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reducing the impact of shoulder 
abduction loading on the 
classification of hand Opening  
and grasping in individuals with 
Poststroke Flexion synergy
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Application of neural machine interface in individuals with chronic hemiparetic stroke 
is regarded as a great challenge, especially for classification of the hand opening and 
grasping during a functional upper extremity movement such as reach-to-grasp. The 
overall accuracy of classifying hand movements, while actively lifting the paretic arm, 
is subject to a significant reduction compared to the accuracy when the arm is fully 
supported. Such a reduction is believed to be due to the expression of flexion synergy, 
which couples shoulder abduction (SABD) with elbow/wrist and finger flexion, and is 
common in up to 60% of the stroke population. Little research has been done to develop 
methods to reduce the impact of flexion synergy on the classification of hand opening 
and grasping. In this study, we proposed a novel approach to classify hand opening and 
grasping in the context of the flexion synergy using a wavelet coherence-based filter.  
We first identified the frequency ranges where the coherence between the SABD muscle 
and wrist/finger flexion muscles is significant in each participant, and then removed the 
synergy-induced electromyogram (EMG) component with a subject-specific and mus-
cle-specific coherence-based filter. The new approach was tested in 21 stroke individuals 
with moderate to severe motor impairments. Employing the filter, 14 participants gained 
improvement in classification accuracy with a range of 0.1 to 14%, while four showed 
0.3 to 1.2% reduction. The remaining three participants were excluded from comparison 
due to the lack of significant coherence, thus no filters were applied. The improvement 
in classification accuracy is significant (p = 0.017) when the SABD loading equals 50% 
of the maximal torque. Our findings suggest that the coherence-based filters can reduce 
the impact of flexion synergy by removing the synergy-induced EMG component and 
have the potential to improve the overall classification accuracy of hand movements in 
individuals with poststroke flexion synergy.

Keywords: stroke, flexion synergy, machine learning, hand movements, classification, neural machine interface, 
coherence
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Table 1 | Participant demographics.

stroke control

Age (years) 59 ± 9 (40–71) 55 ± 12 (42–83)
Gender (M/F) 15/6 5/3
Time since stroke (years) 11 ± 7 (1–28)
Sides of tested UEa (L/R) 17/4 0/8
UE FMA 26 ± 10 (12–39)
CMSAh 3 ± 1 (2–5)

M, male; F, female; L, left; R, right; UE, upper extremity; FMA, Fugl-Meyer assessment; 
CMSAh, Chedoke-McMaster Stroke Assessment (hand).
Values are listed as mean ± SD (range).
aIn this experiment, the stroke subjects were tested at the paretic UE, while the control 
subjects were tested at the dominant UE.
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inTrODUcTiOn

Functional movements that demand independent joint control 
of the shoulder, elbow, and wrist/fingers (e.g., reach-to-grasp) are 
essential to activities of daily living. Unfortunately, most individu-
als with chronic hemiparetic stroke have lost such ability due to 
the stereotypical muscle coactivation patterns between shoulder 
abductor, elbow flexor, and wrist/finger flexors, commonly 
referred to as the flexion synergy (Dewald et al., 1995; Sukal et al., 
2007; Miller and Dewald, 2012; Lan et al., 2014; Ellis et al., 2016). 
Due to the expression of the flexion synergy, many individuals 
find it harder or even impossible to open the hand and/or grasp 
an object when lifting the paretic arm at the same time (Miller and 
Dewald, 2012; Lan et al., 2014). To overcome this difficulty, past 
studies have implemented statistical models to learn and translate 
the electrical biosignals [e.g., electroencephalogram (EEG) or 
electromyogram (EMG)] into control signals of external devices, 
such as robotic exoskeletons (Collinger et al., 2013; Hortal et al., 
2015) or functional electrical stimulation systems (Moritz et al., 
2008; Pohlmeyer et al., 2009; Ethier et al., 2012). While moder-
ate to high accuracies in learning and translating the poststroke 
EMGs were reported (Sang et al., 2010; Zhang and Zhou, 2012), 
none of them have given consideration of the deleterious effect of 
the flexion synergy.

Due to the flexion synergy, poststroke EMG signals recorded 
at wrist and fingers during functional movements include two 
components (Miller and Dewald, 2012; Lan et  al., 2016). One 
component is the voluntary EMG signals generated due to the 
voluntary contraction of wrist and finger muscles; and the other 
one is the synergy-induced EMG signals generated due to the 
involuntary contraction of wrist and fingers muscles associated 
with the activation of shoulder abductor muscles (Miller and 
Dewald, 2012; Lan et al., 2014). It has been shown that after a stroke 
synergy-induced EMG signals from the impaired hand can reach 
to a significant level with increased shoulder abduction (SABD) 
loading, even when a study participant was instructed to relax the 
hand (Miller and Dewald, 2012). These synergy-induced EMGs 
do not represent the intention of hand movements and thus are 
detrimental to the accurate classification of volitional hand move-
ments (Lan et al., 2011). For example, when the impaired arm was 
fully supported, i.e., no effect of flexion synergy, the classification 
of hand movements can reach an overall accuracy of 96% with 
high-density myoelectric recordings (Zhang and Zhou, 2012), or 
95% with bipolar surface EMG recordings (Lan et al., 2011), but 
when lifting the paretic arm, the overall accuracy drops by 10 to 
16% using EMG signals (Lan et al., 2011) or using EEG signals 
(Yao et al., 2015).

The overall goal of this study is to find out whether it is 
possible to reduce the impact of the flexion synergy on the 
classification accuracy of hand movements by removing the 
synergy-reduced EMG signals from the wrist and fingers mus-
cles. It was noted from earlier findings that voluntary EMGs 
and synergy-induced EMGs may be generated using different 
neural pathways. The synergy-induced EMG signals are likely to 
be delivered via slow-conducting, polysynaptic contralesional 
corticoreticulospinal pathway, resulting in EMG–EMG oscilla-
tion in the alpha band (8–13 Hz) between muscles that share 

the same neural projections (Lan et al., 2016). In contrast, vol-
untary EMGs are conveyed via fast-conducting, monosynaptic 
corticospinal pathway that produces EMG–EMG oscillation 
in the beta band (15–30 Hz) (Farmer et al., 1993; Gross et al., 
2000; Lan et  al., 2016). With coherence analysis of EMGs 
between the shoulder abductor and wrist/finger muscles, it is 
possible to differentiate the synergy-induced EMGs from the 
voluntary EMGs by studying the coherence power during hand 
movements. It is our hypothesis that the overall classification 
accuracy in individuals with stroke should be improved after 
removing the synergy-induced EMGs with a specific filter. Such 
a filter should be coherence-based and subject-specific due to 
the expected between-subject variation in the frequency ranges 
where the coherence of synergy-induced EMGs is significant. 
Classification accuracies before and after the filtering will be 
compared and discussed.

MaTerials anD MeThODs

Participants
A total of 29 individuals (stroke: 21, control: 8) participated in 
this study. Participant demographics are listed in Table 1. Control 
participants were age-matched to the stroke participants and 
reported no history of cerebral vascular accidents. Stroke par-
ticipants were selected from the Clinical Neuroscience Research 
Registry that is housed in the Rehabilitation Institute of Chicago, 
as well as from individuals residing in the Chicago area who 
wished to participate in the study. Qualified stroke participants 
met the following inclusion criteria: (1) sustained a unilateral 
lesion at least 1 year prior to participation in this project; (2) pare-
sis confined to one side; (3) absence of a brainstem and/or cer-
ebellar lesion; (4) absence of severe concurrent medical problems 
(e.g., cardiorespiratory impairment, changes in management of 
hypertension); (5) absence of any acute or chronic painful condi-
tion in the upper extremities or spine; (6) capacity to provide 
informed consent; (7) ability to elevate their limb against gravity 
up to horizontal and to generate some active elbow extension; 
and (8) Fugl-Meyer Assessment (Fugl-Meyer et al., 1975) within 
the range of 10–40 out of a possible 66 and 2–5 out of a possible 7 
in Chedoke-McMaster Stroke Hand Assessment (Gowland et al., 
1993). All subjects gave informed consent for participation in this 
study, which was approved by the Institutional Review Board of 
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Northwestern University in accordance with the ethical standards 
stipulated by the 1964 Declaration of Helsinki for research involving 
human subjects.

equipment and setup
The experiment was carried out using an arm coordination train-
ing 3-D system (ACT3D, Figure 1A), which consists of a modified 
HapticMaster robot (Moog-FCR B. V., the Netherlands), a Biodex 
chair (Biodex Medical Systems, Shirley, NY, USA), and T-base 
support system (Biodex Medical Systems, Shirley, NY, USA). The 
ACT3D allows for free movements in three dimensions and was 
used to modulate SABD torques applied to the tested arm.

For the experimental setup, each participant was seated in the 
Biodex chair with the trunk strapped to the back of the chair to 
prevent unwanted movement of the upper body. The to-be-tested 
forearm was placed in a forearm orthosis and the fingers/palm 
rested on a cylinder. The cylinder was rigidly coupled to the end 
effector of the ACD3D. Surface EMGs were collected using an 
Avatar physiological recorder (Electrical Geodesics, Inc., Eugene, 
OR, USA) from intermediate deltoid (mDEL), flexor carpi radialis 
(FCR), flexor digitorum superficialis (FDS), extensor carpi radia-
lis (ECR), and extensor digitorum communis (EDC). EMGs were 
sampled at 1,000 Hz and preprocessed with a band-pass filter at a 
cutoff band of 5–450 Hz.

Protocol
Prior to the experiment, each participant’s maximum SABD 
torque was measured using a manual dynamometer (Lafayette 
Instrument Company, Lafayette, IN, USA) placed just proximal 
to the axis of rotation of the elbow in a limb configuration of 85° 
SABD, 45° shoulder flexion, and 90° elbow flexion. Participants 
were presented with a home object and a target object on a 
monitor in front of them (Figure 1B). At the beginning of the 
task, participants were instructed to find the home object, trigger 
the trial, and then reach out to the target object. Once the hand 
arrived at the target, the participant was given 2 s to lift the tested 
arm and hold the position. After the 2 s, while keeping the arm 
lifted, the participant was asked to perform one of the following 
three hand tasks for 5 s in a random order: (1) open the hand with 
a maximal effort; (2) grasp the cylinder with a maximal effort; (3) 
no hand movement. All participants performed these three hand 
tasks with two different SABD loadings equaling to 25 or 50% of 
the subject’s maximum SABD torque. Ten to twelve repetitions of 
each hand task were performed.

Data analysis
Coherence
Wavelet coherence was used to examine the linear dependency 
of two sequences of surface EMGs in the time-frequency domain 
(Torrence and Compo, 1998) and is considered efficient and 
reliable in detecting the synchronizing activity between two time 
series (Daubechies, 1990; Jevrejeva et  al., 2003; Grinsted et  al., 
2004). In this study, the Morlet wavelet was applied for transfor-
mation. Monte Carlo simulation methods were used to determine 
the 5% statistical significance level of the coherence (Grinsted 
et al., 2004). It is assumed that the EMG time series has a mean 

power spectrum, which is only considered as significant when 
it is above the white noise of the background spectrum. And 
during the holding phase of grasping/opening, the coherence 
remains relatively steady (Baker et al., 1997; Kilner et al., 1999, 
2000). Wavelet coherences were calculated for each of following 
muscle pairs, i.e., FDS-mDEL, FCR-mDEL, EDC-mDEL, and 
ECR-mDEL, for each participant and for all three hand tasks.

Algorithm
Without Coherence-Based Filter
All EMG signals were manually segmented and concatenated to 
exclude the idling EMGs collected between hand tasks. A 250-ms 
long window was implemented to slide from the beginning to the 
end of the concatenated EMGs with a 50% increment and a 50% 
overlap between adjacent moving windows. Within each moving 
window, features were extracted based on the method proposed 
by Hudgins (Hudgins et  al., 1993). This method proposes four 
features in the time domain: mean absolute value, zero crossings, 
slope sign changes, and waveform length (see Table  2 for the 
definition of each of these four features).

Linear discriminant analysis (LDA) was used to classify the 
EMG signals in this study. LDA has been proved to be effective 
in EMG classification as well as with low computational cost 
(Scheme and Englehart, 2011). For each of the hand tasks, LDA 
maximizes the posterior probability of Bayesian equation and 
assigns the class labels (i.e., hand open, grasp, or relax) with the 
largest possibility,

 

argmax
| *

| *j
j ij

ij j j

i j

i n j m

ij j

p y x
p x y p y

p x y p
( | )

,

,=
( ) ( )

( )= =

= =

∑ 1 1
yy j( )

 

where xij and n represent the features and the number of features 
in the training set, i indicated the ith feature, j indicated the jth 
category, y is classification category.

With Coherence-Based Filter
Frequency ranges where coherence was significant were first 
identified during the three hand tasks. For each participant, 
significant ranges found in the three hand tasks were merged to 
determine the cutoff frequency for the band-stop filters (fourth 
order Butterworth). Separate filters were built specific to each of 
the two SABD loading levels in this study. Concatenated EMG 
signals were then preprocessed with these coherence-based filters 
followed by feature extraction and LDA classification described 
above.

Dataset and Model Evaluation
For each participant, the dataset was split into a training set 
(75%) and a testing set (25%). The training set was used to train 
the model to learn and differentiate the EMG patterns of dif-
ferent hand tasks. The model was trained and tested based on 
a 250-ms long window. Each subject will generate 10–12 trials 
of 5  s hand movements for three hand tasks (open/grasping/
relax). The total number of the dataset is 1,200–1,440 samples. 
Tenfold cross-validation was implemented to determine the best 
model that reported the highest detection accuracy in training 
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FigUre 1 | Experiment setup. (a) ACT3D system with a monitor display; (b) visual feedback during the task, step 1: to find the home position; step 2: found the 
home position and triggered the trial; step 3: to find the target position.
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Table 2 | Electromyogram features extracted in the time domain.

Features Description

Zero crossing xk xk+1 < 0 and |xk − xk+1| ≥ ∈

Slope sign changes {xk > xk−1 and xk > xk+1} or {xk < xk−1 and xk < xk+1}  
and |xk − xk+1| ≥ ∈ or |xk − xk−1|  ≤ ∈

Absolute amplitude x
L

x i Li
k

L

k= ∑1
12

1=

= …for , , ,

Waveform length l x
k

L

k0
1

=
=
∑ ∆

k, the kth sample; x, the feature; ∈, pre-defined threshold; L, window length; |Δxk|, 
waveform length between two adjacent samples.
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set. The testing set was then used to assess the strength of the 
model and the extent to which the fitted model could generalize 
to the future data. The testing set was put aside until the model 
was complete with training.

Model was evaluated by calculating the classification accuracy 
within each of hand movement categories, as shown below,

 
accuracy

total number of c
number of correct classification

=
llassification

%.
 

The overall classification accuracy is the mean classification 
accuracy of the three hand tasks.

Statistics
A mixed three-way ANOVA with repeated measures was con-
ducted to determine whether loading (SABD25, SABD50), filter 
(before filtering, after filtering), hand task (relax, open, grasp), 
and/or their interaction explain the changes in classification 
accuracies. Post hoc comparisons with the Bonferroni adjustment 
were used to compare within-group differences. Unless specified 
otherwise, results are presented as mean ± SE. Statistical signifi-
cance was set at p < 0.05. The statistical analysis was performed 
using the IBM SPSS version 22 software.

resUlTs

Shoulder abduction loading showed a negative impact on the 
overall accuracy in the stroke group (Figure 2, see p values in 
Table 3). Both groups showed high overall accuracy when the 
tested arm was fully supported, but the accuracy in the stroke 
group started to drop significantly during conditions where 
the participants lifted the paretic arm thus generating SABD 
loads. The control group was not significantly affected by SABD 
loading.

The result of coherence analysis of EMGs is shown for one 
stroke participant and one able-bodied individual during grasp-
ing while generating a 50% of max SABD load (see Figure 3). 
Significant coherence between wrist/finger flexors and mDEL in 
the alpha band (8–13  Hz) was found in the stroke participant 
during the hand grasp task while such activities were mostly 
absent in the able-bodied individual (Figure  3). The increased 
alpha-band coherence during hand grasping while lifting the 
arm in the stroke individual suggested a greater level of shared 
neural drive to both muscles. The global coherence depicted the 

coherence power aggregated over time as a function of frequency, 
highlighting the frequency range where coherence power was the 
most prominent. It is evident from the global coherence figures 
that this stroke individual had a greater level of EMG–EMG 
synchronization that centered at around 8 Hz.

Our data also show a significant global coherence between 
wrist/finger muscles and mDEL for the hand grasping task with 
SABD loading at 50% of the max torque based on the Monte 
Carlo simulation approach in each of the participants (see Figure 
S1 in Supplementary Material). For each participant, the signifi-
cant frequency range is represented by solid lines whose lengths 
denote the range and a solid filled circle whose location denotes 
the peak value. The figure shows that the stroke group has more 
significant coherence bands in the alpha band than the control 
group, especially for the more severely impaired individuals. 
Coherence in the beta band is not evident for the stroke group. 
Additionally, there is also great variation between subjects and 
between muscles in the alpha band coherence in the stroke group. 
For example, the significant coherence in the extensors are either 
very short (ECR for the severe cases) or very rare (EDC for the 
severe cases), while coherence in the flexors is generally longer. 
Across all individuals, no one stroke individual shared the same 
significant frequency band as the other.

Based on the significant coherence bands found in all three 
hand tasks, the cutoff frequency for the band-stop filter was deter-
mined by the frequency ranges where coherence was significant 
for each muscle in each participant. This subject-specific, muscle-
specific coherence-based filter (referred as “coherence filter” 
below) was applied to the EMGs in each participant to remove 
the synergy-induced components from the original EMGs. For 
individuals (n = 3) who showed the peak value as the only signifi-
cant coherence or no significant bands, no coherence filter was 
applied. Results from these three individuals were not included in 
the statistic analysis either. Figure 4 showed the improvement in 
classification accuracy after applying the coherence filters to the 
stroke group at SABD50. Overall, 14 subjects showed improve-
ment in the classification accuracy, four subjects showed reduced 
accuracy after removing the synergy-induced EMGs. A mixed 
three-way ANOVA found significance in an interaction effect of 
loading × filters (p < 0.05). Post hoc analysis found no significant 
difference in the classification accuracy with the coherence filters 
applied at SABD25, but significantly greater improvement with the 
coherence filters at SABD50 (Table 4). One subject showed 14% 
improvement with the filter. It is expected that some individuals 
may respond very favorably to the filter. Nevertheless, even when 
eliminating this individual from the analysis, the conclusion still 
holds as the sample mean at SABD50 without this subject remains 
significant compared to the one without the filter (p = 0.038).

DiscUssiOn

novelty and Main Finding
Decoding EMG signals for neural machine interface is a great 
challenge in the individuals with chronic hemiparetic stroke due 
to prevalent motor deficits, such as flexion synergy (Lan et al., 
2011; Yao et al., 2015). Many studies made great efforts acquiring 
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Table 3 | Mixed two-way ANOVA for overall accuracy rate.

Main effect and interaction

Factor Overall accuracy rate

Group p = 0.009
Loading p = 0.000
Loading × group p = 0.048

Post hoc analysis

loading group (control vs stroke) 

TABLE p = 0.093
SABD25 p = 0.015
SABD50 p = 0.011

group loading (Table, sabD25, sabD50)

Stroke Ptb-25 = 0.000
P25–50 = 1.000
Ptb-50 = 0.000

Control Ptb-25 = 1.000
P25–50 = 0.245
Ptb-50 = 1.000

FigUre 2 | Increased shoulder abduction (SABD) loading resulted in a significantly decreased accuracy rate in the stroke group. Mean and SE of classification error 
rate in the stroke group (N = 21) and in the able-bodied group (N = 8). Table, participant’s tested arm was fully supported on a rigid flat surface; SABD25 and 
SABD50, participant lifted the tested arm with a weight that equaled to 25 and 50% of his/her maximal SABD torque, respectively.
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better quality of EMGs or features to improve the overall clas-
sification accuracy. For example, Zhang and Zhou (2012) have 
reported that using high-density EMG signals can achieve high 
classification accuracies in the stroke individuals. Englehart 
and Hudgins (2003) suggested optimal parameters for feature 
extraction, such as window length, overlap, increment length to 

produce models with low bias, and variances that can generalize 
well to the test data (Scheme and Englehart, 2011). Features in 
the time domain (Hudgins et al., 1993; Zhou et al., 2007), the 
frequency domain (Merletti, 1997; Li et  al., 2014), and the 
time-frequency domain (Englehart et  al., 1999; Zhou et  al., 
2007; Nurhazimah et al., 2016) have also been broadly inves-
tigated. While improvement of the overall accuracy has been 
reported, the limitation is that very few studies have given full 
consideration of the effect of the flexion synergy common in up 
to 60% of the stroke population nor proposed approaches that 
can reduce EMG contamination associated with activation of 
proximal arm muscles (Fougner et al., 2011; Lan et al., 2011).

This study proposed a novel approach to reduce the impact 
of the flexion synergy on classification of the hand movements 
in individuals with chronic hemiparetic stroke for future use 
in neural machine interfaces. A subject-specific and muscle-
specific coherence-based filter was developed to remove the 
synergy-induced component in EMG signals collected from 
the forearm. The subject-specific filter is believed to be more 
effective in removing individualized synergy-induced EMG 
component than a filter with a universal cutoff frequency as 
the expression of flexion synergy on the frequency ranges of 
significant coherence varies across individuals with different 
motor impairment severities (see Figure S1 in Supplementary 
Material). It was found that such filters can significantly 
improve the classification accuracy during a greater level 
SABD loading. To our knowledge, this is the first study in the 
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FigUre 3 | Greater alpha-band coherence between mDEL and wrist/finger 
flexors in the stroke individual. Top: poststroke electromyogram (EMG) signals 
from flexor digitorum superficialis (FDS) and mDEL were presented during the 
hand grasp task while the stroke participant was lifting the paretic arm at the 
same time (SABD50); Middle: wavelet coherence was calculated with the 
aligned EMG signals for the stroke participant, and the global coherence was 
plotted on the left side to show the coherence power aggregating over time; 
Bottom: wavelet coherence and global coherence for a control individual 
(EMG signals for this control individual are not shown).
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field that took the effect of the upper-limb flexion synergy dur-
ing functional reaching, hand opening, and grasping tasks into 
consideration.

impact of Flexion synergy  
on classification accuracy
It was previously reported that SABD loading had a negative 
impact on the overall classification accuracy of hand opening 
using either EMGs (Lan et al., 2011) or EEGs (Yao et al., 2015). 
Even in the able-bodied individuals, variations in the limb posi-
tion can have a substantial impact on the robustness of EMG 
recognition (Fougner et  al., 2011). The results in this study 
confirm these previous findings. It is now understood that the 
activation of shoulder abductors can result in the involuntary 
coactivation of the wrist and fingers (Miller and Dewald, 2012), 
and such involuntary expression of flexion synergy at the hand 
can be further enhanced by increased SABD loading on the 
paretic limb. The EMG signals in the flexors increased with 
SABD loading even when no voluntary hand movement was 
initiated (Miller and Dewald, 2012). Prior studies suggested that 
the synergy-induced EMG component might be delivered via the 

contralesional corticoreticulospinal pathway during increasing 
levels of SABD (Dewald et al., 1995; Miller and Dewald, 2012; Lan 
et al., 2016) and should not represent the volitional aspect of hand 
movement, thus resulting in a decrease in classification accuracy. 
It is worth noting that while the paretic limb was fully supported, 
the overall classification of the stroke group has an average of 
93.4% accuracy, suggesting that the current feature extraction 
and classifier choice is sufficient to decode myoelectric patterns 
in the absence of flexion synergy. However, the same feature 
extraction and classifier choice is less effective in the presence 
of synergy-induced EMG, such as when lifting the weight of the 
arm. It also seems that the reduction in classification accuracy, 
due to increased SABD loading, is not strictly linear since the 
accuracy at SABD50 only decreased by 1.1% compared with 
SABD25. However, more and greater SABD loading conditions 
are needed to confirm the relationship between SABD loading 
and reduction in classification accuracy.

Variation in significant coherence 
Frequency range
For both hand grasp and hand open tasks, there was great 
between-subject and between-muscle variation in the frequency 
ranges where the coherence between wrist/finger muscles and 
mDEL is significant. One explanation is the broad range of stroke 
severity included in this study. The severity of stroke participants 
in this study ranges from moderate to severe impairment, as dem-
onstrated by Fugl-Meyer Assessment and Chedoke-McMaster 
Stroke Hand Assessment (see methods). It is possible that more 
severe individuals show greater coherence in the alpha band due 
to the increased reliance on the contralesional corticoreticulo-
spinal pathway, resulting in a greater portion of synergy-induced 
EMGs at the wrist/fingers during SABD. The between-muscle 
variation is also evident across individuals. For example, the 
significant coherence frequency range in the flexors is generally 
more common than the extensors (Figure S1 in Supplementary 
Material). It was noted from previous studies that hand muscles 
receiving projections from the contralesional reticulospinal tract 
are flexor-facilitated on the impaired side (Davidson and Buford, 
2006; Riddle et al., 2009), meaning activation of the flexors using 
this pathway is much stronger than the extensors. From evidence 
provided in monkeys which had recovered from a unilateral lesion 
of the pyramidal tract, it was shown that reticulospinal-induced 
amplitude and incidence of synaptic inputs to forearm flexors 
were significantly increased, while inputs to extensors remained 
unchanged (Baker et al., 2015). For the control group, the signifi-
cant coherence frequency range is no more than sporadic across 
all muscles and subjects, indicating the reduced extent of shared 
neural drive to the shoulder and the hand compared to stroke 
participants.

Variation in classification improvement
Electromyogram classification from some individuals (e.g., 
stroke participant 9, see Figure S1 in Supplementary Material) 
responded more favorably to the filtering process than others 
(e.g., stroke participant 1). Such difference may be related to 
the remained volume of ipsilesional corticospinal tract that is 
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FigUre 4 | The overall classification accuracy improvement after applying the filters at SABD50 in the stroke group. Positive and negative values indicate 
improvement and reduction in the accuracy after filtering, respectively.
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responsible for voluntary hand movements. It is possible that 
individuals with a more intact ipsilesional corticospinal tract may 
have smaller room of improvement in classification accuracy. 
Conversely, individuals with great reliance on the contralesional 
corticoreticulospinal tract may benefit more from the coherence 
filter after the synergy-induced EMGs was removed. It is also 
important to point out that three stroke individuals showed zero 
improvement. This is because none of them showed significant 
coherence frequency ranges and, therefore, no filters were 
applied. Interestingly, four individuals showed reduced classifi-
cation accuracy after applying the filters. This could be due to 
the artifact introduced by the filters that may have caused EMG 
signal attenuation, and EMGs from these four individuals may be 
particularly sensitive to such an artifact. It could also be due to 

the fact that these four individuals already had limited voluntary 
EMGs in the first place thus removing the synergy-induced com-
ponent brought little change in the overall classification accuracy.

scientific implications and Future Work
A common approach to preparing surface EMGs is to apply a 
band-pass filter with a cutoff frequency range of 20–450  Hz. 
This is very much rooted in the previous work by De Luca 
and colleagues demonstrating that most of the energy related 
to motion artifacts is in the frequency range from 0 to 20 Hz 
(De Luca, 2002; De Luca et  al., 2010). However, more recent 
evidence has shown that after stroke the central nervous system 
might have adopted an alternative motor control strategy that 
generates neural oscillation in the alpha range (Lan et al., 2014; 
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Table 4 | Mixed three-way ANOVA for improvement in the overall accuracy rate.

Main effect and interaction

Factor improvement

Filter p = 0.05
Task × filter p = 0.106
Loading × filter p = 0.048
Task × loading × filter p = 0.160

Post hoc analysis

loading group (control vs stroke)

SABD25 Pwith_filter − no_filter = 0.443
SABD50 Pwith_filter − no_filter = 0.017
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Baker et al., 2015). This control strategy may emphasize using 
neural pathways that produce frequency contents under 20 Hz 
and hence it was suggested as the potential target for poststroke 
rehabilitation (Baker et  al., 2015). That could imply that the 
EMG below 20  Hz might contain useful motor information. 
Thus selectively removing the frequency content below 20  Hz 
might be a more effective approach for pattern recognition 
of poststroke EMGs and should be studied in more detail. To 
achieve this goal, future work should first focus on quantifying 
real-time classification in the stroke group. The present work 
is an off-line application of the algorithm, and we reported the 
overall improvement in most stroke individuals. To make this 
approach more clinically applicable, it is recommended to imple-
ment the algorithm online, meaning classification is made while 
EMGs are generated. We have used a 250ms-long time window 
for processing the data. This allows for an online classification 
of the hand movement without creating a sense of delay. Second, 
the classification platform should be realized with a close-loop 
connection to an external device (e.g., a robot device or func-
tional electrical stimulator), which receives the classification 
signal and generates movements or activates relevant muscles 
in the wrist and fingers. Eventually, such a platform requires a 
training period which acquires subject-specific data to train the 
classifier and a real-time testing period.

Future work should also extend the current experimental 
protocol to multiple abduction levels to better understand 
the benefits of applying filters to functional hand movements. 
Furthermore, integrating neuroimaging approaches into the cur-
rent line of research can further help us to gain scientific insight 
into the possible use of ipsilesional corticospinal and contral-
esional corticoreticulospinal tracts after stroke. This is likely to 
bring new perspectives to a more effective subject-specific future 
application of neural machine interfaces within the context of 
flexion synergy.
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Recently, the need for more secure identity verification systems has driven researchers 
to explore other sources of biometrics. This includes iris patterns, palm print, hand 
geo metry, facial recognition, and movement patterns (hand motion, gait, and eye move-
ments). Identity verification systems may benefit from the complexity of human move-
ment that integrates multiple levels of control (neural, muscular, and kinematic). Using 
principal component analysis, we extracted spatiotemporal hand synergies (movement 
synergies) from an object grasping dataset to explore their use as a potential biometric. 
These movement synergies are in the form of joint angular velocity profiles of 10 joints. 
We explored the effect of joint type, digit, number of objects, and grasp type. In its 
best configuration, movement synergies achieved an equal error rate of 8.19%. While 
movement synergies can be integrated into an identity verification system with motion 
capture ability, we also explored a camera-ready version of hand synergies—postural 
synergies. In this proof of concept system, postural synergies performed well, but only 
when specific postures were chosen. Based on these results, hand synergies show 
promise as a potential biometric that can be combined with other hand-based biomet-
rics for improved security.

Keywords: biometrics, human hand, grasping, synergies, principal component analysis

inTrODUcTiOn

Identity theft has become a common crime that affects about 7% of the population each year 
(Harrell, 2015). Passwords and social security numbers are the most common forms of identity 
verification. Biometrics, or recordable biological measurements, have also been integrated into 
identity verification systems (Jain et al., 2007). Although there is still much progress to be made 
in the field (Jain et al., 2006), biometrics eliminates the need for password memorization and offer 
heightened security. Researched biometrics include palm prints/fingerprints (Jain et al., 2007), iris 
or retina scans (Hill, 2002), face images (Heo and Savvides, 2012), and electroencephalography 
signals (Ruiz-Blondet et al., 2016). Recently, researchers have explored the potential of other hand 
biometrics, including vein patterns (Wang et al., 2008), hand geometry (de-Santos-Sierra et al., 
2011), and palm prints (Kumar et  al., 2003). The common factor of these identity verification 
methods is their basis on statically recorded information, usually in the form of a feature matrix, 
which is then encrypted on a server. While the complexity of feature matrix derivation, encryption 
methods, and server safety sets the level of security, the fact remains that information can be stolen 
and used. Recently, Experian, a company commonly used for credit checks and even identity 
theft protection, was the target of a hack, resulting in the theft of records for approximately 15 
million people (Nasr, 2015). This included encrypted social security numbers, passport numbers, 
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and driver’s license numbers. Soon after, a data breach of The 
United States Office of Personnel Management led to the loss 
of social security numbers, fingerprints, and other identifi-
able information, of 21.5 million people (Nakashina, 2015). 
Moreover, certain biometrics, such as iris scans, can potentially 
be forged in order to gain entry into biometric-based systems 
(Ruiz-Albacete et al., 2008). These reports reveal the need for 
identity verifications systems that do not only rely on static 
images, scans, or numbers.

Human movement may seem as simple as multiple joints 
working in parallel to accomplish a task. However, the complete 
architecture of motor control is still not understood (Scott, 2012). 
Based on an individual’s anatomy, different neural commands are 
required to complete the same task across individuals. Furthermore, 
each individual has advanced his/her motor skills over years of 
learning. This includes acquisition of basic grasps as an infant to 
more dexterous motor control such as piano playing and typing. 
Importantly, these characteristics cannot be forgotten or volun-
tarily reproduced by another individual. Recently, researchers 
have taken advantage of the complexity in human movement for 
use in identity verification systems. Keystroke dynamics involves 
characterizing keyboard inputs, such as keystroke latencies and 
durations, finger placement, and finger pressure, to determine a 
user’s unique typing characteristics (Monrose and Rubin, 2000). 
Optimized string inputs (i.e., alphanumeric, unstructured vs 
structured) and classification algorithms have propelled this 
field of biometrics to commercial use. However, factors, such 
as emotional state (Epp et  al., 2011), keyboard type, and user 
position, may affect performance (Banerjee and Woodard, 2012). 
In an attempt to reduce the lengthy time needed to register and 
identify a user when using keystroke dynamics, Roth et al. (2014) 
introduced a typing posture biometric that characterizes the 
shape and position of hands during typing and later introduced 
keystroke sound (Roth et al., 2015). As a relatively new biometric, 
these typing characteristics still need to be optimized in order to 
reduce equal error rate (EER). Arm movement biometrics may 
be a more appropriate option for individuals without basic typing 
skills. In-air signatures captured either by camera (Mendels et al., 
2014) and smartphones (Casanova et al., 2010; Blanco-Gonzalo 
et  al., 2014) have shown promising results. In an attempt to 
leverage the complexity of hand movements, in-air signatures 
of a person’s name (Kamel et  al., 2008) or a unique password 
expressed through American Sign Language (Fong et al., 2013) 
and touchscreen dynamic (Sae-Bae et al., 2012; Frank et al., 2013) 
have also been introduced.

Synergy-based movement theory hypothesizes that some 
commonly used movement patterns are encoded in the central 
nervous system (CNS). These movement patterns, or synergies, 
reduce the degrees of freedom that the CNS must control and 
can be combined to perform more complicated movements. 
The human hand is one of the most mechanically complex 
end effectors in the human body and has been researched in 
relation to synergy-based movement theory for many years. 
Object grasping is one hand-related activity that is commonly 
performed throughout the day. It requires coordinated control 
of four fingers and the thumb to produce postures and force vec-
tors required to grasp and lift objects. It also requires integrating 

various sensory information (visual, proprioceptive) and planned 
velocity control (distance and forced dependent) that begins 
premovement (MacKenzie and Iberall, 1994). It has been found 
that certain grasping traits maintain high intra-subject similarity 
and high intersubject variability (Reilmann et al., 2001; Wong and 
Whishaw, 2004), potentially stemming from different neural and 
mechanical mechanisms. We and others have previously explored 
hand synergies and have applied it to motor control models 
and prosthetics (Santello et al., 2002; Weiss and Flanders, 2004; 
Vinjamuri et al., 2010; Bicchi et al., 2011). Here, we explore hand 
synergies’ potential role as biometrics. Often, it is found that the 
first synergy is characterized by flexion in hand joints, mimick-
ing a power grasp (Santello et al., 2002; Vinjamuri et al., 2010). 
However, as previously mentioned, motor control is affected 
by an individual’s unique experience and anatomy. For these 
reasons, synergy-based biometrics may offer unique advantages 
compared to static and hand geometry-based biometrics.

In this study, we explore 10 synergies extracted from grasping 
data for their potential use as biometrics. Each is tested for speci-
ficity and sensitivity. We hypothesize that hand synergies contain 
identifiable information that is robust enough to be incorporated 
into identity verification systems. As a proof of concept, we also 
develop a system that can easily be integrated into a camera 
phone. Subjects pose the end posture of each movement synergy. 
These 10 “postural synergies” are photographed and tested as 
potential biometrics.

MaTerials anD MeThODs

Overview
For this study, 10 individuals (5 females, 5 males; 9 right handed, 
1 left handed; mean age 21.7  ±  1.95) were recruited under 
Stevens Institute of Technology Institutional Review Board 
approval. Subjects performed grasping tasks while wearing a data 
glove that records hand kinematics. Using principal component 
analysis (PCA), spatiotemporal synergies were then immediately 
derived from these data. These spatiotemporal synergies provided 
us with two forms of synergies that could be used as biometrics: 
movement synergies and postural synergies. Movement synergies 
for biometrics were tested using recorded data. Postural syner-
gies were displayed to the subject, who practiced and performed 
each posture. Postural synergies for biometrics were tested using 
photographed hand images of these postures. In addition to their 
own postural synergies, five subjects practiced and performed 
another subject’s postural synergies to be tested as false entries.

Five of the 10 subjects returned 4–8 months later for a follow-
up session of the motion-recording portion of the experiment. 
This additional dataset was used as additional entry tests for 
movement synergies.

Data capture
Subjects wore a right or left CyberGlove (CyberGlove Systems 
LLC, San Jose, CA, USA) that records joint angles. For this study, 
we used 10/18 sensors. These sensors measure the interphalangeal 
and metacarpophalangeal (MCP) joints of the thumb and MCP 
and proximal interphalangeal (PIP) joints of the four fingers. 
Abduction sensors were not used in order to keep replications 
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FigUre 1 | Procedure overview for movement synergies and postural synergies as biometrics. (a) Twenty-five objects were grasped with three repetitions 
each. (B) Movement synergies (S1, …, S10) were extracted from glove data for 10 joints (J1, …, J10) from repetition 1. Movement synergies extracted from 
repetitions 2 and 3 were used as entry attempts. (c) Immediately after grasp data collection, end position of the movement synergies (derived from repetitions 1–3) 
were determined and displayed on a virtual hand model. Subjects mimicked these postures and images were taken. Repetition 1 of images was used as a template, 
and repetitions 2 and 3 of images were used as entry attempts. (D) In order to gain access to the system, the correlation between entry and template movement 
synergies has to be greater than Tm. For postural synergies, the error between entry and template postural synergy images has to be less than Tp.
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of a synergy posture simpler. Wrist sensors were not used 
because they do not pertain to the hand. Data were captured at 
125  Hz using a custom-built LabVIEW (National Instruments 
Corporation, Austin, TX, USA) system. The glove was cali-
brated for each subject using custom goniometers ranging from  
−10° to 90°.

An overview of the data capture and synergy testing programs 
is presented in Figure 1. For each subject, the grasping dataset 
consisted of rapidly grasping 25 objects (3 repetitions) that span 
6 types of grasps (power, precision, hook, tripod, lateral key, and 
spherical). The selected objects were those found in activities of 
daily living. Each grasp type had four objects associated with it, 
with the exception of “hook,” which had five objects. The object 
was placed 40 cm away from the midline of the body, and the 
hand was placed in an initial resting position 20 cm to the right 
or left (depending on self-reported hand dominancy) of the body 
midline (Figure 1A). The subject was asked to rapidly grasp the 
object after an audio “go” signal and to hold the grasp until an 
audio “stop” signal was heard. This concluded the grasping por-
tion of the experiment. After data processing, a subject’s postural 
synergies were shown, after which the subject performed each 
posture. Images of postural synergies were taken against a green 
background (for chroma keying) using an 8 megapixel mobile 
phone camera positioned approximately 38 cm above the hand. 
During image capture, subjects wore a wrist band to prevent wrist 
extension/flexion and deviation.

synergy Derivation
Synergy-based movement can be generated using a convolutive 
mixture model (Vinjamuri et al., 2010; Patel et al., 2015). In this 
model, an impulse originating in higher levels of the CNS passes 
through a set of linear filters that relate neural and biomechanical 
structures (possibly cerebellum, basal ganglia, spinal cord, and 
muscles). Spatiotemporal synergies, represented by joint angular 

velocity profiles that relate the activity of multiple joints over time, 
are one form of response from these filters. Here, we consider the 
rapid grasp condition to inherently contain feedforward direct 
command signals because they result from minimum or negli-
gible sensory input. Based on previous work, we have found that 
synergies derived from PCA are able to better capture inherent 
joint patterns that can reconstruct movements (Patel et al., 2016). 
Thus, PCA is used to extract the principle components (PCs) of 
the dataset. Each PC is considered a synergy because it captures a 
common spatiotemporal pattern that exists across all hand joints.

For each grasp trial, data from movement onset (first time 
a joint reaches 5% of peak velocity) to grasp completion were 
extracted (last time 5% of peak velocity is reached). Across all 
subjects, the maximum time required to complete a grasp was 
1.208 s, or 151 samples. Angular velocity profiles were derived 
from these data to create an angular velocity matrix, V [25 × 1,510 
(10 joints  ×  151 samples)]. Singular value decomposition was 
performed on V:

 svd( )V U R= ∑  

such that U'U is a 25 × 25 identity matrix, R is a 1,510 × 1,510 
matrix such that RR' is a 25 × 25 identity matrix. Σ is 25 × 25 
diagonal matrix: diag{λ1, λ2, …, λ25} with λ1 ≥ λ2 ≥ Λ ≥ λ25 ≥ 0. 
We then reduce matrix V to Ṽ  by replacing Σ with ΣS, which 
contains only the n largest singular values, λ1, …, λn. All the other 
singular values are replaced by 0s. The approximation matrix Ṽ 
can be written as

 � …V U RS n S= diag{ , , } ,λ λ1  

where US is a 25 × n matrix containing the first n columns of U 
and RS is a 25 × 1,510 matrix containing the first n columns of R. 
Each column of RS is called a PC. For the purpose of dimensional-
ity reduction, we perform our analysis on the first 10 principal 
components, or synergies, only (n = 10).
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Movement Synergies
Spatiotemporal synergies derived using PCA represent movement  
patterns over time. In order to test movement synergies for biom-
etrics, we derived three sets of synergies, one from each grasping 
repetition. Each synergy set contains 10 synergies. The first set 
was used as the “template” that is stored for user registration 
(Figure 1B). The remaining two sets (entry synergy sets) were 
used to test the authentication process. The five subjects that were 
later retested had an additional four entry synergy sets. We used 
summed correlation across all joints (maximum correlation is 
equal to 10) to determine the similarity between a template syn-
ergy set and entry synergy set. A minimum correlation, Tm, level 
is required to enter the system (Figure 1D). EER determined by 
the intersection of false positive rate (false positive/total number 
of false entries) and false negative rate (false negative/total num-
ber of true entries) was used to determine optimum thresholds.

When comparing a template synergy to entry synergy, the fol-
lowing preprocessing steps were performed. Each dataset results 
in 10 synergies ranked according to the variance they account 
for. However, this ranking may vary across datasets. Thus, each 
template synergy was iteratively compared to all synergies from 
an entry synergy set and then paired with the synergy with high-
est correlation. After a potential entry synergy is paired with a 
template synergy, it is removed from the synergy set, so remain-
ing synergies can be paired. Additionally, up to a ±20 sample 
(160 ms) time shift (zero-padding before or after) was used to 
account for intersubject time variation. To test correlation by 
chance, we randomly reshuffled the velocity profile of each joint 
in a synergy using eight time bins. Each time bin was 20 samples 
long, with the exception of the last time bin that was 11 samples 
long. Then, the same comparison approach described above was 
used to determine correlation by chance.

Each subject’s synergies were also used as false entries for 
all other subjects. Thus, across all subjects, the performance of 
each synergy was tested under 40 true conditions (5 subjects × 2 
attempts  +  5 subjects  ×  6 attempts) and 180 false conditions  
(9 false synergies × 2 repetitions × 10 subjects). Note that sub-
jects with four attempts are those who attended the follow-up 
session. To optimize correlation measurements, we explored 
the effect of different configurations of the synergy template  
(i.e., using only certain joints). We tested the effect of joint 
type (MCP vs PIP) and finger (thumb, index, middle, ring, and 
pinky). For each “configuration,” correlation values between the 
adjusted entry synergy and the adjusted template synergy was 
measured and averaged across subjects. A one-way analysis of 
variance test, with Tukey–Kramer post  hoc was used to deter-
mine if any configurations significantly increased (p  <  0.05) 
correlation. Although this study explores the use of synergies 
for biometrics, it is important to consider an appropriate time 
limit for user registration and entry. Thus, we examined the effect 
of object type and number of objects for potential reduction in 
data acquisition. When analyzing number of objects, each grasp 
was first ranked according to the following procedure. First, 25 
new synergy sets were extracted, each set omitting a single grasp. 
For each new set, we determined the average correlation between 
false synergy sets and the test synergy. Objects that decreased 
correlation the most were prioritized (ranked highest). After 

each of the 25 objects were ranked, new synergies were derived 
by iteratively omitting grasps.

Postural Synergies
Postural synergies represent the final position of each movement 
synergy (velocity profiles are integrated over time to determine 
final position of each joint). After grasp data were collected, 
synergies were immediately extracted from all three repetitions 
(Figure 1C). Each synergy was multiplied by a maximum pos-
sible gain under the following criteria: (1) final posture fell within 
normal range of movement and (2) the majority of a finger did 
not cross the palm. A virtual hand, built using Simulink 3D 
Animation toolbox (MathWorks, LLC) was used to display front 
and side views of the resulting hand posture. Here, we checked 
whether criterion 2 (from above) was met. Based on preliminary 
testing, we found that too much flexion in a finger would cause 
the image analysis procedure to incorrectly omit a finger. Thus, 
if any of the distal interphalangeal (DIP) joints on the virtual 
hand cross the upper palm edge, then the weight of the synergy 
was reduced in 0.01 increments until the DIP joint no longer 
crossed the palm. Once the synergy postures were finalized 
by the experimenter, they were shown to the subject. Because 
subjects were asked to perform these postures for the first time, 
we allowed an initial practice time for each posture to ensure 
correct movements (approximately 10 min total). Each synergy 
was performed and photographed (10 template postures). These 
were used as template images for each synergy. Then, two more 
repetitions were taken of each postural synergy (20 entry images). 
Subjects were encouraged to maintain similarity and “approach” 
when performing each synergy. “Approach” refers to the order 
each finger was flexed to achieve the target posture. Additionally, 
preliminary work showed the thumb to cause excessive variation 
in images. Thus, subjects were asked to keep the thumb in a natu-
ral straight position. In this experimental setting, the hand model 
in a specific synergy posture was displayed as users attempted to 
perform each posture. However, in realistic settings, we would 
expect users to only choose up to three postural synergies to 
memorize and use for entry.

Image analysis of template and entry postural synergies was 
performed using the Image Analysis Toolbox in MATLAB. In 
this preliminary work, we controlled lighting to prevent shad-
ows around the hand. Because the focus of this study is to use 
synergy-based differences across individuals, the effects of other 
commonly used hand biometrics (skin color, palm/finger size, 
and vein/texture attributes) were eliminated with the following 
steps. Preprocessing image analysis steps include: background 
removal, conversion to binary image (removes skin color and 
vein/text attributes), wrist cropping, and image centroid calcula-
tion. An example of the resulting image is shown in Figure 2A 
(green dot indicates centroid). Then, the edge of the hand figure 
that includes only digits portions was taken. Importantly, this 
outline is a result of MCP and PIP extension/flexion movements, 
but also reflects natural abduction/adduction movements that 
occur between fingers. The distance between the palm centroid 
and each point of the outline is measured and normalized to 
remove the effect of different hand sizes (Figure  2B). This 
involves finding the shortest distance from the centroid and 
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A B C

FigUre 2 | image analysis procedure. (a) Preprocessing of the raw image results in a binary figure with the wrist cutoff. The portion being analyzed includes only 
edges pertaining to digit edges (highlighted in red). The distance between the figure centroid (green) and digit edges is calculated and normalized (B). (c) Each 
finger is separated using peaks and valleys. Here, the ring finger has been separated out. The Euclidian errors between template and entry distances are determined 
for each finger.
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FigUre 3 | Bars show the mean fraction of variance accounted by each 
principle component (Pc) across subjects. Error bars indicate SD. The line 
plot shows how these variances accumulate from the first PC to the last PC.
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dividing all other points from this distance. The resulting values 
describe a relative hand posture. If an imposter was able to 
reproduce the exact same ratio of flexion across the fingers as 
another use, abduction tendencies and enslaving magnitudes, 
which are unique to an individual, would still cause subtle 
differences. Each finger is then separated from the outline; this 
finger profile is used as a basis for comparison (Figure 2C). It 
should be noted that while the distances are normalized, the 
number of data points dedicated to a finger is not set. Thus, an 
individual with a narrower finger or the same individual with a 
lesser degree of flexion may decrease the number of data points 
detected for a finger (and vice versa). This can be seen 2 C where 
the blue line represents the outline of the ring finger from the 
template posture. In entry Attempts 1 and 2, there are fewer data 
points, possibly resulting from less abduction or less flexion. 
The Euclidian error between a template finger outline and an 
entry finger outline is summed across fingers. A maximum error 
threshold, Tp, is used to determine if the entry postural synergy 
matches the template postural synergy.

Across all subjects, each of the 10 synergies was tested under 
20 true conditions (10 subjects × 2 attempts). Five of the subjects 
practiced and reproduced postural synergies of another subject; 
thus, each of the 10 synergies was tested under 10 false conditions 
(5 subjects × 2 attempts). Because certain fingers of the hand have 
more dexterity (i.e., index) or enslavement (i.e., ring) than others, 
we examined which fingers are sources of greater error in true 
(authentic) and false (imposter) condition. One-way ANOVA 
was used to compare Euclidian errors between the five fingers. 
For each individual finger, we then examined whether imposter 
attempts average equal errors as authentic attempts using a 
Student’s t-test; significance was set at p < 0.05.

resUlTs

hand synergies
Ten synergies were extracted from grasping data. A movement 
synergy is defined by velocity profiles for each of the 10 joints. The 
cumulating fraction of variance accounted for by these synergies 
is presented in Figure  3. Across all subjects, the first synergy 
accounted for an average of 54% of the variance. An example of 
synergy 1 from a representative subject is provided in Figure 4, 

blue. For comparison, the averaged velocity profile across all 25 
grasps is provided with the red trace, with SD depicted by the 
red shaded regions. Both, the averaged profile and the synergy 
profile capture the overall pattern. Please note that for visual 
purpose only, the synergy profile in Figure  4 was multiplied 
by a gain, such that both the averaged profile and the synergy 
profile would be on the same scale. As depicted in the figure, 
there also exists a pattern across and between MCP (left) and 
PIP (right) joints. The postural synergy representation of this  
particular movement synergy is shown by the hand image at 
the bottom right of Figure 4. For movement synergies, each of 
the 10 velocity profiles needs to adequately match. For postural 
synergies, images of a hand in these hand configurations need to 
adequately match.

Biometric system Based on Movement 
synergies
To explore the use of movement synergies for biometrics, we 
first assessed the ability of an individual to reproduce the same 
synergy profile across repetitions. A maximum of correlation of 
100% represents a perfect match. Percent of maximum correla-
tion for different finger configurations (all joints, MCP joints 
only, PIP joints only, and MCP and PIP joints of each finger 
removed) across all synergies is shown in Figure 5. All synergies 

18

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Time (seconds) Time (seconds)

Jo
in

t a
ng

ul
ar

 v
el

oc
ity

 (d
eg

re
es

/s
ec

on
d)

FigUre 4 | The red line shows the averaged joint movement across all 25 grasps in one repetition. SD is provided by the red shaded region. 
Metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints of the thumb (T), index (I), middle (M), ring (R), and pinky (P) are shown on the left and right, 
respectively. To show how the first synergy compares to the average movement, synergy 1 of this particular subject is overlaid by the blue line. Note that this 
synergy has been multiplied by a gain so that both the red and blue traces match for visual purposes only. The end posture of this synergy is shown on the bottom 
right. This is considered a postural synergy.

FigUre 5 | across subjects, the mean (bars) and sD (error bars) of correlation values between template and entry movement synergies are shown. 
Values are shown for different joint configurations: all joints are used, only metacarpophalangeal (MCP) joints are used, only proximal interphalangeal (PIP) joints are 
used, thumb joints are removed, index joints are removed, middle joints are removed, ring joints are removed, and pinky joints are removed. Black bars show 
correlation by chance. Green dots show the calculated equal error rate (EER) for each synergy and configuration. Synergy 1 has the highest correlation and lowest 
EER values. All synergies had correlations above chance level (black bars).
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fell above correlation by chance levels (Figure  5, black bars). 
Results show that the first synergy had the highest correlation, 
indicating that it was most reproducible across repetitions. 
Within synergies 1 and 2, no significant difference was found 

between the different finger configurations; however, removing 
the thumb resulted in slightly higher correlations. For synergies 
that did show significant differences across different configura-
tions, p-values are provided in Table 1. Namely, higher order 
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TaBle 1 | significant differences between different synergy 
configurations.

synergy # 3 6 7 8 9 10

All joints vs MCP 0.3460 0.1483 0.3306 0.0018 0.0012 0.0015
All joints vs PIP 0.6046 0.0006 0.0035 0.1312 0.0238 0.0019
MCP vs index 0.5828 0.3727 0.9727 0.0048 0.0114 0.0089
MCP vs middle 0.0816 0.2572 0.8591 0.0136 0.0045 0.0652
MCP vs ring 0.0383 0.4140 0.4518 0.0171 0.0011 0.0562
MCP vs pinky 0.6412 0.5607 0.3242 0.0381 0.0045 0.0492
PIP vs index 0.8285 0.0034 0.1226 0.2390 0.1375 0.0113
PIP vs middle 0.2021 0.0017 0.0470 0.4219 0.0682 0.0788
PIP vs ring 0.1071 0.0043 0.0066 0.4709 0.0213 0.0682
PIP vs pinky 0.8694 0.0088 0.0033 0.6575 0.0690 0.0599

MCP, metacarpophalangeal; PIP, proximal interphalangeal.
p Values from one-way ANOVA of correlations presented in Figure 5 are given. 
Only synergies that expressed a significant difference in at least one comparison are 
provided. Bolded values indicate a p-value < 0.05.

FigUre 6 | False rejection rate (Frr) and false acceptance rate (Far) 
of synergy 1, when using all 10 joints. Equal error rate (EER) is calculated 
at the intersection of these plots. EER is 10% at a threshold of 70% 
correlation.

A

B

FigUre 7 | (a) Equal error rate (EER) when increasing number of objects are 
used. Using the first six highest ranked objects produces an EER of 10% 
when pinky is removed. (B) Using only five lateral key grasps produces an 
EER of 9.17% when the pinky is removed.
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synergies (synergies 6–10) had significantly lower correlation 
scores when more joints were used compared to MCP and PIP 
configurations that only used five joints each. Green dots in 
Figure 5 show EER for each synergy and finger configuration. 
Only synergy 1 fell in an acceptable EER range for biometrics, 
performing best when pinky MCP and PIP joints were removed 
(EER  =  8.19%) and when all joints were used (EER  =  10%). 
False acceptance rate (FAR) and false rejection rates (FRR) for 
synergy 1, using all joints is shown in Figure 6. The threshold at 
the EER point is 70%. Using both synergies 1 and 2 as part of the 
biometric key did not significantly improve results.

In this experimental setup, 25 objects were used to elicit varying 
grasping patterns. However, in an actual biometrics application, 
an individual would not be expected to grasp 25 objects. Using 
EER, we determined the minimum number of objects required 
to extract and match the first synergy. The overall trend seen in 
Figure 7A shows increasing the number of objects does not sig-
nificantly decrease EER. We found that removing the pinky MCP 
and PIP joints (red) further reduced EER compared to when all 
joints are used (blue). Synergies extracted from only six of the 
highest ranking objects produced an EER of 10%. These objects 
were: screwdriver, water bottle, CD, petri dish, bag handle, and 
bracelet.

In an attempt to determine if certain grasp types elicit unique 
hand patterns more robustly, we then extracted synergies from 
tasks that used certain grasp types. Using these synergies, EER 
of cylindrical, precision, hook, lateral key, spherical, and tripod 
grasps is shown in Figure 7B. Synergies extracted from lateral key 
grasps and tripod grasps showed the lowest EER of 9.17 and 10%, 
respectively, when the pinky was removed.

Proof of concept: Biometric system 
Based on Postural synergies
For each subject, 10 postural synergies were determined by the 
end posture of each movement synergy. Figure 8 shows front and 
side views of these synergies for subjects 2, 6, and 10. Similar to 
previous research in kinematic hand synergies, the first synergy 
in all subjects was characterized by flexion in MCP and PIP joints, 
analogous to a power grasp. Synergy 2 was also characterized by 

flexion in MCP and PIP joints, but the magnitude at each finger 
was less consistent across subjects. Synergies 3–9 did not show 
consistent patterns across fingers and subjects. However, synergy 
10 consisted of MCP extension and PIP flexion in all subjects.
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FigUre 8 | Front and side views of the 10 postural synergies for 
subjects 2, 6, and 10 are shown. Subjects were first trained on performing 
each of these postures. Then, images of the hand imitating these postures 
were taken.

FigUre 9 | For each finger, the mean euclidian error between 
template and entry postural synergies is shown. Blue bars represent 
mean taken across all authentic attempts, and red bars represent mean 
taken across all imposter attempts. Error bars represent 1 SD. For authentic 
attempts, no significant differences are seen across fingers. For imposter 
attempts, the pinky showed significantly less error (indicated by the red star, 
p < 0.05) than all other fingers. In every finger, imposter attempts averaged 
significantly greater (indicated by the black star, p < 0.01) error than authentic 
attempts.

TaBle 2 | equal error rate (eer) for each postural synergy.

Posture eer (%) Posture eer (%)

Synergy 1 20 Synergy 8 12.5
Synergy 2 2.5 Synergy 9 20
Synergy 3 22.5 Synergy 10 10
Synergy 4 20 Best posture 0
Synergy 5 30 Two best postures 2.5
Synergy 6 20 Three best postures 10
Synergy 7 12.5 Four best postures 10

EER when each of the 10 postural synergies are used alone as a biometric. Synergy 
2 has the best performance with an EER of 2.5%. When the best postural synergy 
(subject had least error reproducing the posture) was chosen as the biometric key, the 
system had an EER of 0%.
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Although each posture is characterized by MCP and PIP 
angles for each finger, the imaged posture is evaluated by finger 
endpoint (i.e., distance of finger peak to palm center). We evalu-
ated the error of each finger across all synergy postures for both 
authentic (user replicates his/her own posture) and imposter 
(imposter replicates another user’s posture) cases. Individual 
finger results are provided in Figure 9. For authentic attempts, 
no significant differences were found across fingers (one-way 
ANOVA, p > 0.05). For imposter attempts, the pinky (indicated 
by red star) showed significant differences (one-way ANOVA 
followed by multiple comparisons using Tukey–Kramer test) 
compared to the thumb (p = 0.0459), index (p = 0.0009), middle 
(p = 0.0001), and ring (p = 0.0401) fingers. In all fingers (black 
star), imposter attempts averaged significantly greater errors than 
authentic attempts: thumb (p = 2e−5), index (p = 4e−5), middle 
(p = 1.5e−4), ring (p = 0.0017), and pinky (p = 0.0018).

The performance of using each postural synergy as a biometric 
key is presented in Table 2. The best performance was achieved by 
synergy 2 with an EER of 2.5%. We further tested the system by 
using the first, second, and third best postures (least replication 
error) from each subject. This resulted in EER of 0, 2.5, 10, and 
10% for one, two, three, and four postures, respectively.

DiscUssiOn

Movement synergies as Biometrics
All 10 movement synergies were tested as a potential biometric. 
Results indicate that only synergy 1 is similar enough across 
repetitions to qualify as a biometric. Synergy 1, accounting for 
a mean variance of ~54%, characterizes the most general pattern 
from the grasping dataset. Although it describes a hand-closing 
pattern for all subjects, results show that each fingers’ flexion rate 
differs across subjects. Thus, it holds characteristic unique to an 

individual that can only be determined by grasping everyday 
objects. Synergy 2 showed some consistency across repetitions 
but did not perform well enough to be used as a biometric itself. 
When combining synergies 1 and 2, EER dropped to 9.72%. 
Further, testing should be done to determine the benefits of 
including two synergies. Synergies 3–10 were not reproducible 
enough to be considered for biometrics.

Five of the 10 subjects from this dataset were tested 4–8 months 
after initial evaluation. The present analysis incorporated all 
attempts when calculating EER, but it is important to consider 
the effects of short-term stability (or instability) on these values. 
We used correlation values to measure short-term stability 
of the five subjects who participated in the follow-up session. 
Figure 10 shows that subjects 4 and 9 were not able to perform 

21

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Patel et al. Hand Grasping Synergies As Biometrics

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2017 | Volume 5 | Article 26

with enough similarity in the follow-up session, while subjects 1, 
3, and 7 have consistent performance. Further analysis of these 
subject’s synergy profiles will help us determine which movement 
parameters were not reproducible (i.e., peak velocity amplitudes 
or time domain features).

We expected that eliminating highly individuated digits, 
such as the thumb or index (Ingram et  al., 2008), would 
decrease EER. However, results showed an increase in EER for 
synergy 1 (red points in Figure 5) when these digits were not 
included. Further analysis showed that eliminating the thumb 
decreased FRR and increased FAR. This indicates that the 
thumb’s movement is difficult to reproduce within a subject 
but contributes to the synergy’s uniqueness. Eliminating the 
index finger slightly increased FRR but did not change FAR. 
This indicates the index finger is more easily reproducible 
within a subject. Surprisingly, removing the pinky decreased 
EER by decreasing FAR. This indicates that imposter attempts 
were able to reproduce the pinky movement. It has been shown 
that order of digit contact is often radial to ulnar (Schettino 
et al., 2013) unless all digits are required for successful grasp 
(i.e., in cylindrical grasp). In the majority of tasks, the pinky 
may have followed as a supportive digit, resulting in less 
complex control.

In terms of choosing optimal objects to decrease system access 
time, we found that using the six highest ranked objects achieved 
an EER of 10% (when pinky is removed). As seen in Figure 7, the 
ranking procedure does not show a clear trend when using one 
to six objects. The ranking order used in this analysis may not 
been optimal for a low number of objects because PCA depends 
on multiple objects. We also found that using the five lateral key 
grasp objects achieved an EER of 9.17%. Compared to all other 
grasp types, using lateral key grasps decreased FRR, but increased 
FAR. This indicates that lateral key grasps were more reproducible 

within subjects as well as across subjects when compared to the 
other grasp types.

Our results indicate movement synergies hold unique proper-
ties that cannot be reproduced by imposter attempts. In most of 
the above mentioned scenarios, FAR values were minimal, while 
FRR values were high; this indicates the sensitivity of the system 
needs to improve. We believe including additional features that 
are often maintained in an individual (reaction time, movement 
time) as well as individualized threshold values will increase 
performance of the system. Other movement-based biometric 
systems have used dynamic time warping (DTW) to compare 
two time profiles. In these studies, testing a pre-determined set 
of gestures resulted in EER of l.89% (Wu et al., 2013) and 2.58% 
(Scott, 2012). DTW is currently being evaluated as a potential 
synergy comparator.

Postural synergies as Biometrics
In the postural synergies biometric system, subjects would be 
required to perform up to three memorized postures in order to 
gain access to the system. From the 10 postural synergies analyzed, 
no obvious optimal postural synergy(s) could be determined. 
EER rates as low as 2.5% show postural synergies have potential 
as a biometric.

Postural synergies have two layers of uniqueness. First, the 
movement synergies derived from the grasp data extracts motion 
patterns that exemplify joint relationship during grasping. 
Although synergies 3–10 were not reproducible within subjects, 
they greatly varied across subjects. Second, the ability to conform 
the hand to the resulting posture, or postural synergy, further 
exposes patterns in the hand (i.e., unintentional abduction angles 
resulting from joint flexion). Other posture-based biometric 
systems employ commonly used postures, such as ASL postures, 
to spell out a password. In one such study, Fong et  al. (2013) 

Initial evaluation Follow-up session

FigUre 10 | short-term stability, from initial evaluation to follow-up session (4–8 months), is seen in subjects 1, 3, and 7, but not subjects 4 and 9.
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concluded that recognizing behavioral patterns is more difficult 
than recognizing the actual hand shape. If these behavioral patterns 
are already extracted by the synergies, then further improving the 
hand shape recognition methods may greatly improve the system. 
Hand geometry-based studies have used finger width values, vari-
ance corrections (de-Santos-Sierra et al., 2011), and hand rotation 
corrections (Yoruk et al., 2006) to optimize feature extraction and 
matching performance. Combining traditional geometry-based 
and intensity-based (hand color) hand biometric methods, we can 
further improve the postural synergy biometric system.

hand synergies as Biometrics
This study aimed to test the use of movement and postural 
synergies for use in biometrics. Results are comparable to other 
movement-based biometric systems that do not use subject-
specific passwords (Matsuo et al., 2007; Liu et al., 2009; Bailador 
et al., 2011) but still below keystroke dynamic performance values 
(review in Banerjee and Woodard, 2012). Movement synergies 
reached its best performance at an EER of 8.19%. Postural 
synergies reached its best performance at an EER of 0 and 2.5%. 
However, FAR of the system still needs to improve in order to 
meet adequate performance for biometric use.

Using movement synergies as a biometric requires the use of a 
hand data glove that would need to be calibrated for all hand sizes. 
In our procedure, we performed an exhaustive calibration, which 
would not be ideal for real-world use. We are currently develop-
ing a low cost, easy-to-deploy hand data glove that may be more 
suitable. It is important to keep in mind that this type of biometric 
cannot be used for rapid user verification. Instead, the user must 
perform an action in order to gain access in an environment 
equipped with a computer, data glove, specific grasp objects, etc. 
Thus, it may only be warranted for higher-security applications 
that combine multiple biometrics. Like keystroke dynamics and 
typing posture biometrics, movement synergies do not require 
the user to memorize a password that has the potential to be 
forgotten or stolen. However, all three systems require a rather 
structured setup (i.e., computer to capture data, same keyboard, 
and similar user positions). Finally, as with all movement related 
biometrics, template passwords need to be updated due to the 
effects of aging on motor skills. The postural synergy proof of 

concept showed that performing postures in front of camera 
may offer a quicker and more mobile platform. This type of hand 
biometric can potentially be applied to computers/phones with 
a camera. Similar to performing in-air signatures, the postures 
would have to be memorized; however, because of the complex-
ity of synergy hand postures, it may not be necessary to have a 
private area in order to perform the postures.

Future work includes exhaustively testing both systems with 
a greater sample size and testing short-term stability and incor-
porating other commonly used biometric methods such as using 
averaged time velocity profiles as a synergy, DTW for synergy 
comparisons, and hand geometry measurements for postural 
synergies. Finally, we will test whether using the source of hand 
synergies, i.e., neural signals collected from electroencephalogra-
phy, can improve performance.

eThics sTaTeMenT

The study was approved by IRB at Stevens Institute of Technology.

aUThOr cOnTriBUTiOns

VP helped design the experiment and recruit subjects, collected 
and analyzed data, and participated in writing the manuscript. 
PT helped design the experiment, collected and analyzed data, 
and participated in writing the manuscript. MB helped create 
the data collection software and contributed toward revising 
the manuscript. IF contributed toward statistical analysis. RC 
contributed toward the design of methods and participated in 
writing the manuscript. RV directed subject recruitment pro-
cedures, developed experiment framework and procedures, and 
participated in writing and revising the manuscript.

acKnOWleDgMenTs

The authors would like to thank the Office of Innovation and 
Entrepreneurship and Department of Biomedical Engineering, 
Chemistry, and Biological Sciences of the Stevens Institute of 
Technology for their continued support of ongoing research.

reFerences

Bailador, G., Sanchez-Avila, C., Guerra-Casanova, J., and de Santos Sierra, A. 
(2011). Analysis of pattern recognition techniques for in-air signature biomet-
rics. Pattern Recognit. 44, 2468–2478. doi:10.1016/j.patcog.2011.04.010 

Banerjee, S. P., and Woodard, D. L. (2012). Biometric authentication and identifi-
cation using keystroke dynamics: a survey. J. Pattern Recognit. Res. 7, 116–139. 
doi:10.13176/11.427 

Bicchi, A., Gabiccini, M., and Santello, M. (2011). Modelling natural and artificial 
hands with synergies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 3153–3161. 
doi:10.1098/rstb.2011.0152 

Blanco-Gonzalo, R., Sanchez-Reillo, R., Miguel-Hurtado, O., and Liu-Jimenez, J.  
(2014). Performance evaluation of handwritten signature recognition in mobile 
environments. IET Biom. 3, 139–146. doi:10.1049/iet-bmt.2013.0044 

Casanova, J. G., Ávila, C. S., de Santos Sierra, A., del Pozo, G. B., and Vera, V. J.  
(2010). “A real-time in-air signature biometric technique using a mobile device 
embedding an accelerometer,” in International Conference on Networked Digital 
Technologies (Berlin, Heidelberg: Springer), 497–503.

de-Santos-Sierra, A., Sánchez-Avila, C., del Pozo, G. B., and Guerra-Casanova, J.  
(2011). Unconstrained and contactless hand geometry biometrics. Sensors 
(Basel) 11, 10143–10164. doi:10.3390/s111110143 

Epp, C., Lippold, M., and Mandryk, R. L. (2011). “Identifying emotional states 
using keystroke dynamics,” in Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (New York: ACM), 715–724.

Fong, S., Zhuang, Y., Fister, I., and Fister,  I. Jr. (2013). A biometric authen-
tication model using hand gesture images. Biomed. Eng. Online 12, 111. 
doi:10.1186/1475-925X-12-111 

Frank, M., Biedert, R., Ma, E., Martinovic, I., and Song, D. (2013). Touchalytics: on 
the applicability of touchscreen input as a behavioral biometric for continuous 
authentication. IEEE Trans. Info. Forensics Secur. 8, 136–148. doi:10.1109/
TIFS.2012.2225048 

Harrell, E. (2015). Victims of Identity Theft, 2014. Washington, DC: US Department 
of Justice, Bureau of Justice Statistics Bulletin.

Heo, J., and Savvides, M. (2012). 3-D generic elastic models for fast and texture pre-
serving 2-D novel pose synthesis. IEEE Trans. Info. Forensics Secur. 7, 563–576. 
doi:10.1109/TIFS.2012.2184755 

23

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
https://doi.org/10.1016/j.patcog.2011.04.010
https://doi.org/10.13176/11.427
https://doi.org/10.1098/rstb.2011.0152
https://doi.org/10.1049/iet-bmt.2013.0044
https://doi.org/10.3390/s111110143
https://doi.org/10.1186/1475-925X-12-111
https://doi.org/10.1109/TIFS.2012.2225048
https://doi.org/10.1109/TIFS.2012.2225048
https://doi.org/10.1109/TIFS.2012.2184755


Patel et al. Hand Grasping Synergies As Biometrics

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2017 | Volume 5 | Article 26

Hill, R. B. (1996). “Retina identification,” in Biometrics: Personal Identification in 
Networked Society (New York, NY: Springer US), 123–141. doi:10.1007/b117227

Ingram, J. N., Körding, K. P., Howard, I. S., and Wolpert, D. M. (2008). The sta-
tistics of natural hand movements. Exp. Brain Res. 188, 223–236. doi:10.1007/
s00221-008-1355-3 

Jain, A. K., Flynn, P., and Ross, A. A. (eds) (2007). Handbook of Biometrics. New 
York: Springer Science + Business Media.

Jain, A. K., Ross, A., and Pankanti, S. (2006). Biometrics: a tool for informa-
tion security. IEEE Trans. Info. Forensics Secur. 1, 125–143. doi:10.1109/
TIFS.2006.873653 

Kamel, N. S., Sayeed, S., and Ellis, G. A. (2008). Glove-based approach to online 
signature verification. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1109–1113. 
doi:10.1109/TPAMI.2008.32 

Kumar, A., Wong, D. C., Shen, H. C., and Jain, A. K. (2003). “Personal verification 
using palmprint and hand geometry biometric,” in International Conference on 
Audio-and Video-Based Biometric Person Authentication (Berlin, Heidelberg: 
Springer), 668–678.

Liu, J., Zhong, L., Wickramasuriya, J., and Vasudevan, V. (2009). “User evalua-
tion of lightweight user authentication with a single tri-axis accelerometer,” 
in Proceedings of the 11th International Conference on Human-Computer 
Interaction with Mobile Devices and Services (New York: ACM), 15.

MacKenzie, C. L., and Iberall, T. (1994). The Grasping Hand, Vol. 104. Amsterdam: 
Elsevier.

Matsuo, K., Okumura, F., Hashimoto, M., Sakazawa, S., and Hatori, Y. (2007). 
“Arm swing identification method with template update for long term stabil-
ity,” in International Conference on Biometrics (Berlin, Heidelberg: Springer), 
211–221.

Mendels, O., Stern, H., and Berman, S. (2014). User identification for home 
entertainment based on free-air hand motion signatures. IEEE Trans. Syst. Man 
Cybern. Syst. 44, 1461–1473. doi:10.1109/TSMC.2014.2329652 

Monrose, F., and Rubin, A. D. (2000). Keystroke dynamics as a biometric 
for authentication. Future Gen. Comput. Syst. 16, 351–359. doi:10.1016/
S0167-739X(99)00059-X 

Nakashina, E. (2015). Hacks of OPM Database Compromised 22.1 Million People, 
Federal Authorities Say. Washington. Available at: http://www.washingtonpost.
com/blogs/federal-eye/wp/2015/07/09/hack-of-security-clearance-system-af-
fected-21-5-million-people-federal-authorities-say/

Nasr, R. (2015). Experian Data Breach Hits More Than 15M T-Mobile Customers, 
Applicants. CNBC. Available at: http://www.cnbc.com/2015/10/01/experian- 
reports-data-breach-involving-info-for-more-than-15m-t-mobile-customers.html

Patel, V., Burns, M., Mao, Z. H., Crone, N. E., and Vinjamuri, R. (2015). Linear and 
nonlinear kinematic synergies in the grasping hand. J. Bioeng. Biomed. Sci. 5, 1. 
doi:10.4172/2155-9538.1000163 

Patel, V., Burns, M., and Vinjamuri, R. (2016). Effect of visual and tactile feedback 
on kinematic synergies in the grasping hand. Med. Biol. Eng. Comput. 54, 
1217–1227. doi:10.1007/s11517-015-1424-2 

Reilmann, R., Gordon, A. M., and Henningsen, H. (2001). Initiation and devel-
opment of fingertip forces during whole-hand grasping. Exp. Brain Res. 140, 
443–452. doi:10.1007/s002210100838 

Roth, J., Liu, X., and Metaxas, D. (2014). On continuous user authentication 
via typing behavior. IEEE Trans. Image Process. 23, 4611–4624. doi:10.1109/
TIP.2014.2348802 

Roth, J., Liu, X., Ross, A., and Metaxas, D. (2015). Investigating the discriminative 
power of keystroke sound. IEEE Trans. Info. Forensics Secur. 10, 333–345. 
doi:10.1109/TIFS.2014.2374424 

Ruiz-Albacete, V., Tome-Gonzalez, P., Alonso-Fernandez, F., Galbally, J., Fierrez, J.,  
and Ortega-Garcia, J. (2008). “Direct attacks using fake images in iris verifica-
tion,” in European Workshop on Biometrics and Identity Management (Berlin, 
Heidelberg: Springer), 181–190.

Ruiz-Blondet, M. V., Jin, Z., and Laszlo, S. (2016). Cerebre: a novel method for very 
high accuracy event-related potential biometric identification. IEEE Trans. Info. 
Forensics Secur. 11, 1618–1629. doi:10.1109/TIFS.2016.2543524 

Sae-Bae, N., Ahmed, K., Isbister, K., and Memon, N. (2012). “Biometric-rich 
gestures: a novel approach to authentication on multi-touch devices,” in 
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems 
(ACM), 977–986.

Santello, M., Flanders, M., and Soechting, J. F. (2002). Patterns of hand motion 
during grasping and the influence of sensory guidance. J. Neurosci. 22, 
1426–1435. 

Schettino, L. F., Pallottie, A., Borland, C., Nessa, S., Nawroj, A., and Yu, Y. C. (2013). 
The organization of digit contact timing during grasping. Exp. Brain Res. 227, 
477–486. doi:10.1007/s00221-013-3524-2 

Scott, S. H. (2012). The computational and neural basis of voluntary motor control 
and planning. Trends Cogn. Sci. 16, 541–549. doi:10.1016/j.tics.2012.09.008 

Vinjamuri, R., Sun, M., Chang, C. C., Lee, H. N., Sclabassi, R. J., and Mao, Z. H. 
(2010). Dimensionality reduction in control and coordination of the human 
hand. IEEE Trans. Biomed. Eng. 57, 284–295. doi:10.1109/TBME.2009.2032532 

Wang, L., Leedham, G., and Cho, D. S. Y. (2008). Minutiae feature analysis for infra-
red hand vein pattern biometrics. Pattern Recognit. 41, 920–929. doi:10.1016/j.
patcog.2007.07.012 

Weiss, E. J., and Flanders, M. (2004). Muscular and postural synergies of the human 
hand. J. Neurophysiol. 92, 523–535. doi:10.1152/jn.01265.2003 

Wong, Y. J., and Whishaw, I. Q. (2004). Precision grasps of children and young 
and old adults: individual differences in digit contact strategy, purchase pattern, 
and digit posture. Behav. Brain Res. 154, 113–123. doi:10.1016/j.bbr.2004.01.028 

Wu, J., Konrad, J., and Ishwar, P. (2013). “Dynamic time warping for gesture-based 
user identification and authentication with Kinect,” in 2013 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE), 
2371–2375. doi:10.1109/ICASSP.2013.6638079 

Yoruk, E., Konukoglu, E., Sankur, B., and Darbon, J. (2006). Shape-based hand 
recognition. IEEE Trans. Image. Process. 15, 1803–1815. doi:10.1109/TIP. 
2006.873439 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Patel, Thukral, Burns, Florescu, Chandramouli and Vinjamuri. 
This is an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) or licensor are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

24

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
https://doi.org/10.1007/b117227
https://doi.org/10.1007/s00221-008-1355-3
https://doi.org/10.1007/s00221-008-1355-3
https://doi.org/10.1109/TIFS.2006.873653
https://doi.org/10.1109/TIFS.2006.873653
https://doi.org/10.1109/TPAMI.2008.32
https://doi.org/10.1109/TSMC.2014.2329652
https://doi.org/10.1016/S0167-739X(99)00059-X
https://doi.org/10.1016/S0167-739X(99)00059-X
http://www.washingtonpost.com/blogs/federal-eye/wp/2015/07/09/hack-of-security-clearance-system-affected-21-5-million-people-federal-authorities-say/
http://www.washingtonpost.com/blogs/federal-eye/wp/2015/07/09/hack-of-security-clearance-system-affected-21-5-million-people-federal-authorities-say/
http://www.washingtonpost.com/blogs/federal-eye/wp/2015/07/09/hack-of-security-clearance-system-affected-21-5-million-people-federal-authorities-say/
http://www.cnbc.com/2015/10/01/experian-reports-data-breach-involving-info-for-more-than-15m-t-mobile-customers.html
http://www.cnbc.com/2015/10/01/experian-reports-data-breach-involving-info-for-more-than-15m-t-mobile-customers.html
https://doi.org/10.4172/2155-9538.1000163
https://doi.org/10.1007/s11517-015-1424-2
https://doi.org/10.1007/s002210100838
https://doi.org/10.1109/TIP.2014.2348802
https://doi.org/10.1109/TIP.2014.2348802
https://doi.org/10.1109/TIFS.2014.2374424
https://doi.org/10.1109/TIFS.2016.2543524
https://doi.org/10.1007/s00221-013-3524-2
https://doi.org/10.1016/j.tics.2012.09.008
https://doi.org/10.1109/TBME.2009.2032532
https://doi.org/10.1016/j.patcog.2007.07.012
https://doi.org/10.1016/j.patcog.2007.07.012
https://doi.org/10.1152/jn.01265.2003
https://doi.org/10.1016/j.bbr.2004.01.028
https://doi.org/10.1109/ICASSP.2013.6638079
https://doi.org/10.1109/TIP.2006.873439
https://doi.org/10.1109/TIP.2006.873439
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


ORIGINAL RESEARCH
published: 03 April 2017

doi: 10.3389/fbioe.2017.00019

Edited by:
Ramana Vinjamuri,

Stevens Institute of Technology, USA

Reviewed by:
Dimitris Tsakiris,

Institute for Computer
Science – FORTH, Greece

Shigeru Kuchii,
National Institute of
Technology, Japan

*Correspondence:
Anais Brygo

anais.brygo@gmail.com

Specialty section:
This article was submitted to Bionics

and Biomimetics, a section of the
journal Frontiers in Bioengineering and

Biotechnology

Received: 01 January 2017
Accepted: 10 March 2017
Published: 03 April 2017

Citation:
Brygo A, Sarakoglou I, Grioli G and
Tsagarakis N (2017) Synergy-Based
Bilateral Port: A Universal Control

Module for Tele-Manipulation
Frameworks Using Asymmetric

Master–Slave Systems.
Front. Bioeng. Biotechnol. 5:19.
doi: 10.3389/fbioe.2017.00019

Synergy-Based Bilateral Port:
A Universal Control Module for
Tele-Manipulation Frameworks Using
Asymmetric Master–Slave Systems
Anais Brygo1*, Ioannis Sarakoglou1, Giorgio Grioli2 and Nikos Tsagarakis1

1 Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia (IIT), Genova, Italy, 2 Interdepartmental Research
Center “E. Piaggio”, Faculty of Engineering, University of Pisa, Pisa, Italy

Endowing tele-manipulation frameworks with the capability to accommodate a variety of
robotic hands is key to achieving high performances through permitting to flexibly inter-
change the end-effector according to the task considered. This requires the development
of control policies that not only cope with asymmetric master–slave systems but also
whose high-level components are designed in a unified space in abstraction from the
devices specifics. To address this dual challenge, a novel synergy port is developed that
resolves the kinematic, sensing, and actuation asymmetries of the considered system
through generating motion and force feedback references in the hardware-independent
hand postural synergy space. It builds upon the concept of the Cartesian-based synergy
matrix, which is introduced as a tool mapping the fingertips Cartesian space to the
directions oriented along the grasp principal components. To assess the effectiveness of
the proposed approach, the synergy port has been integrated into the control system of
a highly asymmetric tele-manipulation framework, in which the 3-finger hand exoskeleton
HEXOTRAC is used as a master device to control the SoftHand, a robotic hand whose
transmission system relies on a single motor to drive all joints along a soft synergistic path.
The platform is further enriched with the vision-based motion capture system Optitrack to
monitor the 6D trajectory of the user’s wrist, which is used to control the robotic arm on
which the SoftHand is mounted. Experiments have been conducted with the humanoid
robot COMAN and the KUKA LWR robotic manipulator. Results indicate that this bilateral
interface is highly intuitive and allows users with no prior experience to reach, grasp, and
transport a variety of objects exhibiting very different shapes and impedances. In addition,
the hardware and control solutions proved capable of accommodating users with different
hand kinematics. Finally, the proposed control framework offers a universal, flexible, and
intuitive interface allowing for the performance of effective tele-manipulations.

Keywords: teleoperation, tele-manipulation, synergy, asymmetric systems, exoskeleton, underactuation

1. INTRODUCTION

Performing a task using a teleoperated robot avatar makes possible to safely handle hazardous
material as well as to take advantage of the machines’ superior sensing and actuation capabilities,
enabling the execution of tasks that require high precision and large wrenches. Furthermore, the
introduction of a digital control layer between the operator’s commands and the actuator’s reference
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output allows to resort to signal processing techniques such as
scaling or filtering in order to rectify the user’s input. Additionally,
preoperative automated task supervision features can be imple-
mented to improve safety with, for instance, the introduction of
motion constraints and safeguards to contain the risks stemming
fromaccidental commands or external disturbances. As such, tele-
operation not only enables to project the skills of an operator into
a remote environment but it also permits to extend and enhance
the human’s manipulation capabilities with higher power, higher
motion precision, and with greater safety. Finally, this powerful
tool allows merging the strengths of men and machines so as to
achieve enhanced performances. However, to take advantage of
the potential benefits offered by tele-manipulation, a number of
considerations need to be addressed both at the hardware and
software levels.

1.1. Coping with the Master–Slave
Asymmetry
Of paramount importance in the realization of an intuitive
tele-manipulation platform is the design of a bilateral control
module capable of efficiently coping with diversely asymmetric
master–slave systems.

To better comprehend this matter, one should bear in mind
that the inherent capabilities of a teleoperator are conditioned
by those of its master and slave devices, whose choice is guided
by distinct functional requirements. On the one hand, the slave
robot must incorporate an end-effector that is suitable for the
task, i.e., that achieves the most adequate versatility–robustness
trade-off to effectivelymanipulate its environment. Depending on
the manipulation scenario considered, the end-effector may be
chosen to be anything from a highly anthropomorphic dexterous
hand to a single DoF industrial gripper. On the other hand, the
master device should allow for unconstrained motions in the
entire user’s hand workspace and provide an accurate posture
tracking as well as a rich haptic guidance while maintaining the
degree of portability required by the application.

These criteria often lead to the selection of highly asymmetric
systems at the kinematics, sensing, and actuation levels. Such
asymmetry, if not carefully handled, might greatly decrease the
intuitiveness of the framework and consequently jeopardize its
effectiveness. The core strategy to make the operator unaware of
the system’s asymmetry and allow him/her to command manip-
ulation actions as if directly performing the manual task is to
capture his/her intent during natural motions and map this input
signal from the master sensing space to the slave’s actuator space
so as to generatemotion references translating the desired actions.
Conversely, an adequate algorithm is needed to synthesize, from
the data sensed at the slave side, a force feedback reference for
the master’s actuators in order to display an effective haptic guid-
ance capable of enabling the operator to immerse in the task.
Those policies play a major role in isolating the user from the
complexity of the asymmetric system so as to create an efficient
human–machine interface, where the natural coupling with the
slave makes possible the execution of complex manipulation tasks
while maintaining low the cognitive load of the operator.

Finally, tele-manipulators belong to the larger class of Human-
In-the-Loop (HIL) systems. As such, their overall performance

not only depends on the capabilities of the master and slave
devices in isolation but also on how well these two entities
are interconnected. It is therefore important to develop bilat-
eral control strategies that effectively cope with the master–slave
asymmetries.

1.2. On the Need of Unified Control
Frameworks
Besides handling the master–slave asymmetry, it is desirable to
design flexible and universal control frameworks.

Indeed, in an attempt to achieve the versatility required to
accommodate the wide range of shapes and sizes of the objects
populating our workspaces, artificial hands exhibiting increas-
ingly sophisticated designs have been developed during the last
decade. However, the effective use of such highly articulated
devices has been hindered by their inherent control complex-
ity. A promising approach to tackle this difficulty lies in the
development of unified frameworks promoting the synthesis of
hardware-independent algorithms that can be indifferently used
to control a variety of end-effectors. This can be achieved through
adopting a two-layer architecture, where the low-level layer is used
to encapsulate the kinematics, sensing, and actuation specifics of
the device, while the high-level layer focuses on the resolution
of the manipulation problem. This latter entity, which may be
seen as equivalent to the concept of middleware in software engi-
neering, can be based on universal, task-oriented control policies
designed in complete abstraction from the hardware to be used.
Provided the use of a generic interlayer interface, such platform
permits to flexibly interchange not only the robotic hand used
but also the control layer, making possible to easily implement a
diversity of manipulation algorithms proposed in the literature,
from autonomous or semi-autonomous grasp planners, as the
one presented in Ciocarlie et al. (2007), to tele-manipulation
strategies designed in the object domain, as proposed in Gioioso
et al. (2013), or any other mapping that best suits the application
considered.

The implementation of interfaces as generic as possible would
benefit from the selection of a common expression space. As such,
the concept of postural synergies has been proposed as the alpha-
bet of the universal language for such unified control frameworks.
This bio-inspired approach rests on neuroscience studies that have
shown the existence of consistent spatiotemporal coordination
patterns of the humanhand joints during the execution of a variety
ofmanipulation tasks (Santello et al., 2016). Among other possible
projection spaces, the synergistic one appears very attractive for
twomain reasons. First, it seems sensible to draw inspiration from
the CNS’s1 strategy to control the human hand that remains to
date and by far the most complex and versatile manipulation tool
existing. Second, considering the postural synergies as motion
primitives that can be combined to designmanipulation strategies
can significantly decrease the control complexity. Indeed, analysis
has revealed that a few variables, corresponding to the coordinates
along the synergistic directions, can describe most of the variance
of the hand posture during grasping motions (Santello et al.,
1998).

1central nervous system.
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Hence, deriving control algorithms in the synergy space can
substantially reduce the dimensionality of the manipulation prob-
lem and therefore the associated computational cost.

To complete such architecture, low-level modules are required
to translate the references described in synergy space into equiva-
lent patterns of coordinated motion of the artificial hands’ joints.
While this mapping is quite straightforward when considering
anthropomorphic robotic hands, the derivation of optimal pos-
ture subspaces for end-effectors with kinematics considerably dif-
ferent to those of the human hand remains an open research ques-
tion. A first contribution in this direction has been proposed in
Ciocarlie and Allen (2010), where the authors empirically define
a set of basis vectors, referred to as eigengrasps, which describe a
low-dimensional posture subspace for 5 artificial hands. This very
promising work demonstrates the applicability of such approach
and paves the way to the generalization of robotic hands control
within a synergy-based unified framework.

1.3. The Approach Proposed
This present work introduces a novel bilateral tele-manipulation
control strategy that resolves the asymmetry of the master–slave
system and generates motion and force feedback references in the
hardware-independent hand postural synergy space.

In this tele-manipulation platform, the 3-finger hand exoskele-
ton HEXOTRAC (Sarakoglou et al., 2016) is used at the mas-
ter station of the proposed platform. Its sensory and actuation
systems permit to monitor the position and orientation of the
operator’s fingertips and to display kinesthetic feedback reflecting
some mechanical properties of the remote environment. This
exoskeleton is used to control the Pisa/IIT SoftHand (SH), an
anthropomorphic robotic hand, the as slave device. This device
implements the concept of soft and adaptive synergies mechani-
cally, such that its 19 joints are driven by a single motor along the
first synergy in free space, while its shape adaptation capabilities
stemming from underactuation let it conform to the shape of
objects during grasping. With a single actuator and a sensory
system limited to a position encoder and a current sensor, the
SoftHand’s minimalistic design promotes robustness but chal-
lenges traditional teleoperation strategies. Indeed, the absence of
joint encoders and individual actuators prevents the control of the

slave’s joints or fingertips trajectories as a straightforward map-
ping of the operator’s motions. Similarly, the absence of per-digit
haptic sensors calls for a novel force feedback control strategy.

To tackle this challenge and achieve an intuitive framework
capable of efficiently handling the large asymmetry between the
master and the slave devices, the concept of Cartesian-based hand
synergies is introduced as a set of independent vectors oriented
along the grasp principal components and described in the finger-
tip Cartesian space. This base is used to develop a novel bilateral
synergy port, schematized on Figure 1, which is proposed as a
mapping tool for performing bilateral tele-manipulations.

In the proposed approach, the operator’s hand posture is pro-
jected on this space to extract the corresponding coordinate along
the first synergy, which is then used as the SoftHand’s motor
position reference. This algorithm elegantly scales the human
hand’s many degrees of freedom to the slave’s single Degree Of
Actuation (DOA) by extracting from natural motions the relevant
information to be used as input for operating the slave—here the
desired degree of hand closure. Conversely, the proposed synergy
port is used to generate force feedback references for the exoskele-
ton to display perceptually meaningful haptic stimulations that
characterize the remote interaction. The 1-dimensional grasping
force applied by the SoftHand’s actuator on its environment along
the first synergy is estimated using a torque observer. It is then
re-projected on the Cartesian-based synergy space in order to
synthesize a 9-dimensional force reference in the user’s fingertip
Cartesian space. These finger-individualized forces, which reflect
the grasping effort developed by the SoftHand during its inter-
actions with the objects manipulated, are finally projected on the
exoskeleton’s joint space in order to generate the reference for its
actuated DOFs. To complete the tele-manipulation interface, the
framework is subsequently enrichedwith the vision-basedmotion
capture system Optitrack, which is used to monitor the position
and orientation of the user’s wrist. This input is used to generate
in real time the 6D position reference trajectory for the wrist of
the robot arm on which the SoftHand is mounted. This control
scheme has been implemented to control the IIT humanoid robot
COMAN as well as the KUKA LWR manipulator.

This work builds upon the proof-of-concept study presented in
Brygo et al. (2016), which demonstrated the effectiveness of the

FIGURE 1 | Introduction of a synergy port as a mapping tool for bilateral tele-manipulation.
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proposed synergy-based interface in allowing a single trained user
to perform the desired tele-manipulation. This preliminary work
is developed and extended here in order to achieve a universal
platform. In particular, the theoretical and practical tools needed
to endow the framework with the capability to accommodate very
different users’ hand sizes are implemented, and the usability of
the interface by novice, untrained operators is experimentally
assessed.

The rest of this paper is organized as follows. In Section 2, a
description of the hand exoskeleton and the SoftHand is presented
along with the principal characteristics that motivated the selec-
tion of these devices. A brief review of the strategies proposed in
the literature to control robotic hands using asymmetric teleoper-
ators is then presented, and the need for a novel mapping strategy
suiting the proposed system is explained. Section 3 addresses
the generation of the SoftHand’s motor position reference as a
mapping of the user’s hand posture. In particular, the concept
of Cartesian-based hand synergy is introduced together with the
user study that has been conducted to analyze the possibility
to describe the human hand posture during grasping motions
using a low-dimension set of variables constructed as a linear
combination of the fingertip Cartesian trajectories. Subsequently,
the theoretical tools used to build the synergy-based teleoperation
port are derived. The effectiveness of this approach to synthesize
the artificial hand motion reference realizing the operator’s inten-
tions is then experimentally demonstrated. Section 4 describes
how the force feedback references are generated through inverse
projection on the synergy space, and a finger-individualized force
scaling procedure is proposed to homogenize the force feedback
amplitudes across users. The closed-loop performance of the
system is then experimentally characterized. Section 5 discusses
the possibility of relying on a simplified calibration procedure
and analyzes how the use of a user-independent Cartesian-based
synergy matrix affects the position and force feedback refer-
ences. Section 6 presents the experiments conducted with both
robotic slaves in order to evaluate the effectiveness of the pro-
posed framework. Finally, conclusions of this work are drawn in
Section 7.

2. A HIGHLY ASYMMETRIC
MASTER–SLAVE SYSTEM

2.1. A Hand Exoskeleton at the Master
Station
A fundamental aspect to consider when designing tele-
manipulation interfaces concerns the choice of the master device.
One option to monitor the user’s hand posture consists in
tracking the fingers’ joints’ angular excursion. Vision-based
motion capture systems can be used to this end. While flexibly
adjusting to different hand sizes, their main drawback regards the
need to handle occlusions, an issue made particularly salient by
the large number of markers in a small workspace. Furthermore,
the installation of a large number of markers on the skin is a
time-consuming procedure. Alternatively, data gloves such as the
VPL data glove (Hong and Tan, 1989) or the CyberGlove from
Immersion Corporation (Peer et al., 2008) represent a popular
solution that does not suffer from this limitation. However,

reservations have been expressed about their tracking accuracy.
Indeed, not only it can be affected by physical factors such as
sweat and temperature but it is also largely dependent on the
fit of the glove. Accommodating diverse hand sizes is a critical
requirement when aiming at designing a universal interface,
as it is the case of this work. Calibration procedures have been
developed to account for the different hand kinematics (Griffin
et al., 2000), but besides consisting in tedious processes that can be
time consuming, their results are often not ideal (Dipietro et al.,
2008). Finally, additional solutions need to be added in order
to enhance the master station with force feedback capabilities,
which is desirable to enable remote haptic explorations and is
believed to assist the operator in regulating the manipulation
forces.

These considerations motivated our choice to use the hand
exoskeleton HEXOTRAC (Sarakoglou et al., 2016), pictured in
Figure 2, at the master station of our tele-manipulation frame-
work. It consists of a three 6-DOF linkagesmounted on a common
base, which is attached to the dorsal side of the hand. The other
end of the linkages is fastened to the user’s thumb, index, and
middle fingertips through interchangeable 3D-printed thimbles.
This attachment system not only allows for fast donning and
removal of the device but it also permits to suit a large range
of hand sizes. The overall kinematics design is such that the
reachable workspace of the linkages endpoint completely covers
the human hand workspace. This makes possible the execution
of any type of motion and permits in particular the rotation of
the fingertips, which provides the freedom to perform natural
manipulations and is the key to accommodating a very large range
of hand sizes without anymechanical adjustment. High resolution
magnetic encoders monitor the position of all the linkages’ joints,
permitting the 6-DoF tracking of the operator’s fingertips.

The hand exoskeleton is fitted with three low-gear DC motors
whose output torques are transmitted to the first joint of each
finger linkage through a pair of anti-backlash bevel gears. Pairs
of bilaterally bonded strain gages provide measurement of the
torque applied at the proximal joints. This measurement is used
as feedback signal by a PD controller that tracks the reference
torque trajectory. τint des ∈ R3na is the joint torque vector corre-
sponding to the desired fingertip interaction force projected on
the actuated joint space. Since the strain gages reading τstr g ∈ R3na

encompasses both the interaction torque and the gravity torque,
a gravity compensator is introduced to compute τg ∈ R3na , the
model-estimated gravity joint torque projected on the actuated
joint space. Note that na is the exoskeleton finger-actuated joint
space dimension.

Finally, this hand exoskeleton is used as master system of the
teleoperation system. The following section describes the robotic
hand used as slave device.

2.2. The SoftHand at the Slave Station
The choice of the slave device is of paramount importance, since
its intrinsic characteristics greatly influence the capabilities of the
tele-manipulator as well as its intuitiveness. After introducing in
Sect. 2.2.1 the efforts of the robotic community toward the devel-
opment of robotic hands equipped with the technical capability
to skillfully manipulate the many different objects populating
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FIGURE 2 | Left: hand exoskeleton HEXOTRAC; right: kinematics of the exoskeleton’s index finger linkage.

our workspaces, the SoftHand’s characteristics that motivated its
selection as the slave hand of the proposed tele-manipulation
framework are presented in Sect. 2.2.2.

2.2.1. Achieving Stable Grasp with Robotic Hands, a
Long-lasting Challenge
Versatile robotic manipulation in unstructured environments is a
challenging topic for the robotics community and a very active
area of research during the last decade (Shimoga, 1996; Kemp
et al., 2007). Of particular importance is the ability to manipulate
objects with diverse geometries while precisely controlling the
contact locations and force distribution in order to achieve force
closure grasps, also referred to as stable grasps (Bicchi and Kumar,
2000; Okamura et al., 2000; Rosales et al., 2012; Prattichizzo
et al., 2013). Considering the diverse shapes and sizes of the
objects populating human workspaces, a considerable effort has
been recently devoted to the development of highly dexterous
artificial hands. The Utah/MIT hand (Jacobsen et al., 1984), the
Anthrobot hand (Kyriakopoulos et al., 1997), the Shadow hand
(Shadow Robot Company Ltd, 2017), or the DLR hands (Butter-
fass et al., 2001) are a few examples of such attempts to approach
the fine manipulation capabilities of the human hands. However,
their actual use has been largely hindered by their limited power
capabilities and poor robustness, resulting from the implemen-
tation of many small and usually delicate actuators, as well as
by their increased control complexity. Aware of these limitation,
an innovative design has been proposed and implemented in the
Pisa/IIT SoftHand (Catalano et al., 2012) used as slave device of
the proposed tele-manipulation platform. The intrinsic properties
of this hand, which conditioned the development of the control
framework, are described in the following section.

2.2.2. SoftHand, a Powerful Grasping Tool
The SoftHand has been selected because it elegantly combines
versatility and robustness within a unique design that turns it into
a powerful tool to grasp and manipulate objects of diverse shapes
in unstructured environments.

FIGURE 3 | Left: picture of the Softhand; right: routing of its tendon.

Its transmission mechanism uses a system of pulleys and a
tendon routed through all fingers to transmit the torque of a single
motor to the 19 DOFs of the hand, as shown on Figure 3. Its
differential system has been designed to drive all joints along the
first synergy in free spacemotions, while during contact its shape-
adaptive property deriving from underactuation lets it conform
to the geometry of the object grasped. Such behavior is achieved
through combining two main theoretical tools, such that the soft
synergy concept is realized with a shape-adaptive underactuated
mechanism. Indeed, while the neuroscience-based concept of the
first postural synergy appears attractive since the manipulation
of a single coordinate allows to describe a large percentage of
the posture variance during natural grasps, a purely kinematic
implementation of this synergy leads to an inconsistent grasp force
distribution. The concept of soft synergies was proposed to tackle
this limitation and provides a model generating suitable internal
forces that permit to robustly hold an object (Bicchi et al., 2011).

In addition, an innovative design employing rolling contact
articulations assembled with rubber ligaments allows the joints
to disarticulate during impacts before passively returning to their
initial configuration. These features endow the SoftHand with an
exceptional robustness through ensuring a soft and safe behavior
during unexpected collisions, making it suitable for manipulation
tasks in unstructured environments.

Finally, this design embeds part of the control intelligence in
the physical system itself. Indeed, while the actuation space is
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reduced to a single dimension, the SoftHand’s multiple DOFs
move in a principled way and adapt to the environment manip-
ulated, achieving high versatility at a reduced control complexity
cost. However, these same characteristics challenge traditional
teleoperation techniques, as discussed in the following section.

2.3. A Design That Challenges Traditional
Teleoperation Strategies
With a single electric motor, one position encoder, and one cur-
rent sensor, the SoftHand’s overall design aims to a low cost and
robust device. However, such underactuation andminimum sens-
ing represent a major challenge when considering the SoftHand
as a slave device to teleoperate using a hand exoskeleton and
prevents from relying on traditional teleoperation strategies. For
a better understanding of the problematic, below are presented
the different strategies that have been proposed in the literature to
teleoperate robotic hand and cope with asymmetric master–slave
systems.

There are three typical control strategies for teleoperating
robotic hands: joint-to-joint, point-to-point, and pose mapping.
Alternatively, an object-centered approach has been recently pro-
posed. Following is a brief overview of these techniques.

Direct joint-to-joint mapping has been proposed as control
strategy to teleoperate robotic hands (Wright and Stanisic, 1990;
Bouzit, 1996; Yokokohji et al., 2003). This method, which appears
suitable to drive anthropomorphic hands from recording the
trajectory of the operator’s hand joints using motion tracking
systems such as data gloves, presents some limitations. Indeed,
the many DOFs of the human hand endow it with a remarkable
dexterity that most robotic hands fail to achieve, thus creating a
kinematic mismatch between the two sides. This in turn renders
this approach of directly mapping the DoF of the slave hand to
motions of the human hand joints unable to efficiently cope with
this level of kinematic master–slave asymmetry.

As an alternative, point-to-pointmapping has been proposed to
control non-anthropomorphic hands or grippers. This approach
consists in designing the reference trajectory of particular points
of the robotic hand as a function of the Cartesian position tra-
jectory of associated points of the master hand. Typically, the
fingertips of themaster hand aremonitored and used to derive the
desired position trajectory of the slave’s fingertips. In Rohling et al.
(1993), the Utah/MIT Dextrous Hand is teleoperated using the
Utah Dextrous Hand Master. In this work, the control algorithm
aims at mapping the position and the orientation of master to the
slave device. To account for the slight kinematic dissimilarities
between the systems, a priority-based strategy is implemented
such that position is considered as the prime goal while orienta-
tion comes as second objective. Another implementation reported
in Hong and Tan (1989) proposes to teleoperated the Utah/MIT
Dextrous hand using the VPL data glove. The position trajectories
of the operator’s fingertips are computed from themeasured joints
position using the forward kinematics of the human hand model
and then used to derive the reference trajectories of the slave
fingertips. However, a direct mapping of the Cartesian trajectories
of the fingertips might not be possible when considering larger
asymmetries, such that alternative mapping might be needed.

In Peer et al. (2008) is presented a method for teleoperating
the three-fingered gripper BarrettHand using the CyberGlove as
master tracking system. The control space of the slave’s hand
is quite restricted since each finger counts two coupled DOFs
actuated by a single motor; furthermore, two of the three fingers
can rotate synchronously and symmetrically around the base joint.
To generate references lying within the gripper’s reachable space,
the workspace of the human fingers is scaled and then vertically
projected.

The third approach, referred to as pose mapping, is based on
the functional analysis of the human hand during natural actions.
A collection of human poses or grasps are defined, and to each
of them is associated an equivalent posture of the robotic hand.
A transformation matrix is proposed in Pao and Speeter (1989)
that maps human hand positions to corresponding positions in
the slave space, and an interpolation algorithm is employed to
shift from one pose to another. In Wojtara and Nonami (2004),
a grasp recognition method relying on neural network is devel-
oped together with a custom mapping algorithm. The use of
neural networks for grasp identification is also studied in Gorce
and Rezzoug (2004). Alternatively, Ekvall and Kragic (2006) use
Hidden Markov Models for the recognition of the human grasp,
while a neural network is used to define the mapping between the
operator’s and the slave’s hand configuration spaces. A grasp tax-
onomy is introduced in Liu and Zhang (2004), where a Gaussian
MixtureModel based classifier is designed to recognize the type of
grasp. Another strategy is used in Kang and Ikeuchi (1997) where
a virtual finger mapping method is used after recognizing the
human grasp in order to generate the slave’s reference. The main
limitation of those strategies regards the poor robustness of the
identification algorithms. As such, small changes in the operator’s
hand posture can lead to switches between the reference pose in
the target space, resulting in somewhat unpredictablemotions that
are especially undesirable during tele-manipulations.

A more recent approach has been proposed that focuses on
manipulation tasks. The core concept consists in introducing a vir-
tual object at the master station. The operator’s finger motions are
translated into the rigid-body motion and deformation imparted
on the virtual object. The slave hand is then controlled such that
the object—either virtual or real—tracks the transformations of
the virtual object. This paradigm aims at integrating the oper-
ator’s manipulation intent in the object domain. A 2D instance
of such method is implemented in Griffin et al. (2000) and used
to control a symmetric two-fingered planar robot. A non-linear
mapping is developed to map the motion of the master virtual
object to the motion of the slave virtual object in order to better
utilize both station’s workspaces. This method is extended to 3D
cases in Wang et al. (2005), where a 3-fingered robotic hand is
teleoperated. A virtual circle is defined by the three considered
fingertips of the operator. The master virtual circle is parameter-
ized, and the parameter’s transformations are mapped to similar
transformations of the virtual circle defined at the slave side.
Finally, the robot’s finger motions are computed according to the
desired fingertip position. An analogous approach is undertaken
in Gioioso et al. (2013) where the smallest sphere enclosing the
fingertips of the operator is used as virtual object. The user’s input
is described by modeling the effects of the fingers’ displacement
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on this virtual sphere’s linear and angular velocities as well as it
deformation. These transformations are scaled and tracked by a
virtual sphere defined as the slave’s side. In Salvietti et al. (2013),
the virtual object is used to both capture the user’s hand motion
and to compute the force feedback reference, such that the wrench
displayed to the user corresponds to the wrench applied by the
robotic hand on the virtual object. Those object-based methods
provide a universal interface that abstracts from the kinematics
of the master and slave systems and therefore allows to cope with
highly asymmetric systems.

However, none of these approaches can be used in the present
work. Indeed, the extreme underactuation of the SoftHand and
the absence of joint encoders in its fingers prohibit the design
of the motion control reference in joint or Cartesian space as a
traditional mapping of the operator’s motions. Furthermore, the
absence of haptic sensors on the slave’s digits calls for a novel force
feedback strategy in order to generate appropriate references for
the hand exoskeleton’s actuators. Hence, the need to develop a
novel bilateral teleoperation algorithm suitable for the system is
considered in this work. This aspect is addressed in the following
section.

3. POSITION CONTROL: A
SYNERGISTIC-BASED TELEOPERATION
STRATEGY

While the large number of DoFs affords the human hand with
remarkable dexterity, the SoftHand’s underactuated kinematics,
with its single actuator, limit control over the postures it can
achieve. The purpose of the work presented in this section is
to resolve this asymmetry through synthesizing a suitable algo-
rithm that maps the native hand’s unconstrained motions into
motions achievable by the robotic hand that best translate the
user’smanipulation intent. To this end, we propose to capitalize on
the insights recently gained with regard to the concept of postural
synergies, which was revealed to be a key mechanism underlying
the human hand motor control and which inspired the design of
the SoftHand’s transmission system. The main idea of the pro-
posed algorithm is to extract the user’s hand first motor synergy’s
activation level and use this trajectory as position reference to
drive the slave’s actuator. Indeed, this component not only reflects
the high-level intent of the operator but it also corresponds to a
coordinate along the synergistic path described by the SoftHand’s
joints.

To begin with, Sect. 3.1 outlines the neuroscience-based notion
of hand synergies, which inspired the robotic community with a
radically new control approach that aims at emulating the strat-
egy employed by the CNS to tame the motor control complex-
ity of the hand’s many DOFs. While a large body of research
has built upon this idea, the totality of these studies—to the
best of our knowledge—has considered the synergies as derived
from the hand joint trajectories. The present work investigates
the possibility of extending this concept toward extracting the
synergistic patterns of motion of the hand from its postural
descriptions in the Cartesian space of the fingertips instead of
the joint space. Section 3.2 elaborates on a user study that has
been conducted to investigate this possibility. On the basis of the

experimental results that validated this approach, the notion of
Cartesian-based synergy space is introduced. Section 3.3 describes
how this paradigm is implemented into the control scheme of
the proposed teleoperation framework. A characterization of the
asymmetric teleoperator in then presented, where the behav-
ior of the slave is analyzed under different inputs issued by
the operator. Specifically, the response of the system to finger
adduction–abduction and flexionmotions is reported. The results
clearly indicate the effectiveness of the approach, which enables
to intuitively control the slave robotic hand from natural hand
motions.

This Cartesian-based synergy port is proposed as an analogous
and simpler alternative over the classical postural synergy that
may suit better hand tracking systems, which do not provide direct
measurement of the joint angles but are able of high resolution
6-DOF tracking of the fingertips. In such cases, the Cartesian-
based synergy analog could be used for extracting from Cartesian
tracking data the activation level along a synergy coordinate,
alleviating the need of resorting to complex joint tracking systems
or computationally expensive and potentially inaccurate inverse
kinematic solutions of the hand. In addition, given a different end-
effector or robotic hand with different kinematics, actuation, and
posture control capabilities, this method could be tuned to extract
the user’s intent along additional synergistic actions that could be
then related to the commanded actions of the slave.

3.1. Hand Synergies, a Path toward
Simplicity
The human hand is a fascinating and remarkably complex bio-
logical system in which a multitude of muscles and tendons con-
trolling the joints’ angular excursions are simultaneously engaged
to generate purposeful movements. Understanding how the brain
harnesses the motor control complexity of this organ has been
extensively studied, and evidences have been put forward to
substantiate the idea that the Central Nervous System does not
consider it as a collection of independent joints. Instead, various
neuroscience analyses postulate the existence of motor primitives
defining the coordinated motion of multiple joints along trajec-
tories that are referred to as synergies (Latash, 2008). Interested
readers are referred to the thorough reviews presented in Tresch
et al. (2006) and Santello et al. (2013). Although the term synergy
has been employed to conceptualize coordination at various levels
including kinematics, i.e., joints motion coordination (Santello
et al., 1998), kinetics, i.e., digit force coordination (Zatsiorsky
et al., 2000), neuromuscular, i.e., multi-muscle activation patterns
(Bizzi et al., 2008), or neurosensorial, as the perceptual coun-
terpart of the motor synergies (Bicchi et al., 2011), we will use
here the definition proposed in Turvey (2007), according to which
a synergy is “a collection of relatively independent DOFs that
behave as a single functional unit.”

This synergistic behavior is believed to result from a combina-
tion of biomechanical constraints, related in particular to themus-
cles and tendons spanning several joints, with neural constraints,
stemming froma specific circuitry that distributes high-level com-
mands into multiple inputs traveling along descending pathways
to various muscles (Schieber and Santello, 2004). The complex
interplay between these hard-wired and soft-wired constraints
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results in multi-DOFs coordination patterns, such that each syn-
ergy can be seen as a vector specifying the relative motion of
a collection of joints, while their absolute position is controlled
through modulating a single signal. Therefore, they constitute
basic building modules that can be combined using a set of time-
synchronized activation level trajectories that translate in princi-
pled patterns of motion and ultimately allow to produce a large
repertoire of movements.

Gaining a deeper insight into the synergisticmechanismunder-
lying the handmotor control is crucial to apprehend the high-level
intentions of the user from motion analysis. Indeed, synergies are
believed to be closely linked to the functional outputs of a motor
behavior (d’Avella and Bizzi, 2005) and “may therefore represent
the bottom of a hierarchical neural control structure in which
higher neural centers operate on increasingly conceptual variables
related to task-level motor performance” (Ting andMcKay, 2007).

Among the many implications deriving from the synergistic
organization of the hand motor apparatus, a very interesting
aspect regards the dimensionality reduction of the control space
it implies. Diverse techniques have been proposed to individuate
the patterns of joints’ covariation that occurs when modulating
the hand posture to grasp objects of diverse shapes, including
Singular Value Decomposition (Mason et al., 2001) and Principal
Components Analysis (PCA) (Santello et al., 1998). The latter
study reveals that only two independent variables, corresponding
to the levels of activation of the first two postural synergies,
account for more than 80% of the variance of a dataset containing
the static postures at the end of the grasp motions of a large
number of imagined objects. This indicates that the handmolding
motions involve principally two synergies. It is worth specifying
that these observations do not imply that additional synergies
represent random, task-unrelated variability. Instead, they repre-
sent effective degrees of freedom that come into play when finer
posture adjustments are required, especially in order to conform
to the actual geometry of the objects manipulated (Todorov and
Ghahramani, 2004).

While a large amount of studies have been dedicated to the
analysis of the hand postural synergies, all of them—to the best of
our knowledge—have considered the synergies as extracted from
the hand’s joint space description. In the present work, we propose
to investigate the possibility to perform an analogous PCA-based
dimension reduction analysis from the hand posture described
in the fingertip Cartesian space. Note that the objective is not
to discuss whether motor control strategies are encoded at the
joint or task-space level by the CNS but rather to explore how
they can be adequately monitored. Considering that joints and
end-effector Cartesian trajectories are correlated, it is reasonable
to hypothesize that the synergistic organization that has been
evidentiated in the joint space would be reflected in the Cartesian
space.

This approach stems from the hand exoskeleton device used
at the master station, which provides a direct tracking of the
fingertips 6Dposition trajectories. These could be used to infer the
joints trajectories through implementing an inverse kinematics
module. However, not only this would require the introduction
of a calibration procedure that can be long and tedious to iden-
tify the user’s relevant kinematic parameters but it would also

and more importantly entail a reduction of the hand posture
estimation accuracy. Indeed, the intrinsic complexity of the hand
anatomical organization makes accurate modeling challenging.
This complexity compels to the development of simplified kine-
matic models so as to achieve manageable solutions and meet
the computational speed requirements associated with real-time
applications (Bullock et al., 2012). However, it is important to
keep in mind that such simplifying assumptions (e.g., joints axis
alignment, number, nature of the joints, etc.) introduce an error
in the hand posture estimation. Instead, the extraction of the
synergies coordinates directly from the motion data captured
permits to avoid this pitfall.

In the following is presented the study that has been conducted
to investigate the feasibility of identifying the hand postural syn-
ergistic paths and their respective levels of activation from the
tracking of the fingertips motion in the Cartesian space.

3.2. Experimental Analysis of Human
Grasps in Cartesian Space
An experimental study has been carried out in order to deter-
mine whether the postures adopted by the hand during grasping
motions could be adequately described by a low-dimensional set
of coordinates traveling along motion primitives expressed in
the fingertips’ Cartesian position space. The aim was to inves-
tigate whether the preliminary results presented in Brygo et al.
(2016), which considered a single subject, could be generalized to
different hands kinematics.

Eight right-handed subjects—3 females and 5 males aged
between 25 and 36—took part to this experiment. Ethical approval
was not required for this study as per the national and institutional
requirements, andwritten informed consentwas obtained fromall
participants. They were instructed to wear the hand exoskeleton
HEXOTRAC and to sit at a table with the upper arm resting along
the body, the elbow joint right-angled, the forearmhorizontal with
the palm-down hand opened. They were then asked to imagine
an object placed 40 cm away on the table and enjoined to shape
their hand while executing a natural reach-to-grasp motion as if
to pick it up, before returning to their initial configuration. They
repeated this operation 5 times per object with 57 different objects,
for a total number of 5× 57 items per subject. In order to allow for
comparisons, the objects used were the same as listed in Santello
et al. (1998). These everyday objects require both precision and
power grips and exhibit a large range of shapes in order to account
for the modulation of the hand posture during natural grasping.
Note that subjects were asked to imagine the objects in order to
allow for the study of the motor control strategies employed by
the CNS while avoiding the mechanical interference and con-
straints that would result from physical interactions with real
objects.

The exoskeleton’s fingers’ joints position trajectories were
recorded at a 1 kHz sample rate and used to compute the Cartesian
position trajectory of the users’ fingertips using the equation (1)
as detailed in Sect. 3.3. Finally, the data were stored in a nc × 3m
matrix, with nc ∈ R the data collection’s number of samples and
m= 3 the dimension of the space used to describe the position of
each fingertip.
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FIGURE 4 | Percentage of the variance explained by the 5 dominant
PCs averaged over all subjects. The error bars indicate the SD from the
mean.

A PCA analysis has been performed to examine the inter-
nal structure of the datasets, and the percentage of the variance
explained by each principal component (PC) has been computed
for each subject. The averaged values over all subjects of the five
largest PCs are presented in Figure 4. Additionally, the dispersion
of the data from the mean is quantified for each PC by computing
the associated SD, which is graphically represented on the same
figure by the mean of error bars.

The first PC accounts in average for 71.8% of the variance of the
data, while the first two PCs account in average formore than 85%
of the variance. Furthermore, it is worth noting the low SD values,
which indicate that the percentage of the variance explained by
the each PC is fairly consistent among subjects. These results
reveal that the 9 variables expressed in the initial base are strongly
correlated. Therefore, the hand motion can be more adequately
described using a new set of independent variables varying along
orthogonal axis oriented in the directions maximizing the vari-
ance explained in the dataset. Through discarding the variables
corresponding to the large PCs, which contribute very little to the
variability of the data, it is possible to describe the hand posture
during grasp motions using a low-dimensional set of variables
with a minimum information loss.

This change of base can be performed using a projectionmatrix
whose columns are the eigenvectors of the covariance matrix of
themean-centered data. In analogy to the joint space terminology,
this matrix will be referred to as the Cartesian-based synergy
matrix Sx. Its column vectors, which are the orthogonal axes of
the new base and represent the motor primitives whose linear
combination describe the hand postures, will be referred to as the
Cartesian-based synergies. In the rest of this work, if not stated
explicitly, the term synergies will be used to refer to the Cartesian-
based synergies, although the reader is invited to keep inmind that
they are distinct from the joint space-based synergies as defined
in the literature.

The obtained synergy matrix Sx, computed once from the data
collection, is then used to project in real time the user’s hand
posture on the synergy space so as to extract each posture’s
coordinate along the first synergy, as detailed in the following
section.

3.3. First Synergy Position Reference
Extraction
This section explains how the raw fingertips’ Cartesian position
trajectories monitored by the hand exoskeleton can be mapped
onto a new set of scalar variables representing the hand’s posture
coordinates in the Cartesian-based synergy space. Subsequently,
an experimental study is presented that analyzes the effectiveness
of the proposed approach in capturing the user’s grasping intent
during unconstrained motions and in translating it into adequate
references to control the amount of closure of the slave hand.

The exoskeleton links’ configuration is monitored using the
position encoders mounted on all joints. The 6-DOFs Carte-
sian trajectory of the operator’s fingertip x(t) can be computed
straightforwardly using the forward kinematics of the exoskeleton
fingers as shown in equation (1).

x(t) = fK(q(t)) (1)

with x(t) ∈ R6 the fingertip Cartesian trajectory, q(t) ∈ Rn

the exoskeleton finger position trajectory in joint space, n= 6
the number of joints per finger, and fK the exoskeleton forward
kinematics function. The hand posture tracked by the exoskeleton
can then bemapped from the Cartesian space to the synergy space
using equation (2).

σ(t) = S−1
x X(t) (2)

with m= 3 the number of fingers, X(t) ∈ R3m the fingertips
position described in Cartesian space stacked in a single vector,
σ(t) ∈ R3m the projection of X(t) on the synergy space, and
Sx ∈ R3m×3m the hand synergy matrix. The first component σ1,
which corresponds to the projection of the user’s hand posture
along the first synergy, is extracted and scaled to the robotic hand’s
motor range. This position reference is then tracked within inner
PI controller.

An experimental study has been conducted to characterize the
system’s behavior. Two types of motion were considered. During
the first phase, the operator performed a fingers abductionmotion
in the palm plane. During the second phase, the operator was
instructed to close the hand as if to grasp a sugar lump. Note that
this object does not belong to the list of items used to build the syn-
ergymatrix so as to attest that this procedure extracts the grasping
intent of the user independently from the exact object that is being
grasped. Seven snapshots of the hand during the different phases
of motion are presented on Figure 5. The extracted coordinate
along the first synergy is presented on Figure 6.

Results (see also Extension 1) clearly indicate that motions
outside of the first synergy do not affect the slave reference,
which remains almost constant during the first phase. During the
second phase, the grasping motion of the operator is properly
mapped to the synergistic coordinate σ1. Therefore, the proposed
teleoperation strategy allows for the intuitive control of the SH
through handling natural, unconstrainedmotions of the operator;
from the hand posture is extracted in real time the first eigengrasp
coordinate that can be used to drive the SH.

While this section addressed the extraction of the grasping
intent of the operator to control the closure of the SH, the
following section analyzes the generation of the force feedback
reference in order to render to the operator the impedance of the
environment manipulated by the slave hand.
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FIGURE 5 | Snapshots corresponding from left to right to the a, b, c, d, e, f, and g points in Figure 6.

FIGURE 6 | First synergy coordinate during I: fingers abduction with
opened hand, II: hand closing, III: max closure, IV: hand opening, and
V: opened hand.

4. FORCE FEEDBACK: MAPPING A 1-DOF
GRASPING TORQUE TO A 3-FINGER
FORCE REFERENCE

In order to increase the sense of telepresence of the user, a
kinesthetic feedback reflecting the interaction forces between the
robotic hand and themanipulated environment is displayed by the
exoskeleton.

As the SoftHand’s motor current sensing is the only available
information about the amount of forces generated by the robotic
hand during the manipulation, an interaction torque observer is
implemented. This estimated interaction torque represents the
grasping effort applied along the SH’s actuated dimension, which
coincides with the hand’s first synergy. This one-dimensional
reference is then mapped into a 9-D reference in the fingertips
Cartesian space of the user through an inverse projection of the
Cartesian-based synergy space introduced in the previous section.
As the corresponding Cartesian-based synergy matrix depends
on the kinematics of the hand, a novel force scaling procedure is
introduced that permits to homogenize the amplitude of the force
reference across users in consistency with the aim of designing a
universal platform. Finally, the resulting force reference in the fin-
gertips Cartesian space is projected on the exoskeleton’s actuated
joint space in order to derive the motors torque references.

Note that another possible approach to generate force feed-
back references consists in mounting force/torque sensors on the
fingertips of the SoftHand so as to get a direct measurement of
the interaction forces. However, the choice to rely on the Soft-
Hand’s current measurement to estimate the interaction forces
stems from the overall objective of minimizing the complexity
of the setup so as to achieve a highly robust and cost-effective
interface. Complementarily with this goal, the present study aims
at investigating the possibility to compensate for such minimal
sensing system by the mean of a control layer capable of resolving

the large master–slave asymmetry through mapping a scalar force
reference described in the slave’s sensing space to a force reference
of larger dimension described in the master’s actuated space.

After deriving the mathematical foundations underlying the
mapping from the synergistic force reference to the finger-
individualized force feedback in Sect. 4.1, the closed-loop perfor-
mance of the bilateral system is analyzed, and a force feedback
characterization is presented in Sect. 4.2.

4.1. Mapping a 1-DOF Grasping Torque to a
3-Finger Force Reference
Considering that the synergy matrix Sx introduced in Sect. 3.2 is
a linear, time-constant operator, the equation (2) can be differen-
tiated with respect to time such that

Ẋ(t) = Sxσ̇(t) (3)

Provided that Ẋ represents a velocity, then the power in initial
base can be expressed as

F(t)TẊ(t) = P(t) (4)

with F(t) ∈ R3m representing the Cartesian space force vectors
applied at the fingertips stacked in a single column vector.

Introducing z(t) ∈ R3m, the force vector in the synergy space,
the power in this base can be defined through

z(t)Tσ̇(t) = P(t) (5)

Therefore, applying the power balance equation between the
initial and projected bases, the following force space mapping
holds:

z(t) = STxF(t) (6)

Considering that Sx is an orthogonalmatrix, the Cartesian force
vector can be computed from the synergy force vector through

F(t) = S−T
x z(t) (7)

with z(t) the force reference in synergy space defined as

z(t) = [z1(t) 0 . . . 0] (8)

such that
z1(t) = τint(t) (9)

with τint ∈ R the interaction torque applied by the slave hand
on the remote environment. It is estimated from the current

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2017 | Volume 5 | Article 1934

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Brygo et al. Synergy Port for Asymmetric Tele-Manipulation Interfaces

and position measurement at the DC motor of the SoftHand
using the interaction torque observer presented in Ajoudani et al.
(2014). In this module, the total torque generated by the motor is
computed, and its external component is isolated from its internal
component, which corresponds to the elastic torque generated
by the tendons and the frictional torque arising at the joints and
pulleys. The resulting interaction torque observed corresponds to
the grasping effort applied by the SoftHand on its environment
along the first synergy.

TheCartesian force reference is thenmapped to the exoskeleton
joint space using

τexo(t) = J(q)TF(t) (10)

where τexo ∈ R3n denotes the exoskeleton torque vector, J(q) ∈
R3m×3n the exoskeleton Jacobian, and n= 6 the dimension of
each finger joint space.

The force feedback reference F(t) corresponding to a given
interaction torque varies across users depending on their
individual synergy matrix as described by equation (7). To get
comparable force feedback amplitudes across all users for the
same interaction torque and to use the full torque range of the
exoskeleton, user-dependent, finger-individualized force scaling
gains ki ∈ R are introduced such that

τexo i(t) = Ji(q)TFi(t)ki (11)

with i∈ {0, 1, 2} the exoskeleton’s finger linkage considered. These
gains are computed such that the maximum interaction torque
τint max ∈ R that the system is expected to render is mapped to
themaximum torque that the exoskeleton can deliver τexo max ∈ R
when the hand of the user is closed:

ki =
τexo max

Jc i(q)TFi max
(12)

with Jc i(q) ∈ Rm×n the Jacobian of the i-th linkage in closed hand
configuration and Fi max ∈ Rm computed from

Fmax = S−T
x zmax (13)

with
zmax = [τint max 0 . . . 0] (14)

The integration of this synergy port within its overall bilateral
teleoperation control scheme as illustrated on Figure 7.

4.2. Closed-Loop Performances: Force
Feedback Characterization
A force feedback characterization has been performed in order
to analyze two main aspects. The first objective was to examine

whether the direction of the forces, as computed through the
proposed method and after projection on the exoskeleton’s
actuated joint space, was meaningful. The second objective was
to check that the amplitude of the force feedback adequately
reflects the level of forces applied by the slave hand on its
environment.

To this end, an experiment has been conducted during which a
user was instructed to control the closure of the SoftHand so as to
grasp and squeeze three foam balls (1), (2), and (3) of increasing
stiffnesses. The fingertips position trajectories were monitored by
the exoskeleton and projected on the synergy space so as to derive
the coordinate along the first synergyσ1(t) used to control the SH.
Results are presented in Figure 8. The interaction torque τ int(t)
developed during each ball squeezing was estimated by the torque
observer. Both σ1(t) and τ int(t) are shown on the top left plot.
The direction of the forces actually applied at the fingertips by
the exoskeleton is shown on the top right plot. To facilitate the
comparison of the force amplitudes in the three conditions, the
bottom plot presents a projection in the finger’s plane of motion
of the forces applied on the middle finger during the squeezing of
the each ball.

These plots indicate that forces are applied along directions that
oppose the user’s hand closure along the first synergy, making
coherent the synergy-based haptic closed-loop approach. Further-
more, the amplitude of the force applied at each fingertip increases
with the grasping force, properly reflecting the interaction at the
slave side. This behavior is also shown on Extension 1. After
experimentally validating the effectiveness of the force feedback
policy proposed, the possibility of introducing a simplified cali-
bration procedure has been analyzed as discussed in the following
section.

5. A SIMPLIFIED CALIBRATION
PROCEDURE

In the approach presented previously, the Cartesian-based syn-
ergymatrix needs to be computed for each user since it depends on
the hand’s kinematics and in particular on the phalanges’ length.
However, the associated procedure described in Sect. 3.2 can
appear a bit long and wearing. As such, it might hinder the quick
and easy use of the system by any new user. Hence, the idea to
evaluate the possibility to project the fingertip position trajectory
on a unique, user-independent synergy matrix (which will be
referred to as the Simplified Calibration Procedure or SCP) rather
than on the user’s own synergy matrix (which will be referred to
as the Full Calibration Procedure or FCP). In order to analyze
the feasibility of this approach, the difference stemming from the
use of the full versus simplified calibration procedure is examined

FIGURE 7 | Synergy-based bilateral teleoperation controller block diagram.
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FIGURE 8 | Top left: normalized coordinate along the first synergy and interaction torque during the 3-ball grasping experiment. i=1, 2, 3: index ball
grasped, c: closure hand, o: opening hand, a: object’s enveloping phase, b: object’s squeezing phase. Top right: tracking of the fingertips and forces applied during
the first ball grasping between ti (initial time) and tf (final time). Bottom: position trajectory of the middle fingertip and forces applied during the grasping of the balls (1),
(2), and (3) between ti (initial time) and tf (final time).

both in terms of position control of the slave’s hand in Sect. 5.1
and in terms of force feedback in Sect. 5.2.

5.1. Position Control: A Comparative
Analysis
To analyze the effect of relying on the simplified rather than full
calibration procedure, the fingertips position trajectory Xuser(t) ∈
R3m of 7 users were recorded using the exoskeleton during a hand
closing-opening motion.2

These trajectories have then been projected on each user’s own
synergymatrix [see equation (15)] and on another unique synergy
matrix Sx ref3 [see equation (16)].

σ1(t) = S−1
x user Xuser(t) (15)

σ′
1(t) = S−1

x ref Xuser(t) (16)

Results indicate that the coordinate along the first synergy
obtained through the SCP σ′

1(t) differs from the one obtained
through the FCP σ1(t), as shown for two of the subjects on
Figure 9 (left hand side).

To reduce the intersubject variability as well as to scale the
position reference to the slave’s range of motion, the raw coor-
dinate along the first synergy is subsequently normalized. This

2These subjects belong to a panel of 5 men and 2 women aged from 25 to 36 years.
3Sx ref is the synergy matrix of an 8th user (female, 9-cm index finger).

procedure simply requires to record the fingertips’ position of
each user with the hand fully opened and fully closed so as
to compute the associated coordinates {σ1 min, σ1 max}. These
values are used to scale in real time the coordinate along the
first synergy, reflecting the user’s current degree of hand clo-
sure, to a value between 0 and 1. The normalized coordinates
obtained from the two calibration procedures are then com-
pared. They present a high degree of similarity, as shown for
two of the subjects on Figure 9 (right hand side). To quan-
tify the error introduced by the simplified calibration proce-
dure with respect to the full one, the average Normalized Root-
Mean-Square Error (NRMSE) between σ1(t) and σ′

1(t) after
normalization is computed for each subject and presented in
Table 1.

With an averaged NRMSE across all subjects of 2.32%, σ′
1(t)

andσ1(t) are deemed to be similar enough, after normalization, to
consider that the SCP does not affect the user’s ability to intuitively
and precisely control the position of the slave’s hand.

In the following sections, the effect of using the simplified
rather than the full calibration procedure are examined from the
point of view of the force feedback generated.

5.2. Force Feedback: A Comparative
Analysis
This section addresses the comparison of the force feedback ref-
erence generated through the FCP [F(t); see equation (17)] in the
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FIGURE 9 | Comparison of σ1 and σ′
1 before (left) and after (right) normalization. The first row corresponds to a typical case (NRMSE= 1.85%), while the

second row represents the subject with the largest NRMSE, or worst case (NRMSE=4.25%).

TABLE 1 | NRMSE between σ1(t) and σ′
1(t) after normalization for each

subject.

Subject id S1 S2 S3 S4 S5 S6 S7

NRMSE (%) 1.05 4.25 1.9 1.81 3.88 1.52 1.85

one hand, and through the SCP [F′(t); see equation (18)] in the
other hand.

F(t) = S−T
x user k z(t) (17)

F′(t) = S−T
x ref k z(t) (18)

To this end, an operator wearing the hand exoskeleton remotely
controlled the squeezing of a ball by the slave hand. The interac-
tion torque was recorded, and the corresponding force feedback
references were computed from equation (17) using the 7 subjects’
synergy matrices, as determined in Sect. 3.2, and are presented in
Figure 10 (left hand side).

Results are clearly different across subjects, indicating that
the user’s synergy matrix does affect the desired force feedback.
Therefore, if a master device capable to apply such forces is to
be used, relying on the simplified calibration procedure would
alter the kinesthetic feedback in a non-negligible way. It would be
interesting to analyze whether users feel more comfortable when
the force feedback reference is generated using their own synergy
matrix rather than a user-independent synergy matrix, i.e., if it
does alter the teleoperation performances.

That being said, it is worth noting that the differences across
subjects’ mainly regard the force direction. However, the feedback
device used in the proposed implementation is highly underac-
tuated, such that the direction of the force that can be applied is
posture-dependent. Consequently, in order to analyze the influ-
ence of the calibration procedure on the force feedback that is
actually displayed to the user, the desired forces F(t) and F′(t)
need to be compared after projection on the exoskeleton’s actuated

joint space using equation (10). These forces are computed for
all subjects and presented for one of them on Figure 10 (right
hand side).

After projection on the exoskeleton’s actuated joint space, the
desired forces synthesized from the two calibration procedures are
parallel, such that they can be compared through quantifying their
norm difference using equation (19).

error norm force =

∣∣∣∣∣∥F∥ −
∥∥F′∥∥

∥F′∥

∣∣∣∣∣ (19)

This error has been computed for the 7 subjects, and the
averaged values for all data points and all fingers are presented
in Table 2.

With an average value of the force norm error across all sub-
jects of 4.73%, the influence of the calibration procedure on
the force feedback applied by the hand exoskeleton is deemed
marginal.

Finally, the analysis presented in this section indicates that the
bilateral synergy-based approach proposed is robust enough to
handle an approximation on the synergy matrix used. As such, a
unique, user-independent synergy matrix can be used for users
with different hand kinematics. Such simplified calibration pro-
cedure is considered to be adequate to generate both the position
reference for the slave hand and the force feedback references for
the hand exoskeleton device. In order to validate the hypothesis
that users are able to effectively use the resulting interface, an
experimental study has been conduced and is presented in the
following section.

6. EXPERIMENTAL ASSESSMENT OF THE
FRAMEWORK PERFORMANCES

In order to convert the tele-grasping interface into a tele-
manipulation one, the proposed framework is further enriched
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FIGURE 10 | Left: comparison of the force feedback desired across subjects for the index finger. Right: comparison of the force feedback computed
through the simplified vs full calibration procedure.4

TABLE 2 | Force norm error for each subject.

Subject id S1 S2 S3 S4 S5 S6 S7

Error norm force (%) 2.02 3.28 5.71 3.79 4.13 2.88 11.31

with a robotic arm at the slave side, a tracking system at the
master side as well as an associated control system, as described
in Sect. 6.1. The effectiveness of the overall framework in enabling
an operator to reach, grasp, and transport remote objects is then
experimentally evaluated during two experiments presented in
Sect. 6.2 and 6.3.

6.1. Robotic Arm Teleoperation
The synergy port developed permits the bilateral teleoperation
of the SoftHand from monitoring the user’s finger posture using
a hand exoskeleton. However, a grasp is completely defined by
the combination of the hand’s intrinsic and extrinsic DOFs, as
underlined in Ciocarlie and Allen (2009). Indeed, the stable grasp
of an object located in its environment requires the control of the
wrist position and orientation during the reaching phase so as to
place the robotic hand in an adequate configuration with respect
to the object such that the further closure of the hand during the
pre-shaping and grasping stages leads to a force closure grasp.

To address this requirement and enable the operator to manip-
ulate remote objects, the teleoperation framework is further
enriched with a robotic arm on which the SoftHand is mounted.
Additionally, the vision-based motion capture system Optitrack
is integrated at the master station, and a visual tracker is
attached to the base of the exoskeleton. This augmented interface
enables to monitor the position and orientation of the oper-
ator’s wrist in the world frame. This signal is processed (fil-
tering, frame transformations) and used as position reference
trajectory in Cartesian space for the robotic arm’s wrist. The
control principle of the overall framework is schematized on
Figure 11. Two robotic arms have been integrated to the
framework: the humanoid robot COMAN in the one hand,
and on the other, the KUKA LWR manipulator. While the
Cartesian controller of KUKA could be used straightforwardly,

4[Right hand side figure] This worst-case plot shows the forces computed for the
subject with the largest error as defined in equation (19) for the index finger (error
norm force= 6.92%).

FIGURE 11 | Control principle of the tele-manipulation framework
implemented.

with COMAN a second controller layer has been implemented,
as described in Brygo et al. (2014), to derive through inverse
kinematics the arm’s joints position trajectory from the robot’s
wrist 6D position trajectory reference.

So finally, the setup consists of a visual tracker (a) attached to
the hand exoskeleton (b), a robotic arm (c) on which is mounted
the SoftHand (d) as illustrated on Figures 12 and 13.

The effectiveness of the overall tele-manipulation framework is
then experimentally evaluated, as presented in the following two
sections as well as in Extension 1.

6.2. Tele-Manipulation with the Humanoid
Robot COMAN
A first experiment has been conducted that focused on evaluating
the versatility of the platform through assessing the possibility to
execute the stable grasp of a large range of different objects. To this
effect, the user was instructed to drive the arm of the humanoid
robot COMAN fitted with the SoftHand so as to reach for one of
the items placed on a table, securely grasp it, lift it, and drop it
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FIGURE 12 | An augmented framework for performing remote
tele-manipulations using the humanoid robot COMAN.

FIGURE 13 | An augmented framework for performing remote
tele-manipulations using the KUKA LRW robot.

off on a case, as shown in Figure 12.5 The operator was invited to
repeat this reach–grasp–transport–release cycle with a collection
of 11 objects counting a remote control, a screwdriver, a water
bottle, a phone charger, a pair of pliers, an emergency button, a
chewing-gumbox, a noise-canceling headset, as well as a dinosaur,
a whale, and a leopard cuddly toys. These articles have been
selected upon the diversity of their volumes, their geometries, and
the mechanical properties of their materials that reflect the het-
erogeneity of the objects typically populating human workspaces.

After a short trial period to get used to the setup and the
geometry of the objects, the operator successfully completed the
task, grasping in a stable way and transporting all the items
without dropping them. Besides illustrating the effectiveness of
the proposed human–machine interface, this experiment demon-
strates that the proposed platform achieves the level of versatility
required to manipulate objects exhibiting very different shapes

5Note that the right SH is mounted on the left arm because COMAN’s right arm
was under maintenance at the time of this experiment.

FIGURE 14 | Rating of the tele-manipulation platform by each subject
Si—from the darker to the paler: level of intuitiveness, level of overall
appreciation, level of confidence.

and impedances. Such endowment confers to the framework a
large flexibility, which makes it suitable for a variety of manipu-
lation scenarios in unconstrained environments.

Additional characteristics of interests are examined in a second
experiment, as presented in the following section.

6.3. Tele-Manipulation with the KUKA LWR
Manipulator
To further evaluate the effectiveness of the proposed bilateral tele-
manipulation interface, a second experiment has been carried out.
With the twofold purpose of increasing the reachable workspace
of the slave and of showcasing how the modularity of the frame-
work permits the straightforward interchange ofmanipulators, the
KUKA LWR manipulator has been used as robotic arm.

This experiment focused on assessing the universality of the
proposed interface. The term universality refers here to a dual
concept, such that the first objective was to analyze the capacity of
the framework to accommodate for different users with different
hand sizes and to rely on the simplified calibration procedure
described in Sect. 5. The second aim was to evaluate the level of
intuitiveness of the overall platform.

To this end, 10 subjects aged from 24 to 34 years took part to
the experiment. Ethical approval was not required for this study
as per the national and institutional requirements, and written
informed consent was obtained from all participants. Their index
and middle fingers’ lengths, respectively, ranged between 8.3–9.9
and 9.3–11 cm. None of them ever used the platform before, and 5
of them never teleoperated a robot before. They were given 5min
to get used to the setup before starting the task, which consisted
in picking up one by one the 6 items (a whale and a dinosaur
soft toys, a phone charger, a noise-canceling headset, a remote
control, and an emergency button) lying on the table and place
them in a 21 cm× 18 cm× 15 cm box, labeled with the letter (e)
on Figure 13. At the end of the experiment, subjects were invited
to fill a form rating their experience on a 1–5 scale.

Results indicate that all the subjects successfully completed the
task and managed to place all the objects in the target box in an
average time of 3.4min. To quantify the perceived intuitiveness of
the overall platform, subjects were asked to answer to the question
“How easy was it to control the slave robot (KUKA+ SoftHand)?”
on a scale from 0 (very difficult, non-intuitive) to 5 (very easy,
very intuitive), which was rated as 4.3/5 in average. The average
rating to the question “In order to understand how confident
you are in using this platform, rate how stable/predictable you
perceived it,” was 4.2/5. Finally, subjects were asked to indicate
whether they liked using the interface in overall terms, from 1
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(“No, I got frustrated. The slave was not doing what I wanted, or it
was too difficult to achieve.”) to 5 (“Yes, it is very nice to use”),
which received a 4.7 rating in average. The distribution of the
ratings for all three questions is shown on Figure 14.

Finally, this experiment clearly indicates that (i) the simplified
calibration procedure is suitable and provides the bilateral control
framework with the robustness and flexibility required to accom-
modate for different users with different hand sizes, relying on
a simple 30 s calibration step; (ii) the platform is highly intuitive
and allows naive users with no prior training to perform remote
manipulation of objects of diverse shapes and impedances; (iii) the
interface is perceived as likable and reliable, enabling to execute
the desired operations.

7. CONCLUSION

This work presents a novel bilateral control framework allowing
for intuitive tele-manipulations of objects of various shapes and
impedances using highly asymmetric master–slave systems. The
keystone of the proposed control architecture consists of a bilateral
Cartesian-based synergy port, which is introduced as a tool map-
ping the user’s fingertips Cartesian space to the directions oriented
along the grasp principal components. This module builds upon
the results of an experimental study that revealed the possibility to
describe the postures adopted by the human hand during grasping
motions using a low-dimensional set of coordinates traveling
along motion primitives expressed in the fingertips’ Cartesian
position space. A 1-min calibration procedure has been developed
that enables the platform to accommodate different operators’
hand kinematics. Using this module, both the slave’s motion and
the master’s force feedback reference trajectories are designed in
the Cartesian synergy space.

As such, the proposed control framework addresses two main
challenges associated with the design of tele-manipulation inter-
faces. First, it effectively handles master–slave systems exhibiting
large asymmetries at the kinematic, sensing, and actuation levels.
This permits, through accepting natural manipulative motions as
input, to abstract the operator from the setup’s complexity so as to
achieve a highly intuitive interface. Second, the bilateral control
policies are synthesized in the hardware-independent hand syn-
ergy space. This makes possible the implementation of a 2-layer
architecture where the high-level manipulation strategies can be
designed in abstraction from the devices’ specifics that are encap-
sulated in the low-level layer. Such modularity not only enables
to flexibly interchange end-effectors according to each task but it
also promotes the synthesis of universal manipulation algorithms.
As such, the present work aims at fostering the development of
unified tele-manipulation control frameworks and proposes the
synergies as the alphabet of a common language for robotic hands
control.

In order to evaluate the effectiveness of the proposed approach,
the synergy port has been implemented into the control system of
a highly asymmetric tele-manipulation platform. The underactu-
ated 3-finger hand exoskeleton HEXOTRAC permits to monitor
the user’s hand posture and to display a kinesthetic feedback
of the interaction forces, while the synergy-driven robotic hand
SoftHand is used as slave end-effector to manipulate the remote

environment. In addition, the position and orientation of the
user’s wrist is tracked by the vision-based motion capture system
Optitrack and used as reference trajectory to drive the robotic arm
on which the SoftHand is mounted.

Experiments have been performed with the humanoid robot
COMAN as well as with the KUKA LWR manipulator. Results
indicate that (i) the control framework adequately extracts the
grasping intent of the user during natural motions, maps this
input into references for the slave hand to perform the desired
manipulative task, and reflects the impedance of the manipulated
environment to the user; (ii) the platform is highly intuitive and
allows users with no prior experience to securely grasp and trans-
port objects exhibiting a large range of shapes and impedances
after only a few minutes of familiarization with the system; (iii)
not only do the hardware and the control solutions permit to
accommodate users with different hand kinematics but they also
allow for a fast donning and a short calibration procedure, turning
the platform into a universal and fully practical interface.

Finally, this work investigated the possibility to use largely
underactuated master and slave devices fitted with minimal sens-
ing systems so as to achieve a simple and highly robust tele-
manipulation interface and analyzed the possibility to compensate
for the associated hardware limitations by the mean of an ade-
quate control strategy. Results indicate that the proposed control
framework elegantly resolves the master–slave asymmetries and
provides a universal and flexible interface for performing intuitive
and effective tele-manipulations.
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Traditionally, repetitive practice of a task is used to learn a new skill, exhibiting as immedi-
ately improved performance. Research suggests, however, that a more experience-based 
rather than exposure-based training protocol may allow for better transference of the skill 
to related tasks. In synergy-based motor control theory, fundamental motor skills, such 
as hand grasping, are represented with a synergy subspace that captures essential 
motor patterns. In this study, we propose that motor-skill learning through synergy-based 
mechanisms may provide advantages over traditional task repetition learning. A new 
task was designed to highlight the range of motion and dexterity of the human hand. 
Two separate training strategies were tested in healthy subjects: task repetition training 
and synergy training versus a control. All three groups showed improvements when 
retested on the same task. When tested on a similar, but different set of tasks, only 
the synergy group showed improvements in accuracy (9.27% increase) compared to 
the repetition (3.24% decline) and control (3.22% decline) groups. A kinematic analysis 
revealed that although joint angular peak velocities decreased, timing benefits stemmed 
from the initial feed-forward portion of the task (reaction time). Accuracy improvements 
may have derived from general improved coordination among the four involved fingers. 
These preliminary results warrant further investigation of synergy-based motor training in 
healthy individuals, as well as in individuals undergoing hand-based rehabilitative therapy.

Keywords: kinematic synergies, hand, motor learning, principal component analysis, rehabilitation

inTrODUcTiOn

From learning to grasp a ball to learning to type at a keyboard, we are continuously tasked with 
acquiring new motor skills throughout life. There is a dynamic combination of both cognitive 
(strategy formation and task comprehension) processes and motor processes (feedback integration 
and motor execution) that allow us to learn and execute these motor skills. In the 1940s, Nicholais 
Bernstein provided an intriguing definition of a motor skill: “… not a movement formula … [but] 
an ability to solve one or another type of motor problems” (Latash and Latash, 1994). Subsequently, 
motor-skill learning can be defined as “a set of processes associated with practice or experience 
leading to relatively permanent changes in the capability for responding” (Schmidt, 1976). In these 
definitions, an emphasis is placed on learning a response through practice rather than memoriz-
ing motor patterns. Much research has been dedicated to determining what phenomena occur 

43

www.frontiersin.org/Bioengineering_and_Biotechnology
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2017.00009&domain=pdf&date_stamp=2017-02-27
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
https://doi.org/10.3389/fbioe.2017.00009
www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:ramana.vinjamuri@stevens.edu
https://doi.org/10.3389/fbioe.2017.00009
http://www.frontiersin.org/Journal/10.3389/fbioe.2017.00009/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2017.00009/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2017.00009/abstract
http://loop.frontiersin.org/people/400323
http://loop.frontiersin.org/people/375598
http://loop.frontiersin.org/people/166210


Patel et al. Synergy Training versus Task Training

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2017 | Volume 5 | Article 9

during practice and how these phenomena lead to a permanently 
acquired motor skill.

It has long been known that repetition is essential to learning 
a new skill, or procedural learning. Skill learning theories suggest 
that motor skills are initially developed in a fast cognitive-based 
stage. During this time, explicit learning is based upon declarative 
knowledge and working memory. At the neuronal level, we see 
decreased inhibition allowing for increased excitability in the 
primary motor cortex (M1) (Karni et al., 1995). Simultaneously, 
structural changes such as increased myelination (Sampaio-
Baptista et al., 2013) and clustering of new dendritic spines (Fu 
et al., 2012) occur in various relevant pathways including multiple 
M1 layers (Huber et  al., 2012), sensorimotor cortex (Sampaio-
Baptista et  al., 2013), and cerebellum (Cantarero et  al., 2015). 
These changes support the ascension from the cognitive phase 
to the associative phase, where ineffective actions are filtered out. 
Individuals become unconsciously sensitive to regularity and 
other implicit learning mechanisms. After extensive practice, 
the autonomous stage is reached; retention of the procedural 
memory of the motor skill is thought to be stored in cortical–
striatal circuits (Doyon and Benali, 2005).

Repetition training is often compared to interleaved training, 
which involves a more varied protocol. Interleaved training may 
engage more prefrontal and parietal regions because each task 
requires the individual to reconfigure motor commands (Li and 
Wright, 2000; Kantak et  al., 2010). Repetition training versus 
interleaved training, however, allows for greater M1 excitability. 
It has been found that interleaved training performs worse than 
repetition training in short-term performance, but better in long-
term performance transference (Dromerick et  al., 2009). The 
varied presentation may promote implicit learning because it pro-
vides greater exposure to correlated variables (Meier and Cock, 
2010). It is apparent that both repetition and interleaved practice 
have advantages and disadvantages; consequently, balancing both 
learning strategies may allow us to optimize motor-skill learning.

This balance of these learning variables is especially impor-
tant for individuals in rehabilitative therapy that must relearn 
essential skills, with limited time and usually, limited muscle 
strength. Because the individuals are relearning previously 
acquired motor skills, researchers have turned to natural motor 
control and motor learning concepts to determine ways of 
optimizing physical therapy strategies (Krakauer, 2006. Muratori 
et al., 2013). For example, task-orientated training with spaced 
practice versus conventional massed practice (learning with short 
or no intervals) may promote long-term memory of the learned 
motor skills (Dromerick et al., 2009). The ability for implicit and 
explicit learning in individuals with stroke has also been studied. 
Depending on the location of cerebral damage, implicit learning 
may be compromised (Ackermann et al., 1996; de Guise et al., 
1999), and explicit information may be detrimental (Boyd and 
Winstein, 2003). This suggests that skills normally learned via 
implicit and explicit mechanisms need to be presented in a dif-
ferent format.

In this study, we propose a new mechanism of motor training: 
synergy training. In its most general definition, synergies represent 
learned motor primitives that reduce the computational burden 

of the central nervous system (CNS). For example, throughout 
life, the hand’s ability to dexterously grasp and manipulate objects 
found in activities of daily living is a skill that requires control 
over 30 degrees of freedom. It is hypothesized that after years 
of learning, the motor control system has optimized the “reach 
and grasp” motor task. This skill may be represented in the CNS 
as motor synergies that encode simultaneous coordination of 
the many involved joints versus individual control of each joint. 
Using dimensionality reduction techniques, we (Vinjamuri 
et al., 2010; Patel et al., 2015; Burns et al., 2017) and others have 
characterized this synergy subspace at various hierarchical levels 
including neural (Saleh et al., 2010), muscle (d’Avella et al., 2011), 
and kinematic (Santello et  al., 2002; Vinjamuri et  al., 2014). If 
synergies represent motor strategies that have been optimized 
through experience (involving both explicit and implicit learn-
ing mechanisms), they may useful during the learning experi-
ence itself. Furthermore, continued advancements in robotic 
technologies will soon allow therapist to implement synergy 
training in individuals who have altered synergies, poststroke 
(Cirstea and Levin, 2000; Michaelsen et  al., 2001; Roby-Brami 
et al., 2003; Zackowski et al., 2004; Neckel et al., 2006; Roh et al., 
2013; Jarrassé et al., 2014).

In this study, we model the potential effects of synergy-based 
training using a simplified motor-skill learning framework. In 
order to keep the study related to hand motor skill, we design 
a new task that requires users to coordinate control of joints in 
the four fingers. We compared traditional task repetition training 
with a new synergy-training protocol to determine the effects of 
each method. Subjects are tested after a specific training proce-
dure to measure retention. Additionally, they are then tested on a 
separate set of tasks to measure transference. We hypothesize that 
the task repetition group will exhibit stronger performance dur-
ing the retest phase, while the synergy group will exhibit stronger 
performance during the transference phase.

MaTerials anD MeThODs

Overview
For this study, 16 right-handed healthy individuals were recruited 
(10 males, 6 females, mean age 21.5 ± 1.5) under Stevens Institute 
of Technology Institutional Review Board approval. Through self-
report, subjects that were mildly skilled musicians were excluded 
from the study. Subjects were assigned to one of three groups: 
task repetition training, synergy training, and control. Data from 
one subject (subject 2) were removed because of data collection 
complications, resulting in five subjects in each group.

experimental Procedure
A user interface was created in LabVIEW 2014 (National 
Instruments Corporation, Austin, TX, USA) using Touchscreen 
Toolkit (Aledyne Engineering, Morgan Hill, CA, USA). The inter-
face was displayed on a touchscreen monitor with multi-touch 
compatibility (Acer, San Jose, CA, USA). As seen in Figure 1, a 
3 × 4 button grid is displayed on the touchscreen. Each column, 
from left to right, corresponds to the index, middle, ring, and 
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FigUre 2 | The experiment consists of four phases. In Phase 1, 
subjects perform 3 trials of 45 tasks. Phase 2 involves different forms of 
training. Subjects in the task repetition group repeat the same 45 tasks twice 
and with extra time. If subjects are in the synergy repetition group, eight 
postural synergies were derived from kinematic data in Phase 1. These 
subjects trained on performing the eight postural synergies. Subjects in the 
control group were required to rest for ~10 min. In Phase 3, all subjects were 
retested on the tasks performed in Phase 1. In Phase 4, 32 new tasks were 
introduced to test transference of the new skill.

A B

C

FigUre 1 | a 3 × 4 button grid is used to accomplish the touch task. 
(a) In order to obtain button positions that align with each subject natural 
axis of extension, touch points at three different extension ranges were 
recorded. (B) The touch task involves touching four buttons that have been lit 
green after an audio start cue. If a button is touched, it is lit red. If all four 
buttons are correctly touched, a “Correct” bar above the grid is lit green.  
(c) CyberGlove is used to record joint angles during the experiment.
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pinky. Three rows represent three ranges of extensions that each 
finger will have to achieve. The alignments of these buttons were 
subject based. Before testing began, the subject was seated in 
the experimental setup (wrist strapped down, which is further 
described below). Starting in a closed fist position, the subject 
was asked to extend to three comfortable levels. The first level 
requires that the subject has enough extension so that either 
the fingertip or finger pad makes contact with the screen. The 
third level requires the subject to extend as much as possible, 
while still making contact with the screen. The second level fell 
between these two levels. Touch points (Figure 1A) collected and 
imported into MATLAB (MathWorks, Natick, MA, USA). Pixel 
locations of these touchpoints determined button locations (after 
minor adjustments to account for button size), which were then 
imported by LabVIEW (Figure 1B).

A single touch task requires subjects to touch the four buttons 
that are lit. Out of a total of 81 possible button combinations; four 
button combinations were removed due to anatomical difficulty 
in achieving the postures. The remaining 77 combinations were 
randomly divided into two sets: set 1 consisted of 45 button 
combinations and set 2 consisted of 32 button combinations. The 
procedure for a single task is as follows: subjects started with 
hands in a closed fist position. An audio start cue coincided with 
four target buttons lit green. An audio stop cue was given after 
either four buttons were touched (incorrect or correct) or 4 s had 
passed. During the task, if a button was touched, the outer rim 
of the button turns red (Figure  1B). If all four target buttons 
are correctly touched, a “correct bar” lights green. Between each 
task, a 3.5 s break is given, during which the subject returns his/
her hand to a fist position. Subjects were instructed to complete 
each task as “accurate” and “simultaneous” as possible. Accuracy 
pertains to pressing the four correct buttons and simultaneous 
pertains to pressing each button simultaneously versus sequen-
tially. In order to keep the task confined to finger movements 
only, the wrist was strapped to a board positioned above the 
touchscreen.

Phase 1
The experimental procedure (Figure 2) consisted of four phases: 
Phase 1—preliminary evaluation, Phase 2—training, Phase 3—
retest evaluation, and Phase 4—transference evaluation. In Phase 
1 (preliminary evaluation), subjects performed a total of three 
trials. Each trial consisted of performing the 45 tasks in set 1 and 
lasted a maximum of ~6 min. An optional 1 min break was given 
between trials. The first trial allowed subjects to familiarize them-
selves with the task and task procedure; therefore, data from trial 
1 were discarded. Trials 2 and 3 were used to determine baseline 
performance for each subject.

Phase 2
In Phase 2 (training phase), subjects were trained according to 
their assigned group. Subjects in the task repetition training 
group performed 2 additional trials of the same 45 tasks from set 
1, but without the time constraint (timeout of each task was set 
to 8 s, and intertask breaks were set to 6 s) and wrist constraint. 
Subjects were told to use this phase and the extra time to improve 
their accuracy and simultaneity. Subjects that were assigned to 
the synergy-training group practiced eight postural synergies 
derived from Phase 1, trials 1 and 2. Postural synergy derivation 
and synergy training is described in detail in Section “Derivation 
of Postural Synergies and Synergy Training”; a brief description 
is provided here. In synergy training, subjects were first familiar-
ized with each of the 10 derived synergy postures, which were 
displayed on a computer screen (Figure  3). Still wearing the 
CyberGlove, the subject practiced performing each posture until 
a minimum error between the hand posture and the displayed 
synergy posture was reached (after approximately two to three 
attempts). Then, starting in a closed fist position, each posture 
was quickly performed for three repetitions (each posture was 
queued by displaying the synergy posture on the screen). The 
goal of this training was to have subjects become comfortable 
and familiar enough with each synergy posture that they are able 
to rapidly perform it when queued. Additionally, subjects were 
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A B

FigUre 3 | (a) A separate program was used for synergy repetition training. 
The program imitated the hand’s current configuration using a custom virtual 
hand model. Numerical indicators showed the error between current and 
target synergy postures at each joint. Subjects were told if a joint fell outside 
of the 20° error range. (B) On a second monitor, the target synergy posture 
was shown. Two views were given (a top angled view and a side view) so 
that subjects were able to imitate each of the eight joints.
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often in set 1 tasks while buttons 6 and 11 were proportionately 
used more often in set 2 tasks. Principal component analysis 
(PCA) was then used to determine if the overall required pat-
terns are statistically similar between set 1 and set 2. Of the 12 
total principal components derived, the first three are shown in 
Figure 4C. Statistically, the pattern described from Figure 4B and 
seen in PC1 of Figure 4C accounts for ~34% of the total variance 
(Figure 4D) for both groups. PCs 2–9 account for the remaining 
variance. Thus, the majority of the variance is scattered equally 
across the 12 buttons; however, there is a slight skew toward but-
tons 5 and 12 in set 1 tasks and buttons 6 and 11 in set 2 tasks. 
This is further discussed in Section “Discussion.”

Data collection
A right-handed CyberGlove (CyberGlove Systems LLC, San Jose, 
CA, USA) equipped with 18 sensors was used to capture hand 
movements during the experiment at a rate of 125  Hz. In this 
study, only data from the metacarpophalangeal (MCP) and proxi-
mal interphalangeal (PIP) joints of the four fingers were used. The 
glove was calibrated for each subject using custom goniometers 
ranging from −10° to 90°. Once the glove was dawned, it was 
not removed until the study was completed. Subjects also wore a 
glove liner that was coated with a liquid allowing the fabric to be 
touchscreen compatible. CyberGlove data were recorded with the 
same LabVIEW program that controlled the task. Additionally, 
for each task, the identity of the buttons that were pressed and the 
task completion time (CT) were recorded.

Derivation of Postural synergies and 
synergy Training
In this study, we hypothesized that synergy-based training pro-
vides a means of reinforcing spatial joint patterns that generalize 
to a large range of tasks. In order to determine these movement 
patterns, we used PCA, a commonly used dimensionality reduc-
tion technique for synergy derivation (Santello et  al., 2002; 
Thakur et al., 2008; Vinjamuri et al., 2010). End postures taken 
from Phase 1, trials 1 and 2, provides joint configurations for 45 
tasks, with 2 repetitions each. The mean posture across both rep-
etitions was used to create an m × n joint angle matrix (J), where 
m is the number of tasks (m = 45) and n is the number of joints 
(n = 8). Singular value decomposition is used to approximate J 
such that:

 J U R= ∑ ′, (1)

where orthogonal U (m  ×  m) contains left singular vectors, 
orthogonal R (n  ×  n) contains right singular vectors, and  
Σ (m  ×  n) contains the square root of singular values in its 
diagonal. The rows of R′ contain eigenvectors of J′J, or principal 
components. These eight principal components are consid-
ered synergies. Therefore, we have a total of s  =  8 synergies. 
Importantly, although these synergies were derived from only a 
subset of all possible tasks (Phase 4 tasks are not included), they 
each emphasize specific joint patterns that can then be combined 
to produce new postures.

After synergies were derived, each synergy vector was multi-
plied by a maximum possible weight such that the joint angles 

explicitly told that these postures were to be learned as much as 
possible to “help” improve task performance. We attempted to 
keep training procedures for both the task repetition training 
and synergy-training groups as even as possible by implement-
ing the following procedures. First, the maximum time allowed 
for the training phase was kept to 20 min. During this time, the  
task repetition training group performed ~90 postures, and  
the synergy-training group performed ~60 postures. Second, 
the following feedback was implemented in both groups. For the 
task repetition group, just as in Phase 1, the red button outlines 
indicated when buttons were touched, and a green bar (“Correct 
Indicator”) indicated when tasks were correctly performed; for 
the synergy group, numerical values indicated which joints were 
not adequately similar to those of the displayed synergy posture. 
Joint angles within a 20° error range were considered acceptable. 
Third, both groups maintained creating postures from a closed 
fist position. Fourth, the time constraint was removed, so that 
subjects could focus on the creation of each posture. Fifth, because 
the wrist needed to be free while learning synergy postures, in 
both training groups, a wrist constraint was not used. Subjects 
that were assigned to the control group rested for ~10 min during 
the Phase 2.

Phase 3 and Phase 4
In Phase 3, subjects were retested with 2 trials of the same 45 tasks 
from set 1. This phase was used to determine improvements from 
baseline evaluation. In Phase 4, 32 additional tasks (set 2) were 
introduced. Two trials were performed. These trials were used to 
test the transference of motor skills gained from Phases 1–3 to 
similar, but untested tasks.

To compare the similarity of the 45 tasks in set 1 and the 
32 tasks in set 2, we looked at the overall frequency in which 
each button was pressed as well as the general patterns found in 
each group. Figure 4A shows each of the 12 buttons numbered 
in black. Figure  4B shows the percent of tasks that involved 
each button. Buttons 5 and 12 were proportionately used more 
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FigUre 4 | (a) The 3 × 4 button grid required three levels of extension (labeled in blue) for each finger [index (I), middle (M), ring (R), and pinky (P)]. For reference, 
each button number is provided in black. (B) The percent number of tasks that involved a specific button is shown for set 1 (blue) and set 2 (red). Buttons 5, 6, 11, 
and 12 showed differences in frequency. (c) The first 3 (of 12) principal components derived from set 1 and set 2 tasks are shown. In PC1, weight proportions are 
similar to (B). In the remaining PCs, the covariance patterns are distributed. (D) The fraction of variance that each of the 12 PCs account for is shown. Distributions 
of variance are similar across both groups.
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still fell within the range of normal movement [set from −10° to 
90° for MCP joints and 0° to 90° for proximal interphalangeal 
(PIP) joints]. A separate LabVIEW program was used to display 
the resulting synergy postures. A virtual hand model (developed 
using the Simulink 3D Animation toolbox from MATLAB) 
showed the target synergy posture. As seen in Figure  3, top 
and side views were provided. Numerical indicators showed the 
target angle for each joint as well as the subject’s current joint 
angle. The synergy training procedure involved the following 
steps:

 (1) Target synergy 1 posture is displayed to the subject. The 
subject attempts to perform this posture. The LabVIEW 
program calculates the error between the target posture and 
the subject’s attempted posture. The subject then reattempts 
the posture. Approximately two to three attempts were usu-
ally required for the subject to create the synergy posture 
with error below 20° at all joints. This is repeated for all 10 
synergies.

 (2) The subject is queued through all 10 synergy postures 
quickly. Upon seeing a synergy posture, he/she creates the 
matching hand configuration quickly. The experimenter 

then queues the next posture. This was repeated for a total 
of three rounds.

reconstruction
In order to determine how subjects may have recruited synergies 
in Phases 3 and 4, the end posture of each task was reconstructed 
using weighted synergies. Let w (1 × s) represents the weight of 
each synergy and S represents the synergy matrix, which is equal 
to R′. Each end posture is represented by joint angles contained in 
A (n × 1). The following optimization problem (Vinjamuri et al., 
2010) was used in the selection of synergies and weights:

 Minimize ||w wS A|| || || ,1 2
21

+ −
λ

 (2)

||·||1 represents the l1 norm, allowing minimization of recruited 
synergies, ||·||2 represents the l2 norm or Euclidian norm of a 
vector, minimizing error between reconstructed and target 
posture, and λ is a regulation parameter calculated equal to 
0.01 × (max(abs(2 × A × S′))) (Koh et al., 2007; Vinjamuri et al., 
2010). Reconstruction error (RE) is considered a measure of syn-
ergy usage because it shows how well task end postures imitated 
weighted and combined synergy postures.
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Data analysis
Task-related variables were compared across phases (Phase 1—
preliminary evaluation, Phase 3—retest evaluation, and Phase 
4—transference evaluation) and across the three groups—task 
repetition, synergy, and control. Data from the two trials in each 
phase are accumulated.

To measure acquired motor skill in each phase, the percent 
correct (PC) and their average CT were measured. Angular 
data recorded from eight sensors on the data glove were filtered 
with a 5 Hz with a low-pass Butterworth filter. Various variables 
were used to detect any training-related kinematic changes. 
This includes reaction time (RT), peak velocity (PV), time of 
peak velocity (tPV), and overextension (OE). For each task, RT 
is defined as the first time one of the eight joints reaches 1% of 
PV. In each task, the magnitude and time at which PV occurs in 
each joint were recorded and then averaged to measure PV and 
tPV, respectively. As a measure of movement efficiency, we cal-
culated OE at each joint, using the difference between a subject’s 
maximum extension and final position, to determine if a joint 
was overextended.

In Phase 4, subject’s performed tasks that were previously 
un-encountered. To determine if synergy postures were being 
incorporated into these movements, the final posture from each 
task was reconstructed using subject-specific synergies. The RE 
was measured as the Euclidian error between actual and recon-
structed postures, summed across the eight joints.

Finally, spatial trends were evaluated using the position of each 
button. Tasks that involved a specific button (1 of the 12) were 
first grouped. The percentage of tasks correct in this group was 
measured for each subject. This was repeated for all 12 buttons.

First, to verify parity across the three groups during Phase 
1 (preliminary evaluation), a one-way analysis of variance 
(ANOVA) test for PC, CT, RT, PV, tPV, and OE was performed. 
We found that group means obscured individual subject changes. 
Thus, to offset subject differences, we first measured how a vari-
able changed between phases. Accordingly, rather than using a 
two-way repeated measures ANOVA, a one-way ANOVA across 
groups was used for each phase. Multiple comparisons were used 
to test significant results using a Tukey–Kramer test (p < 0.05). 
For variables specific to Phase 4 (RE, button-specific perfor-
mance), one-way ANOVA were used to detect differences across 
groups. Because of non-normal distribution in RE, even after log 
transformation, a non-parametric Kruskal–Wallis test was also 
performed. In all tests, significance was set to p < 0.05.

resUlTs

Task Performance and Kinematics
Results for task performance and kinematic measures are pre-
sented in Table 1. Across all phases and groups, subjects’ scores for 
percent correct (PC) ranged from 32 to 92%. Figure 5, however, 
shows an outlier subject (subject 6), while all other performance 
scores were similar. CT averaged ~2 s, of which the first ~0.29 s 
was RT. tPV and time of peak extension (tPE) occurred at ~0.65 
and ~1.14 s, respectively. Average OE across joints was ~6° but 
ranged from 0° to 60°.
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FigUre 5 | Percent of tasks correct for each subject during Phase 1 
(preliminary evaluation), Phase 2 (retest evaluation), and Phase 4 
(transference evaluation). Subjects are organized by their training (task 
repetition, synergy repetition, and control) group.

TaBle 2 | One-way analysis of variance results for each variable during each phase.

p Value Phase 3–Phase 1 p Value Phase 4–Phase 3 p Value

Tr sr c r sr c

PC (%) 0.836 5.3 ± 5.1 6.9 ± 11.9 4.5 ± 3.3 0.880 −3.2 ± 4.7 9.3 ± 3.8 −3.2 ± 10.1 0.019

CT (s) 0.822 −0.1094 ± 0.1598 −0.1199 ± 0.1385 0.0411 ± 0.2583 0.367 0.0996 ± 0.1070 0.0544 ± 0.2211 0.0028 ± 0.1236 0.639

RT (s) 0.178 −0.008 ± 0.0487 −0.058 ± 0.0773 −0.021 ± 0.039 0.391 0.0191 ± 0.0394 −0.0327 ± 0.0309 0.0262 ± 0.0489 0.079

PV (°/s) 0.421 −23.14 ± 29.10 3.57 ± 23.15 −13.87 ± 22.88 0.274 10.50 ± 14.06 −6.27 ± 16.73 24.30 ± 19.71 0.045

tPV (s) 0.461 −0.0125 ± 0.0668 −0.0372 ± 0.0221 −0.0077 ± 0.0679 0.684 0.0471 ± 0.0714 −0.0609 ± 0.1051 0.0140 ± 0.0421 0.684

tPE (s) 0.782 −0.0612 ± 0.0968 −0.1162 ± 0.1025 0.0520 ± 0.0667 0.034 −0.4294 ± 0.1425 −0.3801 ± 0.1419 −0.3891 ± 0.1070 0.822

OE (°) 0.357 −1.1 ± 0.7 1.8 ± 3.6 −0.4 ± 1.6 0.154 −1.6 ± 0.8 −2.2 ± 1.9 −2.0 ± 1.0 0.752

Column 2 p values show that no significant differences between groups were found for any variables during Phase 1 (group averages are provided in Table 1). Changes from Phase 
1 to Phase 3 and from Phase 3 to Phase 4 are presented in columns 3–5 and 7–9 for each group: task repetition training (TR), synergy repetition training (SR), and control (C).
PC, percent correct; CT, completion time; RT, reaction time; PV, peak velocity; tPV, time of peak velocity; tPE, time of peak extension; OE, overextension.
Significant group differences are indicated in bold (p < 0.05).
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Phase 1 (preliminary evaluation) measurements were tested 
using a one-way ANOVA to ensure parity across the groups. 
Table  2 (column 2) shows that none of the variables showed 
significant difference across groups. However, as seen in Table 1, 
within-group SDs for all measured variables are relatively 
large. Thus, to reduce the effect of intersubject differences, we 
calculated how measurements for each variable changed across 
phases. Table  2 shows group averages for these changes from 
Phase 1 to Phase 3 (retest evaluation) and from Phase 3 to Phase 
4 (transference evaluation). ANOVA results showed a significant 
group difference in tPE after training (p  =  0.034). Subjects in 

both the task repetition group and synergy group were able to 
reach peak extension faster after training. However, the control 
group averaged an increase in tPE. Multiple comparisons show 
only a significant difference between the synergy group and 
control group (p  =  0.030). A significant group difference was 
found for changes in PC from Phase 3 to Phase 4 (p = 0.019). 
When tested on the second set of tasks in Phase 4, subjects in the 
synergy training group were able to improve their performance 
while subjects in the task repetition training group and control 
group showed decreased performance. This is more clearly 
shown in Figure 5, which provides PC for each subject in dif-
ferent phases. Multiple comparisons showed that the average 
PC change for the synergy group was significantly greater than 
that of the task repetition group (p = 0.033) and control group 
(p =  0.033). A significant group difference was also found for 
PV. Subjects in the control group expressed an average increase 
of 24.3  ±  19.71  /s in PV. This was significantly different than 
synergy group’s average decrease of 6.27 ± 16.73 /s (p = 0.037). 
No clear trends or significant differences were observed for CT, 
RT, and OE.

Because many of the kinematic variables are averaged across 
joints, we further explored how the four fingers individually 
executed the tasks. A temporal analysis revealed interesting trends 
that spanned all three groups. Figures 6 and 7 show how the same 
task (task # 26 from Phase 4) was executed by a representative 
subject from the task repetition group, synergy group, and control 
group. In Figure 6, profiles for each of the eight recorded joints 
are presented and are overlaid by their reconstructed versions. In 
general, index and pinky MCP joints averaged the fastest times 
to reach peak extension, but their PIP joint extensions occurred 
last. The index MCP joint also had exhibited the most OE for 
all three groups. Time to reach peak extension in the middle 
and ring PIP joints averaged similar times. For each joint, we 
separately recomputed time to peak extension and OE. Between-
group ANOVA results are provided in Table 3. At all four MCP 
joints, the task repetition group showed significantly greater OE 
than the synergy group and control group. However, M_MCP, 
R_MCP, P_MCP, I_PIP, and M_PIP joints in the task repetition 
group reached peak extensions significantly faster than synergy 
and control groups (p < 0.05).
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FigUre 7 | Task # 26 from Phase 4 is shown. A single subject from the task repetition group (TR), synergy repetition group (SR), and control group (C) is used as 
representative example. A time (T) bar is provided to show how the task unfolds from the beginning of the task (T = 0 s) to the end of the task (T = 4 s). Blank hand 
spaces indicate that the task was completed early. Joint based analysis showed that the task repetition group overextended metacarpophalangeal joints to a greater 
extent than synergy repetition and control groups.

FigUre 6 | The kinematic profile for task # 26 from representative subjects from each group [task repetition (Tr)-blue, synergy repetition (sr)-red, 
and control (c)-green]. Metacarpophalangeal (MCP) joints and proximal interphalangeal (PIP) joints are shown in the top and bottom rows, respectively. Finger 
abbreviations are index (I), middle (M), ring (R), and pinky (P). Each joint profile has an inset that magnifies the profile at the end of the task, where differences 
between original (o, solid lines) and reconstructed (r, dotted lines) can be better appreciated.

TaBle 3 | results of joint-specific analysis for overextension (Oe) measurements and time to peak extension measurements (s).

Oe (°) p Values Time to peak extension (s) p Values

Tr sr c Tr sr c

I_MCP 15.01a ± 13.76 11.23 ± 9.77 11.95 ± 11.08 0.0006 0.9412 ± 0.473 1.0125 ± 0.448 0.9476 ± 0.475 0.1803
M_MCP 6.90b ± 9.82 4.38 ± 6.01 5.87 ± 6.94 0.0017 1.1311b ± 0.750 1.2890 ± 0.637 1.2171 ± 0.740 0.0471
R_MCP 9.12a ± 11.66 3.72 ± 5.62 2.99 ± 5.78 <0.0001 1.1909a ± 0.681 1.5527 ± 0.679 1.5631 ± 0.705 <0.0001
P_MCP 15.29a ± 18.23 6.42 ± 8.28 4.14 ± 6.40 <0.0001 1.0057a ± 0.534 1.2693 ± 0.599 1.2443 ± 0.562 <0.0001
I_PIP 3.27c ± 5.59 3.25c ± 6.83 1.87 ± 4.31 0.0072 1.5080a ± 0.701 1.6396 ± 0.511 1.6657 ± 0.604 0.0078
M_PIP 9.72 ± 11.07 7.88 ± 9.11 9.62 ± 11.70 0.1075 1.1500a ± 0.629 1.2983 ± 0.528 1.2857 ± 0.513 0.0043
R_PIP 8.62 ± 10.62 9.26 ± 20.24 10.64 ± 10.70 0.0914 1.2016 ± 0.561 1.2690 ± 0.511 1.1999 ± 0.528 0.2747
P_PIP 3.63 ± 6.82 4.14 ± 7.17 3.18 ± 5.00 0.2669 1.5934 ± 0.696 1.6204 ± 0.642 1.5909 ± 0.655 0.8670

Post hoc significant results are bolded.
aA significant difference between task repetition and synergy repetition groups and between task repetition and control groups.
bSignificant difference between the task repetition and synergy repetition groups.
cSignificant difference between task repetition and control groups and between synergy repetition and control groups.
TR, task repetition; SR, synergy repetition; C, control; MCP, metacarpophalangeal; PIP, proximal interphalangeal; I, index; M, middle; R, ring; P, pinky.
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FigUre 9 | reconstruction error (re) of tasks in Phase 4 
(transference evaluation). The synergy repetition group (SR) has 
significantly lower RE than the task repetition (TR) and control (C) groups as 
indicated by the *p less than or equal to 0.001.
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FigUre 8 | For each subject in the synergy repetition group, eight postural synergies were derived and used for training in Phase 2. Postural synergy 
1 accounts for the most variance and is characterized by general flexion in all joints. Postural synergies 2 through 8 account for decreasing amount of variance from 
the dataset but still represent used joint coordination patterns.
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Utilization of synergies
Subjects in the synergy training group were each trained on 
eight distinct postural synergies. These postures are presented 
in Figure 8. The first synergy is similar across all subjects and 
is characterized by MCP and PIP flexion, albeit at different 
magnitudes. The remaining postures emphasize alternating 
relationships among the fingers. Importantly, difficult and less 
commonly used postures have been captured by these synergies. 
For example, synergy 6 from subject 1 shows the ring PIP joint 
flexion while the pinky MPC and PIP joints are extended. Because 
the pinky is partly enslaved to the ring finger, this posture requires 
conscientious digression from natural behaviors.

Results from the task performance analysis show that the syn-
ergy group performed significantly better in the Phase 4 (trans-
ference evaluation) compared to the task repetition and control 
groups. Thus, the next step is to determine how well synergies 
were being incorporated into these movements. Correct tasks 
in Phase 4 were reconstructed using a subject’s corresponding 
synergies. For comparison, synergies of the task repetition and 
control groups were also derived and used to reconstruct end 
postures. An example reconstruction of each joint was provided 
in Figure  6. RE is used as a measure of synergy usage and is 
presented in Figure  9. Note that only the error from the end 
posture, and not the entire time profile was used. Results show 
that end postures in the synergy group were reconstructed with 
significantly less error than both the repetition group (ANOVA, 
p  =  3.8e−9; Kruskal–Wallis, p  =  4.45e−6) and control group 
(ANOVA, p = 1.83e−7; Kruskal–Wallis, p = 0.001). These results 
show that postures used during Phase 4 more closely resembled 
synergies in the synergy group, than in the repetition and control 
groups.

Task analysis
Results indicate that subjects in the synergy group were able 
to employ postures that they were trained on. These practiced 
postures possibly led to the performance improvements previ-
ously described. To further explore the benefits of practicing 
these different hand configurations and how they may have 
been incorporated into the task, a spatial analysis was used to 
evaluate the performance of different fingers. Phase 4 tasks that 
involved a specific button were grouped. Then, the performance 
of each group across these tasks was measured. Results are shown 
in Figure 10. The distribution of performance in all 12 buttons 
was similar across the three groups. Specifically, all three groups 
showed the worst performance when moderate extension was 
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FigUre 10 | individual button-based performance was calculated for each group. The color scale indicates the percentage of tasks correct with lighter 
colors representing better performance. The synergy repetition group shows better performance overall but only was only significantly greater than the task 
repetition group (p = 0.032) at ring, maximum extension (indicated by the *).

TaBle 4 | Overall results to compare task repetition training and synergy repetition training.

Task repetition training synergy repetition training

Training protocol 45 tasks, repeated twice 10 synergy postures, each repeated 5–6 times

Training protocol strengths • More time spent with test environment
• Hand configuration directly related to task goal
• Greater number of tasks

• Equal time spent with difficult hand patterns as well as 
common, easier hand patterns

• Concentration on a few key postures

Approximate number of postures performed in 
20 min training period

45 postures, with two repetitions ~10 postures, each with 5–6 repetitions

Average performance change in Phase 3 (retest) 5.3% ± 5.1% 6.9% ± 11.9%

Average performance change in Phase 4 
(transference)

−3.2% ± 4.7% 9.3% ± 3.8%

Kinematic changes in Phase 3 • Peak extension reached faster • Peak extension reached faster

Kinematic changes in Phase 4 • Greater over extension,
• Peak extension reached faster compared to other 

groups

• Decrease in peak velocity
• Overall, greater target button hit rate

required of ring MCP and PIP joints (third column, middle row), 
but best performance when maximum extension was required 
of ring MCP and PIP joints (third column, top row). ANOVA 
results showed a significant group difference at this location 
(p = 0.0252). The synergy group was able to perform these tasks 
significantly better than the task repetition group (p = 0.032) but 
did not reach significance for the control groups (p = 0.058). All 
other button locations show that the synergy group had distrib-
uted advantages.

DiscUssiOn

Motor learning is often characterized by acquisition, retention, 
and transference of a new motor skill (Magill and Anderson, 
2007). Quantitatively, motor learning exhibits as improvements 
in time and accuracy. In this study, we compared two different 
training groups, task repetition (gold standard) and synergy 
training, to assess differences in motor learning. Our  results 

(summarized in Table 4) show that when the same tasks were 
tested, both, task repetition and synergy training group, showed 
greater improvements (increased percent correct and faster 
time to reach peak extension) than the control group (Tables 1 
and 2). We expected subjects in the task repetition group to 
perform better than subjects in the synergy group during Phase 
3 (retesting). Significant advantage was only demonstrated 
when excluding subject 6, who had outlier (third SD) perfor-
mance in PC. Regardless, subjects from both these groups, at 
least for short term, were able to retain learned task dynamics. 
However, when tested on the new task, only subjects in the 
synergy training group were able to transfer their new motor 
skill, as evidenced by continued improvement in accuracy. The 
better performance was not concentrated by a single finger or 
extension level but spanned all 12 buttons as seen in Figure 10. 
It is worth noting that the button analysis showed that buttons 
5 and 12 (see Figure 4) were used more often in set 1 tasks and 
buttons 6 and 11 were used more often in set 2 tasks. Figure 10 
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shows that all groups may have been affected by being tested on 
buttons that they were less exposed to during training (although 
the control group shows the same trend). In other words, button 
6 and 11 locations showed lower averages compared to other 
buttons. However, it is unclear if this resulted from limited 
pre-valuation/training exposure or that the button location 
themselves were more difficult. Next, we discuss how both 
training methods may have influenced motor learning.

In our study, numerous explicit learning mechanisms were 
implemented. For example, if a task was performed correctly, a 
“correct indicator” was lit green. Subjects were verbally told to 
accomplish tasks simultaneously across all fingers. Additionally, 
subjects familiarized themselves with start and stop cues so 
that the task could be accomplished within the allotted time. 
These factors contribute to explicit learning using external cues 
provided by the experimenter. Subjects in the task repetition 
group were more exposed to explicit mechanisms because their 
training phase provided more time in the task environment. The 
extra allotted time also allowed cognitive processes to create an 
optimal motor plan for each task. Subjects in the synergy training 
group, however, were trained using different explicit mechanisms, 
synergies.

The development of hand synergies, as well as other motor 
synergies (i.e., walking), begins early on when infants use imi-
tation and/or self-regulated learning mechanisms to achieve a 
grasp (Oztop et al., 2004). Between 9 and 13 months, reach and 
grasp motor patterns appear pre-programmed, evidenced by 
temporal overlap and early anticipatory movements (Lockman 
et al., 1984; Newell et al., 1993). Konczak et al. (1995) found that 
a “fine tuning” period in infants 7–18 months was character-
ized by stable joint torque patterns over time, and across limb 
segments. Further analysis of shoulder, arm, and hand kinemat-
ics showed that these infants express stereotypical kinematic 
patterns only after 24 months (Konczak and Dichgans, 1997). 
Through mainly implicit learning mechanisms, these infants 
stored the most effective and common motor sequences required 
for grasping, optimizing them throughout life. Computationally, 
we derive these synergies through dimensionality reduction 
techniques, which capture primed inter-joint coordination. In 
this study, a new touch task required subjects to develop new 
inter-joint coordination techniques in order to complete the 
tasks correctly and quickly. All three groups may have implic-
itly learned useful inter-joint coordination during the initial 
evaluation (Phase 1) and retest (Phase 3). However, subjects 
in the synergy group received more concentrated training on 
these inter-joint coordination patterns through postural syn-
ergy training. The reconstruction analysis (Figure 5) indicates 
that these trained postures were used during the transference 
tests. Additionally, kinematic analysis indicates that synergy 
training affected the feed-forward mechanisms (resulting from 
motor planning) allowing joints to reach their most extended 
configurations, quicker. In the task repetition group, joints were 
extended quicker, but this also caused significantly greater OEs 
in Phase 4.

Although only healthy adults were used in this study, our 
results show that synergy training may be able to address some of 

the requirements of poststroke physical therapy. For example, the 
question of whether therapy should be constant versus variable 
has been addressed in numerous studies (Lin et  al., 2008; Wu 
et  al., 2011). While constant, repetitive practice reinforces 
positive mechanisms, it may reduce the ability to transfer a skill 
(Dromerick et al., 2009) potentially because of less exposure to all 
the inherent task patterns (Meier and Cock, 2010). Concurrently, 
the synergy group concentrates only these patterns. Additionally, 
equal training time is given to all patterns, whether common or 
not. This type of training resulted in spatially broad advantages 
(Figure  10) during the transference tasks. However, intense 
repetition training also leads to improvements in function after 
stroke (Kawahira et al., 2004). Thus, a balance between repetition 
and synergy training may provide optimal results. Additionally, 
the implications of “whole versus part” training in neurorehabili-
tation have been explored (Schmidt and Lee, 2011; Wickens et al., 
2013). For example, in relearning “reach and grasp,” poststroke, 
it is important to maintain the overlapping temporal relationship 
between arm transport and hand grasp. While synergies derived 
in this study were static postures, training with spatio-temporal 
synergies (Vinjamuri et  al., 2010) would allow individuals to 
reinforce temporal relationships. Finally, evidence suggests 
that in adults with neurological damage in certain brain areas, 
explicit instructions can lead to poorer performance than implicit 
instructions (Boyd and Winstein, 2003), suggesting that rehabili-
tation efforts need to balance how supposed explicit and implicit 
knowledge can be delivered. This balance may be reached with 
the use of synergies.

While this study attempted to model the benefits of synergy-
based learning for potential use in motor learning as well as 
hand rehabilitation, there are some limitations to consider. 
First, the sample size in this data set is quite small. Based on 
results of the main outcome measure of this study (PC in Phase 
4), we would need a sample size of 20 subjects in each group 
for 80% power (α = 0.05). Thus, the current low sample size of 
n = 5 in each group only achieves has an extremely low power 
and thus, high type II (false negative) error rate. A significant 
group difference was indeed found (Cohen’s d = 0.401, moder-
ate effect), but only after accounting for intersubject differences. 
Future studies may have to establish a more equivalent baseline 
with lower SDs. Second, synergies that were used for train-
ing were not necessarily optimal because they were acquired 
relatively early in training stages. Moreover, they were subject 
specific. In a realistic setting, synergies need to be derived from 
healthy, skilled individuals to be used on unskilled individuals. 
Minor unnatural discrepancies between individuals may cause 
undue difficulty in training. Third, the task used in this study 
was created to balance novelty and finger range of movement. 
Other hand-related motor tasks, such as the serial RT task 
(Robertson, 2007), have been extensively researched in their 
ability to expose different motor-learning strategies. In design-
ing the task for this study, we attempted to balance novelty 
with hand-related function. Further investigation is required 
to delineate the explicit mechanisms that may have occurred 
during the task and also determine their effects on long-term 
retention of the skill.

53

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Patel et al. Synergy Training versus Task Training

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2017 | Volume 5 | Article 9

reFerences

Ackermann, H., Daum, I., Schugens, M. M., and Grodd, W. (1996). Impaired 
procedural learning after damage to the left supplementary motor area (SMA). 
J. Neurol. Neurosurg. Psychiatry 60, 94–97. 

Boyd, L. A., and Winstein, C. J. (2003). Impact of explicit information on implicit 
motor-sequence learning following middle cerebral artery stroke. Phys. Ther. 
83, 976–989. 

Burns, M. K., Patel, V., Florescu, I., Pochiraju, K. V., and Vinjamuri, R. (2017). Low 
dimensional synergistic representation of bilateral reaching movements. Front. 
Bioeng. Biotechnol. 5:2. doi:10.3389/fbioe.2017.00002

Cantarero, G., Spampinato, D., Reis, J., Ajagbe, L., Thompson, T., Kulkarni, K., 
et  al. (2015). Cerebellar direct current stimulation enhances on-line motor 
skill acquisition through an effect on accuracy. J. Neurosci. 35, 3285–3290. 
doi:10.1523/JNEUROSCI.2885-14.2015

Cirstea, M. C., and Levin, M. F. (2000). Compensatory strategies for reaching in 
stroke. Brain 123, 940–953. doi:10.1093/brain/123.5.940

d’Avella, A., Portone, A., and Lacquaniti, F. (2011). Superposition and modulation 
of muscle synergies for reaching in response to a change in target location. 
J. Neurophysiol. 106, 2796–2812. doi:10.1152/jn.00675.2010 

de Guise, E., del Pesce, M., Foschi, N., Quattrini, A., Papo, I., and Lassonde, M. 
(1999). Callosal and cortical contribution to procedural learning. Brain 122, 
1049–1062. 

Doyon, J., and Benali, H. (2005). Reorganization and plasticity in the 
adult brain during learning of motor skills. Curr. Opin. Neurobiol. 15,  
161–167. doi:10.1016/j.conb.2005.03.004

Dromerick, A. W., Lang, C. E., Birkenmeier, R. L., Wagner, J. M., Miller, J. P., 
Videen, T. O., et al. (2009). Very early constraint-induced movement during 
stroke rehabilitation (VECTORS) A single-center RCT. Neurology 73,  
195–201. doi:10.1212/WNL.0b013e3181ab2b27

Fu, M., Yu, X., Lu, J., and Zuo, Y. (2012). Repetitive motor learning induces 
coordinated formation of clustered dendritic spines in vivo. Nature 483, 92–95. 
doi:10.1038/nature10844 

Huber, D., Gutnisky, D. A., Peron, S., O’Connor, D. H., Wiegert, J. S., Lin, T., et al. 
(2012). Multiple dynamic representations in the motor cortex during sensorim-
otor learning. Nature 484, 473–478. doi:10.1038/nature11039 

Jarrassé, N., Proietti, T., Crocher, V., Robertson, J., Sahbani, A., Morel, G., et al. 
(2014). Robotic exoskeletons: a perspective for the rehabilitation of arm 
coordination in stroke patients. Front. Hum. Neurosci. 8:947. doi:10.3389/
fnhum.2014.00947 

Kantak, S. S., Sullivan, K. J., Fisher, B. E., Knowlton, B. J., and Winstein, C. J. (2010). 
Neural substrates of motor memory consolidation depend on practice struc-
ture. Nat. Neurosci. 13, 923–925. doi:10.1038/nn.2596 

Karni, A., Meyer, G., Jezzard, P., Adams, M., Turner, R., and Ungerleider, L. (1995). 
Functional MRI evidence for adult motor cortex plasticity during motor skill 
learning. Nature 377, 155–158. 

Kawahira, K., Shimodozono, M., Ogata, A., and Tanaka, N. (2004). Addition of 
intensive repetition of facilitation exercise to multidisciplinary rehabilitation 
promotes motor functional recovery of the hemiplegic lower limb. J. Rehabil. 
Med. 36, 159–164. doi:10.1080/16501970410029753

Koh, K., Seung-Jean, K., and Stephen, B. (2007). An interior-point method for 
large-scale l1-regularized logistic regression. J. Mach. Learn. Res. 8, 1519–1555. 

Konczak, J., Borutta, M., Topka, H., and Dichgans, J. (1995). The development of 
goal-directed reaching in infants: hand trajectory formation and joint torque 
control. Exp. Brain Res. 106, 156–168. 

Konczak, J., and Dichgans, J. (1997). The development toward stereotypic arm 
kinematics during reaching in the first 3 years of life. Exp. Brain Res. 117, 
346–354. 

Krakauer, J. W. (2006). Motor learning: its relevance to stroke recovery and neu-
rorehabilitation. Curr. Opin. Neurol. 19, 84–90. 

Latash, L. P., and Latash, M. L. (1994). A new book by NA Bernstein: “on dexterity 
and its development”. J. Mot. Behav. 26, 56–62. 

Li, Y., and Wright, D. L. (2000). An assessment of the attention demands during 
random-and blocked-practice schedules. Q. J. Exp. Psychol. A 53, 591–606. 
doi:10.1080/027249800390628

Lin, C. H., Fisher, B. E., Winstein, C. J., Wu, A. D., and Gordon, J. (2008). 
Contextual interference effect: elaborative processing or forgetting—recon-
struction? A post hoc analysis of transcranial magnetic stimulation—induced 
effects on motor learning. J. Mot. Behav. 40, 578–586. doi:10.3200/JMBR.40.6. 
578-586

Lockman, J. J., Ashmead, D. H., and Bushnell, E. W. (1984). The development 
of anticipatory hand orientation during infancy. J. Exp. Child Psychol. 37,  
176–186. 

Magill, R. A., and Anderson, D. (2007). Motor Learning and Control: Concepts and 
Applications, Vol. 11. New York: McGraw-Hill.

Meier, B., and Cock, J. (2010). Are correlated streams of information necessary 
for implicit sequence learning? Acta Psychol. 133, 17–27. doi:10.1016/ 
j.actpsy.2009.08.001 

Michaelsen, S. M., Luta, A., Roby-Brami, A., and Levin, M. F. (2001). Effect of trunk 
restraint on the recovery of reaching movements in hemiparetic patients. Stroke 
32, 1875–1883. doi:10.1161/01.STR.32.8.1875

Muratori, L. M., Lamberg, E. M., Quinn, L., and Duff, S. V. (2013). Applying prin-
ciples of motor learning and control to upper extremity rehabilitation. J. Hand 
Ther. 26, 94–103. doi:10.1016/j.jht.2012.12.007 

Neckel, N., Pelliccio, M., Nichols, D., and Hidler, J. (2006). Quantification of 
functional weakness and abnormal synergy patterns in the lower limb of indi-
viduals with chronic stroke. J. Neuroeng. Rehabil. 3, 1. doi:10.1186/1743-0003- 
3-17

Newell, K. M., McDonald, P. V., and Baillargeon, R. (1993). Body scale and infant 
grip configurations. Dev. Psychobiol. 26, 195–205. 

Oztop, E., Bradley, N. S., and Arbib, M. A. (2004). Infant grasp learning: a compu-
tational model. Exp. Brain Res. 158, 480–503. doi:10.1007/s00221-004-1914-1

Patel, V., Burns, M., and Vinjamuri, R. (2016). Effect of visual and tactile feedback 
on kinematic synergies in the grasping hand. Med. Biol. Eng. Comput. 54, 
1217–1227. doi:10.1007/s11517-015-1424-2

Robertson, E. M. (2007). The serial reaction time task: implicit motor skill learn-
ing? J. Neurosci. 27, 10073–10075.

Roby-Brami, A., Jacobs, S., Bennis, N., and Levin, M. F. (2003). Hand orientation 
for grasping and arm joint rotation patterns in healthy subjects and hemipa-
retic stroke patients. Brain Res. 969, 217–229. doi:10.1016/S0006-8993(03) 
02334-5

Roh, J., Rymer, W. Z., Perreault, E. J., Yoo, S. B., and Beer, R. F. (2013). Alterations in 
upper limb muscle synergy structure in chronic stroke survivors. J. Neurophysiol. 
109, 768–781. doi:10.1152/jn.00670.2012 

eThics sTaTeMenT

The study was approved by IRB at Stevens Institute of  
Technology. Consent procedures were followed according  
to the IRB guidelines at Stevens. All subjects were individuals 
without any disabilities.

aUThOr cOnTriBUTiOns

Methods and experimental setup were designed and 
implemented by VP and JC, with guidance from RV. MS 

helped with data collection and data analysis. MB helped 
create data collection program. IF helped with statistics. 
Manuscript was written by VP and revised and approved by all  
authors.

acKnOWleDgMenTs

The authors would like to thank the Department of Biomedical 
Engineering, Chemistry, and Biological Sciences of the Stevens 
Institute of Technology for their continued support of ongoing 
research.

54

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
https://doi.org/10.3389/fbioe.2017.00002
https://doi.org/10.1523/JNEUROSCI.2885-14.2015
https://doi.org/10.1093/brain/123.5.940
https://doi.org/10.1152/jn.00675.2010
https://doi.org/10.1016/j.conb.2005.03.004
https://doi.org/10.1212/WNL.0b013e3181ab2b27
https://doi.org/10.1038/nature10844
https://doi.org/10.1038/nature11039
https://doi.org/10.3389/fnhum.2014.00947
https://doi.org/10.3389/fnhum.2014.00947
https://doi.org/10.1038/nn.2596
https://doi.org/10.1080/16501970410029753
https://doi.org/10.1080/027249800390628
https://doi.org/10.3200/JMBR.40.6.578-586
https://doi.org/10.3200/JMBR.40.6.578-586
https://doi.org/10.1016/
j.actpsy.2009.08.001
https://doi.org/10.1016/
j.actpsy.2009.08.001
https://doi.org/10.1161/01.STR.32.8.1875
https://doi.org/10.1016/j.jht.2012.12.007
https://doi.org/10.1186/1743-0003-3-17
https://doi.org/10.1186/1743-0003-3-17
https://doi.org/10.1007/s00221-004-1914-1
https://doi.org/10.1007/s11517-015-1424-2
https://doi.org/10.1016/S0006-8993(03)02334-5
https://doi.org/10.1016/S0006-8993(03)02334-5
https://doi.org/10.1152/jn.00670.2012


Patel et al. Synergy Training versus Task Training

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2017 | Volume 5 | Article 9

Saleh, M., Takahashi, K., Amit, Y., and Hatsopoulos, N. G. (2010). Encoding 
of coordinated grasp trajectories in primary motor cortex. J. Neurosci. 30, 
17079–17090. doi:10.1523/JNEUROSCI.2558-10.2010

Sampaio-Baptista, C., Khrapitchev, A. A., Foxley, S., Schlagheck, T., Scholz, J., 
Jbabdi, S., et al. (2013). Motor skill learning induces changes in white matter 
microstructure and myelination. J. Neurosci. 33, 19499–19503. doi:10.1523/
JNEUROSCI.3048-13.2013 

Santello, M., Flanders, M., and Soechting, J. F. (2002). Patterns of hand motion 
during grasping and the influence of sensory guidance. J. Neurosci. 22, 
1426–1435. 

Schmidt, R. A. (1976). “The schema as a solution to some persistent problems in 
motor learning theory,” in Motor Control: Issues and Trends, ed. R. A. Schmidt 
(New York: Academic Press). 

Schmidt, R., and Lee, T. (2011). “Motor control and learning,” in Human kinetics, 
5th Edn.

Thakur, P. H., Bastian, A. J., and Hsiao, S. S. (2008). Multidigit movement synergies 
of the human hand in an unconstrained haptic exploration task. J. Neurosci. 28, 
1271–1281. doi:10.1523/JNEUROSCI.4512-07.2008 

Vinjamuri, R., Patel, V., Powell, M., Mao, Z.-H., and Crone, N. (2014). Candidates 
for synergies: linear discriminants versus principal components. Comput. Intell. 
Neurosci. 2014, 9. doi:10.1155/2014/373957 

Vinjamuri, R., Sun, M., Cheng-Chun, C., Heung-No, L., Sclabassi, R. J., and 
Zhi-Hong, M. (2010). Dimensionality reduction in control and coordination 
of the human hand. IEEE Trans. Biomed. Eng. 57, 284–295. doi:10.1109/
TBME.2009.2032532 

Wickens, C. D., Hutchins, S., Carolan, T., and Cumming, J. (2013). Effectiveness 
of part-task training and increasing-difficulty training strategies a meta- 
analysis approach. Hum. Factors: J Hum. Factors and Ergonomics Soc. 55,  
461–470.

Wu, W. F., Young, D. E., Schandler, S. L., Meir, G., Judy, R. L., Perez, J., et  al. 
(2011). Contextual interference and augmented feedback: is there an additive 
effect for motor learning? Hum. Mov. Sci. 30, 1092–1101. doi:10.1016/j.
humov.2011.02.004

Zackowski, K. M., Dromerick, A. W., Sahrmann, S. A., Thach, W. T., and Bastian, 
A. J. (2004). How do strength, sensation, spasticity and joint individuation 
relate to the reaching deficits of people with chronic hemiparesis? Brain 127,  
1035–1046. doi:10.1093/brain/awh116

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Patel, Craig, Schumacher, Burns, Florescu and Vinjamuri. This 
is an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) or licensor are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

55

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
https://doi.org/10.1523/JNEUROSCI.2558-10.2010
https://doi.org/10.1523/JNEUROSCI.3048-13.2013
https://doi.org/10.1523/JNEUROSCI.3048-13.2013
https://doi.org/10.1523/JNEUROSCI.4512-07.2008
https://doi.org/10.1155/2014/373957
https://doi.org/10.1109/TBME.2009.2032532
https://doi.org/10.1109/TBME.2009.2032532
https://doi.org/10.1016/j.humov.2011.02.004
https://doi.org/10.1016/j.humov.2011.02.004
https://doi.org/10.1093/brain/awh116
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


ORIGINAL RESEARCH
published: 10 February 2017

doi: 10.3389/fbioe.2017.00002

Edited by:
Alessandro Tognetti,

University of Pisa, Italy

Reviewed by:
Matteo Bianchi,

University of Pisa, Italy
Claudia Casellato,

Politecnico di Milano, Italy

*Correspondence:
Ramana Vinjamuri

ramana.vinjamuri@stevens.edu

Specialty section:
This article was submitted to Bionics

and Biomimetics, a section of the
journal Frontiers in Bioengineering and

Biotechnology

Received: 11 September 2016
Accepted: 12 January 2017

Published: 10 February 2017

Citation:
Burns MK, Patel V, Florescu I,

Pochiraju KV and Vinjamuri R (2017)
Low-Dimensional Synergistic

Representation of Bilateral Reaching
Movements.

Front. Bioeng. Biotechnol. 5:2.
doi: 10.3389/fbioe.2017.00002

Low-Dimensional Synergistic
Representation of Bilateral Reaching
Movements
Martin K. Burns, Vrajeshri Patel, Ionut Florescu, Kishore V. Pochiraju and Ramana
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Kinematic and neuromuscular synergies have been found in numerous aspects of human
motion. This study aims to determine how effectively kinematic synergies in bilateral upper
arm movements can be used to replicate complex activities of daily living (ADL) tasks
using a sparse optimization algorithm. Ten right-handed subjects executed 18 rapid and
11 natural-paced ADL tasks requiring bimanual coordination while sitting at a table. A
position tracking system was used to track the subjects’ arms in space, and angular
velocities over time for shoulder abduction, shoulder flexion, shoulder internal rotation,
and elbow flexion for each arm were computed. Principal component analysis (PCA) was
used to generate kinematic synergies from the rapid-paced task set for each subject. The
first three synergies accounted for 80.3±3.8% of variance, while the first eight accounted
for 94.8±0.85%. The first and second synergies appeared to encode symmetric reaching
motions which were highly correlated across subjects. The first three synergies were
correlated between left and right arms within subjects, whereas synergies four through
eight were not, indicating asymmetries between left and right arms in only the higher order
synergies. The synergies were then used to reconstruct each natural-paced task using
the l1-norm minimization algorithm. Temporal dilations of the synergies were introduced
in order to model the temporal scaling of movement patterns achieved by the cerebellum
and basal ganglia as reported previously in the literature. Reconstruction error was
reduced by introducing synergy dilations, and cumulative recruitment of several synergies
was significantly reduced in the first 10% of training task time by introducing temporal
dilations. The outcomes of this work could open new scenarios for the applications
of postural synergies to the control of robotic systems, with potential applications in
rehabilitation. These synergies not only help in providing near-natural control but also
provide simplified strategies for design and control of artificial limbs. Potential applications
of these bilateral synergies were discussed and future directions were proposed.

Keywords: motor control, kinematic synergies, bilateral upper limb movements, activities of daily living, principal
component analysis

INTRODUCTION

The human arm is a highly complex structurewith an equally sophisticated control system. Each arm
possesses 11 independent degrees of freedom (DoF) defined from the pectoral girdle to the wrist,
which are actuated by approximately 32muscles (Mackenzie and Iberall, 1994). The brain, therefore,
has to coordinate over 60 different controls in order to operate both arms, yet accomplishes this
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task with apparent ease. How the brain handles real-time control
of two redundant, highDoFmanipulators during activities of daily
living (ADL) is known as the degrees-of-freedom (DoF) problem
(Bernstein, 1967; Latash et al., 2007) and is the subject of much
research, including the present work. Progress in this field has
applications in numerous areas including motor rehabilitation,
assistive and prosthetic technology, and robotic control.

Evidence suggests that the brain may control the limbs by scal-
ing, offsetting, and temporally dilating fundamental movements
encoded in the sensorimotor system (Viviani and Terzuolo, 1980;
Brooks, 1986). Previous researchhas shown that the brain executes
tasks by using certain movement patterns while preserving their
relative spatiotemporal proportions. Viviani and Terzuolo (1980)
have shown in handwriting tasks that increased letter size still
results in similar execution times by automatically increasing
writing speed. Furthermore, slowing down a writing task results
in temporal dilation of a common velocity pattern, preserving
the relative occurrence of velocity profile features in time while
reducing velocity amplitude (Brooks, 1986).

These patterns of motion have been developed into the concept
of synergies, which can be defined as “a collection of relatively
independent degrees of freedom that behave as a single functional
unit” (Turvey, 2007). Synergies exist in either the joint angular
velocity space, in the formof kinematic synergies, or neuromuscu-
lar activity space, in the form of neuromuscular synergies. Linear
discriminant analysis, singular value decomposition (SVD), prin-
cipal component analysis (PCA), non-negative matrix factoriza-
tion (NMF), artificial neural networks, andmany other algorithms
have been used in the literature to derive synergies for hand grasps,
gait patterns, and single-armmotion (Merckle et al., 1998; Santello
et al., 1998; Vinjamuri et al., 2010; Roh et al., 2013; Alibeji et al.,
2015). NMF is typically used to derive neuromuscular synergies
(Tresch and Jarc, 2009), while PCA is frequently used to derive
kinematic synergies as in Mason et al. (2001) and Vinjamuri et al.
(2010). PCA-derived kinematic synergies have been demonstrated
to perform favorably when directly compared to those from other
linear and non-linear dimensionality reduction methods when
applied to hand grasp reconstruction (Patel et al., 2015a).

Recent work has been aimed at integrating synergies into the
control of robotic systems with the goal of producing a simpli-
fied control scheme for high DoF devices. The authors in Chen
et al. (2015) have demonstrated an anthropomorphic robotic hand
that has two mechanically implemented postural synergies which
could successfully grasp various objects. Several groups have also
proposed autonomous, control systems for high DoF robotic and
virtual hands based on two postural synergies (Wimbock et al.,
2011) and four postural synergies (Rosell et al., 2011; Segil and
Weir, 2013), whereas Matrone et al. (2012) have demonstrated
real-time myoelectric control of a robotic hand using two postu-
ral synergies with able-bodied subjects. An EMG-based control
scheme was also introduced by Artemiadis and Kyriakopoulos
(2010), which controls a 7-DoF robotic arm using kinematic and
muscular synergies. The review recently published by Santello
et al. (2016) gives a thorough description of the state of the art
concerning dexterous hand control using synergies and highlights
some future directions merging synergies with compliant design.

Synergies derived using NMF have also been applied to optimal
movement generation for virtual arms (Fu et al., 2013) as well
as myocontrol of a multi-DoF planar robotic arm using muscle
synergies (Lunardini et al., 2015). So far, work has been focused on
using time-invariant postural synergies in the kinematic domain
and restricted to unimanual processes.

Bilateral spatiotemporal kinematic synergies such as those pre-
sented here may be used as the controlled variable in future
robotic systems that can be manipulated using EMG, EEG, or
some other biosignal input. Whereas postural/spatial synergies
attempt to linearize joint motion relative to each other, a time-
varying approach allows more flexibility to capture the non-linear
behaviors inherent to complex systems. An open question for such
a system is whether or not ADL tasks are within the “workspace”
of a system that is onlymanipulated using time-varying kinematic
synergies. In other words, is it possible to manipulate bilateral
spatiotemporal kinematic synergies by scaling their amplitudes
and temporal offsets in such a way as to replicate ADL-like
tasks.

In this study, we derive spatiotemporal kinematic synergies
from rapidly paced ADL tasks for 10 able-bodied subjects. Tasks
that require coordination of both arms and can be classified
as symmetric in-phase, symmetric out-of-phase, asymmetric, or
coupled are chosen. PCA is used to derive time-varying kinematic
synergies from eight joint angular velocity profiles across both
arms recorded during these rapid tasks. A separate set of tasks
performed at a natural pace are reconstructed using the l1-norm
minimization algorithm to select optimal amplitudes and tempo-
ral offsets and dilations of these synergies. The derived synergies
are characterized in terms of intersubject and interlimb correla-
tions, accuracy of reconstruction, and trends in their recruitment
levels throughout the task duration.

SUBJECTS AND METHODS

The present study was conducted under IRB Approved Proto-
col # 2014-026/2015-022 at the Stevens Institute of Technology.
Ten subjects were recruited in the study after obtaining writ-
ten informed consent. Subjects performed ADL-like tasks while
their movements were recorded using an electromagnetic motion
tracking system (Polhemus LIBERTY). Positional data from each
sensor were converted into joint angles, synergies were derived
using PCA in the joint angle velocity domain, and a separate set
of tasks were reconstructed from the derived synergies using the
l1-norm minimization algorithm.

Data Capture
An electromagnetic tracking system (Polhemus LIBERTY, TX4
source) was used to record positional data of the subject during
each task using their proprietary software (PiMgr). The study was
executed in a minimal-metal environment with a compensation
map calibration executed monthly to account for disturbances
due to metal in the construction of the room. The workspace
was calibrated such that the origin was on the edge of the table,
centered in front of the subject. Positive Z extended upwards
toward the ceiling, positive X extended forward away from the
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subject, and positive Y extended to the subject’s left. Data were
captured at 240Hz and filtered using a 3Hz fourth-order low-pass
Butterworth filter.

Kinematic Model
Several groups have developed refined anatomical models with
the intent of capturing kinematic data from subjects as they
perform tasks. Most of this work has addressed hurdles using
optical systems such as 3D interpolation of one or multiple 2D
viewpoints (Sidenbladh et al., 2000; Chen et al., 2010), and soft
tissue deformation (Gabiccini et al., 2013). Under guidance from
Wu et al. (2005), this work utilized an electromagnetic tracking
system to capture the positions of several convenient landmarks
on the torso, left, and right arms with a positional accuracy of
approximately 2.5mm in x, y, and z. The tracking system lacks
line of sight issues and readily supplies Cartesian positions of these
landmarks.

Seven sensors were placed on the body as shown in Figure 1A.
Three sensors defined the trunk of the subject, while two addi-
tional sensors per arm tracked elbow and wrist movements in
space. S1 and S2 were placed at the lateral head of the clavicle on the
subject’s right and left shoulder, respectively, while S3 was placed
on the subject’s right side near the middle of the rib cage on the
midaxillary line. S4 and S6 were placed on the lateral side of the
subject’s elbows over the joint’s center of rotation. S5 and S7 were
placed on the dorsal side of the subject’s wrists and were centered
between the distal ulnar and radial heads. The filtered X, Y, and
Z trajectories captured by the tracking system were converted to
joint angles as follows.

Three shoulder angles and one elbow angle were calculated
for each side of the subject: shoulder abduction/adduction, flex-
ion/extension, and internal/external and elbow flexion/extension.
These angles are calculated using six vectors: Vshould, Vside, Vae,

and Vaw, where a= L, R to indicate the left or right arm. Vshould
is a vector from the subject’s left shoulder to their right shoulder
sensors, Vside is a vector from the right shoulder sensor to the
sensor on the right side of the torso, Vae is a vector from the
shoulder to the elbowon each respective side, andVaw is the vector
from the elbow to the wrist on each respective side. These vectors
were calculated as:

Si =

xiyi
zi


Vshould = S1 − S2

Vside = S1 − S3

VRe = S1 − S4, VLe = S2 − S6

VRw = S4 − S5, VLw = S6 − S7

Abduction/adduction was found by first projecting the elbow
vector, Vae, onto the coronal plane:

Vae,proj = Vae − (Vae · nc)
nc

∥nc∥
(1)

where nc is the vector normal to the coronal plane and is defined
as the cross product between Vshould and Vside. The shoulder
abduction angle, θsa, between Vae,proj and Vshould was found using

θsa = cos−1 Vshould · Vae,proj

∥Vshould∥∥Vae,proj∥
(2)

The flexion/extension anglewas found in the samemanner as in
Eqs 1 and 2 except by projecting the vectors onto the sagittal plane
using ns, the normal vector to the sagittal plane, which was found
by normalizingVshould. The internal/external rotation of the upper

FIGURE 1 | (A) Sensor placement on body. S1 and S2 are positioned at the lateral head of the clavicles, S3 is placed on the right side on the body’s midaxillary line,
S4 and S6 are placed on the outer side of the elbow, and S5 and S7 are placed on the wrists between the distal heads of the radius and ulna. P1 indicates the
coronal plane, P2 indicates the sagittal plane, P3 indicates the plane normal to Vae, and P4 indicates the plane containing Vae and Vaw. P3 and P4 exist for both the
left and right arms. (B) Tasks executed during study. Each panel is labeled with a number corresponding to the task in Table 2 which is shown. Subjects start each
task with their hands in the rest positions marked by the visible red boxes.
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arm was found by projecting the wrist vector, Vaw, and Vshould
onto the plane normal toVae and calculating the angle between the
twoprojections as in Eq. 2. Elbow flexion/extensionwas calculated
using Vaw and Vae in Eq. 2. Sign changes were determined by
comparing the vector cross product to the corresponding nor-
mal vector on the plane. Positive angles correspond to shoulder
abduction, shoulder flexion, shoulder external rotation, and elbow
flexion. These joint angle calculations were performed offline
using aMATLAB function to get joint angle trajectories over time,
and the resulting motion profiles were differentiated to get joint
angular velocities.

Model Validation
Table 1 shows the accuracy of the joint angle calculations reported
here, compared to goniometer measurements. An iGaging 7′′

goniometer (Anytime Inc., Los Angeles, CA, USA) with a pre-
cision of 0.1° and resolution of 0.05° was used to enforce the
measured (ground truth) readings presented in Table 1. Each of
the eight joints (two angles per joint, indicating minimum and
maximum angles) were measured independently in each trial.
Sensor positions were recorded and filtered using PiMgr (see Data
Capture) in 2 s recordings. Three repetitions were captured for
each trial. Joint angles were calculated from the time-series posi-
tion data using our model to yield 2-s long joint angle postures,
which were then averaged across the 2 s to get a joint angle for
each repetition of each trial.Mean and SD for the calculated angles
shown in Table 1 are computed across repetitions. The difference
between the model-estimated joint angles and the ground truth
measured by goniometers for minimum and maximum angles
is 8.8° and 8.6°, respectively. Error normalized to ground truth
measurements reveals a mean of 36% error for the minimum
measurement and 10% error for the maximum measurement, in
large part because the minimum angle is smaller in magnitude
than the maximum. Since reported results are in the velocity
domain a large part of this error is negated in differentiation.

Subjects
Subjects were recruited, with written and informed consent, based
on the criteria specified in the approved IRB. Healthy subjects
with no history of right or left upper limb injury or weakness
and no cognitive or motor impairments were allowed in the
study after signing a consent form and filling out a basic medical

questionnaire. Ten subjects of age 18–25 years were recruited
(mean 20); of which 4 were female and 10 were self-reported
right-hand dominant.

Experiment Procedure
Upon arrival subjects were fitted with hook-and-loop harnesses
for the position sensors. Straps were adjusted so the sensors were
held firmly in place without impeding the subject’s motion. Basic
range of motion exercises were performed to ensure that all straps
and wires were settled and that the sensors remained in the proper
locations. Subjects first executed 18 rapid training tasks, during
which they were instructed to execute each task as quickly as they
could successfully be completed. Three repetitions of each task
were completed before performing the next task in the same fixed
order for every subject. Eleven testing tasks were then performed
in a fixed order at the subject’s natural pace with three repetitions
each. Each session lasted approximately 90min with a short break
offered between task phases.

Figure 1B and Table 2 show each of the tasks performed in the
study. These tasks were selected based on Barreca et al. (2005) and
Foti and Koketsu (2013) as a cross-section of what is performed
during ADL while requiring coordinated motion of both arms
and being executable in the testing environment. These tasks were
grouped into four categories to describe their type of motion:
symmetric in-phase, symmetric out-of-phase, asymmetric, and
coupled. Symmetric in-phase motions involve mirror symmetry
between the two arms. This symmetry is typically about the mid-
line but can be present in any direction. Symmetric out-of-phase
motions have the same mirror symmetry as the in-phase category,
except the motions of the left and right arms are offset in time.
Asymmetric motions involve no symmetry between the two arms:
each arm executes a different motion trajectory from the other
such as washing a dish or using a fork and knife. Coupled motions
involve both arms manipulating one object, such as when moving
a box or tray, which results in a fixed relationship between the
endpoints of each arm. Table 3 shows the number of each type
of task present in the training and testing phase. Subjects were
given instruction on what to do in each task with special care
taken not to coach how to execute the motions. Subjects began
each task with their hands in a flat resting position marked with
red rectangles. Subjects were instructed to stop at the end of the
task without returning to the rest position.

TABLE 1 | Computation of normalized error by the difference between measured (by goniometer) and estimated (by the model) joint angles (in degrees,
mean±SD).

Minimum angle (°) Maximum angle (°)

Joints Measured by
goniometer

Estimated by
the model

Normalized
error (%)

Measured by
goniometer

Estimated by
the model

Normalized
error (%)

R. Should. Abd. 30 30.8±1.42 3.4 90 85.2±1.41 5.3
R. Should. Flex 30 34.3±1.55 14.3 90 75.8±1.54 15.8
R. Should. Int. −45 −33.1±3.05 26.6 45 45.4±1.35 0.8
R. Elbow Flex 20 40.4±2.49 101.9 90 99.2±2.61 10.2
L. Should. Abd. 30 29.8±1.15 3 90 78.4±2.71 12.9
L. Should. Flex 30 33.8±1.90 12.7 90 69.9±2.74 22.3
L. Should. Int. −45 −37.5±6.27 16.6 45 40.9±6.85 4.7
L. Elbow Flex 20 41.4±1.82 107.2 90 94.1±2.67 4.6
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TABLE 2 | Task list as executed in experiment.

Experiment
phase

Task
number

Task Category

Training tasks 1 Knife and fork Asymmetric
2 Pick object off plate Asymmetric

3–4 Scrub dish Asymmetric
5–6 Scrub table Coupled
7–8 Open box Symmetric in-phase
9 Fold clothes Symmetric out-of-phase
10 Drink from cup Coupled

11–14 Place cup on shelf Coupled
15–18 Pick cup off shelf Coupled

Testing tasks 19–21 Manipulate tray Coupled
22 Knife and fork Asymmetric
23 Pick object off plate Asymmetric
24 Open box Symmetric in-phase
25 Fold clothes Symmetric out-of-phase

26–27 Pretend steering wheel Asymmetric
28–29 Pretend ladder climb Symmetric out-of-phase

TABLE 3 | Summary of task categories.

Task category Number of training
tasks

Number of testing
tasks

Symmetric in-phase 2 1
Symmetric out-of-phase 1 3
Asymmetric 4 4
Coupled 11 3

Tasks 1 and 22, the knife and fork task, involved the subject
picking up a knife and fork, positioning them on a plate as if to
cut food, and executing a cutting motion with the knife. Task 1
involved one cutting motion and task 22 involved three. Tasks 2
and 23, picking object off plate, involved the subject picking up
a plate holding a small wooden object with their non-dominant
hand and using their dominant hand to pick the object off the
plate and place it on a target marked on the table. Tasks 3 and 4,
scrub dish, involved the subject picking up a plate in their non-
dominant hand and using a sponge with their dominant hand to
wipe the plate in a circular clockwise (task 3) or counterclockwise
(task 4) motion for one complete cycle. Tasks 5 and 6, scrub table,
consist of the subject reaching for a sponge and wiping it in a
shallow upright (task 5) or upside down (task 6) V pattern along
the surface of the table.

The open box task, number 7, 8, and 24, involved the subject
simultaneously opening the left and right flaps (task 7), the front
and back flaps (task 8), or both sets of flaps sequentially (task 27)
of a medium shipping box. Tasks 9 and 25, the fold clothes task,
consist of identical motions between the training and testing set.
The subject grasped a large piece of cloth along the outer edges
and folded the left and right thirds over the center.

Task 10, drink from cup, consisted of the subject grasping a
weighted cup placed in front of them with both hands and raising
it up to their mouth as if to drink. Tasks 11–14, place cup on shelf,
involved the subject picking up a weighted cup with both hands
and placing it on one of four locations on a small set of shelves
(top left, top right, bottom left, and bottom right sections of shelf
for tasks 11–14, respectively). Tasks 15–18, pick cup off shelf, has

the same sequence as 11–14 except the subjectmoves the cup from
the shelf to the table.

Tasks 19–21, manipulate tray, involved the subject picking
up a tray while tilting it to the left (task 19), right (task 21),
or not tilting (task 20). Tasks 26 and 27, imagined steer wheel,
involved the subject pantomiming a steering motion. Subjects
were instructed to pretend to turn a steering wheel in a hand-
over-hand fashion in either the clockwise direction (task 26) or
the counterclockwise direction (task 27) for three complete cycles.
Tasks 28 and 29, imagined ladder climb, involved the subject pan-
tomiming climbing up (task 28) and down (task 29) a ladder while
seated.

The measured velocity trajectories were windowed using a
threshold of 5% maximum repetition velocity to identify task
start/end. Windowed training tasks were then averaged across
repetitions for each subject to produce 18 windowed, filtered,
averaged joint angular velocity profiles for synergy derivation.
Testing task data were converted to joint angular velocity as above
and were windowed to task onset without averaging across repe-
titions. Testing tasks were only windowed to task start to ensure
that task duration always exceeded synergy duration.

Synergy Derivation
Table 4 documents all symbols used in this section for reference.
The measured velocity profiles for the training tasks were format-
ted into a matrix for each subject during data processing with
J rows, Tmax columns, and N pages. For the training tasks, the
study used J = 8 joints, Tmax = number of samples in the longest
windowed training task, and n training tasks with N = 18 total.

Vn =

v
n
1(1) . . . vn1(Tmax)
...

. . .
...

vnJ (1) . . . vnJ (Tmax)

 =

v
n
1(1) . . . vn1(Tmax)
...

. . .
...

vn8(1) . . . vn8(Tmax)


Tasks were padded with zeros on the end to reach Tmax length.

Tmax varies for each subject and ranged from 400 to 608 sam-
ples. In order to extract spatiotemporal synergies using PCA,
the 8×Tmax dimensional velocity matrix Vn for a given task is
manipulated into a row vector, Vn, with J·Tmax columns where
each instant of time is represented as an additional set of J joints.
Each task’s row vector is concatenated into an N × J·Tmax task
matrix, V :

V =


V1
V2
...
Vn



=


[
v11(1) · · · v18(1) · · · v11(Tmax) · · · v18 (Tmax)

][
v21(1) · · · v28(1) · · · v21(Tmax) · · · v28 (Tmax)

]
...[

vN1 (1) · · · vN8 (1) · · · vN1 (Tmax) · · · vN8 (Tmax)
]


Principal component analysis operates on thismatrix as though

it were a J·Tmax-joint system observed at N instants of time,
effectively treating the time-series velocity profiles as a single
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TABLE 4 |Definitions of variables used in Section “Materials and Methods.”

Symbol Definition Maximum value

J Index for joint number J= 8
T Index for task sample Tmax (training tasks),

Td (downsampled testing tasks)
n Index for training task number N= 18
m Index for synergies M= 8
l Index for testing task number L= 11
D Index for temporal synergy dilations D= 3
Ts,D Length of Dth dilation of mth synergy –

instant of a J·Tmax-joint system. The task matrix is resolved into
three-component matrices using SVD:

V = U
∑

S

where U is an N ×N square matrix with orthogonal columns,
Σ is an N × J·Tmax diagonal matrix, and S is a J·Tmax × J·Tmax
square matrix with orthogonal rows. The diagonal elements of Σ
correspond to the singular values, λ, of V.∑

= diag{λ1, λ2, . . . , λN}

In this form, the first m rows of S correspond to the first m
principal components, or synergies, where m<N:

S =



s11(1) · · · s1J (1) · · · s11(Tmax) · · · s1J (Tmax)
s21(1) · · · s2J (1) · · · s21(Tmax) · · · s2J (Tmax)

...
sM1 (1) · · · sMJ (1) · · · sM1 (Tmax) · · · sMJ (Tmax)

...
sN1 (1) · · · sNJ (1) · · · sN1 (Tmax) · · · sNJ (Tmax)


U, Σ, and S are computed from V using the SVD function in

MATLAB. The original V matrix can be approximated as Ṽ by
isolating the first M columns of U, M×M elements of Σ, and M
rows of S. The matrix UMdiag{λ1, λ2,. . . λM} is now denoted as
the weight matrix for the nth task and first M synergies for SM:

V ≈ Ṽ = UMdiag {λ1, λ2, . . . , λM} SM = Wn
MSM (3)

It follows from Eq. 3 that the time-series components of Ṽ
over time can be expressed as a weighted sum of M principal
components:

ṽnj (t) =
∑M

m=1
wn
msmj (t) (4)

Since the singular values found in Σ are related to the spread
of data along each principle axis, i.e., variance in that direction,
an index known as fraction of sum-squared variance can be cal-
culated from the diagonal elements of Σ. This index describes the
fraction of total variance accounted for by the first m synergies
and is useful as an indicator of how many principal components
are needed to adequately represent the data.

λ2
1 + λ2

2 + ... + λ2
M

λ2
1 + λ2

2 + ... + λ2
N

(5)

An index threshold of 95% variance is used to determine how
many synergies, M, are required to represent the training task
data.

Principal component analysis assumes stationary input vari-
ables, but the input data contain time-varying joint angular veloc-
ities. Here, “time-varying” refers to a motion consisting of a
sequence of postures that change with time. However, the sta-
tistical properties of the synergies are quite stationary. PCA also
assumes independent and identically distributed variables, but
the input data that contain bilateral arm postures are not strictly
independent (as there are biomechanical constraints that lead to
joint correlations) as is the case with many real-world variables.
PCA is a non-parametric method, i.e., it does not require any
prior knowledge. Although this makes the application of this
method simple, the method itself assumes linearity, which could
be a weakness in many applications. We have compared the per-
formance of PCA with other non-linear methods in Patel et al.
(2015a) and found that PCA outperformed other methods. Using
this exploratory analysis has previously led us to anatomically
informing and meaningful synergies as principal components.
These synergies could represent 100 postural movements with as
low as six synergies with accuracy greater than 90% (Vinjamuri
et al., 2010). These synergies also showed the effect on visual and
tactile feedback in reaching and grasping movements (Patel et al.,
2015b).

Reconstruction
Before performing reconstruction, the synergies and testing data
were downsampled from 240 to 60Hz due to the relatively long
duration of synergies and testing tasks leading to excessive com-
putation time. The testing task matrix, R, was reformatted from
a J×Td × L matrix for J joints, Td samples in the downsampled
task, and L= 11 tasks into a J·Td row, L column 2D matrix with
each column defined as a separate task:

R =





r11(1)
...

r1j (1)
...

r11(Td)
...

r1j (Td)


,



r21(1)
...

r2j (1)
...

r21(Td)
...

r2j (Td)


, · · ·



rL1(1)
...

rLj (1)
...

rL1(Td)
...

rLj (Td)




Each task shorter than the longest task was padded with zeros

to equal the same length. The objective of reconstruction is closely
analogous to finding a representation of R in a new basis B. This
is accomplished as an optimization problem to find the elements
of column vector C which most closely satisfies:

R = BC (6)

In this case, B will be made up of temporal offsets and dilations
of the synergies defined by Sm. B is formed by first transposing
the downsampled version of Sm. For notation, let S(m) be a J·Ts
element column vector containing synergy m and let [0] be a null
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column vector of J elements long. The first Td −Tmax columns of
B are:

Bm
D =



S(m) [0] [0]
[0] S(m) [0]
[0] [0] . . . [0]
...

...
...

[0] [0] S(m)


where m= 1 is the synergy number, D= 0 identifies an undilated
synergy (1, 2, or 3 indicating the first, second, or third synergy
dilation), and Tmax is the length of the undilated synergy.

Next, the synergy is dilated by interpolating S(m) to be some
proportion of the difference between testing task length and syn-
ergy length. In this study, we dilate each synergy to be longer than
the original synergy by 25, 50, and 75% of the difference in task
and synergy sample length. Each dilation, SD(m), is used to form
the next Td −Tm,D columns of B, where Tm,D is the number of
samples in the Dth dilations of the mth synergy. This is done by
forming each column as a sequential temporal offset of SD(m)
as done above. This process is repeated for each dilation of each
synergy, resulting in a B matrix, which contains every temporal
offset of every dilation examined of the first M synergies:

B =
[
B1

0 . . . B1
3 . . . BM

0 . . . BM
3

]
l1-norm minimization was used to sparsely select values for C
which satisfy the following optimization problem:

Minimize ∥C∥1 +
1
λ

∥BC − R∥2
2

where ||·||1 and ||.||2 represent the l1- and l2-norms, respectively,
and λ is a regulation parameter. Since the columns of B repre-
sent each synergy in different temporal offsets and dilations, the
elements of C serve as recruitment weights for a synergy at a
particular instant of time. The reconstructed task profiles, R̃, can
be generated by multiplying B·C:

R ≈ R̃ = BC

The error between the measured and reconstructed profiles
across all joints J= 8 is computed for each task, l using

el =

∑J
j=1

∑Tl
t=0(r

l
jj(t) − rlj(t))

2∑J
j=1

∑Tl
t=0rlj(t)

2 (7)

RESULTS

Extraction of Synergies Using PCA
Spatiotemporal kinematic synergies were computed for each sub-
ject using PCA. Figure 2 shows the squared variance for each
synergy along with the fraction of the sum of squared variance
averaged across subjects. Derived synergies were 2.14± 0.29 s
long, ranging from 1.67 to 2.53 s. The first synergy accounts for
57.98± 6.4% of total variance, while the first six synergies account
for 91.05± 1.7% and the first eight account for 94.82± 0.85%.

FIGURE 2 | Fraction of variance accounted for by each synergy (bars)
and total from 1 to n synergies (line). The first synergy accounts for
57.98±6.35% of variance, the first six synergies account for 91.05±1.69%,
and the first eight synergies account for 94.82±0.85%. Dotted line shows
0.95 threshold.

The first three of each subject’s synergies were compared to
each other using Pearson’s correlation coefficient. Synergies were
put into the column form discussed in the Section “Reconstruc-
tion” and compared. Figure 3A shows the Pearson’s r2 averaged
across subject comparisons for each combination of the first three
synergies, leading to 90 unique comparisons for each synergy
pair. Statistically significant differences were found in each of the
three groups by one-way ANOVA tables, α = 0.05. All compar-
isons between synergy 1, 2, and 3 were statistically significant
(p≪ 0.005 for all). Tukey post hoc tests were computed to deter-
mine specific differences. As expected, the correlation between
synergy 1 and synergy 1 was greater than the correlation between
synergies 1 and 2 and between synergies 1 and 3. Correlations
between synergies 1 and 2 and between synergies 1 and 3 were not
found to be different from each other. All r2 values are statistically
different for the synergy 2 and 3 comparisons. A closer exami-
nation of the synergy correlations was conducted using Pearson’s
correlation coefficient, r. Figure 3B is a color-scale grid displaying
the comparison between synergy one, two, and three between
each pair of subjects. Synergy 1 appears positively correlated
across all subjects except subject 6, who appears to have a strong
negative correlation. Synergy 2 appears more mixed: there exist
some positive/negative correlations that contribute to the overall
mean r2 of 0.3593± 0.2652, although subjects 1 and 10 have sta-
tistically insignificant mean r values at α = 0.05 of 0.0504± 0.265
(p= 0.5841) and 0.0594± 0.4582 (p= 0.7074), respectively.

Figure 4 shows the synergy velocity profiles for the first eight
synergies of subject 6. Each row corresponds to a joint labeled
with a letter indicating the side (“R” for right or “L” for left), the
joint (“S” for shoulder or “E” for elbow), and the rotation (“A”
for abduction, “F” for flexion, “I” for internal rotation). Since the
synergy is unscaled, the y axis is a unit-less velocity amplitude,
while the x axis is time in seconds. For subject 6, the first synergy
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FIGURE 3 | Correlation analysis of the first three synergies. (A) Pearson coefficient of determination, r2, averaged across the 45 unique combinations between
the specified synergies of each of 10 subjects. Statistical differences found using one-way ANOVA tables with α = 0.05 with Tukey post hoc tests. Comparison of
synergy 1 to synergy 1 and synergy 1 to synergies 2 and 3, among all pairings of synergy 2, and among all pairings of synergy 3 yielded significant differences.
(B) Correlation coefficient, r, between each subject for synergies 1, 2, and 3. Only unique pairings of subjects are shown using the upper triangle matrices. Synergy 1
appears highly positively correlated except for subject 6, who is highly negatively correlated.

FIGURE 4 | Angular velocity profile for first eight synergies of subject 6. Vertical axis is unitless velocity since synergy is unscaled. Rows are labeled with
letters indicating the side (“R” for right or “L” for left), the joint (“S” for shoulder or “E” for elbow), and the rotation (“A” for abduction in positive direction, “F” for flexion
in positive direction, “I” for internal rotation in positive direction) for each DoF. Synergy 1 and 2 involve flexion and internal rotation of shoulder along with extension of
elbow, implying a reaching motion, whereas synergy 3 involves extensions at the shoulder and flexion at the elbow.

consists of bilateral shoulder flexion, abduction, and internal rota-
tion, which suggests a forward reaching motion. The elbows both
show a small initial flexion, perhaps as the subject raises their arms
from the rest posture, followed by an extension motion as they
complete the reach. Synergy 2 behaves similarly, except shoulder
abduction is delayed relative to synergy 1 and shoulder flexion
and internal rotation are executed for a longer period of time.
As discussed above, synergy 3 is relatively uncorrelated among

subjects. For subject 6, synergy 3 involves slight shoulder flexion
followed by extension and adduction with an external rotation.
The elbows appear to flex slightly, extend, then flex again.

In order to better visualize the other synergies for subject 6,
each profile was integrated, multiplied by a gain, and added to the
average starting joint angles of a particular subject. The gain was
chosen such that the resulting angular profile remains within nat-
ural range of motion throughout the whole path. Figure 5 shows a
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FIGURE 5 | Posture visualization for first eight synergies of subject 6 (columns) over six normalized time instances (rows). Position at T = 0% is the
subject’s position averaged across the first 50 samples of all tasks. Synergies were integrated up to each time point and multiplied by a gain such that normal joint
range of motion is not violated. Mirror symmetry between left/right arms can be seen in the first three synergies whereas synergies 4–8 have asymmetric motions.
Subject’s non-dominant hand tends to go to a single position and hold steady while the dominant hand appears to move continuously.

virtual mannequin posed at the resulting postures for six normal-
ized time points. Subject 6, with a negatively correlated synergy 1,
has a distinct reach-and-graspmotion. The downward dip of both
hands observed at t= 0.4, or nearly halfway through the motion,
could roughly correspond to the end of the reach phase and the
beginning of object grasp and manipulation involving picking up
an object. Note that subject 6’s first synergy is strongly negatively
correlated with the rest of the subjects, so synergy 1 for most of
the subjects involves outward extension of the arms, similar to
synergy 3 in Figure 4. Synergy 2 was similar, except it involved a
reach-and-grasp motion instead of reach and manipulate/pick up.
The shoulder motions observed in the synergy 3 profiles clearly
result in an overall bilateral extension movement, with the arms
spanning outward behind the back. Synergy 4 appears similar to
picking up and holding a box at chest level.

The higher order synergies shown in Figure 5 appear to
show a level of handedness, with the left hand tending to go to
a certain position and holding while the right hand moved in
various profiles through the duration of each synergy. Figure 6
shows the Pearson coefficient of determination, r2, averaged
across subjects comparing joints 1–4 (right arm) to joints 5–8
(left arm) of all eight synergies. A one-way ANOVA (α = 0.05)
was performed with Tukey post hoc tests to establish significant
differences (ANOVA p≪ 0.005). Synergies 1 and 2 were each

FIGURE 6 | Pearson’s coefficient of determination comparing right
arm joints to left arm joints of the each synergy. One-way ANOVA and
Tukey post hoc show that synergy 1 and synergy 2 each had significantly
higher coefficients of determination than synergies 4–8, while the coefficient
for synergy 3 was significantly higher than synergy 4 and 8. Statistical
difference found in first three synergies implies asymmetric motion between
left and right arms in higher order synergies.
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significantly more correlated between left/right than Synergies
4–8, and Synergy 3 was more correlated between left/right than
Synergies 4 and 8.

Task Reconstruction
Reconstruction was carried out using up to eight synergies given
the PCA results above and the 8-DoF nature of the bilateral arm
model presented. Tasks were reconstructed with and without dila-
tions. Figure 7 shows the mean reconstruction error calculated
using Eq. 7 and averaged across degrees of freedom, tasks, and
subjects using no dilations (blue) and dilations at 25, 50, and 75%
of task/synergy length difference. Synergies 1–4 show a nearly
linear decrease in normalized error in both cases; each subse-
quent synergy begins showing less of an improvement. Recruit-
ing the first six synergies yielded a normalized reconstruction
error of 0.1757± 0.0347 and 0.104± 0.0161 for no dilations and
three dilations, respectively. Ultimately the error reduces down to
0.062± 0.0098 by synergy 8.

FIGURE 7 | Normalized reconstruction error when recruiting from
synergies 1–8 with and without dilations. The reconstruction error for
each synergy was averaged over degrees of freedom, subjects, and tasks.
Dilated synergies were longer than undilated synergies by 25, 50, and 75% of
the difference between minimum reconstruction task length and the synergy
length. SDs are across subjects and tasks.

Figure 8 shows examples of the reconstruction progression for
left shoulder abduction using dilations for several tasks, demon-
strating a clear progression from two available synergies (blue
dotted line) to 8 synergies (red line). Figure 8A shows that the
best-performing task that was repetition 2 of task 27, pretend
steering wheel counterclockwise for subject 8. Reconstruction
error went from 74.2% using only the first synergy to 2.22% using
the first eight. Figure 8B shows repetition 2 of task 24, open
box, for subject 5. Reconstruction error for this task was 27.9%
using the first synergy and 2.41% using the first eight. Figure 8C
shows repetition 1 of task 22, knife and fork, for subject 10.
Reconstruction error was 43.8% using the first synergy and 7.32%
using the first eight.

The optimization algorithm appeared to handle cyclic profiles
relatively well, whereas the initial and ending phases of the tasks
would often be less accurate. Figures 8A,C show this quality
within the first 1 s of the tasks. Reconstruction was able to capture
the overall shape of the task shown in Figure 8B, but some of the
finer, irregular motions were not captured.

Tables 5 and 6 show the integrated recruitment gain for subject
4 averaged across tasks during normalized time bins for each
synergy without and with dilations, respectively. Synergies and
their dilations were not allowed to be recruited beyond the time at
which the last synergy and task sample would coincide. Time bins
which would include “missing” recruitment gains were therefore
omitted. Significant differences found using one-way ANOVA
with α = 0.00089 (0.05 over 56 comparisons) between synergy
recruitments with and without dilations are indicated in Table 5
as bolded and underlined with an asterisk. For subject 4, synergies
3 and 5 in time bin 2 were significantly more recruited in the
no dilations reconstruction than in the dilations reconstruction
(p≈ 0 for both). No other synergies had significantly different
recruitments.

Table 6 shows significant differences in recruitment between
dilations of each synergy in each time bin, found using one-way
ANOVA tables with α = 0.00125 (0.05 over 40 comparisons) and
Tukey post hoc tests. Differences are bolded and marked with an
asterisk. The undilated synergy 1 was significantly more recruited
than all dilations in time bin 1 (p≈ 0). The undilated synergy 8
was significantly more recruited than dilation 2 and 3 in time bin
1 (p≪ 0.00125). The first dilation of synergy 7 was significantly
more recruited than the un-dilated synergy in time bin 3 (p≈ 0).
The undilated synergy 8 was significantly more recruited than the

FIGURE 8 | Three examples of reconstruction progression for left shoulder abduction. (A) Repetition 2 of task 27 for subject 8, the best-performing
reconstruction with error across all joints of 2.22%. (B) Repetition 2 of task 24 for subject 5, error of 2.4%. (C) Repetition 1 of task 22 for subject 10, error of 7.3%.
The early reaching phases of tasks were typically not as accurately reconstructed as the later manipulation phases.
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TABLE 5 | Integrated recruitment weight without dilations for normalized time bins averaged across tasks for subject 4 (mean±SD).

Time bin

1 2 3 4 5 6 7 8–10

Synergy number 1 −26.57±17.45 −11.33±26.62 12.06±34.19 −9.23±18.79 −9.48±26.38 7.96±28.23 −0.72±16.06 –
2 9.44±18.81 −4.75±15.67 1.74±10.06 0.37±9.64 −4.33±14.96 0.24±8.66 0.64±9.37 –
3 4.98±12.94 9.89±12.61* −3.08±12.48 −0.35±10.6 2.44±9.28 −6.18±14.18 1.14±13.08 –
4 8.03±9.53 −0.01±11.62 1.87±9.43 −2±8.59 1.7±7.77 −0.88±6.15 2.4±9.47 –
5 1.39±13.96 −9.24±11.7* 1.41±11.23 4.93±13.45 −4.74±9.3 0.29±8.04 2.05±10.15 –
6 6.42±28.58 −17.88±51.59 5.55±28.93 10.64±34.04 −14.79±33.27 5.74±20.07 8.41±30.17 –
7 −0.34±9.14 −3.77±15.21 0.8±15.6 2.91±16.71 −4.09±13.76 5.93±11.02 0.72±14.61 –
8 2.53±24.7 −12.33±33.39 −4.37±37.26 16.78±36.35 −13.31±26.3 −3.19±31.74 10.07±28.91 –

Statistical differences are marked in bold with an asterisk.

TABLE 6 | Integrated recruitment weight including dilations (D0, D1, D2, D3) for normalized time bins averaged across tasks for subject 4 (mean±SD).

Time bin

1 2 3 4 5 6 7 8–10

Synergy number 1 D0 −19.75±18.81* 3.53±14.85 5.04±17.22 −1.97±5.45 0.78±4.39 −0.47±11.58 −2.28±6.33 –
D1 −4.79±5.17 1.06±4.05 −1.49±7.14 −0.35±5.84 0.85±6.59 – – –
D2 −4.79±5.17 1.06±4.05 −1.49±7.14 – – – – –
D3 −3.1±7.41 – – – – – – –

2 D0 1.42±14.16 0.27±0.89 2.09±8.09 −0.16±2.02 0.46±1.36 −0.06±6.2 1.36±4.4 –
D1 −0.83±9.06 0.37±1.59 −0.54±2.59 −0.19±1.77 1.54±3.9 – – –
D2 −1.61±5.17 1±4.05 −3.55±7.14 – – – – –
D3 −3.04±7.77 – – – – – – –

3 D0 0.5±1.71 −0.42±1.53 −0.03±1.2 0.07±1.16 −0.7±1.41 0.57±2.06 0.67±2.12 –
D1 0.48±1.75 −0.42±1.53 −0.03±1.2 0.07±1.16 −0.7±1.4 – – –
D2 0.56±5.49 −0.41±1.31 −0.15±1.42 – – – – –
D3 5.82±12.58 – – – – – – –

4 D0 3.06±8.86 −0.32±4.15 −0.8±3.01 0.9±2.07 −0.62±2.47 −0.06±2.55 0.85±1.35 –
D1 2.63±5.85 −0.37±3.09 −0.87±3.38 0.99±2.32 −0.51±2.39 – – –
D2 1.52±8.97 0.3±4.82 −0.76±3.27 – – – – –
D3 1.48±5.9 – – – – – – –

5 D0 −1.45±2.48 0.09±1.69 −0.41±1.31 −0.52±1.37 −0.05±0.81 0.34±2.93 0.03±1.35 –
D1 −1.46±2.49 0.09±1.69 −0.41±1.31 −0.53±1.38 −0.04±0.76 – – –
D2 −2.96±7.54 −1.15±3.6 0.55±3.75 – – – – –
D3 −0.28±5.97 – – – – – – –

6 D0 2.31±22.83 −0.19±13.51 4.05±17.21 −0.47±16.69 −2.68±13.1 3.54±13.58 −2.15±8.03 –
D1 3.65±11.23 −2.2±7.98 1.2±2.92 −0.91±5.01 −1.75±7.8 – – –
D2 −5.32±15.15 −0.8±5.65 6.17±14.32 – – – – –
D3 −3.85±9.58 – – – – – – –

7 D0 1.65±7.15 −1.16±3.6 0.97±4.61 0.64±8.32 −1.35±6.54 2.17±5.3 −3.59±7.96 –
D1 2.66±14.93 0.53±17.11 −7.03±10.51* 2.07±9.08 −1.86±5.2 – – –
D2 −0.38±13.73 3.37±8.03 −0.52±5.7 – – – – –
D3 2.06±6.86 – – – – – – –

8 D0 25.04±58.14* −1.4±10.05 −10.33±25.53* 2.32±11.15 −1.02±4.59 −7.8±21.86 1.46±6.18 –
D1 −0.73±3.85 −1.03±3.49 0.66±2.72 −0.67±1.38 0.88±3.1 – – –
D2 −11.03±28.59 −2.25±10.4 9.63±22.25 – – – – –
D3 −8.24±25.78 – – – – – – –

Statistical differences are marked in bold with an asterisk.

second dilation in time bin 3 (p≪ 0.00125), although the absolute
value of their recruitments likely would not be different.

A similar analysis was performed after pooling all subjects.
Significant differences in recruitment of an undilated synergy
including and excluding dilations were found across tasks and
subjects using ANOVA with α = 0.0013 (α = 0.05 for 40 com-
parisons). Synergy 1 was significantly less recruited in time bins
1 and 2 when dilations were included in reconstruction (p≈ 0).

Synergy 8 was significantly more recruited in time bin 1 with
dilations compared to without dilations (p≪ 0.0013). Differences
in recruitment among dilations of each synergy in each time
bin were found across tasks and subjects using ANOVA tables
with α = 0.00156 (α = 0.05 for 32 comparisons). The undilated
synergy 1 in time bin 1 is significantly more recruited than the
dilated versions (p≈ 0). The undilated and first dilation of synergy
5 are more recruited than dilation 3, but this difference was not
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statistically significant (p= 0.0034). Dilation 4 of synergy 7 was
recruited significantly more than the undilated, first, and second
dilation in time bin 1 (p≪ 0.001). The undilated synergy 8 was
statistically different from the first and second dilation in time bin
1 (p= 0.0015).

DISCUSSION

Previous work in implementing postural synergies in robotic
control systems (see Introduction) aims to create a simplified
control scheme, which can control high-dimensional systems
with a reduced number of control inputs or actuators. The
present study expands on this work by evaluating time-varying
spatiotemporal synergies defined for both shoulder and elbow
joints. Furthermore, we believe a key question for robotic sys-
tems (such as prosthetics and other assistive devices) meant to
perform ADL, is how capable such systems are of reproducing
ADL-like motion. Most experiments evaluate performance via
endpoint variables such as task success rate, task completion
time, or endpoint accuracy. This work attempts to evaluate such
a system based on its ability to replicate ADL-like kinematics
measured from reach-and-grasp experiments. This representa-
tion gives a more complete representation of the state of the
system through the entire motion being performed. We present
the optimal kinematic performance of time-varying synergies
by sparsely optimizing the recruitment of synergies in time and
amplitude and also introduce temporal dilations as discussed
later.

Our results indicate that although the first three synergies can
account for up to 80% of variance in training data, replicating
the actual kinematics of ADL tasks could require the use of
higher order synergies. Using two, three, or even four syner-
gies as in previous literature could still be placing an absolute
optimal kinematic accuracy limit of over 30% error in angular
velocity, as shown in Figure 7. In the context of robotic control
and assistive robotic interfaces, our results are reminiscent of
the tradeoff between the optimal performance and complexity of
control. An autonomous systemmay be able to incorporate higher
order synergies in order to finely coordinating two arms, whereas
an assistive system meant to be used by a person would quickly
become too complex to use. These results may be improved on
by experimenting with training task composition, dividing joints
into different subgroups, or several other approaches which were
not examined here.

Beyond simplifying control schemes, synergies have also been
proposed as an avenue to make robotic systems exhibit more
humanoid behaviors with biomimetic control. Robots designed
to interact and cooperate with humans are deemed more estheti-
cally pleasing when exhibiting anthropomorphic motion and are
believed to be safer since human-like motions are more readily
predictable than robotic ones (Duffy, 2003; Hegel et al., 2008).
Control schemes aimed at anthropomorphizing robotic motions
through the use of synergies derived from reach-and-grasp tasks
have been carried out by Liarokapis et al. (2015) and reviewed
by Santello et al. (2016). Whereas this work leveraged postural
synergies, our results indicate that time-varying synergies could
be used to produce more accurate replications of human motion.
It is possible that the reconstruction method applied here could

be performed on non-anthropomorphic trajectories to generate a
near-natural approximation of a synthetictrajectory.

The recent trend of mechanically embedding synergies into
robotic systems may also be extended to time-varying principal
components. The SoftHand, for example, uses a compliant struc-
ture actuated by a single principal component to achieve various
grasps (Catalano et al., 2014). Implementing the complexmotions
described in Figure 4 may be achieved by software-generated
temporal postural synergies coupled with a mechanical design
which together introduce non-linearities. These time-varying syn-
ergies in bilateral arm movements can be easily integrated in
upper limb prosthetics and rehabilitation devices to render natural
movements.

Our results could also have implications outside of strict robotic
control. The symmetric nature of the first two synergies between
the left and right arms led to an examination of the similarities
between the left and right joint angular velocities of synergies 1–8
for each subject. These results indicate that lower order synergies
tended to have similar profiles between the left and right arms,
whereas higher order synergies were dissimilar. The lower order
synergies seem to provide broad reaching motions, while higher
order synergies appear to fine-tune the motion to suit particular
manipulations required by a task.

The asymmetries in higher order synergies could contain infor-
mation related to the handedness of the subject. Observationally,
the postural visualization of the higher order synergies in Figure 3
appears to show the left arm maintaining stable positions and
motions, while the right arm follows a more complex path. This
result is in line with previous work done on bimanual upper limb
control, and a more detailed kinematic analysis of bilateral kine-
matic synergies may also be conducted to explore this link. Sain-
burg and Kalakanis (2000) and Bagesteiro and Sainburg (2002)
found significant differences in hand path curvature and torque
efficiency between dominant and non-dominant hands; the same
group found advantages in the dominant arm for speed and direc-
tional control, whereas the non-dominant arm was specialized
for accurate position control through increased limb impedance
(Wang and Sainburg, 2007). Recently, Yokoi et al. (2014) con-
ducted bimanual lever tasks in which the non-dominant arm
operated in an artificial force field. They were able to demonstrate
that the non-dominant limb was more adaptable to the force field
when trained with a specific motion direction of the dominant
arm, but that altering the dominant-side target location led to a
decrease in performance of the non-dominant arm. In this paper, a
model using movement primitives to approximate motor learning
of the non-dominant arm relative to dominant arm dynamics was
able to replicate this effect, supporting the idea that bilateral syner-
giesmay be used by the central nervous system to producemotion.

The synergies are hypothesized to be abstract representations
of motion encoded in the sensorimotor system of the brain, which
can be combined to form the complexmotions required to execute
ADL tasks. The actual generation and execution of complex upper
limb movements is a neural process that still has much to be
discovered. The original drive or goal which the sensorimotor
system acts on has long been believed to be the limbic system
(Brooks, 1986). The abstract goals produced by the limbic sys-
tem are processed by the association cortex that then produces
a plan for motion. This information is passed to the projection
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system, composed of the sensorimotor cortex, cerebellum, and
basal ganglia, which converts the “trajectory” to a series of com-
mands which can be passed to the spinal cord. This process is
dictated by sensory feedback, developmental history, and a sense
of the dynamics of the body (Brooks, 1983). The internal dynamic
model has been hypothesized to be composed of both feedforward
and feedback components, aimed at minimizing error while still
allowing for quick responses. The existence of either of these
models or the combination thereof is still much debated, with
evidence pointed either way (Wolpert et al., 1998). As mentioned
earlier, the studies conducted by Viviani and Terzuolo (1980)
imply the projection system’s ability to dilate motion building
blocks in time. Single impulses at specific interneuronal sites result
in coactivation of multiple muscles, as shown by Tresch et al.
(1999) and Saltiel et al. (2001), and each muscle generates torque
aroundmultiple degrees of freedom in the hand and arm (Santello
et al., 2013). This torque is influenced by numerous anatomical
parameters which are unique to each individual, as is the resulting
motion of the limb (Buchanan et al., 2004). Visual, proprioceptive,
haptic, and numerous other sensory signals are then returned to
the brain and integrated into motion planning.

Task reconstruction as performed in this study attempts to
model the neural process described above computationally. The
measured training task can be viewed as the motion plan output
by the associative cortex. The synergies derived from the rapid
tasks serve as the “history” programmed into the projective sys-
tem which dictates how the brain converts planned motion to
spinal cord commands. This would be analogous to a feedforward
component of cerebellar processing discussed by Wolpert et al.
(1998): given a certain output from the brain, there is expected
to be some dynamic response observed at the arms that can take
on an arbitrary pattern across joints. Dilations of the synergies are
also provided which attempts to mimic the time-scaling ability of
the basal ganglia and cerebellum. l1-normminimization serves the
role of the projection system by using synergies and their dilations
to convert from a desired motion to a time-series of gains, which
can be viewed as the time-series of signals being sent to the
spinal cord. The neuromuscular and physiological construction
of the limbs is approximated by multiplying the synergies by this
time-series of gains, producing the final motion.

The time-series of gains generated by l1-norm minimization
could give some insights into how useful temporal dilations of
synergies could be in motion production. Table 5 shows that
recruitment of synergy 1 is reduced when including dilations
in reconstruction for the first two time bins. Synergy 8 had a
larger recruitment in the first time bin with dilations compared to
without. Table 6 shows that the only statistical difference between
recruitment of dilations is in time bin 1 for synergies 1, 7, and 8.
The undilated synergy 1 was significantly more recruited than the
dilations, dilation 3 was the most recruited for synergy 7, and the
undilated synergy was the most recruited for synergy 8. The most
significant effect of including dilations in the recruitment process
appears to be the reduction in recruitment of synergy 1 during
task onset. Recruitment of the dilations of synergy 1 also appears
to be relatively large compared to recruitment of the other synergy
dilations.

The present experiment could be refined to further study
dominant/non-dominant performance in bimanual ADL. The

subject pool can be expanded to include left- and right-handed
individuals, and tasks can be modified to selectively engage
the left, right, or bilateral arms. The relative influence of
dominant/non-dominant hemispheres on ipsilateral limb motion
could be examined with a more focused data analysis by exam-
ining whether left or right side joints are better reconstructed for
left- and right-handed subjects. Devising a way to “coax” recon-
struction to replicate the structural asymmetry and increased
influence of the dominant over the non-dominant hemisphere as
opposed to vice versa (Snyder et al., 1995; Amunts et al., 1996;
Ziemann and Hallett, 2001; Hayashi et al., 2008) could allow us to
study the strength of this influence. The upper limb kinematic data
recorded in this study may also be augmented with EMG and/or
EEG signals.

CONCLUSION

This paper presents a study of spatiotemporal kinematic syner-
gies in bilateral arm movements during ADL tasks. These tasks
were selected as a representation of the fundamental categories of
bilateral motion (symmetric, asymmetric, coupled), with further
work aimed at tailoring the task list to target specific aspects of
sensorimotor processing. Derived synergies accounted for up to
94.82± 0.85% of variance and were demonstrated to reconstruct
ADL tasks to within 6.2± 0.98% using the l1-norm minimiza-
tion algorithm. The concept of temporal synergy dilations were
incorporated to replicate movement processing found in the basal
ganglia and cerebellum. Recruitment patterns were examined
throughout task duration and found that the dilated version of a
synergy was used equally as much as the undilated version of the
same synergy in most time bins, with the beginning of the motion
having the most difference. Potential uses of time-varying syner-
gies to anthropomorphize robotic motion and inform mechanical
construction were discussed. Interesting features of the synergies
in the context of handedness corroborating others’ results were
discussed. We believe that synergies will be instrumental in build-
ing next-generation biomimetic prosthetics and orthotics in the
near future.
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Researchers have explored a variety of neurorehabilitation approaches to restore normal 
walking function following a stroke. However, there is currently no objective means for 
prescribing and implementing treatments that are likely to maximize recovery of walking 
function for any particular patient. As a first step toward optimizing neurorehabilitation 
effectiveness, this study develops and evaluates a patient-specific synergy-controlled 
neuro musculoskeletal simulation framework that can predict walking motions for 
an individual post-stroke. The main question we addressed was whether driving a  
subject-specific neuromusculoskeletal model with muscle synergy controls (5 per leg) facil-
itates generation of accurate walking predictions compared to a model driven by muscle 
activation controls (35 per leg) or joint torque controls (5 per leg). To explore this question, 
we developed a subject-specific neuromusculoskeletal model of a single high-functioning 
hemiparetic subject using instrumented treadmill walking data collected at the subject’s 
self-selected speed of 0.5 m/s. The model included subject-specific representations of 
lower-body kinematic structure, foot–ground contact behavior, electromyography-driven 
muscle force generation, and neural control limitations and remaining capabilities. Using 
direct collocation optimal control and the subject-specific model, we evaluated the ability 
of the three control approaches to predict the subject’s walking kinematics and kinetics at 
two speeds (0.5 and 0.8 m/s) for which experimental data were available from the subject. 
We also evaluated whether synergy controls could predict a physically realistic gait period 
at one speed (1.1 m/s) for which no experimental data were available. All three control 
approaches predicted the subject’s walking kinematics and kinetics (including ground 
reaction forces) well for the model calibration speed of 0.5 m/s. However, only activation 
and synergy controls could predict the subject’s walking kinematics and kinetics well for 
the faster non-calibration speed of 0.8 m/s, with synergy controls predicting the new gait 
period the most accurately. When used to predict how the subject would walk at 1.1 m/s, 
synergy controls predicted a gait period close to that estimated from the linear relationship 
between gait speed and stride length. These findings suggest that our neuromusculo-
skeletal simulation framework may be able to bridge the gap between patient-specific 
muscle synergy information and resulting functional capabilities and limitations.

Keywords: biomechanics, computational neurorehabilitation, direct collocation optimal control, muscle synergy 
analysis, neuromusculoskeletal modeling, predictive gait optimization
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INtRodUCtIoN

Roughly one in six people worldwide will suffer a stroke at some 
point in their lifetime, with ~15 million people experiencing 
a stroke each year (World Stroke Organization, 2016). Due to 
improvements in acute stroke management, the majority of these 
individuals will survive their initial stroke, which has helped 
make stroke a leading cause of serious, long-term disability in 
adults worldwide (Go et al., 2013; World Stroke Organization, 
2016). More than a third of stroke survivors experience signifi-
cant physical disability (Lloyd-Jones et al., 2010), with walking 
dysfunction being among the greatest stroke-related limitations 
contributing to disability. While the majority of persons who 
suffer a stroke regain some level of ambulatory function, their 
gait is typically slow, asymmetrical, and metabolically inefficient 
(Olney et al., 1986; Roth et al., 1997). Diminished walking ability 
is tied to decreased quality of life, increased risk of depression, 
and increased risk of serious secondary health conditions 
(Blair et  al., 1989; Mutikainen et  al., 2011; Ostir et  al., 2013). 
Restoration of walking function following a stroke is therefore 
both a high priority for rehabilitation and an important public 
health problem.

Despite recognition of the problem, current clinic-based 
neurorehabilitation methods produce only modest improve-
ments in walking function for persons post-stroke (States et al., 
2009; Bogey and Hornby, 2014; Winstein et al., 2016). For this 
reason, researchers and clinicians have explored a variety of 
neurorehabilitation approaches in search of an effective means 
to restore post-stroke walking function. These approaches 
include functional electrical stimulation (FES) (Popovic et  al., 
1999; Kesar et  al., 2009, 2010; Sabut et  al., 2013; Chung et  al., 
2014; O’Dell et al., 2014; Pilkar et al., 2014; Auchstaetter et al., 
2015; Chantraine et  al., 2016), ankle–foot orthoses (AFOs) 
(Ferreira et al., 2013; Tyson et al., 2013; Kobayashi et al., 2016), 
exoskeletons (Nilsson et  al., 2014; Bortole et  al., 2015; Buesing 
et  al., 2015), partial body weight support (Ng et  al., 2008; Lee 
et  al., 2013) and split-belt treadmill training systems (Reisman 
et al., 2007; Malone and Bastian, 2014), and robotic gait trainers 
(Pennycott et  al., 2012; Mehrholz et  al., 2013; Bae et  al., 2014; 
Hussain, 2014; Dundar et  al., 2015). Each of these approaches 
has shown varying levels of promise for improving post-stroke 
walking function. However, a critical challenge is determin-
ing the treatment prescription – which approach to apply, how 
much of the approach to apply, and how the approach should be 
applied – that will maximize recovery of walking function for 
any particular individual. Furthermore, there is currently no way 
to identify whether a small amount of treatment provided by a 
combination of approaches might be dramatically more effective 
than a large amount of treatment provided by a single approach 
(Belda-Lois et  al., 2011). Current treatment design methods 
based on trial-and-error and subjective clinical judgment cannot 
address these challenges, since they do not provide an objective 
means for predicting a patient’s walking function following a 
specified treatment or treatment combination.

One possible approach for overcoming this challenge is to 
use patient-specific neuromusculoskeletal models to predict 
post-treatment walking function for different neurorehabilitation 

technologies (alone or combined) under consideration. Such 
models should account for how the patient interacts with the 
treatment approach (Mooney and Herr, 2016) so that the optimal 
prescription can be recommended based on objective predictions 
of walking improvement. A number of studies have pursued 
such modeling efforts by simulating the effects of FES (Riener, 
1999; Heilman and Kirsch, 2003; Zhang and Zhu, 2007; Shao and 
Buchanan, 2008; Nekoukar and Erfanian, 2013; Sharma et  al., 
2014; Alibeji et al., 2015), exoskeletons (Fleischer and Hommel, 
2008; Afschrift et al., 2014; Farris et al., 2014; Sawicki and Khan, 
2015), orthoses (Zmitrewicz et al., 2007; Crabtree and Higginson, 
2009; Silverman and Neptune, 2012), and strength training 
(Goldberg and Neptune, 2007; Knarr et  al., 2014) on lower 
extremity function and walking ability in the context of stroke, 
spinal cord injury, amputee, and general rehabilitation. Few of 
these studies focused on stroke (Goldberg and Neptune, 2007; 
Shao and Buchanan, 2008; Knarr et  al., 2014), few used three-
dimensional models (Fleischer and Hommel, 2008; Afschrift 
et al., 2014; Farris et al., 2014; Knarr et al., 2014; Sawicki and Khan, 
2015), few used subject-specific models created by calibrating 
critical neuromusculoskeletal model parameters to movement 
data collected from an individual (Fleischer and Hommel, 2008; 
Shao and Buchanan, 2008; Knarr et  al., 2014), and only one 
included modeling elements that accounted for subject-specific 
neural control capabilities and limitations (Alibeji et al., 2015). 
No study to date has predicted a stroke patient’s complete post-
treatment walking motion and speed resulting from application 
of a specific neurorehabilitation intervention.

As a first step toward optimizing patient interaction with 
stroke neurorehabilitation technologies, this study describes 
the development and evaluation of a subject-specific synergy-
controlled neuromusculoskeletal simulation framework that can 
predict three-dimensional walking motions for an individual 
post-stroke. The main question we address is whether actuating 
a subject-specific neuromusculoskeletal model with muscle syn-
ergy controls (5 per leg) facilitates generation of accurate walking 
predictions compared to actuating the model with muscle activa-
tion controls (35 per leg) or joint torque controls (5 per leg). We 
hypothesize that synergy controls will work the best since they 
combine a low number of control signals with a subject-specific 
representation of the coupling between muscle activations within 
each leg. We collect gait data from a stroke subject walking at 
0.4, 0.5, 0.6, 0.7, and 0.8 m/s on an instrumented treadmill and 
use data from his self-selected speeds of 0.4–0.6 m/s to develop 
a subject-specific neuromusculoskeletal model. We incorporate 
the subject-specific full-body model into a direct collocation 
optimal control framework to predict new walking motions for 
the subject. To evaluate the framework and the potential benefits 
of using synergy controls, we predict how the individual will walk 
(including cadence and stride length) at 0.5 and 0.8 m/s (condi-
tions for which experimental data are available for comparison) 
using joint torque, muscle activation, or muscle synergy controls 
and at 1.1 m/s (a condition for which no experimental data are 
available) using only synergy controls. With future simulation 
of different neurorehabilitation approaches, our subject-specific 
synergy-controlled neuromusculoskeletal simulation framework 
may help identify optimal neurorehabilitation prescriptions that 
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maximize recovery of walking function on an individual patient 
basis.

Methods

experimental data Collection
To assist with development and evaluation of our subject-
specific synergy-controlled neuromusculoskeletal simulation 
framework, we collected experimental walking data from one 
high-functioning hemiparetic male individual with chronic 
stroke-related walking dysfunction (age 79 years, LE Fugl-Meyer 
Motor Assessment 32/34 pts, right-sided hemiparesis, height 
1.7  m, mass 80.5  kg). All study procedures were approved by 
the University of Florida Health Science Center Institutional 
Review Board (IRB-01) and the Malcom Randall VA Medical 
Center Research and Development Committee and included 
approval to study individuals with stroke-related disability. Study 
personnel obtained written informed consent prior to participant 
enrollment and involvement in study activities. Study procedures 
were conducted in accordance with the Declaration of Helsinki. 
Motion capture (Vicon Corp., Oxford, UK), ground reaction 
(Bertec Corp., Columbus, OH, USA), and electromyography 
(EMG) data (Motion Lab Systems, Baton Rouge, LA, USA) 
were collected simultaneously while the participant walked on 
a split-belt instrumented treadmill (Bertec Corp., Columbus, 
OH, USA) at speeds ranging from 0.4 to 0.8 m/s in increments of 
0.1 m/s. 0.8 m/s was the fastest speed at which the subject could 
walk safely without assistance. This range of speeds included the 
participant’s self-selected walking speed of 0.5 m/s. More than 50 
gait cycles were recorded at each walking speed. A static stand-
ing trial was collected for model scaling purposes. To facilitate 
subsequent creation of subject-specific foot–ground contact 
models, the participant wore Adidas Samba Classic sneakers, 
which have a flat sole and neutral midsole with no cushioning, 
and we collected additional static trials where we used a marker 
wand to trace the outline of each sneaker sole on the ground. 
Motion capture data were obtained using a modified Cleveland 
Clinic full-body marker set with additional markers added to the 
feet (Reinbolt et al., 2005). Marker motion and ground reaction 
data were filtered at a variable cut-off frequency of 7/tf Hz, where 
tf is the period of the gait cycle being processed, using a fourth-
order zero phase lag Butterworth filter (Hug, 2011). This variable 
cut-off frequency would cause data collected at a normal walking 
speed to be filtered at ~6 Hz.

Electromyography data were collected from 16 muscles in each 
leg and processed using standard methods (Lloyd and Besier, 
2003). A combination of surface and fine-wire EMG electrodes 
was used. Surface EMG data were collected for gluteus maximus 
and medius, semimembranosus, biceps femoris long head, rectus 
femoris, vastus medialis and lateralis, medial gastrocnemius, tibi-
alis anterior, peroneus longus, and soleus. Fine-wire EMG data 
were collected for adductor longus, iliopsoas, tibialis posterior, 
extensor digitorum longus, and flexor digitorum longus. All 
EMG data were high-pass filtered at 40  Hz (Lloyd and Besier, 
2003), demeaned, rectified, and then low-pass filtered at a vari-
able cut-off frequency 3.5/tf Hz. Filtering was performed using a 
fourth-order zero phase lag Butterworth filter. EMG data from 

each muscle were normalized to the maximum value over all trials 
and resampled to 101 time points per gait cycle (heel strike to heel 
strike for the less involved left side) while keeping an additional 
20 time points before the start of the cycle to permit modeling of 
electromechanical delay. In addition, each processed EMG signal 
was offset on a cycle-by-cycle basis so that the minimum value 
was zero.

Neuromusculoskeletal Model 
development
The subject-specific neuromusculoskeletal model that served as 
the foundation for our simulation framework incorporated four 
modeling components to account for the unique neurophysio-
logical and musculoskeletal characteristics of the subject: (1) a 
subject-specific lower-body kinematic model to simulate the 
subject’s skeletal motion, (2) subject-specific foot–ground con-
tact models to simulate how the subject’s feet interact with the 
ground, (3) subject-specific EMG-driven muscle moment models 
to simulate the subject’s lower extremity joint moments, and (4) 
a subject-specific muscle synergy control model to simulate the 
subject’s neural control system. Below we describe each of these 
four components in further detail. Unless otherwise noted, we 
calibrated model parameters in each component using a single 
representative walking trial collected at the subject’s self-selected 
speed of 0.5 m/s.

Subject-Specific Lower-Body Kinematic Model
Our neuromusculoskeletal model creation process started with 
a generic full-body musculoskeletal model (Arnold et al., 2010; 
Hamner et al., 2010) developed in OpenSim (Delp et al., 2007). 
The original model included 37 degrees of freedom (DOFs) and 
44 Hill-type muscle-tendon actuators in each leg. We locked the 
wrist and forearm pronation–supination angles to anatomically 
reasonable values for walking, leaving the following 31 DOFs: 
6 DOF ground-to-pelvis joint, 3 DOF hip joints, 1 DOF knee 
joints, 1 DOF ankle joints, 1 DOF subtalar joints, 1 DOF 
toe  joints connecting rear foot and toe segments, 3 DOF back 
joint, 3 DOF shoulder joints, and 1 DOF elbow joints. We also 
eliminated nine muscle-tendon actuators without related EMG 
data (extensor hallucis longus, flexor hallucis longus, gemelli, 
gracilis, pectineus, piriformis, quadratus femoris, sartorius, 
tensor fascia latae), leaving 35 muscles per leg that actuated 
hip flexion-extension, hip adduction-abduction, knee flexion-
extension, ankle flexion-extension, and ankle inversion–ever-
sion on each leg. We then scaled the modified model using the 
standing static trial marker data and the OpenSim “Scale Model” 
tool, where distances between markers placed over identifiable 
landmarks were averaged between the two sides to maintain 
bilateral symmetry following scaling.

Once the model was scaled, we calibrated joint and marker 
positions in the torso, pelvis, and lower-body portion of the 
OpenSim model using marker data from a representative walking 
trial. The calibration approach was similar to one described pre-
viously (Reinbolt et al., 2005, 2008) except that it was performed 
on the scaled OpenSim model using the OpenSim-MATLAB 
Application Programing Interface and included modifications 
to maintain correct bone geometry positions within the body 
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segments (Charlton et  al., 2004). To facilitate the calibration 
process, we created marker plates on the torso, pelvis, thighs, 
and shanks to which all markers on the respective OpenSim 
body segments were attached. To perform the actual calibration, 
we used non-linear least squares optimization (lsqnonlin) in 
MATLAB to adjust joint (knee, ankle, and subtalar in both legs) 
and marker plate (torso, pelvis, thighs, and shanks) positions 
and orientations in their respective body segments such that 
marker errors from repeated OpenSim inverse kinematic analy-
ses were minimized. The optimization cost function included 
penalty terms that prevented large changes in joint and marker 
plate positions and orientations that would produce only small 
improvements in marker tracking. Modification of the two hip 
joint center locations was achieved by modifying the position 
and orientation of the rigid marker plate on the pelvis. For joint 
centers and orientations, symmetry between left and right sides 
of the body was maintained during the kinematic calibration 
process. Markers on the feet were not adjusted since their loca-
tions were well defined. The position and orientation of the toe 
axis in each foot and of the back, shoulder, and elbow joints was 
maintained from the scaled OpenSim model.

Subject-Specific Foot–Ground Contact Models
Following kinematic calibration, we created a subject-specific 
foot–ground contact model for each foot of the OpenSim model 
using recently developed methods (Jackson et  al., 2016). The 
elastic foundation contact models were developed in MATLAB 
and used a grid of contact elements that spanned the rear foot 
and toes segments of each foot. To create the element grid, we 
started with the shoe outlines obtained from the static trial 
marker data and used principal component analysis to identify 
the principal axes of each foot (rear foot and toes segments 
together). Using these axes, we constructed an 11 (anterior-
posterior)  ×  8 (medial-lateral) grid of rectangular contact 
elements for the left foot, where the edges of the grid extended 
2.5 mm beyond the edge of the shoe outline in both directions. 
Forty-seven elements whose centers fell within the shoe outline 
were retained in the contact model, while 41 elements whose 
centers fell outside the shoe outline were removed. Given the 
locations of the MATLAB contact element centers relative to the 
foot markers from the static left shoe outline trial, we calculated 
the locations of the element centers on the OpenSim rear foot 
and toes segments. We then projected the left toes axis of the 
OpenSim model onto the contact element grid. Elements whose 
centers were posterior to the axis were assigned to the rear foot 
segment, while elements whose centers were anterior to the axis 
were assigned to the toes segment. The complete MATLAB/
OpenSim contact element grid for the left foot was mirrored to 
the right foot by aligning the principal axes of the mirrored grid 
with those of the right foot.

Each contact element in the foot–ground contact models 
generated normal force using a linear spring with non-linear 
damping and shear force using a continuous stick-slip friction 
model. For any contact element i, the required time-varying 
inputs for contact force calculations performed in MATLAB were 
the penetration into the floor yi, the normal penetration rate yi, 
and the shear slip rate vsi

 of the element center in the laboratory 

coordinate system as calculated by OpenSim. The normal contact 
force Fi for element i was calculated as (Hunt and Crossley, 1975)

 F k y y cyi i i i= − +( )( )0 1   (1)

where ki is the spring stiffness unique to each spring, y0 is the 
spring resting length common to all springs on the same foot 
and essentially adjusts the height of the floor, and c (= 1e–2) is a 
non-linear damping coefficient common to all springs. The linear 
spring also generates a small amount of force when the foot is off 
the floor, and this negligible force transitions in a smooth and 
continuous way to the large force produced when the spring is in 
contact with the ground (Anderson and Pandy, 2001; Ackermann 
and van den Bogert, 2010). The non-linear damping ensures 
that the normal contact force does not exhibit damping-related 
discontinuities when a spring enters or leaves contact. The shear 
contact force fi for element i was calculated using a simple con-
tinuous and differentiable friction model (Ackermann and van 
den Bogert, 2010)
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where μ [= 1 (Ackermann and van den Bogert, 2010)] is a dynamic 
friction coefficient common to all springs and vl (= 5 cm/s) is a 
latching speed common to all springs that defines the edge of a 
linear transition region between zero slip rate and the start of 
dynamic friction. Shear contact force fi was applied to the element 
center in the direction opposite to the slip velocity vector. The 
direction calculation included a small constant value of 1e−4 in 
the denominator to avoid division by a small number when the 
slip speed was near zero. Once Fi and fi were calculated for each 
contact element, the net contact force and torque due to all contact 
elements in the rear foot segment were calculated with respect to 
the rear foot origin, and similarly for the toes segment using the 
toes origin (Kane and Levinson, 1985). These net contact forces 
and torques were then applied to their corresponding segments 
in the OpenSim model. This approach allowed rear foot and toes 
contributions to total ground reaction force to be predicted by 
the model.

We calibrated the spring stiffness ki of each contact element 
in both feet and the spring resting length y0 for all contact ele-
ments in each foot using marker and ground reaction data from 
a representative walking trial. We made two assumptions about 
the spring stiffness distribution across the bottom of the shoe to 
simplify the calibration process. First, we assumed that the mir-
rored stiffness distribution was the same for both feet. Second, 
we assumed that the stiffness distribution across the entire shoe 
bottom could be approximated by a three-dimensional parabolic 
surface, which possesses only six unknown coefficients rather 
than 47 unknown independent spring stiffness values and pre-
vents neighboring springs from having dramatically different 
stiffnesses. To calibrate these six coefficients and the two resting 
lengths, we formulated a direct collocation optimal control 
problem that tracked experimental marker, ground reaction, and 
inverse dynamic joint torque data for the entire body with higher 
weight placed on matching marker position and ground reaction 
data for the two feet. Tracked ground reaction quantities for each 
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foot included the three ground reaction force components and 
three ground reaction torque components calculated about the 
midfoot marker projected onto the floor (see Optimal Control 
Walking Predictions below for further details).

Subject-Specific EMG-Driven Muscle 
Moment Models
To generate subject-specific joint moments from predicted muscle 
activations, we calibrated lower extremity EMG-driven muscle 
moment models for both legs to a large number of walking trials 
collected from the subject. Complete details of our EMG-driven 
model calibration process, and a full assessment of its ability to 
predict joint moments accurately for the same subject walking 
at multiple speeds, can be found in Meyer et al. (2016). In brief, 
the model calibration process used experimental walking data 
collected from the subject at 0.4, 0.5, and 0.6 m/s, bracketing his 
self-selected speed of 0.5 m/s. Ten trials from each speed were 
used for calibration. We adjusted three types of model parameter 
values in our calibration process: (1) EMG-to-activation param-
eter values, (2) Hill-type muscle-tendon model parameter values, 
and (3) surrogate musculoskeletal geometry parameter values. 
Below we describe each category of adjusted model parameter 
values in greater detail.

For our EMG-to-activation model, parameter values adjusted 
during calibration included electromechanical delays, EMG 
scale factors, activation time constants, and muscle non-linearity 
constants. A single electromechanical time delay between 0 and 
100 ms was used for all muscles in the same leg, allowing the two 
legs to have different electromechanical delays. An EMG scale 
factor was found for each muscle in each leg, resulting in 70 dif-
ferent scale factors. An activation time constant for a first-order 
activation dynamics model (He et al., 1991) was found for each 
muscle, with time constants assumed to be identical for the same 
muscle in both legs, resulting in 35 different time constants. 
Deactivation time constants were assumed to be four times 
larger than corresponding activation time constants (Thelen, 
2003; De Groote et al., 2012; Millard et al., 2013). Finally, a non-
linear constant defining the conversion of neural activation to 
muscle activation was found for each muscle (Buchanan et al., 
2004), with non-linear constants assumed to be identical for the 
same muscle in the two legs, resulting in 35 different non-linear 
constants.

For our Hill-type muscle-tendon model, parameter values 
adjusted during calibration included optimal muscle fiber 
lengths and tendon slack lengths. We used a custom Hill-type 
muscle-tendon model with a rigid tendon, as a recent study has 
shown that use of a compliant tendon model for simulations 
of walking has little effect on predicted muscle activations and 
forces (De Groote et al., 2016). This model was implemented in 
MATLAB to facilitate customization of model properties. Initial 
Hill-type model parameter values (optimal muscle fiber length, 
tendon slack length, pennation angle) for each muscle were taken 
from the literature (Arnold et al., 2010) and assumed to be the 
same for both legs. Optimal fiber length and tendon slack length 
values were pre-calibrated to reproduce passive hip, knee, and 
ankle flexion moment data reported in the literature (Silder et al., 
2007). Peak isometric force for each muscle was defined using 

regression equations for muscle volume reported in the literature 
(Handsfield et al., 2014) along with each muscle’s optimal fiber 
length and a maximum muscle stress of 61 N/cm2 (Arnold et al., 
2010). Maximum shortening velocity for each muscle was defined 
to be 10 optimal fiber lengths per second.

For our surrogate musculoskeletal geometry, parameter values 
adjusted during calibration included coefficients of polynomial 
functions defining muscle-tendon lengths as a function of 
spanned joint angles. For each muscle-tendon actuator in our 
kinematically-calibrated OpenSim model, we first created a sur-
rogate model of muscle-tendon length using a cubic polynomial 
function of all spanned joint angles. Some muscles required 
a cubic function of only one joint angle (e.g., vastus medialis), 
while other muscles required a cubic function of multiple joint 
angles (e.g., gluteus maximus and gastrocnemius medialis). We 
then created corresponding surrogate models of muscle-tendon 
velocity and moment arms by defining muscle-tendon velocity as 
the first derivative of the muscle-tendon length polynomial with 
respect to time and each muscle moment arm as the negative of 
the first derivative of the muscle-tendon length polynomial with 
respect to the corresponding spanned joint angle (An et al., 1984). 
In this way, the polynomial functions defining muscle-tendon 
lengths, velocities, and moment arms shared common coefficients 
(Menegaldo et al., 2004; Sartori et al., 2012a).

To generate an initial polynomial fit for each muscle, we 
sampled muscle-tendon lengths and moment arms from our 
kinematically calibrated OpenSim model using a wide range of 
lower extremity joint angle combinations. The maximum and 
minimum value of each joint angle were allowed to go well beyond 
the values achieved by the subject during walking. Sampling was 
performed using 1000 different model poses specified using a 
Latin hypercube design, with muscle-tendon lengths and moment 
arms being calculated by an OpenSim “Muscle Analysis.” After 
outliers were removed corresponding to situations with muscle 
wrapping problems, we used linear least squares regression to fit 
muscle-tendon length and moment arms for each muscle as a 
cubic polynomial function of spanned joint angles.

We used sequential quadratic programing (SQP) optimization 
(fmincon) in MATLAB to adjust the parameter values described 
above such that EMG-driven models for both legs matched lower 
extremity inverse dynamic and passive joint moment curves as 
closely as possible. Inputs to the optimization were the subject’s 
processed experimental EMG data, joint kinematics from 
OpenSim “Inverse Kinematics” analyses, and joint moments 
from OpenSim “Inverse Dynamics” analyses from 30 selected 
walking trials, along with the published passive joint moment 
data described earlier (Silder et al., 2007). For modeled muscles 
without experimental EMG data (e.g., vastus intermedius) or 
with multiple compartments (e.g., gluteus maximus), EMG 
data from anatomically related muscles were used but with a 
separate scale factor for each muscle/compartment (Sartori et al., 
2012b). Outputs were the model parameter values and predicted 
inverse dynamic and passive joint moments. The subject’s 
hip internal–external rotation moment from walking was not 
included in the calibration process, since EMG data were not 
collected from primary hip external rotator muscles. Thus, the 
EMG-driven model for each leg matched five inverse dynamic 
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moments (hip flexion–extension, hip adduction–abduction, knee 
flexion– extension, ankle flexion–extension, and ankle inversion– 
eversion). During calibration, optimal muscle fiber length and 
tendon slack length values were allowed to vary within 25% of 
the values produced by pre-calibration, while changes in sur-
rogate musculos keletal geometry were strongly penalized so that 
such changes would be made only if they resulted in significant 
improvements in joint moment matching. The calibrated EMG-
driven model for each leg was verified by predicting lower extrem-
ity joint moments for walking trials withheld from calibration, 
including trials from faster walking speeds. These models were 
used in all subsequent activation- and synergy-driven optimal 
control simulations.

Subject-Specific Muscle Synergy Control Model
The standard method of performing muscle synergy analysis uses 
only processed experimental EMG data. Following processing, 
EMG data for one complete walking cycle are organized into 
a matrix, and non-negative matrix factorization is applied via 
an optimization approach to decompose the high dimensional 
set of processed EMG signals into a lower dimensional set of 
time-varying signals (which we will call “synergy controls”) with 
associated sets of muscle weights (which we will call “synergy 
vectors”) (Lee and Seung, 1999; Tresch et al., 1999). The synergy 
vector weights specify how each synergy control contributes 
to each processed EMG signal. Each time a synergy analysis 
is performed, the number of synergies to fit must be specified 
a priori. Typically only three to six synergy controls are needed 
to reconstruct a much larger number of processed EMG signals 
with a high “variability account for” (VAF), typically above 90% 
(Ivanenko et al., 2005; Clark et al., 2010).

There are at least two drawbacks to the standard synergy 
analysis approach. First, the absolute amplitude of each pro-
cessed EMG signal remains unknown. Though EMG signals are 
commonly normalized using data from a maximum voluntary 
contraction trial or the movement trial with maximum signal 
amplitude, maximal M-wave measurements reveal that these 
methods do not yield the true maximum EMG value (Clark 
et al., 2006; Simonsen et al., 2012; Racinais et al., 2013; Cronin 
et al., 2015). Since EMG amplitudes affect the results of a muscle 
synergy analysis, this issue makes it difficult to use experimen-
tally derived synergy information for musculoskeletal modeling 
purposes. Second, since standard synergy analysis only uses 
experimental EMG data, it does not provide any information on 
how the inter-muscle coupling quantified by the synergy vec-
tors affects an individual’s ability to perform specific movement 
tasks. Thus, a gap exists between subject-specific neural control 
information provided by standard muscle synergy analysis and 
the functional consequences of that information.

To bridge this gap while also addressing the EMG nor-
malization issue, we perform muscle synergy analysis for our 
subject within the larger context of producing a dynamically 
consistent full-body walking motion using a subject-specific 
neuromusculoskeletal model (Sharif Razavian et al., 2015). With 
standard synergy analysis, the goal is to find a specified number 
of synergy controls and vectors that best match a larger set of 
normalized muscle EMG signals. With our approach, the goal 

is to find a specified number of synergy controls and vectors 
that best match experimental joint motions, ground reactions, 
lower-body inverse dynamic joint moments, and scaled EMG 
signals produced by our EMG-driven models. Thus, the breadth 
of data matched by our approach is much larger than that of a 
standard muscle synergy analysis. We describe our expanded 
approach as “dynamically consistent synergy analysis.” Use of 
EMG-driven models within our neuromusculoskeletal model 
provides a unique way to address the EMG normalization issue, 
while finding dynamically consistent full-body walking motions 
with our neuromusculoskeletal model bridges the gap between 
neural control information and its functional consequences.

To find synergy controls and vectors that could reproduce our 
subject’s walking data at his self-selected speed of 0.5 m/s, we fol-
lowed a two-step process. First, we performed standard synergy 
analysis on the 35 muscle activations for each leg produced by the 
EMG-driven model calibration process for a representative walk-
ing trial. We performed this step on muscle activations rather 
than scaled EMG signals since we omitted activation dynamics 
from our final neuromusculoskeletal model to reduce model 
complexity. We incremented the number of synergies found by 
standard synergy analysis until the total VAF was greater than 
95% and the VAF for each muscle was greater than 85%. We chose 
these high values since our goal was not simply reconstruction 
of activations but also reproduction of a dynamically consistent 
walking motion. Five synergies were required to achieve the 
target VAF values. Second, we performed a tracking optimization 
using direct collocation optimal control where all muscles in each 
leg were driven by five synergy controls. The synergy controls 
and associated synergy vectors were unknowns to be found by 
the optimization. The optimization tracked ground reactions, 
muscle activations, lower-body joint torques, and upper body 
joint motions while producing a dynamically consistent walking 
motion (see Optimal Control Walking Predictions below for 
further details).

optimal Control Walking Predictions
We used the subject-specific neuromusculoskeletal model 
described above and direct collocation optimal control to predict 
the subject’s walking motion at 0.5 and 0.8 m/s given walking data 
from the most periodic trial collected at his self-selected speed of 
0.5 m/s. A key advantage of collocation methods over shooting 
methods is that they use implicit rather than explicit simulation. 
Repeatedly during the non-linear programing (NLP) solution 
process, shooting methods perform explicit simulation to solve 
the system dynamics sequentially for one time frame at a time 
via numerical integration. This process is often unstable because 
either errors accumulate with each integration step or the system 
being simulated is inherently unstable, as with the human body 
during walking. By contrast, as part of the NLP solution process, 
collocation methods perform implicit simulation to solve the 
system dynamics for all time frames simultaneously with no 
notion of time stepping. Consequently, instabilities arising from 
accumulated integration errors or inherent system instabilities 
are eliminated, facilitating the use of gradient-based optimiza-
tion for predicting motion. Another advantage of collocation is 
that feedback control, which is artificially introduced in explicit 
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tABLe 1 | sequence of direct collocation optimal control problems solved using GPoPs-II to predict patient-specific walking motions at 0.5, 0.8, and 
1.1 m/s.

Cost Function Constraints static 
Parameters

Controls

1 Calibration optimizations

1.1 Torque-driven 
model

Track experimental marker, ground reaction, 
and inverse dynamic torque data; Minimize 
joint jerk

Satisfy skeletal dynamics Foot–ground 
contact model 
parameters

Joint jerk

1.2 Torque-driven 
model

Track experimental marker, ground reaction, 
and inverse dynamic torque data; Minimize 
joint jerk

Satisfy skeletal dynamics None Joint jerk

2 tracking optimizations

2.1 Torque-driven 
model

Track lower-body joint torques and upper 
body joint angles from problem 2; Minimize 
joint jerk

Satisfy skeletal dynamics; Match OpenSim lower-body 
joint torques using torque controls; Bound joint angle 
errors relative to problem 2 and ground reaction errors 
relative to experimental data

None Joint jerk; 
Joint 
torques

2.2 Activation-driven 
model

Track lower-body activation data; Track 
lower-body joint torques and upper body 
joint angles from problem 2; Minimize joint 
jerk

Satisfy skeletal dynamics; Match OpenSim lower-body 
joint torques using activation controls; Bound joint angle 
errors relative to problem 2 and ground reaction errors 
relative to experimental data

None Joint jerk; 
Muscle 
activations

2.3 Synergy-driven 
model

Track lower-body activation data; Track 
lower-body joint torques and upper body 
joint angles from problem 2; Minimize joint 
jerk

Satisfy skeletal dynamics; Match OpenSim lower-body 
joint torques using synergy controls; Bound joint angle 
errors relative to problem 2 and ground reaction errors 
relative to experimental data; Enforce unit magnitude 
synergy vectors

Synergy vector 
weights

Joint jerk; 
Synergy 
controls

3 Prediction optimizations

3.1 Torque-driven 
model

Track lower-body joint torques and upper 
body joint angles from problem 3; Minimize 
joint jerk

Satisfy skeletal dynamics; Match OpenSim lower-body 
joint torques using torque controls

None Joint jerk; 
Joint 
torques

3.2 Activation-driven 
model

Track lower-body activations and upper 
body joint angles from problem 4; Minimize 
joint jerk

Satisfy skeletal dynamics; Match OpenSim lower-body 
joint torques using activation controls

None Joint jerk; 
Muscle 
activations

3.3 Synergy-driven 
model

Track lower-body synergy controls and 
upper body joint angles from problem 5; 
Minimize joint jerk

Satisfy skeletal dynamics; Match OpenSim lower-body 
joint torques using synergy controls

None Joint jerk; 
Synergy 
controls

All optimizations were performed using a full-body patient-specific neuromusculoskeletal model with calibrated joint, musculoskeletal geometry, and muscle-tendon model parameter 
values (see text). Tracking optimizations were performed at 0.5 m/s to develop dynamically consistent baseline data for each of the three lower extremity control situations (joint 
torques, muscle activations, or muscle synergies) used in subsequent prediction optimizations. Prediction optimizations were performed for 0.5 m/s to verify optimal control problem 
formulation, 0.8 m/s to evaluate problem formulation, and 1.1 m/s to challenge problem formulation. Activations employ 35 controls per leg while synergies employ 5 controls per 
leg. Note that Problem 1.1 serves as the basis for Problem 1.2, Problem 1.2 serves as the basis for Problems 2.1, 2.2, and 2.3, and Problems 2.1, 2.2, and 2.3 serve as the basis 
for Problems 3.1, 3.2, and 3.3, respectively.
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simulation to maintain system stability, is unnecessary since time 
stepping is not performed by implicit simulation. An overview of 
various numerical methods for solving optimal control problems, 
along with a brief discussion of the advantages and disadvantages 
of each, can be found in Limebeer and Rao (2015).

We investigated how well the predictions worked using three 
different control situations: joint torque controls (5 per  leg – 
termed “torque-driven”), muscle activation controls (35 per leg –  
termed “activation-driven”), and muscle synergy controls 
(5  per leg – termed “synergy-driven”). To control the motion 
of each leg, the torque-driven problems used 5 joint torques 
rather than 35 muscles, the activation-driven problems used 35 
muscles controlled by 35 independent muscle activations, and the 
synergy-driven problems used 35 muscles controlled by 5 inde-
pendent muscle synergy controls that were linearly combined to 
produce 35 muscle activations. For all three control situations, 
hip internal–external rotation and toes flexion–extension in both 

legs along with the three pelvis rotations were found by tracking 
the corresponding joint angles from the 0.5 m/s periodic trial.

To generate our predictions, we performed a sequence of 
three categories of optimizations: (1) calibration optimizations, 
(2) tracking optimizations, and (3) prediction optimizations 
(see Table  1 for overview). This sequence was needed since 
large-scale direct collocation optimal control problems are 
often sensitive to the initial guess, making it helpful to increase 
the complexity of the problems being solved in a gradual and 
systematic fashion. Furthermore, for each category of optimiza-
tion, initial problems were solved where the skeletal dynamic 
constraints (as quantified by pelvis residual loads) were not 
enforced, and these constraints were gradually tightened in sub-
sequent problems until the desired tolerance was met. Below we 
describe concepts common to all three optimization categories, 
integration of OpenSim functionality into the optimal control 
framework, and details for the three optimization categories.
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Common Concepts
The walking predictions reported in this study were generated 
using GPOPS-II, a direct collocation optimal control toolbox for 
MATLAB (Patterson and Rao, 2014). GPOPS-II solves for the 
state x(t), control u(t), and static parameters p that minimize the 
cost functional:

 J x t t x t t p g x t u t p dtf f t

t f= ( ) + ∫φ ( ), , ( ), , ( ( ), ( ), )0 0
0

 (3)

subject to the constraints

 x t f x t u t t p( ) ( ( ), ( ), , ) ,= ( ), dynamic constraints  (4)

 c f x t u t t p cmin max( ), ( ), , , ,≤ ( ) ≤ ( ) algebraic constraints  (5)

b b x t t x t t p bf fmin max( ( ), , ( ), , ) , .≤ ≤ ( )0 0  boundary conditions  (6)

The state and control are parameterized using variable-order 
Gaussian quadrature orthogonal collocation methods and for-
mulated into a NLP problem.

Within the toolbox, two NLP solvers can be utilized: 
SNOPT (Gill et  al., 2005) or IPOPT (Biegler and Zavala, 
2009). SNOPT employs a quasi-Newton SQP active set method 
where the inverse of the Hessian is approximated using a 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) update. At each 
step in the optimization, all linear constraints are satisfied and 
the active set is estimated. SNOPT achieves convergence via 
a merit function that is the objective function plus the sum 
of constraint infeasibilities. IPOPT employs an interior-point 
method where the goal is to satisfy the constraints via a barrier 
function. IPOPT does not distinguish between linear and non-
linear constraints; all constraints are treated the same. IPOPT 
operates in two different modes. In first derivative mode, IPOPT 
employs a quasi-Newton method where the inverse of the 
Hessian is estimated using a BFGS update. In second derivative 
mode, IPOPT employs a full-Newton method where GPOPS-II 
provides a sparse representation of the lower triangular part of 
the Hessian of the Lagrangian of the NLP problem. Based on 
convergence and computation time considerations, we chose 
IPOPT in first derivative mode as the initial NLP solver for 
all optimal control problems. Though GPOPS-II contains an 
adaptive mesh refinement algorithm, we used a fixed mesh of 
50 collocation points, divided into 10 intervals, over the entire 
gait cycle to reduce computation time (Ackermann and van 
den Bogert, 2010).

In this study, we developed a jerk-controlled inverse dynamic 
problem formulation using the 31 DOF skeletal dynamic equa-
tions generated by OpenSim (Delp et al., 2007). This approach 
was used since it exhibited improved convergence properties 
and solution smoothness over a directly controlled forward 
dynamic problem formulation (van den Bogert et  al., 2011), 
but at the cost of added joint jerk controls. It also allowed us 
to violate the skeletal dynamics when starting from a poor 
initial guess, facilitating finding a feasible solution. For this 
problem formulation, we defined the control u(t) as the third 
time derivative of the generalized coordinates q(t) (i.e., joint 
jerk). The problem state consisted of the coordinate positions 

q(t), velocities v(t), and accelerations a(t), simplifying the 
dynamics of the optimal control problem to:
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 (7)

To make the joint jerk controls unique, we added minimization 
of joint jerk to every optimal control problem. Jerk minimization 
terms in the cost function were scaled by t f

6 , where tf is the speci-
fied final time, since jerk magnitude is proportional to t f

3  based on 
analysis of analytic functions, and joint jerk squared is minimized 
in the cost function. Since joint jerk magnitudes change with final 
time, we did not want jerk minimization to affect the final times 
predicted by our optimizations.

For our inverse dynamic problem formulation, enforcement 
of the skeletal dynamics was achieved using algebraic path con-
straints. Two types of path constraints were used for this purpose. 
The first type ensured that residual forces and torques acting on 
the pelvis were eliminated. Each time an inverse dynamic analysis 
was performed with the OpenSim model, six pelvis residual loads 
Rpelvis(x(t)) were calculated. To enforce dynamic consistency, we 
added the algebraic path constraint

 Rmin ≤ Rpelvis ≤ Rmax (8)

to constrain the six pelvis residual loads to be within a specified 
tolerance. The second type of constraint enforced consistency 
between net muscle moments calculated from additional  
controls and lower extremity joint moments calculated from 
inverse dynamics. The additional controls were 5 joint torques 
per leg for torque-driven problems, 35 activations per leg for 
activation-driven problems, 5 synergies per leg for synergy-driven 
problems. For all three control situations, we added algebraic 
path constraints to ensure that the additional controls balanced 
five lower extremity inverse dynamic joint moments in each 
leg (i.e., hip flexion–extension, hip adduction–abduction, knee 
flexion–extension, ankle  flexion–extension, and ankle inversion–
eversion). Convergence tolerances were set to 1 N and 0.1 Nm for 
residual forces and moments, respectively. When this tolerance 
was met, we considered the resulting motion to be dynamically 
consistent, requiring negligible fictitious external loads to balance 
the dynamic equations. All optimal control solutions presented 
in this study utilized this inverse dynamic problem formulation. 
However, the cost function, controls, and constraints varied 
depending on the category of optimization problem being solved.

OpenSim Integration
Development of dynamically consistent full-body walking 
predictions required integrating OpenSim functionality into the 
MATLAB environment in a computationally efficient manner 
(Figure  1). To perform the integration, we took advantage of 
two aspects of our optimal control solution process. First, use 
of joint jerk controls made complete OpenSim model state and 
state derivative information available for any time point being 
analyzed, making it possible to evaluate the OpenSim skeletal 
dynamic equations in an inverse sense and avoiding the need to 
calculate OpenSim model state derivatives for forward solutions. 
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FIGURe 1 | Flowchart demonstrating the interaction of MAtLAB and opensim functions for synergy-driven prediction optimizations performed 
within the GPoPs-II MAtLAB environment. For each iteration of the NLP solver, GPOPS-II provides a new guess for the model state and control, which are 
used by a series of MATLAB and OpenSim functions to calculate path constraints, terminal constraints (not shown – used to enforce near-periodicity in motion 
and ground reactions), and the cost function. The cost function requires knowledge of state and control quantities that are being tracked, which are taken from 
the results of the corresponding tracking optimization. Path constraints are used to satisfy skeletal dynamics and to make lower-body joint moments calculated 
by an OpenSim inverse dynamic analysis match corresponding joint moments calculated by a MATLAB EMG-driven model. Synergy-driven prediction 
optimizations use five synergy controls per leg as controls. Activation-driven prediction optimizations use 35 muscle activations per leg as controls and do not 
require the MATLAB muscle synergy model. Torque-driven prediction optimizations use five joint torques per leg as controls and do not require the MATLAB 
muscle synergy model or EMG-driven model. Calibration optimizations include additional path constraints to match additional experimental quantities (e.g., 
ground reaction forces and moments).
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Second, use of a direct collocation solution approach allowed 
each time point to be analyzed independently from all others, 
making it possible to employ parallel processing methods on a 
time-point-by-time-point basis.

To take advantage of these two aspects, we created MATLAB 
MEX functions in C++  that parallelized two OpenSim tasks: 

(1) calculation of positions and velocities of all contact elements 
on the bottom of each foot, and (2) calculation of inverse dynamic 
joint torques. We parallelized OpenSim point kinematic calcula-
tions using OpenMP and OpenSim inverse dynamic calculations 
using MPI. For parallelized point kinematic calculations, inputs 
were the OpenSim model state; while for parallelized inverse 
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dynamic calculations, inputs were the OpenSim model state and 
calculated external ground reactions.

Using these parallelized functions, we employed an efficient 
series of calculation steps each time GPOPS-II needed to evaluate 
the OpenSim skeletal dynamic equations across all time points. 
First, we called our parallel C++ point kinematics function to 
calculate the position and velocity of every contact element in the 
model. Second, we used this point kinematic information to cal-
culate the contact force acting on each element and the net contact 
force and torque to be applied to the rear foot and toes segments 
of each foot. Third, we evaluated our surrogate musculoskeletal 
geometry using the current joint positions and velocities to find 
muscle-tendon lengths, velocities, and moment arms for all mus-
cles in the model. Fourth, we used our Hill-type muscle model 
with the current muscle activations and muscle-tendon lengths 
and velocities to calculate all tendon forces. Fifth, we calculated 
muscle contributions to all joint moments by multiplying tendon 
forces by their associated moment arms. Sixth, we called our 
parallel C++ inverse dynamics function to apply the calculated 
ground reactions to the rear foot and toes segments of both feet 
as OpenSim external forces and calculate inverse dynamic joint 
torques. Seventh, we calculated joint torque errors for the five 
muscle-controlled lower-body joints in each leg by subtracting 
the joint torques calculated in OpenSim using inverse dynamics 
from the joint torques calculated in MATLAB using GPOPS-II 
additional controls and moment arms where needed. All of these 
calculations were performed in MATLAB apart from the two 
parallel C++ functions that called OpenSim functionality.

Calibration Optimizations
We performed two calibration optimizations to determine param-
eter values in the foot–ground contact models and to provide a 
starting point for subsequent tracking optimizations (see Table 1, 
top section). For both optimizations, the cost function tracked 
experimental marker, ground reaction, and inverse dynamic joint 
torque data from the periodic trial while also minimizing joint 
jerk. The constraints enforcing dynamic consistency and joint jerk 
were the only controls. IPOPT was used in first derivative mode 
to generate an initial guess, and then SNOPT was started at that 
initial guess to refine the solution. For the first optimization, static 
parameters were included for the six coefficients that defined the 
parabolic distribution of spring stiffness across the bottom of 
each foot and for the common spring resting length for each foot. 
For the second optimization, all static parameters were removed 
from the problem, the parameter values were fixed to those 
found by the first optimization, and the optimization repeated 
to verify that identified foot–ground contact model parameter 
values could closely reproduce the experimentally measured 
ground reactions for both feet. Root-mean-square (RMS) errors 
in ground reactions produced by the second optimization were 
within 10 N for forces and 5 Nm for moments calculated about 
the midfoot marker projected onto the floor.

Tracking Optimizations
Starting from the results of the second calibration optimization, 
we performed three tracking optimizations for the 0.5 m/s walk-
ing speed to provide a starting point for subsequent prediction 

optimizations (see Table  1, middle section). Each tracking 
optimization utilized a different method to control 5 lower-body 
DOFs (hip flexion–extension, hip adduction–abduction, knee 
flexion–extension, ankle flexion–extension, and ankle inver-
sion–eversion) in each leg. The first tracking optimization was 
torque-driven (5 independent joint torque controls per leg), the 
second was activation-driven (35 independent muscle activation 
controls per leg), and the third was synergy-driven (5 independ-
ent synergy controls per leg used to construct the 35 muscle 
activations per leg). For all three optimizations, the cost function 
tracked lower-body joint torques (apart from hip internal-
external rotation and toes flexion–extension) and upper body, hip 
internal-external rotation, and toes joint angles from the second 
calibration optimization while minimizing joint jerk controls. We 
did not track joint angle and joint torque curves for the same 
joint to avoid having related terms for the same joint in the cost 
function. We selected joint angle tracking over joint torque track-
ing for the toes and upper body joints since we found that large 
changes in toes or arm motion required only small changes in the 
corresponding joint torques. We also tracked pelvis angles so that 
the model would maintain the proper orientation in the labora-
tory. Path constraints satisfied skeletal dynamics and bounded 
joint angle errors relative to the second calibration optimization 
and ground reaction errors relative to experimental data. For 
the torque-driven optimization, the controls were joint jerk and 
5 joint torques for each leg, and algebraic path constraints were 
used to match 5 inverse dynamic joint torques per leg with the 5 
joint torque controls per leg. The activation-driven optimization 
replaced the 5 torque controls with 35 lower extremity muscle 
activations per leg, added tracking of 35 activation controls per 
leg from the EMG-driven models to the cost function, and used 
algebraic path constraints to match 5 inverse dynamic joint tor-
ques per leg with activation controls per leg. The synergy-driven 
optimization was identical except that the 35 activation controls 
were replaced with 5 synergy controls per leg, inverse dynamic 
joint torque matching used synergy-constructed muscle activa-
tions, and static parameters were added to allow identification of 
the corresponding 5 sets of synergy vector weights. In addition, 
a constraint was added to force each synergy vector to have unit 
magnitude, making the synergy solutions unique. IPOPT in 
first derivative mode was used to solve all tracking optimization 
problems, with gradients calculated using central differencing.

Prediction Optimizations
Starting from the results of the tracking optimizations, we per-
formed three prediction optimizations for the 0.5  m/s walking 
speed as a “sanity check,” three for the 0.8 m/s walking speed as a 
predictive evaluation, and one using only synergy controls for a 
1.1 m/s walking speed as a challenge to our simulation framework. 
For the 0.5 m/s and 0.8 m/s predictions, the first tracking optimi-
zation was torque-driven, the second was activation-driven, and 
the third was synergy-driven. For the 1.1 m/s prediction, only a 
synergy-driven model was used to make predictions. The goal 
of these optimizations was to see whether each type of control 
could predict not only a realistic walking motion with realistic 
ground reactions but also the correct period for one gait cycle, 
which decreases with increasing walking speed. Since the 0.5 m/s 
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FIGURe 2 | sagittal plane lower extremity joint angles from inverse kinematics (gray lines for individual trials), torque-driven optimizations (red lines), 
activation-driven optimizations (green lines), and synergy-driven optimizations (blue lines). First column: results from tracking optimizations at 0.5 m/s. 
Second column: results from prediction optimizations at 0.5 m/s. Third column: results from prediction optimizations at 0.8 m/s. Top three rows: hip, knee, and 
ankle angles from left non-paretic leg. Bottom three rows: hip, knee, and ankle angles from right paretic leg.
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speed was the same as the tracking optimization speed, matching 
the experimental period closely provides a “sanity check” on the 
solution. Due to problems we encountered with solving these 
optimal control problems using free final time, we performed 
each prediction optimization using five values of final time: the 
average experimental value rounded to the nearest tenth of a 
second plus or minus 0.1 and 0.2 s. We then fit a parabola to the 
final cost function values plotted as a function of final time and 
took the minimum value as the predicted final time. All results 
reported were taken from the simulations whose final times were 
closest to the parabola’s minimum value.

For each control situation, the optimal control problem formu-
lation for both speeds was similar to the corresponding tracking 

optimization except that several cost function and constraint 
terms were removed and no static parameters were utilized, allow-
ing new walking motions and ground reactions to be predicted. 
For all three optimizations, the cost function tracked upper body, 
hip internal–external rotation, and toes flexion–extension joint 
angles from the corresponding tracking optimization solution 
while minimizing joint jerk controls, and the path constraints 
satisfied the skeletal dynamics. The torque-driven problem added 
tracking of 5 lower extremity joint torques per leg found by the 
corresponding tracking optimization to the cost function. The 
activation-driven problem added 35 lower extremity muscle 
activations per leg to the controls, tracking of 35 activations per 
leg found by the corresponding tracking optimization to the cost 
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FIGURe 3 | sagittal plane lower extremity joint torques from inverse dynamics (gray lines for individual trials), torque-driven optimizations (red lines), 
activation-driven optimizations (green lines), and synergy-driven optimizations (blue lines). First column: results from tracking optimizations at 0.5 m/s. 
Second column: results from prediction optimizations at 0.5 m/s. Third column: results from prediction optimizations at 0.8 m/s. Top three rows: hip, knee, and 
ankle torques from left non-paretic leg. Bottom three rows: hip, knee, and ankle torques from right paretic leg.

Meyer et al. Muscle Synergies Facilitate Walking Predictions

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org October 2016 | Volume 4 | Article 77

function, and matching of 5 inverse dynamic joint torques per leg 
with corresponding joint torques produced by muscle activations 
to the algebraic path constraints. The synergy-driven problem 
added 5 synergy controls per leg to the controls, tracking of 5 
synergy controls per leg found by the corresponding tracking 
optimization to the cost function, and matching of 5 inverse 
dynamic joint torques per leg with corresponding joint torques 
produced by the synergy-constructed muscle activations to the 
algebraic path constraints. The synergy-driven problem used the 
synergy vectors found by the corresponding tracking optimiza-
tion. The implicit assumption in this prediction approach is that 

when the subject walks at any speed, he will choose controls (joint 
torques, muscle activations, or synergy controls) that are “close” 
to those he uses at his self-selected speed of 0.5 m/s. IPOPT in first 
derivative mode was again used to solve all prediction optimiza-
tion problems.

ResULts

Tracking optimizations using all three types of controls closely 
reproduced the subject’s experimentally measured walking 
motion at 0.5 m/s. Simulated lower and upper body joint angles 
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were within experimental ranges from multiple walking cycles 
(Figure 2 – first column), as were simulated lower-body joint tor-
ques (Figure 3 – first column). However, joint torques from the 
torque-driven model were generally less smooth than those from 
the activation-driven and synergy-driven models, especially for 
the two hips. Simulated ground reaction forces were also within 
experimental ranges (Figure 4 – first column). For the activation-
driven and synergy-driven models, simulated activations were 
within the experimental ranges determined by the EMG-driven 
models (Figures 5 and 6), with only small changes in activations 
needed to produce dynamically consistent walking motions.

Prediction optimizations using all three types of controls 
also closely reproduced the subject’s experimentally measured 
walking motion, gait period, and stride length at 0.5  m/s 
(Table  2 – top rows). Simulated lower and upper body joint 
angles (Figure 2 – second column), lower-body joint torques 
(Figure  3 – second column), and ground reaction forces 
(Figure  4 – second column) were extremely similar to those 
produced by the corresponding tracking optimizations. The 
most noticeable minor differences were for the torque-driven 
model, where the predicted hip torques were again less smooth 
than for the other two control types, as were the predicted 
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medial–lateral ground reaction forces. For the activation-
driven and synergy-driven models, simulated activations were 
also very similar to those found by the corresponding tracking 
optimizations (Figures 7 and 8). All three models predicted a 
realistic gait period and stride length (Figure 11, first column; 
Table 2, top rows).

Only prediction optimizations that used activation controls or 
synergy controls closely reproduced the subject’s experimentally 
measured walking motion, gait period, and stride length at 

0.8  m/s (Table  2 – bottom rows). For these two control types, 
simulated lower joint angles were within or just outside experi-
mental ranges from multiple walking cycles, while for torque 
controls, every simulated lower-body joint angle went beyond 
the experimental ranges (Figure  2 – third column), and the 
optimization predicted hiking of the paretic hip to compensate 
for reduced knee flexion on that side, which is a biologically 
plausible strategy. Interestingly, for all three control types, 
simulated upper body joint angles were extremely different from 
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those observed experimentally (see Figure 12 for a visual com-
parison between experimentally measured and computationally 
predicted full-body motions). Similar to the joint angle results, 
simulated lower-body joint torques (Figure  3 – third column) 
and ground reaction forces (Figure 4 – third column) produced 
by activation and synergy controls generally remained within 

or at the edge of experimental ranges, while those produced 
by torque controls generally went beyond them, especially for 
the ground reaction forces. All three control types predicted an 
increase in anterior–posterior ground reaction force that was 
comparable to the increased range measured experimentally to 
achieve an increase in walking speed. For the activation-driven 
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tABLe 2 | Comparison of gait period and stride length between the 
median experimental walking motions (±experimental ranges) and 
corresponding predicted walking motions for 0.5 and 0.8 m/s gait speeds.

experiment torque 
prediction

Activation  
prediction

synergy 
prediction

Gait speed 0.5 m/s
Gait period (s) 1.32 ± 0.10 1.35 1.35 1.27
Stride length (m) 0.66 ± 0.05 0.68 0.68 0.64

Gait speed 0.8 m/s
Gait period (s) 1.14 ± 0.06 1.27 1.08 1.16
Stride length (m) 0.91 ± 0.05 1.02 0.86 0.93

Predicted walking motions were generated using torque-driven, activation-driven, 
and synergy-driven models. A large difference in gait period and stride length existed 
between the two experimental gait speeds. All three models predicted gait period and 
stride length within experimental ranges for the slower speed, while only the synergy-
driven model predicted them within experimental ranges for the faster speed.
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and synergy-driven models, simulated activations remained 
within the experimental ranges determined by the EMG-driven 
models (Figures 9 and 10). The synergy-driven model predicted 
the most realistic gait period and stride length, which were 1.16 s 
compared to an experimental median of 1.14 s for gait period and 
0.93 m compared to an experimental median of 0.91 m for stride 
length (Figure 11, second column; Table 2, bottom rows). The 
gait period and stride length predictions for the activation-driven 
model were right at the boundary of the measured experimental 
ranges, while the predictions for the torque-driven model were 
outside those ranges.

The final prediction optimization used synergy controls to 
simulate walking at 1.1 m/s, a condition for which no experimental 
data are available, and predicted a gait period of 1.12 s. Assuming 
a linear relationship between walking speed and stride length 
(Jordan et  al., 2007), as defined by the subject’s median speed 
and stride length for 0.5 and 0.8 m/s, the estimated experimental 
gait period for this faster walking speed would be 1.06 s. Thus, 
the synergy-driven model predicted not only the best gait period 
for the 0.8 m/s walking speed but also a physically realistic gait 
period with physically realistic walking motion (not shown) for 
an even faster walking speed without available experimental data.

dIsCUssIoN

This study developed and evaluated a subject-specific synergy-
controlled neuromusculoskeletal simulation framework that 
predicted three-dimensional walking motions for an individual 
post-stroke. We investigated whether actuating a neuromuscu-
loskeletal model of the subject with muscle synergy controls 
(5 per leg) facilitated generation of accurate walking predic-
tions compared to actuating the model with muscle activation 
controls (35 per leg) or joint torque controls (5 per leg). We 
found that walking predictions generated for both 0.5 and 
0.8  m/s were more accurate (in terms of joint motions, joint 
torques, ground reactions, and final time) and converged more 
easily for the activation-driven and synergy-driven models 
than for the torque-driven model. Furthermore, the accuracy 
of the walking predictions at both speeds was comparable for 
the activation-driven and synergy-driven models, even though 

the synergy-driven model used 30 fewer controls per leg. When 
the synergy-driven model was used to predict the subject’s walk-
ing motion at 1.1 m/s, a condition for which no experimental 
data were available, the predicted stride length was close to that 
calculated by the linear speed–stride length relationship fitted 
to experimental data from 0.5 and 0.8 m/s. Overall, these find-
ings are encouraging and suggest that the current simulation 
framework could provide a useful foundation for predicting 
how a patient will interact with different neurorehabilitation 
approaches (e.g., FES, AFO, exoskeleton, robotic gait trainer, 
strength training) so that an optimal neurorehabilitation pre-
scription can be identified.

We had to overcome a number of practical challenges to 
generate the walking predictions presented in this study. One 
significant challenge was obtaining convergence of our optimal 
control problems, which we addressed using several strate-
gies. First, we used sequences of optimizations that gradually 
increased the complexity of the problem being solved and 
provided a good initial guess for the next level problem. Second, 
we compared IPOPT in first derivative mode, IPOPT in second 
derivative mode, and SNOPT to determine which option worked 
best for our problems. Third, we tracked joint angles rather than 
joint torques for joints not controlled by muscles, since tracking 
joint torques permitted large changes in toes and arm motions 
using only small changes in joint torques. Fourth, we replaced 
free final time problems with a sequence of five fixed final time 
problems and then fitted a parabola to the cost function values 
to determine the final time of the corresponding free final time 
problem. Fifth, we replaced an explicit dynamics formulation 
requiring no additional controls with an implicit dynamics 
formulation requiring additional jerk controls to obtain smooth 
motion and control predictions. The other significant challenge 
was obtaining reasonable computation times, which we resolved 
by parallelizing the computationally costly skeletal dynamics 
and point kinematics calculations performed by OpenSim. 
Once a reasonable initial guess was available, torque-driven 
and synergy-driven problems typically required about 30  min 
of CPU time to converge, though the variation in convergence 
time was wide, while activation-driven typically required about 
an hour of CPU time. On a practical basis, however, we normally 
perturbed the most recent solution and re-ran each optimiza-
tion to help avoid entrapment in a local minimum, making 
estimation of total CPU time difficult. More research is needed 
to determine how to improve the convergence properties of 
these problems.

Given that numerous previous studies have generated 
muscle-actuated full-body forward dynamic simulations of 
walking (Gerritsen et  al., 1998; Anderson and Pandy, 2001; 
Thelen et al., 2003; Ackermann and van den Bogert, 2010, 2012; 
Geyer and Herr, 2010; McGowan et al., 2010; Allen et al., 2013; 
Knarr et  al., 2013, 2014; Kia et  al., 2014; Dorn et  al., 2015), 
it is worth considering the unique aspects of our approach. 
Only a small number have predicted new walking motions for 
which experimental data are not available (Anderson and Pandy, 
2001; Ackermann and van den Bogert, 2010, 2012; Dorn et al., 
2015). Few studies have used direct collocation optimal control 
methods to solve for all time points simultaneously (Ackermann 
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and van den Bogert, 2010, 2012), few have used subject-specific 
(Knarr et  al., 2014) rather than scaled generic or simplified 
musculoskeletal models, and few have modeled individuals with 
neurological impairment (Allen et al., 2013; Knarr et al., 2013). 
No previous muscle-actuated full-body walking simulation stud-
ies have combined subject-specific EMG-driven modeling with 
subject-specific synergy controls to define the neural control 

structure of the model. Furthermore, no previous studies have 
calibrated joint and ground reaction force parameters in the 
model to match walking data collected from a specific subject. 
Thus, the most unique feature of our study was combining all 
of the various modeling and optimization elements listed above 
into a single comprehensive simulation framework capable of 
predicting new walking motions.
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Only the activation-driven and synergy-driven models were 
able to predict the correct walking motion and gait period closely 
at both 0.5 and 0.8  m/s. Since the only difference between the 
torque-driven model and the other two models was the control 
method, it is likely that numerical issues related to the use of pure 
torque controls were the source of the problem. This hypothesis is 
supported by results from two previous simulation studies. Risher 

et  al. (1997) showed that even small inconsistencies in inverse 
dynamic solutions, such as those introduced by spline fitting, can 
produce large motion errors when the calculated joint torques 
are used to control a forward dynamic simulation intended to 
reproduce the original motion. Our approach requires spline 
fitting of joint torque and joint angle data so that the optimal 
control solver can obtain values at any desired collocation point. 
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Gerritsen et al. (1998) showed that muscle force–length–velocity 
properties provide proportional-derivative-like feedback control 
properties that help stabilize forward dynamic simulations of 
walking and prevent drift away from a desired motion. Based 
on the finding of these two studies, it is less surprising that the 
activation-driven and synergy-driven models performed better 
than the torque-driven model.

Although both our synergy-driven and activation-driven 
models generated accurate walking predictions, our synergy-
driven model still possesses several distinct advantages. The 
primary advantage is the significantly reduced number of 
controls compared to the activation-driven model. By using 
muscle synergy controls, we were able to predict highly realistic 
subject-specific walking motions using the same number of 
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controls as in the torque-driven model but without any of the 
problems encountered by that model. Significantly fewer controls 
(30 fewer per leg) reduce computational cost and complexity 
and make the optimal control solution process less sensitive to 
poor initial guesses. Though not demonstrated in our study, we 
believe that the synergy-driven model also has the best potential 

for simulating individuals with neurological impairment, since 
subject-specific synergy information limits how a subject can 
coordinate his muscles. For example, it would be interesting to 
eliminate one synergy at a time from the paretic leg in our model 
and predict the functional impact on our subject’s walking pat-
tern. Would the model’s ability to reproduce the subject’s walking 
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bars indicate the range of experimentally measured gait periods, and the black hash marks indicate the median gait period. For the activation-driven prediction at 
0.8 m/s, the normalized cost function value for a gait period of 0.9 s (not shown) was much higher than expected, likely due to entrapment in a local minimum, and 
was omitted from the quadratic fit.
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motion break down if a lower number of synergies were used? 
Synergy controls within a neuromusculoskeletal model provide 
an excellent avenue for simulating the functional consequences 
of reduced neural complexity (Allen et al., 2013).

To use our neuromusculoskeletal simulation framework for 
actual clinical treatment design, we would need to determine 
how to incorporate different treatment approaches into the 
framework. Simulating the effects of strength training could be 
achieved by increasing the peak isometric strength of individual 

muscles or groups of muscles. Simulating the effects of FES could 
be achieved by adding controls to the optimal control problem 
that augment the activation of one muscle or several muscles. 
Simulating the effects of an AFO, exoskeleton, robotic gait 
trainer, or exercise device could be achieved by adding a model 
of the device to the patient’s OpenSim model [e.g., Fregly et al. 
(2015)] and adding static parameters and controls to the optimal 
control problem that account for modifiable design features of 
the device. The biggest challenge with simulating any of these 
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FIGURe 12 | Animation strips showing walking motions at 0.8 m/s obtained from the most periodic experimentally measured walking trial (first row), 
the torque-driven prediction optimization (second row), the activation-driven prediction optimization (third row), and the synergy-driven prediction 
optimization (fourth row). Each column represents a different point in the gait cycle starting at 0% on the far left and going to 100% on the far right.

Meyer et al. Muscle Synergies Facilitate Walking Predictions

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org October 2016 | Volume 4 | Article 77

treatment approaches is defining an appropriate optimization 
cost function. When predicting how the patient’s neural control 
system will respond to a treatment, should the cost function 
minimize an absolute quantity, such as metabolic cost, should it 
minimize neural control changes away from some experimentally 
measured baseline situation (as we have done here), or should 
it hold the patient’s neural control strategy constant and change 
only static parameters and controls related to the treatment? The 
issue of predicting how a patient will interact with a treatment is 
a critical one for researchers to explore in the future.

Despite the high level of subject specificity in our neuromus-
culoskeletal model, our study possesses a number of limitations 
that can help inform future research efforts. First, we modeled 
only a single hemiparetic subject. Our goal for the present study 
was to develop and evaluate the initial implementation of our 
neuromusculoskeletal simulation framework, which required 
use of only a single subject. In the future, we plan to test the 
framework further using walking data collected from additional 
hemiparetic subjects. Second, we performed all model calibration 
steps (lower-body kinematic model, foot–ground contact model, 
EMG-driven model, muscle synergy model) using only a static 

trial and walking data, primarily from the subject’s self-selected 
speed of 0.5 m/s. Though this limitation was planned to simplify 
the model calibration process, use of a wider variety of calibra-
tion movements could improve the predictive capabilities of the 
model. Third, we did not model any neural feedback mechanisms 
(e.g., from muscle spindles and Golgi tendon organs). Though the 
extent to which feedback mechanisms contribute to the control 
of walking remains controversial, it is possible that inclusion of 
neural feedback models could have a significant impact on our 
predicted walking motions (Geyer and Herr, 2010). Fourth, we 
evaluated our predicted walking motions using only the calibra-
tion speed and a single faster non-calibration speed, where the 
faster speed was only 0.3 m/s faster. A more thorough evaluation 
would involve a wider range of speeds (our subject was unable to 
walk comfortably for an extended period of time above 0.8 m/s) 
and movement tasks. Fifth, while we controlled most lower-body 
joints with muscles, we tracked experimentally measured joint 
motions to determine the motion of the toes, hip internal–exter-
nal rotation, and all upper body joints. Better prediction of toes 
and upper body motion in particular would likely be achieved 
if these joints could be controlled by muscles as well. Finally, 
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A Muscle Synergy-Inspired Adaptive
Control Scheme for a Hybrid Walking
Neuroprosthesis
Naji A. Alibeji, Nicholas Andrew Kirsch and Nitin Sharma*

Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA

A hybrid neuroprosthesis that uses an electric motor-based wearable exoskeleton and
functional electrical stimulation (FES) has a promising potential to restore walking in per-
sons with paraplegia. A hybrid actuation structure introduces effector redundancy, making
its automatic control a challenging task because multiple muscles and additional electric
motor need to be coordinated. Inspired by the muscle synergy principle, we designed
a low dimensional controller to control multiple effectors: FES of multiple muscles and
electric motors. The resulting control system may be less complex and easier to control.
To obtain the muscle synergy-inspired low dimensional control, a subject-specific gait
model was optimized to compute optimal control signals for the multiple effectors. The
optimal control signals were then dimensionally reduced by using principal component
analysis to extract synergies. Then, an adaptive feedforward controller with an update law
for the synergy activation was designed. In addition, feedback control was used to provide
stability and robustness to the control design. The adaptive-feedforward and feedback
control structure makes the low dimensional controller more robust to disturbances and
variations in the model parameters and may help to compensate for other time-varying
phenomena (e.g., muscle fatigue). This is proven by using a Lyapunov stability analysis,
which yielded semi-global uniformly ultimately bounded tracking. Computer simulations
were performed to test the new controller on a 4-degree of freedom gait model.

Keywords: non-linear control, adaptive control, time-invariant synergies, functional electrical stimulation, hybrid
neuroprosthesis

1. INTRODUCTION

Each year, approximately 5100 people in the USA alone are diagnosed with paraplegia due to a
spinal cord injury (The National SCI Statistical Center, 2014), impairing their ability to walk again.
Functional electrical stimulation (FES) and powered orthoses are two viable technologies that have
the potential to restore the walking function in persons with SCI (Kralj and Bajd, 1989; Kobetic
et al., 1997; Farris et al., 2011; Neuhaus et al., 2011; Esquenazi et al., 2012; del-Ama et al., 2014a;
Ha et al., 2015). FES is a clinical technique in which the muscle is artificially stimulated with low
level electrical currents to produce muscle contractions (Peckham, 1987). The use of FES for gait
restoration is limited by the rapid onset of muscle fatigue (Binder-Macleod and Snyder-Mackler,
1993), and powered exoskeletons require batteries and larger actuators to generate the torques
necessary to produce the gait motion. However, combining the two technologies may provide the
benefits of both powered exoskeletons and FES-based devices and overcome their limitation when
used alone. A hybrid device composed of FES and electric motors may have smaller motors because
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a FES-induced muscle torque would be able to generate a portion
of the required torque. The use of a powered exoskeleton in
the hybrid device would restrict unwanted degrees of freedom
(DOF), reduce stimulation duty cycle of FES, and compensate
for FES-induced muscle fatigue. Thus, the hybrid device may be
capable of achieving longer walking durations and have additional
therapeutic benefits of FES such as muscle growth and increased
bone density.

However, multiple motors and FES of lower-limb muscles
introduces limb coordination and actuator redundancy (e.g., limb
joint torque can be produced by an electric motor of the hybrid
exoskeleton and FES of joint flexors and extensors). To date, little
research has been done on the design of controllers that consider
the actuator redundancy in hybrid neuroprostheses. Quintero
et al. (2012) used an adaptive control gain to distribute the control
effort between an electric motor and FES for producing knee
extensions. A cooperative controller was designed by Ha et al.
(2015) for a hybrid walking neuroprosthesis. In this controller,
feedback control was used to control the motors to track a desired
limb trajectory. Then, an adaptation scheme was used to mod-
ify FES profiles to match the joint torque profiles of the elec-
tric motors in future gait cycles. However, actuator redundancy
was not specifically addressed, this may be because only one or
two muscles were stimulated. In Kobetic et al. (2009), a hybrid
neuroprosthesis that used implanted electrodes to stimulate 16
muscles was used to achieve walking in a subject with para-
plegia. del-Ama et al. (2014b) developed a cooperative control
strategy that balanced FES and robotic control of the hybrid
neuroprosthesis. The controller used PD control for the electric
motors, PID control to maintain support during stance, and an
iterative learning controller to develop the stimulation profiles
for the swing cycle. The algorithm also detected FES-induced
fatigue by measuring decreases in the torque-time integral of the
force generated by FES. Currently, these systems only use ad hoc
finite-state machine controllers and controller stability is not
guaranteed.

Given the control challenge, a synergy based closed-loop con-
troller may be ideal to handle the actuators redundancy and high
dimensionality in the system. The central nervous system (CNS) is
hypothesized to control the largely overactuated musculoskeletal
system by activating the individual muscle fibers in groups called
synergies, or motor primitives (Sherrington, 1910; Lee, 1984;
Grillner, 1985; Tresch et al., 2002; Ting, 2007). Although it is a con-
troversial hypothesis in the field of neural control of movement,
these synergies can be thought of as weighted muscle activation
patterns for multiple muscles that can be combined to generate
coordinated limb movements (e.g., walking or reaching). It is
hypothesized that thesemuscle synergies act as lower dimensional
motion primitives that are stored in the spinal cord. Therefore,
instead of individually controlling each muscle fiber, the human
brain recruits weighted synergies to simplify a task involving
multiple muscles or limbs. Currently, synergies are being used for
a wide variety of applications, such as musculoskeletal movement
analyses or gait therapy (Vinjamuri, 2008; Berniker et al., 2009;
Vinjamuri et al., 2010; An et al., 2013; Routson et al., 2013; Steele
et al., 2013; Simkins et al., 2014), robot design (Catalano et al.,
2012; Wu and Asada, 2014), and control engineering systems

(Popovic and Popovic, 2001; Wimbock et al., 2011; Kuppuswamy
et al., 2012; Kuppuswamy and Harris, 2014; Wu and Asada, 2014).

From a controls perspective, synergies may be desired for
controlling large and complex systems because they can pro-
vide simpler lower dimensional controllers that may be more
computationally efficient. Some studies have used synergies to
achieve lower dimensional control of systems with large DOF.
Kuppuswamy et al. (2012) designed a synergy-based feedforward
controller to drive robotic systems with redundant actuators to an
equilibrium position. In Santello et al. (1998), synergy analyses
were used to gain a further understanding of hand postures.
This study showed that grasping movements can be explained
by the first 2–3 postural synergies. Later, this work was used
to design underactuated and simplified humanoid robot hands
that mimicked the postural synergies observed in the grasping
tasks (Catalano et al., 2012). Synergy inspired controllers were
then designed for the humanoid robot hands (Ajoudani et al.,
2013). In Berniker et al. (2009), a low-dimensional linearmodel of
non-linearmusculoskeletal frog hind-limb is found empirically by
using the model order reduction technique balanced truncation.
This low-dimensional model is then used to identify a set of mus-
cle synergies using an optimization algorithm which were then
used with optimal control techniques to produce a range of move-
ments. The key advantage of synergy-inspired controllers is that
the control of complex high DOF systems can be accomplished
more efficiently using fewer control signals.

However, synergy-inspired control, to the best of our knowl-
edge, has not been developed for a hybrid walking neuroprosthe-
sis. This work uses the concept of time-invariant synergies and
applies them for control design of a hybrid neuroprosthesis. The
synergies can be extracted using statistical tools, such as non-
negative matrix factorization (NNMF), singular value decompo-
sition (SVD), partial least squares regression (PLSR), or principal
component analysis (PCA). Typically, synergy analyses of human
motion studies use NNMF. For example, An et al. (2013) used
NNMF to analyze muscle synergies of standing up motions with
varying seat heights and standing speeds. Steele et al. (2013) stud-
ied the impact the number and choice of muscles have on synergy
analyses in a musculoskeletal model for an upper extremity task.
The benefit of an NNMF algorithm is that it maintains a positive
value constraint on the decomposed synergies. This constraint is
essential because muscle activations processed from EMG data
always have positive values. However, in the hybrid neuropros-
thesis system, electric motors are also present, which can generate
both positive and negative torque values. Therefore, we employ
PCA, instead of NNMF, to avoid the non-negative constraint.

The open hypothesis of this paper is that the hybrid walking
system is a better rehabilitative intervention for subjects with
spinal cord injury, and a control theoretic result is presented
to enable such a system. The key contribution of this paper
is the development of an adaptive synergy-based controller for
a hybrid neuroprosthesis. Dynamic optimizations were used to
produce optimal inputs and gait trajectories, using a subject-
specific gait model. A PCA-based decomposition technique was
used to extract time-invariant synergies and their activation pro-
files that were present in the optimal input space. The activa-
tion profiles were further adapted online using a gradient-based
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update law to be used as feedforward control. Then feedback
control to the motors was used to improve the performance and
robustness of the overall controller. A Lyapunov-based stability
analysis was performed to yield semi-global uniformly ultimately
bounded tracking. Simulations on a 4-DOF gait model with 10
actuators (FES of three antagonistic muscle pairs, three electric
motors, and one walker moment) are presented to depict perfor-
mance and as a proof-of-concept of the muscle synergy-inspired
controller.

2. DYNAMIC MODEL

A person taking one step (half of a gait cycle), using a hybrid
neuroprosthesis and a walker, is modeled as a four-link muscu-
loskeletal system as seen in Figure 1. The hybrid neuroprosthesis
uses a hip knee ankle foot orthosis (HKAFO) that provides kine-
matic constraints on the user, allowing only motion in the sagittal
plane. In addition, the HKAFOs typically use a wrap spring clutch
that locks the knee joint of the stance leg to prevent flexion when
standing. This reduces the amount of stimulation needed which
decreases muscle fatigue and prolongs walking durations (Sharma
et al., 2014). The stance leg is modeled as one rigid segment
simulating the locking of the knee joint and the ankle is fixed
to the ground because only half of the gait cycle is considered
in this simulation study. The swing leg has a thigh, shank, and
foot segment with three actuators at each joint: motor and FES
for flexion and extension of antagonistic muscle pairs. The trunk
dynamics were neglected in the model because the use of a walker
allows the user to stabilize their truck. The walker is modeled
as a moment acting on the stance leg to help propel the body
forward and also to keep it upright. The n-DOF lower limb model

is given as

M (q) q̈+ C(q, q̇)q̇+ G(q) + f(q, q̇) + τd(t) + τext(t) = τ, (1)

where q, q̇, q̈ ∈ Rn are the angular positions, velocities, and
accelerations of the leg segments, respectively. In equation (1),
M(q) ∈Rn× n is the combined inertia of the semi-powered ortho-
sis and human limbs in the swing phase, C(q, q̇) ∈ Rn×n is
the centripetal/Coriolis matrix, G(q) ∈ Rn is the gravity vector,
f(q, q̇) ∈ Rn is the viscoelastic vector term that model the passive
muscle model, τ ext ∈ Rn is the torque generated at each joint
due to contact with the ground, and τ d ∈ Rn is any unmodeled
effects or disturbances in the system. The torques at the joints
are generated by including the musculoskeletal dynamics due to
FES (Popović et al., 1999), an electric motor attached at each joint,
and the moment generated by the walker force. The torque term
is defined as

τ = b(q, q̇)u, (2)

where b ∈Rn×m is the control gain matrix containing the scaling
functions for the m inputs.

REMARK1: b(q,q̇) and u(t) are presented for a gait model with
DOF, n= 4, and control inputs, m= 10. However, without loss of
generality, the control development and analysis can be extended
to n-DOF system with m inputs.

The model used in this work considers a hybrid neuropros-
thesis that uses electric motors and FES via surface electrodes,
which non-selectively applies an external voltage potential to a
muscle group to generate a contraction. In equation (2), b(q,q̇) and

FIGURE 1 | A four-link gait model based of a subject wearing a hybrid neuroprosthesis while using a walker. The model has 10 inputs, including FES of six
muscles (antagonistic hip, knee, and ankle muscle pairs in the swing leg), three electric motors acting on each joint of swing leg (Th, Tk, Ta ), and a walker moment
acting on the stance leg (Mw). The step length is defined as the distance from stance toe to swing toe.
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u(t)∈Rm are defined as

b =



1 0 0 0
0 ψhfx 0 0
0 −ψhex 0 0
0 0 ψkfx 0
0 0 −ψkex 0
0 0 0 ψafx
0 0 0 −ψaex
0 κh 0 0
0 0 κk 0
0 0 0 κa



T

, u =



Mw
uhfx
uhex
ukfx
ukex
uafx
uaex
Th
Tk
Ta


, (3)

where subscripts i= h, k, a stand for hip, knee, and ankle joints
of the swing leg. In equation (3), uiex , uifx are the stimulation
inputs and ψifx , ψiex are the torque-length and torque-velocity
relationships of the flexor and extensor muscles, and Ti is the
current input to the motor and the conversion constants (current
to torque) of the electric-motor drives is κi. The moment due to
the walker is denoted as Mw. For this simulation study, hip joint
actuation via FES is achieved by stimulating the inner hip muscles
(Iliopsoas) for flexion and the Gluteals for extension. Knee joint
actuation uses the Quadriceps muscle group for extension and
Hamstrings for flexion, and the ankle joint uses the Gastrocne-
mius for dorsiflexion and Tibialis anterior for plantarflexion.

ASSUMPTION 1: The trunk dynamics were neglected in the
model because the use of a walker allows the user to stabilize
their trunk. However, mass of the head, arm, and torso was
incorporated in the model as a point mass.

ASSUMPTION2:Themotion is considered only in the sagittal
plane because the HKAFO puts kinematic constraints on motion
in planes other than sagittal. The HKAFO system uses a wrap
spring clutch that locks the knee joint of the stance leg during
walking. The stance leg is modeled as one link because the knee
is locked and the stance leg ankle acts as an anchor because only
half of the gait cycle is considered in this study. These assumptions
allow us to model the kinematics of the lower extremities as a
four-link chain.

ASSUMPTION 3: The walker is used to help produce the
required propulsion force or Mw. As the user pushes against the
walker to pull themselves forward, the resultant force acts as a
moment on the hip of the user or the stance leg, Mw. Therefore,
the walker moment, Mw, is treated as an input to the system that
can be computed by the developed controller.

ASSUMPTION 4: First order muscle activation dynamics are
ignored to simplify the control design. This avoids the use of
control techniques, such as integrator backstepping (Khalil, 2002),
whichwould add the requirement of additional signals, such as the
acceleration, which is typically unavailable or very noisy (Sharma
et al., 2009).

ASSUMPTION 5: The unmodeled effects or disturbances, τ d,
are bounded as |τ d |≤ ϵ1 where ϵ1 ∈ R+ is a constant.

ASSUMPTION 6: The control input, u, can be decomposed
as u = Wcd + uloss, where the synergies in the matrix, W, are
bounded constants and the time-varying activation coefficients,
cd, are bounded signals. The reconstruction error, uloss, is bounded
by a constant.

3. METHODS

3.1. Dynamic Optimization
Dynamic optimization was used to compute optimal subject-
specific gait trajectories and inputs (Kirsch et al., 2013; Sharma
et al., 2014). In these optimizations, the model was only restricted
to achieve a certain step size and step duration (0.4m in 75 s). The
optimization computes the inputs that minimize a user-defined
cost function. One of the benefits of dynamic optimization is
that it can account for constraints, such as a limited range of
movement and strength of a user. These constraints are accounted
for by constraining the optimization to a subject-specific dynamic
model. Rather than tracking able-bodied gait data, which may be
suboptimal when applied in the case of subjects with paraplegia
(Popović et al., 1999, 2003; Dosen and Popovic, 2008, 2009; Pandy
and Andriacchi, 2010) and may result in over stimulation of the
muscles and quicken the onset of FES-induced muscle fatigue,
the dynamic optimizations are used to compute subject-specific
optimal trajectories. The following cost function and constraints
were used to compute the optimal control inputs and joint angle
trajectories:

minu Π =

∫ tf

to
uTQu dt

subject to: M (q) q̈+ C(q, q̇)q̇+ G(q) + f(q, q̇)
+ τext(t) = b(q, q̇)u

q(to) = qo
q(tf) = qf
u ∈ [ul, uu]

where Q ∈ Rm×m is a symmetric positive definite weight matrix,
qo and qf are the initial and final joint angle vectors corresponding
to the user-defined step length, and the lower and upper bound
on the inputs are defined as uℓ and uu. These bounds allow for
the computation of an optimal solution while considering the
physical constraints of the system, such as the maximum torque
a motor can produce or the maximum amount of force a user
can produce when using a walker. The inputs to the system are
bounded by realistic values. The walker moment was constrained
to 100Nm and the motors torques are constrained to 40Nm. The
optimizations were run with 75 grid points for each control input
in u. The inputs were interpolated using a linear interpolation. A
second-order Heun’s method with a step size of 1ms was used
for numerical integration. This smaller step size was used to
prevent numerical divergence that may occur due to the harsh
non-linearities in the dynamics, e.g., ground reaction model and
passive muscle models, f (q,q̇), which diverge around hyperflexion
and hyperextension.

3.2. Synergy Extraction
Let ud(t) ∈ Rm be the desired optimal control vector containing
desired stimulation andmotor voltage levels to achieve the desired
optimal trajectory, qd(t) ∈ Rn. The dynamics are written in terms
of the optimal control inputs and kinematic trajectories as

M(qd)q̈d + C(qd, q̇d)q̇d + G(qd) + f(qd, q̇d) + τ∗ext(t) (4)
≡ b(qd, q̇d)ud(t),
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where τ∗ext is the torque created at each joint due to the ground
reaction forcewhen using the optimal inputs, and bd = b(qd, q̇d) is
the desired control gain matrix, which is bounded. By using PCA,
the possibly correlated inputs, ud, can be transformed into linearly
correlated inputs, cd, such as

ud = Wcd (t) + uloss, (5)

where W ∈ Rm× p are the precomputed orthogonal synergies,
and cd(t) ∈ Rp are the corresponding time-varying activation
coefficients of the synergies. The PCA analysis computes m syn-
ergies that account for all the variability of the data. The synergies
are ordered such that the first synergy accounts for most of the
variance, the second accounts for the second most, and so on.
Typically, the rule of thumb is to use the number of synergies,
p<m, that would account for over 90% of the variability of the
data. But since the controller also has feedback control and adapts
online, less synergies can be used. Therefore, instead of using
three synergies as indicated in Figure 4, only two were used. After
dropping the m – p synergies that account for the least amount of
variability in the data, the reconstructed inputs,Wcd, do notmatch
the optimal inputs, ud. Therefore, a reconstruction error, denoted
as uloss, is introduced in equation (5).

3.3. Control Development
In this section, we develop a controller that uses the synergies
extracted in the previous section to reduce the dimensionality of
the feedforward component. Also to improve control performance
and robustness, an update law was used to adapt the time-varying
activation coefficients online and feedback control for the motors
was included. The control objective is to track a continuously
differentiable desired trajectory qd ∈ Rn. The tracking error, e ∈
Rn, is defined as

e = qd − q. (6)

To facilitate the control design and stability analysis, the auxil-
iary error signal r ∈ Rn is defined as

r = ė+ αe, (7)

where α ∈ R+ is a control gain. The closed-loop error is derived
by multiplying the time derivative of equation (7) with M(q) and
substituting the dynamics in equation (1) to obtain

Mṙ = Mq̈d + Cq̇+ G+ f+ τd + τext − bu+Mαė. (8)

This expression can be written in the form

Mṙ = −Cr+ Ñ+ Nd + τd + τext − bu− e, (9)

where Ñ = N−Nd and the auxiliary signals N(e,r) and Nd (t) are
defined as

N = Mq̈d + Cq̇d + Cαe+ G+ f+Mαė+ e,
Nd = M(qd)q̈d + C(qd, q̇d)q̇d + G(qd) + f(qd, q̇d).

The term Ñ in equation (9) can be upper bounded by using the
mean value theorem as∥∥Ñ∥∥ ≤ ρ1(∥z∥) ∥z∥ , (10)

where ρ1(||z||) ∈R is a positive monotonic bounded function and
z ∈ R2n is defined as

z = [rT eT]T.

Note that the auxiliary signalNd is equal to the left-hand side of
the desired muscle synergy dynamics in equation (4), this allows
us to substitute bdud − τ∗ext in for Nd resulting in

Mṙ = −Cr+ Ñ+ τd + τ̃ext + bdud − bu− e, (11)

where τ̃ext = τext − τ∗ext is the torque due to the ground reaction
force mismatch and can be bounded.

REMARK 2: Further analysis can be done to show that the
bound on τ̃ext gets smaller as the position and velocity errors get
smaller, i.e., as the tracking errors approach to 0, τ̃ext will approach
to 0.

By choosing the control law u as

u = Wĉ+ kr, (12)

where ĉ ∈ Rp is the estimate of cd and k ∈ Rm× n is the feedback
gain that is chosen to only influence the electric motors. The
estimate of the synergy activation coefficient updates according
to the following gradient-based update law with the projection
algorithm

˙̂c = proj
(
ċd + ΓWTbTd r

)
, (13)

where Γ ∈ Rp× p is a symmetric positive definite learning rate
gainmatrix. The projection algorithm imposes an upper and lower
bound on ĉ, which is used in the stability analysis. More details of
this algorithm can be seen in Khalil (2002). The purpose of the
adaptation in the activation coefficient is to improve the feedfor-
ward component after reconstruction loss and to overcome any
system uncertainties. After using equations (5) and (12), equation
(11) becomes

Mṙ = −Cr+Ñ+τd+ τ̃ext+bduloss+bdWc̃+ b̃Wĉ−bkr−e, (14)

where c̃ ∈ Rp and b̃ ∈ Rn×m are defined as

c̃ = cd − ĉ, b̃ = bd − b.

Using themean value theorem, Assumption 5, and the property
of the projection algorithm, the following terms can be bounded as∥∥∥b̃∥∥∥ ≤ ρ2(∥z∥) ∥z∥ , ∥Wĉ∥ ≤ ϵ2, ∥τ̃ext + bduloss∥ ≤ ϵ3, ∥c̃|| ≤ δ,

(15)
where ρ2(||z||)∈R is a positivemonotonically increasing bounded
function and ϵ2, ϵ3, δ ∈ R+ are constants.

THEOREM: The controller designed in equations (12) and
(13) ensures semi-global uniformly ultimately bounded tracking
provided that the following gain conditions are met:

Kmin >
(ρ1(∥z∥) + ϵ2ρ2(∥z∥))2

2 , γmin {bk− γI} > 0,

where γmin{·} denotes the minimum eigenvalue of a square matrix
and Kmin ∈ R+ is a subsequently defined constant.

Proof: See Supplementary Material.
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4. SIMULATION RESULTS

4.1. Optimization and Synergy Extraction
Results
The optimization results are shown in Figures 2 and 3. Figure 2
shows the optimal joint angle trajectories. Figure 3 shows the
optimal control inputs. The optimal contributions from themotor
and FES can be adjusted by tuning theweights in the cost function.

The two synergies and their activation profiles extracted
through PCA can be seen in Figure 5. Note that the scaling
factors in the synergies on the left and the time-varying activation
coefficients on the right can have negative values. This makes it
harder to interpret what influence each synergy has on the system,
but it is unavoidable when PCA is used. Also in the optimiza-
tions, the inputs to the stimulation channels are constrained to be
positive, but after extracting the synergies, this property was lost.
This results in negative stimulation values that are not applicable
with FES because muscles are unidirectional actuators. There-
fore, when implementing the controller, any negative stimulation
inputs were set to 0.

4.2. Tracking Results
The newly developed controller in equation (12) was simulated
on a four-link rigid body gait model, developed in SimMechanics
[MathWorks, CA, USA]. The head, arms, and torso were modeled
as a point mass at the hips. The stance leg was modeled as a single
link with a fixed knee joint and a pinned ankle joint. The swing
leg was modeled with four-links: thigh, shank, and foot. Each link
in the swing leg had redundant actuation, i.e., an electric motor
and FES for the muscle flexors and extensors. The influence of

the walker was modeled as a moment acting on the stance leg.
This moment was used to help propel the body forward and help
keep the body stable and upright. The unmodeled effects or dis-
turbances, τ d, was incorporated by injecting uniformly distributed
noise into the four joints. The masses and lengths for each limb
were taken from anthropometric data (Winter, 2009), and the
muscle parameters of a subject with SCI were taken from Popović
et al. (1999) and Dosen and Popovic (2009). The ground reaction
force was realized on two contact points: the toe and heel. The
model uses a spring-damper system in the vertical direction and
a static or kinetic friction model in the horizontal direction when
the foot is in contact with the ground. More information on the
specifics of this ground reaction model can be found in Geyer and
Herr (2010).

To explore the efficacy of the controller, the simulations were
done with four cases. Case 1 considered the synergies as the feed-
forward component but with no adaptation, i.e., Wcd in equation
(5). Case 2 considered the synergies with adaptation, i.e.,Wĉ with
the adaptive law in equation (13). Case 3 considered both the
synergies with adaptation and feedback control, i.e., equations
(12) and (13). Case 4 considered the full optimal inputs computed
in the optimizations with feedback control. Only the motors and
walker moment were used as effectors to provide feedback. The
control gains used in the cases that included feedback control
were k= 10 and α= 100. In the two cases where adaptation was
present, the learning rate used for the two synergies were 0.0175
and 0.001. The results are shown in Figures 6–10. The root mean
squared error (RMSE) for the four joints for each case can be seen
in Table 1. Of all the cases, the third and fourth cases were found
to provide the best performance. In the first case, the feedforward
component provides just enough control input to produce the
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FIGURE 2 | Optimal gait trajectories for a step size of 0.4m in 0.75 s.
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FIGURE 3 | Optimal inputs to the walker moment, electric motors, and stimulation channels to reproduce the optimal gait trajectories.
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FIGURE 4 | This plot indicates how much of the data variability would
be accounted for based on the number of synergies considered. Rule
of thumb would indicate using three synergies, but since the controller is not
solely dependent on the feedforward component less synergies can be used.

movements but fails to clear the ground to complete the step. This
is because the toe makes contact with the ground model early and
begins to drag. In the second case, the swing leg joint anglesmatch
the desired profiles better and almost complete the walking step

but the swing foot does not reach the floor in the allotted time
of 0.75 s. In the third and fourth cases, the trajectories match the
desired profiles almost perfectly.

5. DISCUSSION

A muscle synergy approach can be useful for engineered systems
with redundancy in effectors. For example, the research by de
Rugy et al. (2013) mentions the usefulness of muscle synergies
in FES-based systems. The muscle synergy principle has also
been suggested as a hierarchical control framework for redundant
manipulators (Todorov et al., 2005; Artemiadis and Kyriakopou-
los, 2010), brain–machine interface-based control (Vinjamuri
et al., 2011), and for the design and control of a humanoid robotic
hand (Cho et al., 2007; Rosmarin and Asada, 2008; Catalano
et al., 2012; Grioli et al., 2012). In our proposed adaptive control
scheme, we showed that the synergy-based approach can be mod-
ified to provide a lower dimensional feedforward controller and
combined with a feedback controller to control a hybrid walking
neuroprosthesis.

As shown in the simulations, the new controller (Case 3)
performs as expected only when both the adaptive feedforward
and feedback components were active. However, in Case 1, when
two synergies were used alone, the key characteristics of the
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FIGURE 5 | (A) Two synergies, w1 and w2. (B) The corresponding time-varying activation coefficients, c1 and c2, of synergies, w1 and w2.

0 20 40

−10

−5

0

5

10

S
ta
n
c
e
 H
ip

A
n
g
le
 [
d
e
g
.]

0 20 40

−10

0

10

20

30

S
w
in
g
 H
ip

A
n
g
le
 [
d
e
g
.]

0 20 40

20

40

60

% Gait Cycle

S
w
in
g
 K
n
e
e

A
n
g
le
 [
d
e
g
.]

0 20 40
−10

−5

0

5

10

% Gait Cycle

S
w
in
g
 A
n
k
le

A
n
g
le
 [
d
e
g
.]

Desired Case 1 Case 2 Case 3 Case 4

FIGURE 6 | Four cases for gait control using a hybrid neuroprosthesis. Case 1 only used the feedforward synergies, Case 2 used the adapted feedforward
synergies, Case 3 considered both the adapted feedforward synergies and feedback control, and Case 4 used the full optimal inputs and feedback control. Note that
the profile from the third and fourth cases almost perfectly overlaps the desired profiles.

optimized gait was reconstructed, but the inputs from the two
synergies were not enough to clear the ground and complete a
full step as can be seen in Figure 10. This was likely caused by
the reconstruction error, uloss in equation (5), due to the PCA

decomposition. Evidence of this can be seen by comparing the
optimal inputs in Figure 3 and the feedforward inputs in Case 1,
as shown in Figure 7. To overcome the reconstruction error due
to the synergy decomposition, we proposed adding an adaptive
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FIGURE 8 | Control inputs for Case 3 of the simulations. The feedback’s contribution was used only in the walker moment and motor torques.

component and a feedback component to the synergy controller.
InCase 2, the adaptive synergies provided sufficient control inputs
to complete the walking step as well as enable the foot to clear the
ground during the swing phase but the swing knee joint angle does
not end at 0° as seen in Figure 10. This is evident in Figure 6,
near the 40% gait cycle region, where the swing hip, knee, and
ankle profiles showed improved tracking of the desired profile. In
Case 3, the feedback control to the motors further improved the
performance and the actual gait trajectories tracked the desired
profile almost perfectly. In this case, the adaptive feedforward
control may have given an approximate desired control input, and
the feedback control fine tuned the input to further minimize the
error.

In Figure 8, it can be seen that the amount of feedback motor
torque and feedforward motor torque are comparable in magni-
tude. This indicates that the feedback is not doing all the work in
this case. The need for the feedback torque is necessary because
after dimensionality reduction, the feedforward component may
not be enough to reproduce the movement due to reconstruction
loss. However, in Case 4’s results (Figure 9), where optimal inputs
instead of reconstructed inputs were used, it can be seen that
feedback control still played the same role as it did in Case 3.
This is because the optimizations that computed the feedforward
components did not consider system disturbances.

It can then be concluded that even if one were to use more
synergies (greater than two), the feedforward component would
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TABLE 1 | The root mean squared (RMS) error for the four simulated cases.

Case RMS error (°)

Stance hip Swing hip Swing knee Swing ankle

1 0.30 1.78 11.53 3.86
2 0.90 3.43 7.22 2.39
3 0.09 0.22 0.15 0.14
4 0.07 0.09 0.14 0.08

Case 3 that had two synergies and feedback and Case 4 that had full optimal feedforward
and feedback had the smallest RMS errors, followed by Case 2 that had just adaptive
feedforward, and then Case 3 with the non-adaptive feedforward.

still not be enough. But the benefit of decomposing the optimal
inputs and truncating the amount of synergies used is the reduced
amount of data needed in the real-time implementation of the
controller. That is to say, instead of having the 10 signals with
750 data points each (0.75 s at 1 kHz) from the optimal inputs, the
feedforward controller uses two signals and a matrix W ∈ R2×10

in this case. Therefore, the feedforward component was reduced
from using 7500 data points to using only 1520 data points.

The limitation of PCA is that the decomposed synergies may
not be easily interpreted. For example, in each synergy there is a
scaling factor for each of them control inputs and some synergies
may have negative scaling factors. A negative scaling factor may
not have any physical meaning (e.g., the stimulation inputs are
always positive). Also, adaptation in one activation coefficient
changes the scaling factors of all the control inputs in the corre-
sponding synergy, which may result in a non-gait like motion.
Interpretation of the synergies becomes even more inscrutable
when PCA results in activation coefficients that can be negative.

The new control development is based on time-invariant syn-
ergies, which means that all the inputs within a synergy set were
activated synchronously and temporal delays were not considered.
Perhaps, the use of time-varying synergies, which have a spatial
and temporal component, would result in less synergies and a
more effective feedforward component. Also, synergies specific
to the optimized gait data were extracted which means that they
may not span the full input space of the system. However, the
developed controller is general enough to be implemented on
larger systemswithmore degrees of freedomandmay be usedwith
any set of synergies. A general set of synergies that are applicable to
multiple tasks/movements, such as different step lengths and gait
speeds, sitting/standing, or ascending/descending stairs, would
provide a comprehensive data set to accomplish a control design
for the hybrid neuroprosthesis. An optimization algorithm, such
as the one used in Berniker et al. (2009), may be used to extract
a more general set of synergies from a reduced model (lower
dimensional) and used with this controller for a general task.
While the focus of this paper was on designing automatic control
methods that can handle actuator redundancy, gait optimizations
in our result can be improved by using high fidelity gait models
or optimization methods, such as in Ackermann and van den
Bogert (2010). Our future work will explore extracting muscle
synergies based on optimization of these high DOF models and
implementing these controllers on human subjects.

One method to find a generalizable set of synergies would be
to have the optimizations compute a common set of synergies and

the time-varying activation profiles to achieve multiple walking
speeds and other tasks directly as opposed to computing the
optimal inputs then extracting the synergies. The resulting set of
synergiesmay bemore generalizable than the current set extracted
through PCA. Another benefit of using optimizations to extract
the synergies is the possibility of more restrictions, e.g., non-
negative scaling factors in synergies (a limitation of PCA) or
non-negative stimulation after synergy transformation.

In order to test these types of controllers in experimental tri-
als, the controller must be scaled-up to achieve motions other
than gait, such as sitting and standing. This can be achieved
by designing a library of synergies that encompass walking, sit-
ting, and standing. Also, because these optimizations are model
based, extensive system identification experiments are required to
find the subject-specific parameters that are used in the models.
Undoubtedly, validating the synergy-inspired controller is not
completely feasible with surface FES because the hip flexors and
extensors are harder to access. However, during experimental
implementation of this controller, only a motor could be used
at the hip joint while muscle synergy-inspired controller can
still be verified for redundant actuation at the knee and ankle
joints. Alternatively, an invasive FES system, such as in Triolo
et al. (1996), may provide access to over 40 different lower-limb
muscles. Therefore, a synergy-inspired controller may be a very
good candidate for the hybrid neuroprosthesis system proposed
in Kobetic et al. (2009).

6. CONCLUSION

In this paper, an adaptive synergy-based controller was presented
for a hybrid walking neuroprosthesis. The controller used optimal
inputs and trajectories, computed from dynamic optimizations,
that were performed on a subject-specific gait model. A PCA
algorithm was used to extract synergies from the optimal inputs
to be used as a feedforward component to the controller. An
update lawwas derived, using Lyapunov stability analysis, to adapt
the time-varying activation coefficient of the synergies online. In
addition, a feedback PD controller was used tomake the controller
more robust to disturbances. The efficacy of the controller was
demonstrated in simulations on a four-link gait model with 10
actuators, including a walker moment, electric motors, and FES of
the muscle flexors and extensors. Future work will focus on using
time-varying synergies and different adaptation schemes, such as
the adaptation of the scaling factors in the synergies.
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Investigation of neural representation of movement planning has attracted the attention 
of neuroscientists, as it may reveal the sensorimotor transformation essential to motor 
control. The analysis of muscle synergies based on the activity of agonist–antagonist 
(AA) muscle pairs may provide insight into such transformations, especially for a refer-
ence frame in the muscle space. In this study, we examined the AA concept using the 
following explanatory variables: the AA ratio, which is related to the equilibrium-joint 
angle, and the AA sum, which is associated with joint stiffness. We formulated muscle 
synergies as a function of AA sums, positing that muscle synergies are composite units 
of mechanical impedance. The AA concept can be regarded as another form of the 
equilibrium-point (EP) hypothesis, and it can be extended to the concept of EP-based 
synergies. We introduce, here, a novel tool for analyzing the neurological and motor 
functions underlying human movements and review some initial insights from our results 
about the relationships between muscle synergies, endpoint stiffness, and virtual tra-
jectories (time series of EP). Our results suggest that (1) muscle synergies reflect an 
invariant balance in the co-activation of AA muscle pairs; (2) each synergy represents the 
basis for the radial, tangential, and null movements of the virtual trajectory in the polar 
coordinates centered on the specific joint at the base of the body; and (3) the alteration 
of muscle synergies (for example, due to spasticity or rigidity following neurological injury) 
results in significant distortion of endpoint stiffness and concomitant virtual trajectories. 
These results indicate that muscle synergies (i.e., the balance of muscle mechanical 
impedance) are essential for motor control.

Keywords: muscle synergy, motor primitives, mechanical impedance, reference frame, virtual trajectory, endpoint 
stiffness, electromyography
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inTrODUcTiOn

Voluntary movement requires sensorimotor transformation 
between extrinsic and intrinsic frames of reference (Kandel et al., 
2012). To execute movement with specific endpoint characteris-
tics, including aspects of kinematics, force, and impedance, the 
sensorimotor transformation may directly map the muscle space 
into the task space; the central nervous system (CNS) needs 
to regulate muscle activities to meet the endpoint’s kinematic 
and kinetic specification. If the muscle space directly relates to 
the task space, the endpoint movement could be planned or 
predicted based on the reference frame in the muscle space in 
which the motor commands from the CNS to the muscles are 
encoded. The reference frame in the muscle space provides a 
framework to explain how humans plan, adjust, and achieve a 
desired endpoint movement when governing multiple muscles 
in the executing limb.

However, the neuromusculoskeletal system is neurologically 
and mechanically redundant. The inverse problem (i.e., move-
ment planning) involves an infinite number of possible solutions 
to a given task. One hypothesis for solving this ill-posed problem 
is to exploit the stereotypical patterns of coordination, or muscle 
synergies. Synergies are classes of movement patterns that are 
functional groups of structural elements in the regulation and 
control of movement (Bernstein, 1967). The synergy hypothesis 
emphasizes that the CNS utilizes the functional structure at differ-
ent motor levels (neurons, muscles, and joints) to simplify motor 
control. There is much evidence to show that the natural solution 
to the distribution problem results in highly robust endpoint’s 
kinematics (Morasso, 1981; Lacquaniti et  al., 1983; Flash and 
Hogan, 1985; Shadmehr and Mussa-Ivaldi, 1994) and kinetics 
(Hogan, 1985; Mussa-Ivaldi et al., 1985; Flash and Mussa-Ivaldi, 
1990; Tsuji et al., 1995) features, called invariant characteristics 
(Zatsiorsky and Prilutsky, 2012). Motor invariance could provide 
a clue for understanding the mechanism underlying voluntary 
movements, because the CNS may impose or exploit these 
constraints to solve the degrees-of-freedom problem (Bernstein, 
1967) essential for motor control.

However, it is an open question: are muscle synergies funda-
mental primitives or consequences of other primitives? Some 
researchers have considered motor synergies to be building blocks 
of movement (d’Avella et al., 2006; Latash, 2008; Cheung et al., 
2009; Dominici et al., 2011; Bizzi and Cheung, 2013). However, 
other researchers have considered that at least some types of 
motor synergies are not primitives but composites of mechanical 
impedance (Hogan and Sternad, 2012).

While many aspects of motor control and coordination 
remain controversial, such as movement reference frame, motor 
redundancy, and motor primitives (neurological or mechanical 
origin of motor synergies), our objective in this paper is to provide 
some evidence supporting the concept that muscle mechanical 
impedance might provide key insights into unravel motor control 
intertwined relationships.

In our previous work, we reconsidered muscle synergies 
from a mechanical engineering aspect and associated them with 
the reference frame in the muscle space (Uno et  al., 2014). The 
mathematical formulation was theoretically attractive because it 

suggested that muscle synergies were a function of co-activations by 
agonist–antagonist (AA) muscle pairs (i.e., composites of mechani-
cal impedance). Moreover, the muscle synergies were viewed as 
invariant functional modules representing the reference frame in 
the polar coordinates centered on the specific joint (e.g., shoulder) 
at the base of the body. Thus, we hypothesized that muscle synergies 
are consequences of the balance of mechanical impedance, which 
represents the reference frame in the muscle space.

In this work, we examine our hypothesis from the viewpoint 
of motor control, learning, and recovery. If muscle synergies are 
primitives for motor control, learning, and recovery, it would be 
expected that common synergies are extracted across a variety of 
different tasks, different subjects, and different motor skills of the 
subjects. Also, the investigation of muscle synergies for a subject 
with neuromotor deficits would provide insight into the extent 
of muscle-synergy invariance, since the fundamental motor 
functions may be damaged by abnormal muscle tone, which is a 
common feature after neurological injury. In this study, we tested 
two experimental paradigms: (1) muscle synergies on motor 
adaptation and (2) muscle synergies on motor recovery. In our 
view, muscle synergies strongly relate to mechanical impedance. 
We also discuss endpoint stiffness and concomitant virtual trajec-
tories in the context of muscle synergies.

MeThODs

apparatus
Multiple muscles in the human neuromuscular system are 
responsible for coordinating and regulating movement while 
negotiating within the dynamic environment. The establishment 
of a systematic framework to explain motor synergies, mechani-
cal impedances, and virtual trajectories is a challenge to the 
comprehensive understanding of motor control and learning. 
Assuming that the investigation of multiple muscle activities 
would lead to a deeper understanding of the neural mechanism 
underlying voluntary movements, we developed a kinesiological 
analysis device that enables us to estimate those intrinsic motor 
characteristics from electromyography (EMG) signals dur-
ing movement. Figure  1 shows an overview of the system we 
call the “synergy analyzer”. The system consists of a display, a 
screen table, a chair with harnesses, an arm-support cart with 
low-friction ball wheels, a motion capture system, and an EMG 
measurement system.

The subjects sat in the chair with both shoulders fixed in the 
harnesses and performed voluntary arm movements while look-
ing at the 65-inch display [or a 1.20 m × 0.86 m (width × height) 
screen table] in front of them. The upper limb was placed on the 
arm-support cart at shoulder height to eliminate the influence of 
gravity and restrict arm movement on the horizontal plane. In 
order to conceptualize the upper limb as a two-link structure, the 
wrist joint was fixed to the arm-support cart. During the subject’s 
voluntary arm movements, kinematics and EMG signals were 
recorded synchronously. Each joint position (left shoulder, right 
shoulder, left or right elbow, and left or right hand) of the upper 
limbs was measured using an optical motion capture system with 
eight cameras (OptiTrack; NaturalPoint, Inc., Corvallis, OR, 
USA) at 100 Hz.

FigUre 1 | experimental setup. (a) Display; (B) screen table; (c) EMG signals; (D) muscle synergies [uR(s) (top left), uφ(s) (top right), and uφ×R(s) (bottom left)];  
(e) endpoint-stiffness ellipse; (F) equilibrium point. The subject performed spiral or circle tracing with the non-dominant/dominant hand in a horizontal plane while 
monitoring a display showing the ideal trajectory. The EMG activities during movements were recorded to analyze muscle synergies, endpoint stiffness, and virtual 
trajectories.
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suggested that muscle synergies were a function of co-activations by 
agonist–antagonist (AA) muscle pairs (i.e., composites of mechani-
cal impedance). Moreover, the muscle synergies were viewed as 
invariant functional modules representing the reference frame in 
the polar coordinates centered on the specific joint (e.g., shoulder) 
at the base of the body. Thus, we hypothesized that muscle synergies 
are consequences of the balance of mechanical impedance, which 
represents the reference frame in the muscle space.

In this work, we examine our hypothesis from the viewpoint 
of motor control, learning, and recovery. If muscle synergies are 
primitives for motor control, learning, and recovery, it would be 
expected that common synergies are extracted across a variety of 
different tasks, different subjects, and different motor skills of the 
subjects. Also, the investigation of muscle synergies for a subject 
with neuromotor deficits would provide insight into the extent 
of muscle-synergy invariance, since the fundamental motor 
functions may be damaged by abnormal muscle tone, which is a 
common feature after neurological injury. In this study, we tested 
two experimental paradigms: (1) muscle synergies on motor 
adaptation and (2) muscle synergies on motor recovery. In our 
view, muscle synergies strongly relate to mechanical impedance. 
We also discuss endpoint stiffness and concomitant virtual trajec-
tories in the context of muscle synergies.

MeThODs

apparatus
Multiple muscles in the human neuromuscular system are 
responsible for coordinating and regulating movement while 
negotiating within the dynamic environment. The establishment 
of a systematic framework to explain motor synergies, mechani-
cal impedances, and virtual trajectories is a challenge to the 
comprehensive understanding of motor control and learning. 
Assuming that the investigation of multiple muscle activities 
would lead to a deeper understanding of the neural mechanism 
underlying voluntary movements, we developed a kinesiological 
analysis device that enables us to estimate those intrinsic motor 
characteristics from electromyography (EMG) signals dur-
ing movement. Figure  1 shows an overview of the system we 
call the “synergy analyzer”. The system consists of a display, a 
screen table, a chair with harnesses, an arm-support cart with 
low-friction ball wheels, a motion capture system, and an EMG 
measurement system.

The subjects sat in the chair with both shoulders fixed in the 
harnesses and performed voluntary arm movements while look-
ing at the 65-inch display [or a 1.20 m × 0.86 m (width × height) 
screen table] in front of them. The upper limb was placed on the 
arm-support cart at shoulder height to eliminate the influence of 
gravity and restrict arm movement on the horizontal plane. In 
order to conceptualize the upper limb as a two-link structure, the 
wrist joint was fixed to the arm-support cart. During the subject’s 
voluntary arm movements, kinematics and EMG signals were 
recorded synchronously. Each joint position (left shoulder, right 
shoulder, left or right elbow, and left or right hand) of the upper 
limbs was measured using an optical motion capture system with 
eight cameras (OptiTrack; NaturalPoint, Inc., Corvallis, OR, 
USA) at 100 Hz.

FigUre 1 | experimental setup. (a) Display; (B) screen table; (c) EMG signals; (D) muscle synergies [uR(s) (top left), uφ(s) (top right), and uφ×R(s) (bottom left)];  
(e) endpoint-stiffness ellipse; (F) equilibrium point. The subject performed spiral or circle tracing with the non-dominant/dominant hand in a horizontal plane while 
monitoring a display showing the ideal trajectory. The EMG activities during movements were recorded to analyze muscle synergies, endpoint stiffness, and virtual 
trajectories.
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Electromyography signals of six upper limb muscles [deltoid 
posterior, deltoid anterior, triceps brachii (long head), biceps bra-
chii, triceps brachii (lateral head), and brachioradialis] were meas-
ured with a multi-telemeter system (WEB-5000; Nihon Kohden 
Corp., Japan) at 1000 Hz. Surface electrodes were attached to the 
appropriate places on measured muscles as previously described 
(Criswell, 2010; Perotto, 2011), after cleansing the skin with 
alcohol (<10 kΩ). The obtained EMG signals were analyzed after 
the following procedures: bandpass filtering (10–450  Hz), full-
wave rectification, smoothing, and normalization to maximum 
voluntary contraction (MVC), which was reported as percentage 
of MVC. We followed standard procedure to determine the MVC 
for each muscle (Hislop and Montgomery, 2007). The synergy 
analyzer then estimated the muscle synergies, endpoint stiffness, 
and virtual trajectories from the measured movement data, while 
superimposing these motor indices in real time (refresh rate, 
10 Hz) onto the actual images captured from the top-view camera. 
The estimation results were provided to the subject on the display 
(or screen table) for use during biofeedback training.

experimental Paradigm
This study focused on the roles of muscle synergies, endpoint 
stiffness, and virtual trajectories during voluntary training and 
rehabilitation. To clarify the evolution of these motor character-
istics, we performed two experiments.

Experiment 1: Motor Adaptation After Training
Eight young subjects (all males, 23 ± 1 years old, right-handed) 
volunteered for the first experiment. No subject reported any 
history of neuromuscular disease. The experiment was approved 
by the Institutional Review Board of Osaka University, and all 
subjects provided written informed consent before participation.

Each subject performed spiral tracing as fast as possible 
without touching the lines with his non-dominant (left) hand in 
a horizontal plane (Figure 1). The maximum radius of the spiral 
was 21  cm. The visual presentation of the ideal trajectory and 
current hand position were provided on a display in front of the 
subject; the ideal spiral trajectory had a spacing of 1.0 cm between 
lines on the display, which was equivalent to 3.5 cm in the task 
space. The center of the spiral in the task space was adjusted to 
correspond to each subject’s hand position in a natural posture. 
The movement included 5.75 clockwise rotations from outside 
to inside. To become familiar with the procedure, the subjects 
performed 20 trials as practice before the first baseline measure-
ment. The subject was then asked to perform the task 50 times 
per day for 8 days. On the first and last days, the kinematics and 
EMG signals during the task were measured to analyze the muscle 
synergies, endpoint stiffness, and virtual trajectories.

Experiment 2: Motor Recovery After Rehabilitation
Two elderly subjects, a healthy subject (male, 61 years old, right-
handed) and a post-stroke subject (male, 74  years old, right-
handed), volunteered for the second experiment. The experiment 
was approved by the Institutional Review Boards of Osaka 
University and Senri Chuo Hospital, and both subjects provided 
informed consent. The healthy subject was a control subject who 
was of the same generation as the other subject. The post-stroke 

subject was an acute-stage inpatient with mild-to-moderate right-
side hemiplegia but was able to carry out verbal communication. 
The post-stroke subject performed the experiment twice, before 
and 2.5 months after rehabilitation.

Each subject performed circle tracing with his dominant 
(right) hand in a horizontal plane. Because the spiral tracing task 
was difficult for the post-stroke subject before rehabilitation, we 
selected a similar trajectory in a smaller circle (radius: 10  cm) 
so that the task would be easier for him. The post-stroke subject 
performed the task as fast as possible with his affected hand with-
out any kind of assistance, while the healthy subject performed 
the task at slow speed (movement time: about 4 sec) to match his 
movements to those of the post-stroke subject. The kinematics 
and EMG signals during the task were measured to analyze the 
muscle synergies, endpoint stiffness, and virtual trajectories.

Data analysis
AA Ratio and AA Sum
The human upper arm was modeled as a two-link structure with six 
muscles (Figure 2). We selected the four mono-articular muscles 
and two bi-articular muscles relevant to the shoulder and elbow 
movements in a horizontal plane. The chosen muscles were indexed 
as follows: deltoid posterior (Ms,ext), deltoid anterior (Ms,flex), triceps 
brachii (long head) (Mse,ext), biceps brachii (Mse,flex), triceps brachii 
(lateral head) (Me,ext), and brachioradialis (Me,flex). These six muscles 
comprise three pairs of AA muscles. The mono-articular muscle 
pair around the shoulder joint (Ms,ext and Ms,flex), bi-articular mus-
cle pair around the shoulder and elbow joints (Mse,ext and Mse,flex), 
and mono-articular muscle pair around the elbow joint (Me,ext and 
Me,flex) are the fundamental functional units for coordinating and 
regulating the shoulder and elbow joint movements to control 
hand movement; each muscle pair is composed of two muscles that 
have opposite (i.e., agonist and antagonist) functions.

To characterize the motor functions of an AA muscle pair 
around the joint(s), j, we defined the following meta-parameters 
(the AA ratio, rj, and AA sum, sj) as the control variables:

 
r

m
m m

jj
j ext

j ext j flex

 s  se  e=
+

=( ),

, ,

, , ,  (1a)

 s m m jj j ext j flex  s  se  e= + =( ), , , , ,  (1b)

where the subscript j indicates the joint(s) and corresponds to 
any one of the shoulder (s), shoulder and elbow (se), and elbow 
(e) joints; mj,ext and mj,flex are the EMG activities of the extensor 
and flexor muscles around the joint(s) j. Table 1 lists the motor 
functions of these AA muscle pairs. The AA ratio contributes to 
the equilibrium position of the joint angle(s), and the AA sum 
contributes to the mechanical impedance of the joint(s). Details of 
the mathematical theory on the AA concept have been previously 
published (Ariga et al., 2012; Pham et al., 2014; Hirai et al., 2015).

Muscle Synergies
One hypothesis for the spatial and temporal control of limb move-
ments with multiple muscles is the use of hierarchical coordination. 
In the previous section, we considered the coordination of agonist 
and antagonist muscles as the lowest level of coordination. This 
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TaBle 1 | Definitions and functions of agonist–antagonist (aa) ratio (r) 
and aa sum (s).

symbol Definition Function

rs m

m m
s ext

s ext s flex

,

, ,+
EP control of the shoulder joint angle

rse
m

m m
se ext

se ext se flex

,

, ,+
EP control of the shoulder and elbow 
joint angles
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m

m m
e ext

e ext e flex

,

, ,+
EP control of the elbow joint angle

ss ms,ext + ms,flex Stiffness control of the shoulder joint

sse mse,ext + mse,flex Stiffness control of the shoulder and 
elbow joints

se me,ext + me,flex Stiffness control of the elbow joint

EP, equilibrium point.

FigUre 2 | human upper limb model. The human musculoskeletal structure of an upper limb is simplified as a two-link model with six muscles. (a) Three pairs of 
agonist–antagonist muscles are arranged around the shoulder and elbow joints. The paired muscles are indicated in the same color (red, green, and blue). The 
mono-articular muscle pair around the shoulder joint (Ms,ext and Ms,flex), bi-articular muscle pair around the shoulder and elbow joints (Mse,ext and Mse,flex), and 
mono-articular muscle pair around the elbow joint (Me,ext and Me,flex) are responsible for coordinating and regulating the shoulder and elbow joint movements to 
control hand movement. (B) The hand position in the planar task space can be defined in Cartesian coordinates (x, y) or polar coordinates (R, φ) centered on the 
shoulder. Note that the polar coordinates (R, φ) are defined as positive when the endpoint moves away from the base of the body. These coordinates are the 
functions of the shoulder and elbow joint angles (θs, θe).
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section explains the next level of coordination, intra-limb coordi-
nation, and develops the AA concept under the model shown in 
Figure 2. To derive the relationship among the equilibrium points, 
AA ratios, and AA sums, we used the following assumptions: (1) 
each muscle can be described as a spring system whose elastic 
coefficient and natural length are adjusted according to an EMG 
signal; (2) the moment arm of each joint is equal and constant; 
and (3) the lengths of the upper arm (from shoulder joint to elbow 
joint) and forearm (from elbow to the center of wrist) are equal. 
In the mathematical sense, the assumption (1) means that the 
contractile force of a muscle F(m) can be expressed by

 F m K m l l m( ) = −( )( ) ( )0  (2)

where K(m) is the muscle stiffness at EMG activity level m, and l 
and l0(m) are the muscle length and natural length of the muscle 
at EMG activity level m. K(m) and l0(m) are

 K m C m C( ) = −1 2( )  (3)

and

 
l m C

K m
C0

3
4( ) = +

( )
 (4)

where C1, C2, C3, and C4 are constant coefficients that represent 
the properties of the muscle. The details of our assumption with 
mathematical formulation have been published previously (Ariga 
et al., 2012; Hirai et al., 2015). Based on these assumptions, the 
displacement of the equilibrium-joint angles at the shoulder and 
elbow, θEP  =  (θs,EP, θe,EP)T, can be described with the following 
equation, using the AA ratios and the AA sums (Pham et al., 2014; 
Uno et al., 2014; Hirai et al., 2015):
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where C is the coefficient determined by the muscle characteris-
tics and the moment arm, r is the AA ratio vector (rs, rse, re)T, s is 
the AA sum vector (ss, sse, se)T, and qs(s) and qe(s) are defined as 
follows:

 
q ss

s se e se s e
s se s e e se e se

T( ) =
+ +

+ −( )1
s s s s s s

s s s s s s s s, ,  (6a)

 
q se

s se e se s e
s se s se e se s e

T( ) =
+ +

− +( )1
s s s s s s

s s s s s s s s, ,  (6b)

Note that qs(s) and qe(s) are composed of the AA sum only. 
As shown in equation (5), the AA ratio controls the equilibrium-
joint angle linearly if qs(s) and qe(s) satisfy the condition of being 
a constant. However, one problem is motor redundancy: the 
dimension of the AA ratio space always exceeds the dimension 
of the joint space. The synergy hypothesis emphasizes the use of 
coordination in solving this ill-posed problem (Bernstein, 1967). 
We used this hypothesis to introduce a method for extracting the 
muscle synergies from the human musculoskeletal model. The 
essence of this technique is that the EP at the endpoint is described 
based on the polar coordinates system centered on the shoulder 
(Figure 2). The kinematics of the two degrees-of-freedom arm 
with the shoulder angle, θs, and elbow angle, θe, determine the 
unique endpoint position, p = (R, φ)T, in the polar coordinates:
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where L is the length of the upper arm and forearm. By consider-
ing a small deviation of p and substituting Eq. (5) into Eq. (7), we 
can obtain the relationships among the endpoint EP, AA ratios, 
and AA sums:
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R  is a Jacobian matrix that relates the joint 

space to the task space described in the polar coordinates; CR(θe) 
and Cφ are coefficients determined by the muscle  characteristics, 
moment arm of each joint, and upper arm/forearm length L. 
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2
 can be approximated as a 

constant C CR R e=( )( )θ  when the elbow is flexed enough during 

the movement, where θe  is the mean angle of the elbow joint. A 
remarkable feature of our method is that the formulation is based 
on the polar coordinates. Owing to the good linear approxima-
tion between the task space described in the polar coordinates 
and the joint space (Mitsuda et al., 1997), the above equation is 
satisfied in a relatively broad range of work space. Equation (8) 
indicates that the displacement of the endpoint EP in the polar 
coordinates can be estimated by projecting the three-dimensional 
AA ratio vector Δr[=(Δrs, Δrse, Δre)T] onto the two-dimensional 

subspace composed of CRqe(s) and Cφ q s
q s
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this informative relationship, we defined the muscle-synergy 
vectors as
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where uR(s) and uφ(s) indicate the unit vectors for the distributions 
of the AA ratio vector in the radial and tangential directions, and 
uR×φ(s) is defined as the unit vector in the null direction (i.e., the 
zero space). Muscle synergy in the null direction is not considered 
to directly contribute to the movement of the endpoint EP but 
is felt to regulate the endpoint stiffness (Uno et al., 2014). These 
synergy vectors are the bases for the endpoint EP’s movement 
in the radial, tangential, and null directions. Note that muscle 
synergy is a function of the AA sum only. In our definition, the 
muscle synergy represents the balance of mechanical impedance 
by co-activations of AA muscles and plays a role as the reference 
frame in the muscle space for the endpoint EP movement. It is 
worth noting that muscle synergy becomes constant when qs(s) 
and qe(s) satisfy the condition of being constants. This assump-
tion is not trivial, but the validity of this assumption (i.e., muscle-
synergy invariance) is confirmed in the later sections.

Endpoint Stiffness
Endpoint stiffness is another index of mechanical impedance, 
while muscle synergy indicates the balance of mechanical imped-
ance by co-activations of the AA muscles. Assuming a linear rela-
tionship between single muscle activation and the corresponding 
muscle stiffness, the joint stiffness Kj(s) in the static condition can 
be expressed as the following function of AA sums:
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+
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where kj N·m/rad is a gain constant to convert the AA sums to 
joint stiffness. Under dynamic conditions, such as the presence 
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of a force load, an additional term depending on the hand posi-
tion and hand force is required (McIntyre et al., 1996). However, 
we ignored this effect for simplicity, assuming that hand force 
was minimal in our task. Then, endpoint stiffness Ke(s, θ) can be 
obtained as follows:

 
K s J K Je xy

T
j xy( , ) ( ) ( ) ( )q q q= ( ) ⋅ ⋅

− −1 1s  (11)
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x y
 is the Jacobian matrix that associates 

the joint space with the task space in Cartesian coordinates. The 
endpoint-stiffness matrix can be graphically represented as a stiff-
ness ellipse calculated based on the eigenvalues and eigenvectors 
of the matrix (Hogan, 1985; Mussa-Ivaldi et al., 1985; Flash and 
Mussa-Ivaldi, 1990).

Virtual Trajectories
By projecting the deviation vector of the AA ratio onto the 
muscle-synergy vectors, we can obtain the change in the EP at 
the endpoint. We defined the deviation of synergy activation 
coefficients (ΔwR, Δwφ, and ΔwR×φ) as the inner products of the 
muscle-synergy vectors [uR(s), uφ(s), and uR×φ(s)] and the devia-
tion vector of the AA ratio ∆ =r r r( )− , where r  is the AA ratio 
at the basis position.
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The deviation of the endpoint EP is then expressed as
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where αR and αφ are the gain constants to adjust the scale of the 
muscle-synergy activation coefficients to the scale of the virtual 
trajectory, and αR and αφ correspond to CR and Cφ in Eq.  (8). 
The displacement of the endpoint EP in the polar coordinates, 
pEP = (REP, φEP)T, can be calculated from a linear combination of 
muscle-synergy activation coefficients as
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where REP and φEP are the polar coordinates of the endpoint EP at 
the basis position. In the rest condition at the basis position, we 
assumed that the actual position and EP position at the endpoint 
became equal. Finally, the endpoint EP in the Cartesian coordi-
nates can be obtained by the following transformation:
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The virtual trajectory is a time series and is a succession of 
EPs at the endpoint. The EP can be represented as a point in 

the configuration space of muscle synergies, and the virtual 
trajectory can be identified by tracking the point over time in the 
muscle-synergy space. Reference control based on EPs or virtual 
trajectories, that is to say, the EP hypothesis (Feldman, 1966, 
1986; Feldman et al., 1990; Feldman and Latash, 2005), has been 
an influential hypothesis for motor control. Our formulation may 
give an insight to unify the different ideas of muscle synergies, 
endpoint stiffness, and virtual trajectories.

resUlTs

experiment 1: synergy analysis of Motor 
adaptation
The spiral test is a reliable measure of accuracy and speed in upper 
limb movements; it is usually used in rehabilitation as a qualita-
tive assessment to provide feedback to patients with coordination 
disorders, such as cerebellar ataxia or Parkinson’s disease (Verkerk 
et al., 1990). We adopted this measure as an index to reflect the 
evolution of movement in the non-dominant hand through 
voluntary training, although the subjects were neurologically 
and physically intact. The subjects were scored on the time spent 
to complete the task, with a penalty time added for touching or 
crossing the lines; the score was defined as the sum of the time 
spent (from start to goal), the number of times the spiral line was 
touched multiplied by 3, and the number of times the spiral line 
was crossed multiplied by 5. The kinematics-assessment score 
greatly improved for the eight subjects through 8 days of training. 
The average score for all subjects was 62.1 ± 23.3 (mean ± SD) on 
the first day and 23.3 ± 11.8 on the last day, respectively, indicat-
ing the enhancement of motor performance.

Figure  3 shows a typical AA ratio and AA sum before and 
after training for one subject (Subject #1). The AA ratio is an 
explanatory variable ranging from 0 to 1, and the AA sum is an 
explanatory variable ranging from 0 to 2. The AA ratio and AA 
sum indicate the degree of extension of the equilibrium-joint 
angles and of the increase of joint stiffness, respectively. Note that 
both variables vary with time because they are calculated from 
EMG signals during movement.

Figure 4 shows the change in muscle synergies for the eight 
subjects before and after training, using the method described 
in the previous section. In each graph, the left, central, and right 
groups of the three-bar set (red, green, and blue) illustrate the 
muscle synergy in the radial direction [uR(s)], tangential direction 
[uφ(s)], and null direction [uR×φ(s)], respectively. The three colored 
bars in each muscle synergy represent the element values of the 
muscle-synergy vector, and each value quantifies the contribu-
tion of AA muscle activities to the shoulder, shoulder and elbow, 
and elbow joint movement, respectively. For a summary of the 
mean changes and SDs of muscle synergies, see Table 2. Table 3 
illustrates the inner-product (IP) values between muscle-synergy 
vectors computed from EMG signals in Experiment 1, indicating 
the similarity of muscle synergies in both inter-individual and 
intra-individual variations.

Figure  5 shows typical endpoint stiffness before and after 
voluntary training (the first and last days of training) for Subject 
#1. The endpoint-stiffness ellipses during movement were com-
pared between corresponding hand positions. Figure  6 shows 
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FigUre 3 | Typical change in agonist–antagonist (aa) ratios and aa sums from the first and last days of voluntary training (subject #1). The red, 
green, and blue lines indicate the change in the time-dependent explanatory variable for the AA muscles around the shoulder, shoulder and elbow, and elbow joints, 
respectively. The AA ratio and AA sum oscillated over time in accordance with rhythmic limb movement. The changes in the AA ratio and AA sum indicate that the 
voluntary training resulted in a change in the control of EP and stiffness around each joint.
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typical actual and virtual trajectories before and after voluntary 
training for Subject #1. The red and green circles are the start 
and goal points, and the arrow indicates the direction in which 
each trajectory progresses. Figure 7 shows the actual and virtual 
trajectories in the radial and tangential directions, which cor-
respond to those trajectories in Figure 6. Figure 7 also shows the 
change in movement time, indicating significant improvement 
in motor performance. The observed evolution characteristics in 
these figures are representative of those for all eight subjects.

experiment 2: synergy analysis of Motor 
recovery
The functional independence measure (FIM) score is a widely 
used scale of disability severity that quantifies the impact of 
impairment on the performance of daily activities (Granger et al., 
1986; Carr and Shepherd, 2010). The FIM score (maximum score: 
126) of the post-stroke subject in this study was 44 points before 
rehabilitation and 67 points after 2.5  months of rehabilitation. 
These scores indicate that the subject’s motor function improved 
through therapist-based exercise in rehabilitation. In agreement 
with the FIM score’s change, the average movement time for the 
post-stroke subject in our task improved from about 6 s to about 
4 s before and after rehabilitation; the average movement time for 
the healthy subject was about 4 s.

Since obvious recovery was observed in the post-stroke sub-
ject, we then compared the motor indices of muscle synergies, 
endpoint stiffness, and virtual trajectories, which characterize the 
coordination and regulation of multiple muscle activities before 

and after rehabilitation. Figure 8 shows the changes in the AA 
ratios and AA sums for the post-stroke subject before and after 
2.5 months of rehabilitation, as well as the changes in the AA ratios 
and AA sums for the same-generation healthy subject. Figure 9 
shows the changes in muscle synergies, endpoint stiffness, and 
virtual trajectories, which can be estimated by the proposed algo-
rithm with the AA ratio and AA sum. The actual trajectory was 
also plotted on the graph of the virtual trajectory in Figure 9 as 
one of the indices of motor recovery, although significant change 
was not observed. Details of the mean changes and SDs of muscle 
synergies are summarized in Table 4. Table 5 compares the IP 
values between muscle-synergy vectors for different variations in 
Experiment 2: inter-individual variations, intra-individual varia-
tions, and intra-task variations.

DiscUssiOn

Muscle synergies as reference Frames in 
Muscle space
Focusing on the coordination among activities of AA muscles, 
here we discuss the relationships among the muscle synergies, 
endpoint stiffness, and virtual trajectories. To our knowledge, 
muscle synergy is a coordination index defined as a function of 
co-activations of AA muscles. It is a composite unit associated 
with mechanical impedance and is also a functional module 
representing the reference axis in the polar coordinate system 
for the displacement of an EP in the task space. In short, muscle 
synergies represent the reference frame in the muscle space 
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FigUre 4 | Muscle synergies from the first and last days of voluntary 
training for eight subjects. The three-bar sets represent the muscle 
synergies in the radial direction (uR), tangential direction (uφ), and null direction 
(uR×φ). Each colored bar in the muscle synergy indicates the contribution of 
agonist–antagonist muscle activities to the shoulder (red), shoulder and 
elbow (green), and elbow joint (blue) movement. Muscle synergies exhibited 
similar patterns regarding both intra- and inter-individual variations during 
training, demonstrating the existence of common and invariant reference 
frames for motor representation that are independent of the level of motor 
learning.
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that may be used in motor planning for endpoint control. 
Endpoint stiffness is another index of mechanical impedance; 
the balance of the co-activations of AA muscles determines not 
only the muscle synergies but also the shape and orientation of 
the endpoint-stiffness ellipse. The virtual trajectory is a time 
sequence of EPs at the endpoint. The EP can be represented as 
a point in the configuration space of muscle synergies, and the 
virtual trajectory can be identified by tracking the point over 
time in the muscle-synergy space. The mathematical relation-
ships among these inter-winding motors were derived from the 
physical modeling of the musculoskeletal structure with multiple 
AA muscles.

Physics-Based approach to  
Muscle-synergy extraction
Our approach may provide a new perspective in understanding 
motor control and learning. Motor synergies are usually extracted 
by applying statistical techniques to explanatory variables, such 
as joint angles and EMG signals, which may be the set of motor 
states resulting from CNS commands based on fewer motor 
modules. The results of factor decomposition are, however, not 
necessarily interpretable with such explanatory variables even 
though the factors successfully reduce the dimensionality of 
movement. Therefore, the physical meaning of motor synergies 
is not clear in most cases, in particular, in the case of muscle 
synergy because EMG includes information on both kinematic 
and kinetic aspects; muscles work for both joint displacement and 
joint impedance. EMG is phenomenologically interpreted as an 
electrical signal originating from the depolarization of the muscle 
fibers. However, the relationship between muscle activation and 
movement is not fully understood. We assumed that the CNS 
controls the equilibrium state and mechanical impedance for 
multi-joint movements by changing specific neurophysiological 
parameters (Feldman et  al., 1990) and that EMG consequently 
reflects at least these two pieces of information. Then, the sta-
tistical analysis of original EMG signals may result in yielding 
the makeshift factors, which are usually task-dependent and/or 
subject-dependent.

To gain insight into the physical meaning of muscle synergies, 
this study examined the AA concept using the following explana-
tory variables: the AA ratio, which is related to the equilibrium-
joint angle, and the AA sum, which is associated with the joint 
stiffness. Since the AA concept originates from the control of a 
robotic system with antagonistic pneumatic artificial muscles, 
muscle synergy extracted under the AA concept has a clear physi-
cal meaning. Similar ideas for the control of AA muscles can be 
found in the field of neuroscience [e.g., the ratio of the tensions of 
AA muscles (Lestienne et al., 1981; Bizzi et al., 1984), mechanical 
impedance and co-activation of AA muscles (Hogan, 1984), and 
the control of the EP and level of co-contraction for joint move-
ment (Feldman et al., 1990)]. However, our AA concept is strictly 
different from these. The AA concept can be regarded as another 
form of the EP hypothesis (Feldman, 1966, 1986; Feldman et al., 
1990; Feldman and Latash, 2005) and can be extended to the 
novel concept of EP-based synergies (Pham et al., 2014; Uno et al., 
2014; Hirai et al., 2015).
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TaBle 3 | inner-product values between muscle synergies  
(experiment 1).

ur(s) uφ(s) ur×φ(s)

Inter-individual variations 
(between first and last  
training days)

0.968  
(±0.015)

0.963  
(±0.017)

0.933  
(±0.018)

Intra-individual variations  
(first training day)

0.963  
(±0.021)

0.959  
(±0.025)

0.923  
(±0.036)

Intra-individual variations  
(last training day)

0.953  
(±0.023)

0.974  
(±0.009)

0.931  
(±0.028)

TaBle 2 | element values of muscle synergies before and after voluntary training on spiral tracing (a) first training day and (B) last training day.

subject # ur(s) uφ(s) ur×φ(s)

shoulder shoulder and 
elbow

elbow shoulder shoulder and 
elbow

elbow shoulder shoulder and 
elbow

elbow

(a) First training day

1 −0.471  
(±0.002)

0.471  
(±0.002)

0.730  
(±0.003)

0.844  
(±0.001)

0.488  
(±0.003)

0.178  
(±0.002)

−0.270  
(±0.003)

0.699  
(±0.003)

−0.629  
(±0.003)

2 −0.425  
(±0.002)

0.425  
(±0.002)

0.789  
(±0.002)

0.816  
(±0.002)

0.543  
(±0.003)

0.136  
(±0.002)

−0.370  
(±0.003)

0.701  
(±0.003)

−0.579  
(±0.003)

3 −0.355  
(±0.002)

0.355  
(±0.002)

0.856  
(±0.002)

0.689  
(±0.003)

0.701  
(±0.003)

−0.006  
(±0.003)

−0.601  
(±0.004)

0.588  
(±0.003)

−0.494  
(±0.003)

4 −0.569  
(±0.001)

0.569  
(±0.001)

0.581  
(±0.002)

0.871  
(±0.000)

0.434  
(±0.001)

0.218  
(±0.001)

−0.125  
(±0.001)

0.630  
(±0.002)

−0.744  
(±0.002)

5 −0.541  
(±0.001)

0.541  
(±0.001)

0.632  
(±0.002)

0.796  
(±0.001)

0.586  
(±0.002)

0.105  
(±0.001)

−0.314  
(±0.002)

0.560  
(±0.002)

−0.748  
(±0.002)

6 −0.461  
(±0.002)

0.461  
(±0.002)

0.746  
(±0.002)

0.811  
(±0.001)

0.554  
(±0.002)

0.129  
(±0.002)

−0.354  
(±0.003)

0.664  
(±0.002)

−0.628  
(±0.002)

7 −0.432  
(±0.002)

0.432  
(±0.002)

0.780  
(±0.003)

0.831  
(±0.002)

0.513  
(±0.003)

0.159  
(±0.003)

−0.330  
(±0.003)

0.715  
(±0.003)

−0.582  
(±0.004)

8 −0.393  
(±0.002)

0.393  
(±0.002)

0.818  
(±0.003)

0.694  
(±0.003)

0.695  
(±0.004)

−0.001  
(±0.004)

−0.568  
(±0.004)

0.567  
(±0.004)

−0.547  
(±0.004)

(B) last training day

1 −0.528  
(±0.002)

0.528  
(±0.002)

0.647  
(±0.003)

0.726  
(±0.002)

0.664  
(±0.003)

0.031  
(±0.003)

−0.413  
(±0.004)

0.486  
(±0.004)

−0.735  
(±0.003)

2 −0.492  
(±0.002)

0.492  
(±0.002)

0.700  
(±0.003)

0.714  
(±0.001)

0.692  
(±0.002)

0.011  
(±0.002)

−0.480  
(±0.003)

0.505  
(±0.002)

−0.692  
(±0.003)

3 −0.281  
(±0.002)

0.281  
(±0.002)

0.910  
(±0.001)

0.754  
(±0.002)

0.628  
(±0.003)

0.063  
(±0.003)

−0.553  
(±0.004)

0.705  
(±0.003)

−0.388  
(±0.003)

4 −0.482  
(±0.002)

0.482  
(±0.002)

0.714  
(±0.003)

0.777  
(±0.002)

0.612  
(±0.003)

0.083  
(±0.002)

−0.398  
(±0.004)

0.594  
(±0.003)

−0.669  
(±0.003)

5 −0.388  
(±0.003)

0.388  
(±0.003)

0.813  
(±0.003)

0.802  
(±0.002)

0.563  
(±0.003)

0.119  
(±0.003)

−0.411  
(±0.004)

0.699  
(±0.003)

−0.530  
(±0.005)

6 −0.449  
(±0.003)

0.449  
(±0.003)

0.753  
(±0.003)

0.763  
(±0.001)

0.634  
(±0.002)

0.065  
(±0.002)

−0.449  
(±0.003)

0.603  
(±0.003)

−0.635  
(±0.004)

7 −0.355  
(±0.002)

0.355  
(±0.002)

0.856  
(±0.002)

0.821  
(±0.001)

0.544  
(±0.003)

0.138  
(±0.002)

−0.418  
(±0.003)

0.753  
(±0.003)

−0.486  
(±0.003)

8 −0.351  
(±0.003)

0.351  
(±0.003)

0.856  
(±0.002)

0.833  
(±0.002)

0.522  
(±0.003)

0.155  
(±0.002)

−0.394  
(±0.003)

0.770  
(±0.003)

−0.477  
(±0.004)
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It is also worth noting that the muscle synergy derived from 
our approach is composed of AA sums only (see Eqs  9a–c). 
This formulation means that the muscle synergies themselves 
are not motor primitives but consequences of modulation of 
mechanical impedance, which may be one of the motor primi-
tives. We believe that our findings are in line with the idea of 

dynamic primitives, which Hogan and Sternad recently argued 
(Hogan and Sternad, 2012). Nevertheless, muscle synergies may 
play roles as functional modules  –  that is, a reference frame 
in muscle space. Muscle synergies represented as the balance 
of mechanical impedance may be called “kinetic synergies.” 
Thus, our study is categorized as a physics-based approach and 
is clearly different from most studies, which are categorized as 
statistical-based approaches (d’Avella et al., 2006; Cheung et al., 
2009, 2012; Dominici et al., 2011; Bizzi and Cheung, 2013; Roh 
et  al., 2013) for extracting muscle synergies. Although we do 
not discuss null synergy much in this paper, the idea of null 
synergy, which the statistical approach cannot extract from the 
data, is informative. The physics-based approach is a powerful 
way to reverse engineer the control mechanism underlying the 
neuromusculoskeletal system in the dynamic environment. For 
more details on muscle synergies based on the AA concept, refer 
also to our recent publications (Koba et al., 2014; Oku et al., 2014, 
2015; Uno et al., 2014).
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FigUre 6 | Typical change in virtual trajectory from the first and last 
days of voluntary training (subject #1). The change in the virtual 
trajectories (blue) was extreme compared to that for the actual trajectories 
(black). The virtual trajectories were organized from disordered patterns into 
well-regulated but slightly distorted spiral patterns that rotated in the opposite 
direction of the actual trajectory. The score of the spiral test decreased 
correspondingly from 51.7 ± 20.7 to 20.9 ± 10.6, indicating that motor 
performance was improved in terms of speed and accuracy.

FigUre 5 | Typical change in endpoint stiffness from the first and last 
days of voluntary training (subject #1). While its size changed, the shape 
and orientation of the endpoint-stiffness ellipse did not alter much during 
training. The orientation of the major axis of the ellipse tended to tilt toward 
the direction connecting the shoulder and the endpoint (i.e., the radial 
direction). This indicates that the endpoint stiffness in the tangential direction 
tends to be far smaller than that in the radial direction.

FigUre 7 | The evolution of actual and virtual trajectories in the radial and tangential directions (subject #1). The virtual trajectory during fast spiral 
tracing for Subject #1 improved with voluntary training. In particular, the evolution of the virtual trajectory in the tangential direction was extreme, and it changed into 
a rhythmic movement that preceded the actual trajectory oscillating almost out of phase; the virtual trajectory in the radial direction developed into a trajectory that 
preceded the actual trajectory oscillating almost in phase. The oscillation frequencies of the virtual trajectory in both directions became shorter in accordance with 
those of the actual trajectory. These evolutionary characteristics of the virtual trajectory are representative of those observed for all eight subjects.
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Muscle synergies, endpoint stiffness, and 
Virtual Trajectories in Motor adaptation
How do muscle synergies or the balance of mechanical impedance 
affect motor enhancement if they represent a reference frame in 
muscle space? We measured the similarity of muscle-synergy 
vectors among subjects before and after voluntary training, based 
on the IP value of the corresponding two muscle-synergy vectors 
(Table 3). The results revealed that the muscle synergies before 

and after training exhibited similar patterns regarding both 
intra-individual variations and inter-individual variations. It is 
also notable that the muscle synergies were held almost constant 
despite being calculated from time-varying AA sums. The SDs of 
muscle synergies were sufficiently small for all subjects (Figure 4, 
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FigUre 8 | change in the agonist–antagonist (aa) ratios and aa sums for the post-stroke subject before and after 2.5 months of rehabilitation. The 
red, green, and blue lines indicate the change in the time-dependent explanatory variable for the AA muscles around the shoulder, shoulder and elbow, and elbow 
joints, respectively. Each data set was normalized with respect to a period of movement time. The changes in the AA ratio and AA sum indicate that rehabilitation 
resulted in change in the control of EP and stiffness around each joint. In particular, the AA sum was improved although it was still far from the level observed from 
the healthy subject. (Note the different range of the graphs for AA sums before and after rehabilitation.)
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Table 2). These results demonstrate the invariant kinetic charac-
teristics that the CNS may exploit for movement planning.

It is mathematically evident that the muscle synergies repre-
sent the bases of the polar coordinates. The results suggest that 
the invariant reference frame for motor representation is encoded 
into time-varying biological signals (Figure 3) and that the refer-
ence frame is not only common among normal subjects but also 
independent of the level of learning. Thus, we hypothesize that the 
muscle synergies may be functional modules to link the muscle 
space to the task space and that they may be a coordinate system 
for motor control. Moreover, the invariance of muscle synergies 
may be related to the stable characteristics of endpoint stiffness 
since the muscle synergies represent the balance of mechanical 
impedance by co-activations of AA muscles. In our task, the shape 
and orientation of the endpoint-stiffness ellipse did not change 
much during training; however, its size changed (Figure 5). The 
orientation of the major axis of the ellipse tended to keep tilting 
toward the direction connecting the shoulder and the endpoint 
(i.e., the radial direction). This indicates that endpoint stiffness in 

the tangential direction always tends to be far smaller than that 
in the radial direction.

In contrast to these hard-wired characteristics in the CNS, vir-
tual trajectories showed drastic changes with motor enhancement. 
The virtual trajectories were organized from disordered patterns 
into smooth spiral patterns that rotated in the opposite direction 
of the actual trajectories (Figure 6). As shown in Figure 7, in both 
cases before and after training, the virtual trajectories showed 
oscillating movements that preceded the actual trajectories with 
similar sequences showing gradually decreasing amplitudes. 
However, the different phase relationship between the actual and 
virtual trajectories emerged in each direction after training. In 
the radial direction, high endpoint stiffness caused endpoint EP 
movement with about a 0° phase shift. In the tangential direction, 
the far smaller endpoint stiffness caused endpoint EP movement 
with about a 180° phase shift. The coupling of these directional 
mechanical impedances yielded a counterintuitive observation, 
i.e., the opposite rotation of virtual trajectories. This phenomenon 
can be observed in fast movements. The finding indicates that 
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FigUre 9 | change in muscle synergies, endpoint stiffness, and virtual trajectories before and after 2.5 months of rehabilitation. The top, middle, and 
bottom blocks are for the post-stroke subject before rehabilitation, after 2.5 months of rehabilitation, and for the healthy subject from the same generation, 
respectively. The three-bar sets represent the muscle synergies in the radial direction (uR), tangential direction (uφ), and null direction (uR×φ). Each number on the 
stiffness ellipses indicates the progress of movement with time and corresponds to each number of points on the actual and virtual trajectories.

November 2015 | Volume 3 | Article 192

Hirai et al. The Origin of Muscle Synergies

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

the CNS requires an internal model (Gomi and Kawato, 1997) to 
achieve dynamic compensation in the process of motor control 
and learning.

Muscle synergies, endpoint stiffness, and 
Virtual Trajectories in Motor recovery
In contrast to our results from Experiment 1, significant changes 
(IP < 0.9) were observed in the muscle synergies for the post-
stroke subject before and after rehabilitation (Table  5). This 
observation relates to the disrupted inter-joint coordination com-
monly observed in arm movements after stroke. In our view, the 
alteration of muscle synergies indicates a breach in the basis for 
motor control, and it may influence the reference frame essential 
for sensorimotor transformation. In the case of the post-stroke 
subject, the abnormal co-activation of bi-articular AA muscles 
(green bars in Figure  9) yielded different muscle synergies, 

especially in the tangential direction. The SDs of abnormal muscle 
synergies were then within a tolerance (small) level and, thus, the 
abnormal muscle synergies could also be regarded as the invari-
ant bases for the polar coordinates. In other words, the reference 
frame in the muscle space was held by other coordinated muscles.

Before rehabilitation, the post-stroke subject may have 
exploited motor redundancy to regulate multiple muscles in 
order to manage his impairments following neurological injury, 
and he may therefore have achieved an invariant coordination 
different from that of normal subjects. Since the muscle synergies 
represented a balance of mechanical impedance by co-activation 
of AA muscles, the changes in muscle synergies significantly 
affected the endpoint-stiffness characteristics. The endpoint-
stiffness ellipse of the post-stroke subject before rehabilitation was 
elongated, and the orientation of its major axis indicated a more 
clockwise rotation than that observed in the healthy subject. The 
primary cause may have been the hypertonicity of the bi-articular 
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TaBle 4 | element values of muscle synergies for a post-stroke subject before and after rehabilitation and for a healthy elderly subject.

subject # ur(s) uφ(s) ur×φ(s)

shoulder shoulder 
and elbow

elbow shoulder shoulder 
and elbow

elbow shoulder shoulder 
and elbow

elbow

9a (post-stroke subject 
before rehabilitation)

−0.300  
(±0.142)

0.300  
(±0.142)

0.875  
(±0.117)

0.490  
(±0.055)

0.850  
(±0.024)

−0.180  
(±0.039)

−0.802  
(±0.082)

0.376  
(±0.101)

−0.403  
(±0.192)

9b (post-stroke subject 
after rehabilitation)

−0.276  
(±0.067)

0.276  
(±0.067)

0.915  
(±0.043)

0.788  
(±0.031)

0.606  
(±0.045)

0.091  
(±0.038)

−0.530  
(±0.040)

0.746  
(±0.062)

−0.385  
(±0.096)

10 (healthy elderly subject) −0.487  
(±0.027)

0.487  
(±0.027)

0.723  
(±0.036)

0.822  
(±0.016)

0.552  
(±0.030)

0.134  
(±0.023)

−0.334  
(±0.054)

0.656  
(±0.013)

−0.670  
(±0.032)

TaBle 5 | inner-product values between muscle synergies  
(experiment 2).

ur(s) uφ(s) ur×φ(s)

Inter-individual variations (before 
and after rehabilitation)

0.966 0.885 (<0.9) 0.861 (<0.9)

Intra-individual variations 
(between post-stroke subject after 
rehabilitation and healthy subject)

0.930 0.994 0.924

Intra-task variations (between 
fast spiral tracing and slow circle 
tracing)

0.970 0.982 0.952
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muscles; an increase in the co-activation of bi-articular muscles 
(sse) tends to modify the eigenvalues and eigenvectors of the joint 
stiffness matrix Kj(s), enlarging the stiffness ellipse and rotating 
its major axis in a clockwise direction. These characteristics of 
the endpoint-stiffness ellipse may explain the typical dysfunc-
tions: flexor synergy (characterized by simultaneous shoulder 
abduction and elbow flexion) and extensor synergy (character-
ized by simultaneous shoulder adduction and elbow extension) 
(Brunnstrom, 1970). Moreover, alteration of muscle synergies 
results in significant distortion of not only endpoint stiffness 
but also concomitant virtual trajectories. The virtual trajectory 
moved within a limited range and tended to move in the fixed 
direction of the minor axis of the endpoint-stiffness ellipse.

However, rehabilitation caused a fundamental change in 
motor control in the post-stroke subject. The muscle synergies 
after rehabilitation exhibited similar patterns (IP > 0.9) to those 
of the healthy subject (Table 5). This result indicates that the post-
stroke subject regained the normal patterns of muscle synergies 
in the process of recovery. Moreover, these patterns were similar 
to the patterns extracted from the subjects during the fast-spiral-
tracing task (IP > 0.9). This case study provides only preliminary 
evidence for common muscle synergies across a variety of dif-
ferent tasks, different subjects, and different motor skills of the 
subjects. The endpoint stiffness also recovered, along with the 
recovery of the corresponding muscle synergies. The shape of the 
endpoint-stiffness ellipse was shortened, and the orientation of 
the major axis rotated slightly counter-clockwise. These results 
provide evidence that the post-stroke subject was on the course of 
recovery. This analysis was based on data after 2.5 months of reha-
bilitation, and it is supposed that the post-stroke subject has the 
potential to recover motor function with further rehabilitation. 

Interestingly, in the process of recovery, the muscle synergies 
regained normal patterns earlier than did the virtual trajectories. 
The virtual trajectory did not fully recover after 2.5 months of 
rehabilitation. This indicates that the muscle synergies playing a 
role as the reference frame in the muscle space are fundamental 
for motor control. This is a reasonable conclusion because the 
virtual trajectories are defined by the configuration space of 
muscle synergies.

FUTUre DirecTiOns FOr MOTOr 
rehaBiliTaTiOn

Imbalance of intra-limb coordination is one of the causes of 
motor impairment. If our hypothesis is true, muscle synergy 
(i.e., the balance of mechanical impedance) should be carefully 
taken into account when selecting methods of rehabilitation. The 
importance of impedance control has been discussed frequently, 
but care is required in its application because impedance control 
can result in either improved or worsened outcomes based on the 
way it is used. Muscle synergy may be an index for exploring the 
appropriate assistance application of impedance control. It would 
also provide an additional measure to clinical assessment such as 
the Fugl–Meyer assessment and others. Again, our hypothesis is 
that muscle synergies, the balance of mechanical impedance, rep-
resent a reference frame in the muscle space. This study tested our 
hypothesis to confirm the feasibility of the practical use of muscle 
synergy, such as in the assessment, diagnosis, and intervention 
planning for stroke rehabilitation.

The results of this study can be summarized as follows: (1) 
muscle synergy is an invariant balance of muscle mechanical 
impedance; (2) muscle synergies represent a reference frame in 
the muscle space; and (3) the common muscle synergies were 
found among different tasks (fast-spiral-tracing with the non-
dominant hand and slow-circle-tracing with the dominant hand), 
different subjects from different generations (i.e., from subjects 
aged in their 20s to subjects aged in their 70s), and different 
levels of motor skill (beginner, experienced, and in a patient 
after rehabilitation). Further data collection and analysis from 
different situations will strengthen our hypothesis; it would be 
useful to discuss the relationship with other internal representa-
tions such as eye-centered, head-centered, and world-centered 
reference frames. Our future work includes the development 
of novel approaches for robotic therapy, particularly for the 
lower extremity. Robotic therapy, especially for lower extremity 
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function, is currently in the early stage of development. The next 
generation of robot-aided neuro-rehabilitation requires correctly 
assessing the effect of interventions and collecting clinical evi-
dence to develop an efficacious intervention. Stroke rehabilitation 
requires sensorimotor coordination. By combining the methods 
of synergy assessment and robotic therapy, we will develop a novel 
robotic intervention, test, and validate it in the framework of 
muscle synergies.

In conclusion, this study showed evidence that the muscle 
 synergies play a central role in motor representation and inter-
nal model formation. Muscle synergies are not primitives but 

functional modules of mechanical impedance. The balance of 
muscle mechanical impedance is essential for motor control, 
learning, and recovery.

acKnOWleDgMenTs

We would like to thank Drs. Neville Hogan and Dagmar Sternad 
for insightful comments on our study. This work was supported 
by JSPS Grant-in-aid for Scientific Research (KAKENHI), Grant 
Numbers 24360096 and 15H03949. HK was supported in part by 
the NIH Grant R01HD069776-03.

reFerences

Ariga, Y., Pham, H., Uemura, M., Hirai, H., and Miyazaki, F. (2012). “Novel equilib-
rium-point control of agonist-antagonist system with pneumatic artificial mus-
cles,” in IEEE Int. Conf. Robot. Autom. (ICRA2012). (St. Paul: IEEE), 1470–1475.

Bernstein, N. (1967). The Co-Ordination and Regulation of Movements. Oxford: 
Pergamon Press.

Bizzi, E., Accornero, N., Chapple, W., and Hogan, N. (1984). Posture control and 
trajectory formation during arm movement. J. Neurosci. 4, 2738–2744. 

Bizzi, E., and Cheung, V. C. K. (2013). The neural origin of muscle synergies. Front. 
Comput. Neurosci. 7:51. doi:10.3389/fncom.2013.00051 

Brunnstrom, S. (1970). Movement Therapy in Hemiplegia: A Neurophysiological 
Approach. New York, NY: Harper & Row.

Carr, J., and Shepherd, R. B. (2010). Neurological Rehabilitation. London: Churchill 
Livingstone.

Cheung, V. C. K., Piron, L., Agostini, M., Silvoni, S., Turolla, A., and Bizzi, E. 
(2009). Stability of muscle synergies for voluntary actions after cortical stroke 
in humans. Proc. Natl. Acad. Sci. U.S.A. 106, 19563–19568. doi:10.1073/
pnas.0910114106 

Cheung, V. C. K., Turolla, A., Agostini, M., Silvoni, S., Bemmis, C., Kasi, P., 
et  al. (2012). Muscle synergy patterns as physiological markers of motor 
cortical damage. Proc. Natl. Acad. Sci. U.S.A. 109, 14652–14656. doi:10.1073/
pnas.1212056109 

Criswell, E. (2010). Cram’s Introduction to Surface Electromyography, 2nd Edn. 
Sudbury: Jones and Bartlett Publishers.

d’Avella, A., Portone, A., Fernandez, L., and Lacquaniti, F. (2006). Control of 
fast-reaching movements by muscle synergy combinations. J. Neurosci. 26, 
7791–7810. doi:10.1523/JNEUROSCI.0830-06.2006 

Dominici, N., Ivanenko, Y. P., Cappellini, G., d’Avella, A., Mondi, V., Cicchese, M., 
et al. (2011). Locomotor primitives in newborn babies and their development. 
Science 334, 997–999. doi:10.1126/science.1210617 

Feldman, A. G. (1966). Functional tuning of the nervous system with control of 
movement or maintenance of a steady posture. II. Controllable parameters of 
the muscle. Biophysics 11, 565–578. 

Feldman, A. G. (1986). Once more on the equilibrium-point hypothesis (λ model) 
for motor control. J. Mot. Behav. 18, 17–54. doi:10.1080/00222895.1986.1073
5369 

Feldman, A. G., Adamovich, S. V., Ostry, D. J., and Flanagan, J. R. (1990). “The 
origin of electromyograms – explanations based on the equilibrium point 
hypothesis,” in Multiple Muscle Systems, eds J. M. Winters and S. L-Y. Woo 
(New York, NY: Springer), 195–213.

Feldman, A. G., and Latash, M. L. (2005). Testing hypotheses and the advancement 
of science: recent attempts to falsify the equilibrium point hypothesis. Exp. 
Brain Res. 161, 91–103. doi:10.1007/s00221-004-2049-0 

Flash, T., and Hogan, N. (1985). The coordination of arm movements: an experi-
mentally confirmed mathematical model. J. Neurosci. 5, 1688–1703. 

Flash, T., and Mussa-Ivaldi, F. (1990). Human arm stiffness characteristics 
during the maintenance of posture. Exp. Brain Res. 82, 315–326. doi:10.1007/
BF00231251 

Gomi, H., and Kawato, M. (1997). Human arm stiffness and equilibrium-point tra-
jectory during multi-joint movement. Biol. Cybern. 76, 163–171. doi:10.1007/
s004220050329 

Granger, C. V., Hamilton, B. B., Keith, R. A., Zielezny, M., and Sherwin, F. S. (1986). 
Advances in functional assessment for medical rehabilitation. Top. Geriatr. 
Rehabil. 1, 59–74. doi:10.1097/00013614-198604000-00007 

Hirai, H., Pham, H., Ariga, Y., Uno, K., and Miyazaki, F. (2015). “Chap. 2 : motor 
control based on the muscle synergy hypothesis,” in Cognitive Neuroscience 
Robotics: Synthetic Approaches to Human Understanding, Volume I: Synthetic 
Approaches, Part I (Springer).

Hislop, H., and Montgomery, J. (2007). Daniels and Worthingham’s Muscle Testing: 
Techniques of Manual Examination, 8th Edn. St. Louis:W.B. Saunders Company.

Hogan, N. (1984). Adaptive control of mechanical impedance by coactivation 
of agonist muscles. IEEE Trans. Automat. Contr. 29, 681–690. doi:10.1109/
TAC.1984.1103644 

Hogan, N. (1985). The mechanics of multi-joint posture and movement control. 
Biol. Cybern. 52, 315–331. doi:10.1007/BF00355754 

Hogan, N., and Sternad, D. (2012). Dynamic primitives of motor behavior. Biol. 
Cybern. 106, 727–739. doi:10.1007/s00422-012-0527-1 

Kandel, E., Schwartz, J., Jessell, T., Siegelbaum, S. A., and Hudspeth, A. J. (2012). 
Principles of Neural Science, 5th Edn. New York: McGraw-Hill Professional.

Koba, K., Murakami, K., Oku, T., Uno, K., Phatiwuttipat, P., Yamashita, Y., et al. 
(2014). “Tacit representation of muscle activities during coordination training: 
muscle synergy analysis to visualize motor enhancement in virtual trajectory of 
multi-joint arm movement,” in 5th IEEE RAS & EMBS Int. Conf. Biomed. Rob. 
Biomechatron. (BioRob 2014). (Sao Paulo: IEEE), 270–275.

Lacquaniti, F., Terzuolo, C., and Viviani, P. (1983). The law relating the kine-
matic and figural aspects of drawing movements. Acta Psychol. 54, 115–130. 
doi:10.1016/0001-6918(83)90027-6 

Latash, M. L. (2008). Synergy. New York: Oxford University Press.
Lestienne, F., Polit, A., and Bizzi, E. (1981). Functional organization of the motor 

process underlying the transition from movement to posture. Brain Res. 230, 
121–131. doi:10.1016/0006-8993(81)90396-6 

McIntyre, J., Mussa-Ivaldi, F. A., and Bizzi, E. (1996). The control of stable 
postures in the multijoint arm. Exp. Brain Res. 110, 248–264. doi:10.1007/
BF00228556 

Mitsuda, T., Maru, N., Fujikawa, K., and Miyazaki, F. (1997). Binocular visual 
servoing based on linear time-invariant mapping. Adv. Robot. 11, 429–443. doi
:10.1163/156855397X00146 

Morasso, P. (1981). Spatial control of arm movements. Exp. Brain Res. 42, 223–227. 
doi:10.1007/BF00236911 

Mussa-Ivaldi, F. A., Hogan, N., and Bizzi, E. (1985). Neural, mechanical, and geo-
metric factors subserving arm posture in humans. J. Neurosci. 5, 2732–2743. 

Oku, T., Uno, K., Nishi, T., Kageyama, M., Koba, K., Uemura, M., et al. (2015). “A 
feasibility study to assess intralimb coordination in stroke rehabilitation: two 
indices of mechanical impedance by coactivation of agonist muscles,” in 14th 
IEEE/RAS-EMBS Int. Conf. Rehabil. Robot. (ICORR2015). (Singapore: IEEE), 
899–904.

Oku, T., Uno, K., Nishi, T., Kageyama, M., Phatiwuttipat, P., Koba, K., et al. (2014). 
“Pilot study on quantitative assessment of muscle imbalance: differences of 
muscle synergies, equilibrium-point trajectories, and endpoint stiffness in 
normal and pathological upper-limb movements,” in 36th Ann. Int. Conf. IEEE 
Eng. Med. Biol. Soc. (EMBC 2014). (Chicago: IEEE), 5784–5787.

Perotto, A. O. (2011). Anatomical Guide for the Electromyographer: The Limbs and 
Trunk, 5th Edn. Springfield: Charles C Thomas Publisher Ltd.

124

http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://dx.doi.org/10.3389/fncom.2013.00051
http://dx.doi.org/10.1073/pnas.0910114106
http://dx.doi.org/10.1073/pnas.0910114106
http://dx.doi.org/10.1073/pnas.1212056109
http://dx.doi.org/10.1073/pnas.1212056109
http://dx.doi.org/10.1523/JNEUROSCI.0830-06.2006
http://dx.doi.org/10.1126/science.1210617
http://dx.doi.org/10.1080/00222895.1986.10735369
http://dx.doi.org/10.1080/00222895.1986.10735369
http://dx.doi.org/10.1007/s00221-004-2049-0
http://dx.doi.org/10.1007/BF00231251
http://dx.doi.org/10.1007/BF00231251
http://dx.doi.org/10.1007/s004220050329
http://dx.doi.org/10.1007/s004220050329
http://dx.doi.org/10.1097/00013614-198604000-00007
http://dx.doi.org/10.1109/TAC.1984.1103644
http://dx.doi.org/10.1109/TAC.1984.1103644
http://dx.doi.org/10.1007/BF00355754
http://dx.doi.org/10.1007/s00422-012-0527-1
http://dx.doi.org/10.1016/0001-6918(83)90027-6
http://dx.doi.org/10.1016/0006-8993(81)90396-6
http://dx.doi.org/10.1007/BF00228556
http://dx.doi.org/10.1007/BF00228556
http://dx.doi.org/10.1163/156855397X00146
http://dx.doi.org/10.1007/BF00236911


November 2015 | Volume 3 | Article 192

Hirai et al. The Origin of Muscle Synergies

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

Pham, H. T. T., Ariga, Y., Tominaga, K., Oku, T., Nakayama, K., Uemura, M., et al. 
(2014). Extraction and implementation of muscle synergies in neuro-mechan-
ical control of upper limb movement. Adv. Robot. 28, 745–757. doi:10.1080/01
691864.2013.876940 

Roh, J., Rymer, W. Z., Perreault, E. J., Yoo, S. B., and Beer, R. F. (2013). Alterations in 
upper limb muscle synergy structure in chronic stroke survivors. J. Neurophysiol. 
109, 768–781. doi:10.1152/jn.00670.2012 

Shadmehr, R., and Mussa-Ivaldi, F. A. (1994). Adaptive representation of dynamics 
during learning of a motor task. J. Neurosci. 14, 3208–3224. 

Tsuji, T., Morasso, P. G., Goto, K., and Ito, K. (1995). Human hand impedance char-
acteristics during maintained posture. Biol. Cybern. 72, 475–485. doi:10.1007/
BF00199890 

Uno, K., Oku, T., Phatiwuttipat, P., Koba, K., Yamashita, Y., Murakami, K., et al. 
(2014). “A novel muscle synergy extraction method to explain the equilibri-
um-point trajectory and endpoint stiffness during human upper-limb move-
ments on a horizontal plane,” in 5th IEEE RAS & EMBS Int. Conf. Biomed. 
Robot. Biomechatron. (BioRob2014). (Sao Paulo: IEEE), 621–626.

Verkerk, P. H., Schouten, J. P., and Oosterhuis, H. J. (1990). Measurement 
of the hand coordination. Clin. Neurol. Neurosurg. 92, 105–109. 
doi:10.1016/0303-8467(90)90084-I 

Zatsiorsky, V. M., and Prilutsky, B. I. (2012). Biomechanics of Skeletal Muscles. 
Champaign: Human Kinetics.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2015 Hirai, Miyazaki, Naritomi, Koba, Oku, Uno, Uemura, Nishi, 
Kageyama and Krebs. This is an open-access article distributed under the terms of 
the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are 
credited and that the original publication in this journal is cited, in accordance with 
accepted academic practice. No use, distribution or reproduction is permitted which 
does not comply with these terms.

125

http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://dx.doi.org/10.1080/01691864.2013.876940
http://dx.doi.org/10.1080/01691864.2013.876940
http://dx.doi.org/10.1152/jn.00670.2012
http://dx.doi.org/10.1007/BF00199890
http://dx.doi.org/10.1007/BF00199890
http://dx.doi.org/10.1016/0303-8467(90)90084-I
http://creativecommons.org/licenses/by/4.0/


November 2015 | Volume 3 | Article 187

Original research
published: 13 November 2015

doi: 10.3389/fbioe.2015.00187

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

Edited by: 
Zhi-Hong Mao,  

University of Pittsburgh, USA

Reviewed by: 
Arturo Forner-Cordero,  

University of São Paulo, Brazil  
Nitin Sharma,  

University of Pittsburgh, USA

*Correspondence:
Motoki Kouzaki  

kouzaki.motoki.4x@kyoto-u.ac.jp

Specialty section: 
This article was submitted to Bionics 

and Biomimetics,  
a section of the journal  

Frontiers in Bioengineering and 
Biotechnology

Received: 20 April 2015
Accepted: 30 October 2015

Published: 13 November 2015

Citation: 
Hagio S and Kouzaki M (2015) Action 

Direction of Muscle Synergies in 
Three-Dimensional Force Space.  
Front. Bioeng. Biotechnol. 3:187.  

doi: 10.3389/fbioe.2015.00187

action Direction of Muscle synergies 
in Three-Dimensional Force space
Shota Hagio1,2 and Motoki Kouzaki2*

1 Japan Society for the Promotion of Science, Tokyo, Japan, 2 Laboratory of Neurophysiology, Graduate School of Human 
and Environmental Studies, Kyoto University, Kyoto, Japan

Redundancy in the musculoskeletal system was supposed to be simplified by muscle 
synergies, which modularly organize muscles. To clarify the underlying mechanisms of 
motor control using muscle synergies, it is important to examine the spatiotemporal 
contribution of muscle synergies in the task space. In this study, we quantified the 
mechanical contribution of muscle synergies as considering spatiotemporal correlation 
between the activation of muscle synergies and endpoint force fluctuations. Subjects 
performed isometric force generation in the three-dimensional force space. The mus-
cle-weighting vectors of muscle synergies and their activation traces across different 
trials were extracted from electromyogram data using decomposing technique. We 
then estimated mechanical contribution of muscle synergies across each trial based 
on cross-correlation analysis. The contributing vectors were averaged for all trials, and 
the averaging was defined as action direction (AD) of muscle synergies. As a result, 
we extracted approximately five muscle synergies. The ADs of muscle synergies mainly 
depended on the anatomical functions of their weighting muscles. Furthermore, the AD 
of each muscle indicated the synchronous activation of muscles, which composed of 
the same muscle synergy. These results provide the spatiotemporal characteristics of 
muscle synergies as neural basis.

Keywords: muscle activity, electromyogram, non-negative matrix factorization, force fluctuations, mechanical 
pulling direction, cross-correlation analysis

inTrODUcTiOn

The fundamental problem in motor control is how the central nervous system (CNS) controls the 
immense number of variables in the musculoskeletal system (Bernstein, 1967). To simplify the 
redundancy, the CNS may modularly organize the muscles through the hard-wired neural circuit 
referred to as muscle synergy (Tresch et al., 1999; d’Avella et al., 2003; Ting and Macpherson, 2005; 
Hagio and Kouzaki, 2014). To clarify the underlying mechanisms in motor control based on muscle 
synergies, it is important to examine how muscle synergies are represented and modulated in the 
neural circuitry (motor level) and to investigate whether muscle synergies function as the actuator 
to produce movement (task level) (Alessandro et al., 2013). Many researchers statistically calculated 
task-dependent muscle synergies from electromyogram (EMG) dataset in motor level (d’Avella et al., 
2006, 2008; Torres-Oviedo and Ting, 2007, 2010; Hug et al., 2010; Roh et al., 2012, 2013; Hagio et al., 
2015), whereas model-based approaches showed the low dimensionality in the task level (Berniker 
et al., 2009; Neptune et al., 2009; Allen and Neptune, 2012). To uniformly identify the relationship 
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of the low dimensionality between motor and task levels, it is 
necessary to quantify the net contribution of individual muscle 
synergies in the task space.

Several approaches were conducted to demonstrate correlations 
between muscle synergy recruitment levels and biomechanical 
outputs. During perturbed standing, functional muscle synergies 
were calculated, which reflect the mapping of the endpoint force 
vector (Torres-Oviedo et al., 2006; Chvatal et al., 2011). Previous 
research estimated the mechanical contribution of each muscle 
synergy (called as synergy-to-force mapping) by assuming the 
linear relationship between EMG (further linearly decomposed 
into muscle vectors of muscle synergies) and endpoint force in 
isometric condition (Berger and d’Avella, 2014). These techniques 
were advantageous to quantify the force vector produced by each 
muscle synergy in the force space. However, the force vectors did 
not contain the temporal contribution of muscle synergies, which 
is important property to regard muscle synergies as neural basis. 
Although our previous study directly compared the spatiotempo-
ral correlation between the activation coefficients of muscle syn-
ergies and endpoint force fluctuations during voluntary isometric 
conditions, demonstrating the significant correlation between 
them (Hagio and Kouzaki, 2015), the mechanical contribution 
of muscle synergies in the task space was not estimated. An 
appropriate approach has been taken using EMG-weighted aver-
aging (EWA) method (Kutch et al., 2010; Imagawa et al., 2013). 
This was formulated as a non-invasive technique instead of the 
spike-triggered averaging (STA), i.e., a well-established method 
to extract the force associated with single motor unit (SMU) 
contractions, based on the hypothesis that surface EMG is indeed 
analogous to a superposition of SMU action potentials and its 
cross-correlation with endpoint force should produce the equiva-
lent of an average spike-triggered force averaged across multiple 
motor units (Kutch et al., 2010). In this study, we developed this 
technique to evaluate the action direction (AD) of muscle syner-
gies, which represented the net contribution of individual muscle 
synergies in the three-dimensional endpoint force. It should be 
noted that we assumed the neural basis of muscle synergies: the 
estimated activation of muscle synergies represents the summa-
tion of the individual basis constructing muscle synergies, which 
might have been regarded as spinal interneuron in the previous 
studies (Hart and Giszter, 2010; Overduin et al., 2014).

In the muscle synergy hypothesis, the primary problem is 
still whether the CNS actually modulates muscle synergies in 
the neural circuit. Many empirical findings showed the neural 
basis of muscle synergies by examining the relationship between 
statistically calculated muscle synergies and activation of spinal 
interneuron in frogs (Hart and Giszter, 2010) or activation of 
motor cortical neurons in rhesus macaques (Overduin et al., 2014). 
However, it is reported that low dimensionality as statistically 
calculated muscle synergies might be due to task or biomechani-
cal constraints (Kutch and Valero-Cuevas, 2012). Accordingly, 
the problem remains controversial (Bizzi and Cheung, 2013). 
In the concept of the synchronous muscle synergy, which is 
discriminated from other muscle synergy models, such as time-
varying muscle synergy (d’Avella et al., 2003), muscles organized 
in the same muscle synergies may be synchronously activated. 
Therefore, cross-correlation analysis will lead to the correlation 

between the activation of the target muscle and endpoint force, 
which are generated by the muscles grouped in the same muscle 
synergy; the AD of a muscle will reflect the mechanical contribu-
tion not only of the muscle but also of the other muscles synchro-
nously activated due to a muscle synergy as hard-wired modular 
controller. Hence, the examination of the relationship among the 
ADs of muscles weighted by the same extracted muscle synergy 
will make it possible to approach identifying the neuronal basis 
of muscle synergies. In this study, we examined the presence of 
muscle synergies by calculating AD of each muscle.

Consequently, the main purpose of the present study was to 
quantify the contribution of muscle synergies in the task space. 
To this end, we estimated the AD of muscle synergies during 
multi-directional force generation in three-dimensional force 
space. Furthermore, we verified the hypothesis of the neural basis 
of muscle synergies by examining the relationship between the 
ADs of individual muscles and the estimated structure of muscle 
synergies which the relevant muscles belong to. This study dem-
onstrates the relationship of low dimensionality due to muscle 
synergies between in the motor and task levels.

MaTerials anD MeThODs

subjects
Five male subjects voluntarily participated in this study. Their 
mean (±SD) age, height, and body mass were 23.8 ± 1.1 years, 
173.9 ± 3.8 cm, and 67.4 ± 6.5 kg, respectively. All subjects were 
healthy, had no history of any neurological disorder, and had 
corrected-to-normal vision. Subjects provided written informed 
consent to participate in the study after receiving a detailed 
explanation of the purposes, potential benefits, and risks associ-
ated with participation. All procedures used in this study were in 
accordance with the Declaration of Helsinki and approved by the 
Committee for Human Experimentation at the Graduate School 
of Human and Environmental Studies, Kyoto University.

experimental setup
Each subject laid on their left side on a bed with the right leg 
supported horizontally by a sling (Figure 1A; Hagio and Kouzaki, 
2014, 2015). The knee and hip joints were applied with the angles 
of 90° from full extension. Isometric endpoint forces surrounding 
the right ankle were produced for a total of 10  s at 2 different 
intensities (20 and 40 N) in each of 32 different directions in the 
three-dimensional force space (Figure 1C); in total, 64 trials were 
randomly conducted with a rest period of 30 s between each trial 
and of 10 min between 2 blocks which is composed of 32 trials, 
respectively. The directions were equally distributed in 30° incre-
ments along horizontal plane to cover the anterior side on this 
plane. On sagittal plane, force was applied from six directions 
(0°, 30°, 60°, 90°, 120°, and 135°) considering the knee extension 
torque and/or hip joint torque (Hof, 2001). We then measured 
isometric endpoint forces, which were composed of three force 
vectors, Fx, Fy, and Fz referring to hip abduction–adduction, 
knee extension–flexion, and hip flexion–extension movements, 
respectively (Figures  1B,D), using a tri-axial force transducer 
(LSM-B-500NSA1, Kyowa, Tokyo, Japan) attached to the subject’s 
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right ankle (Kouzaki et al., 2002; Hagio et al., 2012). The result-
ant force vector was calculated based on the three force vectors, 
i.e., F = Fx + Fy + Fz; the resultant vector length represented the 
intensity of the force, i.e., | | .F F F F = x y z

2 2 2+ +  In each trial, the 
subjects viewed the produced force vector and the desired force 
vector as a target on a visual display.

electromyography
Surface EMGs were recorded from eight muscles mainly activated 
in the task space in this study: the rectus femoris (RF), vastus 
lateralis (VL), vastus medialis obliquus (VMO), vastus medialis 
longus (VML), vastus intermedius (VI), sartorius (SR), adductor 
longus (AL), and gluteus medius (GM) (Hagio and Kouzaki, 2014, 
2015). EMGs were recorded using bipolar Ag–AgCl electrodes. 
Each electrode had a diameter of 5 mm, and the inter-electrode 
distance was 10 mm. We used a small inter-electrode distance to 
prevent cross-talk between neighboring muscles (Imagawa et al., 
2013). A reference electrode was placed on the lateral epicon-
dyle of femur. The EMG signals were amplified (MEG-6116M, 

FigUre 1 | experimental setup, target directions and force trajectories. (a) An overhead view of the experimental setup. Subjects lay on their left side on a 
bed with the right leg supported horizontally by a sling. Visual feedback of produced and target forces was displayed to the subject on a computer screen (Hagio 
and Kouzaki, 2014). (B) Using a tri-axial force transducer attached to the subject’s right ankle, three-dimensional forces, Fx, Fy, and Fz, were measured (Hagio and 
Kouzaki, 2014). The positive values of three axes are corresponding to hip abduction (+Fx), knee extension (+Fy), and hip flexion (+ Fz) movement directions, 
respectively. (c) Thirty-two desired target force directions (blue dots: 20 N, red dots: 40 N) in the three-dimensional force space. (D) The force trajectories across 
each target direction in the force intensity of 40 N for a representative subject.

Nihon-Kohden, Tokyo, Japan) and band-pass filtered between 5 
and 1000 Hz. All electrical signals were stored with a sampling 
frequency of 2000 Hz on the hard disk of a personal computer 
using a 16-bit analog-to-digital converter (PowerLab/16SP; AD 
Instruments, Sydney, NSW, Australia). The raw EMG traces were 
high-pass filtered at 35 Hz using a zero-phase-lag fourth-order 
Butterworth filter, after which they were demeaned, rectified, and 
low-pass filtered at 40 Hz (Chvatal et al., 2011). The filtered traces 
were then divided into 100 time bins per second and averaged 
across each bin (i.e., resampled at 100 Hz). The same procedures 
were conducted across each corresponding rest period, and the 
difference between the two traces served as the net EMG (Hagio 
and Kouzaki, 2015).

For the extraction of muscle synergies, the muscle activity 
data for each muscle were assembled to form an EMG data 
matrix. We first constructed the EMG data matrix (M), which 
consisted of temporal sequence for 10 s of each muscle activity 
in each trial, i.e., 8 muscles × 64,000 variables (32 directions × 2 
force levels  ×  10  s  ×  100 samples). The EMG values of each 
muscle were normalized to the maximum value for all of the 
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muscles across all desired directions such that each value was 
between 0 and 1. Then, each muscle data vector was normalized 
to have unit variance to ensure the activity in all muscles was 
equally weighted.

extraction of Muscle synergies
We extracted muscle synergies from the data matrix of the EMG 
recordings (M) using non-negative matrix factorization (NMF) 
(Lee and Seung, 1999; Tresch et  al., 1999; Hagio and Kouzaki, 
2014, 2015; Hagio et al., 2015) as following equation:

 
M WC W C=    ( )i i

i

N

i i+
=
∑ ε ≥ 0, ≥

1

0
 

where Wi represents the contribution of each muscle to synergy 
i, and an individual muscle may contribute to multiple syner-
gies. The composition of the muscle synergies does not change 
among the conditions, but each synergy is multiplied by a scalar 
activation coefficient (Ci) that changes among conditions: the 
column of Ci consisted of 64,000 variables (32 directions  ×  2 
force levels × 10 s × 100 samples). ɛ is the reconstructed error. 
The synergy weighting and activation coefficient matrices were 
normalized such that the individual muscle-weighting vector was 
the unit vector.

To select the smallest number of muscle synergies (Nsyn) that 
resulted in an adequate reconstruction of the muscle responses, we 
extracted between 1 and 8 muscle-weighting matrices of muscle 
synergies and activation coefficient matrices from the EMG data 
matrices that were obtained from each subject. We subsequently 
verified the goodness-of-fit between the original (M) and recon-

structed M WCr i i
i

N

=




=

∑
1

 data matrices as the amount of total 

variability explained (R2) depending on the number of muscle 
synergies (N). We used a linear regression procedure (d’Avella 
et  al., 2006) to determine N value after which the R2 curve is 
approximately straight as assuming that the increase of R2 with 
adding N value is due to noise-based variation. We performed lin-
ear regression on the entire R2 curve and progressively removed 
the smallest N value from the regression interval. We then com-
pared the mean square residual errors of the different regression 
lines and selected the least N value (Nsyn), a mean squared error 
in the regression line from which to the maximum N value was 
<10−4. For Nsyn muscle synergies, both muscle-weighting and 
activation-coefficient matrices were defined.

For the verification that the extracted muscle synergies 
depend on not the methodological but physiological factors, 
it is needed to judge whether the resultant dimensionality in 
the muscle activation space using the NMF analysis was lower 
than the chance level or not. To this end, EMG data matrix was 
constructed using the shuffled EMG data across each muscle. 
It should be noted that these shuffled EMG data contained 
the same value, range, and variance for each muscle although 
the relationships between muscle activations were removed. 
We then calculated R2 value between the original and recon-
structed EMG data matrices across each of one to eight muscle 
synergies.

grouping of similar Muscle synergies 
across subjects
Functional sorting of the muscle synergies across each subject 
was initially performed by grouping muscle synergies based 
on the values of cosine similarity (r > 0.78; p < 0.01) to that of 
an arbitrary reference subject using an iterative process (Hagio 
and Kouzaki, 2014, 2015). If two synergies in one subject were 
assigned to the same synergy group, we defined a pair of syner-
gies with the highest correlation as the same group of synergies. 
Subsequently, an averaged set of similar muscle synergies for all 
subjects were computed, and the similarity between the averaged 
muscle synergies and each synergy grouped across the subjects 
was quantified.

evaluating action Direction of Muscle 
synergies and Muscles
We estimated the three-dimensional AD of muscle synergies 
and muscles by developing EWA method (Kutch et  al., 2010; 
Imagawa et al., 2013). Figure 2 provides a diagram of how the 
method operates. The EWA is based on a cross-correlation of 
EMGs and force signals. Such analysis was performed over an 
approximately steady period of force fluctuations lasting 10 s 
out of the time course used in prior analysis. We used a series 
of estimated activation coefficients of each muscle synergy (Ci; 
i = 1, 2, … , N) along with three force components (Fx, Fy, and Fz) 
for cross-correlation analysis (Figure 3A). For the estimation 
of ADs of muscles, cross-correlation analysis was performed 
between the processed surface EMGs from individual muscles 
and each of the corresponding three force components. Each 
correlation coefficient was first quantified temporally and 
spatially based on a time lag from 0 to 200 ms, during which 
the traces reached its peak magnitude (Figure 3B). We used the 
time lag, on which the most peak magnitude of the three was 
estimated, to define the time-to-peak and used the correspond-
ing time lag to define the net correlation coefficient of remain-
ing components. According to the correlation coefficients of 
each component, the force vector in the three-dimensional 
space was determined across each trial (Figure 3C). Then, we 
defined the AD of the muscle synergy or muscle, which was 
the averaging of force vectors for all selected trials (see detail 
below) after the correlation coefficients underlying the force 
vector were transformed with Fisher’s Z transformation (Fisher, 
1934).

To verify the physiological validity of the ADs, we con-
sidered the electromechanical delay (EMD) of each muscle. 
The EMD was referred to as the time lag between EMG 
and mechanical force response (Cavanagh and Komi, 1979; 
Norman and Komi, 1979), corresponding to the time-to-peak 
of cross-correlation in this study. Furthermore, to increase a 
validity of this technique, we adopted the trials, which were 
comprised in three time bins around the peak time bin of the 
histograms across each muscle, for estimating force vectors 
(see Results). If the same peak time bins were observed in his-
tograms, we selected the time bin, which was close to 100 ms. 
In the case of muscle synergies, we determined the correlation 
coefficients of the time-to-peak value between 50 and 150 ms, 
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FigUre 2 | Block diagram to estimate action direction of a muscle 
synergy. Muscle weightings and activation coefficients of muscle synergies 
were first extracted from processed electromyogram (EMG) data for all trials 
using non-negative matrix factorization (NMF). The cross-correlation analysis 
was then performed between the traces of three force components and 
activation coefficient of a muscle synergy recorded and estimated in each trial 
to determine each correlation coefficient and the time-to-peak. If the 
correlation was physiologically valid, the correlation vector was plotted in 
three-dimensional space as a force vector. These procedures (surrounded by 
a dashed line) were repeated for all trials. Finally, we estimated the action 
direction of the muscle synergy, which was the averaging of force vectors 
after the correlation coefficients underlying the force vector were transformed 
with Fisher’s Z transformation. The details were described in the Section 
“Materials and Methods.”
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which indeed reflected the EMD of muscles constructing the 
muscle synergies, based on the EMD of lower limb muscles 
in the previous study (Vos et al., 1990) and in this study (see 
Result).

Methodological identification of action 
Direction
To validate the analysis for the estimation of ADs, we performed 
methodological identifications. We verified that the distribution 
of force vectors as a result of correlation coefficients was not due 
to a secondary product of the methodology but due to a physi-
ological factor, i.e., the relationship between the muscle activation 
and endpoint force. To this end, we calculated force vectors with 
the same procedure as estimating ADs of muscle synergies (or 

muscles), using the three force components and shuffled activa-
tion traces of muscle synergies (or EMG data) in which temporal 
sequences were shuffled across each muscle synergy (or muscle) 
(Figure 4). The force vectors, which time-to-peak value was physi-
ologically meaningful, i.e., between 50 and 150 ms based on the 
previously calculated EMD (Vos et al., 1990), were adopted. We 
then quantified the distribution of the force vectors as a resultant 
vector length [ R r=|| ||;  norm of the force vector averaged for 
each force vector (r), i.e., length of AD vector (Fisher, 1995)]. 
This procedure was repeated 100 times using bootstrapping to 
resample each shuffled activation trace of muscle synergy (EMG 
data) (Efron, 1993). We then estimated 95% bootstrap confidence 
intervals for the overall resultant vector length. If a resultant 
vector length calculated by actual dataset was out of the 95% 
confidence interval, the distribution of the force vectors was not 
determined by chance but included physiological information.

resUlTs

Directional Tuning of eMg activity
Figure 5 shows the muscle activations across each target direc-
tion in a representative subject. The activation of each muscle 
was broadly and specifically tuned with three-dimensional 
force direction. RF and VML were predominantly activated for 
between forward (+Fy) and upward (+Fz) force directions, which 
required knee extension and hip flexion torques, whereas VL, 
VMO, and VI were mainly activated forward (+Fy) and close to 
downward (−Fz) directions. It should be noted that the net knee 
extension torque, which does not involve the hip flexion or exten-
sion torques, was biased toward this direction on the force space. 
Hence, these mono-articular knee extensors produce the net knee 
extension torque. In the case of SR, AL, and GM, they generated 
hip flexion, adduction, and abduction torques, respectively.

Muscle synergy
In this study, we extracted five or six muscle synergies which 
accounted for 92.9 ± 2.75% of the total data variability (R2) in 
the five subjects, and the R2 value for same number of synergies 
were definitely higher than the case of shuffled dataset across each 
muscle (Figure  6: top). Additionally, the data were sufficiently 
reconstructed across each muscle and each target direction, as 
determined by R2 averaged for all muscles and all directions: 
92.3 ± 2.86 and 91.2 ± 4.24%, respectively (Figure 6: third and 
bottom). Figures 7A,B show five extracted muscle synergies and 
their activation coefficients across each target direction in a repre-
sentative subject, respectively. The synergy W1, which was mainly 
constructed by mono-articular knee extensors (VL, VMO, and 
VI), was activated in forward (+Fy) and downward (−Fz) direc-
tions, i.e., the range around net knee extension direction, and 
around medial direction (−Fx). The synergy W2, which contained 
RF, VML, and SR, was dominant for forward (+Fy) and upward 
(+Fz) directions generated by both knee extension and hip flexion 
torques and was also broadly activated in medial (−Fx) and lateral 
(+Fx) directions. The synergy W3 was mainly composed of SR, and 
activated around upward direction (+Fz) produced by hip flexion 
torque. The synergy W4 having GM dominantly contributed to 
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FigUre 3 | calculation of action direction. (a) A representative trial is shown in the time domain, where the subject maintained a desired isometric force around 
the right ankle, which arose from the activation of a muscle synergy. (B) Cross-correlation between activation coefficients of a muscle synergy and each force 
component yielded the traces of correlation coefficients peaking at time lag (between EMGs constructing activation coefficients of the muscle synergy and force) 
about 100 ms. The time-to-peak is shown as a vertical line (see detail in Section “Materials and Methods”). ×, the point in which the most peak magnitude of the 
correlation coefficients was observed. (c) Force vector was determined as a unit vector based on the correlation coefficients of three components in three-
dimensional force space. The correlation coefficient was described as the radius of a plot on the surface of unit sphere. These procedures were corresponding to a 
block diagram surrounded by a dashed line in Figure 2.
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lateral force (+Fx), which was generated by hip abduction torque. 
The synergy W5, which was constructed by RF, VL, VI, and AL, 
was activated around medial direction (−Fx) produced by hip 
adduction torque.

action Direction of Muscle synergy
Figure  7C represents the AD of each muscle synergy (red), 
which was defined as the averaging for individual force vectors 
(blue) resulting from cross-correlation analysis. We verified the 
significance in the distribution of the force vectors across each 
muscle synergy (p  <  0.05; see detail in Section “Materials and 
Methods”). The ADs were approximately corresponding to the 
activation range of the muscle synergies: the synergy W1 contrib-
uted around net knee extension torque [(0.215, 0.680, −0.701)]; 
(Fx, Fy, Fz)]; the synergy W2 was dominant for knee extension and 
hip flexion torques (−0.093, 0.850, 0.519); the synergy W3 was 
mainly activated for hip flexion torque (−0.180, 0.507, 0.843); 
the synergy W4 dominated hip abduction torque (0.999, 0.013, 
−0.048); and the synergy W5 generated knee extension, hip flex-
ion, and hip adduction torques (−0.567, 0.818, 0.103). Figure 7D 
shows the time-to-peak histograms of each synergy at a time lag 
of 0 to 200 ms, which represents the time lag between the activa-
tion onset of muscle synergy and the onset of mechanical force 
response. Each muscle synergy had the peak time bin around a 
time lag of 100 ms [117.2, 103.3, 98.5, 115.2, and 101.4 (ms); mean 
value in W1–5, respectively).

The muscle weighting and ADs of muscle synergies for all 
subjects are shown in Figures 8 and 9, respectively. The synergy 
W1, which was mainly constructed by mono-articular knee 
extensors, i.e., VL, VMO, VML, and VI, was extracted from 
all subjects with high similarity (r  >  0.936). The ADs of the 
synergy W1 were distributed in the similar direction generated 
by knee extension torque in four of five subjects, whereas the 
AD of one subject (ID4) denoted more medial direction (−Fx) 
than the others. The synergy W2 weighting RF and VML was 
observed in all subjects (r > 0.940). The AD of the synergy W2 
was similar across each subject, which directional force was 
produced by the combination of hip flexion and knee exten-
sion torques. The synergy W3 dominantly composed of SR was 
included in all subjects (r > 0.998). The ADs of the synergy W3 
were consistently directed approximately hip flexion direction 
(+Fz) for all subjects. The synergy W4, which was constructed by 
the combination of GM and other muscles, was similar across all 
subjects (r > 0.953). The ADs of the synergy W4 mainly denoted 
the lateral direction (+Fx), but in one subject (ID3) the AD was 
biased to the hip flexion direction (+Fz) because of the influence 
of SR. The synergies W5 and W6, which commonly contained 
AL, were extracted 2 of 5 subjects, respectively (r  >  0.965 
and r >  0.976, respectively). The ADs of these synergies were 
distributed in the medial direction (−Fx). The subject-specific 
synergies were observed in two subjects, the ADs of which 
depended on the composition of these muscle synergies. These 
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FigUre 4 | Methodological identification of action direction. Force 
vectors (blue dots) estimated from cross-correlation analysis between the 
shuffled electromyogram (EMG) traces and force responses for all trials in the 
rectus femoris are shown (detail in Section “Materials and Methods”). This 
procedure was repeated 100 times using bootstrapping to resample each 
shuffled EMG data. The length of each vector was normalized with their unit 
vectors, and the vectors distributed on the surface of unit sphere. The 
correlation coefficient was represented as the radius of each plot. The 
positive values of three axes are corresponding to hip abduction (Fx), knee 
extension (Fy), and hip flexion (Fz) movement directions, respectively.

November 2015 | Volume 3 | Article 187

Hagio and Kouzaki Action Direction of Muscle Synergies

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

results demonstrated the robustness and specificity of muscle 
synergies and their ADs across each subject.

action Direction of Muscles on the 3-D 
Force space
As illustrated in Figure 10, we estimated the AD of each muscle 
(red) to validate the hypothesis that neural-based muscle synergy 
would synchronously control organized muscles. We verified the 
significance in the distribution of the force vectors across each 
muscle (p < 0.05; see detail in Section “Materials and Methods”). 
These ADs were approximately corresponding to the range of the 
muscle activation direction. However, they represented the char-
acteristics of each muscle more distinctly. Although VL, VMO, 
VML, and VI, mono-articular knee extensors, are generally 
assumed as functionally similar muscles, the ADs were different 
among them. The AD of VL denoted the force direction generated 
by both knee extension and small hip flexion torques [(−0.113, 
0.990, −0.086); (Fx, Fy, Fz)]. This contribution to the off-axis hip 
joint torque would be due to the synchronous activation with RF, 
which generates knee extension and hip flexion torques, in the 
synergy W5. The similar result was observed in VI (0.274, 0.958, 
−0.088). On the other hand, the AD of VMO was around the 
direction produced only by the knee extension torque (0.166, 
0.680, −0.714) because VMO was contained only in the synergy 
W1, which AD (0.215, 0.680, −0.701) was similar to the AD of 

VMO, and not associated with the bi-articular muscle, RF. The 
AD of VML was in the force direction produced by both knee 
extension and hip flexion torques (−0.245, 0.936, 0.252) and was 
strongly similar to the AD of RF (−0.288, 0.871, 0.398), both of 
which was included in the synergy W2. Interestingly, the ADs 
of the knee extensors also directed either medial or lateral side, 
indicating the synchronous activations of the hip adductor, AL, 
or hip abductor, GM, through the synergy W5 and W4, respec-
tively. The ADs of the SR, AL, and GM were also affected by the 
synchronization with the different muscles in the same muscle 
synergies [SR (0.002, 0.298, 0.955), AL (−0.470, 0.790, 0.393), and 
GM (0.977, 0.164, 0.135)]. These results suggest that the AD of a 
muscle reflect the anatomical function of the muscle and different 
muscles, which are synchronously activated through the muscle 
synergies.

To verify the physiological validity of the ADs, we calculated 
the EMD of each muscle. Figure 11 shows the EMD histograms 
of each muscle for all analyzed trials at a time lag of 0 to 200 ms. 
Each muscle had the peak time bin around a time lag of 100 ms 
[102.5, 103.7, 104.8, 107.4, 103.9, 104.7, 101.9, and 108.5 (ms); RF, 
VL, VMO, VML, VI, SR, AL, and GM, respectively). The average 
time-to-peak values were similar to the values of the previous 
study (Vos et al., 1990), indicating that the estimated ADs in this 
study would be physiologically valid.

DiscUssiOn

The primary goal of this study was to quantify the mechanical 
contribution of muscle synergies in the task space. To this end, 
we estimated the AD of lower limb muscle synergies during 
isometric force-maintaining tasks on three-dimensional force 
space. The five or six muscle synergies were identified across 
each subject. The ADs of these muscle synergies approximately 
denoted the direction based on the anatomical function of the 
weighted muscles in the task space. Furthermore, the AD of each 
muscle reflected each anatomical function and a synchronous 
contribution with different muscles, which belonged to the same 
muscle synergies.

action Direction of Muscle synergies
Many researchers have long studied low-dimensional organiza-
tion of the spinal motor system and resulting movements. Low 
dimensionality in the task space, which was induced by the 
stimulation of spinal interneuron, was first observed in frog and 
rat as force field (Giszter et al., 1993; Saltiel et al., 1998). Modular 
organization of muscle activations (so-called muscle synergy) 
was then statistically estimated (Tresch et al., 1999), which would 
produce the low dimensionality in the task space. A few studies 
showed the relationship of the low dimensionality between task 
level and motor level. Novel method was conducted to estimate 
synergy-to-force-mapping, which represented the linear relation-
ship between the activation of muscle synergies and endpoint 
force in the isometric condition (Berger et al., 2013; Berger and 
d’Avella, 2014), whereas synergy-to-force-mapping vector did 
not contain the contribution of unmesurable muscles and did 
not completely explain the net contribution of muscle syner-
gies in the task space. Different approach calculated functional 
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FigUre 5 | Muscle activities. EMG activities across each muscle. The amplitudes of EMGs were represented as the radius of each plot distributed on the surface 
of unit sphere. Data are shown across each target direction in the force intensity of 40 N for a representative subject. Muscle names are indicated in an abbreviated 
form: RF, rectus femoris; VL, vastus lateralis; VMO, vastus medialis obliquus; VML, vastus medialis longus; VI, vastus intermedius; SR, sartorius; AL, adductor 
longus; GM, gluteus medius. The positive values of three axes are corresponding to hip abduction (Fx), knee extension (Fy), and hip flexion (Fz) movement directions, 
respectively.
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muscle synergies from the data matrix, which contained muscle 
activation matrix and corresponding endpoint force matrix, 
by reducing their dimension together using NMF algorithm 
(Torres-Oviedo et  al., 2006; Chvatal et  al., 2011). The counter 
evidence of the muscle synergy hypothesis, however, showed that 
the estimated low-dimensionality in muscle activation was due to 
the biomechanics of the limb, which constrains musculotendon 
length changes (Kutch and Valero-Cuevas, 2012). Thus, the 
constraints of limb geometry relevant to task space can lead to 
the low dimensionality in the measured EMG activity. Therefore, 
the identification of neural-based muscle synergies will require 
examining not only the spatial contributions of muscle synergies 
in the task space but also temporal contributions, which include 
both movement-based and neural-based fluctuations (Hagio 
and Kouzaki, 2015). For this reason, the previous studies only 
evaluating the spatial contribution of muscle synergies could not 
provide the direct evidence whether the estimated contribution 
in the task space was arose from neural-based muscle synergies 
(Torres-Oviedo et  al., 2006; Chvatal et  al., 2011; Berger and 
d’Avella, 2014). In this study, we could directly estimated the net 
contribution of muscle synergies in the task space while consider-
ing temporal correlation between the activation of muscle syner-
gies and endpoint force in the basis of the physiological criteria, 
i.e., time delay from the onset of the muscle synergy activation to 
the resulting force (indeed, this delay was between the onset of the 
muscle activation constructing muscle synergies and the force) 
(Figure 7). Our method in the basis of the previous technique 
(Kutch et al., 2010) made it possible to regard muscle synergies as 
neural basis and to directly quantify the spatiotemporal contribu-
tion of muscle synergies to the endpoint force.

Variability was observed across each force vector constructing 
AD of muscle synergy (Figure 7C; blue dots). The possible reason 
of this variability was due to synchronous activation with the 
other muscle synergies. In the methodology, the previous study 
showed that synchronization of motor units having different 
pulling directions distorts the estimate of the pulling direction by 
STA (Kutch et al., 2007). On the other hand, in the physiological 
aspect, the merging of muscle synergies was observed depending 
on the force-generating capability of muscles, which might result 
from the simultaneous recruitment of a few different muscle 
synergies (Hagio and Kouzaki, 2014). In the basis of the fact, 
the AD would be estimated by the correlation between a target 
muscle synergy and endpoint force, which was generated by the 
combination of the target muscle synergy and the synchronously 
activated muscle synergies. The different possible reason of this 
variability attributed the mechanical property of motor units. If 
the neural basis of muscle synergies exists as spinal interneuron 
(Hart and Giszter, 2010; Overduin et al., 2014), these interneu-
rons control individual motor units having a broad range of the 
pulling direction (Thomas et al., 1986, 1990). This fact suggests 
that the mechanical contribution of muscle synergies was varied 
depending on the recruited motor units, which were activated 
according to a neural property, such as the Henneman’s size 
principle: if the neural input from spinal interneuron to motor 
units was increased, motor units are recruited in turn from the 
smallest to the largest. This variability could make it possible for 
flexible force generations in a broad range of the task space by 
the combination of a small number of muscle synergies (Roh 
et al., 2012; Hagio and Kouzaki, 2014). These results also suggest 
that the ADs of muscle synergy defined in this study represent 
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FigUre 6 | R2 value for determining the number of muscle synergies. Top: the amount of total variability explained (R2) as a function of the number of 
synergies obtained from original (solid line) and shuffled (dotted line) EMG datasets across each subject. Second: mean square residual error (MSE) of the regression 
line on R2 curve from that number of muscle synergy to the maximum was computed. We selected the least number of muscle synergies (red circle), which MSE 
was <10−4 (red dash line). Third: R2 value across each muscle. Each line represents the R2 value of the certain number of muscle synergies. Bottom: R2 value across 
each of 32 target directions. Each line represents the R2 value of the certain number of muscle synergies. Syn, synergy.
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the average of variability of pulling direction of muscle syner-
gies arose from a range of the pulling direction of motor units. 
Therefore, not simple combinations of ADs of different muscle 
synergies but flexible modulation within a muscle synergy might 
determine the produced endpoint forces.

action Direction of Muscles
The second effort in this study was to provide evidence that mus-
cle synergies were of neural origin. To this end, we hypothesized 
that the AD of each muscle reflects the mechanical contribution 
of different muscles, which belong to the same muscle synergy, 
based on the consideration that if muscles are synchronously 
activated by the muscle synergies, cross-correlation analysis 
leads to the correlation between the activation of the target 
muscle and the endpoint force generated by the combination 
of these muscles. Indeed, the ADs of knee extensors (VL, VMO, 

VML, and VI) were different from each other depending on 
the muscle synergies, which these muscles belong to, despite 
their similar anatomical function (Figure  10). The results 
indicated that the muscles spanning different joints, such as 
bi-articular, RF, AL, and GM, affected the ADs of these muscles. 
The previous studies conducted the novel method focusing 
on the synchronous recruitment of each muscle through 
muscle synergies and showed the low-dimensional structure 
in the EMG activity (Krouchev et al., 2006; Drew et al., 2008; 
Krouchev and Drew, 2013). The extracted clusters, however, 
were relatively more than the estimated muscle synergies using 
decomposing technique, such as NMF (Krouchev et al., 2006). 
The method and idea in the present study could demonstrate 
the synchronous recruitment of muscles due to muscle syner-
gies extracted by NMF. Moreover, because the method focused 
on both high and low force fluctuations during constant force 
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FigUre 7 | Muscle synergies and their action directions. The muscle weightings (a) and activation coefficients across each target direction in the force 
intensity of 40 N (B) of 5 extracted muscle synergies are shown in a representative subject. (c) The force vectors (blue) and action direction (AD; red) across each 
muscle synergy. The length of each vector was uniformed with their unit vectors, and the correlation coefficient was described as the radius of each plot distributed 
on the surface of unit sphere. The positive values of three axes are corresponding to hip abduction (Fx), knee extension (Fy), and hip flexion (Fz) movement directions, 
respectively. Data shown are for selected trials (see detail in Section “Materials and Methods”). (D) Histograms of time-to-peak value obtained from cross-correlation 
analysis, representing the time lag between the onset of activation of muscle synergy and force responses (exactly, the delay between the onset of activation in 
muscle level and the force responses).
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generation, the correlation might reflect not the co-contraction 
of muscles but the synchronization of motor units constructing 
the measured EMG signals, which have the innervation from 
the same muscle synergy. This temporal property of muscle 
synergies provides the provided evidence that muscle synergies 
are of neural origin.

The estimation of muscle ADs also provided the EMD of each 
muscle, i.e., the time lag between the EMG and mechanical force 
response, which peak of the distribution was different across each 

muscle. Muscle synergies were composed of any muscles, which 
EMDs were variable. This difference among EMDs apparently 
confounds a motor control because the mechanical responses 
induced by descending neural input to muscle synergy may be out 
of alignment among muscles. Each muscle synergy, however, had 
roughly constant peak time lags between the activation of muscle 
synergy and force responses (Figure 7D). This result implies that 
the motor units having the similar EMDs in a muscle or in more 
different muscles compose a muscle synergy. Therefore, muscle 
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FigUre 8 | Muscle synergies across each subject. The muscle-weighting vectors of the muscle synergies across each subject are shown. The r value 
represents cosine similarities between the averaged muscle synergies estimated from the initial sorting and each original synergy grouped across each subject (see 
Materials and Methods). The synergies across each subject were grouped into six groups (W1–6) and two subject-specific muscle synergies (last row; gray and 
orange).
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synergies are constructed considering the complexity in the mis-
alignment of EMDs and achieve the accurate force generations. In 
the different scheme, such temporal lag between muscles within 
the same synergy was previously observed as “time-varying syn-
ergies,” which has a fixed temporal profile (d’Avella et al., 2003), 
suggesting that this delay consider the difference of EMDs among 
muscles.

Furthermore, the difference of the muscle ADs among func-
tionally similar muscles, especially between VML and the other 
vasti muscles (VL, VMO, and VI) (Figure 10), might reflect not 
only the modularity due to muscle synergies but also the inher-
ent relationship between muscles and force responses based on 
the intrinsic characteristics in the musculoskeletal system. It is 
known that the EMG activities between VML and VL were dif-
ferent because of the discordancy of physiological parameters, 

such as physiological cross-sectional area (PCSA) and pennation 
angle of muscle fiber (Akima et al., 2000, 2001; Ward et al., 2009; 
Watanabe and Akima, 2011) or contribution to torque (Zhang 
et al., 2003). Moreover, this result could reflect the divergence of 
relationship between these muscles and the bi-articular muscle, 
RF, suggesting the stronger association between RF and VML 
than the other knee extensors. On the other hand, the ADs of VL 
and VI were mainly distributed in the same area. As illustrated in 
Figure 7A, the synergy W1 mainly consisted of the mono-articular 
knee extensors, in which the weightings of VL and VI were similar 
to each other. It is reported that they are fused at posterolateral 
side (Willan et al., 1990) or have relatively equivalent physiologi-
cal parameters, such as PCSA (Akima et al., 2000, 2001). Hence, 
this result reflects the morphological and physiological similarity 
between VL and VI. Additionally, it is generally accepted that the 
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FigUre 9 | action direction of muscle synergies across each subject. The ADs (red) and force vectors (blue) across each subject. The length of each vector 
was uniformed with their unit vectors, and the correlation coefficient was described as the radius of each plot distributed on the surface of unit sphere. The order of 
the panels was corresponding to those in Figure 8. The positive values of three axes are corresponding to hip abduction (Fx), knee extension (Fy), and hip flexion (Fz) 
movement directions, respectively.
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principal function of VMO is to control tracking of the patella by 
overcoming the lateral forces imposed by the other vasti muscles. 
This fact led us to the speculation that VMO does not have the 
specific AD. This fact was also ensured by the incoherent time-
to-peak value of VMO (Figure  11). The calculated AD, which 
directed the net knee extension directions, might reflect the 
association between VMO and VL, which applies lateral-directed 
forces to the patella.

Furthermore, the AD of VI and VMO also directed to the 
lateral, whereas RF, VL, and VML contributed to medial force. 
The similar result was previously reported and suggested that 
balanced off-axis torques and forces are necessary for appro-
priate three-dimensional patellar tracking and tibiofemoral 
movement, and different quadriceps components need to be 
coordinated to generate appropriate off-axis and extension 
torque around knee joint (Zhang et al., 2003). Therefore, the ADs 

in the three-dimensional force space reflected such complicated 
relationships of quadriceps muscles.

existence of hard-Wired Muscle synergies
The primary problem in the muscle synergy hypothesis is 
whether a muscle synergy is a hard-wired neural system. Many 
researchers addressed the problem in some empirical stud-
ies. Hart and Giszter (2010) showed that activation of spinal 
interneurons in frogs was related to statistically calculated mus-
cle synergies rather than individual muscles, indicating the neu-
ral-based structure of a muscle synergy as a spinal interneuron 
(Hart and Giszter, 2010). In addition, the connectivity between 
motor cortical neurons and muscle synergies was demonstrated 
by testing the similarity between statistically extracted muscle 
synergies evoked by intracortical microstimulation and hand 
movements in rhesus macaques (Overduin et al., 2012, 2014). 
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FigUre 10 | action directions of muscles. The ADs (red) and force vectors (blue) across each muscle. The length of each vector was uniformed with their unit 
vectors, and the correlation coefficient was described as the radius of each plot distributed on the surface of unit sphere. Data shown are for all subjects and 
selected trials (see detail in Section “Materials and Methods”). The positive values of three axes are corresponding to hip abduction (Fx), knee extension (Fy), and hip 
flexion (Fz) movement directions, respectively.
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In humans, a virtual surgery technique that rearranged muscle 
architecture demonstrated a hard-wired modularity in a neural 
circuit by testing the prediction that modularity due to muscle 

synergies interfered the adaptation to perturbations that are 
incompatible with the muscle synergies (Berger and d’Avella, 
2014). However, a low-dimensional structure as statistically 

FigUre 11 | electromechanical delay (eMD). Histograms of time-to-peak value across each muscle referred to as the time lag between the onset of EMG and 
mechanical force responses. Data shown are for all trials and all subjects.
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Most of the literature accepts, despite many controversial results, that during oxida-
tion/reduction films of conducting polymers (CPs) move from electronic conductors to
insulators. Thus, engineers and device’s designers are forced to use metallic supports to
reoxidize the material for reversible device work. Electrochromic front experiments appear
as main visual support of the claimed insulating nature of reduced CPs. Here, we present a
different design of the biomimetic electrochromic front that corroborates the electronic and
ionic conducting nature of deep reduced films.The direct contact PEDOT metal/electrolyte
and film/electrolyte was prevented from electrolyte contact until 1 cm far from the metal
contact with protecting Parafilm®.The deep reduced PEDOT film supports the flow of high
currents promoting reaction induced electrochromic color changes beginning 1 cm far from
the metal-polymer electrical contact and advancing, through the reduced film, toward the
metal contact. Reverse color changes during oxidation/reduction always are initiated at the
film/electrolyte contact advancing, under the protecting film, toward the film/metal contact.
Both reduced and oxidized states of the film demonstrate electronic and ionic conductivi-
ties high enough to be used for electronic applications or, as self-supported electrodes, for
electrochemical devices.The electrochemically stimulated conformational relaxation model
explains those results.

Keywords: conducting polymers, electrochromic front, redox reactions, ionic conductivity, reduced films

INTRODUCTION
Conducting polymers (CPs) submitted to electrochemical reac-
tions have been proposed as a very simple material model (reactive
macromolecules, ions and solvent) of the intracellular matrix from
living cells (Otero and Martinez, 2013a). Driven by electrochem-
ical reactions they originate biomimetic devices such as artificial
muscles and actuators, electrochromic windows (UV-vis or IR),
fast charge/discharge batteries, or supercapacitors mimicking elec-
tric organs or new artificial chemical synapses (Otero et al., 2012).
Designing such biomimetic devices requires conductive (elec-
tronic and ionic) materials. Designers and development engineers
approaching to those materials envisaging new applications realize
that most of the literature asserts the insulating nature of films of
conducting polymers in its reduced state claimed by the conduct-
ing/insulator transition model (Ofer et al., 1990; Aoki and Kawase,
1994; Zykwinska et al., 2003; Heinze et al., 2010). Different designs
of the electrochromic front border show that the oxidation of deep
reduced electrochromic films supported by a glass always starts at
the polymer–metal interface used for the film connection with the
electrical generator (Tezuka and Aoki, 1989; Tezuka et al., 1995,
1996). The final conclusion is that the reduced film is an insulator
forcing the reaction beginning only through those polymer chains
in direct contact with the metal. In those designs, the ensemble
glass, polymer film, and metal are immersed inside the electrolyte.
As final consequence reduced self-supported films of those mate-
rials are discarded as basic component of the above-mentioned
devices and as electronic conductors for electrochemical purposes
or devices.

Different experimental results contradict the insulating nature
of deep reduced films of CPs. High spin (Petr and Dunsch, 1996;
Zykwinska et al., 2003; Osterholm et al., 2008b) and charged
states (Osterholm et al., 2008a) content in reduced films were
detected by EPR or Raman spectroscopic studies. Full polymeric
electrochromic devices, not including any metal contact inside
the device, have been developed (Invernale et al., 2010). The
conductivity of freestanding polypyrrole films reduced at high
cathodic potentials for long times keeps high counterion content
and electronic conductivities over 10−3 S cm−1 measured in inert
atmosphere (Otero and Ariza, 2003; Otero and Martinez, 2014b).
Deep reduced films support metal electrodeposition from aque-
ous solutions with flow of high current densities (Otero and Ariza,
2003). Freestanding films of CPs can be reduced by slow potential
sweeps up to high cathodic potentials (more cathodic that −2V) in
different electrolytes (solvents and salts) and then reoxidized dur-
ing the subsequent anodic sweep getting stationary voltammetric
responses (Otero et al., 2014). Artificial muscles constituted by
freestanding films on isolating flexible tapes (Otero et al., 1993),
or by interpenetrated polymer networks (Plesse et al., 2005) or by
freestanding bilayer of two CPs (Kaneto et al., 1995) also support
stationary voltammetric cycles from the reduced (supposed isolat-
ing) state to the oxidized states giving reverse bending movements.

The Electrochemically Stimulated Conformational Relaxation
(ESCR) model states (Otero and Angulo, 1993; Otero et al.,
1995, 1996, 1997; Grande and Otero, 1998; Otero and Padilla,
2004), and the Structural Chemical Kinetics (SCK) (Otero and
Martinez, 2013b) corroborates that the film oxidation/reduction
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induces molecular (conformational) and macroscopic (swelling,
shrinking, compactions, and relaxation) processes. After reac-
tion induced structural closing the packed material traps over
20% of the counterions involved in the film redox processes,
as proved by EDX analysis (Otero and Martinez, 2014b), which
only can be expulsed very slowly through the packed film at
high reduction overpotentials. Thus, after a deep reduction at
high cathodic potentials any CP film keeps counterion and bal-
ancing polaron concentrations high enough to give electronic
conductivities higher than 10−3 S cm−1.

The electrochromic front methodology was designed to sup-
port the isolating and porous nature of deep reduced CPs (Tezuka
and Aoki, 1989; Tezuka et al., 1995, 1996). Films from oligomeric
solutions were casted on an insulating support, as glass. A metal
film (sputtered or by simple contact) allows the electrical con-
tact at the film top. The full system (a fraction of the metal,
the metal/polymer contact, and the polymer film) was immersed
in the electrolyte. After an anodic potential step the oxidation
induced color change starts at the metal/polymer interface and
the electrochromic front advances toward the film bottom. Ulte-
rior designs from Smela’s group, protecting now the film surface
from the electrolyte contact letting the lateral borders free to con-
tact the electrolyte, indicate that always the film reaction and the
color change start at the electrode borders advancing toward the
electrode center (Wang et al., 2004; Wang and Smela, 2009a,b).

In order to clarify this controversy, we will re-design here the
electrochromic front experiment.

MATERIALS AND METHODS
PEDOT/PSS films were obtained by evaporation from Aldrich
aqueous solution on a glass plate of 2 cm2. In order to ensure
the electrical contact, a platinum foil of 1 cm2 of area was put
in contact with the polymeric film contacting 3 mm of the film
top. The electrolyte–polymer contact was prevented in most of
the film surface area by surrounding the ensemble under pres-
sure and strain with two Parafilm® layers. About 1 mm of the
PEDOT/PSS film remains uncoated at the film bottom to allow the

PEDOT contact with the electrolyte. At the top, 2 mm of the Pt foil
keep uncoated to allow the electrical clamp contact (Figure 1A).
The electrochemical cell was a transparent tank containing 0.2 M
LiClO4 (Aldrich) aqueous solution. An ITO electrode (4 cm2) was
used as counter electrode. The reference electrode was a Crison
Ag/AgCl (3 M KCl). First the PEDOT/PSS was deep reduced at
−1V for 5 min to guarantee a deep reduced initial state. Then it was
submitted to consecutive square potential waves from −1.00 V for
10 s to 0.20 V for 10 s. Figure 2 shows two pictures of the cell with
the oxidized electrode (transparent blue light color) and reduced
electrode (blue dark color).

To ensure stationary responses, eight consecutive square poten-
tial waves were applied to the electrode. Color changes were
recorded in parallel using a compact Sony video camera. Images
were treated by Virtual Dub software and by ImageJ software
to evaluate de the color gradient evolution between consecutive
frames.

RESULTS AND DISCUSSION
The reduced PEDOT film is casted on an isolating and transpar-
ent glass (Figure 1A). At the top a Pt foil allows, by direct contact,
the electronic contact and the current flow. The ensemble is sur-
rounded, under strain and pressure, with a transparent Parafilm®
in order to protect most of the deep reduced film, the film–metal
interface and most of the metal from the direct electrolyte contact.
At the electrode top, 1 mm of uncoated Pt foil allows the electri-
cal connection, through a metal clamp, with the generator. At the
electrode bottom, 1 mm of unprotected PEDOT film allows the
CP/electrolyte contact (Figure 1A). Thus the Parafilm® protects
from the electrolyte direct contact 10 mm, from the metal/PEDOT
contact to the PEDOT/electrolyte contact, of the PEDOT film sur-
face and lateral sides. This new design reproduces, at a larger scale,
a theoretical transversal strip from the metal until the solution
(Figure 1B) in the middle of a CP film coating a metal electrode.
Here, the metal–polymer contact is far from the solution, further-
most than in any film coating a metal. Only a small fraction (1 mm)
of the film remains uncovered at the film bottom (imitating the

FIGURE 1 | (A) Scheme of the new electrochromic front border design. The
conducting polymer PEDOT–PSS film was casted on glass (2 cm2). A Pt foil
having 1 cm2 of surface area allows the metal/CP electrical contact at the top.
The Pt/polymer contact and most of the PEDOT film were surrounded with

two Parafilm® layers under strain to prevent the direct electrolyte contact.
Around 1 mm of the CP remains uncoated at the bottom allowing there the
direct CP/electrolyte contact. (B) The new design mimics a transversal cut of
a conducting polymer (CP) film: metal/CP/electrolyte.
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Martinez et al. Biomimetic color front

FIGURE 2 | Experimental cell: left side ITO counterelectrode, right side
PEDOT–PSS film casted on glass showing a transversal Pt foil on the
top allowing the clamp electrical contact. A half of the Pt foil and most
of the conducting polymer was coated with two layers of transparent
Parafilm®. (A) Reduced PEDOT–PSS film. (B) Oxidized PEDOT–PSS film.

polymer/solution interface of the coated metal electrode). If the
deep reduced film is an insulator requiring the metal/polymer con-
tact inside the electrolyte to start the polymer re-oxidation both,
film oxidation and color change will be inhibited.

Figure 2A shows the blue dark uniform color of the polymer
film after reduction at −1.00 V for a long time. Figure 2B shows
the blue light color of the polymer film inside the electrolyte after
oxidation at 0.2 V for a long period of time. Starting from the deep
reduced film, after a potential step from −1.00 to 0.20 V, the poly-
mer oxidation, visualized by the color change from blue dark to
blue light, is initiated (Figure 3A) at the electrode bottom narrow
strip in direct contact with the electrolyte. The electrochromic
front advances through the PEDOT film from the film bottom,
underneath the transparent Parafilm®, toward the polymer/metal
contact, Figure 3A from the left picture to the right picture.

Thus, the oxidation induced color change is initiated at the
narrow PEDOT strip in direct contact with the electrolyte, at the
electrode bottom,1 cm far from the film/metal interface at the elec-
trode top. The electrons extracted from the PEDOT strip chains
during its oxidation must flow to the potentiostat through the
1 cm deep reduced film present between this strip and the metal
contact. This result unambiguously indicates that the electronic
conductivity of 1 cm of the dark blue and deep reduced film at
−1V for long time supports the current flow required to initiate
the PEDOT oxidation at the other film end: the reaction starts
at the place where counterions, required for the reaction charge
balance, are available from the solution. This oxidation drives the
film color change from blue dark (reduced) to blue light (oxidized)
and the oxidation progress drives the advance of the blue dark oxi-
dized front by consumption of the reduced blue light film toward
the polymer/metal contact. The color advance toward the metal

contact underneath the Parafilm® indicates that the ionic con-
ductivity through the oxidized film from the solution toward the
oxidized/reduced front is also high enough to allow the reaction
progress.

By stepping the potential back to −1.00 V the color changes
back to dark blue (reduced) and the new generated reaction
front also advances from the film bottom to the metal contact
(Figure 3B, from the left picture to the right picture). The ionic
conductivity through the reduced film underneath the Parafilm®
toward the solution is also high enough to allow the advance of
the reduced front.

The evolution of the front border is improved by color sub-
traction. Figures 3C,D were obtained by difference between the
first image (showing the film at the beginning of the potential
step), and each the subsequent ones. Figures 3E,F were obtained
by binarization (transparent/black related to a threshold color) of
Figures 3C,D.

The same results above described for the movement of the
oxidized or reduced front is reproduced every time when the elec-
trode is submitted to consecutive square potential steps: both,
oxidation and reduction processes start, every time, at the poly-
mer/electrolyte interface advancing underneath the Parafilm®
toward the polymer/metal interface. This stationary reproducibil-
ity also sustains that the conductivity of the deep reduced film is
always high enough to allow the initiation of the polymer oxida-
tion 10 mm far from the metal/polymer contact. If, as proposed by
the conducting/insulator model the reduced polymer was an insu-
lator, its re-oxidation at 10 mm from the polymer/metal contact
should become prohibited.

Those results unambiguously corroborate that both states (oxi-
dized and reduced) of the PEDOT film present high enough
electronic and ionic conductivities to support film electrochemical
reactions taking place far away from the metal contact. That means
that engineers and designers can use self-supported films of CPs as
electrodes for any electronic or electrochemical application (actu-
ators and artificial muscles; batteries and supercapacitors; smart
windows, glasses, or mirrors; smart membranes with tuned trans-
versal ionic conductivity; and chemical storage for drug delivery or
artificial chemical synapse, ionic sensors, biosensors and proprio-
ceptive sensors, and so on) (Otero et al., 2012;Otero and Martinez,
2013a, 2014b).

The origin of the conducting/insulator transition model dur-
ing the electrochemical reduction of CPs apparently comes from
the theoretical calculations of the insulating nature of an isolated,
ideal, and neutral (without any charge) chain of any CP. The rel-
atively high electronic and ionic conductivity of deep reduced
films here deduced or the contradictory results presented at the
introduction: high spin states and charged states (EPR and Raman
results), high concentration of counterions in deep reduced films
(XPS), film reduction reaction going on up to very high cathodic
potentials or different devices, as artificial muscles, only con-
stituted by polymers giving stationary voltammetric responses
(reduction and re-oxidation) at very low potential sweeps (to get a
deep reduced state) up to −3.5 V,does not contradict the calculated
insulating nature of neutral individual chains. According with the
ESCR model (Otero et al., 1995, 1996, 1997), CPs relax, swell,
shrink, and compact under oxidation/reduction control. Those
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FIGURE 3 | Advance of the electrochromic front border through
PEDOT–PSS films casted on glass in 0.2 M LiClO4 aqueous
solution. (A) Oxidation process at 0.20V after 0, 2, 6, and 9 s.
(B) Reduction process at −1.00V after 0, 2, 6, and 10 s. (C) Image
differences with that at time 0 s (using the image treatment program

“ImageJ”) for the oxidation process (A,D) image differences for the
reduction process (B,E) binarized images from (C,F) binarized images
from (D,G) schematic representation of the electrochromic oxidation:
the blue light color advances from the bottom by consuming the blue
dark color.

structural changes are corroborated by determination of dimen-
sional changes during oxidation/reduction (Otero and Martinez,
2014a), by its application to develop artificial muscles (Otero et al.,
1992) or smart membranes, which transversal ionic flow can be
tuned by the oxidation state (swollen or shrunk) of the film and
by the SCK model (Otero and Martinez, 2013b). In films of CPs
the oxidized material (polymer, balancing counterions, and sol-
vent) presents a swollen structure. During reduction the materials,
exchanging anions or cations, trap up to 30% of the counteri-
ons (and the balancing positive charges on the chains) inside the
film (Otero et al., 2014). The reduction reaction rate becomes
slower (Otero and Martinez, 2013b) going on up to very cathodic
potential limits. Getting a full-reduced film (without any coun-
terion inside) becomes a very difficult (for usual experimental

times) task for films thicker than 0.5 µm. So, any reduced mate-
rial keeps counterions and balancing polarons presenting a high
electronic conductivity, as underlined in the literature. Getting
lower electronic conductivities than 10−4 S cm−1 requires very
long reduction times (days or weeks), at high cathodic overpoten-
tials (more cathodic that −1V) and quite thin (<0.1 µm) films.
According with the Ohm’s law, higher conductivities than 10−4 S
cm−1 can support several milliampere per square centimeter of
current flow and fast electrochemical reactions, as those observed
in Figures 2 and 3.

The relatively high electronic conductivity of deep reduced
films, and results from Figure 3, also give some light on other
controversial point. Where the oxidation of a deep reduced film of
a CP coating a metal starts? The chronoamperometric responses
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FIGURE 4 | Scheme of the oxidation according to the ESCR model: the
oxidation of conformational packed and reduced film of any
conducting polymer starts by nucleation–relaxation at the
polymer/solution interface.

during re-oxidation present a large maximum (Otero and Boyano,
2003; Otero and Martinez, 2013b) indicating that the re-oxidation
begins by nucleation of the oxidized material. Supporters of
the conducting/insulator transition model advocate a nucleation
starting at the polymer/metal interface of the porous polymer film.
Thus extracted electrons flow to the metal from those insulating
polymer chains touching it: by oxidation those chains become
conducting, originating a reaction front that advances from the
polymer/metal interface toward the polymer/electrolyte interface.
Results presented in this paper unambiguously demonstrate that
the oxidation of deep reduced films in contact with a metal begins
at the polymer/electrolyte interface. We can conclude that the oxi-
dation of reduced and compacted films is initiated by nucleation–
relaxation (Figure 4) at the polymer/solution interface, as pro-
posed by the ESCR model (Grande and Otero, 1998; Otero and
Boyano, 2003; Otero and Padilla, 2004), advances toward the poly-
mer/metal interface originating expanding cylindrical columns of
oxidized polymer. From those expanding columns a good theoret-
ical modelization of the electrochemical responses is attained: the
ESCR model.

CONCLUSION
Deep reduced films of PEDOT–PSS protected from the direct elec-
trolyte contact present an electronic conductivity high enough
to support the initiation of electrochromic changes, driven by
oxidation/reduction reactions, at the polymer/electrolyte contact
located 1 cm apart from the metal/film electrical contact. The
electrochromic front advances, consuming the deep reduced film,
from the film bottom to the polymer/metal contact at the elec-
trode top. Those results support one of the hypothesis from the
ESCR model: the oxidation of deep reduced films of CPs start at
the polymer/electrolyte interface; in opposition to the conduct-
ing/insulator transition model stating that this oxidation begins
at the polymer/metal interface of the porous (ionic conductor)
and electronic insulator film, advancing from there toward the
polymer/electrolyte interface.

An important technological consequence merges from the rel-
atively high electronic and ionic conductivity of deep reduced

films: they can be used as self-supported electrodes or as electronic
conductors by engineers and designers to develop electronic or
biomimetic electrochemical devices as artificial muscles and actu-
ators; smart membranes tuning the transversal ionic flow by the
membrane oxidation-swollen or reduced-packed state; smart drug
(pharmaceutical, fertilizer, and neurotransmitter) deliverer; arti-
ficial chemical synapse; batteries and supercapacitors; smart win-
dows, mirrors and glasses; sensors biosensors and proprioceptive
sensors and devices; and so on.
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