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Editorial on the Research Topic

Novel applications of Bayesian and other models in

translational neuroscience

The task of both the brain and the neuroscientist is to reason about large numbers of

variables that are both mutually interdependent and uncertain (i.e., probabilistic). This

partly explains why statistical models - and Bayesian models in particular – have been

increasingly prominent in both theoretical accounts of brain function and methodologies

for analyzing neural data. Bayes’ theorem specifies the optimal way to combine prior

beliefs with data in probabilistic inference,1 offering a powerful tool for reasoning under

uncertainty (van Amersfoort et al., 2020). Within the framework of Bayesian networks,

the values (or rather probability distributions) of multiple variables interrelated through

a network of conditional dependencies can be calculated from observational data by

successive applications of Bayes’ theorem. Bayesian networks can be used as statistical

models for a large and general class of dynamical phenomena, and can be constructed

using expert knowledge or learned from data through the process of structure learning.

Recent theories of brain function suggest that perception, cognition, and action can all be

fruitfully understood as forms of Bayesian inference, in which an internal generative model

of the world is inverted to fit sensory data. This internal generativemodel can be formalized

as a Bayesian network that is dynamic and hierarchically deep – i.e., composed of multiple

levels of (increasingly abstract) explanatory variables evolving in time. Inversion of this

network is believed to be implemented via predictive processing, in which brain activity

principally encodes the difference between model-generated predictions and sensory data,

i.e., prediction errors. In perception, the model is changed to match the sensory data, while

in action, the sensory data is changed tomatch themodel through so-called active inference.

1 Bayes’ theorem states that the conditional probability of some occurrence A given observed data B,

P(A‖B), is proportional to the product of the prior probability of the event, P(A), and the likelihood of the

observation given the event, P(B‖A). We can think of the conditional distribution P(B‖A) as a generative

model of the data, which we invert to calculate the posterior probability P(A‖B).
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In perhaps the farthest-reaching formulation of these hypotheses,

the free-energy principle, the brain accomplishes Bayesian

inference by performing a gradient descent on free energy. This

ensures that the accuracy of the internal model (and its predictions)

increases, while its complexity decreases (Bruineberg et al., 2016).

However, while Bayesian, predictive, and statistical models

have been proposed as qualitative and quantitative models

and tools for basic research, the applications of these models

to translational neuroscience have been understudied and

underreported. Exceptions include variational Bayesian mixed-

effects inference, which has been successfully tested for use in

classification studies (Brodersen et al., 2013), and a recently-

published multi-task Bayesian compressive sensing approach to

simultaneously estimate the full posterior of the CSA-ODF and

diffusion-weighted volumes from multi-shell HARDI acquisitions.

This Research Topic collects further research applying Bayesian

and statistical tools, techniques, and theories to the prediction or

anticipation of brain function in humans and animal models under

physiological and pathological conditions.

Many of the studies in this Topic employ Bayesian networks

(BNs) to analyze and make predictions about neurophysiological

data. In Fan et al., structure learning is applied to create a

predictive model for ischemic stroke (IS) by discovering a BN

linking risk factors to IS in patients with dilated cardiomyopathy

(DCM). As Fan et al. point out, a major advantage of BNs

is their utility in classifying imbalanced datasets, a common

challenge in real-world data. In Carvalho do Nascimento et al.,

techniques from structure learning for BNs are applied to the

discovery of functional connectivity networks in the domain of

interpersonal neural synchronization (INS). The proposed two-step

network estimation method allows inference of the time-varying

probabilistic dependencies between brain regions both within and

between subjects. Carvalho do Nascimento et al. demonstrate the

utility of their method in the analysis of fNIRS hyperscanning data

recorded simultaneously from violinists playing a duet, confirming

that one player was leading the other. In Chen, techniques from

structure learning are applied to create a data fusion method, called

Bayesian Multisource Data Integration, to model the interactions

among data sources (i.e., imaging modalities) and behavioral

variables. The proposed method constructs a Bayesian network

model associating features in each data source with behavioral

outcome variables. The generated Bayesian network is transparent

and easy to understand. It can be used to understand how

behavioral changes depend on features in each data source, and

to identify which features synergistically contribute to behavioral

outcomes, which are redundant, and which are uninformative.

Thome et al. take the use of Bayesian statistical models

for data analysis a step further. They propose a novel use for

interpretable latent variable models. These models probabilistically

link behavioral observations to an underlying latent process,

and have increasingly been used to draw inferences about

cognition from observed behavior. The latent process usually

connects experimental variables to cognitive computation.

While such models provide important insights into the latent

processes generating behavior, one important aspect has often

been overlooked. They may also be used to generate precise

and falsifiable behavioral predictions as a function of the

modeled experimental variables. In doing so, they pinpoint how

experimental conditions must be designed to elicit desired behavior

and generate adaptive experiments. These ideas are exemplified on

the process of delay discounting (DD). After inferring DD models

from behavior on a typical DD task, the models are leveraged

to generate a second adaptive DD task, which elicits 9 graded

behavioral discounting probabilities across participants. Models

are then validated and contrasted to competing models in the field

by assessing the out-of-sample prediction error. They also report

evidence for inter-individual differences with respect to the most

suitable models underlying behavior. Finally, they outline how to

adapt the proposed method to the investigation of other cognitive

processes including reinforcement learning.

Priorelli and Stoianov further the application of Bayesian

networkmodels of the brain, presenting a normative computational

theory of how the brain may support visually-guided goal-directed

actions in dynamically changing environments. This theory extends

active inference, a theory of cortical processing according to

which the brain maintains beliefs over the environmental state,

and motor control signals try to fulfill the corresponding sensory

predictions. The authors propose that the neural circuitry in

the Posterior Parietal Cortex (PPC) compute flexible intentions

(Duarte-Carvajalino et al., 2014)—or motor plans from a belief

over targets—to dynamically generate goal-directed actions, and

develop a computational formalization of this process. A proof-of-

concept agent embodying visual and proprioceptive sensors and an

actuated upper limb was tested on target-reaching tasks. The agent

behaved correctly under various conditions, including static and

dynamic targets, different sensory feedbacks, sensory precisions,

intention gains, and movement policies; limit conditions were

individuated, too. Active inference driven by dynamic and flexible

intentions can thus support goal-directed behavior in constantly

changing environments, and the PPC might putatively host its

core intention mechanism. More broadly, the study provides

a normative computational basis for research on goal-directed

behavior in end-to-end settings and further advances mechanistic

theories of active biological systems.

Mezzetti et al. apply Bayesian models to the analysis of

psychometric data, extending their use of generalized linear mixed

models (GLMM) and two-level methods in a Bayesian framework.

This allows them to apply a priori knowledge from the literature

and from previous experiments to estimation of psychometric

functions, reducing the uncertainty of the parameters through

the combination of prior knowledge and the experimental data.

Evaluating uncertainties between and within participants through

posterior distributions, Mezzetti et al. use a special type of Bayesian

model, the power prior distribution, to modulate the weight of

the prior, constructed from a first set of data, and use it to fit a

second one. Their models estimated the probability distributions of

the parameters of interest conveying information about the effects

of the experimental variables and their uncertainty, as well as the

reliability of individual participants.

The work collected in this Topic also includes translational

applications of more general statistical models and approaches.

Floyrac et al. used auditory evoked potentials recorded non-

invasively during an oddball paradigm in a cohort of 29

post-cardiac arrest anoxic comatose patients to predict return to
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consciousness and good neurological outcomes. By extracting

features from the standard and the deviant auditory stimulations

independently and using machine learning to cluster patients

within the two-dimensional space determined by these features,

they were able to predict patients’ neurological outcomes with a

sensitivity of 0.83 and an accuracy of 0.90, even when using data

only from one electrode. Ren et al. constructed a diagnostic model

for cognitive impairment, a common disorder in patients with

epilepsy, using the clinical and the phase locking value functional

connectivity features of the electroencephalogram (EEG).

Yoshiiwa et al., motivated by electroencephalographic studies of

working memory demonstrating cortical activity and oscillatory

representations without clarifying how the stored information

is retained in the brain, measured scalp electroencephalography

data while participants performed a modified n-back working

memory task. They then calculated the current intensities from

the estimated cortical currents by introducing a statistical map

generated using Neurosynth as prior information. Their results

indicate that the representation of executive control over memory

retention may be mediated through both persistent neural activity

and oscillatory representations in the beta and gamma bands

over multiple cortical regions that contribute to visual working

memory functions. Yazawa et al. created an arterially perfused in

situ brainstem and spinal cord preparation that allowed them to

investigate functional interactions in the CNS from the neonatal to

adult period, bypassing the technical limitations on the spatial and

temporal scope of in vitro neonatal rodent spinal cord preparations

imposed by low oxygen tension in deep tissues. Using their novel

preparation, they explored whether the absence of interferon

regulatory factor 8 (IRF8) – which affects behavior and modulates

Alzheimer’s disease progression in a mouse model – influences

the development of lumbar central pattern generator (CPG)

networks in mice of all ages. Finally, Mount et al. explored how

autism spectrum disorder (ASD) risk genes influence neural circuit

computation during behavior by performing large-scale cellular

calcium imaging from hundreds of individual CA1 neurons

simultaneously in transgenic mice with total knockout of the X-

linked ASD-risk gene NEXMIF (neurite extension and migration

factor). AsNEXMIF knockout inmice led to profound learning and

memory deficits, they examined the CA1 network during voluntary

locomotion, a fundamental component of spatial memory. They

found that in wild-type mice the CA1 network desynchronizes

during locomotion, consistent with increased network information

coding during active behavior. Upon NEXMIF knockout, the

CA1 network is over-synchronized regardless of behavioral state

and fails to desynchronize during locomotion, highlighting how

perturbations in ASD-implicated genes create abnormal network

synchronization that could contribute to ASD-related behaviors.

In conclusion, it is our hope that the work collected in

this Topic will serve as a basis for future studies exploring

the potential application of Bayesian and other models in

Translational Neuroscience.
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Bayesian multisource data
integration for explainable
brain-behavior analysis

Rong Chen*

Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of

Medicine, Baltimore, MD, United States

Di�erent data sources can provide complementary information. Moving from

a simple approach based on using one data source at a time to a systems

approach that integrates multiple data sources provides an opportunity to

understand complex brain disorders or cognitive processes. We propose a

data fusion method, called Bayesian Multisource Data Integration, to model

the interactions among data sources and behavioral variables. The proposed

method generates representations from data sources and uses Bayesian

network modeling to associate representations with behavioral variables. The

generated Bayesian network is transparent and easy to understand. Bayesian

inference is used to understand how the perturbation of representation is

related to behavioral changes. The proposed method was assessed on the

simulated data and data from the Adolescent Brain Cognitive Development

study. For the Adolescent Brain Cognitive Development study, we found

di�usion tensor imaging and resting-state functional magnetic resonance

imaging were synergistic in understanding the fluid intelligence composite and

the total score composite in healthy youth (9–11 years of age).
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1. Introduction

A central topic in neuroscience is understanding the association between the brain

and behavior in normal and diseased states. Neuroimaging provides a non-invasive tool

to study brain structure and function in vivo and is a powerful tool for brain-behavior

analysis. A brain characterization framework is referred to as a data source (“source”

here means the source or cause of a particular data feature). A data source can be an

imaging method such as resting-state functional magnetic resonance imaging (fMRI);

or it can be a kind of feature from an imaging method, for example, structural MRI

can generate four data sources: volume, thickness, surface, and curvature. Most existing

neuroimaging studies focus on a single data source. Many brain disorders are complex

diseases. It’s highly unlikely that one source will be able to fully capture the brain

disorder. Different sources can provide complementary information. Moving from a

simple approach based on using one source at a time to a systems approach that

integrates multiple sources provides an opportunity to identify composite neuroimaging

biomarkers for brain disorders.
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Explainable AI (XAI) aims to develop AI algorithms

in which the processes of action (e.g., predictions or

recommendations) can be easily understood by users.

Explainable models enable users to understand and

appropriately trust the developed models. Interpreting the

decision-making process of models in the biomedical domain is

especially important.

We propose a method, called Bayesian Multisource Data

Integration (BAMDI), to model the interactions among

data sources and behavioral variables. BAMDI generates

a representation from a data source and associates the

representation with behavioral variables. The generated

representation is referred to as embedding. The embedding is

a set of vectors. Each vector is referred to as a factor. BAMDI

has the following features. First, it centers on brain-behavior

analysis. Many data integration methods focus on generating

shared representation and cannot answer the question of how

cross-source interactions are related to the behavior (Geenjaar

et al., 2021; Zhang et al., 2022). In contrast, BAMDI represents

interactions among different sources and behavioral variables

as a Bayesian network. Brain-behavior analysis is the core of

BAMDI. Second, BAMDI is an XAI method. Unlike some black-

box methods, the Bayesian network generated by BAMDI is

transparent and easy to understand. We use Bayesian inference

to understand how the perturbation of a factor is related to the

behavioral change.

Various Bayesian fusion methods for neuroimaging data

have been proposed. Wei et al. developed a Bayesian fusion

method to provide informative (empirical) neuronal priors—

derived from dynamic causal modeling of electroencephalogram

data—for subsequent dynamic causal modeling of fMRI

data (Wei et al., 2020). Kang et al. proposed a Bayesian

hierarchical spatiotemporal model to combine diffusion tensor

imaging (DTI) and fMRI data (Kang et al., 2017). This

method uses DTI-based structural connectivity to construct

an informative prior for functional connectivity estimation.

A parametric Bayesian multi-task learning based approach

is developed to fuse univariate trajectories of neuroimaging

features across subjects (Aksman et al., 2019). This Bayesian

method fuses neuroimaging data across subjects, instead of

modalities. Different from the above methods, the proposed

method centers on modeling the interactions among data

sources and behavioral variables with Bayesian network

modeling, an XAI method.

In what follows, we first describe the overall design of

BAMDI and its constituent modules. Following this, we applied

BAMDI to simulated data to establish face validity. In other

words, to ensure that the proposed scheme can recover the

known brain-behaviormappings used to generate synthetic data.

After this, we applied BAMDI to empirical data—from a publicly

available databank—to characterize the relationship between

MRI data from children, and their behavioral phenotypes as

assessed with a battery of standard neurocognitive instruments.

2. Methods

2.1. Background

One of the foundations of BAMDI is Bayesian network

modeling (Pearl, 1988; Koller and Friedman, 2009). A Bayesian

network B = {G,2} is a probabilistic graphical model, where

G = {V , E} is a directed acyclic graph. A nodeX inV is a random

variable in the problem domain. E is the edge set. A parent node

of X is a node from which there exists a directed edge to X. The

parent set of X is denoted by pa(X). The local distribution is

the conditional distribution P(X|pa(X)). The full specification of

local distribution is the parameterization of the network. 2 is

the set of parameters. The joint distribution can be represented

compactly: P(V) =
∏

i P(Xi|pa(Xi)). In BAMDI, we adopt

the discrete Bayesian network representation and all nodes are

discrete variables because the discrete Bayesian network can

represent any kind of distribution among discrete variables and

has high representation power. In a discrete Bayesian network,

P(Xi|pa(Xi)) is a conditional probability table. For node Xi, the

conditional probability θijk = P[Xi = k|pa(Xi) = j] is the

probability that node Xi assumes state k when the parent set of

Xi assumes state j. If Xi has no parents, then θijk is the marginal

distribution of Xi. 2 = {θijk} is the parameters of discrete

Bayesian network.

Bayesian network structure learning aims to learn G.

Bayesian network parameter learning is the process to estimate

2. Score-based structure learning methods use a score that

reflects how well the data support the structure and search

for a structure that can optimize the fitness score. For discrete

Bayesian networks, a widely used score is the Bayesian Dirichlet

equivalent uniform (BDeu) score (Heckerman et al., 1995).

Bayesian network inference performs queries about

probability distribution once some evidence about variables is

available. The task of inference is to compute P(Y|X = x), the

posterior distribution of the query variables Y, conditioned on

X = x. In this paper, we use the algorithm in Lauritzen and

Spiegelhalter (1988) to solve the inference problem.

2.2. Bayesian multisource data
integration

The basic idea of BAMDI is as follows. In our data

generation model, we imagine that there exist various brain

states that generate a variety of neuroimaging data features.

For example, being in one state or another state determines

the pattern of functional connectivity in regional resting-state

fMRI time courses. To model brain-behavior relationships,

we assume that brain states (i.e., “factors”) cause a particular

behavioral disposition that is reflected in behavioral measures

or scores. That is, the brain states are the parent nodes of

behavioral states which can be measured by behavioral variables.
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FIGURE 1

The BAMDI algorithm.

There can be many different kinds of brain states that may,

or may not, interact in causing a particular behavioral state.

Similarly, a particular behavioral state can be caused by one or

more brain states. The problem then is to identify the brain-

behavior associations in terms of the structure of a Bayesian

network. This is accomplished using Bayesian network structure

learning, following the identification of brain states using a

clustering algorithm.

BAMDI learns a Bayesian network B from the observed

data D. It includes these main modules: embedding learning,

Bayesian network learning, and inference. The algorithm is

depicted in Figure 1. For source j, the feature set Fj is a

vector with dimension |Fj|, where |Fj| is the cardinality of

Fj. For a study with I subjects, the observed data Sj is an

I × |Fj| data matrix. For a study with J data sources and K

behavioral variables, the whole dataset includes {F1, . . . , FJ} and

the associated behavioral variables B = {B1, . . . ,BK}.

The first module is embedding learning. For each data

source, we use graph-based clustering to generate an embedding.

For Sj, we group subjects into clusters. We normalize variables

in Fj to zero-mean and unit variance. For subjects i1 and

i2, we calculate the Euclidean distance di1,i2 and obtain the

similarity score as 1/(1 + di1,i2 ). For a study with I subjects,

this step generates an I × I similarity matrix that can be

treated as a weighted graph. Then we use the multi-level

modularity optimization algorithm (Blondel et al., 2008) to

detect community structures in the weighted graph. The number

of communities is determined by the algorithm. If subjects i1

and i2 belong to the same community, they are in the same

cluster. Clustering generates a partition of the subject space. We

convert this categorical variable into the embedding with one-

hot encoding. Each cluster is associated with a binary variable

that represents whether a subject belongs to the cluster (0—no,

1—yes). We use C
j
l
to denote the lth factor of the embedding

for source j. Cj = {C
j
1, . . . ,C

j
L}. For example, if the clustering

algorithm generates 5 clusters, then the embedding contains 5

binary factors.

The second module is Bayesian network learning. We

construct a Bayesian network B to describe interactions among

{C1, . . . ,CJ ,B}. We use Bayesian network classifier with inverse-

tree structure (BNCIT) to solve this problem (Chen and

Herskovits, 2005a,b). BNCIT is an efficient Bayesian network

learning algorithm. In BNCIT, the parent set of a node in

B is a subset of {C1, . . . ,CJ}. There are no edges from B to

{C1, . . . ,CJ}. We adopt this kind of Bayesian network structure

because we focus on studying how the embedding will affect

behavioral variables. For a node X in B, we search for a subset

Cs of {C1, . . . ,CJ} which can maximize the BDeu score for

structure Cs → X. That is, the parent set of X is determined

by C∗ = argmaxCs BDeu(Cs → X). This search process runs in

a node-by-node fashion. After structure learning, the parameters

are estimated by the maximum a posteriori method.

The inference module centers on explaining the generated

model. The Bayesian network structure reveals important

brain-behavior patterns. If the parent set of a behavioral

variable includes factors from different data sources, then these

sources are synergistic regarding this behavioral variable. If two

behavioral variables have shared parent nodes, then these two

behavioral variables have a shared brain mechanism. If the

factors from a specific data source j are not associated with any

behavioral variables, then source j provides little information

about behaviors or source j is redundant.

A factor is a binary variable. We use two scores, divergence

and mode change, to quantify how the change of factor C’s state

influences the marginal distribution of behavioral variable B by

comparing P(B|C = 0) and P(B|C = 1). Both P(B|C = 0)

and P(B|C = 1) are discrete probability distributions.

We calculate the Jensen–Shannon divergence which is a

symmetrized and smoothed version of the Kullback–Leibler

divergence (Lin, 1991). For distributions p and q, the Kullback–

Leibler divergence is defined as DKL(p‖q) =
∑

p log
p
q .

The Jensen–Shannon divergence is defined as DKL(p‖m) +

DKL(q‖m), wherem = (p+q)/2 andDKL(p‖m) is the Kullback–

Leibler divergence between p and m. The Jensen–Shannon

divergence is between 0 (identical) and 1 (maximally different)

when the base 2 logarithm is used. For mode change, if the mode

of P(B|C = 0) is different from that of P(B|C = 1), the value of

this score is 1; otherwise, it is 0.

3. Results

3.1. Simulated data

We generated simulated data with three data sources (M1,

M2, and M3) and four behavioral variables (BV1, BV2, BV3,

BV4). Sources M1, M2, and M3 included 10, 10, and 30

variables, respectively. Source M1 included 2 clusters: samples

1–50 and 151–200 were sampled from a multivariate Gaussian

distribution with mean = {3, . . . , 3} and samples 51–150 were
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FIGURE 2

The Bayesian networks for the simulated data. (A) Is the ground-truth Bayesian network model to generate the simulated data and (B) is the

Bayesian network generated by BAMDI. In the ground-truth model, BV1 is associated with M1, BV2 is associated with M2, and BV3 is associated

with both M1 and M2. In the model generated by BAMDI, M1.C1 is factor 1 from source M1. M2.C1 is factor 1 from source M2. Other factors

were not associated with any behavioral variables and were not shown in the figure. The model generated by BAMDI matches the ground-truth

model perfectly.

sampled from a multivariate Gaussian distribution with mean

= {8, . . . , 8}. Source M2 included 2 clusters: samples 1–150

were sampled from a multivariate Gaussian distribution with

mean = {15, . . . , 15} and samples 151–200 were sampled from

a multivariate Gaussian distribution with mean = {18, . . . , 18}.

For source M3, all samples (1–200) were generated from a

multivariate Gaussian distribution with mean= {2, . . . , 2}.

Let M1 be a categorical variable to represent the cluster

structure of source M1. M1 = 0 for samples 1–50 and 151–

200 and M1 = 1 for samples 51–150. M2 = 0 for samples

1–150 and M2 = 1 for samples 151–200. BV1 was a noisy

version of M1 with flipping noise 0.1. BV2 was a noisy version

of M2 with flipping noise 0.1. BV3 was a noisy version of

[M1 OR M2]. BV4 was randomly sampled from {0, 1} and was

not associated with M1 or M2. M3 and BV4 were isolated

variables. M3 was not associated with any behavioral variables

and BV4 was not associated with any sources. We included

them to assess whether BAMDI can handle isolated sources and

behavioral variables.

BAMDI detected two, two, and four clusters for sources

M1, M2, and M3, respectively. There were eight factors in the

generated embedding (two of them from M1, two of them from

M2, and four of them from M3). Figure 2 is the generated

Bayesian network. In this figure, M1.C1 is factor 1 from source

M1. M2.C1 is factor 1 from source M2. Among these factors,

two of them (M1.C1 and M2.C1) were associated with some

behavioral variables. Other factors were not associated with any

behavioral variables and were not shown in the figure. BV4

was not associated with any factors and was not shown in the

figure. There are important brain-behavior patterns that can

be elucidated from the Bayesian network. First, the Bayesian

network revealed that BV1 was associated with source M1, BV2

was associated with source M2, and BV3 was associated with

sources M1 and M2. This is expected. Second, BV1 and BV3 had

a shared brainmechanism becauseM1.C1 was a common parent

node. BV2 and BV3 had a shared brain mechanism because

M2.C1 was a common parent node. Third, sources M1 and M2

were synergistic regarding BV3 becauseM1.C1 andM2.C1 were

jointly predictive of BV3.

3.2. The Adolescent Brain Cognitive
Development study

In this experiment, participant data were obtained from

the baseline Adolescent Brain Cognitive Development (ABCD)

study (release 3.0). 11875 youth (baseline 9–11 years of age)

were recruited. Written informed consents were obtained from

all parents. All children provided assent to a research protocol

approved by the institutional review board at each study site.

Details of ABCD MRI acquisition and sequence parameters are

in Casey et al. (2018).

Our analysis included these MRI modalities: DTI and

resting-state fMRI (rs-fMRI). For DTI, the ABCD database

provides a variable for imaging quality. Low quality DTI data

were excluded from our analysis. For DTI, standard measures

related to white matter microstructural tissue properties were

calculated. We used Fractional Anisotropy (FA) which is a

measure of the degree of anisotropic water diffusion within

a region. FA was averaged across voxels within the Destrieux

region-of-interest (ROI) of sub-adjacent white matter. This

process generated 148 features (2 hemispheres × 74 regions).

The average measures for white matter voxels in the left

hemisphere, right hemisphere, and whole brain were also

calculated to represent global effects. There were 151 DTI-

derived features. To remove batch effects, we used the ComBat

algorithm (Fortin et al., 2018) to harmonize these DTI features.

Head motion is a major problem in rs-fMRI and leads to

spurious findings. For a 4D rs-fMRI volume, the ABCD database

provides information about the total number of frames and the

number of frames with low motion. We generated a quality

score for motion that was defined as the number of frames with

low motion divided by the total number of frames. The quality

score was used as an indicator of the overall motion level. We

selected subjects with at least half of the frames without excessive

head motion (the quality score of motion > 0.5). We excluded

subjects with incomplete data (those with missing values).

For rs-fMRI, the imaging-derived features were correlation

between distributed networks of brain regions (Marek et al.,

2019). Thirteen brain networks were detected, including
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auditory network (“ad”), cingulo-opercular network (“cgc”),

cingulo-parietal network (“ca”), default network (“dt”), dorsal

attention network (“dla”), frontoparietal network (“fo”), “none”

network (“n”), retrosplenial temporal network (“rspltp”),

sensorimotor hand network (“smh”), sensorimotor mouth

network (“smm”), salience network (“sa”), ventral attention

network (“vta”), and visual network (“vs”) (Gordon et al., 2017).

Notice that these brain networks comprised ROIs with positive

correlations, which means that the average signal reflects the

activity of the network. Each network was treated as a node.

Functional connectivity between node A and node B was

measured by calculating the correlation coefficient between

the average signal of A and that of B. There were 78 rs-

fMRI-derived features. Each feature represented functional

connectivity between a brain network pair.

In the ABCD study, the NIH Toolbox cognition measures

were used to assess child cognition (Luciana et al., 2018).

The seven cognitive tasks in the NIH Toolbox included

the dimensional change card sort task to assess cognitive

flexibility (“cardsort”), list sorting working memory task to

assess working memory (“list”), picture sequence memory task

to assess episodic memory (“picture”), pattern comparison

processing speed task to assess processing speed (“pattern”),

picture vocabulary task to measure vocabulary comprehension

(“picvocab”), oral reading recognition task to measure

language/reading decoding (“reading”), and the flanker task to

assess attention and inhibition (“flanker”). The neurocognitive

battery was administrated using an iPad with one-on-

one monitoring by a research assistant. The total time for

administration was about 35 min. Based on the seven task

scores, three composite scores were generated: a total score

composite (“totalcomp”), a crystallized intelligence composite

(“cryst”), and a fluid intelligence composite (“fluidcomp”).

The age-corrected total score composite has a mean of 100

FIGURE 3

The Bayesian network for the ABCD study. Source M1 is DTI and source M2 is rs-fMRI. M1.C1 is factor 1 from DTI. M2.C1 is factor 1 from

rs-fMRI. Other factors were not associated with any behavioral variables and were not shown in the figure.
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FIGURE 4

The divergence and mode change score for the ABCD study.
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and a standard deviation of 15. For measures of cognition,

higher scores represented better cognitive ability. The age-

corrected scores were used as the behavioral variables in this

study. These behavioral variables were binarized based on the

sample median.

For DTI (source 1), BAMDI generated two factors. For

rs-fMRI (source 2), BAMDI generated three factors. Among

these five factors, two of them were associated with behavioral

variables (Figure 3). DTI and rs-fMRI were synergistic regarding

the fluid intelligence composite and the total score composite.

The list sorting, flanker, picture sequence memory, and

pattern comparison processing speed tasks were associated with

DTI. The dimensional change card sort, picture vocabulary,

oral reading recognition tasks, and crystallized intelligence

composite were associated with rs-fMRI.

The divergence and mode change score are depicted

in Figure 4. M1.C1 (factor 1 from DTI) had high

divergence and high mode change score for the fluid

intelligence composite and total score composite. That

is, the change of M1.C1 changed the posterior marginal

distribution of the fluid intelligence composite and total

score composite. M2.C1 (factor 1 from rs-fMRI) had

high divergence and high mode change score for the

fluid intelligence composite, total score composite, and

crystallized intelligence composite. That is, the change of

M2.C1 changed the posterior marginal distribution of the fluid

intelligence composite, total score composite, and crystallized

intelligence composite.

To annotate important factors, we detected imagingmarkers

to characterize factors. For a factor Cj from source j, we

performed analysis of variance (ANOVA) with an imaging

feature Fj as the dependent variable and Cj as the independent

variable. Then we ranked imaging features based on the

effect size and selected the top 10% features as the imaging

markers. The imaging markers are shown in Figure 5. For

DTI, the factor M1.C1 represented a subtype that had lower

FA in the whole brain, right hemisphere, left superior frontal

gyrus, left supramarginal gyrus, left superior parietal lobule,

left precuneus, left lateral aspect of the superior temporal

gyrus, right superior frontal gyrus, right angular gyrus, right

supramarginal gyrus, right lateral aspect of the superior

temporal gyrus, right central sulcus, right intraparietal sulcus

and transverse parietal sulci, and right superior temporal sulcus.

For rs-fMRI, the factor M2.C1 represented a subtype that had

higher functional connectivity between the default network

and auditory network, frontoparietal network and auditory

network, “none” network and auditory network, sensorimotor

hand network and frontoparietal network, and lower functional

connectivity between visual network and auditory network,

visual network and cingulo-opercular network, visual network

and sensorimotor hand network, and visual network and ventral

attention network.

4. Discussion

Data fusion is important for the understanding of inter-

dependencies and relations across heterogeneous types of

data. We propose a data fusion method called BAMDI to

model the interactions among data sources and behavioral

variables. The generated Bayesian network describes brain-

behavior relationships. It is explainable: (1) the structure of

Bayesian network reveals important brain-behavior patterns

such as source synergy; (2) the divergence and mode change

score assess how the change of factor affects the marginal

distribution of behavioral variables.

We assessed the performance of BAMDI in two studies:

simulated data and the ABCD study. For the simulated data,

BAMDI correctly detected the brain-behavior patterns including

BV3 is a noisy version of [M1 OR M2]. For the ABCD

study, the two data sources, DTI and rs-fMRI, were synergistic

regarding the fluid intelligence composite and the total score

composite. The change of M1.C1, a DTI-derived factor that

was characterized by lower FA in many regions, changed

the posterior marginal distribution of the fluid intelligence

composite and total score composite. The change of M2.C1,

a rs-fMRI derived factor characterized by hyper-connectivity

related to the auditory network and hypo-connectivity related to

the visual network, changed the posterior marginal distribution

of the fluid intelligence composite, total score composite, and

crystallized intelligence composite.

Data integration methods can be classified into three

different categories: early integration, intermediate integration,

and late integration. Early integration focuses on combining

data before applying a learning algorithm. An example of

early integration is learning a common latent representation.

Intermediate integration produces a joint model learned from

different sources simultaneously. Late integration methods

model different sources separately, then combines the outputs.

BAMDI is a late integration method. BAMDI is also related to

collective learning. Collective learning (Chen et al., 2004) is a

machine learning framework to learn amodel frommultiple and

diverse datasets by stage-wise learning (local learning and cross

learning). Under this framework, the embedding learning step

in BAMDI is local learning and the Bayesian network learning

step in BAMDI is cross learning.

One of the limitations of BAMDI is that it requires

discrete behavioral variables. Some behavioral variables such

as disease diagnosis (normal controls or Alzheimer’s disease)

are naturally discrete; while others may be continuous. For

continuous behavioral variables, we need to discretize them and

this discretization process may cause a loss of information. We

could extend BAMDI to handle continuous behavioral variables.

In this extension, we adopt the conditional Gaussian Bayesian

network representation and the local distribution P(X|pa(X)) is

a Gaussian mixture. This will be the focus of our future work.
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FIGURE 5

The imaging markers for DTI and rs-fMRI based factors.
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Objective: This study aimed to identify risk factors and create a predictive

model for ischemic stroke (IS) in patients with dilated cardiomyopathy (DCM)

using the Bayesian network (BN) approach.

Materials and methods: We collected clinical data of 634 patients with DCM

treated at three referral management centers in Beijing between 2016 and

2021, including 127 with and 507 without IS. The patients were randomly

divided into training (441 cases) and test (193 cases) sets at a ratio of 7:3.

A BN model was established using the Tabu search algorithm with the

training set data and verified with the test set data. The BN and logistic

regression models were compared using the area under the receiver operating

characteristic curve (AUC).

Results: Multivariate logistic regression analysis showed that hypertension,

hyperlipidemia, atrial fibrillation/flutter, estimated glomerular filtration rate

(eGFR), and intracardiac thrombosis were associated with IS. The BN model

found that hyperlipidemia, atrial fibrillation (AF) or atrial flutter, eGFR, and

intracardiac thrombosis were closely associated with IS. Compared to the

logistic regression model, the BN model for IS performed better or equally

well in the training and test sets, with respective accuracies of 83.7 and

85.5%, AUC of 0.763 [95% confidence interval (CI), 0.708–0.818] and 0.822

(95% CI, 0.748–0.896), sensitivities of 20.2 and 44.2%, and specificities of

98.3 and 97.3%.

Conclusion: Hypertension, hyperlipidemia, AF or atrial flutter, low eGFR, and

intracardiac thrombosis were good predictors of IS in patients with DCM.

The BN model was superior to the traditional logistic regression model in

Frontiers in Neuroscience 01 frontiersin.org

18

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1043922
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1043922&domain=pdf&date_stamp=2022-11-09
https://doi.org/10.3389/fnins.2022.1043922
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1043922/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1043922 November 3, 2022 Time: 15:55 # 2

Fan et al. 10.3389/fnins.2022.1043922

predicting IS in patients with DCM and is, therefore, more suitable for early

IS detection and diagnosis, and could help prevent the occurrence and

recurrence of IS in this patient cohort.

KEYWORDS

Bayesian network, stroke, dilated cardiomyopathy, prediction model, risk factor

Introduction

Dilated cardiomyopathy (DCM) is a myocardial disease
characterized by left ventricular (LV) dilation and systolic
dysfunction in the absence of coronary artery disease
or abnormal loading conditions sufficient to produce LV
impairment (Elliott, 2000). DCM most frequently occurs in
younger adults, and its most common clinical manifestations
include congestive heart failure, sudden death, arrhythmias,
and thromboembolic events (Japp et al., 2016). Ischemic
stroke (IS) is a catastrophic thromboembolic complication of
DCM, reported in several case reports and case series (Spengos
and Vemmos, 2010; Jeon et al., 2012; Kawano et al., 2014;
Zhdanova et al., 2016; Li et al., 2017). Thus,early identification
of IS in patients with DCM is important because it can
improve clinical outcomes and reduce medical costs. So far,
many prediction models have been proposed to estimate the
probability of developing stroke under certain conditions
[e.g., nonvalvular atrial fibrillation (AF), transient ischaemic
attack (TIA)], such as the Framingham score (D’Agostino
et al., 2008), ABCD (2) score (Johnston et al., 2007), and
CHA2DS2-VASc score (Lip et al., 2010). Of them, the most
commonly used models is the Framingham Stroke Risk
Profile,which was created using Cox proportional hazards
regression modeling of Framingham Study data to identify
factors that were most predictive of the 10-year probability of
stroke.

In general, traditional logistic regression requires
independent variables that are uncorrelated with each
other, but in practice, the factors affecting the occurrence
of IS are not independent and may interact with each other to
form a complex relationship network. Unlike logistic regression,
Bayesian network (BN) can well reflect the potential relationship
and relationship strength between variables by constructing
directed acyclic graph and conditional probability table (Park
et al., 2018). In addition, increasing evidence has confirmed
successful application of BN in medical diagnosis, expert

Abbreviations: AUC, area under the receiver operating characteristic
curve; BN, Bayesian network; CI, confidence interval; DCM, dilated
cardiomyopathy; eGFR, estimated glomerular filtration rate; IS, ischemic
stroke; LV, left ventricular; LVEF, left ventricular ejection fraction; OR,
odds ratio.

systems, statistical decision making, learning, and prediction
(Agrahari et al., 2018; Zhang et al., 2019). However, an agreed
set of guidelines or reports on developing predictive models
for IS in DCM cohorts are currently unavailable. Hence, there
is a great need for further work toward constructing highly
predictive models for early IS detection and diagnosis. This
study established and compared traditional logistic regression
and BN predictive models for IS occurrence using known risk
factors.

Materials and methods

Patients and data collection

We selected 634 patients with DCM treated at three
referral management centers between January 2016 and August
2021, mainly because Beijing Anzhen Hospital is one of
the largest national centers for cardiovascular disease. The
following inclusion criteria were used: (i) age ≥ 18 years;
(ii) diagnosis of DCM following the European Society of
Cardiology proposal which is based on systolic dysfunction
and LV dilatation confirmed by echocardiography or cardiac
magnetic resonance imaging and after excluding abnormal
loading conditions or coronary artery disease (Pinto et al., 2016).
The exclusion criteria were as follows: (i) patients with ischemic
cardiomyopathy, rheumatic heart disease, arrhythmogenic
cardiomyopathy, congenital heart disease, pulmonary heart
disease, drug-induced cardiomyopathy, hypertensive heart
disease, perinatal cardiomyopathy, valvular heart disease, and
alcoholic cardiomyopathy; (ii) patients with missing clinical
data. IS was diagnosed based on medical history, clinical
examination, and cranial magnetic resonance imaging and
magnetic resonance angiography scan results and confirmed by
two attending neurologists.

Data collected at the first hospital admission, including
demographic information, medical history, comorbidities,
echocardiography, electrocardiogram, and laboratory tests, were
collected from the electronic medical records. For patients with
multiple admissions due to recurrent stroke, the data of the
first admission were used in this study. This study followed the
principles of the Declaration of Helsinki.
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As Harrell (2015) stated, when developing a prediction
model for dichotomous outcomes, the sample size should be
at least 10 times the independent variable. In our research,
9 independent variables were finally included in multivariate
analysis, and then the number of samples in each group should
be at least 90. In fact, the number of cases of DCM with IS or
without IS was 127 and 507, respectively, thus the sample size
was enough to develop the prediction model.

Quality control

The data extraction process from the medical records was
standardized, and the investigators familiarized themselves with
it before starting data retrieval for this study. Data entry
followed a double-entry method. If discrepancies were found
during the review process, the medical records were consulted,
and the data were corrected.

Data processing for predictive variables

Before building the predictive model, the collected data
are preprocessed based on previous literatures. According to
the studies by Li (Li et al., 2017) and Sharma (Sharma et al.,
2000), AF and intracardiac thrombus are common risk factors
for IS, as well-known risk factor for embolic complications
(Orenes-Piñero et al., 2017). Hence, in this study, AF and
intracardiac thrombus is used as risk factors for IS. Apart from
these two variables, Deng (Deng et al., 2019) and Fukui (Fukui
et al., 2017) also reported that lower estimated glomerular
filtration rate (eGFR) was related to IS risk, with their predictive

validity being well-verified. Thus, five basic characteristics (sex,
age, AF, intracardiac thrombus and eGFR) of participants are
ascertained. Additionally, according to biostatistics literature
(Rosner, 2016), data will lose its measure of confidence if its
missing value ratio > 30%. Therefore, for our study, some
instances were removed from the dataset if they had more than
6 missing attributes (6 of 18). These missing attributes normally
result from time conflicts and failures in the tests. Finally, a total
of 26 instances were utilized as the primary dataset.

Logistic regression was utilized to screen for possible
IS-related factors and evaluate assess their associated risk
intensities. Logistic regression models were then applied to
predict the IS, splitting the data into training and testing sets
at a ratio of 7:3 using the random number table method.
The training dataset was used to fit the prediction model (to
“train” the algorithm), and then the model was utilized to
predict the variable of interest from the test dataset. Similarly,
a BN model of the IS-related risk factors in patients with
DCM was established by a Tabu search algorithm using the
training dataset. The test dataset was used to assess the models’
accuracy. Before establishing the BN model, all IS-related
factors were quantified and coded (Supplementary Table 1 in
Supplementary material 1).

Bayesian networks

As a probabilistic graphical model, the BN uses directed
acyclic graphs to describe the probabilistic relationships between
variables (Liao et al., 2017). The directed acyclic graph nodes
stand for random variables U = {Xi, . . ., Xn}, and the directed
edges (E) stand for the probabilistic dependency relations

FIGURE 1

Flowchart describing the screening of patients with dilated cardiomyopathy (DCM).
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between the variables. If a directional arc from X1 to X2 is
seen, we can infer that X1 causes X2; thus, X1 and X2 are
usually defined as the parent and child, respectively. Each node
has a conditional probability distribution table representing the
parent node’s state. The BN is a representation of the joint
probability distributions of random variables X = {X1, . . ., Xn};
thus, a probability expression can be obtained:

P(X1, ...,Xn) = P(X1)P(X2|X1)...P(Xn|X1,X2, ...Xn−1)

=

n∏
1

P(Xi|π(Xi)

where π(Xi) represents the collection of the parents of Xi; π(Xi)
⊆ {X1 . . ., X i−1} (Zhang et al., 2019).

In the present study, the collected dataset was utilized to
construct a BN model for predicting the occurrence of IS. We
extracted from the patient data 26 random variables for each
instance. We initially filtered the nodes using logistic regression,
in order to avoid including too many nodes and adding excessive
complexity to the network structure. We then established the
optimal model on the basis of Tabu search algorithm (Zhang
et al., 2019).

Statistical analysis

Statistical analysis was performed using IBM SPSS Statistics
for Windows, Version 23.0 (IBM Corp., Armonk, NY, USA).
Continuous variables are presented as mean ± standard
deviation or median (interquartile range). Categorical
variables are expressed as numbers and percentages. Normally
distributed data were analyzed using the Student’s t-test
(hematocrit, hemoglobin), and non-normally distributed data
were analyzed using the Mann-Whitney U test [age, systolic
blood pressure, leukocyte, platelet, eGFR, serum sodium (Na+),
high-sensitivity C-reactive protein (Hs-CRP), D-dimer, left
ventricular end-diastolic diameter, left ventricular ejection
fraction, left atrium diameter, pulmonary arterial pressure].
Categorical variables were analyzed using the chi-squared
test (male, smoking, drinking, hyperuricemia, hypertension,
hyperlipidemia, diabetes, AF or atrial flutter, cardiac function,
left bundle branch block, mitral regurgitation, and intracardiac
thrombosis). Binary logistic regression analysis assessed
the variables associated with DCM-related IS. Variables
demonstrating an association with the outcome at a level
of < 0.05 in univariate analysis were candidates for further
multivariate analysis. Receiver operating characteristic analysis
assessed the predictive models, and their areas under the curve
(AUCs) were calculated. Furthermore, Delong test was applied
to test the statistical significance of the difference between the
AUC values. Hosmer–Lemeshow test and calibration plots
were used to assess the calibration of each model. Statistical
significance was set at P < 0.05. RStudio software, Version

4.2.0,1 was employed for structural learning of the BN and
parameter estimation using the maximum likelihood estimation
method. The BNs’ topology and conditional probability
distribution tables were drawn using the Netica32 software
(Norsys Software Corp., Vancouver, BC, Canada).

Results

Patients selection

Among the 3,830 patients diagnosed with DCM, 3,196 were
excluded because of secondary cardiomyopathy etiologies or
missing data. Finally, 634 eligible cases, including 127 with and
507 without IS were included in the study (Figure 1).

Risk factors for ischemic stroke

Multiple variables, including basic characteristics, stroke
risk factors, echocardiography findings [i.e., left ventricular
end-diastolic diameter, LV ejection fraction (LVEF), and left
atrium diameter], electrocardiogram, and laboratory results,
were compared between patients with and without IS (Table 1).
Of the 26 variables, nine were associated with IS by
univariate logistic regression: hypertension [odds ratio (OR),
1.561; 95% confidence interval (CI), 1.068–2.282; P = 0.022],
hyperlipidemia (OR, 1.548; 95% CI, 1.018–2.354; P = 0.041), AF
or atrial flutter (OR, 1.754; 95% CI, 1.159–2.655; P = 0.008),
eGFR (OR, 0.980; 95% CI, 0.971–0.988; P < 0.001), serum
sodium (OR, 0.915; 95% CI, 0.865–0.968; P = 0.002), Hs-
CRP (OR, 1.029; 95% CI, 1.010–1.048; P = 0.002), D-dimer
(OR, 1.000; 95% CI, 1.000–1.001; P = 0.015), cardiac function
(classes III and IV; OR, 1.720; 95% CI, 1.093–2.706; P = 0.019),
and intracardiac thrombosis (OR, 5.682; 95% CI, 3.130–10.315;
P < 0.001).

The following five significant variables were retained in the
final multivariate logistic regression model after performing a
backward stepwise variable selection: hypertension (OR, 1.531;
95% CI, 1.004–2.334; P = 0.048), hyperlipidemia (OR, 1.723;
95% CI, 1.088–2.729; P = 0.020), atrial fibrillation/flutter (OR,
1.597; 95% CI, 1.017–2.507; P = 0.042), eGFR (OR, 0.986; 95%
CI, 0.977–0.995; P = 0.003), and intracardiac thrombosis (OR,
5.417; 95% CI, 2.849–10.300; P < 0.001; Table 2).

Bayesian network structure

The BN model of the IS-related factors consisted of 10
nodes and 13 directed edges. The nodes represented IS,

1 https://www.rstudio.com/
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TABLE 1 Baseline data of patients with dilated
cardiomyopathy (DCM).

Variables DCM
with IS

(n = 127)

DCM
without IS
(n = 507)

P-value

Age, years 58 (49, 63) 56 (47, 65) 0.39

Male 96 (75.6%) 377 (74.4%) 0.776

Current smoking 38 (29.9%) 111 (21.9%) 0.056

Current drinking 30 (23.6%) 87 (17.2%) 0.093

Hyperuricemia 30 (23.6%) 87 (17.2%) 0.093

Hypertension 58 (45.7%) 169 (33.3%) 0.01

Hyperlipidemia 43 (33.9%) 126 (24.9%) 0.04

Diabetes 37 (29.1%) 122 (24.1%) 0.238

AF or atrial flutter 46 (36.2%) 125 (24.7%) 0.009

Cardiac function (class III,
IV)

98 (77.2%) 336 (66.3%) 0.018

Left bundle branch block 22 (17.3%) 94 (18.5%) 0.751

Mitral regurgitation
(moderate to severe)

68 (53.5%) 297 (58.6%) 0.304

Systolic blood pressure
(mmHg)

116 (103,
130)

116 (102, 126) 0.372

Leukocyte (109/L) 6.7 (6.0, 8.4) 6.8 (5.8, 8.1) 0.551

Hematocrit (%) 41.6± 5.5 42.2± 5.3 0.552

Platelets (109/L) 198 (169,
242)

202 (169, 246) 0.45

Hemoglobin (g/L) 141.5± 20.9 144.6± 19.3 0.4

eGFR (mL/min/1.73 m2) 81.1 (59.4,
96.5)

90.2 (72.5, 102.1) < 0.001

Serum Na + (mmol/L) 138.8 (136.4,
140.9)

139.7 (137.8,
141.2)

0.006

Hs-CRP (mg/L) 3.33 (0.97,
10.19)

1.82 (0.8, 5.8) 0.001

D-dimer (ng/mL) 240 (100,
611)

135 (78, 298) < 0.001

Echocardiography

LVEDD 64 (59, 71) 66 (60, 74) 0.064

LVEF 30 (25, 37) 30 (25, 37) 0.769

LAD 45 (40, 50) 45 (40, 50) 0.964

PAD 30 (25,45) 30 (25, 45) 0.45

Intracardiac thrombosis 27 (21.2%) 23 (4.5%) < 0.001

AF, atrial fibrillation; eGFR, estimated glomerular filtration rate; Hs-CRP, high-sensitivity
C-reactive protein; IS, ischemic stroke; LVEDD, left ventricular end-diastolic diameter;
LVEF, left ventricular ejection fraction; LAD, left atrium diameter; PAD, pulmonary
arterial pressure.

hypertension, hyperlipidemia, AF/atrial flutter, eGFR, serum
sodium, high-sensitivity C-reactive protein, D-dimer, cardiac
function (class III or IV), and intracardiac thrombosis. Nodes
directly linked to IS through complex network relationships
included hyperlipidemia, atrial fibrillation/flutter, eGFR, and
intracardiac thrombosis; heart failure (cardiac function classes
III and IV) was indirectly associated with eGFR and intracardiac
thrombosis, and hypertension was either directly or indirectly
linked with IS through its association with hyperlipidemia

(Figure 2). Based on the maximum likelihood estimation,
the common variables predicting IS were hypertension,
hyperlipidemia, atrial fibrillation/flutter, eGFR, and intracardiac
thrombosis (Table 3).

Model performance evaluation

Compared with the logistic regression predictive model, the
BN model for predicting IS achieved higher or equal scores
in the training and test datasets (Table 4). The BN model
achieved accuracies of 83.7 and 85.5%, AUCs of 0.763 (95%
CI, 0.708–0.818) and 0.822 (95% CI, 0.748–0.896), sensitivities
of 20.2 and 44.2%, and specificities of 98.3 and 97.3% in the
training and test datasets, respectively. The logistic regression
predictive model achieved accuracies of 83.0 and 84.5%, AUCs
of 0.714 (95% CI, 0.649–0.778) and 0.769 (95% CI, 0.674–0.864),
sensitivities of 17.9 and 39.5%, and the same specificities as the
BN model (Figure 3). However, the Delong test revealed that
there were no statistical differences in the AUC values between
BN model and logistic regression model in either training
datasets or test cohorts (P = 0.199 or P = 0.388). In addition,
the calibration plots showed that the predicted probabilities of
IS agreed well with the actual observations (Figure 4), and the
Hosmer–Lemeshow test also demonstrated good calibration for
BN model in training sets (P = 0.9999, chi square = 0.462, degree
of freedom = 8) and test sets (P > 0.9999, chi square = 0, degree of
freedom = 8), as well as for logistic regression model in training
sets (P = 0.8234, chi square = 4.359, degree of freedom = 8) and
test sets (P = 0.1028, chi square = 13.273, degree of freedom = 8).

Discussion

Generally, disease risk prediction requires a statistical risk
factor model (Zhang et al., 2016). The present study used
univariate and multivariate logistic regression models to screen
the main risk factors for IS in patients with DCM. Subsequently,
we constructed a BN model to estimate the conditional
probability of each node based on the univariate analysis using
the Tabu search algorithm. Our BN analysis suggested that
hypertension, hyperlipidemia, AF or atrial flutter, eGFR, and
intracardiac thrombosis was directly associated with IS, while
cardiac insufficiency (i.e., heart failure) was indirectly linked
to IS through eGFR and intracardiac thrombosis. Our findings
are consistent with a retrospective case series of cardioembolic
strokes with hypertrophic cardiomyopathy (n = 8) or DCM
(n = 12), showing that over half of the patients with DCM had
reduced LVEF (< 40%), enlarged left ventricular end-diastolic
dimension (> 5.6 cm) and left atrium diameter (> 4 cm),
and most (60%) had documented sinus rhythm when AF
was diagnosed at stroke onset or during follow-up (Li et al.,
2017). Together with well-known cardiovascular risk factors,
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TABLE 2 Risk factors of ischemic stroke in patients with dilated cardiomyopathy (DCM): Univariate and multivariate binary logistic
regression analysis.

Characteristics Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value

Hyperlipidemia 1.548 (1.018–2.354) 0.041 1.723 (1.088–2.729) 0.020

Hypertension 1.561 (1.068–2.282) 0.022 1.531 (1.004–2.334) 0.048

AF or atrial flutter 1.754 (1.159–2.655) 0.008 1.597 (1.017–2.507) 0.042

eGFR (mL/min/1.73 m2) 0.980 (0.971–0.988) < 0.001 0.986 (0.977–0.995) 0.003

Serum sodium [Na](mmol/L) 0.915 (0.865–0.968) 0.002 0.965 (0.905–1.028) 0.267

Hs-CRP (mg/L) 1.029 (1.010–1.048) 0.002 1.014 (0.999–1.030) 0.071

D-dimer (ng/mL) 1.000 (1.000–1.001) 0.015 1.000 (1.0–1.0) 0.249

Cardiac function (class III, IV) 1.720 (1.093–2.706) 0.019 1.205 (0.732–1.981) 0.463

Intracardiac thrombosis 5.682 (3.130–10.315) < 0.001 5.417 (2.849–10.300) < 0.001

AF, atrial fibrillation; eGFR, estimated glomerular filtration rate; Hs-CRP, high-sensitivity C-reactive protein.

FIGURE 2

Bayesian network (BN) for predicting occurrence of ischemic stroke (IS) in patients with dilated cardiomyopathy (DCM). The BN model used
nine variables selected by univariate logistic regression analysis. Estimated glomerular filtration rate (eGFR), high-sensitivity C-reactive protein
(Hs–CRP), Serum sodium [Na], and D-dimer levels were defined according to their values. eGFR ml/min/1.73 m2: mild (≥ 90), moderate
(60–90), severe (≤ 60). Hs-CRP levels (mg/L): low (< 5), high (≥ 5). Serum sodium [Na] levels (mmol/L): high (≥ 140), low (< 140). D-dimer levels
(ng/ml): low (< 240), high (≥ 240).

such as hypertension and hyperlipidemia (O’Donnell et al.,
2010; Wang et al., 2022), these risk factors could prompt or
contribute to the formation of intracardiac thrombi, resulting
in cardioembolic stroke (Crawford et al., 2004; Li et al., 2017).
Moreover, a retrospective cohort study by Deng et al. reported
that decreased eGFR (≤ 60 mL/min/1.73 m2) was associated
with IS in patients with DCM (Deng et al., 2019). However,
the underlying mechanism remains uncertain; therefore, we
can only speculate that decreased eGFR in patients with DCM
promotes the formation of thrombi through excessive oxidative
stress on the vascular endothelium and activation of the renin-
angiotensin system. Nonetheless, more evidence is required to
address these issues.

In our study, cardiac insufficiency (i.e., heart failure)
was indirectly linked to IS through eGFR and intracardiac
thrombosis. This is noteworthy as a study by Kostas et al.
revealed that heart failure, as a predictor independent of
age, sex, stroke severity, and other stroke-related risk factors,
could predict death in patients with stroke (Vemmos et al.,
2012). Under pathophysiological conditions, patients with
heart failure often have a decreased LVEF and abnormal
intracardiac blood flow due to LV systolic dysfunction
caused by LV dilation. Furthermore, endothelial dysfunction
and changes in blood components (e.g., platelet function)
have been observed in some patients with heart failure
but normal LVEF, contributing to increased susceptibility
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TABLE 3 The conditional probability table of the training set basing on ischemic stroke (IS) as the target node.

eGFR
(mL/min/1.73 m2)

Hypertension Hyperlipidemia Intracardiac
thrombosis

AF/atrial
flutter

Ischemic stroke

Yes No

≥ 90 yes no no no 0.14 0.86

≥ 90 yes yes no no 0.18 0.82

≥ 90 yes yes no yes 0.29 0.71

60–90 yes yes yes no 1.00 0.00

60–90 no yes yes no 1.00 0.00

≥ 90 no no no no 0.15 0.85

≥ 90 no yes no no 0.04 0.96

≥ 90 no no no yes 0.19 0.81

≥ 90 yes no no yes 0.09 0.91

≥ 90 no yes no yes 0.20 0.80

60–90 no no no no 0.02 0.98

60–90 yes no no no 0.33 0.67

60–90 yes yes no no 0.22 0.78

60–90 no yes no no 0.10 0.90

60–90 no no no yes 0.05 0.95

60–90 yes no no yes 0.14 0.86

60–90 yes yes no yes 0.25 0.75

60–90 no yes no yes 0.40 0.60

≤ 60 no no no no 0.29 0.71

≤ 60 yes no no no 0.14 0.86

≤ 60 no yes no no 0.50 0.50

≤ 60 yes yes no no 0.50 0.50

≤ 60 yes no no yes 0.50 0.50

≤ 60 no no no yes 0.12 0.88

≤ 60 no yes no yes 0.50 0.50

≤ 60 yes yes no yes 0.50 0.50

≥ 90 no no yes no 0.38 0.62

≥ 90 no yes yes no 0.00 1.00

≥ 90 yes no yes yes 0.00 1.00

≥ 90 yes yes yes yes 0.00 1.00

60–90 no no yes no 0.20 0.80

60–90 no no yes yes 0.67 0.33

60–90 yes no yes yes 0.00 1.00

60–90 no yes yes yes 1.00 0.00

≤ 60 no no yes no 0.75 0.25

≤ 60 no no yes yes 1.00 0.00

to thromboembolism (Schumacher et al., 2018). Heart failure
development might activate the sympathetic nervous system
and the renin-angiotensin-aldosterone system, leading to
constriction of glomerular afferent arterioles and decreased
glomerular filtration rate and renal blood flow due to low cardiac
output (Braunwald, 2019). Therefore, further investigation
should determine the role of heart failure in the pathogenesis of
IS in patients with DCM and whether timely therapy to improve
cardiac function could reduce the occurrence of IS.

Bayesian network (BN) models possess certain advantages
in the medical domain, including adaptability and strong
robustness against missing values (Sheng et al., 2019). As to
adaptability, building the BN model can start with limited
domain knowledge, which is then simplified or extended by
inputting new knowledge to meet various needs. Clinicians
can add patients’ updated knowledge, letting the BN model

automatically adjust the probabilities. As to strong robustness
against missing values, the BN model does not need complete
knowledge of the topic; it can utilize available knowledge to
perform its prediction. The BN model has been used to infer
the probability of IS in patients with DCM. As shown in

TABLE 4 The performance of different predictive models.

Model Accuracy AUC Sensitivity Specificity

Bayesian network (training
set)

83.67% 0.763 20.23% 98.32%

Logistic regression
(training set)

82.99% 0.714 17.86% 98.32%

Bayesian network (test set) 85.49% 0.822 44.19% 97.33%

Logistic regression (test set) 84.45% 0.769 39.53% 97.33%

AUC, area under the curve.
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FIGURE 3

Receiver operating characteristic (ROC) curves of Bayesian network (BN) model and logistic regression (LR) model for predicting ischemic
stroke (IS) in patients with dilated cardiomyopathy (DCM). The areas under the curve (AUC) of BN model predicting IS was 0.763 (95% CI,
0.708–0.818) and 0.822 (95% CI, 0.748–0.896) in (red line) training and (blue line) test datasets, respectively. The AUC of LR model predicting IS
was 0.714 (95% CI, 0.649–0.778) and 0.769 (95% CI, 0.674–0.864) in (green line) training and (orange line) test datasets.

FIGURE 4

Calibration plots for the four prediction models in both cohorts. The perfect prediction should be on the 45-degree line. The calibration plots
showed that the predicted risk of ischemic stroke (IS) agreed well with the observed risk, in either Bayesian network model of (A) test and (B)
training datasets, or in logistic regression model of (C) test and (D) training datasets.
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Table 3, patients with hypertension but without hyperlipidemia,
abnormal renal function, intracardiac thrombosis, and AF
or atrial flatter had a probability of 0.14 for concurrent
IS; if the patient had hypertension and hyperlipidemia, the
probability was 0.18; if the patients had atrial fibrillation/flatter,
hypertension, and hyperlipidemia, the probability increased
to 0.29; if the patient’s eGFR was 60–90 mL/min/1.73 m2,
with hyperlipidemia, intracardiac thrombosis, but without AF
or atrial flatter, the probability was 1.0. Hence, our results
substantiated that the BN model based on the Tabu search
algorithm had a flexible inference mechanism, making it very
helpful for early IS detection and diagnosis in patients with
DCM and, more importantly, for preventing the occurrence and
recurrence of IS.

Besides its ability to generate an interpretable prediction
and reduced uncertainty, BN is a powerful machine learning
method to classify imbalanced datasets (Drummond and Holte,
2003; Monsalve-Torra et al., 2016), an important feature because
a class imbalance is one of the most important challenges
in real-world studies (Maldonado et al., 2014). In our study,
calibration was good for both BN model and logistic regression
model. Besides, the performance of our proposed BN model
was promising and satisfactory in terms of accuracy, AUC,
sensitivity, and specificity when compared to the traditional
logistic regression model, albeit not statistically significant (e.g.,
AUC). This is possibly because logistic regression relies on
independent variables, but the clinical features of IS and related
factors are not independent; complex interaction networks
might exist among them. Applied logistic regression models
can predict the probability of developing IS until the state of
the variables is known; however, in clinical practice, factors
utilized for model prediction might be missing, leading to
their inability to predict (Lee et al., 2005). In contrast the
BN is constructed based on disease-related knowledge, fully
mining potential information from the data and revealing the
multilevel interactions between multiple factors. Additionally,
the BN can outperform the radial basis function and multilayer
perceptron in terms of sensitivity (Monsalve-Torra et al., 2016).
In contrast, BN achieved a sensitivity of approximately 40%
for identifying IS in our study. Three possible reasons for
the imperfect sensitivity of our BN model were hypothesized.
(i) The used dataset was not complex (contained only 26
attributes). The included attributes were derived from general
information, including the subjects’ basic characteristics and
simple accessory tests, rather than special radiographic data such
as brain neuroimaging. The main reason for using such a dataset
was to develop a predictive model for IS that can be easily
utilized in community clinics or rural hospitals. Hence, special
neuroimaging data that might have improved its performance
could not be included. (ii) The dataset used was not large
(n = 634). The identification accuracy would undoubtedly be
increased if a larger dataset was utilized (Wang et al., 2014).
(iii) Skewed dataset could impact the model’s performance

(Watt and Bui, 2008); for example, males comprised 70% of the
patients. Therefore, the reliability and validity of the BN model
could be improved by using advanced learning algorithms.

In conclusion, our study is the first to propose a BN
model to predict IS in patients with DCM, achieving a better
performance than the traditional logistic regression model.
Hypertension, hyperlipidemia, AF or atrial flutter, lower eGFR,
and intracardiac thrombosis were good predictors of IS in our
patient cohort. However, this study had some limitations. First,
the number of patients with DCM complicated by IS was small.
Second, as a retrospective study, clinical and laboratory data
(e.g., troponin and B-type natriuretic peptide) were incomplete.
Finally, the BN-directed edges reflected probability dependence
between variables rather than a causal relationship. Therefore,
long-term, multicenter prospective studies should be conducted
to gain more insights into the potential causal relationship
between the risk factors and IS in patients with DCM, optimize
disease prevention strategies, and ultimately improve the long-
term survival of patients with DCM.
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Introduction: Interpretable latent variable models that probabilistically link

behavioral observations to an underlying latent process have increasingly

been used to draw inferences on cognition from observed behavior. The latent

process usually connects experimental variables to cognitive computation.

While such models provide important insights into the latent processes

generating behavior, one important aspect has often been overlooked. They

may also be used to generate precise and falsifiable behavioral predictions as

a function of the modeled experimental variables. In doing so, they pinpoint

how experimental conditions must be designed to elicit desired behavior and

generate adaptive experiments.

Methods: These ideas are exemplified on the process of delay discounting

(DD). After inferring DD models from behavior on a typical DD task, the models

are leveraged to generate a second adaptive DD task. Experimental trials in this

task are designed to elicit 9 graded behavioral discounting probabilities across

participants. Models are then validated and contrasted to competing models

in the field by assessing the ouf-of-sample prediction error.

Results: The proposed framework induces discounting probabilities on nine

levels. In contrast to several alternative models, the applied model exhibits

high validity as indicated by a comparably low prediction error. We also

report evidence for inter-individual differences with respect to the most

suitable models underlying behavior. Finally, we outline how to adapt the

proposed method to the investigation of other cognitive processes including

reinforcement learning.
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Discussion: Inducing graded behavioral frequencies with the proposed

framework may help to highly resolve the underlying cognitive construct and

associated neuronal substrates.

KEYWORDS

reward discounting, delay discounting, computational models, behavioral model,
design optimization, adaptive design, homogenizing behavior, computational
psychiatry

Introduction

Behavioral latent variable models which describe an
individual’s trial-by-trial behavior in terms of well interpretable
generative equations have become increasingly popular in
neuroscience and psychiatry to quantify the mechanisms
underlying cognitive processes involved in decision-making
(Durstewitz et al., 2016; Huys et al., 2016). By inferring
such models from an individual’s choice sequence recorded
during an experiment, the underlying cognitive processes which
echo in these choices can be mapped onto an often low-
dimensional set of interpretable model parameters, the involved
sub-functions can be teased apart, and hypotheses directed at
the algorithmic principles of the given process may be addressed
(e.g., Huys et al., 2013; Collins et al., 2017; Koppe et al., 2017;
Thome et al., 2022).

Besides these clear advantages, as of yet, one important
aspect of such models has often been overlooked. Since they
attempt to fully explain trial-by-trial behavior, these models
typically incorporate all relevant factors necessary to describe
variations in behavior. This also means that they (implicitly)
predict how behavior would change if any of the relevant factors
is varied. On the one hand, such model-based predictions can
be leveraged to steer or induce behavior by manipulating the
experiment (by varying one or more of the above-mentioned
relevant factors), thus providing a formal recipe to generate
adaptive model-based experiments (Thome et al., 2022). On the
other hand, by comparing a broad range of these predictions to
actual behavioral observations, we obtain a formal framework
ideally suited to validate a given model. Here, we therefore build
on a previously introduced generic model-based framework to
improve the generation of adaptive experiments (Thome et al.,
2022), and couple it to a formal behavioral model validation
procedure.

We have illustrated the procedure in the context of delay
discounting. Delay discounting refers to the tendency of an
individual to favor immediate as compared to temporally distant
outcomes due to future outcome devaluation. Since individuals
differ strongly in their discounting behavior, adaptive tasks
which aim at adjusting trials to the individual to induce and
measure more homogeneous discounting behavior, have been

the means of choice for quite some time (Monterosso et al.,
2007; Ripke et al., 2012; Cavagnaro et al., 2016; Koffarnus
et al., 2017; Pooseh et al., 2018; Ahn et al., 2020; Knorr
et al., 2020). In a typical delay discounting task such as the
intertemporal choice task (ICT), participants are faced with a
series of choices between a delayed larger and immediate smaller
reward (e.g., Mazur, 1987). A common model of behavior in
the ICT assumes that choices are probabilistic draws based
on internal choice values with a higher likelihood for choices
of higher value (e.g., Pine et al., 2009; Prevost et al., 2010;
Miedl, 2012; Peters et al., 2012; Ahn et al., 2020). These
choice values are computed based on the presented rewards
and delays in the experiment, the discounting function, and
individual-specific discounting parameters which regulate its
behavior. A probabilistic function maps these latent values to
probabilities for immediate and delayed choices. By setting
the conditional probability for an immediate choice to a
given response probability for each unique participant, we can
resolve the model equations for a condition that expresses how
experimental stimuli need to be selected so that we can expect
to observe this response probability. For example, when setting
the discounting probability in an ICT to 0.5, this condition will
express how to adjust rewards and delays in a given participant
to obtain 50% discounted choices. We have recently successfully
applied this framework to induce a 0.3, 0.5, and 0.7 discounting
probability across individuals (Thome et al., 2022).

On the other hand, manipulating the experimental variables
simultaneously renders predictions over behavioral response
probabilities for a given model. The fields of statistical learning
theory and machine learning (ML) instruct us on how to make
use of such predictions to objectively assess model validity
(Hastie et al., 2009; Koppe et al., 2021). Validity here refers
to whether a function – for instance, a statistical model –
generalizes well to the population and has a low expected
prediction error (PE; Hastie et al., 2009; Koppe et al., 2021). In
short, a method or function is valid if we can infer it on a sample
and use it to predict new unseen measurements with low error
(Hastie et al., 2009). This corresponds well to the psychological
perspective on validity by which validity denotes the extent
to which evidence and theory justify the interpretation
of measurements (Schmidt-Atzert and Amelang, 2021). The
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appealing part about assessing a PE is that it provides an
objective way to assess predictive validity, and may further
yield quantitative information on how and where (i.e., in what
domain) a method is valid. Here, we thus extend our model-
based adaptive approach to (a) predict and induce a wider
range of behavioral response probabilities, and (b) use these
predictions to perform a formal assessment of the PE.

The advantages of such a procedure are manifold. For one,
the approach provides a recipe of how to generate adaptive
experiments that ensure similar behavioral probabilities
between participants. Effectively, such a procedure reduces
behavioral variance within experimental conditions and thereby
increases statistical power (Winer, 1971; Mumford, 2012). At
the same time, the proposed procedure relocates between-
subject variability into the adaptive experimental variables and
model parameters, such that this information is preserved and
can be systematically studied (Kanai and Rees, 2011; Hedge
et al., 2018). Second, by generating experimental conditions
which induce graded response probabilities, we may also induce
graded intensities of the underlying process, resolving it at
a finer level. This is beneficial when linking behavior to, for
instance, neuro(physio)logical mechanisms (Dagher et al.,
1999; Grinband et al., 2006; Wood et al., 2008; Hare et al.,
2009; Ripke et al., 2014; Grosskopf et al., 2021). Finally, the
formal assessment of model validity in terms of (out-of-sample)
estimates of the PE allows us to compare and select between a
class of available or novel models, and evaluate the models on a
wide range of the model domain.

The present work illustrates this procedure in the context
of monetary reward delay discounting, and expands it to a
broader class of cognitive domains. We address the hypothesis
whether by applying the proposed approach we can successfully
induce (relative) discounting frequencies on a 9-level graded
scale (ranging from 0.1 to 0.9) which, to the best of our
knowledge, has never been attempted before. We then illustrate
how to formally assess (predictive) model validity within
this framework by comparing predicted to induced response
frequencies, and evaluate several models on a group and single-
subject level. Finally, we outline how to adapt the approach to
latent variable models which are history dependent as well as
response models which are multi-categorical.

Materials and methods

Experimental design

General framework
The key aspect of the proposed framework is to

experimentally manipulate the latent process of a latent variable
model, and thereby generate precise and falsifiable hypotheses
about the data generating process (and associated cognitive
functioning) in a systematic manner. These hypotheses

(i.e., predictions) are statements about the frequency of
observed responses in consequence of the experimental
manipulation. Latent variable models which formalize the
latent process and its dependencies on experimental variables,
and probabilistically link this process to behavior, provide the
means for such a manipulation. This is because these models
let us track how changes in the experimental variables will
affect behavioral probabilities. By making use of this property,
we can systematically tune the experiment to generate a given
behavioral probability.

The framework proceeds in two experimental runs (see
Figure 1). The first run (termed ‘run A’) serves to generate data
to infer the models and thus the latent process of interest. The
models are then leveraged to generate predictions and associated
experimental manipulations which are then assessed in a second
run (termed ‘run B’). By separating run A and B in this way,
we ensure that the trial-generation procedure is not biased by
type of model applied, that is, the model is not inferred on
trials it has itself selected. Validity of the instrument is measured
by comparing these predictions to observations made in run
B (Figure 1B). We illustrate and evaluate the framework here
based on the case where we have a latent variable model with
no history dependence combined with a binary response model.
A transfer of the proposed approach to latent variable models
with history dependence and response models which are multi-
categorical is found in the Results section.

Binary response models with no
history-dependence

Delay discounting provides a prominent example of a
binary choice process in which the latent process does not
depend on history (i.e., each choice depends only on current
and not previous choice values). In the delay discounting
example, run A and run B consist of an ICT. In this task,
participants are faced with a series of binary choice trials
in which they are asked to choose between an immediate
smaller reward and a delayed larger reward (see Figure 1A).
The collected data set d thus consists of T pairs of observed
variables d = {(xi, yi), i = 1, 2,...,T}, where xi are predictor
vectors of immediate and delayed reward and delay pairs, and
yi are one-dimensional (dichotomous) observed responses of
immediate (yi = 1) and delayed (yi = 0) choices. The
sequence of observed choices Y = {y1, ..., yT} is modeled
as i.i.d. Bernoulli random variables yi ∼ Bi(1, µ(xi)), for
i = 1, 2,...,T, where µ(xi) is the probability of an immediate
choice given the predictor xi.

The probabilistic latent variable discounting model
estimates µ(xi) by mapping the observed predictor vectors
xi onto the conditional mean of the distribution of yi via
a latent process fλ, that is, µ̂(xi) : = E[yi|fλ(xi)]. fλ is a
discounting function mapping observable predictors xi onto
internally represented latent values vi of these predictors, and
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FIGURE 1

Schematic illustration of task and experimental framework. (A) Illustration of the reward discounting task. Participants are faced with a series of
binary choice trials, in which they are asked to choose between an immediate smaller reward and a delayed larger reward. (B) Illustration of
experimental protocol. Participants perform run A of the reward discounting task. Latent discounting models fλ are inferred on each
participant’s sequence of observed behavioral choices Y = {y1, ..., yT} in run A and used to generate trials of run B. Trials are systematically
manipulated by varying experimental inputs ut to induce discounting frequencies ranging from 0.1 to 0.9, based on the expectation of the
probability distribution gβ . Validity is assessed by comparing predicted and observed rel. choice frequencies.

µ̂(xi) maps these values onto the conditional mean of the
Bernoulli distribution.

As discounting model fλ, we chose a hyperbolic function
with exponential delay termed ‘modified hyperboloid model’
in the following (after Mazur, 1987; Rachlin, 2006). The
discounting model is a vector valued function mapping two
rewards r presented at two delays D (displayed in each trial of
the ICT and collected in predictors xi above) onto internally
represented values v for the two associated choices.

fλ(r,D) : = (
1

1 + κ · Ds )r (1)

where κ is a discount parameter capturing the individual
tendency to discount, and s is a scaling parameter, both ⊂ λ.
In each trial of the ICT, the discounting model thus maps an
immediate reward rimm (presented at 0 delay) and a delayed
reward rdel presented at delay Di onto immediate and delayed
values vimm and vdel for the respective choice. Since the
immediate reward has 0 delay, it is equal to its latent value, i.e.,
rimm = vimm. We will refer to the factor in front of r in the
following as the ‘discount factor.’ We have previously shown
that this model performs consistently better at predicting unseen
behavior than a number of other models (Thome et al., 2022;
see also Estle et al., 2006; Odum et al., 2006; Rachlin, 2006;
Rodzon et al., 2011; McKerchar et al., 2013; Cox and Dallery,
2016; Białaszek et al., 2020).

We choose a sigmoid function to map these two latent values
onto the conditional mean, that is, onto the probability for
selecting the immediate choice option.

µ̂(xi) =
1

1+ eβ(vdel− vimm)
(2)

where β is an individual-specific parameter which captures the
sensitivity to differences in choice values (see also Figure 2A).
Eqn. (2) maps differences in values to immediate choice
probabilities pimm (see Figure 2A), in close analogy to a

psychometric function (e.g., Wichmann and Hill, 2001). It
provides a condition which permits the systematic manipulation
of experimental conditions. By setting pimm to a given
probability, we obtain an equation which may be resolved for
an observable and tunable experimental variable. For instance,
solving Eqn. (2) for the immediate reward rimm by plugging in
the model assumptions, we obtain the following condition.

rimm = (
1

1+κDs )rdel +
log( pimm

1 −pimm
)

β
(3)

defined for 0< pimm < l. By inserting a set of fixed
delays and delayed rewards, as well as inferred subjective
parameters κ and β , Eqn. (3) expresses how to experimentally
manipulate the presented immediate reward to obtain a desired
immediate choice probability pimm in a given individual (please
see Figures 2A–C on operating principles of the method).
By aiming to construct experimental conditions with similar
immediate choice probabilities across participants, we are
effectively homogenizing behavior across participants. We make
the implicit assumption here that behavior is homogeneous if,
within an experimental condition, different participants display
similar frequencies, that is, they show similar probabilities, for
the available behavioral options.

For the conducted experiment, models inferred on
run A were applied according to this framework to
generate an ICT with nine experimental conditions
inducing graded immediate choice probabilities of
pimm = {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} presented in
run B (see Figure 1), for simplicity referred to as ‘induced
frequencies’ in the following.

Experimental settings
Trials in run A followed a previously developed protocol

optimized to elicit discounting behavior across participants
(Thome et al., 2022) and optimized in line with results obtained
from a preliminary experiment (see Supplementary Text 2).
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FIGURE 2

Illustration of method principles. (A) Immediate choice probability [cf. Eqn. (2)] as a function of the difference between immediate and delayed
value for β estimates in our sample (color-coded from largest β = 2 in yellow to smallest β = 0.01 in dark red). The indifference point, i.e., the
point at which immediate and delayed choice probability (and immediate and delayed choice values) are equal, is at 0. If vimm/vdel immediate
choice probability is below/above 0.5. β regulates the steepness of the curve and thus the sensitivity toward differences in values.
(B) Discounted value of a reward of size 50 (y-axis) delayed at different time points (x-axis) and two exemplary κ ′s (κ = 0.005 in black and
κ = 0.05 gray). The method’s selected immediate rewards at a given delay are displayed as colored dots from blue to red with respect to the
induced choice probability from 0.1 to 0.9 (triangles/circles are associated with κ = 0.005/0.05, respectively). To induce the same probabilities
at different delays, the difference between the presented immediate choice values (depicted as colored dots) and delayed values (depicted on
the discounting curve) is constant [see Eqn. (2), vdel − vimm]. For participants with different κ , the reward and value ratios will therefore vary.
The left graph depicts selected rewards for a hypothetical β = 0.3 and (C) the right graph for β = 0.8. β thus regulates the precise difference
between immediate and delayed values, with higher β resulting in smaller differences, making the differentiation between the two more difficult.

Rewards and delays varied across trials. Delays were set to
D = {7, 30, 90, 180, 365} days and delayed rewards to
rdel = {5, 10, 20, 50, 100} £ (UK). Immediate rewards
were selected based on the described model guided procedure
[Eqn. (3)], chosen to elicit an equal probability for immediate
and delayed choices at 4 different population representative
discounting parameters. Run A thus consisted of 100 trials (5
delays × 5 delayed rewards × 4 discounting parameters). Trials
of run B were generated via Eqn. (3), and the parameters inferred
on run A, to induce 9 probability gratings ranging from 0.1 to
0.9. With nine gradings and using the same delays and delayed
rewards as in run A, run B consisted of 225 trials.

A few parameter and stimulus constellations could result
in immediate rewards smaller than 0, or equal immediate
and delayed rewards. To avoid such trials, the delays (and
corresponding immediate rewards) were iteratively adjusted in
the trial-generating procedure until reaching a minimum of 1 or
a maximum of 365 days. If still not resolved, negative immediate
rewards were set to 1 penny, while immediate rewards equaling
delayed rewards were reduced by 1 penny, respectively. This
adaptation could result in a slight deviation of the induced
frequencies (see Figure 3B, red line). Trials were self-paced,
allowing for a maximum decision phase of 10 s, with a 1 s
inter-stimulus-interval.

Model inference
Discounting models were inferred on run A and run

B separately via maximum likelihood estimation (MLE).
Given Bernoulli i.i.d. assumptions, the models’ likelihood is
given by p(Y|X, θ) =

∏T
i = 1 pθ (yi|v(xi)), where pθ (yi|v(xi)) is

given by Eqn. (2) in case that yi refers to the immediate
choice, and by 1 minus this probability for the delayed

choice, respectively. Under inspection of the preliminary
experiment (see Supplementary Text 2), parameters were
constrained to β ε [0.001, 2], s ε [0, 1], and κ ε [0, 1000],
and optimization was performed using a Quasi-Newton
algorithm (the limited-memory BFGS algorithm) implemented
via the optimize.minimize() function from the SciPy library1,
starting from multiple initial conditions.

Sample and data assessment

Fifty healthy participants (24 males, 25 females, and 1
undefined) participated in the study, recruited via the following
website: https://www.prolific.co. Participants were eligible if
they were between the age of 18 and 65 with current residency in
the United Kingdom (UK) and were reimbursed £7.50 per hour
to participate in the study. Please see Supplementary Tables 1,
3 for more information on the sample.

All participants accessed the study through a link on the
Prolific website. They completed a consent form, filled out
sociodemographic information, and took part in run A of the
experiment. After completing run A, the alcohol use disorder
identification questionnaire (AUDIT; Babor et al., 1992) and
the short version of the Barratt Impulsiveness Scale (BIS-15;
Spinella, 2007) were filled out, immediately followed by run
B of the experiment. The whole procedure took 28.4 (±8.39)
minutes on average. The study was approved by the local ethics
committee of the Medical Faculty Mannheim, University of
Heidelberg (2019-633N).

1 https://scipy.org/citing-scipy/
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FIGURE 3

(A) Relative frequency of immediate choices in run A. (B) Relative frequency of discounted choices (y-axis) as a function of model induced
frequencies (x-axis) averaged over all participants (mean and SEM are displayed in blue). The black dashed line marks the identity, while the red
dashed line shows the actual predicted frequencies according to the models. (C) Single participant curves. (D) Mean and SEM of reaction time
(RT) as a function of experimental conditions. (E) Mean and SEM of prediction error (PE) as a function of experimental conditions for modified
hyperboloid (yellow), hyperbolic (red), and hyperboloid control (blue) models. (F) Discount factor in run A (x-axis) and run B (y-axis) illustrated
for delay = 90, indicating a reliable estimate of discounting across runs. (G) Histograms of immediate choice behavior for 0.1 (top) to 0.9
(bottom) frequency conditions (conditions indicated by the red line).

Data analysis

Measured variables
We assessed the frequency of discounted choices (that

is, choices in favor of the objectively smaller outcome) and
median reaction time (RT) across run A, and for all 9
probability gradings (i.e., experimental conditions) in run B,
model parameters (i.e., β, κ, s) the discount factor(s), as well
as total scores of AUDIT and BIS/BAS questionnaires.

Inferential statistics
The agreement between experimentally induced frequencies

and observed behavioral frequencies was assessed via a general
linear model (GLM) with induced frequencies as linear
predictor variables. The hypothesized inverted U-functional
relationship between induced frequencies and RT was assessed
via a GLM with quadratic induced frequencies as curvilinear
predictor variables (hypothesizing higher/lower RT toward
more difficult/easy choices) in run B. We report t-statistics on
the regression coefficients of these models.

Prediction error assessment
Predictive validity was assessed by approximating the PE

using cross-validation (CV). Rooted in statistical learning theory
(Hastie et al., 2009; Efron, 2021), the PE quantifies the error

made when applying a prediction rule, here the statistical model,
to unseen (out-of-sample) data. Assuming that the (x, y) data
pairs in the ICT follow an (unknown) joint distribution F, the
PE quantifies the error made when drawing a new pair with only
the predictor variable x observed and predicting y with µ̂(x) (cf.
section “General framework”) based on the model. Given some
loss function L(y, µ̂(x)) which assesses the deviation between
observation and prediction, the PE is assessed as the expected
loss under F, i.e., Err = EF{L(y, µ̂(x))} (Hastie et al., 2009;
Efron and Hastie, 2021). Since this expectation goes over all
(x, y) pairs, this integral may not be computed directly, but is
in practice often approximated by resampling methods such
as CV. Using CV, here we approximate the PE by ÊrrCV =
1
T
∑T

i=1 L(yi, µ̂(xi)), where the summation runs exclusively over
data pairs observed in run B and the prediction is based on
models inferred on run A [denoted ‘PE (run B)’], and vice versa
[denoted ‘PE (run A)’]. As most appropriate for dichotomous
data, we employ as error function the binomial deviance (Efron,
2021), given by L(µ, µ̂) :=2{µlog µµ̂ + (1− µ)log( 1−µ

1−µ̂ )}, such
that the PE was assessed as

ÊrrCV =
2
T

T∑
i=1

{yilog
yi

µ̂(xi)
+ (1− yi)log(

1− yi

1− µ̂(xi)
)}, (4)

and µ̂(xi) ∈ [0, 1] was truncated to [1e-10, 1 – 1e-10] to
avoid infinities.
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Since the integral in the PE runs across all possible (x, y)
pairs, sampling a broad range of data pairs in run B – as achieved
here by including nine experimental levels – should improve the
estimation of Err by ÊrrCV . It furthermore allows to dissect and
examine the PE for different experimental conditions. PEs were
computed for each participant (i.e., at fixed parameter values),
and averaged over to obtain a population estimate.

Model comparisons
The two experimental runs and PE assessment allows the

objective comparison of different models in their prediction
ability. Several models which varied in the assumption
about the computation of the delayed values (and therefore
the latent variable model) were evaluated in terms of PE
(see Supplementary Table 2). These included the common
hyperbolic model (Mazur, 1987; Davison and McCarthy,
1988), the exponential model (Samuelson, 1937), the constant
sensitivity (CS) model (Ebert and Prelec, 2007), the modified
hyperboloid model used for trial-generation (Mazur, 1987;
Rachlin, 2006), the quasi-hyperbolic model (Phelps and Pollak,
1968; Laibson, 1997), the (conventional) hyperboloid model
(Loewenstein and Prelec, 1992; Green et al., 1994), the double
exponential model (van den Bos and McClure, 2013), and
a control model to the modified hyperboloid model with
β in Eqn. (2) fixed to 1. Details on these models can
be found in the Supplementary Table 2. In addition, to
investigate the model fit on a single participant level, we
counted the number of individuals best described by each
model.

Behavioral homogeneity
Reductions in behavioral variation within experimental

conditions (i.e., increase in behavioral homogeneity) was tested
by comparing variances of immediate choice frequencies via
F-Tests across conditions of run B between the experiment and
the preliminary data reported in the Supplementary Text 2.

Test–retest reliability
Finally, test–retest reliability was assessed by correlating the

inferred parameters β, κ, s, as well as the discount factor(s)
across runs A and B via Pearson correlation coefficients.
Elements greater than 3 scaled median absolute deviation away
from the mean were removed for these analyses to avoid
spurious correlations.

Results

The experiment is divided into two runs, run A and run
B, where trials of run B were generated based on models
inferred on single participant behavior in run A. Run B trials
were generated such as to induce nine levels of discounting
probability, ranging from 0.1 to 0.9. Most of the following results

therefore concentrate on analyzing the success of inducing these
probabilities in run B.

In run A, we observed an average frequency of discounted
choices of 54% (±16%; see Figure 3A). Only 4% of our
sample showed less than 20% discounted choices, rendering
good conditions for model parameters to converge (see also
Supplementary Tables 1, 3 and Supplementary Text 1 for
further information on effects of gender, or associations to
subjective measurements and sociodemographic information).

Inferential statistics

In run B, observed discounting frequencies increased
with induced frequencies on a group and individual level
[group level slope: T(7) = 13.91, p < 0.001; Figure 3B;
individual slopes: T(49) = 16.51, p < 0.001; Figure 3C].
On average, the offset and slope parameters obtained from
the GLM came close to what was theoretically expected
by the models, with an observed average offset of −0.017
[±0.23; T(7) = −0.51, p = 0.63] and a slope of 0.80 (±0.34)
(where the expected offset and slope lay at 0.07 and 0.84,
see Figure 3B red line). Median RTs moreover followed
an inverse quadratic curve [significance of inverse quadratic
predictor within GLM: T(6) = 7.41, p < 0.001; Figure 3D] as
hypothesized.

Examining test–retest-reliability, the parameters β, s, and
the discount factor (evaluated at D = 90) were significantly
correlated between runs (β : r = 0.60, p < 0.001; s 0.38,
p = 0.006; discount factor: r = 0.85, p < 0.001; see also
Figure 3F), but not κ (r = 0.23, p = 0.21). The lack in
reliability of κ was likely due to intercorrelations between κ

and s known for this model (run A: r = −0.47, p < 0.001;
run B: r = −0.4, p = 0.005; see also Thome et al., 2022),
which, however, do not affect reliability of the discount
factors.

Behavioral homogeneity

To investigate whether the experimental framework was
able to reduce variance within the induced experimental
conditions, we compared variances within conditions of run
B to the preliminary experiment (see Supplementary Text
2). All variances were either lower than or similar to those
in the preliminary experiment (please also see Figure 3G for
choice frequency distributions). Significantly lower variances
were observed at frequencies 0.3 and 0.7 [0.3: F(48,49) = 2.03,
p = 0.015, 0.7: F(48,49) = 1.8, p = 0.044], as well as marginally
lower at 0.1, 0.2, 0.6, and 0.9 [0.1: F(48,49) = 1.63, p = 0.091, 0.2:
F(48,49) = 1.7, p = 0.067; 0.6: F(48,49) = 1.72, p = 0.062; 0.9:
F(48,49) = 1.76, p = 0.051]. Collectively, these results suggest
that the induction protocol generated graded behavior which
centered (comparatively) narrowly around model predictions.
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Prediction error assessment

Corroborating these findings, we observed a comparatively
low PE in run B for the applied modified hyperboloid
models, that is, a low deviation between observed responses
and responses predicted by the models inferred on run A
(Figure 4A left). Statistically, the PE was lower than for the
hyperbolic model (p = 0.046), the exponential model (p = 0.021),
the double exponential model (p = 0.012), and the control
model (p < 0.001) (and marginally lower than for the quasi-
hyperbolic model; p = 0.084). This was largely consistent
with the PE assessed on run A based on models inferred
on run B (Figure 4A right), although here, the CS model
performed significantly worse (p < 0.001), and the double-
exponential model comparably (p = 0.173). These differences in
the prediction ability of the evaluated models were not observed
when applying the Akaike information criterion (AIC) as an in-
sample error estimate of the PE (see Figure 4B), suggesting the
AIC was less adequate to distinguish between models.

Interestingly, when examining the PE in the different
experimental conditions of run B, we observed an increase in
PE for higher induction frequencies (Figure 3E). Also, on an
individual level, not all participants were best described by the
hyperboloid models. In fact, we observed a wide spread over all
models when counting the number of participants with lowest
PE in each model (Figure 4C).

Application to other latent variable
models

Our framework to generate an adaptive experimental design
was described and evaluated here based on the special case
where the behavior generating model is characterized by a time-
independent latent variable model and a simple binary response
variable model. We therefore briefly outline here how to proceed
when transferring the proposed framework to other cognitive
functions and applications in which (a) the latent variable model
is history-dependent (as for instance during learning), or (b) the
response variable model is multi-categorical (as in tasks with
more than two response options).

History-dependent latent variable model
We will first consider the case in which the computation

of values within the latent variable model depends on previous
values and is thus history dependent. As a simple example, we
assume to be learning values toward two stimuli u1 and u2 via a
Rescorla–Wagner type model in which our latent variable model
fλ now describes the formation of associative memory traces
(=values) in time as a function of the reward prediction error,

fλ (ui) := vt (ui) = vt−1 (ui)+ λ(rt (ui)− vt−1 (ui)) (5)

where λ is a learning rate parameter, rt (ui) is a reward
or outcome associated with choosing the respective stimulus
ui, i = {1, 2} , at time t, and vt−1(ui) is its prediction (Rescorla
and Wagner, 1972). Eqn. (5) comes down to a recursive
relationship in time which we can expand to its initial value:

vt (ui) = (λ

t−2∑
n = 0

γ nrt−n(ui))+γ
t−1v1(ui) (6),

where γ : = 1− λ

For the response model, we select between these two stimuli
such that we again end up with a Bernoulli process. To obtain
a condition for generating adaptive trials which will induce a
desired probability for selecting u1 at time t, denoted here by p1

(in analogy to selecting the immediate choice with probability
pimm), we need to insert Eqn. (6) into a sigmoid such as in Eqn.
(2), and then solve for p1. If, for simplicity, we further define
ci := λ

∑t−2
n = 1 γ

nrt−n(ui) (which collects the history of rewards
obtained for selecting stimulus i), we obtain the following trial-
generating condition for this history dependent model:

rt(u1) =
log( p1

1 −p1
)

λβ
+rt (u2)

+
c2−c1+γ

t−1v1 (u2)− γ
t−1v1(u1)

λ
(7)

Eqn. (7) also makes sense intuitively. If we consider no
prior knowledge [i.e., v1 (ui) = 0] and no reward history
(i.e., ci = 0) and aim at generating trials which induce equal
response probabilities for both options, we need to equalize the
two rewards. If, in contrast, we have a higher initial value for
selecting stimulus 2, we will need to add reward to stimulus 1.
Finally, if we have already observed multiple rewards, the initial
values will lose and reward history (reflected in ci) will gain
importance. Such adaptive approaches may prove particularly
suitable to address and control inter-individual variability in
memory formation (e.g., Lonsdorf and Merz, 2017), and serve
as an effective alternative (or addition) to threshold-based
adaptation procedures.

Multi-categorical response model
In the second case, we consider a history-independent latent

variable model coupled to a multiple choice response model.
In such a case, the response probability pk of a response
yk, k = 1, ...,K, can be modeled in terms of a softmax function
as pk =

eβvk∑
i eβvi

, and the likelihood function will now follow a
multinomial distribution. If we want to generate trials which will
induce predetermined probabilities pk for response options yk

with associated values vk, we therefore obtain the trial generating
condition(s)

vk =
log
(∑K

j 6= k eβvj
)

β
+

log( pk
1 −pk

)

β
.
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FIGURE 4

Model comparisons. (A) Left: PE in run B based on models inferred on run A for different models (x-axis). Right: PE in run A based on models
inferred on run B for different models (x-axis). (B) AIC evaluated on run B (left) and run A (right). (C) Number of individuals (y-axis) with lowest PE
for each model (x-axis) for run B (top) and run A (bottom), applying a tolerance threshold of 0.01. Cases with multiple minima were counted
multiple times.

Since in this multi-categorical case, we aim at controlling the
probability of all K options simultaneously, we will also need to
solve these K equations simultaneously, for instance, by some
form of constrained optimization.

Discussion

A general challenge in psychological and other sciences
is that we want to uncover processes that are not directly
observable, also termed latent processes. We draw inferences
on these processes by observing behavior. In this context,
experiments serve to generate conditions, that is, experimental
manipulations, which differentially engage the latent process
and are hypothesized to manifest in behavioral differences which
allows us to study its nature in more detail. To draw an
accurate inference on the underlying process based on these
manipulations, we need to rely on our experiment and the latent
process model being valid.

In the current work, we propose a framework which
leverages interpretable probabilistic behavioral latent variable
models to guide experimental manipulations and address the
assessment of validity. By expressing the process in relation
to the experiment and linking it probabilistically to behavior,

these models allow us to generate precise and falsifiable
hypotheses, i.e., predictions, and tune experimental variables to
address these hypotheses (Thome et al., 2022). Predictions in
this context are formulated as observable behavioral response
probabilities. Assessing the deviation of predictions from out-
of-sample observations facilitates the objective assessment of
predictive validity. Here we apply the proposed approach to
predict and induce graded choice frequencies on an individual
participant level.

We illustrate the procedure in the context of delay
discounting. Delay discounting is an influential psychological
process, related to a variety of different traits such as impulsivity
(Keidel et al., 2021), self-control (Levitt et al., 2020), intelligence
(Shamosh and Gray, 2008), socio-economic status (Kohler et al.,
2022), or personality (Keidel et al., 2021). It measures the
tendency of an individual to devalue distant as compared to
close future outcomes (Ainslie, 1975; Frederick et al., 2002;
da Matta et al., 2012). Overly steep discounting has moreover
been used to explain maladaptive behavior in addiction
(Rabin and O’Donoghue, 1999; O’Donoghue and Rabin, 2000)
and alcohol risk (Kohler et al., 2022), serving as a biomarker
for the disease (Story et al., 2014; Bickel, 2015; Bailey et al.,
2021; Cheng et al., 2021). Delay discounting is therefore of
wide interest to both psychology and psychiatry. The general
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principle of the proposed framework in the context of delay
discounting is that since we can infer probabilistic models
which formalize how rewards are discounted as a function of
delays and rewards (the cognitive process), then if we know the
function (by model inference), we may determine how to vary
experimental components so as to influence behavior.

We applied the proposed model-based approach to invoke
discounting probabilities ranging from 0.1 to 0.9 in an (online)
monetary reward discounting paradigm in a sample of healthy
individuals. In line with model predictions, we observed a
continuous (mostly linear) average increase in discounting
frequencies coinciding with induced frequencies. Analyses of
mean RT – as indirect measure of processing time – supported
this notion as it followed an inverse U-function with higher
RT toward trials with induced frequencies close to 0.5. This
is to be expected since trials which induce equal or close
to equal probabilities for immediate and delayed options are
more difficult and may thus require more processing time (e.g.,
Ratcliff and Rouder, 1998). We also observed high test–retest
reliability for the discount factor, replicating previous findings
(Thome et al., 2022).

The model-based framework was successful at significantly
reducing between-subject variance within several of the
manipulated experimental conditions. This was observed
in terms of lower behavioral variability in run B compared
to a preliminary experiment with similar settings (see
Supplementary Text 2). Low variance within experimental
conditions is a prerequisite to obtain high power in associated
statistical tests (e.g., Winer, 1971). In that sense, the proposed
framework may also be seen as a tool which converts inter-
subject variability into homogeneous ‘treatment conditions,’
increasing statistical power of an experimental design (Winer,
1971; Jackson, 2011; Boslaugh, 2012). At the same time, it
does not eliminate important between-subject variability
per se (Hedge et al., 2018; Goodhew and Edwards, 2019).
Rather, between-subject variance is systematically relocated
and captured in the (interpretable) model parameters and
experimental variations. Relationships of this between-subject
variance to other variables such as brain mechanisms or societal
factors can therefore be explored.

The main strengths of the present framework though are the
possibility to induce graded levels of behavior and to formally
validate the trial-generating model and related models which
reflect variations of a latent process. Assessing graded levels of
behavioral probability benefits the resolution of the cognitive
process at a fine-grained level. This is because behavioral
probabilities reflect the intensity by which a cognitive process is
engaged (in this example, the strength of temporal discounting).
By studying fine gradings of behavioral probability, we may
study the process on a dimensional level from low to high
intensity. These intensities may be related, for instance, to
neuro(physio)logical recordings to map the finely resolved
latent process onto neural mechanisms (e.g., Ripke et al., 2014;

Grosskopf et al., 2021, p. 20; Batsikadze et al., 2022). This
may be of particular importance to psychiatry, where we
aim at slowly moving away from studying psychiatric entities
to stratifying patients in terms of dimensional alterations in
different functional domains (RDOC; Insel et al., 2010).

The validation of the framework is realized by the
implementation of two consecutive experimental runs which
permit an estimation of the PE by cross-validation. We exploited
this arrangement to validate the employed model by assessing its
PE and comparing it to several discounting models proposed in
the literature. The closely related hyperboloid models and the
constant sensitivity model generated particularly low average
PEs whereas the most commonly applied hyperbolic and
exponential models performed comparatively poorly (in line
with previous observations; Thome et al., 2022).

A modified hyperboloid (control) model with choice
parameter β fixed to 1 performed particularly poorly (see
Figure 4A). This emphasizes the importance of tuning β to the
individual participant for a valid behavioral induction protocol.
As outlined in the Supplementary Text 2, recovering β with
high precision comes at the cost of increasing trial numbers.
This is in line with a recent study by Pooseh et al. (2018)
which performed simulation analyses to illustrate that at least
50–120 iterations are necessary for parameters to converge to
their true values even when using an adaptive model-based
Bayesian delay discounting framework. It challenges recent
methods which infer discounting parameters in very few trials.
For instance, Ahn et al. (2020) proposed a method to infer
hyperbolic discounting models in less than 10 trials. While the
authors demonstrate remarkably high reliability in measuring
κ , they acknowledge poor reliability in β . It remains unclear
how recovering models on the basis of few trials affects validity
of other adaptive model-based designs. Unfortunately, most
studies which have developed adaptive designs do not provide
direct evidence for model validity, that is, they do not directly
report predicted and actually induced response frequencies,
(Monterosso et al., 2007; Cavagnaro et al., 2016; Koffarnus et al.,
2017; Pooseh et al., 2018; Ahn et al., 2020), making it difficult
to draw conclusions on validity of the available methods more
generally.

An interesting insight of the present study is that model
validity decreased particularly around hard trials, which are the
main target of most other adaptive delay discounting methods
(e.g., Ripke et al., 2012; Ahn et al., 2020; Knorr et al., 2020),
and around larger immediate choice frequencies. One possible
explanation for PE increases around hard trials is that the
slope of the probability curve is steepest around hard choices
(see Figure 2A where vimm = vdel). Small biases in the
inference of discounted values (e.g., due to biases in parameter
estimates) have the largest effect on changes in immediate choice
probabilities, possibly resulting in higher behavioral variability
in these conditions. This once more emphasizes the importance
of an unbiased valid recovery of model parameters.

Frontiers in Neuroscience 10 frontiersin.org

38

https://doi.org/10.3389/fnins.2022.1077735
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1077735 December 30, 2022 Time: 16:38 # 11

Thome et al. 10.3389/fnins.2022.1077735

While it remains unclear why higher frequencies were
associated with a higher PE, the example shows how dissecting
the PE may uncover domains at which a method is less valid. In
fact, a particular advantage of the proposed adaptive approach
is that it allows to systematically perturb the different factors
relevant to a choice process, obtain model-based predictions
for these perturbations, and then validate the model thereon.
For instance, in the present example, one could analogously
vary the delay period (rather than immediate reward), and –
using the CV approach – formally validate a broad range of the
domain the discounting function is defined on. Effectively, we
can thereby improve the criterion we aim at predicting to assess
predictive validity.

In sum, the model evaluation results illustrate how the
framework may be leveraged to select among a set of available
models delineating variations of a given process model and
identify domains at which a model may fail based on out-of-
sample approximations of the PE (Hastie et al., 2009; Efron,
2021; Koppe et al., 2021). In the same way it could be used to
identify and validate novel models or, differentiate a given model
to alternative models (implicating discriminant validity). Out-
of-sample predictions are crucial for validation since in-sample
error estimates (as still commonly applied) have repeatedly been
shown to be strongly biased (Hurvich and Tsai, 1989; Kuha,
2004; Hastie et al., 2009). In the present context, the AIC did not
discriminate well between models whereas the out-of-sample
PE did.

The present study separates model inference which is always
based on the same constant set of trials in each participant (run
A), from model-based prediction and manipulation (performed
on run B). This differs from iterative approaches – most
often employed in psychophysics to identify a psychometric
function – which generate successive trials online based on an
underlying (often simple sigmoid) model which is assumed to be
true (Leek, 2001; Shen and Richards, 2012; see also Pooseh et al.,
2018). Such approaches are ill-suited to compare an applied
model to related models since the model-based procedure
already biases trial selection and may moreover result in unequal
trials and trial numbers per participant. Biased trial selections
may likely favor some models over others (Owen et al., 2021;
see also pitfalls of successive procedures Leek, 2001; Shen and
Richards, 2012).

Historically, psychophysics has originated in aspirations
to identify objective ‘laws of nature’ which map physical
objects to sensation, i.e., rules which are thought to apply to
everyone such as the Weber–Fechner law or Steven’s power
law (Weber, 1835; Fechner, 1860; Stevens, 1957). Physical
properties of experimental stimuli are therefore also typically
directly mapped to detection or discrimination probabilities
without an additional subjective transformation in between.
Although latent variable models have more recently been
applied to detect inter-individual differences (e.g., Taubert et al.,
2012; Chakroborty et al., 2021; Owen et al., 2021), they are
typically not used to generate adaptive trials (although see

Thomas et al., 2021). Evaluating among a larger class of different
subjective models has moreover not been of primary concern.

The latter may be specifically relevant to scientific disciplines
which focus on uncovering inter-individual differences in
(subjectively modulated) cognitive processes such as in the field
of psychiatry for instance (e.g., Kanai and Rees, 2011). Here
the focus often lies on how individuals (differentially) learn,
interpret, or attribute information and how these processes may
be subjectively modulated or biased (e.g., Koppe et al., 2017). In
the present study, inter-individual differences are also supported
by the observation of a high spread in the assignment of different
discounting models to the individual participants, indicating
different participants may best be described by slightly different
ways of assigning subjective value to delayed outcomes (see also
Cavagnaro et al., 2016).

While illustrated here on monetary delay discounting, the
proposed framework may be adopted to many other contexts.
Other popular and widely applied examples of interpretable
latent variable models are for instance variants of reinforcement
learning (RL) models which formalize the latent ‘learning’
process (e.g., Durstewitz et al., 2016; Sutton and Barto, 2018),
and drift diffusion models which formalize latent evidence
accumulation (Ratcliff, 1978). We outline here how to proceed
in the case of reinforcement learning where latent variable
models are history-dependent, as well as multi-categorical
response models, where responses are not simply binary. To
further name a few application examples in these contexts:
by adapting the design to environmental stimuli, one could
study the incentives at which individuals will cease to discount
future environmental outcomes with a given probability (i.e.,
certainty). Translating the paradigm to different cognitive
processes such as associative memory, one may aim at adjusting
stimuli to homogenize associative memory traces or induce
comparable learning speeds, which have been found to be highly
heterogeneous (see e.g., Lonsdorf and Merz, 2017). Finally, in
experiments of social interaction, one could even conceive of
constructing artificial agents that follow individualized model-
based behavioral suggestions which aim at inducing cooperative
behavior in their interaction partner. This could for instance
prove useful when training social skills or reducing negative
biases in a therapeutic context.

Conclusion

We propose a generic framework to manipulate and
validate experimental conditions based on a specific class
of interpretable behavioral latent variable models. These
models may be leveraged to generate precise and falsifiable
behavioral predictions which may be used to evoke graded
and homogeneous choice probabilities. Statistical learning
theory formally defines how to assess the degree of agreement
between observations and predictions and thus how indicative
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observations are of the latent process, sometimes referred to
as predictive validity (Yarkoni and Westfall, 2017). Assessing
validity in terms of PEs in this context has a number of
advantages. For one, since the PE may be used to uncover
domains at which an instrument may fail to be valid, it may
provide insights into how an instrument or model may be
improved. Also, a low PE provides evidence for the latent
process model itself, as experimental manipulations follow
proposed hypotheses. As illustrated earlier, this paves the way
to identify novel models, delineate differences to alternative
models, or improve current models by model selection. Finally,
improving validity in the above mentioned sense should help
us homogenize behavior between participants, as a more valid
experiment will generate more precise behavioral predictions by
which participants may be grouped. The proposed approach can
in principle be applied with little adaptation to other cognitive
domains including learning and other types of decision making,
as also outlined here.
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University, Xi’an, Shaanxi, China, 6Department of Neurology, People’s Hospital of Henan University,
Zhengzhou, Henan, China

Objective: Cognitive impairment (CI) is a common disorder in patients with

epilepsy (PWEs). Objective assessment method for diagnosing CI in PWEs

would be beneficial in reality. This study proposed to construct a diagnostic

model for CI in PWEs using the clinical and the phase locking value (PLV)

functional connectivity features of the electroencephalogram (EEG).

Methods: PWEs who met the inclusion and exclusion criteria were divided

into a cognitively normal (CON) group (n = 55) and a CI group (n = 76). The

23 clinical features and 684 PLVEEG features at the time of patient visit were

screened and ranked using the Fisher score. Adaptive Boosting (AdaBoost) and

Gradient Boosting Decision Tree (GBDT) were used as algorithms to construct

diagnostic models of CI in PWEs either with pure clinical features, pure PLVEEG

features, or combined clinical and PLVEEG features. The performance of these

models was assessed using a five-fold cross-validation method.

Results: GBDT-built model with combined clinical and PLVEEG features

performed the best with accuracy, precision, recall, F1-score, and an area

under the curve (AUC) of 90.11, 93.40, 89.50, 91.39, and 0.95%. The top

5 features found to influence the model performance based on the Fisher

scores were the magnetic resonance imaging (MRI) findings of the head for
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abnormalities, educational attainment, PLVEEG in the beta (β)-band C3-F4,

seizure frequency, and PLVEEG in theta (θ)-band Fp1-Fz. A total of 12 of the

top 5% of features exhibited statistically different PLVEEG features, while eight

of which were PLVEEG features in the θ band.

Conclusion: The model constructed from the combined clinical and PLVEEG

features could effectively identify CI in PWEs and possess the potential

as a useful objective evaluation method. The PLVEEG in the θ band

could be a potential biomarker for the complementary diagnosis of CI

comorbid with epilepsy.

KEYWORDS

epilepsy, cognitive impairment, EEG, phase locking value, GBDT, AdaBoost,
diagnostic model, Fisher score

Introduction

Cognitive impairment (CI) is one of the very common
comorbidities occurring in 70–80% of patients with epilepsy
(PWEs) (Helmstaedter and Witt, 2017). Previous studies have
revealed several factors that may induce CI in PWEs, including
age at onset, duration of illness, surgical head trauma, perinatal
injury, temporal lobe epilepsy, hippocampal abnormalities,
seizures, status epilepticus, medications, and psychiatric factors
(Black et al., 2010; Titiz et al., 2014; Vrinda et al., 2019;
Jarcuskova et al., 2020; Wang et al., 2020; Novak et al.,
2022a). Furthermore, interictal epileptiform discharges (IEDs)
in electroencephalogram (EEG) recordings are an important
indicator of CI in PWEs (Ung et al., 2017; Gavrilovic et al., 2019;
Balcik et al., 2020), but the exact role of EEG in diagnosing CI in
such patients has rarely been studied.

Cognitive scales serve as the primary method for diagnosing
CI, with the Montreal Cognitive Assessment (MoCA) scale
considered the most appropriate and more sensitive than the
Mini-Mental State Examination (MMSE) scale for screening
cognitive impairment in epileptic individuals (Montano-Lozada
et al., 2021; Huang et al., 2022; Novak et al., 2022b). Notably,
the MoCA-30 point scale is superior to the MoCA-20 scale
for CI assessment in clinical practices (Bergeron et al., 2017;
Del Brutto et al., 2019; Rodrigues et al., 2020; Melikyan et al.,
2021). However, the scale has some shortcomings, most notably
its susceptibility to subjective factors from both patients and
physicians, which may lead to errors in the test. Although
the MoCA scale is well suited to screening for CI in epileptic
patients, however, it is a generic neurological screening tool

Abbreviations: PWEs, patients with epilepsy; MoCA, Montreal Cognitive
Assessment; CI, cognitive impairment; CON, cognitively normal; EEG,
electroencephalogram; PLV, phase locking value; AdaBoost, Adaptive
Boosting; GBDT, Gradient Boosting Decision Tree; MRI, magnetic
resonance imaging; AUC, area under the curve.

for cognitive assessments. Therefore, there is an urgent need
for developing an efficient objective assessment indicator for
cognitive functions, specifically for individuals with epileptic
symptoms.

Electroencephalogram plays a vital role in the diagnosis and
management of epilepsy, as it provides an objective and accurate
response to functional changes in the brain, thus avoiding the
influence of subjective factors in the patient. A growing body
of research has demonstrated a strong correlation between
altered cognitive functions and the neural connectivity of
different brain regions (He et al., 2018; Fadaie et al., 2021;
Duma et al., 2022). Functional connectivity is a type of neural
connectivity that mediates the temporal correlation between
neurophysiological events at different brain regions and is
primarily used to measure the degree of dependency and
correlation between the signals. The phase locking value (PLV)
is one of the quantitative indicators for functional connectivity
(Elahian et al., 2017; Duma et al., 2021). Furthermore, EEG-
based functional connectivity is employed to predict vagus nerve
stimulation (VNS) responsiveness in children with refractory
epilepsies (Ma et al., 2022), as well as to diagnose CI in patients
comorbid with Parkinson’s disease (PD) (Cai et al., 2021).
However, this approach has not been applied to the diagnosis
of cognitive dysfunctions in PWEs. The Adaptive Boosting
(AdaBoost) and Gradient-Boosted Decision Trees (GBDT) are
classic algorithms for ensemble learning (EL) and have been
widely used in areas of neurologic disorders such as epilepsy,
Alzheimer’s disease (AD), PD, etc. (Peng et al., 2020; Wenbo
et al., 2021; Zhang S. et al., 2021; Edeh et al., 2022). These
follow the models constructed based on the clinical and PLVEEG

functional connectivity features of EL algorithms and have
shown the potential of an efficient objective evaluation tool for
diagnosing CI in PWEs.

Here, we used EL algorithms to construct three distinct
models for the diagnosis of CI in PWEs, purely based on the
clinical and PLVEEG features. Additionally, we investigated to
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identify potential biomarkers for the diagnosis of cognitive
functions in PWEs.

Materials and methods

Selection of the participants

A total of 131 PWEs from the outpatient clinic of the
Epilepsy Center of Henan Provincial People’s Hospital between
June 2018 and May 2022 were retrospectively screened and
enrolled in the study. The inclusion criteria were: (1) the patient
must meet the criteria of the International League Against
Epilepsy (ILAE) for the diagnosis of epilepsy, seizures, and other
epileptic syndromes (Fisher et al., 2014); (2) the age range at
the time of consultation must be 12–60 years; (3) the patient
must had a MoCA test at the time of consultation and should
not have any history of MoCA scale testing in the last year;
(4) at least 20 min of outpatient scalp EEG at the time of
consultation, along with the availability of retrospective EEG
data; and (5) the patient must have a complete clinical history
and previous cranial MRI findings. Subjects were excluded
if: (1) the patient’s age was less than 12 years or more than
60 years at the time of consultation; (2) the patient was
diagnosed with psychogenic non-epileptic seizures, or epilepsy
syndrome; (3) the patient was treated with drugs other than
antiseizures medications that affect cognitive functions, such
as benzodiazepines, anti-psychotics, and memory-enhancing
drugs, at the time of consultation; and (4) the patient was
missing the 20-min EEG recording data at the time of the
enrollment.

Based on the patients’ MoCA scores during their visits to
the epilepsy clinic, 131 PWEs were recruited for the study
and were subsequently divided into the control (CON) group
(MoCA ≥ 26; n = 55) and the CI group (MoCA < 26; n = 76)
(Figure 1 and Table 1). The study was approved by the Ethics
Committee of Henan Provincial People’s Hospital and all eligible
subjects signed the written informed consent before their final
recruitment to the study.

Clinical features

Based on the patients’ medical history and clinical
investigations at the time of the current visit to the epilepsy
clinic, 23 clinical features were identified, in conjunction with
previous studies: (1) age; (2) age at the first onset; (3) time from
the first onset to current visit (Black et al., 2010); (4) gender;
(5) family history of epilepsy (defined as whether a first or
second degree relative had epilepsy); (6) history of previous head
surgery or trauma; (7) history of previous the central nervous
system (CNS) infections; (8) history of perinatal injuries due to

premature birth, obstructed labor, hypoxia, and/or intracranial
hematoma; (9) TLE; (10) MRI of the head for abnormalities;
(11) hippocampal atrophy, or sclerosis (Titiz et al., 2014); (12)
different types of seizures like generalized, focal, or both; (13)
status epilepticus; (14) generalized tonic-clonic seizures (GTCS);
(15) seizure frequency in the last year (Wang et al., 2020)
(rare: ≤1 event; occasional: 2–3 events; frequent: ≥4 events);
(16) class of antiseizures medications (Wang et al., 2020); (17)
valproate (VPA) therapy in the last year; (18) phenytoin (PHT)
therapy in the last year; (19) topiramate (TPM) therapy in the
last year; (20) aura of epilepsy; (21) anxiety [according to the
Hamilton Anxiety Inventory (HAI) scale rating: none, possible,
definitely, or definitely obvious]; (22) depression [according to
the Hamilton Depression Inventory (HDI) scale rating: none,
possible, or definite]; and (23) educational attainment (≤6 years,
7–9 years, 10–12 years, or ≥13 years) (Table 2).

EEG acquisition and preprocessing

All patients in both CON and CI groups had scalp EEG
recordings monitored for at least 20 min during this visit.
All tests were performed in the awake closed-eye state, while
EEG recordings performed during the sleep and awake open-
eye states were excluded. The EEG-1200◦C machine (Nihon
Kohden, Tokyo, Japan), with a sampling frequency of 256 Hz, an
amplification multiplier of 1000×, a low-pass filter of 70 Hz, and
a high-pass filter of 0.5 Hz, was used for this study. This system
uniformly used the international 10–20 lead system for placing
the scalp electrodes, including 19 recording leads, namely Fp1,
Fp2, Fz, Cz, Pz, C3, C4, T3, T4, T5, T6, F3, F4, F7, F8, O1, O2,
P3, and P4, and 2 reference leads A1 and A2.

Preprocessing of EEG data was performed using the
EEGLAB toolbox in MATLAB software (Mathworks Inc., USA)
(Delorme and Makeig, 2004). Briefly, the EEG recordings were
first filtered to extract only the 0.5–30 Hz recordings. Afterward,
the artifacts of eye movements in electromyogram (EMG) were
removed using independent component analysis. Finally, the
20-min EEG recording of each patient was intercepted into 6 s
segments, and PLVEEG features were extracted.

Parameters setting for AdaBoost and
GBDT

AdaBoost and GBDT are typical methods of boosting
algorithm. In the AdaBoost model, the number and learning rate
of base classifiers were also determined by grid search, ranging
from 50 to 150 and 0 to 1, respectively and the algorithm of
AdaBoost set to SAMME.R. The base classifier of AdaBoost
was SVM, the kernel was RBF and the C and gamma of which
were also determined by grid search, ranging from 2−10 to
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FIGURE 1

Flow chart. PWEs, patients with epilepsy; MoCA, Montreal Cognitive Assessment; EEG, electroencephalogram; CI, cognitive impairment; CON,
cognitively normal; EL, ensemble learning.

TABLE 1 Types of epilepsy in patients with epilepsy used in the study.

Epil. type Unitemp. Bitemp. Par. Occ. Central Front. Undetermined

CON (n = 55) 25 2 0 9 8 2 9

CI (n = 76) 44 4 3 7 7 3 8

Epil. type, epilepsy type; Unitemp, unitemporal; Bitemp, bitemporal; Par, parietal; Occ, occipital; Front, frontal.

210 and 0.0001 to 10, respectively. Other parameters were set
to default values. In the GBDT model, the number, learning
rate, and subsample of base classifiers were also determined
by grid search, ranging from 50 to 150, 0 to 1 and 0.5 to 0.8,
respectively. The base classifier of GBDT was CART, the max
depth and the max leaf nodes of which were also determined by
grid, search ranging from 10 to 15 and 10 to 30, respectively.
Other parameters were set to default values. In order to reduce
the contingency and improve the generalization ability, the
five-fold cross-validation method was used to evaluate the
performance of the model and select the best model. All
of the above algorithms were programmed and realized by
sklearn in PyCharm IDE using Python 3.7. The computer
system is windows 10 professional, the CPU is Inter Core i7-
10700K Processor @3.9 GHz, and the RAM is 32 GB. The final
parameters of the model are shown in Table 3.

PLV-based functional connectivity
features

Phase locking value is a type of connection characteristic,
which quantifies the degree of phase synchronization between
the two EEG signals (Aydore et al., 2013; Leguia et al., 2021).
The Hilbert transform was first applied to the preprocessed EEG
data to calculate the instantaneous amplitude and instantaneous
phase for each lead site. The PLV indicator was then calculated
using the following formula:

PLV t =
1
N

∣∣∣∣∣
N∑

n = 1

exp
(
jθ (t, n)

)∣∣∣∣∣
Where N denoted the number of EEG segments per

subject, θ (t, n) presented the instantaneous phase difference
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TABLE 2 Demographic information and clinical characteristics.

Clinical features CON group (n = 55) CI group (n = 76) P-value

Age. y, mean± SD 26.38± 10.49 31.34± 13.93 0.061

Age at first onset. y, mean± SD 18.76± 11.02 20.71± 14.74 0.788

Time from first onset to current visit. y, mean± SD 7.44± 7.79 10.63± 8.14 0.009*

Female 24 39 0.385

Family history of epilepsy. Y, n 2 5 0.730

History of previous head surgery or trauma. Y, n 6 17 0.089

History of previous CNS infections. Y, n 8 18 0.196

History of perinatal injury. Y, n 4 8 0.741

TLE. Y, n 27 48 0.108

MRI of the head for abnormalities. Y, n 28 51 0.061

Hippocampal atrophy, sclerosis. Y, n 14 37 0.004*

Seizure type, n 0.875

Generalized 13 21

Focal 7 9

Both 35 46

Status epilepticus. Y, n 4 15 0.080

GTCS. Y, n 45 67 0.309

Seizure frequency, n 0.006*

Rare 17 12

Occasionally 15 11

Frequent 23 53

Class of antiepileptic drugs ≥2. Y, n 18 41 0.016*

VPA. Y, n 17 40 0.013*

PTH. Y, n 1 2 1.000

TPM. Y, n 3 4 1.000

Aura of epilepsy. Y, n 22 24 0.319

Anxiety, n 0.444

None 14 12

Possible 13 21

Definitely 25 35

Definitely obvious 3 8

Depression, n 0.555

None 23 25

Possible 31 48

Definitely 1 3

Educational attainment, n <0.001*

≤6 y 1 23

7–9 y 11 18

10–12 y 15 19

≥13 y 28 16

y, year; Y, yes; CNS, central nervous system; TLE, temporal lobe epilepsy; MRI, magnetic resonance imaging; GTCS, generalized tonic-clonic seizures; VPA, valproate; PHT, phenytoin,
TPM, topiramate.
P < 0.05 is considered as statistically significant. *The features that have statistically significance. For continuous variables, independent-samples t-test or Mann–Whitney U-test was
carried out. For categorical variables, chi-square test or Fisher’s exact test were carried out.
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TABLE 3 The parameters of the models.

AdaBoost Value GBDT Value

Clinical feature-based model

Base_estimator SVC Base_estimator CART

N_estimators 60 N_estimators 90

Learning_rate 0.2 Learning_rate 0.5

C 1024 Subsample 0.8

Gamma 0.0025 Max_depth 8

Kernel RBF Max_leaf_nodes 15

PLVEEG feature-based model

base_estimator SVC Base_estimator CART

N_estimators 100 N_estimators 90

Learning_rate 0.1 Learning_rate 0.2

C 256 Subsample 0.7

Gamma 0.25 Max_depth 10

Kernel RBF Max_leaf_nodes 13

Combined clinical-PLVEEG feature-based model

Base_estimator SVC Base_estimator CART

N_estimators 80 N_estimators 110

Learning_rate 0.3 Learning_rate 0.3

C 64 Subsample 0.7

Gamma 0.0125 Max_depth 12

Kernel RBF Max_leaf_nodes 15

between different leads of the same segment, exp
(
jθ (t, n)

)
represented the complex signal obtained with the help of Euler’s
formula using phase, and

∑N
n 1 exp

(
jθ (t, n)

)
represented the

superimposed value of the complex signals of all segments
of a patient, which was averaged to obtain the PLV feature
value of a subject.

The PLV feature was then quantized into a value in the
range [0,1]. When PLV = 1, the phase difference between the
two signals was constant, i.e., perfectly synchronized. When
PLV = 0, the phase difference was uniformly distributed over the
complex plane unit circle according to time, indicating that there
was no synchronization. Between 0 and 1, the signal difference
exhibited an “overall convergence” nature, such that as PLV
tended to 1, two close signals exhibited better synchronization.

Since it would be more accurate to calculate the
instantaneous phase of narrowband signals using the Hilbert
transform, the preprocessed EEG segments were divided into
four narrow bands according to different frequency ranges,
namely delta (δ) (1–4 Hz), θ (4–7), alpha (α) (8–13 Hz), and β

(14–30 Hz) bands. The PLVEEG values of these four frequency
bands were calculated separately for 200 windows (6 s) of each
subject’s 20-min EEG recording. Finally, 200 PLVEEG feature
matrices of 19 × 19 in each of the four frequency bands were
obtained for each subject and averaged into a single matrix

for each frequeny band, so that each subject ended up with a
total of four feature matrices for four frequency bands. These
PLVEEG feature matrices would be further filtered and sorted
characterized (Figure 2).

Feature extraction

As shown earlier, 23 clinical features were selected based on
the previous studies and contents of available medical records.
The EEG records of all subjects were divided into four different
frequency bands. For each subject’s 200 6 s segments in any
of the frequency bands, 19 leads were paired as two by two,
and a 19 × 19 PLVEEG functional connectivity matrix was
calculated for each segment’s EEG, excluding duplicate PLVEEG

features that made comparisons with the leads themselves, to
obtain a total of 171 PLVEEG features for the EEG recordings
of a given subject. The PLVEEG features from 80 segments
were then averaged. A total of 707 clinical-PLVEEG features,
including 684 PLVEEG and 23 clinical features, were obtained
in the four frequency bands for each subject. However, it was
unknown which features were valid for a particular learning
algorithm, and for this reason, we needed to filter all the features
to select those that were beneficial to the learning algorithm.
Filtering features not only optimized the algorithm to make
the model more generalized but also reduced the running time
of the algorithm resolving overfitting issues and the difficulty
of the learning task, thereby improving the efficiency and the
interpretability of the model.

Fisher score is a common feature filtering method (Zhang J.
et al., 2021). Features with a strong discriminatory performance
exhibit the smallest possible intra-class distance and the largest
possible inter-class distance. The higher the inter-class variance
and the lower the intra-class variance of PLVEEG features in
the same frequency band from different patients, the higher
the Fisher score value is. We ranked the features from the
largest to the smallest, based on their Fisher score values,
with the higher ranked features being theoretically more
discriminative.

Modeling process

The classification models were trained using AdaBoost and
GBDT platforms as classifiers. Models were constructed based
on the pure clinical features, PLVEEG features, and combined
clinical- PLVEEG features, as well. To improve the classification
performance, generalization skills, and speed of each model,
Fisher scores were used to filter the features. Five-fold cross-
validation was used to construct the classification model, using
80% of the two sets of data each time, and the remaining 20% of
the data was used for model validation.
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FIGURE 2

Mean PLVEEG features in the four frequency bands for the CON and the CI groups of PWEs. PWEs, patients with epilepsy; PLV, phase locking
value; CI, cognitive impairment; CON, cognitively normal.

Statistical analysis

To compare the variability of clinical and normalized
PLVEEG features between the CON and CI groups, the
quantitative data were first tested for normality using the
Shapiro–Wilk test, followed by a comparison of the data
with a normal distribution expressed as mean ± standard
deviation (SD) using the independent samples t-test, and the
Mann–Whitney U-test was applied for data with an abnormal
distribution expressed as median ± interquartile range (IQR).
For qualitative information, the chi-squared (χ2) test or Fisher’s
exact test was used to assess the variability between the two data
sets. A p- or p’- value of < 0.05 was considered statistically
significant, where p’ referred to a p-value that was corrected by
the false discovery rate (FDR) correction. We used SPSS v26.0
for all kinds of statistical analyses.

Results

Clinical feature-based model
construction

Of the 23 clinical features, we used Fisher scores to
filter the top 15 clinical features in terms of weightage to
construct the diagnostic model (Table 4A). The selected features
were educational attainment, seizure frequency, VPA, class of
antiseizures medications, hippocampal atrophy and sclerosis,
age, status epilepticus, MRI of the head for abnormalities, time
from the first onset to the current visit, history of previous
CNS infections, TLE, anxiety, age at the first onset, history of
previous head surgeries or trauma, and gender. The features
that showed significant statistical differences between the two

groups were educational attainment, seizure frequency, VPA,
class of antiseizures medications, hippocampal atrophy and
sclerosis, and time from the first onset to the current visit. In the
classification model, constructed based on the clinical features
using AdaBoost, the model performances after a five-fold cross-
validation for accuracy, precision, recall, F1-score, and AUC
were 67.89, 66.69, 91.57, 76.71, and 0.75%, respectively. While,
in case of the classification model built by GBDT, the final
performances after cross-validation for accuracy, precision,
recall, F1-score, and AUC were, respectively, 68.09, 70.80, 75.84,
72.62, and 0.76% (Figure 3 and Figure 4A). Therefore, these
two algorithms were found to differ slightly in the construction
of a model for identifying impaired consciousness in epilepsy
patients using the clinical features only.

PLVEEG feature-based model
construction

A total of 171 PLVEEG features were extracted for each of
the 4 bands of the 20-min EEG recording for each patient,
accounting for a total of 684 features (Table 4B). Then the
model was constructed using those features with Fisher scores
in the top 150 ranks. In the AdaBoost-based classification
model, the model performance after a five-fold cross-validation
for accuracy, precision, recall, F1-score, and AUC were 83.93,
84.76, 88.08, 86.30, and 0.91%, respectively. Likewise, for the
GBDT-based classification model, the final performances after
the cross-validation for accuracy, precision, recall, F1-score, and
AUC were 88.58, 92.17, 88.17, 90.05, and 0.94%, respectively
(Figure 3 and Figure 4B). Importantly, the GBDT was found to
outperform AdaBoost in classification model construction using
PLVEEG features, demonstrating that the GBDT-based model
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TABLE 4 Ranking table of features affecting the model performance.

Rank Clinic feature FS-value Rank Clinic feature FS-value

(A) Top 15 features affecting the pure clinical feature-based model.

1 Educational attainment 0.2092 9 Time from first onset to
current visit

0.0257

2 Seizure frequency 0.1037 10 History of previous CNS
infections

0.0254

3 VPA 0.1033 11 TLE 0.0172

4 Class of antiepileptic drugs 0.0673 12 Anxiety 0.0134

5 Hippocampal atrophy,
sclerosis

0.0558 13 Age at first onset 0.0128

6 Age 0.0453 14 History of previous head
surgery or trauma

0.0118

7 Status epilepticus 0.038 15 Gender 0.0108

8 MRI of the head for
abnormalities

0.0268

Rank EEG feature FS-value Rank EEG feature FS-value

(B) Top 20 features affecting pure PLVEEG- based feature model.

1 θ_T5-T6 0.1191 11 θ_F4-F7 0.0816

2 θ_Fp1-Pz 0.1082 12 θ_Fp2-T6 0.0815

3 δ_Fp1-Pz 0.1076 13 δ_F4-F7 0.0793

4 β_P3-F4 0.1003 14 α_Fp2-T4 0.079

5 β_C3-F4 0.0911 15 θ_P3-F8 0.079

6 α_Fp1-F8 0.0907 16 β_Fp1-F8 0.0787

7 β_F4-F7 0.0848 17 θ_P3-F4 0.0785

8 α_P3-T4 0.0829 18 θ_Fp1-F8 0.078

9 θ_P3-C4 0.0826 19 α_O2-C3 0.0764

10 α_Fp1-F7 0.082 20 β_Fp1-F3 0.0737

Rank Features FS-value Mean ± STD P-value P’-value

(C) Features affecting the top 5% of the clinical-PLVEEG feature-based model.

1 MRI of the head for
abnormalities

0.211 0.557± 0.497 0.061 <0.001*

2 Educational attainment 0.194 2.748± 1.108 <0.001 0.004*

3 β_C3-F4 0.077 0.155± 0.058 0.154 0.265

4 Seizure frequency 0.072 1.359± 0.820 0.006 0.052

5 θ_Fp1-Fz 0.072 0.205± 0.195 <0.001 <0.001*

6 Hippocampal atrophy,
sclerosis

0.069 0.382± 0.486 0.004 0.019*

7 β_F3-F8 0.067 0.146± 0.048 0.216 0.411

8 β_C3-P4 0.059 0.205± 0.074 0.160 0.074

9 θ_C3-P4 0.057 0.237± 0.067 0.345 0.156

10 β_T5-T6 0.056 0.139± 0.049 0.028 0.012*

11 θ_P4-T5 0.054 0.220± 0.116 0.045 0.038*

12 θ_Fp2-T6 0.053 0.235± 0.099 0.003 0.008*

13 β_T5-F7 0.052 0.151± 0.074 0.028 0.019*

14 β_P3-P4 0.050 0.132± 0.050 0.830 0.655

(Continued)
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TABLE 4 (Continued)

Rank Features FS-value Mean ± STD P-value P’-value

(C) Features affecting the top 5% of the clinical-PLVEEG feature-based model.

15 VPA 0.049 0.435± 0.496 0.013 0.369

16 β_F4-F7 0.048 0.159± 0.067 0.179 0.220

17 β_O1-T6 0.047 0.146± 0.064 0.282 0.106

18 Class of antiepileptic drugs 0.046 0.450± 0.498 0.016 0.125

19 θ_F3-F8 0.046 0.211± 0.057 0.467 0.213

20 θ_F4-F7 0.044 0.228± 0.067 <0.001 <0.001*

21 δ_P4-T5 0.043 0.293± 0.068 0.172 0.321

22 δ_F4-F7 0.042 0.305± 0.070 0.009 0.015*

23 β_Fp1-F8 0.042 0.282± 0.128 0.579 0.352

24 Time from first onset to
current visit

0.040 9.290± 8.087 0.009 <0.001*

25 β_P3-F4 0.039 0.315± 0.146 0.006 <0.001*

26 Age 0.038 29.260± 12.746 0.061 0.075

27 θ_P3-F4 0.038 0.347± 0.169 0.013 0.049*

28 β_Fp2-T6 0.038 0.172± 0.065 0.130 0.063

29 θ_T5-F7 0.037 0.230± 0.082 0.012 0.025*

30 θ_Fp1-T6 0.036 0.290± 0.200 <0.001 <0.001*

31 δ_Fp2-T6 0.035 0.320± 0.085 0.450 0.157

32 β_Fp1-C3 0.035 0.144± 0.050 0.784 0.842

33 θ_O2-Pz 0.034 0.282± 0.095 0.211 0.082

34 α_C3-P4 0.034 0.260± 0.039 0.331 0.312

35 β_Fp2-F4 0.033 0.359± 0.096 0.093 0.165

36 θ_Fp1-F8 0.033 0.332± 0.121 0.046 0.025*

FS-value, Fisher score value; α, alpha; β, beta; δ, delta;θ, theta; For qualitative data, Chi-square tests were used; For normal data independent sample t-tests were used.
δ Fp1-Fz: δ band from Fp1-Fz and so on; p and p’ < 0.05 is considered statistically significant, p’ refers to p-value that is corrected by false discovery rate (FDR) correction. Although the
selected features may not be statistically significant, they did have a classification value in the model.
*Is defined as features that have statistically significant between CI group and CON group.

could be more accurate in identifying epilepsy patients suffering
from cognitive dysfunctions. It was also found that PLVEEG

features in θ band T5-T6, θ band Fp1-Pz, δ band Fp1-Pz, β band
P3-F4, and β band C3-F4 were the top 5 most important ones
that might influence the model.

A combined clinical-PLVEEG
feature-based model construction

The combined clinical-PLVEEG features were found the most
appropriate for constructing the best performing classification
models, using either AdaBoost or GBDT algorithm. A total of
707 features were screened using Fisher scores for 23 clinical
features and 684 PLVEEG features. A total of 4 clinical features
were selected within the top 10 weighted features, namely MRI
of the head for abnormalities in the first rank, educational
attainment in the second rank, seizure frequency in the fourth

rank, and hippocampal atrophy or sclerosis in the sixth rank;
all of which were significantly differed between the two groups.
Between the two groups, the remaining PLVEEG features with
significant differences were C3-F4 in the β-band, Fp1-Pz in
the θ-band, F3-F8 in the β-band, C3-P4 in the β-band, C3-P4
in the θ-band, and T5-T6 in the β-band, with only Fp1-Pz in
the θ-band, and T5-T6 in the β-band. Although many features
were not statistically different between the two groups, they
exhibited a very strong impact on the model after the Fisher
score screening. Whereas a total of 12 PLVEEG features in
the top 5% of features affecting the model performance were
significantly different between the two groups, including eight
features in the θ band and three PLVEEG features in the β band.
We suspected that PLVEEG in the θ band might be the biomarker
that could distinguish between these two groups (Table 4C and
Figure 5).

For AdaBoost, the top 150 Fisher scores were selected
to build the classification model, and the final performances
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FIGURE 3

The evaluation indexes after five-fold cross-validation. GBDT, Gradient Boosting Decision Tree; AdaBoost, Adaptive Boosting.

after five-fold cross-validation were 87.78, 85.95, 93.17, 89.35,
and 0.92% for accuracy, precision, recall, F1-score, and AUC,
respectively. While for GBDT, the top 250 Fisher scores were
selected to build the classification model, and the model
performances after five-fold cross-validation were 90.11, 93.40,
89.50, 91.39, and 0.95% for accuracy, precision, recall, F1-score,
and AUC, respectively (Figure 3 and Figure 4C). The recall
performance of the AdaBoost model was found to be slightly
higher than that of the GDBT, while GDBT outperformed
AdaBoost in terms of other metrics.

Comparison between different models

Six models, based on the clinical features only, PLVEEG

features only, and combined clinical-PLVEEG features, were
constructed for 55 CON and 76 epilepsy patients suffering
from cognitive dysfunctions, using the ensemble algorithms like
AdaBoost and GBDT. We found that the models constructed
with combined clinical-PLVEEG features outperformed those
developed with either pure clinical or pure PLVEEG features
for both the AdaBoost and GBDT algorithms. Notably, the
models constructed solely with clinical features performed
the worst. The cross-sectional comparisons also revealed that
GBDT-built models outperformed the AdaBoost-based ones in
both classification models constructed with PLVEEG features.
Furthermore, GBDT also outperformed AdaBoost in cases

of both pure clinical features and combined clinical-PLVEEG

features, with an exception for recall performance (Table 5).
Not only that, but we could also identify potential

biomarkers like EEG indicators using the combined clinical-
PLVEEG feature-based models that might be able to detect
CI in epilepsy patients, which could be highly useful in the
diagnosis of epilepsy in clinical settings. Additionally, many of
the clinical features used have also been reported in previous
studies suggesting their strong association with CI symptoms
in epilepsy patients, but have not been ranked to the extent to
which these clinical features might affect cognition. Therefore,
we ranked these clinical features by their respective Fisher
scores. Our findings suggest that EEG could be of great interest
to subjects with cognitive deficits, especially those with epileptic
symptoms. Previously, technical limitations were the main
obstacle in improving the application of EEG for epilepsy
diagnosis and treatment. By estimating the combined effects
of clinical and PLVEEG features, we could predict the current
cognitive status in epilepsy patients, providing clinicians with
more options for precise diagnosis and effective treatment plans.

Discussion

To the best of our knowledge, the present study is the first
of its kind to use an integrated algorithm for the construction
of a classification model for facilitating the diagnosis of
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FIGURE 4

The performance of six models. (A) Pure clinical features. (B) Pure electroencephalogram (EEG) features. (C) Combined clinical and PLVEEG

features. GBDT, Gradient Boosting Decision Tree; AdaBoost, Adaptive Boosting; AUC, area under the curve; ROC, receiver
operating-characteristic curve; std. dev, standard deviation.
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FIGURE 5

In the combined clinical-PLVEEG model, there were statistically significant differences in 12 PLVEEG features between the CON and CI groups of
PWEs. The higher the fisher score, the tighter the connection between the leads. P < 0.05 is considered statistically significant. (A) Alpha band;
(B) beta band; (C) theta band; (D) delta band. PWEs, patients with epilepsy; PLV, phase locking value; CI, cognitive impairment; CON, cognitively
normal.

CI in PWE by combined clinical and PLVEEG functional
connectivity features.

Advantages of combined
clinical-PLVEEG features for
classification model building

Although several risk factors affecting cognitive functions
in epilepsy have been identified, however, only a few studies
have used these clinical features to predict whether PWEs
have a comorbid CI situation. Importantly, it’s been difficult
to determine the extent to which these clinical features might
affect cognition with a background of epilepsy. A meta-analysis
(Novak et al., 2022a) has found that duration of epilepsy,
frequency of seizures, and use of antiseizures medications are
important clinical features that can affect cognition. Moreover,
some studies suggest that education, history of surgical head

trauma, anxiety and depression, hippocampal abnormalities,
TLE, and seizure types may influence cognitive functions in
PWEs (Piazzini et al., 2006; Bell et al., 2011; Vrinda et al.,
2019; Jarcuskova et al., 2020; Wang et al., 2020; Phuong
et al., 2021; Elsherif and Esmael, 2022). A previous study (Lin
et al., 2021) collected 12 clinical features from outpatients
with epilepsy to construct a model for diagnosing CI with
a performance accuracy, recall, precision, and AUC of 60,
51, 88, and 0.71%, respectively, and concluded that status
epilepticus, history of previous surgical head trauma, and seizure
frequency were the top three clinical features affecting cognition.
However, the clinical features considered in this study were not
comprehensive enough, for example, it did not take into account
important factors affecting PWEs such as education level and the
classes of antiseizures medications taken (Wang et al., 2020). It
was previously thought that VPA, PHT, and TPM could cause
cognitive dysfunctions in PWEs (Brunbech and Sabers, 2002;
Dang et al., 2021; Lozano-Garcia et al., 2021), and for this reason,
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TABLE 5 The performance of the six classifier models.

Features and
algorithms

Performance Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean-value

Clinical features
GBDT

Accuracy (%) 55.56 80.77 61.54 73.08 69.23 68.03

Precision (%) 61.54 83.33 61.90 72.22 75.00 70.80

Recall (%) 53.37 88.23 86.67 86.67 64.28 75.84

F1-score (%) 57.17 85.71 72.22 78.79 69.23 72.62

AUC 0.61 0.82 0.75 0.84 0.78 0.76

Clinical features
AdaBoost

Accuracy (%) 74.07 84.62 65.38 61.54 53.85 67.89

Precision (%) 75.00 80.95 62.50 60.00 55.00 66.69

Recall (%) 80.00 100.00 100.00 100.00 78.57 91.57

F1-score (%) 77.42 89.47 76.92 75.00 64.71 76.71

AUC 0.73 0.78 0.67 0.84 0.72 0.75

EEG features
GBDT

Accuracy (%) 85.19 84.62 92.31 96.15 84.62 88.58

Precision (%) 87.50 86.67 100.00 100.00 86.67 92.17

Recall (%) 87.50 86.67 86.67 93.33 86.67 88.17

F1-score (%) 87.50 86.67 92.86 96.55 86.67 90.05

AUC 0.86 0.86 1.00 0.99 0.96 0.94

EEG features
AdaBoost

Accuracy (%) 88.89 84.62 80.77 76.92 88.46 83.93

Precision (%) 88.24 82.35 85.71 80.00 87.50 84.76

Recall (%) 93.75 93.33 80.00 80.00 93.33 88.08

F1-score (%) 90.91 87.50 82.76 80.00 90.32 86.30

AUC 0.93 0.91 0.90 0.86 0.96 0.91

Clinical+EEG features
GBDT

Accuracy (%) 85.19 84.62 96.15 96.15 88.46 90.11

Precision (%) 87.50 86.67 100.00 100.00 92.86 93.40

Recall (%) 87.50 86.67 93.33 93.33 86.67 89.50

F1-score (%) 87.50 86.67 96.55 96.55 89.66 91.39

AUC 0.86 0.95 1.00 0.99 0.97 0.95

Clinical+EEG features
AdaBoost

Accuracy (%) 88.89 88.46 92.31 84.62 84.62 87.78

Precision (%) 85.71 88.24 90.00 76.92 88.89 85.95

Recall (%) 92.31 93.75 100.00 90.91 88.89 93.17

F1-score (%) 88.89 90.91 94.74 83.33 88.89 89.35

AUC 0.98 0.94 0.95 0.89 0.83 0.92

GBDT, Gradient Boosting Decision Tree; AdaBoost, Adaptive Boosting; AUC, area under the curve.

the presence or absence of these three drugs was used as a
clinical feature. The study showed that only VPA had significant
weightage for this model, while PHT and TPM, probably due
to insufficient data, were not statistically significant, and did not
contribute to the construction of the model.

Of the models constructed using pure clinical features,
the performance accuracy, recall, precision, and AUC for

the AdaBoost/GBDT models were 67.89/68.03%, 91.57/75.84%,
66.69/70.80%, and 0.75/0.76%, respectively. Using Fisher scores,
we selected 23 clinical features. Of these, education level, seizure
frequency, and VPA therapy ranked the top three clinical
characteristics affecting cognition in PWEs. Among the models
constructed with combined clinical and PLVEEG features, the
accuracy, recall, precision, and AUC of the AdaBoost/GBDT
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models were 87.78/90.11%, 93.17/89.50%, 85.95/93.40%, and
0.92/0.95%, respectively. We applied the Fisher scoring method
for the 23 clinical features and 684 PLVEEG features to jointly
screen and rank. Among these features, MRI abnormalities,
education level, and seizure frequency were the top 3 most
influential clinical features. The performance of the models
constructed using clinical features alone was better than that
shown in previous studies for all metrics, except for the
performance accuracy. While the performance of the models
constructed using combined clinical and PLVEEG features was
significantly improved than that reported previously. Thus, we
concluded that combined clinical and PLVEEG features were
more appropriate for PWEs and that a combination of different
types of features would be an optimal choice for constructing
diagnostic prediction models.

PLVEEG features are valid indicators for
diagnosing CI in PWEs

PLVEEG is used to remotely examine the task-induced
changes in neural activities, synchronized in EEG recordings,
which is a classic metric for computing functional brain
connectivity features. Jones et al. (2022) have used PLVEEG

functional connectivity features as an evaluation metric
for assessing the efficacy of transcranial alternating current
stimulation (tACS) on age-associated cognitive decline. Li et al.
(2022) have constructed a model combining the clinical and
PLVEEG features to diagnose Alzheimer’s disease (AD), which
exhibits satisfactory performance and robustness. Another study
(Lanzone et al., 2021) has found that PLVEEG in the α band
of patients who were effective on treatment with perampanel
as an add-on drug could be used as a biomarker to predict
the responsiveness to perampanel drugs. Cho et al. (2017)
have reported that PLVEEG in the γ band may be a potential
biomarker for predicting seizures. In this study, the accuracy,
recall, precision, and AUC of the AdaBoost/GBDT models were
83.93/88.58%, 84.76/92.17%, 88.08/88.17%, 86.30/90.05%, and
0.91/0.94%, respectively, when only the PLVEEG features were
used for the model construction. The θ-band T5- T6, θ-band
Fp1-Pz, and δ-band Fp1-Pz were the top three PLVEEG features
affecting the model weightage, indicating that the PLVEEG

functional connectivity features might be valid indicators for the
diagnosis of cognitive dysfunctions comorbid with epilepsy.

PLVEEG features in the θ band may be a
potential biomarker for diagnosing CI
in PWEs

Here, we calculated the PLVEEG features of the four
frequency bands (α, β, θ, δ), and found that the PLVEEG features,
especially of the θ band, might be potential biomarkers to

distinguish between epilepsy patients with or without comorbid
CI. In our constructed model of the combined clinical and
PLVEEG features, we employed Fisher scoring to rank individual
features, which revealed 12 PLV features that ranked in the top
30 were significantly different between the CON and CI groups.
Notably, eight of these features were related to the θ band and
three to the β band.

The θ band has been found to have an important
relationship with epilepsy and cognitive function in previous
studies. One study (Douw et al., 2010) has demonstrated that
functional connectivity features in the θ band could be used
to aid in the diagnosis of epilepsy with a recall of 62% and
a specificity of 72%. Other studies (Jun et al., 2020) have also
suggested that stimulation of the hippocampus may increase the
release of θ rhythms, thereby improving the associative memory
function. These studies suggest that increasing the θ rhythm in
the hippocampus may provide a theoretical basis for the neural
mechanisms of memory enhancement. Moreover, Gupta et al.
(2012) have identified that θ rhythms in the hippocampus of rats
are associated with visuospatial abilities and executive abilities
related to memory and cognition. Another study (Braithwaite
et al., 2020) has revealed that increased power of the θ rhythm
in children can be a valid biomarker for predicting non-verbal
cognitive abilities. Furthermore, it (Ahmadlou et al., 2014) has
been concluded that functional connectivity features in the θ

band could be used to differentiate between patients with mild
CI and healthy elderly populations. Briels et al. (2020) have
found that functional connectivity indicators in the θ and β

frequency bands in AD patients may help diagnose the disease
severity. Other studies (Singh et al., 2018) have shown that
a reduction in midfrontal θ wave frequency responds to the
degree of effective control of cognitive functions in PD patients.
The θ rhythms in the frontal lobe are highly correlated with
cognitive function (Cavanagh and Frank, 2014), with Fp1-Fz
being within the frontal lobe. Our results showed that the
PLVEEG features of Fp1-Fz in the θ band were significantly
different between the CON and CI groups of epilepsy patients,
accounting for a high weightage in the diagnostic model. In
this context, one study (Cao et al., 2022) has reported an
important relationship between the θ rhythm and cognition in
patients with schizophrenia, indicating that superior cognitive
performance may be significantly associated with a smaller θ

wave power, and altered θ rhythm and cognition are highly
correlated mainly in the parieto-occipital lobe. The P4 and T5
were close to the occipital region in our investigation. The
PLVEEG for P4-T5 were also significantly different between
the two groups and accounted for a higher weightage in
the model. Furthermore, it is shown (Usami et al., 2019)
that β oscillations can enhance the responsiveness of the
cerebral cortex to inputs from distant cortices, suggesting
that β frequencies may have an important role in functional
connectivity. Interestingly, α frequency is significantly increased
in AD patients presenting with mild cognitive dysfunctions
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(Moretti, 2015). The α frequency was found to be less influential
in our study, in terms of statistical significance and the
weightage of the model, possibly due to the exclusion of AD
patients’ data.

Previous studies have amply demonstrated the significance
of functional connectivity features in the θ band in the diagnosis
of epilepsy and cognitive dysfunctions. Therefore, our study
demonstrated that PLVEEG features in the θ band might be
reliable biomarkers for diagnosing CI in PWEs, especially those
with high Fisher scores.

Limitations and future directions

Despite these excellent results, there are still certain
limitations to this study. First, this was a single-center
retrospective study with data from only one institutional
epilepsy center and a small sample population. Although
the combined clinical and PLVEEG features and advanced
algorithms ensured the accuracy of our results, multi-center
prospective studies are warranted for the generalization of our
results. Here, we provided a theoretical basis and demonstrated
the possibilities of further improving the diagnostic methods
for PWEs comorbid with CI. Second, this study was based
on the MoCA scale. However, we classified the features based
on the total MoCA scores rather than the subtest scores.
Although our model could address the issue of differentiating
PWEs with or without cognitive deficits, the content of each
subtest should be investigated more carefully in the future.
Finally, the potential biomarkers that we extracted were mainly
functional connectivity features of the EEG and a subset of
clinical features. The future brain network features extracted
from MRI examinations can be useful in improving the accuracy
and superiority of the model. We propose to validate the
performance of our models with larger datasets from multiple
epilepsy centers in the future, as well as add new features to
improve the accuracy of the model.

Conclusion

In this study, we constructed a diagnostic model for
CI in PWEs based on the combined clinical and PLVEEG

features. Besides, we found that PLVEEG functional connectivity
features in the θ band might be potential biomarkers for the
diagnosis of CI in PWEs.
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Predicting neurological outcome
after cardiac arrest by combining
computational parameters
extracted from standard and
deviant responses from auditory
evoked potentials
Aymeric Floyrac1†, Adrien Doumergue1†, Stéphane Legriel2,3,
Nicolas Deye4,5, Bruno Megarbane4,6, Alexandra Richard7,
Elodie Meppiel7, Sana Masmoudi7, Pierre Lozeron7,8, Eric Vicaut9,
Nathalie Kubis7,8* and David Holcman1*
1Applied Mathematics and Computational Biology, Ecole Normale Supérieure-PSL, Paris, France,
2Medical-Surgical Intensive Care Department, Centre Hospitalier de Versailles, Le Chesnay, France, 3CESP,
PsyDev Team, INSERM, UVSQ, University of Paris-Saclay, Villejuif, France, 4Department of Medical
and Toxicological Critical Care, APHP, Lariboisière Hospital, Paris, France, 5INSERM U942, Paris, France,
6INSERM UMRS 1144, Université Paris Cité, Paris, France, 7Service de Physiologie Clinique-Explorations
Fonctionnelles, APHP, Hôpital Lariboisière, Paris, France, 8LVTS UMRS 1148, Hemostasis,
Thrombo-Inflammation and Neuro-Vascular Repair, CHU Xavier Bichat Secteur Claude Bernard, Université
Paris Cité, Paris, France, 9Unité de Recherche Clinique Saint-Louis- Lariboisière, APHP, Hôpital Saint Louis,
Paris, France

Background: Despite multimodal assessment (clinical examination, biology,

brain MRI, electroencephalography, somatosensory evoked potentials,

mismatch negativity at auditory evoked potentials), coma prognostic evaluation

remains challenging.

Methods: We present here a method to predict the return to consciousness and

good neurological outcome based on classification of auditory evoked potentials

obtained during an oddball paradigm. Data from event-related potentials (ERPs) were

recorded noninvasively using four surface electroencephalography (EEG) electrodes

in a cohort of 29 post-cardiac arrest comatose patients (between day 3 and day

6 following admission). We extracted retrospectively several EEG features (standard

deviation and similarity for standard auditory stimulations and number of extrema and

oscillations for deviant auditory stimulations) from the time responses in a window of

few hundreds of milliseconds. The responses to the standard and the deviant auditory

stimulations were thus considered independently. By combining these features,

based on machine learning, we built a two-dimensional map to evaluate possible

group clustering.

Results: Analysis in two-dimensions of the present data revealed two separated

clusters of patients with good versus bad neurological outcome. When favoring the

highest specificity of our mathematical algorithms (0.91), we found a sensitivity of

0.83 and an accuracy of 0.90, maintained when calculation was performed using

data from only one central electrode. Using Gaussian, K-neighborhood and SVM

classifiers, we could predict the neurological outcome of post-anoxic comatose

patients, the validity of the method being tested by a cross-validation procedure.

Moreover, the same results were obtained with one single electrode (Cz).
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Conclusion: statistics of standard and deviant responses considered separately

provide complementary and confirmatory predictions of the outcome of anoxic

comatose patients, better assessed when combining these features on a two-

dimensional statistical map. The benefit of this method compared to classical

EEG and ERP predictors should be tested in a large prospective cohort. If

validated, this method could provide an alternative tool to intensivists, to

better evaluate neurological outcome and improve patient management, without

neurophysiologist assistance.

KEYWORDS

coma, electroencephalography, automatic classification algorithm, machine learning,
neurological prognosis

Introduction

Sudden death by cardiac arrest (CA) is a major public health issue,
affecting 55 patients out of 100,000 with nearly 40,000 cases per year
in France (Sfar, 2007). Five to 30% of the patients resuscitated after
CA are alive at 1 year (Pell, 2003; Carr et al., 2009; Chin et al., 2022).
Despite the use of veno-arterial extracorporeal cardiopulmonary
resuscitation (VA-ECPR), a contemporary resuscitation approach
that increases patients’ survival, prognosis remains grim (Miraglia
et al., 2020). Favorable outcome after discharge relies mainly on the
prognostic value of brain injury that outweighs the combined effects
of all other terminal organ failures (Roberts et al., 2013; Rossetti et al.,
2016).

Assessment of neurological damage is usually performed 48–
72 h after CA and, optimally, after interruption of sedative
drugs (Nolan et al., 2021). The evaluation is multimodal and
combines, according to available local resources, clinical evaluation
(Glasgow Coma Scale, photomotor and pupillary reflexes), biological
markers of neural cell necrosis (NSE and S100bêta proteins),
cerebral Magnetic Resonance Imaging and electrophysiological
studies including electroencephalography (EEG), somatosensory
evoked potentials (SSEP) and auditory evoked potentials (AEP). EEG
analysis allows grading of post-anoxic encephalopathy (Synek, 1988),
“highly malignant” EEG pattern (Westhall et al., 2016; André-Obadia
et al., 2018), being associated with the least favorable prognosis.
The absence of EEG reactivity can predict mortality and poor
outcome. However, it is prone to large inter-rater variability when
only determined using visual analysis. For this reason, quantitative
methods developed to objectively measure EEG reactivity are
promising (Duez et al., 2018; Admiraal et al., 2020; Bouchereau et al.,
2022) and somatosensory and auditory evoked potentials can also be
used to improve the accuracy of the patient outcome. The absence of
cortical N20 response at SSEP after stimulation of median nerves has
an almost 100% specificity for non-awakening prediction (Sandroni
et al., 2014), while the presence of a "mismatch negativity” (MMN),
an endogenous long latency negative potential at AEP (Rohaut et al.,
2009) would rather indicate a good prognosis. The absence of cortical
N20 response at SSEP after stimulation of median nerves has an
almost 100% specificity for non-awakening prediction (Sandroni
et al., 2014). The presence of a "mismatch negativity” (MMN), an
endogenous long latency negative potential at AEP (Rohaut et al.,
2009) would rather indicate a good prognosis.

Mismatch negativity consists in recording cortical potentials
in response to auditory stimulation delivered by earphones, using

electrodes placed on the scalp. The MMN (or N200), is a negative
event-related potential (ERP) that occurs between 100 and 250 ms
predominantly over the frontocentral scalp area and is obtained by
the subtraction of oddball auditory stimuli (called deviant stimuli)
randomly intermixed with repetitive frequent auditory stimuli also
called standard or non-deviant stimuli. Thus, MMN reflects the
ability to detect automatic auditory violations, but sensitivity to
predict awakening is low (56%) with a high 93% specificity (Naccache
et al., 2005). Because of lack of sensitivity in the ICU when interpreted
only by visual analysis (present or absent) (Azabou et al., 2018),
complementary statistical methods have been developed to analyze
MMN more accurately, increasing thus the positive predictive value
for awakening (Pfeiffer et al., 2017), at the cost of extension of the time
of interpretation. Thus, multimodal approaches combining several
prognostic factors of post-anoxic coma have been proposed (Bassetti
et al., 1996; Fischer et al., 2006; Kim et al., 2012; Oddo and Rossetti,
2014) but the choice of these approaches has not yet succeeded to lead
to automatic and predictive analyses.

Taking advantage of the considerable amount of information
obtained at AEP, we conducted an explorative study in which
we applied a machine learning classification approach based on
EEG features arising from the distribution of the ERP fluctuations
responses during the 20 min-recording, rather than to interpret the
MMN as a binary response. We used data already acquired from a
homogeneous cohort of patients admitted in the intensive care unit
after CA and who all had EEG, SSEP and AEP recordings within
6 days after admission. We identified specific features from AEP,
considering responses to standard and deviant auditory stimulations
independently. Using a step-by-step data processing, we finally
reported combined features in two-dimensional map where we
observed that patients were clustered into two groups corresponding
to a different outcome at discharge whether they were able to follow
verbal command or not. We then estimated the probability for a
patient to be classified into one of the two groups at the acute phase
using several classifiers.

Patients and methods

Procedure

This study is a retrospective single-center study performed in
29 consecutive patients between January 2014 and March 2016,
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successfully resuscitated after CA, with persistent coma between
the 3rd day and 6th day following admission in the Department
of Medical and Toxicological Critical Care in Lariboisière Hospital
(Paris), and who completed EEG, SSEP, and AEP recordings. From
AEP recordings, we extracted individual features, and using a novel
analysis method, we aimed to classify patients into two categories:
communicating patients (assumed to have a good neurological
outcome) and deceased or non communicating patients, according
to their capacity to follow verbal command at discharge.

This study is an ancillary study of the PHRC CAPACITY
AOR10109 and was approved by the ethics committee (Comité de
Protection des Personnes, CPP Paris IV #2012/22). As this AEP
processing was performed secondarily, physicians who were in charge
of the patients could not have access to these data. Withdrawal of life-
sustaining therapies was performed according to the usual guidelines
(Société de réanimation de langue française., 2010).

Clinical data

Cardiac arrest characteristics, in-hospital management and
outcome data were collected according to Utstein method by the
intensivists in charge during hospitalization (Perkins et al., 2015).
During ICU stay, the following data were collected: age, sex, past
medical history; presumed etiology categorized into non-cardiac,
cardiac and undetermined; shockable rhythm; time from collapse
(CA) to return of spontaneous circulation (ROSC) dichotomized
into ≤25 or >25 min (Oddo et al., 2008); interval from the time
of collapse (presumed time of CA) to basic and/or advanced life
support, defined as no-flow duration, and the interval from the
beginning of life support until the return of spontaneous circulation
or termination of resuscitative efforts, termed low-flow duration;
hypothermia; Glasgow Coma Scale (GCS) on admission; SAPS II
(Simplified Acute Physiology Score) (Le Gall et al., 2005); sedation.

Good neurological prognosis was defined by appropriate
response to verbal command. Moreover, the Glasgow Outcome Scale
Extended (GOS-E) was retrospectively collected at 3–6 months, when
information was available.

Because of the retrospective design of our study, withdrawal of
life-sustaining therapies decisions had been taken before our new
analysis. They were multimodal and based upon European guidelines
ERC-ESICM (2014).

Electrophysiological data

We used electrophysiological data acquired between day 3 and
day 6 following admission, in order not to include patients with
early predictable death. However, most of them had previous EEG
recording in the first 48 h. All data were analyzed or double-
checked by specialists in clinical neurophysiology with at least
10 years’ experience.

EEG
Digital electroencephalography (EEG) recordings were

performed for at least 20 min, with 21 scalp electrodes positioned
according to the standard 10–20 system placement, reformatted to
both bipolar and off-head referential montages, with filter settings at
0.3 and 70 Hz. Repetitive bilateral auditory and painful stimulations
were systematically performed. These stimulations aimed to evaluate

EEG reactivity and performed according to a standardized protocol
for auditory (clapping noise, patient’s name and patient’s surname)
and nociceptive stimulations (nail bed pressure plied to each
upper limb) regularly applied in the same order. EEG was classified
according Synek’s classification (Synek, 1988), which defines precisely
the five major EEG patterns based on the allocation of patients into
five principal categories regarding their significance for survival
(optimal, benign if persistent, uncertain, malignant if persistent and
fatal).

Somatosensory evoked potentials
Median nerves were stimulated at the wrist to an intensity of 4–

5 mA, greater than that needed to evoke a muscular response, and
in the case of the use of neuromuscular blocking, the ERB potential
amplitude was used to estimate the intensity of the stimulation.
Pulse duration was 0.2 ms and stimulus rate 3 Hz. Active electrodes
were placed at Erb’s point and C3 and C4 points. At least two
repetitions (averages of 300 responses) were performed to assess
the reproducibility of the waveforms. N20 cortical response was
dichotomized into absent or present.

Mismatch negativity
The auditory event related potentials were elicited using the

classical odd-ball paradigm technique as already described (Fischer
et al., 1999).

Event-related potentials were recorded with active electrodes
(in an electrode cap) positioned at Fz, Cz, C3, C4 according
to the International 10–20 system, reference electrode at the
mastoid and ground reference at the forehead. Acoustic stimuli
were delivered through earphones binaurally using a randomly
intertwined sequence of standard and deviant stimuli in the
proportion of 86 and 14%, respectively. Standard stimuli were
delivered at a frequency of 800 Hz and lasting 75 ms each. Deviant
stimuli were delivered at a frequency of 880 Hz and lasting 30 ms each
to distinguish them from the standard stimuli (Fischer et al., 1999;
Chausson et al., 2008; Comanducci et al., 2020). The interstimulus
interval was 500 ms. EEG signals were band-pass filtered (0.5–75 Hz)
using a time window of 500 ms. Each recording was performed
during 20 min. Presence/absence of MMN defined as the negative
peak obtained between the difference between deviant and standard
response occurring in the 100–300 ms time interval following
stimulation. In our experience, MMN is delayed in those critically ill
and sedated patients, which explains this relatively wide time window.

Electrophysiological analysis
All data were analyzed by at least two different

neurophysiologists, blind to the neurological outcome of the
patients. When artifacts were too numerous leading to unreliable
conclusion, data were not considered.

Statistical analyses for demographic and
clinical data

In each group (good or bad neurological outcome), results
of clinical and neurophysiological examinations were expressed as
mean ± SD [min-max] and median [IQR 25–75], when appropriate.
Statistical analyses were performed with Prism 5 software (Prism
5.03, GraphPad, San Diego, USA). Comparison of frequencies in each
group was analyzed by the Fisher’s exact test. A value of p < 0.05 was
considered statistically significant.
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Signal processing, features identification,
and classification

This section is divided in three parts: 1-Signal processing, 2-
Feature identification and 3-Classification using a two-dimensional
map. Without a priori consideration, we considered specific features
in a 1 s duration window, then in a shorter window of 500 ms,
then at last in 320 ms, which contains the relevant features and gave
similar results compared to the two other time windows. This time
interval was chosen large to start (in order to take in consideration the
maximum amount of information, then was restricted to the smallest
time interval that still contained the whole information. The data
corresponding to the responses obtained from standard and deviant
auditory stimulations were considered independently, regardless
of the MMN that was not considered here, and mathematical
processing was applied as for any signal, independently of its potential
significance. We chose specific independent features for the standard
and deviant stimulations that allowed increasing the robustness of
the results, and preventing a potential bias by choosing a single set
of parameters. At last, we combined them into a two-dimensional
map, and patients formed two clusters according to their outcome.
All these steps were determined without a priori knowledge of the
patient’s prognosis.

Signal processing
Auditory evoked potential obtained with standard and deviant

auditory stimulations were exported in the European Data Format
(EDF), which is a simple and flexible format for storage of
multichannel biological and physical signals, then anonymized
through a specific software we designed. Analyses were performed
on all four active electrodes then on one single Cz (central) electrode
in order to see if we could obtain similar results with a simplified
electrodes setting. To quantify the auditory evoked responses recorded
from post CA patients in the intensive care unit, we studied separately
standard and deviant responses (Figure 1), which is a novel and
different paradigm compared to the classical MMN. We took into
account the total 20 min extracted data, instead of the short interval
response occurring in [100–300] ms following auditory stimulation.
We filtered the signal in the [0.5–50] Hz band. Finally, all standard
and deviant stimulations were averaged leading to a response in
the time interval [0− 1000] ms, [0−−500 ms], and [0–320 ms],
without difference in the analysis of the time intervals. To note,
there was no difference either in the responses when they were
computed in the interval [20–320 ms] that still contained the relevant
information. Therefore, we converged to compute all statistics over a
time window of [20–320] for all sounds, and results are presented in
this interval.

We first focused on the ERP responses to standard periodic
auditory stimuli, every 1s. We filtered the time series X(t) using a
Butterworth bandpass filter (n = 4) in the frequency range 0.5–
50 Hz and obtained the output Xf (t). Finally, we averaged the signal
in the time interval [0− 1]s, ensuring that auditory stimuli were
produced at time t = nT (T = 1s) leading to the response

Xp (s) =
1
N

N∑
1

Xf (s+ nT) , s ∈ [0− 1] (1)

where N is the number of periods (typically of the order 103).
This preliminary procedure therefore allowed obtaining an average

response Xp that highlights any possible deterministic feature present
in the response. We applied a similar averaging procedure for deviant
stimuli (see below and Figure 1).

Analysis of responses to standard stimuli

For the analysis of standard stimulation, we divided the 20 min
recording into two parts (two consecutive sequences of 10 min), to
explore a possible adaptation between the first part of the acquisition
and the last part. If patients’ responses to auditory stimulations
are able to fluctuate, this could indicate a better prognosis. This
“reactivity” or ability to adapt is already used when interpreting
the EEG in the ICU and indicates a better neurological outcome.
We have introduced two parameters to that possible adaptation
analysis: the variance of the signal computed over 10 min and the
correlation between the two parts of the signal. The main parameters
we extracted to study the response to standard stimulations were
defined as follows:

We computed the standard deviation σXof the signal in the time
interval [20− 320]ms.

σ2
X =

1
t2 − t1

∫ t2

t1
(X (t)−< X (t) >)2dt, (2)

where t2 = 320 ms and t1 = 20 ms, and X (t) is the average of the X
variable over the time [t1, t2]. This time interval corresponds to time
scales of the neural networks involved in cognitive tasks.

We then divided the acquisition time of 20 min into n equal parts.
For n = 2, we got [1− 10]min and [10− 20]min. We averaged the
signals on each of these periods to obtain two responses X(t) and
Y(t) in the interval [0− 1]s. We computed the time correlation or
similarity in [20, 320]ms of these two signals:

r (X,Y) =
<(X (t)−< X >) (Y (t)−< Y >)>

σXσY
, (3)

where < . > represents this time average.
We therefore used these two parameters to define the space state

for the coordinates a patient: (1) the standard deviation computed
over the entire sample of 20 min and (2) the similarity, computed in
Eq. 3. These coordinates define a mathematical state space, which is
not a specific of the medical state of the patient.

Analysis of responses to deviant stimuli

Deviant stimuli are random stimuli that account for 14% of the
entire responses. The approach used for standard responses analysis
is not well suited for deviant stimulations, as we did not expect
any adaptation in time of such a random motif. We choose two
parameters that are classically used for analysing oscillatory signals,
the number of extrema and the total variation for the oscillation.
We filtered the resulting signal Xd using a lowpass Butterworth
filter (n = 2) with a cut off frequency at 10 Hz. Finally, we
isolated responses in the different time windows described above and
computed averaged responses

Xr (s) =
1
N

N∑
1

Xd (s+ nT) . (4)

The smooth signal is shown in Figure 1C. We computed two
mathematical quantities on the signal:

(1) The number NE of local extrema (minima and maxima) in the
response attained at points ei.
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FIGURE 1

Pre-processing of the evoked auditory responses to standard and deviant stimuli (an example of data obtained from the CZ electrode is given for
standard stimuli and an example from all electrodes is given for deviant stimuli). (A) Upper: standard position of the EEG electrodes. Lower: EEG traces
during a protocol mixing standard (green) and deviant (red) stimulations. (B) Sample of standard stimuli (blue) the EEG signal from CZ-electrode is filtered
0.5–50 Hz. The output is an average filtered response over 1 s. (C) Pre-processing of deviant stimuli: (1) the signal is summed over electrodes, (2) a
low-pass filter is applied (butterworth with n = 2, cutoff frequency at 10 Hz), (3) average filtered response (continuous green) in a window of 500 ms to
a deviant stimulus, computed after synchronization to the stimulus. The non-filtered average response is also shown (dashed line).

(2) The total variation for the oscillation is measured by

|1V| =
∑
i

|V(ei)− V(ei+1)|, (5)

which is the sum of the absolute value of the difference between
two consecutive extrema of the average evoked responses. This
oscillation provides an information of the cumulative response
amplitude; (ei) is the time point where the EEG signal is
maximal or minimal.

Features identification associated to standard and
deviant responses

For standard responses, we computed the standard deviation
(formula 2) and the correlation function (formula 3) of the response
computed between the response in the first and second time period
(Figure 2A). To test the ability of these two parameters to separate
the two categories of patients, we plotted the histogram of these two
parameters for all patients in our data (Figure 2B), showing that each
parameter individually could be potentially used for a classification.

For the deviant responses, as the signal showed different
characteristics, we decided to use novel features, the number of
extremumNE present in the signal (Figure 3A) and the absolute value
of the oscillation|1V|, which represents the sum of the differences
between the extrema (formula 5). The result of this classification is
shown by histograms of the two parameters computed over the whole
population of patients (Figure 3B).

Although two different types of parameters were studied for
standard and deviant responses, each of them taken individually was
not sufficient to clearly separate the two categories of patients.

Classification using a two-dimensional map
Based on the parameters we extracted in the previous subsection,

we generated two-dimensional maps: for the map associated to
standard stimuli, each patient has the P = [σX, r(X,Y)] coordinates,

while for deviant stimuli, we used the P = (NE, |1V|) coordinates.
In various plots, we normalized the coordinates in a population
(X1, ..Xn) by:

X̃i =
Xi −< Xi >
√
Var(X1, ..Xn)

, (6)

Where Xi is the average over the points Xi and Var is the variance.
We mapped all points for all patients, where patients with bad

versus good neurological outcome are shown in blue (vs red). Patients
with good neurological outcome formed a cluster that will be the basis
of the classification and prediction described below. The classification
probability of a patient characterized by its coordinates was obtained
by computing a score that measures the proximity to one of the two
categories of patients.

To study the maps defined above as predictive tools, we used
three independent statistical classifiers (SVM, Gaussian estimator,
K-nearest neighbors). Because the present database did not contain
many patients and to guarantee the robustness of our approach,
we decided to use three classifiers (SVM, Gaussian mixture, and
k-neighbors). As a small size database is also associated with
overlearning, and to overcome this difficulty, we chose to use simple
models for classification: Support Vector Machines (SVM) seems
to be particularly suitable, as its classification is dependent only
on a reduced number of patients. In fact, we wished to assign a
good neurological outcome probability to any point that would be
added on the map based on the ensemble of previous data points
already classified. Using the assumption that statistics associated
to patients (features) are independent from each other, we used a
Bayesian classification.

SVM classification

To classify the data, we used the standard SVM algorithm
(Cherkassky and Mulier, 1998), which determines the hyperplane
that best separates the two classes. Briefly, the chosen hyperplane
maximizes the distance between itself and the closest points of each
class, while all points of a given class are located on one of the two
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FIGURE 2

Statistical features associated to standard responses. (A) Left: average evoked responses computed over a time window of
[
0− 10

]
min (period 1, red),[

10− 20
]
min (period 2, blue) and over the entire period (

[
0− 20

]
min, black). Right: the standard deviation σ and the average correlation function

s (similarity), between the response over the entire period (
[
0− 20

]
min) and over one of the n periods ([0− 20]min or

[
10− 20

]
min), here n = 2.

(B) Example of features distribution of dataset from the Cz electrode: standard deviation (Left) and similarity (Right) computed over the entire period; red
(good neurological outcome) and blue (bad neurological outcome). These two parameters taken separately are insufficient to properly discriminate the
two groups of patients.

FIGURE 3

Statistical features associated to deviant responses. (A) Left: the average filtered evoked response (blue) to deviant stimuli computed over the entire time
window contains NE local extrema ei (minimum or maximum), which is the first feature. The second feature is the oscillation |1V| =

∑
i |V(ei)− V(ei+1)|,

which is the sum of the absolute value of the difference between two consecutive extrema of the average evoked response. (B) Example of feature
distributions of dataset from all electrodes: local extrema (Left) and oscillation (Right) over the entire period; red (good neurological outcome) and blue
(bad neurological outcome).

sides (Valiant, 1984). If no such hyperplane is found, which is the
case here, the dimension of the space where the data are embedded
is increased, a procedure known as kernelling (Aizerman, 1964).
In a higher dimensional space, the classes are well separated by a
higher dimensional hyperplane. If the two classes are still not well
separated, a penalty is inflicted for every misclassified data point
(Cortes and Vapnik, 1995). Here, the kernel is the Radial Basis
Function K(x, x

′

) = exp(− γ||x− x
′

||
2), with γ = 1 and a penalty

coefficient C = 10. Note that we obtained similar confusion matrix
for all pairs (γ,C)∈[0.5,2.5]× [3,30] for SVM.

We implemented the SVM using the Scikit Learn module
(Pedregosa et al., 2011; Buitinck et al., 2013). Data analyses and
classification codes were performed using Python.

Gaussian estimator

In case of a Gaussian estimator, we estimated the mean and the
covariance matrix for the 2 categories of patients. The probability
of each class is computed empirically using the maximum likelihood
estimator (Supplementary methods). We recall that for an ensemble
of n data Sn = (x1, ..xn) that are separated into two classes, C1 and
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C2, the probability that a patient X belongs to one class, conditioned
on the ensemble Sn:

p (X ∈ C1 | X = x,Sn) =

1

1+ 1−5
5
|61 |

1
2

|61 |
1
2
exp

(
−

1
2 (x− µ1)T6−1

1 (x− µ1)+
1
2 (x− µ2)T6−1

2 (x− µ2)
)
(7)

where (µi, 6i)i = 1,2 are the mean and variance computed from each
class C1 and C2 from Sn. We used the fraction π = ns

ns+nd
= ,

ns for the number of patients with good neurological outcome at
discharge and nd for the other patients. Formula 7 is derived in the
Supplementary methods.

K-nearest neighbors classifier and weighted K-nearest
neighbors

To classify the standard stimuli, we used the K-nearest neighbors
classifier. We computed the ratio for the probability of belonging to a
class. For a given point X, the probability to belong to class C1 ("good
neurological outcome") given the distribution of point x is computed
empirically as the number of neighbors out of a total of K.

p (X ∈ C1 | x) =
kr
K

(8)

where kr is the number of neighbors that belong to the class "good
neurological outcome at discharge" among K closest points.

To classify deviant stimuli, we used a variant of the K-neighbors
method by adding distance-relative weights to the points inside
the dataset. The two classes labeled "bad neurological outcome" and
"good neurological outcome" are defined as C1 and C2, respectively.
The ensemble of points Sn in dimension 2 are given by the
coordinates xn =

(
NE,n, 1Vn

)
, extracted in subsection “Analysis

of responses to deviant stimuli.” To compute the classification
probability, we defined K-nearest neighborhood NK(x) for the point
x as the K shortest points from x, computed from the Euclidean
distance (between two points xn, xm),

d (xn, xm) =

√(
NE,n − NE,m

)2
+ (1Vn −1Vm)2 (9)

NK (x) =
{
y1, ..yK ∈ Sn, d

(
x, y1

)
≤ d

(
x, y1

)
.. ≤ d

(
x, yK

)}
.

(10)
To obtain an accurate classifier, we used a different version of the

K-neighbors classification, where the weight depends on the distance
between the point to classify and the K-nearest neighbors (formula
11), defined by

p (x ∈ C1 | x) =

∑N
i = 1

1yi∈C1
d(yi,x)∑N

i = 1
1

d(yi,x)

. (11)

Cross-validation

We used a Leave-one-out cross-validation approach to validate
the classification algorithm: we excluded a patient at a time and
computed the probability of a good neurological outcome at
discharge, based on the remaining elements in the data basis (Kohavi,
1995). In other words, we separated the patient database into a
testing and a training group, with one patient out, 28 in the other
group and ran this test 28 times so that each of the 29 patients was
alternatively included in the 1 group patient. We then computed this

probability using the three classifiers, SVM, Gaussian estimators and
K-neighbors and compared the result to the true result. We followed
the protocol: 1- a patient Pi, i = 1..N is selected inside the data
basis; 2- we trained the classification algorithm on the database of
all patients {Pk, k = 1..N} − Pi. We evaluated the prediction of
the model on the excluded patient, leading to a score si. We recall
that si = 1 if the prediction is correct, otherwise, si = 0. We
then replaced the patient Pi inside the database and reiterated the
procedure until each patient has been exactly excluded once. This
allowed us to reclassify with a given probability for each patient
outcome based on the new map determined by the other patients.
The final score of the model is computed as

s =
1
n

n∑
1

si. (12)

Finally, the confusion matrix defined as

C =

(
Tp FN
Fp TN

)
(13)

for the true positive Tp (number of patients who have a good
neurological outcome at discharge and are classified correctly), true
negative Tn (number of patients who have a bad neurological
outcome and are classified correctly) and false positive Fp (number
of patients who have a good neurological outcome and are classified
incorrectly) and false negative Fn (number of patients who have a
bad neurological outcome at discharge and are classified incorrectly).
We calculated for each of the classifiers accuracy, sensitivity
and specificity.

Combined probability for outcome decision

We proposed to use for the predictive decisional probability pdec
the minimum of the ones estimated for the standard (relation 8) and
deviant (relation 11) classifications. For a patient of coordinate x in
each map, survival probability is:

pdec(x ∈ C1|x) = min ( pdev(x ∈ C1|x)), pnon−dev(x ∈ C1|x)).
(14)

Iteration and changing k-neighbors k

The approach developed here is iterative and any new additional
case enriches the database and the classifications maps. For the
K-neighbors approach, adding a point does not require any changes
in the computation, although we expect that the number of neighbors
that will enter progressively into the computation could diminish
as the number of cases added in the map increases. For the
Gaussian classification, the mean and the variance are recomputed
following each new case.

Results

Overall patient characteristics

Data of twenty-nine consecutive patients were analyzed. Seven
patients out of twenty-nine survived, but only 6 out of 7 were able
to follow verbal command at hospital discharge. None of the patients
was lost of follow-up. The last patient returned home but the degree
of disability is unknown. At 3–6 months, GOS-E was scored at 3 for
the patient who was unable to follow verbal command at discharge
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TABLE 1 Comparison of clinical and electrophysiological characteristics between the two groups.

Bad neurological outcome (n = 23
unless otherwise specified) (/29)

Good neurological
outcome (n = 6) (/29)

p

Age (years), mean± SD [min-max] 60± 16 [24–87] 47.5± 16 [26–64] 0.07

Median [IQR 25–75] 62 [54–68.5] 52.5 [34.75–59]

Male, n 20 5 1

Shockable rhythm*, n 6 2 1

Etiology 0.57

Cardiac 10 4

Non-cardiac 12 2

Undetermined 1 0

No-flow (minutes), mean± SD 8.3± 8.4 (/21) 2.7± 4.3 0.07

Median [IQR 25–75] 7 [1–15] 0 [0–4.5]

Low-flow (minutes), mean± SD
Median [IQR 25–75]

24.9± 16.4
20 [18.5–35]

16.4± 11.7
15.5 [10.75–21]

0.22

Time to ROSC (≤25 min), n 8 (/21) 4 0.20

GCS on admission /15), mean± SD 3.1± 0.4 3.5± 1.2 0.21

Median [IQR 25–75] 3 [3–3] 3 [3–3]

SAPS II score, mean± SD 73± 15 62.5± 18 0.15

Median [IQR 25–75] 72 [63–85] 54 [49–76]

Sedation, n 8 3 0.65

EEG Grade I: predominant alpha with some theta, n 0 1

EEG Grade II: predominant theta with some alpha, n 0 0

EEG Grade III: predominant theta, n 3 5 0.0002

EEG Grade IV: delta activity, n
Generalized epileptiform periodic activity (GPEDs), n

7
6

0
0

EEG Grade V electrocerebral silence, n 3 0

Burst suppression patterns, n 4 0

EEG reactivity, n 3 2 0.27

SSEP (N20 -), n 7 (/22) 1/5 0.64

AEP (MMN+), n 4 2 0.57

GOS-E (6 months) (n) 3 (1/23) 4–8 (5/6)

*As the first documented rhythm; ROSC, return of spontaneous circulation; GCS, Glasgow Coma Scale; SAPS II score, simplified acute physiology score II; EEG, electroencephalography patterns
according to the five major grades of severity scale for brain injury; SSEP, cortical somatosensory evoked potentials; AEP, auditory evoked potentials; MMN, mismatch negativity. No-flow data were
missing in two patients and SSEP (N20 response) data in one patient (underlying Charcot Marie Tooth disease). GOS-E, Glasgow Outcome Scale-Extended.

and died 27 months later without neurological improvement. GOS-
E was scored at 4 for one patient, at 5 for one patient, at 6 for
one patient and at 8 for the last two patients. Age, sex, medical
history, characteristics of CA and electrophysiological features are
presented in Table 1. At the time of recording, all patients were
still hypothermic (<35◦C). Sedation was present in 11 out of the 29
patients (38%) at the moment of the electrophysiological recordings.
For the non-surviving patients, 18 out of 22 died after withdrawal of
life-sustaining therapies.

All six patients with good neurological outcome presented an
EEG pattern graded between I to III for all, whereas 20 out of the
23 of the patients with final bad neurological outcome or death
presented an EEG pattern graded IV or V (p < 0.0002), including the
patient who survived 27 months with bad neurological outcome. EEG
reactivity (2/6 versus 3/23) and presence of MMN (2/6 versus 4/23)
were more frequent in the group with good neurological outcome,
whereas N20 was less frequently absent (1/5 versus 7/22), but none
of these last markers were statistically different between the two

groups. Only 2 patients presented congruent favorable prognostic
factors with a present N20 at SSEP, a positive MMN and EEG pattern
graded I to III (areactive EEG for both), among whom one patient
did not survive. By contrast, four patients presented congruent
bad prognosis factors with absent N20, absent MMN and an EEG
pattern graded IV or V and all of them died. ERP obtained at Cz
location were the most reproducible and the only ones used for
visual analysis. Artifacts prevented the interpretation of SSEP in one
patient of each group.

Prognosis map constructed from bayesian
statistical inference

Since each parameter taken individually for standard (standard
deviation and similarity) and deviant (number of extremum NE
and oscillation|1V|) responses were not sufficient to obtain a
clear separation between the two patient categories, we decided to
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FIGURE 4

Predictive probability maps of good neurological outcome. (A) Probability maps computed from features of the standard stimuli responses. From left to
right: maps computed from SVM, Gaussian, and the k-nearest neighbors classifier (k = 6, the worst case scenario). (B) Probability maps computed from
features of the deviant stimuli features. From left to right: maps computed from SVM, Gaussian, and the k-nearest neighbors classifier with
distance-related weights, k = 6 for example.

combine them into a two-dimensional map (Figure 4). Interestingly,
we found that this map allowed a clear separation that we
quantified using various a priori classifiers: SVM, Gaussian, and
the K-neighbor classifiers (Hastie et al., 2001; Table 2). When
mapping all the features first taken individually for standard and
deviant responses, we found a cluster formed of patients with
a “good” neurological outcome, bounded in red, well separated
from the area in which were found the other patients (non-
surviving or “bad” neurological outcome). This partition between
two distinct areas was present in all classifiers: SVM, Gaussian, and
k-neighbors, confirming that this partition was robust independently
of the choice of the classification methods (Supplementary Figure 1
for other choices of k for the k-neighbor algorithm). Moreover,
we found a similar partition into two categories of patients
when classifying the standard or the deviant responses, which
strengthens the robustness of our study (Figure 4). The present
classification maps for both standard and deviant responses studied
separately showed that the neurological outcome of post-anoxic
comas can be predicted (Table 2). Combining the probability
computed in each map, we proposed a decision probability
with a high specificity, which does not misclassify patients with
good neurological outcome in the category of patients with bad
neurological outcome.

Classification efficiency of the
two-dimensional maps

To test the predictive strength of the standard and deviant
responses classification, we computed the confusion matrix (formula
13) as described in the methods. The confusion matrix computed
for the Gaussian estimator showed a 89 % accuracy, and a 100%
validation accuracy for the SVM classifier. The confusion matrix

computed for the k-neighbors classifier showed that it was less
performant than the SVM classifier. The sensitivity remained high
and could be improved with the increasing number of classified
patients (k = 4; similar results were obtained for other values of
k). The distance-dependent weight showed this estimator introduces
type I error, with an accuracy of 0.90, a sensitivity of 0.83 and a
specificity of 0.91.

Finally, we also computed the confusion matrix obtained from a
visual analysis of patient MMN, performed by a medical professional,
and we obtained an accuracy of 0.72, a sensitivity of 0.33 and a
specificity of 0.82. If MMN remained an interesting indicator, it
showed a very weak sensitivity in these patients (Tables 2, 3).

Discussion

Our exploratory study was designed to identify mathematical
parameters extracted from the AEP recording that could be more
powerful than visual inspection of MMN in the routine ICU setting
and used to predict neurological prognosis in these patients. The
originality of the present strategy was to consider independently
deviant from standard responses, not only in the time window of
the mismatch negativity (that results from the difference between
the two responses), but using the total amount of information
that is generated during the procedure. We found that our new
classification method, combining standard deviation and similarity
(correlation) for standard auditory stimuli, and number of extrema
and oscillations for deviant auditory stimuli, allowed clustering
patients in two-dimensions, in one of the two categories of good
or bad neurological prognosis. Importantly, we did not select these
parameters a priori to obtain a best separation of patients as explained
in the method’s section.
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TABLE 2 Accuracy, sensitivity, and specificity obtained by cross-validation for responses to standard, deviant stimuli; k is the number of neighbors used in
the classification algorithm.

k = 3 k = 4 k = 6 k = 8 SVM Gaussian

Accuracy

Standard responses 0.96 0.96 0.89 0.85 1.0 0.92

Deviant responses 0.89 0.89 0.89 0.89 1.0 0.89

Sensitivity

Standard responses 0.83 0.83 0.83 0.66 1.0 0.66

Deviant responses 0.83 0.83 0.83 0.83 1.0 0.5

Specificity

Standard responses 1.0 1.0 0.9 0.9 1.0 1.0

Deviant responses 0.91 0.91 0.91 0.91 1.0 1.0

TABLE 3 Classifications scores.

Accuracy Sensitivity Specificity

SVM 1 1.0 1

Gaussian 0.89 0.5 1

k-neighbors 0.9 0.83 0.91

MMN 0.72 0.33 0.82

To evaluate the robustness of our method, we used three
classifiers, showing similar maps classification results. Finally, using
leave-one-out cross-validation, we computed a score for each
classifier, demonstrating that any of the three classification methods
was more robust than simply analyzing the MMN in a binary
response, using logistic regression or single-trial topographic analysis
(De Lucia and Tzovara, 2015). We showed that good neurological
prognosis probability maps allow us to predict the neurological
outcome of post-anoxic comatose patients with a very good accuracy
of 0.90, sensitivity of 0.83 and specificity of 0.91 when considering the
least efficient classifier (Tables 2, 3).

We have used the standard deviation and the similarity index to
analyze the standard responses, while we used the number of extrema
and oscillations for the deviant in order to have two independent
set of parameters and increase the robustness of the results, and
preventing a potential bias by choosing a single set of parameters. We
could have decided to use these two latest parameters in this study
for all cases or use all four parameters that could have led to a more
robust result, but also to a four-dimensional classification, that we
wanted to avoid in order to obtain an easy-to-use tool. Moreover,
the standard deviation and the similarity index would not really be
appropriate to study the deviant sounds.

We can consider three other developments that could be
built on this present investigation. The first one is to evaluate if
repeating this procedure with this algorithm several days apart can
present a potential additive value, as explained in Tzovara et al.
(2013) who showed the additional prognostic value of repeating
MMN. The second one is to test whether this procedure could
be generalized to other auditory oddball paradigms. At last, it
would be interesting to evaluate whether such a method could
be applied to classical electroencephalography with more sparse
auditory and nociceptive stimuli than the one developed here
using auditory evoked potentials with frequent and regular auditory
stimuli. Indeed, electroencephalography is a neurophysiological

tool which is more widespread than auditory evoked potentials.
Characterizing electrophysiological features to predict the outcome
of post-anoxic coma remains a genuine challenge. There is currently
no satisfactory, efficient and simple tool to predict comatose patient
outcome accurately, especially at the acute phase, when patients are
sedated and/or hypothermic. Standard electroencephalography is the
most common method used to predict prognosis in those patients.
If highly malignant pattern (suppressed background discharges
without discharges or with continuous periodic discharges, or burst
suppression background with or without discharges) is highly specific
of poor outcome, as shown in our study, it has a sensitivity of only
50% (Westhall et al., 2016). The absence of cortical N20 response
at SSEP after stimulation of median nerves has an almost 100%
specificity for non-awakening prediction (Sandroni et al., 2014). By
contrast, the predictive value of the visual analysis of MMN for post-
CA comatose patients, limited to a binary response (presence/absence
of a detectable peak of the MMN between the standard and deviant
responses) is poorly sensitive, as shown in our study, even when
choosing parameters that better discriminate standard and deviant
sounds (Azabou et al., 2018). To overcome, the poor sensitivity
of MMN at visual analysis, several statistical methods have been
developed. Some are based on sample-by-sample paired t-test in
the specific time window where MMN is ussually visualized. Others
are based on wavelet transform, multivariate, cross-correlation and
probabilistic methods (Fischer et al., 1999; Naccache et al., 2005,
2015; Daltrozzo et al., 2007; De Lucia and Tzovara, 2015, 2016;
Gabriel et al., 2016; Juan et al., 2016). Tzovara et al. (2013) choose
an alternative strategy: they showed that the progression of MMN
auditory discrimination (and not one single analysis) over the first
2 days of coma was of good prognosis, suggesting that collecting
repetitive data within days, or at an earlier phase, could reveal changes
that could have a higher predictive value. Overall, this explains why a
multimodal prognostication approach is still recommended in these
patients, including clinical examination, serum biomarkers and brain
imaging in addition to electrophysiological recordings (Sandroni
et al., 2014; Nolan et al., 2021).

In that small series, none of the classical electrophysiological
tools were sensitive or specific enough to give a reliable neurological
prognosis. Only 2 patients presented congruent favorable prognostic
factors with a present N20 at SSEP, a positive MMN and EEG
pattern graded I to III (benign pattern according to the ACNS
EEG terminology) (Westhall et al., 2015) and areactive for both,
among whom one patient did not survive. By contrast, four patients
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presented congruent bad prognosis factors with absent N20, absent
MMN and an EEG pattern graded IV or V (highly malignant pattern
according to the ACNS EEG terminology) and all of them died,
suggesting that congruent pejorative factors are strongest indicators
of prognosis than congruent good prognosis factors, in accordance
with literature. It is to note that one third of the patients with
bad outcome and 50% of the patients with good outcome were
under sedation at the time of recording, which is known to impede
electrophysiology interpretation. Our study was not designed to
compare our tool with classical electrophysiological examinations
but sensitivity and specificity were higher in that small cohort that
needs to be validated in a larger cohort. The total amount of data we
collected for all epochs during the 20 min of auditory stimulations
and not only during the time window used for MMN might explain
our more sensitive results.

Our present study has several limitations. First, as a retrospective
study, neurological prognosis was evaluated on the ability of the
patient to follow verbal command at discharge, which remains a
subjective assessment that may have led to patient’s misclassification.
However, in the 7 surviving patients, GOS-E was available for 6
of them at 3–6 months post-discharge and was found at 3 in the
patient who was initially unable to follow verbal command and
from 4 to 8 for the others, indicating that no patient was initially
misclassified. Second, this cohort may not be representative of all post
CA patients since electrophysiological assessment was performed
relatively late, up to 6 days after admission, in patients still comatose
at the time of the evaluation, and the relatively small sample size
prevents generalization of our results that need to be replicated in
a larger cohort. Third, our cohort between patients with good and
bad prognosis was unbalanced, that we tried to offset using a leave-
one out cross validation. Fourth, our new approach did not consider
the order of the different sounds. For instance, a standard sound that
would start a new sequence just after a deviant sound or ending a
series of standard sounds just before a deviant sound, may not be
processed the same. This point could deserve a specific attention in
future studies, but as we averaged all our data, this probably does not
bias our results.

To conclude, we developed a new promising classification
method that could be self-sufficient, easily used by intensivists
(only one electrode, with minimal cost and easy training),
without the help of the neurophysiologists and in sedated
and/or hypothermic patients, since these conditions represent
actual limitations to electrophysiological data acquisition in the
ICU. Moreover, electrophysiological recordings may be particularly
difficult to acquire at the acute phase where patients combine
aggressive care (extracorporeal membrane oxygenation (ECMO),
haemodialysis, mechanical ventilation), and invasive methods of
monitoring, generating artifacts. Finally, potential amplitudes are
smaller under sedation and more difficult to extract from the
background (Yppärilä et al., 2004). Our preliminary results suggest
that all these issues could be addressed by this new method. The
produced maps can be refined and upgraded by adding new cases
and thus increase the performance of the probabilistic classifier. In
the future, and according to the local human and logistical resources,
the software could be implemented with other electrophysiological
and clinical variables to provide an optimal estimated probability
of the patient outcome, independently from neurophysiologists.
Developing such algorithms, ready-to-use by the intensivits, would
enable more aggressive management in patients with predicted good
neurological outcome. Whether this approach could be secondarily

applied to other predictive situations and generalized to other comas
remains to be validated.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and
approved by the Ethics Committee (Comité de Protection des
Personnes, CPP Paris IV #2012/22) (PHRC CAPACITY AOR10109).
Informed consent was provided by next-of-kin for all participants as
they were in a coma most of the time until their death, it was followed
whenever possible, by informed consent from the patient.

Author contributions

AF, AD, and DH created the algorithm. SL, ND, and BM
collected the clinical data. AR, EM, SM, PL, and NK performed
the electrophysiological examinations. DH and NK wrote the
manuscript. All authors read and approved the final manuscript.

Funding

This study was funded by a grant from Programme Hospitalier
de Recherche Clinique - PHRC CAPACITY AOR10109.

Conflict of interest

AF, AR, NK, and DH have a patent application for the prediction
of coma outcome (French patent FR1852473, titled “Outil prédictif
de la sortie du coma des patients après un arrêt cardio-respiratoire”).

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnins.2023.988394/
full#supplementary-material

Frontiers in Neuroscience 11 frontiersin.org70

https://doi.org/10.3389/fnins.2023.988394
https://www.frontiersin.org/articles/10.3389/fnins.2023.988394/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2023.988394/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-988394 February 11, 2023 Time: 9:25 # 12

Floyrac et al. 10.3389/fnins.2023.988394

References

Admiraal, M. M., Horn, J., Hofmeijer, J., Hoedemaekers, C. W. E., van Kaam, C. R.,
Keijzer, H. M., et al. (2020). EEG reactivity testing for prediction of good outcome in
patients after cardiac arrest. Neurology 95, e653–e661.

Aizerman, A. (1964). Theoretical foundations of the potential function method in
pattern recognition learning. Automat. Remote Control. 25, 821–837.

André-Obadia, N., Zyss, J., Gavaret, M., Lefaucheur, J.-P., Azabou, E., Boulogne,
S., et al. (2018). Recommendations for the use of electroencephalography
and evoked potentials in comatose patients. Neurophysiol. Clin. 48,
143–169.

Azabou, E., Rohaut, B., Porcher, R., Heming, N., Kandelman, S., Allary, J., et al. (2018).
Mismatch negativity to predict subsequent awakening in deeply sedated critically ill
patients. Br. J. Anaesth. 121, 1290–1297. doi: 10.1016/j.bja.2018.06.029

Bassetti, C., Bomio, F., Mathis, J., and Hess, C. W. (1996). Early prognosis in coma
after cardiac arrest: a prospective clinical, electrophysiological, and biochemical study of
60 patients. J. Neurol. Neurosurg. Psychiatry 61, 610–615. doi: 10.1136/jnnp.61.6.610

Bouchereau, E., Marchi, A., Hermann, B., Pruvost-Robieux, E., Guinard, E., Legouy,
C., et al. (2022). Quantitative analysis of early-stage EEG reactivity predicts awakening
and recovery of consciousness in patients with severe brain injury. Br. J. Anaesth. 130,
e225–e232. doi: 10.1016/j.bja.2022.09.005

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., et al. (2013).
API design for machine learning software: experiences from the scikit-learn project. arXiv
[Preprint]. Available online at: http://arxiv.org/abs/1309.0238 (accessed November 14,
2020).

Carr, B. G., Goyal, M., Band, R. A., Gaieski, D. F., Abella, B. S., Merchant, R. M., et al.
(2009). A national analysis of the relationship between hospital factors and post-cardiac
arrest mortality. Intensive Care Med. 35, 505–511. doi: 10.1007/s00134-008-1335-x

Chausson, N., Wassouf, A., Pegado, F., Willer, J.-C., and Naccache, L. (2008).
[Electrophysiology: mismatch negativity and prognosis of coma]. Rev. Neurol. 164,
F34–F35.

Cherkassky, V., and Mulier, F. (1998). Learning from Data: Concepts, Theory, and
Method. New York, NY: Wiley.

Chin, Y., Yaow, C., Teoh, S., Foo, M., Luo, N., Graves, N., et al. (2022). Long-term
outcomes after out-of-hospital cardiac arrest: a systematic review and meta-analysis.
Resuscitation 171, 15–29. doi: 10.1016/j.resuscitation.2021.12.026

Comanducci, A., Boly, M., Claassen, J., De Lucia, M., Gibson, R. M., Juan, E.,
et al. (2020). Clinical and advanced neurophysiology in the prognostic and diagnostic
evaluation of disorders of consciousness: review of an IFCN-endorsed expert group. Clin.
Neurophysiol. 131, 2736–2765. doi: 10.1016/j.clinph.2020.07.015

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20, 273–297.
doi: 10.1007/BF00994018

Daltrozzo, J., Wioland, N., Mutschler, V., and Kotchoubey, B. (2007). Predicting
coma and other low responsive patients outcome using event-related brain potentials:
a meta-analysis. Clin. Neurophysiol. 118, 606–614. doi: 10.1016/j.clinph.2006.11.019

De Lucia, M., and Tzovara, A. (2015). Decoding auditory EEG responses in healthy
and clinical populations: a comparative study. J. Neurosci. Methods 250, 106–113. doi:
10.1016/j.jneumeth.2014.10.019

De Lucia, M., and Tzovara, A. (2016). Reply: replicability and impact of statistics in
the detection of neural responses of consciousness. Brain 139:e32. doi: 10.1093/brain/
aww063

Duez, C. H. V., Ebbesen, M. Q., Benedek, K., Fabricius, M., Atkins, M. D., Beniczky,
S., et al. (2018). Large inter-rater variability on EEG-reactivity is improved by a novel
quantitative method. Clin. Neurophysiol. 129, 724–730. doi: 10.1016/j.clinph.2018.01.054

Fischer, C., Luauté, J., Némoz, C., Morlet, D., Kirkorian, G., and Mauguière, F. (2006).
Improved prediction of awakening or nonawakening from severe anoxic coma using
tree-based classification analysis. Crit. Care Med. 34, 1520–1524.

Fischer, C., Morlet, D., Bouchet, P., Luaute, J., Jourdan, C., and Salord, F. (1999).
Mismatch negativity and late auditory evoked potentials in comatose patients. Clin.
Neurophysiol. 110, 1601–1610. doi: 10.1016/S1388-2457(99)00131-5

Gabriel, D., Muzard, E., Henriques, J., Mignot, C., Pazart, L., André-Obadia, N., et al.
(2016). Replicability and impact of statistics in the detection of neural responses of
consciousness. Brain 139:e30. doi: 10.1093/brain/aww065

Hastie, T., Firedman, J., and Tibshirani, R. (2001). The Elements of Statistical Learning.
Springer Series in Statistics. New York, NY: Springer.

Juan, E., De Lucia, M., Tzovara, A., Beaud, V., Oddo, M., Clarke, S., et al. (2016).
Prediction of cognitive outcome based on the progression of auditory discrimination
during coma. Resuscitation 106, 89–95. doi: 10.1016/j.resuscitation.2016.06.032

Kim, J., Choi, B. S., Kim, K., Jung, C., Lee, J. H., Jo, Y. H., et al. (2012). Prognostic
performance of diffusion-weighted MRI combined with NSE in comatose cardiac arrest
survivors treated with mild hypothermia. Neurocrit. Care 17, 412–420. doi: 10.1007/
s12028-012-9773-2

Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection. Montreal, QC: ACM Digital Library,
1137–1145.

Le Gall, J., Neumann, A., Hemery, F., Bleriot, J., Fulgencio, J., Garrigues, B., et al.
(2005). Mortality prediction using SAPS II: an update for French intensive care units.
Crit. Care 9, R645–R652. doi: 10.1186/cc3821

Miraglia, D., Miguel, L., and Alonso, W. (2020). Long-term neurologically intact
survival after extracorporeal cardiopulmonary resuscitation for in-hospital or out-of-
hospital cardiac arrest: a systematic review and meta-analysis. Resusc. Plus 4:100045.
doi: 10.1016/j.resplu.2020.100045

Naccache, L., King, J.-R., Sitt, J., Engemann, D., El Karoui, I., Rohaut, B., et al. (2015).
Neural detection of complex sound sequences or of statistical regularities in the absence
of consciousness? Brain 138:e395. doi: 10.1093/brain/awv190

Naccache, L., Puybasset, L., Gaillard, R., Serve, E., and Willer, J.-C. (2005). Auditory
mismatch negativity is a good predictor of awakening in comatose patients: a fast and
reliable procedure. Clin. Neurophysiol. 116, 988–989. doi: 10.1016/j.clinph.2004.10.009

Nolan, J. P., Sandroni, C., Böttiger, B. W., Cariou, A., Cronberg, T., Friberg, H.,
et al. (2021). European resuscitation council and European society of intensive care
medicine guidelines 2021: post-resuscitation care. Intensive Care Med. 47, 369–421.
doi: 10.1007/s00134-021-06368-4

Oddo, M., Ribordy, V., Feihl, F., Rossetti, A. O., Schaller, M.-D., Chioléro, R.,
et al. (2008). Early predictors of outcome in comatose survivors of ventricular
fibrillation and non-ventricular fibrillation cardiac arrest treated with hypothermia:
a prospective study. Crit. Care Med. 36, 2296–2301. doi: 10.1097/CCM.0b013e31818
02599

Oddo, M., and Rossetti, A. O. (2014). Early multimodal outcome prediction after
cardiac arrest in patients treated with hypothermia. Crit. Care Med. 42, 1340–1347.
doi: 10.1097/CCM.0000000000000211

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

Pell, J. P. (2003). Presentation, management, and outcome of out of hospital
cardiopulmonary arrest: comparison by underlying aetiology. Heart 89, 839–842. doi:
10.1136/heart.89.8.839

Perkins, G. D., Jacobs, I. G., Nadkarni, V. M., Berg, R. A., Bhanji, F., Biarent,
D., et al. (2015). Cardiac Arrest and cardiopulmonary resuscitation outcome reports:
update of the utstein resuscitation registry templates for out-of-hospital cardiac arrest:
a statement for healthcare professionals from a task force of the international liaison
committee on resuscitation (American Heart Association, European Resuscitation
Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke
Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of
Southern Africa, Resuscitation Council of Asia); and the American heart association
emergency cardiovascular care committee and the council on cardiopulmonary, critical
care, perioperative and resuscitation. Circulation 132, 1286–1300. doi: 10.1161/CIR.
0000000000000144

Pfeiffer, C., Nguissi, N. A. N., Chytiris, M., Bidlingmeyer, P., Haenggi, M., Kurmann,
R., et al. (2017). Auditory discrimination improvement predicts awakening of postanoxic
comatose patients treated with targeted temperature management at 36 ◦C. Resuscitation
118, 89–95. doi: 10.1016/j.resuscitation.2017.07.012

Roberts, B. W., Kilgannon, J. H., Chansky, M. E., Mittal, N., Wooden, J., Parrillo,
J. E., et al. (2013). Multiple organ dysfunction after return of spontaneous circulation
in postcardiac arrest syndrome. Crit. Care Med. 41, 1492–1501. doi: 10.1097/CCM.
0b013e31828a39e9

Rohaut, B., Faugeras, F., Bekinschtein, T.-A., Wassouf, A., Chausson, N., Dehaene, S.,
et al. (2009). Prédiction du réveil et détection de la conscience: intérêt des potentiels
évoqués cognitifs. Réanimation 18, 659–663. doi: 10.1016/j.reaurg.2009.06.014

Rossetti, A. O., Rabinstein, A. A., and Oddo, M. (2016). Neurological prognostication
of outcome in patients in coma after cardiac arrest. Lancet Neurol. 15, 597–609. doi:
10.1016/S1474-4422(16)00015-6

Sandroni, C., Cariou, A., Cavallaro, F., Cronberg, T., Friberg, H., Hoedemaekers,
C., et al. (2014). Prognostication in comatose survivors of cardiac arrest: an advisory
statement from the European Resuscitation Council and the European Society of
Intensive Care Medicine. Intensive Care Med. 40, 1816–1831. doi: 10.1007/s00134-014-
3470-x

Sfar, S. (2007). Prise en charge de l’arrêt cardiaque. Ann. Fran. Anesth. Réanimat. 26,
1008–1019. doi: 10.1016/j.annfar.2008.02.003

Société de réanimation de langue française. (2010). Limitation et arrêt des
traitements en réanimation adulte. Actualisation des recommandations de la Société de
réanimation de langue française. Réanimation 19, 679–698. doi: 10.1016/j.reaurg.2010.0
7.001

Synek, V. M. (1988). Prognostically important EEG coma patterns in diffuse anoxic
and traumatic encephalopathies in adults. J. Clin. Neurophysiol. 5, 161–174. doi: 10.1097/
00004691-198804000-00003

Frontiers in Neuroscience 12 frontiersin.org71

https://doi.org/10.3389/fnins.2023.988394
https://doi.org/10.1016/j.bja.2018.06.029
https://doi.org/10.1136/jnnp.61.6.610
https://doi.org/10.1016/j.bja.2022.09.005
http://arxiv.org/abs/1309.0238
https://doi.org/10.1007/s00134-008-1335-x
https://doi.org/10.1016/j.resuscitation.2021.12.026
https://doi.org/10.1016/j.clinph.2020.07.015
https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/j.clinph.2006.11.019
https://doi.org/10.1016/j.jneumeth.2014.10.019
https://doi.org/10.1016/j.jneumeth.2014.10.019
https://doi.org/10.1093/brain/aww063
https://doi.org/10.1093/brain/aww063
https://doi.org/10.1016/j.clinph.2018.01.054
https://doi.org/10.1016/S1388-2457(99)00131-5
https://doi.org/10.1093/brain/aww065
https://doi.org/10.1016/j.resuscitation.2016.06.032
https://doi.org/10.1007/s12028-012-9773-2
https://doi.org/10.1007/s12028-012-9773-2
https://doi.org/10.1186/cc3821
https://doi.org/10.1016/j.resplu.2020.100045
https://doi.org/10.1093/brain/awv190
https://doi.org/10.1016/j.clinph.2004.10.009
https://doi.org/10.1007/s00134-021-06368-4
https://doi.org/10.1097/CCM.0b013e3181802599
https://doi.org/10.1097/CCM.0b013e3181802599
https://doi.org/10.1097/CCM.0000000000000211
https://doi.org/10.1136/heart.89.8.839
https://doi.org/10.1136/heart.89.8.839
https://doi.org/10.1161/CIR.0000000000000144
https://doi.org/10.1161/CIR.0000000000000144
https://doi.org/10.1016/j.resuscitation.2017.07.012
https://doi.org/10.1097/CCM.0b013e31828a39e9
https://doi.org/10.1097/CCM.0b013e31828a39e9
https://doi.org/10.1016/j.reaurg.2009.06.014
https://doi.org/10.1016/S1474-4422(16)00015-6
https://doi.org/10.1016/S1474-4422(16)00015-6
https://doi.org/10.1007/s00134-014-3470-x
https://doi.org/10.1007/s00134-014-3470-x
https://doi.org/10.1016/j.annfar.2008.02.003
https://doi.org/10.1016/j.reaurg.2010.07.001
https://doi.org/10.1016/j.reaurg.2010.07.001
https://doi.org/10.1097/00004691-198804000-00003
https://doi.org/10.1097/00004691-198804000-00003
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-988394 February 11, 2023 Time: 9:25 # 13

Floyrac et al. 10.3389/fnins.2023.988394

Tzovara, A., Rossetti, A. O., Spierer, L., Grivel, J., Murray, M. M., Oddo, M., et al.
(2013). Progression of auditory discrimination based on neural decoding predicts
awakening from coma. Brain 136, 81–89. doi: 10.1093/brain/aws264

Valiant, L. G. (1984). A theory of the learnable. Commun. ACM 27, 1134–1142. doi:
10.1145/1968.1972

Westhall, E., Rosén, I., Rossetti, A. O., van Rootselaar, A.-F., Wesenberg Kjaer, T.,
Friberg, H., et al. (2015). Interrater variability of EEG interpretation in comatose cardiac
arrest patients. Clin. Neurophysiol. 126, 2397–2404. doi: 10.1016/j.clinph.2015.03.017

Westhall, E., Rossetti, A. O., van Rootselaar, A.-F., Wesenberg Kjaer, T., Horn,
J., Ullén, S., et al. (2016). Standardized EEG interpretation accurately predicts
prognosis after cardiac arrest. Neurology 86, 1482–1490. doi: 10.1212/WNL.000000000
0002462

Yppärilä, H., Nunes, S., Korhonen, I., Partanen, J., and Ruokonen, E. (2004). The
effect of interruption to propofol sedation on auditory event-related potentials and
electroencephalogram in intensive care patients. Crit. Care 8, R483–R490. doi: 10.1186/
cc2984

Frontiers in Neuroscience 13 frontiersin.org72

https://doi.org/10.3389/fnins.2023.988394
https://doi.org/10.1093/brain/aws264
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://doi.org/10.1016/j.clinph.2015.03.017
https://doi.org/10.1212/WNL.0000000000002462
https://doi.org/10.1212/WNL.0000000000002462
https://doi.org/10.1186/cc2984
https://doi.org/10.1186/cc2984
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


TYPE Original Research

PUBLISHED 02 March 2023

DOI 10.3389/fncom.2023.1108311

OPEN ACCESS

EDITED BY

Benjamin R. Pittman-Polletta,

Boston University, United States

REVIEWED BY

Stanley E. Lazic,

Prioris.ai Inc., Canada

James J. Foster,

University of Konstanz, Germany

*CORRESPONDENCE

Maura Mezzetti

maura.mezzetti@uniroma2.it

Priscilla Balestrucci

priscilla.balestrucci@uni-ulm.de

RECEIVED 25 November 2022

ACCEPTED 03 February 2023

PUBLISHED 02 March 2023

CITATION

Mezzetti M, Ryan CP, Balestrucci P, Lacquaniti F

and Moscatelli A (2023) Bayesian hierarchical

models and prior elicitation for fitting

psychometric functions.

Front. Comput. Neurosci. 17:1108311.

doi: 10.3389/fncom.2023.1108311

COPYRIGHT

© 2023 Mezzetti, Ryan, Balestrucci, Lacquaniti

and Moscatelli. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Bayesian hierarchical models and
prior elicitation for fitting
psychometric functions

Maura Mezzetti1*, Colleen P. Ryan2,3, Priscilla Balestrucci4*,

Francesco Lacquaniti2,3 and Alessandro Moscatelli2,3

1Department Economics and Finance, University of Rome “Tor Vergata”, Rome, Italy, 2Department of

Systems Medicine and Centre of Space Bio-Medicine, University of Rome “Tor Vergata”, Rome, Italy,
3Department of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia

Foundation, Rome, Italy, 4Applied Cognitive Psychology, Ulm University, Ulm, Germany

Our previous articles demonstrated how to analyze psychophysical data from

a group of participants using generalized linear mixed models (GLMM) and

two-level methods. The aim of this article is to revisit hierarchical models in

a Bayesian framework. Bayesian models have been previously discussed for

the analysis of psychometric functions although this approach is still seldom

applied. The main advantage of using Bayesian models is that if the prior is

informative, the uncertainty of the parameters is reduced through the combination

of prior knowledge and the experimental data. Here, we evaluate uncertainties

between and within participants through posterior distributions. To demonstrate

the Bayesian approach, we re-analyzed data from two of our previous studies on

the tactile discrimination of speed. We considered di�erent methods to include

a priori knowledge in the prior distribution, not only from the literature but also

from previous experiments. A special type of Bayesian model, the power prior

distribution, allowed us to modulate the weight of the prior, constructed from

a first set of data, and use it to fit a second one. Bayesian models estimated

the probability distributions of the parameters of interest that convey information

about the e�ects of the experimental variables, their uncertainty, and the reliability

of individual participants. We implemented these models using the software Just

Another Gibbs Sampler (JAGS) that we interfaced with R with the package rjags.

The Bayesian hierarchical model will provide a promising and powerful method

for the analysis of psychometric functions in psychophysical experiments.

KEYWORDS

psychophysics, PSE, generalized linear mixed models, Bayesian model, psychometric

functions

1. Introduction

Psychophysical methods are largely used in behavioral neuroscience to investigate the

functional basis of perception in humans and other animals (Pelli and Farell, 1995). Using

a model called the psychometric function, it is possible to test the quantitative relation

between a physical property of the stimulus and its perceptual representation provided

by the senses. This model has a typical sigmoid shape and relates the actual stimulus

intensity (“physics”) on the abscissa to the probability of the response of the observer (i.e.,

perceptual response and “psychology”) on the ordinate, as collected with a forced-choice
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experiment. It is possible to summarize the performance of an

observer by the parameters that are computed by the psychometric

function: the Point of Subjective Equality (PSE), the slope, and the

Just Noticeable Difference (JND) (Knoblauch and Maloney, 2012).

The PSE estimates the accuracy of the response and corresponds

to the stimulus value associated with a probability of response at

chance level (p = 0.50). In two-interval forced-choice experiments,

a deviation of the PSE from the value of the reference stimulus may

indicate a bias, for example, in perceptual illusions (Moscatelli et al.,

2016, 2019). The JNDmeasures the noise of the response; the higher

the JND, the higher the perceptual noise (Prins, 2016). The JND

is an inverse function of the slope parameter of the psychometric

function that is a measurement of the precision of the response. It

is possible to test the slope or the JND of the function to evaluate

the precision (or the noise) of the response.

Typically, generalized linear models (GLMs) are applied to

estimate the parameters of the psychometric functions for each

individual participant (Knoblauch and Maloney, 2012). In our

previous study, we showed the advantages of using generalized

linear mixed models (GLMMs) to estimate the responses of

multiple participants at the population level (Moscatelli et al.,

2012). A fairly comprehensive literature on fitting GLM and

GLMM exists in different programming languages, including R,

Python, andMatlab (Linares and López-Moliner, 2016; Schütt et al.,

2016; Moscatelli and Balestrucci, 2017; Prins and Kingdom, 2018;

Balestrucci et al., 2022).

In GLMM, we distinguish between fixed- and random-effect

parameters (Stroup, 2012). The former, akin to the parameters of

the psychometric function, estimates the effects of the experimental

variables. Typically, the random-effect parameters estimate the

variability across individual participants. In more complex data-

sets, it is possible to account for other sources of unobserved

variation by means of random-effect parameters. Blocking or batch

effects are common examples of other random-effects parameters.

The addition of this random component is the distinguishing

feature of mixed models. For GLMMs, we assume that the random-

effect parameters are normally distributed variables. The goal

is to estimate the variance of that distribution. The larger the

variance, the larger the heterogeneity across participants for a

given parameter. However, the mean (or other central tendencies)

of that distribution can be treated as if fixed effects have been

applied to standard models. The conditional modes of the model

estimating the response of individual participants can be treated as

the fixed effects in standard psychometric functions. For example,

in Balestrucci et al. (2022), we used conditional modes to plot the

model estimates for individual participants.

A natural reinterpretation of the mixed model is the Bayesian

approach, where all parameters are naturally considered as random

variables, each having its own probability distribution (Zhao

et al., 2006; Fong et al., 2010). Bayesian models provide not

only a point estimate but also a probability distribution of the

population parameter. Therefore, a Bayesian approach allows a

natural assessment of the uncertainty in the parameter estimation.

The advantages of the hierarchical Bayesian framework have been

established in different fields in experimental psychology (Gelman

et al., 1995; Rouder et al., 2003) and item response (Fox and Glas,

2001; Wang et al., 2002). To the best of our knowledge, only

a few studies evaluate the use of Bayesian inference for fitting

psychometric functions (Alcalá-Quintana and García-Pérez, 2004;

Kuss et al., 2005; Schütt et al., 2016; Houpt and Bittner, 2018). In

addition to estimating the intercept and the slope of the model, the

flexibility of a Bayesian approach allows the study of uncertainties

of the PSE.

This article is organized as follows. In Section 2, the two-stage

Bayesian hierarchical model is proposed and discussed. Section 2.1

focuses on the description of prior distributions and Section 2.2 is

dedicated to the discussion of the computational aspects. In Section

3, the data from two published experiments are considered. In

Section 3.1, a Bayesian hierarchical model is fitted and compared

with the results of Dallmann et al. (2015), while in Section 3.2, a

Bayesian hierarchical model is fitted and compared with the results

of Picconi et al. (2022). In Section 4, the two studies considered

in Section 3 are jointly analyzed. Two alternative approaches are

proposed. The first one considers the combination of the two

studies with the parameters from the first study used as a prior

distribution. The second approach introduces a parameter, a0,

to quantify the uncertainty (or weight) of the first study that is

considered as historical data—as detailed in Section 2.1. Finally,

in Section 5, a discussion of the model is proposed and the results

obtained are discussed.

2. Model

A typical data-set from a psychophysical experiment includes

repeated responses from more than one participant. Fitting these

types of data with ordinary generalized linear models (GLM)

would produce invalid standard errors of the estimated parameters

because they would treat the errors within the subject in the

same manner as the errors between subjects. A viable approach

to overcome this problem consists of applying a multilevel model

(Morrone et al., 2005; Steele and Goldstein, 2006; Pariyadath and

Eagleman, 2007; Johnston et al., 2008). First, the parameters of the

psychometric function are estimated for each subject. Next, the

individual estimates are pooled to perform the second-level analysis

for statistical inference. Alternatively, it is possible to use the

generalized linear mixed model (GLMM) that accounts separately

for the experimental effects and the variability between participants

using random- and fixed-effect parameters (Moscatelli et al., 2012).

Bayesian methods provide a viable solution for fitting models

of the GLM and GLMM families (Gelman et al., 1995; Rouder

and Lu, 2005). In particular, Kuss et al. (2005) have applied

Bayesian methods for estimating a psychometric function, based

on a binomial mixture model. A Bayesian hierarchical model

is a statistical model written in multiple levels (hierarchical

form) and estimates the parameters using Markov chain Monte

Carlo (MCMC) sampling. Applying a Bayesian hierarchical model

consists of the following processes: (i) model definition, including

specification of parameters and prior distributions in different

levels, (ii) update of the posterior distributions given the data,

(iii) and Bayesian inference to analyze the parameters’ posterior

distributions (McElreath, 2020).

In the current study, we considered data from two-interval

forced-choice discrimination tasks, as mentioned in the two

example data-sets detailed in Sections 3.1 and 3.2. A two-stage

Bayesian hierarchical model has been applied to these data-sets,
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with a probit model for each individual subject at the first stage. Let

X denote the experimental variable (or variables), and let Y be the

response variable that consists of binary responses. Thus Yij = 1

if subject i in trial j perceived a comparison stimulus with value xij
as larger in magnitude (e.g., depending on the specific task, faster,

stiffer, heavier, brighter, etc.) than a reference stimulus. As for the

example data analyzed in this article (speed discrimination task),

Yij = 1 if the subject perceived the comparison as “faster” than a

reference one. The relationship between the response variable and

the experimental variables is defined as:

Yij ∼ Bern(µij) (1)

8−1(µij) = αi + βixij (2)

The model assumed that the forced-choice responses Yij are

independent and identically distributed (i.i.d.) conditional on the

individual parameters (αi,βi). In case of repeatedmeasurement, for

each subject and conditions, Equation (1) can easily be substituted

by

Yij ∼ Binom(µij, nij) (3)

where Yij represents, the number of “faster” responses for subject i

at condition xij.

The function 8−1 in Equation (2) establishes a linear

relationship between the response probability and the predictor

that is fully described by two parameters αi and βi. The probit link

function 8−1 is the inverse of the cumulative distribution function

of the standard normal distribution Z. That is:

µij = P
(
Z ≤ αi + βixij

)
∀i, j

For more details on probit link function refer to Agresti (2002)

and Moscatelli et al. (2012). Other link functions like Logit and

Weibull are also often used in psychophysics (Agresti, 2002; Foster

and Zychaluk, 2009).

In the first stage, the model characterized the behavior of each

individual participant i. The second level defines the model across

all participants, similar to the GLMM described by Moscatelli

et al. (2012). To this end, the second level estimates the overall

effects across subjects by combining individual-specific effects. The

parameters (a, b) describe the overall model and results from the

combination of the subject-specific parameters, taking into account

their uncertainties. Through a Bayesian hierarchical approach, the

second level takes into account the uncertainties of the subject-

specific parameters. It assumes the following distributions:

αi ∼ Norm(a, τα) (4)

βi ∼ Norm(b, τβ ) (5)

a ∼ Norm(µa, σa) (6)

b ∼ Norm(µb, σb) (7)

Appropriate hyperprior distributions for (τα , τβ , σa, and σb)

need to be specified. The precision of the overall model and the

between-subjects variability are gained by the posterior estimates of

the parameters τα and τβ , respectively. In the application in Section

3.1, we will discuss different prior distributions for τα and τβ , which

may be different for each subject or depend on other covariates. The

proposed framework provides a reliable approach to account for the

uncertainty of the fixed effects parameters.

The precision and the accuracy of the response are estimated

by the parameters of the model. The slope parameters βi link the

inverse probit of the expected probability and the covariates x (i.e.,

the stimulus). Therefore, this parameter estimates the precision

of the response, the higher is the estimated value of βi, the

more precise is the response. The interpretation of the location

parameter of the psychometric function depends on the nature of

the psychophysical task. In forced-choice discrimination tasks, as

mentioned in the two examples detailed in Sections 3.1 and 3.2, the

PSE estimates the accuracy of the response. The response is accurate

if the PSE is equal to the value of the reference stimulus. The value

of the PSE relative to observer i, psei is computed from intercept

and slope in Equation (2) as follows:

psei = −
αi

βi
(8)

The PSE corresponds to the stimulus value yielding a response

probability of 0.5, that is, the point at which participants are

equally likely to choose the standard or the comparison stimulus

in response to the task. In the examples mentioned later the PSE

participants are equally likely to choose one stimulus or the other

to the question “which stimulus moved faster?”.

2.1. Prior distribution

According to the Bayesian paradigm, prior distributions

and likelihood constitute a whole decision model. Ideally, a

prior distribution describes the degree of belief about the true

model parameters held by the scientists. If empirical data are

available, then new information can coherently be incorporated via

statistical models, through Bayesian learning. This process begins

by documenting the available expert knowledge and uncertainty. A

subjective prior describes the informed opinion of the value of a

parameter before the collection of data.

Prior distributions as described in the previous paragraph are

non-informative prior distributions. The flexibility of the Bayesian

model allows to modify (Equations 4, 5) by considering, for

example, partition or group of subjects between historical and

current data. We assume that there is one relevant historical study

available. However, the approaches proposed here can in principle

be extended to multiple historical studies. Here, we recall the

method based on the power prior proposed by Ibrahim and Chen

(2000). This has emerged as a useful class of informative priors for a

variety of situations in which historical data are available (Eggleston

et al., 2017).

The power prior is defined as follows Ibrahim and Chen (2000).

Suppose we have two data-sets from the current study and from

a previous study that is similar to the current one, labeled as the

current and the historical data, respectively. The historical data are

indicated as D0 = (n0, y0, x0), while the current data are indicated
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as D = (n, y, x), n, and n0 are the sample size, y and y0 are the

response vectors, respectively n × 1 and n0 × 1 vectors. Finally, x

and x0 are (either n×pmatrix or n0×pmatrix ) the covariates. Let

indicate θ as the vector of parameters, π0(θ) represents the initial

prior distribution for θ before the historical data D0 are observed.

The parameter L(θ |D) indicates a general likelihood function for an

arbitrarymodel, such as for linearmodels, generalized linearmodel,

random-effects model, non-linear model, or a survival model with

censored data. Given the parameter a0, between 0 and 1, the power

prior distribution of θ for the current study is defined as:

π(θ |D0, a0) ∝ L(θ |D0)
a0π0(θ).

This way, a0 represents the weights of the historical data relative

to the likelihood of the current study. According to this definition,

the parameter a0 represents the impact of the historical data on

L(θ |D).

Depending on the agreement between the historical and current

data, the historical data may be down-weighted, reducing the

value of a0. The main question is what value of a0 to use in the

analysis, which means how to assess agreement between historical

and current data and how to incorporate the historical data into

the analysis of a new study. The easiest solution is to establish a

hierarchical power prior by specifying a proper prior distribution

for a0. A uniform prior on a0 might be a good choice, or a

more informative prior would be to take a Beta distribution with

moderate to large parameters. Although a prior for a0 is attractive,

it is much more computationally intensive than the a0 fixed case.

The a0 random case has been extensively discussed (Ibrahim et al.,

1999, 2015; Ibrahim and Chen, 2000; Chen and Ibrahim, 2006).

Another approach, computationally more feasible, is to take a0 as

fixed and elicit a specific value for it and conduct several sensitivity

analyzes about this value or to take a0 as fixed and proceed, for

example, with a model selection criterion.

2.2. Computational aspects

The large improvements in the availability of computational

packages for implementing Bayesian analyzes have allowed the

growth of applications of hierarchical Bayesianmodels. Many of the

available packages permit the implementation of the Monte Carlo

Markov Chain (MCMC) algorithm which saves time by avoiding

technical coding. MCMC sampling is a simulation technique to

generate samples fromMarkov chains that allow the reconstruction

of the posterior distributions of the parameters. Once the posterior

distributions are obtained, then the accurate and unbiased point

estimates of model parameters are gained. Software for the

application of Bayesian models is currently applied in several

different fields (Palestro et al., 2018; Myers-Smith et al., 2019; Zhan

et al., 2019; Dal’Bello and Izawa, 2021; Mezzetti et al., 2022). Gibbs

sampling is an MCMC algorithm that can be implemented with

the software Just Another Gibbs Sampler (JAGS), (Plummer, 2017).

It is possible to interface JAGS with R using the CRAN package

rjags developed by Plummer (2003). The reader may refer to the

following tutorials for fitting hierarchical Bayesian models using

JAGS (or STAN) and R (Plummer, 2003; Kruschke, 2014).

Once the model is defined in JAGS, it is possible to sample

from the joint posterior distributions. The mean of samples from

the posterior distribution of the parameters provides the posterior

estimates of the parameters of interest. From the samples of the

posterior distribution, it is also possible to extract the percentile and

provide the corresponding 95% credible intervals.

As a diagnostic tool to assess whether the chains have converged

to the posterior distribution, we use the statistic R̂ (Gelman and

Rubin, 1992). Each parameter has the R̂ statistic associated with it

(Gelman and Rubin, 1992), in the recent version (Vehtari et al.,

2021); this is essentially the ratio of between-chain variance to

within-chain variance (analogous to ANOVA). The R̂ statistic

should be approximately 1± 0.1 if the chain has converged.

To compare Bayesian models, different indicators can be

adopted (Gelfand and Dey, 1994; Wasserman, 2000; Gelman et al.,

2014). The sum of squared errors is a reasonable measure proposed.

Although log-likelihood plays an important role in statistical

model comparison, it also has some drawbacks, for example, the

dependence on the number of parameters and on the sample

size. A reasonable alternative is to evaluate a model through the

log predictive density and its accuracy. Log pointwise predictive

density (lppd) for a single value yi is defined as Vehtari et al. (2017);

logp(yi|y) = log

∫

p(yi|θ)p(θ |y)dθ

The log pointwise predictive density (lppd) is defined as the sum

and can be computed using results from the posterior simulation

lppd =

n∑

i=1

logp(yi|y) =

n∑

i=1

log

∫

p(yi|θ)p(θ |y)dθ

3. Fitting hierarchical bayesian models
to the experimental data

Studies from our research group shed light on the interplay

between slip motion and high-frequency vibrations (masking

vibration) in the discrimination of velocity by touch (Dallmann

et al., 2015; Picconi et al., 2022; Ryan et al., 2022). These and similar

results are discussed in our recent review (Ryan et al., 2021). Using

Bayesian hierarchical models, we combined two of these studies and

evaluated the coherence of our findings across experiments. The

two studies are summarized in Sections 3.1 and 3.2, respectively.

Examples of the R and JAGS files for fitting our data are available

in the following Github repository https://github.com/moskante/

bayesian_models_psychophysics.

3.1. First data-set: The role of vibration in
tactile speed perception

The data-set touch-vibrations was first published by Dallmann

et al. (2015) and it is provided within the CRAN packageMixedPsy.

It consists of the forced-choice responses (i.e., the comparison

stimulus is “faster” or “slower” than a reference) collected in

a psychophysical study from nine human observers and the

corresponding predictor variables. The task is as follows: In two
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separate intervals, participants were requested to compare the

motion speed of a moving surface by touching it and reported

whether it moved faster in the reference or the comparison

stimulus. The speed of the comparison stimulus was chosen among

seven values of speed ranging between 1.0 and 16.0 cm/s. In

two separate blocks, participants performed the task either with

masking vibrations (sinusoidal wave signal at 32 Hz) or without

(control condition). Each speed and vibration combination was

repeated 40 times in randomized order, resulting in a total of 560

trials for each participant.

According to Dallmann et al. (2015), GLMM with a probit

link function was fitted to the data and the results presented

in Supplementary Tables S1, S2 were obtained. Next, the data

were fitted with a hierarchical Bayesian model in JAGS. Let Yh
ij

indicates the number of “faster” responses for subject i at speed

xj. Superscript h indicates the presence or absence of masking

vibrations. That is, h = 0masking vibrations were not present while

h = 1 masking vibrations were present. nhij is the total number of

trials for subject i, speed xj and vibration condition h. The model is

the following:

Yh
ij ∼ Binom(πh

ij , n
h
i,j) (9)

8−1(πh
ij ) = αh

i + βh
i xj h = 0, 1 (10)

The following set of priors are assumed:

αh
i ∼ Norm(ah, τ hα ) (11)

βh
i ∼ Norm(bh, τ hβ ) (12)

τ hα ∼ Gamma(1, 0.001) (13)

τ hβ ∼ Gamma(1, 0.001) (14)

ah ∼ Norm(0, σa) (15)

bh ∼ Norm(0, σb) (16)

σa ∼ Gamma(1, 0.01) (17)

σb ∼ Gamma(1, 0.01) (18)

The model in Equation (10) can be parameterized as follows to

allow focus on parameter PSE and the slope βh
i :

Yh
ij ∼ Binom(πh

ij , n
h
i,j) h = 0, 1 (19)

8−1(πh
ij ) = −psehi ∗ βh

i + βh
i xj (20)

psehi ∼ Norm(PSEh, τ hPSE) (21)

βh
i ∼ Norm(bh, τ hb ) (22)

τ hPSE ∼ Gamma(1, 0.001) (23)

τ hb ∼ Gamma(1, 0.001) (24)

PSEh ∼ Norm(0, σPSE) (25)

bh ∼ Norm(0, σb) (26)

σPSE ∼ Gamma(1, 0.01) (27)

σb ∼ Gamma(1, 0.01) (28)

We used the Greek letter βh
i and the Latin letter bh for the

slope of subject i and the conditional value of slope common to all

FIGURE 1

Posterior estimates of parameters bh (slope). Experiment in Section

3.1.

FIGURE 2

Posterior estimates of parameters PSEh. Experiment in Section 3.1.

subjects, respectively. Similarly, we used the term psehi and PSE
h for

the estimate of the PSE in subject i and the conditional estimate.

In this first example, non-informative prior distributions were

adopted and the hierarchical Bayesian model confirmed the results

obtained with the GLMM, as expected. Supplementary Table S3

presents the posterior estimates of ah and bh as defined in Equations

(9)–(18), while Supplementary Table S4 presents posterior

estimates of PSEh as defined (Equations 19–28). Comparing

Supplementary Table S2 (GLMM) and Supplementary Table S4

(Bayesian model), the PSE estimates result very close and the

uncertainty is very similar with the two model approaches.

Figures 1, 2 show the posterior distribution of the two parameters

of the model bh and PSEh as defined in Equations (21), (22) that

are common to all the subjects. The slope of the model is slightly

higher without masking vibrations (b0, in blue in the figure) as

compared to masking vibrations (b1, in red in the figure). The

difference in PSE is negligible.

We considered the overlap between the posterior distributions

as a measure of similarities and differences between parameters,

where overlapping is defined as the area intersected by the two

distributions. Overlapping was computed as the proportion of the
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FIGURE 3

Posterior estimates of individual parameters of pseh
i
. The (left) figure

illustrated with red lines represents conditions with masking

vibrations, while the (right) figure illustrated with blue lines

represents conditions without masking vibrations. Experiment in

Section 3.1.

FIGURE 4

Posterior estimates of individual parameters of βh
i
. The (left) figure

illustrated with red lines represents conditions with masking

vibrations while the (right) figure illustrated with blue lines

represents conditions without masking vibrations. Experiment in

Section 3.1.

areas of the histograms belonging to the region shared by the two

distributions. The idea of overlapping as a measure of similarity

among data-sets or clusters is frequently used in different fields

(Pastore and Calcagnì, 2019; Mezzetti et al., 2022).

An effect of vibration is present for the intercept. The overlap

between the distribution of b0 and b1, the slope of the model, is

0.04. The overlap of the posterior distributions of PSE, in presence

of vibration versus absence of vibration, is 0.58. This is consistent

with our GLMM analysis where we found a small (yet significant)

difference in slope but no differences in PSE.

Figures 3, 4 illustrate the posterior distributions of the

parameters of the individual psychometric function, as specified

in Equations (10), (21). It is interesting to notice that between-

subject variability is present for the slope (parameter βh
i ), while

FIGURE 5

Psychometric functions of individual participants from Experiment 1

in conditions without masking vibrations. The scatter plot shows the

observed (dots) versus predicted responses (solid lines) with data

from individual participants illustrated in each panel. Blue lines

correspond to the prediction by GLMM, while red lines correspond

to predictions by the Bayesian model. Experiment in Section 3.1.

subjects show similar behavior in posterior distribution respect to

PSE (parameter psehi ). In fact in Figure 3, the between individual

variability of PSE is quite negligible. Finally, Figures 5, 6 compare

the predictions of the GLMM and of the hierarchical Bayesian

model across the nine participants. The predictions of the two

models are almost identical. To conclude, since we used a non-

informative prior, the outcome of the Bayesian model does not

differ substantially from the GLMM that was used in the original

study.

Different specifications of the prior distributions in Equations

(23), (24) and in Equations (27), (28) were considered, based on

the sum of squared errors and the uncertainties of parameters,

measured with the length of credible intervals. In particular,

alternative specification of Equations (21)–(24) was considered:

psehi ∼ Norm(PSEh, τ iPSE) (29)

βh
i ∼ Norm(bh, τ ib) (30)

τ iPSE ∼ Gamma(1, 0.001) (31)

τ ib ∼ Gamma(1, 0.001) (32)

Specifically, in the model earlier, each subject can have a

different precision in the two parameters of PSE and slope—

i.e., τ iPSE and τ i
b
may have different values depending on the

participant. The previous choice of prior distributions assumed
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TABLE 1 Comparison between the di�erent models in data-set touch-vibrations.

Model E�ects Log likelihood LPPD Sum errors 95% CI of PSE Width CI

GLMM Individual - - -

Overall –284.42 - 0.62 (0.52, 0.59) 0.07

Bayesian 1 Individual –276.23 –14231.6 (1081.1) 0.42

Overall 0.61 (0.49, 0.55) 0.06

Bayesian 2 Individual –278.03 –14323.0 (3.6) 0.41

Overall 0.63 (0.49, 0.50) 0.01

Bayesian 3 Individual –276.29 14163.2 (2.0) 0.40

Overall 0.61 (0.57, 0.61) 0.04

Bayesian 4 Individual –275.86 -14155.8 (2.3) 0.39

Overall 0.61 (0.58, 0.63) 0.05

For each model, we showed the log-likelihood and the LPPD of the model, and the sum or squared errors and length of the Credible Intervals of the PSE. The first two lines refer to the GLMM

as described by Dallmann et al. (2015). The third and the fourth lines show the Bayesian model 1, as specified in Equations (19)–(28). In the fifth and the sixth lines, the Bayesian model 2 is

shown, with a different specification of the prior distributions as in (29)–(32). In the Bayesian model 3, the distribution of τ hα,β ∼ Gamma(1, 0.1) was used, as in (21)–(24). The last two lines

show the Bayesian model 4 with the distribution of τ is τ iα,β ∼ Gamma(1, 0.1). This means that the variability of the PSE and the slope was allowed to be different for each participant.

higher variability between subjects and evidenced a different

outcome in the subject NI as compared to the others with respect

to the intercept and the slope. The alternative specifications of

prior distributions in Equations (29)–(32) provide similar values

with respect to the sum of squared errors, and the length of

credible intervals for the PSE was slightly lower than the model

in Equations (27), (28). Table 1 shows the frequentist approach

(GLMM) and the different specifications of the Bayesian model.

Comparing the models with respect to the uncertainties in

PSE estimation and model fitting, we justify the choice of the

model proposed.

3.2. Second data-set: Tactile speed
discrimination in people with type 1
diabetes

The second data-set, touch-diabetes, includes data from 60

human participants that were tested in a speed discrimination

task similar to the one described in Section 3.1. The experimental

procedure and the results are detailed by Picconi et al. (2022).

Participants were divided into three groups, with 20 participants

per group: healthy controls, participants with diabetes with mild

tactile dysfunction, and participants with diabetes with moderate

tactile dysfunction. The three groups were labeled as controls, mild,

and moderate, respectively. As in touch-vibration, this experiment

consisted of a force-choice, speed discrimination task. In each of the

120 trials, participants were requested to indicate whether a contact

surface moved faster during a comparison or a reference stimulus

interval. For this experiment, a smooth surface consisting of a glass

plate was used. The motion speed of the comparison stimuli were

as chosen pseudo-randomly from a set of five values ranging from

0.6 to 6.4 cm/s, with the speed of the reference stimulus equal to 3.4

cm/s. Participants performed the task with and without masking

vibrations, with masking stimuli consisting of sinusoidal vibrations

at 100 Hz.

As in the original study, we used the GLMM in Equations

(33)–(35) to fit the data across groups and across masking vibration

conditions:

Yh
ij ∼ Binom(πh

ij , n
h
i,j) h = 0, 1 (33)

8−1(πh
ij ) = αh

i + βh
i xj (34)

The response variable Yh
ij is the number of “faster” responses for

subject i at speed xj. The suprascript h = 0 represents conditions

without masking vibrations and h = 1 represents conditions

with masking vibration. The variable nhij is the total number of

trials. Considering two dummy variables for the two groups of

participants with diabetes, mild (indicated with subscript 2) and

moderate (indicated with subscript 3) patients with diabetes, the

individual model with fixed effects is rewritten as:

8−1(πh
ij ) = αh + αh

2 + αh
3 + βhxj + βh

2 xj + βh
3 xj (35)

We used the packages MixedPsy (Balestrucci et al., 2022) and

lme4 (Bates et al., 2015) for model fitting. Supplementary Tables S5,

S6 report results for the frequentist approach (GLMM). The

slope of the model (referred to as tactile sensitivity in the study)

was different across the three groups, with controls performing

significantly better in the task than people with mild and moderate

tactile dysfunctions. The difference between groups was larger

without masking vibrations. As in the first data-set, masking

vibrations reduced the values of the slope across all groups. We

computed the values of PSE for all groups and conditions, see

Supplementary Table S6.We expected no significant change in PSE,

both between masking vibration conditions and between groups.

This is because, in this task, the cues and the sensory noise are the

same in the reference and comparison stimulus.

As in the previous example, we re-analyzed the data with a

Bayesian hierarchical model. Let i indicates subject, j speed, h

masking or no masking, and k indicates group.
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FIGURE 6

Psychometric functions of individual participants from Experiment 1

in conditions with 32 Hz masking vibrations. The scatter plot shows

the observed (dots) versus predicted responses (solid lines) with data

from individual participants illustrated in each panel. Blue lines

correspond to the prediction by GLMM, while red lines correspond

to predictions by the Bayesian model. Experiment in Section 3.1.

Similar to the analysis of the first data-set, the model was

parameterized with respect to the PSE and the slope:

Yh
ij ∼ Binom(πh

ij , n
h
i,j) (36)

8−1(πh
ij ) = −psehi ∗ βh

i + βh
i xj h = 0, 1 (37)

The following prior and hyper-prior distributions are assumed:

psehi ∼ Norm(PSEhk , τ
h
PSE,k) h = 0, 1 k = 1, 2, 3 (38)

βh
i ∼ Norm(bhk , τ

h
β ,k) (39)

τ hPSE,k ∼ Gamma(1, 0.001) (40)

τ h
β ,k ∼ Gamma(1, 0.001) (41)

PSEhk ∼ Norm(0, σPSE) (42)

bhk ∼ Norm(0, σb) (43)

σPSE ∼ Gamma(1, 0.01) (44)

σb ∼ Gamma(1, 0.01) (45)

The mean and the credible intervals of the parameters of the

models bh
k
(slope) and PSEh

k
, as defined in Equations (33)–(45),

are reported in Supplementary Table S7. The results confirmed the

difference in slopes between the groups and between conditions. In

conditions without masking vibrations, the slope was the highest in

controls followed by the mild and moderate groups. The mean of

the slope in controls is higher than the credible intervals of the mild

group. Similarly, the mean of the slope of the mild group is higher

than the credible intervals of the moderate group. The same effect

can be observed in the masking vibration conditions, although the

difference in slope is smaller between the control and mild groups.

In Figure 7, the posterior distributions of the slope of the model

are shown. We can observe the two effects of group (ordered from

controls to moderate) and masking conditions. In particular, the

group with moderate tactile dysfunction (illustrated in blue) is the

one with the lowest values of slope.

In Figure 8, the posterior distributions of the PSE values, as

specified in Equations (36)–(45) are shown. Uncertainties in the

parameters PSEh
k
were comparable between the frequentist and the

Bayesianmodels. This was expected because in this Bayesianmodel,

we used a non-informative prior. Masking vibrations had a large

effect on the slope and a much smaller effect on the PSE. Within

the control group, the overlap between the posterior distributions

of PSE with masking versus no masking is 0.04, and the overlap

between the posterior distribution of the slope between masking

and no masking is < 0.01. This supports our finding that masking

vibration reduced tactile sensitivity. In Figures 9, 10, the posterior

distributions of the individual parameters βi and psei are shown.

Again, it is interesting to notice that the posterior estimates of PSE

have low subject variability. The individual posterior distributions

show a higher overlapping, refer to Figure 10 for an almost perfect

overlapping. Within groups, variability is lower for PSE compared

to posterior distributions of the parameters representing the slopes.

4. Combined analysis of the two
experiments

In this section, we propose two different approaches for

the joint analysis of the two studies. In Section 4.1, the prior

distributions of the parameters relative to the second study are

defined from the data of the first study. In Section 4.2, a model

approach based on the power prior distribution explained in

Section 2.1 was applied to combine the two data-sets touch-

vibrations and touch-diabetes.

The data-set touch-vibrations is considered historical data and

indicated a D0 = (n0, y0, x0), where n0 is the sample size of the

historical data, y0 is the number of “faster” responses the n0 × 1

response vector, in this case number of, x0 is a n0×1 vector of speed.

The data-set touch-diabetes indicated the current study, we restrict

the analysis only to the control group, we discarded the two diabetic

groups because of their reduced tactile sensitivity. Data are denoted

by D = (n, y, x), where n denotes the sample size, y denotes the

n × 1 response vector, the number of “faster” responses, and x the

n× 2 matrix of covariates, indicator of cluster and speed.

4.1. Prior distribution defined on the first
experiment

The two data-sets are jointly analyzed. Equations (33)–(45)

are rewritten incorporating model (Equations 9, 10) in order to

combine the two studies as follows:

Yh
ij ∼ Binom(πh

ij , n
h
i,j) (46)

8−1(πh
ij ) = αh

i + βh
i xj (47)
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FIGURE 7

Posterior distributions of parameters bh
k
from the second stage of the hierarchical model. Experiment in Section 3.2.

FIGURE 8

Posterior distributions of parameters of the second stage of the hierarchical model PSEhk . Experiment in Section 3.2.

Yh
0ij ∼ Binom(πh

0ij, n
h
0i,j) (48)

8−1(πh
0ij) = αh

0i + βh
0ix0j (49)

Because of Weber’s Law, the sensitivity to speed and, therefore,

the slope depends on the value of the stimulus. To address this issue,

to combine the two experiments, we used the conversion factor in

Equation (55).

αh
i ∼ Norm(ah, τ ha ) (50)

βh
i ∼ Norm(bh, τ hb ) (51)

αh
0i ∼ Norm(ah0 , τ

h
a0) (52)

βh
0i ∼ Norm(bh0 , τ

h
b0) (53)

ah ∼ Norm(ah0 , σ
h
a ) (54)

bh ∼ Norm

(

bh0 ×
x̄

x̄0
, σ h

b

)

(55)

ah0 ∼ Norm(0, σ 0
a ) (56)

bh0 ∼ Norm(0, σ 0
b ) (57)

σ h
k ∼ Gamma(1, 0.01) h = 0, 1, 2 k = a, b (58)

τ hk ∼ Gamma(1, 0.01) h = 1, 2 k = a0, a, b0, b (59)

From the posterior estimates of parameters σ h
a and σ h

b
, we can

gain information about whether the combination of two studies

is appropriate for the same model. The posterior distributions of

the precision parameters indicate a good agreement between the

two studies and confirm the suitability of the choice for the prior

distribution. High-posterior estimates of the precision of the prior

distribution indicate good agreement between prior distribution

and data.

4.2. Power prior model

Recalling Section 2.1, the prior distribution of parameters θ =

(α,β) is defined as follows:

π(θ |D0, a0) ∝ L(θ |D0)
a0π0(θ). (60)
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FIGURE 9

Posterior distributions of parameters of the first stage of the

hierarchical model βh
i
, by group and masking condition. Experiment

in Section 3.2.

FIGURE 10

Posterior distributions of parameters of the first stage of the

hierarchical model PSEh
i
, by group and masking condition.

Experiment in Section 3.2.

The power parameter a0 represents the weight of the historical

data relative to the likelihood of the current study. The parameters

represent how much data from the previous study is to be used in

the current study. There are two special cases for a0, the first case

a0 = 0 results in no incorporation of the data from the previous

study relative to the current study. The second case a0 = 1 results

in full incorporation of the data from the previous study relative to

the current study. Therefore, a0 controls the influence of the data

gathered from previous studies that is similar to the current study.

This control is important when the sample size of the current data is

quite different from the sample size of historical data or where there

is heterogeneity between two studies (Ibrahim and Chen, 2000).

In Table 2, a comparison between all the models obtained by

varying the parameter a0 is shown. The choice of the value for a0
is implemented by model comparison, taking into account the log-

likelihood, the log point-wise predictive density, the sum of squared

errors, of both the level of the model, that are the individual and

overall model. Moreover, a comparison of the uncertainty in PSE

estimation is computed. The uncertainty decreases as a0 increases

indicating that we are updating our informative knowledge for

the correct model use. The likelihood increases as the value of a0
increases. The measures of goodness of fit of the models are very

similar increasing the value of a0. We decide to favor the model

that lowers the uncertainties in the estimation, that is the model

with a0 = 0.7.

In Table 3, three different prior distributions are compared. On

one hand, an informative prior is assumed following Section 3.2;

on the other hand, the first experiment is used to improve the

understanding of experiment 2. A combination of the two studies

[as in Equations (46)–(59)] illustrated in Section 4.1 is compared

with power prior as in Section (4.2). In Figures 11, 12, a comparison

of the posterior distributions of PSE and β , in the control group,

obtained according to the three different prior distributions is

shown. Again we favor the model that lowers the uncertainties

of posterior estimates. Overall, combining the two studies with

the power prior approach reduced the posterior estimate of the

model parameters as can be clearly seen by comparing the three

distributions in the figures.

5. Conclusion

In this study, we compared the outcome of a Bayesian

approach to a frequentist mixed model (GLMM) approach. The

comparison showed the importance of incorporating informative

prior knowledge from previous studies for data analysis.

We re-analyzed data from two studies using GLMM and

Bayesian models. First, we applied GLMM and four different

Bayesian models to the data-set described by Dallmann et al.

(2015). We compared the log-likelihood, LPPD, the sum of errors

between the different models, and confidence interval of the two

parameters of slope and PSE. The Bayesian approach allowed for

more flexibility in the model fitting (see Table 1). Next, we applied

Bayesian models to the second data-set for re-analysis of the results

described by Picconi et al. (2022). With a non-informative prior,

the Bayesian approach confirmed the estimation of the parameters

of the frequentist model. Finally, we ran a joint analysis of the two

data-sets using two different approaches, either by using the first

data-set to choose the parameters of the prior or by using the power

prior method. The informative prior in the power prior method

reduced the credible intervals of the PSE and justified the choice

of the model, as shown in Tables 2, 3.

The Bayesian approach provides useful features for the in-depth

analysis of psychophysical data. Through a Bayesian approach, the

random effects are estimated parameters, like the fixed effects, with

the advantage of obtaining credible intervals for both the quantities.

This allowed to estimate the effect of individual participants and

the reliability of each of them. For example, in Figure 4, it is

possible to identify a single participant with increased variability

and higher slope as compared to the rest of the group. Potentially,

this will simplify the identification of outliers or sources of

unobserved variability. Another advantage of the hierarchical

Bayesian approach is the possibility to incorporate information

from past studies to reduce the uncertainty of the estimate. For

example, compare the width of the three distributions in Figures 11,

12, with the non-informative prior having the larger width, i.e., the

Frontiers inComputationalNeuroscience 10 frontiersin.org
82

https://doi.org/10.3389/fncom.2023.1108311
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Mezzetti et al. 10.3389/fncom.2023.1108311

TABLE 2 Comparison between the di�erent models obtained by varying values of a0 in Equation (60), as illustrated in subsection 4.2.

a0 E�ects Log likelihood LPPD Sum errors CI of PSE Width CI

0 Individual –291.76 –3169.67 (9.91) 2.24

Overall 2.68 (0.32, 0.37) 0.05

0.1 Individual –292.85 –3183.66 (8.66) 2.24

Overall 2.64 (0.27, 0.26) 0.01

0.2 Individual –293.47 –3202.41 (7.18) 2.21

Overall 2.64 (0.24, 0.27) 0.03

0.3 Individual –294.07 –3221.91 (8.45) 2.21

Overall 2.64 (0.22, 0.27) 0.05

0.4 Individual –295.08 –3243.93 (7.02) 2.20

Overall 2.65 (0.25, 0.24) 0.01

0.5 Individual -295.48 -3242.41 (8.75) 2.20

Overall 2.66 (0.21, 0.25) 0.04

0.6 Individual -296.00 –3253.47 (13.02) 2.20

Overall 2.66 (0.19, 0.27) 0.08

0.7 Individual –296.02 –3256.63 (8.33) 2.23

Overall 2.68 (0.18, 0.22) 0.04

0.8 Individual –296.84 –3276.64 (7.70) 2.1

Overall 2.68 (0.18, 0.25) 0.07

0.9 Individual -296.77 –3268.68 (12.03) 2.23

Overall 2.68 (0.18, 0.2) 0.02

1 individual –297.27 –3268.46 (10.7) 2.22

Overall 2.7 (0.17, 0.24) 0.07

For each model, we showed the log-likelihood, the LPPD of the model, the sum or squared errors, and length of the Credible Intervals of the PSE.

TABLE 3 Comparison between the di�erent priors assumed for the data-set touch-diabetes.

Model E�ects Log like LPPD Sum errors CI of PSE Width CI

Non Informative 1 Individual –285.92 −3026.4 (3.4) 2.04

Overall 2.68 (0.3, 0.35) 0.05

Non Informative 2 Individual –291.66 −3153.9 (6.2) 2.25

Overall 2.67 (0.26, 0.32) 0.06

Non Informative 3 Individual -283.74 −3000.3 (2.8) 1.91

Overall 2.68 (0.31, 0.39) 0.08

Informative Prior

Subsection 4.1

Individual -292.14 −3156.2 (7.8) 2.2

Overall 2.65 (0.25, 0.36) 0.11

Informative Prior

Subsection 4.2

with a0 = 0.7

Individual –296.02 −3256.63 (8.33) 2.23

Overall 2.68 (0.18, 0.22) 0.04

For each model, we showed the log-likelihood and the LPPD of the model, and the Sum or Squared Errors and the Credible Intervals of the PSE. The first three models refer to non-

informative prior as illustrated in Equations (36)–(45). The first three models differ for hyperparameters in the Gamma distribution in Equations (40), (41). Non Informative 1 assumes

τβ ,PSE ∼ Gamma(1, 0.01). Non Informative 2 assumes τβ ,PSE ∼ Gamma(1, 0.001) and Non Informative 3 assumes τβ ,PSE ∼ Gamma(0.1, 0.01). The fourth and fifth models refers to the joint

analyzes of the two data-sets. In particular, the fourth model refers to prior illustrated in Section 4.1. The fifth model refers to the prior illustrated in Section 4.2 with a0 equal to 0.7.
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FIGURE 11

Posterior distributions of parameters PSEh with di�erent prior distributions for di�erent values of a0. The model with the informative prior (a0 = 1.0) is

illustrated in dark brown, the one with the power prior (α0 = 0.7) in orange, and the one with the non-informative prior (α0 = 0.0) in yellow.

Experiment in Section 3.2.

FIGURE 12

Posterior distributions of parameters bh with di�erent prior distributions for di�erent values of a0. The model with the informative prior (a0 = 1.0) is

illustrated in dark brown, the one with the power prior (a0 = 0.7) in orange, and the one with the non-informative prior (a0 = 0.0) in yellow.

Experiment in Section 3.2.

higher variance. This will increase the power of the analysis. Finally,

this approach allowed quantifying the coherence of multiple studies

on a related topic through the parameter a0. The greater the value

of a0, the higher the coherence across the studies.

Hierarchical modeling is a natural tool for combining several

data-sets or incorporating prior information. In the current study,

the method presented by Chen and Ibrahim (2006) has been used

that provides a formal connection between the power prior and

hierarchical models for the class of generalized linear models.

Understanding the impact of priors on the current data and

subsequently making decisions about these priors is fundamental

for the interpretation of data (Koenig et al., 2021). One of the

assumptions of the power prior approach is the existence of a

common set of parameters for the old and current data and

this assumption may not be met in practice. An alternative

approach to incorporate historical data has been proposed by

Neuenschwander et al. (2010) and van Rosmalen et al. (2018). This

other method is based on meta-analytic techniques (MAP) and

assumes exchangeability between old and current parameters.

Incorporating previous knowledge and insight into the

estimation process is a promising tool (Van de Schoot et al., 2017)

that is particularly relevant in studies with small sample sizes, as is

often in psychophysical experiments. In our case, the sample size of

the first data-set differed from the sample size of the second data-

set. To take this into account, the power prior approach allowed us

to assign a different weight to the historical data and the current

data. It is possible to purposefully choose the hyperparameters of

the prior, τ , to increase the precision of the posterior estimate.

Zitzmann et al. (2015) suggested to specify a slightly informative

prior to the group-level variance. As shown in Section 4, diffuse

priors produce results that are aligned with the likelihood. On the

other hand, using an informative prior that is relatively far from

the likelihood, produces a shift in the posterior. It is possible to

conduct a prior sensitivity analysis to fully understand its influence

on posterior estimates (Van de Schoot et al., 2017).

Uncertainty quantification is an important issue in

psychophysics. Hierarchical Bayesian models allow the researcher

to estimate the uncertainty at a group level and the one specific
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to individual participants. This model approach will have an

important impact on the evaluation of psychometric functions in

psychophysical data.
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Flexible intentions: An Active
Inference theory

Matteo Priorelli and Ivilin Peev Stoianov*

Institute of Cognitive Sciences and Technologies (ISTC), National Research Council of Italy (CNR), Padua,

Italy

We present a normative computational theory of how the brain may support

visually-guided goal-directed actions in dynamically changing environments. It

extends the Active Inference theory of cortical processing according to which the

brain maintains beliefs over the environmental state, and motor control signals

try to fulfill the corresponding sensory predictions. We propose that the neural

circuitry in the Posterior Parietal Cortex (PPC) compute flexible intentions—or

motor plans from a belief over targets—to dynamically generate goal-directed

actions, and we develop a computational formalization of this process. A

proof-of-concept agent embodying visual and proprioceptive sensors and an

actuated upper limb was tested on target-reaching tasks. The agent behaved

correctly under various conditions, including static and dynamic targets, di�erent

sensory feedbacks, sensory precisions, intention gains, and movement policies;

limit conditions were individuated, too. Active Inference driven by dynamic and

flexible intentions can thus support goal-directed behavior in constantly changing

environments, and the PPC might putatively host its core intention mechanism.

More broadly, the study provides a normative computational basis for research on

goal-directed behavior in end-to-end settings and further advances mechanistic

theories of active biological systems.

KEYWORDS

Active Inference, sensorimotor control, Posterior Parietal Cortex, intentions, Predictive

Coding

1. Introduction

Traditionally, sensorimotor control in goal-directed actions like object-reaching is

viewed as a sensory-response mapping involving several steps, starting with perception,

movement planning in the body posture domain, translation of this plan in muscle

commands, and finally movement execution (Erlhagen and Schöner, 2002). However,

each of these steps is hindered by noise and delays, which make the approach unfeasible

to operate in changing environments (Franklin and Wolpert, 2011). Instead, Predictive

Coding or “Bayesian Brain” theories propose that prior knowledge and expectations over

the environmental and bodily contexts provide crucial anticipatory information (Rao and

Ballard, 1999). Under this perspective, motor control begins with target anticipation and

motor planning even before obtaining sensory evidence. Here, we take on this view and

extend an increasingly popular Predictive Coding based theory of action, Active Inference

(Friston et al., 2010), with the formalization of flexible target-dependent motor plans.

Moreover, based on extensive neural evidence for the role of the PPC in goal coding and

motor planning (Snyder et al., 2000; Galletti et al., 2022), we propose that this cortical

structure is the most likely neural correlate of the core intention manipulation process.

In primates, the dorsomedial visual stream provides critical support for continuously

monitoring the body posture and the spatial location of objects to specify and guide actions,

and for performing visuomotor transformations in the course of the evolving movement
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(Cisek and Kalaska, 2010; Fattori et al., 2017; Galletti and Fattori,

2018). The PPC, located at the apex of the dorsal stream,

is also bidirectionally connected to frontal areas, motor and

somatosensory cortex, placing it in a privileged position to set goal-

directed actions and continuously adjust motor plans by tracking

moving targets and posture (Andersen, 1995; Gamberini et al.,

2021) in a common reference frame (Cohen and Andersen, 2002).

Undoubtedly, the PPC plays a crucial role in visually-guided motor

control (Desmurget et al., 1999; Filippini et al., 2018; Gamberini

et al., 2021)—with the specific subregion V6A involved in the

control of reach-to-grasp actions (Galletti et al., 2022)—but its

peculiar role is still disputed. The most consistent view is that

the PPC estimates the states of both body and environment and

optimizes their interactions (Medendorp and Heed, 2019). Others

see the PPC as a task estimator (Haar and Donchin, 2020) or as

being involved in endogenous attention and task setting (Corbetta

and Shulman, 2002). Its underlying computational mechanism is

not fully understood, especially as regards the definition of goals

in motor planning and their integration within the control process

(Shadmehr and Krakauer, 2008). For example, the prevailing

Optimal Feedback Control theory defines motor goals through

task-specific cost functions (Todorov, 2004). Neural-level details of

motor goal coding are becoming increasingly important in light of

the growing demand for neural interfaces that provide information

about motor intents (Gallego et al., 2022) in support of intelligent

assistive devices (Velliste et al., 2008; Srinivasan et al., 2021).

Intentions encode motor goals—or plans—set before the

beginning of motor acts themselves and could be therefore viewed

as memory holders of voluntary actions (Andersen, 1995; Snyder

et al., 1997; Lau et al., 2004; Fogassi et al., 2005). Several cortical

areas handle different aspects of this process: the Premotor cortex

(PM) encodes structuring while the Supplementary Motor Area

(SMA) controls phasing (Gallego et al., 2022). In turn, the PPC

plays a role in building motor plans and their dynamic tuning, as

different PPC neurons are sensitive to different intentions (Snyder

et al., 2000). Notably, intention neurons respond not only when

performing a given action but also during its observation, allowing

observers to predict the goal of the observed action and, thus, to

“read” the intention of the acting individual (Fogassi et al., 2005).

Motor goals have also been observed down the motor hierarchy,

which is an expression of Hierarchical Predictive Coding in the

motor domain (Friston et al., 2011).

To investigate how neural circuitry in the PPC supports

sensory-guided actions through motor intentions from a

computational point of view, we adopted the Active Inference

theory of cognitive andmotor control, which provides fundamental

insights of increasing appeal about the computational role and

principles of the nervous system, especially about the perception-

action loop (Friston and Kiebel, 2009; Friston et al., 2010; Bogacz,

2017; Parr et al., 2022). Indeed, Active Inference provides a

formalization of these two cortical tasks, both of which are viewed

as aiming to resolve the critical goal of all organisms: to survive in

uncertain environments by operating within preferred states (e.g.,

maintaining a constant temperature). Accordingly, both tasks are

implemented by dynamic minimization of a quantity called free

energy, whose process generally corresponds to the minimization

of high- and low-level prediction errors, that is, the satisfaction of

prior and sensory expectations. There are two branches of Active

Inference appropriate to tackle two different levels of control.

The discrete framework can explain high-level cognitive control

processes such as planning and decision-making, i.e., it evaluates

expected outcomes to select actions in discrete entities (Pezzulo

et al., 2018). In turn, dynamic adjustment of action plans in the

PPC matches by functionality the Active Inference framework in

continuous state space (Friston et al., 2011, 2012). In short, this

theory departs from classical views of perception, motor planning

(Erlhagen and Schöner, 2002), and motor control (Todorov, 2004),

unifying and considering them as a dynamic probabilistic inference

problem (Toussaint and Storkey, 2006; Kaplan and Friston, 2018;

Levine, 2018; Millidge et al., 2020). The biologically implausible

cost functions typical of Optimal Control theories are replaced

by high-level priors defined in the extrinsic state space, allowing

complex movements such as walking or handwriting (Friston,

2011; Adams et al., 2013).

In the following, we first outline the background computational

framework and then elaborate on movement planning and

intentionality in continuous Active Inference. Our most critical

contributions regard the formalization of goal-directed behavior

and the processes linking dynamic goals (e.g., moving visual

targets) with motor plans through the definition of flexible

intentions. We also investigate a more parsimonious approach

to motor control based solely on proprioceptive predictions. We

then provide implementation details and a practical demonstration

of the theoretical contribution in terms of a simulated Active

Inference agent, which we show is capable of detecting and

reaching static visual goals and tracking moving targets. We also

provide detailed performance statistics and investigate the effects of

system parameters whose balance is critical to movement stability.

Additionally, gradient analysis provides crucial insights into the

causes of the movements performed. Finally, we discuss how

intentions could be selected to perform a series of goal-directed

steps, e.g., a multi-phase action, and illustrate conditions for

neurological disorders.

2. Computational background

We first outline the computational principles of the underlying

probabilistic and Predictive Coding approach and provide

background on variational inference, free energy minimization,

Active Inference, and variational autoencoders necessary to

comprehend the following main contribution.

2.1. The Bayesian brain hypothesis

An interesting visual phenomenon, called binocular rivalry,

happens when two different images are presented simultaneously

to each eye: the perception does not conform to the visual input but

alternates between the two images. How and why does this happen?

It is well-known that priors play a fundamental role in driving

the dynamics of perceptual experience, but dominant views of the

brain as a feature detector that passively receives sensory signals

and computes motor commands have so far failed to explain how

such illusions could arise.
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In recent years, there has been increasing attention to a radically

new theory of the mind called the Bayesian brain, according to

which our brain is a sophisticated machine that constantly makes

use of Bayesian reasoning to capture causal relationships in the

world and deliver optimal behavior in an uncertain environment

(Doya, 2007; Hohwy, 2013; Pezzulo et al., 2017). At the core of

the theory is the Bayes theorem, whose application here implies

that posterior beliefs about the world are updated according to the

product of prior beliefs and the likelihood of observing sensory

input. In this view, perception is more than a simple bottom-

up feedforward mechanism that detects features and objects from

the current sensorium; rather, it comprises a predictive top-down

generative model which continuously anticipates the sensory input

to test hypotheses and explain away ambiguities.

According to the Bayesian brain hypothesis, this complex task is

accomplished by Predictive Coding, implemented through message

passing of top-down predictions and bottom-up prediction errors

between adjacent cortical layers (Rao and Ballard, 1999). The

former are generated from latent states maintained at the highest

levels, representing beliefs about the causes of the environment,

while the latter are computed by comparing sensory-level

predictions with the actual observations. Each prediction will then

act as a cause for the layer below, while the prediction error

will convey information to the layer above. It is thanks to this

hierarchical organization and through error minimization at every

layer that the cortex is supposed to be able to mimic and capture

the inherently hierarchical relationships that model the world. In

this view, sensations are only needed in that they provide, through

the computation of prediction errors, a measure of how good the

model is and a cue to correct future predictions. Thus, ascending

projections do not encode the features of a stimulus, but rather

how much the brain is surprised about it, considering the strict

correlation between surprise and model uncertainty.

2.2. Variational bayes

Organisms are supposed to implement model fit or error

minimization by some form of variational inference, a broad

family of techniques based on the calculus of variations and used

to approximate intractable posteriors that would otherwise be

infeasible to compute analytically or even with classical sampling

methods like Monte Carlo (Bishop, 2006). Under the Bayesian

brain hypothesis, we can assume that the nervous systemmaintains

latent variables z about both the unknown state of the external

world and the internal state of the organism. By exploiting a prior

knowledge p(z) and the partial evidence p(s) of the environment

provided by its sensors, it can apply Bayesian inference to improve

its knowledge (Ma et al., 2006). To do so, given the observation s,

the nervous system needs to evaluate the posterior p(z|s):

p(z|s) =
p(z, s)

p(s)
(1)

However, directly computing such quantity is infeasible due to

the intractability of the marginal p(s) =
∫
p(z, s)dz, which involves

integration over the joint density p(z, s). What does the variational

approach is approximating the posterior with a simpler to compute

recognition distribution q(z) ≈ p(z|s) through minimization of the

Kullback-Leibler (KL) divergence between them:

DKL[q(z)||p(z|s)] =

∫

z
q(z) ln

q(z)

p(z|s)
dz (2)

The KL divergence can be rewritten as the difference between

log evidence ln p(s) and a quantity L(q) known as evidence lower

bound, or ELBO (Bishop, 2006):

DKL[q(z)||p(z|s)] = ln p(s)−

∫

z
q(z) ln

p(z, s)

q(z)
dz = ln p(s)− L(q)

(3)

Since the KL divergence is always nonnegative, the ELBO

provides a lower bound on log evidence, i.e., L(q) ≤ ln p(s).

Therefore, minimizing the KL divergence with respect to q(z) is

equivalent to maximizingL(q), which at its maximum corresponds

to an approximate density that is closest the most to the real

posterior, depending on the particular choice of the form of q(z).

In general, few assumptions are made about the form of this

distribution—a multivariate Gaussian is a typical choice—with a

trade-off between having a tractable optimization process and still

leading to a good approximate posterior.

2.3. Free energy and prediction errors

How can Bayesian inference be implemented through a

simple message passing of prediction errors? Friston (2002, 2005)

proposed an elegant solution based on the so-called free energy,

a concept borrowed from thermodynamics and defined as the

negative ELBO. Accordingly, Equation (3) can be rewritten as:

F(z, s) = −L(q) = DKL[q(z)||p(z|s)]−ln p(s) =

∫

z
q(z) ln

q(z)

p(z, s)
dz

(4)

Minimizing the free energy with respect to the latent states z—

a process called perceptual inference—is then equivalent to ELBO

maximization and provides an upper bound on surprise:

z = argmin
z

F(z, s) (5)

In this way, the organism indirectly minimizes model

uncertainty and is able to learn the causal relations between

unknown states and sensory input, and to generate predictions

based on its current representation of the environment. Free energy

minimization is simpler than dealing with the KL divergence

between the approximate and true posteriors as the former

depends on quantities that the organism has access to, namely the

approximate posterior and the generative model.

To this concern, it is necessary to distinguish between the latter

and the real distribution producing sensory data, called generative

process, which can be modeled with the following non-linear

stochastic equations:

s = g(z)+ ws

ż = f (z)+ wz

(6)

Where the function g maps latent states or causes z to observed

states or sensations s, the function f encodes the dynamics of the
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system, i.e., the evolution of z over time, while ws and wz are noise

terms that describe system uncertainty.

Nervous systems are supposed to approximate the generative

process by making a few assumptions: that (i) under the mean-

field approximation the recognition density can be partitioned into

independent distributions: q(z) =
∏

i q(zi), and that (ii) under the

Laplace approximation each of these partitions is Gaussian: q(zi) =

N (µi,5
−1
i ), where µi represents the most plausible hypothesis—

also called belief about the hidden state zi - and 5i is its precision

matrix (Friston et al., 2007). In this way, the free energy does not

depend on z and simplifies as follows:

F(µ, s) = − ln p(µ, s)+ C = − ln p(s|µ)− ln p(µ)+ C (7)

Where C is a constant term. A more precise description of the

unknown environmental dynamics can be achieved by considering

not only the 1st order of Equation 6 but also higher temporal orders

of the corresponding approximations: µ̃ = {µ,µ′,µ′′, ...}—called

generalized coordinates (Friston, 2008; Friston et al., 2008). This

allows us to better represent the environment with the following

generalized model:

s̃ = g̃(µ̃)+ ws

Dµ̃ = f̃ (µ̃)+ wµ

(8)

Where D is the differential (shift) operator matrix such that

Dµ̃ = {µ′,µ′′, ...}, s̃ denotes the generalized sensors, while g̃ and

f̃ denote the generalized model functions of all temporal orders.

Note that in this system, the sensory data at a particular dynamical

order s[d]—where [d] is the order—engage only with the same

order of belief µ[d], while the generalized equation of motion, or

system dynamics, specifies the coupling between adjacent orders.

Such equations are generated from the generalized likelihood and

prior distributions, which can be expanded as follows:

p(s̃|µ̃) =
∏

d

p(s[d]|µ[d])

p(µ̃) =
∏

d

p(µ[d+1]|µ[d])
(9)

As defined above, these variational probability distributions are

assumed to be Gaussian:

p(s[d]|µ[d]) =
5s

√
(2π)L

exp

(

−
1

2
ε[d]s

T
5sε

[d]
s

)

p(µ[d+1]|µ[d]) =
5µ

√
(2π)M

exp

(

−
1

2
ε[d]µ

T
5µε[d]µ

) (10)

Where L and M are the dimensions of sensations and internal

beliefs, respectively with precisions 5s and 5µ. Note that the

probability distributions are expressed in terms of sensory and

dynamics prediction errors:

ε[d]s = s[d] − g[d](µ[d]) (11)

ε[d]µ = µ[d+1] − f [d](µ[d]) (12)

The factorized probabilistic approximation of the dynamic

model allows easy state estimation performed by iterative gradient

descent over the generalized coordinates, that is, by changing the

belief µ̃ over the hidden states at every temporal order:

˙̃µ−Dµ̃ = −∂µ̃F(µ̃, s̃) (13)

Gradient descent is tractable because the Gaussian variational

functions are smooth and differentiable and the derivatives are

easily computed in terms of generalized prediction errors, since the

logarithm of Equation (7) vanishes the exponent of the Gaussian.

The belief update thus turns to:

˙̃µ = Dµ̃+
∂ g̃

∂µ̃

T

5̃sε̃s +
∂ f̃

∂µ̃

T

5̃µε̃µ −D
T5̃µε̃µ (14)

It is crucial to keep in mind the nature of the three components

that compose this update equation: a likelihood error computed at

the sensory level, a backward error arising from the next temporal

order, and a forward error coming from the previous order. These

terms represent the free energy gradients relative to the belief µ[d]

of Equation (11) for the likelihood, andµ[d+1] andµ[d] of Equation

(12) for the dynamics errors.

In short, by making a few plausible simplifying assumptions,

the complexity of free energy minimization reduces to the

generation of predictions, which are constantly compared with

sensory observations to determine a prediction error signal. This

error then flows back through the cortical hierarchy to adjust

the distribution parameters accordingly and minimize sensory

surprise—or maximize evidence—in the long run.

2.4. Active Inference

Describing the relationship between Predictive Coding and

Bayesian inference still does not explain why has the cortex evolved

in such a peculiar way. The answer comes from the so-called

free energy principle (FEP), regard to which the Bayesian brain

hypothesis is supposed to be a corollary. Indeed, learning the causal

relationships of some observed data (e.g., what causes an increase

in body temperature) is insufficient to keep organisms alive (e.g.,

maintaining the temperature in a vital range).

The FEP states that, for an organism to maintain a state

of homeostasis and survive, it must constantly and actively

restrict the set of latent states in which it lives to a narrow

range of life-compatible possibilities, counteracting the natural

tendency for disorder (Friston, 2012)—hence the relationship with

thermodynamics. If these states are defined by the organism’s

phenotype, from the point of view of its internal model they are

exactly the states that it expects to be less surprising. Thus, while

perceptual inference tries to optimize the belief about hidden causes

to explain away sensations, if on the other hand the assumptions

defined by the phenotype are considered to be the true causes of

the world, interacting with the external environmentmeans that the

agent will try to sample those sensations that make the assumptions

true, fulfilling its needs and beliefs. Active inference becomes a self-

fulfilling prophecy. In this view, there is no difference between a

desire and a belief: we simply seek the states in which we expect to

find ourselves (Friston et al., 2010; Buckley et al., 2017).
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For achieving a goal-directed behavior, it is then sufficient

to minimize the free energy also with respect to the action (see

Equation 7):

a = argmin
a

F(µ, s) (15)

Given that motor control signals only depend on sensory

information, we obtain:

ȧ = −∂aF(s̃, µ̃) = −
∂F

∂ s̃

∂ s̃

∂a
= −

∂ s̃

∂a

T

5̃sε̃s (16)

Minimizing the free energy of all sensory signals is certainly

useful, as every likelihood contribution will drive the belief update;

however, it requires the knowledge of an inverse mapping from

exteroceptive sensations to actions (Baltieri and Buckley, 2019),

which is considered a "hard problem" being in general highly

non-linear and not univocal (Friston et al., 2010). In a more

realistic scenario, only proprioception drives the minimization of

free energy with respect to the motor signals; this process is easier

to realize since the corresponding sensory prediction is already

in the intrinsic domain. Control signals sent from the motor

cortex are then not motor commands as in classical views of

Optimal Control theories; rather, they consist of predictions that

define the desired trajectory. Under this perspective, proprioceptive

prediction errors computed locally at the spinal cord serve two

purposes that only differ in how these signals are conveyed. They

drive the current belief toward sensory observations—happening

to realize perception—like for exteroceptive signals. But they also

drive sensory observations toward the current belief by suppression

in simple reflex arcs that activate the corresponding muscles—

thus happening to realize movement (Adams et al., 2013; Parr and

Friston, 2018; Versteeg et al., 2021).

In conclusion, perception and action can be seen as two sides of

the same coin implementing the common vital goal of minimizing

entropy or average surprise. In this view, what we perceive never

tries to perfectly match the real state of affairs of the world, but

is constantly biased toward our preferred states. This means that

action only indirectly fulfills future goals; instead, it continuously

tries to fill the gap between sensations and predictions generated

from our already biased beliefs.

2.5. Variational autoencoders

Variational Autoencoders (VAEs) belong to the family of

generative models, since they learn the joint distribution p(z, s)

and can generate synthetic data similar to the input, given a prior

distribution p(z) over the latent space. VAEs use the variational

Bayes approach to capture the posterior distribution p(z|s) of

the latent representation of the inputs when the computation

of the marginal is intractable (Goodfellow et al., 2016). A VAE

is composed of two probability distributions, both of which are

assumed to be Gaussian: a probabilistic encoder corresponding to

the recognition distribution q(z|s), and a generative function p(s|z)

called probabilistic decoder computing a distribution over the input

space given a latent representation z (Figure 3C):

q(z|s) = N (z|µφ ,6φ)

p(s|z) = N (s|µθ ,6θ )
(17)

Although VAEs have many similarities with traditional

autoencoders, they are actually a derivation of the AEVB algorithm

when a neural network is used for the recognition distribution

(Kingma and Welling, 2014). Unlike other variational techniques,

the approximate posterior is generally not assumed to be factorial,

but since the calculation of the ELBO gradient ∇φLθ ,φ(s) is

biased, a method called reparametrization trick is used so that it is

independent of the parameters φ. This method works by expressing

the latent variable z by a function:

z = r(ǫ,φ, s) (18)

Where ǫ is an auxiliary variable independent of φ and s. The

ELBO L̃θ ,φ(s) for a single data point can thus be expressed as:

L̃θ ,φ(s) = −DKL[q(z|s)||p(z)]+
1

M

M∑

m

log p(s|zm) (19)

Which can be minimized through backpropagation. Here, the

KL divergence can be seen as a regularizer, while the second RHS

term is an expected negative reconstruction term that depends on

all themth components of the latent variable z.

3. A framework for flexible intentions

In what follows, we develop a computational theory of

the circuitry controlling goal-directed actions in a dynamically

changing environment through flexible intentions and discuss

its putative neural basis in the PPC and related areas. We first

elaborate on intentionality in Active Inference, then provide a

proof-of-concept agent endowed with visual input. The theory

is exemplified and assessed in the following sections through

simulations of visually-guided behaviors. The theoretical work is

motivated by basic research showing the critical role of the PPC

in goal-directed sensorimotor control through intention coding

(Andersen, 1995; Desmurget et al., 1999; Galletti and Fattori, 2018)

and extends previous theoretical and applied research on Active

Inference (Friston et al., 2009; Pio-Lopez et al., 2016; Lanillos and

Cheng, 2018; Limanowski and Friston, 2020) and VAE-based vision

support (Rood et al., 2020; Sancaktar et al., 2020). The simulations

are inspired by a classical monkey reaching task (Breveglieri et al.,

2014).

3.1. Flexible intentions

State-of-the-art implementations of continuous Active

Inference have proven to successfully tackle a wide range of

tasks, from oculomotion dynamics (Adams et al., 2015) to the

well-known mountain car problem (Friston et al., 2009). Most

simulations involve reaching movements in robotic experiments,

where several strategies have been tried for designing goal states,
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FIGURE 1

Functional architecture and cortical overlay. The process starts with the computation of future intentions h (not explicitly represented in the figure) in

the PPC under the coordination of frontal and motor areas. In the middle of the sensorimotor hierarchy, the PPC maintains beliefs µ over the latent

causes of sensory observations sp and sv , and computes proprioceptive and visual predictions through the somatosensory and dorsal visual pathways

(for simplicity, we have omitted the somatomotor pathway and considered a single mechanism for both motor control and belief inference). The

lower layers of the hierarchy compute sensory prediction errors εsp and εsv , while the higher layers compute intention prediction errors Ei; both are

propagated back toward the PPC, which thus integrates information from multiple sensory modalities and intentions. Free energy is minimized

throughout the cortical hierarchy by changing the belief about the causes of the current observation (perception) and by sending proprioceptive

predictions from the motor cortex to the reflex arcs (action). An essential element of this process is the computation of gradients ∂gp and ∂gv by

inverse mappings from the sensations toward the deepest latent states. In this process, intentions act as high-level attractors and the belief

propagated down to compute sensorimotor predictions embeds a component directing the body state toward the goals.

which are expressed in terms of an attractor embedded in the

system dynamics. However, there seem to be a few issues regarding

biological plausibility. First, the goal state is usually static and the

agent is not able to deal with continuously changing environments,

expecting that the world will always evolve in the same way

(Baioumy et al., 2020). For dynamic goals, one has to use low-level

information of sensory signals (e.g., a visual input about a moving

target) directly into the high-level dynamics function (Friston,

2011). Second, when goals are specified in an exteroceptive

domain, one uses sensory predictions to obtain a belief update

direction through backpropagation of the corresponding error

(Oliver et al., 2019; Sancaktar et al., 2020). In this case, the same

generative model that produces predictions and compares them

with the actual observations, has to be duplicated into the system

dynamics to further compare the belief with the desired cue. In

other words, two specular mechanisms are used for the same

model, with additional concerns when the latter can be changed

by learning.

A common question seems to be behind these two similar

issues: how does dynamic sensory information get available for

generating high-level dynamic goals? The same inference process

of environmental causes should be at work for the same signal flow,

and a goal state should be computed locally without information

passed inconsistently. How then to design a flexible exteroceptive

attractor that avoids implausible scenarios?

Although the high-level latent state could be as simple as

encoding body configurations only, an agent could also maintain

a dynamically estimated belief over moving objects in the scene. An

intention can then be computed by exploiting this new information

to compute a future action goal in terms of body posture, so

that the attractor—either defined in the belief domain or at the

sensory level—is not fixed but depends on current perceptual and

internal representations of the world (but also on past memorized

experiences). This intention may also depend on priors generated

from higher-level areas (Friston et al., 2011), so that the considered

belief is located at an intermediate level between the generative

models that produce sensory predictions, and the ones that define

its evolution over time. In a non-trivial task, its dynamics may

be generally composed of several contributions and not restricted

to a single intention: we thus propose to decompose it into a set

of functions, each one providing an independent expectation that

the agent will find itself in a particular state. The belief is then
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constantly subject to several forces of two natures: one from lower

hierarchical levels—proportional to sensory prediction errors—that

pulls it toward what the agent is currently perceiving, and one from

lateral or higher connections—which we call intention prediction

errors—that pulls it toward what the agent expects to perceive in

the future.

As shown in Figure 1, from a neural perspective the PPC

is the ideal candidate for a cortical structure computing beliefs

over bodily states and flexible intentions: on one hand, being at

the apex of the Dorsal Visual Stream (DVS) and other sensory

generative models, and on the other linked with motor and frontal

areas that produce continuous trajectories and plans of discrete

action chunks. The PPC is known to be an associative region

that integrates information from multiple sensory modalities and

encodes visuomotor transformations—e.g., area V6A is thought

to encode object affordances during reaching and grasping tasks

(Fattori et al., 2017; Filippini et al., 2017). Moreover, evidence

suggests that the PPC encodes multiple goals in parallel during

sequences of actions, even when there is a considerable delay

between different goals (Baldauf et al., 2008).

In short, the agent constantly maintains plausible hypotheses

over the causes of its percepts, either bodily states or objects

in exteroceptive domains; by manipulating them, the agent

dynamically constructs representations of future states, i.e.,

intentions, which in turn act as priors over the current belief. Thus,

if the job of the sensory pathways is to compute sensory-level

predictions, we hypothesize that higher levels of the sensorimotor

control hierarchy integrate into the PPC previous states of

belief with flexible intentions, each predicting the next plausible

belief state.

3.2. Dynamic goal-directed behavior in
Active Inference

For a more formal definition, we assume that the neural

system perceives the environment and receives motor feedback

through J noisy sensors S comprising multiple domains (most

critically, proprioceptive and visual). Under the VB and Gaussian

approximations of the recognition density, we also assume that the

nervous system operates on beliefs µ ∈ R
M that define an abstract

internal representation of the world. Furthermore, we assume that

the agent maintains generalized coordinates up to the 1st order

resulting from free energy minimization in the generalized belief

space µ̃ = {µ,µ′}.

We then define intentions hk as predictions of target goal states

over the current belief µ computed with the help of K functions

ik(µ) ∈ R
M. Although both belief and intentions could be abstract

representations of the world—comprising states in extrinsic and

intrinsic coordinates—we assume a simpler scenario in which the

intentions operate on beliefs in a common intrinsic motor-related

domain, e.g., the joint angles space. As explained before, we assume

that there are two conceptually different components in both the

belief µ and the output of the intention functions ik. The first

component could represent the bodily states and serve to drive

actions, while the second one could represent the state of other

objects—mostly targets to interact with—which can be internally

encoded in the joint angles space as well (the reason for this

particular encoding will be clear later). These targets could be

observed, but they could also be imagined or set by higher-level

cognitive control frontal areas such as the PFC or PMd (Genovesio

et al., 2012; Stoianov et al., 2016).

For the sake of notational simplicity, we group all intentions

into a single matrixH ∈ R
MxK:

H = i(µ) =
[
i0(µ) . . . iK(µ)

]
=

[
h0 . . . hK

]
(20)

Intention prediction errors eik are then defined as the difference

between the current belief and every intention:

Ei = H − µ =
[
ei0 . . . eiK

]
(21)

In turn, sensory predictions are produced by a set of generative

models g j, one for each sensory modality. We group the predictions

into a prediction matrix P:

P = g(µ) =







g0(µ)
...

gJ(µ)





 =







p0
...

pJ





 (22)

Note that each term pj is a multidimensional sensory-level

representation that provides predictions for a particular sensory

domain, with its own dimensionality, which we group into a single

quantity for notational simplicity. Sensory prediction errors εsj are

then computed as the difference between sensations from each

domain and the corresponding sensory-level predictions:

E s = S− P =







εs0
...

εsJ





 (23)

Under the assumption of independence among intentions and

sensations, we can factorize the joint probability of the generative

model into a product of distributions for each sensory modality and

intention, which expands as follows:

p(µ̃, s) = p(µ)

K∏

k

p(µ′k|µ) ·

J∏

j

p(sj|µ) (24)

In the following, we will not consider the prior probability over

the 0th order belief p(µ). The other probability distributions are

assumed to be Gaussian:

p(µ′k|µ) = N (µ′k|f k(µ), γ
−1
k

)

p(sj|µ) = N (sj|g j(µ),π
−1
j )

(25)

Where γ k and π j are, respectively, the precisions of intention k

and sensor j. Here, µ′
k
and f k correspond to the kth component of

the 1st order dynamics function:

f k(µ) = λeik + wµk
(26)

Where λ is the gain of intention prediction errors Ei. Note

that the goal states are embedded into these functions, acting as
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belief-level attractors for each intention, so that the agent expects

to be pulled toward target states with a velocity proportional to the

error. Although the generalized belief allows encoding information

about the dynamics of the true generative process, in the simple

case delineated the agent does not have any such prior. For

example, the agent does not know the trajectory of a moving

target in advance (whose prior, in a more realistic scenario, would

be present and acquired through learning of past experiences)

and will update the belief only relying on the incoming sensory

information. Nevertheless, the agent maintains (false) expectations

about target dynamics, and it is indeed the discrepancy between the

evolution of the (real) generative process and that of the (internal

and biased) generative model that makes it able to implement a

goal-directed behavior.

The prediction errors of the dynamics functions can be grouped

into a single matrix:

Eµ = µ′ − λEi (27)

From Equation (14), we can now compute the free energy

derivative with respect to the belief:

˙̃µ =

[
µ̇

µ̇′

]

= Dµ̃− ∂µ̃F =

[
µ′ + GT(5⊙ E s)+ (F ⊙ Eµ)Ŵ

T

−EµŴT

]

(28)

Here, ⊙ is the element-wise product, G and F enclose the

gradients of all sensory generative models and dynamics functions,

while 5 and Ŵ comprise all sensory and intention precisions:

G =
∂g

∂µ
=







∂g0
...

∂gJ





 5 =







π0

...

π J







F =
∂f

∂µ
=

[
∂f 0 . . . ∂f K

]
Ŵ =

[
γ 0 . . . γ K

]
(29)

In the following, we will neglect the backward error in the 0th

order of Equation (28) since it has a much smaller impact on the

overall dynamics, and treat as the actual attractor force the forward

error at the 1st order:

˙̃µ ≈

[
µ′ + GT(5⊙ E s)

−EµŴT

]

=

[
µ′ + ǫs

ǫi

]

(30)

Where ǫs and ǫi, respectively, stand for the contributions (in

the belief domain) of precision-weighted sensory and intention

prediction errors. Considering the 1st order forward error as

attractive force instead of the 0th order backward error results in

simpler computations since there is no gradient of the dynamics

functions to be considered. Further studies are however needed

to understand the relationships between these two forces in

goal-directed behavior. We can interpret γ k as a quantity that

determines the relative attractor gain of intention k, so that

intentions with greater strength have a more significant impact on

the overall update direction; these gains could also be modulated by

projections from higher-levels areas applying cognitive control. In

turn, π j corresponds to the confidence about each sensory modality

j, so that the agent relies more on sensors with higher strength.

Similarly, we can compute control signals by minimizing the

free energy with respect to the actions, expressing the mapping

from sensations to actions by:

∂s

∂a
=

∂µ

∂a
· G

ȧ = −∂aF = −∂aµ
Tǫs

(31)

Where ∂aµ is an inverse model from belief to actions. If motor

signals are defined in terms of joint velocities, we can decompose

and approximate the inverse model as follows:

∂aµ =
∂θ

∂a
·
∂µ

∂θ
=

∂gp

∂a
·

∂µ

∂gp
= 1tG

−1
p (32)

Where θ are the joint angles, the subscript p indicates the

proprioceptive contribution and we approximated ∂agp by a time

constant 1t (Oliver et al., 2019). If we assume that the belief over

hidden states is encoded in joint angles, the computation of the

inverse model may be as simple as finding the pseudoinverse of

a matrix. However, if the belief is specified in a more generic

reference frame and the proprioceptive generative model is a non-

linear function, it could be harder to compute the corresponding

gradient, causing additional control problems like temporal delays

on sensory signals (Friston, 2011). Alternatively, we can consider a

motor control driven only by proprioceptive predictions, so that

the control signal is already in the correct domain and may be

achieved through simple reflex arc pathways (Adams et al., 2013;

Versteeg et al., 2021). In this case, all that is needed is a mapping

from proprioceptive predictions to actions:

ȧ = −∂aFp = −1t · πpεp (33)

Expressing in Equation (31) the mapping from sensations to

actions by the product of the inverse model ∂aµ and the gradient

of the generative models allows the control signals to be defined in

terms of the weighted sensory contribution ǫs, already computed

during the inference process. Such an approach may have some

computational advantages (as will be explained later), but it is

unlikely to be implemented in the nervous system as control

signals are supposed to convey predictions and not prediction

errors (Adams et al., 2013).

Algorithm 1 outlines a schematic description of the flow of

dynamic computations. For simplicity, we used the term "intention"

also when describing the dynamics functions and their precisions,

but one has to keep in mind the difference between the intention

prediction errors Ei, which directly encode the direction toward

target states, and the dynamics prediction errors Eµ, which arise

from the derivation of the corresponding probability distributions.

3.3. Neural implementation

Figure 2 shows a schematic neuronal representation of the

proposed agent, which further extends earlier perceptual inference

schemes (Bogacz, 2017) to full-blown Active Inference. In this

simple model, the intentions consist of a single layer with two

neurons, and the goal states are implicitly defined in the dynamics

functions; however, in a realistic setting the latter would be
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composed of networks of neurons where these states are explicitly

encoded, and non-linear functions could also be used to achieve

more advanced behaviors. Note also that intentions hk and sensory

generative models g j are all part of the same architecture, the only

difference being the location in the cortical hierarchy.

Low-level prediction errors for each sensory modality are

represented by neurons whose dynamics depends on both

observations and predictions of the sensory generative models:

ε̇sj = sj − g j(µ)−
εsj

π j
(34)

Upon convergence of the neural activity, that is, ε̇sj = 0, we

obtain the prediction error computation derived above. In turn, the

internal activity of neurons corresponding to high-level prediction

errors is obtained by subtracting the generated dynamics function

from the 1st order belief:

ε̇µk
= µ′ − f k(µ)−

εµk

γ k

(35)

Input: S, i, g, ∂aµ,Ŵ,5, λ,1t

1: µ,µ′,µ′′,← InitializeBelief ()

2: while t < T do

3: H← i(µ) ⊲ Intentions and sensory predictions

4: P← g(µ)

5: Eµ ← µ′ − λ(H − µ) ⊲ Prediction errors

6: E s ← S− P

7: ǫi ←−EµŴT ⊲ Precision-weighted contributions

8: ǫs ← GT (5⊙ E s)

9: µ̇← µ′ + ǫs ⊲ Belief and action update

10: µ̇′ ← µ′′ + ǫi

11: ȧ←−∂aµ · ǫs

12: µ̃← µ̃+1t
˙̃µ ⊲ Gradient descent

13: a← a+1t ȧ

14: end while

Algorithm 1. Active Inference agent with flexible intentions.

Having received information coming from the top and bottom

of the hierarchy, the belief is updated by integrating every signal:

µ̇ =

J∑

j

∂g jεsj +

K∑

k

∂f kεµk
(36)

Which parallels the update formula derived above (Equation

28). Correspondingly, the 1st order component of the belief is

updated as follows:

µ̇′ = −

K∑

k

εµk
(37)

The belief is thus constantly pushed toward a direction that

matches sensations on one side and intentions on the other. We

adopted the idea that the slow-varying precisions are encoded as

synaptic strengths (Bogacz, 2017), but alternative views consider

them as gains of superficial pyramidal neurons (Bastos et al., 2012).

In any case, they could be dynamically optimized during inference

in a direction thatminimizes free energy—e.g., if a sensorymodality

does not help predict sensations, its weight will decrease. This

is also true for the intention weights: by dynamically changing

during the movement, they can act as modulatory signals that

select the best intention to realize at every moment, which can be

useful for solving simultaneous or sequential tasks. Nonetheless, the

distinction is purely conceptual as the agent does not discriminate

betweenmodulating a future intention or increasing the confidence

of a sensory signal. At the belief level, every element just follows the

rules of free energy minimization.

4. Method

To demonstrate the feasibility of the approach and its capacity

to successfully implement goal-directed behavior in dynamic

environments, we simulated an agent consisting of an actuated

upper limb with visual and proprioceptive sensors that allow it

FIGURE 2

Neuronal representation with two intentions. Small squares stand for inhibitory connections.
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FIGURE 3

Simulation outline. The agent, a simulated 3-DoF actuated upper limb shown in (A) is set to reach one of the nine red circle targets as in the

reference monkey experiment (Breveglieri et al., 2014) outlined in (B). The agent is equipped with a fixed virtual camera providing peripersonal visual

input and a visual model, the decoder gv of a VAE shown in (C) simulating functions of the DVS.

to perceive and reach static and moving targets within its reach.1

Figure 3A shows the size and position of the targets, as well as limb

size and a sample posture. Since the focus here was on theoretical

aspects, we simulated just a coarse 3-DoF limb model moving on

a 2D plane. However, the approach easily generalizes to a more

elaborated limb model and 3D movements. In the following, we

describe the agent, the specific implementation, and the simulated

task. Then, in the Results section we assess the agent’s perceptual

and motor control capabilities in static and dynamic conditions.

The static condition simulated a typical monkey reaching task of

peripersonal targets as in Figure 3 (Breveglieri et al., 2014). In turn,

the dynamic condition involved a moving target that the agent had

to track continuously.

4.1. Delayed reaching task

The primary testbed task is a simplified version of a delayed

reaching monkey task in which a static target must be reached

with a movement that can only start after a delay period

(Breveglieri et al., 2014). Delayed actions are used to separately

1 Python code provided in https://github.com/priorelli/PACE.

investigate neural processes related to action preparation (e.g.,

perception and planning) and execution in goal-directed behavior,

and are thus useful to analyze the two main computational

components of free energy minimization, namely, perceptual

and active inference, which otherwise work in parallel. Delayed

reaching could be implemented using various approaches: the

update of the posture component of the belief dynamics could be

blocked by setting the intention gain λ to zero during inference

(implemented here): in this way, there are no active intentions

and the belief only follows sensory information. Alternatively,

action execution could be temporarily suspended by setting to

zero the proprioceptive precision, so that the agent still produces

proprioceptive predictions but does not trust their prediction

errors: in this scenario, the belief dynamics includes a small

component directed toward the intention, but the discrepancy

produced is not minimized through movement.

Reach trials start with the hand placed on a home button (HB)

located in front of the body center (i.e., the “neck”), and the belief

is initialized with this configuration. Then one of the 9 possible

targets of the reference experiment (Figure 3) is lit red. Follows

a delay period of 100 time steps during which the agent is only

allowed to perceive the visible target and the limb, and the inference

process can only change the belief. After that, the limb is allowed
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to move and the joint angles are updated according to Equation

(38). As in the reference task, upon target reaching the agent stops

for a sufficiently long period, i.e., a total of 300 time steps per

trial. After that, the agent reaches back the HB (not analyzed here).

The simulation included 100 repetitions per target, i.e., 900 trials

in total.

4.2. Body

The body consists of a simulated monkey upper limb composed

of a moving torso attached to an anchored neck, an upper arm,

and a lower arm, as shown in Figure 3. The three moving segments

are schematized as rectangles, each with unit mass, while the

joints (shoulder, elbow) and the tips (neck, hand) as circles. The

proportions of the limb segment and the operating range of the

joint angles were derived from monkey data Macaca mulatta

(Kikuchi andHamada, 2009). The state of the limb and its dynamics

are described by the joint angles θ and their first moment θ̇ .

We assume noisy velocity-level motor control, whereby the motor

efferents a noisily control the first moment of joint angles with

zero-centered Gaussian noise:

θ̇ = a+ wa (38)

4.3. Sensors

The agent receives information about its proprioceptive state

and visual context. Simplified peripersonal visual input sv was

provided by a virtual camera that included three 2D color planes,

each of them 128 x 96 pixels in size. The location and orientation

of the camera were fixed so that the input provided full vision of

peripersonal targets and the entire limb in any possible limb state

within its operating range. The limb could occlude the target in

some configurations.

As in the simulated limb, the motor control system also

receives proprioceptive feedback through sensors sp, providing

noisy information on the true state of the limb (Tuthill and Azim,

2018; Versteeg et al., 2021). We further assumed that sp provides a

noisy reading of the state of all joints only in terms of joint angles,

ignoring other proprioceptive signals such as force and stretch

(Srinivasan et al., 2021), which the Active Inference framework can

natively incorporate.

4.4. Belief

We assume that both the orders of the generalized belief µ̃

comprise three components: (i) beliefs µ̃a over arm joint angles,

or posture; (ii) beliefs µ̃t over the target location represented again

in the joint angles space—i.e., the posture corresponding to the

arm touching the target; and (iii) beliefs µ̃h over a memorized

HB configuration. Thus, µ = [µa,µt ,µh]. Note that the last two

components can be interpreted as affordances, allowing the agent to

implement interactions in terms of bodily configurations (Pezzulo

and Cisek, 2016).

4.5. Sensory model

The sensory generative distribution has two components, one

for each sensory modality: a simplified proprioceptive model gp(µ)

and a full-blown visual model gv(µ):

g(µ) =

[
gp(µ)

gv(µ)

]

(39)

Since the belief is already in the joint angles domain, we

implemented a simple proprioceptive generative model gp(µ) =

Gpµ = µa, where Gp is a mapping that only extracts the first

component of the belief:

Gp =

[
III 0 0

]
(40)

Where 0 and III are respectively 3 x 3 zero and identity

matrices. Note that gp(µ) could be easily extended to a more

complex proprioceptive mapping if the body and/or joint sensors

have a more complex structure and the belief has a richer and

abstract representation.

In turn, the visual generative model gv is the decoder

component of a VAE (see Figure 3C). It consists of one feedforward

layer, two transposed convolutional layers, and two standard

convolutional layers needed to smooth the output. Its latent space

is composed of two elements, representing the joint angles of arm

and target (example in Figure 13). The first component is used

to generate, in the visual output, an arm with a specific joint

configuration, while the second component is used to produce

only the image of the target through direct kinematics of every

joint angle. The VAE was trained in a supervised manner for 100

epochs on a dataset comprising 20.000 randomly drawn body-

target configurations that uniformly spanned the entire operational

space, and the corresponding visual images. The target size varied

with a radius ranging from 5 to 12 pixels.

The proprioceptive gradient ∂gp simplifies to the mapping Gp

itself, while the visual component ∂gv is the gradient of the decoder

computed by backpropagation. Since the Cartesian position of the

target is encoded in joint angles, this gradient implicitly performs a

kinematic inversion. Therefore, predictions P and prediction errors

E s take the form:

P =

[
µa

gv(µ)

]

E s =

[
sp − µa

sv − gv(µ)

]

(41)

Note that defining sensory predictions on both proprioceptive

and visual sensory domains allows the agent to perform efficient

goal-directed behavior also in conditions of visual uncertainty, e.g.,

due to low visibility. Indeed, since the belief is maintained over

time, the agent remembers the last known target position and

can thus accomplish reaching tasks also in case of temporarily

occluded targets.
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FIGURE 4

Multiple intentions. Intention prediction errors of variable strength

(arrow width) controlled by intention precisions point at di�erent

target states. (A) A stronger target attraction (the red circle)

implements the reaching action. (B) A stronger attraction of the

invisible but previously memorized HB implements the

return-to-home action.

4.6. Intentions

Stepping on the proposed formalization (Equation 20), we

define two specific intentions (Figure 4) as follows:

H =
[
it(µ) ih(µ)

]
=

[
Itµ Ihµ

]
=






µt µh

µt µt

µh µh




 (42)

Here ht = it(µ) defines the agent’s expectation that the arm

belief is equal to the joint configuration corresponding to the target

to be reached, and it is implemented as a simple mapping It that

sets the first belief component equal to the second one. In turn, the

intention hh = ih(µ) encodes the future belief of the agent that

the arm will be at the HB position. The two intention mappings are

defined by:

It =






0 III 0

0 III 0

0 0 III




 Ih =






0 0 III

0 III 0

0 0 III




 (43)

The corresponding intention prediction errors are then:

Ei =
[
eit eih

]
=

[
ht − µ hh − µ

]
=






µt − µa µh − µa

0 0

0 0




 (44)

These errors provide an update direction respectively toward

the target and HB joint angles. As there is no intention to move the

target or theHB, the second and third components of the prediction

errors will be zero.

4.7. Precisions

Free energy minimization and Predictive Coding in general

heavily depend on precisions modulation. To investigate their role,

we parameterized the relative precisions of each intention and

sensory domain with parameters α and β as follows:

5 =

[
πp

πv

]

=

[
1− α

α

]

Ŵ =
[
γ t γ h

]
=

[
1− β β

]
(45)

The parameter α controls the relative strength of the error

update due to proprioception and vision, while the parameter

β controls the relative attraction by each intention. With these

parameters, the sensory and intention weighted contributions are

unpacked as follows:

ǫs = (1− α) · GT
p εsp + α · ∂gTv εsv (46)

ǫi = −µ′ + λ[(1− β) · eit + β · eih ] (47)

Equation (46) shows the balance between visual and

proprioceptive information. For example, if α = 0 the agent

will only use proprioceptive feedback, while for α = 1 the belief

will be updated only relying on visual feedback. Note that these

are extreme conditions—e.g., the former may correspond to null

visibility—and typical sensory systems provide balanced feedback.

In turn, Equation (47) spells out the control of belief attraction.

The agent will follow the first intention when β = 0, or the second

one when β = 1 (Figure 4). Note that the introduction of a possible

competing reach movement creates a conflict among intentions

aiming to fulfill opposing goals (e.g., for intermediate values of β)

while the agent can physically realize only one of them at a time

(Figure 4). Thus, we assume that the control of intention selection

is realized through mutual inhibition and higher-level bias. Finally,

the parameter λ controls the overall attractor magnitude (see also

Equation 26).

We can also use the precision parameter α to manipulate the

strength of the free energy derivative with respect to the actions as

follows:

ȧ = −1t(1− α) · εsp (48)

Note that by increasing α—i.e., more reliability on vision—

the magnitude of the belief update remains constant, while

action updates decrease because the agent becomes less confident

about its proprioceptive information. Also, one could differentially

investigate the effect of precision strength on belief and action by

directly manipulating the precisions—e.g., visual precision πv may

include different components that follow the belief structure:

πv = [α,πvt ,πvh ] (49)

Where we used the parameter α only for the arm belief. For

example, when α = 0 and πvt > 0, the target belief is updated

using visual input while the arm moves only using proprioception,

a scenario that emulates movement in darkness with a lit target.

5. Results

In the following, we assess the capacities of the intention-driven

Active Inference agent to perceive and perform goal-directed

actions in reaching tasks with static and dynamic visual targets. The

main testbed task was delayed reaching, but we simulated several

other conditions.

Sensorimotor control that implements goal-directed behavior

was investigated in various sensory feedback conditions, including

pure proprioceptive or mixed visual and proprioceptive, in which

the VAE decoder provided support for dynamic estimation of visual

targets and bodily states. The latter is the typical condition of
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performing reaching actions and allows greater accuracy (Keele

and Posner, 1968). In an additional baseline (BL) condition, the

target was estimated by the decoder, but the movement was

performedwithout visual feedback or proprioceptive noise, to allow

comparisons with the typical approach in previous continuous

Active Inference studies, e.g., Pio-Lopez et al. (2016). We also

investigated the effects of sensory and intention precisions, motor

control type, and movement onset policy. Finally, we analyzed the

visual model and the nature of its gradients to provide critical

information about the causes of the observed motor behavior.

Action performance was assessed with the help of several

measures: (i) reach accuracy: success in approaching the target

within 10 pixels of its center, i.e., the hand touching the target; (ii)

reach error: L2 hand-target distance at the end of the trial; (iii) reach

stability: standard deviation of L2 hand-target distance during the

period from target reach to the end of the trial, in successful trials;

(iv) reach time: number of time steps needed to reach the target

in successful trials. We also assessed target perception through

analog measures based on the L2 distance between the target

location and its estimate transformed from joint angles into visual

position by applying the geometric (forward) model. Specifically,

we defined the following measures: (v) perception accuracy: success

in estimating the target location within 10 pixels; (vi) perception

error: L2 distance between the true and estimated target position

at the end of the trial; (vii) perception stability: standard deviation

of the L2 distance between the target position and its estimation

during the period starting from successful estimation until end of

the trial; (viii) perception time: number of time steps needed to

successfully estimate the target position.

Figure 5 illustrates key points of the delayed reaching task.

During the delay period (Figures 5A–C), the posture does not

change since the joint angles only follow the arm belief, which

is kept fixed, while the target belief is attracted by the sensory

evidence and gradually shifts toward it. Whenmovement is allowed

(Figures 5D–F) by setting λ > 0 and β = 0.1, the combined

attractor produces a force that moves the arm belief toward

the target, generating proprioceptive predictions—therefore motor

commands—that let the real arm follow this trajectory. Reaching

performance is summarized in Figure 6. Panels A-D show spatial

statistics of the final hand location (with the corresponding belief)

for each target, separately for reaching with proprioception only or

proprioceptive and visual sensory feedback. Descriptive statistics

revealed an important benefit of visual feedback (Figures 6E–H),

in parallel with classical behavioral observations (Keele and Posner,

1968): reach accuracy was higher (with: 88.28%; without: 83.72%)

and both reach stability and arm belief error were considerably

better with visual feedback as well (stability: 1.35; error: 1.98px)

compared to the condition with only proprioception (stability: 1.78;

error: 2.87px).

5.1. Precision balance

The effects of sensory feedback led to a further systematic

assessment of the effects of sensory and intention precisions α,

πvt and λ (see Equations 45, 49). The assessment was carried out

following the structure of the delayed reaching task. We varied the

above precisions one at a time, using levels shown on the abscissas

in Figure 7, while keeping the non-varied precisions at their default

values. Note that α = 0 corresponds to reaching without visual

feedback, while the conditions α > 0 may be interpreted as

reaching with different levels of arm visibility. We recall that the

baseline condition (BL) performs reaching movements without

visual feedback and proprioceptive noise, i.e., α = 0 and wp = 0.

To obtain a systematic evaluation, each condition was run on a

rich set of 1,000 randomly selected targets that covered the entire

operational space. Finally, we only considered the target-reaching

intention, i.e., β = 0; everything else was the same as in the

main task.

The results are shown in Figure 7. The panels in the left column

show the effect of α compared to the BL agent with noiseless

proprioception. Active Inference with only proprioception (i.e.,

α = 0) has a lower reach accuracy and higher error, while the

best performance is obtained with balanced proprioceptive and

visual input, in corroboration with the observations of the basic

delayed reaching task. In the latter case, the motor control circuitry

continuously integrates all available sensory sources to implement

visually-guided behavior (Saunders and Knill, 2003). However,

accuracy and stability rapidly decrease for excessively high values of

α, due to the discrepancy in update directions between the belief—

which makes use of all available sensory information, including the

more precise visual feedback—and action—which in this case relies

on excessively noisy proprioception. Furthermore, as in the main

experiment, the effects of visual precision are evident in the stability

of the arm belief, which gradually improves with increasing values

(Figure 8): In addition to the reliability of the visual input, this

effect is also a consequence of the smaller action updates due to

the reduced proprioceptive precision.

In turn, the panels in the middle column of Figure 7 reveal the

effects of the attractor gain λ; to remind the reader, the greater the

gain, the greater the contribution of intention prediction errors in

the belief updates. The results show that as the intention gain λ

increases reach accuracy generally improves, and the number of

time steps needed to reach the target decreases. However, beyond

a certain level, the accuracy tends to decrease since the trajectory

dynamics becomes unstable; thus, excessively strong action drag is

counterproductive to the implementation of smooth movements.

Finally, the panels in the right column of Figure 7 show the effects

of the target precision πvt , which directly affects the quality of target

perception. Note that better performances are generally obtained

in terms of accuracy, error, and perception time for values of

πvt higher than the arm visual precision, which corresponds to a

classical effect of contrast on perception, but also means here that

the arm and target beliefs follow different dynamics.

5.2. Motor control

We described earlier two different ways of implementing

motor control in Active Inference: making use of all sensory

information, or proprioception only. The first method requires

significantly more computations since the agent needs to know

the inverse mapping from every sensory domain to compute

the control signals. However, given the assumptions we made,
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FIGURE 5

Dynamics of the delayed reaching task. At trial onset (A) a visual target (red circle) appears, the arm (in blue) is located on the HB position, and the arm

belief (in green) is set at the true arm state. During the delay period, the perceptual inference process gradually drives the target belief (purple circle)

toward the real position (B, C). During this phase, the intention gain λ is set to 0, so that movement is inhibited and the arm belief does not change

given the unchanged proprioceptive evidence. After movement onset, the arm freely follows its belief (D, E) until they both arrive at the goal state (F).

this approach is potentially more stable because it updates both

belief and action with the same information. On the other hand,

a pure proprioception-based control mechanism could produce

potentially incorrect movements because the motor control

commands result from comparing proprioceptive predictions with

noisy observations. Greater cost-effectiveness of the secondmethod

thus might come at the cost of worsened performances, which we

investigate here.

Figure 9 shows a comparison of the two control methods

and the BL agent, evaluated under the same conditions we used

to investigate precision balance, including 1,000 random targets.

Performance was measured in terms of belief and reach stability

and reach accuracy. The results reveal, first, that the expected

decreased belief stability of the full model with respect to the

BL agent (Figure 9C) does not affect hand stability (Figure 9B),

although the proprioceptive noise apparently contributed to

decreased reach accuracy (Figure 9A). More importantly, the

results confirm our expectations that pure proprioception control

has considerably lower reach stability caused by incorrect update

directions of the motor control signals, resulting in a greater

decreased reach accuracy relative to the full model.

5.3. Movement onset policy

We also investigated the effects of movement onset using

several policies, which differ by the duration of the period of pure

perception preceding full Active Inference. One such policy we

investigate here is characteristic of actions performed under time

pressure, in which movement starts along with perception, i.e.,

action is immediate. Another policy that could be considered typical

for acting under normal conditions has movement beginning

with the satisfaction of a certain perception criterion. This policy

dynamically deliberates the onset of movement. Various perception

criteria could be used: here, the action starts when the norm of

the target belief µ̇t remained below a given threshold (i.e., 0.01)

for a certain period (i.e., 5 time steps). These parameters were

arbitrarily chosen in consideration of exploratory delayed reaching

simulations. Finally, we include the previously used delayed action

policy in which movement onset is delayed by a fixed period (here,

100 time steps, sufficient to obtain a precise target estimation).

To obtain systematic observations, each policy was again run on

1,000 randomly selected targets. Measurements included reach

and perception accuracy, motor control stability after reach, target

perception stability, as well as reach time since the beginning of the

trial or after movement onset.

Figure 10 shows the results with the three different policies.

Although the reach error is approximately the same in all tested

conditions, the agent controlled by the immediate policy reached

the target within the lowest total number of time steps: target

perception and intention setting were dynamically computed along

with movement onset. However, if we consider the total task time,

the number of time steps is the highest in this condition, since

the arm belief and the arm itself move along with the slow visual

target estimation. In turn, if the agent starts the movement when

the uncertainty about the target position is already minimized

(either in the dynamic or fixed condition), the movement time

decreases, although if added on top of the perception time results

in slower actions relative to the immediate movement condition.

Finally, we note that target perceptual stability somewhat decreases

for dynamic and fixed policies; this somewhat unexpected result is
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FIGURE 6

Performance of the delayed reaching task. (A–D) Spatial distribution of hand positions (A, C) and corresponding beliefs (B, D) per target at the end of

the reach movements, with (A, B) and without (C, D) visual feedback. Each point represents a trial (100 trials per target). Reach error (E, G) and belief

error (F, H) over time, with (E, F) and without (G, H) visual feedback (bands represent C.I.). The reach criterion of the hand-target distance is visualized

as a dotted line. L2 norm for the hand belief is computed by the di�erence between real and estimated hand positions. Reaching with visual feedback

resulted in a more stable hand belief.

encouraging for dynamic target tracking tasks in which immediate

movement onset is mandatory.

5.4. Tracking dynamic targets

In a second testbed task, the agent was required to track

a smooth-moving target whose initial location was randomly

chosen from the entire operational space. In each trial,

the targets received an initial velocity of 0.1px per step in

a direction uniformly spanning the 0–360◦ range. When

the target reached a border, its movement was reflected.

As in the previous simulations, the belief was initialized

at the HB configuration and the trial time limit was 300

time steps. However, for the agent to correctly follow

the targets, both the belief and action were dynamically
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FIGURE 7

E�ects of precision balance. Reach accuracy (1st row), reach error, i.e., L2 hand-target distance (2nd row), reach time (3rd row), and reach stability

(4th row). Reach performance is shown as a function of arm sensory precision α (left) and attractor strength λ (middle). In turn, perception

performance is shown as a function of target sensory precision πvt (right). Vertical bars represent C.I.

and continuously inferred in parallel, i.e., without a pure

perceptual period.

Figure 11 shows the reach trajectory in dynamic target tracking

for 10 random trials. The left panel shows the evolution over time of

L2 hand-target distance, while the right panel represents the error

between estimated and true target positions. The results suggest

that the agent is generally able to correctly and dynamically estimate

the beliefs over both target and arm for almost every trial, also in

the case of moving targets. In some cases however, mainly when

the target is out of reach, it is temporarily or permanently "lost"

in terms of its belief, which has also the consequences of losing the

target in terms of reach. Further analysis with amore realistic bodily

configuration and visual sensory system—as well as comparisons

with actual kinematic data—should provide further insights into

the capabilities of Active Inference to perform dynamic reaching.

5.5. Free energy minimization

Here we illustrate the dynamics of free energy minimization

in delayed reaching, which is at the heart of continuous Active

Inference. To that aim, we run 10 new reaching trials with static
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FIGURE 8

Belief error and stability—representing the di�erence between real and estimated hand positions—for di�erent values of α. Vertical bars represent C.I.

FIGURE 9

Motor control methods. Reach accuracy (A), reach stability (B), and belief stability (C) for a BL agent and the two di�erent implementations of motor

control, based either on all sensory information (full control) or on proprioception only.

FIGURE 10

E�ects of movement onset policy. Reach error (left), stability (middle), and time (right) across several policies (immediate, dynamic, and fixed delay).

Vertical bars represent C.I.

and dynamic targets and recorded the free energy derivatives with

respect to generalized belief and action.

Figures 12A–F shows the trajectory of the free energy

derivatives with respect to the arm and target components during

delayed reaching of a static target; the two columns show the

trends for the last two joints, i.e., the arm and forearm segments,

that most strongly articulate the reaching action. Note that the

gradients of the free energy with respect to the target belief are
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FIGURE 11

Tracking dynamic targets. Reach (left) and perception (right) error over time for 10 random trials.

rapidly minimized during the initial perceptual phase while the

arm gradients remain still. Upon action execution (indicated by a

vertical line), the arm gradients rapidly change as well, resulting

in updated proprioceptive predictions that drive arm movements.

However, arm movements cause changes in the visuals scene,

resulting in a secondary effect over the just minimized free energy

on target belief. Figures 12G–J goes even deeper, showing a direct

comparison between µ̇, µ′, and the difference µ̇ − µ′, on sample

static (G-H) and dynamic (I-J) targets. We recall that free energy

minimization implies that the two reference frames (the path of

the mode µ̇ and the mode of the path µ′) should overlap at some

point in time, when the agent has inferred the correct trajectory of

the generalized hidden states. This is crucial especially in dynamic

reaching, in which the aim is to capture the instantaneous trajectory

of every object in the scene. The decreasing free energy gradients

(blue lines) show that this aim is indeed successfully achieved in

both static and dynamic tasks.

5.6. Visual model analysis

Here, we provide an assessment of the visual model whose

performance is critical for accurate visually-guided motor control.

To recall, the visual model is implemented with a VAE trained

offline to reconstruct images of arm-target configurations such as

the one in Figure 13A. A critical VAE parameter is the variance

of the recognition (encoder) density 6φ (see Equation 17). We

therefore evaluated its effect on perception and action by training

several VAEs with different variance levels. VAE performance was

assessed on other 10.000 randomly selected configurations that

uniformly sampled the space, with a target size of 5 pixels (the

default condition for the Active Inference tests).

Most critical was the VAE capacity to generate adequate

images of joint arm-target configurations, which we measured

with the help of the L2 norm between visual observations, and

VAE-generated images. To provide more insights on the two

VAE processes, decoding and encoding, we proceeded as follows:

first, decoding was assessed by generating images for given body-

target states such as that in Figure 13B. The decoded images were

compared with the ground truth images produced by applying the

geometric model for the same state of the body target (Figure 13A).

Second, full VAE performance was assessed by computing the

average L2 norm between observed images and their full VAE

reconstruction, i.e., first encoding and then decoding them (as in

Figure 13C). Third, we directly assessed the specific effects of the

recognition density variance on Active Inference using the BL

condition of the delayed reaching task as a measure.

Figure 13D represents the results of the perceptual assessment

tests, showing the L2 norm between the original and generated

images as a function of recognition density variance. As expected,

lower variances generally resulted in lower errors with respect

to both pure decoding and full encoding-decoding. Surprisingly,

however, the accuracy of Active Inference in the reaching task

behaved somewhat differently: the best accuracy was obtained not

for predictions with low variance, but for intermediate variance

levels (Figure 13E). This could be explained by the fact that low-

variance images imply highly non-linear gradients that prevent

correct gradient descent on free energy. On the other hand, as

the variance increases the reconstructed image becomes somewhat

blurred, which helps obtain a smoother gradient that correctly

drives free energy minimization and therefore improves movement

accuracy (more on this in the next section). However, as the

variance continues to increase, the reconstructed images become

too blurry, degrading both belief inference and motor control.

5.7. Visual gradient analysis

To further investigate the cause of the unexpected low variance

issue, we analyzed the consistency of the visual gradient ∂gv of

the decoder for several encoder variance values. To this aim, we

computed the gradients for different reference states over the entire

operational space.

Figures 14A–C reveals that a decoder with intermediate

variance values (green line) causes smaller but smoother gradients,

while a too-low variance (orange line) causes sharp peaks near

the reference point and even incorrect gradient directions in

some cases. Therefore, too low encoder variances seem to

make the decoder prone to overfitting, while higher variance

values help extract a smoother relationship between irregular

multidimensional sensory domains and regular low-dimension

causes. Figures 14D–G further illustrates the arm and target
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FIGURE 12

Free energy minimization. (A–F) Free energy derivative with respect to the 0th and 1st order belief for arm (A–D) and target (E, F). (G–J) Comparison

between the reference frames of the belief—the path of the mode µ̇ and the mode of the path µ′—for sample static (G, H) and dynamic (I, J) trials.

The left/right columns refer to the arm/forearm segments. Trials data are smoothed with a 30 time-step moving average.

gradients relative to a sample reference posture and target location

(the result is similar for other configurations) in both Cartesian and

polar coordinates; the polar plot shows the two joints most relevant

to the reaching action.

The plots reveal greater arm gradients (upper panels) in the

vicinity of the target location; in that subspace, the decoder has

less uncertainty about which direction to choose to minimize the

error. Notably, the gradients tend to compose curved directions,

a characteristic of biological motions. The polar plot provides

critical insights into the causes of the circular pattern: the gradients

are mostly parallel to the horizontal axis, which corresponds

to a movement consisting essentially of pure shoulder rotation.

Thus, they provide a strong driving force on the shoulder almost

throughout the operational space, while the area in which the

elbow is controlled is limited to the vicinity of the target location.

These gradients result in a two-phase reaching of static targets in
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FIGURE 13

Visual model analysis. (A–C) Sample visual observation (A) and its decoding from joint angles (B) and through a complete encoding-decoding

process (C). (D, E) Visual model performance. Quality of perception is measured as the L2 norm between observed and reconstructed images (D) and

accuracy of Active Inference (E), as a function of the recognition density variance 6φ .

which the agent first rotates the shoulder— resulting in a horizontal

positioning—and then starts to rotate the elbow as soon as the

latter enters its attraction area. The same gradients can explain

the linear motion pattern of an arm tracking dynamically moving

targets when the arm is close to the target: in that case, all gradients

provide motion force as explained above. On the other hand, the

gradients of the target belief (bottom panels) behave somewhat

differently: since this belief is unconstrained and can freely move

in the environment, update directions more directly approach the

target in all angular coordinates (see the polar plot to the right).

Yet, linear belief updates in the polar space still translate to curve

directions in the Cartesian space.

6. Discussion

We presented a normative computational theory based on

Active Inference of how the neural circuitry in the PPC and DVS

may support visually-guided actions in a dynamically changing

environment. Our focus was on the computational basis of

encoding dynamic action goals in the PPC through flexible motor

intentions and its putative neural basis in the PPC. The theory is

based on Predictive Coding (Doya, 2007; Hohwy, 2013), Active

Inference (Friston, 2010), and evidence suggesting that the PPC

performs visuomotor transformations (Cisek and Kalaska, 2010;

Fattori et al., 2017; Galletti and Fattori, 2018) and encodes motor

plans (Andersen, 1995; Snyder et al., 1997). Accordingly, the PPC

is proposed to maintain dynamic expectations of both current

and desired latent states over the environment and use them

to generate proprioceptive predictions that ultimately generate

movements through reflex arcs (Adams et al., 2013; Versteeg et al.,

2021). In turn, the DVS encodes a generative model that translates

latent state expectations into visual predictions. Discrepancies

between sensory-level predictions and actual sensations produce

prediction errors sent back through the cortical hierarchy to

improve the internal representation. The theory unifies research

on intention coding (Snyder et al., 1997) and current views that

the PPC estimates the body and environmental states (Medendorp

and Heed, 2019), providing specific computational hypotheses

regarding the involvement in goal-directed behavior. It also extends

some perception-bound Predictive Coding interpretations of the

PPC dynamics (FitzGerald et al., 2015) and provides a more

comprehensive account of movement planning (Erlhagen and

Schöner, 2002), tightly integrated into the overall sensorimotor

control process.

The core novelty with respect to state-of-the-art

implementations in continuous time Active Inference is that

we first considered an internal belief over not only bodily states

but also every object in the scene, where the latter are encoded in

the joint angles space as well, simulating a visuomotor reference

frame that the PPC is supposed to encode. Then, we decomposed

the belief dynamics into a set of independent intentions each

depending on the current belief and predicting the next plausible

state. Such formalization has several advantages. First, since
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FIGURE 14

Visual gradient analysis. Marginal gradients for each joint, i.e., neck (A), shoulder (B), and elbow (C), and for two values of the recognition density

variance 6φ (green/orange line) computed by backpropagating the error between images with di�erent arm configurations (abscissa: joint angle) and

a reference image (whose angle is represented by the red dot on the abscissa). (D–G) Gradients for arm (D, E) and target (F, G) in both Cartesian (D, F)

and joint (E, G) space.

attractors are dynamically generated at each time step, the agent

can also follow moving targets and interact with a constantly

changing environment, in contrast to static reaching tasks where

a desired fixed state is specified in the belief dynamics (Baioumy

et al., 2020). Second, expressing the target position in terms

of a possible joint configuration—either imposed by higher

levels for realizing specific affordances or freely inferred by the

exteroceptive models—results in simple intentions, without the

need to directly use sensory information or duplicating lower-level

generative models, which leads to implausible scenarios (Lanillos

et al., 2020; Sancaktar et al., 2020). It should be however noted

that, although an intrinsic-only attractor is faster and more
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parsimonious, continuous activation of visual low-level attractors

may provide more precise motor control. Indeed, it seems that

motor areas are able, at a certain "neural energy" cost, to interact

with and generate predictions in multiple sensory domains. The

key difference is that in the former a single prediction—which

is already biased toward a future state—is compared with the

sensory input; in the latter, a prediction of the current state is

compared with the desired exteroceptive goal, biasing the belief

through the backpropagated gradient. Further studies are thus

needed to implement low-level attractors in a biologically plausible

way—e.g., intentions could generate through parallel pathways

their own future sensory predictions that are compared with the

observations in the usual way, with a particular intention that can

be viewed as trying to continuously predict the current sensory

input—and analyze the differences between the two modalities.

Last, maintaining different belief components also allows easy

encoding of previously memorized states which can be especially

useful when implementing a sequence of actions, since only the

intention precisions have to be adjusted. Indeed, it seems that the

PPC explicitly encodes and maintains such goals during the whole

unfolding of sequential actions (Baldauf et al., 2008). A specific

goal is selected among other competitive intentions possibly under

the control of the PFC and PMd (Stoianov et al., 2016) and fulfilled

by setting it as a predominant belief trajectory as an attractor with

a strong gain (see Equations 44, 26 and Figure 4). For example, in

a typical reaching task, the goal of reaching a specific visual target

corresponds to the future expectation that the agent’s arm will

be over that target; thus, if the agent maintains a belief over the

latter, the corresponding intention links the expected belief over

the future body posture with the inferred target, expressed in joint

angles, encoding a specific interaction to realize.

We tested the computational feasibility of the theory

on a delayed reaching task—a classical experiment in

electrophysiology—in which a monkey is required to reach

with its hand a visual-spatial target, starting the movement from

an HB (Breveglieri et al., 2014). To do this, we simulated an agent

consisting of a coarse 3-DoF limb model and noisy visual and

proprioceptive sensors (Figure 3A). Simplified proprioceptive

sensors provided a noisy reading of the state of the limb in joint

angles, while visual input was provided by a fixed camera and

consisted of an image of the target and limb. Predictive visual

sensory processing simulating the DVS was implemented with a

VAE trained to infer body state and target location, both in the joint

angles domain (Figure 3C). The limbs were animated at the velocity

level with motor control signals computed by the visually-guided

Active Inference controller. The computational analysis showed,

first and most importantly, that the controller could correctly

infer the position of the visual targets (Figure 5, t = 70), use it

to compute and set motor goals in terms of prior beliefs on the

future body state through intention functions (Figure 5, t = 105),

and perform adequate and smooth reach movements (Figure 5 t =

105–150), with and without visual feedback (Figure 6). The greater

accuracy obtained with visual feedback parallels classical results in

a similar classical behavioral comparison of reaching (Keele and

Posner, 1968).

We then systematically investigated the effects of noise on

various functional components (Figure 7), starting with the balance

of the precision between proprioceptive and visual sensory models:

a noiseless Active Inference agent (BL condition) resulted in the

best performance, with a stable final approach and accuracy only

limited by the quality of the visual target estimation. Among

the noisy conditions, pure proprioceptive control resulted in

the lowest performance, as expected. Motor control driven by

both proprioceptive and visual feedback with balanced precision

between the two domains resulted in improved reach accuracy

and greatly improved arm belief stability (Figure 8). The effect on

accuracy was mainly due to the inclusion of visual information

in the inference process, but also to slower updates of the motor

control signals due to decreased confidence about proprioceptive

input. The increased stability of the arm belief did not improve

movement stability as increasing confidence about visual input

also increased the discrepancy between belief and action updates,

the latter only relying on noisy proprioceptive observations. In

fact, we showed that if we remove the plausibility constraint that

motor control is driven only by proprioceptive predictions and thus

let actions minimize prediction errors from all sensory domains,

the reach performance greatly increases (Figure 9). Nonetheless,

any combination of visual and proprioceptive feedback improved

performance relative to a control driven by feedback from a single

sensory domain. The instability due to the difference in update

directions between belief and action could be balanced by other

mechanisms that we have not considered here. For example, we

assumed that the same pathway is used for both control and

belief inference, but it seems that the motor cortex generates

different predictions depending on the brain areas which it interacts

with: purely proprioceptive predictions for motor control, whose

prediction error is suppressed at the lowest level of the hierarchy,

and rich somatosensory predictions for latent state inference,

which integrates somatic sensations at different hierarchical levels

(Adams et al., 2013). Intention precisions or attractor gains affected

performance as well. First, they affected reach time: as expected,

the greater the gain, the faster the movement. However, fast

movements come at a cost: increased gains generally resulted in

less precise movements and decreased stability during the final

reach period. Finally, higher visual target precisions decreased

perception time and improved perception accuracy but decreased

perception stability.

We also investigated the effects of movement onset policies:

response delay allows investigating perceptual and motor

preparatory processes separately from the motor control and

action execution. We found that delayed response decreased

movement time with respect to a policy that requires an immediate

response (Figure 10), which fits the behavioral pattern (Shenoy

et al., 2013). Apparently, this is due to the need to estimate, in the

latter condition, the target position “on the fly,” and constantly

adapt the intention according to the updated target estimate. The

advantage of allowing some preparatory time becomes clear in

an anecdotal fly-catching task, which results in faster movement

and increased chances of success. This comes with the critical

contribution of PPC neurons that systematically modulate their

activity during the preparatory period (Shenoy et al., 2013), which

here provided specific predictions for the computations performed

in the PPC. Notably, the immediate-response policy allowed the

Active Inference controller to perform actions under dynamic
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environmental conditions, such as tracking moving objects. Free

energy minimization resulted in rapid target detection also in this

case, and maintained subthreshold perception error on moving

targets (Figure 11) which allowed precise tracking after an initial

reaching period.

Intention-driven Active Inference in continuous time largely

compares to classical neural-level hypotheses of motor planning

such as the Dynamic Field Theory (Erlhagen and Schöner, 2002),

with the advantage of stepping on an established Predictive Coding

framework, dynamic approximate probabilistic inference, and end-

to-end sensorimotor control. The Dynamic Field Theory estimates

the parameters of the desired movement—such as movement

direction and target velocity—from sensory and task features

encoding environmental descriptors, which closely compares to

motor goal coding through flexible intentions in our model.

The two theories have in common a dynamic activation of

the internal representations in continuous time, governed by a

dynamic system, but they differ in the nature of the signals and

their coding. Movement descriptors in Dynamic Field Theory are

represented by a dynamically activated multidimensional space,

each encoded on a population of competing neurons, while Active

Inference approximates movement properties with their central

moments (belief) and dispersion (precisions). While population

coding allows a complete description of a probabilistic distribution,

it could be overshot when used to code single magnitudes

(although it is essential when encoding discrete categories). Yet,

such representation allows coding multiple competing targets

on the same population of neurons, while in our scheme each

target should be encoded by a dedicated unit. Notably, the brain

encodes scalar variables using a variety of number coding schemes,

including monotonic and distributed (Stoianov and Zorzi, 2012).

The latter, known as a “mental number line” (Stoianov et al., 2008),

could be an interesting hypothesis to explore also in the context

of feature coding in continuous Active Inference. Currently,

distributed coding is used only in discrete Active Inference and

other probabilistic models to investigate computationally high-

level cognitive functions such as planning, navigation, and control

(Stoianov et al., 2016, 2022; Pezzulo et al., 2018). The two theories

also differ in the nature of the input to their dynamic systems.

In Active Inference, system input encodes generalized prediction

errors, which are integrated into higher-level moments. Instead,

input in Dynamic Field Theory directly encodes state values.

Coding based on prediction errors has the advantage of minimizing

the quantity of transmitted information—hence, energy. Finally,

the theories also differ in scope: Active Inference provides a full

account of the entire sensorimotor control process, while Dynamic

Field Theory describes only movement planning.

6.1. Precision balance and conditions for
disorders

Based on our computational analysis, it becomes clear that

some motor and behavioral disorders could be due to the lack of

proper sensory and intention precisions (Adams et al., 2021). Here,

we illustrate the normal condition and two types of potentially

improper precision balance that could become a causal condition

for neurological disorders. Figure 15A illustrates the condition for

normal functioning, which is such that the contribution of a single

intention to the belief update (which, as a reminder to the reader,

is proportional to the gain of intentions λ) is sufficiently small

with respect to the sensory contribution. In this case, during free

energy minimization, the system dynamics smoothly moves the

belief toward the strongest goal, along with precise tracking of the

true latent state and sensory signal of the limbs, allowing thus to

compute correct motor control errors and perform smooth action

execution. A critical abnormal condition arises when the intention

gain λ is too strong, as illustrated in Figure 15B. In this case, the

belief moves too rapidly toward the goal without being able to

match the proprioceptive observations, which results in computing

incorrect motor control signals. Another abnormal condition is

caused by too close precisions γ k of competitive intentions, which

is likely to result in opposing belief updates and thus prevent

the fulfillment of any of the competing goals (as in Figure 15C).

This situation might manifest in terms of motor onset failure or

oscillatory behavior.

6.2. Neural-level predictions

One peculiarity of Active Inference based theories of motor

control is that proprioceptive predictions are sent through efferents

down to the spinal cord and that specific muscle control signals

are computed at that level by reflex arcs, so that action attempts to

suppress proprioceptive prediction errors (Adams et al., 2013). This

prediction critically differs from competing modern theories such

as the Optimal Control (Todorov and Jordan, 2002), according

to which the efferents convey muscle control signals computed

at the cortical level. A general aspect of Active Inference regards

the dynamic inferential process, which predicts with increasing

precision the internal representation of the sensorium—including

estimation of targets and body posture—starting from noisy priors

that gradually converge to ideal states. This kind of precision trend

should be observed in an experiment with multiple repetitions of

the same action and target, with variability of cell activity encoding

the target and body that gradually decreases in time within

trials. While this prediction is generally shared with Predictive

Coding based theories, classical stimulus-response theories would

predict invariant variability of cell activity across time. Another

general aspect regards coding of prediction errors. In fact, body-

environment transitions involving a change of states and tasks

result in transient bursts of activity in error-conveying cells until

the error is minimized. Prediction errors conveying upstream

information are supposed to be encoded by pyramidal cortical cells

in superficial layers while downstream predictions are encoded by

deep pyramidal neurons (Parr et al., 2022).

In light of the considerations so far, we predict several different

types of correlates that should be found in the PPC related to coding

environment, task, and bodily states. The former two include

correlates of potential spatial targets and selected motor goals,

which indeed have been consistently found in the PPC (Andersen,

1995; Snyder et al., 1997; Filippini et al., 2018). The latter includes

correlates of intention-biased bodily state estimates, which thus

are not precise representations of the true states. To this concern,
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FIGURE 15

Normal and abnormal intention gains and precisions. Arrow widths represent strengths of prediction errors. In normal conditions, the sensory

contribution to free energy minimization is bigger than that of the intentions and there is a clear unambiguous intention to fulfill (A). An abnormally

strong intention gain λ drives the belief away from the true joint states (B). Too close precision levels γ also hinder implementing competing

intentions (C).

a key expected neural correlate of the proposed mechanism in

the PPC includes signals encoding intention prediction errors

between the current belief and future states corresponding to

targets to interact with, both encoded in a visuomotor reference

frame. To investigate this, one can manipulate high-level priors,

e.g., by inducing an abrupt change of the intention, which should

then be observed as a fast decaying change of the corresponding

prediction error. A related hypothesis is that in tasks comprising

several targets—like the classical monkey experiment analyzed

here—each goal generates its own intention and prediction error.

In normal conditions only one intention is selected at a time, and

this behavior should be observed in the relative dynamics between

all the intention prediction errors encoded simultaneously. Finally,

the use of generalized beliefs in Active Inference predicts that the

PPC encodes not only static states but also a detailed estimate of

body dynamics, up to a few temporal orders. Indeed, a body of

literature report motion-sensitive, or Vision-for-Action activity in

the DVS and PPC (Galletti and Fattori, 2018). The validation of

all these correlates will be the subject of further studies with real

monkey experiments similar to the one described in Figure 3B.

6.3. Limitations and future directions

Our focus here was on intention coding in the PPC, which

directly deals with motor plans and motor control. Further

elaborations will extend the theory with higher-level aspects of

cognitive control, including intention structuring (dealt by PM),

phasing (SMA) (Gallego et al., 2022), planning, and goal selection

(HC, PFC) (Stoianov et al., 2016, 2018; Pezzulo et al., 2019).

Motor control operated here in an inner belief space belonging

to the joint angles domain, which is generally suboptimal in the

external Cartesian space. Although a kinematic transformation was

implicitly performed by the VAE, we assumed that neural activity in

the PPC encodes generalized beliefs over targets and body only in a

motor-related domain; however, neural data suggest that neurons

in the motor cortex encode motor trajectories also in extrinsic

coordinates (Cohen and Andersen, 2002; Adams et al., 2013), and

a more realistic model should include representations encoding

states in both intrinsic and extrinsic reference frames. A functional

correlate of the motor cortex should represent future states—which

were defined here implicitly in the intention prediction errors

and dynamics functions—and transform desired trajectories from

Cartesian coordinates to proprioceptive predictions in the intrinsic

state-space. This transformation is different from Optimal Control

planning since the optimization of a classical inverse model reduces

to a more manageable inference problem.

Since our focus was on the theoretical introduction of

intentionality in Active Inference, every analysis was only partially

characterized by a simple reaching task. However, fundamental

properties of the physical model, including geometry, mass, and

friction, strongly influence the resulting motion dynamics—hence

the entire inferential process. This implementation does not adopt

other important neural and biomechanical specificities such as

signal delay and joint friction (Wolpert and Flanagan, 2016),

and just partially covers the three main domains of sensorimotor

learning through a predictive forward control; for example, it

does not fully include reactive, stimuli-driven control such as

obstacle avoidance, although we showed that it can successfully

perform static and dynamic tasks. However, it could be easily

extended to accommodate additional sensory modalities—e.g.,

tactile sensations—with rich generative models such as the VAE

implemented here. Further planned computational analyses will

use a richer belief space, a more realistic physical arm model, and

additional actuators, and expand the complexity of the intention

functions to investigate the capacity of the theory to explain in-

depth neural levels, cognitive, and kinematic phenomena related

to motor learning, motion perception, motor planning, and so

on. Planned future studies with a more articulated agent will also

challenge the theory at the behavioral and neural level against

other empirical findings regarding movement preparation and

motor control, in either delayed or direct response settings. For

example, we will test the model for stimulus-stimulus congruency

and stimulus-response compatibility effects (Kornblum et al.,

1990). As for the former, it is intuitive that a greater sensory
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dimension overlap predicts faster target-belief convergence—thus

faster intention setting. Less intuitive is that stimulus-response

compatibility effects should emerge due to differences in the

dynamic transition from one belief state to another in the

proprioceptive domain. For example, a belief over the effector

state should change more, requiring more time to converge when

reaching a contralateral position than an ipsilateral one.

Although we considered an Active Inference model with

just a single layer of intentions, the structure represented in

Figure 2 could be scaled hierarchically and intermediate goals

could be considered between high-level intentions and low-

level sensory generative models, e.g., by combining discrete

and continuous Active Inference for planning and movement

execution (Friston et al., 2017a,b; Parr et al., 2020; Sajid et al.,

2021). According to the free energy principle, the agent will

then choose goals and subgoals and rely on specific sensory

modalities such that free energy is minimized at every hierarchical

level based on prediction errors coming from the level below.

This formalization will provide an explicit basis for motor

planning, including tasks like object manipulation. Indeed,

although the current implementation performs well on spatial

tasks like reaching in a dynamically changing environment, it

cannot implement composite goals which the brain needs to

handle. On the other hand, an agent that can encode higher-

level goals in a discrete domain and infer policies based on

the expected free energy will be able to dynamically modify

its behavior and react to environmental changes. An extended

implementation of this kind—showing the interplay between

discrete goals and continuous intentions—will be the subject of

future work.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found at: https://github.com/priorelli/PACE.

Author contributions

MP developed the computational method, wrote the code,

run the simulations, analyzed the results, and wrote the draft.

IS developed theoretical and methodological ideas and wrote the

draft. All authors contributed to the article and approved the

submitted version.

Funding

This research was received funding from the European Union’s

Horizon 2020 Framework Programme for Research and Innovation

under H2020-EIC-FETPROACT-2019 Grant Agreement 951910

(MAIA) to IS, Grant Agreement No 945539 (Human Brain Project

SGA3), the European Research Council under Grant Agreement

No. 820213 (ThinkAhead), and from the Italian Ministry for

Research MIUR under Grant Agreement PRIN 2017KZNZLN

(PACE) to IS.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Adams, R. A., Aponte, E., Marshall, L., and Friston, K. J. (2015). Active
inference and oculomotor pursuit: the dynamic causal modelling of eye
movements. J. Neurosci. Methods 242, 1–14. doi: 10.1016/j.jneumeth.2015.
01.003

Adams, R. A., Shipp, S., and Friston, K. J. (2013). Predictions not commands:
active inference in the motor system. Brain Struct. Funct. 218, 611–643.
doi: 10.1007/s00429-012-0475-5

Adams, R. A., Vincent, P., Benrimoh, D., Friston, K. J., and Parr, T. (2021).
Everything is connected: Inference and attractors in delusions. Schizophrenia Res. 245,
5–22. doi: 10.1016/j.schres.2021.07.032

Andersen, R. A. (1995). Encoding of intention and spatial location in the posterior
parietal cortex. Cereb. Cortex 5, 457–469. doi: 10.1093/cercor/5.5.457

Baioumy, M., Duckworth, P., Lacerda, B., and Hawes, N. (2020). Active
inference for integrated state-estimation, control, and learning. arXiv.
doi: 10.1109/ICRA48506.2021.9562009

Baldauf, D., Cui, H., and Andersen, R. A. (2008). The posterior parietal cortex
encodes in parallel both goals for double-reach sequences. J. Neurosci. 28, 10081–10089.
doi: 10.1523/JNEUROSCI.3423-08.2008

Baltieri, M., and Buckley, C. L. (2019). PID control as a process of active
inference with linear generative models. Entropy 21, 257. doi: 10.3390/e210
30257

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., and Friston,
K. J. (2012). Canonical microcircuits for predictive coding. Neuron 76, 695–711.
doi: 10.1016/j.neuron.2012.10.038

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York, NY:
Springer.

Bogacz, R. (2017). A tutorial on the free-energy framework formodelling perception
and learning. J. Math. Psychol. 76, 198–211. doi: 10.1016/j.jmp.2015.11.003

Breveglieri, R., Galletti, C., Dal Bò, G., Hadjidimitrakis, K., and Fattori, P. (2014).
Multiple aspects of neural activity during reaching preparation in the medial posterior
parietal area V6A. J. Cogn. Neurosci. 26, 879–895. doi: 10.1162/jocn_a_00510

Buckley, C. L., Kim, C. S., McGregor, S., and Seth, A. K. (2017). The free energy
principle for action and perception: a mathematical review. J. Math. Psychol. 81, 55–79.
doi: 10.1016/j.jmp.2017.09.004

Cisek, P., and Kalaska, J. F. (2010). Neural mechanisms for interacting
with a world full of action choices. Annu. Rev. Neurosci. 33, 269–298.
doi: 10.1146/annurev.neuro.051508.135409

Cohen, Y. E., and Andersen, R. A. (2002). A common reference frame for
movement plans in the posterior parietal cortex. Nat. Rev. Neurosci. 3, 553–562.
doi: 10.1038/nrn873

Corbetta, M., and Shulman, G. L. (2002). Control of goal-directed and stimulus-
driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215. doi: 10.1038/nrn755

Frontiers inComputationalNeuroscience 25 frontiersin.org
111

https://doi.org/10.3389/fncom.2023.1128694
https://github.com/priorelli/PACE
https://doi.org/10.1016/j.jneumeth.2015.01.003
https://doi.org/10.1007/s00429-012-0475-5
https://doi.org/10.1016/j.schres.2021.07.032
https://doi.org/10.1093/cercor/5.5.457
https://doi.org/10.1109/ICRA48506.2021.9562009
https://doi.org/10.1523/JNEUROSCI.3423-08.2008
https://doi.org/10.3390/e21030257
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1016/j.jmp.2015.11.003
https://doi.org/10.1162/jocn_a_00510
https://doi.org/10.1016/j.jmp.2017.09.004
https://doi.org/10.1146/annurev.neuro.051508.135409
https://doi.org/10.1038/nrn873
https://doi.org/10.1038/nrn755
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Priorelli and Stoianov 10.3389/fncom.2023.1128694

Desmurget, M., Epstein, C. M., Turner, R. S., Prablanc, C., Alexander, G. E., and
Grafton, S. T. (1999). PPC and visually directing reaching to targets. Nature Ne 2,
563–567. doi: 10.1038/9219

Doya, K. (2007). Bayesian Brain: Probabilistic Approaches to Neural Coding.
Cambridge, MA: The MIT Press.

Erlhagen, W., and Schöner, G. (2002). Dynamic field theory of movement
preparation. Psychol. Rev. 109, 545–572. doi: 10.1037/0033-295X.109.3.545

Fattori, P., Breveglieri, R., Bosco, A., Gamberini, M., and Galletti, C. (2017).
Vision for prehension in the medial parietal cortex. Cereb. Cortex 27, 1149–1163.
doi: 10.1093/cercor/bhv302

Filippini, M., Breveglieri, R., Ali Akhras, M., Bosco, A., Chinellato, E., and Fattori,
P. (2017). Decoding information for grasping from the macaque dorsomedial visual
stream. J. Neurosci. 37, 4311–4322. doi: 10.1523/JNEUROSCI.3077-16.2017

Filippini, M., Breveglieri, R., Hadjidimitrakis, K., Bosco, A., and Fattori, P. (2018).
Prediction of reach goals in depth and direction from the parietal cortex. Cell Rep. 23,
725–732. doi: 10.1016/j.celrep.2018.03.090

FitzGerald, T. H., Moran, R. J., Friston, K. J., and Dolan, R. J. (2015). Precision
and neuronal dynamics in the human posterior parietal cortex during evidence
accumulation. Neuroimage 107, 219–228. doi: 10.1016/j.neuroimage.2014.12.015

Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., and Rizzolotti, G.
(2005). Parietal lobe: from action organization to intention understanding. Science 308,
662–667. doi: 10.1126/science.1106138

Franklin, D. W., and Wolpert, D. M. (2011). Computational mechanisms of
sensorimotor control. Neuron 72, 425–442. doi: 10.1016/j.neuron.2011.10.006

Friston, K. (2008). Hierarchical models in the brain. PLoS Comput. Biol. 4, e1000211.
doi: 10.1371/journal.pcbi.1000211

Friston, K. (2010). The free-energy principle: a unified brain theory? Nat. Rev.
Neurosci. 11, 127–138. doi: 10.1038/nrn2787

Friston, K. (2011). What is optimal about motor control? Neuron 72, 488–498.
doi: 10.1016/j.neuron.2011.10.018

Friston, K. (2012). The history of the future of the Bayesian brain. Neuroimage 62,
1230–1233. doi: 10.1016/j.neuroimage.2011.10.004

Friston, K., and Kiebel, S. (2009). Predictive coding under the free-energy
principle. Philos. Trans. R. Soc. B Biol. Sci. 364, 1211–1221. doi: 10.1098/rstb.20
08.0300

Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., and Penny, W. (2007).
Variational free energy and the Laplace approximation. Neuroimage 34, 220–234.
doi: 10.1016/j.neuroimage.2006.08.035

Friston, K. J. (2002). Functional integration and inference in the brain. Progr.
Neurobiol. 68, 113–143. doi: 10.1016/S0301-0082(02)00076-X

Friston, K. J. (2005). A theory of cortical responses. Philos. Trans. R. Soc. Lond B
Biol. Sci. 360, 815–836. doi: 10.1098/rstb.2005.1622

Friston, K. J., Daunizeau, J., and Kiebel, S. J. (2009). Reinforcement
learning or active inference? PLoS ONE 4, e6421. doi: 10.1371/journal.pone.
0006421

Friston, K. J., Daunizeau, J., Kilner, J., and Kiebel, S. J. (2010). Action and behavior:
a free-energy formulation. Biol. Cybern. 102, 227–260. doi: 10.1007/s00422-010-0364-z

Friston, K. J., Mattout, J., and Kilner, J. (2011). Action understanding and active
inference. Biol. Cybern. 104, 137–160. doi: 10.1007/s00422-011-0424-z

Friston, K. J., Parr, T., and de Vries, B. (2017a). The graphical brain:
belief propagation and active inference. Netw. Neurosci. 1, 381–414.
doi: 10.1162/NETN_a_00018

Friston, K. J., Rosch, R., Parr, T., Price, C., and Bowman, H. (2017b). Deep
temporal models and active inference. Neurosci. Biobehav. Rev. 77, 388–402.
doi: 10.1016/j.neubiorev.2017.04.009

Friston, K. J., Samothrakis, S., and Montague, R. (2012). Active inference
and agency: optimal control without cost functions. Biol. Cybern. 106, 523–541.
doi: 10.1007/s00422-012-0512-8

Friston, K. J., Trujillo-Barreto, N., and Daunizeau, J. (2008). DEM:
A variational treatment of dynamic systems. Neuroimage 41, 849–885.
doi: 10.1016/j.neuroimage.2008.02.054

Gallego, J. A., Makin, T. R., and McDougle, S. D. (2022). Going beyond primary
motor cortex to improve brain-computer interfaces. Trends Neurosci. 45, 176–183.
doi: 10.1016/j.tins.2021.12.006

Galletti, C., and Fattori, P. (2018). The dorsal visual stream revisited: Stable circuits
or dynamic pathways? Cortex 98, 203–217. doi: 10.1016/j.cortex.2017.01.009

Galletti, C., Gamberini, M., and Fattori, P. (2022). The posterior parietal
area V6A: an attentionally-modulated visuomotor region involved in the
control of reach-to-grasp action. Neurosci. Biobehav. Rev. 141, 104823.
doi: 10.1016/j.neubiorev.2022.104823

Gamberini, M., Passarelli, L., Filippini, M., Fattori, P., and Galletti, C. (2021). Vision
for action: thalamic and cortical inputs to the macaque superior parietal lobule. Brain
Struct. Funct. 226, 2951–2966. doi: 10.1007/s00429-021-02377-7

Genovesio, A., Tsujimoto, S., and Wise, S. P. (2012). Encoding goals but
not abstract magnitude in the primate prefrontal cortex. Neuron 74, 656–662.
doi: 10.1016/j.neuron.2012.02.023

Goodfellow, I. J., Bengio, Y., and Courville, A. (2016). Deep Learning. Cambridge,
MA: MIT Press.

Haar, S., and Donchin, O. (2020). A revised computational neuroanatomy for motor
control. J. Cogn. Neurosci. 32, 1823–1836. doi: 10.1162/jocn_a_01602

Hohwy, J. (2013). The Predictive Mind. Oxford: Oxford University Press UK.
doi: 10.1093/acprof:oso/9780199682737.001.0001

Kaplan, R., and Friston, K. J. (2018). Planning and navigation as active inference.
Biol. Cybern. 112, 323–343. doi: 10.1007/s00422-018-0753-2

Keele, S. W., and Posner, M. I. (1968). Processing of visual feedback in rapid
movements. J. Exp. Psychol. 77, 155–158. doi: 10.1037/h0025754

Kikuchi, Y., and Hamada, Y. (2009). Geometric characters of the radius
and tibia in Macaca mulatta and Macaca fascicularis. Primates 50, 169–183.
doi: 10.1007/s10329-008-0120-3

Kingma, D. P., and Welling, M. (2014). “Auto-encoding variational bayes,” in 2nd
International Conference on Learning Representations, ICLR 2014-Conference Track
Proceedings (Banff), 1–14. doi: 10.48550/arXiv.1312.6114

Kornblum, S., Hasbroucq, T., and Osman, A. (1990). Dimensional overlap:
cognitive basis for stimulus-response compatibility-a model and taxonomy. Psychol.
Rev. 97, 253–270. doi: 10.1037/0033-295X.97.2.253

Lanillos, P., and Cheng, G. (2018). “Adaptive robot body learning and estimation
through predictive coding,” in IEEE International Conference on Intelligent Robots and
Systems (Madrid: IEEE), 4083–4090.

Lanillos, P., Pages, J., and Cheng, G. (2020). “Robot self/other distinction: active
inference meets neural networks learning in a mirror,” in ECAI 2020 (Santiago de
Compostela). doi: 10.48550/arXiv.2004.05473

Lau, H. C., Rogers, R. D., Haggard, P., and Passingham, R. E. (2004). Attention to
Intention. Sicence 303, 1208–1210. doi: 10.1126/science.1090973

Levine, S. (2018). Reinforcement learning and control as probabilistic inference:
tutorial and review. ArXiv [Preprint]. doi: 10.48550/arXiv.1805.00909

Limanowski, J., and Friston, K. (2020). Active inference under visuo-
proprioceptive conflict: simulation and empirical results. Sci. Rep. 10, 1–14.
doi: 10.1038/s41598-020-61097-w

Ma, W. J., Beck, J. M., Latham, P. E., and Pouget, A. (2006). Bayesian inference with
probabilistic population codes. Nat. Neurosci. 9, 1432–1438. doi: 10.1038/nn1790

Medendorp, W. P., and Heed, T. (2019). State estimation in posterior parietal
cortex: distinct poles of environmental and bodily states. Progr. Neurobiol. 183, 101691.
doi: 10.1016/j.pneurobio.2019.101691

Millidge, B., Tschantz, A., Seth, A. K., and Buckley, C. L. (2020). On the relationship
between active inference and control as inference. Commun. Comput. Inf. Sci. 1326,
3–11. doi: 10.1007/978-3-030-64919-7_1

Oliver, G., Lanillos, P., and Cheng, G. (2019). Active inference body perception and
action for humanoid robots. ArXiv [Preprint]. doi: 10.48550/arXiv.1906.03022

Parr, T., and Friston, K. J. (2018). The anatomy of inference: Generative models and
brain structure. Front. Comput. Neurosci. 12, 90. doi: 10.3389/fncom.2018.00090

Parr, T., Pezzulo, G., and Friston, K. J. (2022). Active Inference: The Free
Energy Principle in Mind, Brain, and Behavior. Cambridge, MA: The MIT Press.
doi: 10.7551/mitpress/12441.001.0001

Parr, T., Rikhye, R. V., Halassa, M. M., and Friston, K. J. (2020). Prefrontal
computation as active inference.Cereb. Cortex 30, 682–695. doi: 10.1093/cercor/bhz118

Pezzulo, G., and Cisek, P. (2016). Navigating the affordance landscape: feedback
control as a process model of behavior and cognition. Trends Cogn. Sci. 20, 414–424.
doi: 10.1016/j.tics.2016.03.013

Pezzulo, G., Donnarumma, F., Dindo, H., D’Ausilio, A., Konvalinka, I., and
Castelfranchi, C. (2019). The body talks: sensorimotor communication and its brain
and kinematic signatures. Phys. Life Rev. 28, 1–21. doi: 10.1016/j.plrev.2018.06.014

Pezzulo, G., Donnarumma, F., Iodice, P., Maisto, D., and Stoianov, I. (2017).
Model-based approaches to active perception and control. Entropy 19, 266.
doi: 10.3390/e19060266

Pezzulo, G., Rigoli, F., and Friston, K. J. (2018). Hierarchical active
inference: a theory of motivated control. Trends Cogn. Sci. 22, 294–306.
doi: 10.1016/j.tics.2018.01.009

Pio-Lopez, L., Nizard, A., Friston, K., and Pezzulo, G. (2016). Active inference and
robot control: a case study. J. R. Soc. Interface 13, 122. doi: 10.1098/rsif.2016.0616

Rao, R. P., and Ballard, D. H. (1999). Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci.
2, 79–87. doi: 10.1038/4580

Rood, T., van Gerven, M., and Lanillos, P. (2020). “A deep active inference model
of the rubber-hand illusion,” in Active Inference. IWAI 2020. Communications in
Computer and Information Science, Vol. 1326, eds T. Verbelen, P. Lanillos, C. L. Buckley
and C. De Boom (Cham: Springer).

Frontiers inComputationalNeuroscience 26 frontiersin.org
112

https://doi.org/10.3389/fncom.2023.1128694
https://doi.org/10.1038/9219
https://doi.org/10.1037/0033-295X.109.3.545
https://doi.org/10.1093/cercor/bhv302
https://doi.org/10.1523/JNEUROSCI.3077-16.2017
https://doi.org/10.1016/j.celrep.2018.03.090
https://doi.org/10.1016/j.neuroimage.2014.12.015
https://doi.org/10.1126/science.1106138
https://doi.org/10.1016/j.neuron.2011.10.006
https://doi.org/10.1371/journal.pcbi.1000211
https://doi.org/10.1038/nrn2787
https://doi.org/10.1016/j.neuron.2011.10.018
https://doi.org/10.1016/j.neuroimage.2011.10.004
https://doi.org/10.1098/rstb.2008.0300
https://doi.org/10.1016/j.neuroimage.2006.08.035
https://doi.org/10.1016/S0301-0082(02)00076-X
https://doi.org/10.1098/rstb.2005.1622
https://doi.org/10.1371/journal.pone.0006421
https://doi.org/10.1007/s00422-010-0364-z
https://doi.org/10.1007/s00422-011-0424-z
https://doi.org/10.1162/NETN_a_00018
https://doi.org/10.1016/j.neubiorev.2017.04.009
https://doi.org/10.1007/s00422-012-0512-8
https://doi.org/10.1016/j.neuroimage.2008.02.054
https://doi.org/10.1016/j.tins.2021.12.006
https://doi.org/10.1016/j.cortex.2017.01.009
https://doi.org/10.1016/j.neubiorev.2022.104823
https://doi.org/10.1007/s00429-021-02377-7
https://doi.org/10.1016/j.neuron.2012.02.023
https://doi.org/10.1162/jocn_a_01602
https://doi.org/10.1093/acprof:oso/9780199682737.001.0001
https://doi.org/10.1007/s00422-018-0753-2
https://doi.org/10.1037/h0025754
https://doi.org/10.1007/s10329-008-0120-3
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.1037/0033-295X.97.2.253
https://doi.org/10.48550/arXiv.2004.05473
https://doi.org/10.1126/science.1090973
https://doi.org/10.48550/arXiv.1805.00909
https://doi.org/10.1038/s41598-020-61097-w
https://doi.org/10.1038/nn1790
https://doi.org/10.1016/j.pneurobio.2019.101691
https://doi.org/10.1007/978-3-030-64919-7_1
https://doi.org/10.48550/arXiv.1906.03022
https://doi.org/10.3389/fncom.2018.00090
https://doi.org/10.7551/mitpress/12441.001.0001
https://doi.org/10.1093/cercor/bhz118
https://doi.org/10.1016/j.tics.2016.03.013
https://doi.org/10.1016/j.plrev.2018.06.014
https://doi.org/10.3390/e19060266
https://doi.org/10.1016/j.tics.2018.01.009
https://doi.org/10.1098/rsif.2016.0616
https://doi.org/10.1038/4580
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Priorelli and Stoianov 10.3389/fncom.2023.1128694

Sajid, N., Ball, P. J., Parr, T., and Friston, K. J. (2021). Active inference: demystified
and compared. Neural Comput. 33, 674–712. doi: 10.1162/neco_a_01357

Sancaktar, C., van Gerven, M. A. J., and Lanillos, P. (2020). “End-to-end pixel-
based deep active inference for body perception and action,” in 2020 Joint IEEE
10th International Conference on Development and Learning and Epigenetic Robotics
(ICDL-EpiRob) (Valparaiso: IEEE), 1–8.

Saunders, J. A., and Knill, D. C. (2003). Humans use continuous visual feedback
from the hand to control fast reaching movements. Exp. Brain Res. 152, 341–352.
doi: 10.1007/s00221-003-1525-2

Shadmehr, R., and Krakauer, J. W. (2008). A computational neuroanatomy for
motor control. Exp. Brain Res. 185, 359–381. doi: 10.1007/s00221-008-1280-5

Shenoy, K. V., Sahani, M., and Churchland, M. M. (2013). Cortical control of
arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359.
doi: 10.1146/annurev-neuro-062111-150509

Snyder, L. H., Batista, A. P., and Andersen, R. A. (1997). Coding of intention in the
posterior parietal cortex. Nature 386, 167–170. doi: 10.1038/386167a0

Snyder, L. H., Batista, A. P., and Andersen, R. A. (2000). Intention-related
activity in the posterior parietal cortex: a review. Vision Res. 40, 1433–1441.
doi: 10.1016/S0042-6989(00)00052-3

Srinivasan, S. S., Gutierrez-Arango, S., Teng, A. C. E., Israel, E., Song, H., Bailey,
Z. K., et al. (2021). Neural interfacing architecture enables enhanced motor control
and residual limb functionality postamputation. Proc. Natl. Acad. Sci. U.S.A. 118,
e2019555118. doi: 10.1073/pnas.2019555118

Stoianov, I., Genovesio, A., and Pezzulo, G. (2016). Prefrontal goal codes emerge
as latent states in probabilistic value learning. J. Cogn. Neurosci. 28, 140–157.
doi: 10.1162/jocn_a_00886

Stoianov, I., Kramer, P., Umiltà, C., and Zorzi, M. (2008). Visuospatial priming of
the mental number line. Cognition. 106, 770–779. doi: 10.1016/j.cognition.2007.04.013

Stoianov, I., Maisto, D., and Pezzulo, G. (2022). The hippocampal
formation as a hierarchical generative model supporting generative replay and
continual learning. Progr. Neurobiol. 217, 1–20. doi: 10.1016/j.pneurobio.2022.
102329

Stoianov, I., Pennartz, C., Lansink, C., and Pezzulo, G. (2018). Model-
based spatial navigation in the hippocampus-ventral striatum circuit: a
computational analysis. PLoS Comput. Biol. 14, 1–28. doi: 10.1371/journal.pcbi.
1006316

Stoianov, I., and Zorzi, M. (2012). Emergence of a ’visual number sense’ in
hierarchical generative models. Nat. Neurosci. 15, 194–196. doi: 10.1038/nn.2996

Todorov, E. (2004). Optimality principles in sensorimotor control. Nat. Neurosci. 7,
907–915. doi: 10.1038/nn1309

Todorov, E., and Jordan,M. I. (2002). Optimal feedback control as a theory of motor
coordination. Nat. Neurosci. 5, 1226–1235. doi: 10.1038/nn963

Toussaint, M., and Storkey, A. (2006). Probabilistic inference for solving discrete
and continuous state Markov Decision Processes. ACM Int. Conf. Proceed. Ser. 148,
945–952. doi: 10.1145/1143844.1143963

Tuthill, J. C., and Azim, E. (2018). Proprioception. Curr. Biol. 28, R194-R203.
doi: 10.1016/j.cub.2018.01.064

Velliste, M., Perel, S., Spalding, M. C., Whitford, A. S., and Schwartz, A. B.
(2008). Cortical control of a prosthetic arm for self-feeding. Nature 453, 1098–1101.
doi: 10.1038/nature06996

Versteeg, C., Rosenow, J. M., Bensmaia, S. J., and Miller, L. E. (2021). Encoding of
limb state by single neurons in the cuneate nucleus of awake monkeys. J. Neurophysiol.
126, 693–706. doi: 10.1152/jn.00568.2020

Wolpert, D. M., and Flanagan, J. R. (2016). Computations underlying sensorimotor
learning. Curr. Opin. Neurobiol. 37, 7–11. doi: 10.1016/j.conb.2015.12.003

Frontiers inComputationalNeuroscience 27 frontiersin.org
113

https://doi.org/10.3389/fncom.2023.1128694
https://doi.org/10.1162/neco_a_01357
https://doi.org/10.1007/s00221-003-1525-2
https://doi.org/10.1007/s00221-008-1280-5
https://doi.org/10.1146/annurev-neuro-062111-150509
https://doi.org/10.1038/386167a0
https://doi.org/10.1016/S0042-6989(00)00052-3
https://doi.org/10.1073/pnas.2019555118
https://doi.org/10.1162/jocn_a_00886
https://doi.org/10.1016/j.cognition.2007.04.013
https://doi.org/10.1016/j.pneurobio.2022.102329
https://doi.org/10.1371/journal.pcbi.1006316
https://doi.org/10.1038/nn.2996
https://doi.org/10.1038/nn1309
https://doi.org/10.1038/nn963
https://doi.org/10.1145/1143844.1143963
https://doi.org/10.1016/j.cub.2018.01.064
https://doi.org/10.1038/nature06996
https://doi.org/10.1152/jn.00568.2020
https://doi.org/10.1016/j.conb.2015.12.003
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


TYPE Original Research

PUBLISHED 27 July 2023

DOI 10.3389/fncom.2023.1132160

OPEN ACCESS

EDITED BY

Benjamin R. Pittman-Polletta,

Boston University, United States

REVIEWED BY

Kelong Lu,

Wenzhou Medical University, China

Zhipeng He,

Sun Yat-sen University, China

*CORRESPONDENCE

Lilia Costa

liliacosta@ufba.br

RECEIVED 26 December 2022

ACCEPTED 13 June 2023

PUBLISHED 27 July 2023

CITATION

do Nascimento DC, Santos da Silva JR, Ara A,

Sato JR and Costa L (2023) Hyperscanning

fNIRS data analysis using multiregression

dynamic models: an illustration in a violin duo.

Front. Comput. Neurosci. 17:1132160.

doi: 10.3389/fncom.2023.1132160

COPYRIGHT

© 2023 do Nascimento, Santos da Silva, Ara,

Sato and Costa. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Hyperscanning fNIRS data
analysis using multiregression
dynamic models: an illustration in
a violin duo

Diego Carvalho do Nascimento1, José Roberto Santos da Silva2,3,

Anderson Ara4, João Ricardo Sato5 and Lilia Costa2*

1Departamento de Matemática, Facultad de Ingeniería, Universidad de Atacama, Copiapó, Chile,
2Department of Statistics, Federal University of Bahia, Salvador, Brazil, 3EcMetrics Pesquisa de Mercado,

Salvador, Brazil, 4Departamento de Estatística, Universidade Federal do Parana, Curitiba, Brazil, 5Center of

Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil

Introduction: Interpersonal neural synchronization (INS) demands a greater

understanding of a brain’s influence on others. Therefore, brain synchronization is

an even more complex system than intrasubject brain connectivity and must be

investigated. There is a need to develop novel methods for statistical inference in

this context.

Methods: In this study, motivated by the analysis of fNIRS hyperscanning data,

which measure the activity of multiple brains simultaneously, we propose a two-

step network estimation: Tabu search local method and global maximization

in the selected subgroup [partial conditional directed acyclic graph (DAG) +

multiregression dynamic model]. We illustrate this approach in a dataset of two

individuals who are playing the violin together.

Results: This study contributes new tools to the social neuroscience field, which

may provide new perspectives about intersubject interactions. Our proposed

approach estimates the best probabilistic network representation, in addition

to providing access to the time-varying parameters, which may be helpful in

understanding the brain-to-brain association of these two players.

Discussion: The illustration of the violin duo highlights the time-evolving changes

in the brain activation of an individual influencing the other one through a data-

driven analysis. We confirmed that one player was leading the other given the ROI

causal relation toward the other player.

KEYWORDS

dynamic network, state-space models, causal inference, dual brain, interactive social

neuroscience

1. Introduction

The brain is formed by a network in which different regions share information Horwitz

(2003). This brain network can be studied through functional connectivity, which represents

the patterns of statistical dependence on the activity of distinct brain regions, or through

effective connectivity, which means the causal influences of the activity of one region over

another. The variance-covariance matrix and the Bayesian network (BN) are examples of

methods used to estimate functional connectivity. Other methods can be used to study

effective connectivity, such as dynamic causal modeling (DCM) and the multiregression

dynamic model (MDM). For a given directed network structure, the MDMmodels the data

at each node as a linear combination of the parent nodes with time-varying connectivity

parameters. According to Queen and Smith (1993), the MDM can distinguish between

directed graphs corresponding to the same statistical dependence structure (which map onto
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the same undirected graphs), allowing for the accurate estimation

of the directions of edges (a simple example of this is also discussed

here). Moreover, the MDM can be observed as more than a static

network (similar to BN). Alternative examples of these dynamic

methods can be found in Burger et al. (2009), who used the dynamic

Bayesian network (DBN) and hiddenMarkov models (HMM) used

in human-robot interaction (DBN and HMM are a particular case

of MDM).

In any case, the problem of finding a common pattern of brain

connectivity for a given individual profile (healthy or with a specific

disease, e.g., Alzheimer’s disease) is not trivial owing to the presence

of noise and the high-dimensionality of the data (Nascimento et al.,

2020; Pinto-Orellana et al., 2020). For the MDM, Costa et al. (2015)

presented a score-based learning network approach using a linear

programming problem that finds the most likely network structure

while considering the subset comparison through their maximum

posterior probability (MAP) estimation. The authors demonstrated

the usefulness of their method on functional Magnetic Ressonance

Imaging (fMRI) data as it becomes unfeasible as the number of

nodes (i.e., brain regions) increases.

In addition to this challenge, in the field of social neuroscience,

understanding how the activity of the brain might influence

the activity of another brain, which is known as brain-to-

brain activity correlation, is also desirable. As examples, we

considered a classroom where the teacher and the students

interact or an orchestra where the musicians and the conductor

interact. Konvalinka and Roepstorff (2012) describes how mutually

interacting brains can be useful in social interaction. Balconi et al.

(2017) studied the effects of strategic cooperation on intra- and

inter-brain connectivity by functional near-infrared spectroscopy

(fNIRS). Jiang et al. (2019) developed a study entitled “BrainNet: a

multi-person brain-brain interface for direct collaboration between

brains,” among others.

Hyperscanning studies—measuring the activity of multiple

brains simultaneously—is a promising (flexible) paradigm

regarding the measurement of brain activity from two or more

people simultaneously while they are interacting. This could reveal

interpersonal brain mechanisms underlying interaction-mediated

brain-to-brain coupling Scholkmann et al. (2013). One experiment

that could be conducted to this end, focusing on two brains’

observations, is the study of violin duos playing together. The

fNIRS could be used to overcome functional magnetic resonance

imaging constraints, but few dynamic data-driven models have

been proposed. Thus, we aimed to apply a dynamic graphical

model to show dynamic changes in intersubject brain activity

dependence over time.

1.1. Interaction-mediated brain-to-brain
activity correlation

In recent decades, part of the neuroscience field has focused

on demonstrating the nervous system and its function through

individuals’ behavior (and inter-relations) (Liu and Pelowski, 2014).

For instance, some studies have discussed the brain connectivity

structure by gender (Wang et al., 2009; Baker et al., 2016; Pan et al.,

2017), age (Gong et al., 2009), or using other characteristics such

as intelligence (Song et al., 2008; Van Den Heuvel M. et al., 2008;

van denHeuvel M. P. et al., 2008), psychoactive ingestion (Palhano-

Fontes et al., 2019), and meditative states (Brefczynski-Lewis

et al., 2007; Brewer et al., 2011; Hasenkamp and Barsalou, 2012).

Nevertheless, all of them have targeted different methodologies

related to neuroanatomy. These methodologies also understand the

brain connection patterns in human actions, such as opening and

closing eyes (or moving any other body part), reading, writing,

playing sports, learning, sleeping, creating memories, and recalling

these memories (Hahn et al., 2018).

However interpersonal neural synchronization (INS) demands

a greater understanding of the influence that a brain may carry on

others rather than observing only a single brain response per time

(for further details, see Babiloni and Astolfi, 2014). Hyperscanning

studies are based on the simultaneous acquisition of brain dynamics

during a cooperative task, as a joint action or decision-making (Liu

et al., 2016, 2017).

Li et al. (2020) studied the cooperative behavior among

basketball players, in which significant INS was observed due to

the performed joint-drawing task but not the control task. Nguyen

et al. (2020) investigated the neural processes related to transferring

information across brains during naturalistic teaching and learning,

underlying the effective communication of complex information

across brains in classroom settings.

With more than only linking actions across subjects, studies

have revealed that inter-individuals’ neural representation can

even build memories, thereby promoting brain integration at

some influential level. Zadbood et al. (2017) uncovered the

intimate correspondences between memory encoding and event

construction and highlighted the essential role that our common

language plays in the process of transmitting one’s memories to

other brains. Chen et al. (2017) elucidated that the neural patterns

during perception are systematically altered across people into

shared memory representations for real-life events.

Most methods used in hyperscanning fMRI and fNIRS studies

are static or temporal correlation (Cui et al., 2012; Reindl et al.,

2022; Balconi and Angioletti, 2023; Morgan et al., 2023; Wei

et al., 2023) and Granger-based causality (Zhang et al., 2017; Chen

et al., 2020, 2023; Pan et al., 2021; Zhao et al., 2022). Examples

of the former method are the partial correlation coefficient and

wavelet transform coherence (WTC). These methods are used to

estimate functional connectivity and, therefore, do not distinguish

the causal relationships between nodes. Nonetheless, according

to neuroimaging literature, the latter is used to estimate directed

functional connectivity (Bilek et al., 2022), and according to

some studies, Granger causality theory cannot be suitable for

hemodynamic data (Smith et al., 2011; Babiloni and Astolfi, 2014).

Therefore, these approaches do not study putative causal synchrony

between brains (Bilek et al., 2022). Thus, Bilek et al. (2022) used

dynamic causal modeling (DCM) in the study of social interaction

to estimate the causal effect one brain might have on another.

However, DCM is a method for testing hypotheses, and initially

specifying some candidate network structures is necessary.

This study uses theMDMwith the Bayes factor (MDM-BF) that

considers the contemporaneous relationship between regions, i.e.,

the nodes are related at the same time, in contrast, for example,
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to a DBN in which the past of the parents is connected with the

present of the child. Moreover, the Kalman filtering method is used

to estimate the effective connectivity in a simple way. However,

in contrast to DCM, it can capture the dynamic nature of social

interaction. A similar objective can be observed in Li et al. (2021)

andWang et al. (2022), in which the researchers used a data-driven

approach based on sliding windows and k-mean clustering to

capture the dynamic modulation of inter-brain synchrony patterns.

However, it is based on temporal correlation and does not estimate

effective connectivity.

The MDM appears to accommodate fMRI data well (see e.g.,

Costa et al., 2015); therefore, it has been used in this study for the

first time with fNIRS data. Furthermore, this study proposes a new

method that can be used to learn the directed acyclic graph (DAG)

structure using the MDM faster than the method already available

in the literature (MDM-IPA) because this method does not create

the need to check all possible parents for each node. This can be

especially useful in social neuroscience—which involves estimating

both inter-brain and intra-brain connections and thus studying

brain function on the subject and dyadic levels.

This novel method consists of two steps: in the first one, the

tabu search algorithm would be applied to find a partial conditional

directed acyclic graph (partial conditional DAG). The tabu search

is a combinatorial optimization algorithm used to find an optimal

network structure by local searches, as explained in the next section.

Then, the Markov equivalence class would be found, that is, DAGs

that encode the same statistical properties, and the DAG with

the highest log predictive likelihood (LPL) score from the MDM

would be chosen. This search method can also be used to estimate

individual brain networks.

Based on such evidence, which highlights the possibility

of studying the brain-to-brain activity correlation, in the next

subsection, we have discussed an extension class of DBNs that can

be used to represent these brain dynamic and causal structures

(from now on, whenever we refer to causality, it is associated with

effective connectivity via MDM-BF, unless indicated differently).

This study is divided into four parts. In Section 2, we

have described the fNIRS data analyzed and the methods

used to estimate brain connectivity as a graph-based model.

Section 3 describes the evaluation, through synthetic data,

of the robustness of the dynamic graphical model. Then,

Section 4 presents the empirical results, and finally, Section

5 presents the discussion of the proposed method and

the findings.

2. Materials and methods

We present a proof-of-concept based on a hyperscanning

experiment in which the human interaction is investigated

from brain-to-brain activity dependence. The methodological

approach adopted in this study was divided into four main

steps, aiming to estimate the brain’s dynamics and interactions.

The developed R script in this study is available at https://

github.com/ProfNascimento/MDM-BF (accessed on April 20th,

2023).

2.1. The data

This study dataset was first presented as a case study experiment

(Balardin et al., 2017) that considered two individuals who played

in a violin duo. In the current study, we have investigated the brain-

to-brain coupling (and the direction) and explored which brain

regions of a violinist are linked to the other.

The fNIRS signals acquired are demonstrated in Figure 1 (for

further experiment details, see Balardin et al., 2017). Hemodynamic

changes were obtained from the optical changes collected using

the continuous wave functional near-infrared spectroscopy system

(NIRScout 16x16, NIRx Medical Technologies, Glen Head, NY)

with 16 LED light sources (760 and 850 nm) and 16 detectors

per musician, at a sampling rate of 7.81 Hz. Channel aggregation

was conducted by considering the EEG 10-10 system in which the

optodes were placed.

The participants were at a professional level, right-handed, and

men aged 41 and 50 years old. They were instructed to play a 32-

s stretch of Allegro, by Antonio Vivaldi, from Concerto No 1 in

E major, op. 8, RV 269, “Spring." Hyperscanning was performed

considering 23 channels of the right motor hemisphere and the

temporoparietal junction of the two violinists (Balardin et al.,

2017). The first 36 s of acquisition refers to the duo playing and

the remaining refers to a resting-state condition.

2.2. Dataflow

Figure 2 demonstrates a data processing flow chart. Given the

computational cost of searching for the likely topology of the

graph, at first, the tabu search algorithmwas applied using Bayesian

networks to reduce the sub-graph structure to be sought. Then, the

result was transformed into a partial conditional directed acyclic

graph (DAG), enabling it to proceed under the causal inference

paradigm (Pearl, 2009; Oates et al., 2015). After that, the most

likely undirected network structure found was implied in Markov

equivalent graphs, and then, the MDM was applied to unravel

directionality through the maximization of the LPL, that is, Bayes

factor. By adopting a particle filter supposing Gaussian noises

(often known as the Kalman filter), we compared the MAP graphs

to obtain themost likely DAG.Once the DAG is defined, theMDM-

BF can present the dynamic strength of these estimated links.

This adopted methodology enables the estimation of complex brain

structures whenever the number of vertices (nodes) is >11 with a

sample size > 100 points (for further details, see Costa et al., 2015,

Table 01, p. 456), without computational constraints.

2.3. The multiregression dynamic model

The MDM models multivariate time series, studying putative

causal relations among its variables over time (Queen and

Smith, 1993; Queen and Albers, 2009). This class of models

is extremely powerful, given that it can discriminate complex

multivariate relations up to a finite r-th time series, with length

t, set as (Yt(1),Yt(2), ...,Yt(r)). Moreover, the joint distribution

(P(Yt(1),Yt(2), ...,Yt(r))) is estimated regardless of the presence
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FIGURE 1

Violin duo experiment: inter-subjects’ experiment icon (A); fNIRS (B) and the observed brain region (C).

FIGURE 2

Visual summary of the methodological framework. Tabu search algorithm reduced the sub-graph structure to be sought. Then, the result was

transformed into a partial conditional DAG, and the outcome was compared using the MDM-BF.

of a Gaussianity (for further details, please see Queen and Smith,

1993, who have retained the proof of the consistency of this

method of non-Gaussian processes). The MDM is formed by using

univariate regression dynamic linear models (DLMs), in which

the observation Yt(r) is regressed onto its parents, with Gaussian

residuals, such as in Equation (1).

Yt(r) ∼N (Ft(r)
′θ t(r),Vt(r))

θ t ∼N (Gtθ t−1,Wt),
(1)

where Yt(r) is an observable variable at time t and brain region

r, r = 1, . . . , n regions, t = 1, . . . ,T time points, N denotes

the Gaussian distribution, θ ′t = (θ t(1)
′, . . . , θ t(n)

′), θ t(r)
′ is the

pr-dimensional parameter vector for Yt(r), and, when it is not

intercepted, it represents the effective connectivity between node

r and its descendent (also called parents). Ft(r) is the set of the

parents, and for nodes that do not have parents, Ft(r) = 1. Gt

increments the state equation in the form, giving extra variance.

In addition, Wt(r) are pr square matrices that form Wt =

blockdiag{Wt(1), . . . ,Wt(n)}. Note that, when Wt(r) is a matrix

with all elements equal to zero, the MDM becomes the BN.

The parameters can be estimated using well-known Kalman filter

recurrences over time (see, for example, West and Harrison, 2006).

By so doing, the DLM is described by the set {Ft(r),Vt,Gt ,Wt},

although, in practice, establishing the Wt is challenging; therefore,

a strategy called “discounting” (stochastic shifting) is adopted.

Wt =
1− δ

δ
× Ct−1, (2)

where Wt is specified directly through a discount factor δ ∈ (0, 1],

and Ct−1 is the posterior variance of θ t .

Before proceeding, three terminologies are important for

distinguishing estimation processes: (i) Filtering is a procedure that

aims to update the current estimates as new data are observed, i.e.,

P(θt | Y1 : t); (ii) smoothing is a retrospective analysis that has all the

observations and calculates the conditional distribution θ given the
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heading from the complete data, P(θt | Y1 :T); and (iii) prediction

is a forecast procedure that estimates the next observation based on

the distribution, P(θt+1 | Y1 : t).

2.4. The proposed learning network

The learning network process used in this study is 2-fold: (i) an

estimation process of a Bayesian network structure, the tabu search

algorithm, and (ii) choosing a structure via the MDM in Markov

equivalent networks, that is, partial conditional DAG→MDM-BF.

This methodological combination is an alternative to reduce the

np-hard (dimensional) complexity search problem of the network

estimation.

First, the initial estimation process is related to traditional

methods in Bayesian networks (time-invariant structure). This

approach was performed using a score-based method via standard

tabu search with Bayesian information criterion (BIC). In general,

this method searches for a Bayesian network structure that

maximizes BIC. A Tabu search (Glover, 1986) may be viewed as

a meta-heuristic algorithm to perform a greedy search and to

avoid local minima. Thus, the procedure records information about

changes recently made in BN structures, using one or more tabu

lists. The tabu lists are managed by recording moves in a sequential

order. Each time a new link is added to the end of a list, the oldest

arc on the list is dropped from the beginning. Thus, each structure

generated by adding or removing links is appraised by the BIC

scoring (Nagarajan et al., 2013). The tabu algorithm adopted here

can be found in the bnlearn package from the R software (R Core

Team, 2022). Furthermore, every statistical analysis used in this

study adopted the software R.

As it is well known that the BN search approaches have trouble

distinguishing Markov equivalent structures, the next step was to

find the graphs that are Markov equivalent to one resulting from

the tabu search. Afterward, the network structure with the largest

score of MDM among these Markov equivalent graphs was chosen.

The pcalg package was used to obtain the partial conditional DAG.

Once the partial DAG structure was established, only a

few subsets of possibilities remain to be sought. At this point,

the maximum likelihood approach was adopted to determine

the best options for the subgroup. The assumption from the

MDM is that the standardized conditional one-step forecast

errors have an approximate Gaussian distribution, although not

based on stationary time series, and are serially independent

with constant variance. Under these assumptions, the joint log

predictive likelihood (LPL) has the closed form of a noncentral t

distribution and is easily found in the Kalman filter (Costa et al.,

2015). Remembering that Y = {Yt(1), · · · ,Yt(r)} if time-invariant

Y = {Y(1), · · · ,Y(r)}, considering a multivariate non-central t

distribution function

f (Y|µ, σ 26, ν) =
Ŵ[(ν + r)/2]

(πν)r/2|σ 26|1/2Ŵ[ν/2]
(

1+
(Y− µ)′6−1(Y− µ)

σ 2ν

)−(ν+r)/2

(3)

FIGURE 3

Data were simulated considering two nodes. The MDM method

through Kalman filter estimation performs an estimate of direction

and its time-varying strength.

in which µ is the vector of the means and 6 is the variance-

covariance matrix under the Bayesian framework

P(τ ,Y|µ, σ 26, ν) ∝ P(Y|τ ,µ, σ 26)P(τ |ν) (4)

Y|τ ,µ, σ 26 ∼ N(µ, (σ 26/τ )) (5)

τ |ν ∼ Ga(ν/2, ν/2) (6)

and then assuming that the conditional distribution of each

Yt(r) is given by the previous information set Ft−1, one can simply

consider a regression structure for the conditional mean µt =

Ft(r)
′θ t(r) and 6t = Vt

log(f (Yt(1), · · · ,Yt(r)|Ft−1)) = log(L(Ft(r)
′θ t(r),Vt|Ft−1))

= LPL(Ft(r)
′θ t(r),Vt|Ft−1) (7)

Therefore, the LPL is the score of the MDM used in the

learning network process, and in the following section, Section 3,

a simple example of the ability of this score to distinguish two

Markov equivalent graphs is given. It must be mentioned that local

Gaussian models do not imply, necessarily, a posterior symmetrical

multivariate distribution (for further details, see Queen and Smith,

1993).

3. Simulating the MDM

This simulation study aimed to present the performance of

the MDM in estimating the network structure and relationship

strength (parameter θ) between the two nodes over time. Each time

series contains 300 observations, that is, t = {1, . . . , 300}. Figure 3

represents the theoretical (known) network, in which node 1 (n1)

is the parent of node 2 (n2). The data simulation was performed by

using R software.

For instance, let us suppose that two signals, n1(t) and n2(t),

are related, and they can be written as a first-order linear-Gaussian

state-space model (these models presenting Gaussian noises are

often called the Kalman filter, which is a special case of a particle

filter for contemporaneous influence), as demonstrated in the

following equations:

n1t = θ
(1)
t + v

(1)
t ,v

(1)
t ∼ N (0, 0.12) (8)

n2t = θ
(2)
t + θ

(3)
t n1t + v

(2)
t ,v

(2)
t ∼ N (0, 0.12), (9)

θ
(k)
t = θ

(k)
t−1 + w

(k)
t ,w

(k)
t ∼ N (0, 0.12) (10)

in which k = {1, 2, 3}, and v(1), v(2), and w,(k) are independent.

There are structural equations containing time-varying parameters
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FIGURE 4

The result of the data-driven model MDM-BF is represented in two parts, structure selection and dynamic estimation. The left-hand panel describes

the score (LPL) of each possible network arrangement (as a time-varying score). Three possible network outcomes were adjusted, n1 impacting n2

(solid line), n2 impacting n1 (dash line), and both nodes being independent (dot line), and at all times, n1→ n2 presents a higher score (then, the most

likely structure). The right-hand panel shows the dynamic of the link strength, given the selected network (n1→ n2), that is, the dynamic of θ (3)
t . The

red line represents the true value, the blue solid line is the smooth posterior mean (and the dashed lines are the credible intervals containing 95%),

and the green line is the filter posterior mean.

θ
(1)
t , θ

(2)
t , and θ

(3)
t . The parameters θ

(1)
t and θ

(2)
t are the drift that

translates the strength for each node i at time t. The parameter

θ
(3)
t is assumed to represent the form of the exchangeable sample

information, in which (n1) impacts into (n2), and then, later, this

is observed as a causal strength (in neuroscience, the effective

neuronal connectivity).

After generating and processing the synthetic network, the left-

hand panel of Figure 4 shows the estimated LPL for each possible

network set (that is, n1→ n2, n2→ n1, and both independent

nodes) by a discount factor (DF). In the inference process of

the MDM-BF, W
(r)
t can be written in the function of a DF that

represents the loss of information in the change of parameter θ

between times t − 1 and t. The DF varies between zero and one,

in a way that the closer the DF is to one, the more stable the

system is. When DF assumes the value one, W
(r)
t is the matrix

of zeros, and the MDM becomes a BN (Costa et al., 2015). After

selecting the most likely model, the strength dynamism of the

connection is calculated through a time-varying parameter (θt)

approach. The right-hand panel of Figure 4 shows the true value

and the MDM dynamic estimation regarding the causal effect

between the nodes.

The steps are summarized in Algorithm 1 summarized

as follows:

In this case, the network with the highest LPL values was

network n1 → n2, which generated the data. Markov equivalent

networks have the same dependency relations between the nodes

and have equivalent/equal LPL. Therefore, when the discount

factor is 1, as we mentioned, there is no variation in the

state parameters over time, and the MDM simply becomes

a BN. Then, unsurprisingly, the direction n1→ n2 or n2→

n1 does not matter (see the left-hand panel of Figure 4).

Thus, this study presents an indication that the MDM-BF

is efficient in distinguishing structures that can be Markov

equivalent. Here, we described the simplest case of a network

Read the DATA

Apply the TABU search using the Bayesian Network to

estimate the invariant structure

if n1 9 n2 or n2 9 n1 then

n1, n2 are independent

else

n1 → n2 or n2 → n1

Then, n1 is connected to n2 but partial

conditional, that is, the direction will be ignored

at this point. For a greater number of nodes, every

combination will be tested.

end if

Calculate LPL from the TABU search subgroup, the

partial conditional DAG (n1 → n2 or n2 → n1).

Then, the choice will be the DAG with the maximum

LPL (that is, the directions that are established).

Once the DAG is set, the dynamic linear model

is adjusted on the DAG regression structure

(time-varying parameters estimation step, that

is MDM-BF).

Algorithm 1. Causal inference MDM-BF schematic (based on Figure 2).

structure (with only two nodes) for the sake of simplicity

and visualization; nevertheless, the results are expandable to

higher complexities (see e.g., in Costa et al., 2015). The

next section discusses the results obtained in neuroscience

application tasks.
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FIGURE 5

A butterfly plot illustrating the 23 oxyhemoglobin (HbO) signals from violinist A.

FIGURE 6

A boxplot comparing the 23 HbO signals among both musicians. This graph depicts the dispersion of the HbO of each violinist.

4. Experimental results

fNIRS enables simultaneous recording, making it possible to

study the influence of brain-to-brain coupling through social

interaction experiments. Figure 5 shows the fNIRS data during

the music duration (218 time points) from violinist A in the

23 channels.

4.1. Dynamic brain-to-brain evolution

The study of the network involved the brains of the two

violinists and considered 46 nodes, the first 23 ones corresponding

to the first subject, and the remaining ones to the second subject

(Figure 6). The learning of the network structure was carried

out by comparing the Markov equivalent networks to the graph
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FIGURE 7

The average of the posterior mean of the strength of connectivity i → j over time, in which i indexes rows and j columns (representing each observed

HbO). This matrix is divided into four blocks, in which the diagonal block is related to the musicians’ activation of their own brain (in the red dashed

line), and the anti-diagonal block to the brain-to-brain activity correlations. (A) (top-left quadrant) is from the functional brain structure of violinist A,

and (B) (bottom-right quadrant) is from violinist B.

estimated by the tabu method and using the LPL of the MDM. The

combination of the tabu search algorithm, partial conditional DAG,

and the MDM-BF helped enhance the computation efficiency,

bringing back the best network structure chosen for each subject.

The brain activation dynamic was analyzed by using the state-

space model, obtained from the MDM-BF through its posterior

mean smoothing process. It is worth mentioning that only

positive connections (ignoring the few small negative estimates,

as physiological interpretations are difficult to make) were

presented, which enabled us to take into account their neurological

interpretability. Moreover, these connections represent the neural

activation resulting from one region’s influences over another.

Figure 7 presents the results of the graph-based MDM, as a

matrix in which each element is the average of the posterior mean

of the strength of connectivity i → j over time, in which i

(parents) indexes rows and j (children) indexes columns (thematrix

causal relation direction is described from the row to the column).

Moreover, this matrix is divided into four blocks, in which the

diagonal block is intrasubject connectivity, for violinist A, at the top

left square and for violinist B, at the lower right square. In contrast,

the antidiagonal block shows intersubject connectivity, in which the

influence of the brain regions of violinist A to B is at the top right,

whereas the influence of violinist B to A is at the lower left.

Stronger connections are represented in the matrix by the

darker color, while lighter regions represent weak or absent

connections. As expected, the strongest connections are in the

primarily diagonal block, which represents the intrasubject brain

connections. The anti-diagonal block reveals that the intersubject

connectivities are less prevalent and less strong. Thus, based on a

standard 10-10 EEG montage, we aggregated the channel numbers

1, 2, 3, and 4 as dorsal frontal Regions of Interest (ROIs) 6, 7,

8, 10, and 11 as sensorimotor ROIs, and 12, 13, 15, 16, and 21

as temporoparietal junction (TPJ) and calculated the mean of

the influence of each region. A summary of the intra-individual
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FIGURE 8

ROIs’ mean representation, according to the 10-10 EEG montage, of the intra-individuals connectivity as well as the inter-individual based on the

MDM-BF.

connectivity (summed through the ROIs’ mean according to the 10-

10 EEGmontage) vs. inter-individual connectivity is represented in

Figure 8. The causal direction is from the row to the column, that is,

the highest ROI activity from violinist A was from the frontal into

the sensorimotor, whereas for violinist B, the causal relation from

TPJ into sensorimotor was not strong. Moreover, the strongest

observed values across inter-brains were from all three ROIs from

violinist A to the TPJ from violinist B (left-bottom picture in the

third column).

Broadly speaking, these causal relationships are estimated

based on the best-adjusted joint probability distribution between

the NIRScout (16 LED light sources leading to 23 time series

from each violinist) represented as a network. In the best model,

first, the partial DAGs obtained can be said to present the

intra- and inter-individual connections, and then, the conditional

independence of the time series is incorporated according to

the assumptions of the model. First, the best network structure

for each participant is estimated independently, and then, the

hyperscanning network structure is also estimated independently

from the others. Nonetheless, the three network dynamics cannot

be regarded as totally independent because only thetas can show

that (if they are zeros). Moreover, a “partializing relationship” can

be observed across structures conditioned to the inter-individual

vs. intra-individual as the obtained DAGs.

Figure 9 shows the visual representation of the summation of

this antidiagonal block as a graph. For instance, themost influenced

regions were sensorimotor and TPJ, as results of the INS, and the

results demonstrated that violinist B was influenced by violinist A,

as the highest positive value goes from the sensorimotor (violinist

A) → TPJ (musician B), and the highest negative value goes from
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FIGURE 9

Graph-based representation resulting from the musicians’ brain-to-brain synchrony through the ROIs: dorsal frontal, sensorimotor, and

temporoparietal. Moreover, this graph is the summation of channels that represent the mutual interactions across the musicians’ brains (estimated

from the MDM’s antidiagonal blocks demonstrated in Figure 7). High activity was seen to influence the sensorimotor and temporoparietal for both

musicians; nonetheless, no e�ective correlation of brain-to-brain activity was observed directly toward the dorsal frontal. The numbers in black are

positive values, and those in red are negative values. The results highlight that musician B followed musician A, as the highest positive value goes

from sensorimotor (musician A) → TPJ (musician B), and the highest negative value goes from dorsal frontal (musician B) → TPJ (musician A),

suggesting a reverse causal direction.

dorsal frontal (violinist B) → TPJ (musician A), suggesting a

reverse causal direction.

The uncertainty can be associated with confidence intervals

(CI) toward this ROI causal connectivity, which was obtained

through the non-parametric bootstrap algorithm (Carpenter and

Bithell, 2000), using the MDM average of each posterior. We used

the nptest package while considering the mean statistic method,

a confidence level of 0.95, and the number of replicates of 50,000

(Table 1). A statistical significance was observed from the dorsal

frontal channels’ behavior (musician A) → TPJ (musician B),

sensorimotor channels’ behavior (musician A) → sensorimotor

(musician B). In the other direction, it was observed from the dorsal

frontal channels’ behavior (musician B)→ sensorimotor (musician

A), dorsal frontal (musician B) → TPJ (musician A), and TPJ

(musician B) → TPJ (musician A). The other relations were not

statistically significant.

Additionally, by using theMDM class, one can make inferences

regarding the time-varying strength of the network’s links. For

instance, the dynamic change among some channels was noticeable,

especially during the resting-stage period (delimited by after the red

line), as shown in Figure 10. It is clear that the estimated dynamic

of the network links was captured by the MDM.

It is clear that intra-subject effective connectivity is stronger

than the brain-to-brain coupling strength. Tasks involving music

were reported previously and appear to induce brain activation

TABLE 1 Non-parametric bootstrap of the ROIs’ mean.

Regions influence CI 95%

Frontal_A→ TPJ_B 0.00001 0.00581

Sensor_A→ Sensor_B −0.01053 −0.00107

Frontal_B→ Sensor_A −0.00790 −0.00161

Frontal_B→ TPJ_A −0.02136 −0.00311

TPJ_B→ TPJ_A 0.00080 0.00422

(Li et al., 2015). Berkowitz and Ansari (2010) discussed the

importance of the observed brain region (right TPJ, also called

rTPJ) in musicians. Luo et al. (2014) showed neuroimaging toward

long-term musical training, which shows an impact on emotional

and cognitive function, suggesting the presence of neuroplasticity

in the rTPJ.

The sensorimotor and TPJ ROIs presented a greater activation

influence from the INS; furthermore, the MDM could capture that

musician B was following musician A, which also provides some

evidence toward the brain synchronization theory. The hypotheses

for the ROIs’ inter-individual connections relate to a distinct

activation, for instance, highlighted in the literature as resulting

from the assessment of different body movements (Kimura, 1977)
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FIGURE 10

An illustration of the dynamics of the six parameters related to the INS inter-activated fNIRS, through their smoothing posterior mean time-varying

parameters (solid blue line), with 95% credible interval (dashed green line). Thus, the resting-stage moment is represented by the rectangular-shaded

areas and the red-solid line represents the time-point of the end of the music. Based on the two higher causal ROI relations (in module), the three

top charts are associated with some sensorimotor channels’ behavior (musician A) → TPJ (musician B), and the three bottom charts are associated

with some dorsal frontal channels’ behavior (musician B) → TPJ (musician A).

or even emotions felt through visual stimuli due to the execution of

the activity (Zaitchik et al., 2010).

5. Final remarks

The current study proposes the MDM-BF for fNIRS data

obtained in hyperscanning experiments, i.e., simultaneous

acquisition, while two or more subjects are interacting. The

illustration in a violin duo confirmed the existence of influences of

one brain over the other. In the individual brain network analysis

for each violinist, it was observed that, although the brain regions

work together, some areas play different roles. In other words, some

regions connect to others with greater strength. Moreover, this

data-driven analysis demonstrated, through their INS estimation,

that the influence between violinists is not symmetric and also

time-evolving. Therefore, theMDM-BF appears to be a competitive

model that is better for hyperscanning studies (due to estimating

the effective connectivity) than other methods based on correlation

or the consideration of static connections (which only estimate

functional connectivity), corroborating similar results that have

already been presented in other fields of neuroscience (Costa et al.,

2015). In addition, the MDM-BF estimated the inter-brain network

using the contemporaneous relationship between regions, without

needing to consider the Granger causality.

In the INS analysis [also known as Thinking Through Other

Minds (TTOM)], the regions activated on the violinists are

represented by the ROI activation and, through the data-driven

model, corresponded to the expected results observed in the

experimentation (in which musician A was the leader in the duo);

that is, the quantification obtained from the MDM-BF brain region

connections are highlighted, as shown in Figure 9. However, as this

study considered only a pair of violinists, further studies targeting

the brain mapping should be conducted to associate the pattern

with more in-depth details regarding those connections. In general,

the connections estimated by the MDM-BF for the joint matrix

of connections represent the brain ROIs’ activity correlations and

their dynamic over time, in which all regions present positive

meaning and strong connections.

Different for DCM, in this study, social brain network

structures could be better explored. The study also analyzed

the synchronized dynamical system = globally, as well as the

communication of specific parts of the brain. Moreover, the novel

procedure for the learning structure network that is presented in

this study, or others that are used with the MDM (as the MDM-BF

or the MDM-DGM) can be easily applied in other scenarios, such

as communication and computer-mediated cooperation games.

Furthermore, this approach can be suitable for other neuroscience

studies that aim to estimate brain networks and have a large number

of nodes. A natural next step will be to incorporate informative

priors, in which targets transform the researchers’ prior knowledge

into hyper-parameters. In addition, parametric space shrinkage

should be investigated as an alternative to score-based structure

selection. In other words, as a complement to the MDM-BF

method, the number of time-varying parameter estimations can

be reduced based on some a priori information or some specific

criteria.
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Electroencephalographic studies of working memory have demonstrated 
cortical activity and oscillatory representations without clarifying how the stored 
information is retained in the brain. To address this gap, we  measured scalp 
electroencephalography data, while participants performed a modified n-back 
working memory task. We calculated the current intensities from the estimated 
cortical currents by introducing a statistical map generated using Neurosynth 
as prior information. Group analysis of the cortical current level revealed that 
the current amplitudes and power spectra were significantly different between 
the modified n-back and delayed match-to-sample conditions. Additionally, 
we  classified information on the working memory task conditions using the 
amplitudes and power spectra of the currents during the encoding and retention 
periods. Our results indicate that the representation of executive control over 
memory retention may be mediated through both persistent neural activity and 
oscillatory representations in the beta and gamma bands over multiple cortical 
regions that contribute to visual working memory functions.

KEYWORDS

working memory, EEG, hierarchical Bayesian estimation, sparse logistic regression, 
artifact

1. Introduction

Although the human brain can temporarily store information, such as numbers or strings, 
it remains unclear how the stored information is retained in the brain (Postle, 2006; D’Esposito 
and Postle, 2015; Constantinidis and Klingberg, 2016; Chai et al., 2018).

Baddeley’s model of working memory consists of one central executive and three subsystems: 
the phonological loop, the visuospatial sketchpad, and the episodic buffer. The phonological 
loop stores verbal information and revives auditory memory. A visuospatial sketch pad is a 
storage system that holds and processes non-verbal information. An episodic buffer is a 
temporary storage system that integrates visual, spatial, and verbal information with time 
sequencing. The central executive acts as a supervisory system and controls the flow of 
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information from and to its subsystems, thus focusing on and dividing 
attention and switching and activating long-term memory to support 
goal-oriented behavior (Baddeley and Hitch, 1974; Baddeley, 2010).

Human functional magnetic resonance imaging (fMRI) studies 
have shown that the prefrontal and anterior cingulate cortices play 
major roles in implementing the concept of working memory (Osaka 
et  al., 2003; Postle, 2015). Electroencephalography (EEG) and 
magnetoencephalography (MEG) studies have demonstrated that 
oscillatory activity is related to working memory content and load 
(Sarnthein et al., 1998; Miltner et al., 1999). Miller et al. proposed a 
model in which executive control acts via the interplay between 
gamma network oscillations in superficial cortical layers and alpha 
and beta oscillations in deep cortical layers (Lundqvist et al., 2016; 
Miller et al., 2018). However, how Baddeley’s psychological model 
(particularly the representation of the executive control involved in 
memory retention) is implemented in the nervous system remains an 
open question.

fMRI has been widely used in working memory studies in 
humans. This method, which has the advantage of high spatial 
resolution, can be used to identify brain regions related to working 
memory and investigate their functional connectivity. However, fMRI 
cannot acquire high-resolution temporal data due to its 
measurement principles.

However, EEG and MEG are candidates for recording high-
resolution temporal data used for brain activity. EEG/MEG studies on 
working memory have demonstrated cortical activity and oscillatory 
representations. However, it is difficult to use the EEG method to 
acquire high-resolution spatial data because of volume conduction 
effects and large interelectrode distances. MEG has a significant 
advantage over EEG because magnetic fields pass through the head 
without distortion; however, a higher spatial resolution is required. 
Moreover, a visual stimulus may cause task-related eye movements 
that induce eye artifacts in the EEG/MEG data. These eye artifacts 
have some correlation with brain activity, and separating the 
components of brain activity and artifact components is difficult using 
conventional statistical methods such as principal component analysis 
(PCA) or independent component analysis (ICA).

We simultaneously estimated both cortical currents and multiple 
extra-brain source currents from contaminated EEG/MEG data. 
Although the measured EEG/MEG data were contaminated by eye 
artifacts, the proposed method separated the effects of artifacts and 
estimated the cortical currents of the entire brain using the extra-
dipole method (Morishige et  al., 2014, 2021). The sparse logistic 
regression (SLR) method can automatically select, in a data-driven 
manner, truly important features of working memory calculated from 
the estimated cortical currents in multiple cortical regions (Yamashita 
et al., 2008). Furthermore, it can predict the task conditions of the 
working memory from selected current sources. In this study, by 
combining the extra-dipole method and SLR, we predicted working 
memory task conditions from brain regions and investigated the types 
of information represented in these cortical regions.

Two hypotheses have been proposed to explain the brain 
mechanisms used for memory retention in working memory, based 
on the following question: Is it a simple persistent spiking pattern or 
a periodic pattern of theta, alpha, beta, and gamma bandwidths? If 
memory retention is achieved by sustained firing patterns of neurons, 
some differences should exist in the intensity of the estimated current 
at each dipole. If the function is implemented in periodic patterns, the 

spectral features of the estimated currents will differ. We examined 
differences in the magnitudes of the estimated currents in response to 
different memory loads and found significant differences in the 
encoding and retention periods. Furthermore, the spectral features of 
beta and gamma waves were significantly different in several 
cortical regions.

2. Materials and methods

2.1. Participants

Fourteen adults [11 men and 3 women; aged 21–51 years, mean 
age = 31.6 ± 12.2 (standard deviation) years] took part in this study. All 
participants had normal or corrected-to-normal visual acuity. All 
participants participated in the EEG experiments. Five other 
participants also participated in the fMRI experiment; however, these 
data were not included in the study. All experiments were approved 
by the Ethics Committee of Toyama Prefectural University, the Safety 
Committee of the Advanced Telecommunications Research Institute 
International (ATR), and the Ethics Committee of the Hokuriku 
Health Service Association. All experiments were performed in 
accordance with approved guidelines and regulations. Written 
informed consent was obtained from each participant before 
the experiment.

2.2. EEG data collections

We continuously recorded EEG data using a 64-channel 
ActiveTwo EEG system (BioSemi, Amsterdam, Netherlands) with 
electrodes attached to a nylon cap based on the extended 10–20 
international system. The participants sat on a comfortable chair 
50 cm away from a 24-inch LCD monitor (60-Hz refresh rate) in an 
electromagnetically shielded room. We recorded an electrooculogram 
(EOG) from four electrodes located at the left and right temples and 
above and below the left eye. We recorded a neck electromyogram 
(EMG) using two electrodes placed on the left sternocleidomastoid 
muscle. We also recorded finger electromyograms (EMGs) by using 
two electrodes placed in tandem on the extensor digitorum muscles 
of the right arm. To verify the timing of the visual stimulus, 
we measured its onset on the screen using a photodiode. We used 
either the 2-Button Response Pad (Current Designs, Inc., Philadelphia, 
PA) or the BSGP815GY GamePad (Buffalo, Inc., Aichi, Japan) as a 
response box to obtain participants’ feedback and measure the 
response time. However, due to a malfunction of the response box, the 
response time could not be measured for the two participants.

2.3. Magnetic resonance imagining data 
collection

T1-weighted structural images were obtained using either a 3 T 
Siemens Magnetom Prisma Fit scanner (Siemens AG, Erlangen, 
Germany) or a Vantage Orian 1.5 T Magnetic resonance imagining 
(MRI) system (Canon Medical Systems, Ohtawara, Japan), with a 
magnetization-prepared rapid gradient-echo (MPRAGE) sequence. 
The scanning parameters of the Siemens Magnetom Prisma Fit were 
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as follows: repetition time (TR), 2,300 ms; echo time (TE), 2.98 ms; flip 
angle, 9°; voxel size, 1 mm; number of slices, 208; matrix size, 
256 × 256; and field of view, 256 × 256 mm. Those of the Vantage Orian 
were as follows: TR, 20 ms; TE, 4.00 ms; flip angle, 15°; voxel size, 
0.5 mm; number of slices, 400; matrix size, 512 × 512; and field of view, 
256 × 256 mm.

2.4. Task design and procedure

In the original version of the n-back task, figures were presented 
sequentially on the screen, and participants had to remember these 
sequences (Kirchner, 1958; WU-Minn HCP Consortium, 2015). This 
protocol is widely used; however, it poses difficulties for EEG data 
analysis in isolating brain activity during the encoding and retention 
periods. In this study, we modified the n-back working memory task. 
This task comprised three periods (Figure  1A). (a) During the 
encoding period, the modified 2-back task and delayed match-to-
sample (DMTS) task were randomly presented. In the modified 
2-back task, seven stimuli chosen from four types of arrows (left, right, 
up, and down) were presented and replaced sequentially on a monitor. 
One stimulus was randomly presented as a red arrow. Participants 
were instructed to memorize the direction of the arrow that appeared 
two steps before the red arrow. In the DMTS task, the serial 
presentation of a stimulus was the same as that in the modified 2-back 
task, except that a single-arrow stimulus chosen from the four types 
of arrows was used. The same arrow stimulus was presented seven 

times on a monitor. (b) Information is maintained for 3 s. A random 
pattern was presented to avoid visual aftereffects [Figure 1A (3)]. (c) 
During the retrieval period, the participants judged whether the probe 
arrow direction matched the retained direction by pressing one of the 
two buttons with their right index or middle finger [Figure 1A (4)]. 
The participants received visual feedback regarding the correctness of 
their responses [Figure 1A (5)].

The process comprised a single trial. Each session consisted of 20 
trial repetitions, and each task consisted of eight sessions. Each 
participant performed 160 trials (20 trials × eight sessions). The order 
of the modified 2-back and DMTS tasks was counterbalanced across 
participants (left/right/up/down:36 trials; DMTS:16 trials). EEG and 
fMRI experiments were conducted on different days. The participants 
followed identical experimental protocols for the EEG and 
fMRI experiments.

2.5. EEG data analysis

We preprocessed the raw EEG data in the following steps using 
EEGLAB version 14.1.2 (Delorme and Makeig, 2004) running in 
MATLAB 2014b. The data were band-pass filtered in the range of 
0.4–512 Hz (FIR filter of order 16,897; 0.2 Hz and 512.2 Hz cutoff 
frequencies (−6 dB); zero-phase) to remove the low-frequency drift 
components and the high-frequency noise components. Then, 
we applied a notch filter of 59–61 Hz to remove powerline noise (FIR 
filter of order 6761; 59.5 and 60.5 Hz cutoff frequencies; zero-phase). 

FIGURE 1

(A) Illustration of task design. (B) We extracted each trial from −0.5 to 8.0  s and calculated a grand average of the ERSP (event-related spectral 
perturbation) spectrogram of EEG signals across all channels (using wavelet analysis). During the retention period, the largest periodic change was 
observed between 6 and 7.5  s.
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Next, the EEG data were downsampled from 2,048 to 512 Hz. 
We extracted single-trial EEG data epochs from −0.5 to 8.0 s with 
respect to the encoding onset (Figure  1B). After the extraction, 
we corrected the baselines to the pre-stimulus period (−0.5 to 0 s). 
During all sessions, noisy channels due to poor electrode contact and 
broken electrodes were identified by visual inspection and excluded. 
The data were re-referenced using the average reference (the reference 
signal was the average of all the electrodes). Signal deviations in the 
vertical EOG channel of more than 350 μV within the retention period 
were identified as eyeblinks. Signal deviations in all EEG channels of 
more than 200 μV within a retention period were identified as large 
artifacts. Trial data contaminated with eyeblinks and large artifacts 
were excluded from the analysis. Trials with incorrect responses 
during the retrieval period were excluded from the analysis. The 
remaining trials accounted for 79.6% of the total trials 
(Supplementary Table S1) and were used for the data analysis.

2.6. Meta-analysis fMRI prior

We generated a meta-analysis statistical map synthesized by 
Neurosynth (Yarkoni et al., 2011)1 by selecting the term “working 
memory” to express functional activities during the n-back task. After 
generation, the statistical map was co-registered to the participant’s 
structural image using the FSL tools FLIRT and FNIRT (Smith et al., 
2004; Figure 2A). As the synthesized meta-analysis maps were defined 
on voxels, they were transformed into cortical surfaces using an 
inverse-distance weighted interpolation method. An imported map 
was used to calculate the parameters in the probability distribution of 
the prior current variances for hierarchical Bayesian estimation 
according to a previously established method (Suzuki and 
Yamashita, 2021).

2.7. Head and source models

We constructed a polygon cortical surface model for all 
participants using the FreeSurfer software (version 6.0.0; http://surfer.
nmr.mgh.harvard.edu/; Dale et al., 1999) with a T1-structural image 
for each participant. The number of cortical surface dipoles in the 
participants was 10,004. The cortical current sources were located at 
the vertex points of the cortical surface model, and current sources 
were oriented perpendicular to the cortical surface. A positive current 
was defined as the one directed toward the interior of the cortex. The 
main noise source for the left and right eye movements was assumed 
to be  the center of each eyeball. The position of each eyeball was 
obtained from the T1-structural images by visual inspection. Each 
extra-brain source was modeled using the resultant three-dimensional 
dipole current in the x–y–z direction. Six dipoles (two extra-brain 
sources × three directions) were located as described in our previous 
study (Morishige et al., 2014).

We used the three-shell boundary element method (BEM) derived 
from the MRI dataset (Mosher et al., 1999). The conductivities of the 

1 https://neurosynth.org

brain, skull, and skin were assumed to be 0.62, 0.03, and 0.62 S/m, 
respectively.

2.8. Cortical and extra-brain source current 
estimation

We calculated the cortical and extra-brain source currents using 
an extra-dipole method (Morishige et al., 2014) based on a hierarchical 
Bayesian method (Sato et  al., 2004; Yoshioka et  al., 2008) and 
simultaneously estimated the cortical and extra-brain source currents 
by placing the dipoles on both the cortical and extra-brain sources. 
This method can be used to estimate the cortical currents from EEG 
data contaminated with extra-brain sources (Figure 2B).

2.9. Group analysis for estimated cortical 
currents and oscillatory activities

Takeda et al. proposed a group analysis method for the time series 
of the estimated source currents (Takeda et al., 2019). We applied this 
method to examine the differences in the amplitudes and power 
spectra of the source currents estimated from EEG data.

We calculated the time series of trial-averaged source currents and 
scaled their amplitude, so they had a mean of 0 and a standard 
deviation of 1 in a baseline period (−0.5 to 0 s). The time series of the 
trial-averaged source currents was calculated from the normalized 
source currents for a single retention period. Then, we  split the 
encoding and retention periods into 12 subperiods (0.2–1.0 s, 
1.0–1.8 s, 1.8–2.6 s, 2.6–3.4 s, 3.4–4.2 s, 4.2–5.0 s, 5.0–5.5 s, 5.5–6.0 s, 
6.0–6.5 s, 6.5–7.0 s, 7.0–7.5 s, and 7.5–8.0 s), and then, we compared all 
participants’ current amplitude in an encoding/retention subperiod 
between modified n-back and DMTS conditions with a paired t-test 
at each current source. To examine the differences in the spectral 
features of the two conditions, we estimated the power spectral density 
using Welch’s method for each source current in each trial in a baseline 
period and an encoding/retention subperiod from the estimated 
source currents and calculated the sum of power spectral densities in 
each frequency band of interest: theta (4–8 Hz), alpha (8–13 Hz), low 
beta (13–20 Hz), high beta (20–30 Hz), and gamma waves (30–50 Hz). 
We normalized the mean power spectral density of each frequency 
band using the baseline period values and converted them to a decibel 
scale using a log base (Cohen, 2014). We compared the normalized 
mean power spectral densities between the modified n-back and 
DMTS conditions using a paired t-test at each sampling time. The 
p-values for the paired t-test were corrected for multiple comparisons 
using Benjamini and Hochberg’s false discovery rate (FDR) procedure 
(Benjamini and Hochberg, 1995). The FDRs were controlled at 0.05.

2.10. Classification

To investigate the representation of working memory in cortical 
regions, we classified information on the task conditions of working 
memory using current amplitudes and power spectral densities during 
the encoding and retention periods. We selected 100 cortical dipole 
currents in the order of t-values generated by the Neurosynth meta-
analysis statistical map and used them for classification. We computed 
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the sum of the absolute current amplitudes and power spectral 
densities of the low beta, high beta, and gamma waves using Welch’s 
method. Sparse logistic regression was used to reduce the input 
dimensions of the current amplitudes and power spectral densities, 
which were then divided into two classes (modified n-back or DMTS 
tasks; Yamashita et al., 2008; Figure 2C) and evaluated using leave-
one-out cross-validation. A permutation test was performed by 
randomizing the labels 100 times to determine whether the 
performance of the classifiers was statistically meaningful. The 
one-sided p-values of the test were calculated as the proportion of 
sampled permutations where the differences in means were greater 
than the test statistic. The accuracy, precision, recall, F-measure, and 
balanced accuracy were calculated and used for the evaluations. The 
p-values for the permutation test were corrected for multiple 
comparisons using Benjamini and Hochberg’s false discovery rate 
(FDR) procedure (Benjamini and Hochberg, 1995). The FDRs were 
controlled at 0.05.

The ratio of the trial numbers for the modified n-back and DMTS 
tasks was 144:16, which is a medium-imbalanced dataset. To address 
the imbalanced data problem in classification, we  extended the 
original SLR and applied the formulation using weighted logistic 
regression (King and Zeng, 2001; Maalouf and Siddiqi, 2014). The 
likelihood function of the logistic regression can be  rewritten 
as follows:
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where X � � �x xNinput1, ,
 is an input feature vector, ββ  is a weight 

vector including a bias term, y is the outcome vector 
(either yi =1 or yi = 0), w N N N1 � �� �trial all class trial DMTS_ _/ , 
w N N N0 � � � �� �trial all class trial nback_ _/ , and � i x� � �� �� �1 1/ exp .

To improve computational efficiency, we  used Z currents as 
cortical currents to calculate the sum of the current amplitudes and 
power spectral densities (Morishige et al., 2021).

3. Results

3.1. Behavior

All participants performed both modified 2-back and DMTS tasks 
with high success rates (mean success rate ± standard deviation, 
94.3 ± 3.3% and 98.7 ± 2.7%, respectively). The response times for the 
two conditions were 0.83 ± 0.22 and 0.79 ± 0.24 s, respectively. There 
was no significant difference in response time [paired t-test: 
t(11) = 1.6657, p = 0.1240]. However, the success rate of the modified 
2-back task was significantly lower than that of the DMTS condition 

FIGURE 2

(A) Linear and non-linear transformation for meta-analysis fMRI data from MNI152 to individual T1 spaces. (B) Illustration of the extra-dipole method. 
(C) Illustration of classification of modified n-back and DMTS task conditions.
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[paired t-test: t(13) = 3.2412, p = 0.006], indicating that the EEG 
comparison among the different conditions could be influenced by the 
difficulty of the task.

3.2. Cortical and extra-brain source 
currents

The cortical current in each participant was estimated using 
the extra-dipole method. We calculated the trial-averaged values 
from the estimated current densities and plotted the absolute and 
maximum values on the cortical surface model. The cortical 
regions of the dorsolateral prefrontal cortex (DLPFC), posterior 
parietal cortex (PPC), and early visual areas showed large current 
intensities. These areas are related to visual working memory 
processes (Figure 3).

We also searched for the maximum current densities across all 
dipoles on the cortical surface of each participant and calculated the 
mean values and standard deviations. The values were 133.2 ± 99.9 
pAm/mm2. In previous electrophysiological studies, the estimated 
current densities ranged from 25 to 250 pAm/mm2(Hämäläinen et al., 
1993). The values calculated in this study were within these ranges. 
We also calculated the mean values of the absolute eye currents from 
single-trial data. These amplitudes ranged from 0.12 to 53.2 nAm, and 
these estimated values were similar to those of previous research with 

respect to the order of magnitude (Katila et  al., 1981; Morishige 
et al., 2014).

If memory retention is achieved through sustained neuronal 
firing patterns, there should be differences in the intensity of the 
estimated current at each dipole. However, if the function is 
implemented in periodic patterns, the spectral features of the 
estimated currents should differ. We examined whether there were 
differences in the magnitude of the estimated currents in response 
to different memory loads and found significant differences in the 
encoding and retention subperiods ([0.2–1.0 s]: p = 0.001, 
FDR-corrected, paired t-test; [1.0–1.8 s]: p = 0.002, FDR-corrected, 
paired t-test; [1.8–2.6 s]: p = 0.01, FDR-corrected, paired t-test; 
[4.2–5.0 s]: p = 0.04, FDR-corrected, paired t-test; [5.0–5.5 s]: 
p < 0.0001, FDR-corrected, paired t-test; [5.5–6.0 s]: p = 0.004, 
FDR-corrected, paired t-test; Figures 4A,B). Additionally, spectral 
features of beta and gamma waves had significant differences in 
several cortical regions ([1.8–2.6 s]: (high beta) p = 0.001, (gamma) 
p = 0.04, FDR-corrected, paired t-test; [2.6–3.4 s]: (low beta) 
p = 0.02, (high beta) p = 0.02, (gamma) p = 0.04, FDR-corrected, 
paired t-test; [3.4–4.2 s]: (low beta) p = 0.02, (high beta) p = 0.01, 
(gamma) p = 0.02, FDR-corrected, paired t-test; [4.2–5.0 s]: (high 
beta) p = 0.04, (gamma) p = 0.03, FDR-corrected, paired t-test; 
[5.0–5.5 s]: (high beta) p = 0.01, (gamma) p = 0.03, FDR-corrected, 
paired t-test; [6.0–6.5 s]: (gamma) p < 0.0001, FDR-corrected, 
paired t-test; [7.0–7.5 s]: (gamma) p = 0.04, FDR-corrected, paired 
t-test; Figures 4A,B).

3.3. Classification

If the estimated cortical currents contain information about visual 
working memory, the task conditions must be predicted from the 
currents or power spectra during the encoding and retention periods. 
Considering the results of the group analysis in the previous 
subsection, we investigated the representation of working memory 
task conditions using the current amplitudes and power spectral 
densities during each encoding/retention subperiod by computing the 
sum of the absolute current amplitude in a subperiod and the average 
power spectral densities in each significant frequency band (low beta, 
high beta, and gamma waves) using Welch’s method. We  used 
weighted sparse logistic regression to reduce the input dimension of 
the power spectrum densities and classified the trials as modified 
n-back or DMTS tasks. The classification accuracies in six encoding 
and six retention subperiods were 84.8 ± 5.1%, 84.0 ± 4.0%, 84.1 ± 5.0%, 
85.3 ± 3.5%, 85.8 ± 3.6%, 84.3 ± 3.0%, 84.4 ± 3.7%, 85.1 ± 4.0%, 
84.7 ± 5.2%, 82.9 ± 5.3%, 85.9 ± 3.5%, and 84.5 ± 3.7%, respectively 
(Figure 5A). The precisions were 90.0 ± 1.5%, 89.4 ± 1.4%, 89.5 ± 1.4%, 
90.2 ± 1.2%, 90.3 ± 1.4%, 89.7 ± 0.9%, 89.7 ± 1.1%, 89.9 ± 1.0%, 
89.4 ± 1.8%, 89.4 ± 2.0%, 90.2 ± 1.0%, and 90.0 ± 1.4%, respectively. The 
recalls were 93.3 ± 4.9%, 93.1 ± 4.0%, 93.1 ± 5.1%, 93.7 ± 3.5%, 
94.3 ± 3.3%, 93.0 ± 3.3%, 93.2 ± 3.8%, 93.8 ± 4.4%, 94.0 ± 4.9%, 
91.7 ± 4.8%, 94.6 ± 3.8%, and 93.0 ± 3.3%, respectively. The F-measures 
were 91.6 ± 3.0%, 91.2 ± 2.4%, 91.2 ± 3.0%, 91.9 ± 2.0%, 92.2 ± 2.1%, 
91.3 ± 1.8%, 91.4 ± 2.2%, 91.8 ± 2.4%, 91.6 ± 3.1%, 90.5 ± 3.2%, 
92.3 ± 2.1%, and 91.5 ± 2.1%, respectively. The balanced accuracies 
were 52.0 ± 5.6%, 49.1 ± 3.8%, 49.4 ± 3.6%, 52.8 ± 5.3%, 53.2 ± 6.3%, 
50.5 ± 4.1%, 50.3 ± 3.9%, 51.4 ± 4.1%, 49.4 ± 5.2%, 49.2 ± 5.9%, 
52.5 ± 5.3%, and 51.5 ± 8.2%, respectively. In total, 72 of all 168 

FIGURE 3

Cortical current distribution using a statistical map generated by 
Neurosynth (example of a typical subject).
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accuracies (= [12 subperiods] × [14 participants]), 64 of 168 precisions, 
60 of 168 recalls, 66 of 168 F-measures, and 64 of 168 balanced 
accuracies reached significance (p < 0.05, permutation test, 
FDR-corrected; Supplementary Tables S2–S6).

To investigate whether the scores differed by time interval, a 
randomized block design one-way ANOVA was performed. The 
ANOVA results identified no significant differences among the scores 
of the subperiods [accuracy: F(11,143) = 0.81, p = 0.63; precision: 
F(11,143) = 1.29, p = 0.33; recall: F(11,143) = 0.641, p = 0.77; F-measure: 
F(11,143) = 0.79, p = 0.65; balanced accuracy: F(11,143) = 1.23, 
p = 0.36]. We also used weighted SLR to examine the frequency bands 
of the features used for identification and found that all types of 
dipoles, current amplitudes, and low beta, high beta, and gamma 
waves were selected as discrimination features for each subperiod 
(Figure 5B).

4. Discussion

In this study, we  examined the brain mechanisms underlying 
executive control over memory retention in working memory to 
determine whether this was a simple persistent spiking or a periodic 
pattern. We  measured the scalp EEG data, while the participants 
performed modified n-back working memory tasks and estimated the 
cortical currents from the EEG data by introducing a statistical map 
generated by Neurosynth as prior information. A group analysis of the 
cortical current level revealed that both the current amplitudes and 
power spectra were significantly different between the modified 
n-back and DMTS conditions. We  classified information on the 
working memory task conditions using the power spectrum of the 
currents during the encoding and retention periods. Our results 
indicate that executive control over memory retention may 

FIGURE 4

Differences in magnitudes of estimated source currents and power spectral densities between modified n-back and DMTS conditions. (A) Number of 
significant current sources for each subperiod of encoding and retention. (B) Significant current source locations on the cortical surface map for the 
subperiods of encoding and retention.
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be  represented by both current amplitudes and oscillatory 
representations in the beta and gamma bands over multiple cortical 
regions that contribute to visual working memory function.

Although group analysis methods are commonly used in the 
analysis of fMRI data, they have not been previously applied to whole-
brain cortical currents estimated from observed data owing to 
technical difficulties. In this study, using the method by Takeda et al. 
(2019) in combination with the extra-dipole method (Morishige et al., 
2014), eye artifacts can be effectively removed at the current estimation 
stage and examined using the obtained cortical currents with high 
temporal–spatial resolution. It is particularly significant that 

we investigated the changes in brain activities during a short time 
interval (0.8 s visual cue repetition on encoding period and 3 s 
retention) of memory encoding and retention by performing a time-
frequency analysis with high spatial resolution.

In the original version of n-back task, the overlap between the 
encoding and retention periods prevented a clear separation of the 
functional roles of the two for discussion. We revised the experimental 
paradigm and established separate retentions to allow for a clear 
separation from the encoding period.

During the retention period, both modified n-back task and the 
DMTS task required participants to temporarily remember one (or a few) 

FIGURE 5

(A) Mean values and standard errors of scores (accuracy, precision, recall, F-measure, and balanced accuracy) for each subperiod of encoding and 
retention using the weighted sparse logistic regression method. (B) Ratios of types of selected dipole numbers. We counted the number of times it was 
selected as a weighted SLR feature for each trial, calculated the mean ratio for each participant, and plotted the average ratios as a stacked bar chart. 
The rate of selected dipole for currents, low beta, high beta, and gamma waves are shown as red, green, brown, and yellow bars, respectively.
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of the stimuli repeatedly presented seven times. When comparing the 
cortical currents in the modified n-back and DMTS task conditions over 
the retention period, if there was evidence of behaviors in which working 
memory was used more strongly during this period under the modified 
n-back task condition, significant differences in the retention period 
would be expected; however, there was no evidence of such a behavior. 
Behavioral performance (success rate) in the modified n-back task 
condition was lower than that in the DMTS task condition because it only 
represented the difficulty of encoding. Therefore, the difference between 
the two groups with respect to working memory should be investigated 
during the period of encoding rather than retention.

In our experiment, the modified n-back and DMTS tasks were 
presented randomly without any additional instructions. In the flow 
of the DMTS task, the same arrows were presented repeatedly. The 
participant becomes intuitive about the third arrow and is convinced 
that this is a DMTS task through the presentation of the red stimulus. 
Therefore, before presenting the first or second stimulus, the 
participants did not realize that it was a DMTS task or a modified 
n-back task. In our group analysis, we investigated the differences 
between the modified n-back and DMTS tasks, so the significant 
differences in the low/high beta and gamma bands were found in the 
time intervals from the third subperiod of encoding to the first 
subperiod of the retention, which were also reasonable results.

Pesonen et al. examined event-related desynchronization (ERD) and 
event-related synchronization (ERS) responses for targets and non-targets 
under four different memory load conditions (0-, 1-, 2-, and 3-back) from 
EEG data (Pesonen et al., 2007). They found that the early-appearing beta 
rhythm (14–30 Hz) decreased with an increasing memory load. 
Additionally, the beta rhythms increased under the 0- and 1-back 
memory load conditions. Our group analysis results correspond to the 
differences in the power of the beta frequency band calculated from the 
2-back and 0-back tasks. Therefore, the finding that beta is significantly 
negative is consistent with the results of Pesonen et al.

In addition, event-related brain oscillatory responses in the beta 
frequency range are associated with cognitive processing and motor 
cortex activity. In the original version of the n-back task, participants 
were required to respond by pressing a button immediately after the 
presentation of the visual stimulus. The encoding period of working 
memory and the period of motor preparation overlap, making it 
difficult to distinguish between the beta waves originating from both. 
By contrast, in our modified n-back task, the button was pressed after 
the retention period. Therefore, the effects of oscillations on motor 
planning and cognitive memory processes should be  discussed 
separately. Our results suggest that beta oscillations mainly reflect the 
influence of cognitive and memory processing and that the effect of 
motor planning is small.

The subperiods with significant differences in gamma oscillations 
overlapped with those in beta oscillations. It has been hypothesized 
that gamma and beta oscillations may be synchronized. Lundqvist 
et al. examined brief bursts of high gamma (50–120 Hz) and high beta 
(20–35 Hz) oscillations in monkeys (Lundqvist et  al., 2018). Beta 
bursts are associated with suppressing gamma bursts and object 
information during spiking. Gamma and beta bursting were anti-
correlated over time but only at recording sites where spiking carried 
information about objects to be remembered. The interplay between 
beta and gamma bursts suggests a potential mechanism for controlling 
working memory. The relationship between high gamma and high 
beta oscillations should also be investigated.

Pesonen et  al. showed that the magnitude of alpha oscillations 
decreases with memory load (Krause et al., 2000; Pesonen et al., 2007). 
However, in this study, no significant differences between the modified 
n-back and DMTS task conditions were observed in any subperiod of 
encoding and retention (all subperiods and dipoles of theta and alpha 
oscillations, p > 0.05, FDR-corrected, paired t-test). Haegens et  al. 
suggested that alpha oscillations have similar inhibitory roles in sensory-
motor areas in DMTS tasks. In general, sensory alpha has been suggested 
to have inhibitory functions, and it might be that beta has a similar role, 
but the frequency is shifted upward in the higher-order cortex. 
Interactions between the mediodorsal thalamus and prefrontal cortex 
likely produce beta oscillations. Thus, Lundqvist et al. hypothesized that 
the network between the mediodorsal thalamus and prefrontal cortex 
might be involved in regulating working memory activity. In contrast, the 
superficial layers of the prefrontal cortex may contain the contents 
themselves (Lundqvist et al., 2018). Therefore, there may have been no 
significant difference between the alpha oscillations of the modified 
n-back and DMTS conditions in this study. However, there is another 
possibility that these discrepancies between previous studies and our 
results may be at least partially explained by different task flows. The 
original version of the n-back task required a constant memory load 
because encoding and retention were repeated simultaneously. In 
contrast, in the modified n-back task used in this study, encoding and 
retention were sequential and repeated with a short break after each trial. 
Therefore, the effect of memory load varies among subperiods, and its 
effect may be relatively small.

The potential increased in the parietal region 300 ms after the 
visual stimulus presentation. Moreover, it is also known that the 
potential varies with the magnitude of the memory load (McEvoy, 
1998; Segalowitz et al., 2001). The time interval during which the 
seventh visual stimulus was presented was the time of the greatest 
memory load in the 2-back task. In the current study, the estimated 
currents were significantly larger during the time range in which the 
sixth and seventh visual stimuli were presented, possibly for these 
reasons. However, the estimated currents were also significantly larger 
during the encoding subperiods when the first and second visual 
stimuli were presented. The main reason for this was presumably an 
imbalance in the number of trials in the modified n-back and DMTS 
tasks. The modified n-back task had a larger proportion of trials; 
therefore, the participants tended to expect the modified n-back task 
to start before each trial began. Because we are not certain if this is the 
main reason, we should review the observed data to clarify the cause.

Attempts to decode working memory contents have been made 
by many researchers using various measurement techniques such as 
neural activities, scalp surface EEG, MEG, and fMRI (Harrison and 
Tong, 2009; Christophel et al., 2012; Syrjälä et al., 2021). Many studies 
have reported that periodic components of theta/alpha bandwidths 
contribute to the representation of memory content and task 
conditions (Kawasaki et al., 2010; Sauseng et al., 2010; Akiyama et al., 
2017) and that beta and gamma bandwidths contribute to their 
realization (Howard et al., 2003; Lundqvist et al., 2016; Daume et al., 
2017; Lundqvist et al., 2018). The ability to classify memory content 
by using fMRI suggests the presence of specific activity patterns. 
Although various ways of representing the contents of working 
memory have been proposed, there are too few methods that discuss 
them in a unified manner. By combining methods of estimating 
cortical currents from EEG data and classifying brain information 
from the estimated currents using the SLR, it is possible to examine 
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brain activity related to working memory with higher temporal and 
spatial resolutions than that associated with conventional methods. 
Our results indicate that both persistent neural and oscillatory 
activities in specific brain regions contribute to the retention of 
memory task conditions, but both contribute to its realization in a 
wide range of brain regions.

The time intervals with significant differences varied widely among 
the participants. Individual differences may be  large because of 
differences in information processing abilities and strategies among 
participants. Classification may be  significant in the subperiods of 
encoding after the presentation of the first and second visual stimuli. 
This finding may also be explained by an imbalance in the number of 
trials required for the modified n-back and DMTS tasks.

In this study, we analyzed the estimated cortical currents only during 
the encoding and retention periods. However, using our method of 
analysis, it is also possible to analyze the retrieval periods. Therefore, in 
future, we would like to clarify how working memory task conditions and 
their contents are represented not only in the encoding and retention 
periods but also in the retrieval periods. In addition, we  conduct 
experiments not only on the modified 2-back task but also on the 
modified 3-back task, which is more difficult. We compute the current 
amplitudes and power spectra and compare them and classification of 
correct and incorrect response items in the modified n-back task to 
confirm that both persistent neural and oscillatory activities are associated 
with working memory contents and loads.
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The autism spectrum disorder risk
gene NEXMIF over-synchronizes
hippocampal CA1 network and
alters neuronal coding
Rebecca A. Mount1†, Mohamed Athif1†, Margaret O’Connor2,
Amith Saligrama1,3, Hua-an Tseng1, Sudiksha Sridhar1,
Chengqian Zhou1, Emma Bortz1, Erynne San Antonio1,
Mark A. Kramer4, Heng-Ye Man2* and Xue Han1*
1Department of Biomedical Engineering, Boston University, Boston, MA, United States, 2Department
of Biology, Boston University, Boston, MA, United States, 3Commonwealth School, Boston, MA, United
States, 4Department of Mathematics, Boston University, Boston, MA, United States

Mutations in autism spectrum disorder (ASD) risk genes disrupt neural network

dynamics that ultimately lead to abnormal behavior. To understand how

ASD-risk genes influence neural circuit computation during behavior, we

analyzed the hippocampal network by performing large-scale cellular calcium

imaging from hundreds of individual CA1 neurons simultaneously in transgenic

mice with total knockout of the X-linked ASD-risk gene NEXMIF (neurite

extension and migration factor). As NEXMIF knockout in mice led to profound

learning and memory deficits, we examined the CA1 network during voluntary

locomotion, a fundamental component of spatial memory. We found that

NEXMIF knockout does not alter the overall excitability of individual neurons

but exaggerates movement-related neuronal responses. To quantify network

functional connectivity changes, we applied closeness centrality analysis from

graph theory to our large-scale calcium imaging datasets, in addition to using

the conventional pairwise correlation analysis. Closeness centrality analysis

considers both the number of connections and the connection strength

between neurons within a network. We found that in wild-type mice the

CA1 network desynchronizes during locomotion, consistent with increased

network information coding during active behavior. Upon NEXMIF knockout,

CA1 network is over-synchronized regardless of behavioral state and fails

to desynchronize during locomotion, highlighting how perturbations in ASD-

implicated genes create abnormal network synchronization that could contribute

to ASD-related behaviors.

KEYWORDS

autism spectrumdisorder, network analysis, E/I balance, functional connectivity, network
closeness centrality, pairwise correlation, GCaMP6f
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Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder that affects 1 in 36 children (by the age of 8) in the
United States (Maenner et al., 2023). ASD is characterized by
three core behavioral symptoms: impairments in communication,
restrictive and repetitive behaviors, and difficulty with social
interactions (American Psychiatric Association, 2013). As one of
the most heritable neuropsychiatric disorders, the genetic basis of
ASD are widely heterogeneous and often polygenic (Satterstrom
et al., 2020). Human genomic studies have identified numerous
genes implicated in ASD risk. To understand the contribution of
these genes to ASD pathophysiology, transgenic mice (Crawley,
2012; Hulbert and Jiang, 2016) and non-human primates (Zhou
et al., 2019) containing such gene disruptions have been developed
to model aspects of the behavioral, molecular, and cellular
phenotypes seen in individuals with ASD.

Many ASD risk genes are thought to disrupt neural circuit
development, leading to elevated network excitability through
increasing synaptic-level excitatory/inhibitory (E/I) balance
(Gonçalves et al., 2013). While it is unclear how increased synaptic
E/I ratio alters network dynamics in vivo, computational modeling
has revealed that the E/I balance is critical for maintaining proper
asynchrony within a network (Litwin-Kumar et al., 2011) and that
an increased E/I ratio elevates neural synchrony (Litwin-Kumar
and Doiron, 2012; Middleton et al., 2012). Thus, it has been
hypothesized that ASD risk gene mutations over-synchronize
neural networks, leading to a reduction in network information
encoding that disturbs cognitive performance (Zohary et al., 1994;
Cohen and Maunsell, 2009; Rubin et al., 2017). Consistent with this
theoretical framework, ASD animal models with an increased E/I
balance exhibit increased neuronal correlations, as well as deficits
in social interaction (Yizhar et al., 2011; Selimbeyoglu et al., 2017)
and sensory discrimination (Chen et al., 2020). While lacking
single neuron resolution, EEG variability analysis in humans has
allowed the estimation of neural synchrony. As EEG provides
an aggregate measure of neural activity-dependent extracellular
electrical currents, lower EEG variability is indicative of greater
neural synchrony. One study showed that ASD individuals
without detectable EEG epileptiform activity exhibited lower
EEG variability and higher functional E/I ratios than typically
developing children (Bruining et al., 2020). Lower EEG variability
is associated with decreased accuracy on a facial recognition task
in typically developing children (Mcintosh et al., 2008). Finally, a
low-dose ketamine infusion in healthy adults, thought to increase
the E/I ratio, creates specific deficits in a spatial working memory
task (Murray et al., 2014). Together, these computational and
experimental evidence, in both animal models and human subjects,
indicate that E/I imbalance and neural synchrony contribute
to ASD network pathophysiology which ultimately results in
behavioral disruptions.

Mutations in an X-linked gene, NEXMIF (neurite extension
and migration factor, also known as KIDLIA, KIAA2022, or Xpn)
were first discovered in several males with ASD, intellectual
disability, and other co-morbidities (Cantagrel et al., 2004;
Van Maldergem et al., 2013). Since then, several studies have
reported additional ASD individuals with mutations or deletions
in the NEXMIF gene (Lim et al., 2013; Iossifov et al., 2014;

Charzewska et al., 2015; Kuroda et al., 2015; De Lange et al.,
2016; Farach and Northrup, 2016; Webster et al., 2017; Yuen et al.,
2017; Lambert et al., 2018; Lorenzo et al., 2018; Panda et al.,
2020; Stamberger et al., 2020; Wang et al., 2020). NEXMIF is
now recognized as a Category 1 gene in the Simons Foundation
Autism Research Initiative (SFARI) database, further implicating
it as an ASD-risk gene. NEXMIF protein is expressed exclusively
in neuronal nuclei and loss of NEXMIF expression leads to
aberrant neuronal migration and reduced dendritic growth due
to a dysregulation in actin dynamics in neurite tips (Gilbert
and Man, 2016). Thus, NEXMIF is critical for proper dendritic
extension and neuronal migration in the developing mouse cortex
(Gilbert and Man, 2016). Additionally, NEXMIF knockdown
results in a significant loss of synapses with a twofold greater loss
of GABAergic synapses compared to glutamatergic synapses in
cultured neurons (Gilbert et al., 2020), suggesting an increased
synaptic E/I balance. NEXMIF knockout (NEXMIF KO) mice
demonstrate a variety of behavioral deficits, most notably reduced
social interaction, impaired communication vocalizations, and
increased self-grooming (indicative of repetitive behavior).

We analyzed the publicly available atlas of gene expression
in adult mice available from the Allen Brain Institute, and found
that NEXMIF expression is the highest in the hippocampus (Allen
Institute for Brain Science, 2004a; Hawrylycz et al., 2007). As
hippocampal structure (Dager et al., 2007; Groen et al., 2010;
Chaddad et al., 2017; English et al., 2017; Reinhardt et al., 2020)
and function (Just et al., 2007; Green et al., 2013; Gu et al., 2015;
Krach et al., 2015) are often disrupted in individuals with ASD,
we examined the hippocampal network in NEXMIF KO mice to
understand how ASD-implicated NEXMIF gene mutations alter
hippocampal function at both the cellular and network levels.
Because NEXMIF KO leads to profound learning and memory
deficits (Gilbert et al., 2020), it is extremely difficult to train
these animals on hippocampal-dependent learning and memory
tasks. Thus, we examined how NEXMIF KO altered CA1 cellular
dynamics and network connectivity patterns during locomotion,
an important aspect of spatial memory, by performing cellular
calcium imaging from tens to hundreds of individual CA1 neurons
simultaneously in NEXMIF KO male mice and wild-type (WT)
male littermates during locomotion. We found that KO of NEXMIF
did not alter calcium event shape and frequency in individual
neurons but increased behaviorally specific neuronal responses
during locomotion. We then characterized network effects of
NEXMIF KO using Pearson correlation and network closeness
centrality and discovered that loss of NEXMIF creates over-
synchronization of the CA1 network during locomotion.

Results

NEXMIF WT and KO mice exhibit similar
locomotor behavior

Because of the various behavioral deficits observed in adult
NEXMIF KO mice (Gilbert et al., 2020), we first examined
NEXMIF expression profiles by analyzing the mouse cortex and
hippocampus RNA-Seq data from the Allen Brain Institute’s
Cell Types Database (Allen Institute for Brain Science, 2004b;
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Yao et al., 2021) and the RNA In-Situ Hybridization data from
the Allen Brain Institute’s Mouse Brain Atlas (Allen Institute
for Brain Science, 2004a; Hawrylycz et al., 2007). Interestingly,
we found that NEXMIF expression is most prominent in the
hippocampus (Figures 1B, C) without obvious difference between
excitatory versus inhibitory neurons (Figure 1A), consistent with
the observation that NEXMIF KO mice exhibit severe learning
and memory deficits (Allen Institute for Brain Science, 2004a;
Gilbert et al., 2020). To understand how NEXMIF contributes
to hippocampal circuit functions, we then characterized CA1
neural responses using calcium imaging while mice were head-
fixed and navigating freely on a spherical treadmill (Figure 1D).
Since it is difficult for NEXMIF KO mice to perform hippocampal-
dependent learning and memory tasks as observed in our previous
study (Gilbert et al., 2020), we examined how NEXMIF KO
changes hippocampal circuity during locomotion, a fundamental
component of spatial memory.

We performed wide-field calcium imaging from hundreds of
individual dorsal CA1 neurons simultaneously in both WT and
KO animals during voluntary locomotion, comparing homozygous
NEXMIF KO male mice with complete deletion of NEXMIF and
their WT male littermates. Since NEXMIF is an X-linked gene and
NEXMIF KO male mice are infertile, homogenous female mice
cannot be generated. Thus, we used only male KO mice that have
a complete deletion of NEXMIF. Briefly, we first injected AAV-
Synapsin-GCaMP6f into the CA1 to label neurons specifically,
and then surgically removed the overlying cortex and implanted
an imaging window above CA1. The imaging field of view was
centered on the stratum pyramidale, about 100 µm below the
imaging window, though it is possible some interneurons in the
stratum oriens were in the field of view as well. Each mouse was
recorded for 10 minutes per day every other day over a 5-day period
(Figure 1E). We did not detect noticeable differences across the
three calcium imaging sessions from the same mouse, and thus
all recording sessions from each mouse were grouped for further
analysis.

We first examined voluntary movement kinematics between
KO mice (n = 8 mice) and WT littermates (n = 7 mice).
“Resting” and “running” bouts were identified based on movement
speed (details in section “Materials and methods,” Figures 1F,
G) simultaneously recorded with each imaging session. WT
and KO mice exhibited a similar number of running bouts
(periods of continuous running) within each 10-minutes session
(Figure 1H), with similar running bout duration (Figure 1I) and
speed (Figure 1J), and overall speed across the entire session
(Figure 1K). Furthermore, these movement kinematic measures
were not correlated with the age of the mice in either WT or KO
groups (Supplementary Figure 1). Thus, NEXMIF KO does not
alter overall movement kinematics in our experimental setting,
allowing us to examine NEXMIF-induced changes in neuronal
responses independent of behavioral alterations.

Calcium event shape and frequency are
undisturbed in NEXMIF KO mice

We next examined calcium events across individual neurons
recorded in WT versus KO mice. The recorded calcium

fluorescence videos were first motion corrected and individual
cells were segmented (Shen et al., 2018; Figure 1L). A GCaMP6
fluorescence trace was then extracted for each cell and normalized
to its peak fluorescence to account for variation in GCaMP6f
expression between neurons (Figures 1M, N). We then identified
individual calcium events as described previously (Zemel et al.,
2022) (see section “Materials and methods,” Figures 2A–D). The
identified calcium events occurred at a rate of 2.24 ± 0.50
events/min over the entire imaging session, similar to previous CA1
recordings using GCaMP6 (Mount et al., 2021), and there was no
difference between WT and KO mice (WT: 2.10± 0.35 events/min,
mean± standard deviation (SD), n = 18 sessions from 7 mice; KO:
2.32± 0.53 events/min, n = 24 sessions from 8 mice, Wilcoxon rank
sum test, p = 0.12). Thus, GCaMP6 calcium imaging is capable of
capturing neural activity dynamics in both mice groups.

We estimated neural activity using both the rise time and
the frequency of individual calcium events, as the rising phase
of calcium events captures the sharp increases in intracellular
calcium that are common during spike bursts (Huang et al.,
2021). We found that calcium event rise time was longer during
running than resting in both WT and KO mice, but there was
no difference between KO and WT during either behavioral
condition (Figure 2F). Additionally, we calculated full width at
half-maximum amplitude (FWHM) to estimate calcium buffering
capacity, as the duration of a calcium event captures overall
intracellular calcium change (McMahon and Jackson, 2018; Huang
et al., 2021). FWHM was similar regardless of behavioral condition
or genotype (Figure 2G). Thus, NEXMIF KO does not affect the
overall activity or calcium buffering capacity of CA1 neurons.

NEXMIF KO increases the fraction of
movement-modulated neurons

Since CA1 neurons are known to increase their activity during
locomotion (Vanderwolf, 1969; Fuhrmann et al., 2015), we next
compared calcium event rates during resting versus running. We
found that calcium event rate across the entire population increased
from resting to running in both WT and KO animals, but there was
no difference between WT and KO (Figure 3A). After observing
this population-level change in neural activity during locomotion,
we next evaluated how individual CA1 neurons are modulated
by movement. To determine whether a neuron is modulated by
movement, we binarized the GCaMP6f dF/F trace (Figures 3C,
D, J, K) to calcium event trace with ones assigned to the entire
rising phase of each calcium event and zeros everywhere else
(Figures 3F, G, M, N). We then computed the difference in
event density during running versus resting and compared it to
a shuffled null distribution. In each shuffle, we circularly shifted
each binarized calcium trace by a random temporal offset relative
to movement and calculated the difference in activity between the
running periods and resting periods (Figures 3I, P). This procedure
was repeated 1,000 times to form the null distribution. A cell
was deemed to be movement-modulated if the observed neural
activity difference was greater than the 97.5th percentile of the
shuffled null distribution for that cell. Using this analysis, we found
that 31.0% of neurons were movement-modulated in KO animals,
significantly higher than the 25.7% observed in WT (Figure 3B). As
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FIGURE 1

Experimental set-up and movement behavior. (A) Mouse cortex and hippocampus single cell RNA-Seq data from the Allen Brain Institute’s Cell Types
Database showing expression levels for the GABAergic marker gene Gad1, the glutamatergic marker gene Slc17a7 and the NEXMIF gene in each
transcriptomic cell type. Bottom, the fraction of hippocampal neurons among the total sequenced cells in each transcriptomic cell type. (B) RNA
In-Situ Hybridization data showing NEXMIF expression in a sagittal slice including the hippocampus, from the Allen Brain Institute’s Mouse Brain
Atlas, https://mouse.brain-map.org/experiment/show?id=69531127. Scale bar: 839 µm. (C) Quantification of relative expression levels of NEXMIF in
panel (B). (D) The experimental setup illustrating a mouse head-fixed under a custom wide-field microscope, voluntarily navigating a spherical
treadmill. (E) Experimental timeline. Animal’s movement speed during an example experimental session in a WT animal (F) and a KO animal (G).
Identified resting (light blue and light pink) and running (dark blue and dark pink) bouts are overlaid on the movement speed traces. (H) Average
number of movement bouts per 10-min session (WT: 22.0 ± 14.2 bouts, mean ± SD, n = 7 WT mice; KO: 28.4 ± 16.6 bouts, n = 8 KO mice, Wilcoxon
rank sum test p = 0.44). (I) Average movement bouts duration (WT: 12.8 ± 14.9 s, KO: 10.9 ± 5.43 s, Wilcoxon rank sum test, p = 0.34). (J) Mean
speed during movement bouts (WT: 10.16 ± 7.3 cm/s, KO: 15.04 ± 6.33 cm/s, Wilcoxon rank sum test, p = 0.19). (K) Average speed over the entire
imaging session (WT: 5.36 ± 5.0 cm/s, KO: 7.25 ± 3.92 cm/s, Wilcoxon rank sum test, p = 0.34). Example maximum-minus-minimum projection
fluorescence image across the entire recording session. All selected ROIs are outlined in red, with highlighted cells in panel (L) shown in green. Scale
bar: 200 µm. Inset: zoom-in of white box. Scale bar: 40 µm. (M) Heat map of GCaMP6f dF/F traces for the ROIs shown in panel (L) during an
example session (top) and animal’s corresponding movement speed (bottom). (N) Zoom-ins of the heat map regions outlined in green in panel (M),
showing the fluorescence traces for 20 representative cells from the beginning and the end of the imaging session. In panels (H–K), each dot
corresponds to an individual session (box: interquartile range, whiskers: 1.5 ± interquartile range, middle line: median).
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FIGURE 2

NEXMIF knockout does not change calcium event shape. Example fluorescence traces from (A) a WT animal and (B) a KO animal, with movement
bouts shown as gray shading. Fifteen cells are shown from each mouse. Each detected calcium event is marked with a black line. Average calcium
event shape from WT sessions (C, dark blue) and KO sessions (D, dark red). Events were first averaged within each cell, and then averaged across all
cells in a session. Each session average is shown as a light line, and the population average is shown as the solid line. (E) Schematic calcium event
rise time and full width at half-maximum (FWHM) calculation. (F) Mean calcium event rise time in WT mice during rest (light blue) and run (dark blue),
and in KO during rest (light red) and run (dark red). (WT rest: 1.43 ± 0.08 s, mean ± SD, n = 12 sessions from 6 mice, WT run: 1.57 ± 0.19 s, KO rest:
1.40 ± 0.20 s, n = 20 sessions from 8 mice; KO run: 1.59 ± 0.30 s, Linear Model, behavioral condition: p = 0.008, WT/KO genotype: p = 0.71,
interaction: p = 0.66.) (G) Mean FWHM in WT mice during rest (light blue) and run (dark blue), and in KO during rest (light red) and run (dark red). (WT
rest: 1.65 ± 0.23 s, WT run: 1.84 ± 0.33 s, KO rest 1.56 ± 0.51 s, KO run: 1.86 ± 0.33 s, Linear Model, significance against intercept-only model:
p = 0.21.) In panels (F,G), each dot corresponds to an individual session (box: interquartile range, whiskers: 1.5 × interquartile range, middle line:
median). **p < 0.01.

expected, the movement-modulated cell population increased total
dF/F during running, whereas the non-modulated cell population
showed no difference between behavioral conditions (Figures 3E,
L). Accordingly, event rate increased during running in the
movement-modulated cell population, but did not change in non-
modulated cells (Figures 3H, O). The percentage of cells that
were movement-modulated in each session did not depend on
the time the animal spent running or the animal’s average speed

during the session for either mouse group or behavioral condition
(Supplementary Figure 2). This increase in the proportion of
movement-modulated cells in KO mice suggests that NEXMIF KO
increases behavioral responses of the CA1 circuit. As NEXMIF KO
increases E/I synaptic ratio of individual cells (Gilbert et al., 2020),
our results support the hypothesis that increased synaptic level E/I
ratio by ASD risk gene mutation increases behaviorally evoked
network responses, consistent with the observation that sensory
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FIGURE 3

NEXMIF knockout increases fraction of movement-modulated cells. (A) Calcium event rate in WT mice during rest (light blue) versus run (dark blue),
and in KO during rest (light red) versus run (dark red). (WT rest: 1.71 ± 0.51 events/min, mean ± SD, n = 12 sessions in 6 mice; WT run: 2.79 ± 0.75
events/min; KO rest: 1.90 ± 0.54 events/min, n = 20 sessions in 8 mice; KO run: 2.93 ± 0.75 events/min, Linear Model, behavioral condition:
p = 4.91 × 10−6, WT/KO genotype: p = 0.41, interaction: p = 0.86.) Each dot corresponds to an individual session (box: interquartile range, whiskers:
1.5 × interquartile range, middle line: median). (B) Fraction of all neurons that are movement modulated in WT (blue) versus KO (red) mice (WT:
25.7 ± 2.01%, proportion ± 95% confidence interval, n = 1,805 cells from 6 mice; KO: 30.1 ± 1.8%, n = 2,530 cells from 8 mice, Fisher’s exact test,
p = 1.6 × 10−4). Example sessions from a (C–I) WT animal and a (J–P) KO animal. (C,J) Heat map of GCaMP6f dF/F traces for movement-modulated
cells and (D,K) non-movement-modulated cells in WT and KO mice. Average dF/F across movement-modulated cells in WT (E, blue) and KO (L, red),
and non-movement-modulated cells (E,L, black). (F,M) Binarized calcium traces for all movement-modulated cells and (G,N) all
non-movement-modulated cells in the example sessions. Average calcium event density across all movement-modulated cells in WT (H, blue) and
KO (O, red), and non-movement-modulated cells (H,O, black). (I,P) Corresponding movement speed (orange) for the session. All plots are overlaid
with movement bouts in gray. ***p < 0.001.
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stimuli lead to an over-activation of the hippocampus in individuals
with ASD (Green et al., 2013).

NEXMIF KO increases functional
connectivity between neuron pairs
during running

Computational studies have shown that increased synaptic
E/I ratio increases network synchrony measured as population
pairwise correlations, thus decreasing network information coding
capability (Zohary et al., 1994; Litwin-Kumar and Doiron, 2012;
Middleton et al., 2012). Additionally, several animal models with
deletions of ASD risk genes exhibit increased neuronal correlations
(Selimbeyoglu et al., 2017; Chen et al., 2020). As NEXMIF KO
increases E/I ratio, like many other ASD risk gene mutations,
we next examined whether NEXMIF KO influences CA1 network
synchrony by calculating Pearson correlation between the binarized
traces of simultaneously recorded neuron pairs (Figures 4A, B, G,
H). The binarized traces include only the rising phase of calcium
events to avoid overestimation of correlation due to the slow
decay kinetics of GCaMP6f. To account for variations in event
rate, we determined whether the measured correlation between
each neuron pair was significantly greater than chance observation
given the event rates of the neurons in the pair. To estimate
chance observations, we shifted the binarized traces of two neurons
relative to one another with a random time lag and obtained a
shuffled Pearson correlation coefficient. We repeated this shuffling
procedure 2,000 times to create a shuffled null distribution. If
the observed correlation coefficient was greater than the 95th
percentile of the shuffled null distribution, the neuron pair was
deemed significantly correlated (correlated pair). If the observed
correlation coefficient was below the 95th percentile of the shuffled
distribution, the correlation was deemed non-significant (random
pair) (Figure 4C).

As many neurons exhibited elevated event rate during running
(Figure 3A), we first identified correlated pairs during running
(running-relevant pairs) versus resting (resting-relevant pairs)
separately to account for variation in event rates during these
periods. Specifically, to identify running-relevant pairs, we only
considered the calcium event traces from neuron pairs when
animals were running. Similarly, for resting-relevant pairs, only
data during resting was considered. We found that the fraction
of pairs that are correlated during running is smaller than during
resting in both WT and KO mice (Figure 4D), and KO animals
contained more correlated cell pairs compared to WT mice during
both resting and running (Figure 4D). When we compared
correlation coefficients between correlated pairs, we found no
difference between WT and KO mice during both resting and
running (Figure 4E). The correlation coefficients of random pairs
were also similar between WT and KO during both behavioral
conditions (Figure 4F). Thus, running desynchronizes the overall
CA1 neural network by reducing the fraction of functionally
connected neurons without altering connectivity strength between
neuron pairs in both WT and KO groups. NEXMIF KO increases
CA1 synchronization by increasing the fraction of functionally
connected neurons without altering the connectivity strength
during either resting or running.

Since the running-relevant pairs and resting-relevant pairs
are often not the same neuron pairs, we could not directly
compare how connectivity changes relevant neuron pairs during
resting versus running. Thus, we next identified correlated pairs
using calcium event traces throughout the entire session (session-
relevant pairs) (Figures 4G, H). To identify session-relevant pairs,
we compared the observed correlation between a neuron pair
to the shuffled distribution using the entire recording period
(Figure 4I). We found that the fraction of session-relevant pairs
was increased in NEXMIF KO (Figure 4J). Interestingly, in WT
mice, the correlation strengths of these session-relevant pairs were
slightly higher during running, but were not significantly different
between resting and running, indicating that when an animal
switches between the two behavioral states, the relevant CA1
network connectivity remains largely stable (Figure 4K). In KO
mice, however, correlation strength among session-relevant cells
is significantly higher during running than resting (Figure 4K). In
contrast, random pairs decreased their correlation strength during
running in both WT and KO animals (Figure 4L).

To further investigate whether movement-modulated cells
contribute to the increase of correlation strength in KO during
running, we separately examined the correlation strength between
two movement-modulated cells, between a movement-modulated
and a non-modulated cell, and between two non-modulated
cells (Figure 4M). In WT mice, correlation coefficient is
significantly different only between two movement-modulated cells
(Figure 4N), which may contribute to the small but non-significant
increase across all pairs as shown in Figure 4K. However, in KO
mice, correlation coefficients between two modulated neurons, and
between a modulated and a non-modulated neuron pair were both
higher during running than resting (Figure 4O). Thus, the increase
in correlation coefficients in KO mice during running is a result of
connectivity strength involving movement-modulated cells.

Since running increases event rates, we next evaluated how
event rate impacts Pearson correlation coefficient measures. Under
the condition of very sparse event rates observed in our study (WT:
2.12 ± 1.36 events/min, mean ± SD, n = 1817 neurons from 12
sessions in 6 mice, KO: 2.35 ± 1.48 events/min, n = 2845 neurons
from 20 sessions in 8 mice), Pearson correlation coefficients
decreased as event rate increases (Supplementary Figure 3).
Thus, as running increased event rates, the observed increase in
correlation coefficients cannot be explained by increased activity
of individual neurons. Together, these results demonstrate that
NEXMIF KO leads to over-synchronization of the CA1 network,
particularly during running, by increasing the strength of pairwise
correlations and synchronizing a larger fraction of CA1 neurons.

Overall network connectivity is
exaggerated during locomotion in
NEXMIF KO

After establishing functional connectivity changes between
neuron pairs using Pearson correlation, we further characterized
connectivity of the CA1 network as a whole using graph theory
analysis. We first created network maps using the correlated cell
pairs during either resting or running. Each cell is a node in the
map, and a correlated cell pair is connected by an edge between
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FIGURE 4

Pairwise correlation increases during running in NEXMIF KO mice. (A) Correlation matrices of pairwise Pearson correlation coefficient during resting
(left) and running (right) for rest-relevant (left) and run-relevant neurons (right) from an example WT animal. Within each matrix, the most correlated
cell pairs are sorted to the top left corner. Correlated pairs are colored corresponding to their correlation coefficient, random pairs are colored black.
(B) Same as in panel (A), but for an example KO animal. (C) Schematic networks showing (top left) resting-relevant and (top right) running-relevant
pairs, and (bottom) the corresponding random pairs. (D) Fraction of neuron pairs that are correlated in WT mice during rest (light blue) and run (dark
blue), and in KO during rest (light red) and run (dark red). (WT rest: 8.12 ± 0.10%, proportion ± 95% confidence interval, 301,335 neuron pairs, WT
run: 6.55 ± 0.09%; KO rest: 8.93 ± 0.09%, 361,687 neuron pairs, KO run: 8.09 ± 0.09%. Fisher’s exact test, WT rest vs. WT run: p = 2.1 × 10−121, KO
rest vs. KO run: p = 1.76 × 10−37, WT rest vs. KO rest: p = 7.7 × 10−32, WT run vs. KO run: p = 3.4 × 10−127.) (E) Pearson correlation coefficients
during resting for rest-relevant and during running for run-relevant cell pairs (WT rest: 0.16 ± 0.05, mean ± SD, n = 12 sessions in 6 WT mice, WT
run: 0.22 ± 0.07; KO rest: 0.17 ± 0.05, n = 20 sessions in 8 KO mice, KO run: 0.19 ± 0.06, Linear Model, significance against intercept-only model:
p = 0.10). (F) Same as panel (E), for random cell pairs. (WT rest: 0.05 ± 0.02, mean ± SD, n = 12 sessions in 6 WT mice, WT run: 0.06 ± 0.03; KO rest:
0.05 ± 0.02, n = 20 sessions in 8 KO mice, KO run: 0.05 ± 0.02, Linear Model, significance against intercept-only model: p = 0.14.) (G) Same as in
panel (A), for session-relevant neurons from the same WT animal. (H) Same as in panel (B), for session-relevant neurons from the same KO animal.
(I) Schematic of a session-relevant network with line widths denoting the correlation strength of correlated pairs (top left) during rest and (top right)
during running, and (bottom) the corresponding random pairs. (J) Fraction of neuron pairs that are correlated in WT mice (blue) and in KO (red) mice
during the entire session (WT: 9.48 ± 0.10%, proportion ± 95% confidence interval, 301,335 neuron pairs, KO: 12.15 ± 0.11%, 361,687 neuron pairs;
Fisher’s exact test, p = 4.1 × 10−266). (K) Pearson correlation coefficients during resting or running of session-relevant cell pairs. (WT rest:
0.10 ± 0.02, mean ± SD, n = 12 sessions in 6 WT mice, WT run: 0.11 ± 0.01; KO rest: 0.09 ± 0.02, n = 20 sessions in 8 KO mice, KO run: 0.12 ± 0.02,
Linear Model, interaction: p = 0.04, post-hoc Linear Model, WT rest vs. WT run: p ± 0.12; KO rest vs. KO run: p = 2.33 × 10−6.) (L) Same as panel (K),
for random cell pairs. (WT rest: 6 × 10−3

± 5 × 10−3, mean ± SD, n = 12 sessions in 6 WT mice, WT run: −6 × 10−3
± 6 × 10−3; KO rest:

4 × 10−3
± 6 × 10−3, n = 20 sessions in 8 KO mice, KO run: −2 × 10−3

± 8 × 10−3, Linear Model, behavioral condition: p = 4.29 × 10−3, WT/KO
genotype: p = 0.40, interaction: p = 0.10.) (M) Schematic of (top) the session-relevant network in I and (bottom) the same network decomposed into

(Continued)
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FIGURE 4 (Continued)

three sub-networks in which both cells are modulated (Mod-Mod, left), one modulated and one non-modulated (Mod-Non, middle), or both are
non-modulated (Non-Non, right). Session-relevant pairs are connected by a line, with modulated cells in orange and non-modulated cells in white.
(N) Mean correlation coefficient of the three session-relevant sub-networks in WT animals (Mod-Mod rest: 0.08 ± 0.03, mean ± SD, n = 12 sessions
in 6 mice, Mod-Mod run: 0.13 ± 0.03; Mod-Non rest: 0.10 ± 0.03, Mon-Non run: 0.12 ± 0.03; Non-Non rest: 0.11 ± 0.02, Non-Non run: 0.11 ± 0.02;
Linear Model, interaction between Mod-Mod network and Behavior: p = 3.11 × 10−3, post-hoc Linear Model, rest vs. run: p = 3.67 × 10−2.) (O) Same
as in panel (N), for KO animals (Mod-Mod rest: 0.05 ± 0.03, n = 20 sessions in 8 KO mice, Mod-Mod run: 0.13 ± 0.03; Mon-Non rest: 0.08 ± 0.03,
Mon-Non run: 0.12 ± 0.02; Non-Non rest: 0.11 ± 0.03, Non-Non run: 0.11 ± 0.03, Linear Model, interaction between Mod-Mod network and
Behavior: p = 1.44 × 10−8, post-hoc Linear Model, rest vs. run: p = 6.69 × 10−10; Linear Model, interaction between Mod-non network and
Behavior: p = 3.0 × 10−4, post-hoc Linear Model, rest vs. run: p = 8.53 × 10−7). In panels (E,F,K,L,N,O), each dot corresponds to an individual
session (box: interquartile range, whiskers: 1.5 ± interquartile range, middle line: median). *p < 0.05, ***p < 0.001.

those two nodes. To quantify the connectivity of each network
graph, we calculated the closeness centrality of each neuron.
Closeness centrality is a metric used in graph theory to measure
node importance, which takes both number of connections and
connection strength (correlation coefficient) into account (details
in section “Materials and methods”). Briefly, a greater closeness
centrality value for a neuron indicates that the neuron is connected,
both directly and indirectly, to a greater number of nodes in the
network (Figure 5E).

As fluorescence imaging allowed us to visualize the anatomical
relationship between recorded neurons, we first arranged the
network graph using the anatomical position of each cell
(Figures 5A, C). We did not observe any obvious spatial patterns
in the closeness centrality within CA1 networks in the anatomical
maps. Consequently, to better visualize the strength of network
connectivity, we arranged each map as a force-directed graph
where cells are positioned closer if their functional connectivity is
higher regardless of their absolute anatomical location (Figures 5B,
D). In WT force-directed maps, cells were more tightly clustered
during resting than running, indicating higher connectivity during
resting. However, KO force-directed maps showed similar amounts
of clustering between resting and running (Figure 5B). We
also noted that the change in each neuron’s closeness centrality
varied widely from resting to running (Figures 5A–D). Thus,
to quantify the changes in overall network connectivity between
behavioral conditions, we computed the difference in average
closeness centrality between the resting graph and running
graph for each recording session (Figure 5F). We found that
WT mice showed a significant decrease in closeness centrality
during running compared to resting, demonstrating that the CA1
network is desynchronized during locomotion. This network-level
observation is consistent with our pairwise Pearson correlation
analysis showing that in WT mice, fewer cell pairs were correlated
during locomotion while correlation strength remained constant
(Figures 4D, K). In contrast, KO mice showed similar closeness
centrality during running and resting, suggesting that KO network
fails to desynchronize during locomotion (Figures 5C, D). This
lack of overall network desynchronization in KO mice measured
with closeness centrality could be due to the opposing effects
we observed with Pearson correlation analysis, which showed the
fraction of correlated cells in KO mice is lower during running
(Figure 4D) while correlation strength is higher (Figure 4K).
Further, WT mice exhibited a greater decrease in closeness
centrality than KO mice, consistent with the higher fraction of
correlated cells in KO mice compared to WT mice (Figure 4D).
Together, these results confirm that while the WT CA1 network

desynchronizes during locomotion, NEXMIF KO impairs CA1
network desynchronization.

Discussion

In this study, we examined how loss of NEXMIF, an ASD risk
gene highly expressed in the hippocampus, influences individual
CA1 neurons’ responses and CA1 network functional connectivity
using large-scale single-cell resolution calcium imaging. As
NEXMIF KO mice exhibit profound learning and memory
deficits as indicated by Barnes maze and novel object tests
(Gilbert et al., 2020), we probed the hippocampal network during
voluntary locomotion, a fundamental aspect of spatial memory.
We compared the patterns of neural activation between NEXMIF
KO and WT littermates during quiescent immobility versus active
locomotion. We found that spontaneous calcium event rate is
similar between WT and KO mice, but a larger percentage of CA1
neurons are activated during movement in KO mice. Furthermore,
a greater fraction of neuron pairs is correlated in KO animals,
and the KO network is overly synchronized during locomotion.
Overall, our results demonstrate that loss of NEXMIF leads to
increased behaviorally evoked responses and elevated network
synchronization, both of which could contribute to the disruption
of CA1 network coding ability during behavior.

Our previous work has shown that in an open-field task,
NEXMIF KO mice are more active than WT mice, reflecting higher
levels of anxiety in NEXMIF KO mice (Gilbert et al., 2020). We
did not find a difference in locomotion kinematics between KO
and WT mice, likely due to differences in experimental conditions.
However, the average running speed observed is comparable to
those reported previously. Further, locomotion behavior did not
vary with the age of the mice. Thus, our experimental paradigm
allows us to probe the impact of NEXMIF KO on neural circuits
during locomotion in the absence of behavioral changes.

As increased cellular and synaptic level E/I ratio in ASD can
lead to increased neuronal excitability, epilepsy occurs in about
10% of people with ASD (Lukmanji et al., 2019) [about 15 times
higher than incidence in the general population (Fiest et al.,
2017)] and is particularly prevalent in individuals with NEXMIF
mutations (Tye et al., 2019; Stamberger et al., 2020). We did not
observe differences in basal calcium event rate in NEXMIF KO
mice, but we detected significantly more neurons that selectively
increased their activity during movement in KO animals. These
observations provide evidence that in NEXMIF KO conditions, the
elevated synaptic E/I ratio is not correlated to a broad increase in
spontaneous neuronal activity, but rather a selective increase in

Frontiers in Neuroscience 09 frontiersin.org
146

https://doi.org/10.3389/fnins.2023.1277501
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1277501 October 25, 2023 Time: 11:25 # 10

Mount et al. 10.3389/fnins.2023.1277501

FIGURE 5

NEXMIF knockout increases overall functional connectivity of the CA1 network. Anatomical network maps of closeness centrality during (left)
resting, (middle) running, and (right) the change between resting and running from example (A) WT and (C) KO animals. In left and middle columns,
each cell is color coded based on its closeness centrality measure and correlated pairs in the corresponding behavioral condition are connected by
an edge. In the right column, each cell is color coded based on the change in its closeness centrality from resting to running, and session-relevant
pairs are connected by an edge. Edge width represents normalized correlation coefficient. (B,D) Similar to panels (A,C), but shown as a
force-directed graph. (E) A schematic of closeness centrality computation. An example network of four nodes is shown in three different network
states (X, Y, Z) with the distance of the edge shown between each pair of nodes. Closeness centrality of node 1 in the three states are 1.25, 1.11, and
1.11, respectively. The reduction of node 1’s closeness centrality in state Y compared to state X is due to the loss of reachable node 3. The decrease
of node 1’s closeness centrality in state Z relative to state X is due to the increased distance to node 2. (F) Average closeness centrality difference
(resting-running) in WT (blue) and KO (red) mice. (WT: 0.036 ± 0.041, mean ± SD, n = 12 sessions from 6 mice, significantly greater than 0, Wilcoxon
signed rank test, p = 6.8 × 10−3; KO: 0.002 ± 0.034, n = 20 sessions from 8 mice not significantly different from 0, Wilcoxon sign rank test, p = 0.77,
Wilcoxon rank sum test between WT and KO, p = 0.02.) Each dot corresponds to an individual session (box: interquartile range, whiskers:
1.5 < interquartile range, middle line: median). *p < 0.05.

responding during relevant behavior. This behavioral state-specific
increase in neuronal activity in the CA1 could be due to a global
increase in synaptic inputs to the CA1 during movement, in which

an increased E/I synaptic ratio leads to a greater excitatory drive
to CA1 neurons. However, it is also possible that the observed
increase in neuronal activity reflects movement-dependent changes
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in intrinsic neuronal excitability, in addition to altered synaptic
inputs.

Another leading hypothesis of ASD pathophysiology argues for
overconnectivity within local brain regions and underconnectivity
between interconnected brain regions, supported by several
exciting human studies (Casanova et al., 2002; Casanova,
2004; Girgis et al., 2007; Kennedy and Courchesne, 2008;
Wang et al., 2013; Zikopoulos and Barbas, 2013; Di Martino
et al., 2014). We observed increased fractions of functionally
correlated CA1 neuron pairs in NEXMIF KO animals during
both immobility and active locomotion, as well as increased
correlation strength during running in session-relevant cell pairs
from KO mice, particularly with higher contribution from
movement-modulated cells. Additionally, while the WT network
was desynchronized during running, the KO network failed to
desynchronize. Interestingly, we also detected a reduction in
correlation coefficients across random pairs during running in both
WT and KO, consistent with an overall network desynchronization
effect, even though the correlation coefficients between random
pairs were not deemed significantly higher than chance observation
given their event rate. Each of these observations is consistent
with abnormally increased functional connectivity within the CA1
circuit of NEXMIF KO mice during locomotion, supporting the
local overconnectivity hypothesis. The elevated E/I synaptic ratio
could contribute to this increased functional connectivity (Litwin-
Kumar and Doiron, 2012; Middleton et al., 2012), but again, we
cannot rule out the possibility that NEXMIF KO also changes
intrinsic biophysical properties that lead to the observed over-
synchronization. While CA1 pyramidal cells are known to have
limited lateral connections, the elevated E/I synaptic ratio could
result from reduced inhibitory inputs from local interneurons
or increased excitatory inputs from upstream areas. Further
work is needed to better understand the exact mechanisms by
which NEXMIF alters both cellular biophysical properties such
as ion channel expression and functional connectivity between
the hippocampus and its interconnected areas. Additionally,
intracellular calcium signaling is known to be important for
neuronal morphogenesis and migration during development.
While this study is limited to adult animals, future studies
using similar calcium imaging approaches during development
could provide insights into how changes in intracellular calcium
dynamics upon NEXMIF KO may influence neurite extension and
migration and contribute to the connectivity changes observed
here.

We probed network functional connectivity using two
measures, Pearson correlation between pairs of neurons and
network closeness centrality. In WT animals, the number of
correlated cell pairs decreased during locomotion while correlation
strength of session-relevant correlated pairs was stable, ultimately
resulting in decreased closeness centrality of the WT network
during running. These results indicate decreased functional
connectivity in the WT CA1 network during movement. Such
network desynchronization would lead to increased information
encoding capability, consistent with the idea that the CA1 network
encodes relevant information during active movement (Colgin,
2013). As locomotion is a fundamental component of spatial
navigation and memory, this dynamic change in information
coding capability would allow for flexible and efficient encoding of
a WT animal’s current environment for spatial memory.

In NEXMIF KO animals, however, a larger number of cell
pairs are significantly correlated in both behavioral conditions
than in WT animals, and session-relevant cell pairs are dominated
by stronger correlations during running. Additionally, network
closeness centrality of the KO CA1 network failed to decrease
during movement, in sharp contrast to the reduction seen in WT
networks. These different measures all support the consequence of
NEXMIF KO in exaggerating network synchrony and preventing
network desynchronization during active behavior.

Our previous study revealed that loss of NEXMIF led to
a reduction in mature functional spines, leading to reduced
excitatory synaptic strength in NEXMIF KO mice. While there
was a reduction of both glutamatergic and GABAergic synaptic
proteins in KO mice, the reduction in GABAergic synaptic density
was double the loss of glutamatergic synapses in cultured neurons
(Gilbert et al., 2020). This increase in synaptic E/I ratio in KO mice
(Gilbert et al., 2020) likely contributes to the observed network
over-synchronization in KO mice, which would lead to a decreased
information encoding capacity in the CA1 network of NEXMIF
KO mice. The higher percentage of movement-modulated cells
observed in KO mice could reflect a compensatory mechanism
in the CA1, to homeostatically increase information encoding
capability throughout development. Alternatively, this higher
percentage could be due to the increased number of correlated cells
during running, as these correlations could arise from common
inputs to these cell pairs that are activated upon movement. Overall,
our observations of increased functional connectivity indicate a
reduced ability to process spatial information and spatial encoding
that could lead to the impaired spatial memory and contextual fear
memory observed in NEXMIF KO mice (Gilbert et al., 2020).

Materials and methods

Animal surgery and recovery

All animal procedures were approved by the Boston University
Institutional Animal Care and Use Committee. Eight homozygous
NEXMIF KO (maintained on a C57Bl/6 genetic background)
male mice and seven WT male littermates were used in this
study (Gilbert et al., 2020). Mice were 7–34 weeks old at the
start of experiments. Animals first underwent stereotaxic viral
injection surgery, targeting the hippocampus (anterior/posterior:
−2.0 mm, medial/lateral: +1.4 mm, dorsal/ventral: −1.6 mm from
bregma). Mice were injected with 500–750 nl of AAV9-synapsin-
GCaMP6f.WPRE.SV40 virus, obtained from the University of
Pennsylvania Vector Core (titer ∼6e12 GC/ml). Injections were
performed with a blunt 33-gauge stainless steel needle (NF33BL-2,
World Precision Instruments) and a 10 µl microinjection syringe
(Nanofil, World Precision Instruments), using a microinjector
pump (UMP3 UltraMicroPump, World Precision Instruments).
The needle was lowered over 1 min and remained in place for
1 min before infusion. The rate of infusion was 50 nl/min. After
infusion, the needle remained in place for 7–10 min before being
withdrawn over 1 min. The skin was then sutured closed with a
tissue adhesive (Vetbond, 3M). After complete recovery (7+ days
after virus injection), animals underwent a second surgery to
implant a sterilized custom imaging cannula (outer diameter:
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3.17 mm, inner diameter: 2.36 mm, height: 2 mm). The imaging
cannula was fitted with a circular coverslip (size 0, outer diameter:
3 mm, Deckgläser Cover Glasses, Warner Instruments), adhered
to the bottom using a UV-curable optical adhesive (Norland
Optical Adhesive 60, P/N 6001, Norland Products). During surgery,
an approximately 3.2 mm craniotomy was created (centered at
anterior/posterior: −2.0 mm, medial/lateral: +1.7 mm) and the
cortical tissue overlaying the hippocampus was aspirated away to
expose the corpus callosum. The corpus callosum was then thinned
until the underlying CA1 became visible. The imaging cannula was
then tightly fit over the hippocampus and sealed in place using a
surgical silicone adhesive (Kwik-Sil, World Precision Instruments).
The imaging window was secured in place using bone adhesive
(C&B Metabond, Parkell) and dental cement (Stoelting). A custom
aluminum head-plate was also affixed to the skull anterior to the
imaging window. Analgesic was provided for at least 48 h after each
surgery, and mice were single-housed after window implantation
surgery to prevent damage to the head-plate and imaging window.

Calcium imaging and movement data
acquisition

After complete recovery from window implantation surgery
(7+ days), animals were habituated to experimenter handling
and head fixation on the spherical treadmill. Each animal was
habituated to running on the spherical treadmill while head-
fixed for at least 3 days prior to the first recording day. During
each recording session, animals were positioned under a custom
wide-field microscope and allowed to run freely on the spherical
treadmill. The spherical treadmills consisted of a three-dimensional
printed plastic housing and a Styrofoam ball supported by air
(Dombeck et al., 2007). The imaging microscope was equipped with
a scientific complementary metal oxide semiconductor (sCMOS)
camera (ORCA-Flash4.0 LT Digital CMOS camera C11440-42U,
Hamamatsu) and a 10 × 0.28 M Plan Apo objective (Mitutoyo).
GCaMP6f excitation was accomplished with a 5 W light emitting
diode (M470L4, ThorLabs). The microscope included an excitation
filter (No. FF01-468/553-25, Semrock), a dichroic mirror (No.
FF493/574-Di01-25 × 36, Semrock), and an emission filter (No.
FF01-512/630-25, Semrock). The imaging field of view was
1.343 × 1.343 mm (1,024 × 1,024 pixels). Image acquisition was
performed using HC Image Live (Hamamatsu), and images were
stored offline as multi-page tagged image files (TIFs) for further
analysis.

Each animal underwent three 10-min recording sessions, one
per day, every other day over 5 days (Figure 1E). A total of 21
recording sessions were collected from 8 KO mice and 16 sessions
were collected from 7 WT mice. In 24 recording sessions (from 4
WT mice and 8 KO mice), a custom MATLAB script was used to
trigger image frame capture at 20 Hz and to synchronize image
acquisition with movement tracking. Digital transistor-transistor
logic (TTL) pulses were delivered to the camera via a common
input/output interface (No. USB-6259, National Instruments), and
TTL pulses were also recorded using a commercial system (RZ5D,
Tucker Davis Technologies). Motion data was collected using a
modified ViRMEn system (Gritton et al., 2019). Movement was
tracked using two computer universal serial bus mouse sensors

affixed to the plastic housing at the equator of the Styrofoam ball,
78◦ apart. The mouse sensors’ x- and y-surface displacement data
were acquired at 100 Hz on a separate computer, and a multi-
threaded Python script was used to send packaged <dx, dy> data
to the image acquisition computer via a RS232 serial link. Packaged
motion data was recorded on the image acquisition computer using
a modified ViRMEn MATLAB script and synchronized to each
acquired imaging frame.

In the remaining 13 sessions (from 4 WT mice and 2 KO mice),
image acquisition was triggered using a Teensy microcontroller
system (Romano et al., 2019), and experiments were performed
using an identical spherical treadmill. Digital pulses were sent
from a Teensy 3.2 (TEENSY32, PJRC) to the sCMOS camera via
SMA connectors and coaxial cables to trigger frame capture at
20 Hz. TTL pulses were recorded using the same TDT commercial
system. Movement was tracked using two computer mouse sensors
(ADNS-9800 laser motion sensors, Tindie) affixed to the plastic
housing at the equator of the Styrofoam ball, about 75◦ apart.
The x- and y-surface displacement was collected by the Teensy at
20 Hz and sent to the image acquisition computer via a standard
USB-microUSB cable.

Movement analysis

As both movement data acquisition systems collect the same
numerical data, linear velocity can be calculated the same way for
all sessions. Linear velocity in perpendicular X and Y directions was
calculated as:

X =
L− R cosθ

cosθ(π
2 − θ)

Y = R

where L is the vertical reading from the left sensor, R is the vertical
reading from the right sensor, and θ is the angle between the
sensors. Linear velocity V was then calculated as:

V =
√

X2 + Y2

Linear velocity values were then interpolated at 20 Hz.
To identify sustained periods of movement with high linear

velocity (running bouts), we used a Fuzzy logic-based thresholding
algorithm. We first assigned each velocity data point a Fuzzy
membership value using a sigmoidal membership function F:

F (V, a, c) =
1

1+ e−a(V−c)

where the threshold c is the 20th percentile of the velocity of
that session or 5 cm/s, whichever is higher. a is set at 0.8. The
resulting velocity trace was then smoothed using a moving average
filter of 1.5 s. Next, the smoothed trace was thresholded at 10%
of its maximum value. Time periods with velocity higher than
this threshold that were at least 2 s long were considered high
velocity periods (“running”). Time periods with velocity lower than
this threshold that were at least 2 s long were considered low
velocity periods (“resting”). Periods that did not satisfy either of
these requirements were not considered for locomotion analysis
(Figures 1F, G). Recording sessions in which the mouse spent
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less than 60 s (10% of the session) in one behavioral condition
and sessions with less than 5 running bouts were not included
for locomotion-related analysis (4 sessions from 2 WT mice and
1 session from 1 KO mouse).

Calcium imaging video motion
correction

Videos were first motion corrected using a custom Python
script as described previously (Keaveney et al., 2020). For each
imaging session, we first generated a reference image by calculating
the mean value of each pixel across the first 2,047 frames. We then
performed a series of contrast-enhancing procedures to highlight
image features as follows. We used a Gaussian filter (Python SciPy
package, ndimage.Gaussian_filter, sigma = 50) to remove the low-
frequency component, which represents the potential non-uniform
background. We then captured the edges of the high-intensity area
by calculating the differences between two Gaussian filtered images
(sigma = 2 and 1). To obtain the edge-enhanced image, the edges
were multiplied by 100 and added back to the first filtered image
(sigma = 2). Finally, to prevent a potential overall intensity shift
caused by photobleaching, we normalized the intensity of each
image by subtracting the mean intensity of the image from each
pixel and dividing by the SD of the intensity. We then calculated the
cross-correlations between the processed reference image and each
processed image frame, and obtained the displacement between the
peak of the coefficient and the center of the image. We then applied
a horizontal shift, opposite to the displacement, to the original
frame to finalize the motion correction.

Cell segmentation

From the motion corrected video, a projection image
was generated across all frames by subtracting the minimum
fluorescence from the maximum fluorescence of each pixel
(max-min projection image), and regions of interest (ROIs)
corresponding to fluorescent cell bodies were automatically
identified in the max-min projection image using a deep-learning
algorithm based on U-Net (Ronneberger et al., 2015; Falk et al.,
2019; Xiao et al., 2020). We first trained the deep-learning
algorithm with manually curated data, containing the datasets
reported in our previous studies (Shen et al., 2018; Zemel et al.,
2022). For each training dataset, a max-min projection image was
calculated as described above. We then divided the projection
images and their corresponding ROI masks into small patches
of 32 × 32 pixels as our training dataset. We also normalized
each patch by shifting its mean intensity to zero and dividing the
intensity of each pixel by the SD of the patch intensity. During
training, each pixel was further augmented by randomly flipping
vertically and/or horizontally, and rotating 90◦C, 180◦C, or 270◦C.

To segment ROIs for the datasets in this study, the max-
min projection image for each dataset was divided into 32 × 32
patches with 50% of each patch overlapping with its neighboring
patches. Each patch was normalized as described above. As a result,
each pixel was inferred four times, and we averaged the results
from four inferences as the prediction score. The connected pixels

with a predication score >0.5 were segmented as a potential ROI,
and the set of segmentations was further refined with watershed
transformation to obtain the ROIs representing single neurons.
ROIs were then overlaid on the max-min projection image and
manually inspected. ROIs that were identified by the machine
learning algorithm but were not identified as a cell by the observer
were manually removed. ROIs were then manually added to select
cells that the machine learning algorithm did not properly identify.
ROIs were added as a circle with a radius of 6 pixels (7.8 µm)
based on morphology present in the max-min projection image,
using the previously reported semi-automated custom MATLAB
software called SemiSeg1 (Mount et al., 2021).

GCaMP6f fluorescence trace extraction
and normalization

We obtained the GCaMP6f fluorescence for each cell as the
average fluorescence intensity across all pixels in that ROI. We
then subtracted background fluorescence from each ROI, where the
background fluorescence is the average pixel intensity across the
pixels located within a ring centered at the corresponding cell ROI
with an outer radius of 50 pixels and an inner radius of 15 pixels.
The areas corresponding to other cell ROIs were excluded from
this background ROI. Because the motion correction procedure
introduces strips with high pixel intensities along the edges of
the max-min projection image, 25 pixels along each edge of the
image were also excluded from the calculation of background
fluorescence. The resulting fluorescence trace for each cell was
then interpolated at 20 Hz, linearly detrended (MATLAB function
detrend), and normalized between 0 and 1. All traces were then
manually inspected. Traces with large artifacts were removed.

Calcium event detection

Onsets of calcium events were identified in each fluorescence
trace similarly to previous descriptions (Mount et al., 2021; Zemel
et al., 2022). Briefly, we first applied a moving average filter of 1 s
to smoothen each trace and calculated the spectrogram [MATLAB
chronux, mtspecgramc with tapers = (2, 3) and window = (1,
0.05)], and averaged the power below 2 Hz. We then calculated
the change in power at each time point (powerdiff) and identified
outliers (3 median absolute deviations away from the median
power) in powerdiff (MATLAB function isoutlier) to detect all
significant changes in trace power. When multiple outliers occurred
at consecutive time points, they were classified as a potential
calcium event. We then calculated the rise time and amplitude (the
difference in fluorescence value between the peak and the event
onset) for each potential event and used an iterative process to
include only true events and exclude incorrect potential events.
Within each iteration, an amplitude threshold was calculated for
each potential event [iteration 1: 7 SDs of the trace in the 10 s
(200 data points) prior to calcium event onset]. Potential events
with a rise time greater than 150 ms (3 data points) and an

1 github.com/HanLabBU/SemiSeg
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amplitude above the calculated threshold were marked as correctly
identified events for analysis. All the data points corresponding to
these events (from beginning of event rise to end of event fall)
were removed prior to the next iteration. We then repeated this
process by re-calculating the amplitude threshold for the remaining
potential events and again marking correctly identified events
for analysis using the same criterion for rise time and the new
amplitude threshold. For each successive iteration, the amplitude
threshold was decreased by 40% and the duration to inspect prior
to calcium event onset was increased by 75%. The iterative process
stops once no events are marked as correctly identified events. This
iterative method is more robust in capturing events that occur close
together, while only minimally increasing identification of false
positives. The preceding event in a sequence will incorrectly bias
the SD of the trace in the window prior to a following event in the
sequence, and this bias is removed when the preceding event is not
included in the window prior to the event onset. All traces were
then manually inspected to confirm event detection accuracy.

Calcium event parameter and event rate
analysis

For each detected calcium event, the rise time is defined
as the duration from the calcium event onset, ton to its
peak tpeak (Figure 2E). To determine the full width at half-
maximum amplitude (FWHM), we first calculated event height
as the fluorescence different between ton and tpeak. FWHM was
determined as the duration between the two points at 50% of
the event height (Supplementary Figure 4A). If a subsequent
calcium event was detected before the end point of the FWHM, the
given event was excluded from FWHM analysis (Supplementary
Figure 4B). Because it is difficult to reliably estimate FWHM if
an event contains multiple small peaks, we further examined the
number of peaks above 75% of the event height, and if more than
one peak was identified (Supplementary Figure 4C), the given
event was also excluded from FWHM analysis.

Total event rate was calculated across the entirety of each trace,
counting each identified calcium event as one event. Event rate
during either running or resting was calculated by counting the
number of calcium events in all bouts of the relevant behavioral
condition and dividing by the total time that the mouse spent in
that behavioral condition.

Determination of movement-modulated
cells

To determine movement-modulated cells, we binarized each
fluorescence trace by assigning ones to the entire rising phase (ton
to tpeak) of each calcium event and zeros to the rest of the trace.
We then concatenated all of the resting or running bouts separately,
and summated the binarized trace among each concatenated period
(“total activity”). We then subtracted the total activity during
resting from the total activity during running to create an activity
metric A. The calculation can be summarized as:

A =
(∑

run x∑
run t

−

∑
rest x∑
rest t

)
× 100%

where x is the binarized calcium trace, and t is time. Next, we
created a shuffled distribution of the activity metric for each cell
by circularly shifting the binarized trace relative to the movement
trace by a uniformly distributed random time lag 1,000 times
and calculating A for each shuffle. If the true (non-shifted) A for
a neuron was greater than the 97.5th percentile of the shuffled
distribution, the cell was considered movement-modulated. Cells
that did not meet this criterion were considered non-movement-
modulated.

Pairwise Pearson correlation analysis

For pairwise correlation analysis, we calculated the Pearson
correlation coefficient between the binarized traces for each pair
of neurons. Each binarized trace was the same as that used
in determination of movement-modulated cells [ones to the
entire rising phase (ton to tpeak) of each calcium event and
zeros to the rest of the trace]. Only neuron pairs that were at
least 20 pixels (26.2 µm) apart were included in all correlation
analysis to eliminate potential fluorescence cross-contamination.
We calculated pairwise correlation during resting alone, during
running alone, or during the entire duration of the session. To
calculate pairwise correlation during resting alone or running
alone, we concatenated the calcium activity during all resting or
running periods. To calculate pairwise correlation during the entire
duration of the session, we used the full length of the calcium traces
for each cell pair.

To determine whether the correlation coefficient for each
cell pair was above chance level for each behavioral condition,
we created a shuffled distribution of correlation by circularly
shifting one trace relative to the other trace by a uniformly
distributed random time lag 2,000 times and calculating the
Pearson correlation coefficient for each shuffle. If the empirical
(non-shifted) Pearson correlation for a pair of neurons was greater
than the 95th percentile of the shuffled distribution, the cell
pair was considered correlated. Positive correlation coefficients
between neuron pairs that were not greater than the 95th
percentile were not considered significant (random pairs). Negative
correlations were not included in any analyses due to the sparseness
of GCaMP6f events.

To estimate connectivity among modulated cells, we calculated
the number of correlated movement-modulated cell pairs as a
fraction of all movement-modulated cell pairs. Similarly, we also
calculated the number of correlated non-movement-modulated cell
pairs as a fraction of all non-movement-modulated cell pairs.

Relationship between Pearson
correlation coefficient and event rate
analysis

As the calcium event rates detected in our study were
sparse, we investigated the relationship between event rate
and Pearson correlation coefficient. Specifically, to determine
whether increasing event rate leads to an increase in pairwise
Pearson correlation coefficient values by chance, we examined the
relationship of the mean event rate of a neuron pair versus their
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shuffled correlation coefficient values. To calculate the shuffled
correlation coefficient values of a neuron pair, we circularly shifted
the calcium event vector of one neuron relative to the other
by a random time lag uniformly distributed over the entire
length of the trace, so that the temporal structure between the
calcium event rates of the two neurons was destroyed. Next,
Pearson correlation coefficient was calculated between the shuffled
calcium event vectors of the neuron pair. This procedure was
repeated 100 times for each cell pair, using either resting or
running periods separately for each imaging session. These shuffled
correlation coefficient values were then plotted against the mean
event rate of the pair (Supplementary Figure 3A). The observed
(true) correlation coefficients of session-relevant correlated pairs
(Supplementary Figure 3B) and random pairs (Supplementary
Figure 3C) were similarly plotted against the average event rate of
each pair of neurons.

Network closeness centrality analysis

To quantify network connectivity patterns, we calculated
closeness centrality similarly to the description in Wuchty and
Stadler (2003). Specifically, for each session, we created an
undirected graph using correlated cell pairs during running and an
undirected graph using correlated cell pairs during resting. Each
cell was considered as a node and each correlated cell pair was
connected by an edge. Edge weight was the Pearson correlation
coefficient (calculated in the appropriate state, rest or run) between
the binarized calcium traces of the cell pair. For each node i,
closeness centrality c (i) is defined as:

c (i) =
(

Ai

N − 1

)2 1
Ci

where Ai is the number of nodes reachable to node i and Ci is the
sum of distances from node i to all reachable nodes. The distance
d
(
i, j
)

between nodes i and j is defined as:

d
(
i, j
)
=

√
log

(
1

wi,j

)
where wi,j is the edge weight. Closeness centralities of all the nodes
were averaged within each network and multiplied by the number
of nodes for normalization across networks with different numbers
of nodes. Force-directed networks were created using a MATLAB
implementation of a force-directed node placement algorithm that
spatially clusters nodes proportional to d

(
i, j
)

(Fruchterman and
Reingold, 1991).

Statistical analysis

Statistical analyses were performed using MATLAB. Using
Shapiro-Wilk’s normality test, we determined that most of our
datasets do not follow normal distribution. Thus, non-parametric
tests were used. Specifically, Wilcoxon rank sum test was used for
comparisons between two groups (Figures 1H–K, 5F) and Linear
Models (LMs) were used for comparisons between three or more
groups. LMs were used to test whether the independent variables

(WT/KO genotype, rest/run behavioral conditions, or different
types of cell groups) were significant predictors for the dependent
variable Y of interest using the following models:

For Figures 2F, G, 3A, 4E, F, K, L:

Y ∼ 1+ genotype+ behavioral condition + genotype

× behavioral condition

For Figure 4N:

YWT ∼ 1+ behavioral condition+ cell group+

behavioral condition× cell group

For Figure 4O:

YKO ∼ 1+ behavioral condition+ cell group+

behavioral condition× cell group

Maximum likelihood estimation was used to estimate
coefficients for the selected model. First, we compared
the model’s fit against an intercept-only model using a
deviance test. If the model was significantly different from
the intercept-only model, p values were calculated for
the coefficient of each independent variable (genotype,
behavioral condition, and cell group), and the interaction term
(genotype × behavioral condition or behavioral condition × cell
group). If the coefficient of the interaction term was significant,
separate post-hoc Linear Models were used to test whether
behavioral condition (Figures 2F, G, 3A, 4E, F, K, L: YWT ∼

1+ behavioral condition, and YKO ∼ 1+ behavioral condition,
Figure 4N: YWT, cell group ∼ 1+ behavioral condition,
Figure 4O: YKO, cell group ∼ 1+ behavioral condition) was a
significant predictor of the dependent variable. If the interaction
term was not significant, independent variables with significant
coefficient terms (p < 0.05) were considered as the significant
predictors of the dependent variable. Further, because the variables
in our study (genotypes, cell groups, and behavioral conditions)
have only two levels (WT vs. KO, rest vs. run, modulated versus
non-modulated cell pairs), a post-hoc test was not required when
interaction term was not significant. Wilcoxon signed rank tests
were used to test if medians were significantly different from 0
(Figure 5F). Finally, when comparing proportions (Figures 3B,
4D, J), Fisher’s exact test was used. Error bars show the 95%
confidence interval defined as follows.

Confidence Interval = P ± 1.96

√
P(1− P)

n

where P denotes the percentages, and n denotes the number
of samples. Simple linear regression was used to compare
the percentage of movement-modulated cells versus movement
bout duration (Supplementary Figure 2A) or average speed
(Supplementary Figure 2B), and kinematic measures vs. age
(Supplementary Figures 1A–D).
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To date, research on the role of the brainstem and spinal cord in motor 
behavior has relied on in vitro preparations of the neonatal rodent spinal 
cord, with or without the brainstem; their spatial and temporal scope are 
subject to technical limitations imposed by low oxygen tension in deep 
tissues. Therefore, we  created an arterially perfused in situ preparation 
that allowed us to investigate functional interactions in the CNS from the 
neonatal to adult period. Decerebrated rodents were kept alive via total 
artificial cardiopulmonary bypass for extracorporeal circulation; the plasma 
oxygen and ion components needed for survival were supplied through the 
blood vessels. Interferon regulatory factor 8 (IRF8) is a transcription factor 
that promotes myeloid cell development and stimulates innate immune 
responses. In the brain, IRF8 is expressed only in microglia and directs the 
expression of many genes that serve microglial functions. Recent evidence 
indicates that IRF8 affects behavior and modulates Alzheimer’s disease 
progression in a mouse model. However, whether this immune deficiency 
arising from the absence of IRF8 influences the development of the neuronal 
network in the spinal cord is unknown. We applied the above methodology 
to mice of all ages and electrophysiologically explored whether the absence 
of IRF8 influences the development of lumbar central pattern generator 
(CPG) networks. In mice of all ages, bilateral neuronal discharges by the 
normal CPG networks activated by the modulated sympathetic tone via 
descending pathways at high flow rates became organized into discharge 
episodes punctuated by periods of quiescence. Similar discharge episodes 
were generated by the adult CPG networks (≥P14 days) activated by 
drug application. However, discharge episodes elicited by activating the 
neonatal-juvenile CPG networks (<P14 days) occurred alternately on the 
left and right sides. Interestingly, discharge episodes elicited by the CPG 
networks in adult IRF8 knockout mice (P11–12  weeks) consisted of those 
elicited by the CPG networks of both periods. Thus, it was suggested that 
growing up with immunodeficiency due to loss of IRF8 might interfere with 
the normal development of functions exerted by the lumbar CPG network 
because IRF8 plays a role in the normal development of the lumbar CPG 
network.
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Introduction

To date, most research on the role of the brainstem and spinal 
cord in motor behavior has relied on in vitro preparations of the 
neonatal rodent spinal cord, with or without the brainstem; their 
spatial and temporal scope are subject to technical limitations imposed 
by low oxygen tension in deep tissues (St John 1985; Brockhaus et al., 
1993; Wang et al., 1996; Wilson et al., 2003; Fong et al., 2008). To 
overcome this difficulty, we modified the arterially perfused in situ 
preparation, originally developed by Pickering and Paton (2006), 
which allows us to investigate functional interactions in the central 
nervous system (CNS), especially between the brainstem and the 
lower spinal cord, from the neonatal to adult period. This preparation 
can be used to explore unknown autonomous functions and provide 
clues to their mechanisms, as well as to track functional changes in the 
CNS around critical periods. In this methodology, decerebrated mice 
were kept alive via total artificial cardiopulmonary bypass for 
extracorporeal circulation; the plasma oxygen and ion components 
needed for survival were supplied by blood vessels (Yazawa, 2014).

Interferon regulatory factor 8 (IRF8) is a transcription factor that 
promotes myeloid cell development and stimulates innate immune 
responses (Tamura et al., 2000; McLellan et al., 2002; Tamura and 
Ozato, 2002; Yamanaka et al., 2008). In the brain, IRF8 is expressed 
only in microglia and directs the expression of many genes that serve 
microglial functions (Kierdorf et al., 2013). Microglia play a role in 
regulating the number of neural stem cells from the embryo to the 
postnatal stage by inducing the apoptosis of unnecessary neural stem 
cells and neurons and engulfing them (Cunningham et  al., 2013; 
Brown and Neher, 2014). In the process of neural circuit formation 
after the postnatal stage, microglia contribute to the functional 
maturation of neural circuit formation by retaining only the necessary 
synapses among the excess synapses and eliminating the unnecessary 
synapses (Schafer et al., 2012; Brown and Neher, 2014). IRF8-deficient 
mice (Irf8−/− mice), in which macrophages and microglia are defective 
in functions, including cytokine production, are known as an animal 
model for human chronic myeloid leukemia, in which granulocytes 
(neutrophils) are systemically increased (Holtschke et al., 1996); these 
mice are recognized as a vital tool for studying the immunological 
events related to the disease. Masuda et al. showed that microglia 
expressing IRF8  in the lumbar cord dorsal horn increase after 
peripheral nerve injury and that IRF8 is needed for cutaneous tactile 
allodynia, and the perception of pain, revealing that IRF8 in microglia 
affects neuronal morphology and function (Masuda et  al., 2012). 
Furthermore, it has been shown that IRF8 is expressed in microglia 
from the embryonic stage and throughout adulthood at similar levels 
and is thought to direct the development and maintenance of neuronal 
networks (Kierdorf et al., 2013; Saeki et al., 2023).

However, whether the loss of IRF8-related microglia resulting 
from the absence of IRF8 influences the development of the neuronal 
network in the lumbar spinal cord is unknown.

In this study, the above methodology was applied to mice of all 
ages, and the interplay of the discharge episodes from the left and right 
peripheral motor nerves resulting from the activation of the lumbar 
central pattern generator (CPG) networks was examined using 
electrophysiological techniques to explore whether the absence of 
IRF8 influences the development of lumbar CPG networks.

Materials and methods

Subjects

Ten female wild-type (WT) mice and 10 female Irf8−/− mice on a 
C57BL/6 background (Jackson Laboratories), aged 11–12 weeks and 
weighing 15.5–21.4 g, were used in this study, along with 20 male 
Swiss Webster mice (Taconic Laboratory) aged 5–51 days and 
weighing 4.1–45.2 g. The experimental protocols were approved by the 
National Institute of Neurological Disorders and Stroke (NINDS) and 
the National Institute of Child Health and Human Development 
(NICHD)/National Institutes of Health (NIH) Animal Care and 
Use Committee.

Decerebrate and arterially perfused in situ 
mouse preparation

Experiments were performed on 5 female WT and 5 female Irf8−/− 
mice on the C57BL/6 background (Jackson Laboratories) aged 
11–12 weeks and 10 male Swiss Webster mice (Taconic Laboratory) 
aged 5–21 days. Mice were sedated by inhalation anesthesia with 5.0% 
halothane and were intraperitoneally injected with an anesthetic 
combination of ketamine and xylazine (0.5–1.0  μL/g; 
ketamine:xylazine ratio = 7:1). The concentration of inhaled halothane 
was maintained at 1.5–2.0% during surgery. The depth of anesthesia 
was assessed by respiratory rate and responsiveness to tail pinch.

The same surgical procedure as described in our previous study 
(see Yazawa, 2014; Yazawa and Shioda, 2015) was then performed to 
prepare the decerebrate and arterially perfused in situ preparation. 
Mice were fixed in a supine position in a dissection chamber, and a 
median laparotomy was performed from the xiphoid to the lower 
abdomen. The stomach, small and large intestines, spleen, and 
pancreas as well as their dominant vessels were ligated and removed. 
Then, a thoracotomy was performed to allow us to directly visualize 
the heart and lungs, and both the pleura and the pericardium were 
removed after an intracardiac injection of 10 U/L heparin. The 
preparation was immediately submerged in Ringer’s solution infused 
with a 95% O2–5% CO2 gas mixture and maintained at 5–10°C to 
induce suspended animation. Ringer’s solution consisted of the 
following (in mM): 125 NaCl, 3 KCl, 24 NaHCO3, 1.25 KH2PO4, 1.25 
MgSO4, 2.5 CaCl2, and 10 d-glucose, equilibrated with 95% O2–5% 
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CO2 at pH 7.40–7.45 at room temperature (Chizh et al., 1997). After 
confirmation of cardiac arrest, a craniotomy was performed. 
Decerebration was performed with suction at the precollicular level. 
To prevent fluid from accumulating in the subcutaneous tissue, the 
skin was removed from the entire body. The bilateral lungs were cut 
at the level of the lobar bronchi and the apex of the left ventricle 
was incised.

After the mouse was transported to the recording chamber and 
then held in a supine position, a double-lumen catheter (Φ 1.0 mm, 
DL-AS-040; Braintree Scientific, MA, USA) was inserted into the 
heart through the incision in the left ventricle. To ensure that the 
perfusate entered the ascending aorta without backing up into the left 
ventricle, we modified the outer diameter of the tip of the catheter to 
be  slightly larger than the inner diameter. Arterial perfusion was 
immediately started with carbogen-bubbled Ringer’s solution 
containing an oncotic agent (1.25–1.28% Ficoll-70), heparin 
(10–20 U/L), and penicillin–streptomycin–neomycin (50 U/L) at 
room temperature. Finally, the right atrium was incised to maintain 
the internal pressure of the heart at atmospheric pressure, and the 
incised part of the left ventricle was then sutured to secure the catheter 
in the ascending aorta.

After the preparation resumed spontaneous breathing, the muscle 
relaxant d-tubocurarine (2 μM) was added to the perfusate to induce 
immobilization. The left phrenic nerve (PHN) was identified at the 
diaphragm level, detached from blood vessels and connective tissues, 
and severed at the distal end. The left and right peripheral motor 
nerves were carefully detached at the knee level and severed at their 
distal ends. Although there was pronounced bradycardia at the 
initiation of perfusion, ventricular fibrillation never developed.

The same perfusion circuit system as described in our previous 
studies (see Yazawa, 2014; Yazawa and Shioda, 2015) was used to keep 
the preparations alive at room temperature. The perfusate, equilibrated 
with 95% O2–5% CO2 at the reservoir, was circulated via the perfusion 
circuit with a peristaltic pump (model 323 U pump, model 318MC 
pump head; Watson-Marlow, Wilmington, MA, USA), transfused into 
the aortic arch of the preparation through bubble traps and net filters 
(nylon net pore size, 20 μm), and then recycled from the recording 
chamber back to the reservoir. After the preparation resumed 
spontaneous breathing, the perfusion flow was always set to >5× the 
total blood volume (TBV) per minute at room temperature. TBV was 
calculated as 1/13 (g) of body weight according to the calculation 
methods described by Mitruka and Rawnsley (1981) and by Harkness 
and Wagner (1989). In addition, systemic blood pressure was 
monitored via the second lumen of a double-lumen catheter using a 
strain-gauge pressure transducer (Pressure Monitor BP-1, WPI, FL, 
USA). All chemicals used in this study were purchased from Sigma 
(St. Louis, MO, USA).

Hindlimb preparation

Five female WT mice and 5 female Irf8−/− mice on a C57BL/6 
background (Jackson Laboratories; aged 11–12 weeks), along with 10 
male Swiss Webster mice (Taconic Laboratory; aged 6–51 days), were 
used to produce hindlimb preparations, which were obtained by 
transecting decerebrate and arterially perfused in situ preparations at 
the level of the fifth thoracic vertebra. In this preparation, a double-
lumen catheter (NCV25GW-200 W; CMP Inc., Tokyo, Japan) was 

inserted into the descending aorta from the severed end of the 
thoracic aorta, and the thoracic aorta was ligated at the level of the 6th 
thoracic vertebra to prevent leakage of perfusate. Arterial perfusion 
was initiated at 5× TBV/min at room temperature. After spontaneous 
alternating and synchronous movements were observed in the left and 
right hindlimbs of the preparation, 1–2 μM d-tubocurarine was added 
to the perfusate, and the peripheral motor nerves were detached as 
described above.

Extracellular recordings

Suction electrodes constructed of polyethylene tubing (PE 50; 
Becton, Dickinson and Company, Franklin Lakes, NJ, USA) were used 
to record neuronal discharge from the left PHN, left (L-PN), and right 
peroneal (R-PN), and left tibial nerves (L-TN) at room temperature. 
PHN discharge is an indicator of the output derived from the 
brainstem respiratory center (Barman and Gebber, 1976). PN and TN 
discharges are indicators of the outputs produced by the CPG network 
formed between the fourth lumbar and third sacral spinal segments 
and by the CPG network formed between the fourth lumbar and 
second sacral spinal segments, respectively. The change in systemic 
pressure is an indicator of changes in sympathetic tone derived from 
the cardiovascular center of the brainstem (Coleridge and Coleridge, 
1980; Julius and Nesbitt, 1996). The resultant neurograms were 
amplified ×1,000, filtered at 1–3000 Hz, and digitized using a Digidata 
1320A and a Clampex (Axon Instruments, Union City, CA, USA) at 
sampling rates of 10,000 Hz. All data were saved on the hard disk of a 
compatible computer for further analysis. Lab Chart 7 software (AD 
Instruments Inc., Colorado Springs, CO, USA) was used for analysis 
in this study.

Data analysis

In this study, we used the same data analysis methods as described 
in our previous studies (see Yazawa and Shioda, 2015). L-PN, R-PN, 
and L-TN discharges were selected from a recorded sequence, and the 
integrated waveforms were used to evaluate the phase difference 
between the two motor nerves. Using methods of circular statistics 
described by Batschelet (1981), the phase difference between the peak 
amplitudes of the two neuronal discharges during discharge episodes 
in the L-PN and R-PN and the L-PN and L-TN were determined. In 
the phase-shift analysis, each cycle period of L-PN discharge during 
the discharge episode was measured. Subsequently, the time lag 
between L-PN and R-PN or L-TN discharges in the cycle period of the 
L-PN discharge was measured. The phase value was obtained by 
dividing the time lag between the L-PN and R-PN or L-TN discharges 
in the cycle period of the L-PN discharge. Each phase value was then 
multiplied by 360. The values were then plotted on a circle representing 
the phase difference of possible phases from zero to 360°. Phase values 
of zero and 360° are equivalent and reflect synchrony; in contrast, 180° 
represents alternation. The mean phase and the coupling ratio (r), 
which indicates the concentration of phase values around the mean, 
are shown by the direction and the length of the vector originating 
from the center of the circle. If the phases of two discharges are 
strongly coupled, then the phase values will be expected to be highly 
concentrated around the mean phase. The coupling was considered 
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significant when the Rayleigh test, which determines whether the 
concentration r is sufficiently high to state that coupling was present 
(Batschelet, 1981), had a p-value <0.001. All data compressed to a 
sample rate of 20 Hz were used.

Results

Perfusion flow dependence of systemic 
pressure (black), L-PN (Red), R-PN (green), 
and PHN (gray) discharge

From the results regarding the dependence of systemic pressure 
and phrenic and peripheral motor nerve discharges under room 
temperature on the perfusion flow rate in a decerebrate and arterially 
perfused in situ preparation of Swiss Webster mice aged 14–31 days 
described in a previous work by one of the authors (Yazawa, 2014), the 
following phenomena were found to be induced: (i) Resumption of 
spontaneous breathing occurred within 15 min after the onset of 
perfusion at room temperature. (ii) If the perfusion flow rate was high 
enough to generate a systemic pressure of >30 mmHg, spontaneous 
respiration was initiated. Additionally, when the flow rate was set at 
>5× TBV/min, PHN discharge showed a pattern of increasing 
amplitude, and its frequency displayed a regular rhythm. (iii) As the 
flow rate increased further, each neuronal discharge transformed into 
a discharge episode of increasing frequency and duration, which 
occurred periodically. (iv) All discharge episodes derived from the 
three nerves were produced at the same time. (v) When the flow rate 
was set at >10× TBV/min, three neuronal discharge episodes clearly 
showed rhythmic discharge patterns. (vi) Small changes in systemic 
pressure were elicited during and after discharge episodes. In addition, 
(vii) although an increase in perfusion flow volume caused an increase 
in oxygen consumption as described in human extracorporeal 
circulation (Fox et  al., 1982; Kirklin and Barratt-Boyes, 1993), 
increased metabolism also caused an increase in neural activity. The 
present study is the first to investigate whether the above phenomena, 
especially (iii) to (vii), are produced even in decerebrate and arterially 
perfused in situ preparations made from 11- to 12-week-old mice on 
a C57BL/6 background.

Figure 1 represents typical examples of recordings showing the 
perfusion flow dependence of systemic pressure, L-PN, R-PN, and 
PHN discharge at room temperature in decerebrate and arterially 
perfused in situ preparations made from adult C57BL/6 mice aged 
11–12 weeks. At a high flow rate (>10× TBV/min), each nerve 
discharge transformed into a discharge episode of increasing 
frequency and duration, which occurred periodically. Figures 1A,B 
show the data collected on perfusion flow dependence at 10× and 14× 
TBV/min, respectively. Simultaneously, the systemic pressure was 
monitored (upper). The integrated waveforms of the L-PN (∫ L-PN), 
R-PN (∫ R-PN), and PHN (∫ PHN) discharges are shown in the lower 
panel. All data were obtained from the same preparation. Asterisks 
display discharge episodes (yellow-shaded region). The three nerve 
discharge episodes were produced at approximately the same time. At 
flow rates of >10× TBV/min, they showed rhythmic discharge patterns 
during discharge episodes. Several small systemic pressure changes 
were elicited during discharge episodes. In addition, the frequency of 
occurrence of the L-PN, R-PN, and PHN discharge episodes increased 
with increasing flow rates. Similar results to those shown in Figure 1 

were reproduced in all the preparations made from mice from the 
C57BL/6 background aged 11–12 weeks (n  = 5), indicating that a 
certain sympathetic tone resulting from an increase in flow rate 
activated the lumbar CPG network via descending pathways and 
initiated discharge episodes (see “A decerebrate and arterially perfused 
in situ preparation” section of Discussion).

Discharge episodes in peripheral motor 
nerves and phase relationships between 
the L-PN (red) and R-PN (green) and L-PN 
(red) and L-TN (blue) rhythmic discharge 
episodes induced at high flow rates in 
decerebrate and arterially perfused in situ 
preparations made from adult C57BL/6 
mice aged 11–12  weeks

In the decerebrate and arterially perfused in situ mouse 
preparations, a certain sympathetic tone resulting from an increase in 
flow rate is modulated when using high flow rates (>10× TBV/min) at 
room temperature because the preparation is exposed to a hyperoxic/
normocapnic state. Modulated sympathetic tone activates the lumbar 
CPG network via descending pathways and generates discharge 
episodes and rhythmic neuronal discharge episodes, and locomotor-
like activity is autonomously generated in the hindlimbs of the 
preparation (Yazawa, 2014). We  next investigated the occurrence 
pattern of the discharge episodes in peripheral motor nerves and 
phase relationships between the L-PN/R-PN and L-PN/L-TN 
rhythmic discharge episodes, induced at high flow rates, in 
preparations made from adult C57BL/6 mice aged 11–12 weeks.

Figures  2A,B show the instances of discharge episodes and 
rhythmic neuronal discharge episodes from the L-PN and R-PN, 
induced at flow rates of 14× and 16× TBV/min at room temperature, 
in decerebrate and arterially perfused in situ preparations made from 
adult WT and Irf8−/− C57BL/6 mice. In the preparations from WT 
mice, the L-PN and R-PN discharge episodes became organized into 
‘discharge episodes (episodic periods; yellow-shaded regions)’ 
consisting of rhythmic and burst-like discharges punctuated by 
periods of quiescence (silent periods; blue-shaded regions), with 
simultaneously repeated episodic and silent periods on both sides 
(Figures 2A1,2). In the preparations made from adult Irf8−/− mice, 
although the L-PN and R-PN discharge episodes also became 
organized into ‘discharge episodes (episodic periods; yellow-shaded 
regions)’ consisting of rhythmic and burst-like discharges punctuated 
by periods of quiescence (silent periods; blue-shaded regions), the 
bilateral neuronal discharge episodes were not necessarily 
simultaneously repeated episodic and silent periods (Figures 2B1,2. 
Figures  2A3,B3 display the integrated waveforms of the L-PN (∫ 
L-PN) and R-PN (∫ R-PN) discharges in regions ⓐ and ⓑ surrounded 
by dashed lines in Figures 2A2,B2, where rhythmic rather than burst-
like discharges occurred. The phase difference between the peak of the 
integrated waveforms of the L-PN (∫ L-PN) and R-PN (∫ R-PN) 
rhythmic discharges in the preparations made from adult WT and 
Irf8−/− mice was approximately 230° (r = 0.752) and approximately 
240° (r = 0.782), respectively. In both cases, the rhythm frequency of 
elicited left–right alternating discharges remained constant at 1–2 Hz. 
Similar results to those shown in Figure 2 were reproduced in all 
preparations made from adult WT (n = 5) and Irf8−/− mice (n = 5).
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From the above, it was indicated that modulated sympathetic tone 
activated the lumbar CPG network via descending pathways and 
generated discharge episodes and rhythmic neuronal discharge 
episodes and that locomotor-like activity was autonomously generated 
in the hindlimbs of the preparations made from adult WT and Irf8−/− 
mice aged 11–12 weeks.

Occurrence pattern of discharge episodes 
in peripheral motor nerves and phase 
relationships between L-PN (red) and R-PN 
(green) and between L-PN (red) and L-TN 
(blue) rhythmic discharge episodes 
induced by the application of 
rhythmogenic drugs at a certain flow rate 
in hindlimb preparations made from adult 
C57BL/6 mice aged 11–12  weeks

We applied rhythmogenic drugs such as serotonin (5-HT), 
N-methyl-D, L-aspartate (NMDA), dopamine (DA) and/or 
noradrenaline (NA) to hindlimb preparations at a certain flow rate 
and explored whether discharge episodes and neuronal discharge 
episodes resulting from lumbar CPG network activation, as shown in 
Figures 2A,B, were induced.

Figures 3A1,B1 show typical examples of neuronal discharges 
from the L-TN, L-PN, and R-PN induced by the application of 20 μM 
5-HT + 10 μM NMDA +1 μM NA to hindlimb preparations made 
from adult WT and Irf8−/− C57BL/6 mice. The perfusion flow rate was 

set at 7.5× and 8× TBV/min. Asterisks show discharge episodes. The 
lower panels present expanded views of neuronal discharge episodes 
of the L-PN, R-PN, and L-TN in the underlined parts of 
Figures 3A1,B1. It was found that discharge episodes induced in the 
three nerves repeatedly displayed episodic periods with discharge 
episodes (yellow-shaded region) and silent periods without discharge 
episodes (blue-shaded region) and that each occurrence pattern of 
discharge episodes in the L-PN and R-PN in Figures 3A1,B1 resembled 
that of discharge episodes shown in Figures 2A2,B2.

Figure 3A2 presents the integrated waveforms of the L-PN (∫ 
L-PN) and L-TN (∫ L-TN) discharges in regions ⓐ and ⓑ of the lower 
panel of Figure 3A1 and shows the L-PN (∫ L-PN) and R-PN (∫ R-PN) 
discharges in region Ⓒ of the same lower panel. Figure 3B2 displays 
the integrated waveforms of the L-PN (∫ L-PN) and L-TN (∫ L-TN) 
discharges in region ⓐ of the lower panel of Figure 3B1 and shows the 
L-PN (∫ L-PN) and R-PN (∫ R-PN) discharges of regions ⓑ and Ⓒ of 
the same lower panel. The phase difference between the rhythmic 
discharges in the L-PN and R-PN of the preparations made from adult 
WT and Irf8−/− C57BL/6 mice was approximately 335° (r = 0.983) and 
260° (r = 0.677), respectively. In both cases, the rhythm frequency of 
elicited left–right alternating discharges remained constant at <4 Hz. 
Similar results to those shown in Figure 3 were reproduced in all 
preparations made from adult WT (n = 5) and Irf8−/− C57BL/6 mice 
(n = 5). On the other hand, the phase difference between the rhythmic 
discharges in the L-PN and L-TN of the preparations made from adult 
WT and Irf8−/− C57BL/6 mice was approximately 325° (r = 0.987) and 
320° (r = 0.987), respectively. In both cases, the rhythm frequency of 
elicited flexion-extension-like discharges remained constant at <4 Hz. 

FIGURE 1

Figure represents typical examples of recordings showing the perfusion flow dependence of systemic pressure, L-PN (red) and R-PN (green), and PHN 
(gray) discharge at room temperature in decerebrate and arterially perfused in situ preparations made from mice on the C57BL/6 background aged 
11–12  weeks. (A,B) Show the data collected on perfusion flow dependence at 10× and 14× TBV/min, respectively. Simultaneously, the systemic 
pressure (black) was monitored (upper). The integrated waveforms of the L-PN (∫ L-PN; red), R-PN (∫ R-PN; green), and PHN (∫ PHN; gray) discharges 
are shown in the lower panel. Asterisks show discharge episodes (yellow-shaded region). All data were obtained from the same preparation.

160

https://doi.org/10.3389/fnins.2023.1234215
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yazawa et al. 10.3389/fnins.2023.1234215

Frontiers in Neuroscience 06 frontiersin.org

FIGURE 2

Figure shows the instances of discharge episodes and rhythmic neuronal discharge episodes from the bilateral peripheral motor nerves, 
induced at high flow rates (>10× TBV/min) at room temperature in decerebrate and arterially perfused in situ preparations made from adult 
C57BL/6 mice aged 11–12 weeks. (A1,B1) Show typical examples of neuronal discharges recorded from L-PN (red) and R-PN (green) at room 
temperature, induced at 14× and 16× TBV/min, in preparations made from adult WT and Irf8−/− C57BL/6 mice aged 11–12 weeks. Asterisks show 
discharge episodes. (A2,B2) present enlarged views of the L-PN (red) and R-PN (green) discharges surrounded by the rectangular regions of 
(A1,B1), where neuronal discharge episodes on both sides became organized into ‘discharge episodes consisting of rhythmic and burst-like 
discharges (episodic periods; yellow-shaded regions)’ punctuated by periods of quiescence (silent periods; blue-shaded regions), and the 
bilateral neuronal discharge episodes were simultaneously repeated episodic and silent periods. (A3,B3) Display the integrated waveforms of 
the L-PN (∫ L-PN; red) and R-PN (∫ R-PN; green) discharges in regions ⓐ and ⓑ surrounded by dashed lines of (A2,B2), where rhythmic rather 
than burst-like discharges occur. Each data point shown in (A,B) was obtained from the same preparation. Circular statics were used to 
determine the phase difference from 0 to 360° between the instances of the rhythmic discharges in the L-PN and R-PN discharge episodes 
(n = 5). The phase difference between the rhythmic discharges in the L-PN (red) and R-PN (green) of preparations made from WT and Irf8−/− 
mice was approximately 230° (r = 0.752) and approximately 240° (r = 0.782), respectively.
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FIGURE 3

Figure shows typical examples of discharge episodes and rhythmic neuronal discharge episodes from the peripheral motor nerves induced by applying 
rhythmogenic drugs to hindlimb preparations made from adult C57BL/6 mice aged 11–12  weeks at room temperature. Each data point shown in (A,B) 
was obtained from the same preparation. (A1,B1) Show typical examples of neuronal discharges from L-TN (blue), L-PN (red), and R-PN (green), 
induced by applying 20 μM 5-HT  +  10 μM NMDA +1 μM noradrenaline (NA), in hindlimb preparations made from adult WT and Irf8−/− C57BL/6 mice, in 
which the perfusion flow rate was set to 7.5× and 8× TBV/min, respectively. Asterisks show discharge episodes. The lower panels present expanded 
views of neuronal discharge episodes of the L-PN (red), R-PN (green) and L-TN (blue) in the underlined parts of (A1,B1). Discharge episodes induced in 
these three nerves repeatedly displayed episodic periods with discharge episodes (yellow-shaded region) and silent periods without discharge episodes 
(blue-shaded region). Each occurrence pattern of discharge episodes in the L-PN (red) and R-PN (green) in (A1,B1) resembled that of discharge 
episodes shown in (A2,B2). ⓐ and ⓑ, surrounded by dashed lines (red) in the lower panel of (A1), show rhythmic discharges in the L-TN (blue) and L-PN 
(red). Ⓒ, surrounded by dashed lines (purple) in the lower panel of (A1), shows rhythmic discharges in the L-PN (red) and R-PN (green). However, ⓐ, 
surrounded by dashed lines (red) in the lower panel of (B1), shows rhythmic discharges in the L-TN (blue) and L-PN (red). ⓑ and Ⓒ, surrounded by 
dashed lines (purple) in the lower panel of (B1), show rhythmic discharges in the L-PN (red) and R-PN (green). (A2) presents the integrated waveforms 
of the L-PN (∫ L-PN; red) and L-TN (∫ L-TN; blue) discharges in regions ⓐ and ⓑ in the lower panel of (A1) and the L-PN (∫ L-PN; red) and R-PN (∫ R-PN; 
green) discharges in region Ⓒ of the same lower panel. (B2) Displays the integrated waveforms of the L-PN (∫ L-PN; red) and L-TN (∫ L-TN; blue) 
discharges in region ⓐ in the lower panel of (B1) and the L-PN (∫ L-PN; red) and R-PN (∫ R-PN; green) discharges in regions ⓑ and Ⓒ of the same lower 
panel. Circular statics were used to determine the phase difference from 0 to 360° between the instances of rhythmic discharges in the L-PN (red) and 
L-TN (blue) discharge episodes and the L-PN (red) and R-PN (green) discharge episodes (n =  5). The phase difference between the rhythmic discharges 
in the L-PN (red) and R-PN (green) of preparations made from adult WT and Irf8−/− C57BL/6 mice was approximately 335° (r =  0.983) and approximately 
260° (r =  0.677), respectively. The phase difference between the rhythmic discharges in the L-PN (red) and L-TN (blue) of preparations made from adult 
WT and Irf8−/− C57BL/6 mice was approximately 325° (r =  0.987) and approximately 320° (r =  0.987), respectively.
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Similar results to those shown in Figure 3 were reproduced in all 
preparations made from adult WT (n = 5) and Irf8−/− C57BL/6 mice 
(n = 5).

Based on the results shown in Figures  2, 3, the pattern of 
occurrence of discharge episodes generated by lumbar CPG network 
activation differed in adult WT and Irf8−/− C57BL/6 mice.

Developmental changes in the pattern of 
occurrence of discharge episodes caused 
by activation of the lumbar CPG network 
from the neonatal-juvenile stage (postnatal 
day  <  14) to adulthood (postnatal day  ≥  14)

During the first 2 weeks of life, rodents acquire motor behaviors 
such as weight bearing and postural reflexes (Clarac et al., 1998). Mice 
can support their body weight by postnatal day 9 (P9), and many of 
the walking gait characteristics of mice at postnatal day 14 (P 14) are 
qualitatively similar to those of adult mice. In addition, the CPG 
network in the lumbar spinal cord is functionally mature by postnatal 
days 10–12 (P10–12) and is capable of generating locomotor-like 
activity (Jiang et al., 1999). During the postnatal period, microglia, 
which are the major phagocytes in the CNS promote apoptosis, 
eliminate apoptotic cells, prevent the overproduction of neurons by 
phagocytosing synapses and neurites, and contribute to the refinement 
of neuronal circuits (Salter and Stevens, 2017). As microglia mature, 
they alter their own transcriptional and functional identity as a result 
of changes in their density and morphology (Zusso et al., 2012). Brain 
microglia play a specialized role in microglial phagocytosis during 
development (Matcovitch-Natan et al., 2016; Hammond et al., 2019). 
However, IRF8-related microglia are normally absent in the lumbar 
cord dorsal horn of adult Irf8−/− mice (Masuda et al., 2012).

To understand the development of functional aspects of the 
lumbar CPG network caused by the absence of IRF8-related microglia, 
we examined developmental changes in the pattern of occurrence of 
discharge episodes caused by activation of the lumbar CPG network 
from the neonatal-juvenile period to adulthood using Swiss Webster 
mice (Taconic Laboratory) from 5 to 51 days of age.

Figure  4 shows schematics of the pattern of occurrence of 
discharge episodes (left) and the discharge patterns during the 
episodes (right panels) recorded from the L-PN and R-PN in the 
preparations made from mice after postnatal day five at high flow rates 
(> 10× TBV/min) at room temperature. In the decerebrate and 
arterially perfused in situ preparations made from mice aged 
5–21 days, the bilateral neuronal discharge cycled between episodic 
periods with discharge episodes and silent periods without discharge 
episodes. They clearly showed rhythmic discharge episodes and 
represented a left–right alternating rhythmic discharge pattern 
beginning with synchronous discharge patterns, and the frequency of 
elicited left–right alternating rhythmic discharges remained constant 
at 1–2 Hz (Figure 4A). Similar results to those shown in Figure 4A 
were reproduced in all 10 preparations (raw data not shown). In 
hindlimb preparations made from mice aged 14–51 days, after 
administration of 20–140 μM 5-HT, 10–70 μM NMDA, and 1–5 μM 
NA, each neuronal discharge transformed into a discharge episode of 
increasing frequency and duration, which occurred periodically, 
although bilateral neuronal discharge episodes did not occur at the 
same time. However, once the neuronal discharge episodes were 

initiated on both sides, they periodically and repeatedly generated 
episodic and silent periods. The frequency of left/right alternating 
discharge episodes in the L-PN and R-PN was <5 Hz (Figure 4B). 
Similar results were reproduced in all hindlimb preparations (n = 5) 
(raw data not shown). In hindlimb preparations made from mice aged 
6–8 days, after administration of 40–120 μM 5-HT, 20–60 μM NMDA, 
and 40–450 μM DA or 1–3 μM NA, each neuronal discharge 
transformed into a discharge episode of increasing frequency and 
duration, which occurred periodically. The neuronal discharge 
episodes consisted of a rhythmic, burst-like, and then rhythmic 
discharge (episodic periods) and were always generated on either side. 
Neuronal discharge episodes on one side displayed a burst-like 
discharge whenever silent periods were produced on the other side. 
The frequency of left/right alternating discharge episodes in the L-PN 
and R-PN was <2 Hz (Figure 4C). Similar results were reproduced in 
all hindlimb preparations (n = 5) (raw data not shown).

Based on the results shown in Figures 2A2,B2, 3A1,B1, 4, the 
discharge episodes caused by lumbar CPG network activation in adult 
Irf8−/− C57BL/6 mice consisted of discharge episodes caused by 
activation of the newborn/juvenile and adult lumbar CPG networks, 
indicating that early-life immunodeficiency due to loss of IRF8 might 
interfere with the normal development of functions of the lumbar 
CPG network.

Discussion

In this study, to understand the development of functional aspects 
of the lumbar CPG network in adult IRF8-deficient mice developing 
in the absence of IRF8-related microglia in the dorsal horn of the 
spinal cord, we  used decerebrated and arterially perfused in situ 
preparations and extracellular recordings, investigated the 
developmental changes in the pattern of occurrence of discharge 
episodes generated by activation of the lumbar CPG network in Swiss 
Webster mice from the neonatal-juvenile stage to adulthood, and 
examined the pattern of occurrence of discharge episodes generated 
by activation of the lumbar CPG network in adult WT and Irf8−/− mice 
on the C57BL/6 background. The results indicated that the discharge 
episodes exerted by activation of the lumbar CPG network in adult 
Irf8−/− C57BL/6 mice consisted of the discharge episodes exerted by 
activation of the newborn-juvenile and adult lumbar CPG networks, 
suggesting the possibility that early-life immunodeficiency due to loss 
of IRF8 might interfere with the normal development of functions of 
the lumbar CPG network.

Mechanism(s) of left and right rhythmic 
activity induced at high flow rates (≥10× 
TBV/min) at room temperature in the 
hindlimbs of decerebrated and arterially 
perfused in situ preparations

The decerebrate and arterially perfused in situ preparations 
survived via total artificial cardiopulmonary bypass for extracorporeal 
circulation, and the oxygen and ion components in the plasma needed 
for survival were supplied by blood vessels at room temperature.

In this preparation, afferent inputs from mechanosensors of the 
heart wall (Bishop et al., 1983; Hainsworth, 1991; Hines et al., 1994) 
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to the cardiovascular center of the brainstem can be ignored because 
the right atrium was incised to maintain the internal pressure of the 
heart at atmospheric pressure. Afferent inputs from the stretch 
receptors of the lungs (Kalia and Sullivan, 1982; Hines et al., 1994) to 
the respiratory center of the brainstem can be ignored because of the 
removal of the lungs. In addition, afferent inputs from glomus type 
I cells on the carotid body that sense thermal changes (Alcayaga et al., 
1993) to the respiratory center of the brainstem can be  ignored 
because the preparation was maintained at room temperature. A 
peristaltic pump was used to provide pressure pulse waves to the 

baroreceptors of the preparation, as parasympathetic/sympathetic 
control of vascular resistance via the baroreflex is affected specifically 
by pulsatile rather than non-pulsatile flow (James and de Burgh Daly, 
1970; Chapleau et al., 1989). Furthermore, the effect of the impulse 
from the central chemoreceptor, the pH/PCO2 sensor, on the 
respiratory center of the brainstem can be ignored because the pH of 
the perfusate was maintained within the physiological range before 
and after systemic perfusion (Loeschcke, 1982; O'Regan and 
Majcherczyk, 1982; Nattie, 1998; Ballantyne and Scheid, 2001). 
Therefore, the homeostasis of this preparation was maintained under 

FIGURE 4

Schematics of developmental changes in the pattern of occurrence of discharge episodes (left) and neuronal discharge episodes (right panels) caused 
by activation of the lumbar CPG network from the neonatal-juvenile stage to adulthood at room temperature. (A) Schematics of the typical pattern of 
occurrence of discharge episodes (left) and the discharge patterns during the discharge episode (right panels) recorded from the L-PN and R-PN in 
decerebrate and arterially perfused in situ preparations made from mice after postnatal day five at high flow rates (>10× TBV/min). In this preparation, 
neuronal discharges became organized into ‘discharge episodes’ of increasing frequency and duration, punctuated by periods of quiescence as the 
flow rate increased, and the bilateral neuronal discharge episodes repeated episodic periods with discharge episodes and silent periods without 
discharge episodes. At a flow rate of <10× TBV/min, neuronal discharges during discharge episodes showed a burst-like discharge. However, at a flow 
rate of ≥10× TBV/min, they clearly showed rhythmic discharge episodes and represented a left–right alternating rhythmic discharge pattern beginning 
with synchronous discharge patterns. Regardless of age, the rhythm frequency of elicited left–right alternating discharges remained constant at 
1–2  Hz. Similar results were reproduced in all 10 preparations made from Swiss Webster mice (Taconic Laboratory) aged 5–21  days (raw data not 
shown). (B,C) Represent schematics of the typical pattern of occurrence of discharge episodes (left) and the neuronal discharge patterns during the 
discharge episode (right panels) recorded from the L-PN and R-PN in hindlimb preparations made on postnatal days 14–51 and 6–8, respectively. In 
this preparation, neuronal discharge episodes consisting of a rhythmic and burst-like discharge (episodic periods) were generated by applying 
serotonin (5-HT), N-methyl-d, l-aspartate (NMDA), and dopamine (DA) or noradrenaline (NA) to the preparation at a flow rate of 5–7× TBV/min. In (B), 
after administration of 20–140 μM 5-HT, 10–70 μM NMDA, and 1–5 μM NA, neuronal discharges became organized into episodes punctuated by 
periods of quiescence. Neuronal discharge episodes did not simultaneously occur on both sides. However, once the neuronal discharge episodes 
were initiated on both sides, they periodically and repeatedly generated episodic periods with discharge episodes and silent periods without discharge 
episodes. The frequency of left/right alternating discharge episodes in the L-PN and R-PN was <5  Hz. Similar results were reproduced in all hindlimb 
preparations (n =  5) (raw data not shown). In (C), after administration of 40–120 μM 5-HT, 20–60 μM NMDA, and 40–450 μM DA or 1–3 μM NA, 
neuronal discharges became organized into episodes punctuated by periods of quiescence. In the preparations made from mice aged 6–8  days, the 
neuronal discharge episodes consisted of a rhythmic, burst-like, and then rhythmic discharge (episodic periods) and were always generated on either 
side. Neuronal discharge episodes on one side displayed a burst-like discharge whenever silent periods were produced on the other side. The 
frequency of left–right alternating discharge episodes in the L-PN and R-PN was <2  Hz. Similar results were reproduced in all hindlimb preparations 
(n =  5) (raw data not shown).
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the influence of afferent inputs from baroreceptors and peripheral 
chemoreceptors in the aortic arch and carotid sinus, along with central 
chemoreceptors distributed on the ventral medullary surface.

After the resumption of spontaneous breathing in the preparation, 
PHN discharge occurred in a pattern of increasing amplitude, while 
peripheral motor nerve discharge occurred in a pattern of decreasing 
amplitude hundreds of milliseconds after the occurrence of PHN 
discharges. When the flow rate was set at >10× TBV/min, each 
neuronal discharge transformed into a discharge episode of increasing 
frequency and duration, which occurred periodically. Discharge 
episodes in peripheral motor nerves on both sides displayed an 
alternating pattern of left–right discharge. The physiological condition 
of the preparation under this flow rate setting was considered to be as 
follows: Although the sympathetic tone of the preparation increased 
with increasing perfusion flow volume, the sympathetic tone of the 
preparation maintained in the hypothermic state was extremely low 
compared with that of animals maintained at normothermia. The 
preparation was susceptible to a hyperoxic state due to the high flow 
rate at room temperature. Thus, when a high flow rate was set, the 
sympathetic tone seen at the high flow rate (≥10× TBV/min) was 
easily modulated by afferent input from the peripheral chemoreceptors. 
Locomotor-like activity, produced by modulated sympathetic tone 
activating the lumbar CPG network via the spinal descending pathway, 
was observed in the hindlimbs of the preparation.

Neural networks comprising the lumbar 
CPG network caused by IRF8-related 
microglial cell deficiency

Microglia, which are the major phagocytes in the CNS, contribute 
to the postnatal refinement of neuronal circuits by promoting 
apoptosis, eliminating apoptotic cells, and preventing the 
overproduction of neurons (Salter and Stevens, 2017). Brain microglia 
mature while altering their own transcriptional and functional identity 
as a result of changes in their density and morphology, and mature 
microglia play specialized phagocytic roles during development 
(Zusso et al., 2012; Matcovitch-Natan et al., 2016; Hammond et al., 
2019). In addition, microglia settle in different brain regions at varying 
rates during development and express specific local gene profiles and 
phenotypes in adulthood. Thus, microglia display spatial heterogeneity 
in the brain (Schwarz et al., 2012; De Biase et al., 2017; Ayata et al., 
2018). IRF8-related microglia in the lumbar cord dorsal horn were 
found to be absent in adult Irf8−/− mice, whereas they were low in adult 
wild-type mice (Masuda et al., 2012). We speculate, based on the 
results of the studies described above, that the absence of IRF8-related 
microglia in the dorsal horn of the spinal cord inhibited the postnatal 
refinement of the lumbar CPG network and interfered with the 
normal functional development of the lumbar CPG network. The 
candidates for the interneurons composing the CPG network that 
produces locomotor-like activity are a group of interneurons located 
in L1-L6 near the central canal and the medial middle zone (Kjaerulff 
et al., 1994). Some dorsally derived interneurons originating from the 
dorsal horn area migrate ventrally during development, and others 
migrate ventrally after development (Gross et al., 2002; Lu et al., 2015). 
Based on this finding and the results shown in Figures 2–4, we propose 
that immunodeficiency due to loss of IRF8 interferes with the normal 
development of the inhibitory and excitatory neural circuits and 

dorsally derived interneurons connecting the bilateral neural networks 
that constitute the lumbar CPG network.
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