogenesis in AD, the effects
of MLN on Aβ in N2a/SweAPP cells were investigated. After
incubating with one of the concentrations (0, 5, 10, 15, 20µM)
of MLN for 24 h, N2a/SweAPP cell viability was measured, which
indicated that MLN was not cytotoxic (Figure 5A). Then, the
expressions of Aβ and APP in N2a/SweAPP were examined using
Western blot assay. Results showed that MLN decreased APP
and Aβ expression in a dose-dependent manner (Figures 5B,C).
Immunofluorescence staining results were consistent with that of
Western blot, which confirmed that MLN had a downregulation
effect on Aβ (Figure 5D). Next, the mechanism of Aβ inhibition
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FIGURE 1 | Macelignan (MLN) inhibits Tau aggregation in vitro. (A) The effects of MLN on real-time ThT fluorescence intensity detection of R3-Tau. (B) The effects of

MLN (20µM) on R3-Tau aggregation by TEM images. Scale bar = 500 nm.

FIGURE 2 | Macelignan (MLN) inhibits Tau phosphorylation in Tau overexpressing cells and 3×Transgene-AD mouse primary neuron cells. (A) SH-SY5Y/Tau and HEK

293/Tau cells were incubated in serial concentrations of MLN (0, 5, 10, 15, and 20µM) for 24 h and then the effect of MLN on cell viability was measured by the

CCK-8 assay. (B) The effect of MLN on the protein levels of Tau, pS396-Tau, pS404-Tau and pT231-Tau in Tau over-expressing cells were determined by Western blot

analysis. (C) The protein relative intensity of Tau, pS396-Tau, pS404-Tau, pT231-Tau in Tau over-expressing cells was shown. β-actin was used as a loading control in

the Western blot analysis. All results were from independent triplicate experiments, *p < 0.05, **p < 0.01, and ***p < 0.001 vs. control. Immunofluorescence staining

was used to show the effect of MLN on Tau and its phosphorylation. DAPI (in blue) was used to stain the nuclei. Map2 (in red) and Tau or pS404-Tau (in green) were

stained using their antibodies. (D) The staining results in HEK/293 cells (scale bar=10µm) were shown. (E) The staining results in primary neuron cells (Scale

bar=50µm) were shown.
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FIGURE 3 | Macelignan (MLN) promotes PP2A activity in Tau overexpressing cells. (A) SH-SY5Y/Tau and HEK293/Tau cells were added with series concentrations of

MLN (0, 10, 15 and 20µM) for 24 h, and then the effects of MLN on the levels of PP2A α and PP2A α + β were determined using Western blot analysis. (B) The

protein relative intensity of PP2A α and PP2A α + β in Tau over-expressing cells were shown. β-actin was used as a loading control in the Western blot analysis. All

results were from three independent experiments, *p < 0.05, **p < 0.01, and ***p < 0.001 vs. control.

was explored. Considering that BACE1 is the key rate-limiting
enzyme (25) accountable for Aβ deposition and the PERK/eIF2α
signal pathway is highly drawn into BACE1 translation (26),

whether MLN regulates PERK/eIF2α signal pathway to reduce
Aβ deposition was investigated. As shown in Figures 5E,F,
the phosphorylation of PERK and eIF2α in N2a/SweAPP
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FIGURE 4 | Macelignan (MLN) enhances autophagy in Tau overexpressing cells. SH-SY5Y/Tau and HEK293/Tau cells were incubated with series concentrations of

MLN (0, 10, 15 and 20µM) for 24 h and then their effects on the levels of autophagy-related proteins (Beclin-1, LC3, p62) were measured by Western blot analysis

and presented in (A). The differences of relative intensity of those proteins were shown in (B). Effects of MLN on the AMPK/mTOR pathway-related protein (SIRT1,

LKB1, AMPK, mTOR, p70S6K) were measured by Western blot and shown in (C). The differences of relative intensity of those proteins were shown in (D). β-actin was

used as a loading control in the Western blot analysis. All results were from three independent experiments, *p < 0.05, **p < 0.01, and ***p < 0.001 vs. control.

cells decreased after MLN treatment. Taken together, the Aβ

deposition, expression of APP, and phosphorylation of PERK
and eIF2α were all decreased in a dose-dependent manner in
N2a/SweAPP cells with the treatment of MLN.

DISCUSSION

Recent statistics show that 6.2 million Americans have AD and
will increase to 13.8 million by 2060 (27). Although some clinical
drugs can alleviate the symptoms of AD, there is no cure. In
the present research, it is found that MLN had a good anti-AD
potential through reducing Tau phosphorylation and decreasing
Aβ aggregation.

Here, it was observed that MLN could decrease the R3-Tau’s
ThT fluorescence intensity at a dose-dependent manner and
inhibit the aggregation of Tau in vitro, which were comparable
to the results of a previous study (28), suggesting MLN has
neuroprotective effects. It was additionally noticed that the
phosphorylation of Tau was significantly reduced at Ser 404
site in primary cortical neurons and a significant decrease in
phosphorylated Tau at Ser 396, Ser 404, and Thr 231 site in SH-
SY5Y/Tau and HEK293/Tau cells in response to MLN treatment.
Nerve fiber tangles caused by abnormally excessive ranges of
phosphorylation of Tau are one of the typical pathological aspects
of AD (2). It is known that under normal circumstances, Tau
exists in neurons, induces the microtubule bunching, maintains
microtubule stability, and normalize axonal transport of nerves
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FIGURE 5 | Maceglinan (MLN) decreases Aβ production in N2a/SweAPP cells. (A) The effects of macelignan on N2a/SweAPP cell viability were measured by CCK-8

assay. (B) N2a/SweAPP cells were added with series concentrations of MLN (0, 5, 10, 15 and 20µM) for 24 h and then the effects of MLN on the expression of APP

and Aβ were determined by Western blot analysis, and the differences in protein relative intensity were shown in (C). (D) Immunofluorescence staining was used to

show the effects of MLN on Aβ. DAPI (in blue) was used to stain the nuclei, and Aβ (in green) was stained by using Aβ antibody. Scale bar=10µm. (E) eIF2α and PERK

were analyzed by using Western blot assay. And (F) The differences of relative intensity of p-PERK/PERK, p-eIF2α/eIF2α, and BACE1 bands were shown. β-actin was

used as a loading control in the Western blot analysis. All results were from independent triplicate experiments, *p < 0.05, **p < 0.01, and ***p < 0.001 vs. control.

(29). When hyperphosphorylation happens to Tau, its bound
affinity to microtubules and depolymerization decrease (30). It
has been reported that decreasing Tau hyperphosphorylation has

been considered as an approach to improve cognition (31). Our

present study found thatMLN could reduce the expression of Tau
phosphorylation, which may further inhibit Tau aggregation and

the formation of nerve fiber tangles.
It has been suggested that a number of post-translational

changes of Tau play an important function in the aggregation
of Tau linked to AD, and Tau phosphorylation is the

primary one amongst those post-translational modifications

(32). The disruption of the balance between Tau kinase and
phosphatase activities is considered the cause of the unusual

Tau phosphorylation (33). Decrease in phosphatase activity is
related to ordinary phosphorylation and aggregation of Tau
in AD (34). PP2A is a kinase related to Tau phosphorylation,

consisting of a structural A subunit (α and β subtypes), a highly
variable regulatory subunit B, and a catalytic C subunit (α and

β subtypes) (35, 36). Previous studies have proven that the

inhibition of PP2A activity results in Tau hyperphosphorylation
and spatial memory deficiency (37), which indicates that PP2A
might be a therapeutic target for AD. In the present study, we
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FIGURE 6 | The proposed molecular mechanism of macelignan on

anti-Alzheimer’s Disease activity.

demonstrated that the treatment of MLN could enhance the
activity of PP2A, which may contribute to the downregulation of
Tau phosphorylation.

Previous studies have proven autophagy can manage
the renewal of soluble cytoplasmic proteins, as a result
decreasing the accumulation of atypical proteins, which prevents
neurodegenerative diseases (11, 38, 39). Further studies have
found that the expression of Beclin-1 is significantly reduced in
Beclin-1-deficient transgenic mice, which leads to a decrease of
autophagy in neurons which is the reason for neurodegenerative
diseases (40). LC3 is one of the biomarkers of autophagy,
which is crucial for forming autophagosomes during autophagy
(41). Another biomarker of autophagy, p62, can interact with
LC3 to remove protein aggregation (42). Our research found
that levels of LC3 and Beclin-1 were increased, and p62 was
decreased in SH-SY5Y/Tau and HEK293/Tau cells after the
treatment of MLN. AMPK is a vital energy sensor in cells. Some
studies found that the downregulation of AMPK may relate to
neurodegenerative diseases such as AD (43). Our results showed
that MLN could upregulate AMPK phosphorylation, further
downregulating the expression of p-mTOR and p-p70S6K to
activate autophagy in Tau overexpressing cells. Previous studies
found that the activation of SIRT1 in the brain could modulate
amyloid neuropathology in the AD brain (44), and other studies
also indicated that SIRT1 could regulate the AMPK/mTOR
pathway (45). LKB1 is an upstream enzyme of AMPK, which
regulates the activation of AMPK through phosphorylation
(46). Our results showed that MLN could stimulate SIRT1
to activate LKB1 phosphorylation, which further promotes
phosphorylated AMPK expression. This suggests that MLN
could stimulate SIRT1 and LKB1, the upstream enzymes of
AMPK. In turn, this results in AMPK activation to improve
cellular energy metabolism, which promotes autophagy to
decrease the hyperphosphorylation of Tau. All those ultimately
prevent phosphorylated Tau to form NFTs.

Recently, multi-target strategy against AD has become a
research focus. We thereby hypothesize that apart from Tau
phosphorylation inhibition, MLN may have an effect on
amyloid plaques as well. To explore this effect, we used
N2a/SweAPP cells, which overexpress APP as well as BACE1
and Aβ. We showed that MLN could decrease Aβ and
APP expression in N2a/SweAPP cells. Endoplasmic reticulum
performs many critical cellular functions in the body, including
protein homeostasis and lipid formation. When proteins in the
endoplasmic reticulum are misfolded, they trigger endoplasmic
reticulum stress, which in response makes phosphorylated eIF2α
to induce the timely closure of protein synthesis to protect cells
(47). However, hyperphosphorylation of eIF2α can persistently
inhibit the translation of protein synthesis, which may lead
to synaptic failure, accompanied by abnormal expression
of synaptic proteins, and ultimately cause neurodegenerative
changes and memory deficits (48). A previous study verified
that Thamnolia vermicularis extracts could diminish the
phosphorylation of PERK and eIF2α in CHO-APP/BACE1
cells and astrocytes, which indicates that the response to
the misfolded protein is involved in the amyloid plaque
formation (49). Our results are consistent with the previous
findings, showing that MLN can decrease the phosphorylation
of PERK and eIF2α to reduce BACE1 expression. Therefore, we
conclude that MLN can activate the misfolded protein response-
related signal pathway to reduce BACE1 translation, which
further inhibits the cleavage of APP and ultimately suppresses
Aβ deposition.

A previous study has demonstrated that MLN has a
neuroprotective property by assuaging neuroinflammation (50).
Different from this result, our results illustrate that MLN could
improve AD via reduction of both Tau hyperphosphorylation
and Aβ aggregation. Taken all results together, the proposed
molecular mechanism for MLN in AD treatment is that
MLN could activate PP2A and SIRT1/AMPK/mTOR signaling-
mediated autophagy to reduce Tau phosphorylation. In the
meantime, it also activates the PERK/eIF2α signal pathways to
suppress Aβ deposition. The summarized molecular mechanism
is shown in Figure 6.

CONCLUSION

In summary, our results show that MLN can inhibit both Tau
hyperphosphorylation and Aβ production, which indicates that
MLN has the potential to be developed as a treatment for AD.
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Citrus peel and its extracts are rich in flavonoids, which are beneficial to human

health. In this study, the extraction, component analysis, biological activity and intestinal

microbiota regulation of citrus peel flavonoid extracts (CPFEs) were investigated.

CPFEs from 14 Chinese cultivars were purified by ultrasound-assisted extraction and

XAD-16 macroporous resin. The total flavonoid content of lemon was greatest at

103.48 ± 0.68 mg/g dry weight (DW) by NaNO2-Al(NO3)3-NaOH spectrophotometry.

Using high-performance liquid chromatography–diode array detection, the highest

concentrations of naringin, hesperidin and eriocitrin were found in grapefruit (52.03 ±

0.51 mg/g DW), chachiensis (43.02 ± 0.37 mg/g DW) and lemon (27.72 ± 0.47 mg/g

DW), respectively. Nobiletin was the most polymethoxylflavone in chachiensis at 16.91

± 0.14 mg/g DW. CPFEs from chachiensis and grapefruit had better antioxidant activity,

α-glucosidase inhibitory and sodium glycocholate binding ability. In addition, chachiensis

and grapefruit CPFEs had positive effects on intestinal microecology, as evidenced by

a significant increase in the relative abundance of Bifidobacterium spp., and production

of short-chain fatty acids, especially acetic acid, by a simulated human intestinal model.

Collectively, our results highlight the biological function of CPFEs as prebiotic agents,

indicating their potential use in food and biomedical applications.

Keywords: citrus peel, flavonoid, bioactivity, intestinal microbiota, short-chain fatty acids

INTRODUCTION

Citrus fruits of the family Rutaceae are popular with consumers around the world, and large
numbers are processed industrially. However, a high proportion of waste is generated by industrial
citrus processing because of the thick, inedible peel and large inedible seeds. In recent years,
citrus by-products have been used in animal feed production or in the extraction of biofunctional
components such as pectin, essential oils and flavonoids (1, 2). The development of citrus by-
products into high value-added dietary supplements can not only produce functional foods with
health benefits but also help to solve the environmental pollution caused by citrus peel landfills and
processing wastewater (3).

Citrus peel forms around 40%−50% of the total fruit mass, and is a substantial source
of biologically-active substances that enhance health, especially flavonoids (4). The total
flavonoid content (TFC) is mainly composed of flavanones and polymethoxylflavones (PMFs),
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including naringin, hesperidin, narirutin, nobiletin and
neohesperidin (5). The most abundant flavonoids vary between
different citrus fruits; for example, mandarins and hybrids
contain more hesperidin, pummelos contain more naringin,
and lemon has the most eriocitrin (6, 7). The major flavonoid
from Citrus unshiu peel is quercetagetin (8) and anthocyanin is
only found in blood oranges (9). Flavonoids in citrus peel are
recognized as a good source of dietary antioxidants, and protect
cells by hydrogen transfer, free radical scavenging, and divalent
metal ion chelation (10). They also help to regulate metabolic
syndrome and type 2 diabetes, as manifested by α-glucosidase
inhibition, insulin sensitization and decreased blood lipid levels
(11). The compositions of flavonoids are closely related to the
biological properties. The content of hesperidin in C. unshiu peel
extracts was positively correlated with the antioxidant activity;
hesperetin and naringenin were related to the inhibition of
xanthine oxidase and α-glucosidase activities (12).

There is accumulating evidence that dietary flavonoids
influence the microbial population of human colon (13).
Most dietary flavonoids are poorly absorbed from the
small intestine and up to 90% of these compounds are
metabolized by the intestinal microflora in the colon (14).
Flavonoid and its metabolites interact with the intestinal
microflora by inhibiting the growth of pathogenic bacteria
and promoting that of beneficial bacteria, and regulate the
production of short-chain fatty acids (SCFAs), secondary
bile acids and tryptophan metabolites, thereby contributing
to maintenance of intestinal homeostasis (15). SCFAs,
mainly acetic, propionic and butyric acids, are generated
by fermentation of soluble dietary fiber by the gut microbiota,
which facilitates nutrient absorption, energy metabolism,
maintenance of the intestinal mucosal barrier and strong
immunity (15–17). However, limited data suggest that different
CPFEs differentially affect gut microbiota composition and
abundance, and subsequently alter SCFAs production. Such
differences may be related to the main flavonoid components in
different CPFEs.

Animal models have been used to study the effects of
dietary flavonoids on the intestinal microflora. Supplemental
feeding with naringenin (the aglycone of naringin) attenuated
colon damage and inflammation symptoms in a dextran
sulfate sodium-induced murine model of colitis, suggesting that
naringin helps maintain the integrity of the intestinal wall, by
protecting the intestinal tight junction barrier (18). Human
studies of gut microorganisms in vivo are not usually ethically
and economically feasible, so in vitro simulated human intestinal
models have been proposed as an alternative method to study the
relationships between the intestinal microbial composition and
food components.

In this study, we selected 14 representative citrus cultivars
in China and purified CPFEs with ultrasound-assisted
extraction and macroporous resin. Quantitatively analysis
of 11 components in different CPFEs was performed by high-
performance liquid chromatography-diode array detection
(HPLC-DAD). We further analyzed the antioxidant, α-
glucosidase inhibition and bile salt binding capacity of CPFEs,
and their potential effects on microbial composition and SCFAs

production were characterized using an in vitro simulated
human intestinal model.

MATERIALS AND METHODS

Experimental Reagents
Rutin, eriocitrin, naringin, hesperidin, didymin, poncirin,
naringenin, hesperitin, sinensetin, nobiletin, tangeretin, α-
glucosidase (from Saccharomyces cerevisiae), acarbose and 5-O-
demethylnobiletin were from Yuanye Bio-Technology Co., Ltd.
(Shanghai, China). Tryptone and yeast extract were from Oxoid
Co., Ltd. (Basingstoke, UK). Acetic acid, propionic acid, butyric
acid, isobutyric acid, valeric acid, and isovaleric acid were from
Dr. Ehrenstorfer (Augsburg, Germany). Sodium glycocholate
was from Sigma-Aldrich Co., Ltd. (St. Louis, MO, USA). Other
reagents and solvents were analytical grade, from Sinopharm
Chemical Reagents Co., Ltd. (Shanghai, China).

Extraction of Flavonoids From Citrus Peel
Fresh citrus fruits were purchased from local suppliers in China
(Supplementary Table 1). Flavonoid extracts were prepared by
ultrasound-assisted extraction and clean-up on hydrophobic
macroporous resin XAD-16, as described previously, with some
modifications (19). Citrus peel powder was dried at 40◦C for 48 h
and then dispersed in 52% ethanol (material-to-liquid ratio of 1
g/42ml). Ethanol was added to the extract at a final concentration
of 80% (v/v) after 17min of ultrasonic extraction at 325w. The
crude flavonoids were obtained by centrifuging at 8,000 g for
15min after standing at 4◦C for 12 h, retaining the supernatant
and removing the ethanol by rotary evaporation under 60◦C
(Buchi R-300, Switzerland). The crude flavonoid extract at a
concentration of 107µg/ml (2 column volumes) was loaded onto
the column of macroporous resin XAD-16 at a flow rate of 1.5
ml/min, then eluted with 50% (v/v) ethanol solution (5 column
volumes). CPFEs were concentrated by rotary evaporation and
then freeze dried (Alpha 1–4 LSC, Martin Christ, Osterode,
Germany) for further analysis.

Citrus Flavonoid Compositions of CPFEs
TFC Determination
The TFC of CPFEs were measured using the
NaNO2/Al(NO3)3/NaOH spectrophotometric method (20).
In brief, 1.00ml of CPFEs, 0.30ml of 5% NaNO2 (m/v) and
1.00ml of 60% ethanol (v/v) were added into a volumetric
flask and stored at room temperature for 6min. 0.30ml of 10%
Al(NO3)3 (m/v) was added and incubated for another 6min,
then 2.00ml of 1M NaOH was added. After incubating for
10min at room temperature, the absorbance was measured
at 510 nm by SpectraMax 190 Microplate Reader (Molecular
Devices, San Jose, CA). TFC values were expressed as rutin
equivalents (mg) per gram DW.

Flavonoid Compositions Analysis
Eleven flavonoids were identified in CPFEs by an Agilent 1260
Infinity HPLC system (Agilent Technologies, Santa Clara, CA,
USA) coupled with DAD and a Sun FireTM C18 column (4.6
× 150mm I. D. × 5µm, Phenomenex, Torrance, CA) at room
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temperature. The mobile phases consisted of 0.1% acetic acid (A)
and acetonitrile (B). The initial phase composition was 15% B,
then ramped linearly to 25% B at 5min, 30% B at 15min, 40%
B at 25min, 55% B at 35min, 60% B at 40min and back to 15%
B at 45min, at a flow rate of 0.7 ml/min. The main flavanones
(eriocitrin, naringin, hesperidin, didymin, poncirin, naringenin,
and hesperitin) and PMFs (sinensetin, nobiletin, tangeretin, and
5-O-demethylnobiletin) were quantified by comparison with
authentic standard solutions at detection wavelengths of 283 and
330 nm, respectively.

Antioxidant Capacity of CPFEs
Antioxidant capacity was determined by the 2,2-diphenyl-1-

picrylhydrazyl (DPPH) free radical scavenging activity, 2,2
′

-
azino-bis (3-ethylbenzthiazoline-6-sulfonic acid; ABTS) free
radical scavenging activity, ferric reducing antioxidant power
(FRAP), and cupric reducing antioxidant capacity (CUPRAC)
methods, and expressed as mg Trolox equivalent (TE) per gram
DW (21). The total antioxidant potency composite (APC) index
was the average of antioxidant index of above four methods,
and calculated as described previously: APC index = (measure
score/maximum score)× 100% (20).

DPPH Determination
The DPPH free radical scavenging activity was determined as
described previously with minor modifications (22). A mixture
of DPPH (0.20mM, 1ml) and CPFE (5.00 mg/ml, 80 µl) was
incubated at 25◦C in the dark for 30min, then the absorbance
recorded at 517 nm (SpectraMax 190 Microplate Reader, USA).

ABTS Determination
ABTS index was tested by an ABTS method kit (Nanjing
Jiancheng Bioengineering Co. Ltd., China). ABTS working
solution was prepared with detection buffer, ABTS stock solution
and peroxide solution (diluted 40 times with PBS, pH 7) at a ratio
of 76:5:4 (v/v/v). Ten microliter of the sample solution (5 mg/ml)
was mixed with 170 µl of ABTS working solution and 20 µl of
peroxidase (diluted 10 times with detection buffer) thoroughly
for 6min, and the absorbance was recorded at 405 nm.

FRAP Determination
Ferric reducing antioxidant power was determined by a total
antioxidant capacity assay kit (Nanjing Jiancheng Bioengineering
Co. Ltd., China), following themanufacturer’s instructions. CPFE
(5 mg/ml, 5 µl) was mixed with FRAP radical solution (180 µl)
and incubated in the dark for 5min at 37◦C then the absorbance
was recorded at 593 nm.

CUPRAC Determination
The CUPRAC assay was performed as described previously (23).
The assay mixture, of CuCl2 (0.01M, 500 µl), neocuproine
(0.075M, 500 µl), ammonium acetate buffer (1M, pH 7.0, 500
µl) and CPFE (5 mg/ml, 60 µl) was incubated at 25◦C for 1 h,
transferred to a 96-well microplate, then the absorbance recorded
at 450 nm.

α-Glucosidase Inhibition Assay
α-Glucosidase inhibition was determined as described previously
with some modifications (15). A mixture of CPFE (10 mg/ml,
50 µl) and of α-glucosidase (2U, pH 6.8, 250 µl) was incubated
at 37◦C for 10min. p-nitrophenyl glucoside (pNPG, 5mM, 250
µl) was added and incubated for 10min. Na2CO3 (0.20mM, 450
µl) was added to stop the reaction. The reaction mixture was
transferred to a 96-well plate (200µl per well) and the absorbance
measured at 405 nm. Acarbose (α-glucosidase inhibitor/diabetes
treatment, 12.5µM) was used as the positive control. The
percentage inhibition of α-glucosidase was calculated according
to the following formula:

α − glucosidase inhibition (%) =
[

1 −
(ODs − ODb) −ODa

ODs − ODb

]

× 100%, (1)

where:

ODs : sample+ α − glucosidase+ pNPG+ODafter reaction,

ODb : sample+ α − glucosidase+ buffer+ODafter reaction,

ODa : acarbose+ α − glucosidase+ pNPG+ODafter reaction.

Bile Salt Binding Capacity Determination
Assay
Salt binding capacity was calculated by a standard curve with
sodium glycocholate as bile acid (24). A mixture of CPFEs (10
mg/ml, 1ml) and pepsin (10 mg/ml, 1ml) was incubated in an
orbital shaker at 120 rpm and 37◦C for 1 h, and then the pH was
adjusted to 6.3 with NaOH (0.10M). Trypsin (10 mg/ml, 4ml)
and salt solutions (1mM, 4ml) were added and incubated for
1 h. Precipitatedmaterial was removed by centrifugation (4,000 g,
20min), supernatant (2.5ml) and H2SO4 (60% v/v, 7.5ml) were
mixed and heated at 70◦C for 25min, then cooled in an ice bath
for 5min. The reaction mixture was transferred to a 96-well plate
and the absorbance was recorded at 387 nm.

Fecal Sample Collection and Processing
Fecal samples were collected from seven healthy volunteers
(three males and four females, numbered 1–7) according to the
following criteria: (1) aged from 20 to 35, (2) a body mass index
of 18.5–23.9 kg/m2, (3) normal diet and not vegetarian, (4) no
history of bowel disorders, (5) no antibiotics or probiotics used
in the previous 6 months. All donors were provided written
informed consent, and the study was approved by the Ethics
Committee of the Zhejiang Gongshang University and Zhejiang
Academy of Agricultural Sciences (Zhejiang Province, China).
Fresh fecal samples were immediately collected, weighed and
diluted in anaerobic, sterile phosphate-buffered saline (PBS, pH
7, 0.10M) to prepare 10% fecal homogenate suspensions (w/v).

Simulated Intestinal Fermentation in vitro
Each culture consisted of sterilized VIS medium (5ml) (25), fecal
suspension (500 µl), and CPFE sample (0.10 g/ml, 500 µl). PBS
(500 µl) instead of CPFE solution was used as the blank control.
Anaerobic fermentation (10% H2, 10% CO2 and 80% N2) was
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performed at 37◦C in an anaerobic workstation (DG250, Don
Whitley Scientific, Bingley, UK). After 24 h, fecal fermentation
suspension (1ml) was collected in an Eppendorf tube for DNA
sequencing and SCFA concentration determination.

DNA Extraction and Sequencing
Genomic DNA was extracted from the fecal fermentation
suspension with a QIAamp PowerFecal DNA extraction kit,
according to the manufacturer’s instructions. 16S rDNA gene
high-throughput sequencing of the V3–V4 region was performed
by Biomarker Bio-Tech Co., Ltd. (Beijing, China), with an
Illumina MiSeq platform. Sequencing primers were 338F
(forward primer, ACTCCTACGGGAGGCAGCAG) and 806R
(reverse primer, GGACTACHVGGGTWTCTAAT). Analysis was
performed using the SILVA database, to assign operational
taxonomic units (OTUs) with 97% similarity. Based on the
OTU analysis, intestinal microbial richness and diversity were
evaluated by Alpha diversity (Ace, Chao, Simpson and Shannon)
using the Uparse and Mothur software systems. The bacterial
community composition among groups was analyzed at the levels
of phylum, class, order, family and genus. Differentially abundant
taxa were identified by the linear discriminant analysis (LDA)
effect size (LEfSe) with LDA score of 4.0.

Determination of SCFAs
The contents of acetic, propionic, butyric, isobutyric, valeric
and isovaleric acid in fermentation samples were measured
by gas chromatography-mass spectrometry (GC–MS) (26). The
identification and quantification of chromatographic peaks was
achieved by comparison with authentic standards, with crotonic
acid (20mM) as the internal standard. Fermentation medium
(500 µl) were mixed with crotonic acid metaphosphate solution
(100 µl), and frozen at −30◦C for 24 h. The solution was thawed
and centrifuged at 8,000 g and 4◦C for 3min, then filtered using a
0.22-µm membrane (Millipore, Burlington, MA). Sample (1 µl)
was injected into a GC system fitted with a DB-FFAP GC column
(30m × 0.25mm I. D. × 0.25µm, Agilent, China) and H2 flame
ionization detector. The initial column temperature was 75◦C,
then increased to 180◦C, at 20◦C /min and maintained for 1min,
then increased to 220◦C at 50◦C/min, maintained for 1min. Both
injector and detector temperatures were 250◦C. The flow rates
of carrier gas N2, make-up gas H2, and air were 20, 30, and 300
ml/min, respectively.

Statistical Analysis
All data were expressed as mean ± standard deviation. The
significant differences among samples were analyzed using T-
test, one-way ANOVA and Tukey’s test. The value of P <

0.05 was considered as statistically significant. Statistical analysis
and figuring drawing were carried out using SPSS 22.0 (IBM,
Armonk, NY) and GraphPad Prism 8.0 (GraphPad Software Inc.,
San Diego, CA, USA).

RESULTS

TFC and Flavonoid Compositions of CPFEs
The TFC values of 14 CPFEs from different Chinese citrus fruits
such as mandarins, oranges, pummelos, kumquats, hybrids and
citrons were determined (Table 1). Lemon had the highest TFC
(103.48 ± 0.68 mg/g DW), followed by satsuma orange (96.22 ±
0.51 mg/g DW), chachiensis (86.54± 0.63 mg/g DW), grapefruit
(72.82 ± 1.56 mg/g DW) and fertile orange (67.98 ± 0.86 mg/g
DW). Bergamot had the lowest concentration at 27.62 ± 1.25
mg/g DW.

The contents of seven major flavanones (eriocitrin, naringin,
hesperidin, didymin, poncirin, naringenin, and hesperitin)
and four PMFs (sinensetin, nobiletin, tangeretin, and 5-O-
demethylnobiletin) presented significant variation among 14
citrus cultivars (Table 1), calculated by standard curves using
HPLC-DAD (Supplementary Table 2). HPLC chromatograms of
the standards are shown in Figure 1. Naringin, hesperidin and
eriocitrin were the major flavanones, as previously reported (27–
29). Abundant naringin was in the CPFEs from grapefruit (52.03
± 0.51 mg/g DW), majia pomelo (44.57 ± 0.74 mg/g DW), and
apple pomelo (40.62 ± 0.14 mg/g DW). However, there was
little naringin in the CPFEs from satsumamandarin, chachiensis,
lemon and bergamot. Hesperidin was abundant in the CPFEs
from mandarins (satsuma mandarin, chachiensis and ponkan),
sweet oranges (lane late navel oranges and blood orange) and
hybrids (dekopon and fertile orange), all exceeding 35.00 mg/g
DW. In CPFEs from apple pomelo, grapefruit, sichuan kumquat,
longyan kumquat and bergamot, the contents of hesperidin were
<3.50 mg/g DW. The greatest content of eriocitrin was detected
in lemon (27.72 ± 0.47 mg/g DW), and lowest in ponkan (0.47
± 0.01 mg/g DW). Poncirin was highest in CPFEs (11.67 ± 0.06
mg/g DW), and naringenin was not found in detected mandarin,
pummelo and kumquat species.

Compared with flavanones, most CPFEs had lower PMF
levels. The contents of sinensetin, nobiletin and tangeretin in
chachiensis were the highest at 2.31 ± 0.00 mg/g DW, 16.91
± 0.14 mg/g DW, and 1.59 ± 0.01 mg/g DW, respectively,
followed by satsuma orange (1.61 ± 0.00 mg/g DW, 5.90 ±

0.01 mg/g DW, and 3.87 ± 0.01 mg/g DW) and lane late navel
orange (1.84 ± 0.02 mg/g DW, 5.67 ± 0.01 mg/g DW, and
0.73 ± 0.00 mg/g DW). Nobiletin was proved to be the most
dominant PMF in mandarins and sweet oranges. The principal
PMFs found in grapefruit were tangeretin and nobiletin (27), but
our results show that these two PMFs were almost nonexistent.
5-O-Demethylnobiletin was only detected in satsuma mandarin
at 0.34± 0.00 mg/g DW, but not in most citrus varieties.

Beneficial Biological Activities of CPFEs
The antioxidant capacity of CPFEs was measured by four
separate assays, namely, DPPH, ABTS, FRAP and CUPRAC
(Table 2). The DPPH values varied from 17.51 ± 0.34mg
TE/g DW (bergamot) to 55.12 ± 0.08mg TE/g DW (satsuma
orange). There was no significant change in ABTS assay with
the other three methods. The highest ABTS radical ability
was found in majia pomelo. The CPFEs of mandarins and
hybrids presented significantly higher FRAP and CUPRAC
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TABLE 1 | Contents of total flavonoids, flavanones and PMFs in CPFEs (mg/g DW).

Cultivar TFC Flavanones PMFs

Eri Nar Hed Did Pon Nag Het Sin Nob Tan DN

Satsuma

mandarin

96.22 ± 0.51b 2.76 ± 0.09f 0.19 ± 0.01i 41.33 ± 0.21b 4.97 ± 0.02b 0.42 ± 0.00c ND 0.13 ± 0.00g 1.61 ± 0.00d 5.90 ± 0.01b 3.87 ± 0.01a 0.34 ± 0.00a

Chachiensis 86.54 ± 0.63c 1.93 ± 0.04g 0.17 ± 0.03i 43.02 ± 0.37a 2.55 ± 0.01d 0.09 ± 0.00f ND 0.05 ± 0.00h 2.31 ± 0.00b 16.91 ± 0.14a 1.59 ± 0.01b ND

Ponkan 67.17 ± 0.67e 0.47 ± 0.01i 22.86 ± 0.15e 42.05 ± 0.11b 0.70 ± 0.01f 11.67 ± 0.06a ND 0.29 ± 0.00c 0.06 ± 0.00h 1.33 ± 0.01d 0.28 ± 0.00e 0.04 ± 0.00b

Lane late

navel

orange

53.45 ± 0.59h 5.71 ± 0.03d 4.57 ± 0.03g 40.16 ± 0.23c 1.24 ± 0.16e 0.43 ± 0.01c 0.26 ± 0.01a 1.37 ± 0.03a 1.84 ± 0.02c 5.67 ± 0.01b 0.73 ± 0.00c 0.08 ± 0.00b

Blood

orange

60.71 ± 0.63g 0.96 ± 0.02h 2.24 ± 0.16h 35.07 ± 0.12e 2.55 ± 0.06d 0.23 ± 0.07d 0.09 ± 0.00d 0.07 ± 0.00h 0.16 ± 0.00g 0.59 ± 0.00e 0.17 ± 0.00f 0.03 ± 0.00b

Apple

pomelo

50.60 ± 0.80i 1.74 ± 0.53g 40.62 ± 0.14c 1.77 ± 0.13h 0.08 ± 0.01i 0.15 ± 0.01e ND 0.20 ± 0.00e ND 0.11 ± 0.00g ND ND

Majia

pomelo

52.27 ± 0.39h 2.80 ± 0.03f 44.57 ± 0.74b 1.84 ± 0.37h 0.33 ± 0.01g 0.09 ± 0.01f ND 0.05 ± 0.00h 0.18 ± 0.00g 0.30 ± 0.00f 0.02 ± 0.00g ND

Grapefruit 72.82 ± 1.56d 4.91 ± 0.11e 52.03 ± 0.51a ND 0.07 ± 0.00i 0.16 ± 0.01e ND 0.05 ± 0.00h ND 0.04 ± 0.00h ND ND

Dekopon 62.33 ± 1.07f 0.95 ± 0.01h 29.56 ± 0.51d 39.25 ± 0.91c 4.49 ± 0.16c 1.23 ± 0.06c 0.15 ± 0.00c 0.23 ± 0.04d 2.66 ± 0.05a 1.77 ± 0.01c 0.04 ± 0.00g ND

Fertile

orange

67.98 ± 0.86e 4.78 ± 0.10e 10.97 ± 0.45f 37.35 ± 0.38d 10.50 ± 0.04a 0.38 ± 0.09c 0.18 ± 0.01b 0.07 ± 0.00h 0.13 ± 0.01g 0.34 ± 0.00f 0.04 ± 0.00g ND

Lemon 103.48 ± 0.68a 27.72 ± 0.47a 0.02 ± 0.00j 24.51 ± 0.18f 0.19 ± 0.01h 0.07 ± 0.00f 0.03 ± 0.00f 0.08 ± 0.01 0.69 ± 0.00f 0.32 ± 0.00f ND ND

Sichuan

kumquat

30.85 ± 0.56k 9.29 ± 0.20b 1.96 ± 0.08h 0.49 ± 0.00i 1.52 ± 0.01e ND 0.10 ± 0.00d 0.74 ± 0.00b 0.87 ± 0.00e 0.12 ± 0.00g 0.04 ± 0.00g ND

Longyan

kumquat

32.47 ± 0.96j 5.70 ± 0.92d 11.40 ± 0.27f 3.11 ± 0.12g 0.62 ± 0.02f 1.69 ± 0.02b ND 0.18 ± 0.00f 0.93 ± 0.00e 1.93 ± 0.00c 0.38 ± 0.00d 0.03 ± 0.00b

Bergamot 27.62 ± 1.25l 8.55 ± 0.02c 0.16 ± 0.00i 3.18 ± 0.01g 0.17 ± 0.00h 0.24 ± 0.00d 0.07 ± 0.01e 0.08 ± 0.01h ND 0.46 ± 0.00e ND ND

TFC, total flavonoid content; Eri, eriocitrin; Nar, naringin; Hed, hesperidin; Did, didymin; Pon, poncirin; Nag, naringenin; Het, hesperitin; Sin, sinensetin; Nob, nobiletin; Tan, tangeretin; DN, 5-O-demethyl-nobiletin.

Results were the mean ± SD (n = 3) on a dried weight (g) of citrus peel flavonoid extracts. Flavonoid contents were calculated as mg rutin equivalents (RE)/g DW. ND, not detected. Different letters above the error bars in the same

column indicate significant differences among varieties based on Tukey’s test (P < 0.05).
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FIGURE 1 | Main flavanones and PMFs were quantified by HPLC-DAD. (A) Chromatogram of flavanone standards at 283 nm: 1, eriocitrin; 2, naringin; 3, hesperidin; 4,

didymin; 5, poncirin; 6, naringenin; 7, hesperitin. (B) Chromatogram of PMF standards at 330 nm: 8, sinensetin; 9, nobiletin; 10, tangeretin; 11, 5-O-demethylnobiletin.

values than other cultivars. The overall antioxidant capacity was
expressed in APC index, which varied from 39.69 to 92.19%.
The top five APC index were classified as grapefruit (92.19%),
chachiensis (89.13%), satsuma orange (87.68%), lemon (86.86%)
and fertile orange (80.26%), indicating that these CPFEs have
better antioxidant properties.

Citrus peel flavonoid extracts from mandarins and hybrids
had higher inhibitory activity on α-glucosidase than these of
sweet oranges, pummelos, kumquats and citrons (Figure 2A).
CPFEs with the highest inhibitory effect on α-glucosidase
was chachiensis (59.87 ± 1.09%), followed by dekopon (53.38
± 2.53%), fertile orange (46.21 ± 1.50%), lemon (43.23 ±

0.90%) and satsuma orange (42.21 ± 0.90%). Bergamot, sichuan
kumquat and longyan kumquat possessed lower inhibitory
activity with values of 27.79 ± 0.57, 15.05 ± 1.06, and 14.69 ±

0.42%, respectively.
The binding capacity of CPFEs to sodium glycocholate

ranged from 0.36 ± 0.01 to 0.44 ± 0.00 µmol/mg (Figure 2B).
The difference between various CPFEs was not as significant
as antioxidant activity and α-glucosidase inhibition. CPFEs
from ponkan (0.44 ± 0.00 µmol/mg), dekopon (0.44 ±

0.01 µmol/mg), grapefruit (0.44 ± 0.01 µmol/mg) and majia
pomelo (0.43 ± 0.01 µmol/mg) had higher sodium glycocholate
binding capacity, suggesting that they have a cholesterol-lowering
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TABLE 2 | Antioxidant potency composite index of 14 CPFEs (mg TE/g DW).

Cultivars DPPH ABTS FRAP CUPRAC APC (%) Rank

Satsuma orange 55.12 ± 0.08a 17.15 ± 0.22h 76.25 ± 0.75c 25.87 ± 0.27d 87.68 3

Chachiensis 43.19 ± 0.11c 20.12 ± 0.12e 88.84 ± 1.13a 25.87 ± 0.17d 89.13 2

Ponkan 27.44 ± 0.24i 21.37 ± 0.15b 79.30 ± 1.11b 25.03 ± 0.06e 79.99 6

Lane late navel orange 32.67 ± 0.16g 21.04 ± 0.16bc 53.59 ± 0.43g 18.87 ± 0.12h 69.51 9

Blood orange 36.03 ± 0.13e 20.36 ± 0.06de 66.99 ± 1.20e 21.02 ± 0.10g 75.87 7

Apple pomelo 17.95 ± 0.24l 21.42 ± 0.08b 25.18 ± 0.60jk 8.39 ± 0.05k 46.33 12

Majia pomelo 20.18 ± 0.38k 22.35 ± 0.11a 28.51 ± 0.60i 10.76 ± 0.11i 51.34 11

Grapefruit 53.73 ± 0.10b 21.25 ± 0.06b 74.68 ± 0.86c 27.04 ± 0.35c 92.19 1

Dekopon 34.71 ± 0.11f 20.07 ± 0.08e 63.75 ± 1.32f 34.71 ± 0.11a 73.59 8

Fertile orange 37.48 ± 0.18d 20.84 ± 0.07c 71.15 ± 1.61d 23.39 ± 0.05f 80.26 5

Lemon 43.16 ± 0.18c 18.95 ± 0.24f 74.95 ± 0.26c 29.35 ± 0.13b 86.86 4

Sichuan kumquat 23.96 ± 0.56j 17.72 ± 0.11g 27.82 ± 0.37ij 9.51 ± 0.03j 46.62 13

Longyan kumquat 28.94 ± 0.13h 20.73 ± 0.12cd 35.80 ± 0.80h 11.01 ± 0.08i 55.77 10

Bergamot 17.51 ± 0.34l 15.85 ± 0.09i 23.78 ± 0.56k 8.60 ± 0.06k 39.69 14

DPPH, free radical scavenging properties by diphenyl-1-picrylhydrazyl radical; ABTS, 2,2
′

-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid); FRAP, ferric reducing antioxidant capacity;

CUPRAC, cupric reducing antioxidant capacity.

Data are shown as the mean ± SD (n = 3). The APC index is the average of the antioxidant potency composite index in all tested CPFEs, and APC index = (measured score / maximum

score) × 100%. Different letters above the error bars in the same column indicate significant differences among varieties based on Tukey’s test (P < 0.05).

FIGURE 2 | α-Glucosidase inhibition (A) and sodium glycocholate binding capacity (B) of CPFEs. Data are shown as the mean ± SD (n = 3). Different letters the error

bars indicate significant differences among varieties based on Tukey’s test (P < 0.05). A, satsuma orange; B, chachiensis; C, ponkan; D, lane late navel orange; E,

blood orange; F, apple pomelo; G, majia pomelo; H, grapefruit; I, dekopon; J, fertile orange; K, lemon; L, sichuan kumquat; M, longyan kumquat; N, bergamot; P,

blank control.

effect by inhibiting reabsorption of bile acids. However, some
eriocitrin-rich citrus such as lemon (0.36 ± 0.01 µmol/mg) and
bergamot (0.38± 0.01 µmol/mg) were less binding in our test.

Effects of CPFEs on the Intestinal
Microbiota
Microbial composition and abundance in fecal samples
fermentated with different CPFEs were compared using 16S
rDNA gene amplicons sequencing. Sequences were classified
and assigned to OTUs with more than 97% similarity. Alpha
diversity was determined using the Ace, Chao, Shannon and
Simpson indices (Supplementary Figure 1). However, there
was no significant change in microbial richness and diversity.

Microbial composition analysis showed compositional changes
at the phylum level (Figure 3A). Bacteroidetes and Firmicutes
predominated in the original fecal samples, accounting for more
than 90% of the total, but decreased to 70–80% after fermentation
with CPFEs. Conversely, the relative abundance of Actinobacter
was increased, and the treatment of CPFEs from grapefruit and
fertile orange significantly increased Actinobacter abundance to
17.84 and 17.71%, respectively, which only accounted for 10.53%
of the blank sample.

At the genus level, the enterotypes of seven volunteers
were divided into Enterotype 1 (ET B) and Enterotype 2
(ET P). Subject 1, 2 and 5 belonged to the Bacteroides-
predominant ET B, and subject 3, 4, 6, and 7 belonged to the
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FIGURE 3 | Differences in the distribution and abundance of intestinal microflora in human fecal samples before and after in vitro fermentation with CPFEs. (A) The

compositional changes of intestinal microflora at the phylum level (n = 3); (B) Test subjects with ET B fecal enterotype at the genus level (subject 1, 2 and 5, n = 3);

(C) Test subjects with ET P fecal enterotype at the genus level (subject 3, 4, 6 and 7, n = 4); (D) Significant features in microflora of chachiensis and grapefruit CPFEs

by LEFSe analysis (LDA > 4.0, P < 0.05). A, satsuma orange; B, chachiensis; C, ponkan; D, lane late navel orange; E, blood orange; F, apple pomelo; G, majia

pomelo; H, grapefruit; I, dekopon; J, fertile orange; K, lemon; L, sichuan kumquat; M, longyan kumquat; N, bergamot; P, blank control.

Prevotella-predominant ET P. The five genera with the highest
relative abundance of ET B were Bacteroides, Bifidobacterium,
Faecalibacterium, Lactobacillus and Sutterella (Figure 3B); in ET
P, the top five abundances were Prevotella_9, Bifidobacterium,
Sutterella, Dialister and Escherichia-Shigella (Figure 3C). After
in vitro fermentation with CPFEs, Bacteroides became slightly
less dominant in the ET B enterotype, decreasing from 30.58
to 26% (average of treatment group), and Prevotella_9 became
considerably more dominant in ET P. The average relative
abundance of beneficial microbial communities Lactobacillus
and Bifidobacterium markedly increased in both enterotypes.
Especially in the chachiensis CPFE group, the proportion of
Bifidobacterium in the ET B group was the highest at 23.09%; and

CPFEs of grapefruit and fertile orange increased Bifidobacterium
to 14.86 and 14.78%, respectively, in the ET P group.

The LefSe analysis highlighted the differences in relative
microbial abundance from phylum to species. In all citrus
tested, chachiensis and grapefruit were the two cultivars with
significant differences in intestinal microbial composition and
abundance (Figure 3D). Samples fermented with chachiensis
CPFEs had higher levels of the phylum Proteobacteria, class
Grammproteobacteria and species Bifidobacterium breve.
In grapefruit CPFEs, phylum Actinobacteria and genus
Bifidobacterium were significantly increased. The regulatory
effect on intestinal microbiota may be related to the TFC and
flavonoid profiles of different CPFEs. Abundant Bifidobacterium
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spp. in the chachiensis group may be associated with high
levels of PMFs. Chen et al. found that oral administration
of Citrus reticulata cv. Suavissima, rich in nobiletin,
tangeretin and 5-demethylnobiletin, significantly increased
the abundance of the probiotics such as Bifidobacterium spp. and
Lactobacillus spp. (30).

SCFAs Production and Their Relationship
With Microbial Composition
Short-chain fatty acids are the main end-products of indigestible
carbohydrate fermentation, and can be used as nutrients by
intestinal epithelial cells and the colonic microflora (31). The
average levels of total SCFAs generated by fecal microbial
fermentations with CPFEs, were all higher than that of the
blank control (Figure 4A). Acetic acid was the major SCFA
produced, accounting for about 80% of the total (Figure 4B).
The concentrations of acetic acid were significantly higher with
chachiensis (P < 0.05) and grapefruit (P < 0.05) compared
with the blank control. However, we did not find significant
differences in concentrations of butyric, isobutyric, valeric and
isovaleric acids (P > 0.05, data not shown).

Spearman’s correlation analysis was performed to investigate
the differences between microbial compositions at the genus
level and SCFA productions (Figure 5). Acetic acid was positively
correlated with Bacteroides, Parabacteroides, Roseburia,
Lachnospira, Klebsiella, Alistipes and Lachnoclostridium,
and negatively correlated with Parasutterella, Dialister,
Subdoligranulum and Ruminiclostridium. We can also find
that propionic acid was negatively correlated with Parasutterella,
and positively correlated with the relative abundance of
Roseburia, Lanospiraceaece_NK4A136, Ruminococcaceae_UCG,
Alistipes and Bifidobacterium, but not significantly. The positive
relationship between butyric, isobutyric and Bacteroides,
Parabacteroides and Lachnospira was more obvious. However,

valeric and isovaleric acids were not significantly associated with
gut microbiota.

DISCUSSION

To the best of our knowledge, this is the first report on the
extraction and compositional analysis of flavonoids from the
peel of fourteen local Chinese citrus cultivars and their role in
regulating the gut microbiota. TFC values of CPFEs in our test
were considerably higher than those reported from the same
fruits, using ultrasound-assisted extraction alone (4, 23). This
appears to be due to the much higher extraction efficiency
of macroporous resin XAD-16. Column chromatography
with XAD-16 increased the extractable flavonoid content of
Glycyrrhiza glabra L. leaf from 16.80 to 55.60%, compared
with the crude solvent extracts (23). Naringin, hesperidin and
eriocitrin are the top three flavanones detected by HPLC-DAD.
As previously reported, naringin is rich in hybrids (grapefruit)
and pummelos (apple pomelo, majia pomelo); hesperidin is rich
in mandarins (satsuma mandarin, chachiensis, ponkan), sweet
oranges (lane late navel orange, blood orange), and hybrids
(dekopon, fertile orange); and eriocitrin is only enriched in
lemon (27–29).

Citrus-derived flavonoids have various human health-
promoting functions, such as antioxidant activity, α-glucosidase
inhibition and sodium glycocholate binding capacity, which
are associated with antihyperglycemic and hyperlipidemic
effects (32). Long et al. found that CPFEs with higher content
of TFC had stronger antioxidant activities (28). Various
in vitro and in vivo studies have identified that eriocitrin,
naringin and hesperidin all have good antioxidant activities,
which are beneficial for free radical scavenging, reducing
hepatic gluconeogenesis and increasing insulin sensitivity
(28, 29, 31, 33). We found that CPFEs with higher APC indices
such as grapefruit and chachiensis tend to have higher TFCs.

FIGURE 4 | The effect of CPFEs on SCFA production after 24-h in vitro fermentation. (A) Total SCFA concentration; (B) The acetic acid concentration; Data are

shown as the mean ± SD (n = 7). Significant differences among groups based on T-test, * P < 0.05. A, satsuma orange; B, chachiensis; C, ponkan; D, lane late navel

orange; E, blood orange; F, apple pomelo; G, majia pomelo; H, grapefruit; I, dekopon; J, fertile orange; K, lemon; L, sichuan kumquat; M, longyan kumquat; N,

bergamot; P, blank control.
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FIGURE 5 | Heatmap of Spearman’s rank correlation coefficients between SCFAs production and microbial relative abundance at the genus level. The colors indicate

positive (red) or negative (blue) correlations between SCFA production and microbial relative abundance. The X-axis shows the different SCFAs, from left to right:

acetic acid, propionic acid, butyric acid, isovaleric acid, isobutyric acid, and valeric acid. The Y-axis shows different genera. * P < 0.05, ** P < 0.01, *** P < 0.001.

CPFEs from sichuan kumquat, Longyan kumquat and bergamot
had lower levels of TFCs and main flavonoids (eriocitrin,
naringin, and hesperidin), with poor antioxidant capacity. The
richness of naringin and hesperidin in CPFEs can regulate
hepatic cholesterol synthesis by inhibiting the activity of 3-
hydroxy-3-methylglutaryl-CoA reductase (34, 35). Kwon et al.
also found that eriocitrin has cholesterol-lowering properties
and inhibits obesity by increasing cellular fatty acid oxidation
and energy expenditure, and reducing lipogenesis-related gene
expression (36). While CPFEs of apple pomelo and majia pomelo
had high content of naringin in our test, their antioxidant
activity and α-glucosidase activity were relatively poor. And
Zeng et al. showed that hesperidin hydrolysates intensively
inhibited α-glucosidase activity whereas hesperidin showed little

activity (37). There is limited understanding of the differences in
biological activities of various flavonoids. Further analysis on the
correlation between the biological activities and main flavonoid
components such as hesperidin, naringin and eriocitrin will help
the high-value utilization of different varieties of citrus peels and
processing wastewater.

Flavonoids derived from citrus peel represent the alterations
of gut microbiota. Researchers at the European Molecular
Biology Laboratory have proposed the classification of human
colonic microbiomes into three “Enterotypes” at the genus level
(38). ET B, dominated by genus Bacteroides, is associated with
high consumption of protein and animal fat. ET P, dominated
by genus Prevotella, is associated with high carbohydrate
consumption. Different enterotypes may be associated with
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health status and incidence of diseases. Prebiotics and probiotics
affect specific bacterial populations in the intestine, which are
associated with an individual’s enterotype (39). Only Rodríguez-
Daza et al. (40) found that supplementation with polyphenol-rich
blueberry fruit powders changed the enterotype of obese mice
from the Firmicute/Ruminococcus enterotype into the healthier
Prevotella/Akkermansiaceae enterotype. Bifidobacterium have
been reported to play important roles in regulating intestinal
microbiota and mucosal inflammation, contributing to inhibit
obesity, diabetes and inflammatory bowel disease (41, 42).
Bifidobacterium was significantly increased after cofermentation
of chachiensis and grapefruit CPFEs with fecal samples
(Figure 5), which were associated with the enrichment of
naringin and hesperidin, respectively. The effects of naringin and
hesperidin on the growth of Bifidobacterium strains were dose-
dependent (43). In the animal model of high-fat diet, naringin
intervention altered the community composition of the gut
bacteria, characterized by increased benefits (Butyricicoccus etc.)
and fewer harmful bacteria (Campylobacter etc.) (44).

It is well established that SCFAs are the major components
in regulating gut health (45). Dietary citrus flavonoids can
alter the abundance of SCFAs in the gut. CPFEs from
chachiensis and grapefruit stimulated intestinal acetic acid
(Figure 4B). Acetic acid is the main SCFA produced by
most fecal bacteria and an important pH regulator in
the colon, helping to maintain colonic homeostasis (45).
Zhang et al. (46) found that dietary supplements with citrus
peel extracts have anti-obesity activity, by increasing the
amount of fecal acetic acid by 43% and propionic acid by
86%. After 2 months of drinking pasteurized orange juice
containing flavanones, the proportions of total SCFA and
acetate were increased in the feces of healthy subjects, and
the ammonium concentration was reduced (15, 47). We found
that acetate is positively associated with Roseburia in the gut
(Figure 5). Roseburia is a symbiotic beneficial flora that produces
SCFAs, affecting colonic motility, immune responses and
anti-inflammatory properties (48). Conversely, Parasutterella
is inversely proportional to acetic and propionic acids. The
feces of IBS patients were rich in Parasutterella, which was
significantly positively correlated with the ratio of inflammatory
cells to epithelial cells (49). These suggest that the probiotic
effects of citrus flavonoid, if replicated in humans, may confer
health benefits.

CONCLUSIONS

In conclusion, CPFEs from 14 Chinese cultivars were extracted
and purified, and seven flavanones and four PMFs were
quantitatively analyzed by HPLC-DAD. The results of biological
function test showed that CPFEs, especially from chachiensis
and grapefruit, had good antioxidant activity, α-glucosidase
inhibition and bile acid binding capacity. Furthermore,
chachiensis and grapefruit CPFEs were found to promote the
growth of intestinal Bifidobacterium spp. and increase acetic acid
content by in vitro simulated human gut models. Our results
provided valuable insights into understanding the biofunctional
activity and gut microbiota regulation of citrus peel flavonoids.
Further studies will be performed to investigate the effects of
specific flavonoid components such as naringin, hesperidin and
eriocitrin on intestinal disease models.
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Background and Purpose: In regard to the biosynthesis of conjugated linoleic acid
(CLA) and eicosapentaenoic acid (EPA) by some bacteria, the objective of this study was
to evaluate the efficiency of solid-state fermentation based on soybean pressed cake
(SPC) to produce CLA and EPA by Bifidobacterium lactis. The objective of this study
was to evaluate the efficiency of solid-state fermentation based on SPC to produce
CLA and EPA by B. lactis.

Methods: Process conditions including humidity, inoculation level, and temperature
parameters were optimized by adopting the response surface methodology (RSM)
method (response surface method) and the design expert software. Accordingly, a
homogeneous SPC paste substrate at 60, 70, and 80% humidity was prepared with
different inoculation levels at 30, 37, and 44◦C to assess the strain behavior. The
introduced SPC consisted of 60% humidity, 2% inoculation level at 37◦C, and 60%
humidity, and 4% inoculation level at 30 and 44◦C; it also included 6% inoculation level
at 37◦C, 70% humidity at 2% inoculation level, at 30 and 44◦C, and 4% inoculation
level at 37◦C. Also, SPC with 80% humidity at 2% and 4% inoculation levels, and at 30
and 44◦C was obtained. To confirm the accuracy of the conditions, an experiment was
conducted according to the defined requirements.

Results: The results were compared with the predicted data, which showed a
significant difference. Under optimized conditions, with an inoculation level of 4% on
the SPC medium with 70% humidity and at 37◦C, B. lactis strains could yield 9cis-, 11
trans-linoleic and eicosapentaenoic at 0.18 and 0.39% of the total fatty acids.

Conclusion: So, the potential benefits of using SPC as an inexpensive substrate for the
commercial production of CLA and EPA should be noted.

Keywords: conjugated linoleic acid (CLA), EPA, Bifidobacterium lactis, soybean pressed cake, RSM
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INTRODUCTION

Conjugated linoleic acid (CLA) consists of a set of positional
and geometric isomers of octadecadienoic acid (LA) with a
conjugated double bond bonding system (–C=C–C=C–) initiated
from 9, 10, or 11 carbons. All settings of cis-trans, trans-cis, cis-cis
and trans-trans are possible in each of the three positional systems
(1–3). There exist at least 28 known CLA isomers (4), among
which cis 9 and Trans 11 (mostly in meat and dairy) have anti-
cancer properties. Trans 10 isomer, cis 12 (mostly in vegetable
oil) (5), is active in the body’s fat reduction and weight loss, as
well as the increase of energy consumption (6, 7). It is the most
abundant and important in terms of naturalness, with about 85
and 10%, respectively (1, 8).

On the other hand, CLA is a natural unsaturated trans fatty
acid (1) available in the meat and milk fat of sheep, goats and
deer (1, 9–10). Despite being a specific trans fatty acid, it is
categorized as non-trans, according to FDA; it is also known as
a safe GRAS (7, 11–13). In addition, eicosapentaenoic acid (EPA)
is one of the most unsaturated fatty acids of omega-3 type with
a potentially beneficial effect on the cardiovascular system (14)
in different volumes, within the range of 0.1 to 2.6 g in some fish
types, especially cold-water fish. It is found in a group of seaweed.
A group of bacteria like gamaproteobacteria and schwannellas
can biosynthesize this fatty acid (15). Although EPA is a nutrient
and is produced as a supplement, it is also called a drug because
of its specific function and result. Studies show that taking EPA
supplements in people with high blood triglyceride levels can
reduce the level of this fat by up to 33% (16).

In the recent years, more attention has been paid to the
production of healthy and safe food products because consumers
are looking for more natural foods (17) to improve their health
through its active ingredients (13). Fats are one of the main
components of foods; due to their association with cardiovascular
diseases, diabetes and obesity, there are many concerns about the
type and amount of their consumption, because the quality of fat
in the diet (9) is of great importance.

Despite the anti-nutritional nature of some lipids (6), such
as trans and saturated fatty acids, another group of lipids has
shown beneficial physiological effects. In this regard, fatty acids
have received much attention due to their positive effect on the
prevention of a number of diseases (7, 9). For this reason, the
necessity of using biotechnological ways to produce healthy fats
has attracted much attention, with a good potential in terms of
producing safe and healthy fat products, as shown in the studies
focused on producing and incorporating them into foods (4, 18,
19).

In this context, one of these health-promoting or pragmatic
lipids is conjugated linoleic acid (CLA), the isomer of CLA 9-
cis, 11trans, which has a potentiating effect on the transmission
of PPARγ (fatty acids) nucleus, the main regulator of fat
cell differentiation. It acts as a stimulant of adiponectin
secretion, and this mechanism can partially counteract the
anti-hypertensive, anti-hyperlipidemic, anti-angiogenic effects
(effective in preventing cancer metastasis), as well as offering
atherosclerotic, anti-cancer and anti-diabetic properties helpful
for improving the human’s health (1, 7, 10).

In contrast, the CLA isomer, trans10, could increase cis12
lipolysis, reducing the function of fatty acid synthesis (20),
as well as being associated with proatrogenic effects, insulin
resistance, and inflammation (5, 17). In addition, CLA has other
beneficial physiological effects, such as increasing body muscle,
improving the immune system, providing antioxidants (free
radical scavengers), serving as an anti-allergy agent and reducing
platelet coagulation (2, 7, 18, 21).

The development of economic technologies to increase the
nutritional value and bioactive compounds of natural resources
(such as cereals and grains) has attracted considerable attention
in the recent years (22). Every year, large quantities of residues are
produced in the agricultural and food industries; if the recycling
of this waste is well managed, it could have many economic and
environmental benefits (23). In addition, the use of metabolites
can generate new sources (24, 25). The waste of food oil factories
is a problem in developed countries; it is of particular importance
to researchers due to environmental issues (26) as the seeds
of oil products are a significant share the production. So, it is
considered as a source. Moreover, for proper evaluation, waste
recycling can be important in terms of economic, environmental,
social and ecological aspects. Therefore, conversion of biomass
into high value-added compounds can be very beneficial (23).
As the use of agricultural waste in industry also reduces
production costs, it usually accounts for 25 to 50 percent of
total production costs (7). Its consumption improves various
biological parameters related to the human’s health.

Soybean is the most commonly produced oil crop in the world.
Soybean oil is primarily used in the production of shortening,
margarines, cooking/frying oils, salad dressings, and mayonnaise
(27). Soybeans are currently one of the most important foods
(28); they are the second largest source of vegetable oil worldwide
(after palm oil), with a high economic value (29). They also have
a strategic potential in food safety and bioactive compounds for
human needs (30). In addition, they could be regarded as one
of the most popular plant foods used in food and medicine.
Soybeans are mechanically pressed to extract oil by cold pressing
or chemically processed with organic solvents such as hexane.
The cold press method leads to products free of organic solvents
(31). After the production of oil from oil seeds, valuable by-
products (cakes / meal) rich in proteins, few lipids, carbohydrates,
and bioactive compounds may be obtained (30, 32, 33). In
addition, they could be considered as a rich source of protein, as
they contain amino acids, oligosaccharides, vitamins B and E, and
minerals (34). Also, they contain isoflavones that can promote
the growth of microorganisms. Moreover, soybean mills can
use them as a substrate in biological fermentation processes to
produce fatty acids (35). Soybean cake is an important source for
bioactive compounds such as phenolic compounds and lecithin
which are proved that have health benefits (27). In addition using
this waste can help the environmental condition and providing
huge economic benefits (36).

One of the oldest processes applied by humans is the solid state
fermentation used for food (11). Solid fermentation is a biological
process with a high potential for bio-enhancing the conversion
of plant wastes into many valuable compounds (22). Solid state
fermentation has many advantages, including cost-effectiveness,
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low water consumption, less volume of equipment, high
efficiency production per unit volume and easier aerobic process.
In addition, there is an increase of the oxygen diffusion rate in wet
solids (37, 38). The selection of bacteria capable of synthesizing
CLA or CLNA under in vitro condition is the first step required
to evaluate the possible effect of their production during food
fermentation or their impact on the surface of the intestine.
Conversion and isomer patterns depend on various factors (37).
In this regard, bifidobacteria have attracted much attention; they
are considered as the most interesting genus for the in-situ
production of CFA (6). There is also some evidence showing that
the ability to convert linoleic acid (LA) to CLA is strain specific,
(5) and that the conversion rates vary, depending on growth
conditions and matrix (39). Few studies have been, however,
performed on the production of fatty acids with the help of
a group of bacteria such as Bifidobacterium and Lactobacillus
species, which are mainly used as probiotics (18). Most strains
of Bifidobacterium are more efficient at synthesizing CLA and
conjugated linolenic acid (CLNA), despite producing lower levels
of conjugated fatty acids (37, 40).

Not only do they have the potential to accelerate the
production or recovery of conjugated linoleic acid and CLNA
from LA and α-linolenic acid (ALA) (6, 20, 21, 34, 37, 39, 40),
but also have the ability to grow in soybean litter and use its
carbohydrates (sucrose, raffinose and stachyose) by modifying
the substrate to increase its nutritional and functional properties
(13, 34, 41). By producing the enzyme α-galactosidase or β-
glucosidase and also, hydrolyzing the proteins in it, lactic acid
can be produced with a decrease in pH. The capability of some
species of LAB, including propionibacteria and bifidobacteria,
to in-vitro conjugate LA or LNA has been considered for
many years. Producing functional foods enriched in conjugated
fatty acids by using them as starter or adjunct culture can
be considered a promising topic for further development and
study (39). Innovation has always been the key to success.
We should make the optimal use to ensure future progress
and success. Given to the rate of obesity and mortality due
to cardiovascular diseases, diabetes and cancer (silent death),
especially in the young generation (2), soybean meal can be
considered as an excellent, natural, low-cost and cost-effective
substitute serving as a substrate for use in solid state fermentation
(SSF) for the production of fatty acids (7, 13, 20). The aim of
this study was, therefore, to produce beneficial fatty acids (CLA)
and (EPA) by Bifidobacterium lactis on a soybean meal-based
substrate as a natural, rich, suitable, inexpensive and available
environment to return part of the waste of food oil factories in
the production cycle.

MATERIALS AND METHODS

Materials
Bifidobacterium lactis (BBo4, Persian TypeCulture Collection)
was provided from the Microbial Collection of the Microbiology
Laboratory, Department of Food Science and Engineering,
University of Tehran, Iran. The SPC and chemical solutions were

provided from Ghiam Kesht and Sanat Company (Iran) and
Merck (Germany), respectively.

Preparation of the Bacteria
In this process, the bacterium was linearly cultured twice, each
for 24 h, in an MRS agar medium containing 0.5 gram per
liter L-cysteine and placed in an anaerobic incubator (Model D-
91126, Memmert Co., Germany) at 37◦C. To enrich bacteria, they
were first put in an MRS broth medium and incubated three
times, each for 24 h, at 37◦C. The cells were collected at the end
of the growth phase in the MRS broth through the centrifuge
and rinsed twice to obtain 1.5∗ 107 in 0.5 Mcfarland standard;
then the tirbidity of the batcerial suspension was adjusted to
the 0.5 Mcfarland standard (1.5∗ 108). The inoculation size was
optimized to support solid bed fermentation; thus, dilutions of
2, 4, 6% were made. To draw the growth kinetics, curve was
made by the first degree equation (rx = dCx / dt = µCx-KdCx)
(41, 42). After bacteria transfer to the broth media, the agar rate
absorption at 0, 1, 2, 3, 4, 6, and 18 h was measured to draw the
curve (Figure 1).

Substrate Preparation
The SPC was taken out of the refrigerator and rinsed twice with
water; then it was soaked in distilled water for 12 h. In the last
stage, the surface water was wholly discarded, and SPC was rinsed
again and poured in a mixer to be homogenized. About 150 g
of this homogenized soybean paste was weighed by a digital
scale of (0.0001 g) high accuracy that was put into a flask and
sterilized by autoclave (Iran Tolid Medical Industries Co.) at
121◦C for 15 min. After cooling, humidity was measured in the
oven at 105◦C; the humidity content of the meal was calculated
as the base humidity.

Inoculation of Bacteria Into the Culture Medium
When the sterilized homogenized SPC reached the room
temperature, the conjugated mixture without inoculation was
considered as the control. Without adding any additives like
vitamin k, hemein and sucrose, the microbial suspension was
inoculated at 2, 4, and 6%. After that, it was homogenized
(13) at three humidity levels (60, 70, and 80%) and poured on
the plates; then they were incubated at 30, 37, and 44◦C for
48 h as the response surface methodology (RSM) response levels
(Table 1). The cells volume after inoculation was about 3, 6,
and 9∗107 CFU/g, with 2, 4, and 6% inoculation, respectively.
After 48 h, to ensure the purity of the inoculated bacteria, the
slide was prepared and colored through the gram method; this
was observed through the Olympus optical microscope, thus
confirming the purity of bifidobacteria.

Microbial Count
Cell viability was determined through the dilution surface
method in the MRS agar. After the inoculation of the solution,
ten tubes were prepared. Each tube was placed on the MRS agar
plate in the incubator for 24 h at 37◦C; the results were expressed
as CFU/g (13).
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FIGURE 1 | Bifidobacterium lactis growth curve.

Measuring pH Changes
The pH changes of the samples after inoculation time (0, 24,
and 48 h) were recorded by a pH meter (Model 826 Metrohem
Co., Swiss) and reported as Response 1 (7, 13), as can be seen in
Table 1.

Measurement of Conjugated Linoleic
Acid by Spectrophotometer
After 48 h incubation, rapid spectrophotometry based on
UV absorption was used for bifidobacteria screening and
determination of their growth ability, producing CLA according
to (5). The culture sample was centrifuged through the
refrigerated centrifuge (Model 3-30K, Sigma Co., Germany) at

TABLE 1 | Independent variables and response data in the response surface
method (RSM) method.

Run Real values (coded) Response 1 =
pH at 48 h

Response 2 =
Absorbance

X1 X2 X3

1 37 (0) 60 (−1) 2 (−1) 5.5 0.2
2 44 (1) 70 (0) 2 (−1) 5.3 0.5
3 44 (1) 60 (−1) 4 (0) 5.4 0.45
4 37 (0) 80 (1) 2 (−1) 5.45 0.43
5 37 (0) 60 (−1) 6 (1) 5.35 0.55
6 30 (−1) 60 (−1) 4 (0) 5.41 0.51
7 44 (1) 80 (1) 4 (0) 5.48 0.5
8 37 (0) 80 (1) 6 (1) 5.1 0.7
9 30 (−1) 70 (0) 2 (−1) 5.2 0.72
10 44 (1) 70 (0) 6 (1) 5.3 0.67
11 30 (−1) 80 (1) 4 (0) 4.68 0.9
12 30 (−1) 70 (0) 6 (1) 4.64 1.2
13 37 (0) 70 (0) 4 (0) 4.3 2.2
14 37 (0) 70 (0) 4 (0) 4.2 2.15
15 37 (0) 70 (0) 4 (0) 4.15 2.21
16 37 (0) 70 (0) 4 (0) 4.1 2.25
17 37 (0) 70 (0) 4 (0) 4 2.24

X1: Temperature, X2: Humidity, X3: Inoculation.

13,000 rpm; then 1 ml of the supernatant was mixed with
2 ml of isopropanol and vortexed after adding 1.5 ml hexane.
Subsequently, the sample was held for 5 min at room temperature
and the hexane layer was collected. Then the absorption rate
was determined by a spectrophotometer (Biochrome WPA,
United Kingdom) at 233 nm. The data were recorded as response
2 in the RSM model (Table 1).

Fatty Acids Analysis
The modified Folch method was used for the lipid extraction
of the SPC (20). Accordingly, 5 g of the sample was mixed and
vortexed with a 100 ml 2:1 chloroform/methanol mixture; then
it was centrifuged at 5,000 rpm and passed through Whatman
paper No. 0.22. After that, 5 ml of distilled water was added
to the filtered liquid, which was vortexed and centrifuged again
for 10 min under the same conditions. At this stage, the upper
phase was discarded and the lower phase was evaporated at
40◦C and 80rpm by the rotary evaporator (IKA RV 10 model).
The fatty acids composition of the sample was determined
by the gas chromatography (GC) method (10); the National
Standard of Iran No. 13126-2 was applied for the separation
and methylation of fatty acids to produce fatty acid methyl ester
(FAME). FAMEs were then separated and quantified in a gas
chromatograph (Nexis 2030 Shimadzu model, Japan) equipped
with a flame ionization detector (FID) and capillary column
(Dikmacap-2330; 60 m× 0.25 mm× 0.20 µm), with the injector
and detector temperature of 250◦C and 260◦C, respectively.
The injection volume was 1 µl and hydrogen was used as
the carrier gas with a flow rate of 2 ml/min. The column
temperature, which began at 60◦C, was held for 2 min. The
temperature was raised to 200◦C at a rate of 10◦C min−1;
then it was raised to a final of 240◦C. This temperature was
held for 7 min. The method of identifying the fatty acids was
determined by comparison with the known mix fatty acids
methyl standards. The data were presented as the percent of total
fatty acids (TFA).
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Experimental Design and Statistical
Analysis
The RSM method and the Box Behnken Design (BBD) were
applied to predict and optimize the efficiency of a particular
process and to maximize production through the response level
method. Numerical optimization was also applied to obtain
the appropriate answers. This design was actuated with three
factors, each at three levels and with five repetitions in the
center point, including 17 experimental tests. The homogeneous
soybean meal pastes with 60, 70, and 80% humidity (X2) as
the substrate and different inoculation values of 2, 4, and 6%
(X3), at 30, 37, and 44◦C (X1), were selected as the variables
to assess the maximization of the bacterial strain response.
In the RSM method, for each dependent variable, a model is
defined, where the main and interacting factors on each variable
are expressed (43, 44). The multivariate model was expressed
through the Eq. 1.

Yn = b0+
3∑

i=1

bixi+
3∑

i=1

biixij +
3∑

i6=j=1

bijxixj (1)

where, Yn is the predicted answer, b0 is the constant coefficient,
bi refers to the linear effects, bii is the quadratic effect, bij is the
interaction, and xi and xj are the independent variables. Then
the maximum and minimum limits of each variable were coded.
The codes assigned to the independent variables are presented
in Table 1. The optimal conditions were determined according
to the response level method. The first and second factors
(Temperature and Humidity: X1 and X2), without applying the
third factor (Inoculation:X3), were involved in comparing the
results. At this stage, the experiment was designed to allow the
optimal conditions. The data were analyzed using the ANOVA
Design Expert (Ver. 11) and SPSS (Ver. 16) software.

RESULTS AND DISCUSSION

The Behavior of Bifidobacterium on the
Substrate
The growth of B. lactis on the SPC is represented in Figure 1.
To assess the growth pattern of microbes on this medium, the
microbial population was compared with a specific culture of
the MRS agar and the best growth pattern of microorganisms,
in regard to the four variables during fermentation. So, pH,
temperature and microbial growth stages are the most critical
factors in the biological production and viscosity of inoculated
linoleic acid (45). The growth of bifidobacteria on the SPC
was evaluated in different conditions including pH, temperature,
humidity and inoculum percentage.

The results showed that microorganisms could well grow in
the substrate at different humidity, temperature and inoculum
levels. At the beginning of the fermentation process, the bacterial
population did not increase considerably. Due to the adaptation
of the microorganisms to the new growth environment, there
was no significant change in cell population and pH. However,
after 18 h of fermentation, there was a sharp decrease in pH

from 6.6 to 5.8. In addition, the cell population augmented the
initial value. After 24 h, the bacterium entered the logarithmic
phase, reaching its maximum population; the tarnished state
due to this increase was evident on the medium. In the last h
of fermentation (48 h), the decrease in the bacteria count was
apparent by a lower drop of pH, at all humidity levels and 30
and 37◦C, except 44◦C. In contrast, the pH of the control sample
remained unchanged. In general, the fermentation process of
bifidobacteria lactis was within 8–48 h (7, 11, 40); however, in
this experiment, the highest bacterial growth occurred within 24–
48 h after inoculation. After the complete fermentation of the
substrate, the bacteria growth rate in the SPC culture medium
followed a descending trend. After approximately 48 to 72 h,
it stopped, leading to the death of some bacteria. After 24 h
of fermentation, no more change in pH was observed and a
decrease in the decline of the cell population occurred. It was
also found that with the increase of the fermentation time, the
oligosaccharides and crude protein content of the soybean meal
was consumed by bacteria, and solid-state fermentation could
considerably increase the solubility of the protein in substrate
amino acids (34). The hydrolysis of proteins in the fermented
SPC depends on the type of bacterial strain and the substrate
humidity content (42, 46). It was found that an increase in the
produced lactic acid volume in the culture medium decreased
the pH rate. Another influential factor is the inoculated bacteria
level in their growth kinetics. Optimal bacterial growth depends
on the internal and external humidity of the culture medium
surface. Primary substrate humidity is a vital factor in bacterial
growth, and a humidity level above 50% in SSF promotes the
development of microorganisms (40, 45). After fermentation,
the loss of high humidity content could lead to the increased

TABLE 2 | Analysis of variance related to pH and absorbance data obtained from
the Box Behnken Design.

Measurement

Source Degree of freedom pH Absorbance

Model 9 0.5633*** 1.081633***

X1 1 0.3003*** 0.183013***

X2 1 0.1128* 0.08405***

X3 1 0.1405** 0.201613***

X1X2 1 0.164** 0.0289*

X1X3 1 0.0784* 0.024025*

X2X3 1 0.01 0.0016

X1
2 1 0.765*** 1.827164***

X2
2 1 1.87*** 3.890533***

X3
2 1 1.2*** 2.55348***

Residual 7 0.0094 0.00247

Lack of Fit 3 0.0053 0.00369

Pure Error 4 0.0125 0.00155

Cor Total 16

R2 98.72% 98.82%

R2 adj 97.07% 99.60%

***, **, *: Significant at p ≤ 0.001., p ≤ 0.01, p ≤ 0.05.
X1 : Temperature, X2 : Humidity, X3 : Inoculation; MS: Mean Square.
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FIGURE 2 | Interaction effect of temperature and humidity (A), and temperature and inoculation (B) on pH.

material concentration at the culture medium, thus indicating
the end of the growth phase (11). Bifidobacteria lactis in the SPC
exhibited high compatibility at 70% humidity and 4% inoculation
level, with the lowest pH of (4.0) at 37◦C, (Table 1). After
48 h fermentation, no more change in pH was observed and a
decline in cell population occurred. The bacteria count reduction
rate after 48 h was due to the decrease in the pH and volume
of the nutrients. No provision of the nutritional demand for

microorganisms and low humidity could prevent their growth
(11, 13, 40).

Optimal Conditions Based on the
Response Level
The results of the variance analysis of pH and absorption indices
are tabulated in Table 2. The parameters R 2-sq, R 2 sq - (adj),
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FIGURE 3 | Interaction effect of temperature and inoculation (A), and temperature and humidity (B) on absorption.

and p-value indicated a high correlation between the observed
and predicted values (47). Data analysis based on the linear
model was, however, insignificant for all factors, and the most
significant and high correlation model was the quadratic one.
The high volumes of R 2-sq and R 2- adj for the models (98.72
and 97.07%) with pH and (98.82 and 99.6%) absorption response
levels indicated that the predicted models for CLA and EPA
production were suitable and of high regression coefficients.
Lack of fit did not, however, show a significant effect. The first

(P < 0.05) and second (P < 0.001) degree effects of the three
parameters, namely, X1 (temperature), X2 (humidity) and X3
(inoculation), had a significant interaction with X1, X2 and X1
and X3 in terms of pH response absorption. Their interactions
were significant at (P < 0.05) (Table 2).

pH Changes
Assessments run on the pH changes in each of the variables (48 h
at the substrate) revealed that 44 degrees had a preventive effect
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on CLA production. The substrate pH was not reduced, as shown
in Figure 2; meanwhile, the inoculation level had a positive
impact, as compared to humidity, on increasing production
(reduced pH), as can be seen in Figure 2. The interactions
of X1 and X2 and X1 and X3 on production were, however,
negative. Meanwhile, inoculation had no significant impact on
humidity, as can be seen in Figures 2A,B. A separate analysis of
the practical factors on the production yield showed an increase
of temperature from 30 to 37◦C, humidity from 60 to 70%, and
inoculation from 2 to 4%. With the rise of temperature from 37 to
44◦C (only after 24 h), humidity from 70 to 80%, and inoculation
from 4 to 6%, the pH level followed a descending trend; after
48 h injection, the substrate pH remained unchanged at 44◦C.
The equation of pH changes based on these three parameters and
their interactions, according to the significance of the coefficients
of the equation, is expressed as follows:

pH = 4.15+ 0.194X1 − 0.119X2 − 0.132X3 + 0.426X2
1

+0.666X2
2 + 0.534X2

3 + 0.203X1X2 + 0.14X1X3 (2)

Note that because the interaction effect of X2 and X3 was
insignificant, as shown in Table 2, they are not expressed
in this equation.

The interaction diagram of X1_ X3 and X1 _X2 at 70% and
the inoculation of 4% indicated that the highest pH was at 44◦C
and the inoculation of 6 and 2%, as shown Figure 2A; also, the
temperature of 44◦C and humidity of 80% should be mentioned,
as can be seen in Figure 2B. For pH less than 4.2, the approximate
inoculation range was estimated to be 3.5–5.0, and temperature
was 31.9–38.9◦C.

Absorption
Assessing the variables’ absorption rate revealed that X2 had
a more significant effect on the absorption rate than X1 and
X3, while significant interactions could harm production. The
3D figures are based on the X1 and X3 interaction absorption
rate, as shown in Figures 3A,B. The interaction effect of X1∗X2
and X1∗X3 on pH 48 h after inoculation revealed the highest
absorption level results when pH was at its lowest, that is, X1 at
37◦C, X3 at 4% and X2 at 70%, as can be seen in Figures 3A,B.
Simultaneous optimization through the utility volume of 0.991%
in the soybean meal was significant for all three responses. The
correlations between the independent variables of the experiment
and the absorption level concerning the insignificant nature of X2
and X3 interactions, according to Table 2, are expressed in Eq. 3:

Abs. = 2.21− 0.151X1 + 0.103X2 + 0.159X3 − 0.659X2
1

−0.961X2
2 + 0.779X2

3 − 0.085X1X2 − 0.078X1X3 (3)

Bacterial Screening at the Production
Rate
Bifidobacterium lactis was screened to produce EPA and CLA
by measuring the absorbance at 233 nm. B. lactis in the SPC
at different X1, X2, and X3 levels (except 44◦C) 48 h after
inoculation, at a decreased pH index, revealed the production
ability of other volumes (42). The highest absorption rate (more

than 2) in the culture medium was observed at 70% humidity,
37◦C and 4% inoculation level, with a 4.15 pH level. At the
temperature of 44◦C, humidity of 80% and inoculation level of
6%, there was a negative effect on production, as also shown
by (25). According to the optimal surface model, the highest
production occurred in the central region, with the temperature
of 36–37◦C, inoculation level of 3.5–5%, and humidity of 68–
72%. The highest optimum point of the predicted volume from
the operations consisted of 36.040◦C, 70.532% humidity, 4.222%
inoculation and absorption point >2.231, as can be seen in

TABLE 3 | The optimal value of different independent variables (temperature,
humidity, and inoculation) and responses based on the highest absorption rate
at the lowest pH.

Optimum value

Variable Temperature 36.040

Humidity 70.532

Inoculation 4.222

Response pH at 48 h 4.114

Absorbance 2.231

Appropriateness 0.991

TABLE 4 | Fatty acids composition (% total fatty acids) of the SPC with (B) and
without Bifidobacter lactis (A).

Fatty acids A B Inoculation change (1*)

C12:0 1.55 1.27 −0.28

C14:0 1.26 1.73 +0.47

C14:1 0.41 0.3 −0.11

C15:0 0.26 1 +0.74

C15:1 0.29 0.18 −0.11

C16:0 18.57 29.3 +10.37

C16:1 0.21 0.23 +0.2

C17:0 0.22 0.3 +0.8

C17:1 ND 0.11 +0.11

C18:0 13.35 24.81 +11.35

C18:1t 0.34 0.22 −0.12

C18:1c 27.45 14.82 −12.63

C18:2t 0.29 0.31 +0.2

C18:2c 30.41 19.89 −10.52

C18:3t ND 0.4 +0.4

C18:3c 1.92 1.86 −0.6

C20:0 0.68 0.56 −0.12

CLA c9t11 ND 0.18 +0.18

CLA t10c12 ND ND ND

C20:1 0.13 ND −0.13

C20:2 ND 0.1 +0.1

C20:4n-6 ND ND ND

C22:0 0.51 0.44 −0.7

C22:1 ND 0.35 +0.35

C20:5 n-3(EPA) ND 0.39 +0.39

C24:0 0.56 0.2 −0.54

C24:1 0.07 ND −0.07

C22:6 n-3 (DHA) ND ND ND

*1 = B−A, ND: not detectable.
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Table 3. The experimental results, thus, confirmed the optimal
rates. The substrate concentration strongly affected LA/LNA to
CLA containing the produced oil conversion rate through the
B. lactis strain (48). The CLA production was variable due to the
response of bifidobacteria lactis to the substrate fatty acids level
and composition (37). pH and temperature could be, therefore,
regarded as important environmental parameters that change the
structure and affect the diversity of distribution (49, 50).

Fatty Acids Composition
The fatty acids (FA) profile of the SPC inoculated with (48 h)
and without B. lactis and their changes are presented in Table 4.
The most positive changes of FAs were seen in the two main
strains of saturated FA (palmitic (C16:0) and stearic (C18:0)
acids, with the inoculation of Bifidobacteria on the SPC. On
the other hand, the mono and polyunsaturated FA (oleic (C18:
1n-9) and linoleic (C18: 2n-6) acids, which had the highest
proportion of FAs in the SPC, showed the most negative change
by bacterial inoculation (Table 4). B. lactis is a bacterial strain
that can easily adapt itself to using substrate nutrients (37), such
as FAs, for its growth. This bacterium can convert linoleic acid
to CLA with the linoleate isomerase enzyme (5). Furthermore,
it breaks down the proteins of the soybean meal, producing free
amino acids and other compounds, with the substrate having
more buffering capacity. On the other hand, fermentation of
various carbohydrates in the substrate causes the production of
lactic acid, reducing the pH value of the culture medium of
Bifidobacterium (7). The 4% inoculation rate of Bifidobacterium
in the SPC containing 70% humidity and incubated at 37 ◦ C
showed the highest pH reduction, producing 9cis and 11trans
CLA (c9-t11 CLA) and EPA at 0.18 and 0.39% of the total FA,
respectively (Table 4). Meanwhile, the other isomers of CLA such
as t10-c12 CLA were not detected (47). Moreover, B. lactisis,
as other lactic acid bacteria such as Lactobacillus plantarum
(42)), can grow on the SSF SPC. The soybean meal pressed
cake has sufficient nutrient levels (13) to support the growth of
these bacteria without the need to add carbohydrate and protein
supplements (7, 9). Another researcher has also mentioned that
the FAs proportion and their isomer types are dependent on pH,
temperature, microbial inoculation level, substrate concentration
and activation method used for bacterial strain (48).

CONCLUSION

Using microbial cultures in producing and increasing CLA
and EPA concentrations in fermented foods is not an easy
task and usually of meager yield. Despite the lower potency
of B. lactis (BBo4, Persian Type, Culture Collection, Iran), as
compared to other bifidobacteria strains, due to the value of
pure isomer produced, this study was performed to evaluate the
potency of the SPC as an almost oil-free substrate, considering
SPC as one of the most source for bioactive compounds (26)
extracted oil may contain these healthy materials although the
huge waste of soybean oil production can supply the cheap
and safe substrate for CLA and EPA production (37). The
use of soybean meal increased lactic acid during solid-state

fermentation. Due to the intrinsic properties of soybean meal,
it increased the substrate fatty acids, thus producing conjugated
linoleic and eicosapentaenoic acids. Given the experimental
design conditions and methods adopted in the production of
cheap isomers at a low cost, by considering the health features
and probiotic aspects of the B. lactis strain, the soybean meal
could be considered as a natural (plant) substrate available for
producing this substance. While the findings here are valuable,
more in-depth studies should be run in regard to the type of sub-
bedding produced by the microbial strain through considering
dietary supplements for the higher concentrations of CLA. It
was revealed that the oil produced from plant waste could
be adopted and the microbial isomerization method could be
used to produce bioactive compounds and to make valuable
substances; in addition to reducing the food production costs,
it could decrease such outlets’ expenses. This, in turn, would
improve the added value therein. At this age of recycling waste,
in regard to healthy foods, resorting to natural waste products is
of importance, in addition to protecting the environment.

In this context, the previous research has mostly focused
on identifying CLA / CLNA-producing bacteria, evaluating
production under general growth conditions, and using substrate
concentration by chromatography / spectrophotometry through
Bifidobacteria on soybean. The capability of some species of
LAB including propionibacteria and bifidobacteria to in-vitro
conjugate the LA or LNA has been shown over the years.
Producing functional foods enriched in conjugated fatty acids
by using it as a starter or adjunct culture can be considered a
promising topic to for further development and study (38).
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Grain filling is a critical process for achieving a high grain yield in maize (Zea

mays L.), which can be improved by optimal combination with genotype and

nitrogen (N) fertilization. However, the physiological processes of variation

in grain filling in hybrids and the underlying mechanisms of carbon (C)

and N translocation, particularly under various N fertilizations, remain poorly

understood. The field experiment was conducted at Gongzhuling Farm in

Jilin, China. In this study, two maize hybrids, i.e., Xianyu 335 (XY335) and

Zhengdan958 (ZD958) were grown with N inputs of 0, 150, and 300 kg N ha−1

(N0, N150, and N300) in 2015 and 2016. Results showed that the N application

significantly optimized grain-filling parameters for both maize hybrids. In

particular, there was an increase in the maximum filling rate (Gmax) and the

mean grain-filling rate (Gmean) in XY335 by 8.1 and 7.1% compared to ZD958

under the N300 kg ha−1 (N300) condition, respectively. Simultaneously, N300

increased the small and big vascular bundles area of phloem, and the number

of small vascular bundles in peduncle and cob at the milking stage for XY335.

XY335 had higher root bleeding sap (10.4%) and matter transport efficiency

(8.4%) of maize under N300 conditions, which greatly enhanced the 13C

assimilates and higher C and N in grains to facilitate grain filling compared to

ZD958. As a result, the grain yield and the sink capacity for XY335 significantly

increased by 6.9 and 6.4% compared to ZD958 under N300 conditions. These

findings might provide physiological information on appropriate agronomy

practices in enhancing the grain-filling rate and grain yield for maize under

different N applications, namely the optimization variety and N condition
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noticeably increased grain filling rate after silking by improving ear vascular

structure, matter transport efficiency, and enhancing C and N assimilation

translocation to grain, eventually a distinct improvement in the grain sink and

the grain yield.

KEYWORDS

maize, grain filling, 13C-photosynthates, vascular bundle structure, matter transport
efficiency

Introduction

A critical process for achieving high grain yield in maize is
grain filling, which is closely associated with kernel number and
weight and determined by grain-filling rate (GFR) and period
(GFP) (1, 2). The grain filling was affected by nitrogen (N)
application and crop genotype, which has been well documented
(3, 4). Although increasing plant density improves the grain
yield of maize, leaf mutual shading would reduce the pollination
rate and photosynthesis, which adversely affect GFR (5) and
GFP (6), not only affects grain weight but also kernel number (7,
8). A growing number of studies on N effect on grain filling tend
to favor that GFR is more influential than GFP in achieving high
grain yield (4, 9). However, the physiological mechanism of N
influencing the GFR between two maize hybrids is still unclear,
especially under high plant density. Therefore, further research
is needed to resolve this question and thus we might gain better
insights into the mechanisms of increasing maize grain yield
by investigating the grain-filling characteristics between various
levels of N inputs.

Three essential factors, assimilate supply, matter transport,
and sink capacity, influence grain filling (10–12). Grain filling
depends on the grain carbon (C) assimilates obtained from
both the C remobilized from reserves of C pools in vegetative
organs either pre- or post-anthesis and assimilates currently
produced in photosynthetic tissues. Nitrogen has a major role
in the initiation of sink size establishment and C (i.e., sucrose)
and N assimilates supporting kernel development and growth
in interdependent ways during the grain-filling period (13, 14).
However, the majority of relevant studies had focused on how N
supply alters the final kernel number or N allocation in various
parts of plants, while played little attention to how N supply
influences C assimilates allocation to kernels during the grain-
filling to maturity stages (10, 12, 15). Thus, the determination
of C assimilates allocation before and after anthesis would
be beneficial to understand the response mechanisms of GFR
and GFP between maize hybrids grown with different amounts
of N fertilizer.

A robust matter-transport system within a plant is an
essential prerequisite for C assimilates allocation from sources
to meet the high assimilates requirements of sink establishment,
namely kernel development, and growth (16–19). Root bleeding
sap is one of the key factors to boost the matter transport system,

because its quantity and components reveal the shoot growth
potential and root activity (20, 21). Higher matter transport
efficiency (MTE) is greatly dependent on the vascular bundle
system because this system is the main channel for transporting
C and N compounds (14). Both the amount and area of vascular
bundles play a crucial role in transporting photosynthates
and nutrients (22, 23). Our previous study clearly shows that
N fertilizer management increased the number of the small
vascular bundle to strongly affect matter transport and crop
grain production (9), but played little attention to how crop
variety selection and N interaction influence matter transport
to grain. Thus, revealing how crop genotype and N application
influence the traits of vascular bundles in crops would deepen
our understanding of the variability in matter transport and
nutrient allocation in crops.

Kernel’s ability to utilize and absorb assimilates was highly
dependent on N fertilization and crop genotype. Appropriate
high N fertilizer input has been shown to increase dry matter
accumulation and distribution to reproductive organs and is
associated with better efficiency in the use of C assimilates
by kernels (15, 24, 25). However, little information was
available about the physiological processes and carbon (C)
and N translocation of different maize hybrids in grain filling,
particularly under various N fertilizations. Here, we investigated
some of the complex relationships involved in maize grain
development and yield production as affected by genotype
and N supply. Our specific aims were to (1) compare grain-
filling attributes and grain yields between two maize hybrids in
response to various levels of N supply, (2) reveal underlying
mechanisms of C assimilates allocation in the grain-filling
process of maize hybrid with high sink capacity and grain
yield, (3) and explore how matter transport and vascular bundle
characteristics relate to crop grain-filling and differ in response
to various N supplies between two maize hybrids.

Materials and methods

Experimental site descriptions

A field experiment was conducted at Gongzhuling, Jilin
Province (43◦31’N, 124◦48’E), China during the maize growing
season of April–October in 2015 and 2016. The experimental
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soil was black earth (Hapli-Udic Cambisol) with the following
soil properties: pH 6.3, organic matter 26.6 g kg−1, total N
1.6 g kg−1, available P 62.3 mg kg−1, and available K 148.40 mg
kg−1. These values were obtained from soil sampled from the
0 to 20 cm soil profile before this study. During maize growing
seasons, air temperatures above 10◦C were summed to calculate
the effective cumulative temperature, which was 1631.3◦C in
2015 and 1616.0◦C in 2016. Cumulative rainfalls were 409.6 mm
in 2015 and 643.7 mm in 2016.

Experimental design and crop
management

In a split-plot design, two maize hybrids were established as
the main plots and three N levels were established as subplots,
totaling 18 plots with three replications. Each plot was 45 m2

in area (7.5 m length × 6 m width). Two widely grown
high-yielding spring maize varieties, Xianyu 335 (XY335; It
was bred by the American Pioneer Company. The parental
inbred lines are PH4CV and PH6WC. PH6WC and PH4CV
come from the SS and NSS heterotic groups of M America,
respectively.) and Zhengdan 958 (ZD958; It was bred by the
Henan Academy of Agricultural Sciences. The parental inbred
lines are Zheng58 and Chang7-2, which came from the PA
and SPT heterotic groups in China, respectively.), were planted
in the main plots. Three N fertilizer (urea) levels, 0 kg ha−1

(N0), 150 kg ha−1 (N150), and 300 kg ha−1 (N300), were
individually applied in the subplots. The N was applied before
the sowing, jointing, and silking stages of maize at a ratio of
5:3:2 for the three applications. Both phosphorus [Ca3(PO4)2]
and potassium (KCl) fertilizers were applied at 100 kg ha−1

before sowing in 2015 and 2016. Maize was planted in rows
with a 60 cm row spacing and 90,000 pl ha−1 density on April
29th and April 30th and manually harvested on October 1st and
September 30th in 2015 and 2016, respectively. Pests, weeds,
and diseases were well-controlled and no irrigation was applied
throughout the two growing seasons.

Data collection

Sampling and grain-filling parameters
From the beginning of maize pollination, 50 plants that

visually appeared uniform in growth were marked in each plot to
record the date of ear pollination. Three ears among the marked
pollinated plants were collected every 7–15 days for a total of
five time points in 2015 and six time points in 2016 (19). We
then collected 100 kernels from the middle part of each ear and
initially dried them in an oven at 105◦C for 40 min before drying
to a constant weight at 80◦C. Then we determined the 100-
kernel weight as a measure of the grain-filling process by fitting

a logistic equation (Eq. 1) according to Wei et al. (4).

W = A/(1+ BEXP−Ct) (1)

In the above equation, W is the 100-kernel weight (g) and t is
the number of days after pollination. The estimated parameters
A, B, and C represent final mass, the coefficient at the initial
stage, and growth rate, respectively. A second equation (Eq. 2),
derived by taking the first derivative of Eq. 1 (4), was used to
estimate effective grain-filling duration and kernel growth rate:

Dw/dt = A× B× C × EXP−Ct/(1+ B× EXP−Ct)2 (2)

The following equations describe the determination of
additional grain-filling parameters of maize. Kernel weight at the
maximum grain-filling rate was determined by (W max) =
A/2. The maximum grain filling rate equation is (Gmax) =
(C × W max )× [1− (W max /A)]. The mean grain filling
rate equation is (G mean) = (A/2)× (C/6). The active grain-
filling period was determined by (P) = 6/C.

Root activity (TTC reducing capacity) and
malondialdehyde content

At the milking stage, 0–60 cm of soil root was selected,
then it was divided into 0–15,15–30, and 30–60 cm of three
layers to measure the root activity and malondialdehyde
(MDA) content in 2015 and 2016. Root activity (TTC reducing
capacity) was measured according to the method of Duncan and
Widholm (26).

Malondialdehyde (MDA) content was measured as follows:
0.3 g root was selected in each sample, 2 ml 10% TCA solution
was added, and then it was finely ground. Then, it was poured
into a centrifugal tube, 6 mL TCA was added to wash, put the
homogenate into a centrifuge tube (4,000 r/min for 10 min), and
the supernatant was collected. Take 2 mL supernatant, add into
2 mL 0.6% TBA solution, mix and plug in the tube, put into a seal
with plastic wrap, kept the mixture at 100◦C for another 30 min.
Taking supernatant to obtain OD values at 532 and 450 nm.
The CK is a TCA solution. Finally, calculate the MDA content
(µmol/g) by C

(
µmol L−1)

= 6.45× A532− 0.56× A450 .

13C-photosynthate distribution and
C/N ratio between plant organs

We used the 13C isotope as a tracer in a labeling experiment
to evaluate the effect of maize hybrids and N fertilizer levels on
the 13C-photosynthate distribution among plant organs in 2016.
Six plants of robust and uniform growth were selected in each
plot for 13C-labeling at the third day after silking. Mylar plastic
bags (length 1 m, width 15 cm, and thickness 0.1 mm) were
used to encase the ear leaf. Then, 50 ml of 13CO2 was injected
into the bags. After the enclosed leaves were allowed to continue
photosynthesizing for 60 min, the bags were removed from the
ear leaf in each plot.
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TABLE 1 Effect of nitrogen fertilization level on grain yield component and sink capacity between two maize hybrids in 2015 and 2016.

Year Genotype N level KNP TKW GY SC NPF TNF
(ear−1) (g) (kg ha−1) (g m−2) (No.) (No.)

2015 XY335 N0 335± 13.5d 233± 3.3e 5445± 31.8f 626± 33.1f 478± 1.1e 396± 11.7d

N150 410± 4.4c 271± 4.5c 8992± 48.0d 940± 6.0d 698± 4.7c 500± 10.8c

N300 505± 13.0a 286± 3.6b 12313± 28.8a 1258± 14.4a 760± 7.2a 601± 3.5a

ZD958 N0 336± 4.8d 253± 1.3d 6073± 33.3e 681± 7.7e 472± 4.4e 389± 7.7d

N150 415± 12.6bc 283± 1.3b 9568± 82.9c 999± 10.3c 662± 8.8d 499± 12.2c

N300 432± 16.0b 315± 4.5a 11387± 19.0b 1184± 20.3b 717± 8.3b 565± 11.0b

2016 XY335 N0 321± 16.0d 229± 0.5f 4778± 52.5f 588± 28.1f 538± 4.0d 384± 4.6d

N150 460± 12.0bc 280± 1.9d 8984± 23.4d 1068± 20.1d 727± 9.0b 539± 4.2c

N300 535± 10.1a 328± 2.3b 12627± 35.6a 1438± 12.2a 771± 5.9a 633± 17.0a

ZD958 N0 312± 2.0d 273± 1.6e 5485± 50.4e 681± 6.8e 524± 5.3d 360± 20.0d

N150 449± 1.2c 317± 2.3c 9602± 69.4c 1128± 16.7c 675± 14.5c 518± 28.0c

N300 480± 16.0b 340± 3.7a 11836± 39.3b 1339± 25.3b 702± 19.0bc 590± 19.7b

ANOVA Year (Y) *** *** NS *** *** *

Nitrogen (N) *** *** *** *** *** ***

Genotype (G) *** *** * * *** ***

N× G *** NS *** *** *** NS

Y× N× G *** NS *** NS *** **

KNP, Kernel number per ear−1 ; TKW, 1,000-kernel weight; GY, Grain yield; SC, Sink capacity; NPF, Number of pollinated florets; TNF, Total number of florets. N0, N150, and N300
indicate 0, 150, and 300 kg ha−1 N applied, respectively.
Different letters indicate significant differences between treatments at a 5% level.
*, **, and *** indicate different significance at 5, 1, and 0.1% level, respectively.
NS, no significance.

Labeled plants from each plot were harvested at two time
points. The first set of three plants was sampled 24 h after
the 13C-labeling of leaves. The remaining three 13CO2-labeled
plants were harvested when they reached the physiological
maturity stage (R6). All plant samples were divided into ear
leaves, other leaves, stem, sheath, cob, ear bracts, and grain. All
plant materials were heated at 105◦C for 1.5 h and then dried
to constant weights at 80◦C before milling into fine powders.
Using 5 mg of each powdered sample, we determined isotopic
abundance using an Isoprime 100 instrument (Isoprime100,
Cheadle, United Kingdom). Significance analysis was performed
on the same growth stage between treatments at a 5% level.
For C and N content determination in 2016, all leaf fractions
from each plant were mixed together as a single leaf sample and
then analyzed along with the remaining stem and grain samples
according to the method mentioned in a previous study (27).

Vascular bundles number and area and matter
transport efficiency

At the maize milking stage of the 2016 growing season,
the plant fractions of the basal-stem, peduncle internode, and
cob internode were obtained from five plants per in each plot
according to Piao et al. (28). The plant samples were fixed
using the Kano fixative solution (Vaceticacid/Valcohol = 1:3) and
were stored in 70% ethanol solution before obtaining images
of vascular bundle structure. Images were captured using a

Zeiss Axio Scope with a 5 × /0.3 numerical aperture and a
10 × /0.3 NA Axio HRc camera (Carl Zeiss Inc., Ontario, CA,
United States). Then, we analyzed images using the ZEN analysis
system (Axio Lab A1, Zeiss, Germany) to obtain relevant data
regarding the area occupied by large and small vascular bundles
and xylem and phloem per vascular bundle. The average values
from 18 adjacent vascular bundles were recorded for each
treatment. Significant analysis was performed on the same
positions between treatments at a 5% level.

Root bleeding sap was collected from at the basal internode
of the stem. The protocol for the collection of sap was according
to the method described in previous studies by Piao et al.
(28). Then, the total areas of big/small vascular bundles were
calculated according to Eq. 3. The matter transport efficiency
(MTE, mg mm−2 h−1) was calculated using Eq. 4 (28).

Total area of big / small vascular bundle

= signal area of big /small vascular bundle

×total number of big /small vascular bundle (3)

MTE = RBS / VAB (4)

Here, RBS refers to the rate of root bleeding-sap collected
from 17:00 to 05:00 of the next day (mg h−1), and VBA refers to
the vascular bundle area in the basal stem internode (mm2).
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FIGURE 1

Dynamics of 100-kernel weight and grain filling rate of two maize hybrids after pollination under various N levels applied in 2015 and 2016. N0,
N150, and N300 indicate 0, 150, and 300 kg N ha-1 applied, respectively. The values shown are the mean ± SE (n = 3).

Count of florets, grain yield, kernel number per
spike, and 1,000-kernel weight

On the 10th day after maize pollination in 2015 and 2016,
the husk leaves were removed from 10 ears selected from each
plot after the total number of florets per ear was recorded. The
number of pollinated florets included two counts by simply
shaking: Both falling and withered silks in ovary silk junction
were counted as the number of fertilized florets. The number
of fresh silk that was not fell off was recorded as the number of
unpollinated florets (29).

At the maturity stage of maize, four rows of maize in each
plot were harvested to determine grain yield (grain yields were
standardized to 14% moisture), kernel number per plant, and
1,000-kernel weight. Sink capacity was determined by Eq. 5 as
described by Yoshinaga et al. (30).

Sink capacity =KNP × KW × plant number per unit area
(5)

Here, KNP refers to the kernel number per ear−1, KW is
kernel weight and the plant numbers per unit area were obtained
from a 1 m2 area in each plot.

Results

Grain components, grain yield, and
sink capacity

There were significant effects from the factors of Year (Y),
Nitrogen (N), and Genotype (G) on kernel number per ear−1

(KNP), 1,000-kernel weight (TKW), grain yield (Y effect on
grain yield not included), sink capacity, number of pollinated
florets (NFP), and the total number of florets (TNF) (Table 1).
For both varieties, increasing the levels of N applied to soils
significantly increased KNP by an average of 10.8% and TKW by
9.2% between N150 and N300. Increasing the levels of N applied
grain yield increases by an average of 22.7% and sink capacity
by an average of 20.6% between N150 and N300. Interestingly,
averagely a lower TKW (6.4%) but a higher NPF (7.3%) and
KNP (12.4%) were observed for XY335 compared to those for
ZD958, which contributed to 7.5% (2015) and 6.3% (2016)
increases in KWP of XY335 from that of ZD958 under the N300
treatment. Conversely, under the N0 and N150 treatments,
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KWP values for ZD958 compared to those for XY335 appeared
greater but without significant difference (Table 1).

Grain filling characteristics

After maize pollination, the changes in 100-kernel weight for
both varieties appeared in three stages of increasing change from
gradual to rapid to slight increases over time (Figure 1). Initially,
there was no obvious difference between varieties, when the
weights were gradually increased. Then the 100-kernel weight
of XY335 rose higher than that of ZD958 when both weights
were rapidly increasing in the N0 and N150 treatments in 2015.
Accordingly, for grain-filling rate, XY335 presented higher and
lower values at the time periods of 14–32 and 35–60 days after
pollination compared to that of ZD958 in 2015, respectively.
Similar trends were observed in the 2016 growth season as well
but with slightly higher and lower differences between varieties.
Generally, XY335 achieved Gmax sooner than ZD958 achieved it
in each study year (Figure 1).

In general, increasing N levels promoted Wmax, Gmax, and
Gmean for both maize varieties, particularly in N300. Higher
Gmax and Gmean values were observed for ZD958 in comparison
to those of XY335 in N0 and N150 conditions, whereas the Gmax

and Gmean values obtained from ZD958 were on average 8.1 and
7.1% lower than the respective values from XY335 in the N300
conditions. Notably, XY335 had shorter GFPs on averages of 5.3,

2.7, and 15.4% than those of ZD958 in the N0, N150, and N300
levels, respectively (Table 2).

C and N contents and C/N ratio in
maize organs

In maize stems, N application (N150 and N300) significantly
increased C and N contents at both the silking and maturity
stages compared to those of N0 (Figure 2). At both growth
stages, the C/N ratio in stems decreased gradually with the
increase in amounts of applied N. Additionally, significantly
greater N contents were measured in ZD958 stems than in
XY335 stems grown under N-treated conditions, which resulted
in higher C/N ratios in the stems of XY335 than in ZD958.
Most notably, significantly lower C contents were recorded from
leaves of XY335 than from leaves of ZD958 at the silking stage
in the N0 and N150, while in the N300 treatment they showed
the opposite observations in the N0 and N150 treatments. The
leaf C and N contents were observed significantly lower in
XY335 than that of ZD958 at the maturity stage. As a result, the
grains of XY335 were, respectively, 19.8–12.3% and 13.7–3.5%
lower in C and N contents compared with those in the grains
of ZD958 in the N0 and N150, while higher 16.5% for C and
11.8% for N contents than those of ZD958 in N300 treatment.
XY335 performed 5.4% higher C/N ratios than ZD958 under
N300 conditions (Figure 2), probably suggesting that differences

TABLE 2 Effect of nitrogen fertilization level on grain filling parameters between two maize hybrids in 2015 and 2016.

Year Genotype N level Wmax(mg kernel−1 d−1) Tmax(d) Gmax(mg kernel−1 d−1) GFP(d) Gmean(mg kernel−1 d−1)

2015 XY335 N0 132.2± 1.52d 26.3± 0.33c 8.8± 0.04d 44.9± 0.73d 0.29± 0.00d

N150 128.8± 4.20d 25.5± 2.04c 8.4± 0.38d 46.2± 0.90c 0.28± 0.01d

N300 149.9± 0.41b 25.9± 0.30c 10.2± 0.12a 44.2± 0.63d 0.34± 0.00a

ZD958 N0 138.9± 3.27c 30.1± 0.61a 9.0± 0.26bc 46.5± 0.36c 0.30± 0.01c

N150 147.0± 0.38b 29.3± 0.22ab 8.9± 0.06c 49.8± 0.44b 0.30± 0.01c

N300 163.8± 0.71a 28.1± 0.39b 9.2± 0.02b 53.6± 0.37a 0.31± 0.01b

2016 XY335 N0 129.9± 2.16f 31.3± 0.16b 9.5± 0.09c 40.9± 0.96c 0.32± 0.01c

N150 145.8± 1.24d 22.0± 0.39d 9.6± 0.37c 45.5± 2.10b 0.32± 0.01c

N300 161.4± 1.68b 22.4± 0.50d 11.1± 0.24a 43.7± 1.15b 0.37± 0.01a

ZD958 N0 139.7± 0.68e 32.7± 0.43a 9.5± 0.23c 44.1± 1.27b 0.32± 0.01c

N150 151.9± 1.63c 24.6± 0.05c 10.2± 0.08b 44.7± 0.51b 0.34± 0.00b

N300 174.7± 0.70a 25.1± 0.12c 10.4± 0.01b 50.4± 0.27a 0.35± 0.00b

ANOVA Year (Y) *** *** *** *** ***

Nitrogen (N) *** *** *** *** ***

Genotype (G) *** *** NS *** NS

N× G * NS *** *** ***

Y× N× G *** NS NS ** NS

Wmax , kernel weight increment achieving maximum grain-filling rate; Tmax , the days reaching the maximum grain-filling rate; Gmax , maximum filling rate; GFP, active filling phase; Gmean ,
mean grain-filling rate. N0, N150, and N300 indicate 0, 150, and 300 kg ha−1 N applied, respectively.
Different letters indicate significant differences between treatments at a 5% level.
*, **, and *** indicate different significance at 5, 1, and 0.1% level, respectively.
NS, no significance.
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FIGURE 2

N content, C content, and C/N ratio in stem, leaf, and grain of two maize hybrids at silking and maturity stages under various N levels applied in
2016. N0, N150, and N300 indicate 0, 150, and 300 kg N ha-1 applied, respectively. Different letters indicate significant differences at a 5% level.
The values shown are the mean ± SE (n = 3). The values shown are the mean ± SE (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001, ns, no
significance.

between the two cultivars in matter translocation from source to
sink occurred from the silking to maturity stages of maize.

Root activity and malondialdehyde
contents

Root activity (Year effected on root activity in 30–60 cm
not included) and malondialdehyde (MDA) contents were
significantly affected by the factors Year (Y), Nitrogen (N),
genotype (G), and N × G. Root activity levels gradually raised
with the increase of N inputs, while MDA was reduced with
increased N rate. As soil depth increased, root activity was
reduced, and MDA was observed as an enhanced trend in each
N level condition (Figure 3). During 2 years, root activity within
the 0-60 cm soil layer samples from XY335 was significantly
lower than that of ZD958 in the N0 (17.4%) and N150 (15.4%)
treatments. Conversely, greater root activity was observed in
XY335 higher than those in ZD958 by averages of 8.9% at the
N300 levels. MDA contents in root were higher for XY335 than
those for ZD958 by averages of 9.3 and 10.0% in N0 and N150

treatment, while lower 9.7% in XY335 than that of ZD958 at the
N300 N level (Figure 3).

Distribution of 13C-photosynthates in
tissues at maize silking and maturity
stages

The distribution of 13C-photosynthates in each tissue of
two maize cultivars was significantly affected by the levels of
applied N; however, significant effects on two varieties were
only observed from the 13C-photosynthates distributions in the
sheath, grain, and cob tissues (Table 3). At the silking stage,
similar distribution patterns of 13C-photosynthates in tissues
were obtained in the same N-treated plants of both cultivars.
Moreover, significantly higher amounts of 13C-photosynthates
were distributed in the stems and husk leaves of crops from
the N150 and N300 treatments relative to those from the N0
treatment. Accordingly, those labeled-13C captured by other
leaves and sheaths were lower in N input treatments than those
in treatment without N fertilizer. These results indicated that
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FIGURE 3

Root activity and malondialdehyde (MDA) content of two maize hybrids at the milking stage under various N levels were applied in 2015 and
2016. N0, N150, and N300 indicate 0, 150, and 300 kg N ha-1 applied, respectively. The values shown are the mean ± SE (n = 3). *p < 0.05,
**p < 0.01, ***p < 0.001, ns, no significance.

N input accelerated 13C-photosynthate allocation to stem and
husk leaves at the silking stage.

At maturity, the 13C photosynthetic products in source
tissues were transferred to grains in large quantities, and grains
as sinks then became the organs containing the most 13C
photosynthetic products. XY335 exhibited relatively higher 13C-
photosynthate allocation ratios in grain, cob, and husk leaves
than ZD958 exhibited in the corresponding tissues. As expected,
XY335 exhibited relatively lower 13C-photosynthate allocation
in other tissues than ZD958 exhibited in tissues, particularly in
leaves. The ratio was lower by 9.8, 18.6, and 25.8% in XY335 than
that in ZD958 in the respective N0, N100, and N300 treatments.
13C-photosynthate allocation was significantly reduced in other
leaves, sheath, and cob, while it was greater in grains for
both maize varieties due to the increased N inputs. Under
N300 conditions the ratio of 13C-photosynthate allocation was
increased by 14.7% for XY335, and 12.0% for ZD958 from that
in N0 and N150 treatment (Table 3).

Traits of vascular bundles in internodes
of maize

Overall, the area, number, and density of vascular bundles,
regardless of whether the sizes of bundles were categorized as
small or large, were significantly affected by N fertilization.
Furthermore, the area and number of small vascular bundles
and vascular bundle density were significantly influenced by
the factor of genotype (Table 4). Increased N fertilization levels
vastly raised vascular bundle area, and increasing trends were
observed in the xylem and phloem of basal-stem, peduncle, and
cob samples for both genotypes at the milking stage. In N0
and N150 treatments, XY335 had a relatively lower total area
and total phloem area of small vascular bundles than ZD958.
However, in the N300 treatment, XY335 had a relatively higher
total area of small vascular bundles than ZD958, particularly
in peduncles because of the significantly larger area of phloem.
Similar results were also observed for the area of small vascular
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TABLE 3 Effect of nitrogen fertilization level on the distribution of 13C-photosynthates among tissues of two maize hybrids at silking and maturity
stages in 2015 and 2016.

Year Growth stages Genotype N level 13C-photosynthates distribution in different tissues of maize (%)

Stem Ear leaf Other leaf Sheath Husk leaf Grain Cob

2015 Silking XY335 N0 37.0± 1.05c 2.7± 0.20c 35.1± 1.39ab 20.6± 0.54a 4.5± 0.40bc – –

N150 40.5± 0.42b 2.9± 0.16c 33.5± 1.01b 17.4± 1.22c 5.6± 0.20a – –

N300 43.3± 0.48a 3.5± 0.21ab 31.4± 1.10c 16.5± 0.46cd 5.3± 0.51ab – –

ZD958 N0 36.6± 1.33c 3.1± 0.27bc 36.4± 0.90a 19.3± 0.37b 4.6± 0.22bc – –

N150 41.5± 1.21b 3.6± 0.16a 33.7± 0.01b 16.9± 0.66cd 4.4± 0.38c – –

N300 44.4± 0.51a 3.3± 0.14bc 30.8± 0.47c 15.8± 0.76d 5.7± 0.42a – –

Maturity XY335 N0 17.9± 0.07c 1.3± 0.13a 14.0± 0.48b 7.1± 0.67b 6.4± 0.38a 45.5± 0.39d 7.5± 0.60a

N150 18.7± 0.35b 0.9± 0.16ab 10.5± 0.28c 6.6± 0.47bc 6.5± 0.17a 51.9± 0.42c 5.1± 0.28bc

N300 18.7± 0.59b 0.9± 0.02ab 8.6± 0.21d 6.0± 0.43c 6.6± 0.08a 54.9± 0.37a 4.6± 0.22c

ZD958 N0 16.3± 0.19d 1.2± 0.10a 15.3± 0.98a 9.7± 0.35a 5.5± 0.24ab 45.0± 0.52d 6.9± 0.97a

N150 18.5± 0.34b 0.9± 0.12ab 12.4± 0.58c 6.1± 0.61c 5.5± 0.46ab 50.8± 0.49c 5.8± 0.23b

N300 19.5± 0.47a 0.8± 0.02b 10.4± 0.52c 6.0± 0.53c 4.9± 0.25b 53.3± 1.18b 5.2± 0.14bc

2016 Silking XY335 N0 36.1± 1.47c 3.8± 0.20a 33.3± 1.85a 23.8± 0.53a 3.0± 0.16c – –

N150 43.2± 0.69b 3.2± 0.13c 29.9± 0.68bc 18.5± 0.69bc 5.2± 0.52a – –

N300 46.2± 1.96a 3.5± 0.16ab 28.0± 2.63bc 16.9± 1.11c 5.4± 0.46a – –

ZD958 N0 35.7± 0.97c 3.2± 0.17c 34.2± 2.27a 22.6± 1.15a 4.3± 0.69b – –

N150 42.6± 0.94b 3.4± 0.19bc 29.0± 0.73bc 19.8± 1.02b 5.2± 0.15a – –

N300 47.3± 1.58a 3.3± 0.11bc 26.2± 1.64c 18.1± 0.53c 5.1± 0.31a – –

Maturity XY335 N0 18.6± 0.78b 1.9± 0.11ab 11.9± 0.29b 11.2± 0.33a 4.5± 0.53a 44.2± 0.44d 7.7± 0.07a

N150 18.1± 0.54bc 1.4± 0.02b 9.6± 0.19c 7.3± 0.24cd 4.6± 0.32a 52.4± 0.65b 6.6± 0.12b

N300 19.1± 0.70b 1.6± 0.02b 6.9± 0.23d 6.1± 0.22e 3.9± 0.05b 56.6± 0.68a 5.9± 0.37bc

ZD958 N0 17.1± 0.80c 2.0± 0.57a 13.2± 0.18a 11.9± 0.63a 3.4± 0.44b 46.0± 0.99c 6.4± 0.77b

N150 18.2± 0.74bc 1.7± 0.06ab 11.8± 0.43b 7.7± 0.85bc 3.7± 0.32b 51.0± 0.92b 5.9± 0.23bc

N300 20.3± 0.18a 1.5± 0.11b 9.3± 0.28c 6.5± 0.52de 2.1± 0.08c 55.1± 0.54a 5.2± 0.22c

ANOVA Year (Y) NS NS NS NS *** *** **

Nitrogen (N) * * *** *** *** *** *

Genotype (G) NS NS NS * NS ** ***

N× G NS NS NS NS NS NS *

Y× N× G NS NS NS NS NS NS **

N0, N150, and N300 indicate 0, 150, and 300 kg ha−1 N applied, respectively.
Different letters in the same column indicate significant differences between treatments at a 5% level for each growth stage.
*, **, and ** indicate different significance at 5, 1, and 0.1% level, respectively.
NS, no significance; –, no data for use.

bundles due to the larger area of either the xylem or phloem in
basal stems and cobs of maize in the N300 treatment.

Similar to the results of the vascular bundle area, the
numbers of both large and small vascular bundles were
significantly increased by N inputs to both maize varieties. In
addition, the number of small vascular bundles was respectively
greater on average by 10.6 and 7.8% in the peduncle and cob
tissues of XY335 than of ZD958 in the N300 treatment (Table 4).
Combining the results of area and number of vascular bundles,
XY335 clearly produced a higher vascular bundle density than
ZD958 in each tissue of maize no matter what level of N
was supplied. The micrographs of vascular bundles of different
internodes are presented in Appendix Figures 1, 2.

Root bleeding-sap and matter
transport efficiency

Maize crops grown under the N150 and N300 conditions
for both varieties produced approximately 1.5–2.8-fold more
root bleeding-sap than crops grown under the N0 treatment
produced at the silking stage (Table 5). XY335 had a lower
cross-sectional area than that of ZD958 both under N150 and
N300 conditions, while no significance was observed in the
total vascular bundle area in the stem between the two hybrids.
Notably, XY335 had a 14.3 and 1.8% lower amount of root
bleeding sap than that of ZD958 across the N0 and N150 levels,
while 10.4% higher than that of ZD958 in the N300 level. Similar
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TABLE 4 Effect of nitrogen fertilization level on vascular bundle traits of two maize hybrids at milking stage in 2016.

Position Genotype N level Area of big vascular
bundle (mm2)

Area of small vascular
bundle (mm2)

Number of
vascular bundle

Vascular bundle

Xylem Phloem Total Xylem Phloem Total Big Small density (mm−2)

Basal-stem XY335 N0 3.76± 0.16d 0.75± 0.07e 8.34± 0.36d 2.30± 0.31cd 1.55± 0.02f 17.42± 1.27c 115.4± 5.4d 574.8± 19.3c 2.85± 0.22a

N150 6.27± 0.67b 1.61± 0.23c 13.16± 1.43b 3.81± 0.71b 2.05± 0.01d 19.18± 0.99b 187.2± 10.3b 666.0± 23.5bc 3.10± 0.19a

N300 10.19± 0.55a 3.65± 0.23a 27.99± 1.61a 4.70± 0.47a 3.39± 0.06a 28.55± 0.85a 289.7± 9.3a 758.9± 16.2a 2.87± 0.08a

ZD958 N0 4.95± 0.14c 1.09± 0.06d 10.56± 0.33c 2.03± 0.08d 1.66± 0.02e 13.86± 0.82d 141.5± 1.3c 450.4± 17.0d 2.46± 0.15b

N150 6.20± 0.39b 1.43± 0.08c 14.30± 0.75b 3.00± 0.18c 2.48± 0.02c 16.53± 0.72c 184.7± 10.4b 562.5± 10.2c 2.47± 0.16b

N300 10.27± 0.46a 3.30± 0.16b 27.73± 1.37a 4.26± 0.37b 2.96± 0.17b 27.52± 0.82a 280.9± 12.9a 756.4± 17.1a 2.49± 0.08b

Peduncle XY335 N0 2.24± 0.38c 1.16± 0.19c 6.18± 0.24c 1.31± 0.21d 0.30± 0.02f 4.48± 0.41d 111.9± 4.4c 230.1± 12.2d 3.86± 0.09b

N150 3.84± 0.88b 2.07± 0.27bc 12.36± 1.05b 2.20± 0.25c 0.61± 0.02d 9.00± 0.12c 144.9± 5.6b 350.4± 7.1c 4.82± 0.26a

N300 9.23± 1.24a 4.91± 0.60a 22.92± 1.63a 3.71± 0.11a 1.45± 0.03a 14.54± 0.29a 224.6± 4.1a 456.7± 8.9a 4.72± 0.24a

ZD958 N0 2.30± 0.08bc 1.24± 0.13c 6.74± 0.74c 1.28± 0.20d 0.40± 0.04e 5.23± 0.72d 116.5± 2.8c 224.7± 10.7d 2.77± 0.29d

N150 3.32± 0.26bc 1.77± 0.12c 11.57± 0.63b 2.15± 0.01c 0.73± 0.01c 10.05± 0.42c 131.1± 8.2b 343.1± 1.0c 3.23± 0.08bc

N300 8.72± 1.26a 4.74± 0.55a 22.11± 1.43a 3.11± 0.05b 1.27± 0.04b 12.26± 0.37b 219.3± 7.3a 408.5± 2.5b 3.51± 0.14bc

Cob XY335 N0 0.97± 0.22c 0.49± 0.08c 5.20± 0.82d 0.65± 0.06d 0.12± 0.01e 1.77± 0.20e 57.5± 7.7c 91.0± 7.4d 0.64± 0.01bc

N150 1.79± 0.09b 1.39± 0.10b 6.32± 0.33bc 1.47± 0.13c 0.26± 0.01d 3.74± 0.09d 63.8± 3.8bc 145.6± 4.8b 0.71± 0.02a

N300 3.02± 0.16a 1.87± 0.10a 8.75± 0.11a 2.74± 0.08a 0.49± 0.03a 7.03± 0.32a 80.8± 1.0a 158.6± 7.7a 0.75± 0.02a

ZD958 N0 1.09± 0.20c 0.47± 0.08c 5.42± 0.95cd 0.69± 0.04d 0.16± 0.01e 2.12± 0.08e 58.0± 5.0c 93.9± 5.9d 0.58± 0.03c

N150 1.99± 0.13b 1.46± 0.07b 7.10± 0.31b 1.37± 0.26c 0.32± 0.02c 4.33± 0.24c 72.2± 3.2ab 138.4± 3.0bc 0.62± 0.01bc

N300 3.14± 0.17a 1.84± 0.07a 8.92± 0.35a 2.11± 0.24b 0.45± 0.01b 6.50± 0.55b 82.6± 1.3a 146.2± 7.8b 0.61± 0.03bc

ANOVA Nitrogen (N) *** *** *** *** *** *** *** *** ***

Genotype (G) NS NS NS *** *** *** NS ** ***

N× G NS NS NS NS *** * NS NS NS

N0, N150, and N300 indicate 0, 150, and 300 kg ha−1 N applied, respectively. AVE indicates the average value from the N treatment.
Different letters in the same column indicate significant differences between treatments at a 5% level for each tissue position.
*, **, and *** indicate different significance at 5, 1, and 0.1% level, respectively.
NS, no significance.
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TABLE 5 Effect of nitrogen fertilization level on root bleeding sap and matter transport efficiency of basal-stem internode (MTE) of two maize
hybrids at milking stage on N application levels in 2016.

Genotype N level Cross sectional area vascular bundle area Root bleeding sap MTE
(mm2) (mm2) (mg h−1) (mg mm−2 h−1)

XY335 N0 242.7± 4.2e 25.8± 1.5c 537.5± 12.1e 20.0± 0.2f

N150 275.7± 7.1d 32.3± 0.7b 979.2± 5.2c 30.4± 0.8d

N300 365.3± 12.8b 56.5± 0.8a 2096.9± 10.3a 37.1± 0.4a

ZD958 N0 241.1± 8.0e 24.4± 0.5c 626.9± 23.5d 25.7± 0.9e

N150 302.5± 8.6c 30.8± 0.9b 996.9± 4.6c 32.3± 0.8c

N300 417.9± 14.8a 55.3± 2.1a 1878.1± 15.8b 34.0± 0.7b

ANOVA Nitrogen (N) *** *** *** ***

Genotype (G) ** * ** ***

N× G * NS *** ***

MTE, Matter transport efficiency. N0, N150, and N300 indicate 0, 150, and 300 kg ha−1 N applied, respectively.
Different small letters within a column indicate significant differences between treatments at a 5% level for each tissue position.
*, **, and *** indicate different significance at 5, 1, and 0.1% level, respectively; NS, no significance.

to the response of root bleeding-sap, treatments with N input
showed dramatically higher MTE relative to those treatments
without applied N. Additionally, greater MTE values were found
for XY335 by 8.4% compared with those for ZD958 under N300
treatments (Table 5).

Principal component analysis

Principal component analysis was employed to evaluate
correlations between indicators tested in this study, and it
showed that three principal components contributed to 57.3,
33.7, and 4.5% of the total variation. The 95.5% of the
total variation in this study was explained by three principal
components (Figure 4). Interestingly, we found that the grain-
filling rates (Gmean and Gmax), total number of fertilized florets,
matter transport efficiency of the basal-stem internode, grain
C, N, and grain C/N ratio at the maturity stage, total phloem
area of small vascular bundle in peduncle and cob tissue (TAC),
and number of small vascular bundles in peduncle and cob
tissues were more related to maize sink capacity than to other
indicators included in PC1. Another cluster contained the root
activity at the milking stage and the active-filling phase (GFR)
was represented by PC2. In addition, root MDA contents at the
milking stages contributed to PC3 (Figure 4).

Discussion

Nitrogen × Hybrids: Grain yield and
sink capacity

Researchers have demonstrated that higher grain yield
occurred through the superior sink capacity (KW × KNP)
(31). An appropriate increased N application combined with
right maize hybrids could improve dry matter accumulation
and distribution to reproductive organs to achieve high sink

capacity (15, 24, 25). In this study, the N rate, genotype, and
their interaction affected maize sink capacity and grain yield.
XY335 performed 9.3 and 9.8% lower sink capacity and grain
yield than ZD958 under low N conditions (N0 and N150),
whereas N × genotype interaction leads to higher sink capacity
and grain yield in XY335 than ZD958 under N300 condition.
Although XY335 had a lower 1,000 kernel weight (TKW) than
that of ZD958, kernel number per ear (KNP) played a supportive
role in compensating for the lower TKW. This compensation
observed in XY335 likely contributes to its greater sink capacity
and yield (Table 1). Furthermore, the higher KNP of XY335 was
attributed to its greater fertilized florets, which was one of the
key factors to determine the final kernel number (32, 33), and
it is also influenced tremendously by N availability and crop
genotype (34).

Grain filling, sink capacity, and grain
yield

Grain filling is an important indicator of sink potential
and grain yield that significantly and positively correlate with
photosynthetic assimilate production and translocation (4, 31,
35). Grain filling is driven by grain filling rate (GFR), grain
filling period (GFP), or both, which were greatly affected by
N application and genotype (2). Our previous research has
shown that an appropriate increase in N application could
achieve sufficient and efficient assimilates supply to grain, which
contributed to the grain-filling rate for obtaining a higher
grain yield of the same hybrid (9). However, our previous
studies and other research mainly focused on the effect of
grain filling on KW, and less information research on sink
capacity in response to GFR or GFP between different genotype
hybrids (32, 33, 35). Sink capacity is determined by KNP and
potential kernel weight, and the maximum of single kernel
weight is likely genetically determined, and thus the further
supply of C assimilates could not raise the maximum weight
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FIGURE 4

Principal component analysis (PCA) of grain filling parameters, vascular bundle structures, grain C, N contents, and leaf enzyme activity. Gmean

and Gmax, mean, and maximum grain filling rate; MTE, matter transport efficiency; MGC, MGN, and MGCN, grain C, N contents, and C/N ratio at
maturity stage; RA0, RA30, and RA60, root activity in 0–15 cm, 15–30 cm, and 30–60 cm soil layer at milking stage, respectively; MDA0,
MDA30, MDA60, and malondialdehyde contents in 0–15 cm, 15–30 cm, and 30–60 cm soil layer at milking stage, respectively; NSP and NSC,
number of small vascular bundle in peduncle and cob; TAP and TAC, total phloem area of small vascular bundle in peduncle and cob; GFP,
active filling phase; NPF, number of pollinated florets; SC, Sink capacity.

(11, 13). In the determined model of increasing 100-kernel
weight over time, we found that the grain weight of XY335 had
reached 95.6% of its potential weight at approximately 45 days
after pollination, while ZD958 had only reached 86.8% of its
potential kernel weight at the same time (Figure 1), which
resulted in a shorter GFP and higher Gmean and Gmax for
XY335 compared to those of ZD958 (Table 2). These results
reveal that lower maximum single-kernel weight in XY335
contributed to relatively shorter GFP and higher KNP, which
was likely the main factor influencing the increase in GFR.
Results of the PCA analysis confirmed these results showing
that the GFR belongs to PC1, while GFP is a part of PC2

(Figure 4). Previous studies also reported that GFR had a slightly
and strongly positive correlation with GY than with GFP (4,
9, 35).

Grain filling and C, N translocation and
distribution

Simultaneously, the grain filling process of crops not only
reflects assimilates supply, but also C and N transport and
distribution between organs (36, 37). Increased N supply
promotes larger quantities of carbohydrates translocating to
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FIGURE 5

Schematic from this study showing the differences in filling parameters and the response of vascular bundle structure, matter transportation,
and source–sink relationship on N input levels between maize varieties ZD958 and XY335. RBS, root bleeding sap; MTE, matter transport
efficiency; Gmean and Gmax, mean and maximum grain filling rate; GY, grain yield. Different sizes of the same letter represent value differences.

grains, thereby increasing grain yield (38, 39). The present
study demonstrated divergent responses in C and N contents
in leaf tissues at the silking and maturity stages between two
maize hybrids under conditions with various N supplies, which
contributed to higher C and N contents in XY335 grains
compared to the corresponding contents in ZD958 grains
under N300 conditions. In addition, according to the 13C
tracer analysis at maturity, generally lower 13C assimilates in
XY335 were distributed in the stem, leaf (ear leaf and other
leaf), and sheath tissues, but higher values were distributed in
husk leaf, grain, and cob tissues compared to those in ZD958,
especially in N300 conditions (Table 3). These results reflect
the higher MTE from source to sink in XY335 relative to that
in ZD958, which was likely attributed to the higher GFR in
XY335. Furthermore, the C/N ratio plays a greater role in
matter translocation between crop tissues rather than C or
N contents individually, balance C/N ratio within crops can
regulate assimilates translocation from leaves to grains, thereby
increasing dry matter accumulation and grain matter (36, 40). In
our case, a lower C/N ratio was observed in XY335 grains than
that in ZD958 grains at the maturity stage of from N0 and N150
groups, while there were higher ratios of XY335 at the treatment
of N300. Also, higher C and N contents were measured in XY335
grains than in ZD958 grains as mentioned above (Figure 2).
Thus, it could be concluded that not only a stronger C and
N translocation from the vegetative organs to grains, but also
balanced C/N ratios are required in maize grains applied with

appropriate N levels, which is also important in regulating the
grain-filling process to achieve high grain yield.

Grain filling is associated with the
bleeding sap and vascular bundle
structure

Research on bleeding sap primarily aimed to elucidate
the mechanism of matter transfer from roots to shoots (41).
Bleeding-sap transport nutrient matter between aboveground
and underground, which represents the higher amount of N
and kernel number, may explain the variations of grain filling
between two maize genotypes supplied with contrasting N
fertilizer (42, 43). The collected bleeding sap indicated that a
lower bleeding sap ratio was observed in XY335 than that in
ZD958 at the milking stage in N0 and N150 groups, while there
were significantly higher values in XY335 than that from ZD958
at N300 treatment (10.4%). In this study, similar results were
also observed for root activity (Figure 3). Morita et al. (44)
and Noguchi et al. (45) reported that the root-bleeding rate was
closely related to root traits in maize, and it could be used to
evaluate the physiological activity of root activity. Strong root
activity is necessary to increase the accumulation of post-silking
dry matter and grain filling (46, 47). Moreover, higher MDA
contents will enhance superoxide enzyme activity, which leads
to plant senescent (48). XY335 exhibited lower MDA contents
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than ZD958 (Figure 3). These findings suggested that the N
rate significantly increased root activity and decreased MDA
content, thus boosting higher bleeding sap in XY335 than that
in ZD958 under sufficiency N application.

The structure of the vascular bundle, as the main channel,
determines bleeding sap transport ability (42, 49). They also
regulate endosperm C metabolites through translocating sugars
and N between tissues (13). For instance, as much as 80% of C
assimilated in leaves was transported via the phloem to satisfy
the metabolic needs of other plant organs (50). Increasing N
application can increase the number of small vascular bundles
to boost kernel number, and enhanced phloem areas of small
vascular bundles are beneficial for assimilation transport to
grain (9), determining the total accumulation of assimilation
in sink capacity, which affects grain filling characteristic under
various conditions (9, 51, 52). However, how the N × genotype
interaction changes the number and area of the vascular bundle,
and the relationship between the vascular bundle characteristic
and the grain filling are still unclear. In this study, there was
no significant difference in NSP and NSC under lower N
conditions between the two hybrids, while the N300 treatment
significantly increased both NSP and NSC more in XY335
than those in ZD958 (Table 4). Moreover, the TAP and TAC
values showed similar trends to those of NSP and NSC as N
inputs increased (Table 4). Higher NSP and NSC together with
larger TAP and TAC contributed to the significantly higher
MTE in XY335 relative to that of ZD958 (Table 5). The PCA
analysis showed that TAC, NSP, NSC, and MTE correlated
well with PC1 (Figure 4), suggesting that these responses
related to vascular bundles in XY335 are especially important
in promoting bleeding sap and grain filling. The better vascular
system benefited MTE, and simultaneously might contribute to
the increase in GFR and C and N translocation to florets, which
ultimately resulted in the final stronger sink capacity and grain
yield (53).

Conclusion

The factors of crop genotype and N fertilizer interacted with
optimization of vascular bundle structure of ear tissue in XY335,
thus increasing 10.4% bleeding sap and 8.4% MTE than those
in ZD958 under N300 condition. Moreover, the regulation of
the C/N ratio in XY335 under higher levels of N treatments
provided more C assimilates to facilitate floret development
and increase the final kernel number. Therefore, these results
indicate that the sufficient N input can improve root activity
and optimize the vascular bundle system in the ear to boost
matter transport efficiency, in turn, increase the transport of C
and N into grains and balance the C/N ratio in XY335, which
promote a favorable grain filling rate ultimately for enhancing
sink capacity and grain yield (Figure 5). These findings, to some
extent, could be used to inform maize breeding and cultivation
that higher grain-filling rate, sink capacity, and allocation of

matter into kernels are significant factors for striving to attain
higher grain yields. Moreover, future studies should also focus
on optimizing the vascular bundle system in maize peduncle and
cob tissues to improve grain yields.
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Appendix

APPENDIX FIGURE 1

The micrograph of big vascular bundles structure at the basal stem internode of XY335 (a–c), ZD958 (d–f), the peduncle internode of XY335
(g–i) and ZD958 (j–l), and the cob internode of XY335 (m–o) and ZD958 (p–r). N0, N150, and N300 indicate N applied at 0, 150, and 300 kg
ha-1 levels, respectively.

APPENDIX FIGURE 2

The micrograph of small vascular bundles structure at the basal stem internode of XY335 (a–c), ZD958 (d–f), the peduncle internode of XY335
(g–i), and ZD958 (j–l), and the cob internode of XY335 (m–o) and ZD958 (p–r). N0, N150, and N300 indicate N applied at 0, 150, and 300 kg
ha-1 levels, respectively.
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Ying-Ju Chen4, Mei-Due Yang5, Liang-Hung Lin6,
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Wen-Chien Lu10, Po-Hsien Li11* and Ming-Fu Wang1,11*

1International Aging Industry Research & Development Center (AIC), Providence University,

Taichung, Taiwan, 2Department of Food Science, Tunghai University, Taichung, Taiwan, 3School of
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Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, 7Taiwan Chlorella Manufacturing

Co., Ltd., Taipei, Taiwan, 8China Grain Products Research and Development Institute, New Taipei,
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Sciences and Management, Chia-Yi City, Taiwan, 11Department of Food and Nutrition, Providence

University, Taichung, Taiwan

Since the 1990s, the prevalence of mental illnesses, such as depression,

has been increasing annually and has become a major burden on society.

Due to the many side e�ects of antidepressant drugs, the development

of a complementary therapy from natural materials is an urgent need.

Therefore, this study used a complex extract of chlorella and lion’s mane

mushroom and evaluated its antidepressant e�ects. Six-month-old male

senescence-accelerated mice prone-8 (SAMP8) were divided into positive

control; negative control; and low, medium, and high-dose groups. All groups

were treated with corticosterone (CORT) at 40 mg/Kg/day for 21- days to

induce depression in the animals, and the e�ects of di�erent test substances on

animal behavior was observed. The positive control groupwas intraperitoneally

injected with a tricyclic antidepressant (Fluoxetine, as tricyclic antidepressant),

the control group was given ddH2O, and the test substance groups were

administered test samples once daily for 21 days. The open field test

(OFT) and forced swimming test (FST) were applied for behavior analyses

of depression animal models. The OFT results showed that the mice in

the positive control and the medium-, and high-dose groups demonstrated

a significantly prolonged duration in the central area and a significantly

increased travel distance. In the FST, the positive control and the medium,

and high-dose groups displayed significantly reduced immobility times relative

to the control group. The blood analysis results showed significant decreases
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in triglyceride and blood urea nitrogen levels relative to the positive control

and the medium- and high-dose groups. Notably, in the positive control

and the medium- and high-dose groups, brain-derived neurotrophic factor

(BDNF) increase by more than in the control group. In summary, medium and

high dose of extract of chlorella and lion’s mane mushroom could improve

depression behavior in animals and have the potential to be antidepressant

health care products.

KEYWORDS

antidepressant, chlorella, lion’s mane mushrooms, senescence accelerated mouse

prone-8 (SAMP8), dietary supplement

Introduction

Nowadays, depression is a prevalent psychiatric disorder

that seriously impairs the quality of human life. Roughly

12% of people experience depression at least once in their

lifetime (1). Approximately 32% of cancer patients suffer from

anxiety, depression, or adjustment disorders (2). Depression

is a global emotional disorder that affects an estimated

350 million people worldwide (3). It is characterized by a

psychiatric disorder that can be caused by neuroendocrine

dysfunction with disabling symptoms, usually depressed mood,

despair, and low curiosity, with high morbidity, disability,

and mortality, seriously endangering human life and health.

In preclinical and clinical studies, it has been found that

exogenous stress may cause a negative feedback imbalance in

the hypothalamic-pituitary-adrenal (HPA) axis, promoting the

release of glucocorticoids in the body (3). The glucocorticoid,

also known as corticosterone (CORT), has been described as

a “stress hormone” recognized as a mediator between chronic

stress and depression. Currently, the widely used CORT-induced

depression-like behavior was based on the neuroendocrine

model of stress theory (4). It was reported that repeated

injections of CORT to mice resulted in a time-dependent rise

in immobility in forced swimming and tail suspension tests.

Simultaneously, this injection regularization produced time-

related effects on tyrosine hydroxylase levels in the hippocampus

of mice; these results are consistent with the relevance of a

stress-induced depression model and indicate that repetitive

corticosterone injection regularization provides a valuable and

reliable mouse model (5). Even though various antidepressants

have been used to treat depression, a significant proportion

of patients do not respond to them, and some experience

side effects.

Recently, the marine microalga chlorella (Chlorella vulgaris)

has been available as a dietary supplement and marketed

worldwide (6). Its applications include the food, pharmaceutical,

and agriculture industries (7). Chlorella has been proven to have

various pharmacological effects on animals and humans and has

a well-established production chain and commercial product

line (8). It was documented by the FDA as safe for human

consumption (9). Moreover, according to a previous published

study, male and female mice dosed orally with acute and

repeated doses of chlorella demonstrated no toxicity or adverse

effects at levels estimated at 1,000 mg/kg−1 body weight per day

and did not die during the period of investigation (10). Available

commercially, chlorella products contain nutrients essential

for humans (notably, vitamin D2 and B12), high amounts of

high-quality protein, dietary fiber, and polyunsaturated fatty

acids (including α-linoleic and linoleic acids) (1, 11, 12).

In addition, chlorella possesses valuable antioxidants such as

chlorophyll, carotenoids, astaxanthin, total polyphenols, lutein,

and phycobiliproteins (13–15). However, a study has shown

that chlorella extract (1,800 mg/day) was well-tolerated in

a human clinical trial in major depression, with no serious

adverse events reported; moreover, the participants exhibited

improved physical and cognitive symptoms of depression (16).

It has been proposed that antioxidant nutrients and compounds

are responsible for the therapeutic effect of chlorella on

depression (1).

A popular saprotrophic fungus in Asia (primarily in

China, Taiwan, and Japan), the lion’s mane mushroom

[Hericium erinaceus (Bull.) Pers.] is a source of health-

promoting properties and nutrients, including dietary fiber,

minerals, vitamins, and bioactive compounds that have

beneficial effects on human health, such as β-glucan, a

fungal polysaccharide with health-promoting anti-tumor and

immune-stimulating properties (17–19). Specifically, the in

vivo benefits of mushroom antioxidants include reduced lipid

peroxidation (20), reduced postprandial triglyceride response

(21), improved activity of antioxidant enzymes (superoxide

dismutase and catalase, etc.), increased plasma antioxidant

capacity (T-AOC), protection against oxidative stress, removal

of non-radioactive electrophiles (e.g., hydrogen peroxide), and

breakdown of superoxide anions (22). Ultimately, it would

appear that antioxidants play a role in limiting or reducing

cellular and neurological damage in neurodegenerative

diseases such as Alzheimer’s and Parkinson’s disease (23).

Other physiological activities contain potential therapeutic

Frontiers inNutrition 02 frontiersin.org

5960

https://doi.org/10.3389/fnut.2022.977287
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Chou et al. 10.3389/fnut.2022.977287

applications in oxidative stress-related diseases such as

atherosclerosis, cancer, cardiovascular disease, inflammation,

and diabetes (22).

Specifically, a role of oxidative stress in the pathophysiology

of depression has been identified. Thus, alternative

antidepressant drugs with adequate efficacy and safety are

needed. This study aimed to observe the effect of different doses

of a complex extract of chlorella and lion’s mane mushroom on

depression behavior in SAMP8 mice.

Materials and methods

Materials

Concentrated extracted of chlorella (Chlorella Vulgaris) was

purchased from Taiwan Chlorella Manufacturing Co. (Taipei

City, Taiwan), and the total polyphenols (expressed as gallic

acid equivalents), as a quality control indicator component,

were 23.31–34.93 (mg GAE/g extract). Lion’s mane mushroom

(Hericium erinaceus (Bull.) Pers.) was purchased from a local

market. It was washed with distilled water, wiped dry, and

then frozen at −20◦C for 24 h, followed by freeze-drying. The

powder was dry milled in a homogenizer (through an 80-

mesh sieve). Next, 3.5 L of 95% alcohol and 210 g of mushroom

powder were placed in a 5 L flask. The flask was shaken every

4 h for 24 h. The obtained solution was labeled as “extract A.”

The alcohol was removed by rotary vacuum evaporation. The

filtered mushroom powder mentioned above was then added

to 3.5 L of ddH2O for 24 h and shaken at least four times.

The solution resulting from this step was labeled “extract B.”

The precipitate was filtered out and added to a pot containing

10.5 L of water, which was then heated to 80◦C. It was kept

at this temperature and stirred every 6 h for ∼36 h until the

solution volume was reduced to 3.5 L. The solution was labeled

as “extract C.” While the decoction was cooling, the mushroom

powder was filtered out and discarded/composted. The three

extract solutions (designated extracts “A,” “B,” and “C”) were

combined. The final extract was obtained by rotary vacuum

evaporation and concentrated to 100mL. Acceptable quality

was indicated by polysaccharide> 12% and β-glucan> 7%. The

tricyclic antidepressant Fluoxetine, trade name Prozac
R©

(each

capsule contains 20mg, Eli Lilly and Company, Indianapolis,

Indiana, USA), was applied and purchased from a local hospital

according to the animal experiment’s apply code in accordance

with the regulation.

Experimental animal

A total of 40 male, 6-month-old SAMP8 mice were

purchased from the National Laboratory Animal Center (Taipei,

Taiwan) and randomly distributed into positive control, negative

control, and treatment groups (low, medium, and high doses

of extract), for a total of five groups of eight mice each (n =

8). Additionally, a group of 6-month-old BALB/C mice served

as the blank group (n= 8). The mice were housed under

specific pathogen-free conditions (25◦C ± 2◦C, humidity of

65% ± 5%, 12 h light/dark cycle, and lights on at 7 p.m.) with

diet (AIN-93M standard purified feed) and water supplied ad

libitum during the experiment. Feed and drinking water were

freshly prepared and replaced every other day in the morning.

All animal procedures were conducted in accordance with the

standards set forth in the guidelines for the Care and Use of

Experimental Animals by the Committee for the Purpose of

Control and Supervision of Experiments on Animals and the

National Institutes of Health. The protocol was approved by the

Committee on Animal Research, Providence University, under

code 20170512-A01.

Design of animal experiments

According to a related study, the spontaneous behavior

is more active when mice is in the dark period; therefore,

all tests were performed during the dark period (24). All

groups were subjected to an open field test (OFT) and forced

swimming test (FST) before the experiments. On the first

day of the experiment, all groups of mice were injected

subcutaneously with corticosterone (CORT) (40 mg/ kg/day) for

21 days to induce depression. In this case, CORT was dissolved

in saline (NaCl 0.9 %) containing 0.1% dimethyl sulfoxide

(DMSO) and 0.1% Tween-80, followed by subcutaneous

injection once daily at 0.05 mL/10 g body weight (BW) per

treatment (25).

The following were given 30min after CORT injection.

i. ddH2O was given to both the BALB/c and the negative

control group.

ii. Fluoxetine (10 mg/kg, ig) was given to the positive

control group.

iii. In the low-dose group, extract was given at 0.25 mL/25 g

BW/day via tube feeding. The complex extract ratio was

0.1mL chlorella+ 6mg lion’s mane mushroom.

iv. The medium-dose group was given 0.5 mL/25 g BW/day via

tube feeding. The complex extract ratio was 0.2mL chlorella

+ 12mg lion’s mane mushroom.

v. The high-dose groupwas given 2.5mL/25 g BW/day via tube

feeding. The complex extract ratio was 0.4mL chlorella+

24mg lion’s mane mushroom.

The study duration was 21 days (Figure 1), and BW,

food intake, and water intake were recorded. The degree

of depression in mice was evaluated by OFT and FST on

days 20 and 21, respectively. After behavioral testing was

completed, animals were anesthetized with isoflurane before

dissection, while their blood was used for biochemical analysis.
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FIGURE 1

Schedule of animal experiments. Random subgroup adaptation for 7 days followed by treatment of mice with combined extracts, Fluoxetine, or

water for 21 consecutive days, respectively. All mice were exposed to the CORT procedure for 21 days. Behavioral tests were performed on all

mice.

Whole-brain tissue was rinsed with N2 and stored at −80◦C

for further analysis of factors associated with the central

nervous system.

Open field test (OFT)

The evaluation methodology was based on previous studies,

with slight modifications (26–28). Rodents display characteristic

of thigmotaxis to a new environment. Therefore, the central

zone represents a threatening situation, while the peripheral

area is relatively safe. Experiments were conducted in a location

shielded from incidental noise. The space is a circular arena

with a diameter of 97 and 42 cm high walls. Lighting with

850 nm far-red LEDs was used and any anxiety induced by the

bright illumination was minimized. The room temperature was

maintained at 25◦C± 2◦C during data acquisition. Each mouse

was recorded for 10min and then returned to the group housing.

Mice were observed by video recording (FDR-AX700, Sony,

Tokyo, Japan), and the time spent in the center, frequency of

entering the center, and time spent standing were recorded for

10min. An increase in the frequency and time spent staying

in the center of the space indicated a decrease in anxiety.

Video analysis was performed with TruScan software (Version

2.2; Coulbourn Instruments, Allentown, PA, USA). After each

test, the space was cleaned with a 70–75% alcohol solution

to avoid the effect of the odor of the previous animal on the

next one.

Forced swimming test (FST)

The FST capitalizes on the fact that animals display escape

behavior when exposed to adverse conditions, and when efforts

to struggle fail, they present a state of abandonment. The FST, as

a measure of depression, was conducted as in published studies,

with modifications (29–31). The FST test was performed after 21

days of continuous gavage. The specific experimental procedure

was as follows: 30min after the last gavage, each mouse was

placed individually and gently from a height of 5 cm into an

open glass cylinder (20 cm diameter and 30 cm height) filled

with warm water (25◦C ± 2◦C); under these conditions, the

mice initially swam in the water to maintain their stability. Each

mouse was judged to be immobile when it stopped struggling

and remained floating motionless in the water, making only the

movements necessary to keep its head above the water. The

process was videotaped for 6min to observe the behavior of

each mouse. The time spent on activity (mobility) and inactivity

(immobility) during the last 4min of the 6min were recorded

to assess the degree of depression. The longer the duration of

immobility, the higher the degree of desperation. In this case,

the increase in immobility time corresponded to depression, and

a decrease in immobility time was evaluated as the effectiveness

of antidepressant treatment. When each mouse was finished, the

test apparatus was cleaned with a 70–75% ethanol solution. To

minimize experimental error, when each mice completed the

test, the water was changed and the test apparatus cleaned with

70–75% ethanol.
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Biochemical analysis of blood

Immediately after animal sacrifice, the blood was

centrifuged at 4◦C and 12,000 g for 10min in Microfuge

22R (Beckman Coulter Inc., Brea, Calif., USA). Next, the plasma

biochemical parameters, including glucose, total protein,

albumin, triglycerides, total cholesterol, GOT (Glutamate

Oxaloacetate Transaminase), GPT (Glutamate Pyruvate

Transaminase), BUN (Blood urea nitrogen), and creatinine

were analyzed in the blood using the Synchroh LX-20 system

(Beckman Coulter Inc., Brea, Calif., USA), according to the

manufacturer’s instructions.

Analyses of factors associated with the
central nervous system in the brain

Whole-brain tissues were homogenized with Tris-buffer

(pH 7.4) and centrifuged at 1,200 g for 10min at 4◦C by

removing unbroken tissues and debris. The tissue homogenate

was obtained by centrifugation again at 13,000 g for 10min at

4◦C to prepare the cytoplasmic fraction.

Serotonin (5-HT)

Serotonin concentrations were quantified using the

Serotonin Research ELISATM (Labor Diagnostika Nord GmbH

& Co.KG, Nordhorn, Germany) and an ultra-sensitive enzyme

immunoassay. Determination was performed according to the

protocol in the reagent kit. Briefly, 100 µL of tissue homogenate

and standard were added to the acylation plate, then 25 µL

of acylation buffer was added at room temperature to react

for 30min. From the above-acetylated samples and standards,

100 µL were transferred to a 96-well dish, to which 25 µL of

serotonin antiserum was added and then placed in a refrigerator

at 4◦C for 15–20 h. Then, after three washes with a WellwashTM

(Thermo Fisher Scientific Co., Waltham, MA, USA), 100

µL of IgG-peroxidase conjugate (anti-rabbit) was added and

allowed to react at room temperature for 30min, and the above

washing procedure was repeated. The reaction was performed

by adding 100 µL of TMB at room temperature for 20 to

30min without light and then terminated by adding 100 µL

of 25M sulphuric acid. The absorbance values of the samples

and standards were determined at 450 nm (Spectrophotometer,

U-2000, Hitachi High-Tech Science, Tokyo, Japan), and the

serotonin concentrations were calculated by comparison with

standard curves.

Dopamine (DA)

Quantification of dopamine was performed using the

Dopamine Research ELISATM (Labor Diagnostika Nord) and an

ultra-sensitive enzyme immunoassay as follows: 10 µL of tissue

homogenate and standards were added to the extraction plate

and diluted with 90 µL of deionized water. Then, 25 µL of TE

buffer was added and incubated for 1 h at room temperature.

After two washes, 150 µL of acylation buffer and 25 µL of

acylation reagent were added and allowed to react at room

temperature for 20min. The reaction was repeated by washing

twice and adding 100 µL of 0.025M HCl to react for 10min

at room temperature. Then, 90 µL was transferred from the

extraction plate to a 96-well microtiter plate, 25 µL of enzyme

solution was added, and the plate was incubated at 37◦C for

2 h. Then, 100 µL of the reaction solution was transferred to

the dopamine ELISA plate and incubated in the refrigerator at

4◦C for 15–20 h. WellwashTM was used to wash the plate three

times, and 100µL of IgG-peroxidase conjugate (anti-rabbit) was

added and allowed to react for 30min at room temperature. The

washing procedure was repeated. Under sheltered conditions,

100 µL of TMB was added to the reaction at room temperature

for 20–30min, then 100 µL of 0.25M H2SO4 was added to

stop the reaction. The absorbance values were measured at

450 nm, and the concentration of dopamine was calculated by

comparison with a standard curve.

Brain-derived neurotrophic factor (BDNF)

The ChemiKine BDNF Sandwich ELISA Kit (Merck KGaA,

Darmstadt, Germany) was used to determine BDNF by using an

enzyme immunoassay. Tissue homogenates and standards (100

µL) were added to a 96-well plate and incubated overnight in a

4◦C refrigerator. WellwashTM was used to wash the plate four

times. Then, 100 µL of anti-BDNF (from mouse) was added

and allowed to react at room temperature for 2.5 h. Following

triple washing, 100µL of the streptavidin-enzyme conjugate was

added, and the reaction was carried out at room temperature

for 1 h. The plate was washed three more times and 100 µL of

TMB added and allowed to react for 15min at room temperature

without light. Lastly, the reaction was terminated by adding 100

µL of HCl, and the absorbance values were measured at 450 nm,

while the content of BDNF in the samples was calculated based

on comparison with the standard curve.

Statistical analysis

The data obtained from this study were analyzed using IBM

SPSS Statistics version 22 (IBMCorp., Armonk, N.Y., USA). The

results were expressed as mean ± SEM. The data were analyzed

by one-way analysis of variance (ANOVA) to test for differences

between groups, and Duncan’s multiple allometric tests were

used to assess differences between groups for significance. When

p< 0.05, a significant difference was indicated.
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TABLE 1 Changes in body weight and records of food and water

intake of SAMP8 mice supplemented with combined extracts.

Group

(n = 8)a,b
Body weight (gm) Food

intake

(g/day)

Water

consumption

(ml/day)
Initial Final

Positive control 30.13± 0.50 29.17± 0.42 5.63± 0.08 5.60± 0.07

Control 29.67± 0.66 27.43± 0.43 6.08± 0.13 5.69± 0.09

Low dose 30.09± 0.38 28.28± 0.51 5.90± 0.10 5.51± 0.11

Medium dose 29.08± 0.55 27.69± 0.49 5.76± 0.08 5.56± 0.07

High dose 29.01± 0.40 27.62± 0.34 5.83± 0.08 5.54± 0.10

a Data are expressed as the mean ± S.E.M. (n = 8) and analyzed by one-way

ANOVA. b Data points were not significantly different (p > 0.05) from each other

according to ANOVA. Positive control: CORT (40 mg/kg/day) + Fluoxetine (20

mg/kg/day). Control: CORT (40 mg/kg/day). Low dose: CORT (40 mg/kg/day) +

combined extracts of chlorella and lion’s mane mushroom (contains 0.1mL chlorella

extract concentrate + 6mg lion’s mane mushroom extract concentrate). Medium dose:

CORT (40 mg/kg/day) + combined extracts of chlorella and lion’s mane mushroom

(contains 0.2mL chlorella extract concentrate + 12mg lion’s mane mushroom extract

concentrate). High dose: CORT (40 mg/kg/day) + combined extracts of chlorella and

lion’s mane mushroom (contains 0.4mL chlorella extract concentrate + 24mg lion’s

mane mushroom extract concentrate).

Results and discussion

Changes in diet, water intake, and BW

Stress hormones such as CORT play a vital role in the

development of depression (32, 33), and this relationship has

been used to develop animal models of the condition (25, 34,

35). The CORT-induced depression model has a shorter test

schedule, with a higher repeatability and success rate, for rapid

assessment of antidepressant efficacy, enabling an expedient

evaluation, and has been utilized in many studies (5, 33, 35,

36). In depressive mood disorders, continuous changes in the

HPA axis are observed, usually associated with stress (32).

Therefore, this study induced dysregulation of the HPA axis

in male SAMP8 mice by repeated injections of CORT (40

mg/kg/day), which led to depression and anxiety. Improvements

were evaluated and observed when mice were fed different doses

of combined extracts of chlorella and lion’s mane mushroom

for 21 consecutive days. A comparison of the changes in BW,

food intake, and water intake in all groups is shown (Table 1).

Tominimize experimental error, the mice were randomized into

groups with no significant difference in initial BW. The results

showed no significant differences in BW, food intake, and water

intake between any of the groups from the beginning to the

end of the experiment. However, each group showed a slight

decrease in BW during the experimental period. In addition, the

food and water intake of the control group showed an increasing

trend, in comparison with the other groups. It was observed that

mice injected with 40 mg/kg of CORT for 21 consecutive days

showed a reduction in BW compared to the control group (37).

Moreover, when CORT was added directly to the rats’ drinking

water, the CORT group consumed more food and water than

the control group at weeks 2 and 3, while the bodyweight of

the CORT group was significantly lower than that of the control

group at weeks 1, 2, and 3 (38). Additionally, a previous study

found that glucocorticoids act on the hypothalamus to promote

appetite and increase food intake (39). The administration of

glucocorticoids (such as CORT) increases catabolic processes,

including lipid and muscle protein catabolism (36). Therefore,

when food and water intake increase, weight loss still occurs. The

above reports showed that the BW of the animals decreased with

CORT administration, and the food and water intake increased.

In this study, decreases in BW were observed in the positive

control group, negative control group, and experimental group,

but only the negative control group had a higher food and

water intake.

Behavioral tests

OFT

The OFT can be used to evaluate the spontaneous activity

of animals in a new environment. Animal behavior such as

running away or staying in the same place may occur due

to fear and stimulation when facing a new environment. The

OFT allows for the study of animal performance in terms of

locomotion, directed exploratory activity, and emotional state

(anxiety) (27, 40). The specific evaluation approach is as follows.

When mice with depression symptoms tend to move closer to

the peripheral area than normal mice, they are unwilling to

remain in the central zone or stay in the corner. When mice

traverse the center block with increased frequency and stay

there of a long time, they show a reduction in depression and

increased exploration ability. The numbers of crossings, stay

time, distances traveled, and speeds of movement in the central

zone, of SAMP8 mice administered CORT (40 mg/kg/day)

and treated with complex extract of chlorella and lion’s mane

mushroom for 21 consecutive days are shown in Table 2. The

results showed that the number of crossings in the positive

control group and the treatment groups tended to increase,

yet there were no significant differences compared with the

control group. Moreover, the stay time and distance traveled

(as refers to the total movement distance into the central area)

were significantly higher in the positive control group and the

medium-, and high-dose treatment groups, compared to the

control group (p < 0.05). The movement speed was significantly

higher only in the positive control group compared with the

control group (p < 0.05). In a study conducted on mice injected

with 20 mg/kg/day of CORT for 5 weeks, a significant reduction

in 5min stays in the central zone in the CORT group compared

to the control group was observed (41). Furthermore, during the

3 weeks of continuous injection of 40 mg/kg/day of CORT in

mice, a trend toward an increase in the number of crossings of

the central zone in 3min in the CORT group compared to the

control group was observed (37).
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TABLE 2 Evaluation of the benefits of combined extracts in mice by the open field test (OFT) and the forced swimming test (FST).

Group (n = 8) a,b Positive control Control Low dose Medium dose High dose

Open field test Frequency 11.38± 1.16 9.50± 1.34 10.25± 0.82 10.75± 1.08 11.25± 0.56

Duration time (sec) 17.63± 1.13 12.13± 1.20 14.75± 1.69 16.63± 1.85 17.25± 1.45

Distance traveled (mm) 691± 110.51 371.71± 66.74 447.05± 56.74 627.85± 72.00 663.38± 88.65

Velocity (mm/s) 29.85± 4.15 18.18± 1.93 18.84± 1.36 19.25± 2.12 20.20± 3.14

Forced swimming test Immobility time (sec) 207.58± 12.32 254.83± 13.81 228.35± 12.41 216.45± 8.17 210.51± 10.89

a Data are expressed as the mean ± S.E.M. (n = 8) and analyzed by one-way ANOVA. b Data points were not significantly different (p > 0.05) from each other according to ANOVA.

Positive control: CORT (40 mg/kg/day)+ Fluoxetine (20 mg/kg/day). Control: CORT (40 mg/kg/day). Low dose: CORT (40 mg/kg/day)+ combined extracts of chlorella and lion’s mane

mushroom (contains 0.1mL chlorella extract concentrate+ 6mg lion’s mane mushroom extract concentrate). Medium dose: CORT (40 mg/kg/day)+ combined extracts of chlorella and

lion’s mane mushroom (contains 0.2mL chlorella extract concentrate + 12mg lion’s mane mushroom extract concentrate). High dose: CORT (40 mg/kg/day) + combined extracts of

chlorella and lion’s mane mushroom (contains 0.4mL chlorella extract concentrate+ 24mg lion’s mane mushroom extract concentrate).

TABLE 3 Investigation of biochemical analysis of blood profiles in mice treated with combined extracts.

Group (n = 8)a,b Positive control Control Low dose Medium dose High dose

Albumin (g/dL) 3.04± 0.06 3.10± 0.08 3.01± 0.08 3.12± 0.09 3.06± 0.08

Glucose (mg/dL) 114.25± 4.20 127.38± 5.96 121.00± 7.65 116.00± 7.27 118.63± 6.91

Total Cholesterol (mg/dL) 130.88± 4.31 141.38± 4.93 136.50± 3.34 132.75± 4.66 131.38± 6.32

Triglyceride (mg/dL) 140.25± 3.12 167.50± 3.15 148.38± 4.70 144.13± 5.16 142.50± 4.81

Total Protein (g/dL) 5.26± 0.08 5.30± 0.05 5.39± 0.08 5.34± 0.06 5.33± 0.09

GOT (U/L) 82.25± 4.95 96.50± 2.43 89.38± 6.32 85.50± 7.12 82.88± 4.50

GPT (U/L) 50.63± 5.51 61.75± 3.53 53.25± 3.71 52.38± 6.22 56.88± 5.79

BUN (mg/dL) 32.63± 1.41 40.63± 0.94 36.88± 1.48 34.75± 1.82 35.63± 1.67

Creatinine (mg/dL) 0.27± 0.02 0.32± 0.01 0.30± 0.02 0.29± 0.02 0.31± 0.01

a Data are expressed as the mean ± S.E.M. (n = 8) and analyzed by one-way ANOVA. b Data points were not significantly different (p > 0.05) from each other according to ANOVA.

Positive control: CORT (40 mg/kg/day)+ Fluoxetine (20 mg/kg/day). Control: CORT (40 mg/kg/day). Low dose: CORT (40 mg/kg/day)+ combined extracts of chlorella and lion’s mane

mushroom (contains 0.1mL chlorella extract concentrate+ 6mg lion’s mane mushroom extract concentrate). Medium dose: CORT (40 mg/kg/day)+ combined extracts of chlorella and

lion’s mane mushroom (contains 0.2mL chlorella extract concentrate + 12mg lion’s mane mushroom extract concentrate). High dose: CORT (40 mg/kg/day) + combined extracts of

chlorella and lion’s mane mushroom (contains 0.4mL chlorella extract concentrate+ 24mg lion’s mane mushroom extract concentrate).

In brief, according the above, continuous administration of

CORT reduces the stay time and the frequency of crossings in

the central region, similar to the results obtained in the current

study. Hence, the positive control and the medium-, and high-

dose treatment groups showed evidence of increased time spent

in the central sector, which implies effective improvement in

depression, greater mobility in the central zone, and improved

exploratory activity in mice.

FST

The FST provides a method for evaluating the degree of

depression. Depression severity was determined by observing

the escape behavior of mice under adverse conditions. Normal

mice would struggle in the water, but when their efforts were

unsuccessful, they would behave desperately, floating in the

water and giving up swimming. The experimental procedure

involved video recording to observe the mice’s behavior during

the experiment and to measure the duration of mobility and

immobility. The longer the duration of immobility, the more

desperate the mice were. The FST results showed (Table 2)

that the mice displayed a significant reduction in time spent

immobile during the procedure in the positive control group

and medium- and high-dose treatment groups, when compared

to the control group (p < 0.05). According to previous studies,

mice were significantly more immobile in the FST after 3 weeks

of continuous CORT treatment (5, 42). It was reported that

CORT treatment of mice significantly prolonged immobility

in the FST while attenuating behavioral responses in the

OFT. In contrast, the administration of catalpol (20 mg/kg

for 21 days) significantly reversed CORT-induced depressive

behavior in Kunming mice (25). The results of the present study

showed the same phenomenon, whereby the administration of

antidepressant drugs, as well as medium- and high-doses of

combined extracts of chlorella and lion’s mane mushroom, was

able to reduce both the time that mice gave up struggling and

floated on the water surface, which indicated that they were able

to alleviate the behavioral manifestations of despair.

Biochemical analysis of blood

The results of blood biochemical analysis are shown in

Table 3. There were significant decreases in triglycerides and
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TABLE 4 E�ects of combined extracts on the levels of factors correlated to the central nervous system in brain of mice.

Group (n = 8) a,b Positive control Control Low dose Medium dose High dose

Serotonin (%) 92.50± 4.88 100.00± 8.59 96.24± 6.97 94.02± 6.70 95.64± 10.08

Dopamine (%) 94.45± 10.90 100.00± 6.76 98.55± 5.75 98.53± 10.34 99.42± 6.86

BDNF (%) 141.97± 8.73 100.00± 9.40 114.09± 12.68 118.84± 5.51 122.81± 8.56

a Data are expressed as the mean ± S.E.M. (n = 8) and analyzed by one-way ANOVA. b Data points were not significantly different (p > 0.05) from each other according to ANOVA.

Positive control: CORT (40 mg/kg/day)+ Fluoxetine (20 mg/kg/day). Control: CORT (40 mg/kg/day). Low dose: CORT (40 mg/kg/day)+ combined extracts of chlorella and lion’s mane

mushroom (contains 0.1mL chlorella extract concentrate+ 6mg lion’s mane mushroom extract concentrate). Medium dose: CORT (40 mg/kg/day)+ combined extracts of chlorella and

lion’s mane mushroom (contains 0.2mL chlorella extract concentrate + 12mg lion’s mane mushroom extract concentrate). High dose: CORT (40 mg/kg/day) + combined extracts of

chlorella and lion’s mane mushroom (contains 0.4mL chlorella extract concentrate+ 24mg lion’s mane mushroom extract concentrate).

BUN in the positive control group and the group treated

with a combination of chlorella and lion’s mane mushroom

extracts, in comparison with the control group (p < 0.05). In

addition, the analysis showed a decreasing trend in glucose, total

cholesterol, GOT, GPT, and creatinine in the positive control

group and the complex-treated groups, compared with the

control group. However, there were no significant differences

in total protein and albumin among all groups. It has been

reported that mice injected with 40 mg/kg/day of CORT for 3

consecutive weeks showed increased blood TG, TC, HDL-C, and

LDL-C concentrations and a trend of increasing blood glucose

concentrations (37).

According to previous studies, SD rats with high cholesterol

dietary-induced hypercholesterolemia were treated with 100

mg/kg BW lion’s mane mushroom extract for 4 weeks

showed a significant reduction in blood total cholesterol

concentration (43). According to Chovancikova and Simek (44),

administration of a high-fat diet with 1% chlorella to CD1 mice

for 10 weeks showed a significant reduction in TG and TC

in the blood and liver. In brief, it was observed that CORT

administration inmice resulted in increased lipid concentrations

and elevated blood glucose levels, which were similar to

the results in the literature; simultaneous administration of

antidepressants and the combined extracts of chlorella and lion’s

mane mushroom caused a decrease in lipid and blood glucose

levels. It was indicated that the combination of chlorella and

lion’s mane mushroom combined extracts could improve the

catabolic effects of CORT.

Factors correlated with the central
nervous system in the brain

Serotonin

Serotonin, otherwise known as 5-Hydroxytryptamin (5-

HT), is one of the monoamine neurotransmitters in the central

nervous system. Acting principally as a neurotransmitter in the

synaptic gap, 5-HT is related to mood regulation, behavioral

inhibition and mood stabilization, and is a transmitter of mental

feelings such as happiness, peace of mind, and satisfaction. The

serotonin hypothesis suggests that disorders of the 5-HT system

and its components play an active role in the origin of depression

(45). It has been suggested that high levels of 5-HT production

regulate serotonin neuron clusters by reducing the expression of

serotonin transporter andmonoamine oxidase A in serotonergic

cells via vitamin D (46). An imbalance in the serotonin system

in the brain often leads to insomnia, which in turn leads

to psychiatric disorders (such as depression and agitation)

and, in severe cases, Alzheimer’s disease (47). The results

of a between-group comparison of brain serotonin (Table 4)

revealed an upward trend in the serotonin concentration in

the control group; meanwhile, the serotonin concentration in

the positive control group and the treatment groups showed

a decreasing trend, but it did not reach statistical difference.

The results showed that 21 days of CORT administration

(40 mg/kg/day) resulted in a significant increase in the 5-

HT concentration in the hippocampal cortex of mice (48).

Additional evidence suggests that CORT given continuously

to rats for 21 days decreased the sensitivity of the prefrontal

cortical serotonin receptor (5-HT1A), along with increased

prefrontal cortical serotonin concentrations (49). Therefore, it

was hypothesized that the increase in serotonin synthesis in

the brains of animals with CORT-induced depressive behavior

might be caused either by the individual’s resistance to excessive

stress or by the feedback regulation produced by corticosterone.

The results obtained in this study were similar to the above

publications concerning the use of CORT to induce depression

in SAMP8 mice.

Dopamine

Dopamine is one of the neurotransmitters in the central

nervous system, and its main effects are related to pleasure and

desire, which can govern human actions, motivation, emotions,

memory function, and adaptive behavior. It canmake people feel

excited, give them a desire to emerge, fill them with energy and

curiosity, make them emotionally happy, and facilitate a sense

of accomplishment. When the concentration of inter-synaptic

neurotransmitters is unbalanced, behaviors such as depression,

suppressed desire, etc. occur with ease (50). A between-group
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comparison of brain dopamine concentrations is shown in

Table 4. In the control group, the dopamine concentration in the

brain was higher than that in the other groups, whereas in the

positive control group, the dopamine concentration in the brain

decreased following the administration of antidepressant drugs

to the mice. In addition, the dopamine concentration in mice

of the treatment group was lower than that of mice the control

group, but the difference did not reach statistical significance.

According to a study, 21 days of corticosterone

administration (20 mg/kg) in mice decreased the expression

of glucocorticoid receptors in the cerebral cortex, resulting

in dysfunction of the glucocorticoid receptor system, and

increased dopamine release from the prefrontal cortex induced

by high K+ (51). Moreover, another study found that depressive

animal behavior was correlated with an increased prefrontal

cortical dopamine concentration (52, 53). In this study, it was

observed that the dopamine concentration in the brain was

similar to those reported in the publications literature.

BDNF

BDNF has several functions in the central nervous

system, including regulation of nerve cell development,

survival, synthesis of synapses, and the transmission of

neurotransmitters, which are intracellular messages in the

brain. In recent years, various studies have found that BDNF

concentrations in the brain and other tissues of depressed

patients and animal models were significantly lower than those

in normal ones; thus, BDNF has been suggested to be related to

the pathological mechanism of depression, where it could be an

important therapeutic target for depression (25).

In mice of the positive control group, which were given

CORT followed by antidepressant therapy, a significant increase

in the BDNF concentration in the brain was observed (p <

0.05) (Table 4). Fascinatingly, a similar significant improvement

to that in the positive control group was observed in the

groups treated with chlorella and lion’s mane mushroom

combined extract (p < 0.05). Many previous studies found that

exogenous corticosterone administration caused a decrease in

the levels of BDNF mRNA in the hippocampus (54, 55). The

continuous administration of CORT (40 mg/kg) for 21 days to

rats significantly reduced the protein expression of BDNF in

the hippocampal cortex of their brains, while the concurrent

administration of an antidepressant (Fluoxetine, 10 mg/kg)

improved the concentration of BDNF in the hippocampal

cortex (56). In this study, the results were similar to those

of the abovementioned studies, which showed that the BDNF

concentration in the brains of mice decreased with CORT

treatment, although the situation improved with treatment via

Fluoxetine and combined extracts (from chlorella and lion’s

mane mushroom).

The goal of preventive medicine is to promote health

and achieve the effect of aging and disease prevention by

improving the intake of antioxidant-rich dietary substances (12).

Thus, in animal models, high CORT levels contribute to the

overproduction of ROS, resulting in increased lipid peroxidation

and antioxidant enzyme activity in the brain (1, 25). According

to the above results, it was observed that supplementation with

combined extracts (from chlorella and lion’s mane mushroom)

improved the capability of the antioxidant defense system in

the body and inhibited the production of peroxides, presumably

due to the presence of carotenoids and phenolic compounds

in the extracts. Overproduction of amyloid beta-protein (Aβ)

causes learning memory deficits (47), and administration of

the abovementioned combined extracts might have improved

the amyloid deposition in the brain of SAMP8 mice. In

general, to our knowledge, there is no information on the

effect of chlorella on the deposition of amyloid proteins,

but effectively raising antioxidant defenses and reducing the

damage caused to nerve cells by oxidative stress might

reduce the deposition of amyloid proteins and improve

memory loss.

Conclusions

In summary, this study aimed to observe the effect

of different doses of chlorella and lion’s mane mushroom

combined extracts on depression behavior. All groups of mice

were administered CORT (40 mg/kg/day) for 21 days to

induce depression in vivo. The OFT results showed that the

positive control group, and medium- and high-dose extract

groups were significantly improved in terms of prolonging

the stay in the central zone (p < 0.05) and increasing the

distance traveled (p < 0.05). In terms of FST, the above

three groups were able to significantly reduce the immobility

time as compared to the control group (p < 0.05). The

results of blood biochemical analysis showed that the TG

and BUN levels in the blood raised by CORT were reduced

significantly (p < 0.05) in the positive control group, and

medium-, and high-dose treatment groups. All three of the

above treatments increase BDNF levels. To our knowledge,

this is the first validation of the antidepressant-like effects

of combined extracts of chlorella and lion’s mane mushroom

in a CORT injection-induced mouse model of depression,

which may lead to the development of a new antidepressant

dietary supplement. Hence, this study provides a theoretical

framework for future research and application of the combined

extracts of chlorella and lion’s mane mushroom to prevent and

treat depression.
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In this study, the following four groups of mice with hyperlipidemia were

involved: the model control group (MC), the Chrysanthemum flavonoids

group (CF), the luteolin group, and the luteoloside group. The whole gene

expression profile was detected in the liver tissues of each group. Differential

genes significantly enriched in the biological process of gene ontology (GO)

items and Kyoto Encyclopedia of Genes and Genomes (KEGG) were selected,

and 4 differential genes related to lipid metabolism were selected for further

real-time quantitative PCR verification. Compared with the MC, 41 differential

genes such as Sqle, Gck, and Idi1 were screened in the CF intervention group;

68 differential genes such as Acsl3, Cyp7a1, and Lpin1 were screened in the

luteolin intervention group (CF); and 51 differential genes such as Acaca,

Cyp7a1, and Lpin1 were screened in the luteoloside group. The mechanism

of CF to improve hyperlipidemia is very complex, mainly involving biological

processes such as cholesterol and fatty acid metabolism and glycolysis,

luteolin mainly involves the synthesis and transport of cholesterol, and

luteoloside mainly involves fatty acid metabolism. The functional pathways

of CF may not be completely the same as luteolin and luteoloside, and further

study is needed on the mechanism of action of other components.

KEYWORDS

chrysanthemum flavonoids, luteolin, luteoloside, hyperlipidemia, mechanism

Introduction

Hyperlipidemia refers to one or more metabolic diseases with abnormal blood lipids
(1). Most patients with hyperlipidemia have no obvious clinical symptoms, but it is a
major risk factor for cardiovascular and cerebrovascular diseases (2). The 2015 Survey
in China showed that the rate of dyslipidemia among adults was 40.4%. In view of the
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limitations of clinical lipid-lowering drugs, several studies are
focusing on the lipid-lowering efficacy and application of
natural products. Phytochemicals can be further developed
as a potential new natural, safe, and efficient lipid-lowering
drugs because of their cheap, safe, and efficient characteristics.
The known phytochemicals with lipid-lowering effects are
phytosterols, phenols, saponins, alkaloids, organic sulfides, and
lectins (3).

At present, the research on the lipid-lowering activity
of flavonoids is more and more extensive and in-depth.
Foodborne flavonoids can improve lipid metabolism and
prevent cardiovascular disease (4–6). The lipid-lowering activity
of flavonoids may be achieved by affecting a variety of lipid
metabolism pathways in the intestine and the liver, such as
inhibiting intestinal absorption of lipids and increasing lipid
excretion (7, 8), activating adenylate-activated protein kinase
(AMPK) so as to promote lipid catabolism or inhibit lipid
synthesis (9), and regulating microRNAs (miRNAs) with the
function of regulating lipid metabolism (10).

Chrysanthemum has been used mainly in traditional herbal
teas and beverages, and various studies have shown that it
has biological activities to lower blood lipids and fight obesity.
Chrysanthemum extract alleviated the fatty liver in mice by
the PPARα-mediated pathway (11). After enzymatic treatment,
lipid accumulation and production in obese male mice induced
by a high-fat diet were reduced (12). In vitro, it inhibited
adipogenesis by inhibiting mitosis in the early differentiation of
3T3-L1 cells (13). In vivo and in vitro experiments have shown
that chrysanthemum can activate the AMPK pathway to inhibit
fat production (14, 15).

In our previous study, we compared the effects of
Chrysanthemum flavonoids (CF), luteolin, and luteoloside, on
improving blood lipid and liver steatosis, and found that
the preliminary mechanism may be related to antioxidant
levels and enzymes related to regulating fatty acid, cholesterol,
and triglyceride metabolism in the liver (16). In this study,
differential genes are screened out by a gene chip, and the
molecular mechanism of their function is further discussed from
the biological process and signal pathway.

Materials and methods

Materials

The animal ethics approval was 2015ZDSYLL004.0. We
selected liver tissues from the pre-study animals (16) for
whole gene expression profiling to explore the mechanism
of lipid lowering, with three samples from each group. The
Agilent SurePrint G3 Rat GE V2.0 Microarray (8*60K,Design
ID:074036) was used in this experiment, provided by
Shanghai Ouyi Biomedical Technology Co., Ltd., the chip
contains 45,738 probes.

Extraction of total ribonucleic acid
from liver tissue

Total ribonucleic acid (RNA) of liver tissue was extracted
from 100 mg liver tissue using mirVanaTM RNA Isolation
AM1561 Kit (Thermo Fisher Scientific, China). The total RNA
was preserved at -80◦C. NanoDrop ND-2000 (Thermo Fisher
Scientific, China) was used to detect the absorbance of the
extracted RNA at 260 and 280 nm, and the concentration of
the total RNA was calculated. Agilent Bioanalyzer 2100 (Agilent,
United States) was used to carry out the integrity test (with
2100RIN ≥ 7 and 28/18 s ≥ 0.7 as the qualified standard) before
the gene chip test can be carried out. Three samples from each
group were randomly selected for follow-up chip experiments.

Expression gene profile detection

An amount of 0.2 µg of total RNA was taken, and 2.5 µl
of deionized water and 2.8 µl of the reaction mixture (2 µl of
Spike Mix and 0.8 µl of T7 Promoter Prime) were added. After
mixing using centrifugation, denaturing for 10 min at 65◦C and
ice bath for 5 min were performed. A volume of 2 µl of 5 × First-
Strand Buffer (preheat at 80◦C for 3 min) was taken, 1 µl of 0.1
m dithiothreitol (DTT), 0.5 µl of 10 mM deoxyribonucleoside
triphosphate (dNTP) mix, and 1.2 µl of AffinityScript Rnase
BLock Mix were added, the sample was mixed well, and then
the RNA was added. Reaction PCR was performed after mixing
and centrifugation (40◦C for 2 h, 70◦C for 15 min, and ice
bath for 5 min). All reagents were obtained from Agilent Low
Input Fast Amplifier Labeling kit (Agilent, United States).

Synthesis and purification of
fluorescently labeled cDNA

Notably, 0.75 µl of H2O, 3.2 µl of 5 × transcription buffer,
0.6 µl of 0.1 m DTT, 1 µl of NTP mix, 0.21 µl of Cy3-CT (to
avoid light), and 0.24 µl of T7 RNA polymerase blend were
added into the sample tube and allowed to react for 2 h at
40◦C. Then, 84 µl of enzyme-free water, 350 µl of BufferRLT,
and 250 µl of anhydrous ethanol were added and the sample
was centrifuged for 30 s (4◦C, 2,500 rpm) to discard the filtrate.
Next, 500 µl of buffer RPE was added to wash the filtrate two
times. After washing, 30 µl of non-enzyme water was added, the
sample was centrifuged (4◦C, 10,000 g) for 1 min, and then the
filtrate was collected. All reagents were obtained from Agilent
Low Input Fast Amplifier Labeling kit (Agilent, United States).

Determination of cRNA concentration

The concentration of purified RNA was determined by
NanoDrop ND-2000 (Thermo Fisher Scientific, China). After
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TABLE 1 Primer sequences of qPCR verified genes.

Gene Upstream primer Downstream primers Length (bp)

Gpam TACGCTGAGAGTGCCACATA GTTCTAAGACAGACGCTCG 106

Acsl3 CCTCCTCCAGTTTGCTTTG ATCACTGCTTCCCCAGTA 81

Cyp7a1 CTTAGAACAAGTTTGATGACTC CGTGAAACCCATCATTCTGT 100

Lpin1 GAGCAGGATGGACTGTTACT GCCGTTCCGGTGAATTATG 112

Sqle AAGAATGATTGTTTCCACAAAT TTTATTGGCATGTCCCAATGA 85

Gck GCCTCACTCTGCACTATTCA GTGGTCTCTTGGAGGGACA 97

Gpam TACGCTGAGAGTGCCACATA GCTCAGTTCTAAGACAGACG 111

Acaca CGAGATTTCACTGTGGCTT GCAATACCATTGTTGGCGATA 95

Angptl4 GAGCCCTGGATACACTCAAT TGTTGTGAGCTGTGCCTT 85

FIGURE 1

Scatter plot of intervention groups compared with the model control group. (A) Scatter plot of fluorescence signal values in chrysanthemum
flavonoids intervention group (CF) and model control group. (B) Scatter plot of fluorescence signal values in luteolin intervention group and
model control group. (C) Scatter plot of fluorescence signal values in luteoloside intervention group and model control group.
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FIGURE 2

A differential gene volcano map of intervention groups compared with the model control group. (A) Volcano map of model control group and
chrysanthemum flavonoids intervention group. (B) Volcano map of model control group and luteolin intervention group. (C) Volcano map of
model control group and luteoloside intervention group.

adjusting to zero with water, 1 µl of the sample was
used to determine and record the concentration of cRNA
and the content of fluorescence. The specific calculation
formula was given as follows: cRNA content (µg) = cRNA
concentration (ng/µl) × 30 µl/1,000; Cy3-incorporation
rate (pmol/µg) = Cy3-concentration/cRNA concentration
(ng/µl) × 1,000.

Sample fragmentation and chip
hybridization of cRNA

The hybrid furnace was preheated at 65◦C, and a
fragmentation mixture was added and then placed in the ice bath
for 1 min. cRNA from Fragmentation Mix and 2 × GE Hyb
Hi-RPM Buffer were added. The cover was removed from the
hybrid rack, and samples were added to each hole of the chip.
The required hybrid chip was taken out, the Agilent marker was
covered face down horizontally, the hybridization device was

assembled and tightened, and the chip was turned clockwise
three times to fully combine the hybrid liquid with the probe.
The hybrid frame was placed in a hybrid furnace for 17 h for
rolling hybridization under the condition of 65◦C and 10 rpm.

Chip washing and scanning

The chip was washed three times in the washing cylinder.
The chip was put forward slowly to ensure that there were no
residual water droplets, and the chip was carefully placed face
up into the scanning rack. Agilent scanner G2505C (Agilent,
United States) was used to scan the chip.

Screening of differential genes

The fluorescence signal values of the images were
processed by Feature Extraction and standardized by
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GeneSpring 13.1 (Agilent, United States). Taking the
difference significance P-value and difference multiple
(fold change, Fc) value as reference, the differential genes
were screened according to the absolute value of Fc ≥ 2 and
P ≤ 0.05. The functions and pathways of annotated differential
genes were analyzed.

Real-time fluorescence quantitative
PCR verification

Quantification was performed with a two-step reaction
process, namely, reverse transcription (RT) and PCR. Each RT
reaction had two steps. The first step was to add 0.5 µg of
RNA, 2 µl of 4 × gDNA wiper mix, and nuclease-free H2O
to 8 µl. The sample was allowed to react for 2 min at 42◦C.
The second step was to add 2 µl of 5 × HiScript II Q RT
SuperMix IIa. The sample was allowed to react for 10 min
at 25◦C, 30 min at 50◦C, and 5 min at 85◦C. The 10 µl
of RT reaction mix was then diluted 10 times in nuclease-
free H2O and held at -20◦C. Real-time PCR was performed
with a 10-µl PCR reaction mixture that included 1 µl of
cDNA, 5 µl of 2 × QuantiFast R© SYBR R© Green PCR Master
Mix (Qiagen, Germany), 0.2 µl of forward primer, 0.2 µl of
reverse primer, and 3.6 µl of nuclease-free H2O. Reactions were
incubated in a 384-well optical plate (Roche, Swiss) at 95◦C
for 5 min, followed by 40 cycles of 95◦C for 10 s and 60◦C
for 30 s. The primer sequences (Table 1) were designed in
the laboratory and synthesized by Generay Biotech (Generay,
PRC). The expression levels of mRNAs were normalized to

TABLE 2 Functional classification of differentially expressed genes.

GO analyze Biological
process

Molecular
function

Cellular
component

CF group vs.
model control
group

Annotated 1,067 304 193

Significant
enrichment

121 32 9

luteolin group
vs. model
control group

Annotated 1,190 323 196

Significant
enrichment

159 52 23

Luteoloside
group vs. model
control group

Annotated 1,133 322 212

Significant
enrichment

131 37 17

ACTB and were calculated using the 2−11Ct method [Livak and
Schmittgen, (17)].

Statistical analysis

The data were analyzed using SPSS16.0 (IBM, United
States), which was expressed as mean ± standard deviation, and
a P-value of < 0.05 was considered statistically significant.

Results

Chip hybrid scan image

In the scatter plot (Figure 1), each point represents a
probe, the horizontal axis represents the sample fluorescence
signal value of the intervention group, and the longitudinal
axis represents the sample fluorescence signal value of the
model control group (MC), which on the y = x line indicate
that the signal values of the two samples are equal (multiple
of difference Fc = 1). The point that fall above the line
(y = x) represents upregulation and that fall below the line
represents downregulation.

Screening of differential genes
between intervention group and model
control group

Figure 2 shows a differential gene volcano map of MC
and intervention groups, the horizontal axis represents the
logarithm of the Fc based on 2, and the vertical axis
represents the negative logarithm of the P-value with the
base of 10. Red represents significantly upregulated genes, and
blue represents significantly downregulated genes. Compared
with the MC, there were 427 differential genes in the
CF intervention group (260 downregulated genes and 167
upregulated genes significantly), 451 differential genes in the
luteolin intervention group (335 downregulated genes and 116
upregulated genes significantly), and 420 differential genes in
the luteoloside intervention group (260 downregulated genes
and 160 upregulated genes significantly).

GO analysis of differential genes
between intervention group and model
control group

The selected differential genes were functionally annotated
by the GO database, which can be divided into three parts.
P ≤ 0.05 indicates that the differential genes are significantly
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FIGURE 3

(Continued)
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FIGURE 3

First 20 GO items with significant enrichment of differential genes in each plate. (A) CF group vs. model control group. (B) Luteolin group vs.
model control group. (C) Luteoloside group vs. model control group.

enriched in the GO entry. Table 2 shows the number of
significantly enriched items in the three GO plates in different
intervention groups compared with the MC. The first 20 GO
items with significant enrichment of differential genes in each
plate are shown in Figure 3.

KEGG analysis of differential genes
between intervention group and model
control group

The differential genes were analyzed by KEGG. A P-value
of < 0.05 indicates a significant enrichment of differential genes.
The results showed that there were 186 annotable items in
the CF group compared with the MC, among which 13 were
significantly enriched. There were 187 annotable items in the
luteolin group compared with the MC, among which 26 were
significantly enriched. There were 180 annotable items in the
luteoloside group compared with the MC, among which 18
were significantly enriched. The top 20 significantly enriched
pathways in each group are shown in Figure 4.

Comprehensive analysis and
verification gene selection

Differential genes significantly enriched in the biological
process of GO items and KEGG were selected (the number of

genes in each intervention group is shown in Figure 5), and
4 differential genes related to lipid metabolism were selected
for further real-time quantitative PCR verification. KEGG items
with a significant enrichment and GO biological process items
involved in chip results are summarized in Table 3.

RT-PCR verification results of the
intervention group and the model
control group

The comparison between the RT-PCR and gene chip
results is shown in Figure 6. The expression trend is
completely the same, suggesting that the data of the gene
chip are reliable. As shown in Table 4, compared with
the MC, in the luteolin intervention group, the expression
of Acsl3 and Cyp7a1 was significantly upregulated, and
the expression of Lpin1 was significantly downregulated,
while there was no statistical difference in Gpam expression
downregulation; in the CF intervention group, the expression
of Sqle, Gck, and Idi1 was statistically and significantly
downregulated, while there was no statistical difference in Gpam
expression downregulation; in the luteoloside intervention
group, the expression of Acaca and Cyp7a1 was significantly
upregulated and the expression of Lpin1 was significantly
downregulated, while there was no statistical difference in
Angptl4 expression downregulation.
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FIGURE 4

KEGG analysis of differential gene significant enrichment pathways (top 20). (A) CF group vs. model control group. (B) Luteolin group vs. model
control group. (C) Luteoloside group vs. model control group.

FIGURE 5

The number of genes in each intervention group. (A) CF group vs. model control group. (B) Luteolin group vs. model control group.
(C) Luteoloside group vs. model control group.
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TABLE 3 Differential genes both significantly enriched in KEGG and GO biological process items.

Group GeneSymbol KEGG GO

CF group vs.
model control
group

Sqle rno00100 steroid biosynthesis
rno01100 metabolic pathways
rno01130 biosynthesis of antibiotics

GO:0008203 metabolic pathways
GO:0010033 response to organic substance

Gck rno01100 metabolic pathways
rno01130 biosynthesis of antibiotics

GO:0032869 cellular response to insulin stimulus
GO:0045725 positive regulation of glycogen biosynthetic process
GO:0050796 regulation of insulin secretion
GO:0005978 glycogen biosynthetic process GO:0055088 lipid homeostasis
GO:0009749 response to glucose
GO:0032024 positive regulation of insulin secretion

Gpam rno01100 metabolic pathways GO:0032869 cellular response to insulin stimulus
GO:0014823 response to activity
GO:0055089 fatty acid homeostasis
GO:0009749 response to glucose
GO:0006641 triglyceride metabolic process
GO:0010867 positive regulation of triglyceride biosynthetic process
GO:0006637 acyl-CoA metabolic process
GO:0006631 fatty acid metabolic process

Idi1 rno01100 metabolic pathways
rno01130 biosynthesis of antibiotics

GO:0006695 cholesterol biosynthetic process

Luteolin group
vs. model
control group

Acsl3 rno01100 metabolic pathways GO:0014070 response to organic cyclic compound
GO:0001676 long-chain fatty acid metabolic process

Cyp7a1 rno01100 metabolic pathways
rno00140 steroid hormone biosynthesis
rno04976 bile secretion

GO:0071333 cellular response to glucose stimulus
GO:0071397 cellular response to cholesterol
GO:0055114 oxidation-reduction process

Gpam rno01100 metabolic pathways
rno00564 glycerophospholipid metabolism
rno00561 glycerolipid metabolism

GO:0031667 response to nutrient levels
GO:0009750 response to fructose
GO:0032869 cellular response to insulin stimulus
GO:0006641 triglyceride metabolic process
GO:0006637 acyl-CoA metabolic process
GO:0014823 response to activity
GO:0006631 fatty acid metabolic process
GO:0055089 fatty acid homeostasis
GO:0019432 triglyceride biosynthetic process
GO:0046686 response to cadmium ion
GO:0042104 positive regulation of activated T cell proliferation

Lpin1 rno01100 metabolic pathways
rno00564 glycerophospholipid metabolism
rno00561 glycerolipid metabolism

GO:0031065 positive regulation of histone deacetylation
GO:0032869 cellular response to insulin stimulus
GO:0019432 triglyceride biosynthetic process
GO:0006470 protein dephosphorylation
GO:0000122 negative regulation of transcription from RNA polymerase II
promoter

Luteoloside
group vs. model
control group

Acaca rno01100 metabolic pathways
rno00061 fatty acid biosynthesis
rno01212 fatty acid metabolism

GO:0001894 tissue homeostasis
GO:0042493 response to drug
GO:0014070 response to organic cyclic compound
GO:0055088 lipid homeostasis
GO:0006629 lipid metabolic process

Angptl4 rno03320 PPAR signaling pathway GO:0019216 regulation of lipid metabolic process
GO:0051260 protein homooligomerization
GO:0043066 negative regulation of apoptotic process
GO:0001666 response to hypoxia

Cyp7a1 rno03320 PPAR signaling pathway
rno01100 metabolic pathways

GO:0071397 cellular response to cholesterol

Lpin1 rno01100 metabolic pathways GO:0000122 negative regulation of transcription from RNA polymerase II
promoter
GO:0031065 positive regulation of histone deacetylation
GO:0045598 regulation of fat cell differentiation
GO:0006629 lipid metabolic process
GO:0031100 organ regeneration
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FIGURE 6

The comparison between the RT-PCR and gene chip results. Compared with the model control group: *P < 0.05; **P < 0.01.

TABLE 4 Gene expression verified by real-time PCR.

CF group vs. model
control group

Sqle Gck Gpam Idi1

Model control group 1.21 ± 0.27 7.04 ± 5.71 1.48 ± 0.97 1.01 ± 0.15

CF group 1.00 ± 0.04* 2.16 ± 0.87** 1.15 ± 0.21 0.57 ± 0.13*

Expression 0.83 0.31 0.78 0.56

PCR differential multiple −1.21 −3.26 −1.28 −1.79

Gene chip differential multiple −2.63 −5.22 −2.50 −2.91

Luteolin group vs. model
control group

Acsl3 Cyp7a1 Gpam Lpin1

Model control group 1.16 ± 0.64 2.84 ± 2.12 1.51 ± 0.99 2.52 ± 2.40

Luteolin group 0.36 ± 0.18** 10.74 ± 3.42** 0.97 ± 0.11 0.91 ± 0.32*

Expression 0.31 3.78 0.65 0.36

PCR differential multiple −3.22 3.78 −1.55 −2.77

Gene chip differential multiple −2.97 2.75 −3.46 −4.31

Luteoloside group vs.
model control group

Acaca Angptl4 Cyp7a1 Lpin1

Model control group 1.13 ± 0.52 1.32 ± 0.85 2.84 ± 2.12 2.52 ± 2.40

Luteoloside group 3.08 ± 0.67** 1.06 ± 0.42 12.73 ± 2.73** 1.10 ± 0.17**

Expression 2.72 0.80 4.48 0.44

PCR differential multiple 2.72 −1.24 4.48 −2.29

Gene chip differential multiple 2.06 −2.09 2.09 −3.50

Expression was 2−11Ct ratio of intervention group and model control group: Expression < 1, gene expression downregulated; Expression > 1, gene expression upregulated; Compared
with model control group: *P < 0.05; **P < 0.01.
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Discussion

The results suggest that compared with the normal control
group, mice with hyperlipidemia have different biological
processes that may involve monounsaturated fatty acid
biosynthesis processes, cellular response to insulin stimulation,
steroid decomposition processes, and response to fatty acids.
The involved signaling pathways include the PPAR signaling
pathway, biosynthesis of unsaturated fatty acids, and fatty
acid metabolism.

In this experiment, differential genes in the intervention
group and MC were screened and 4 genes related to lipid
metabolism were selected for RT-PCR verification. Compared
with the MC, 41 genes were both significantly enriched in GO
and KEGG analyses in the CF intervention group. The results
of gene verification are consistent with the trend of gene chip.
Sqle, Gck, and Idi1 were significantly downregulated. Squalene
cyclooxygenase (Sqle) is a rate-limiting and first oxygenation
enzyme of cholesterol biosynthesis and is considered a proto-
oncogene. Sqle induced the development of non-alcoholic fatty
liver disease (NAFLD) by inducing cholesterol biosynthesis and
Sqle/CA3-axis-mediated adipogenesis in Sqle overexpression
transgenic mice (18). Meanwhile, SQLE silencing can limit
the occurrence of liver tumors induced by NAFLD (19). The
results of our previous animal experiments also support the
idea that the intervention group of CF improved the hepatic
steatosis of hyperlipidemic rats (16). Gluckinase (GCK) is a
key enzyme regulating insulin release and the first step in
catalyzing glycolysis in the liver (20). Its genetic polymorphisms
are associated with susceptibility to gestational diabetes. Studies
have shown that the GCK RS1799884 mutation is associated
with a higher incidence of gestational diabetes mellitus (GDM)
in the Chinese population (21). Its expression is also associated
with hyperlipidemia, and the molecular mechanism of the
regulation of hyperlipidemia by instant dark tea (IDT) has
been demonstrated in rats fed with a high-fat diet and
is related to the significant influence on the expression of
glycoly-related genes such as GCK (22). Isoprene diphosphate
isomerase (IDI) is involved in the biosynthesis of isoprene-like
cholesterol, and there are two subtypes in humans, namely,
IDI1 and IDI2 (23). IDI1 plays a regulatory role in atrial
lipotoxic myopathy associated with atrial enlargement (24).
Studies have shown that polygala tenuifolia extract (PTE)
has anti-obesity activity, and its mechanism is related to
the expression of genes involved in lipid and cholesterol
metabolisms in the liver, such as IDI1 (25). Glycerol-3-
phosphate acyltransferase mitochondrial (GPAM), also known
as GPAT1, is a member of the GPAT gene family. Its
protease is the first step in the biosynthesis of triglycerides
and phospholipids (26). The expression of GPAM can induce
the formation of at least 50% triglycerides in the liver and
adipose tissue (27). GPAM can further affect the expression
of mRNA of key enzymes in the second step of triglyceride

synthesis to regulate lipid metabolism (28). In contrast, the
expression of GPAM is consistent with the results of the
gene chip, but there was no statistically significant. CF may
be related to the expression of genes related to glycolysis
and cholesterol metabolism in the liver, and the effect on
triglyceride metabolism may not be the main way to improve
hyperlipidemia.

Compared with the MC, 68 genes were both significantly
enriched in GO and KEGG analyses in the luteolin intervention
group. The results of gene verification are consistent with
the trend of gene chip. Acsl3 and Lpin1 were significantly
downregulated, and Cyp7a1 was significantly upregulated.
Cholesterol 7 α-hydroxylase (CYP7A) catalyzes the synthesis
of bile acid in the liver and maintains cholesterol balance
in the body. Studies have shown that the upregulation of
its expression can promote the conversion of cholesterol into
bile acid (29, 30). This is consistent with the results of our
previous study that the enzyme activity in the liver of rats
in the luteolin group was significantly increased, indicating
that luteolin can promote the expression of CYP7A1 and thus
activate its enzyme activity to promote the conversion of bile
acids and exert a hypolipidemic effect. Long-chain fatty acid
(ACSL) acyl-coA synthase (FAs) plays an important role in
lipid biosynthesis, in which ACSL3 activity is thought to be
related to adipocyte differentiation, and ACSL3 overexpression
can promote the increase of lipid drop triglyceride content
(31). TNF-α increased ACSL3 expression to induce lipid droplet
formation in human endothelial cells (32). The red raspberry
extract (RRE) can significantly reduce the level of blood
lipid in mice with hyperlipidemia, and Acsl3 is one of the
regulatory genes, accelerating the conversion of triglyceride
to fatty acid (33). The results of our preliminary animal
experimental study showed that the metabolic enzyme activity
of triglycerides was significantly higher and fatty acid synthase
activity was significantly higher in the luteolin group than
the intervention effect of luteoloside, which may be related
to the regulatory genes for the conversion of triglycerides
into fatty acids. GPAM expression was downregulated in
the luteolin intervention group, but the difference was not
statistically significant. The hypolipidemic effect of luteolin may
be related to the expression of genes related to cholesterol
biosynthesis and transformation in the liver. In addition,
affecting the differentiation of adipocytes may also be a way to
improve hyperlipidemia.

Compared with the MC, 51 genes were both significantly
enriched in GO and KEGG analyses in the luteoloside
intervention group. Lpin1 was significantly downregulated,
and Acaca and Cyp7a1 were significantly upregulated. The
expression of Angptl4 was downregulated but the difference was
not statistically significant. Acetyl CoA carboxylase (ACACA) is
a key gene for de novo synthesis of fatty acids, downregulation
of its expression can deeply inhibit the biosynthesis of fatty
acids, and its expression is significantly increased in high-
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carbohydrate and high-fat diet rats (34). It plays an important
role in anti-obesity and improves the pathogenesis of NAFLD
by micronutrients or traditional Chinese medicine (35, 36).
Studies on the anti-obesity mechanism of naringin and its
glycoside showed that naringin can inhibit lipid accumulation
and TG content in 3T3-L1 cells by regulating some genes
related to lipid metabolism, including Acaca (37). The results
of our previous animal experimental study showed significant
differences in triglyceride metabolism-related enzyme activities
in the luteoloside intervention group, which may be related
to its regulation of gene expression including Acaca to reduce
triglyceride accumulation in hepatocytes. In addition, CYP7A1
overexpression in the luteoloside intervention group was
consistent with a significant increase in its enzymatic activity
in the liver tissue. Angiopoietin-like protein 4 (Angptl4) is a
key gene in the regulation of lipid and glucose metabolism
(38), and hyperlipidemia levels were significantly reduced in
Angptl4 knockout mice (39). The results of this study showed
that compared with the control group, the expression of Angptl4
in liver tissues was downregulated after luteoloside intervention,
but the difference was not statistically significant, indicating that
Angptl4 may not be a key gene in the mechanism of luteolin
lowering blood lipid.

The results of our previous in vivo studies showed that
both CF and its main components, luteolin and luteoloside,
have significant hypolipidemic and hepatic steatosis effects, but
CFs seem to have stronger antioxidant and lipid metabolism-
related enzyme activities, which may have better effects in
the long run (16). In fact, the results of this study indicate
that the hypolipidemic mechanism of CF is more complex,
involving various biological processes such as cholesterol, fatty
acid metabolism, and glycolysis. The hypolipidemic effect of
luteolin and luteoloside is mainly through the synthesis and
transport of cholesterol and the fatty acid metabolic pathway,
suggesting that there may be other major components involved
in the hypolipidemic mechanism of CF.

Conclusion

The mechanism of CF to improve hyperlipidemia is
very complex, mainly involving biological processes such as
cholesterol and fatty acid metabolism and glycolysis, including
41 differential genes such as Sqle, Gck, and Idi1. Luteolin
mainly involves the synthesis and transport of cholesterol, which
may include 68 differential genes such as Acsl3, Cyp7a1, and
Lpin1. Luteoloside mainly involves fatty acid metabolism, which
may include 51 differential genes such as Acaca, Cyp7a1, and
Lpin1. The functional pathways of CF and its main components,
luteolin and luteoloside, may not be completely the same,

and further study is needed on the mechanism of action of
other components.
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Since ancient times, the Cucurbitaceae family is used as a therapeutic option

in human medicine. This family has around 130 genera and 800 species.

Researchers have studied the various plants of this family including Lagenaria

siceraria due to their medicinal potential. Various properties are beneficial

for human health, that have been attributed to L. siceraria like antioxidant,

hypolipidemic, diuretic, laxative, hepatoprotective, analgesic, antihypertensive,

cardioprotective, central nervous system stimulant, anthelmintic, free radical

scavenging, immunosuppressive, and adaptogenic. The fruit of this plant is

commonly used as a vegetable that has a low-calorie value. The species

possess a diverse set of biological compounds like flavonoids, sterols, saponins,

and terpenoids. Vitamins, choline, flavonoids, minerals, proteins, terpenoids,

and other phytochemicals are also found in the edible parts of this plant.

Besides 17 di�erent amino acids, many minerals are reported to be present

in the seeds of L. siceraria. According to the USDA nutritional database

per 100g of L. siceraria contains 14 Kcal energy, 3.39 g carbohydrates,

0.62 g protein, 0.2 g fat, and 0.5 g fiber. L. siceraria performs a wide range

of pharmacological and physiological actions. The literature reviewed from

various sources including PubMed, Science Direct, Google scholar, etc. shows

the remarkable potential to treat various human and animal illnesses due to its’

potent bioactive chemicals. The key objective of this thorough analysis is to

present a summary of the data about the beneficial and harmful e�ects of L.

siceraria intake on human health, as well as in veterinary fields.

KEYWORDS

Lagenaria siceraria fruit, phytochemistry, pharmacology, nutritional potential,

pharmacological e�ect
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Introduction

There is an emergent concern about herbal medicines

across the world, which is complemented by more laboratory

research into the pharmacological characteristics of bioactive

substances and their capacity to cure various disorders.

Through ethnopharmacology and traditional medicine,

a slew of new medications has made their way onto the

worldwide market (1). For centuries, herbal treatments have

been used to cure and manage a variety of ailments. Herbal

medications are a viable alternative to current synthetic

treatments owing to their few adverse effects and are regarded

as safe and useful in the treatment of human ailments. The

Cucurbitaceae family includes the Lagenaria siceraria (Mol.)

Standley fruit (Bottle gourd), utilized in a separate system

of traditional medicine to cure numerous ailments (2). A

significant number of medicinally beneficial plants belong

to the Cucurbitaceae family. This family has around 130

genera and 800 species. Cucurbitacin, a secondary metabolite

found in the seeds and fruit sections of several cucurbits, has

been described to have purgative, emetic, and antihelmintic

actions. This category of chemicals had been considered

for its anti-inflammatory, hepatoprotective, cytotoxic, and

cardiovascular properties (3). Bottle gourd (L. siceraria), family

Cucurbitaceae is a medicinal plant whose diverse sections

had been identified for their therapeutic potential. The plant’s

fruiting body is well-liked for its taste and extraordinary

nutritional content, which includes practically all of the

needed ingredients for good health. The plant might provide

physiologically active polysaccharides (4). Being a domestic

plant, it is for both food and medicine. Cardioprotective,

antidepressant, anti-hyperglycemic, antimicrobial, cytotoxic,

anti-inflammatory, antihyperlipidemic, anti-urolithiasis,

antianxiety, analgesic, anticancer, diuretic, anthelmintic,

antihepatotoxic, anthelmintic, antistress, immunomodulatory,

antiulcer, hepatoprotective, and antioxidant activities have

been studied in various parts of this plant. To emphasize the

medicinal value of this plant, its phytochemical elements, and

traditional, pharmacological, and medicinal applications are

studied in this review. This would be beneficial in resurrecting

its relevance and highlighting its many potential qualities to

motivate academics to do more study on L. siceraria (2). The key

objective of this thorough analysis is to present a summary of

the data about the beneficial and harmful effects of L. siceraria

intake on human health, as well as in veterinary fields like the

poultry and livestock sector.

Botanical description

The L. siceraria (Molina) is a member of the Cucurbitaceae

family and is also called Bottle gourd. It is a climbing perennial

plant that is extensively grown as a vegetable crop in tropical

nations such as Thailand, Egypt, India, Japan, and the rest of

the world (1, 5). The fruits of Bottle gourd have a variety of

shapes: they can be huge and rounded, small and bottle-shaped,

or slim and serpentine, and they can grow to be over a meter

long. Rounder varieties are typically called calabash gourds.

The fruit diversity and phytogeographical distribution of L.

siceraria in Nigeria were studied and 24 different shapes of fruits

were explored as shown in Figure 1 (6).

The bottle gourd is said to have originated in Africa and

spread worldwide in pre-Columbian times, maybe via floating

on the oceans. It moved from India to Indonesia, New Zealand,

and China where it has diversified into several local kinds. It is a

robust annual vine with huge leaves and a lush look that may be

grown as a running or climbing vine (7) (Table 1).

Figure 2 shows different parts of Lagenaria siceraria (A),

fresh fruit (B), ripened fruit (C).

Vernacular names

Vernacular names of L. siceraria in different languages

across the world are given in Table 2.

Traditional uses

The fruit is extensively used as a medicinal vegetable

in Asia and Africa for a variety of ailments. Alternative

medicine is made from several components of this plant,

including the fruit, seed, leaf, and root (9). In Ayurveda and

other folk remedies, the plant’s fruits had been noted to have

possible therapeutic benefits. Traditional uses of the fruit

include cardioprotective, antidote, aphrodisiac, cardiotonic,

diuretic, and general tonic properties (5). The fruit juice

had been a cure for jaundice and heal other liver ailments

as it possessed good anti-oxidants (10). Various properties

that are beneficial for human health have been attributed to

this plant like antioxidant, hypolipidemic, diuretic, laxative,

hepatoprotective, analgesic, antihypertensive, cardioprotective,

central nervous system stimulant, anthelmintic, free radical

scavenging, immunosuppressive, and adaptogenic (11). Anti-

HIV, antipyretic, anthelmintic, anxiolytic, carminative,

anti-diabetic, antibacterial, antioxidant, laxative, anti-

tuberculosis, anti-diarrhoeal, and purgative are only a few

of the therapeutic qualities of the Cucurbitaceae family. It’s also

used as a contraceptive, diuretic, and cardiotonic agent. Anti-

inflammatory, antitussive, cytotoxic, and expectorant activities

are also present (3). The diuretic efficacy of methanol and

vacuum dried juice extract of the fruits had been studied. Albino

rats had a larger urine volume when compared with the control

group. Both of the extracts displayed a dose-dependent rise in

electrolyte excretion (12). The plant species aids in improved

digestion eliminates urinary difficulties, and aids in weight loss

and blood pressure-lowering (13). For the treatment of illnesses
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FIGURE 1

Di�erent shapes of Lagenaria siceraria found across the world (6).

TABLE 1 Botanical description of various parts of Lagenaria siceraria

(7).

Botanical description

Vine Branched and climbs along the stem

Leaves 15 inches wide, circular, smooth margins, broad lobes,

velvety texture

Foliage Covered with soft hairs and on crushing gives a foul musky

odor

Flowers Borne singly on the axils of the leaves, white and attractive, 4

inches in diameter, spreading petals

Seeds Brownish, rectangular in shape, have grooved notches near

the end

and disorders in humans, L. siceraria has been utilized in several

systems of traditional medicine. This vegetable has high water

content and a low-calorie count. The seeds are also utilized for

headaches and constipation since they have a cooling impact on

the body (8).

After drying the fruit is used as resonance boxes for the

kora and balafon (xylophone). Drinking water, milk, liquor,

local wine, oatmeal, food grains, animal fat, honey, tobacco,

ghee, salt, perfume, medicinal herbs, and crop seeds are all

stored and transported in dried bottle gourd fruits. Beehives,

beer-making containers, or storing clothing and cutlery are all

created from dried fruit shells. Many musical instruments and

beautiful decorations are made from dried bottle gourds (14).

The climber’s medicinal abilities have been used to cure a variety

of disorders, including jaundice, ulcers, colitis, diabetes, insanity,

skin problems hypertension, piles, and congestive cardiac failure

(CCF). The fruit pulp has cooling, diuretic, antibilious, and

pectoral qualities, and is used as an emetic and purgative.

This pulp boiled in oil is used in treating rheumatism and

sleeplessness (15).

Traditional uses of various parts of L. siceraria are given in

Table 3 (16).

Phytochemistry

Ascorbic acid, triterpenes, minerals, choline,

amino acids, vitamin-B complex, triterpenoid

cucurbitacins B, D, H, G, 22-deoxy cucurbitacin,

β-glycosidedase-elasterase, flavonoids, sterols, and

carbohydrates are all found in the edible part of the

fruit (5).

Cucurbitacins B, H, G, and D, as well as the bitter principle

of the Cucurbitaceae, are said to be present in the fruit along

with Flavone-C glycosides (a ribosome-inactivating protein),

two sterols, i.e., fucosterol and campesterol, terpene byonolic

acid (an allergic compound) and Lagenin (1).

Figures 3, 4 shows the phytochemicals of Lagenaria siceraria.

The extract has carbohydrates, saponins, proteins,

flavonoids, and glycosides as shown by the phytochemical test

(17). This vegetable has high water content and a low-calorie

value. Vitamins, choline, flavonoids, minerals, proteins,

terpenoids, and other phytochemicals are found in the edible

section. L. siceraria contains a variety of bioactive chemicals,

including flavones, sterols, cucurbitacins, C-glycosides,

triterpenoids, and -glycosides (2).

Table 4 shows phytochemicals and their functions present in

different parts of Lagenaria siceraria.
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FIGURE 2

Various parts of Lagenaria siceraria (A), fresh fruit of LS (B), ripened fruit of LS (C).

TABLE 2 Vernacular names of Lagenaria siceraria (8).

Language Names

Sanskrit Katutumbi, Tumbi Ishavaaku, Tiktaalaabu, Alobu, Alaabu

Bengal Loki, Laus, tumbi

English Bottle gourd

Malayalam Churan, Tumburini, Choraikka, Tumburu, Piccura,

Chorakka, cura

Kannada Isugumbala, Tumbi

Hindi Lauki, Ghiya

Gujarati Dudi, Tumbadi

Telugu Sorakaya, Anapakaya

Urdu Ghiya, Lauki, Kadu

Tamil Sorakkai, Surai, Sorakkai

Marathi Phopla

Punjabi Tumbi, Dani

Nutritional profile

Seeds contained 45.0–47.8 g/100 g crude fat, 8.1–7.3 g/100 g

carbohydrates, 37.2–35.0 g/100 g crude protein, and 4.0 g/100 g

moisture (25).

Nutrients

The nutrient composition of L. siceraria (fruit and seeds) is

given in Table 5.

TABLE 3 Traditional uses of di�erent parts of Lagenaria siceraria (16).

Plant part Traditional use

Fruit pulp Emetic, purgative, cooling, antibilious, sedative, diuretic

Flowers Poison antidote

Stem bark and rind Diuretic

Leaf juice Hair growth, tooth decay, heart diseases, urinary disorders,

jaundice, digestive disorders, constipation, diabetes, and

cooling effect.

Seed Vermifuge

Leaves Purgative

The USDA (United States Department of

Agriculture) nutritional database exhibited that each

100 g of L. siceraria has 14 Kcal energy, 3.39 g

carbohydrates, 0.62 g protein, 0.2 g fat, and 0.5 g

fiber (27).

Minerals

Calcium, Potassium, Magnesium, Lead, Iron, Sodium,

Zinc, and chromium were found in the seeds of L.

siceraria fruit (26). Furthermore, Phosphorus, Copper,

Manganese, and Cobalt were also reported in this

plant (28).

Table 6 shows numerous minerals present in L. siceraria.
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FIGURE 3

Some of the structures of di�erent bioactive chemicals present in Lagenaria siceraria.

Amino acids

Seventeen amino acids lysine, methionine, threonine,

proline, cysteine, glutamic acid, phenylalanine, arginine,

tyrosine, histidine, valine, serine with glutamic acid,

alanine, leucine, isoleucine, aspartic acid, glycine,

leucine, and aspartic acid were found in seeds of

L. siceraria (28).

Health e�ects of L. siceraria

Anti-inflammatory properties

In rats and mice, L. siceraria’s ethanolic extract (fruit

and leaves) was tested for anti-inflammatory and analgesic

properties. Carrageenan-induced edema, tail immersion pain,

and acetic acid-induced writhing models were used to

investigate the extract’s activity. On the writhing test, the
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FIGURE 4

The action mechanism of various phytochemicals.

TABLE 4 Phytochemicals and their functions present in di�erent parts of Lagenaria siceraria.

Phytochemical Present in Function References

Cucurbitacins H, D, B, G fucosterol and campesterol (Two sterols)

Flavone-C glycosides

Fruit Antimicrobial

Antidiarrhoeal

(1, 18, 19)

Flavonoids, carbohydrates, proteins, glycosides, and saponins Plant extract (17)

Glucose and fructose and traces of sucrose Whole fruit (20)

Ascorbic acid, minerals, vitamin-B complex, β-carotene, choline, amino acids, 22-deoxy

cucurbitacin, triterpenoid, cucurbitacins B, D, G, H, flavonoids, β-glycosidedase-elasterase,

sterols, and carbohydrates, C-glycosides, triterpenes, and β-glycosides.

Fruit Antimicrobial

Antidiarrheal

(2, 5, 19)

Flavonoids, triterpenoid, sterols, β sitosterol, campesterol, isoquercitrin, and kaempferol Methanolic extract Antimicrobial

Antidiarrhoeal

Antihyperlipidemic

(19, 21, 22)

Triterpenoids (22- Deoxocucurbitacin D and 22- Deoxoisocucurbitacin D) Fruit Antimicrobial

Antidiarrheal

(23, 24)

extract exhibited strong anti-inflammatory and analgesic

potential. The extract comprises flavonoids, carbohydrates,

proteins, glycosides, and saponins, according to a phytochemical

analysis (17).

Anti-oxidant properties

The aqueous extract of L. siceraria has a strong scavenging

action, and the high phenolic content of calabash fruit may help
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to alleviate the oxidative stress associated with diabetes (29).

Antioxidant activity is recognized for phenolics and flavonoids,

which have a remarkable capacity to scavenge free radicals

created in human bodies. As a result, determining the number

of phenolics and flavonoids in a plant sample can help determine

its antioxidant capacity. The antioxidant capacity of the pedicles

of L. siceraria fruits was investigated in vitro. The ethyl acetate

fraction even at low concentrations showed the most effective

DPPH radical scavenger (30). In vitro, a methanol extract of the

aerial section of L. siceraria was reported to scavenge DPPH,

hydrogen peroxide, superoxide radical, and nitric oxide as well

as prevent lipid peroxidation in a concentration-dependent

way. The antioxidant action of MELS (methanol extract of L.

siceraria aerial parts) was attributed to its high phenolic and

flavonoid content (31). In vitro experiments such as the reducing

power assay, radical scavenging assay, superoxide scavenging

assay, lipid peroxidation inhibition assay, and the ethyl acetate

extract of bottle gourd were shown to exhibit high antioxidant

activity. The quantity of phenolic compounds found in bottle

gourd extracts is proportional to their radical scavenging action

(32). In an isolated rat heart model, the extract’s antioxidant

capacity wasmeasured in terms of glutathione peroxidase (GPx),

catalase (CAT), superoxide dismutase (SOD), vitamin C (Vit

C), glutathione reductase (GR), reduced glutathione (GSH),

vitamin E (Vit E), and glutathione S-transferase (GST). The

activities of enzyme antioxidants such as CAT, GSH, GR, and

SOD were significantly reduced in isoproterenol-induced rats.

It may be determined that L. siceraria’s ethanolic extract has

antioxidant effects (33). Extraction of seeds with ethanol resulted

in a significant number of phytochemicals and antioxidant

activity. All of these phytochemicals are powerful reducing

agents, metal chelators, and radical scavengers, and they may

be to blame for the seeds’ high antioxidant activity. The

methanolic extract of seeds showed good DPPH and radical

scavenging capabilities in antioxidant tests (34). In human

patients with dyslipidemia, the effects of L. siceraria fruit extract

were investigated. The antioxidant potential of L. siceraria fruit

extract was demonstrated in dyslipidemic patients by increases

in Superoxide dismutase and Glutathione levels (35).

Anti-cancer properties

The study aimed to see the effect of methanol extract of

L. siceraria aerial parts on anti-cancer properties. In mice,

Ehrlich’s Ascites Carcinoma model. The effect of medication

response was assessed using the research of tumor growth

response, which included an increase in life duration, a study

of hematological parameters, biochemical estimates, and a

liver tissue antioxidant assay. The cytotoxicity and antioxidant

capabilities of L. siceraria, as well as the flavonoid content of the

methanol extract of L. siceraria aerial parts, demonstrated that

L. siceraria has strong anticancer activity (36). The antitumor

TABLE 5 Proximate analysis of fruit and seeds of Lagenaria siceraria

(11, 26).

Nutrients Fruit (in 100 g of edible

portion)

Seeds (%)

Proximate composition

Carbohydrate 2.5 g 45.93

Protein 0.2 g 8.93

Fat 1.0 g 38.92

Fiber 0.6 g

Energy 12 calorie

Mineral 0.5 g 3.5

Moisture 96.1 g 2.72

TABLE 6 Mineral composition of Lagenaria siceraria (USDA nutritional

database).

Mineral Value in mg

Sodium 2

Potassium 150

Magnesium 11

Copper 0.034

Phosphorus 13

Calcium 26

Manganese 0.089

Iron 0.20

Selenium 0.2

Zinc 0.70

effectiveness of L. siceraria fruit was investigated using human

cancer cell lines (MCF-7 and HT-29). With varied potency

and selectivity, the bitter component of L. siceraria displayed

substantial anticancer action against both cancer cell lines.

Cucurbitacin I and other bioactive compounds in L. siceraria

fruit bitter extracts had dose-dependent inhibitory and cytotoxic

effects on tested cell lines, which can be ascribed to the presence

of cucurbitacin I and other bioactive compounds in L. siceraria

fruit bitter extracts (34). A methanolic extract of L. siceraria

Standley Fruit was tested for anti-mutagenic properties. The

anti-mutagenicity of plant extracts ranged from low to high.

The Ames test was employed in this investigation to assess the

antimutagenic activity of direct (Sodium azide) acting mutagens

in Salmonella typhimurium strains TA98 and TA100. The study

found that the TA98 and TA100 strains have considerable

antimutagenicity against mutagen. The antimutagenicity of

the extract discovered in this investigation suggests that L.

siceraria Standley Fruit has chemopreventive pharmacological

relevance, which is attributable to its anti-oxidant potential

(37). In Swiss albino mice, the chemopreventive efficacy of

bottle gourd juice (BGJ) against cutaneous papilloma genesis
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was investigated. The chemopreventive properties of bottle

gourd against skin cancer were demonstrated by a reduction

in papilloma number, multiplicity, incidence, latency, volume,

and papilloma size, as well as histological examinations. The

presence of phytochemicals working through several pathways

might be responsible for the protective benefits (38, 39). On

lung cancer cell lines, the cytotoxic effects of plant fruit extract

were investigated. According to the findings, the presence of

cucurbitacin, polysaccharide inhibitor lagenin, and flavonoids in

this plant’s extract had a significant growth inhibitory influence

on the lung cancer cell line (40). Immune-potentiating action

is induced by the latex sap of dietary L. siceraria (LSL), which

has high lectin activity. In both in vitro and in vivo tumor

models, LSL inhibits tumor cell growth. Through changed gene

expression, it suppresses tumor growth by targeting apoptosis

and tumoral neovasculature. Its possible mechanism of action is

given in Figure 5 (41).

Anti-obesity properties

Some fatty acid esters were found in the chloroform

fraction of L. siceraria, including isopropyl palmitate, 9,12-

octadecadienoic acid methyl ester, hexadecanoic acid methyl

ester, and alpha-linolenic acid methyl ester. L. siceraria’s ability

to decrease pancreatic lipase activity, reducing lipid breakdown

and hence lowering fat entrance into the body, is due to these

chemicals. Regular consumption of the fruit’s aqueous decoction

may therefore be suggested for weight loss. Fatty acids and their

esters acted as lipase inhibitors (42). In high-fat diet-generated

obese mice, the synergistic impact of Commiphora Mukul (Gum

Resin) with L. siceraria (fruit) extracts was examined. After

the combined treatment, there was a substantial reduction in

body weight, triglyceride, VLDL levels, fasting blood glucose,

LDL, and serum cholesterol, as well as an increase in HDL

levels. The results showed that combining C. Mukul and L.

siceraria reduced obesity caused by a high-fat diet (43). The

effects of L. siceraria fruit extract on human disease patients

were investigated. There were significant decreases in body

mass index (35). Obesity in Wistar albino rats was created

by feeding them a high-fat diet and were treated with a diet

containing L. siceraria, there was a significant reduction in

body weight, locomotor activity, total cholesterol, food intake,

triglycerides, organ weights, and an increase in low and high-

density lipoprotein levels, indicating that L. siceraria has anti-

obesity potential. The aqueous extract included numerous

chemical ingredients such as saponins, pectin, and ellagic

acid, which are essential for decreasing body weight and

cholesterol levels, according to the preliminary phytochemical

assessment of LS and TA. The LS fruits are high in saponins,

cucurbitacins B, G, D, H, triterpenoid, and pectin, which

showed lipid-lowering properties (44, 45). Different bottle

gourd extracts were tested for their antihyperlipidemic and

hypolipidemic properties in Triton-induced hyperlipidemic rats,

as well as their hypolipidemic effects in normocholesterolemic

rats. The extracts lowered total cholesterol, triglycerides, and

low-density lipoproteins levels in a dose-dependent manner,

while dramatically increasing high-density lipoproteins levels.

The effects of petroleum ether extract were not significant.

When compared to the others, the chloroform and alcoholic

extracts had more substantial impacts on triglycerides, total

cholesterol, and low-density lipoproteins, as well as an increase

in HDL (46). The antihyperlipidemic activity of a methanolic

extract of L. siceraria fruits (LSFE) was tested in high-fat-

diet-induced hyperlipidemic rats. When compared to rats fed

a high-fat diet, the gain in weight in rats given LSFE was

smaller. Furthermore, LSFE caused a considerable increase

in bile acid excretion. It may work by affecting endogenous

cholesterol production in the liver and boosting cholesterol

end product excretion. The LSFE included flavonoids, saponins

and steroids, and polyphenolics, according to preliminary

phytochemical screening. Plant saponins and steroids have been

shown in several investigations to have hypolipidemic and

antihyperlipidemic properties (47). The juice of L. siceraria

(Bottle gourd) includes all of the active components that inhibit

fat storage in adipose tissue. The anti-obesity activity of L.

siceraria (Bottle gourd) juice has been tested in overweight and

obese human individuals.Weight, waist circumference, and BMI

all decreased significantly in those who consumed Bottle gourd

juice, indicating it is a safe and effective treatment option for

obese people (48).

Immunity boosting properties

The immunomodulatory impact of a methanolic extract

of L. siceraria fruits in rats was investigated. The different

fractions of L. siceraria were given orally at dosages of

100, 200, and 500 mg/kg to rats resulting in a great

reduction in the delayed-type hypersensitivity reaction.

Both primary and secondary antibody titers increased

in a dose-dependent manner. Fractions also enhanced

the number of white blood cells and lymphocytes. The

findings show that test fractions have immunomodulatory

potential (49).

Anti-diabetes properties

In vitro, the aqueous fraction of L. siceraria fruit pedicles

has significant alpha-amylase inhibitory activity. This exercise

is employed as a blood glucose management method. The

conversion of starch to glucose is slowed when pancreatic alpha-

amylase is blocked in the small intestine. As a result, less

glucose is generated and enters the bloodstream, allowing it

to be employed as an anti-diabetic drug (30). Supplementing
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FIGURE 5

Anti-cancerous mechanism of action of Lagenaria siceraria (41).

MELS enhanced lipid metabolism and functions as a preventive

mechanism against the formation of atherosclerosis in diabetic

rats, as well as reducing diabetic sequelae from lipid peroxidation

by boosting antioxidant status. As a consequence, the aerial

sections of L. siceraria methanol extract can be considered

a rich source of anti-diabetic medicines, possibly due to the

extract’s flavonoid and polyphenolic content (50). The pulp

and seed extracts of L. siceraria induced alterations in the

functional status of pancreatic cells. In rats with alloxan-induced

diabetes, the capacity of the organism to generate and release

insulin rose at the same time as the glucose level in the blood

declined. The pulp and seed extract of L. siceraria were shown

to have considerable anti-diabetic action (51). The oral glucose

tolerance test was used to assess the hypoglycemic qualities

of different globulins extracted from male Wistar rats, and

it revealed that L. siceraria seeds contained globulins with

high anti-hyperglycemic activity. In the profile, there was a

prominent protein band with a molecular weight of 24.61

kDa that had considerable anti-hyperglycemic action. This

specific protein, if present, is most likely the active peptide

responsible for the observed activity (52). In human patients

with dyslipidemia, the effects of L. siceraria fruit extract were

investigated. Fasting blood glucose levels were found to be

significantly lower (35). Various in-vitro approaches, such as

amylolysis kinetics, and glucose adsorption diffusion capacity,

were used to assess the hypoglycemic efficacy of the phyto-

material extracts. The suppression of an enzyme (alpha-amylase)

by L. siceraria, which restricts starch to glucose conversion,

was blamed for the slowing of glucose diffusion. The extracts

of L. siceraria have been shown to have hypoglycemic action

in several in-vitro tests and might be employed as therapeutic

agents in the treatment of diabetes (53). The presence of

bioactive molecules and amylase and glucosidase inhibitors,

and cholinergic esterase enzymes in ethanol and methanol seed

extracts of L. siceraria might explain the excellent antidiabetic

action found (34).

Cardio-protective properties

Ethanolic extract has a cardioprotective effect. The

antioxidant function of L. siceraria (Mol) fruits is

most likely due to its capacity to combat free radicals,

or its ability to maintain the near-normal activity

of free radical enzymes, which protect the cardiac

membrane from oxidative damage by lowering lipid

peroxidation (33).

Modern pharmacological research has revealed that the fruit

of L. siceraria has a variety of cardioprotective characteristics.

In rats with triton-induced hyperlipidemia, chloroform, and

alcoholic extracts of L. siceraria revealed antihyperlipidemic

potential. In Doxorubicin and Isoproterenol-induced

cardiotoxicity in rats, the fruit demonstrated strong

cardioprotective benefits (5). The goal of the study was to

see if L. siceraria (LS) fruit powder might protect rats against the

cardiotoxicity of the drug doxorubicin (Dox). The LS-treated

group was shown to be protected from doxorubicin-induced

cardiac damage in histopathological analysis. It was discovered

that L. siceraria had a cardioprotective effect in rats when

they were exposed to doxorubicin-induced cardiotoxicity

(54). The lack of cardiac necrosis and inflammation in

the L. siceraria-treated group showed that the plant had

cardioprotective properties. The antioxidants orientin and

isoorentin found in L. siceraria fruit powder appear to help

prevent cardiac necrosis and inflammation. As a result, it may

be inferred that LS fruit has cardioprotective properties (55).

By preserving endogenous antioxidants and reducing lipid

peroxidation in the rat heart, L. siceraria (Cucurbitaceous)

Fruit Juice reduced Doxorubicin-induced cardiotoxicity and

lowered myocardial damage (56). In isoproterenol-induced

myocardial infarction, the cardioprotective benefits of L.

siceraria fruit juice were investigated. The results show that L.

siceraria fruit juice has a cardioprotective effect in rats with

isoproterenol-induced myocardial infarction. The presence
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of polyphenolic components in LS fruit may be responsible

for these effects (57). Isoprenaline-induced tachycardia was

decreased when L. siceraria fruit powder was given. Isoprenaline

cardiotoxic impact was reduced in LS-pretreated mice.

The cardioprotective effect of LS in isoprenaline-induced

cardiotoxicity appears to be aided by its antioxidant and

anti-inflammatory properties (58).

Gastro-protective properties

The anti-ulcer efficacy of a methanolic extract of L. siceraria

fruits was examined inWistar rats using pylorus ligation, Asprin,

cold-restraint stress, and ethanol ulcer models. MELS reduced

stomach volume, free acidity, ulcer index, and total acidity

significantly, indicating that L. siceraria fruit extract may have

anti-ulcer action (59). L. siceraria showed an increase in Gastric

juice pH, whereas decreased in Total acidity, Gastric content,

and Gastric juice volume. As a result of histological assessment

investigations, it was shown that L. siceraria is both safe and

effective in the treatment of stomach ulcers (60).

Hepato-protective properties

Based on improvements in serum marker enzyme levels,

antioxidant parameters, and histological investigations,

ethanolic extract of L. siceraria fruit is said to have a high

hepatoprotective and antioxidant effect in antitubercular drugs

induced hepatotoxicity (61).

L. siceraria has been shown to prevent the elevation

of hepatic enzymes caused by long-term carbamazepine

administration in rabbits, as well as liver tissue histology

showing no necrosis or cholestasis. Thus, it is concluded

that L. siceraria has a hepatoprotective effect and reduces

the hepatotoxicity caused by carbamazepine (62). On rats,

the hepatoprotective efficacy of L. siceraria fruit extracts

was evaluated against carbon tetrachloride (CCl4)-induced

hepatotoxicity. The toxic effect of CCl4 was dramatically

reduced in L. siceraria ethanol extract-treated rats by restoring

serum bilirubin, protein, and enzyme levels. The existence of

normal hepatic cords, lack of necrosis, and fatty infiltration

in the liver sections of the animals treated with the extracts

further demonstrated the hepatoprotective potential (63). In

paracetamol-induced hepatotoxicity in rats, the presence of

phenolic components in ethanol extract of L. siceraria fruit

protected against oxidative damage and liver necrosis (10).

Other pharmacological e�ects

L. siceraria (Molina) Standl. is a traditional medicinal as well

as a portion of vegetable food. Immunomodulatory, antioxidant,

hepatoprotective, anti-stress, cardioprotective, adaptogenic,

anti-inflammatory, antihyperlipidemic, and analgesic activities

have all been described. Lagenin (20 kDa), a new protein

isolated from seeds, has been shown to have anticancer, antiviral,

antiproliferative, and anti-HIV properties (64). Antioxidant,

antihypertensive, hepatoprotective, cardioprotective, laxative,

diuretic, central nervous system stimulant, adaptogenic,

immunosuppressive, hypolipidemic, analgesic, anthelmintic,

and free radical scavenging properties have also been proposed

for the plant. This pulp boiled in oil is used in treating

rheumatism and sleeplessness (16). Polysaccharides extracted

from various portions of the plant have been found to

have immune-modulating, anti-inflammatory, anti-tumor,

cardioprotective, antioxidant, hepatoprotective, anti-diabetic,

anti-hyperlipidemic, and analgesic activities in the last three

decades. Several polysaccharides isolated from diverse sections

of L. siceraria have been proposed with a variety of structures.

Apart from its various bioactive qualities, this plant has the

capacity to detoxify soil from heavy metals through the process

of bioremediation (4). Antianxiety, antihyperlipidemic, diuretic,

cytotoxic, cardioprotective, anti-inflammatory, antiulcer,

analgesic, anticancer, antimicrobial, antidepressant, anti-

hyperglycemic, anthelmintic, anti-urolithiatic, hepatoprotective,

anthelmintic, immunomodulatory, antistress, and antioxidant

activities have been studied in various parts of this plant (fruit,

leaves, flowers, and roots) (2). Antimicrobial activity of L.

siceraria extracts against Enterococcus faecalis, Salmonella

typhi, Staphylococcus aureus, Klebsiella pneumonia, E. coli, and

antifungal strains (Aspergillus flavus, Trichoderma harzianum,

and Aspergillus oryzae) was moderate to strong (65). Fruits of

L. siceraria have the ability to promote bile salt excretion, and

their supplementation lowered fat levels in rats over time (47).

Avinash et al. (66) described the antiulcer effect of L. siceraria.

Long-term administration of L. siceraria fruit powder was done

in dexamethasone-induced rats. According to the findings,

hypertension activity in rats has decreased (58). L. siceraria

crude methanol extract has antihelmintic efficacy against the

Indian earthworm Pheretima posthuma. As a result, the leaves

of L. siceraria are thought to have significant anthelmintic

action (32). Adedapo et al. (67) explored the effects of the leaf

extract on carrageenan- and histamine-induced paw edema

in rats with swollen paws. In addition, the authors used mice

to conduct acetic acid writhing and formalin tests. In rats,

the scientists found a substantial reduction in paw edema,

licking duration, and frequency. It has antihyperlipidemic,

cardioprotective, hepatoprotective, diuretic, antidiabetic, and

antihyperlipidemic effects (8). Antioxidant, antimicrobial,

central nervous system activity, bronchospasm protective,

antihyperglycemic, antidiarrheal activity, hepatoprotective

activity, analgesic, antihelmintic activity, anti-inflammatory

activity, cardioprotective effects, cytotoxic, antidiabetic,

anticancer, antihyperlipidemic activity, immunomodulatory

effect, and diuretic activity were discovered in the plant (68).
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The analgesic efficacy of methanolic and aqueous extracts of

the fruit was investigated using the tail immersion method in

rats to provide scientific validity to the folkloric medicinal usage

of L. siceraria. The methanolic extract has a moderate activity,

whereas the aqueous extract has a high activity, according

to the pain threshold test. This backs up the plant’s historic

usage in painful and inflammatory illnesses (69). Zinc oxide

nanoparticles made from L. siceraria extract were reported for

antimicrobial, anti-dandruff, and anti-arthritic properties (70).

Various extracts from the leaves and stems of L. siceraria

were tested for their ability to repel the Culex pipiens L.

mosquito, and it was concluded that these extracts could be

developed as commercial products as an effective protection

measure against mosquito bites, and thus control infections

transmitted by a mosquito (71). The activity of L. siceraria leaves

aqueous extract and silver nanoparticles (AgNPs) produced by L.

siceraria against immature stages of C. pipiens and A. phronesis

was examined. For 24 h, immature stages of both mosquito

species were exposed to 400, 300, 200, 100, and 50 ppm aqueous

extract of L. siceraria leaves and 5, 10, 20, 30, and 40 ppm L.

siceraria generated AgNPs. The results exhibited that, AgNPs

generated by L. siceraria were more harmful to mosquito species

examined than the aqueous extract of L. siceraria leaves (72).

The effect of manufactured zinc oxide nanoparticles (ZnO NPs)

made from zinc nitrate and aqueous peel extract of L. siceraria on

malaria prevention was investigated. The extract of L. siceraria

and its mediated ZnONPs were tested on An. stephensi III instar

larvae. The influence of the ZnO NPs-based therapy on the

histology and morphology of mosquito larvae was also studied.

Poecilia reticulata (P. reticulata) had a 44% predation efficiency

againstAn. Stephensi larvae in a normal laboratory environment,

but 45.8 and 61.13% predation efficiency against An. Stephensi

larvae in aqueous L. siceraria extract and its mediated ZnO NPs

contaminated environment, respectively. ZnO NPs produced

by L. siceraria were tested against Plasmodium falciparum CQ-

sensitive strains.With an IC50 value of 62.5 g/mL, the L. siceraria

extract and its induced ZnO NPs displayed cytotoxic effects

against HeLa cell lines. According to the findings, L. siceraria

peel extract and L. siceraria-produced ZnO NPs are viable green

choices for fighting malarial vectors and parasites (73). Figure 6

shows the mechanism of ZnO NPs on Plasmodium falciparum.

Using a forced swim (behavior despair) paradigm, the

antidepressant effect of methanolic extract of L. siceraria fruits in

rats was assessed. The extract was given orally at dosages of 50,

100, and 200 mg/kg. The extract has antidepressant properties

that are dosage dependent. The occurrence of triterpenoids,

flavonoids, sterols, and saponins may be responsible for the

action (23).

L. siceraria (LS) fruit juice has been used to treat jaundice

and certain liver problems (10). The fruit is used to treat

pain, ulcers, and fevers, as well as chest cough, asthma,

and other bronchial problems, particularly in the form

of a syrup made from sensitive fruits (1). Antioxidant,

cardioprotective, hypolipidemic, diuretic, antihypertensive,

hepatoprotective, analgesic, anthelmintic, free radical

scavenging, immunosuppressive, central nervous system

stimulant, laxative, and adaptogenic properties have also been

proposed for the plant (11). Anti-inflammatory, antitussive,

cytotoxic, and expectorant activities are also present in the

plant (3). The plant species aids in improved digestion

eliminates urinary difficulties, and aids in weight loss and

blood pressure lowering (13). The seeds are used to treat

headaches and constipation because they have a cooling

impact on the body (8). The plant has long been renowned

for its medicinal virtues, and it has been used to cure a

variety of disorders, including diabetes, hypertension, ulcers,

insanity, piles, jaundice, colitis, and skin infections. Its

fruit pulp has cooling, diuretic, antibilious, and pectoral

qualities, and is used as an emetic and purgative. This

pulp is boiled in oil and used to treat rheumatism and

sleeplessness (15).

The effect of L. siceraria on multiple systems of the human

body is shown in Figure 7.

Uses in poultry and veterinary

Medicinal plants are very popular to improve the health

and productivity of farm animals (67–69). The in vitro

anthelmintic activity of crude aqueous methanolic extract

(CAME) of L. siceraria against Haemonchus (H.) contortus

and their eggs was evaluated using an adult motility assay

and an egg hatch test. The in vivo anthelmintic activity

of various dosages of crude powder (CP) and CAME in

sheep naturally infected with gastrointestinal helminths was

investigated using the fecal egg count reduction assay. CAME

has significant antihelmintic action in vitro and inhibited the

hatching of H. contortus eggs (71). In sheep infected with

Moniezia and Avitellina species, the anticestodal action of L.

siceraria seeds was examined. The powdered seeds, as well as

their extracts in water and methanol, were administered orally

at various doses. On the 15th day following administration,

the medication powder induced a decrease in egg per gram

counts (23). The purpose of the study was to develop low-

salt, high-fiber, and low-fat functional chicken nuggets by

substituting bottle gourd for sodium chloride and observing

the effects on physicochemical parameters textural, color

values, lipid, and sensory properties of pre-standardized low-

fat chicken nuggets. The results of this investigation revealed

that substituting bottle gourd for sodium chloride has a

substantial impact on a variety of product quality parameters.

Salt substitution, on the other hand, did not affect sensory

qualities. Excluding the taste and quality ratings, which were

impacted at greater levels, the sensory qualities of low-salt,

low-fat chicken nuggets with bottle gourd were equivalent to

the Control. With the addition of bottle gourd, the dietary
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FIGURE 6

Schematic representation of the mechanism of ZnO NPs (nano-particles from LS) on Plasmodium falciparum (73).

FIGURE 7

Systemic e�ects of Lagenaria siceraria.

fiber content of the goods may be increased, while the total

cholesterol level can be reduced. As a result, using this technique,

extremely palatable low-fat, low-salt, and high-fiber functional

chicken nuggets may be developed without sacrificing their

acceptability (74).

Toxicity assessment

L. siceraria is found to cause problems in the upper

gastrointestinal system. The consumption of L. siceraria causes

nausea, vomiting, gastrointestinal bleeding, abdominal pain,
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and hematemesis (20). It is also said to cause gastrointestinal

toxicity along with gastric erosion (first stage of ulcer) and ulcers

(21, 22). This toxicity may be attributed to the presence of

triterpenoid cucurbitacins (24). This data is based on clinical

data but no dose of toxicity has been mentioned. Recently,

it has come to light that drinking bottle gourd juice with a

bitter flavor, can have extremely hazardous responses and result

in symptoms like abdominal discomfort, vomiting, diarrhea,

shock, and death (75).

A little number of cucurbitacins, specifically the types

including B, D, G, and H, are present in bottle gourd

fruit. Cucurbitacin concentrations often don’t go above 130

ppm (76). The binding of cortisol to glucosteroid receptor

is inhibited by Cucurbitacins in He La cells at 37◦C which

depicts a strong correlation with cytotoxic activity (77). The

capillary permeability is enhanced by Cucurbitacin D (78)

which is associated with a persistent fall in blood pressure and

accumulation of fluid in thoracic and abdominal cavities inmice.

Conclusion and future perspective

The present review gives a thorough insight into L.

siceraria phytochemistry along with pharmacology, beneficial

effects, medicinal uses, and limitations that suggest its’

therapeutic potential. The L. siceraria has various critical health-

promoting benefits such as neurological, physiological, and

blood biochemical changes. Though themechanism of action for

phytochemicals may differ among various species and is not fully

understood, therefore, need to be exploited. Further research is

also warranted to uncover and record relevant markers (bio and

molecular) that are responsible for a wide range of L. siceraria

health benefits in humans, animals, and poultry.
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Zhufeng Cong2, Peng Gao1* and Xiaonan Liu3*
1College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan,
Shandong, China, 2Shandong Provincial Institute of Cancer Prevention and Treatmen, Jinan,
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Syzygium aromaticum is an aromatic plant native to Indonesia, and introduced

to tropical regions worldwide. As an ingredient in perfumes, lotions, and food

preservation, it is widely used in the food and cosmetic industries. Also, it is

used to treat toothache, ulcers, type 2 diabetes, etc. A variety of nutrients such

as amino acids, proteins, fatty acids, and vitamins are found in S. aromaticum.

In addition to eugenol, isoeugenol, eugenol acetate, β-caryophyllene and α-

humulene are the main chemical constituents. The chemical constituents

of S. aromaticum exhibit a wide range of bioactivities, such as antioxidant,

antitumor, hypoglycemic, immunomodulatory, analgesic, neuroprotective,

anti-obesity, antiulcer, etc. This review aims to comprehend the information

on its taxonomy and botany, nutritional composition, chemical composition,

bioactivities and their mechanisms, toxicity, and potential applications. This

review will be a comprehensive scientific resource for those interested in

pursuing further research to explore its value in food.

KEYWORDS

Syzygium aromaticum, medicinal food, nutritional composition, phytochemistry,
bioactivities, applications

Introduction

Spices are considered to be one of the earliest recorded functional foods, with
international trade in spices dating back as far as 4500–1900 B.C. They are usually
aromatic, dried plant parts obtained from seeds, fruits, leaves, roots, and bark (1). More
than 100 species of plants are currently used worldwide as spices and flavorings that play

Abbreviations: CEO, clove essential oil; CE, clove extract; ECE, clove ethanol extract; ACE, the
aqueous extract of clove; ChNPs, chitosan nanoparticles.
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an important role in cooking, health care, and preserving (2). In
addition, spices serve as a rich reservoir of bioactive compounds
and also have antioxidant, antibacterial, anti-inflammatory,
antidiabetic, and anticancer properties that help fight various
diseases in the human body (3).

Syzygium aromaticum L. (Myrtaceae), is also known as
Eugenia caryophyllata Thunb. It is an evergreen tree native
to the Maluku Islands in Indonesia (4). Its dried flower
buds are referred to as “clove,” it is highly sought-after for
medicinal and culinary purposes. In medieval Europe, it is
cultivated for commercial purposes. Currently, it is produced
mainly in Indonesia, West Indies, Madagascar, India, Tanzania,
and Sri Lanka (5). especially Zanzibar and Pemba Island in
Tanzania, which produce about 80% of the world’s production
(6) (Figure 1). Clove has been used as a spice in ancient
China for more than 2000 years and was included in the first
list of medicinal food items in China in 2002. Recent studies
have found that fruits, seeds and leaves of S. aromaticum
also contain bioactive compounds. The Chinese Traditional
Medicine Administration has listed the fruit as one of the
39 herbal species that should be given priority for further
development. Despite having commercial and medicinal value,
it is not been extensively reviewed on its nutritional composition
and advances in its chemistry, pharmacology, toxicology, and
applications. This review is the first time for the comprehensive
analysis of the nutritional components of its various parts,
which has never appeared in previous papers. Secondly, in
terms of chemical composition, although some articles have
introduced it, this paper summarizes the chemical compositions
of each part for the first time and classifies them into volatile
and non-volatile components. Thirdly, in terms of biological
activity, although some articles introduced the biological
activity of S. aromaticum, there was no detailed and clear
mechanism diagram. In this paper, the biological activities
of S. aromaticum were comprehensively summarized and the
mechanism diagrams were drawn for the first time. Fourthly,
in terms of application, most of the existing articles only
introduced the fresh-keeping effect of clove. In this paper, the
applications of S. aromaticum in medicine and food have been
comprehensively analyzed for the first time, and the relevant
popular contents of nanometer preparations have been added.
Overall, this review will be a comprehensive scientific resource
for those interested in pursuing further research to explore its
value in medicine and food.

Taxonomy and botanical
description

Syzygium aromaticum belongs to the Myrtales order,
Myrtaceae family, and Syzygium genus. Myrtaceae family plants
are mainly grown in tropical and subtropical regions of Australia
and America (7). Syzygium is an important genus in the

Myrtaceae family and contains more than 500 species, mainly
distributed in tropical Asia and a few species in Oceania
and Africa (8). S. aromaticum belongs to the plant kingdom,
Angiospermae, Dicotyledoneae, and Archichlamydeae.

Syzygium aromaticum is an evergreen tree growing to about
10–20 m. The bark is gray and smooth. The leaves are large and
opposite. The leaf blades are leathery, ovate-long elliptic, entire,
and densely covered with oil glands. The petiole is conspicuous.
The leaf buds are terminal, cymes or panicles. The flowers are
red or pink, and 3 flowers are together in one group. The flowers
contain 4 petals. The buds are white at the beginning and turn
green and then red when the buds are 1.5 to 2cm long (9). The
calyx is cylindrical, receptacle long, and 4-lobed at the tip. The
lobes are triangular, bright red, with numerous stamens and an
inferior ovary. The berries are oblong, red or dark purple, and
contain one seed, which is oval. The fruit is called female or
female S. aromaticum. The fruiting period is from June to July,
and the flowering period is from January to February. The buds
are called male or male S. aromaticum, and dried by removing
the pedicel from the bright red buds (10). The different parts of
S. aromaticum are shown in Figure 2.

Nutritional composition

The flower buds, fruits, branches, leaves, and seeds of
S. aromaticum are rich in various nutrients, proteins, fatty
acids, mineral elements, amino acids, vitamin, etc. The presence
of these nutrients makes S. aromaticum as a plant with high
economic value. The nutritional composition of each part of
the plant is listed in Tables 1–4. Only a very few studies were
conducted to identify the vitamins present in it, and the vitamins
present in it are listed in Table 5.

Conventional nutrients composition

The fruits contain the highest amount of total carbohydrate
content. The buds contain the highest amount of crude fat. The
leaves contain the highest protein content. The branches contain
the highest amount of fiber. Table 1 lists the conventional
nutrients present in various parts of S. aromaticum.

Fatty acid composition

The fatty acid composition is similar in flower buds,
fruits and branches. The leaves contain many fatty acids,
and the number of fatty acids is 14. The contents palmitic,
stearic, linoleic and linolenic acid were high in all parts.
The higher proportion of polyunsaturated fatty acids in
buds and seeds, is made up of α-linolenic acid and linoleic
acid. α-Linolenic acid is one of the essential nutrients,
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FIGURE 1

Distribution of S. aromaticum around the world. West Indies, Tanzania, Madagascar, India, Sri Lanka, Indonesia, Malaysia and Hainan province of
China.

with anti-inflammatory, anti-thrombotic, anti-arrhythmic, anti-
cancer, lower blood pressure and other effects (17). Linoleic
acid can be metabolized into arachidonic acid in the body, to
play a pro-inflammatory or pro-thrombotic vasoconstriction
(18). The highest proportion of saturated fatty acids present
in branches amounts to 73.66%. The palmitic acid content
in saturated fatty acids is about 47.69%. The palmitic
acid can play an antitumor role by activating Saos-2 cell
apoptosis through endoplasmic reticulum stress and autophagy
(19). Thus S. aromaticum is rich in fatty acids and has
broad prospects for preparing health supplements. The fatty
acid composition in each part of S. aromaticum is shown
in Table 2.

Mineral elements composition

About 26 mineral elements have been detected in
S. aromaticum. Fe is highest in the fruits, and Ca in the
leaves. The total mineral element content in buds is higher than
in other parts. The mineral element content of each part of
S. aromaticum is shown in Table 3.

Amino acid composition

Amino acids are a combination of two organic substances,
basic amino and acidic carboxyl groups, which give biochemical
activity to protein molecules and are important components
of proteins. The buds and fruits have similar percentages of
essential amino acids, with total contents of 433.1–461.9 mg/kg
and 406.2 mg/kg (32. 46%), respectively, which are higher than
branches (113.9 mg/kg) and leaves (229.8 mg/kg). The details
are shown in Table 4.

Vitamins composition

Vitamins are essential nutrients for human health. The buds
contain a variety of vitamins (Table 5), among which Vitamin
A, B3, and Vitamin B6 are high. These vitamins promote
bone development, protect eye vision, maintain normal skin
function, maintain immunity, and promote blood red blood cell
metabolism (20).

Phytochemical composition

At present, it is believed that the chemical compositions
of S. aromaticum are divided into two major parts: volatile
and non-volatile components, mainly including aromatics,
sesquiterpenoids, monoterpenoids, flavonoids, triterpenoids,
organic acids, etc. These chemical components are mainly
derived from flower buds, leaves, seeds, and other parts of
S. aromaticum.

Volatile components

The volatile components of S. aromaticum have a unique
and attractive fragrance. They can be used as a topical
application to relieve pain and promote healing. They are
also used in perfumey and flavor industries. They possess
significant antioxidant and antibacterial effects. Studies have
confirmed the presence of volatile components in buds,
seeds and leaves, with the majority in buds. More than 110
compounds are present in the S. aromaticum volatile oil and
are listed in Supplementary Table 1. The major compounds
in volatile oil are eugenol, eugenyl acetate, caryophyllene and
α -humulene.
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FIGURE 2

Different parts of S. aromaticum. (A) Whole plant; (B) dried flower buds; (C) fruit; (D) leaf. Pictures are from
https://baike.baidu.com/pic/%E4%B8%81%E5%AD%90%E9%A6%99/19435258.

TABLE 1 Conventional nutrients in various parts of S. aromaticum.

Nutrient composition Buds Fruits Branches Leaves Seeds

(mg/g) (11) (%) (12) (mg/g) (13) (mg/g) (11) (mg/g) (11) (mg/g) (11) (%) (14)

Moisture − 9.63± 0.19 68.6 − − − 7.74± 0.2

Total carbohydrate 86.75± 5.61 8.26± 0.16 612.1 168.12± 8.92 106.47± 7.23 88.13± 6.13 51.3± 2.7

Crude protein 39.8± 3.79 6.06± 0.12 59.8 33.73± 4.26 45.1± 3.38 61.75± 5.62 6.9± 0.4

Crude fiber 111.72± 9.73 9.64± 0.32 342 73.38± 7.35 368.55± 23.45 253.13± 21.12 11.47± 0.5

Crude fat 123.58± 11.3 59.3± 0.15 200.7 25.78± 1.73 10.35± 0.26 41.56± 4.23 16.63± 0.3

Ash 34.17± 1.03 5.36± 0.08 58.8 23.08± 1.34 21.91± 1.53 40.59± 2.86 5.96± 0.1

“–” indicates that the value is not available.

Aromatics
Aromatic compounds (eugenol, isoeugenol and eugenyl

acetate) are the main components in S. aromaticum. Eugenol,
is a unique and widely studied volatile component of

S. aromaticum, accounting for more than 50% of the volatile oil,
with a variety of pharmacological activities (31). Eugenyl acetate,
is another bioactive component of the volatile components.
Forty-two aromatic compounds, including methyl eugenol,
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TABLE 2 Fatty acid composition in various parts of S. aromaticum.

Fatty acid Buds Fruits Branches Leaves Seeds

(%) (11) (%) (11) (%) (11) (%) (11) (%) (15) (%) (14)

C12:1 (n-7) – – – 0.54 – –

C14:0 3.35 2.24 3.41 2.64 0.37 1.29

C15:0 – – – 0.29 – –

C16:0 32.14 38.30 47.69 43.29 7.23 6.21

C16:1 (n-7) – 0.66 – 0.28 – 20.96

C17:0 – – 1.42 1.10 – –

C18:0 13.42 18.55 21.14 12.74 5.08 –

C18:1 (n-7) – – – 0.44 0.44 6.20

C18:1 (n-9) 8.72 14.81 6.26 12.23 16.12 13.0

C18:1 (n-12) – – 1.39 – – –

C18:2 (n-6) 33.72 21.28 13.81 15.93 36.58 44.73

C18:3 (n-3) 8.21 4.16 4.88 9.80 30.55 2.93

C20:1 (n-9) – – – 0.55 – –

C20:0 – – – – 2.82 4.68

C22:0 – – – – 1.25 –

SFA 48.91 59.09 73.66 60.06 16.75 12.18

MUFA 8.72 15.47 7.65 14.04 16.12 40.16

PUFA 41.93 25.44 18.69 25.73 67.13 47.66

“–” indicates that the value is not available; SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid.

ethyl benzoate, and cinnamic aldehyde, were identified in the
essential oil of clove by GC-MS.

Terpenoids
The terpenoids in S. aromaticum include sesquiterpenes,

monoterpenes, and diterpenes, which are the material basis
for the clinical efficacy and an important chemical source for
further activity screening. Terpenoids are an important class
of natural compounds widely used in the cosmetics and food
industries and have a large market potential (32). Twenty-six
sesquiterpenes and eighteen monoterpenes were reported in
the volatile oil of S. aromaticum. Only one diterpene, menthyl
chavicol, was reported from S. aromaticum. Caryophyllene and
α-humulene account for about 7-16% of the volatile oil.

Aliphatic compounds
S. aromaticum volatile oil also contains aliphatic

compounds, such as alkanes, ketones, alcohols, esters and ethers.
The most abundant aliphatic compounds are tritetracontane, 2-
heptanone, 2-non-anone, ethyl caproate and menthyl octanoate.
The percentage of aliphatic compounds is lower than aromatic
compounds in the volatile oil.

Non-volatile components

A total of 73 non-volatile components were reported from
S. aromaticum, including 36 flavonoids, 4 chromones, 26

tannins, 3 triterpenoids, 1 coumarin and 1 phenolic ester, and
2 other components, as shown in Table 6.

Flavonoids
Studies have shown that flavonoids are one of the important

components of S. aromaticum to exert strong antioxidative
activity, anti-inflammatory, and immunomodulatory activities
(42). Ryu et al. (33) reported the presence of luteolin, quercetin,
rhamnocitrin, kumatakenin, and pachypodol in S. aromaticum.
These flavonoids have shown anticancer activity on human
ovarian cancer cells (A2780). In addition, flavonoids readily
form O - and C - glycosides, with O - glycosides being more
common and better absorbed. Ryu et al. (33) reported nine
known flavonoid glycosides and four flavonoids from the buds.

Chromones
The chromones in S. aromaticum are mainly eugenin, 8-

C-glucosylnoreugenin, biflorin, isobiflorin, etc. Biflorin and
isobiflorin were found to be isolated from S. aromaticum
buds by Lee et al. (38) and showed an anti-inflammatory
effect on Lipopolysaccharide (LPS) induced inflammation in
macrophages through STAT1 inactivation. In addition, it
was demonstrated that biflorin increased the activation of
protein kinase C-ζ and its downstream signaling molecules in
the hippocampus. These compounds improved the cognitive
dysfunction in mice and reduced the viability of melanoma cell
lines through DNA interactions (43). These findings provide a

Frontiers in Nutrition 05 frontiersin.org

101102

https://doi.org/10.3389/fnut.2022.1002147
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1002147 October 11, 2022 Time: 13:26 # 6

Xue et al. 10.3389/fnut.2022.1002147

TABLE 3 Mineral elements content in various parts of S. aromaticum.

Mineral elements Buds Fruits Branches Leaves Seeds

(mg/kg) (11) (mg/kg)(12) (mg/kg) (13) (mg/kg) (11) (mg/kg) (11) (mg/kg) (11) (mg/100g)(14) (µ g/g)(16)

Potassium (K) 14 087.39 14 784.916 7 11 020 8 540.36 3 509.68 9 315.80 650.0± 30.0 −

Calcium (Ca) 6 888.94 6 302.166 7 6 460 2 949.98 6 294.30 9 299.14 270.0± 20 −

Sodium (Na) 3 995.71 4 143.166 7 2 430 2 554.04 1 660.37 3 105.66 − −

Magnesium (Mg) 3 406.92 3 036.549 0 2 640 1 402.07 751.32 1 884.82 97.0± 10.0 −

Manganese (Mn) 664.88 858.033 4 300.33 411.57 430.01 870.30 43.8± 1.5 736.36± 40.42

Iron (Fe) 544.48 1 292.349 0 86.8 1 364.26 61.47 61.41 36.0± 0.8 4.26± 0.15

Aluminum (Al) 161.58 759.783 3 - 427.40 31.54 45.89 − 4.21± 0.34

Phosphorus (P) - - 1050 - - - − −

Strontium (Sr) 62.16 40.859 3 - 14.90 26.58 23.26 − 4.74± 0.06

Boron (B) 49.29 29.536 7 12.37 12.79 36.09

Barium (Ba) 11.27 17.730 9 - 5.12 8.93 8.83 − 3.57± 0.23

Thallium (Ti) 14.61 87.541 3 - 15.14 9.99 12.02 − −

Zinc (Zn) 13.10 10.252 5 10.9 4.04 6.84 7.60 0.7± 0.1 5.97± 4.49

Copper (Cu) 2.65 4.004 3 3.47 1.87 1.20 1.21 0.8± 0.1 3.55± 0.22

Stannum (Sn) 0.42 0.018 1 - 0.15 0.14 0.15 − −

Vanadium (V) 0.17 5.308 7 - 0.64 0.12 0.06 − −

Chromium (Cr) - 0.847 500 - - - - − 0.05± 0.01

Nickel (Ni) - 0.578 333 - - - - − 4.25± 0.39

Arsenic (As) - 0.018 833 - - - - − 0.05± 0.01

Plumbum (Pb) - 0.100 083 - - - - − −

Hydrargyrum (Hg) - 0.019 6250 - - - - − −

Molybdenum (Mo) 0.05 - - 0.07 0.03 0.08 − −

Selenium (Se) 0.02 - 0.059 0.03 0.06 0.07 − 0.11± 0.01

Antimony (Sb) 0.00 - - 0.01 0.04 0.03 − −

Cobalt (Co) < 1 0.1843 - < 1 <1 <1 − 0.03± 0.00

Thallium (Tl) <0.01 0.0028 - < 0.01 <0.01 < 0.01 − −

“–” indicates that the value is not available.

scientific basis for the neuroprotective and antitumor effects of
S. aromaticum.

Tannins
Tannins are a group of water-soluble polyphenolic

compounds with complex structures present in plants. Based on
the chemical structures, these can be classified into two major
groups, hydrolyzable and condensed tannins. The tannins
exhibit various pharmacological effects such as antibacterial,
antioxidant, antitumor, antiviral, and hypoglycemic (44). Kim
et al. (39) isolated four tannins from S. aromaticum, eugeniin,
casuarictin, 1,3-di-O-galloyl-4,6-(S)-hexahydroxydiphenoyl-
β-D-glucopyranose, and tellimagrandin I. The tellimagrandin
was found to have significant inhibitory activity on syncytium
formation. Ali et al. (35) analyzed the polyphenol and tannin
content in 12 spices (allspice, black cardamom, black cumin,
black pepper, cardamom, cinnamon, clove, cumin, fennel,
nutmeg, star-anise, and turmeric) using LC-ESI-QTOF-MS and
evaluated their antioxidant activity. Cloves contain the highest
total polyphenol and total tannin content. The antioxidant

activity is positively correlated with the total phenolic content.
S. aromaticum is the most active antioxidant (45).

Others
Triterpenoids (asiatic acid, arjunolic acid and oleanolic

acid), coumarins (scopoletin), and phenolic acid esters
(salvianolic acid C) were reported from S. aromaticum.
Oleanolic acid, has shown significant analgesic effects.
The oleanolic acid activates the bile acid receptor (TGR5),
which plays a key role in treating metabolic diseases.
The acetyl derivatives of oleanolic acid have shown better
anti-inflammatory activity than oleanolic acid (46).

Biological and pharmacological
activities

Different parts of S. aromaticum and its essential oil
have various pharmacological activities, including antioxidant,
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TABLE 4 Amino acid composition in various parts of S. aromaticum.

Amino acid composition Buds Fruits Branches Leaves

(mg/kg) (11) (mg/kg) (12) (mg/kg) (11) (mg/kg) (11) (mg/kg) (11)

Aspartic acid 111.6 42.8 105.4 – –

Serine 69.8 80.5 41.5 57.9 37.9

Glutamic acid 93.8 91.3 74.1 64.2 66.4

Glycine 61.2 – 42.3 40.5 41.4

Histidine 121.6 – 118.8 121.2 120.6

Arginine 133.1 113.7 96.1 250.1 89.9

Threonine* 38.4 264.0 40.1 – 34.8

Alanine 94.5 – 93.8 52.3 55.2

Tyrosine 77.5 40.0 69.3 64.1 66.7

Valine* 65.9 106.1 50.2 45.7 44.9

Methionine* 63.3 14.1 62.8 – –

Lysine* 68.9 – 68.5 68.2 66.8

Isoleucine* 59.8 16.8 53.1 – –

Leucine* 61.8 27.7 56.8 – –

Phenylalanine * 75.0 21.1 74.8 – 83.3

Proline 154.9 – 203.7 97.6 63.7

Tryptophan* – 12.1 – – –

Total amino acid (TAA) 1 351.1 830.2 1 251.2 861.8 771.6

Essential amino acid (EAA) * 433.1 461.9 406.2 113.9 229.8

“–” indicates that the value is not available. *Indicates Essential amino acid.

TABLE 5 Vitamin composition of S. aromaticum buds.

Vitamins Buds

(mg/100g) (12) (mg/100g) (13)

A 177.21± 3.25 –

B1 0.04± 0.01 –

B2 1.75± 0.04 –

B3 173.26± 2.33 –

B6 134.18± 2.49 0.59

C 7.31± 0.34 80.8

E 7.11± 0.52 8.52

K − 141.8

“–” indicates that the value is not available.

hypoglycemic, antitumor, antibacterial antiviral, etc. The
majority of the pharmacological investigations were mainly
focused on the flower buds (clove). The details were discussed
in each of the following paragraphs, and are recapitulative
summary was presented in Table 7.

Antioxidant activity

Clove essential oil (CEO) has shown powerful antioxidant
activity with an EC50 of 0.36 µL/mL and it is the most

potent volatile oil compared to eucalyptus, fennel and
lavender (63). Phenols and flavonoids were attributed to
antioxidant effects. The antioxidant activity is mediated via
scavenging the free radicals, ferric reducing capacity, increasing
the activity of antioxidant enzymes, and antagonizing lipid
peroxidation (LPO).

Baghshahi et al. (64) showed that the antioxidant activity
of clove extract (CE) was more than 10 times higher than that
of vitamin E in the DPPH free radical scavenging capacity
test. Reactive oxygen species (ROS) are oxygen-containing
intermediate metabolites that modulate the host’s immune
response in vivo and positively affect the clearance of dead
cells and the inactivation of microorganisms, but excessive
amounts of ROS in vivo can damage the organism at the cellular
level. Neutrophils are the most abundant leukocytes in humans,
and their hyperactivation can activate the NADPH oxidase
to generate large amounts of ROS. Eugenol inhibits fMLF
or PMA-induced superoxide anion production in neutrophils
by inhibiting the Raf/MEK/ERK1/2/p47phox phosphorylation
pathway, avoiding ROS accumulation (47). CEO can increase
the activity of antioxidant enzymes by inducing the expression
of SOD-3 or GST-4 to reduce ROS accumulation in vivo,
exerting antioxidant effects (65). Eugenol also has Fe3+ reducing
ability and electron donor properties, which can neutralize
free radicals by forming stable products to exert antioxidant
effects (66).
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TABLE 6 Composition of non-volatile components of different parts of S. aromaticum.

Classes Chemical compound Molecular
formula

Extraction solvent Biological activity References

Flower buds

Flavonoid
glycosides

Rhamnetin-3-O-β-D-glucuronide C22H20O13 70% Ethanol,
Ethyl acetate

Antitumor (33)

Rhamnazin-3-O-β-D-
glucuronide

C23H22O13 70% Ethanol,
Ethyl acetate

Antitumor (33)

Rhamnazin-3-O-β-D-
glucuronide-6′ ′-methyl
ester

C24H24O13 70% Ethanol,
Ethyl acetate

Antitumor (33)

Rhamnocitrin-3-O-β-D-
glucuronide-6′ ′-methyl
ester

C23H22O12 70% Ethanol,
Ethyl acetate

Antitumor (33)

Quercetin-3-O-β-D-glucuronide C21H18O13 70% Ethanol,
Ethyl acetate

Antitumor (33)

Isorham-netin-3-O-β-D-
glucuronide

C22H20O13 70% Ethanol,
Ethyl acetate

Antitumor (33)

Kaempferol-3-O-β-D-
glucuronide-6′ ′-methyl
ester

C22H20O12 70% Ethanol,
Ethyl acetate

Antitumor (33)

Quercetin-3-O-β-D-glucuronide-
6′ ′- methyl
ester

C22H20O13 70% Ethanol,
Ethyl acetate

Antitumor (33)

Isorhamnetin-3-O-β-D-
glucuronide-6′ ′-methyl
ester

C23H22O13 70% Ethanol,
Ethyl acetate

Antitumor (33)

Kaempferol-3-O-β-D-glucoside C21H20O11 70% Ethanol,
Ethyl acetate

Antitumor (33)

Quercetin3-O-β-D-glucoside C21H20O12 70% Ethanol,
Ethyl acetate

Antitumor (33)

Isorhamnetin-3-O-β-D-glucoside C21H22O12 70% Ethanol,
Ethyl acetate

Antitumor (33)

Rhamnazin-3-O-β-D-glucoside C23H24O11 70% Ethanol,
Ethyl acetate

Antitumor (33)

Quercetin-7-O-β-D-glucoside C21H20O12 70% Ethanol,
Ethyl acetate

Antitumor (33)

5,7-Dihydroxy-2-
methylchromone
8-C-β-D-glucopyranoside

– Methanol Antibacterial (34)

4′-O-Methyl—epigallocatechin
7-O-glucuronide

C22H24O13 70% Ethanol in Milli-Q water
with 0.1% formic acid

Antioxidant (35)

3′-O-Methyl-(-)-epicatechin
7-O-glucuronide

C22H24 O12 70% Ethanol in Milli-Q water
with 0.1% formic acid

Antioxidant (35)

Hesperetin 3′-O-glucuronide C22H22O12 70% Ethanol in Milli-Q water
with 0.1% formic acid

Antioxidant (35)

Flavonoids Luteolin C15H10O6 70% Ethanol,
Ethyl acetate

Antitumor,
Neuroprotective

(33)

Quercetin C15H10O7 70% Ethanol,
Ethyl acetate

Antitumor,
Antioxidant

(33)

Rhamnocitrin C16H12O6 70% Ethanol,
Ethyl acetate, Methanol

Antitumor, Antibacterial (33, 34)

Kumatakenin C17H14O6 70% Ethanol,
Ethyl acetate

Antitumor (33)

Pachypodol C18H16O7 70% Ethanol,
Ethyl acetate

Antitumor, Antibacterial (33)

(Continued)
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TABLE 6 (Continued)

Classes Chemical compound Molecular
formula

Extraction solvent Biological activity References

Kaempferol
C15H10O6

Methanol Antibacterial,
Antitumor,
Anti-inflammatory

(34)

Myricetin C15H10O8 Methanol Antibacterial,
Antitumor,
Antiviral

(34)

Isorhamnetin C16H12O7 70% Ethanol in Milli-Q water
with 0.1% formic acid

Antioxidant,
Antitumor,
Anti-inflammatory

(35)

3′-Hydroxygenistein C15H10O6 70% Ethanol in Milli-Q water
with 0.1% formic acid

Antioxidant (35)

4′-Methoxy-2′ ,3,7-
trihydroxyisoflavanone

C16H14O6 70% Ethanol in Milli-Q water
with 0.1% formic acid

Antioxidant (35)

3′ ,4′ ,7-Trihydroxyisoflavanone C15H12O5 70% Ethanol in Milli-Q water
with 0.1% formic acid

Antioxidant (35)

3′-Hydroxymelanettin C16H12O6 70% Ethanol in Milli-Q water
with 0.1% formic acid

Antioxidant (35)

Violanone C17H16O6 70% Ethanol in Milli-Q water
with 0.1% formic acid

Antioxidant (35)

2-Dehydro-O-
desmethylangolensin

C15H12O4 70% Ethanol in Milli-Q water
with 0.1% formic acid

Antioxidant (35)

5-Hydroxy-4′-methoxy-6,7-
methylenedioxy
Isoflavone

C17H12O6 Petroleum ether–Ethyl
acetate

– (36)

5,4′-Dimethoxy-6,7-
methylenedioxy
Isoflavone

C18H14O6 petroleum ether-Ethyl acetate – (36)

Chromones Eugenin C11H10O4 Ethyl acetate soluble fraction
of the Methanol

Anticholinesterase (37)

Chromone
glycosides

8-C-glucosylnoreugenin C16H18O9 Ethyl acetate soluble fraction
of the Methanol

Anticholinesterase (37)

Biflorin C16H18O9 Methanol,
Ethyl acetate

Anti-inflammatory,
Antiviral,
Antitumor

(38, 39)

Isobiflorin C16H18O9 Methanol,
Ethyl acetate

Anti-inflammatory,
Antiviral,
Antitumor

(38, 39)

Tannins Gallic acid C7H6O5 Methanol,
Ethyl acetate soluble fraction
of the Methanol

Antibacterial,
Anticholinesterase

(34, 37, 40)

Ellagic acid C14H6O8 Methanol Antibacterial,
Antioxidant

(34)

Gallic acid 4-O-glucoside C13H16O10 70% Ethanol in Milli-Q water
with 0.1% formic acid

Antioxidant (35)

Paeoniflorin C23H28O11 70% Ethanol in Milli-Q water
with 0.1% formic acid

Antioxidant,
Anti-inflammatory,
Immunoregulatory,
Neuroprotective

(35)

3-p-Coumaroylquinic acid C16H18O8 70% Ethanol in Milli-Q water
with 0.1% formic acid

Antioxidant (35)

Eugeniin C41H30O26 Methanol,
Ethyl acetate

Antiviral (39)

Casuarictin C41H28O26 Methanol,
Ethyl acetate,
70% Acetone

Antiviral,
Antifungal

(39, 40)

(Continued)
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TABLE 6 (Continued)

Classes Chemical compound Molecular
formula

Extraction solvent Biological activity References

1,3-Di-O-galloyl-4,6-(S)-
hexahydroxy-diphenoyl-β-D-
glucopyranose

C33H23O22 Methanol,
Ethyl acetate

Antiviral (39)

Tellimagrandin I C33H23O22 Methanol,
Ethyl acetate

antiviral (39)

1,2-Di-O-galloyl-3-O-digalloyl-
4,6-O-(S)-hexahydroxydiphenoy-
β-D-glucose

C34H20O22 Methanol,
Ethanol,
70% Acetone

Antifungal (40)

Tellimagrandin II C41H30O26 Methanol,
Ethanol,
70% Acetone

Antifungal (40)

Aromatinin A C48H32O30 Methanol,
Ethanol,
70% Acetone

Antifungal (40)

Syzyginin A C48H34O31 Methanol,
Ethanol,
70% Acetone

Antifungal (40)

Bicornin C48H32O30 Methanol,
Ethanol,
70% Acetone

Antifungal (40)

Platycaryanin A C48H32O31 Methanol,
Ethanol,
70% Acetone

Antifungal,
Anti-inflammatory

(40)

Alunusnin A C47H25O30 Methanol,
Ethanol,
70% Acetone

Antifungal (40)

Rugosin C C47H32O30 Methanol,
Ethanol,
70% Acetone

Antifungal (40)

1,2,3-Tri-O-galloyl-β-D-glucose C24H37O24 Methanol,
Ethanol,
70% Acetone

Antifungal (40)

1,2,3,6-Tetra-O-galloyl-β-D-
glucose

C30H47O12 Methanol,
Ethanol,
70% Acetone

Antifungal (40)

Heterophylliin D C82H54O52 Methanol,
Ethanol,
70% Acetone

Antifungal (40)

Rugosin D C82H58O52 Methanol,
Ethanol,
70% Acetone

Antifungal (40)

Rugosin F C82H56O5 Methanol,
Ethanol,
70% Acetone

Antifungal (40)

Euprostin A C54H29O34 Methanol,
Ethanol,
70% Acetone

Antifungal (40)

Alienanin B C72H52O51 Methanol,
Ethanol,
70% Acetone

Antifungal (40)

Squarrosanin A C55H32O33 Methanol,
Ethanol,
70% Acetone

Antifungal (40)

Casuarinin C41H28O26 Methanol,
Ethanol,
70% Acetone

Antioxidant,
Antifungal,
Antitumor

(40)

(Continued)
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TABLE 6 (Continued)

Classes Chemical compound Molecular
formula

Extraction solvent Biological activity References

Triterpenoids Oleanolic acid C30H48O3 Methanol Antibacterial (34)

Asiatic Acid C30H48O5 Dichloromethane–Methanol Antioxidant,
Antitumor

(36)

Arjunolic Acid C30H48O5 Dichloromethane–Methanol Antioxidant,
Antifungal,
Antibacterial,
Anticholinesterase,
Antitumor

(36)

Coumarins Scopoletin C10H8O4 70% Ethanol in Milli-Q water
with 0.1% formic acid

Antioxidant,
Antitumor

(35)

Phenolic acid
esters

Salvianolic acid C C26H20O10 70% Ethanol in Milli-Q water
with 0.1% formic acid

Antioxidant,
Anti-inflammatory,
Antitumor

(35)

Others 2,6-Dihydroxy-4-
methoxyacetophenone
3-C-β-D-glucoside

C15H19O9 Ethyl acetate soluble fraction
of the Methanol

Anticholinesterase (37)

2,6-Dihydroxy-4-
methoxyacetophenone
3-C-β-D-(6′-O-galloyl) glucoside

C22H23O13 Ethyl acetate soluble fraction
of the Methanol

Anticholinesterase (37)

Seeds

Flavonoid
glycosides

Apigenin
6-C-[β-D-xylopyranosyl-
(1→2′ ′)-β-D-galactopyranoside]-
7-O-β-D-glucopyranoside

C32H38O19 Ethanol – (41)

Apigenin
6-C-[β-D-xylopyranosyl-
(1→2′ ′)-β-D-galactopyranoside]-
7-O-β-D-(6′ ′ ′-O-p-
coumarylglucopyranoside)

C41H44O21 Ethanol – (41)

“–” indicates that the item is not retrieved.

One of the common oxidative reactions, LPO, is associated
with many diseases. DNA damage caused by ROS is a key
factor in tumorigenesis and development. Eugenol can
effectively block hydroxyl radical-induced DNA oxidation
and LPO and has a significantly higher inhibitory effect
on hydrogen peroxide than other reactive oxygen species
(67). CEO also inhibits LPO in erythrocyte membranes,
thereby increasing membrane resistance to spontaneous
hemolysis, reducing membrane microviscosity, maintaining
its structural integrity and functional activity, and significantly
decreasing the intensity of LPO in mouse liver and brain,
scavenging excess ROS and other free radicals from lipid
chains, increasing the antioxidant capacity of liver and
brain lipids and the activity of antioxidant enzymes in
the liver (68). CE also significantly prevented oxidation-
induced protein damage by reducing the formation of protein
carbonyl groups and preventing the loss of protein sulfhydryl
groups (48).

In conclusion, S. aromaticum can reduce free radical
accumulation in vivo, decrease oxidative cellular damage, and
increase antioxidant capacity (Figure 3). Thus, it has very high

potential to be used as a natural antioxidant and anti-aging
supplement.

Hypoglycemic activity

Abnormal glucose metabolism leads to complications of
various metabolic diseases, especially the prevalence of diabetes
is increasing worldwide, but commonly used oral hypoglycemic
drugs often cause serious side effects. So herbs and spices
have been used in folk medicine for centuries to control
the complications of diabetes. S. aromaticum has been widely
studied for its beneficial and toxic effects. CE has shown
comparable hypoglycemic effects to that of insulin in animal
models and did not show toxic effects (69).

Abdulrazak et al. (51) found a significant increase in insulin
and leptin levels in type 2 diabetic rabbits treated with 12.5%
clove for 6 weeks suggesting its potential to use for patients with
diabetes. Some studies have shown that CE and its compound
nigricin enhance proximal insulin signaling by decreasing
serine phosphorylation of insulin receptor substrate-1 (IRS-1),

Frontiers in Nutrition 11 frontiersin.org

107108

https://doi.org/10.3389/fnut.2022.1002147
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1002147 October 11, 2022 Time: 13:26 # 12

Xue et al. 10.3389/fnut.2022.1002147

TABLE 7 The biological effects of S. aromaticum.

Biological effects Part Extract/
Compound

Assay Model and effective
concentrations

Reference

Antioxidant activity Buds,
Flower,
Seeds,
Leaves

Eugenol ABTS, DPPH, SDS-PAGE and
Western blotting analysis

Neutrophils (IC50 : 5 µg/mL) (47)

Buds Aqueous extract DPPH, TEAC, FRAP, ORAC,
HRSA, SRSA

IC50 : 0.29± 0.01 mg/ml (48)

Leaves 70% Ethanol extract Spot assay, Mitochondrial,
ROS Levels

Yeast Schizosaccharomyces
pombe cell (100 ppm)

(49)

Hypoglycemic activity Buds 50% Aqueous EtOH
extract

Blood glucose, HbA1c levels db/db Mouse (IC50 : 4.7 µM) (50)

Buds - Blood glucose, Serum insulin,
Insulin receptor and Leptin
levels

Male rabbits [12.5% (w/w)] (51)

Antitumor activity Buds Ethyl acetate extract Western blot and (qRT)-PCR
analysis

HT-29 tumor xenograft
model (IC50 : 66± 8 µg/ml)

(52)

Buds Methanolic extract Sulforhodamine-B assay Uterine cervix (GI 50 :
36 µg/ml),
Breast (GI 50 : 50 µg/ml),
Lung NCI (GI 50 : 68 µg/ml)

(53)

Antibacterial activity Leaves Steam distillation
method

Time-kill curve assay,
Scanning electron microscopy
assay

Porphyromonas gingiva
(MIC: 6.25 µM)

(54)

Seeds Aqueous extract Dilution method (agar),
Time-kill assay

Escherichia coli,
Pseudomonas aeruginosa and
Staphylococcus aureus (MIC:
0.06 mg/mL,
MBC:0.10 mg/mL)

(55)

Buds Steam distillation
method

Disk diffusion method, Broth
microdilution method,
Scanning electron microscopy

Escherichia coli and
Klebsiella pneumoniae [MIC:
0.078% (v/v)]

(56)

Immunomodulatory,
anti-inflammatory, and
analgesic activities

Buds Steam distillation
method

Enzyme-linked
immunosorbent assay,
Sulforhodamine B

Human dermal fibroblast
system HDF3CGF [0.011%
(v/v)]

(57)

Buds Alcoholic extraction
and distilled water

MTT, Enzyme-linked
immunosorbent assay

Female inbred Balb/c mice
(100 µg mL and 1000 µg/mL)

(58)

Neuroprotective activity Buds,
Flower,
Seeds,
Leaves

Eugenol Y maze alternation, Novel
Object Recognition, Morris
Water Maze, FD Rapid Golgi
StainingTM,
Hematoxylin-Eosin staining

Male Deutchland Denken
Yonken mice (100 mg/kg bw)

(59)

Antiviral activity Buds,
Flower,
Seeds,
Leaves

Eugenol Medium and high-throughput
screens, Hoechst stains, MTT

Ebola virus (EC50 : 1.3 µM) (60)

Buds 95% Ethanol Plaque reduction assay Herpes simplex virus type 1
(ED50 : 72.8 µg/mL),
Herpes simplex virus type 2
(ED50 : 74.4 µg/mL)

(61)

Antiobesity activity Buds 70% Ethanol Body weight, Hematoxylin
and eosin stain, Western
blotting

Male C57BL/6J mice [0.5%
(w/w)]

(62)

increasing tyrosine phosphorylation, modifying distal insulin
signaling by enhancing protein kinase B (PKB) and glycogen
synthase kinase-3-β (GSK-3β) phosphorylation in muscle cells

signaling. Thus, they decrease free fatty acid-mediated insulin
resistance in mouse myogenic cells, increase glucose uptake, and
promote insulin secretion in muscle cells (70).
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FIGURE 3

Mechanism of action for the antioxidant activity.

Glycogen metabolism has been one of the main causes
of elevated blood glucose levels. Glycogen phosphorylase b
(PYGB), a key enzyme in glycogen degradation, catalyzes the
breakdown of glycogen to glucose-1-phosphate in the liver
and skeletal muscle. Therefore, inhibition of hepatic glycogen
phosphorylase is an effective therapeutic strategy to reduce
hyperglycemia in type 2 diabetes. The clove’s 50% aqueous
ethanol extract showed strong dose-dependent inhibitory
activity on glycogen phosphorylase b and glucagon-stimulated
gluconeogenesis in primary rat hepatocytes, significantly
suppressed blood glucose and glycated hemoglobin (HbA1c)
levels in db/db mice. Thus, it caused a significant reduction
in plasma triglyceride and non-esterified fatty acid levels, and
improved glucose and lipid metabolism (50). In addition,
the dehydrodienol and dehydrodienol B compounds of
clove ethanol extracts (ECE) have potent human peroxisome
proliferator-activated receptor (PPAR)-γ ligand binding activity,
which can stimulate 3T3-L1 preadipocyte differentiation
through PPAR-γ activation and significantly inhibit the increase
in blood glucose levels in type 2 diabetic KK-Ay mice (71).
Studies on the effects of C2C12 cardiomyocyte metabolism
revealed that CE increased the phosphorylation of AMP-
activated protein kinase (AMPK) and its substrate acetyl
coenzyme A carboxylase (ACC), and also transcriptionally

regulated genes involved in metabolism, including sirtuin1
(SIRT1) and PPARγ coactivator 1α (PGC1α), as a way to
increase muscle glycolysis and mitochondrial function (69).

Overall, S. aromaticum has the potential to exert type 2
diabetes through phosphorylation pathways that modify insulin
signaling, activation of receptor PPAR-γ ligand binding activity,
and activation of AMPK and SIRT1 pathways (Figure 4).

Antitumor activity

Tumor pathogenesis is complex, and impaired apoptosis
mechanism is a major cause. So selective induction of apoptosis
in tumor cells is one of the effective ways to treat tumors.
S. aromaticum has anticancer and antitumor activity on the
human colon, breast, liver, cervical, and gastric cancers. Its
inhibitory effects are time- and dose-dependent. Arung et al.
(72) found that CEO inhibited melanin in B16 melanoma
cells up to 50% and 80% at 100 and 200 µg/mL, respectively.
Ethyl acetate extract of clove and its active ingredient
oleanolic acid both selectively increased the protein expression
of p21(WAF1/Cip1) and γ-H2AX and downregulated the
expression of cell cycle regulatory proteins, promoted G0/G1

cell cycle arrest and induced apoptosis in a dose-dependent
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FIGURE 4

Mechanism of action for the hypoglycemic activity.

manner. Its activity on colon tumor xenografts is superior to the
chemotherapeutic drug 5-fluorouracil (52). PI3K/Akt/mTOR
signaling pathway is an important pathway that regulates
apoptosis and can be aberrantly activated by malignant tumor
cells to exert apoptosis-inhibiting and proliferation-promoting
effects in tumor cells. The active ingredients of clove inhibit
PI3K/Akt/mTOR signaling pathway and activate the caspase-
mediated cascade response to induce apoptosis of HCT116 cells
in a dose-dependent manner (73).

Bcl-2 family proteins play a key role in apoptosis and
play an important role in mitochondrial-mediated apoptosis
by regulating mitochondrial outer membrane permeability. The
study has shown that CE can induce endogenous caspase-
dependent cell death by increasing oxidative stress mediated via
oxygen and nitrogen radicals. It can mediate the release of Bcl-2
family protein pro-apoptotic factors, signaling oxidative stress-
mediated DNA damage by modulating the cellular antioxidant
SOD system and the activity of the Akt, p38mitogen-activated
protein kinases (p38MAPK), c-Jun N-terminal kinase (JNK)
and extracellular signal-regulated kinases (Erk1/2) pathways to
induce apoptosis in human breast cancer MCF-7 cells (74). The
aqueous extract of clove (ACE) upregulated the expression of
pro-apoptotic proteins p53 and Bax in benzo[a]pyrene (BP)-
induced lung carcinogenesis in mice. It downregulated the
expression of anti-apoptotic protein Bcl-2 in the pre-cancerous
stage. In the early stage of carcinogenesis (week 8), clove

significantly activated the expression of caspase-3. In addition,
clove downregulated the expression of COX-2, cMyc, HRA and
other growth-promoting proteins expression. All these together
promote a significant decrease in proliferating cells and an
increase in apoptotic cells, exerting a chemopreventive potential
(75). In addition, eugenol can also exert its chemotherapeutic
potential by blocking the nuclear translocation of β-catenin,
thus promoting its cytoplasmic degradation through N-terminal
phosphorylation of Ser37. Thus, it effectively reduces cancer
complications and prolongs and improves patient life (76).

In conclusion, the main pathway of S. aromaticum to
induce apoptosis in cancer cells by upregulating the expression
of intracellular pro-apoptotic proteins such as Bax, Caspase-
3, p53, etc., downregulating the expression of intracellular
anti-apoptotic proteins such as Bcl-2, and downregulating the
expression of pro-growth proteins such as COX-2, cMyc, and
HRA (Figure 5).

Antibacterial activity

In recent years, the irrational application of broad-spectrum
antibacterial drugs, immunosuppressive drugs, antitumor drugs
and the widespread use of other surgical interventions such as
organ transplantation have led to an increasingly serious crisis
of bacterial and fungal drug resistance, which threatens the life
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FIGURE 5

Mechanism of action for the antitumor activity.

and health of humans. Clove has strong antibacterial effects on
Staphylococcus aureus, Candida albicans, Escherichia coli and
Listeria monocytogenes.

It was found that ACE and ECE showed inhibitory activity
against three foodborne pathogens, gram + ve Staphylococcus
aureus, gram -ve Escherichia coli and Pseudomonas aeruginosa.
S. aureus is the most sensitive to ACE (inhibition zone,
30.5 mm), P. aeruginosa is the most sensitive to ECE (inhibition
zone, 38 mm). ACE inhibited the growth of S. aureus and
E. coli at≥500 µg/ml, P. aeruginosa at≥700 µg/ml, respectively.
ECE inhibited the growth of all three bacteria at ≥500 µg/ml
(77). Similarly, Ajiboye et al. (55) found that aqueous extracts
of clove seeds could enhance the membrane permeability of
Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus
aureus, exerting antibacterial effects. In addition, four different
CE (methanol, ethyl acetate, n-hexane and ether) showed
inhibitory activity against Candida albicans, Candida glabrata
and Candida tropicalis, with the ethyl acetate extract being the
most active. CEO also antagonized Candida biofilm formation
and effectively prevented the growth of Candida on abiotic
surfaces (24). In addition, Zhang et al. (54) found that the

eugenol in S. aromaticum leaf essential oil exhibited good
antibacterial activity against Porphyromonas gingivalis at a
concentration of 31.25 µ m.

Xu et al. (78) showed that the antibacterial activity of
S. aromaticum is via disrupting the cell wall and membrane,
inhibiting the normal synthesis of bacterial DNA and proteins,
eugenol is the main component in the antibacterial activity.
Quorum sensing (QS) is a communication system associated
with the virulence of pathogenic bacteria such as Pseudomonas
aeruginosa. The molecular modeling studies have shown that
eugenol binds to the QS receptor overcoming the antibiotic
resistance through hydrophobic interactions and hydrogen
bonding to Arg61 and Tyr41 of the LasR receptor (79). Elastase
A, elastase B, proteinase IV and alkaline proteases activate host
matrix metalloproteinases (MMPs) to establish infection by
converting pre-MMP-2 to active MMP-2. S. aromaticum leads to
a significant reduction of signaling molecules (Acyl-homoserine
lactones) involved in population-sensing regulation, which can
inhibit the activity of four proteases from establishing anti-
infective effects, in addition to inducing a dose-dependent
production of neutrophil extracellular traps (NETs) to destroy
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bacterial pathogens (80). CEO interferes with the expression
of virulence-related genes involved in the flagellum, PEB1,
PEB4, LPS and serine protease, with significant antibacterial
and potentially virulence-modulating effects on Campylobacter
jejuni (81). eEF1A protein interacted with several viral proteins,
leading to enhanced viral replication, reduced apoptosis and
increased cellular transformation; therefore, Wang et al. (82)
suggested that downregulation of eEF1A protein expression
may be another important mechanism for exerting its
antifungal activity.

In conclusion, the permeability of phenolic substances such
as eugenol to cell membranes and the irreversible disruption
of plasma membrane integrity make S. aromaticum a potential
source of natural antibacterial drugs with broad-spectrum
antibacterial effects (Figure 6).

Immunomodulatory,
anti-inflammatory, and analgesic
activities

Clove essential oil (CEO) regulates the immune response
and reduces inflammatory symptoms by enhancing humoral
immunity and reducing the release of lymphokines to reduce
cellular immunity. As a major component of S. aromaticum,
eugenol is thought to regulate cellular inflammatory cascades
in LPS induced inflammation in macrophages via (1) nuclear
factor-κB (NF-κB) and ERK/MAPK pathways, (2) nitric oxide
(NO) production, (3) pro-inflammatory interleukin release
and (4) endogenous antioxidant defenses mechanisms (83).
Secondly, CEO significantly inhibited the levels of several pro-
inflammatory biomarkers such as (1) vascular cell adhesion
molecule-1 (VCAM-1), (2) interferon γ-induced protein 10
(IP-10), (3) interferon-inducible T-cell α chemoattractant (I-
TAC), and (4) monokine induced by γ interferon (MIG)-
induced monokines (Figure 7). It also significantly inhibited
(1) tissue remodeling protein molecules (collagen-I, collagen-
III), (2) macrophage colony-stimulating factor (M-CSF), and (3)
tissue inhibitor of metalloproteinase 2 (TIMP-2). It regulated
the global gene expression and altered key signaling pathways
of inflammation, tissue remodeling and cancer signaling
processes (57). The water-soluble fraction of the hydroalcoholic
extract of clove inhibited the production of pro-inflammatory
cytokines (IL-1β and IL-6) by macrophages in BALB/c mice,
thus exerting an anti-inflammatory effect (84). In addition,
in an immunosuppressed mouse model, CEO (400 mg/kg)
administration for one week significantly increased the total
white blood cell (WBC) count. It and enhanced the delayed
type hypersensitivity (DTH) in mice, restoring the cellular and
humoral immune responses in a dose-dependent manner in
cyclophosphamide immunosuppressed mice (85).

Ferland, Beaudry, and Vachon (86) showed eugenol
(40 mg/kg) reduced substance P and CGRP, and increased

the dynorphin level in a rat model of osteoarthritis. These
results confirmed the therapeutic potential of eugenol in
osteoarthritis. CEO also reduced the torsional movements in
mice with acetic acid-induced abdominal contractions and
significantly increased the latency of response to pain after
60 min by 82.3%. The CEO also inhibited the foot swelling
in mice caused by carrageenan by 50.6%. It has significantly
attenuated yeast-induced t hyperthermia by 2.7◦C at 1T-
max (87).

Neuroprotective activity

Alzheimer’s disease (AD) is a common neurodegenerative
disease characterized by progressive cognitive dysfunction
and memory loss, which has been increasing in recent
years, seriously affecting patients’ lives and quality of life.
Oxidative stress plays a key role in AD, and CEO can reverse
scopolamine-induced short- and long-term memory deficits
by reducing oxidative stress (88). By administering CEO
to intracerebroventricular (icv)-colchicine-induced cognitive
dysfunction in rats, it was found that in addition to
reducing oxidative stress damage, CEO exerted neuroprotective
effects and improved cognitive dysfunction by improving
mitochondrial dysfunction and inhibiting microglial activation
(89). There are many links between SIRT1 and diseases
such as AD. Studies have shown that ECE activates and
increases SIRT1 level, inhibits NF-kB signaling in microglia,
attenuates Aβ25-35-induced neuronal cell neurotoxicity, and
also downregulates γ-secretase level, scavenges ROS and
increases the percentage of antioxidant enzymes, which together
delay the progression of neurodegenerative diseases and exert
neuroprotective effects (90).

Glutamate is considered an excitatory neurotransmitter, but
it causes oxidative stress at high concentrations and promotes
apoptotic signaling cascades, leading to neurodegeneration. CE
fermented with Trametes Versicolor (LTV), contains a higher
content of dehydroeugenol. It inhibits apoptotic signaling such
as Ca2+ inward flow, the excessive production of intracellular
reactive oxygen species and LPO. It also has good protective
properties against glutamate-induced toxicity in HT22 cells (91).

Rai et al. (92) reported that Sestrin2 (Sesn2) is a
potential serum marker in Parkinson’s disease (PD). The Sesn2
concentrations were significantly elevated in the serum of
PD patients. ECE caused a dose-dependent downregulation of
p53, Sesn2 and phosphorylated AMPK in cells, accompanied
by the increased phosphorylated p70S6K, alleviating SH-SY5Y
cell damage and exhibiting neuroprotective effects in PD.
In addition, cloves exhibit anticholinesterase activity and are
protective against brain damage induced by CeCl3 and other
substances (93).

In conclusion, S. aromaticum and its extracts exert
neuroprotective effects by reducing acetylcholinesterase activity,

Frontiers in Nutrition 16 frontiersin.org

112113

https://doi.org/10.3389/fnut.2022.1002147
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1002147 October 11, 2022 Time: 13:26 # 17

Xue et al. 10.3389/fnut.2022.1002147

FIGURE 6

Mechanism of action for antibacterial activity.

FIGURE 7

Mechanism of action for the immunomodulatory (A) and neuroprotective (B) activity.

restoring oxidative status, inhibiting microglia signaling and
preventing histopathological changes (Figure 7).

Antiviral activity

Studies have shown that ACE exhibits antiviral activity
similar to pure eugenol on feline calicivirus (94). The plaque
reduction assay demonstrated that ECE has anti-herpes simplex

virus (HSV) properties, showing direct inactivation of standard
HSV particles, as well as significant inhibition of HSV-1, HSV-
2, and a decrease in total HSV virus yield 30 h after treatment
with the extract (61). The methanol and aqueous extracts
of clove also showed inhibition of HCV protease. Eugenol
inhibited influenza A virus (IAV), presumably by a mechanism
attributed to the inhibition of oxidative stress and activation
of ERK1/2, p38MAPK, and IKK/NF-κB pathways. Eugenol
inhibits Beclin1-Bcl2 heterodimer dissociation and autophagy,
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ultimately impairing IAV replication (95). In addition, eugenol
showed significant inhibitory of the West African Ebola virus
(EBOV) (60). It is also used for the prevention and control of
SARS-CoV-2-associated diseases. Flavonoids of S. aromaticum
can inhibit SARS-CoV-2 virus expression, while bicornin and
biflorin in clove have a high affinity for Mpro and exhibit
potential viral inhibitory activity (96).

In summary, S. aromaticum exerts antiviral effects, mainly
by improving oxidative stress, reducing viral replication, and
inhibiting autophagic gene expression.

Anti-obesity activity

Fatty acid synthase (FAS), a key enzyme in adipogenesis,
has been considered a potential therapeutic target for cancer
and obesity. ECE as a FASN inhibitor can inhibit S-phase
DNA replication in HepG2 cells. Adipocyte differentiation
in OP9 cells, regulates the content of total triglyceride and
low-density lipoprotein cholesterol, limits the development
of high-fat diet-induced obesity, reduces body weight
and abdominal adipose tissue weight, and reduces lipid
accumulation in liver and epididymal adipose tissue,
making it a potential therapeutic agent for obesity (97,
98). In addition, ECE also inhibited lipid accumulation in
mice by downregulating the mRNA levels of transcription
factors such as Srebp and Pparg and suppressing the
expression of lipid metabolism-related proteins such as
SREBP-1, FAS, CD36 and PPARγ in liver and white adipose
tissue (62).

Others activities

In addition to the above effects, S. aromaticum also affects
reproductive function, promoting transdermal absorption,
and alleviating gastric injury. CE has a bidirectional
effect on reproductive function in mice, with lower doses
(15 mg/kg·BW) of clove increasing serum testosterone levels
and testicular hydroxysteroid dehydrogenase activity, and
improving sperm motility, sperm morphology, epididymal
and seminal vesicle secretory activity, and the number of
litters per female, but higher doses (30 and 60 mg/kg·BW)
inhibiting testicular activity (99). Choi D et al. (100)
hypothesized that the mechanism affects the reproductive
endocrine system by acting on GnRH neuronal cells.
ACE can treat ethanol-induced gastric mucosal injury in
rats. The mechanism may involve antioxidant activity,
promoting PGE2 production, and inhibiting gastric mucosal
inflammatory cell infiltration and epithelial cell loss (101).
CEO also has significant permeation-enhancing effects, and
studies on the effects of CEO on the in vivo and in vitro
transdermal administration of ibuprofen in rabbits revealed

that clove significantly enhanced ibuprofen absorption
in vitro and permeation in vivo (102). CEO can also be
used for fish anesthesia, speculating that it may act through
glutamate receptors.

Toxicity studies

The U.S. Food and Drug Administration (FDA) has
confirmed the safety of clove buds, CEO, eugenol, and oleoresins
as food additives. The World Health Organization (WHO) has
established an acceptable daily intake of 2.5 mg/kg of CEO (6).

Some literature has reported cytotoxicity of eugenol, but
it can rapidly reach peak plasma concentrations upon oral
administration in rats and humans, with mean half-lives of 14.0
and 18.3 h, respectively, and is excreted in the urine in bound
form within 24 h. Its genotoxicity and carcinogenicity are low
(103). Acute toxicity studies in mice showed that LD50 of CEO is
4500 mg/kg upon oral administration for 24 h, which is a much
higher dose than the doses usually used for infusions by humans
(3 g/60 kg person in clinical therapy, equal to 9.35 mg/kg
CEO). The long-term repeated toxicity studies (100, 200, and
400 mg/kg, orally) showed that only 400 mg/kg resulted in a
significant decrease in body weight and no significant changes
in relative organ weights and histopathological analysis were
observed at all doses of CEO (104). Toxicity studies with clove
buds polyphenol extract (Clovinol) in Wistar rats revealed no
significant toxicity under acute (5 g/kg b.wt. for 14 days) and
subchronic (0.25, 0.5 and 1 g/kg b.wt. for 90 days) conditions.
The mutagenicity studies using Salmonella typhimurium strains
revealed that Clovinol did not cause genetic mutations or shifts
in the genome and showed significant mutagenic resistance
against known mutagens, sodium azide, NPD, tobacco and 2-
acetamidoflourene (105). In 2015, a panel of experts from the
Association of Flavor and Extract Manufacturers initiated a
re-evaluation of the safety of more than 250 natural flavor
compounds (NFCs) and reported concluded that NFCs of clove
was recognized as “Generally Recognized as Safe (GRAS)”
under the conditions of their intended use as flavor ingredients
(106). An acute oral toxicity study was conducted in normal
rats according to the Organization for Economic Cooperation
and Development (OECD) guidelines to assess the potential
toxicity of S. aromaticum extracts after oral administration.
Three animals per group were used in each step. Standard
doses were given gradually, from 500 mg/kg b.w. continued
up to 2500 mg/kg b.w. Mortality was recorded after 24 h.
According to various acute and chronic toxicity studies of
S. aromaticum, the oral LD50 of CEO in the food industry was
3597.5 mg/kg, with no adverse effects in subchronic toxicity
tests and NAOEL levels of 900-2000 mg/kg/day. Oral LD50 of
eugenol was reported as 2650–3000 mg/kg b.w. (105), all of
which demonstrated the safety of S. aromaticum for human
use at low doses.
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Development and applications of
Syzygium aromaticum

Folk medicine

As one of the traditional spices and herbs, clove has
long been used to treat stomach disorders, abdominal pain,
vomiting, etc. Many scientific studies have confirmed that
clove possesses significant free radical scavenging and anti-
inflammatory activities and has potential roles in alleviating and
preventing diseases like cancer, type II diabetes and epilepsy.
CEO also has a stomachic effect and can significantly improve
the symptoms of loss of appetite (107). In addition, clove has
long been used as a respiratory adjuvant in treating respiratory
diseases such as cough, asthma, and bronchitis. It also plays an
important role in preventing and early treatment of COVID-
19 (108).

Because of its analgesic, anesthetic and anti-inflammatory
properties, CEO is often used to treat dental diseases.
The traditional treatment of toothache with CEO was first
documented in 1640 in the French “practice of medicine.”
Modern studies have shown that brushing with herbal
toothpaste containing clove resulted in a significant reduction
in salivary lactate dehydrogenase (LDH), improved cellular
integrity, and reduced plaque and gingivitis (109). That hexane
extract of S. aromaticum seeds exhibits preferential growth
inhibitory activity against cariogenic pathogens in dental caries
and may be used to treat dental caries (110). In addition, CE
may also present new natural therapeutic potential by inhibiting
dentin erosion (111).

Nano technologies

In recent years, nanotechnology has rapidly evolved.
A wide range of lipid nanostructures such as liposomes
and solid lipid nanoparticles, metals, nanocrystals and
polymeric particles have been tested in several drug delivery
systems in different animal models. In addition, many
nano-drug delivery systems containing S. aromaticum are
being developed.

Metallic nanoparticles (NPs) have been widely used in
cosmetics and medicine due to their unique antibacterial
and antitumor properties. CE can be used as a reducing
and stabilizing agent. CE-silver nanoparticles, synthesized
by biosynthesis, showed good inhibitory activity against
marine bacterial communities and Nitzschia closterium diatoms
activity (112). Carboxymethyl cellulose structured silver-based
nanocomposite (CMC-AgNPs) containing CE has shown
antibacterial, in vivo anti-inflammatory, antileishmanial and
antioxidant activities with low cytotoxicity (113). In addition,
the synthesis of Au/Ag bimetallic nanoparticles by a single-step

green route with CE significantly enhanced antioxidant
and catalytic activity compared to individual monometallic
nanoparticles (114).

Nano-encapsulation technology has been widely used in
recent years. A study by Radün et al. (115) showed that the
nano-encapsulated CEO had a strong antibacterial inhibitory
capacity. CEO nanofibers formed by encapsulation in chitosan
and polyethylene oxide polymers showed good antibacterial
activity against Staphylococcus aureus and Escherichia coli, no
cytotoxicity against humans fibroblast cell lines, and exhibited
good wound healing potential (116). The retention of CEO
in chitosan nanoparticles (ChNPs) was as high as 55.8-73.4%,
and its antioxidant activity was significantly higher. Ashjazadeh
et al. (117) also demonstrated that CE nanofibers showed the
best granulation tissue by producing collagen and outperformed
nanofibers such as nano zinc oxide in promoting wound
healing in rats. Shetty et al. (118) found that ethosomal gel
of the CEO was more effective in the treatment of cutaneous
candidiasis than the pure CEO. In the croton oil-induced skin
inflammation model in mice, it was found that nanofibers and
nanoemulsions were more effective in the topical treatment
of inflammation, and the efficacy of nanofibers was relatively
higher than that of medicinal nanoemulsions (119). Plant
essential oil is lipophilic, can easily cross cell membranes,
and has greater anticancer efficacy potential. The CEO-based
nanoemulsion system can increase drug retention time and
improve bioavailability, making it a good candidate for cancer
drug delivery systems. In addition, CEO nanoemulsions have
greater potential in the food and agriculture industries. CEO-
based nanoemulsions prepared by ultrasound using Tween 80
can be used as a natural delivery system to extend the shelf life
of food products (120). The use of CEO-based nanoemulsions
as green nanocarriers can significantly improve the solubility,
bioavailability, and release of the pesticide Atrazine (ATZ). ATZ
nanoemulsions also exhibited excellent herbicidal activity at low
concentrations compared to commercial ATZ analogs (121).

Food storage

Syzygium aromaticum showed beneficial advantages in
antibacterial and antifungal activity, aromaticity and safety,
especially against a wide range of food-borne microorganisms,
making it a potential and valuable preservative in the food
industry. The antifungal activity of clove is superior to that
of lemongrass and thyme essential oils to prevent the natural
preservation growth of fungi on dried apricots (122). Ju et al.
(123) confirmed by accelerated storage tests that the CEO can
extend the shelf life of food bakery products by 2–4 days
under normal packaging. Hasheminejad et al. (124) found that
encapsulation of CEO by ChNPs was more effective in extending
the shelf life of food than CEO alone, and in a pomegranate shelf
life and quality study, CEO-ChNPs improved the antifungal
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effect of CEO, effectively extending the shelf life by 54 days.
Both CEO and CEO-based nanoemulsions inoculated into
Talaga cheese were found to have significant inhibitory activity
against foodborne pathogens such as Listeria monocytogenes and
Shigella flexneri. Compared to CEO, CEO-based nanoemulsions
significantly reduced the counts of inoculated pathogens from
8.2 to 1.5 log10cfu/g, showing greater antimicrobial effect (125).
In addition, the addition of CEO to the structure of electrospun
zein can better inhibit the growth of Listeria monocytogenes and
Escherichia coli, effectively extending the shelf life of Iranian
white cheese (126). The addition of clove powder to kimchi paste
inhibited the growth of total aerobic and lactic acid bacteria,
delayed the changes in O2 and CO2 concentrations and sugar
and organic acid contents, and slowed down the decrease in
pH, thus extending its shelf life (127). In addition, Eugenol-lean
clove extracts can be used as a substitute for mustard flavoring
in mayonnaise. They can improve its associated physical
properties, giving it higher antioxidant activity and reducing
capacity (128). Mixing the active ingredients in S. aromaticum
into feeds has potential uses for improving meat quality, for
example, adding S. aromaticum seeds to broiler chicken diets can
significantly improve water retention, cooking loss percentage
and tenderness of meat (129).

Insecticidal efficacy

Plant-based biopesticides have been proposed to be the
best pest control tools compared to conventional synthetic
molecules. Many plants’ essential oils exhibit broad-spectrum
insecticidal and repellent properties, are relatively non-toxic
to mammals and fish and have gradually developed become
potential alternatives to synthetic insecticides. S. aromaticum
has been widely studied for its excellent insecticidal biological
potential and higher safety for the environment and humans
(130). The insecticidal potential of clove seed powder was
evaluated by red palm weevil. It was found that S. aromaticum
seeds powder at a dosage of 7 mg resulted in 100% mortality
within three days (30). Terpenoids in S. aromaticum can
reduce the respiratory rate of Sitophilus granarius L. exhibit
a tropism effect, and prevent or delay the development
of insecticide resistance (131). Viteri et al. (132) found
that CEO had similar insecticidal activity to the synthetic
pyrethroid insecticide deltamethrin, significantly affecting the
oviposition of sublethally exposed Callosobruchus maculatus
females and affecting their population growth. In addition,
S. aromaticum showed high levels of repellency against fleas,
aphids, nymphal instars, mites, mosquito species (Aedes
aegypti, Anopheles gambiae, Culex quinquefasciatus etc.),
termite and red imported fire ants etc. (133, 134). Toxicity
assessment of clove powder, eugenol, eugenol acetate, and
β-caryophyllene against red imported fire ants Solenopsis
invicta Buren revealed that application of clove powder

at 3 and 12 mg/cm2 provided 100% ant mortality within
6 h and repelled 99% within 3 h. Compared to eugenol
acetate, β-caryophyllene and CEO, eugenol was the compound
with the fastest action against red imported fire ants. And
with increasing application rates, the LT50 values of the
chemical compounds inclined exponentially (135). The findings
suggest that S. aromaticum has potential as a natural source
of insecticides.

Other applications

While acetaldehyde is the main cytotoxin formed by
alcohol metabolism and causes liver damage, extracellular
matrix changes, inflammation, and hangover in heavy drinkers,
clove polyphenol extract can accelerate the elimination of
acetaldehyde from human blood, reduces hangover, and
alleviates alcohol-related side effects (136). Clove has also
been used worldwide as an anesthetic for various fish species,
including several Amazon fish, Far Eastern catfish, small-sized
tropical fish, and Pacific hagfish. Due to its better antioxidant
effects, clove has also been used in recent years in studies
on the role of skin barrier repair, where it activates the
nuclear erythroid 2-related factor/antioxidant response element
(Nrf2/ARE) signaling pathway to increase antioxidant activity.
It significantly increases type I procollagen and elastin levels
through TGF/Smad signaling and effectively ameliorates UVB-
induced photoaging (137).

Conclusion and prospect

This paper review the nutritional composition,
phytochemistry, pharmacological effects and application
prospects of S. aromaticum by combining traditional literature
with modern evidence. Eugenol is the main phytoconstituent
of S. aromaticum, which is involved in almost all the
pharmacological activities of S. aromaticum and has been
extensively studied in recent years. S. aromaticum also has
a variety of nutritional and other phytoconstituents, such as
β-Caryophyllene, α-Humulene, sesquiterpene, flavonoids, etc.
These compounds are responsible for the powerful antioxidant
and antibacterial properties of S. aromaticum. Respectively, no
in-depth studies were carried out on individual substances to
explore their pharmacological effects and mechanisms.

The current research on S. aromaticum mainly focuses on
the active ingredients of flower buds (clove). A large amount of
literature has proved that the CE has various pharmacological
activities, such as antioxidant, antibacterial, anti-inflammatory,
antiviral, analgesic, neuroprotective, hypoglycemic, anticancer,
etc. Clove has been widely used in food, medicine, and
cosmetics. The other parts of S. aromaticum (seeds, leaves, etc.)
also have similar active ingredients as those in flower buds.
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However, no extensive studies were carried out on other parts
of S. aromaticum. Thus, more research on other parts of the
S. aromaticum and the compounds present is worth it.

In addition, although there is a large amount of
pharmacological evidence in the literature that can lay the
foundation for clinical studies on S. aromaticum, a search
through the ClinicalTrials.gov and Chinese Clinical Trials
Registry shows that there are still less than 30 registered
clinical studies on S. aromaticum. These studies mainly focus
on the effects of clove oil on pain and dental caries, as well as
the clinical efficacy observation of Chinese medicine such as
Dingxiang Shidi Decoction, Dingxiang Kaiwei Paste combined
with other therapies. The results of the only clinical studies
on S. aromaticum have proved that its biological activity is
consistent with the results of preclinical studies. However, due
to the small number and scope of clinical studies, it still cannot
fully reflect the real clinical situation, and the clinical value
of S. aromaticum has not been fully explored. Therefore, it
is recommended that controlled clinical studies be conducted
to understand more about the pharmacology, molecular
mechanisms, and safety of S. aromaticum. In-depth studies
on the bioactivity of the constituents, their structure-activity
relationships and potential interactions (either synergistic or
antagonistic) should be carried out.

In conclusion, S. aromaticum is an edible plant with various
bioactive components and biological activities. It has a lot of
opportunities for further development to improve its value and
use in the food and pharmaceutical industries.
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Active fractions of
golden-flowered tea (Camellia
nitidissima Chi) inhibit epidermal
growth factor receptor mutated
non-small cell lung cancer via
multiple pathways and targets in
vitro and in vivo
Ziling Wang1†, Xiaoying Hou2†, Min Li3, Rongsheng Ji1,
Zhouyuan Li1, Yuqiao Wang1, Yujie Guo1, Dahui Liu1,
Bisheng Huang1* and Hongzhi Du1*
1Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province,
School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China, 2School of Medicine,
Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China, 3Shenzhen Luohu
Hospital Group Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University,
Shenzhen, China

As a medicine-food homology (MFH) plant, golden-flowered tea (Camellia

nitidissima Chi, CNC) has many different pharmacologic activities and is

known as “the queen of the tea family” and "the Panda of the Plant world".

Several studies have revealed the pharmacologic effects of CNC crude extract,

including anti-tumor, anti-oxidative and hepatoprotective activity. However,

there are few studies on the anti-tumor active fractions and components

of CNC, yet the underlying mechanism has not been investigated. Thus,

we sought to verify the anti-non-small cell lung cancer (NSCLC) effects of

four active fractions of CNC. Firstly, we determined the pharmacodynamic

material basis of the four active fractions of CNC (Camellia. leave. saponins,

Camellia. leave. polyphenols, Camellia. flower. saponins, Camellia. flower.

polyphenols) by UPLC-Q-TOF-MS/MS and confirmed the differences in

their specific compound contents. Then, MTT, colony formation assay

and EdU incorporation assay confirmed that all fractions of CNC exhibit

significant inhibitory on NSCLC, especially the Camellia. leave. saponins

(CLS) fraction on EGFR mutated NSCLC cell lines. Moreover, transcriptome

analysis revealed that the inhibition of NSCLC cell growth by CLS may be via

three pathways, including “Cytokine-cytokine receptor interaction,” “PI3K-Akt

signaling pathway” and “MAPK signaling pathway.” Subsequently, quantitative

real-time PCR (RT-qPCR) and Western blot (WB) revealed TGFB2, INHBB,

PIK3R3, ITGB8, TrkB and CACNA1D as the critical targets for the anti-tumor

effects of CLS in vitro. Finally, the xenograft models confirmed that CLS

treatment effectively suppressed tumor growth, and the key targets were also
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verified in vivo. These observations suggest that golden-flowered tea could

be developed as a functional tea drink with anti-cancer ability, providing an

essential molecular mechanism foundation for MFH medicine treating NSCLC.

KEYWORDS

golden-flowered tea, Camellia nitidissima Chi (CNC), non-small cell lung cancer
(NSCLC), natural product, epidermal growth factor receptor (EGFR)

Introduction

Golden-flowered tea (Camellia nitidissima Chi—CNC) as
an edible and medicinal plant (EMP) is an evergreen shrub
belonging to the family Camellia (1). Golden-flowered tea has
been known as “the panda of the plant world” and “the queen
of the tea family” for its great ornamental and medicinal
value. According to the “Guangxi Zhuang Autonomous Region
Zhuang Medicine Quality Standard” (2), CNC has been used
to treat various diseases such as pharyngitis, dysentery, liver
cirrhosis and cancer for a long time. Most recently, CNC
has been introduced and cultivated in Australia, Japan, the
United States, and other countries (3). Moreover, a plethora of
researchers are interested in the anti-cancer effects of CNC as a
functional food.

Previous studies of CNC pharmacological effects had
emphasized anti-tumor, anti-obesity and hypolipidemic effects
(4, 5). In the last two decades, much of the research about CNC
has explored the pharmacological effects of flower fractions,
while the studies of leaf fractions are extremely rare. In fact,
the leaves of CNC have been used as tea for a long time (6).
Although, several studies have revealed the anti-cancer effects
of CNC leaves crude extract, there are few reports on the anti-
tumor active fractions and components of CNC (7). Thus, it
is necessary to explore the differences in the pharmacological
effects of different active fractions of CNC.

Previously, our research for the first time confirmed
that the four active fractions of CNC (Camellia. leave.
saponins, Camellia. leave. polyphenols, Camellia. flower.
saponins, Camellia. flower. polyphenols) effectively inhibited
the proliferation, metastasis and invasion of anti-NSCLC
in vitro (8), while the anti-cancer mechanism remains to be
revealed. Lung cancer is the leading type of cancer death
worldwide, with NSCLC being the most common sub-type
(9–12), accounting for approximately 85% (13). Among the
emerging oncology therapies, molecular targeted drugs have
become the first choice for treating NSCLC (14). Approximately
10–40% of NSCLC patients worldwide have tumor cells carrying
epidermal growth factor receptor (EGFR) activating mutations
(15). The epidermal growth factor receptor-tyrosine kinase
inhibits (EGFR-TKI) targeted therapy is a milestone in tumor
treatment with remarkable effects (16). However, NSCLC

frequently develops acquired resistance when treated with
NSCLC owing to factors such as tumor mutational burden
(17), immune evasion and tumor microenvironment (TME)
(18, 19). Therefore, the search for new therapeutic agents for
drug-resistant NSCLC and the analysis of medicinal treatment
mechanisms are frontier issues in oncology science, which
have scientific value and clinical guidance significance for the
treatment of NSCLC. Thus, we attempt to explore the molecular
mechanism to provide more scientific evidence for the
application of golden-flowered tea in the treatment of NSCLC.

In brief, the component difference between the four
fractions of CNC was first reported in this study. Then,
we evaluated the anti-tumor activity of four fractions of
CNC on three different NSCLC cell lines. To determine the
programmed cell death effect on non-small cell lung cancer
cells, we investigated whether CLS treatment induces the
apoptosis of NCI-H1975 cells by TdT-mediated dUTP Nick-
End Labeling (TUNEL) assay, Annexin V and propidine iodide
(PI) staining, reactive oxygen species (ROS) measurement,
superoxide dismutase (SOD) measurement, SEM examination
and lactate dehydrogenase (LDH) release. Transcriptomics
analysis was employed to probe the genetic changes after
treatment of NSCLC cells with CLS. Subsequently, RT-qPCR
and WB confirmation were performed for the candidate
pathways. Finally, Xenograft models assay also proved the
inhibitory effect of CLS in vivo. Taken together, our study
investigated the inhibitory effect of different fractions of CNC
on NSCLC (Figure 1). Importantly, our work will facilitate the
study of the anti-tumor effect and mechanism of CNC as a
functional tea.

Material and methods

Extraction of chemical constituents

The leaves and flowers of CNC were collected from
Fangchenggang, Guangxi Province, China. The extraction
method was based on the previous research of our team (7,
20). The leaves and flowers were air-dried and grinded into
powder. The powder of leaves (6.3 kg) and flowers (6.0 kg)
were separately refluxed with 95% ethanol for 3 times (3, 2 and
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FIGURE 1

Experimental design ideas.

1 h). The extracts were combined and evaporated in a rotary
evaporator to obtain ethanol extracts. Finally, four different
active fractions of CNC (Camellia. leave. polyphenols, Camellia.
flower. polyphenols, Camellia. leave. saponins, Camellia. flower.
saponins) were obtained by macroporous resin purification
process (21, 22).

Chemical characterization of active
fractions of Camellia nitidissima Chi

Determination of total polyphenols
Total polyphenols were determined by Follin-Ciocalteu

(FC) assay. The FC reagent (diluted 1:10 in water) and aqueous
Na2CO3 (10%) were added to the two fractions of CNC
(Camellia. leave. polyphenols, Camellia. flower. polyphenols) in

sequence. Gallic acid control solution was prepared to draw
the calibration curve. The absorbance value was measured at
765 nm after constant shaking at 37◦C for 30 min.

Determination of total saponins
Total saponins were determined by Vanillin-acetate method.

Firstly, 5.0 g of vanillin was weighed to configure a 5%
solution of vanillin acetate. Ginsenoside Re control solution
was prepared to draw the calibration curve. Prepared 1 mL of
1 mg/mL of the solution (Camellia. leave. saponins, Camellia.
flower. saponins) to be measured in the test tube in a water bath
to evaporate. The 5% vanillin-acetate solution and Perchloric
acid were added to the two fractions of CNC in sequence. After
heating the test tubes at 60 degrees for 10 min, the test tubes were
cooled with ice water and 5 mL of glacial acetic acid was added.
The absorbance value was measured at 560 nm.
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Qualitative and quantitative analysis of
active fractions of Camellia nitidissima
Chi

The four active fractions of CNC were identified by the
UPLC-Q-TOF-MS/MS. After being dissolved in methanol,
the sample was filtered through a 0.22 µm microfiltration
membrane for analysis. The UPLC-Q-TOF-MS/MS has
equipped with an Agilent SB-C18 (1.8 µm, 2.1 mm × 100 mm)
column. The mobile phase is composed of solvent A, 0.1%
formic acid in water and solvent B, 0.1% formic acid of
acetonitrile. The elation gradient procedure was performed:
0–9 min, 5–95% B; 9–10 min 95% B; 10–11.10 min 95–5%
B; 11.10–14 min 5% B. The flow rate was 0.35 mL/min and
the sample injection volume was 4 µL. The effluent was
alternatively connected to an ESI-triple quadrupole-linear ion
trap (QTRAP)-MS. The ESI source operation parameters were
as follows: an ion source, turbo spray; source temperature
550◦C; ion spray voltage (IS) 5,500 V (positive ion mode)/-
4,500 V (negative ion mode); ion source gas I (GSI), gas II
(GSII), curtain gas (CUR) was set at 50, 60, and 25.0 psi,
respectively; the collision-activated dissociation (CAD) was
high (23).

Cell culture

NCI-H1975 cells, A549 cells and HCC827 cells were grown
in RPMI Medium 1,640 basic (1×) supplemented with 10% fetal
bovine serum(GEMINI BIO-Products)in a humidified chamber
with 5% CO2 and 37◦C. The cell culture method is the same as
the previous culture method of our team (24).

Cell viability assay

NCI-H1975 cells, A549 cells and HCC827 cells were
seeded at 3,000, 5,000, and 3,000 cells per well of 96-well
plates in triplicate. Cell viability was measured at 72 h by
using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium
bromide (MTT) assay.

Colony formation assay

NCI-H1975 and HCC827 cells were seeded at 500 cells
per well of 6-well plates in a medium containing Penicillin-
Streptomycin-Gentamicin Solution (Solarbio, P1410). After
24 h of incubation, the cells were treated with different
concentrations of CNC every 5 days until colonies formed
in 10 days. The remaining colonies were stained with
crystal violet.

EdU incorporation assay

After NCI-H1975 and HCC827 cells were treated by
different fractions of CNC in 12-well plates for 24 h, the cells
were cultured with 10 µM EdU (KevGEN BioTECH, KGA331-
500) for 2 h, followed by incubation with 4% polychloraldehyde
for 15 min. Washed by 3% BSA in PBS twice, the cells were
incubated with 0.5% Triton X-100 (Solarbio, 9002-39-1) in PBS
for 20 min. The cell plates were washed twice with 3% BSA in
PBS and incubated with a 1 × Click-iT reactant mixture for
30 min. The cells treated with 1 × Click-iT reactant mixture
were incubated with 1 × Hochest 33342 for 30 min under dark
conditions. The proliferating cells (green) and the nuclei of all
cells were observed under a laser confocal microscope under
dark conditions. Different visual fields were randomly taken for
image collection and synthesis analysis. Finally, the proliferation
rate was calculated.

TdT-mediated dUTP Nick-End Labeling
staining

After NCI-H1975 were cultured in 12-well plates for
24 h, the cells were treated with different concentration of
CLS for 24 h. Cells were subsequently incubation with 4%
polychloraldehyde for 30 min. Washed by PBS twice, the cells
were incubated with 0.3% Triton X-100 (Solarbio, 9002-39-1)
in PBS for 10 min. The cell plates were washed twice with PBS
and incubated with a TUNEL reactant mixture for 60 min at
37◦C (Beyotime, C1086). Different visual fields were randomly
taken for image collection and synthesis analysis. And the
TUNEL positive rate was calculated and normalized to that of
the control group.

Annexin V and propidine iodide
staining

The apoptosis rate of NCI-H1975 cells using Annexinv-
fluorescein isothiocyanate (FITC) and PI double staining
technique (KevGEN BioTECH, KGA107). NCI-H1975 cells
were processed at different concentrations of CLS for 48 h. The
cells were collected by digestion with EDTA-free trypsin and
washed twice with PBS. After processing according to the steps
in the instructions, all groups were measured by flow cytometer.

Reactive oxygen species measurement

The effect of different concentrations on CLS-mediated ROS
production in NCI-H1975 cells was determined using the cell-
permeable fluorescent probe 2’,7’-dihydrofluorescein-diacetate
(DCFH2-DA). NCI-H1975 cells were incubated in different
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concentration of CLS for 24 h, the cells were cultured with 1
µM DCFH2-DA (Solarbio, D6470) for 30 min at 37◦C. And
the ROS positive rate was calculated and normalized to that of
the control group.

Superoxide dismutase measurement

The effect of different concentrations on CLS-mediated
SOD production in NCI-H1975 cells was determined using the
SOD reagent kit (Njjcbio, A001-3-2). After being processed
at different concentrations of CLS for 48 h, the proteins of
NCI-H1975 cells were extracted. The relative content of SOD
was determined by the reagent kit. The SOD positive rate was
calculated and normalized to the control group.

Scanning electron microscope
examination

After NCI-H1975 cells were treated in accordance with the
above-described experimental design, SEM was used to observe
the difference between the treated and control groups. After
cell crawling was washed with PBS, electron microscope fixative
(Servicebio, G1102) was added and placed in a four-degree
refrigerator for 1 h. Ethanol gradients were used to remove
water from the samples, with dehydrating agent concentrations
of 30, 50, 70, 80, 90, and 100% (twice) in order, with each
dehydration time of 5 min. Finally, the samples were dried
in the desiccator for 1.5 h and then sprayed with gold
and photographed.

Lactate dehydrogenase release

The release of IL-1β and LDH can be detected during the
onset of pyroptosis (25). After NCI-H1975 cells were treated in
accordance with the above-described experimental design, LDH
release was measured by LDH assay kit (Njjcbio, A020-2) to
observe the difference between the treated and control groups.
The absorbance was measured at a wavelength 450 nm using
microplate reader.

Ribonucleic acid sequencing analysis
and differential expression analysis

RNA degradation and contamination were monitored
on 1% agarose gels. The preparation of each RNA sample
requires 3 µg of RNA as input material (26). Sequencing
libraries were generated using the NEBNext R© UltraTM R©

RNA
Library Preparation Kit (NEB, USA), and index codes were

added to the attribute sequences of each sample. After the
library inspection is qualified, the different libraries are pooled
according to the requirements of effective concentration and
target data volume. And illumine sequencing is performed,
and the generated 150 bp paired-end reads. Differential
expression analysis was performed for two conditions/groups
(two biological replicates per condition) using the DESeq2 R
package (1.16.1). Genes identified by DESeq2 with adjusted
p-values < 0.05 were designated as differentially expressed
genes. Gene Ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis of
differentially expressed genes was implemented by the cluster
profile R package (27, 28).

Reverse transcription and real
time-quantitative polymerase chain
reaction

Total RNA was extracted from cell culture samples using
the TRNzol Universal Reagent (Tiangen, W9712) according
to the manufacturer’s instructions. The cDNA was synthesized
from total RNA (1 µg) using reverse transcription (Vazyme,
R323-01). Primer sequences were as follows in Table 1. PCR
amplification was executed by the SYBR Green PCR master mix
(LightCycler 480, 30408), and the PCR-amplified gene products
were analyzed.

Western blot analysis

After the cells were treated with CLS for the indicated
time, cell lysates were lysed by RIPA buffer supplemented
with a complete protease and phosphatase inhibitor mixture
(Beyotime, 45482). Samples of mouse tumor tissues were
stored in a −80◦C refrigerator and homogenized with
RIPA (Solarbio, 676). Proteins were separated on a 6–10%
SDS-PAGE system and transferred to a polyvinylidene
fluoride (PVDF) membrane. WB was performed according
standard protocol with following primary antibodies: Anti-
ACTB (Abclonal, AC004; 1:10,000), Anti-INHBB (Abclonal,
A8553;1:1,000), Anti-TGFB2 (Abclonal, A3640; 1:1,000),
Anti-ITGB8 (Abclonal, A8433; 1:1,000), Anti-PIK3R3
(Abclonal, A17112; 1:1,000), Anti-TrkB (Abclonal, A2099;
1:1,000), Anti-CACNA1D (Abclonal, A16785; 1:1,000),
HPR Goat Anti-Mouse (Abclonal, AS003; 1:2,000) or HPR
Goat Anti-Rabbit (Abclonal, AS014; 1:2,000) secondary
antibodies were used. Protein bands were visualized by
chemiluminescence reagents (Meilunbio, MA0186-1)
and were performed using a luminescent image analyzer
(Proteinsimple, 601577). Raw data were analyzed by
using Fuji film v3.0.
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TABLE 1 Primer sequences.

Gene Forward sequence Reverse sequence

18S AGGTCTGTGATGCCCTTAGATG TCCTCGTTCATGGGGAATAATTG

INHBB GAAATCATCAGCTTCGCCGAGAC GGCAGGAGTTTCAGGTAAAGCC

TGFB2 AAGAAGCGTGCTTTGGATGCGG ATGCTCCAGCACAGAAGTTGGC

PIK3R3 CCACCTAAGCCAATGACTTCAGC GTTGAGGCATCTCGGACCAAGA

ITGB8 CTGTTTGCAGTGGTCGAGGAGT TGCCTGCTTCACACTCTCCATG

TNFRSF10C GGTGTGGATTACACCAACGCTTC CTGACACACTGTGTCTCTGGTC

MEF2C TCCACCAGGCAGCAAGAATACG GGAGTTGCTACGGAAACCACTG

EIF4E1B GACAAGATCGCTGTGTGGACGA GTTGCTCTTGGTGGCTGTGTCT

TrkB ACAGTCAGCTCAAGCCAGACAC GTCCTGCTCAGGACAGAGGTTA

CACNA1D CTTCGACAACGTCCTCTCTGCT GCCGATGTTCTCTCCATTCGAG

IL-1β TGCTCAAGTGTCTGAAGCAG TGGTGGTCGGAGATTCGTAG

Xenograft models

Thirty 5-week-old BALB/c-nude mice were obtained from
the Biont (Jiangsu, No.320727210100432325). All mice were
housed in a temperature-controlled environment (24 ± 2◦C)
with a 12/12 h dark/light cycle at the Animal Center of Hubei
university of Chinese medicine. The standard rat chow and
water used for animal feeding and all animal experiments
were conducted by the animal ethics-related regulations of
Hubei University of Traditional Chinese Medicine, permission
number: SYXK2017-0067-ZYZYZX2022-2. BALB/c-nude mice
were injected subcutaneously in the armpit with NCI-H1975
(5 × 106 cells/mice) in 150 µL PBS. After the mean
tumor volume reached 50 mm3, BALB/c-nude mice were
randomly divided into model control group (n = 6), tax
group (n = 6), low-dose group (n = 6), medium-dose group
(n = 6), high-dose group (n = 6). Low-dose orally took
100 mg/kg CLS every day, medium-dose orally took 200 mg/kg
CLS every day, and high-dose orally took 400 mg/kg CLS
every day. And taxol (anhydrous ethanol: castor oil = 1:1)
was injected at 20 mg/kg every 2 days in the tail vein.
Tumor volume was monitored by vernier calipers throughout
the experiment. All mice were executed and tumors were
removed on day 13.

RTV = Vt
V0 , where V0 represents the tumor volume of day

1 (the day of CLS first administration), Vt represents the tumor
volume of day 13 (29).

Immunohistochemistry

Samples from the tumor xenografts and liver were dissected,
formalin-fixed and paraffin-embedded. Paraffin blocks were
placed on the pre-cooling table and adjusted the knees to 4-
Mm thickness. Sections were incubated with citric acid (pH
6.0) antigen retrieval buffer (Beyotime, P0085) for antigen
retrieval in a microwave oven. After blocking endogenous

TABLE 2 Total polyphenols and saponins in different fractions of CNC
(n = 6).

Bio active substance Fraction of CNC mg/g dry mass

Total polyphenol content CLP 136.89±3.18

CFP 327.03±4.03

Total saponin content CLS 38.83±0.57

CFS 56.53±0.83

peroxidase with 3% hydrogen peroxide, and serum sealing
by 3% BSA (Beyotime, P0007), sections were then incubated
by Ki67 antibody (Abcam, Ab16667) and further processed
with secondary antibody (Abcam, Ab6721). The chromogenic
reaction was performed by DAB (Solarbio, DA1010). Sections
were counterstained with hematoxylin (Solarbio, H8070) and
observed under a microscope. The nucleus of hematoxylin
stained is blue, and the positive expression of DAB is
brownish yellow.

Data presentation and statistical
analysis

All graphs were generated using GraphPad Prism 8.0
(SanDiego, CA, USA). One-way ANOVA with Bonferroni
correction was used for statistical analyses. Statistical
significance was set at ∗p < 0.05, and ∗∗p < 0.01 compared to
control unless stated differently.

Results

Total polyphenols and total saponins
contents of Camellia nitidissima Chi

As is known, total polyphenols and total saponins are
important active ingredients in tea beverages. Therefore, we first
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FIGURE 2

Chemical composition analysis of CLS, CLP, CFS, and CFP by using UPLC-QTOF-MS. (A) Total Ion Chromatography (TIC) in the positive and
negative ion mode of CLS by UPLC-QTOF-MS. (B) Total Ion Chromatography (TIC) in the positive and negative ion mode of CLP by
UPLC-QTOF-MS. (C) Total Ion Chromatography (TIC) in the positive and negative ion mode of CFS by UPLC-QTOF-MS. (D) Total Ion
Chromatography (TIC) in the positive and negative ion mode of CFP by UPLC-QTOF-MS/MS.

determined the contents of total polyphenols and total saponins
in each of the four active fractions of CNC. The polyphenols
contents of Camellia. leave. polyphenols (CLP) and Camellia.
flower. Polyphenols (CFP) in terms of gallic acid equivalent

(standard curve equation: y = 4.2285x+0.0597, r2 = 0.999) were
from 20 to 100 µg/mL and listed in Table 2. The polyphenols
contents in CLP were 136.89 ± 3.18 mg/g and the phenolic
contents in CFP were 327.03 ± 4.03 mg/g. Table 2 also
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showed the content of total saponins reported as Ginsenoside
Re equivalent (standard curve equation: y = 1.4807x+0.0223,
r2 = 0.99), which were from 0.02 to 0.14 mg/mL. Saponin
contents were 38.83 ± 0.57 mg/g in CLS and 56.53 ± 0.83 mg/g
in CFS as shown in Table 2. The results indicated that total
saponins and total polyphenols might be important active
components in goldenrod tea.

Active compounds analysis in Camellia
nitidissima Chi by UPLC-QTOF-MS/MS

To confirm the material basis of CNC, the active chemical
components of the four active fractions of CNC were
detected separately by UPLC-QTOF-MS/MS. As is shown
in Figure 2A and Table 3, the three components with the
highest content in CLS are isoschaftoside, hyperin and vicenin-
2. In CLP, the three main effective compounds are 6-O-
Feruloyl-β-D-glucose, epicatechin glucoside and isoschaftoside
(Figure 2B and Table 3). However, astragalin, isoschaftoside
and brevifolin carboxylic acid are the most abundant substances
in CFS (Figure 2C and Table 4). And in CFP, 6-O-
Galloyl-β-D-glucose, 3-O-Galloyl-D-glucose and isoschaftoside
demonstrated extremely high content (Figure 2D and Table 4).
In conclusion, we initially revealed the specific chemical
composition of different fractions of CNC, which laid the
foundation for the subsequent activity study.

Camellia nitidissima Chi inhibited the
proliferation of multifarious non-small
cell lung cancer cell lines

To determine the anti-cancer effect on different non-small
cell lung cancer cells, we firstly investigated whether CNC
treatment inhibits the proliferation of NSCLC by MTT assay.
Treating with CNC significantly suppressed the proliferation
of NCI-H1975, A549 and HCC827 cells (Figures 3A,B). After
72 h of treatment, the results confirmed that CLS, CLP, CFS and
CFP could significantly inhibit the proliferation of NCI-H1975,
A549, and HCC827 cells. It was worth noting that the active
fractions of CNC exhibited high inhibitory effect on 3 NSCLC
cell lines, especially on EGFR mutant cells NCI-H1975.

Combining the information from the previous MTT assay,
we selected NCI-H1975 and HCC827 cells as the main research
object. Thus, we performed a colony formation assay by giving
CNC every 5 days for 10 days into NCI-H1975 and HCC827
cells. The results demonstrated that CNC treatment significantly
restrained anchorage-dependent colony formation of NCI-
H1975 and HCC827 cells (Figure 3C and Supplementary
Figure 1). At low doses, the NCI-H1975 cells eventually
all died as well, demonstrating the remarkable anti-tumor
activity of CNC.

Furthermore, the EdU assay is one of the most accurate
and direct methods for detecting cell proliferation. Observed by
laser confocal microscope, the proportion of proliferating NCI-
H1975 and HCC827 cells (green) was significantly lower than
the control group after 24 h of different concentrations of CNC
treatment (Figure 4 and Supplementary Figure 1). Expectedly,
CNC treatment led to the significantly decreasing proliferation
of NCI-H1975 cells. Simultaneously, we found that CLS had a
higher proliferating inhibitory effect on NCI-H1975 cells. These
collective data indicated that CNC inhibited the proliferation of
NSCLC, supporting that CNC is a new anti-cancer EMP with
promising research prospects.

Camellia. leave. saponins induced
programmed non-small cell lung
cancer death through pyroptosis

To determine the programmed cell death effect on non-
small cell lung cancer cells, we investigated whether CLS
treatment induces the apoptosis of NCI-H1975 cells by TUNEL
assay. Treating with CLS significantly induced the apoptosis of
NCI-H1975 cells (Figure 5A). Subsequently, we found that CLS
inhibited ROS production, suggesting that NCI-H1975 may not
induce programmed cell death through ferroptosis (Figure 5B).
These results might originate from the antioxidant effect of CNC
related (6). Annexin V-FITC/PI assay results showed that CLS
treatment significantly unregulated the appearance of labeled
cells in Q3 (from 1.98 ± 0.51 to 5.27 ± 2.87) suggesting that
there was an increased early apoptosis in NCI-H1975 cells
(Figure 5C). Moreover, scanning electron microscope (SEM)
showed that the cell in the control group were normal and
cell membranes were intact. By contrast, the cell in CLS group
showed the damaged cell membranes and evidently increased
number of scorched corpuscle (Figure 5D). To further confirm
whether the cells underwent pyroptosis, we examined the
levels of LDH in the cell supernatant and the relative mRNA
expression of IL-1β. These results showed LDH content and
IL-1β expression increased with increasing concentrations of
CLS administration, which gave the best agreement with CLS
induced programmed cell death through pyroptosis (Figure 5E).

Transcriptome analysis of Camellia.
leave. saponins -treated NCI-H1975
cells

The above studies confirmed the anti-tumor activity of CLS,
yet the mechanism of CLS treatment is unknown. Therefore, we
applied transcriptome analysis to initially study the mechanism
of CLS treatment. The global gene expression changes induced
by CLS treatment were determined by comparing the gene
profiled NCI-H1975 cells based on microarray data. We
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TABLE 3 Compounds of CLS and CLP.

Fractions
of CNC

Compound Rt(min) Molecular
formula

Ion Tentative
identification

Measured
m/z

MS/MS Relative
content (%)

CLS 1 2.94 C33H40O21 [M+H]+ Quercetin-3-O-
rutinoside-7-O-
glucoside

773.21 303.05 0.003

2 2.97 C15H14O6 [M+H]+ Catechin 291.09 139.04 0.09

3 3.11 C27H30O15 [M+H]+ Apigenin-6,8-di-C-
glucoside
(vicenin-2)*

595.17 457.20 2.36

4 3.28 C15H14O6 [M+H]+ Epicatechin 291.09 139.04 0.83

5 3.32 C17H24O10 [M+H]+ Geniposide 389.14 209.08 1.89

6 3.34 C26H28O14 [M+H]+ Schaftoside 565.16 529.13 0.02

7 3.35 C26H28O14 [M+H]+ Isoschaftoside* 565.16 409 4.39

8 3.38 C16H22O9 [M+H]+ Swerosideit 359.13 197 2.1

9 3.51 C22H18O11 [M+H]+ Gallocatechin gallate 459.09 139.04 0.006

10 3.52 C21H20O13 [M+H]+ Myricetin-3-O-
glucoside

481.10 319.04 0.008

11 3.66 C27H30O16 [M+H]+ Quercetin-3-O-
glucoside-7-O-
rhamnoside

611.16 303.05 1.01

12 3.77 C33H40O20 [M+H]+ Kaempferol-3-O-
(6”-Rhamnosyl-2”-
Glucosyl) Glucoside
(camelliaside A)

757.22 287.06 1.36

13 3.77 C21H20O10 [M+H]+ Apigenin-8-C-
Glucoside
(vitexin)

433.11 313.07 0.46

14 3.83 C21H20O12 [M+H]+ Quercetin-5-O-β-D-
glucoside

465.10 303 2.08

15 3.90 C27H30O15 [M+H]+ Kaempferol-3-O-
glucorhamnoside

595.17 287.06 0.29

16 4.00 C20H18O11 [M+H]+ Quercetin-3-O-
xyloside
(reynoutrin)

435.09 303.06 0.35

17 4.04 C30H26O12 [M+H]+ Apigenin-7-O-(6”-p-
Coumaryl)
glucoside

579.15 271 0.89

18 4.16 C21H20O10 [M+H]+ Apigenin-7-O-
glucoside
(cosmosiin)*

433.11 271 0.34

19 4.34 C21H20O11 [M+H]+ Quercetin-3-O-
rhamnoside
(quercitrin)

449.11 303.05 0.02

20 5.02 C15H10O7 [M+H]+ Quercetin 303.05 137 1.82

21 5.67 C15H10O6 [M+H]+ Kaempferol 287.06 153.02 0.14

22 6.12 C11H12O3 [M+H]+ p-Coumaric acid
ethyl ester

193.09 147 0.68

23 1.74 C7H6O5 [M-H]− Gallic acid 169.01 125 0.68

24 3.05 C7H6O3 [M-H]− Salicylic acid 137.03 108 0.26

25 3.08 C7H6O3 [M-H]− Protocatechualdehyde 137.02 93 0.45

26 3.40 C9H10O2 [M-H]− p-Coumaryl alcohol 149.06 131 0.002

(Continued)
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TABLE 3 (Continued)

Fractions
of CNC

Compound Rt(min) Molecular
formula

Ion Tentative
identification

Measured
m/z

MS/MS Relative
content (%)

27 3.75 C21H20O10 [M-H]− Apigenin-6-C-
glucoside
(isovitexin)

431.10 311 1.2

28 3.76 C36H36O18 [M-H]− Kaempferol-3-p-
coumaroyldiglucoside

755.19 285 0.1

29 3.81 C21H20O12 [M-H]− Quercetin-3-O-
glucoside
(isoquercitrin)

463.09 300 2.08

30 3.81 C21H20O12 [M-H]− Quercetin-3-O-
galactoside
(hyperin)*

463.09 300 2.45

31 3.84 C22H18O10 [M-H]− Epicatechin gallate* 441.08 169 0.03

32 3.84 C22H18O10 [M-H]− Catechin gallate* 441.08 169.02 0.03

33 4.21 C15H10O7 [M-H]− Morin 301.04 151 1.9

34 5.87 C30H46O4 [M-H]− Camaldulenic acid 469.33 425 1.92

CLP 1 1.86 C13H18O8 [M-H]− 4-O-Glucosyl-3,4-
dihydroxybenzyl
alcohol

301.09 139.05 1.36

2 1.94 C13H16O9 [M-H]− Protocatechuic
acid-4-O-glucoside

315.07 153.02 1.35

3 2.29 C14H20O9 [M-H]− 2-(3,4-
dihydroxyphenyl)
ethanediol 1-O-β-D-
glucopyranoside

333.1 153.02 2.21

4 2.44 C21H24O11 [M-H]− Epicatechin-4’-O-β-
D-glucopyranoside

451.13 289.0 0.96

5 2.47 C11H12N2O2 [M+H]+ 1-Methoxy-indole-3-
acetamide

205.1 146.06 1.01

6 2.63 C21H24O11 [M-H]− Epicatechin
glucoside*

451.12 289.07 3.43

7 2.97 C15H18O8 [M-H]− p-Coumaric acid-4-
O-glucosidep-
Coumaric
acid-4-O-glucoside

325.09 163.04 2.36

8 3.1 C7H6O3 [M-H]− Protocatechualdehyde 137.02 93.04 0.99

9 3.11 C7H6O3 [M-H]− 4-Hydroxybenzoic
acid

137.02 93 1.52

10 3.14 C27H30O15 [M+H]+ Apigenin-6,8-di-C-
glucoside
(vicenin-2)

595.17 457.2 1.01

11 3.18 C16H20O9 [M-H]− 1-O-Feruloyl-β-D-
glucose

355.1 193.05 2.42

12 3.32 C17H24O10 [M+H]+ Geniposide 389.14 209.08 1.68

13 3.35 C26H28O14 [M+H]+ Isoschaftoside* 565.16 409.09 2.89

14 3.38 C16H22O9 [M+H]+ Sweroside 359.13 197 1.36

15 3.38 C26H28O14 [M+H]+ Apigenin-6-C-(2”-
glucosyl)
arabinoside

565.16 427.1 1.83

16 3.44 C29H39N3O8 [M+H]+ N1, N8-Bis
(sinapoyl)
spermidine

558.28 207.07 1.95

17 3.57 C16H20O9 [M-H]− 6-O-Feruloyl-β-D-
glucose*

355.1 193.05 3.85

18 3.67 C27H30O14 [M+H]+ Isovitexin-2’-O-
rhamnoside

579.17 313.07 1.00

(Continued)
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TABLE 3 (Continued)

Fractions
of CNC

Compound Rt(min) Molecular
formula

Ion Tentative
identification

Measured
m/z

MS/MS Relative
content (%)

19 3.88 C9H10O5 [M-H]− Gallic acid ethyl ester 197.05 124.02 1.63

20 3.89 C27H30O15 [M-H]− Kaempferol-3-O-
robinobioside
(biorobin)

593.15 285 1.08

21 4.5 C15H8O8 [M-H]− 3-O-Methylellagic
acid

315.01 299.99 0.99

22 4.98 C15H10O7 [M+H]+ Quercetin 303.05 137.02 1.09

*Indicates the top three compounds from different fractions of CNC with the highest relative content.

found that 1,008 were significantly down-regulated after CLS
treatment, while 1,077 genes were significantly up-regulated
(Figure 6A), suggesting the global transcriptome changes after
CLS treatment.

The pathway-enrichment analysis was annotated based
on different databases (GO and KEGG) for homologous
alignment to classify the function of differentially expressed
genes (DEGs) between control and CLS-treated groups.
String-based GO pathway analysis revealed several enriched
pathways, including leukocyte migration, chemotaxis, taxis,
proteinaceous extracellular matrix, and cytokine activity
(Figure 6B). Moreover, “cytokine activity’’ was the most
abundant term for DEGs in the metabolic process which
indicated cytokine-mediated signaling pathway could be
in-depth investigate (30).

Based on the KEGG, we attempted to perform a standard
pathway enrichment analysis to identify the major active
pathways for the inhibitory effect of CLS on NCI-H1975
cells. According to the pathway-enrichment analyses of these
DEGs (Q-value<0.05), the most significantly enriched pathways
are “Cytokine-cytokine receptor interaction” and “PI3K-Akt
signaling pathway” (Figure 6C). Specifically, 22 DEGs were
relevant to “Cytokine-cytokine receptor interaction,” and 23
DEGs of the PI3K-Akt signaling pathway were involved in
the anti-tumor process (Figures 6D,E). Transform growth
factors (TGF), as an important class of cytokines, have been
identified as mediators of a large number of diseases and
can regulate the TME (31). TGF can also activate TGFB
receptors on the MAPK signaling pathway, thereby affecting
the MAPK signaling pathway. Besides, a large number of
papers confirmed the existence of multi-level crosstalk between
Ras/MAPK and PI3K/Akt signaling pathways (Figure 6H)
(32, 33). Moreover, CLS treatment regulated 16 DEGs in
the “MAPK signaling pathway” while suppressing NCI-H1975
cells growth (Figure 6F). These results indicated that CLS
inhibited NSCLC cells growth via multiple targets and pathways,
especially by inhibiting signal transduction of “Cytokine-
cytokine receptor interaction,” “PI3K-Akt signaling pathway”
and “MAPK signaling pathway,” while the involvement of
the above pathways needs further experimental verifications
(Figures 6H,I).

Camellia. leave. saponins inhibited
non-small cell lung cancer via multiple
pathways and targets

To verify the results of transcriptome analysis, we
used RT-qPCR to validate the key genes of these three
pathways separately. As shown in Figure 7A, the results
showed that CLS could concentration-dependently inhibit the
mRNA levels of TGFB2, INHBB (Cytokine-cytokine receptor
interaction), PIK3R3, ITGB8 (PI3K-Akt signaling pathway),
NTRK and CACNA1D (MAPK signaling pathway) were
relatively significant and concentration-dependent (p < 0.05)
compared to the control group. The transcriptomic data and RT-
qPCR validation unveiled that TGFB2, INHBB, PIK3R3, ITGB8,
NTRK (TrkB) and CACNA1D might be a critical targeted gene
for NSCLC inhibition by CLS.

To further verify the changes in NSCLC protein expression
after CLS treatment, we measured the expression of proteins
encoded by crucial genes in NSCLC using the Western Blot assay
(Figure 7B). Compared to the control group, the expression
of these six key genes was observably decreased. These results
were consistent with the result of RT-qPCR, indicating that CLS
inhibited Cytokine-cytokine receptor interaction, PIK-Akt and
MAPK signaling pathways.

Camellia. leave. saponins suppressed
tumor development in nude mice

To further explore the effect of CLS treatment on tumor
development in vivo, tumor-bearing mice were treated with
different CLS concentrations. NCI-H1975 cells were inoculated
subcutaneously into an underarm flank of athymic mice.
Intriguingly, the body weight of low-dose, medium-dose and
high-dose treated mice were slightly lower than the untreated
animals (Figure 8B), but all vital signs such as activity status
were normal. In addition, H&E results and physiological and
biochemical results of the liver and kidney showed no significant
hepatic or renal toxicity with CLS treatment (Supplementary
Figure 2). This result might be based on the ability of CNC
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TABLE 4 Compounds of CFS and CFP.

Fractions
of CNC

Compound Rt(min) Molecular
formula

Ion Tentative
identification

Measured
m/z

MS/MS Relative
content (%)

CFS 1 1.94 C14H20O9 [M-H]− Vanilloloside 315.11 153.02 1.33

2 1.94 C13H16O9 [M-H]− Protocatechuic
acid-4-O-glucoside

315.07 153.02 1.55

3 2.68 C15H8O9 [M-H]− Vanillic
Acid-4-O-Glucuronide

341.09 161.02 1.38

4 2.68 C15H8O9 [M-H]− 1-O-Caffeoyl-β-D-
glucose

341.09 161.02 1.32

5 2.75 C20H20O14 [M-H]− 1,4-Di-O-Galloyl-D-
glucose

483.08 169.01 1.73

6 2.83 C27H30O17 [M+H]+ Quercetin-3,7-Di-O-
glucoside

627.14 303.05 1.23

7 3.10 C7H6O3 [M-H]− Protocatechualdehyde 137.02 93.04 1.13

8 3.10 C30H26O12 [M-H]− Procyanidin B2 577.14 407.08 1.02

9 3.11 C13H8O8 [M-H]− Brevifolin carboxylic
acid*

291.01 247 2.15

10 3.11 C7H6O3 [M-H]− 4-Hydroxybenzoic acid 137.02 93 1.60

11 3.29 C14H10O7 [M-H]− 4-(3,4,5-
Trihydroxybenzoxy)
benzoic acid

289.04 137.02 1.21

12 3.35 C26H28O14 [M+H]+ Isoschaftoside* 565.16 409.09 2.55

13 3.35 C26H28O14 [M+H]+ Apigenin-8-C-(2”-
glucosyl)
arabinoside

565.16 457.11 1.53

14 3.79 C22H24O11 [M-H]− Hesperetin-5-O-
glucoside

463.12 301 1.13

15 3.89 C27H30O15 [M-H]− Kaempferol-3-O-
robinobioside
(Biorobin)

593.15 285 1.43

16 3.97 C24H22O15 [M+H]+ Quercetin-7-O-(6”-
malonyl)
glucoside

551.1 303.05 1.06

17 4.03 C27H30O14 [M+H]+ Apigenin-7-O-
neohesperidoside
(Rhoifolin)

579.17 271.07 1.48

18 4.04 C27H30O14 [M+H]+ Apigenin-7-O-rutinoside
(Isorhoifolin)

579.17 271.01 1.33

19 4.06 C21H20O11 [M+H]+ Kaempferol-3-O-
glucoside
(Astragalin)*

449.11 287.06 2.68

20 4.07 C21H20O11 [M+H]+ Kaempferol-4’-O-
glucoside

449.11 287.06 1.26

21 4.17 C21H20O12 [M-H]− Quercetin-7-O-
glucoside*

463.09 301.03 1.14

22 4.72 C9H10O4 [M-H]− 3,4-Dihydroxybenzoic
acid Ethyl Ester
(Protocatechuic acid
ethyl ester)

181.05 108 1.61

23 5.51 C9H10O4 [M-H]− Ethylparaben 165.06 92.03 1.11

CFP 1 1.19 C20H18O14 [M-H]− 4,6-(S)-
Hexahydroxydiphenoyl-
β-D-glucose

481.06 301 1.62

(Continued)
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TABLE 4 (Continued)

Fractions
of CNC

Compound Rt(min) Molecular
formula

Ion Tentative
identification

Measured
m/z

MS/MS Relative
content (%)

2 1.39 C20H18O14 [M-H]− 4,6-(S)-
Hexahydroxydiphenoyl-
D-glucose

481.06 275 2.85

3 1.51 C13H16O10 [M-H]− 6-O-Galloyl-β-D-
glucose*

311.07 169.01 3.88

4 1.51 C13H16O10 [M-H]− 3-O-Galloyl-D-glucose* 311.07 169.01 3.13

5 1.94 C14H20O8 [M-H]− Vanilloloside 315.11 153.02 1.61

6 1.95 C13H16O9 [M-H]− 1-O-Gentisoyl-β-D-
glucoside

315.07 153 2.07

7 2.18 C20H20O14 [M-H]− 2,3-Di-O-Galloyl-β-D-
Glucose

483.08 169.01 1.03

8 2.68 C15H18O9 [M-H]− 1-O-Caffeoyl-β-D-
glucose

341.09 161.02 1.22

9 2.68 C15H18O9 [M-H]− Vanillic
acid-4-O-Glucuronide

341.09 161.02 1.10

10 2.75 C20H20O14 [M-H]− 1,4-Di-O-Galloyl-D-
glucose

483.08 169.01 1.43

11 2.83 C27H30O17 [M+H]+ Quercetin-3,7-Di-O-
glucoside

627.14 303.05 1.18

12 3.10 C7H6O3 [M-H]− Protocatechualdehyde 137.02 93.04 1.23

13 3.10 C30H26O12 [M-H]− Procyanidin B2 577.14 407.08 0.98

14 3.11 C7H6O3 [M-H]− 4-Hydroxybenzoic acid 137.02 93 1.71

15 3.11 C13H8O8 [M-H]− Brevifolin carboxylic acid 291.01 247 1.67

16 3.35 C26H28O14 [M+H]+ Isoschaftoside* 565.16 409.09 3.05

17 3.38 C26H28O14 [M+H]+ Apigenin-6-C-(2”-
glucosyl)arabinoside

565.16 427.1 1.51

18 3.79 C22H24O11 [M-H]− Hesperetin-5-O-
glucoside

463.12 301 1.05

19 3.89 C27H30O15 [M-H]− Kaempferol-3-O-
robinobioside
(Biorobin)

593.15 285 1.23

20 3.97 C24H22O15 [M+H]+ Quercetin-7-O-(6”-
malonyl)
glucoside

551.1 303.05 0.98

21 4.04 C27H30O14 [M+H]+ Apigenin-7-O-rutinoside
(Isorhoifolin)

579.17 271.01 1.42

22 4.06 C21H20O11 [M+H]+ Kaempferol-3-O-
glucoside
(Astragalin)

449.11 287.06 2.15

23 4.72 C9H10O4 [M-H]− 3,4-Dihydroxybenzoic
acid Ethyl Ester

181.05 108 1.41

*Indicates the top three compounds from different fractions of CNC with the highest relative content.

to inhibit lipase activity (34, 35). Compared with untreated
mice in the control group, the CLS 100 mg/kg showed a
tumor inhibition effect since day 9 (Figure 8C) while CLS
200 mg/kg and 400 mg/kg treated group significantly suppressed
tumor growth starting at day 5 (Figures 8C,D). In addition,
the tumor weights of the mice were significantly different
in all the administered groups after execution compared
to the control group (Figure 8E). Suppression of Ki67 by
CLS was also confirmed in vivo by IHC analysis in CLS-
treated BALB/c-nude mice tumors (Figures 8F,G). Based

on the in vitro transcriptome analysis and validation of
“cytokine-cytokine receptor interaction,” “PI3K-Akt signaling
pathway” and “MAPK signaling pathway,” we measured the
relative protein expression of TGFB2, INHBB, PIK3R3, ITGB8,
NTRK, and CACNA1D in tumor tissue. Interestingly, we
found that the paramount targets previously validated by cell
samples in Western blot experiments were also corroborated
in tumor samples (Figures 8H,I). Taken together, these
results proved that CLS treatment could effectively inhibit the
growth of NCI-H1975 tumor xenografts in a dose-dependent
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FIGURE 3

Inhibition of proliferation and clonogenic ability of NSCLC cell lines by four active fractions of CNC. (A) Inhibitory effects of different
concentrations of CLP, CLS, CFP, and CFS (6.25, 12.5, 25, 50 µg·mL−1) on NCI-H1975, HCC827 and A549 cells, respectively. (B) IC50 of different
concentrations of CLP, CLS, CFP, and CFS (6.25, 8, 10, 12.5, 15, 20, 25, and 50 µg·mL−1) on NCI-H1975, HCC827, and A549 cells, respectively. (C)
Inhibitory effects of different concentrations of CLS, CLP, CFS, and CFP (1.5625, 3.125, 6.25 µg·mL−1) on colony formation of NCI-H1975 cells,
respectively. ∗Indicates p < 0.05, ∗∗ indicates p < 0.01 and ∗∗∗ indicates p < 0.001 relative to the control by ANOVA. The data are presented as
the mean ± standard deviation (n = 3).

manner through cytokine-cytokine receptor interaction, PIK-
Akt, MAPK signaling pathways.

Discussion

Although EGFR-TKI have become a first-line inhibitor of
EGFR mutation-positive NSCLC, nearly half of NSCLC patients
are resistant to EGFR-TKI-based chemotherapies. Thus, it is an
urgent need for development of drugs that could inhibit NSCLC
with EGFR mutations. In this study, we identified inhibitory

effects of different active fractions of CNC on NSCLC cell
lines. Four fractions of CNC demonstrated remarkable anti-
NSCLC effect. Intriguingly, upon treatment with CLS on NCI-
H1975 cells, CLS suppressed the cytokine-cytokine receptor
interaction, PIK-Akt and MAPK signaling pathways, leading to
growth inhibition of the tumor in vitro and in vivo. Briefly, this
study suggested that CNC, as a functional food, could provide a
more efficient treatment in EGFR mutated NSCLC.

As a plant with both medicinal and ornamental value,
the pharmacological effects of its flower fractions have been
thoroughly studied (34, 36, 37), while the research on leave
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FIGURE 4

Inhibition of proliferation rate of NCI-H1975 cells by four active fractions of CNC. (A–D) Representative field of view of immunofluorescence
assay with anti-EdU antibody is shown, where in NCI-H1975 cells, the signal of incorporating with EdU was green and the nucleus was stained
blue by Hoechst. Histograms showed the mean values of cell proliferation rates after administration of different concentrations of CLS, CLP,
CFS, and CFP (6.25, 12.5, 25 µg·mL−1). ∗Indicates p < 0.05, ∗∗ indicates p < 0.01 and ∗∗∗ indicates p < 0.001 relative to the control by ANOVA. The
data are presented as the mean ± standard deviation (n = 3).

fractions was rare. Furthermore, few studies have systematically
investigated the differences in the chemical composition of the
four active fractions of CNC. In this study, we firstly identified
the three main components of CLS are isoschaftoside, vicenin-
2 and hyperin (Table 3). And recently reported, Vicenin-2 and
Hyperin were identified as two novel nature medicine against
NSCLC, indicating that CLS possess anti-NSCLC properties
and play a crucial role in patients’ defense against tumor (38,
39). However, the pharmacology effects of isoschaftoside have
been rarely reported. Hence, further investigation is needed to
evaluate the effects of isoschaftoside on NSCLC cells. Besides,
the chemical composition of the four active fractions of CNC
was found to be various by UPLC-QTOF-MS/MS (Table 4). In
the two extracted fractions of the leaves of CNC, the content
of geniposide (CLS 1.89 %, CLP 1.68 %) was high, while the
content of the two extracted fractions of the flowers was almost
absent. Extensive experiments and analysis demonstrate that
geniposide possesses relatively strong anti-tumor activity (40,
41) and pulmonary protective effect (42). This suggests that
the variation in geniposide content could contribute to the
difference in anti-tumor activity between CNC leaf fractions and
flower fractions. It is reasonable to make assumptions that the
anti-tumor activity of different fractions of CNC also differed
based on the composition differences.

Nowadays, few studies have investigated the effect of
different active fractions of CNC on NSCLC. In this study,
we examined the inhibitory of four active CNC fractions on

three cell lines of NSCLC (NCI-H1975, HCC827, A549). These
results showed that the four active fractions of CNC possessed
remarkable inhibitory on NSCLC cell lines, especially on EGFR-
T790-mutated NCI-H1975 cells (Figure 3A). To further confirm
the inhibitory effect on EGFR-T790-mutated NCI-H1975 cells,
colony formation assay and EdU incorporation assay were
performed (Figures 3B, 4). Combining the above results, we
concluded that the active fractions of CNC could effectively
inhibit the proliferation of NSCLC, among which CLS had
the better inhibitory effect on NCI-H1975 (Supplementary
Figure 1). In addition, we found that CLS could induced
programmed NSCLC death through pyroptosis (Figure 5).

Altered levels of NSCLC-related genes have been inspected
by transcriptome analysis after CLS treatment. Interestingly,
CLS appears to suppress tumor cell growth via “Cytokine-
cytokine receptor interaction,” “PI3K-Akt signaling pathway”
and “MAPK signaling pathway”(Figure 6). According to
transcriptomic results, the expression of TNFRSF10C, INHBB,
TGFB1, TGFB2, and TGFB3 were down-regulated after CLS
stimulation (Figure 6D). Studies of cytokines suggested that
chemokines as a cytokine can promote anti-tumor immunity to
NSCLC (43). At present, anti-cytokine antibodies and cytokine
blockers have been extensively studied in tumor therapy (44).
Transform growth factors (TGF), as an important class of
cytokines, have been identified as mediators of a large number
of diseases and can regulate the TME (31). Consequently,
we choose TGF-β, Activin and TRAIL as the key cytokines
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FIGURE 5

CLS induced programmed NSCLC death through pyroptosis. (A) TdT-mediated dUTP Nick-End Labeling (TUNEL) positive rate of NCI-H1975
cells after administration of different concentrations of CLS (6.25, 12.5, 25 µg·mL−1). (B) Reactive oxygen species (ROS) positive rate of
NCI-H1975 cells after administration of different concentrations of CLS (6.25, 12.5, 25 µg·mL−1). (C) Annexin V-FITC/propidine iodide (PI)
staining of NCI-H1975 cells after 48 h was performed to identify early/late apoptosis, and the data were analyzed via flow cytometry. (D) SEM
was used to detect the morphological changes of NCI-H1975 cells. (E,F) Relative uperoxide dismutase (SOD) activity and relative lactate
dehydrogenase (LDH) activity of NCI-H1975 cells after administration of different concentrations of CLS (6.25, 12.5, 25 µg·mL−1). (G) Relative
IL-1β activity and relative LDH activity of NCI-H1975 cells after administration of different concentrations of CLS (6.25, 12.5, 25 µg·mL−1).
∗Indicates p < 0.05, ∗∗ indicates p < 0.01 and ∗∗∗ indicates p < 0.001 relative to the control by ANOVA. The data are presented as the
mean ± standard deviation (n = 3).
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FIGURE 6

Transcriptome analysis of NCI-H1975 cells between the control group and CLS-treated group. (A) Volcano plot with 1,077 DEGs up-regulated
and 1,008 DEGs down-regulated. (B) GO enrichment analysis of up-regulated and down-regulated DEGs. (C) KEGG enrichment analysis of
up-regulated and down-regulated DEGs. (D) The expression heatmap of 22 DEGs related to Cytokine-cytokine receptor interaction and
Rheumatoid arthritis signaling pathway in each sequencing sample. (E) The expression heatmap of 23 DEGs related to PIK-Akt signaling pathway
in each sequencing sample. (F) The expression heatmap of 16 DEGs related to MAPK signaling pathway in each sequencing sample. (H,I)
Interaction relationships of DEGs on four signaling pathways, including TGF-β signaling pathway, TNF signaling pathway, PIK-Akt signaling
pathway and MAPK signaling pathway.
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FIGURE 7

Comparative analysis of quantitative real-time PCR (RT-qPCR) data and Western Blot (WB) data. (A) Relative mRNA levels of nine genes including
TGFB2, INHBB, TNFRSF10C, PIK3R3, ITGB8, EIF4E1B, NTRK, CACN1D, MEF2C. (B) Protein levels of INHBB, PIK3R3, TGFB2, ITGB8, TrkB,
CACNA1D detected in CLS-treated NCI-H1975 cells were detected by Western blot with quantification of each protein, n = 3 biologically
independent embryos. ∗Indicates p < 0.05, ∗∗ indicates p < 0.01 and ∗∗∗ indicates p < 0.001 relative to the control by ANOVA. The data are
presented as the mean ± standard deviation (n = 3).

and cytokine receptors. In this research, CLS treatment might
promote T cell differentiation and tumor immune response by
inhibiting the expression of three TGF phenotypes (TGF-β1,

TGF-β2, and TGF-β3), thereby inhibiting tumor angiogenesis
and invasion. At the same time, by inhibiting TNFRSF10C
competitively binding with tumor necrosis factor-associated
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FIGURE 8

CLS suppressed tumor growth in nude mice. (A,B) Signs and weight changes in nude mice, n = 6 biologically independent embryos. (C,D)
Variations in relative tumor volume (RTV) and tumor size in nude mice, n = 6 biologically independent embryos. (E) Tumor weight in nude mice,
n = 6 biologically independent embryos. (F,G) Morphological observation of tumor by H&E staining and Ki67 detected by DAB yellow staining.
(H,I) Protein levels of INHBB, PIK3R3, TGFB2, ITGB8, TrkB, CACNA1D detected in CLS-treated tumors were detected by Western blot with
quantification of each protein, n = 3 biologically independent embryos. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 relative to the control by ANOVA.
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apoptosis-inducing ligand (TRAIL), TRAIL-induced tumor
cell apoptosis can be promoted, thus possibly inhibiting the
proliferation and metastasis of tumor cells (Figures 6D,H).
Alternatively, tumor cells promote the expression of cytokines
to escape the immune response. Overall, the inhibitory of CLS
on tumor growth might be exerted by affecting the interaction
of cytokines-cytokines receptors. Among them, TGF-β and
TNFRSF10C might be the two most critical targets for
suppressing NSCLC growth. Therefore, remodeling the immune
microenvironment of NSCLC through inhibiting Cytokine-
cytokine receptor interaction provides new perspectives for the
treatment of NSCLC. Besides, our RT-qPCR and WB results
also suggested that the down-regulation of the levels of TGFB2
and INHBB genes might be important targets that suppress the
proliferation of NCI-H1975 cells (Figures 7A,B).

TGF-β induces EMT in tumor cells through Smad and
non-Smad signaling pathways, whereas non-Smad includes
signaling pathways such as PI3K, MAPK (45). Based on
transcriptomic data, we found that ITGB8 down-regulation
cascades its downstream signal PIK3R3 expression to be
suppressed (Figures 6E,I). We hypothesized that the up-
regulation of PPP2R5B combined with the down-regulation of
PIK3R3 resulted in the inhibition of the Akt-mTOR signaling
pathway (Figures 6E,I). As a result, eukaryotic initiation factor
4E (elF4E) was down-regulated. Furthermore, numerous studies
have shown that ITGB8 and EIL4E proteins are associated with
cancer migration, invasion and metastasis and autophagy (46,
47). We speculate that CLS may induce autophagy-mediated cell
death by inhibiting the PIK3R3-Akt-mTOR axis through ITGB8
down-regulation. Mitogen-activated protein kinase (MAPK)
signaling pathway, as one of the key pathways to induce
tumor production, is involved in a series of cell physiological
activities such as cell growth, differentiation and apoptosis
(48). According to the transcriptomic analysis, CLS inhibited
both CACN receptors (CACNA1D, CACNG4, CACNA1I) and
RTK receptors (NTRK2, PDGFRB) and cascade RAS was
inhibited (Figures 6F,I). The loss of Ca2+ caused by CACN
receptors repression also resulted in the down-regulation of
RAS and MEF2C expression. It is worth mentioning that
intracellular Ca2+ can be considered a major regulator of
autophagy. Therefore, we selected six genes related to PIK-
Akt and MAPK signaling pathways for RT-qPCR validation
(PIK3R3, ITGB8, EIF4E1B, TrkB, CACNA1D, and MEF2C),
and the results indicated that PIK3R3, ITGB8, NTRK, and
CACNA1D could be used as new targets for NCI-H1975
(Figures 7A,B). This observation supports the hypothesis that
CLS could induce cell autophagy and inhibit tumor growth via
PI3K and MAPK signaling pathways. However, the mechanism
by which PIK3R3, ITGB8, TrkB, and CACNA1D induce cell
autophagy and inhibit tumor growth remains to be elucidated.
We speculate that suppression of TGFB2, CACNA1D, TrkB,
and ITGB8 could result in reduced PI3K expression, which
ultimately would inhibit the metastatic and invasive ability of

NCI-H1975 (Figure 6I). In this regard, it has been reported that
Vicenin-2 (the content in CLS is 2.36%) inhibited the expression
of key proteins of PI3K/Akt and TGF-β/Smad signaling pathway
in A549 and NCI-H1299 cells, resulting in reduced EMT (39).
These observations suggesting TGFB2, INHBB, PIK3R3, ITGB8,
NTRK, and CACNA1D as major mediators in CLS-induced
NCI-H1975 cell death. Importantly, these results indicated that
CNC as a functional food has the advantage of being multi-
channel and multi-target against NSCLC.

Based on the observed effects of CLS on NSCLC, we
also constructed the xenograft models assay in nude mice
to verify whether CLS is effective in vivo NSCLC models.
In this work, we found that CLS significantly inhibited the
growth of transplanted tumors in nude mice in a concentration-
dependent manner (Figure 8A). Interestingly, the slight change
in body weight of nude mice with increasing drug doses.
However, physiological and biochemical results and H&E
sections of the liver and kidney confirmed the absence of
significant drug toxicity, suggesting CLS may play a role
in lipid-lowering (Figure 8B and Supplementary Figure 2)
(35). Also, we performed WB validation in tissue samples
of the proteins screened in the previous experiments, with
results generally consistent with cell samples (Figures 8H,I).
Also, we verified the pathological patterns of tumors and the
expression level of Ki67 in tumors by H&E and IHC, which
indicating tumor proliferation rate was significantly suppressed
(Figures 8F,G). Collectively, our findings identified CLS as
a new EMP for NSCLC, providing an essential molecular
foundation for enhanced understanding of CNC treatment
for NSCLC.

In this work, we preliminarily elucidated the anti-tumor
effect by which the four active fractions of CNC against
NSCLC and the anti-tumor mechanism of CLS. However, this
investigation has several limitations. As an essential method to
evaluate pharmacological effects of Chinese medicine, Serum
Pharmacology is an important auxiliary analysis method
(49, 50). Despite the compositions of different fractions of
CNC having been identified, the compounds in serum after
oral administration of CLS in mice still require in-depth
research. In addition, the specific compounds that affect
these signaling pathways and targets still require further
corroboration. Although the details of effective compounds
and their mechanism in CNC remain unknown, our findings
revealed a basic mechanism for the anti-NSCLC effect of CLS,
providing scientific support for the application of CNC as a
functional food with anti-cancer activity.
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SUPPLEMENTARY FIGURE 1

Inhibition of proliferation and clonogenic ability of HCC827 cells by four
active fractions of CNC. (A,B) Inhibitory effects of different
concentrations of CLS, CLP, CFS, and CFP (6.25 µg·mL−1) on colony
formation and EdU assay of HCCC827 cells. (C,D) Inhibitory effects of
different concentrations of CLS (1.5625, 3.125, 6.25 µg·mL−1) on colony
formation and EdU assay of HCCC827 cells, respectively. ∗Indicates
p < 0.05, ∗∗ indicates p < 0.01 and ∗∗∗ indicates p < 0.001 relative to the
control by ANOVA. The data are presented as the mean ± standard
deviation (n = 3).

SUPPLEMENTARY FIGURE 2

CLS treatment without significant hepatic or renal toxicity. (A) H&E
pathological sections of liver and kidney tissues. (B) Aspartate
aminotransferase (AST/GOT) and Alanine aminotransferase (ALT/GTP) of
livers in nude mice, n = 6 biologically independent embryos. (C) Urea
nitrogen (BUN) and Sreatinine (Scr) of livers in nude mice, n = 6
biologically independent embryos.
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Allium sativum L. (Garlic) is a fragrant herb and tuber-derived spice that is one

of the most sought-after botanicals, used as a culinary and ethnomedicine for

a variety of diseases around the world. An array of pharmacological attributes

such as antioxidant, hypoglycemic, anti-inflammatory, antihyperlipidemic,

anticancer, antimicrobial, and hepatoprotective activities of this species

have been established by previous studies. A. sativum houses many

sulfur-containing phytochemical compounds such as allicin, diallyl disulfide

(DADS), vinyldithiins, ajoenes (E-ajoene, Z-ajoene), diallyl trisulfide (DATS),

micronutrient selenium (Se) etc. Organosulfur compounds are correlated

with modulations in its antioxidant properties. The garlic compounds have

also been recorded as promising immune-boosters or act as potent

immunostimulants. A. sativum helps to treat cardiovascular ailments,

neoplastic growth, rheumatism, diabetes, intestinal worms, flatulence, colic,

dysentery, liver diseases, facial paralysis, tuberculosis, bronchitis, high blood
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GRAPHICAL ABSTRACT

Some of the pharmacological attributes of Garlic (Allium sativum).

pressure, and several other diseases. The present review aims to

comprehensively enumerate the ethnobotanical and pharmacological aspects

of A. sativum with notes on its phytochemistry, ethnopharmacology,

toxicological aspects, and clinical studies from the retrieved literature from

the last decade with notes on recent breakthroughs and bottlenecks. Future

directions related to garlic research is also discussed.

KEYWORDS

allium sativum, traditional uses, ethnobotany, phytochemistry, pharmacology,
toxicology
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Highlights

- Due to the numerous health benefits of Allium sativum, there
is a growing interest in its use in various industries.

- Phytochemistry, ethnobotanical, and various pharmacological
activities of A. sativum are extensively reviewed.

- Allium sativum contains various phytochemical compounds
such as allicin, E-ajoene, and Z-ajoene that are of various
therapeutic importance.

- Some of the sulfur-containing compounds extracted from
A. sativum are reviewed along with their structures.

- Toxicological and clinical studies of A. sativum are
summarized.

Introduction

Allium sativum L. (Garlic) belongs to the family
Amaryllidaceae, has been originated in Asia, and is also
widely cultivated in Egypt, Mexico, China, and Europe
(1). This plant is highly consumed in Iran, where its
foliage, flowers, and cloves are employed in local medicine
(1). All parts of A. sativum, bulbs, leaves, cloves, and
flowers are utilized to prepare mixtures and decoctions
to deal with various ailments. It is also a common spice
and food additive. Studies on its phytochemistry indicate
that sulfur-containing compounds, such as allicin, are the
essential components. Allicin (diallyl-dithiosulfinate) is
the most important alkaloid responsible for its beneficial
effects. Other sulfur-containing phytochemicals found in
A. sativum include diallyl disulphide (DDS), diallyl trisulfide
(DTS), and S-allyl cysteine (SAC), which have a variety
of pharmacological properties (1). In India, A. sativum is
used to treat fever, coughs and is administered topically
against scabies, graying of hair, and eczema, as well as
against inflammation of the tetanus and lungs (2). In
Pakistan, the plant extract is consumed orally against
stomach ailments, respiratory problems, and fever. In
Nepal, the Middle East and East Asia, the plant is applied
against fevers, rheumatism, liver disorders, diabetes, colic,
intestinal worms, dysentery, flatulence, tuberculosis, high
blood pressure, facial paralysis, and bronchitis. In Africa,
the plant has been reported to be an antibiotic, antiviral,
hypolipidemic, hypoglycemic, and antithrombotic (2–4).
In this review, the phytotherapeutic properties of garlic
have been comprehensively investigated to provide an
updated overall view of one of the most used (and best-
selling) medicinal and food plants in the world with notes
on ethnobotanical information validated by preclinical
bioactivities (i.e., in vitro and in vivo), emphasizing the
mechanisms and signaling pathways involved. We have
also discussed the recent breakthroughs and bottlenecks of

relevant research on garlic with notes on future perspectives on
garlic research.

Botany and geographical
distribution of Allium sativum

A. sativum L. (Figure 1), commonly known as garlic,
belongs to the family Amaryllidaceae (5). The bulb is mostly
used to treat ailments and the perennial herbaceous plant
is large, with upright flowering stems that extend up to
1 m (6). The leaf blades are linear, flattened, robust, and
approximately 0.5–1.0 inch (1.25–2.5 cm) long, with a pointed
apex and violet to fuchsia flowers that bloom in the Northern
Hemisphere during monsoons. Slender leaves on the exterior
of the odoriferous bulb surround an internal sheath containing
the cloves, and each bulb contains 10–20 cloves.1 Its medical
benefits have been documented in Sanskrit texts dating back
about 5,000 years and it first appeared in traditional Chinese
medicine (TCM) at least 3,000 years ago (5). Today, garlic is
grown almost everywhere and is known to have more than
300 varieties (7). At present, A. sativum is cultivated around
the world. It was first discovered in Central Asia, then spread
throughout China, the Near East, and the Mediterranean before
making its way to the southern and middle parts of Europe,
Mexico, and northern Africa, especially Egypt (5). Garlic is a
perennial herb that thrives in mild regions and can be grown all
year. Sowing each clove in the ground is a method to propagate
the plant in cultivation asexually. Cloves are usually sown 6
weeks before the land freezes in the cold season. The bulbs only
produce roots and have no stems above the surface.

Phytochemistry of Allium sativum

A. sativum bulbs are reported to have many bioactive
compounds, many of which are sulfur-containing, viz.
thiosulfinates (allicin), sulfides [diallyl disulfide (DADS)],
vinyldithiins (2-vinyl-(4H)-1,3-dithiin, 3-vinyl-(4H)-1,2-
dithiin), ajoenes (E-ajoene and Z-ajoene) diallyl trisulfide
(DATS), and so on constituting up to 82% of the total sulfur
content in garlic. Allicin, S-methyl cysteine sulfoxide (MCSO),
and S-propylcysteine sulfoxide (PCSO) are the main noxious
compounds, with allicin being the predominant cysteine
sulfoxide. Allicin, MCSO and PCSO, upon acted on by
various enzymes, further produce molecules that include allyl
methane thiosulfinates, methyl methanethiosulfonate and other
thiosulfinates (8–10). Table 1 depicts a list of phytochemicals
present in A. sativum with their molecular formula and

1 https://www.drugs.com/npp/garlic.html
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FIGURE 1

Different parts of garlic (A,B) habit; (C,D) flowers; (E–G) bulb (obtained from Wikimedia commons).

IUPAC names. Figure 2 represents the chemical structures of
phytochemicals (obtained from ChemSpider and PubChem).

Ethnobotanical uses of Allium
sativum

Garlic is a well-known culinary ingredient and seasoning
due to its strong aroma, which is attributed to organosulfur
compounds such as allicin and DADS. Garlic’s promising

therapeutic advantages in ethnomedicine include its
application against hypertension, pneumonia, hair loss,
snakebite, diabetes, wounds, cough, paralysis, scabies,
malaria, hemorrhoids, carbuncles, heart diseases, asthma,
pain, respiratory disorders, influenza, female infertility,
etc., which are mainly attributed to its antidiabetic, anti-
atherosclerotic, antimicrobial, antihypertensive, anticancer,
cardioprotective, diuretic, aphrodisiac, sedative, carminative,
and antipyretic properties evidenced by various studies.
Supplementary Table 1 shows the ethnobotanical and
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TABLE 1 Phytochemistry of A. sativum.

Compounds Molecular formula IUPAC name References

Allicin C6H10OS2 3-prop-2-enylsulfinylsulfanylprop-1-ene (7, 10, 65–67)

Alliin C6H11NO3S (2R)-2-amino-3-prop-2-enylsulfinylpropanoic acid (7, 10, 65, 67, 68)

E-ajoene C9H14OS3 (1E)-1-(Allyldisulfanyl)-3-(allylsulfinyl)-1-propene (7, 10, 69)

Z-ajoene C9H14OS3 (1Z)-1-(Allyldisulfanyl)-3-(allylsulfinyl)-1-propene (7, 10, 65)

Diallyl disulfide (DADS) C6H10S2 3-(prop-2-enyldisulfanyl) prop-1-ene (7, 10, 68, 70, 71)

Diallyl sulfide (DAS) C6H10S 3-prop-2-enylsulfanylprop-1-ene (7, 10, 67, 68)

3-Vinyl-1,2-dithiin C6H6S2 3-Vinyl-1,2-dithiine (5, 7, 65)

Diallyl trisulfide (DATS) C6H10S3 3-(prop-2-enyltrisulfanyl) prop-1-ene (7, 10, 67, 68, 71)

S-allyl-cysteine (SAC) C6H11NO2S (2R)-2-amino-3-prop-2-enylsulfanylpropanoic acid (5, 67, 68, 72, 73)

S-allylmercaptocysteine (SAMC) C6H11NO2S2 (2R)-2-amino-3-(prop-2-enyldisulfanyl) propanoic acid (67, 68)

Caffeic acid C9H8O4 (2E)-3-(3,4-Dihydroxyphenyl) prop-2-enoic acid (66)

Diallyl tetrasulfide C6H10S4 3-(prop-2-enyltetrasulfanyl) prop-1-ene (31, 70)

Allyl methyl trisulfide C4H8S3 3-(methyltrisulfanyl) prop-1-ene (70, 71)

FIGURE 2

Structures of some of the phytochemicals reported from A. sativum (obtained from ChemSpider and PubChem).

ethnotherapeutic uses of A. sativum with information on
the place of the report, local names, using ethnic groups,
modes of administration, preparatory techniques and applied
dosages.

Pharmacology of Allium sativum

The ethno-medicinal applications of A. sativum have been
studied in a number of pharmaceutical studies and clinical
investigations. The next section will gather the results of in vitro,
in vivo, and ex vivo therapeutic studies using the plant to

investigate pharmacological functions. The pharmacokinetic
characteristics of A. sativum are shown in Table 2.

Biological activity of plant extracts

Antioxidant activity
According to research, A. sativum possesses high

antioxidant properties. A study compared the antioxidant
qualities of raw and cooked cloves, finding that uncooked garlic
has an intense antioxidant potential, while prepared ones have
extensive antioxidant effects due to -carotene decolorization
(11). Oxygen radical absorption capacity (ORAC) and DPPH
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TABLE 2 Pharmacological investigations of A. sativum.

Pharmacological activity Extract/fractions/plant
parts

In vitro/in vivo/ex vivo assays/models Underlying mechanism References

Antioxidant activity Raw garlic samples DPPH radical scavenging assay, ABTS radical scavenging assay,
FRAP assay

Inhibitory activity of the pro-oxidant enzyme, the ability to
break radical chain propagation reactions, and β-carotene
bleaching

(11)

Ethanolic extract DPPH assay, oxygen radical absorption capacity (ORAC)
assays, HT22 mouse hippocampal neuronal cell line

Prevent Aβ- or glutamate-induced cell death, early stage of
sprouting

(12)

Ethanolic extract, distilled water
extract

DPPH, ABTS, FRAP, H2O2 scavenging, and Fe2+ chelating
assays

Flavonoids and phenolic compounds, fenton reaction (13)

Ethanolic clove extract DPPH and superoxide radical assay Scavenge H2O2 , inhibition of lipid peroxidation (14)

Bulb extract of aged garlic Human endothelial cells Inducing the expression of several antioxidant enzymes, the
ho-1 and GCLM subunit, through nrf2- are the pathway

(143)

Saponin based methanolic extract Mouse-derived c2c12 myoblasts Scavenging intracellular reactive oxygen species (144)

Hepatoprotective activity Ethanolic clove extract CCl4 induced male rabbits Orally received 3 ml/kg of CCl4 in olive oil (1: 1) as 1/4 LD50,
serum ALT, AST, ALP, TB, and TSP were determined

(14)

Lactic acid-fermented garlic
extract

Acetaminophen (AAP)-induced acute liver injury in rats Suppressing MAPK phosphorylation, downregulating p53 (15)

Lactic acid-fermented garlic
extract

Alcohol-induced fatty liver damage in C57BL/6J mice Decreased TBIL and DBIL values, low serum enzymes such as
ALT, AST, and ALP

(145)

Aqueous bulb extract Wistar rats Improving plasma biochemical factors of liver function, such as
urea, creatinine, and aspartate transaminase and alanine
transaminase

(17)

Anti-inflammatory activity Aged garlic extract Apolipoprotein E-knockout mice Reducing the level of TNF-α and interleukin IL-1
receptor-associated kinase 4, increasing AMPK activity in the
liver

(20)

Hexane clove extract Lipopolysaccharide-induced macrophage cell line RAW264.7 Down-regulating the expression of iNOS and COX2 (21)

Bulb extract or Allicin BALB/c mice with schistosomiasis (S. mansoni infection) Expression of IL13, tTG, IL-1β, IL-6, and TNF-α,
immunohistochemical expression of fibronectin, and α-SMA,
mRNA expression

(22)

Aqueous bulb extract LPS induced J774A.1 macrophages Inhibition of NF-kB transcription factor signaling pathway (19)

Cardioprotective activity Aged garlic extract Isolated rat aortic rings Stimulation of nitric oxide production, leading to
endothelial-dependent vasodilation

(23)

Fermented garlic extract by
Bacillus subtilis

Spontaneous hypertension rats Modulation of the sGC-cGMP-PKG pathway (146)

Fermented garlic extract Monocrotaline-induced pulmonary hypertension rats Decreasing the expression of vascular endothelial cell adhesion
molecule-1 and MMP-9, increasing the expression of PKG and
eNOS

(25)
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TABLE 2 (Continued)

Pharmacological activity Extract/fractions/plant
parts

In vitro/in vivo/ex vivo assays/models Underlying mechanism References

Black garlic extract (1.5%) High-fat diet-fed male Sprague–Dawley rats Reducing the mRNA expression of sterol regulatory
element-binding protein-1c

(147)

Aqueous garlic homogenate Male Sprague–Dawley rats Increasing Na+/K+-ATPase protein level (148)

Raw garlic Streptozotocin-induced diabetic rats Deacetylation of manganese superoxide dismutase, SIRT3
modulation

(149)

Garlic extract powder capsule Insulin-resistant obese rats Cardiac mitochondrial ROS production, cardiac mitochondrial
swelling

(150)

Garlic extract Rat model of gentamicin-induced chronic renal failure Reducing oxidative stress, controlling Na+/K+-ATPase activity
and Ca2 + levels

(151)

Anticancer activity Ethanolic clove extract DLD-1 human colon cancer cells Down-regulating the expression of cyclin B1 and CDK1,
inhibiting of activation of NF-kB

(26)

Clove extract Human prostate cancer (PC-3), colon cancer (Caco-2), breast
cancer (MCF-7), liver cancer (Hep-G2), mouse macrophage cell
line (TIB-71)

Inhibiting cell proliferation, inducing cell cycle arrest inducing
apoptosis

(27)

Aged garlic extract Human gastric carcinoma cell line (SGC-7901) Accumulating Bax, p53, and cytochrome C and decreasing the
expression of Bcl-2, MAPK pathway

(28)

Crude garlic extract Human breast cancer cells (MDA-MB-231), human esophageal
cancer cells (WHCO1)

Targeting the folding of proteins in the endoplasmic the
reticulum of cancer cells

(152)

Ethanolic bulb extract Human colorectal carcinoma cell line (SW620) Regulate the JNK and p38 MAPK pathways, reducing cell
viability

(153)

Aqueous extract Gastric adenocarcinoma (AGS) cells and normal intestinal cells
(INT-407)

Reducing the potential of the mitochondrial membrane
Bax/Bcl-2, Up-regulating cytochrome C

(154)

Ethanolic extract Mouse xenograft model of hepatoma Huh-7 cells Interaction with the Wnt pathway co-receptor LRP6
on the cell membrane

(155)

Aqueous garlic extract with
lemon extract

BALB/c mice xenograft model of breast cancer EMT6/P cells Inhibition of the expression of vascular endothelial growth
factor, increasing interferon-γ, IL-2, and IL-4 levels

(156)

Antimicrobial activity Ethanolic bulb extract Staphylococcus aureus, Escherichia coli, Pseudomonas
aeruginosa, Bacillus cereus, Aspergillus versicolor, and
Penicillium citrinum, P. expansum

Increase bacterial growth inhibition (157)

Aged garlic bulb extract Burkholderia cepacia Increase bacterial growth inhibition (158)

Ethanolic bulb extract Bacillus subtilis, B. megaterium, B. polymyxa, B. sphaericus,
Staphylococcus aureus, Escherichia coli, Penicillium oxalicum,
Aspergillus flavus, A. luchuensis, Rhizopus stolonifer,
Scopulariopsis sp. and Mucor sp.

Increase bacterial growth inhibition (159)

Ethanolic bulb extract Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli Increase bacterial growth inhibition (31)
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experiments with HT22 rodent hippocampus cell culture
revealed that the ethanolic infusion of garlic seedlings had
antioxidant properties by DPPH scavenging activity and
suppression of ROS (12). AG or aged garlic, as well as NG or
non-aged garlic by-products that were extracted with distilled
water, ethyl alcohol, or dichloromethane, showed distinct
antioxidant effects as measured by radical scavenging tests
ABTS, DPHH and H2O2, total Fe3+ reducing antioxidant
power (FRAP) assay and Fe2+ chelating experiment (13).
Unlike MCG or multi clove garlic isolates, SCG or single clove
garlic ones exhibited a substantial increase in scavenging activity
in the DPPH test and superoxide radicals. SCG is more resistant
to CCl4-induced hepatotoxicity than MCG, and it may be an
effective substitute drug for severe oxidative hepatotoxicity (14).

Hepatoprotective activity
The liver-protecting potential of fermented garlic extracts

produced by lactic acid bacteria toward acetaminophen (AAP)
resulted in acute liver damage in rodents was discovered in a
study. Bacteria suppress AAP-induced cell death in hepatocytes
by inhibiting the MAPK phosphorylation route and down-
regulating p53, which is involved in liver autophagy, and
by cytoplasmic redox command, as evidenced by reduction
of oxidative stress, glutathione and ATP exhaustion, and
antioxidant enzyme actions (15). Further analysis revealed
that alcohol administration increased ROS/RNS generation in
various animals. It depleted liver antioxidant status, decreased
liver glutathione (GSH) concentrations, and decreased
superoxide dismutase activity (SOD). Only garlic compounds
can shield the liver from ethanol-induced peroxidation, as
evidenced by a decrease in the marker of oxidative damage
(malondialdehyde, MDA) and recovery of hepatoprotective
action (16). The consequences of aqueous Garlic bulb isolate
on alloxan-induced plasma advancements in liver enzymes and
urinary metabolic indicators in Wistar rats were examined. The
liver enzymes alanine transaminase, aspartate transaminase, and
alkaline phosphatase have been associated with the leakage of
cytoplasm from hepatocytes into the circulation as a condition
of hepatotoxicity. The result showed that when compared
to control, the plasma levels of all the parameters evaluated
in the rats given garlic [urea, creatinine, albumin, aspartate
transaminase (AST), alanine transaminase (ALT), and alkaline
phosphate (ALP)] were unaltered (17). In the livers of albino
rodents, Kaur and Sharma (18) found that ethanol extracts
of garlic and ascorbic acid mixtures have hepatoprotective
action toward Cd damage. Cadmium administered mice had
a substantial increase in the amount of malignant growth,
such as multinucleated nuclei and gigantic cells, which was
reversed by administering ascorbic acid and ethanolic extract,
which provided protection against the toxicity. Garlic also show
hepatoprotective properties due to its organosulfur compounds
like diallyldisulfide (DDS) and diallyltrisulfides (DTS), which
have antioxidant and detoxifying properties. These compounds
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can reduce Cd-induced oxidative stress below the threshold
level, produce preconditioning effects by activating survival
signals, and activate DNA repair systems by reducing the
binding of Cd with DNA (18).

Anti-inflammatory activity
In lipopolysaccharide treated J774A.1 macrophages (19)

probed the anti-inflammatory attributes of Allium 14-kDa
protein, something that impeded inflammatory agents such
as nitric oxide (NO), prostaglandin E (PGE), TNF-, and
interleukin (IL)-1 by impairing the nuclear factor-kappa B (NF-
kB) signaling route (19). Morihara et al. (20) discovered that
AG extract has a significant anti-inflammatory action and can
assist to inhibit inflammatory responses in mouse models with
apolipoprotein E knockout (ApoE-KO). In hepatocytes, AG
treatment decreased TNF constructions, a prominent stimulus
resulting in CRP synthesis, by 35%, downregulated interleukin-
1 receptor-associated kinase 4 (IRAK4) by 60%, and increased
adenosine monophosphate-activated protein kinase (AMPK)
production (20). Ethyl linoleate (ELA), an essential fatty acid
separated from garlic cloves, was demonstrated to suppress
inducible nitric oxide synthase (iNOS) formed as a result of
LPS treatment, transcription of cyclooxygenase-2 (COX-2) and
the generation of pro-inflammatory cytokines. The inactivation
of NF-B as well as the MAPKs and phosphorylation of the
Akt circuits were responsible for this action. In RAW 264.7
cells, ELA-triggered heme oxygenase-1 (HO-1) regulates
the reduction of LPS-induced NO and pro-inflammatory
cytokine synthesis. In this study, the anti-inflammatory effects
of ELA were established and ELA could be employed as
a medical therapy to treat inflammation-related disorders
(21). In BALB/c mice experiencing schistosomiasis, Metwally
et al. (22) evaluated the possible anti-inflammatory effect of
garlic extract and allicin against liver inflammatory indicators
(S. mansoni infection). Both preventive and therapeutic
injection of garlic extract or allicin into affected mice showed
considerable immunomodulatory and anti-inflammatory
benefits in this investigation. The immunohistochemical
production of fibronectin and -SMA, as well as the transcription
of inflammatory cytokines mRNA as indicators of liver
fibrosis, indicate these consequences. Garlic significantly
inhibited inflammatory cytokine expression, suggesting that the
altered Th1/Th2 cytokine balance was the cause of the serum
concentrations of liver fibrosis markers and proinflammatory
cytokines. These markers were maintained by decreasing
serum ALT and AST levels, granuloma size as well as the
number of inflammatory cells, collagen fibers, and eggs in the
granuloma (22).

Cardioprotective activity
Takashima et al. (23) found that the vasorelaxant impact

of AG on the rat aorta had a substantial cardioprotective
action in lowering arterial pressure. Endothelium-dependent

vasorelaxation of the aorta is caused by AGE, which promotes
vasodilation by increasing the synthesis of NO controlled by
eNOS. L-arginine, a NOS precursor, was found to be one of
the key elements of the AGE’s vasorelaxant action. Additionally,
the source of AGE’s action to reduce arterial pressure in drug
testing and in vivo testing remains unknown (23). On 22
total cholesterol tests (TC), 17 LDL cholesterol experiments
(LDL-C), 18 HDL cholesterol tests (HDL-C), four fasting
blood glucose tests (FBG), nine tribulations of systolic blood
pressure (SBP) and 10 tests of diastolic blood pressure (DBP),
A. sativum particle isolate was found to have cardioprotective
activity. Garlic flour formulations were found to be a universal
cardiac and circulatory tonic, lowering blood TC, LDL-C,
HDL-C, FBG, SBP, and DBP (24). Another study looked at
the effects of fermented garlic extract (FGE) on pulmonary
arterial hypertension in rats given monocrotaline (MCT). In
the right ventricular, MCT treatment increased weight, arterial
stiffness, and atrial natriuretic peptide levels, although not
in the left ventricle. FGE decreased these impacts, as well
as pulmonary arteriole endothelial dysfunction and medial
hypertrophy, pulmonary fibrosis produced by translations of
PKG, MCT, and eNOS proteins in the lung, and increased
translations of the VCAM-1 and MMP-9 proteins in the lung.
FGE also inhibited an available guanylyl cyclase (sGC) inhibitor.
The impact of FGE on MCT-induced heart attack in rats has
been found to have cardioprotective effects, according to this
research (25).

Anticancer activity
In rodents with 1,2-dimethylhydrazine (DMH)-induced

tumorigenesis and multiplication of human colon tumor cells,
Jikihara et al. (26) studied the anticancer effects of alcohol
extracts of A. sativum. Pathological study shows that A. sativum
extract can decrease adenocarcinoma and adenoma. Jikihara
et al. (26) investigated the cytotoxic activity of A. sativum
aqueous preparations in rodents with 1,2-dimethylhydrazine
(DMH)-induced carcinogenesis and human colorectal tumor
cell proliferation. Adenocarcinoma and adenoma can be
reduced by isolate of A. sativum, according to histopathological
research. Apoptosis was not induced by AGE, but it did slow
down cell cycle progression by decreasing the expression of
cyclin B1 and cdk1 in human colorectal cancer cells (26).
The impacts of garlic extract on the growth of human breast
cancer cell lines (MCF-7), prostate (PC-3), liver (Hep-G2),
and colon (Caco-2), as well as mice macrophage cells, were
investigated in a study (TIB-71). Exposure of Hep-G2, MCF-
7, TIB-71, and PC-3 cells with crude garlic excerpt decreased
cell proliferation by 80–90%, but only 40–55% in Caco-2
cells. It also caused growth arrest and a four-fold increase
in caspase activation (apoptosis) in PC-3 cells. According
to this research, crude garlic powder contains reactive fatty
components and could be employed as a chemoprevention (27).
A study examined the antitumor properties of diallyl trisulfide
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(DATS). In vitro and in vivo treatment of patient gastric
cancer cell SGC-7901 using a flavonoid molecule produced from
A. sativum isolate. Treatment with DATS hindered SGC-7901
cell growth by inducing apoptosis and amplifying the MAPK
route by phosphorylating JNK, ERK, and p38. It also inhibited
invasiveness by attenuating the utterances of the MMP9 and E
cadherin proteins, induce cell death and amplifies the MAPK
route by initiating JNK, ERK, and p38. Furthermore, DATS
therapy increased cytokine release, such as TNF- and IFN-,
which promoted the inflammatory system of the host in cancer
care (28).

Gastric cancer chemoprevention by allicin

Allicin, a component of A. sativum, was found to be effective
against stomach cancer, the fifth most common cancer in the
world. For a long time, the mode of action was unknown.
Allicin functions by halting the cell cycle during the G2/M phase
and apoptosis in gastric tumor cells, while normal stomach
cells remain unaffected, according to numerous investigations.
Furthermore, even in the scientific results, allicin-mediated
inhibition of stomach tumorigenesis can be seen. TGF-alpha
(TGF-) and its receptor epidermal growth factor receptor
(EGFR) are both inhibited by allicin (EGFR). This causes cyclin
E and cyclin D1 to be down-regulated, which can cause cells
in the G2 phase to enter the M phase. Allicin can cause DNA
damage by causing reactive oxygen species (ROS), resulting
in phosphorylated P53 and P21 proteins. P21 then inhibits
the cyclin-dependent kinase 4/6 (CDK4/6)-cyclin D complex,
causing the cell to enter G2/M arrest.

Furthermore, the P21 polypeptide can block the P21-
CDK2 and P21-proliferating cell nuclear antigen (PCNA)
assemblages, causing the CDK1-cyclin B1 complex to diminish
and the G2/M cell stage to be arrested. The particle’s lipid-
soluble nature enables it to simply transfer across cellular
barriers. Allicin significantly lowers the potential of the exterior
mitochondrial membrane. Elevation in the proportion of pro-
apoptotic polypeptide associated with BCL2 (BAX) to anti-
apoptotic protein of B cell lymphoma 2 (BCL2) caused by
allicin may promote cell death via the mitochondrial route.
A greater BAX/BCL2 ratio causes cytochrome c to be released
into the cytoplasm, accompanied by caspase-9 involvement.
First, caspase-3 is triggered which results in poly ADP-ribose
polymerase (PARP) and apoptosis-inducing polymerase (AIP)
activation. Intrinsic stimulation of p38 mitogen-activated kinase
or p38 MAPK activity was greater in allicin-induced gastric
tumor cells. The synthesis of the Fas membrane-spanning
peptide and P53 may be increased if p38 MAPK is increased.
The Fas protein is part of the tumor necrosis factor or TNF
receptor superfamily and contains 3 domains (extracellular,
cytoplasmic, and transmembrane). The association of Fas’
cysteine-rich signal peptide with the Fas ligand (FasL) is a critical
regulator of tumor growth (29). Caspase-8 is activated as a result
of the interaction and can stimulate two separate apoptosis

mechanisms. Caspases-8 trigger caspase-3 and caspase-7 in the
mitochondrial independent route to trigger apoptosis. Caspase-
8 is responsible for the liberation of Cyt c from mitochondria
in the mitochondrial-dependent route (30). Allicin can also
result in cell death through a process devoid of caspases. In
this route, mitochondria generate apoptosis effectors such as
apoptosis-inducing factor (AIF) and endonuclease G. (EndoG)
which is the coactivator of AIF. EndoG and AIF are then
teleported to the nuclei, where they lead to cell death through
breaks in the nuclear material strands. Furthermore, allicin can
cause apoptotic cell death by boosting unbound Ca2+ cation
concentrations and inducing endoplasmic reticulum (ER) strain
(Figure 3) (29).

Antimicrobial activity
The antibacterial activities of Allium sativum are extensive.

Garlic essential oil [rich in diallyl monosulfide, diallyl disulfide
(DADS), diallyl trisulfide, and diallyl tetrasulfide] extracted from
raw bulbs had a good antibacterial action against Pseudomonas
aeruginosa, Staphylococcus aureus, and Escherichia coli. The
results suggest that the presence of the allyl group is essential
for the antimicrobial property of such sulfide derivatives found
in Allium (31). Additional studies have demonstrated that
watery bulb infusion has high antibacterial efficacy against
Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae,
Escherichia coli, and Candida albicans due to disfunction
in phospholipid bilayer synthesis by the activity of allicin
(6). Garlic essential oil suppresses the fungal pathogen
Penicillium funiculosum, presumably by infiltrating membranes
and compartments, disrupting the cytoskeleton, and causing
cytoplasmic and biomolecules leaks. In addition, proteomic
analysis revealed the ability of garlic oil to increase or
decrease the expression of few major proteins in relation
to physiological metabolism (32). The antimicrobial effect of
Australian garlic methanol and aqueous clove formulations
was also described on Candida albicans, Bacillus cereus,
Escherichia coli, Staphylococcus aureus, Listeria monocytogenes,
Pseudomonas aeruginosa, and Rhodotorula mucilaginosa. The
identification and quantification of pharmacologically potent
compounds was done using ultra-high performance liquid
chromatography with mass spectrometry and photodiode array
detection (UHPLC-PDA-MS) and a correlation assessment
was performed between the compounds and antioxidant and
antimicrobial properties (33).

Antidiabetic activity
According to a research article, due to enhanced insulin-

like efficacy, the antidiabetic behavior of A. sativum ethyl ether
extract (at 0.0025 g/kg) was investigated in alloxan-induced
diabetic rodents. The parietal cells of the pancreas are stimulated
by ingestion of ethanol excerpt, pulp, and oil. Allicin boosted
liver metabolism and pancreatic β cell insulin response (34).
Another investigation found that 3 progressive doses of aged
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FIGURE 3

Allicin-mediated apoptosis signaling pathways in gastric cancer cells. AIF, apoptosis induce factor; BAX, BCL2-associated X protein; BCL2, B-cell
lymphoma 2 protein; CDK, cyclin-dependent kinase; Cyt c, cytochrome c; EGFR, epidermal growth factor receptor; EndoG, endonuclease G;
ER, endoplasmic reticulum; Fas, apoptosis antigen 1 protein; FasL, Fas receptor ligand; MAPK, mitogen-activated protein kinase; MMP,
mitochondrial membrane potential; PARP, poly ADP-ribose polymerase; PCNA, proliferating cell nuclear antigen; ROS, reactive oxygen species;
TGF-α, transforming growth factor alpha (29). This figure was prepared with BioRender.com.

AE extracts have hypoglycemic activities in rats treated with
streptozotocin. Diabetic rats were divided into two groups:
control diabetics (CD), which served as negative control, and
AGE-treated diabetics (AGE-D). AGE-Ds were classified into 3
groups and given AGE at 600, 300, and 100 mg/kg every day for
a period of 2 months, as well as a normal control group (CN)
which was the positive control for comparison. CD rodents
had higher sugar levels (almost four times), twice the amount
of serum cholesterol, triglycerides, and erythrocyte glycosylated
hemoglobin, and thrice the amount of kidney and liver fatty acid
oxidation, compared to the CN cohort. In the streptozotocin-
treated diabetic group, the findings revealed that AGE had a
dosage-dependent mitigative effect on hyperglycemia markers
(35). In prediabetic expectant mothers, Faroughi et al. (36)
evaluated the effects of the A. sativum tablet on the primary
outcomes of fasting blood sugar or FBS and the recurrence of
signs of prediabetes, as well as secondary outcomes such as
hypertension, infant anthropometric parameters, and delivery
method. Throughout 2015–2016, 49 mothers with prediabetes

at 24–28 weeks of gestation were included in the triple-blind,
randomly selected controlled study in Tabriz, Iran. The average
concentration of FBS in the garlic-treated cohort reduced from
106.6 (11.1) mg/dL before therapy to 83.6 (6.3) mg/dL after
4 weeks and 79.4 (6.1) mg/dL 8 weeks later, according to the
findings. The garlic drug also resulted in a substantial reduction
in pre-diabetic signs at 4 weeks after therapy and diastolic
arterial tension at 4 and 8 weeks. There was no substantial
difference in systolic pressure between the cohorts at 4 and
8 weeks after treatment. As a result, the A. sativum tablet
reduced FBS levels, prediabetes indicators, and diastolic BP in
this study (36).

Antiviral activity
A. sativum has long been traditionally used to cure a variety

of viral illnesses. Garlic isolates or compounds have been shown
to have antiviral action in several investigations (Figure 4).
Extracts or isolates include chemical constituents that can attack
different stages of the viral life cycle. Prevention of viral infection
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can be as simple as inhibiting the virus’s admission stage.
Both encapsulated and non-enveloped pathogens are destroyed
by this technique. A. sativum and its potent organosulfur
components have been shown to promote antiviral activity by
interacting with components on the exterior of the virion. This
results in partial inhibition or complete blocking of the virus
entry step (3). The aqueous extract of A. sativum expressed
an effective inhibition of viral infection of influenza A subtype
H1N1 with EC50 = 0.01 mg/ml in the Madin-Darby canine
kidney (MDCK) cell line (37). The exact value of EC50 (0.01
mg/ml) was observed against Measles morbillivirus in Vero
cells treated with gold nanoparticles containing aqueous extracts
of A. sativum because it causes an obstruction of the viral
receptors, stopping cell adsorption and the start of viral infection
in the host cell (38). Furthermore, garlic extracts inhibited the
binding of Newcastle disease virus (NDV) to chick embryo
cell receptors (39). Quercetin, a flavonoid commonly present in
fruits and vegetables, including A. sativum, possesses antiviral
properties against influenza virus and enterovirus by affecting
viral attachment to the surface of the host cell. Furthermore,
organosulfur compounds in garlic such as allicin, ajoene, and
diallyl trisulfide play an important role in the antiviral properties
of garlic. These substances can prevent a virus from attaching
to a host cell, change how the viral genome is translated in the
host cell, and affect viral RNA polymerase, which is required
for viral replication. They can also prevent the viral process
that changes the host cell’s signaling pathway, and prevent viral
multiplication (40). Even if the virus enters the host cell, there
are still various steps suitable for its inhibition. One of these
represents inhibition in the viral replication step. Replication
may occur in the cytoplasm or in the nucleus of the host cell.
In the current history, numerous investigations have proven
the ability of A. sativum to prevent viral proliferation. The
methanolic and ethanolic garlic extracts revealed inhibition
of viral RNA polymerase and nucleoprotein synthesis activity
against the influenza A (H1N1) pdm09 virus. This property
may be attributed to their ability to block viral attachment
and to suppress viral hemagglutinin (HA) (41). Furthermore,
the study evaluating the influence of aqueous garlic extracts
on avian infectious bronchitis virus (IBV), a coronavirus that
infects birds of the Coronaviridae family, suggested the potential
of A. sativum to inhibit the viral replication step (42). The
members of the retrovirus family utilize reverse transcriptase
(RT) to convert viral RNA into DNA. As a result, RT suppression
is a major clinical strategy in the treatment of retrovirus
transmission (3). The hexane extracts of A. sativum expressed
a powerful activity against the RT of human immunodeficiency
virus 1 (HIV-1) with an IC50 of approximately 64.08 ± 1.09
µg/mL (43). Furthermore, allicin was evaluated in the study to
relieve immune dysfunction caused by the reticuloendotheliosis
virus (REV). The study suggests that allicin downregulated the
ERK/MAPK signaling pathway resulting in inactivation of REV
replication (3, 44).

The World Health Organization (WHO) proclaimed a
worldwide pandemic of COVID-19 on March 11th, 2020,
triggered by SARS-CoV-2. Although various studies have been
reported for the treatment of COVID-19, an effective remedy
is still missing. However, several herbal or pharmaceutical
drugs have been reported with possible beneficial effects on
COVID-19. One of them is A. sativum. As mentioned above,
aqueous garlic extracts possess an inhibitory effect against
IBV of the Coronaviridae family. Therefore, it is assumed
that it may also be beneficial against other members of
the virus family, including SARS-CoV-2. Furthermore, some
constituents of A. sativum seem to be helpful in reducing
viral replication. Quercetin, a flavonoid present in garlic, bears
the potential to inhibit the main protease of SARS-CoV-2
(Mpro), a crucial antiviral target (45). As reported before,
quercetin-3-β-galactoside was a suppressor of SARS-CoV-1
Mpro with IC50 = 42.79 ± 4.97 µM (46). Furthermore, there
is a high structural similarity of Mpro between SARS-CoV-
1 and 2 (∼96%). In silico molecular docking of organosulfur
compounds in A. sativum revealed an inhibitory potential of
alliin against Mpro SARS-CoV-2. The results suggested that alliin
has potential antiviral activity against COVID-19 by binding
to Mpro of SARS-CoV-2 (47). On the other hand, after the
coronavirus outbreak, various hoaxes have been posted on the
Internet about preventing COVID-19. Some of them argued
that: “eating garlic prevents from COVID-19” (48). However,
the WHO subsequently declared that there is no indication that
garlic consumption has safeguarded patients from the novel
coronavirus in the recent outbreak. Indeed, to date, no studies
have been reported to confirm the prevention of A. sativum
against COVID-19. However, there are no doubts about the
beneficial effects of garlic on human health. In addition, studies
recently reported confirming that despite garlic’s inability to
prevent COVID-19, its antiviral activity can play a crucial role
in alleviating patients suffering from COVID-19.

Toxicological studies

Many investigations have been conducted on the toxicity
assessment of A. sativum in laboratory animals. According to
OECD standards 423, research explained the acute toxicity of
A. sativum ethyl acetate concentrates and then determined the
LD50 to demonstrate the acceptability of the extract in rodents
(49). To test cytotoxic activity, all 3 animals in each set received
ethanolic extract of A. sativum in a solitary administration
of 3, 20, and 50 g/kg of lean mass. For each treatment,
effects on body mass, skin tone, salivation, cornea, mucous
system, drowsiness, tremor, unconsciousness, spasm, malaise,
diarrhea, and death were observed after 30 min, 4 h, 24 h,
48 h, 1 week, and 2 weeks (49). Sections of the lungs, spleen,
heart, kidneys, liver, and intestines were viewed during gross
postmortem and microscopy using standard forensic methods.
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FIGURE 4

Proposed antiviral effects of A. sativum against (–) ssRNA viruses. This figure depicts the life cycle steps of influenza A with possible inhibition
(shown as a red X-shaped symbol) mediated by garlic extracts or its organosulfur constituents. As shown in the figure, A. sativum bears potential
for the prevention of viral penetration into the host membrane, virus uncoating associated with the release of viral genetic material into the
cytoplasm, conversion of viral (–) ssRNA to viral (+) ssRNA, replication of the viral RNA, virus assembly and release (3). Figure made using
BioRender.com.

The rodents did not die as a consequence of the dose increase
and there was no significant change in any of the criteria used
for general post mortem and histopathological alteration. As a
result, the extract is fine for humans to consume (49). Another
investigation looked at whether A. sativum preparations had
a suppressive effect on lead nitrate poisoning. Their potential
to eliminate free radicals and avoid GSH deficiency could
describe the function of garlic organosulfur compounds in
reducing Pb(NO3)2 poisoning (50). Total erythrocyte count,
hemoglobin concentration, total leukocyte count, lymphocyte
and monocyte percentage all decreased significantly after
chronic consumption of lead nitrate. In the renal and central
nervous system, the intake of lead nitrate resulted in an
increase in the levels of reactive components of thiobarbituric
acid, as well as a reduction in glutathione peroxidase levels
and antioxidant molecules such as superoxide dismutase and
catalase. Nitrate aids lower peptide levels, whereas cholesterol
and lead burden increase exponentially in lead-exposed mice,
resulting in decreased plaque count, immunoglobulin level,

phagocytic index, and macrophage viability (50). Orally ingested
extracts of A. sativum by exposed groups to Pb(NO3)2, on the
other hand, may be a preventive strategy against heavy metal
toxicity (50). In cultivated Vero cells, Abid-Essefi et al. (51)
explored the role of an aqueous extract of A. sativum (AEA) vs.
zearalenone (ZEN) mediated lethality, reactive oxygen species
(ROS), and genomic instability. The findings revealed that ZEN
caused several harmful consequences and major changes in the
body, which were regulated through the oxidative stress system.
Administration with the smallest amount of AEA (250 g/ml) in
combination with ZEN resulted in a considerable decrease in
ZEN-induced impairments for each marker evaluated, as well
as a notable fall in DNA disintegration. As a result, AEA can
assist guards against ZEN risks. The great potential of AEA to
compensate for the inflammatory process generated by ZEN
is probably responsible for its preventive action (51). Many
research has suggested that garlic could be used as a food
additive for people who are not protected from ecological toxins.
Irkin et al. (52) studied the effects of dietary garlic granules on
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young European sea bass (Dicentrarchus labrax). For 2 months,
the fish received enhanced meals with A. sativum powder at
concentrations of 0 (control), 2 percent, 4 percent, or 6 percent.
The RBC count, hemoglobin level, amount of hemoglobin
and mean corpuscular hemoglobin in treated fish at dietary
incorporation stages of 4 and 6% were considerably less than
baseline data after this study. In contrast to the reference cohort,
serum sugar levels in fish supplemented with garlic powder
were considerably lower, and cholesterol values in the treatment
groups of 6 and 2% were smaller than those of the control
group. As a consequence, it is recommended that garlic powder
fortification in the diets of juvenile fish not surpass 2%. As a
result, this experiment concluded that nutritional garlic powder
is critical to improving the physiological and hematological state
of immune improvements in young sea bass (52).

Clinical studies

A. sativum preparations are used in drug testing to alleviate
a variety of human disorders. The bulbs have been used
successfully as nutrition and treatment in human societies since
antiquity. The possible hypoglycemic benefits of A. sativum in
patients with type 2 diabetes were examined by Ashraf et al.
(53). The purpose of this study was to compare the impact
of garlic pills exposure to routine anti-diabetic analyzes on
glucose levels in 60 confirmed type 2 diabetic patients with
fasting blood glucose levels above 126 mg/dl. Participants were
placed into two categories. Serum triglycerides and fasting blood
glucose were measured at weeks 0, 12, and 24. Compared to
group 2, group 1 reported a substantial reduction in fasting
blood glucose at week 24. A mixture of A. sativum with
traditional anti-diabetic medication improved glucose control
and hypocholesterolemic action, according to this research.
Garlic’s antilipidemic effects are thought to be caused by allicin’s
ability to inhibit hydroxymethylglutaryl-CoA reductase, which
lowers LDL-C levels as well as total cholesterol (53). Sukandar
et al. (54) investigated the efficacy and tolerability of combining
curcumin and A. sativum powder as an antidiabetic and
hypocholesterolemic treatment for type 2 diabetes-dyslipidemia.
3 replicates were calculated which were 1.2, 1.6, and 2.4
g, respectively. The garlic-curcuma mixture was observed to
lower glucose concentration and HbA1C while also improving
dyslipidemia. The 2.4 g dose was found to reduce fasting glucose,
glucose levels two hours after lunch, lipid profile, HbA1C, LDLs,
cholesterol, and body mass index and increased HDLs greater
than the other two prescriptions (54). The benefits of A. sativum
supplementation on serum concentrations of certain markers
of inflammation, somatic manifestations, and exhaustion in
females with chronic rheumatoid arthritis or RA were studied
by Moosavian et al. (55). In this investigation, a double-blind,
placebo-controlled, randomized experiment was used. A group
of 70 women with RA were randomly classified into two parts

for 8 weeks, where the treatment group received 1,000 mg
of A. sativum and the control team received a placebo (55).
After therapy, the bioavailability of the C-reactive peptide (CRP)
and TNF (TNF-a) was found to be considerably lower in the
garlic cohort compared to the placebo category. Additionally,
relative to the placebo group, pain severity, sensitive joint tally,
disease activity score, and exhaustion were considerably lower,
and the number of enlarged joints was markedly smaller in
the garlic unit, but nothing of this type was demonstrated
in the placebo. The result showed that garlic improved the
inflammatory mediators like serum level of CRP and TNF-a,
though there was no change in erythrocyte sedimentation rate
(ESR) (55).

Discussion

A. sativum was found to have a spectrum of therapeutic
benefits in this investigation, including antibacterial,
cardioprotective, anti-inflammatory, antitumor, and
antispasmodic activities, among others. The most essential
components of A. sativum are organosulfur molecules, which
are responsible for most of their medicinal uses. allyl methyl
sulfide, Allicin, ajoene, and DTS are the primary physiologically
active chemicals responsible for the antibacterial, antifungal,
antiviral, and antiprotozoal effects of A. sativum, respectively
(1). The main ingredient of garlic, allicin, can cause stomach
disturbances, particularly when taken in large doses. Most
cardiac investigations have focused on triglycerides, LDL,
cholesterol level, HDL, and arteriosclerosis (56). According
to suggestions, A. sativum lowers LDL and triglyceride
concentrations in people with dyslipidemia (56). Consumption
of A. sativum reduces triglyceride levels, which may help slow
the progression of hypertension. In addition to considerable
studies, its antidiabetic, antibacterial, anti-inflammatory,
and antioxidant effects have been linked in various models.
Several investigations have looked into the antitumor and
anticarcinogenic properties of A. sativum and its components
in vitro and in animal experiments. According to the findings,
A. sativum encompasses a set of crucially significant compounds
with anticancer and chemopreventive activities. Garlic includes
various physiologically and pharmacologically important
components, according to clinical and scientific research. For
cardiac, hyperglycemia, rheumatism, gastrointestinal disorders,
colitis, liver disorders, bloating, diarrhea, bronchitis, sensory
loss, hypertension, asthma, and other ailments, these are vital
for health. Several investigations are underway throughout
the world to make efficient and unscented garlic formulations
and identify bioactive constituents that may have medicinal
value (57–59). However, the extraction, production, molecular,
physicochemical and structural properties and structure–
activity relationships of garlic compounds (60–64) are beyond
the scope of the present review. The metabolic processes of
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ingested garlic constituents (as food or supplements), their
mechanisms of action in healthy humans have not been detailed
well. Besides structure-bioactivity relationships remain unclear
in many pharmacological attributes.

Conclusion

For centuries, A. sativum has been widely consumed as
a culinary and therapeutic herb as protective and curative
agents. It contains essential minerals, vitamins, and protein
and is widely used as a spice or condiment in continental
cooking. In addition, this plant has various potential
pharmacological activities against various diseases and
disorders owing to its potent antioxidative, anti-inflammatory
and immunomodulatory properties. Based on preclinical
studies, A. sativum compounds especially the sulfur-containing
compounds, some flavonoids and polyphenols may help
treat certain human conditions, particularly those related to
cancer and cardiovascular disease. The roles of A. sativum
and the preparations of A. sativum in human health will help
to benefit from additional well-designed human studies and
various human diseases that carefully characterize the garlic
interferences used and examine possible differential effects
in several human populations. This research also looked at
the key ingredients of the plant, such as sulfur-containing
chemicals. Many significant advances have been found in the
phytochemistry and related medicinal properties of A. sativum;
data regarding clinical aspects and impact on human health-
related properties are acceptable. Therefore, it is inferred that
A. sativum is a fantastic seasoning that needs to be handled
with prudence to fully benefit from its immense medicinal
benefits, taking into account that misapplication may result in
unintended consequences.
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Nutritional characterization of
the extrusion-processed
micronutrient-fortified corn
snacks enriched with protein
and dietary fiber
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Adnan Amjad3, Muhammad Sameem Javed4*,

Raheel Suleman5, Dur-e-Shahwar Sattar5, Muhammad Amir5

and Muhammad Junaid Anwar5

1Department of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia

University of Bahawalpur, Bahawalpur, Punjab, Pakistan, 2National Institute of Food Science and

Technology, University of Agriculture Faisalabad, Faisalabad, Punjab, Pakistan, 3Department of

Human Nutrition and Dietetics, Bahauddin Zakariya University Multan, Multan, Punjab, Pakistan,
4Department of Food Safety and Quality Management, Bahauddin Zakariya University Multan,

Multan, Punjab, Pakistan, 5Department of Food Science and Technology, Bahauddin Zakariya

University Multan, Multan, Punjab, Pakistan

The current study focused on developing protein- and dietary fiber-enriched,

micronutrient-fortified corn snacks using extrusion technology. Corn,

soybean, and chickpea flour were used to develop micronutrient-fortified (Fe,

Zn, I, and vitamin A, and C) extruded snacks, followed by an exploration

of their nutritional traits. Soybean and chickpea were supplemented

discretely (20–40/100g) or in a combination of both (10:10, 15:15, and

20:20/100g). According to the results, the relative proportion of the raw

material composition was reflected in corn snacks’ proximate composition

and mineral and vitamin levels. Corn snacks with 40/100g soy flour showed

the best nutrient profile, with a maximum percent increase in protein (171.9%)

and fiber (106%), as compared to the snacks developed using chickpea

and/or mixed supplementation with soy and chickpea. Total dietary fiber

(18.44 ± 0.34%), soluble dietary fiber (10.65 ± 0.13%), and insoluble dietary

fiber (7.76 ± 0.38%) were also found to be highest in the soy-supplemented

snacks (40/100g). It was discovered that 100g of corn snacks could provide

115–127% of the RDA for iron, 77–82% of the RDA for zinc, 90–100% of

the RDA for vitamin A, and 45–50% of the RDA for vitamin C. The results

for the e�ect of extrusion processing on amino acids showed a 2.55–45.1%

reduction in essential amino acids, with cysteine and valine showing the

greatest decrease and leucine and tryptophan remaining relatively stable

during extrusion.
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1. Introduction

South Asian countries are facing serious health issues

because of malnutrition. The situation is worse in India,

Pakistan, and Bangladesh, where half of the world’s

malnourished children and women reside (1). Factors

such as growth and development are mainly dependent on the

status of human beings. Micronutrients are required for the

normal functioning of the body, including for nerve impulse

conduction, for normal physical and mental function, for

maintaining electrolyte balance, for regulating blood pressure,

and as part of most enzymes and hormones (2). Therefore,

awareness of eradicating micronutrient malnutrition has

improved over the last few years (3).

Nutrition-related problems could be best addressed by food-

based approaches. The use of food fortification to improve

micronutrient status in a population (4, 5) without requiring any

radical changes in food habits and reaching almost all sections of

society (6) is one of themost effective and long-term approaches.

The most important considerations are to calibrate the nutrient

profile during fortification to avoid any toxicological effects, the

use of multiple micronutrients, and the cost-effective addition of

nutrients to foods (7).

The Composite Flour Program has been initiated by FAO,

especially for the development of healthy bakery items for the

masses. This initiative has paved the way to introduce an array

of products with commercial significance, nutritional benefits,

and additional advantages in functional and textural parameters.

During the development of composite flours, factors such as

consumer acceptability, nutritional quality, and functional and

prophylactic benefits are considered (8). Composite flours are

developed by supplementing cereal flours (rice, maize, sorghum,

and pearl millet) with legume flours to alleviate prevailing

malnutrition in South Asia without disturbing the quality of

finished products. Despite many advancements, there are still

many hurdles in preparing cereal, tuber, and legume-based

formulations to replace the gluten in cereal-based products. Rice

and maize as composite flours provide a better option to mimic

gluten properties. Corn is an underutilized crop in Pakistan. The

escalating prices of dietary staples such as wheat flour and rice in

Pakistan have created an opportunity to utilize composite flour

technology to produce diverse food products and to improve the

economic access of the masses to food availability and security

(9). In food processing, extrusion technology has been used

commercially to develop shelf-stable food products. Extrusion

has several advantages, including the development of the desired

shape of products, the reduction of anti-nutritional factors,

and improved digestibility and palatability of nutrients. During

extrusion processing, the digestibility of the starch also increases

due to its gelatinization (10). Corn (Zea mays L.) is an ideal

ingredient for producing snacks through extrusion due to its

starch content (11). Corn is one of the chief cash crops of

Pakistan and is ranked third in importance after wheat and rice.

Corn is used in various forms in the food processing industry. In

developing countries, its utilization is limited to forage forms for

livestock and poultry. Therefore, the production of value-added

food products from corn is required.

Soybean (Glycine max) contains high levels of good-quality

protein, making it an ideal option to increase the protein

content of different food products. Soybeans contain nearly

all the nutrients required for good health, including nine

essential amino acids. Similarly, chickpea (Cicer arietinum), a

good source of protein, especially after defatting, provides 25.3–

28.9% protein and is a substantial source of essential fatty acids,

essential amino acids, and minerals (12). Guar gum is one of the

excellent sources of dietary fiber, with a high concentration of

soluble dietary fiber (75%) and insoluble dietary fiber (7.6%).

Physiological, structural, chemical, and technological traits of

soluble and insoluble dietary fiber are different. The addition

of soluble dietary fiber, which forms a gel, results in increased

satiety and gastric emptying time.

The consumption of snack foods has increased with the

changing lifestyle of the 21st century. Snacks are foods that are

typically smaller than a regular meal and consumed between

meals. In the United States, children take snacks on average

six times a day. Keeping in view the increased consumption

of snacks in the diet, public departments in various countries,

such as Health Canada, are recommending people replace

conventional snacks with healthier snacks in their diet (13).

The current study was designed to formulate corn-based

micronutrient-fortified extruded snacks enriched with protein

by supplementing corn with soybean, chickpea, and dietary

fiber from guar gum. These snacks not only fulfill the dietary

requirements of the community but also help mitigate certain

micronutrient and macronutrient deficiencies in children in

developing countries. Therefore, it can serve as a miracle to

alleviate the malnutrition burden.

2. Materials and methods

2.1. Procurement and preparation of raw
materials

For this study, corn (Zea mays), soybeans (Glycine max),

chickpeas (Cicer arietinum), and guar gum were procured from

the local market in Faisalabad, Pakistan. Micronutrient premix

(Fe, Zn, I, and vitamins A and C) was provided by Fortitech

Inc. A vitamin/mineral pre-mix comprising five micronutrients

used for fortification (Fe as NaFeEDTA, Zn as zinc oxide, I as

sodium iodide, vitamin A as retinyl palmitate, and vitamin C as

ascorbic acid) was provided by Fortitech in Schenectady, New

York, USA. Megazyme total dietary fiber (TDF) test kits were

procured from Novozymes, Karachi, Pakistan. All reagents and

standards used in the study were procured from Sigma-Aldrich

(Merck KGaA, Darmstadt, Germany). Physical impurities were
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removed with manual cleaning. Dehulling and milling of both

soybeans and chickpeas were carried out to get flour, followed

by defatting with the solvent method. Defatted soy and chickpea

flours were stored in separate polythene bags with the corn flour

at 25◦C for further use.

2.2. Analysis of the raw materials

2.1.1. Proximate composition

Corn, soybean, and chickpea flours were analyzed for crude

fat (AACC Method No. 30-25), crude protein (AACC method

no. 46-10), moisture (AACC Method No. 46-30), crude fiber

(AACC method no. 32-10), and total ash (AACC method no.

08-01) by the respective methods described by AACC (14).

2.2.2. Mineral content

Raw materials (corn, soybean, and chickpea flours) were

analyzed for a mineral profile by wet digestion according to the

method given in AOAC (15). The sample (0.5) was first digested

at low temperature (60–70◦C) with 10mL of HNO3 for 20min

in a 100-mL conical flask on a hot plate. Then, it was digested

at a high temperature (190◦C) with 5mL of concentrated

HClO4 until the contents of the flask became clear. The mineral

contents of the samples were determined using the respective

standard curves prepared for each element. Aliquots were used

to estimate Na and K by a flame photometer (Sherwood Flame

Photometer, Cambridge, UK). Sodium and potassium contents

were determined by using the flame photometer 410 (Sherwood

Scientific Ltd., Cambridge, UK), whereas magnesium, calcium,

iodine, iron, and zinc contents were determined through an

atomic absorption spectrophotometer (Varian AA240, Varian

Medical Systems Australasia Ltd., Belrose, Australia). The

samples were quantified against standard solutions of known

concentrations that were analyzed concurrently.

2.2.3. Analysis of vitamins

AOAC, method no. 2012.09, was used for the determination

of the vitamin A content of flour samples (15). In contrast,

Hernández et al. (16) method was used for vitamin

C determination.

2.2.3.1. Vitamin A

Stock solutions (100µg/mL) of retinyl palmitate were

separately prepared in 100mL of absolute ethanol. The working

standard (5µg of retinyl palmitate/mL) was prepared by diluting

5mL of retinyl palmitate stock solution to 100mL with ethanol.

The concentration of the working standard was determined by

measuring absorbance at 328 nm and dividing it by the specific

absorption coefficient E (1%/1 cm) of 975 for retinyl palmitate.

Calibration was performed using a concentration range of 0.09–

2.0 µg/mL.

Samples were diluted with hexane (1:10), and 200mL of

the sample was transferred to a screw-capped tube, followed by

the addition of 600mL of methanol. The solution was vortex

mixed, followed by centrifugation (3,000 g, 5min) and filtration

through a 0.45mm pore-size filter, and the aliquot was injected

into the HPLC (17).

The HPLC system (Perkin Elmer-200 Series, PerkinElmer

Life, and Analytical Sciences, USA) was used in this study. HPLC

was assisted with a degasser, an auto-sampler, a binary pump,

and a UV/Vis detector. A reversed-phase C18 column (150 ×

4.6mm, 3.5µm particle sizes) was used. Total Chrome Software

was used to evaluate and quantify. Acetonitrile/methanol

(75:25%) was used as the mobile phase, which was delivered at a

1.0 mL/min flow rate and held at 40◦C.

The sample volume to be injected into HPLC was 20

µL with the (96:4) mobile phase consisting of methanol and

water; elution was performed at a flow rate of 2 mL/min. The

temperature of the analytical column was 45◦C. Vitamin A

was detected at 265 and 325 nm for 15min. The quantification

was performed using the retention times and peak areas of the

standards and samples.

2.2.3.2. Vitamin C

Then, 0.25 g of DCIP was dissolved in 500mL of distilled

water to prepare the 2,6-dichloroindophenol (DCIP) solution,

followed by the addition of sodium bicarbonate (0.21 g). The

final volume of the solution was made up to 1 L with the help

of distilled water. The concentration of the DCIP was almost

250mg of DCIP/L. The next step was the standardization of

the DCIP solution. Subsequently, 5mL of an ascorbic acid

solution was carefully pipetted into a 250-mL Erlenmeyer flask.

The concentration of standard ascorbic acid was recorded.

Afterward, 2mL of the sulfuric acid mixture was added, and

about 25mL of distilled water was added to the flask. The flask

was swirled to mix the solution. Then, 50mL of the DCIP

solution was added to the burette. DCIP was used to titrate

the ascorbic acid until a permanent light red or pink color

appeared, which lasted more than 30 s. After standardization,

a standard DCIP solution was used to titrate the sample until

a permanent light red or pink appeared, which lasted for

more than 30 s. Vitamin C was calculated by the oxidation

balance (16).

2.3. Extrusion formulations

As shown in Table 1, different levels of soybean and chickpea

flour were used for the preparation of extrusion formulations.

All formulations contained 7 g of guar gum per 100 g, except

Control 1 treatment. In all treatments, minor ingredients (table

salt, distilled mono-glycerides, and lecithin) were added, along
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TABLE 1 Extrusion formulations (g/100g).

Treatments∗ Guar
gum

Corn
flour

Soy
flour

Chickpea
flour

Control 1 – 97 – –

Control 2 7 90 – –

T1 7 70 20 –

T2 7 60 30 –

T3 7 50 40 –

T4 7 70 – 20

T5 7 60 – 30

T6 7 50 – 40

T7 7 70 10 10

T8 7 60 15 15

T9 7 50 20 20

∗The remaining formulation (3/100 g) was distilled mono-glycerides, table salt, and

lecithin along with micronutrient premix comprising nutrients according to the percent

daily value of added nutrients.

with a micronutrient premix (Fe, Zn, I, and vitamins A and C)

as per 3 g of the RDA per 100 g of the treatment formulations.

2.4. Extrusion processing

A pilot-scale single screw extruder (DGP-50, Henan

Manufacturer, China) with instrumental specifications, i.e., a

feed rate of 30 kg/h, a barrel diameter of 50mm, and a

temperature of 120–180◦C, was used. The temperature was

maintained at 150◦C during the processing of corn snacks with

the help of water circulation and monitored with the help of

a thermocouple. The die was fitted with one circular insert of

4.2mm diameter × 18.90mm length. The operating variable

was adjusted with the help of a pre-run of the extruder so

that products with desired physical and textural properties were

obtained. As the product exited the extruder barrel, it was

collected in the trays and cooled at room temperature, followed

by the collection of samples in the zip-lock polythene bags for

further analysis.

2.5. Chemical composition of
micronutrient-fortified corn snacks

Proximate composition, mineral content, and vitamins

A and C were determined by following the methods

described earlier.

Megazyme Test Kit was used to determine the dietary fiber

content of corn snacks using the AACC (Method 32-05) and

AOAC (Method 985.29) methods. The details of the procedures

are given as follows:

2.5.1. Total dietary fiber (TDF)

The samples were dispersed in a buffer solution and

incubated with heat-stable α-amylase at a temperature of 95–

100◦C for 35min. After cooling the samples to 60◦C, 100 l of

protease solution was added and incubated at 60◦C for 30 min.

Finally, these contents were incubated with amyloglucosidase at

60◦C for 30 minutes. The fiber contents were precipitated by

the addition of alcohol in 1:4 ratio. The contents were filtered

and washed with alcohol and acetone. A blank was run through

the entire procedure along with test samples to calculate any

contribution from reagents to the residue.

2.5.2. Soluble dietary fiber (SDF)

The samples were dispersed in a buffer solution and

incubated with heat-stable α-amylase at 95–100◦C for 35min.

After cooling the samples to 60◦C, 100 µL of protease solution

was added, and the contents were incubated at 60◦C for

30min. Finally, the contents by adding amyloglucosidase were

incubated at a temperature of 60◦C for 30min. The residue

after filtration was washed and rinsed with 10mL of water. The

filtrate and water washing were weighed, and soluble dietary

fiber was precipitated with four volumes of ethyl alcohol. The

contents were filtered and dried, and corrected for ash and

protein contents. A blank was also run simultaneously through

the entire procedure along with test samples to calculate any

contribution from reagents to the residue.

2.5.3. In-soluble dietary fiber (IDF)

The samples were dispersed in a buffer solution and

incubated with heat-stable α-amylase at a temperature of 95–

100◦C for 35min. After cooling up to 60◦C, the samples

were incubated by adding 100 µL protease solutions at 60◦C

for 30min, and then the contents were incubated by adding

amyloglucosidase at 60◦C for 30min. The residue after filtration

was washed and rinsed with 10mL of water. The resultant

residue was weighed, and soluble dietary fiber was precipitated

with four volumes of ethyl alcohol. The contents were filtered,

dried, and corrected for ash and protein contents. A blank

was also run simultaneously through the entire procedure to

calculate any contribution from reagents to the residue.

2.5.4. Calorific value

The calorific value of the extruded snack was determined by

using an oxygen bomb calorimeter (C2000 Basic, IKA-WERKE,

Germany), as described by 9. The sample (0.5 g) was taken into

the metallic decomposition vial. The vial was unscrewed and

fastened by a cotton thread with a loop onto the middle of the

ignition wire before loading the sample. Then, the screw cap

was tightened. The decomposition vial was guided into the filler

head through the open measuring cell cover until it was in place.
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The start button was pushed, and the measuring cell cover was

closed. An electric spark was used to burn the sample contained

within the vial. The heat produced was noted by C5040 CalWin

software of the computer (IKA-Werke, Germany) and displayed

as calories per gram of a sample.

2.6. Amino acids profile

The amino acid profile of the raw materials was assessed to

calculate the relative amino acid concentration in the extrusion

formulations as per proportion in the final formulation

treatments, followed by the evaluation of the fortified corn

snacks for the essential and non-essential amino acids. The

amino acid composition of the extrusion formulations and

extruded snacks was used to estimate the impact of extrusion

processing on the amino acid profile in extruded fortified corn

snacks. The amino acid profile of the snacks was determined

through an automatic amino acid analyzer (Hitachi L8500,

Tokyo, Japan) by following the method described by Adeyeye

and Afolabi (18). Then, 30mg of defatted ground sample, 5µm

of leucine, and 5mL of 6M HCl were filled in a glass ampule.

Evacuation of the ampule was done using liquid nitrogen,

followed by ampule sealing with a burner. The hydrolyzation of

the ampoules was done in an oven at 110◦C for 24 h. The tip of

the ampoule was broken down to cool and filter the contents in

it. The contents were dried in a rotary evaporator at 40◦C under

a vacuum. Acetate buffer (pH 2.2) was used for the preparation

of samples for different amino acids. Subsequently, 5 µL of

acetate buffer was used for neutral amino acids and 10 µL for

basic amino acids. The resultant sample solution was dispensed

into the amino acid analyzer cartridge. A peak area comparison

of the standards and samples was made for the quantification of

the amino acid content.

2.7. Statistical analysis

The collected data were subjected to statistical analysis

using SPSS version 25. For the quantitative variables, frequency,

percentages, and means (standard deviation) were used. An

analysis of variance (ANOVA) was performed to determine the

significance of the treatments used in the study. Tukey’s honest

significance test was used for posthoc analysis. The level of

significance was taken as a p-value of ≤0.005 (19).

3. Results and discussion

Protein- and dietary fiber-enriched, nutrient-dense extruded

snacks were developed using soy, chickpea, and corn flours,

along with micronutrient fortification. Soybean, chickpea,

and corn flours were subjected to chemical and nutritional

analyses for the estimation of nutrient potential. The extruded

snacks were studied for nutritional traits such as proximate

composition, vitamins, minerals, amino acids, dietary fiber, and

caloric evaluation.

3.1. Chemical composition of raw
materials

The results of the proximate composition of raw materials

(corn, soy, and chickpea flours) showed the highest moisture

content (10.61 ± 0.21%) in the corn flour and the lowest in the

soy flour (7.20 ± 0.27%). Soy flour had the highest protein level

(46.2 ± 0.17%), followed by chickpea flour (22.5 ± 0.11%). Soy

flour was subjected to defatting before use, which is why crude

fat was lowest (1.22 ± 0.13%) in defatted soy flour, followed by

corn flour (3.86 ± 0.07%) and chickpea flour (6.51 ± 0.12%).

The crude fiber of the chickpea flour was found to be the highest

(17.5± 0.08%) among all rawmaterials. Ash content was highest

(3.06± 0.03%) in soy flour among all the raw materials.

Mineral analysis depicted that corn and chickpeas were

excellent sources of sodium, i.e., 57.3 ± 4.2 mg/100 g and 64

± 5.4 mg/100 g, respectively. Soybean showed a relatively low

sodium content (20 ± 1.5 mg/100 g). The highest levels of

potassium, calcium, and magnesium (2,384 ± 48.2 mg/100 g,

241 ± 25.3 mg/100 g, and 290 ± 12.3 mg/100 g, respectively)

were found to be in soybeans. Zinc and iron contents, which

ranged from 1.73± 0.10 to 2.81± 0.14mg/100 g and 2.38± 0.64

to 9.24 ± 0.71 mg/100 g, respectively, were far below the daily

requirements, which highlighted the need for the fortification

of the food products containing corn, soybean, and chickpea as

chief ingredients.

Corn showed maximum vitamin A content (214 ± 5.3IU),

followed by chickpea (41 ± 2.2IU) and soy (40 ± 3.1IU). It

is worth mentioning that none of the raw materials contained

vitamin C. It was concluded from the results that the fortification

of vitamin C would be obligatory to fulfill nutrient requirements

in the diet. The results for proximate composition, mineral

composition, and vitamin composition were consistent with

earlier findings (20–22).

3.2. Compositional and nutritional
analysis of micronutrient-fortified corn
snacks

Significant differences were observed for the crude protein,

moisture, crude fat, crude fiber, and ash content in fortified

corn snacks (Figure 1). It was noted that the lowest moisture

level (3.40 ± 0.02%) was present in corn snacks developed

with 40/100 g of soy flour supplementation. Corn snacks

developed without supplementation had a high moisture
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FIGURE 1

(A) Means for the e�ect of treatments on the proximate composition (%). (B) Means for the e�ect of treatments on the vitamin A content, (C)

means for the e�ect of treatments on the vitamin C content. C1, control 1; C2, control 2; T1, corn snacks supplemented with 20/100g of soy

flour; T2, corn snacks supplemented with 30/100g of soy flour; T3, corn snacks supplemented with 40/100g of soy flour; T4, corn snacks

supplemented with 20/100g of chickpea flour; T5, corn snacks supplemented with 30/100g of chickpea flour; T6, corn snacks supplemented

with 40/100g of chickpea flour; T7, corn snacks supplemented with 10:10/100g of soy and chickpea flour; T8, corn snacks supplemented with

15:15/100g of soy and chickpea flour; T9, corn snacks supplemented with 20:20/100g of soy and chickpea flour.

content (5.400.01%). It can be concluded from the results that

the supplementation with soy and chickpea flours resulted in

decreased moisture content in the corn snacks. Varied moisture

content (7.1 ± 0.17 to 9.1 ± 0.34%) in extruded snacks

prepared using corn and rice was reported in another study

as well (23). Means for crude protein content (7.600.10%)

were lowest in corn snacks extruded without soy or chickpea

flour supplementation. The maximum value (20.67 ± 0.46%)

of proteins was noticed in corn snacks developed with 40/100 g

of soy flour supplementation, while the lowest value (14.0 ±

0.50%) was noted in corn snacks developed with 20/100 g of soy

flour supplementation. It was also concluded from the results

that the protein contents of soy-supplemented corn snacks were

higher than those of chickpea-supplemented snacks at each

supplementation level.

A minimum amount of crude fat (0.79 ± 0.01%) was found

in non-supplemented corn snacks. An increase in crude fat

was observed with increasing supplementation levels, and corn

snacks supplemented with chickpea flour showed higher crude

fat content as compared to both the soy-supplemented and

mixed-supplemented snacks.

Ash content was lowest (2.50 ± 0.03%) in the non-

supplemented corn snacks, followed by corn snacks that

contained only 7/100 g of guar gum (2.64 ± 0.01%). Soy flour-

based snacks had the highest ash content (3.390.02%) of any

supplemented snack. It was also observed that the ash of soy-

supplemented corn snacks was higher than that of chickpea-

supplemented corn snacks at each level of supplementation.

The proximate composition of the corn snacks revealed

that the non-supplemented corn snacks contained the least

amount of crude fiber (0.300.02%). Soy-supplemented corn

snacks depicted the highest amount of crude fiber content as

compared to others due to escalated levels of supplementation.

The results of the present research cohere with a previous

study on the development of crisp from soy flour (25–

40/100 g) and rice flour by supercritical fluid extrusion. Protein

(334–568%) and dietary fiber (571–901%) were improved in the

final products due to soy flour supplementation (24). Another

study suggested that the incorporation of soy flour into cereals

can assist in overcoming the deficiency of the protein (25).

Similarly, in a study, a novel source of protein, i.e., spirulina,

was used to increase the protein content of dry pasta, with the

amount of protein ranging from 12.91/100 to 23.49/100 g in the

final products (26). Another study concluded that protein-rich

(40–60/100 g dry basis) extruded products prepared from a soy

protein isolate-corn flour blend can be prepared with minimum

moisture, ranging from 2.2 to 3.5% (11).

3.3. Mineral profile

Fortified corn snacks showed significant differences in

calcium, potassium, magnesium, sodium, iron, and zinc content

in comparison with the control (Table 2). The maximum value

(100.70± 9.21mg/100 g) of calciumwas observed in corn snacks

containing 40/100 g of soy flour, whereas the least value (6.62 ±

0.59 mg/100 g) was observed in corn snacks extruded without

soy or chickpea flour supplementation.

Corn snacks showed potassium levels ranging from 402.82

± 34.21 to 1,124.4 ± 55.32 mg/100 g in the snacks that

contained soy and chickpeas. In contrast, non-supplemented

corn snacks contained 296.88 ± 16.64 mg/100 g potassium. An

analysis of treatment supplemented with soy or chickpea flour

for magnesium content revealed a range of 102.98 ± 9.53 to

166.92 ± 4.98 mg/100 g among all the soy or chickpea flour-

supplemented snacks. However, sodium content ranged from

7.67 ± 0.74 to 28.35 ± 1.23 mg/100 g among the soy- and

chickpea-supplemented treatments. Non-supplemented corn

snacks showed the lowest sodium content (4.71 ± 0.21

mg/100 g), whereas the highest sodium content (28.35 ± 1.23

mg/100 g) was noted in corn snacks containing 40/100 g of

chickpea flour.
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Soy and chickpea-supplemented corn snacks showed iron

content ranging from 14.47 ± 0.93 to 15.98 mg/100 g. In

contrast, non-supplementation snacks contained 10.95 ± 0.89

mg/100 g of iron. It was also noted that the iron level decreased

to 10.27 ± 1.32 mg/100 g with the addition of guar gum. Zinc

was found to be more abundant in the snacks supplemented

with chickpea flour as compared to soy flour, with the highest

content of this nutrient (11.33 ± 0.34 mg/100 g) in snacks

made with 40/100 g of chickpea flour. However, a minimum

(10.65 ± 0.43 mg/100 g) level of zinc was noted in the non-

supplemented snacks.

Existing literature suggests that the bioavailability of the

minerals improves during extrusion processing owing to the

inactivation of anti-nutritional factors, e.g., phytates (24, 27).

Moreover, instead of harsh processing conditions, mineral

content remains steady during extrusion, and nearly no mineral

loss occurs. Some studies even observed an increase in iron,

which is linked to the liberation of iron from complex molecules

that increases its bioavailability (27). Similarly, another study

that used superficial fluid extrusion to prepare micronutrient-

fortified rice soy crisp found iron content ranging from 26.19

to 32.09 mg/100 g and zinc content ranging from 13.65 to

14.92 mg/100 g. The study revealed 100% retention of all added

minerals, with even a 25% increase in iron level in the crisps (24).

Another study revealed that 10% of the RDA of Zn can be filled

by consuming spirulina-supplemented corn crisps (28).

3.4. Vitamin A and C content

Vitamin A, the content of the corn snacks, was observed

at its maximum (4,962.0 ± 20.12IU) in the non-supplemented

corn snacks, followed by the corn snacks (4,950.5 ± 19.32IU)

containing 7 g/100 of guar gum (Figure 1). It was also noted that

the lowest levels of soy, chickpeas, and mixed supplementation

with soy and chickpea contain 4,820.2± 17.43, 4,834.5 ± 23.42,

and 4,825.5 ± 23.82 IU vitamin A, respectively. Corn is the best

source of vitamin A among all the raw materials, as shown by

the composition of the raw materials. As a result, corn-based

snacks have a higher level of vitamin A. No statistical difference

was observed regarding mean vitamin C content. This indicates

that supplementation with soy and chickpea has no effect on the

vitamin C content of the extruded snacks. The only source of

vitamin C is the fortification of snacks with ascorbic acid.

The nutritional composition of the extruded product is

mainly dependent on the processing variables of extrusion (29).

Some studies utilizing novel extrusion processes retain about

50% of vitamins A and C at low-shear and low-temperature

conditions (24). Similarly, 64–76% retention of vitamin C and

55–58% retention of vitamin A were noted in puffed rice made

using supercritical fluid extrusion (27).
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3.5. Dietary fiber

Dietary fiber in the corn snacks developed with 40/100 g

of soy flour showed a maximum level of 18.44 ± 0.34%,

whereas a minimum level of 10.36 ± 0.43% was observed

in the non-supplemented corn snacks (Table 2). The total

dietary fiber of the corn snacks containing soy flour was

higher at each supplementation level as compared to the

other snacks. The study conducted by Alonso et al. (30) and

Varo showed an insignificant variation in total dietary fiber

in the product extruded at 161–180◦C. Although extrusion

showed insignificant changes in the total dietary fiber, the

distribution of the soluble to insoluble dietary fiber changed

during extrusion (31).

Overall, soluble dietary fiber ranged from 9.41 ± 0.13 to

10.65 ± 0.13%. It was observed that dietary fiber increased with

increased supplementation. Soy-supplemented corn snacks have

more soluble dietary fiber as compared to the other treatments.

Onwulata et al. (32) revealed a 10% increase in soluble dietary

fiber after the extrusion of the food product.

As depicted in Table 2, the means for the insoluble dietary

fiber of corn snacks showed that insoluble dietary fiber was

lowest (5.80 ± 0.21%) in the non-supplemented corn snacks,

followed by corn snacks containing guar gum along with

corn (6.36 ± 0.31%). The insoluble dietary fiber of the

soy-supplemented corn snacks was higher than that of the

remaining corn snacks at each supplementation level. Insoluble

dietary fiber reduction is linked with extrusion processing, as

presented in a study conducted on the extrusion of black beans

and cereals (31).

3.6. Calorific value

The corn snack containing 40/100 g soy flour had the highest

mean calorific value (40,646.31 kcal/g). The minimum calorific

value (3,933± 4.22 kcal/g) was noted in non-supplemented corn

snacks. Overall, soy-supplemented corn snacks showed higher

calorific values as compared to chickpea-supplemented snacks

(Table 2).

3.7. E�ect of extrusion on the amino acid
composition of fortified corn snacks

The basic aim behind supplementing soy and chickpeas with

corn was to improve the quantity and quality of protein in the

final extruded product. Extrusion has both positive and negative

effects on different amino acids. In the current study, first, raw

materials, i.e., soy, chickpea, and corn flour, were analyzed for

FIGURE 2

(A)Means for the amino acid profile of raw materials [x-axis, amino acids; Y-axis, concentration (mg/100g)]; (B) E�ect of extrusion processing on

the essential amino acid of extruded corn snacks (x-axis, essential amino acids; Y-axis, % change in essential amino acid); (C) E�ect of extrusion

on the non-essential amino acid of extruded corn snacks (x-axis, non-essential amino acids; Y-axis, % change in non-essential amino acids).
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TABLE 3 Amino acids composition (mg/100g) of extrusion formulation of corn snacks based on raw material composition.

Treatments Essential amino acids

Cysteine Isoleucine Lucien Lysine Methionine Phenylalanine Threonine Tryptophan Tyrosine

C1 124.16± 8.41f 285.18± 3.22j 979.70± 9.15j 211.46± 5.33i 149.38± 3.24g 397.70± 3.87j 285.18± 2.47j 49.47± 2.43i 372.48± 5.46j

C2 115.20± 6.91g 264.60± o5.95k 909.43± 7.17k 196.20± 8.34j 138.60± 8.72h 369.23± 4.35k 264.60± 9.60kS 45.90± 1.78j 345.60± 6.54k

T1 220.23± 4.44c 569.80± 8.51e 1,345.67± 8.53d 674.60± 5.85d 212.45± 8.90d 691.43± 9.07e 517.87± 4.67d 139.96± 4.65f 660.83± 7.85e

T2 272.40± 2.12b 722.40± 8.90b 1,563.45± 9.35b 913.80± 5.13a 248.72± 5.63b 852.12± 7.25b 644.44± 5.83b 186.91± 2.46c 818.41± 9.35b

T3 324.80± 8.72a 875.33± 7.55a 1,781.43± 9.80a 115.34± 9.24k 285.40± 7.50a 1,013.45± 4.53a 771.34± 4.84a 233.92± 8.72a 976.23± 8.39a

T4 114.35± 3.82h 400.23± 6.20i 1,026.05± 8.20i 427.55± 5.42h 176.20± 6.17f 512.32± 5.35i 321.45± 7.10i 96.90± 1.57h 463.65± 7.54i

T5 113.95± 3.24h 468.34± 4.60h 1,084.75± 9.14h 543.22± 7.17g 195.34± 0.08e 583.50± 4.97h 349.87± 9.35h 122.44± 2.46g 522.65± 4.14h

T6 113.53± 2.40h 535.85± 5.67f 1,143.12± 7.18g 658.90± 3.95e 213.85± 2.50d 655.23± 6.35f 378.33± 8.34g 147.92± 3.75e 581.70± 5.20f

T7 167.17± 2.65e 485.13± 5.18g 1,185.52± 4.60f 551.07± 4.40f 194.13± 3.58 601.50± 8.93g 419.62± 2.54f 118.42± 1.45h 562.25± 4.80g

T8 193.16± 2.44d 595.24± 7.70d 1,323.78± 9.80e 728.51± 5.20c 221.85± 2.98c 717.75± 8.56d 497.13± 5.30e 154.65± 3.53d 670.53± 4.35d

T9 219.15± 5.23c 705.42± 2.48c 1,462.05± 2.40c 905.95± 9.15b 249.62± 5.72b 834.42± 5.20c 574.65± 2.69c 190.92± 3.24b 778.85± 3.53c

Treatments Non-Essential amino acids

Alanine Arginine Aspartic acid Glutamic acid Glycine Histidine Proline Serine

C1 583.94± 7.64j 323.01± 3.20j 496.64± 3.95j 1,600.5± 6.11h 285.18± 2.23i 211.46± 3.25i 695.49± 2.53j 397.70± 7.43j

C2 541.80± 7.25k 299.70± 2.24k 460.80± 2.51k 1,485.78± 5.32i 264.60± 3.76j 196.20± 1.41j 645.30± 5.83k 369.53± 8.75k

T1 773.46± 6.94e 819.10± 5.42f 1,310.48± 9.35e 2,679.64± 10.2d 543.80± 6.28d 360.68± 3.24d 945.92± 4.97d 705.34± 4.34d

T2 889.25± 3.20b 1,078.87± 6.17c 1,735.20± 8.42b 3,276.78± 20.2b 683.40± 7.21b 442.86± 2.99b 1,096.21± 8.22b 873.24± 3.20b

T3 1,005.55± 9.74a 1,338.55± 5.35a 2,160.56± 9.42a 3,873.78± 18.1a 823.64± 6.42a 525.46± 5.32a 1,246.52± 9.30a 1,041.76± 5.42a

T4 633.35± 4.54i 636.34± 5.42i 785.45± 5.21i 1,873.65± 10.2g 367.35± 2.18h 273.22± 2.87h 685.05± 6.32i 420.20± 6.11i

T5 679.13± 4.23h 804.63± 5.20g 947.17± 8.01h 2,067.98± 9.81f 418.73± 5.32g 311.74± 3.64g 704.93± 7.17h 445.83± 5.23h

T6 724.95± 7.62f 972.95± 8.56d 1,109.27± 9.98f 2,262.30± 10.4e 470.10± 4.37e 350.22± 2.34e 724.80± 4.22g 471.42± 8.37g

T7 703.38± 5.51g 727.77± 8.93h 1,047.74± 8.29g 2,276.33± 9.81e 455.58± 4.99f 316.94± 5.10f 815.48± 7.32f 562.61± 7.42f

T8 784.16±± 8.23d 941.78± 6.35e 1,341.15± 9.13d 2,671.99± 10.9d 551.06± 6.98d 377.25± 4.26c 900.56± 6.91e 659.42± 5.45e

T9 864.95± 4.12c 1,155.70± 4.97b 1,634.63± 7.99c 3,067.65± 12.2c 646.55± 5.62c 437.64± 3.53b 985.65± 7.77c 756.20± 6.98c

The means carrying the same letter in a column differed non-significantly (p > 0.05).

C1, control 1; C2, control 2; T1, corn snacks supplemented with 20/100 g of soy flour; T2, corn snacks supplemented with 30/100 g of soy flour; T3, corn snacks supplemented with 40/100 g of soy flour; T4, corn snacks supplemented with 20/100 g of

chickpea flour; T5, corn snacks supplemented with 30/100 g of chickpea flour; T6, corn snacks supplemented with 40/100 g of chickpea flour; T7, corn snacks supplemented with 10:10/100 g of soy and chickpea flour; T8, corn snacks supplemented with

15:15/100 g of soy and chickpea flour; T9, corn snacks supplemented with 20:20/100 g of soy and chickpea flour.
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TABLE 4 Means for the e�ect of treatments on essential and non-essential amino acids (mg/100g) of extruded corn snacks.

Treatments Cysteine Isoleucine Lucien Lysine Methionine Phenylalanine Threonine Tryptophan Tyrosine Valine

C1 68.160± 3.23g 145.79± 4.22e 987.54± 3.35j 199.41± 5.07j 149.38± 6.42f 376.62± 4.34j 280.33± 6.53j 49.770± 3.92j 287.37± 4.41h 363.91± 5.25i

C2 63.480± 4.14i 135.41± 6.41f 918.09± 5.06k 185.61± 3.01k 138.60± 7.51f 346.86± 6.41k 260.37± 4.41 46.310± 4.63k 267.18± 6.31i 336.61± 3.22j

T1 121.66± 5.02c 207.34± 2.29d 1,361.1± 21.7d 640.20± 10.03e 212.00± 4.32c 651.61± 3.14e 508.48± 3.33d 140.32± 8.95f 457.33± 3.53d 642.30± 5.04d

T2 151.18± 3.12b 243.48± 5.5b 1,584.9± 51.8b 869.94± 9.05b 248.70± 7.32b 805.99± 7.05b 636.67± 5.66b 187.27± 6.37c 551.81± 6.62b 793.85± 3.75b

T3 180.91± 6.33a 276.84± 2.35a 1,809.5± 62.2a 1,101.1± 41.9a 285.40± 3.53a 961.34± 51.4a 762.52± 8.37a 235.77± 7.58a 650.60± 2.77a 955.50± 6.57a

T4 63.920± 4.51h 171.09± 2.54e 1,044.5± 27.5i 409.59± 5.73i 176.20± 3.71e 482.30± 4.73i 312.77± 5.46i 97.380± 2.56i 326.89± 6.33g 451.60± 2.73h

T5 62.320± 3.01j 190.13± 6.26d 1,091.1± 66.9h 510.63± 3.64h 195.00± 7.41d 550.82± 7.63h 336.93± 6.43h 122.64± 8.54g 359.01± 3.72f 508.56± 6.44g

T6 61.860± 5.62k 208.24± 6.65c 1,147.7± 63.6g 617.39± 6.58f 213.80± 6.71c 616.36± 3.29f 371.87± 7.64g 148.05± 6.46e 389.44± 8.82e 567.16± 8.79e

T7 90.780± 1.42f 188.86± 8.74d 1,187.9± 30.7f 514.70± 3.29g 194.10± 5.82d 568.42± 7.37g 414.17± 3.83f 118.40± 1.55h 393.57± 9.93e 549.29± 5.38f

T8 104.50± 6.71e 215.64± 4.28b 1,323.8± 71.8e 678.25± 7.28d 221.85± 4.42c 676.84± 2.46d 486.20± 5.32e 153.88± 5.34d 456.29± 4.08d 653.77± 4.37d

T9 118.13± 8.23d 242.36± 3.66b 1,459.1± 71.9c 840.73± 4.43c 249.60± 8.31b 787.30± 4.57c 566.04± 3.51c 188.05± 3.43b 516.73± 3.01c 758.60± 7.05c

Alanine Arginine Aspartic acid Glutamic acid Glycine Histidine Proline Serine

C1 418.68± 8.31j 307.51± 6.31i 464.36± 9.32j 1,525.3± 13.44h 257.80± 7.42j 205.12± 2.41g 682.28± 4.43i 375.43± 6.01j

C2 389.55± 7.52k 285.91± 3.41j 432.69± 8.21k 1,412.2± 15.33i 238.93± 4.31k 191.49± 4.31g 635.62± 7.32k 350.18± 4.41k

T1 552.21± 5.65e 784.70± 6.09f 1,229.2± 15.17e 2,561.1± 20.54d 497.58± 6.45e 350.14± 2.63d 923.20± 5.67d 666.93± 6.35d

T2 634.00± 8.04b 1,024.9± 13.56c 1,625.9± 23.26b 3,128.6± 26.30b 626.68± 8.65b 433.50± 6.05b 1,091.8± 14.46b 823.24± 4.76b

T3 720.59± 9.35a 1,270.2± 15.38a 2,023.9± 29.28a 3,710.3± 31.64a 747.28± 4.33a 509.77± 6.46a 1,216.6± 18.06a 978.54± 3.47a

T4 457.28± 6.63i 602.58± 10.82h 731.62± 8.39i 1,780.0± 14.77g 331.35± 7.24i 267.46± 7.22f 672.72± 8.72j 398.77± 7.24i

T5 492.37± 4.74h 774.83± 9.05f 889.33± 7.59h 1,966.6± 12.97f 377.27± 5.57h 302.97± 4.62e 697.17± 9.36h 421.73± 8.73h

T6 508.88± 6.06f 933.01± 12.33d 1,037.1± 10.14f 2,162.8± 27.25e 426.38± 8.77f 339.69± 5.64d 711.03± 7.27g 444.53± 5.86g

T7 500.80± 7.68g 692.04± 11.52g 975.41± 12.08g 2,176.2± 18.30e 412.75± 4.09g 308.98± 9.83e 798.35± 5.69f 531.66± 9.44f

T8 555.97± 4.69d 898.38± 18.98e 1,247.3± 18.12d 2,562.4± 27.21d 500.92± 7.36d 369.33± 4.36c 896.96± 8.88e 625.77± 6.84e

T9 616.72± 3.88c 1,088.7± 12.46b 1,520.2± 21.20c 2,938.8± 14.70c 590.96± 9.66c 424.47± 5.75b 971.86± 7.49c 717.63± 7.45c

The means carrying the same letter in a column differed non-significantly (p > 0.05); C1, control 1; C2, control 2; T1, corn snacks supplemented with 20/100 g of soy flour; T2, corn snacks supplemented with 30/100 g of soy flour; T3, corn snacks

supplemented with 40/100 g of soy flour; T4, corn snacks supplemented with 20/100 g of chickpea flour; T5, corn snacks supplemented with 30/100 g of chickpea flour; T6, corn snacks supplemented with 40/100 g of chickpea flour; T7, corn snacks

supplemented with 10:10/100 g of soy and chickpea flour; T8, corn snacks supplemented with 15:15/100 g of soy and chickpea flour; T9, corn snacks supplemented with 20:20/100 g of soy and chickpea flour.
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the amino acid profile. The results are summarized in Figure 2.

These concentrations of the amino acids were used to compute

the amino acid profile of the extrusion premixes based on their

proportion in the final formulation. The amino acid profile

was evaluated using the essential and non-essential amino acid

composition (mg/100 g) of extruded corn snacks based on the

raw material composition. The results of the analysis are shown

in Table 3. The means for the essential and non-essential amino

acids (mg/100 g) of extruded fortified corn snacks are shown in

Table 4.

These values of the amino acid composition of the extrusion

formulations were compared with the experimental results of

the final extruded snacks’ amino acid profile to estimate the

effect of extrusion processing on amino acid retention. The

percent change during extrusion for the essential and non-

essential amino acids is shown in Figure 2C. The results revealed

that the amino acid that is affected the most by extrusion

processing is cysteine (45.1%). Essential amino acids sensitive

to extrusion processing can be arranged in the following

descending order, starting from most affected to least affected,

i.e., lysine, phenylalanine, isoleucine, tyrosine, methionine,

and valine, with reduction percentages of 5.7, 5.6, 3.78, 3.47,

2.65, and 2.55%, respectively. Leucine (0.83%) and tryptophan

(0.15%) are among the essential amino acids that remained

almost unaffected during extrusion processing. Among the non-

essential amino acids, the most unstable is alanine (−28.52%).

Similarly, as per the results of the study, non-essential amino

acids could be arranged in descending order, starting from

most affected to least affected, i.e., glycine, aspartic acid, serine,

arginine, glutamic acid, histidine, and proline, with reduction

percentages of 9.22, 6.12, 5.43, 4.98, 4.52, 2.62, and 1.57%,

respectively. This increase is probably due to the inactivation

of anti-nutritional compounds such as phytates and trypsin.

However, heat-sensitive amino acids’ levels decreased during

extrusion; the operating temperature of conventional extrusion

is always more than 100◦C to change the moisture in the

recipe to water vapors, which in turn gives extrudates their

characteristic puffiness. Another reason is the Millard reaction

between sugars and amino acids due to heat during extrusion.

It is a leading cause of amino acid loss during extrusion. The

findings of the current study were verified by the results of the

previous studies. In a study, the effect of heat treatment on the

retention of amino acids in infant formula was studied. The

results of the study revealed that amino acid destruction during

autoclaving is almost 19.5% greater than the usual preparation

method that does not include heat treatment. The study reported

losses in the range of 4.1–71.5%. Maximum reductions were

observed in valine, glutamine, and lysine, i.e., 71.5, 60.6, and

39.2%, respectively. Overall, 28.17% of essential and 27.13% of

non-essential amino acids were affected by heat treatment (18).

Another study conducted on amino acid retention in canned

baby foods also provided similar results on heat treatment of

the amino acid profile. It was reported that there was a decrease

in amino acids during heat processing; however, it also showed

that isoleucine remained unaffected by the heat treatment. The

percent recovery of phenylalanine, tryptophan, and tyrosine was

116, 107, and 102%, respectively, which indicates the positive

effect of heat treatment on these amino acids (33, 34).

Conclusions

Supplementing corn snacks with soy and chickpeas

increased the protein and dietary fiber content of the snacks.

Soy-fortified snacks were nutritionally superior to chickpea-

supplemented snacks. Corn snacks, developed by using 40/100 g

soy flour, showed a high content of protein (20.67 ± 0.46%),

dietary fiber (18.44 ± 0.34/100 g), calcium (100.70 ± 9.21

mg/100 g), magnesium (166.92 ± 4.98 mg/100 g), potassium

(1,124.4 ± 55.32 mg/100 g), and iron (17.03 ± 1.56 mg/100 g)

contents. The supplementation with soy and chickpea improved

balance in the amino acid profile of the corn snacks. Amino

acids such as lysine (5.70%), phenylalanine (5.6%), isoleucine

(3.78%), tyrosine (3.47%), methionine (2.65%), and valine

(2.55%) decrease when processed by extrusion technology to

produce corn snacks.
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