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Editorial on the Research Topic

Internet of Medical Things and computational intelligence in

healthcare 4.0

We are delighted to present this special editorial, exploring the dynamic Research

Topic of “Internet of Medical Things and computational intelligence in healthcare 4.0.”

As we navigate the intricate realms of healthcare’s digital transformation, the synergy

between the Internet of Things (IoT) and computational intelligence stands as a beacon

of innovation, promising a paradigm shift in the way we perceive, deliver, and experience

healthcare. Healthcare 4.0 encapsulates a vision where interconnected devices, advanced

analytics, and artificial intelligence converge to create a holistic, patient-centric ecosystem.

At the heart of this transformative journey lies the intersection of the Internet of Medical

Things (IoMT) and Computational Intelligence, propelling healthcare into an era marked

by unprecedented efficiency, personalized care, and empowered patients.

The Internet of Medical Things (IoMT) has seen substantial growth, with an increasing

number of connected healthcare devices. According to a report by Grand View Research,

the global IoMT market size was valued at over USD 44 billion in 2020 and is expected to

exhibit a compound annual growth rate (CAGR) of around 19.2% from 2021 to 2028. This

underscores the rapid adoption of IoMT technologies in healthcare systems worldwide.

Additionally, a study by Allied Market Research highlighted that the computational

intelligence market in healthcare is also on the rise.

There was a large diversity of submissions covering different aspects, from

IoMT, Computational Intelligence, Patient-Centric Care in the Digital Age, Ethical

Considerations and Security Challenges, and Future Horizons and Collaborative

Innovation. The articles and insights shared herein reflect the dedication and innovation of

researchers who are at the forefront of this transformative journey. Moreno et al. employ

a pattern-based classification method on the African-American Study of Chronic Kidney

Disease with Hypertension dataset, revealing 15 distinct clinical features and SNP patterns.

Notably, four clinical features and two SNPs show high predictive accuracy for CKD

progression. These findings promise to inform future research and advance therapeutic

interventions for individuals with chronic kidney disease.
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Sharafutdinov et al. propose a new method to assess the

generalization ofMLmodels across hospitals. The study shows how

the method works using patient data from different hospitals. The

results highlight the importance of evaluating model transferability

and creating diverse datasets.

Liu et al. analyzed SEER database data from 2004 to 2015

to explore prognostic factors in pancreatic cancer metastasis to

the liver across different age groups. They found gender-specific

primary sites and age-dependent prognostic factors such as tumor

grade, histology, treatment, AJCC N stage, and race. The study

underscores the importance of age-specific treatment strategies for

pancreatic cancer metastasis to the liver.

Toubiana et al. published an editorial on the use of

blockchain for Electronic Vaccine Certificates (EVCs) for COVID-

19 vaccination. Blockchain may not be the best solution for

EVCs, and the authors suggest exploring alternative cryptographic

methods that involve centralized authorities for practical use.

Merhbene et al. used NLP on Reddit data to detect

burnout. Their ensemble classifier achieved 0.93 balanced accuracy,

outperforming single classifiers. NLP is a highly effective tool for

identifying burnout indicators and improves standard classifiers.

Gao et al. reviewed the oral microbiome’s relationship with

systemic autoimmune diseases (SADs) like SLE, RA, and SS.

The review highlights the importance of multiomics data and

emphasizes the need for standardized methodologies to improve

the understanding of SADs’ etiology and potential therapies.

Rath et al. used imbalanced ECG samples to train ML models

for detecting HD. AdaBoost and LR outperformed other classifiers.

The ensemble model achieved the best HD detection performance.

The methodology is versatile and applicable to various disease

detection scenarios.

Mishra et al. developed a novel technique for detecting COVID-

19 using phoneme analysis and audio signal smearing. They

proposed a classification system based on phoneme grouping and

achieved 97.22% accuracy for specific phoneme grouping using

machine learning classifiers. This technique shows promise for

quick and effective early-stage disease detection, with potential for

application in other speech-related diseases.

Chicco and Jurman stress the importance of validating

supervised machine learning results in biomedical informatics. The

challenge is to achieve reliable results in the face of over-optimistic

findings. Past guidelines have been too complex, especially for

beginners. In response, Walsh et al. (2021) proposed ABC tips to

simplify validation. The tips are meant to provide an effective tool

for practitioners of all levels to enhance the reliability of scientific

results in biomedical sciences.

The market for IoT healthcare is projected to grow at a

CAGR of 21.2% from 2024 to 2030, with a value of USD

44.21 billion expected in 2023. This growth is driven by several

factors, including the use of wearables and smartphones for

patient monitoring, an increased adoption of remote patient

monitoring during the COVID-19 pandemic, and investments in

digital health infrastructure. The prevalence of chronic conditions

and investments in digital healthcare technologies have also led

to a significant rise in telemedicine adoption. IoT technology

is expanding in healthcare due to several reasons, including

advancements in smartphone technology, improved data security

measures, and the growing accessibility of wearable sensors and

connected health monitors. This demand is further fueled by

emerging economies such as India, China, Indonesia, Bangladesh,

and some African and Latin American countries, which are

contributing to this growth through improvements in network

infrastructure and growing network coverage. Physicians are also

increasingly using mobile devices, creating further demand for IoT

solutions in healthcare.
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Identifying Clinical and Genomic
Features Associated With Chronic
Kidney Disease
M. Megan Moreno1, Travaughn C. Bain1, Melissa S. Moreno1, Katherine C. Carroll 1,2,3,
Emily R. Cunningham1,2,4, Zoe Ashton1, Roby Poteau1, Ersoy Subasi5, Michael Lipkowitz6

and Munevver Mine Subasi 1*

1Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL, United States, 2Department of
Biomedical and Chemical Engineering and Sciences, Melbourne, FL, United States, 3Department of Biology, University of Florida,
Gainesville, FL, United States, 4Department of Mathematics, SUNY Potsdam, Potsdam, NY, United States, 5Department of
Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States, 6Department of Medicine,
Georgetown University Medical Center, Washington, DC, United States

We apply a pattern-based classification method to identify clinical and genomic features
associated with the progression of Chronic Kidney disease (CKD). We analyze the African-
American Study of Chronic Kidney disease with Hypertension dataset and construct a
decision-tree classification model, consisting 15 combinatorial patterns of clinical features
and single nucleotide polymorphisms (SNPs), seven of which are associated with slow
progression and eight with rapid progression of renal disease among African-American
Study of Chronic Kidney patients. We identify four clinical features and two SNPs that can
accurately predict CKD progression. Clinical and genomic features identified in our
experiments may be used in a future study to develop new therapeutic interventions
for CKD patients.

Keywords: classification, genomic analysis, AASK, chronic kidney disease, decision trees

1 INTRODUCTION

Themain function of kidney is to remove excess water and waste products from blood. It also helps to
regulate the levels of minerals such as sodium, calcium, and potassium in blood. One suffers from
chronic kidney disease (CKD), also known as renal disease, when kidney losses its function gradually
and usually permanently. CKD, defined by reduced glomerular filtration rate (GFR), proteinuria, or
structural kidney disease, is a worldwide growing public health problem1. Many subjects with renal
disease of most etiologies progress to severe renal failure and/or end stage renal disease (ESRD),
requiring renal replacement therapy, which may involve a form of dialysis or renal transplantation
(Lewis et al., 1993; Klahr et al., 1994; DCCT, 1995; Brenner et al., 2001; Lewis et al., 2001; Wright
et al., 2002; Niki et al., 2015). However, progression rate of CKD is very heterogeneous (Lindeman
et al., 1985; Lindeman, 1990; Hallan et al., 2006). While a few predictive factors for progression such
as proteinuria have been detected, identification of those at risk to progress remains a significant
problem. It has also been established that there are several therapies that can ameliorate the
progression of renal disease including ACE inhibitors, blood pressure control, tight diabetes control
and perhaps low protein diets; however, in trials examining these therapeutic modalities there
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remains a very significant risk of progression of renal disease in
the subjects receiving optimal therapy (Lewis et al., 1993; Klahr
et al., 1994; DCCT, 1995; Brenner et al., 2001; Lewis et al., 2001;
Wright et al., 2002; Niki et al., 2015).

African-American Study of Chronic Kidney disease with
Hypertension (AASK) was motivated by the high rate of
hypertension-related chronic kidney disease in the African-
American population and the scarcity of effective therapies. The
study involved 21-center randomized double-blinded treatment
trial of 1,094 African-American patients with hypertension at
ages ranging from 18 to 70 years. Patients had renal failure with
GFR between 20 and 65 ml/min/1.73m2. Patients were randomized
to the angiotensinogen converting enzyme inhibitor (ACEi)
ramipril, the β-blocker (BB) metoprolol or the dihydropyridine
calcium channel blocker (CCB) amlodipine, and to usual (mean
arterial pressure (MAP 102–107) or low (MAP < 92) blood
pressure (BP) goals. The rationale for the treatment arms was
that there was human and animal data suggesting that ACEi and
CCB might slow progression of renal disease independent of their
BP effects (Lewis et al., 1993; Hallan, 1998), and there was data from
observational and treatment studies that a lower BP might have
beneficial effects (Klahr et al., 1994; Klag et al., 1997). Although
other studies had attempted to achieve a 10 mmHg MAP
separation (Hansson et al., 1998; Lewis et al., 2001), AASK is the
first major trial to actually achieve this goal. The primary outcome
was rate of decline of GFR (GFR slope) based on iothalamate GFR
studies at 6 months intervals, with a secondary clinical composite
outcome of end stage renal disease (ESRD), a 25 ml/min or 50%
drop in GFR from baseline (GFR event), or death (Subasi et al.,
2017).

The initial AASK results were not conclusive (Wright et al.,
2002). While the adopted therapy was shown to slow the
progression of renal disease, there was still high rate of
progression to renal failure. The CCB arm of the study was
stopped early when interim analysis indicated that CCB was
inferior to both BB and ACEi in patients with > 0.22 urine
protein/creatinine ratio (about 300 mg proteinuria/24 h)
(Agodoa et al., 2001). The low BP goal of the study did not
improve outcomes: there was no beneficial effect of low MAP
on rate of progression of renal disease as defined by GFR slope or
clinical composite outcomes (GFR events, end stage renal disease
(ESRD) or death). Subsequently, a similar result was found in the
REIN trial (Ruggenenti et al., 1999). Studies in Type 2 diabetes have
demonstrated a linear relation of achieved BP to renal outcomes
(Bakris et al., 2003; Pohl et al., 2005); however, it should be noted
that all the patients in these studies were treated to the same goal BP,
so that rather than low BP being protective, the ability to achieve
lower BPs may have defined a sub-population in these studies with
low risks of disease progression. Despite the lack of effect on renal
outcomes in AASK, proteinuria was diminished by the lower BP
goal. This finding is similar to that previously reported for diabetics
(Lewis et al., 2001). Finally, a subgroup analysis inAASKdid suggest
that patients on a non-protective regimen (CCB) may have
benefited from the low BP goal (Contreras et al., 2005). Most
importantly in AASK, ACEi decreased the number of events as
compared to both BB and CCB (Wright et al., 2002). These data for
ACEi vs. CCB are tabulated in Table 1 (risk reduction adjusted for

baseline covariates) and were most dramatic for the hard outcomes,
especially ESRD.

Several possible interventions such as blood pressure control
(Wright et al., 2002), diabetes treatment (DCCT, 1995), controlling
dietary protein intake (Klahr et al., 1994) and medications with
possible renoprotective effects (Ruggenenti et al., 1999; Agodoa
et al., 2001; Wright et al., 2002) have been tested in clinical trials. In
all cases, the residual rate of progression of chronic kidney disease
has remained significant. To date, there are few prediction models
to identify which patients are likely to progress significantly. Subasi
et al. (2017) (Subasi et al., 2017) identified serumproteomic patterns
that can accurately distinguish rapid progression and slow
progression among AASK patients. Recently, Lipkowitz et al.
(2013) (Parsa et al., 2013) examined effects of variants in gene
encoding apolipoprotein L1 (APOL1) on the disease progression
and observed that renal risk variants in APOL1were associated with
the higher rates of ESRD and progression of chronic kidney disease
in African-American patients as compared to white patients. Other
recent studies include Rahman et al. (2013), where the effects of two
antihypertensive drug dose (PM dose and add-on dose) schedules
on nocturnal blood pressure vs. usual therapy (AM dose) in former
participants were determined and Chen et al. (2016), where the
longitudinal changes in hematocrit in hypertensive renal disease
were studied.

The goal of our current study is to apply a pattern-based
classification method to identify clinical and genomic features
that may serve as prognostic markers for the progression of renal
disease among AASK patients. Clinical and genomic features
identified in our analysis shall be used in a future study to obtain
comparison of the disease progression in white patients and
African-American patients, both of those with and those
without apolipoprotein L1 (APOL1) high-risk variants. The
ultimate goal of our AASK data analysis, started in (Subasi
et al., 2017) and continued in this current work, is to identify
new targets and provide basis for new therapeutic interventions
for chronic kidney disease.

2 STUDY SUBJECTS

Closer inspection of the data highlights the current dilemma:
although there is a 30 − 60% decrease in the number of events
with ACEi still a residual event rate of > 6%/yr in the trial as a
whole and > 11%/yr in subjects with urine protein/creatinine
> 0.22, a mild degree of proteinuria of 200 − 300mg/day (Figures
1 and 2). In addition it can be seen that the event rate is essentially
constant throughout the 5 years of the trial, indicating that
remaining patients are still at risk to progress. This finding is

TABLE 1 | Analysis of clinical composite outcomes - 95% confidence interval (CI).

ramipril vs. Amlodipine % Risk Reduction 95% CI p-value

GFR event, ESRD or death 38% 14% − 56% 0.004
GFR event or ESRD 40% 14% − 59% 0.006
ESRD or death 49% 26% − 65% <0.001
ESRD alone 59% 36% − 74% <0.001
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similar to that of other trials such as MDRD (Klahr et al., 1994;
Hebert et al., 1997), the Collaborative Study Group Trial (Lewis
et al., 1993), RENAAL (Brenner et al., 2001) and IDNT (Lewis
et al., 2001).

Figure 3 indicates the significant heterogeneity of progression
rate of renal disease in the AASK Trial, where the rate of decline
of GFR after 6 months in the trial (chronic GFR slope) is depicted
in blue for each patient from most rapid decline (negative slope)
on the left, to the least rapid decline (positive slope) on the right.
The expected rate of decline of GFR with aging is generally
assumed to be −1ml/min/yr (Berg, 2006; Murussi et al., 2006),
although longitudinal studies have raised questions about this
assumption (Lindeman et al., 1985; Lindeman, 1990). Based on
this estimate, approximately 30% of the AASK patients in
Figure 3 did not progress (right side, slope > − 1ml/min/yr)
while approximately 30% progressed rapidly (left side, slope
< − 3ml/min/yr). The figure also shows that proteinuria, the
strongest predictor of progression rate reported in literature, is
not an ideal predictor in that there are a number of slow
progressors with significant proteinuria (red spikes, right),
while a significant number of rapid progressors had no or
minimal proteinuria (absence of red bars, left) (Subasi et al.,
2017). This data is supported by the observation in genetics
studies that proteinuria and progression of renal disease may be
disparate phenotypes (Fogarty et al., 2000; Krolewski et al., 2006).

2.1 Pre-processing of AASK Data to Predict
Progression of Renal Disease
An avenue that has not been carefully explored is a data mining
approach to detect the combinations of clinical features and/or
single nucleotide polymorphisms (SNPs) that better determine
the population at risk for progression of CKD. The goal of this

section is to identify combinatorial patterns of clinical features
and SNPs that can accurately predict progression of the renal
disease among AASK patients. In order to achieve this, we
perform a study on a selected subset of subjects from the
AASK Clinical Trial based on the glomerular filtration slope
(GFR) of all AASK patients presented in Figure 3. The original
AASK data contains 1,094 African-American patients with 88
clinical features and 130 SNPs. Before we start our analysis, we
remove features with more than 80% missing values in the
dataset. We then remove AASK patients with missing GFR
values and more than 10% missing values. This results in 800
AASK patients with 77 clinical features and 113 SNPs. In order to

FIGURE 1 | AASK clinical composite events–all patients.

FIGURE 2 | AASK clinical composite events–proteinuria.
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develop a classification model that can predict the rate of
decline of kidney function, we identify two “extreme” groups
of patients whose disease progression is “slow” (GFR chronic
slope > 1ml/min/yr) or “rapid” (GFR chronic slope
< − 4ml/min/yr). The two subsets of patients, referred to as
slow progressors and rapid progressors are selected from the
AASK study based on the chronic GFR slope histogram presented
in Figure 4. The resulting reduced dataset contains 138 AASK
patients identified as rapid progressors and 75 AASK patients as
slow progressors.

Figure 5 shows the PCA plot of the AASK patients in the
reduced dataset. Table 2 describes the patient population for this
study. As can be seen from the table, proteinuria is very different
between the two groups of disease progression, which supports

the previous studies showing that proteinuria is the strongest
predictor of GFR slope progression in AASK (Wang et al., 2006).

2.2 Identification of Significant Clinical and
Genomic Features
The resulting AASK dataset consisting of 138 rapid progressors,
75 slow progressors, 77 clinical features, and 113 SNPs, is further
investigated to remove any features irrelevant for the recognition
of a rapid progressor as opposed to a slow progressor. In order to
obtain a classification model effectively and efficiently, we first
apply a correlation-based feature selection procedure (Hall and
Smith, 1998) to retain only those relevant features successfully
distinguishing between rapid progressors and slow progressors in

FIGURE 3 | AASK Patients stratified by GFR slope with degree of proteinuria superimposed.

FIGURE 4 | Chronic GFR slope of AASK patients in the reduced data.
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AASK data. Correlation-based feature selection method evaluates
the worth of a subset of features by considering the individual
predictive ability of each feature along with the degree of
redundancy between them. Subsets of features that are highly
correlated with the outcome (rapid/slow progression) while
having low intercorrelation are preferred. AASK data is
randomly partitioned into ten approximately equal parts; one
of these subsets is designated as “test set”, correlation based
feature selection is built on the remaining nine subsets which
form the “training dataset”, and then evaluated on the cases in the
test set. This procedure is repeated ten times, always taking another
one of the ten parts in the role of the test set (re-randomizing the
patients into ten new subsets and repeating the procedure nine
additional times for a total of 100 tests).

Table 3 shows the features selected from ten times 10-folding
cross-validation of the correlation-based feature subset selection
procedure in WEKA, a commonly used open source data mining
software (Hall et al., 2009). The rationale for using small numbers
of features is both for ease in collecting the relevant data for
prediction on patients from different sources (health systems)
and the possibility that finding a small number of novel predictors
may help inform studies into the mechanisms and treatment of
CKD progression if they suggest new and unexplored pathways.
The SNPs and the fact that the alpha-2 agonist antihypertensive
medicine use are predictors may help in this manner.

3 PATTERN-BASED CLASSIFICATION
MODEL TO PREDICT PROGRESSION OF
RENAL DISEASE

3.1 Identification of Combinatorial Patterns
of Significant Clinical Features and SNPs
Study Subjects analysis provides us with a reduced AASK data,
containing 138 rapid progressors and 75 slow progressor with.

• four clinical features: α-agonist (peripherol base),
proteinuria, urine-protein/urine-creatinine, GFR value at
G1 visit, where α-agonist represents the use of peripheral
alpha-2 agonist blood pressure medication

• two SNPs: CHGB-1, PLCG2 rs4399527.

These six features were validated using 10 × 10-folding cross-
validation experiments on seven commonly used and well-known
classification methods, including Random Forest, Decision Trees,
Nearest Neighbor, Support Vector Machines, Neural Networks,
Logistic Regression, and Naïve Bayes (Hall et al., 2009). In this
step the AASK data is randomly partitioned into ten
approximately equal parts; one of these subsets is designated
as “test set”, a model is built on the remaining nine subsets which

FIGURE 5 | PCA plot of AASK patients in the reduced data: * Rapid Progressors and * Slow Progressors

TABLE 2 | Baseline characteristics of study population.

Basic Clinical Features Rapid Progressors Slow Progressors

Chronic slope −5.41 ± 1.36 2.11 ± 1.03
GFR 42.83 ± 13.25 52.30 ± 10.55
Proteinuria 1.12 ± 1.40 0.13 ± 0.20
Age 50.22 ± 11.94 52.52 ± 9.52
Weight (kg) 96.42 ± 22.42 87.52 ± 19.65
(cm) 171.69 ± 10.56 169.21 ± 10.80
BMI 32.69 ± 7.06 30.57 ± 6.09

TABLE 3 | Feature Selection - 10 fold stratified cross validation.

% Absolute Frequency Feature

90% α-agonist
100% Proteinuria
100% U.Protein/U.Creatinine
70% GFR value at G1 visit
100% CHGB-1
90% PLCG2 rs4399527
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form the “training dataset”, and then tested by predicting the
classes of patients in the test set using a classification method.
This procedure is repeated 10 times, always taking another one of
the ten parts in the role of the test set (re-randomizing the
patients into 10 new subsets and repeat the procedure nine
additional times) for a total of 100 tests for each of the seven
classification methods. Table 4 shows average accuracy,
sensitivity (proportion of correctly classified rapid
progressors), specificity (proportion of correctly classified slow

progressors) as well as average precision, recall, F-measure, and
area under Receiver Operating Characteristic (ROC) curve.

As can be seen in Table 4, while Random Forest provides us
with highest accuracy, C4.5 Decision Tree (Quinlan, 1993), a
non-parametric supervised learning method used for
classification and regression, provides the best sensitivity and
specificity, i.e., the best prediction for rapid and slow prediction.
C4.5 classification model consisting of seven patterns, S1-S7, for
slow progressors and eight patterns, R1-R8, for rapid progressors

TABLE 4 | Cross-validation of classification methods for AASK samples.

Classification Method Accuracy Sensitivity Specificity Precision Recall F-Measure ROC Area

Random forest 78.33% 83.63% 68.79% 0.71 0.69 0.68 0.86
C4.5 decision tree 76.77% 80.53% 70.18% 0.68 0.70 0.67 0.78
Nearest neighbor 70.21% 76.97% 58.02% 0.59 0.58 0.57 0.68
Support vector machines 72.70% 77.91% 63.34% 0.62 0.63 0.61 0.71
Neural networks 73.07% 78.19% 63.79% 0.63 0.64 0.62 0.81
Logistic regression 75.88% 81.70% 65.39% 0.68 0.65 0.65 0.85
Naïve bayes 70.20% 57.90% 93.02% 0.56 0.93 0.69 0.85

TABLE 5 | C4.5 classification model for AASK samples.

Patterns C4.5 Classification Model for Renal disease Progression

S1 U. Protein ≤ 0 and PLCG2 rs4399527�GC and CHGB 1�TT
S2 U. Protein ≤ 0 and PLCG2 rs4399527�GC and CHGB 1�CT and α-agonist ≤ 0 and Pro./Creat.Ratio > 0.01706
S3 U. Protein ≤ 0 and PLCG2 rs4399527�GC and CHGB 1�CC
S4 U. Protein ≤ 0.5 and PLCG2 rs4399527�CC and Pro./Creat.Ratio ≤ 0.15714
S5 U. Protein ≤ 0.5 and PLCG2 rs4399527�GG and CHGB 1�TT and 41.4< GFR G1 ≤ 59.5816
S6 U. Protein ≤ 0.5 and PLCG2 rs4399527�GG and CHGB 1�CT and Pro./Creat.Ratio > 0.02177
S7 U. Protein ≤ 0.5 and PLCG2 rs4399527�GG and CHGB 1�CC
R1 U. Protein ≤ 0 and PLCG2 rs4399527�GC and CHGB 1�CT and α-agonist ≤0 and Pro./Creat.Ratio ≤ 0.01706
R2 U. Protein ≤ 0 and PLCG2 rs4399527�GC and CHGB 1�CT and α-agonist >0
R3 0 ＜ U. Protein ≤0.5 and PLCG2 rs4399527�GC
R4 U. Protein ≤ 0.5 and PLCG2 rs4399527�CC and Pro./Creat.Ratio > 0.15714
R5 U. Protein ≤ 0.5 and PLCG2 rs4399527�GG and CHGB 1�TT and GFR G1 ≤ 41.4
R6 U. Protein ≤ 0.5 and PLCG2 rs4399527�GG and CHGB 1�TT and GFR G1 > 59.5816
R7 U. Protein ≤ 0.5 and PLCG2 rs4399527�GG and CHGB 1�CT and Pro./Creat.Ratio ≤ 0.02177
R8 U. Protein > 0.5

FIGURE 6 | C4.5 decision tree for AASK samples.
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is presented in Table 5 as combinatorial patterns of clinical
features and SNPs associated with slow and rapid progression
in the AASK dataset. Figures 6 and 8 show the C4.5 decision tree
and heatmap corresponding to the combinatorial patterns
presented in Table 5, respectively.

The pattern characteristics including

• rapid prevalence: proportion of rapid progressors covered by
a pattern to the total number of rapid progressors,

• slow prevalence: proportion of slow progressors covered by a
pattern to the total number of slow progressors,

• rapid homogeneity: proportion of rapid progressors covered
by the pattern,

• slow homogeneity: proportion of slow progressors covered
by the pattern,

• degree: number of conditions appear in the description of
the pattern of the C4.5 classification model are given in
Table 6.

3.2 Validation of Combinatorial Patterns
We remark that the C4.5 classification model given in Table 5
consists of explicit patterns, where the four clinical features and
two SNPs selected in Identification of Significant Clinical and
Genomic Features are assigned threshold values. Note that
patterns S1-S7 exhibit high homogeneity for the slow
progressors and R1-R8 exhibit high homogeneity for the rapid
progressors in AASK data. For example, patterns S2, S3, S5, S7
have 100% homogeneity, meaning that all patients covered by
each of these patterns are slow progressors. Similarly, the
homogeneity of patterns R1, R2, R5, R6, R7 is also 100%,
i.e., all patients covered by each of these patterns are rapid
progressors. We refer to such patterns as pure patterns
associated with the respective subgroups of AASK patients.
We also remark that the classification model contains fuzzy
patterns, S1, S4, S6, R3, R4, R8, i.e., patterns with
homogeneity < 100%. For example, the homogeneity of
pattern S4 is 81%, meaning that 81% of the patients covered
by pattern S4 are slow progressors and the remaining 19% of the
patients covered by this pattern are rapid progressors in AASK
Clinical Trial.

As for the prevalence, patterns S4 and R8 are significant
patterns, S4 covering 51% of all slow progressors, but only
12% of the rapid progressors and R8 covering 54% of all rapid
progressors, but only 2% of the slow progressors in the data.
While the other patterns in the classification model does not
exhibit high prevalence in the associated subgroups within the
data, they are still required to predict the progression of all AASK
patients in the study. Finally, we observe that these patterns use

FIGURE 7 | Heatmap of the C4.5 patterns for AASK samples.

FIGURE 8 | Receiver operating curves (ROC).
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small number of features of AASK patients. The degrees of the
patterns (number of features used in pattern description) range
from one to 5. Note that according to pattern R8, the U. Protein
levels of 54% of rapid progressors exceeds 0.5 and 96% of the
patients covered by this pattern are rapid progressors. Similar
observations can be done for other patterns forming the
classification model in Table 5.

Based on the 10 × 10-folding cross-validation experiments, the
classification model correctly classifies 80.53% of rapid
progressors and 70.18% of slow progressors and exhibits an
average accuracy of 76.77% with 0.68 precisiom, 0.70 recall,
and 0.67 F-measure, validating the distinguishing power of the
classification model for the AASK patients in our study. As
another measure of the effectiveness of the classification model
at predicting rapid or slow progressors, we generate receiver
operating characteristic (ROC) curve that shows how much the
classificationmodel is capable of distinguishing between the rapid
progressors and slow progressors in AASK Clinical Trial. ROC
curve is obtained by plotting sensitivity (true positive rate) against
1 − specificity (false positive rate). Based on 10 × 10-folding cross-
validation experiments, the area under the ROC curve is 0.78.

ROC curve corresponding to the C4.5 classification model (built
on entire dataset) in Table 5 is shown in Figure 8.

Thus, we can conclude that the combinatorial patterns
forming the classification model in Table 5 are high quality
decision rules that can be easily interpreted by medical experts,
allowing them to target the clinical features and SNPs associated
with the progression of the renal disease to develop new therapies.
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Prognostic Factors of Survival in
Pancreatic Cancer Metastasis to Liver
at Different Ages of Diagnosis: A SEER
Population-Based Cohort Study
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Background: Liver is a common metastatic organ for most malignancies, especially the
pancreas. However, evidence for prognostic factors of pancreatic cancer metastasis to the
liver at different ages is lacking. Thus, we aimed to evaluate the predictors of patients with
pancreatic cancer metastasis to liver grouped by age of diagnosis.

Methods: We chose the patients diagnosed between 2004 and 2015 from the SEER
database. The primary lesions of metastatic liver cancer between sexes were compared
using the Pearson’s chi-square test for categorical variables. The overall survival (OS) and
cancer-specific survival (CSS) were the endpoint of the study. The prognostic factors were
analyzed with the Kaplan-Meier method and log-rank test, and Cox proportional-hazards
regression model.

Results: The main primary sites of metastatic liver cancer for our patients are lung and
brunchu, sigmoid colon, pancreas, which in males are lung and bronchu, sigmoid colon
and pancreas, while breast, lung and bronchu, sigmoid colon in females. Furthermore, we
explored the prognostic factors of pancreatic cancer metastasis to liver grouped by age at
diagnosis. Tumor grade, histology and treatment are valid prognostic factors in all age
groups. Additionally, gender and AJCC N stage in age<52 years old, while race and AJCC
N stage in age >69 years old were predictors. Surgery alone was the optimal treatment in
group age>69 years old, whereas surgery combined with chemotherapy was the best
option in the other groups.

Conclusion: Our study evaluated the predictors of patients with pancreatic cancer
metastasis to liver at various ages of diagnosis.
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INTRODUCTION

The liver is the most frequently afflicted metastatic organ second
to the lymph nodes for most malignancies (Jaques et al., 1995;
Hess et al., 2006; Amankwah et al., 2013; Ryu et al., 2013). The
most common tumors with liver metastases arise from the portal
venous drainage system, which provides about two-thirds of the
liver’s blood supply. Because lesions are usually asymptomatic,
liver involvement in metastasis is often neglected and poorly
studied, and even extensive infiltration of metastatic tumor may
not alter its function or homeostasis until late in the disease
(Clark et al., 2016). There are few epidemiological studies on
metastatic liver cancer, but 30–70% of patients die of liver
metastasis (Pickren J and Lane, 1982) and most patients with
liver metastases will die of the primary disease (Gilbert Ha et al.,
1982).

As one of the deadliest malignant tumors in the world (Ferlay
et al., 2015; Schild and Vokes, 2016), pancreatic cancer is the
eighth most common cause of cancer in males and the sixth most
common cause of cancer in females. In decades, a large number of
studies have shown that the development of pancreatic cancer
was closely related to age. The aging trend of the population in the
world is challenging the current treatments and caring for
patients with pancreatic cancer (Bray et al., 2018; Ferlay et al.,
2018). The underlying mechanisms of pancreatic cancer is
complicated and uncertain, accompanied with poor prognosis
(Maisonneuve, 2019). According to the original site in pancreas,
pancreatic cancer is classified as endocrine and exocrine
pancreatic cancer, and the latter is more common and has a
higher risk of mortality in both females and males (Fesinmeyer
et al., 2005). Additionally, the majority of exocrine pancreatic
cancer is adenocarcinoma (Li, 2001; Cowgill and Muscarella,
2003). Approximately 50% of pancreatic cancer patients are
diagnosed with distant metastases (Mayo et al., 2012), and the
most common site of distal metastases found at autopsy was the
liver, followed by the peritoneum, lungs and pleura, bones, and
adrenal glands (Kamisawa et al., 1995; Mao et al., 1995;
Embuscado et al., 2005; Disibio and French, 2008). Previous
studies suggested risk factors of pancreatic cancer involving
smoking, positive family history and genetics, diabetes, obesity,
dietary factors, alcohol consumption, and physical inactivity
(Yadav and Lowenfels, 2013; Ilic and Ilic, 2016). Age, race,
tumor size, grade, lymph node metastasis (Mayo et al., 2012),
AJCC stage (Kamarajah et al., 2017) and treatment (Ansari et al.,
2019) are also reported associated with the survival of pancreatic
cancer patients. However, evidence for prognostic factors in
pancreatic cancer with distant metastasis is rare. However,
evidence for prognostic factors in pancreatic cancer with
distant metastasis is rare. Moreover, Andrew A et al. and
previous studies reported that treatment strategies for
pancreatic cancer differentiate in diverse range of ages
(Wheeler and Nicholl, 2014). Thus, the objective of this study
is to determine the differences in primary sites of metastatic liver
cancer betweenmales and females. Furthermore, we evaluated the
prognostic risk factors of pancreatic cancer metastasis to liver at
different ages of diagnosis through the Cox regression model.

MATERIALS AND METHODS

Data Source
The data was from the National Cancer Institute’s Surveillance,
Epidemiology, and End Results (SEER) program between 2004
and 2015. The program contains the population-based central
cancer registries of 18 geographically defined regions. Because all
the data used in the study was retrieved from the SEER database
with publicly available methods, the study did not require local
moral approval or a declaration.

Patient Selection
The inclusion criteria included: 1) The disease was diagnosed
between 2004 and 2015; 2) metastases of the primary tumor were
at the liver; 3) there was only one primary tumor; 4) the diagnosis
of the disease was histologically positive; 5) there were more than
0 days of survival.

The exclusion criteria included: 1) age≥85 years old; 2) the
demographics of patients were incomplete, including race and
marital status; 3) the clinicopathological characteristics of
patients were incomplete, including grade, AJCC seventh stage
(TNM), tumor size, laterality, causes of death and treatment
methods; 4) patients treated with radiotherapy; 5) the type of
reporting source was autopsy only or death certificate only.
(Figure 1).

We used the histopathology codes from the International
Classification of Disease for Oncology third edition (ICD-O-3)
to define the primary sites of patients with hepatic metastatic
carcinoma. In the ICD-O-3, the codes were defined as follows:
code 19-29 (tongue), code 50-69 (gum and other mouth), code
70-89 (salivary gland), code 90-99 (tonsil), code 110-119
(nasopharynx), code 129-139 (hypopharynx), code 150-159
(Esophagus), code 160-169 (stomach), code 170-179 (small
intestine), code 180 (cecum), code 181 (appendix), code 182
(ascending colon), code 183 (hepatic flexure), code 184
(transverse colon), code 185 (splenic flexure), code 186
(descending colon), code 187 (sigmoid colon), code 199
(rectosigmoid junction), code 209 (rectum), code 210-218
(Anus, Anal Canal and Anorectum), code 220 (liver), code
221 (intrahepatic bile duct), code 239 (gallbladder), code 240-
241 (other biliary), code 250-259 (pancreas), code 300-319
(nose, nasal cavity and middle ear), code 320-329 (larynx),
code 340-349 (lung and bronchu), code 380, 472-479, 490-499
(soft tissue including heart), code 381-383 (trachea,
mediastinum and other respiratory organs), code 384
(pleura), code 400-419 (bones and joints), code 440-449
(skin excluding basal and squamous), code 480
(retroperitoneum), code 481-482 (peritoneum, omentum
and mesentery), code 500-509 (breast), code 510-519
(vulva), code 529 (vagina), code 530-539 (cervix uteri), code
540-549 (corpus uteri), code 569 (ovary), code 570 (other
female genital organs), code 601 (penis), code 619
(prostate), code 620-629 (testis), code 649-659 (kidney and
renal pelvis), code 669 (ureter), 670-679 (urinary bladder ),
code 739 (thyroid) and code 740-755 (other endocrine
including thymus).
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According to the age at diagnosis of patients, we divided them
into three groups, including age at diagnosis <52 years old, age at
diagnosis 52–69 years old and age at diagnosis 69–84 years old.

Clinical Variables of Patients
Information on demographic factors (age, race, sex and marital
status), tumor-related factors (tumor size, grade, histology and
AJCC TNM staging system), therapeutic factors (surgery and
chemotherapy) and follow-up were collected from the SEER
database. And follow-up period ended in 2015. Based on the
Surgery Codes of the SEER program and information about other
treatments, we divided the treatment options into categories: no
treatment (N), surgery alone (S), chemotherapy alone (C),
surgery combined with chemotherapy (SC).

OS and CSS were the interesting endpoint, and the cancer-
specific death was based on the code of “SEER cause-specific
death classification” in the SEER database. OS wasmeasured from
the date on which the first-time definite diagnosis was made until
the date of death caused by any cause or the most recent
follow-up.

Statistical Analysis
Age and tumor size are categorized according to the best cut-off
value produced by the x-tile software version 3.6.1 (Yale
University School of Medicine, US). (S2) The incidence rates
were calculated by using R software. And baseline patients’

demographics and clinicopathological characteristics were
compared using the Pearson’s chi-square test for categorical
variables. The independent risk factors were identified by
univariate and multivariate Cox proportional-hazards
regression analyses for OS. R software version 4.0.2 (R Project,
Vienna, Austria) was used for all analysis. Statistically significant
cutoff value was set up as p < 0.05, two-sided. p < 0.2 was selected
as filter value for univariate to multivariate analysis.

RESULTS

The Frequency Distribution of Primary
Lesions of Metastatic Liver Cancer
Regardless of gender, the most common primary site of hepatic
metastatic carcinoma was lung and brunchu that accounted for
15.18% of all primary lesions, followed by sigmoid colon
(11.11%), pancreas (9.15%), breast (8.92%), cecum (8.18%)
and rectum (7.81%). The result of Pearson’s chi-square test
showed that the primary sites of hepatic metastatic carcinoma
were significantly different between males and females including
anus, anal canal and anorectum (p < 0.001), ascending colon (p <
0.05), breast (p < 0.001), cervix uteri (p < 0.001), corpus colon (p <
0.001), descending colon (p < 0.05), esophagus (p < 0.001),
gallbladder (p < 0.001), hepatic flexure (p < 0.05), kidney and
renal pelvis (p < 0.001), larynx (p < 0.05), liver (p < 0.001), lung

FIGURE 1 | Study cohort.
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and bronchus (p< 0.001), nasopharynx (p < 0.01), other female genital
organs (p< 0.001), ovary (p< 0.001), pancreas (p< 0.001), peritoneum,
omentum and mesentery (p < 0.001), prostate (p < 0.001),
rectosigmoid junction (p < 0.001), rectum (p < 0.001), sigmoid
colon (p < 0.001), splenic flexure (p < 0.001), stomach (p < 0.001),
testis (p < 0.01), urinary bladder (p < 0.001) and vulva (p < 0.05).
(Table 1). In females, the top five most common primary lesions of
hepatic metastases were breast (18.39%), lung and bronchu (13.51%),
sigmoid colon (9.55%), cecum (8.51%) and pancreas (8.17%), while in

males were lung and bronchu (16.75%), sigmoid colon (12.56%),
pancreas (10.06%), rectum (10.02%) and cecum (7.87%). (Figures 2,3).

The Effect of Age at Diagnosis With
Pancreatic Cancer Metastasis to Liver
The Kaplan Meier survival curve showed significant difference in
overall survival for patients diagnosed at different age groups
(p < 0.001). The overall survival time was negatively correlated

TABLE 1 | The frequency distribution of primary lesions of metastatic liver cancer.

Primary.site, n (%) Total (n = 23,070) Female (n = 11,139) Male (n = 11,931) p Value

Anus, Anal Canal and Anorectum 105 (0.46) 72 (0.65) 33 (0.28) <0.001***
Appendix 77 (0.33) 42 (0.38) 35 (0.29) >0.05
Ascending Colon 1,286 (5.57) 656 (5.89) 630 (5.28) <0.05*
Bones and Joints 6 (0.03) 1 (0.01) 5 (0.04) >0.05
Breast 2058 (8.92) 2048 (18.39) 10 (0.08) <0.001***
Cecum 1887 (8.18) 948 (8.51) 939 (7.87) >0.05
Cervix Uteri 97 (0.42) 97 (0.87) 0 (0) <0.001***
Corpus Uteri 185 (0.80) 185 (1.66) 0 (0) <0.001***
Descending Colon 488 (2.12) 210 (1.89) 278 (2.33) <0.05*
Esophagus 905 (3.92) 115 (1.03) 790 (6.62) <0.001***
Gallbladder 256 (1.11) 183 (1.64) 73 (0.61) <0.001***
Gum and Other Mouth 5 (0.02) 2 (0.02) 3 (0.03) >0.05
Hepatic Flexure 290 (1.26) 120 (1.08) 170 (1.42) <0.05*
Hypopharynx 12 (0.05) 2 (0.02) 10 (0.08) >0.05
Intrahepatic Bile Duct 58 (0.25) 28 (0.25) 30 (0.25) >0.05
Kidney and Renal Pelvis 483 (2.09) 180 (1.62) 303 (2.54) <0.001***
Larynx 10 (0.04) 1 (0.01) 9 (0.08) <0.05*
Liver 46 (0.20) 6 (0.05) 40 (0.34) <0.001***
Lung and Bronchu 3,503 (15.18) 1,505 (13.51) 1998 (16.75) <0.001***
Nasopharynx 21 (0.09) 3 (0.03) 18 (0.15) <0.01**
Nose, Nasal Cavity and Middle Ear 6 (0.03) 4 (0.04) 2 (0.02) >0.05
Other Biliary 115 (0.50) 49 (0.44) 66 (0.55) >0.05
Other Endocrine including Thymus 16 (0.07) 49 (0.05) 10 (0.08) >0.05
Other Female Genital Organs 27 (0.12) 27 (0.24) 0 (0) <0.001***
Ovary 464 (2.01) 464 (4.17) 0 (0) <0.001***
Pancreas 2,110 (9.15) 910 (8.17) 1,200 (10.06) <0.001***
Penis 2 (0.01) 0 (0) 2 (0.02) >0.05
Peritoneum, Omentum and Mesentery 30 (0.13) 27 (0.1) 3 (0.15) <0.001***
Pleura 1 (0.00) 0 (0) 1 (0.01) >0.05
Prostate 18 (0.08) 0 (0) 18 (0.15) <0.001***
Rectosigmoid Junction 973 (4.22) 384 (3.45) 589 (4.94) <0.001***
Rectum 1801 (7.81) 605 (5.43) 1,196 (10.02) <0.001***
Retroperitoneum 29 (0.13) 11 (0.10) 18 (0.15) >0.05
Salivary Gland 18 (0.08) 7 (0.06) 11 (0.09) >0.05
Sigmoid Colon 2,563 (11.11) 1,064 (9.55) 1,499 (12.56) <0.001***
Skin excluding Basal and Squamous 13 (0.06) 5 (0.04) 8 (0.07) >0.05
Small Intestine 613 (2.66) 284 (2.55) 329 (2.76) >0.05
Soft Tissue including Heart 94 (0.41) 54 (0.48) 40 (0.34) >0.05
Splenic Flexure 297 (1.29) 113 (1.01) 184 (1.54) <0.001***
Stomach 1,182 (5.12) 329 (2.95) 853 (7.15) <0.001***
Testis 10 (0.04) 0 (0) 10 (0.08) <0.01**
Thyroid 26 (0.11) 14 (0.13) 12 (0.10) >0.05
Tongue 22 (0.10) 6 (0.05) 16 (0.13) >0.05
Tonsil 14 (0) 4 (0) 10 (0) >0.05
Trachea, Mediastinum and Other Respiratory Organs 4 (0.02) 0 (0) 4 (0.03) >0.05
Transverse Colon 658 (2.85) 302 (2.71) 356 (2.98) >0.05
Ureter 14 (0.06) 7 (0.06) 7 (0.06) >0.05
Urinary Bladder 162 (0.70) 49 (0.44) 113 (0.95) <0.001***
Vagina 6 (0.03) 6 (0.05) 0 (0) <0.05*
Vulva 4 (0.02) 4 (0.04) 0 (0) >0.05

*, two-sided p values <0.05; **, two-sided p values <0.01; ***, two-sided p values <0.001.
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with the age at diagnosis. Among the three groups, the prognosis
of patients diagnosed at age less than 52 years old was the best,
and of which the median survival time was 1 year. (Figure 4).

The Effect of Treatment with Pancreatic
Cancer Metastasis to Liver
Regardless of age at diagnosis, surgery alone (S) was the optimal
treatment option for patients with pancreatic cancer metastasis to
liver, followed by surgery combined with chemotherapy (SC),
chemotherapy alone (C) and no treatment (N) (p < 0.001). And
the median survival time of patients with surgery alone was
approximately 3.5–4 years. (Figure 5).

The Relative Hazard Ratio of Treatment and
Age at Diagnosis
As the multivariable hazard ratio of in prognosis displayed in
Figure 6, with the increase of the age of diagnosis, treatment
showed significantly protective effect, while grade had a
significant effect on prognosis only in younger age. And
other prognostic factors had almost no significant change.
(Figure 6A). Thus, we further analyzed the relative hazard
ratio of diverse treatment options and age of diagnosis in
patients, we found that when patients were diagnosed at a
younger age, chemotherapy alone was the most adverse risk
factor, while when diagnosed at an older age, age at diagnosis
was the most adverse risk factor for the outcome. What’s more,
for patients diagnosed at all ages, chemotherapy alone was the
treatment with the worst effect on prognosis, while for patients

diagnosed at age more than 69 years old, surgery was better than
combined with chemotherapy. (Figure 6B).

Clinical Characteristics of the Patients With
Pancreatic Cancer Metastasis to Liver
Demographic characteristics of 2088 patients with pancreatic cancer
metastasis to liver grouped by age at diagnosed during the 12-years
study period (between 2004 and 2015) in the SEER database are shown
inTable 2. In this study, sex (p� 0.002), race (p� 0.031), marital status
(p < 0.001), tumor grade (p < 0.001), AJCC N stage (p � 0.005),
treatment (p < 0.001), median survival time (p < 0.001) and vital status
(p < 0.001) were the parameters with significant difference among
different groups. On the whole, most patients were married white
males whose tumors were poorly differentiated and less than 4.9 cm in
size, treated with chemotherapy alone (C). The most common
histological type of tumors was adenomas and adenocarcinomas.
Compared with the other groups, well differentiated tumors (25%),
surgery alone (S, 14.44%) or surgery combined with chemotherapy
(SC, 11.27%) for treatment strategies and longer survival time
(12months) would more likely to occur in age <52 years old group.

Univariate and Multivariate of OS in the
Patients with Pancreatic Cancer Metastasis
to Liver
As illustrated in Table 3, on the basis of the overall survival (OS),
univariate analysis showed that the significant indicators were sex,
grade, tumor size, AJCCN stage, histology and treatment in group age
<52 years old; marital status, grade, tumor size, histology and

FIGURE 2 | Frequency Distribution of primary tumour sources of hepatic metastatic carcinoma.
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treatment in group age 52–69 years old; and race, grade, AJCC N
stage, histology and treatment in group age 69–84 years old.

In multivariate analysis, we further observed the variables
selected from univariate analysis (p < 0.2). Cox regression
analysis was performed to compete hazard ratios and 95%
confidence intervals. In the three groups, tumor grade was all
associated with poor overall survival, and surgery alone (S) was
the best treatment option for the overall survival of patients.

UsingAJCCN0 stage as reference, AJCCN1 stage (p� 0.020,HR�
1.18, 95%CI, 1.03–1.36) in group age 52–69 years and AJCCNX stage
(p� 0.039, HR � 1.33, 95%CI, 1.01–1.74) in group age 69–84 years old
were indicated to be associated with poor overall survival, while in
group age <52 years old, AJCC N stage was not correlated with the
prognosis. Choosing adenomas and adenocarcinomas as reference in
histological types, in addition to ductal and lobular neoplasms (age

<52 years, p� 0.027,HR� 1.69, 95%CI, 1.06-2.69; age 52–69 years old,
p< 0.001, HR � 1.59, 95%CI, 1.24-2.04; age 69–84 years old, p� 0.045,
HR � 1.34, 95%CI, 1.01-1.79) in the three groups, other histological
types (p � 0.016, HR � 1.90, 95%CI, 1.13-3.21) in group age <52 years
old, and epithelial neoplasms (age 52–69 years old, p � 0.007,
HR � 1.48, 95%CI, 1.11-1.96; age 69–84 years old, p � 0.004, HR �
1.65, 95%CI, 1.18-2.31) in the other two groups (age >52 years old)
were associated with a poor overall survival.

Univariate and Multivariate of CSS in the
Patients with Pancreatic Cancer Metastasis
to Liver
As illustrated in Table 4, on the basis of the cancer-specific
survival (CSS), univariate analysis showed that the significant

FIGURE 3 | The purpose of primary tumour sources of liver metastatic carcinoma in both sexes.
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indicators were sex, grade, histology and treatment methods in
group age <52 years old; grade, histology and treatment methods
in group age 52–69 years old; and race, grade, AJCC T stage and
treatment methods in group age 69–84 years old.

Using well differentiated grade as reference, multivariate
analysis in Table 4 indicated tumor grade was associated with
poor overall survival at different ages. In addition, treatment (S,
C, SC) was associated with better cancer-specific survival in all
three groups compared with no treatment. Notably, in group age
69–84 years old, surgery alone (S, p < 0.001, HR � 0.40, 95%CI,
0.26-0.60) was the optimal treatment, whereas surgery combined
with chemotherapy (SC, group age <52 years old, p < 0.01, HR �
0.17, 95%CI, 0.08-0.33; group age 52–69 years old, p < 0.001,
HR � 0.22, 95%CI, 0.16-0.30) was the best option in the other groups.

When using AJCC N0 as reference, patients with AJCC N1
stage (p < 0.001, HR � 1.82, 95%CI, 1.29-2.56) had a poor

prognosis only in group age <52 years old. And epithelial
neoplasms (age 52-69, p � 0.026, HR � 1.38, 95%CI, 1.04-1.84;
age 69–84 years old, p � 0.042 HR � 1.43, 95%CI, 1.01-2.02) were
associated with a poor cancer-specific survival only in group age
>52 years old when using adenomas and adenocarcinomas as
reference. Additionally, in group age 69–84 years old, other racial
patients (p � 0.017, HR � 1.42, 95%CI, 1.07-1.90) had a worse
prognosis.

DISCUSSION

It was reported that 90% cancer-related deaths resulted from
metastasis of the primary tumor. The formation of local infiltrates
and metastases are clinically most relevant to the progression of
cancer (Christofori, 2006). Organ damage due to growth-related

FIGURE 4 | Kalpan Meier survival curve showing the effect of age at diagnosis with pancreatic cancer metastasis to liver.
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lesions, paraneoplastic syndromes, or treatment complications
was significantly associated with morbidity and mortality of
metastatic disease (Steeg, 2006). In general, cancer metastasis
can be divided into different stages from local invasion,
intravasation, survival in circulation, extravasation, finally to
colonization and metastasis (Hanahan and Weinberg, 2011).
The unique biological characteristics of the liver make it a
vulnerable site for tumor metastasis: 1) structural and
hemodynamic features - characteristic microcirculation in the
liver makes it easier for diffuse tumor cells carried in the blood to
enter. In addition, molecules on the surface of hepatic
nonparenchymal cells (NPCs) lining the hepatic capillaries
contribute to the adhesion and retention of circulating tumor
cells. The pore on the hepatic sinusoidal endothelial cell (LSECs)
facilitates the tumor cells to enter the basement membrane
directly; 2) regenerative capabilities—the cellular tissue

remodeling mechanism involved in self-renewal and
reconstruction that promotes intratumoral stroma and blood
vessel formation through signals generated by tumor cells,
creating an enabling environment for survival and growth; 3)
regional immunosuppression—the general foreign body reaction
is reduced to limit potential damage to the liver, resulting in a
relatively tolerant microenvironment that allows for the survival
and growth of foreign tumor cells (Vidal-Vanaclocha, 2011; Clark
et al., 2016).

Pancreatic cancer is the fourth leading cause of cancer-related
death worldwide, and its main metastatic site is liver (Stott et al.,
2010). Studies have shown that, in addition to smoking, a family
history of pancreatic cancer, black race, diabetes, and increased
body mass index were also predictors of pancreatic cancer
mortality (Coughlin et al., 2000). A lack of early signs and
symptoms, as well as high aggressiveness, leads to a low

FIGURE 5 | Kalpan Meier survival curve showing the effect of treatment with pancreatic cancer metastasis to liver.
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survival rate. The prognosis of patients with pancreatic cancer is
closely related to tumor stage and tumor grade/aggressiveness
(Bolm et al., 2015) that can only be evaluated by biopsy or
surgery. Our present data showed tumor grade was also a
significant predictor of overall survival and cancer-specific
survival in patients with liver metastasis, independent of age at
diagnosis (Table 3, Table 4). In addition, 85% of the histology
types of pancreatic cancer are ductal adenocarcinoma of the
pancreas (PDAC) (Ryan et al., 2014; Hogendorf et al., 2018).
For patients with PDAC, younger age, male sex, larger tumor size,
low ALT level and high CA 19-9 level could predict unexpected
distant metastasis (Liu et al., 2018). Histologically, pancreatic
adenocarcinoma accounts for the largest proportion in
pancreatic cancer (Simard et al., 2012), accompanied with the
worst prognosis, and the most common site of metastasis is liver
(Lemke et al., 2013; Deeb et al., 2015; Kumar et al., 2015), which
is consistent with our results (Table 2). Our data suggested that
most histologic types of pancreatic metastases to liver were
adenocarcinomas. The prognosis of patients with pancreatic
cancer with liver metastasis was poorer than that of patients

with distant lymph node metastasis or lung metastasis. The
factors predicting the better prognosis included age<65 years,
white race, being married, female sex and surgery treatment
(Oweira et al., 2017). Furthermore, our study showed that the
younger the age, the higher the overall survival rate of patients
with pancreatic cancer with liver metastasis (Figure 4). In
addition, we found differences in prognostic factors among
the groups after grouping by age at diagnosis. Histologically,
compared with pancreatic adenocarcinoma, ductal and lobular
neoplasms and epithelial neoplasms were associated with poor
overall survival in the group age >52 years old, while the latter
were not correlated with the prognosis in group age <52 years
old. In the multivariate regression analysis, histological type was
a significant predictor for cancer-specific survival only for
patients diagnosed at age >52 years old. AJCC N1 stage with
significance in predicting poor overall survival only in group age
52–69 years old, and predicting poor cancer-specific survival
only in group age <52 years old. (Table 3, Table 4).

At present, the only treatment for pancreatic cancer is surgery,
and adjuvant therapy based on chemotherapy can improve the

FIGURE 6 | Relative hazard ratio of multivariables in patients with pancreatic cancer metastasis to liver.
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survival rate (McGuigan et al., 2018). For elderly patients
(age>80 years old), postoperative adjuvant chemotherapy is
critical to the prognosis (Sho et al., 2016). Surgery is limited
to patients with localized disease, and metastatic spread is often
considered a contraindication to resection, regardless of whether
it is observed synchronously or ectopic (Seufferlein et al., 2012).
However, metastatic excision or local treatment is occasionally
performed in centers around the world based on individual
clinical experience, and there is no objective evidence to guide
treatment methods taking into account patient choice or
metastatic spread (Gleisner et al., 2007; Shrikhande et al.,
2007; De Jong et al., 2010; Nentwich et al., 2012; Edwards
et al., 2013). In general, palliative chemotherapy with
FOLFIRONOX (mFOLFIRINOX with 5-fluorouracil) is the
preferred chemotherapy regimen for metastatic pancreatic
cancer (McGuigan et al., 2018). Despite this, T. Hackert
(Hackert et al., 2017) proved that resection of liver or
interaortocaval lymph nodes (ILN) metastases could be

superior to palliative treatment for pancreatic cancer patients
with metastasis. Mitsuka et al. (2020) found that the median
survival time was significantly improved for patients diagnosed
between 44 and 83 years old who underwent liver resection or
pancreatectomy. Other study (Warschkow et al., 2020) showed
that lymphadenectomy had only 18% direct effect on improved
overall survival, while 82% of its effect were mediated by other
factors like treatment at high-volume hospitals and adjuvant
chemotherapy for patients whose median age were 66 years.
However, the analysis on differences among different ages of
patients is scarce. As we know, there is insufficient evidence that
the efficacy of different therapies in patients with metastatic
pancreatic cancer is age-related. Our data showed
chemotherapy alone was the most important prognostic factor
for patients who diagnosed at younger age, and age of diagnosis
was the most prognostic factor for patients diagnosed at an older
age. For the diagnosis of pancreatic cancer at all ages, surgery was
the best treatment method to improve the overall survival rate of

TABLE 2 | Clinical characteristics of the patients with pancreatic cancer metastasis to liver grouped by age at diagnosis.

Variables Total (n = 2088) <52 years old
(n = 284)

52–69 years old
(n = 1095)

69-84 years old
(n = 709)

p value

Sex, n (%) — — — — 0.002**
Female 900 (43.10) 119 (41.90) 438 (40.00) 343 (48.38) —

Male 1188 (56.90) 165 (58.10) 657 (60.00) 366 (51.62) —

Race, n (%) — — — — 0.031*
White 1,651 (79.07) 207 (73.89) 865 (79.00) 579 (81.66) —

Black 261 (12.50) 44 (15.49) 143 (13.06) 74 (13.06) —

Other 176 (8.43) 33 (11.62) 87 (7.95) 56 (7.90) —

Marital status, n (%) — — — — <0.001***
Unmarried 333 (15.95) 87 (30.63) 186 (16.99) 60 (8.46)
Married 1755 (84.05) 197 (69.37) 909 (83.01) 649 (91.54)

Grade, n (%) — — — — <0.001***
Well differentiated 257 (12.31) 73 (25.70) 108 (9.86) 76 (10.72) —

Moderately differentiated 756 (36.21) 82 (28.87) 414 (37.81) 260 (36.67) —

Poorly differentiated 1,000 (47.89) 116 (40.85) 539 (49.22) 345 (48.66) —

Undifferentiated 75 (3.59) 15 (4.58) 34 (3.95) 28 (3.95) —

Tumor size, n (%) — — — — 0.325
<4.9 cm 1,285 (61.54) 164 (57.75) 669 (61.10) 452 (63.75)
4.9–7.4 cm 565 (27.06) 83 (29.33) 294 (26.85) 188 (26.52)
>7.4 cm 238 (11.40) 37 (13.03) 132 (12.05) 69 (9.73)

AJCC N, n (%) — — — — <0.005**
N0 1,074 (51.44) 129 (45.42) 544 (49.68) 401 (56.56)
N1 804 (38.51) 129 (45.42) 432 (39.45) 243 (34.27)
NX 210 (10.06) 26 (9.15) 119 (10.87) 65 (9.17)

Histology, n (%) — — — — 0.935
Adenomas and adenocarcinomas 1,688 (80.84) 225 (79.23) 896 (81.83) 567 (79.97) —

Ductal and lobular neoplasms 166 (7.95) 25 (8.80) 82 (7.49) 59 (8.32) —

Epithelial neoplasms 116 (5.56) 16 (5.63) 60 (5.48) 40 (5.64) —

Others 118 (5.65) 18 (6.34) 57 (5.21) 43 (6.06) —

Treat n (%) — — — — <0.001***
N 595 (28.50) 51 (17.96) 273 (24.93) 271 (38.22) —

C 1,186 (56.80) 160 (56.34) 659 (60.18) 367 (51.76) —

S 158 (7.57) 41 (14.44) 75 (6.85) 42 (5.92) —

SC 149 (7.14) 32 (11.27) 75 (6.85) 42 (5.92) —

Survival time, Median (IQR) 6.00 (2.00,13.00) 12.00 (4.00, 27.00) 6.00 (2.00, 14.00) 4.00 (2.00, 9.00) <0.001***
Vital status, n (%) — — — — <0.001***

Alive 280 (13.41) 86 (30.28) 148 (13.52) 46 (6.49) —

Cancer-specific death 1773 (84.91) 194 (68.31) 933 (85.21) 646 (91.11) —

Other causes-specific death 35 (1.68) 4 (1.41) 14 (1.28) 17 (2.40) —

*, two-sided p values <0.05; **, two-sided p values <0.01; ***, two-sided p values <0.001. AJCC, American Joint Committee on Cancer (seventh).
Treat, N, no treatment; C, chemotherapy alone; S, surgery alone; SC, surgery combined with chemotherapy.
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patients with pancreatic cancer with liver metastasis (Table 3).
Considering the tumor-specific survival rate, surgery combined
with chemotherapy is the best choice for patients under 69 years

of age at the time of diagnosis, while surgery alone is the best
choice for patients aged 69–84 years at the time of diagnosis. In
addition, surgery alone and combined chemotherapy were

TABLE 3 | Univariate and multivariate of OS in the patients with pancreatic cancer metastasis to liver grouped by age at diagnosis.

<52 years old 52–69 years old 69–84 years old

Variables Univariate
analysis

Multivaraiate analysis Univariate
analysis

Multivaraiate analysis Univariate
analysis

Multivaraiate analysis

N P Value HR (95%CI) P Value N P Value HR (95%CI) P Value N P Value HR
(95%CI)

P Value

Sex, n (%) — — — — — — — — — — — —

Female 119 — — — 438 — — — 343 — — —

Male 165 0.004** 1.28
(0.94–1.75)

0.112 657 0.126 1.10
(0.97–1.26)

0.15 366 0.113 0.87
(0.74–1.01)

0.075

Race, n (%) — — — — — — — — — — — —

White 207 — — — 865 — — — 579 — — —

Black 44 0.913 — — 143 0.156 1.10
(0.90–1.33)

0.349 74 0.0645 1.00
(0.78–1.01)

0.976

Other 33 0.250 — — 87 0.914 — 0.940 56 0.037* 1.22
(0.92–1.62)

0.176

Marital status, n (%) — — — — — — — — — — —

Unmarried 87 — — — 186 — — — 60 — — —

Married 197 0.425 — — 909 0.017* 0.85
(0.71–1.01)

0.063 0.940 0.0674 — —

Grade, n (%) — — — — — — — — — — — —

Well differentiated 73 — — — 108 — — — 76 — — —

Moderately
differentiated

82 <0.001*** 2.52
(1.53–4.13)

<0.001*** 414 <0.001*** 3.16
(2.35–4,25)

<0.001*** 260 <0.001*** 2.07
(1.5–2.76)

<0.001***

Poorly
differentiated

116 <0.001*** 5.17
(3.14–8.52)

<0.001*** 539 <0.001*** 4.61
(3.43–6.19)

<0.001*** 345 <0.001*** 2.68
(2.02–3.57)

<0.001***

Undifferentiated 13 <0.001*** 5.08
(2.24–11.53)

<0.001*** 34 <0.001*** 1.10
(0.82–1.47)

<0.001*** — <0.001*** 2.28
(1.43–3.65)

<0.001***

Tumor size, n (%) — — — — — — — — — — — —

<4.9 cm 164 — — — 544 — — — 401 — — —

4.9–7.4 cm 83 0.322 1.03
(0.95–1.81)

0.091 432 0.516 1.18
(1.03–1.36)

0.20* 69 0.744 — —

>7.4 cm 37 0.008** 0.69
(0.41–1.16)

0.130 119 0.075 0.97
(0.78–1.20)

0.750 188 0.641 — —

AJCC N, n (%) — — — — — — — — — — — —

N0 129 — — — 669 — — — 452 — — —

N1 1299 0.887 1.31
(0.75–1.42)

0.850 294 0.057 1.09
(0.94–1.27)

0.243 69 0.744 — —

NX 26 <0.001*** 0.69
(0.41–1.16)

0.162 132 0.003* 0.82
(0.66–1.03)

0.082 188 0.641 — —

Histology, n (%) — — — — — — — — — — — —

Adenomas and
adenocarcinomas

225 — — — 896 — — — 567 — — —

Ductal and lobular
neoplasms

25 0.001** 1.69
(1.06–2.69)

0.027* 82 0.438 1.59
(1.24–2.04)

<0.001*** 59 0.832 1.34
(1.01–1.79)

0.045*

Epithelial
neoplasms

16 <0.001*** 1.68
(0.93–3.01)

0.083 60 0.008* 1.48
(1.11–1.96)

0.007** 40 <0.001*** 1.65
(1.18–2.31)

0.004*

Others 18 <0.001*** 1.90
(1.13–3.21)

0.016 57 0.146 1.10
(O.82–1.47)

0.521 43 0.929 0.79
(0.57–1.10)

0.166

Treat n (%) — — — — — — — — — — — —

N 51 — — — 273 — — — 271 — — —

C 160 0.533 0.62
(0.41–0.94)

0.024* 659 <0.001*** 0.43
(0.37–0.50)

<0.001*** 367 <0.001*** 0.54
(0.45–0.63)

<0.001***

S 41 <0.001*** 0.16
(0.08–0.32)

<0.001*** 75 <0.001*** 0.15
(0.10–0.21)

<0.001*** 42 <0.001*** 1.65
(1.18–0.40)

<0.001***

SC 32 0.005** 0.35
(0.19–0.64)

<0.001*** 88 <0.001*** 0.16
(0.12–0.21)

<0.001*** 29 <0.001*** 0.33
(0.21–0.51)

<0.001***

*, two-sided p values <0.05; **, two-sided p values <0.01; ***, two-sided p values <0.001. AJCC, American Joint Committee on Cancer (seventh).
HR, hazard ratio.
CI, coincidence intervals. OS, overall survival.
Treat, N, no treatment; C, chemotherapy alone; S, surgery alone; SC, surgery combined with chemotherapy.
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significantly superior to chemotherapy alone in terms of overall
survival and tumor-specific survival (Table 3, Table 4).
Interestingly, in a case report (Katsura et al., 2019), after the
combination therapy of pancreatoduodenectomy and
chemotherapy, a 66-year-old patient with pancreatic ductal

carcinoma metastasis to liver showed the disappearance of
liver metastasis and without other new metastasis. This case
report partially confirms the conclusion from our analysis that
surgery alone was the optimal treatment in group age>69 years
old, while surgery combined with chemotherapy was the best

TABLE 4 | Univariate and multivariate of CSS in the patients with pancreatic cancer metastasis to liver grouped by age at diagnosis.

Variables <52 years old 52–69 years old 69–84 years old

Univariate Multivariate Univariate Multivariate Univariate Multivariate

N p
value

HR (95%CI) p
value

N p
value

HR (95%CI) p
value

N p
value

HR (95%CI) p
value

Sex, n (%)
Female 73 — — — 365 — — — 317 — — —

Male 121 0.045* 1.08
(0.78–1.48)

0.645 568 0.274 — — 329 0.428 — —

Race, n (%)
White 142 — — — 735 — — — 527 — — —

Black 31 0.308 — — 127 0.814 — — 65 0.208 1.08
(0.83–1.40)

0.576

Other 21 0.796 — — 71 0.253 — — 54 0.028* 1.42
(1.07–1.90)

0.017*

Marital status, n (%)
Unmarried 56 — — — 158 — — — 55 — — —

Married 138 0.706 — — 775 0.073 0.88
(0.74–1.04)

0.14 591 0.975 — —

Grade, n (%)
Well differentiated 25 — — — 54 — — — 58 — — —

Moderately
differentiated

53 <0.001*** 4.05
(2.25–7.29)

<0.001*** 353 0.024* 1.61
(1.20–2.16)

0.002** 237 <0.001*** 1.99
(1.48–2.68)

<0.001***

Poorly
differentiated

106 <0.001*** 5.26
(2.97–9.33)

<0.001*** 497 <0.001*** 2.29
(1.71–3.06)

<0.001*** 325 <0.001*** 2.50
(1.86–3.36)

<0.001***

Undifferentiated 10 <0.001*** 9.43
(3.76–23.67)

<0.001*** 29 0.003** 2.00
(1.25–3.20)

0.004** 26 0.002** 2.14
(1.33–3.46)

0.002**

Tumor size, n (%)
<4.9 cm 113 — — — 576 — — — 414 — — —

4.9–7.4 cm 64 0.601 — — 260 0.514 — — 170 0.651 — —

>7.4 cm 17 0.854 — — 97 0.928 — — 62 0.255 — —

AJCC N, n (%)
N0 86 — — — 468 — — — 362 — — —

N1 85 0.601 1.82
(1.29–2.56)

<0.001*** 359 0.491 — — 223 0.041* 0.94
(0.79–1.12)

0.47

NX 23 0.077 1.17
(0.72–1.92)

0.523 106 0.338 — — 61 0.055 1.13
(0.86–1.50)

0.382

Histology, n (%)
Adenomas and
adenocarcinomas

139 — — — 753 — — — 513 — —

Ductal and lobular
neoplasms

23 0.764 1.05
(0.66–1.68)

0.832 75 0.309 1.19
(0.92–1.54)

0.178 55 0.639 1.15
(0.85–1.56)

0.353

Epithelial
neoplasms

14 0.024* 1.17
(0.63–2.17)

0.622 55 0.009** 1.38
(1.04–1.84)

0.026* 38 0.002** 1.43
(1.01–2.02)

0.042*

Others 18 0.016* 1.35
(0.80–2.27)

0.264 50 0.136 1.18
(0.88–1.58)

0.268 40 0.834 0.84
(0.60–1.17)

0.293

Treat, n (%)
N 36 — — — 245 — — — 252 — — —

C 131 0.036* 0.44
(0.29–0.69)

<0.001*** 601 <0.001*** 0.40
(0.35–0.47)

<0.001*** 340 <0.001*** 0.48
(0.40–0.57)

<0.001***

S 9 0.008** 0.22
(0.09–0.52)

<0.001*** 33 <0.001*** 0.30
(0.21–0.44)

<0.001*** 31 <0.001*** 0.40
(0.26–0.60)

<0.001***

SC 18 <0.001*** 0.17
(0.08–0.33)

<0.001*** 54 <0.001*** 0.22
(0.16–0.30)

<0.001*** 23 <0.001*** 0.44
(0.28–0.69)

<0.001***

*, two-sided p values <0.05; **, two-sided p values <0.01; ***, two-sided p values <0.001. AJCC, American Joint Committee on Cancer (seventh).
HR, hazard ratio.
CI, coincidence intervals. CSS, cancer-specific survival.
Treat, N, no treatment; C, chemotherapy alone; S, surgery alone; SC, surgery combined with chemotherapy.
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option in the other groups. Both surgical treatment and
chemotherapy cause damage to human bodies. Especially,
the elderly can hardly bear the double blow, as surgical
treatment and chemotherapy both exerting in therapy. In
addition, chemotherapy is often accompanied with many
side effects. The analyzed data in this manuscript
demonstrates that surgical treatment alone is superior to
surgery plus chemotherapy in patients older than 69 years
of age. It suggests that surgery should be a priority for the
older population (age>69) with pancreatic cancer metastasis to
liver. Certainly, clinical treatment selection depends on the
multiple assessment of patient, and this manuscript provides
an epidemiological reference for the selection of clinical
treatment.

Although the SEER database provides a large amount of
clinical data, there are still many limitations in our research.
First, we need to further conduct a follow-up clinical trial to verify
this result. Second, we did not include patients undergoing
radiotherapy because of the small number of cases, and we
need to compare the effects of radiotherapy, chemotherapy
and surgery on prognosis. Finally, the sequence of
chemotherapy and surgery, the diverse methods of surgery
and chemotherapy can be further studied.

CONCLUSION

In this population-based analysis, we found the main primary
sites of metastatic liver cancer are lung and brunchu, sigmoid
colon and pancreas. Furthermore, we explored the prognostic
factors of pancreatic cancer metastasis to liver grouped by age
at diagnosis. Tumor grade, histology and treatment are valid
prognostic factors in all age groups. Additionally, gender and
AJCC N stage in age<52 years old, while race and AJCC N
stage in age>69 years old were predictors. Surgery alone was

the optimal treatment in group age>69 years old, whereas
surgery combined with chemotherapy was the best option
in the other groups. In conclusion, these findings would
help to choose better treatment for patients with metastatic
liver cancer.
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Burnout, a state of emotional, physical, and mental exhaustion caused by excessive

and prolonged stress, is a growing concern. It is known to occur when an individual

feels overwhelmed, emotionally exhausted, and unable to meet the constant demands

imposed upon them. Detecting burnout is not an easy task, in large part because

symptoms can overlap with those of other illnesses or syndromes. The use of natural

language processing (NLP) methods has the potential to mitigate the limitations of typical

burnout detection via inventories. In this article, the performance of NLP methods on

anonymized free text data samples collected from the online forum/social media platform

Reddit was analyzed. A dataset consisting of 13,568 samples describing first-hand

experiences, of which 352 are related to burnout and 979 to depression, was compiled.

This work demonstrates the effectiveness of NLP and machine learning methods in

detecting indicators for burnout. Finally, it improves upon standard baseline classifiers by

building and training an ensemble classifier using two methods (subreddit and random

batching). The best ensemble models attain a balanced accuracy of 0.93, test F1 score

of 0.43, and test recall of 0.93. Both the subreddit and random batching ensembles

outperform the single classifier baselines in the experimental setup.

Keywords: burnout, natural language processing, machine learning, augmented intelligence, ensemble classifier,

psychology

1. INTRODUCTION

Stress at the workplace is an increasingly relevant topic. In a study involving almost 10,000 working
adults in eight territories throughout Europe, it was found that 18% of the respondents feel stressed
daily, and three out of ten participants feel so stressed that they have considered finding a new job
(ADP, 2018). A Swiss study (SECO, 2015) estimates that 24.2% of employees feel often or always
stressed at their workplace, while 35.2% feel mostly (22.2%) or always (13%) exhausted at the end
of the working day. In the latter group, 25.5% still feel exhausted the next morning, a circumstance
which, if prolonged, can lead to various health hazards. Studies from the United States give the
same indication. The Stress in America’s Report of 2019 by the American Psychological Association
shows that Americans consider a healthy stress level at an average of 3.8 (scale ranging from 1 to
10, where 10 is “a great deal of stress” and 1 is “little or no stress;”) however, they report having
experienced an average stress level of 4.9 (American Psychological Association, 2019).
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This stress can lead to workplace burnout. In 2019, the
WHO included burnout in the 11th Revision of the International
Classification of Diseases (ICD-11) as a syndrome.1 In particular,
during the pandemic crisis, burnout in the healthcare sector was
an important issue: it has been shown, for instance, that the
COVID-19 crisis has had an overwhelming psychological impact
on intensive care workers (Azoulay et al., 2020).

Identifying burnout syndrome is complex because symptoms
can overlap with other diseases or syndromes (Jaggi, 2019).
In particular, the overlap between depression and burnout is
an important subject of scientific discussion, e.g., (Schonfeld
and Bianchi, 2016). In clinical intervention and field research,
burnout is typically detected via the use of inventories. Potential
burnout patients fill out a psychological test, usually in the form
of a questionnaire with scaled-response answers (e.g., not at
all, sometimes, often, very often). Although such inventories
are used in most studies and are well-established in the
clinical environment, major limitations have been identified. For
example, in personality inventories, participants are liable to
fake their results, e.g., (Holden, 2007). They may adapt their
responses in high-stake situations in order to increase their
chances for the desired outcome (Lambert, 2013). A further issue
with inventories is known as extreme response bias (ERB); some
respondents will tend to choose (or avoid) only the highest or
the lowest options in such tests (Greenleaf, 1992; Brulé and
Veenhoven, 2017). It has also been shown that on self-reported
tests for subjective well-being, the respondent’s mood during
testing sometimes contributes as a predictor (Diener et al., 1991).
Furthermore, defensiveness (the denial of symptoms) and social
bias can influence the outcome of inventories (Williams et al.,
2019).

A potential way to mitigate the existing and well-known
problems with inventories is to explore the use of free text
questions or transcribed interviews. Previous studies have
demonstrated promise in such methods (Burisch, 2014), but,
in practice, the manual effort of analyzing the resulting data
often results in untenable overhead costs. Fortunately, recent
developments in the field of natural language processing (NLP)
make approaches using such unstructured textual data feasible.
It has been shown that computational linguistic markers can be
used to predict depressivity of the writer (Havigerová et al., 2019).

Existing work applying NLP to psychology focuses on the
identification of indicators for different types of mental health
disorders by using data obtained from social media, comprising
the majority of available research in this area. For example,
such work concentrates on suicide risk assessment (Morales
et al., 2019), (Just et al., 2017), depression (Moreno et al., 2011),
(Schwartz et al., 2014), post-partum depression (De Choudhury
et al., 2013), (De Choudhury et al., 2014), or different mental
health signals (Coppersmith et al., 2014). In some cases, data
from Reddit online forums have been used, for example, to detect
mental health disorders (Thorstad and Wolff, 2019), anxiety
(Shen and Rudzicz, 2017), or depression (Tadesse et al., 2019).

However, very little work exists in the field of burnout
detection. Burnout detection in data extracted from issues and

1https://icd.who.int/browse11/l-m/en#/http://id.who.int/icd/entity/129180281

comments posted within software development tools have been
studied (Mäntylä et al., 2016). The authors used the valence-
arousal-dominance (VAD) model to study burnout risk in a
corporate setting. This model distinguishes three emotions:
valence (“the pleasantness of a stimulus,”) arousal (“the intensity
of emotion provoked by a stimulus,”) and dominance (“the degree
of control exerted by a stimulus”) (Warriner et al., 2013). To
measure burnout risk, the metric is based on low valence and
dominance and high arousal (Mäntylä et al., 2016). In other work,
a first attempt to detect burnout based on patient and expert
interviews in the German language were done; it was found that
a combination of NLP and machine learning techniques in this
field leads to promising results (Nath and Kurpicz-Briki, 2021).

In the context of earlier work focused on gathering data
from social media websites and the study of mental health
conditions, this work extends state-of-the-art predictive models
in the field while focusing specifically on detecting indicators for
burnout in data collected from Reddit. It aims to develop the
base technology for potential new directions in tool development
for clinical psychology. Herein, the authors emphasize that this
work is oriented toward the approach of augmented intelligence
rather than artificial intelligence (Rui, 2017); instead of replacing
clinical professionals, it strives toward technology that empowers
humans in the decision-making process, providing input to be
considered in human decision-making.

The work in this article addresses the following objectives:

• It evaluates whether NLP methods applied to free text are an
effective means to detect indicators for burnout, compared to a
control group using general text samples, and a control group
with depression-related texts.

• In particular, it investigates how the use of an ensemble
classifier can leverage the accuracy of such methods.

• Furthermore, the approach is compared to single machine
learning classifiers such as logistic regression.

This article is structured as follows: first, the materials and
methods used in this work are discussed. In particular, this
includes data collection, the characteristics of the datasets used
in the experiments, and the experimental setup. Then, the results
are presented, first for single classifier models and then for
the ensemble models. Finally, the results are discussed and an
outlook on potential future work is provided.

2. MATERIALS AND METHODS

2.1. Reddit Data Collection
On Reddit, users can organize posts based on a subject, so-
called subreddits, which are online micro communities dedicated
to a particular topic. Reddit has the advantage of allowing the
possibility to create micro communities via subreddits. As a
result, in addition to topics such as gaming and music, there are
thriving communities dedicated to various mental health topics,
such as depression, anxiety, and bipolar disorder. In particular,
there is a subreddit dedicated to burnout; unfortunately, the
number of entries was too low at the time of our data collection
to provide a sufficiently large dataset. However, users discuss the
subject of burnout in various other subreddit threads. One can

Frontiers in Big Data | www.frontiersin.org 2 April 2022 | Volume 5 | Article 86310030

https://icd.who.int/browse11/l-m/en#/http://id.who.int/icd/entity/129180281
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Merhbene et al. BurnoutEnsemble

thus collect textual data related to burnout by scraping Reddit for
burnout-related posts. In this work, praw (Boe, 2011), a Python
Reddit API Wrapper, was used to extract submissions with the
keyword “burnout” and its different variations, such as “burnout,”
“burn out,” “burned out,” “burning out,” “burnt out,” “burn-out,”
etc., 1,536 such submissions were found.

However, the word burnout also widely occurs in other
contexts, such as “The tires are burnt out.” It is also frequently
used in informal discussions, such as having game burnout or
music burnout. It was therefore necessary to isolate submissions
describing burnout in the professional or educational context.
A total of 677 submissions satisfying these conditions were
manually identified. The replies to the selected submissions
were also collected, as they were likely to contain posts by
other users describing their experiences with burnout. This
increased the size of the dataset to 23,371 posts. However, not
all of the posts and replies were relevant to professional or
educational experiences with burnout. Therefore, 352 instances
were extracted manually that describe burnout experiences from
a first-person perspective. This formed the test group for the data
classified as burnout.

To create the first control group, the no burnout dataset,
our method employed the strategy described in Shen and
Rudzicz (2017). Namely, 17,025 posts from a variety of
subreddits were collected: “askscience”, “relationships”,
“writingprompts”, “teaching”, “writing”, “parenting”,
“atheism”, “christianity”, “showerthoughts”, “jokes”,
“lifeprotips”, “writing”, “personalfinance”, “talesfromretail”,
“theoryofreddit”, “talesfromtechsupport”, “randomkindness”,
“talesfromcallcenters”, “books”, “fitness”, “askdocs”, “frugal”,
“legaladvice”, “youshouldknow”, and “nostupidquestions”, Since
a number of these collected posts consisted of empty or very
little text, all posts consisting of fewer than 100 characters were
dropped, resulting in a final no burnout dataset consisting of
13,216 posts.

The second control group, the depression dataset, was
collected from the subreddit for depression and contains 979
posts. As for burnout, only entries using the first-person
perspective were selected.

The authors emphasize that no information concerning user
identity (e.g., username or age) was collected.

2.2. Datasets for Experiments
Using the raw data consisting of 13,216 posts labeled no burnout
(control group), 352 labeled burnout, and 979 labeled depression,
four datasets for use in the experiments were compiled. Dataset
statistics are presented in Table 1.

Dataset 1: Burnout vs. No Burnout (BNB): It combines the
13,216 no burnout posts with the 352 burnout posts, resulting
in a highly unbalanced dataset of size 13,568.
Dataset 2: Burnout vs. No Burnout (Balanced) (BNB-

Balanced): Balanced dataset of 704 posts, of which, 352
posts are selected from the no burnout dataset through
random sampling (without replacement). Additionally, an
equal number of 352 posts are added from the burnout data.

Dataset 3: Burnout vs. No Burnout (No Keywords) (BNB-

No-Keywords): It is obtained from Dataset 2 by removing
the keywords from the burnout dataset that were used during
data collection to search for burnout-related posts: “burnout,”
“burn-out,” “burning out,” etc.
Dataset 4: Burnout vs. Depression (BD): Balanced dataset of
704 entries, of which 352 posts are selected from the depression
dataset through random sampling (without replacement).
Further, an equal number of 352 posts are added from the
burnout data.

2.3. Vectorization
The spacy2 Python NLP-library was used in order to vectorize
text data for use in our NLP models. Each Reddit post was
tokenized using the pre-trained en_core_web_sm English
language pipeline and converted into a 500-dimensional bag-of-
words vector, which simply counts the occurrences of each of the
500 most commonly appearing words in the text corpus.

2.4. Experimental Setup
2.4.1. Single Classifier Models
The following experiment was repeated on Datasets 1–4. The
feature set consisted of the vectorized Reddit posts, each labeled
with either 1 (burnout) or 0 (no burnout/depression). Using a
70-30% training-test split3 and 10-fold cross-validation (CV),
a variety of classifier models was trained: logistic regression,
Support Vector Machine (SVM) (with linear, RBF, degree 3
polynomial and sigmoid kernels), and random forest. Each
model’s performance was measured by using the mean CV
accuracy and F1 scores averaged across all folds, as well as the
(balanced) accuracy, F1, and recall scores on the test data. It
was chosen to specifically include recall as a metric because, in a
real-world setting, it would be important to capture all possible
burnout samples (recall = 1), even at the expense of a larger
number of false positives (see Section 4.5 for further discussion).

2.4.2. Ensemble Classifier Models
Ensemble classifiers allow aggregating the decisions of several
single classifier models. The ensemble methods presented in
this work closely resemble a method known as UnderBagging
(Barandela et al., 2003). Each ensemble is built according to the
template below.

Ensemble model template:

• The ensemble consists of n submodels.4

• Each submodel is trained with 10-folds CV on a balanced
dataset of 492 posts.

• These datasets share the same 246 burnout samples but contain
pairwise disjoint sets of no burnout samples.

• The prediction of the whole ensemble is determined by voting,
i.e., for a given test sample, a label of burnout is predicted if the

2https://spacy.io/
3For the unbalanced dataset, a 70–30% split was taken on each class separately

in order to ensure that the training and test sets had roughly the same class

distribution.
4In our experiments, 10 ≤ n ≤ 20.
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TABLE 1 | Dataset statistics.

Dataset Name No. of Samples Mean Text Length (chars) Std. Dev of Text Length Test Group %age Control Group %age

1. Burnout vs. No Burnout(BNB) 13,568 1158 1451 2.6% 97.4%

2. Burnout vs. No Burnout

(Bal.) (BNB-balanced) 704 867 850 50% 50%

3. Burnout vs. No Burnout

(No KWs)(BNB-no-keywords) 704 863 846 50% 50%

4. Burnout vs. Depression (BD) 704 1009 905 50% 50%

“Control” refers to either no burnout or depression, while test refers to burnout.

FIGURE 1 | Training the baselines vs. training ensembles on balanced batches.

FIGURE 2 | Computing predictions on the test set, with a voting threshold of p = 0.8 for example purposes.
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FIGURE 3 | Constructing the unbalanced test set of 4,071 samples.

voting > p% of the submodels classify the sample as burnout.5

Otherwise, the sample is classified as no burnout.

The classifier type of the submodels was restricted to logistic
regression, which demonstrated themost consistent performance
in our initial experiments, although RBF, linear SVMs, and
random forests also showed promise. Figure 1 shows a
depiction of our ensemble setup, along with a comparison
to the two baseline models to which the ensemble results
were compared:

• Baseline 1: Logistic regression classifier trained via 70–30%
train-test split on the unbalanced Dataset 1 (BNB).

• Baseline 2: Logistic regression classifier trained on a balanced
dataset obtained by randomly sampling 246 no burnout
samples and combining them with the 246 burnout samples
used for training.

Figure 1 depicts the setup for training the baseline classifier
(logistic regression on the full unbalanced training set) and the
ensemble classifiers, and Figure 2 depicts how each model makes
predictions on the test data.

Training and test data were allocated according to a 70-30%
split. This was done in a stratified manner, i.e., the no burnout
and burnout class distribution in the training and test data were
approximately equal to the distribution in Dataset 1 (BNB) (as
shown in Figure 3). Note that the same test data were used for
both baselines and ensembles.

Two types of data batching were tested in our ensembles
(Ensemble 1 and Ensemble 2, see description below) and the
following metrics were measured:

• Mean CV accuracy:6 Computed by first taking the mean CV
accuracies for each submodel over the 10 folds, followed by
averaging over the n submodels.

• Mean CV F1 (macro): Identical with F1 in place of accuracy.
• Mean test balanced accuracy: The balanced accuracy on test

data averaged across the n submodels.

5Here, p is a threshold that may vary. Values of 0.4 ≤ p ≤ 0.99 were used.
6Here, we do not need to take the balanced accuracy because the submodels are

trained on balanced datasets.

• Mean test F1 (macro): Identical for F1.
• Mean test recall: Identical for recall.
• The corresponding SDs of the above three test metrics.

Ensemble 1: Random sample batching:

The random sample batching ensemble was trained using
n = 20 batches, each consisting of 246 randomly sampled
(without replacement) posts from the no burnout training
samples concatenated with 246 burnout training samples to
create BNB-balanced datasets.
Ensemble 2: Batching by subreddit:

The subreddit batching ensemble was trained by creating
a balanced dataset corresponding to each of the subreddits
appearing in the no burnout training data for which at least 246
samples had been collected. There were n = 17 such subreddits
in total.

The effect of changing the voting threshold p on the ensemble
performance was also tested. Values of p = 0.4, 0.5, 0.6, 0.7, 0.8,
and 0.9 were evaluated.

3. RESULTS

3.1. Single Classifier Models
3.1.1. Burnout vs. No Burnout
The results of the single classifier experiments on Dataset 1
(Burnout vs. No Burnout BNB) are displayed in Table 2. The
Baseline row corresponds to a model that predicts the label no
burnout for all samples. Such a model achieves 97% accuracy
due to the class imbalance in Dataset 1 (BNB). Indeed, accuracy
is a misleading measure in such a situation: all classifiers in
this experiment demonstrated an accuracy of approximately
97% despite large differences in performance. For this reason,
balanced accuracy provides a more meaningful metric for
model performance.

Only logistic regression and SVM linear demonstrated
significant improvement over the baseline, although roughly 50%
of burnout samples were incorrectly classified as no burnout.

3.1.2. Burnout vs. No Burnout (Balanced)
Here, the results of classifiers trained using Dataset 2 (BNB-
balanced) are presented. Aside from the SVM poly degree 3
classifier, the models in Table 3 appear to demonstrate good
performance.7 It was noted that these results are dependent on
the random sample of no burnout data points that are used
to construct Dataset 2 (BNB-balanced). While random forest
classifiers demonstrated the best performance in this instance,
there were also cases in which logistic regression performed best.
For the best models, accuracies and F1 scores approximately
distributed between 0.90 and 0.97 were observed.

3.1.3. Burnout vs. No Burnout (No Keywords)

(BNB-No-Keywords)
The data collection process applied in this work explicitly
searches for burnout-related keywords. It is, therefore, possible

7The ensemble experiments revealed that logistic regression classifiers trained on

Datasets 2 and 3 do not perform as well on a highly unbalanced data sampled from

Dataset 1. This will be further discussed in Section 3.2.
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TABLE 2 | Results for Burnout vs. No Burnout – Dataset 1 (BNB) (no. test samples = 4071).

Model Mean CV Bal. Acc. Mean CV F1 Test Bal. Acc. Test F1 Test Recall

Logistic Regression 0.72 0.48 0.75 0.49 0.50

SVM Linear 0.72 0.40 0.75 0.45 0.51

SVM RBF 0.51 0.04 0.51 0.03 0.01

SVM Poly Degree 3 0.55 0.16 0.56 0.18 0.12

SVM Sigmoid 0.57 0.23 0.56 0.21 0.12

Random Forest 0.50 0.02 0.51 0.04 0.02

Baseline 0.50 0.0 0.50 0.0 0.0

Baseline refers to a model predicting no burnout for all samples. The mean CV statistics are computed by taking an average of overall 10 folds cross-validation (CV) during training.

TABLE 3 | Results for Burnout vs. No Burnout (Balanced)—Dataset 2

(BNB-balanced) (no. test samples = 234).

Model Mean CV Accuracy Mean CV F1 Test Accuracy Test F1

Logistic regression 0.91 0.91 0.87 0.88

SVM Linear 0.89 0.89 0.84 0.85

SVM RBF 0.88 0.88 0.89 0.89

SVM Poly degree 3 0.60 0.35 0.60 0.41

SVM Sigmoid 0.85 0.85 0.82 0.82

Random Forest 0.92 0.92 0.88 0.89

The mean CV statistics are computed by taking an average of overall 10 folds CV during

training.

TABLE 4 | Results for Burnout vs. No Burnout (no keywords)—Dataset 3

(BNB-no-key-words) (no. test samples = 234).

Model Mean CV Accuracy Mean CV F1 Test Accuracy Test F1

Logistic regression 0.88 0.88 0.86 0.87

SVM Linear 0.85 0.85 0.82 0.83

SVM RBF 0.85 0.83 0.85 0.86

SVM Poly degree 3 0.59 0.34 0.59 0.40

SVM Sigmoid 0.79 0.80 0.81 0.82

Random Forest 0.88 0.88 0.87 0.88

The mean CV statistics are computed by taking an average of overall 10 folds CV during

training.

that trained models identify the presence of such keywords as
a key defining feature for posts belonging to the burnout class.
The effect of the presence of such keywords was measured, and
it was tested whether they provided a significant basis for the
models’ predictions. Therefore, all keywords related to burnout
were removed from Dataset 2 (BNB-balanced) to obtain Dataset
3 (BNB-no-keywords) and the experiment was repeated. The
corresponding results are displayed in Table 4. As one might
expect, the removal of keywords resulted in decreased model
performance. However, the decrease was not very important,
providing evidence that the presence of keywords is not an overly
important factor in any of our other experiments.

3.1.4. Burnout vs. Depression (BD)
In this experiment, as shown in Table 5, the Burnout vs.
Depression dataset (Dataset 4, BD) was classified by using the

TABLE 5 | Results for Burnout vs. Depression—Dataset 4 (BD).

Model Mean CV Accuracy Mean CV F1 Test Accuracy Test F1

Logistic regression 0.87 0.87 0.84 0.82

SVM Linear 0.84 0.85 0.82 0.78

SVM RBF 0.84 0.85 0.78 0.77

SVM Poly degree 3 0.59 0.42 0.65 0.43

SVM Sigmoid 0.82 0.82 0.78 0.76

Random Forest 0.85 0.86 0.81 0.80

The mean CV statistics are computed by taking an average of overall 10 folds CV during

training.

models described previously. Again, it was found that logistic
regression and SVM linear performed best, with random forest
following closely. The datasets are balanced, and the random
baseline for both accuracy and F1 score is set at 50%.

Although these models perform well, an across-the-board
decrease of roughly 0.04 points is observed compared to the
results listed in Table 3.

3.2. Ensemble Models
Tables 6, 7 record metrics and statistics that pertain exclusively
to the submodels and not to the overall ensembles. They are
meant as a means to compare the performance of the individual
submodels to that of the ensembles (Table 8).

Table 6 records the average CV performance metrics over the
submodels within each of the ensemble classifiers. Recall that
each of these submodels is a logistic regression classifier trained
on a balanced dataset. The Mean CV Accuracy and Mean CV F1
columns in Table 6 are thus comparable to the corresponding
columns in Table 3.

Table 7 records the average test statistics for the submodels.
The Mean test Bal. Acc. and Mean test F1 columns refer to
the average performance of the submodels on the unbalanced
test set consisting of 4,071 samples, of which 106 belong to
the burnout class. It also provides the corresponding SDs. The
random batching submodels weremuchmore consistent than the
subreddit batching submodels, the latter of which demonstrated
greater variance and lower average balanced accuracy and F1
score while achieving higher recall scores.
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TABLE 6 | Submodel CV averages.

Model Mean CV Accuracy Mean CV F1

Random Batching 0.91 0.90

Subreddit Batching 0.96 0.96

The test results reveal the limitations of the previously
presented non-ensemble models trained on balanced data. Those
models appeared to demonstrate very good performance on
unseen test data (Table 3), but were tested on small balanced
test sets consisting of only 234 posts. In comparison, the mean
test F1 scores in Table 7 are relatively low, which shows that
the high test performance observed in Table 3 does not imply
similar performance on the unbalanced dataset of 4,071 samples.
The high test recall in Table 7 indicates that the test F1 scores
are primarily reduced due to low precision, i.e., a relatively large
number of false positives.

The mean test metrics in Table 7 corresponding to random
batching give an indication of how the logistic regression model
trained on Dataset 2 (BNB-balanced) (Table 3) would perform
on the large unbalanced test dataset used in our ensemble
experiments. Note that the performance of the balanced data
model depends on the random sample of 352 no burnout posts
used to construct Dataset 2 (BNB-balanced), and significant
fluctuations in performance were observed depending on the
sample, encapsulated in the SDs recorded in Table 7. Indeed,
the pursuit of ensemble approaches presented in this work
was driven partially by the desire for a model with more
stable performance. Effectively, Table 7 portrays the average
performance of logistic regression models trained on balanced
No Burnout vs. Burnout data over n = 20 disjoint random
samples of no burnout data. It was observed that the submodels
trained via subreddit batching demonstrated lower performance
on the test data than those trained via random batching.

Table 8 shows the test results of the two ensemble models.
The logistic regression (LR) model trained on Dataset 1 (BNB)
was used as a first baseline, which demonstrated the best overall
performance on the unbalanced test data among the single-
model classifiers. As a second baseline, a single logistic regression
classifier trained on a balanced dataset obtained by randomly
undersampling from the no burnout class was considered, as
was done to construct Dataset 2 (BNB-balanced). The model
demonstrated performance similar to the averages recorded
in Table 7.

The ensemble models demonstrated substantially improved
balanced accuracy and recall relative to the baseline unbalanced
LR model. However, the unbalanced LR model achieved the
second-highest F1 score. Both ensembles and the baseline
random undersampling LR demonstrated similar performance,
with the random batching ensemble exhibiting a trade-off
between F1 and recall. In comparing Tables 7, 8, one can see that
the random batching ensemble demonstrates a relatively modest
performance improvement over the submodels composing it.
On the other hand, the subreddit batching ensemble performs
markedly better than its component submodels.

The confusion matrices in Figures 4, 5 describe the
distribution of the ensemble models’ test predictions. Both
the submodels and ensembles had test recall scores near 1.
However, the high recall of the submodels came at the cost
of a large number of false positives. It was observed that each
submodel identified approximately 400–500 (random batching)
to 1,000–3,000 (subreddit batching) test samples as belonging
to the burnout class, whereas the correct number was 106.
In contrast, with a majority vote threshold of p = 80%, the
ensemble models placed 216 (random batching). There were
486 (subreddit batching) test samples in the burnout class while
maintaining a recall score close to 1. The majority vote ensemble
rule is thus an effective method for eliminating false positives
while preserving true positives.

The effect of modifying the voting threshold on performance
was also tested. The results are depicted in Figure 6.

With random batching, a trade-off between recall/balanced
accuracy and F1 score was experienced; while subreddit batching
demonstrated a trade-off between recall and F1 score, balanced
accuracy, and F1 score could be simultaneously improved, with
increased voting threshold.

In practice, such approaches are interested in capturing
as many burnout samples as possible while maintaining a
manageable number of false positives. The threshold can be
modified accordingly, for example, aiming to maximize the
F1 score under the condition that recall is greater than 0.9.
The subreddit batching ensemble with p = 0.85 and the
random batching ensemble with p = 0.5 both demonstrated
performance close to such an optimum (as shown in Table 9).
Both of these ensembles achieve better results than either of the
baseline models.

Finally, a qualitative analysis of test samples incorrectly
classified as burnout by the ensemble models revealed posts from
the no-burnout dataset that contained topics similar to burnout
posts, e.g., work-related, stress, depression, and anxiety. This
indicates that the classifiers presented in this work are indeed
identifying features related to burnout. It even appears that, in
some cases, it may be the labels rather than the predictions that
are incorrect, i.e., posts from scraped sub-breddits where users
write about experience with burnout.

4. DISCUSSION

The work presented in this article makes the following
contributions:

• It demonstrates that NLP methods applied to free text are
an effective means to detect indicators for burnout, measured
against both a control group of general text and a group
composed of text samples related to depression.

• A machine learning ensemble classifier trained on data from
Reddit posts to detect burnout indicators with a promising
accuracy is presented.

• A range of machine learning classifiers trained to detect
burnout indicators are compared, showing in particular that
the presented ensemble classifier outperforms two single
classifier baselines: logistic regression classifiers trained on
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TABLE 7 | Submodel test statistics (no. test samples = 4,071).

Model Mean Test Bal. Accuracy Std. Dev. Test Bal. Acc. Mean Test F1 Std. Dev. Test F1 Mean Test Recall Std. Dev. Test Recall

Random Batching 0.91 0.01 0.35 0.02 0.91 0.02

Subreddit Batching 0.78 0.08 0.13 0.04 0.96 0.02

either a large unbalanced dataset or an undersampled balanced
dataset. The best-performing model attained a balanced
accuracy of 93%, F1 score of 0.43, and recall of 93% on
unbalanced test data.

These findings have a large potential to be further developed with
an interdisciplinary approach toward a new generation of smart
tools for clinical psychology, eventually supporting a wider array
of conditions and mental health diagnoses in the future.

4.1. Burnout Detection for a Clinical Setting
Extracting data from social media is one of the most commonly
used methods in research in this area (e.g., Shen and Rudzicz,
2017; Thorstad and Wolff, 2019). The research presented in this
article also relies primarily on data extracted from the social
media website Reddit, particularly because it was easy to obtain a
large quantity of data to train our model. Nonetheless, clinical
data are a more reliable source for detecting burnout due to
the certainty of labeling. Clinical data also have the advantage
of more closely resembling the data such models are expected
to be applied to in the future. A first attempt of working with
clinical data to detect burnout has shown promising results.
By presenting a dataset from real-world burnout patient data,
Nath and Kurpicz-Briki (2021) managed to go beyond typical
burnout detection approaches, which usually includes the use of
inventories with scaling questions and worked on applying NLP
to mental health. The dataset consisted of data extracted from
German-language interviews with burnout patients, a control
group, and experts. The authors proceeded to train an SVM
classifier on the dataset and ended up achieving accuracy greater
than their original baseline.

4.2. Burnout vs. Depression
A poorer classifier performance on Dataset 4 than on Datasets 2
or 3 was observed. This is likely due to the fact that depression-
and burnout-related texts share many similar characteristics.
Indeed, depression and burnout are not disjoint categories, and
some degree of classification ambiguity is inevitable. This overlap
is a significant object of scientific investigation, e.g., by Schonfeld
and Bianchi (2016). The work in this article provides evidence of
the non-trivial nature of differentiating burnout and depression.
Ongoing work of the authors aims to more closely analyze the
markers that indicate and differentiate depression and burnout
in free text first-person accounts.

4.3. Methods for Dealing With Unbalanced
Data
Class imbalance is a natural phenomenon in many real-world
applications (e.g., fraud detection, tumor detection, software
defect prediction). It is well-documented in machine learning

TABLE 8 | Ensemble vs. baseline performance (Threshold p = 80%, no. test

samples = 4,071).

Model Test Bal. Acc. Test F1 Test Recall

Random Batching Ensemble 0.91 0.56 0.84

Subreddit Batching Ensemble 0.93 0.34 0.95

Baseline 1: Unbalanced LR 0.75 0.49 0.50

Baseline 2: Random Undersampling LR 0.90 0.33 0.91

FIGURE 4 | Confusion matrix for random batching ensemble, p = 0.8.

literature that unbalanced training data impairs the classification
performance of many machine learning models (e.g., Chawla
et al., 2004; García et al., 2010). For example, in cases of extreme
class imbalance, models can tend toward placing all samples
in the majority class. For a detailed survey on the unbalanced
data problem, refer to He and Garcia (2009). Class imbalance is
considered to be intrinsic to the task of burnout detection from
real-world (clinical) data, rather than being an artifact of the
data collection methods used in this article, and, therefore, it was
aimed to address the problem in this work.

Common solutions involve oversampling the minority class
or undersampling the majority class to achieve class balance
or using cost-sensitive methods that apply a higher penalty
to the incorrect classification of samples from the minority
class. A number of ensemble methods use oversampling
and/or undersampling to train separate models and aggregate
their predictions. Successful ensemble methods for unbalanced
learning include EasyEnsemble (Liu et al., 2008), SMOTE-Boost
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FIGURE 5 | Confusion matrix for subreddit batching ensemble, p = 0.8.

(Chawla et al., 2003), UnderBagging (Barandela et al., 2003), and
Cluster/SplitBal (Sun et al., 2015).

Sun et al. (2015) argue that most existing methods might
suffer from the loss of potentially useful information and/or
overfitting by altering the original data distribution. Of the
ensemble methods explored in this work, only UnderBagging,
ClusterBal, and SplitBal do not discard data or change the data
distribution. These three methods differ mainly in how balanced
data batches are constructed and how the predictions of the
submodels are aggregated. The method presented in this article
is most similar to that of UnderBagging, which was chosen for
the ease of implementation in the given setting and the fact
that (Sun et al., 2015) found that it performs well across several
classifier types. The method presented in this article differs only
in that different voting thresholds are considered, not all of the
majority class samples are exhausted, and balanced batches based
on subgroupings inherent in the presented dataset (subreddits)
are constructed.

The single model experiments reflect some of the problems of
class imbalance. The best classifiers trained on Dataset 1 reached
lower benchmark metrics but demonstrated more consistent
performance between training and test data. This is consistent
with the expectation that larger training datasets generalize
better. Many of the classifiers trained on the unbalanced Dataset
1 performed very poorly, essentially predicting only the majority
class. On the other hand, classifiers trained on the balanced
Dataset 2 attained a high benchmark performance on relatively
small balanced data batches, but that performance dropped
considerably (as measured by F1 scores) when applied to
highly unbalanced test data. The balanced data models use
undersampling and demonstrate the drawbacks of throwing out
data points: much of the variance in the no burnout dataset is not
accounted for, and the undersampling-based models incorrectly
classified a relatively large number of more general no burnout
data. As one would expect, this effect is most pronounced in the

FIGURE 6 | Ensemble performance vs. voting threshold.

models trained using a single subreddit, where a very specialized
sample of no burnout data were used for training.

Overall, the presented results provide evidence that both
undersampling—as long as attention is paid to maintaining the
variance in the majority class data—and ensemble methods are
viable approaches to handling the unbalanced data problem in
this context. The single logistic regression classifiers trained on
undersampled, balanced data performed at a level similar to
the ensembles, although the subreddit batching ensemble with
p = 0.85 and random batching ensemble with p = 0.5 both
outperformed the single random batching classifier in all three
metrics. Undersampling does have the advantage of requiring
many fewer training data with both faster training and inference,
although this speed difference can be erased by running ensemble
submodels in parallel. However, better performance was achieved
with ensembles. The ensemble methods provide additional
advantages: the voting threshold hyperparameter allows to
easily fine-tune the ensemble model according to the relative
importance placed on recall and F1 score; in addition, the
performance of the ensemble model is more stable, i.e., immune
to fluctuations according to the subsample of no burnout data
used for training.
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TABLE 9 | Optimal ensembles (no. test samples = 4,071).

Model Test Bal. Acc. Test F1 Test Recall

Subreddit Batching (p = 0.85) 0.93 0.43 0.93

Random Batching (p = 0.5) 0.93 0.42 0.93

4.4. Random vs. Subreddit Batching
As similar performance with both methods for creating balanced
data batches was achieved, the experiments do not indicate
which, if either, of the two procedures is preferable. However,
it was noted that several differences between the two methods
exist. Perhaps the most important difference is that the subreddit
batching ensembles required fewer training data to achieve
the same performance. In addition, as Table 6 shows that the
submodels in the subreddit batching ensemble achieved higher
accuracy and F1 score during CV, which might result from the
relative ease of distinguishing between burnout-related posts and
a single specialized topic with little relation to the condition.
This results in overfitting, as reflected in the gap between CV
and test results recorded in Tables 6, 7. Table 7 also shows that
the performance of the individual submodels in the subreddit
batching ensemble varied much more than for random batching;
a comparison with Table 8 also shows that the relative gain
achieved by using ensemble methods over single classifiers was
much greater in the case of subreddit batching. This is consistent
with expectations and findings in the literature, which suggest
that ensembles are an effective method for combining weak
learners with considerable variance in their predictions into
a strong learner (Schapire, 1990). It is also possible that the
subreddits that were excluded from the ensemble due to an
insufficient number of posts are over-represented among the
misclassified samples and that performance could be improved
by including more subreddits. Experiments in this direction are
suggested for future work.

4.5. Recall as an Evaluation Metric
The use of recall as an evaluation metric was chosen because
it is assumed that recall is of great importance in real-world
applications. In the case of burnout detection, it is better to
capture most or all of the true positives at the cost of a
manageable number of false positives than to miss positive
cases. In practice, marking individuals who are potentially
experiencing burnout should help mental health professionals
decide which cases should be subjected to further analysis.
For this reason, even though the Baseline 1: Unbalanced LR
model attained an F1 score better than or on par with the
other models (Table 8), the significantly lower recall score
makes this model unequivocally the least desirable. A tool that
misses half of the patients demonstrating potential burnout is
not useful.

4.6. Limitations
In this work, data procured from Reddit posts were used largely
because of the ease in obtaining large quantities of data for use in
model training. It is expected in the future to apply these methods

to the verbal responses of patients in clinical interventions
in order to train models to their destined target application.
Therefore, the data origin is a limitation of this study. Obtaining
a sufficient quantity (and in different local languages) of data for
machine learning-based methods poses a significant challenge
and will be addressed in future work by other data collection
methods, involving also clinical institutions. The authors intend
to collaborate with researchers and practitioners in psychology
for data collection and to aid in developing a beneficial, easy-to-
use clinical tool as well as expanding their work toward other
areas of mental health. Another limitation of this work is the
diversity in the available data. Being completely anonymous
data from online forums, no information about gender, origin,
socio-economic background, or similar is available. Therefore,
the classifiers presented in this work may not work with
the same efficiency for different groups of society. In future
work, and before implementing such methods into a product,
further validations and potentially additional training data will
be required.

4.7. Future Work
In future work, the authors would like to experiment with
more sophisticated ensemble methods, such as those outlined
in Sun et al. (2015), where the general superiority of ensembles
over other methods for addressing the class imbalance in
several experiments was demonstrated. Since undersampling
also showed promising results, more sophisticated methods for
undersampling should be explored, such as clustering-based
methods (Lin et al., 2017). However, the low variance observed
among the random batching submodels may delineate the
limits of undersampling-based methods. Furthermore, the use
of classifier types beyond logistic regression could be explored,
perhaps by incorporating neural network-based models and
using other methods for creating balanced data batches for
submodel training. Mixing different types of classifiers within
an ensemble could be a means to capture burnout samples that
are otherwise overlooked by logistic regression. It should also
be considered to experiment with other vectorization methods
in the future, particularly the use of word embeddings learned
from deep learning-based language models, such as Word2Vec
(Mikolov et al., 2017), GLoVe (Pennington et al., 2014), BERT
(Devlin et al., 2019), and fastText (Joulin et al., 2016).
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Introduction: Despite decades of research, systemic autoimmune diseases (SADs)

continue to be a major global health concern and the etiology of these diseases is still not

clear. To date, with the development of high-throughput techniques, increasing evidence

indicated a key role of oral microbiome in the pathogenesis of SADs, and the alterations

of oral microbiome may contribute to the disease emergence or evolution. This review

is to present the latest knowledge on the relationship between the oral microbiome and

SADs, focusing on the multiomics data generated from a large set of samples.

Methodology: By searching the PubMed and Embase databases, studies that

investigated the oral microbiome of SADs, including systemic lupus erythematosus (SLE),

rheumatoid arthritis (RA), and Sjögren’s syndrome (SS), were systematically reviewed

according to the PRISMA guidelines.

Results: One thousand and thirty-eight studies were found, and 25 studies were

included: three referred to SLE, 12 referred to RA, nine referred to SS, and one to

both SLE and SS. The 16S rRNA sequencing was the most frequent technique used.

HOMD was the most common database aligned to and QIIME was the most popular

pipeline for downstream analysis. Alterations in bacterial composition and population

have been found in the oral samples of patients with SAD compared with the healthy

controls. Results regarding candidate pathogens were not always in accordance, but

Selenomonas and Veillonella were found significantly increased in three SADs, and

Streptococcus was significantly decreased in the SADs compared with controls.

Conclusion: A large amount of sequencing data was collected from patients with SAD

and controls in this systematic review. Oral microbial dysbiosis had been identified in

these SADs, although the dysbiosis features were different among studies. There was a

lack of standardized study methodology for each study from the inclusion criteria, sample

type, sequencing platform, and referred database to downstream analysis pipeline

and cutoff. Besides the genomics, transcriptomics, proteomics, and metabolomics
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technology should be used to investigate the oral microbiome of patients with SADs

and also the at-risk individuals of disease development, which may provide us with

a better understanding of the etiology of SADs and promote the development of the

novel therapies.

Keywords: oral microbiome, systemic autoimmune disease, systemic lupus erythematosus, rheumatoid arthritis,

Sjögren’s syndrome, high-throughput analysis

INTRODUCTION

Autoimmune diseases are a heterogeneous group of
multifactorial disorders characterized by abnormal immune
responses to the body’s own cells or tissues (Bolon, 2012).
Generally, the immune system can distinguish foreign pathogens
from the body’s own cells and tissues and thus does not respond
to the biomolecules expressed in endogenous tissues, which is
so called “self-tolerance” (Ahsan, 2017). When the self-tolerance
is damaged, the immune system will produce autoantibodies
binding to the target tissues and cause destruction (Xiao et al.,
2021). Autoimmune diseases can be classified into organ-specific
and systemic autoimmune diseases based on the range of tissues
targeted by autoantibodies (Inanç, 2020). The common systemic
autoimmune diseases (SADs) include rheumatoid arthritis (RA),
systemic lupus erythematosus (SLE), and Sjögren’s Syndrome
(SS), affecting more than 5% of people worldwide (Van Loveren
et al., 2001), women predominantly (Credendino et al., 2020;
Willame et al., 2021). SADs can cause chronic, systemic, excessive
immune response and inflammation, resulting in a series of mild
to life-threatening symptoms, such as fatigue, dizziness, malaise,
fever, neurological problems, anemia, and thrombocytopenia
(Wang et al., 2015). Although the symptoms can be managed by
the treatment, there are no cures for SADs currently. Treatment
depends on the type of disease but often includes immune
suppression, which can lead to compromised immunity and
vulnerability to other diseases after long-term use (Ostrov,
2015). Although a complex interplay of variable genetic risks,
environmental factors, and hormonal factors is thought to
contribute to breaking the immunological tolerance, the etiology
of SADs remain undefined, and more effective therapies are
needed (Wahren-Herlenius and Dörner, 2013).

Autoimmunity develops in the context of the human
microbiome, which is defined as the full complement of
microorganisms and its collective genetic materials at a particular
location (Ursell et al., 2012). Inside the human body, the oral
microbiome is considered to be the second largest and diverse
microbiome following the gut microbiome (Verma et al., 2018).
The oral microbiome comprises billions of microorganisms
composed of more than 700 species of bacteria, as well as fungi,
viruses, and protozoa (Deo and Deshmukh, 2019). The oral
microbiome can have an impact on the general health of an
individual (Lamont et al., 2018). Periodontitis, a microbially-
induced inflammatory condition that causes damage to the
supporting tissues of the teeth, alongside its related pathogens,
may be a risk factor for cardiovascular diseases (Tonetti and Van
Dyke, 2013), preterm or low birth weight babies (Teshome and
Yitayeh, 2016), rheumatoid arthritis (de Molon et al., 2019), or

diabetes (Sanz et al., 2018). Oral bacteria can act as opportunistic
pathogens at distant sites in the body, e.g., following entry
to the bloodstream (bacteraemia) or aspiration into the lungs
(Potgieter et al., 2015).

To date, with the development of high-throughput techniques
and the availability of multi-omics data generated from a large
set of samples, increasing studies have tried to investigate the link
between microbiome and SADs, suggesting that perturbations of
the oral microbiome may influence the emergence or evolution
of autoimmunity (Chu et al., 2021; Doaré et al., 2021). However,
it is undefined whether the oral microbial dysbiosis is a
consequence of bad oral hygiene or periodontitis. There are
many different high-throughput techniques, analysis pipelines,
and bioinformatics tools available to use but no agreement has
been reached to set a standard methodology. Big data analysis
after sequencing is also a significant challenge for researchers
because it is highly computationally demanding.

The aim of this review is to present the latest knowledge on the
relationship between the oral microbiome and SADs, focusing on
the multi-omics data generated from a large set of samples.

METHODS

Information Sources and Search Process
By searching the PubMed and Embase databases, systematic
research was performed according to the PRISMA guidelines
(Page et al., 2021). All articles published from 1 January 2000 to 1
January 2022 were taken into account. The search queries follow:
[“oral” AND “microbiota” OR “microbiome” OR “dysbiosis”
OR “flora”] AND [“systemic lupus erythematosus” OR “Lupus
Erythematosus, Systemic” OR “Libman Sacks Disease” OR
“rheumatoid arthritis” OR “Sjogren’s Syndrome” OR “Sicca
Syndrome” OR “SS”].

Eligibility Criteria
To be eligible for inclusion, studies should provide the evaluation
of oral microbiome (e.g., the composition and/or diversity of the
oral microbial community) from oral samples (rinsing samples,
subgingival dental plaque, buccal swab, saliva, etc.) in patients
with SADs by multi-omics approaches.

All patients with SLE within the studies should satisfy
one of the classification criteria of the American College of
Rheumatology (ACR) 1982/1997 criteria (Hochberg, 1997) or
the Systemic Lupus International Collaborating Clinics (SLICC)
2012 criteria (Petri et al., 2012). All patients with RA within the
studies should satisfy the classification criteria of the American
RheumatismAssociation (ARA) 1987 criteria (Arnett et al., 1988)
or the American College of Rheumatology/European League
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Against Rheumatism (ACR/EULAR) 2010 criteria (Aletaha et al.,
2010). All patients with SS should satisfy the classification criteria
of the ACR/EULAR 2016 criteria (Shiboski et al., 2017) or the
American-European Consensus Group (AECG) 2002 criteria
(Vitali et al., 2002) or the ACR 2012 criteria (Shiboski et al., 2012).

Studies were excluded if they (1) did not clarify the diagnosis
criteria; (2) included patients secondary to other diseases; (3)
only evaluated the oral microbiome by bacterial culture or DNA
hybridization technology; (4) only evaluated the gut microbiome;
(5) were reviews; (6) were not written in English; (7) were in
vitro studies.

Study Selection
The studies were selected by two authors (L.G. and ZJ.C.) based
on the inclusion/exclusion criteria and by considering titles and
abstracts, with any disputes resolved by a third author (CS.B.).
Then the authors analyzed the full-text selected studies again and
determined the eligible articles.

Data Collection
Standardized extraction was used to extract the features of
the included studies. The following data were extracted: (1)
oral sample type, (2) region, (3) sample size, (4) confounding
variables, (5) dental status, (6) use of antibiotics, (7) sequencing
platform, (8) pipeline for data analysis, (9) referred database,
and (10) specific changes in the oral microbiome associated
with SADs.

RESULTS

Study Search
One thousand and thirty-eight studies were identified from the
Embase and PubMed databases. Duplicate references (n = 282)
were removed and 624 were excluded by title and abstract. Of
the remaining 132 studies, 107 were excluded through full-text
selection. A total of 25 studies were finally included and their data
were extracted. Among these, three studies were referred to the
SLE, 12 referred to RA, nine referred to SS, and one study referred
to both SLE and SS (Figure 1).

General Population Characteristics
In total, 137 SLE, 760 RA, and 189 primary SS (pSS) patients
were included with information. The control group consisted of
healthy volunteers free of any autoimmunity diseases for most
studies (22/25) (Table 1). In addition, patients with osteoarthritis
(OA) (Chen et al., 2018; Mikuls et al., 2018) and at-risk
individuals of RA development who have no clinical symptoms of
RA (Tong et al., 2019; Cheng et al., 2021; Kroese et al., 2021) were
included for comparison with RA patients. Non-SS sicca patients
were compared with SS patients (van der Meulen et al., 2018a;
Rusthen et al., 2019; Alam et al., 2020).

Most studies considered gender (22/25), age (20/25), smoking
status (11/25), use of antibiotics (14/25), and dental status (17/25)
as confounding variables. The exclusion criteria about the use of
antibiotics varied from 2 to 12 weeks before the sample collection.

Although 68% studies (17/25) (Table 1) took the dental
status into consideration, the method of dental assessment

was different across studies. Two studies used the self-reported
symptoms for assessment (Tong et al., 2019; de Jesus et al.,
2021). Nine studies provided a full periodontal examination to
assess the parameters including probing depth (PD), clinical
attachment level (CAL), and bleeding on probing (BOP).
Three studies performed a detailed caries-related registration on
decayed, missing, and filled teeth/-surfaces (DMFT/DMFS; Zhou
et al., 2018; Rusthen et al., 2019; Sembler-Møller et al., 2019).
However, the information about dental treatment was not always
considered. Only two studies claimed that the volunteers were
free of treatment for periodontal disease within the last 6 months
(Corrêa et al., 2017, 2019).

The oral sample type differed between studies (Table 1). Saliva
was collected in 10 studies and subgingival dental plaque was
collected in nine studies using sterile paper points. Oral washings,
sterile cotton swabs on buccal mucosa, and dorsum of the tongue
were also employed.

All the individuals included in each study were local
residents (Table 1). Among them, nine studies analyzed the oral
microbiome of Asians, of which 77.8% (7/9) studies referred to
Chinese people. Eight studies investigated the oral microbiome
of Europeans and the other eight studies focused on Americans.

General Analysis Characteristics
The most common analysis method was 16S rRNA gene
sequencing, which was used in 92% of studies (23/25) (Table 2).
Only two studies (Zhang et al., 2015; Cheng et al., 2021)
used a shotgun metagenomics approach to investigate the oral
microbiome of patients with RA. The Human Oral Microbiome
Database (HOMD) was the most popular database used for
taxonomic assignment, although the similarity threshold was
different between studies ranging from 95 to 100% identity. Most
16S rRNA gene sequencing analyses (13/23) were performed
with at least 97% similarity when clustering the sequences
for operational taxonomic unit (OTU), while the shotgun
metagenomics used a less stringent cutoff (95%) instead
(Table 2). QIIME was the most widely used pipeline (16/25) for
the downstream analysis and sometimes was used along with
other software such as Mothur, PhyloToAST, and LoTuS.

Oral Microbial Dysbiosis Features
Oral microbial dysbiosis has been identified in the three SADs
included in our review, although inconsistent results exist
(Tables 3–6). Sembler-Møller et al. (2019) reported that there was
no significant difference in the oral bacterial diversity or relative
abundance on the genus and species level between SS and non-SS
controls, indicating that changes in the salivary microbiome was
not related to the SS itself.

Among the 25 articles included, Selenomonas and Veillonella
were found significantly increased in the three SADs covered
by this review, and Streptococcus was significantly decreased in
the SADs compared with controls (Figure 2). At the species
level (Figure 3), Rothia aeria was significantly decreased in
all three diseases. Prevotella nigrescens, Prevotella oulorum,
Prevotella pleuritidis, and Selenomonas noxia were identified
enriched in both RA and SLE compared with healthy controls.
Prevotella salivae, Prevotella histicola, Lactobacillus salivarius,
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FIGURE 1 | Flow-chart diagram of the selection process.

Prevotella melaninogenica, Streptococcus parasanguinis, and
Porphyromonas endodontalis were more abundant in patients
with RA and SS.

Systemic Lupus Erythematosus
The oral microbial dysbiosis features in the SLE patients are
summarized in Tables 3, 4.
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TABLE 1 | List of the general population characteristics.

Disease References Oral sample type Region Sample size Confounding variables Dental status

SLE Liu et al., 2021 Saliva Asia 35 SLE

35 HCs

No antibiotics

Sex- and age-matched

SLE group currently receives low-dose

prednisone and hydroxychloroquine

Without oral

disease

SLE Li et al., 2020 Buccal swab Asia 20 SLE

19 HCs

Similar age, BMI and diet No data

SLE van der Meulen

et al., 2019

Oral washings

Buccal swab

Europe 30 SLE

39 SS

965 HCs

Similar age, sex, ethnic background, BMI

and smoking status SS vs. SLE

HCs were not matched to SS or SLE

patients

No data

SLE Corrêa et al., 2017 Subgingival

dental

plaque

America 52 SLE (17 NCP and

35 CP)

52 non-SLE (24 NCP

and 28 CP)

Similar age, sex and oral hygiene habits

no difference in smoking status

PD, CAL, BOP,

PI, TL

RA Esberg et al., 2021 Saliva America 61 eRA

59 HCs

No antibiotics

Similar gender and age

PD, TL

RA Kroese et al., 2021 Tongue

Saliva

Subgingival

dental

plaque

Europe 50 eRA

50 at-risk of RA

50 HCs

Gender- and age- matched

Similar smoking status, alcohol

consumption, use of drugs, use of

antibiotics within 3 months and oral

hygiene status

PD, BOP, PISA

RA Cheng et al., 2021 Subgingival

dental

plaque

Europe 26 eRA

48 at-risk of RA

32 HCs

No antibiotics

Balanced for age, gender, and

smoking status

PD, CAL, BOP,

PI, TL

RA Lehenaff et al.,

2021

Subgingival

dental

plaque from

shallow and

deep sites

America 8 RA

10 household

members of the RA

patients

No antibiotics

Similar age, gender, race, number of caries,

and periodontal health status

CAL, PD, BOP

RA de Jesus et al.,

2021

Buccal swab America 35 RA

64 non-RA

No antibiotics

Similar oral health status, smoking status

Self-reported

oral health

symptoms

denture, gum

bleeding

RA Tong et al., 2019 Saliva Asia 27 RA

29 at-risk of RA

23 HCs

No antibiotics

Similar age, gender, and smoking status

Self-reported

questionnaire

RA Corrêa et al., 2019 Subgingival

dental

plaque

America 42 RA (21 CP and 21

NCP)

47 HCs (20 CP and

27 NCP)

No antibiotics

Gender- and age- matched

Similar smoking status

PD, CAL, BOP,

PI

RA Mikuls et al., 2018 Subgingival

dental

plaque

America 260 RA

296 OA

No antibiotics

Similar age, gender and race

Full mouth

periodontal

evaluation

RA Lopez-Oliva et al.,

2018

Subgingival

dental

plaque

Europe 22 RA

19 HCs (both

periodontally healthy)

No antibiotics

Similar gender, race, smoking history and

alcohol consumption

CAL, PD, BOP

RA Chen et al., 2018 Saliva Asia 110 RA

67 OA

155 HCs

Gender and age not matched No data

RA Zhang et al., 2015 Dental

plaque

Asia 54 RA

51 HCs

No antibiotics

Age-, gender-, and ethnicity-matched

No data

Saliva 51 RA

47 HCs

RA Scher et al., 2012 Subgingival

dental

plaque

America 31 NORA

34 CRA

18 HCs

No antibiotics

Age-, gender-, and ethnicity-matched

CAL, PD, BOP

SS Sharma et al.,

2020

Saliva Asia 37 SS

35 HCs

No antibiotics

No smoking

Similar gender

No data

(Continued)
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TABLE 1 | Continued

Disease References Oral sample type Region Sample size Confounding variables Dental status

SS Alam et al., 2020 Oral washings Asia 8 SS without oral

dryness

17 SS with dryness

11 sicca

14 HCs

No smoking, no antibiotics and steroids

Similar gender, age

No data

SS Rusthen et al.,

2019

Saliva Europe 15 SS

15 sicca

15 HCs

Similar gender, age, smoking and dental

status

Missing and

decayed teeth,

number of

mobile teeth and

gingivitis, dental

caries

experience

SS Sembler-Møller

et al., 2019

Saliva Europe 24 SS

34 sicca

No smoking, no antibiotics

Similar age, gender, general health, oral

health status

DMFT and

DMFS, dental

plaque, gingival

inflammation

and periodontal

pocket depth

SS Zhou et al., 2018 Oral washings Asia 22 SS

23 HCs

Similar gender and age DMFT and

DMFS

SS van der Meulen

et al., 2018a

Buccal swab Europe 37 SS

86 sicca

24 HCs

Gender matched

Age not matched

Own teeth, oral

dryness

SS de Paiva et al.,

2016

Tongue America 10 SS

11 HCs

Similar gender and age No data

SS Siddiqui et al.,

2016

Saliva Europe 9 SS

9 HCs

Similar gender and age

No hyposalivation

No data

SS Li et al., 2016 Buccal swab Asia 10 SS

10 HCs

No smoking, no antibiotics

Similar gender and age, number of teeth,

periodontal and mucosal status

Oral mucosa,

number of teeth

and stimulated/

unstimulated

secretion rat

SLE, systemic lupus erythematosus; RA, rheumatoid arthritis; SS, Sjögren’s syndrome; HCs, healthy controls; NCP, non-chronic periodontitis; CP, chronic periodontitis; OA, osteoarthritis;

NORA, new-onset rheumatoid arthritis, disease duration of >6 weeks and absence of any treatment with disease-modifying anti-rheumatic drug (DMARD) or steroids (ever); eRA, early

onset of RA, symptom duration ≤12 months; CRA, chronic RA with minimum disease duration of 6 months; PD, probing depth; CAL, clinical attachment level; BOP, bleeding on probing;

PI, plaque index; PISA, periodontal inflamed surface area; TL, tooth loss; DMFT, decayed, missing and filled teeth; DMFS, decayed, missing and filled surfaces.

With regard to the studies about the oral microbiome in
patients with SLE, all the four studies assessed alpha- and
beta- diversity and found that there were significant differences
between the SLE patients and controls (Table 3). But the results
were not consistent among the studies, which may be due
to the different sample types relied on. One study analyzing
the subgingival dental plaque found higher alpha diversity in
patients with SLE compared with healthy controls (Corrêa et al.,
2017), while another study focusing on the buccal swabs found
decreased bacterial diversity in patients with SLE compared with
healthy controls (Li et al., 2020).

As shown in Table 4, Veillonella, Prevotella, Selenomonas,
Blautia, Barnesiella, Pyramidobacter, Alistipes, and Lactobacillus
were more abundant in patients with SLE compared with healthy
controls when analyzing the oral microbiome at the genus
level. There was only one study that analyzed the subgingival
dental plaque of patients with SLE and presented changes in
subgingival microbiome at the species level (Corrêa et al., 2017).
By periodontal assessment of the participants, species associated
with SLE had been identified in the non-periodontitis group.

Prevotella nigrescens, Prevotella oulorum, Prevotella oris, and
Selenomonas noxia were more abundant in the patients with
SLE compared with healthy controls. The results of this study
indicated that oral microbial dysbiosis was associated with SLE,
independent of periodontal status.

Rheumatoid Arthritis
The oral microbial dysbiosis features in the patients with RA are
summarized in Tables 3, 5.

Among the 11 studies that compared patients with RA
with healthy controls, nine studies analyzed oral microbial
diversity and richness of patients with RA, seven of which
found a significant difference between patients with RA and
healthy controls (Table 3), while the other two studies found no
significant changes in oral microbial diversity in patients with RA
(Scher et al., 2012; Lehenaff et al., 2021).

Eight studies investigated the microbiome at the genus level,
and half of them found Prevotella significantly increased in
patients with RA (Table 5). Some genera were identified with
evidently different abundance in different studies. For example,
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TABLE 2 | Analysis of the methodology of the included studies.

Disease References Sequencing platform Database Pipeline Identity

SLE Liu et al., 2021 16S rRNA sequencing/Illlumina MiSeq

platform

Greengenes V.13-8 QIIME 2 99%

SLE Li et al., 2020 16S rRNA sequencing SILVA 128 database Mothur 97%

SLE van der Meulen

et al., 2019

16S rRNA sequencing SILVA 128 database QIIME No data

SLE Corrêa et al., 2017 16S rRNA sequencing/Illumina MiSeq

platform

CORE QIIME No data

RA Esberg et al., 2021 16S rRNA sequencing/Illlumina MiSeq

platform

eHOMD QIIME 2 >98.5%

RA Kroese et al., 2021 16S rDNA sequencing/Illumina MiSeq

platform

HOMD QIIME v1.8.0 No data

RA Cheng et al., 2021 Shotgun metagenomics

sequencing/Illumina HiSeq 3000

platform

MG-RAST Refseq 95%

RA Lehenaff et al., 2021 16S rRNA sequencing/Illumina Miseq

platform

HOMD QIIME2 97%

RA de Jesus et al., 2021 16S rRNA sequencing/Illumina Miseq

PE250 platform

HOMD QIIME2 No data

RA Tong et al., 2019 16S rRNA sequencing/Illumina Miseq

platform

SILVA 128 database / 97%

RA Corrêa et al., 2019 16S rRNA sequencing/Illumina MiSeq

platform

CORE QIIME 97%

RA Mikuls et al., 2018 16S rRNA sequencing/Illumina MiSeq

platform

HOMD / 97%

RA Lopez-Oliva et al.,

2018

16S rRNA sequencing/Illumina MiSeq

platform

HOMD QIIME

PhyloToAST

97%

RA Chen et al., 2018 16S rRNA sequencing/HiSeq 2500

platform

Greengenes ribosomal

database

QIIME 1.9.1 97%

RA Zhang et al., 2015 Metagenomic shotgun sequencing and

a metagenome-wide association study

(MGWAS)/Illumina platform

Microbial Genomes (IMG,

v400) database

in-house pipeline 95%

RA Scher et al., 2012 16S rRNA sequencing/454 GS FLX

Titanium platform

SILVA 128 database Mothur 97%

SS Sharma et al., 2020 16S rRNA sequencing/HiSeq 2500

platform

Greengene database

SILVA 128 database

QIIME

LoTuS

97%

SS Alam et al., 2020 16S rRNA sequencing/454 GS FLX

titanium pyrosequencer

The EzTaxon-e database No data No data

SS Rusthen et al., 2019 16S rRNA sequencing/Roche 454 GS

Junior platform

SILVA 128 database

HOMD

QIIME 1.8.0 99–100%

SS Sembler-Møller

et al., 2019

16S rRNA sequencing/Illumina Miseq

platform

eHOMD DADA2 R No data

SS Zhou et al., 2018 16S rRNA sequencing/Illumina Miseq

PE300 platform

HOMD Mothur

QIIME 1.9.1

97%

SS van der Meulen

et al., 2018a

16S rRNA sequencing/Illumina MiSeq

platform

HOMD QIIME V.1.9.1 97%

SS de Paiva et al., 2016 16S rRNA sequencing/MiSeq platform UPARSE and the SILVA 128

database

No data 97%

SS Siddiqui et al., 2016 16S rRNA sequencing/454 GS Junior

system

HOMDEXTGG set

the NCBI 16S rRNA

reference sequence set

QIIME 1.9.1 98%

SS Li et al., 2016 16S rRNA sequencing/NGS illumine

Miseq 2 × 300 bp platform

SILVA dataset Mothur 97%

SLE, systemic lupus erythematosus; RA, rheumatoid arthritis; SS, Sjögren’s syndrome; HOMD, Human Oral Microbiome Database; eHOMD, expanded Human Oral

Microbiome Database.
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TABLE 3 | Major changes in microbial community associated with SADs.

Disease References Oral sample type Alpha diversity Beta diversity

SLE Liu et al., 2021 Saliva No significant change Increased bacterial diversity in SLE patients

compared with HCs

SLE Li et al., 2020 Buccal swab Lower alpha- diversity in SLE patients compared

with HCs

Higher beta- diversity in SLE patients

compared with HCs

SLE van der Meulen

et al., 2019

Oral washings

Buccal swab

Higher alpha- and beta- diversity in SLE patients compared with SS patients

SLE Corrêa et al.,

2017

Subgingival dental plaque Higher alpha-diversity in SLE patients compared

with HCs

Lower beta-diversity in SLE patients

compared with HCs

RA Esberg et al.,

2021

Saliva Higher alpha- and beta- diversity in SLE patients compared with HCs

RA Kroese et al.,

2021

Tongue

Saliva

Subgingival dental plaque

/ /

RA Cheng et al.,

2021

Subgingival dental plaque Lower richness and diversity in CCP+ at-risk group and the eRA group compared with HCs

RA Lehenaff et al.,

2021

Subgingival dental plaque No significant difference between RA patients and HCs

RA de Jesus et al.,

2021

Buccal swab Similar Shannon diversity index of bacterial species

among RA compared with non-RA controls

Significant difference between RA and controls

RA Tong et al., 2019 Saliva Lower alpha- diversity in high-risk group compared

with HCs

A tendency of gradual lower change from

HCs, high-risk group to RA patients

RA Corrêa et al.,

2019

Subgingival dental plaque Higher bacterial richness than controls without

periodontitis

Increased microbial diversity compared with

controls

RA Mikuls et al.,

2018

Subgingival dental plaque No difference between RA and OA patients /

RA Lopez-Oliva

et al., 2018

Subgingival dental plaque / /

RA Chen et al.,

2018

Saliva Higher diversity in RA and OA compared with HCs,

but no difference between RA and OA

Higher diversity in RA and OA compared with

HCs, lower diversity in RA compared with OA

RA Zhang et al.,

2015

Dental plaque

Saliva

Increased richness and diversity in RA patients compared with HCs

RA Scher et al.,

2012

Subgingival dental plaque The oral microbiota is equally rich and diverse in NORA, CRA and control groups

SS Sharma et al.,

2020

Saliva No difference between SS patients and HCs

SS Alam et al., 2020 Oral washings Higher diversity in SS patients compared with HCs /

SS Rusthen et al.,

2019

Saliva No difference in SS, sicca and HCs

SS Sembler-Møller

et al., 2019

Saliva No difference between SS and sicca

SS Zhou et al., 2018 Oral washings Lower oral bacterial community evenness and

diversity in SS patients compared with HCs

No difference between SS and HCs

SS van der Meulen

et al., 2018a

Buccal swab No difference among SS, sicca and HCs, but showed a trend towards

lower richness and diversity compared with HCs

SS de Paiva et al.,

2016

Tongue Lower Shannon diversity in SS compared with HCs /

SS Siddiqui et al.,

2016

Saliva Lower species richness, alpha- diversity in SS

compared with HCs

/

SS Li et al., 2016 Buccal swab No difference between SS patients and HCs

SLE, systemic lupus erythematosus; RA, rheumatoid arthritis; SS, Sjögren’s syndrome; HCs, healthy controls; OA, osteoarthritis; eRA, early onset of RA, symptom duration ≤12 months;

NORA, new-onset rheumatoid arthritis, disease duration of>6 weeks and absence of any treatment with disease-modifying anti-rheumatic drug (DMARD) or steroids (ever); CRA, chronic

RA with minimum disease duration of 6 months.
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TABLE 4 | Specific changes in the oral microbiome of SLE patients.

References Enriched genus Decreased genus Enriched species Decreased species

Liu et al. (2021) Prevotella, Selenomonas,

and Veillonella

Bacteroides and

Streptococcus

/ /

Li et al. (2020) Barnesiella, Blautia,

Lactobacillus,

Pyramidobacter and

Veillonella

/ / /

van der Meulen

et al. (2019)

SLE vs. HCs: Alistipes / / /

Corrêa et al.

(2017)

/ In NCP group:

Sphingomonas

In CP group: Clostridiales

In NCP group: Prevotella (P.

nigrescens, P. oulorum, P. oris), and

Selenomonas noxia

In CP group: Prevotella (P. oulorum,

P. pleuritidis), Pseudomonas spp.,

Treponema maltophilum and

Actinomyces IP073

In CP group: Rothia aeria,

Capnocytophaga gingivalis,

Rasltonia oral taxon 027,

Leptotrichia oral taxon A71,

Streptococcus sanguinis and

Haemophilus parainfluenzae

SLE, systemic lupus erythematosus; NCP, non-chronic periodontitis; CP, chronic periodontitis.

by analyzing the subgingival dental plaque of patients with
RA, Streptococcus was found with significantly higher relative
abundance compared with healthy controls by Cheng et al.
(2021), but was identified at a lower level in the other two studies
(Corrêa et al., 2019; Tong et al., 2019). Ten studies presented
the results at the species level and demonstrated different specific
dysbiosis features associated with RA, of which two studies found
a higher level of Rothia mucilaginosa in the patients with RA
(Zhang et al., 2015; de Jesus et al., 2021). Two studies had
performed periodontal examination on the participants, and
thus were able to identify the alterations of oral microbiome in
patients with RA without periodontitis (Lopez-Oliva et al., 2018;
Cheng et al., 2021).

In addition, potential functions of oral microbiome were
also analyzed by shotgun sequencing studies (Zhang et al.,
2015; Cheng et al., 2021). Functional units were found altered
in the oral microbiome of patients with RA including ATP-
dependent 26S proteasome regulatory subunit, component
of SCF ubiquitin ligase and anaphase-promoting complex,
cysteine synthase, DNA helicase TIP49, TBP-interacting protein,
serine/threonine protein phosphatase 2A, regulatory subunit, the
redox environment, transport and metabolism of iron, sulfur,
zinc, and arginine.

Oral microbial dysbiosis had also been discovered in the at-
risk individuals of RA development, indicating that these species
may be related with the RA initiation (Tong et al., 2019; Cheng
et al., 2021; Kroese et al., 2021).

Sjögren’s Syndrome

SS and Healthy Controls
Eight studies analyzed the alpha-diversity between patients
with SS and healthy controls (Table 3). Three studies found a
significantly decreased bacterial richness and alpha-diversity in
patients with SS compared with healthy controls by analyzing
saliva, oral washings, and tongue samples (de Paiva et al., 2016;
Siddiqui et al., 2016; Zhou et al., 2018), while Alam et al. (2020)
reported a significantly higher diversity in the saliva microbiome

of patients with SS compared with healthy controls. Other studies
found no significant differences when investigating saliva and
buccal mucosa samples between the groups (Li et al., 2016; van
derMeulen et al., 2018a; Rusthen et al., 2019; Sharma et al., 2020).

At genus level (Table 6), Bifidobacterium, Lactobacillus, and
Dialister were found significantly increased in the saliva and
buccal mucosa of patients with SS (van der Meulen et al., 2018a;
Sharma et al., 2020). Haemophilus and Neisseria were found
significantly decreased in four studies (Li et al., 2016; van der
Meulen et al., 2018a; Zhou et al., 2018; Rusthen et al., 2019).

Only three studies reported results at the species level
(Siddiqui et al., 2016; Rusthen et al., 2019; Alam et al., 2020).
Thirty-five species, including Streptococcus mutans, Prevotella
melaninogenica, and Veillonella rogosae were significantly more
abundant in patients with SS compared with healthy controls
(Siddiqui et al., 2016; Rusthen et al., 2019; Alam et al., 2020) and
nine species were less abundant (Rusthen et al., 2019; Alam et al.,
2020).

SS and Sicca Patients
Four studies analyzed the alpha-diversity between SS and non-
SS sicca patients (Table 3). In accordance with the results
of comparing SS with healthy controls, Alam et al. reported
significantly a higher diversity in patients with SS compared with
sicca patients (Alam et al., 2020). But others found no significant
differences between patients with SS and sicca (van der Meulen
et al., 2018a; Rusthen et al., 2019; Sembler-Møller et al., 2019).

At the genus level (Table 6), Bergeyella and Granulicatella
were found significantly decreased in patients with SS compared
with sicca patients, which were also decreased when compared
with healthy controls (van der Meulen et al., 2018a). At the
species level, six species were identified as significantly more
abundant in patients with SS than sicca patients. Among those
species,Veillonella parvula, Lactobacillus salivarius, Lactobacillus
fermentum, Prevotella nanceiensis, and Veillonella rodentium
were also found to be increased when comparing SS patients with
healthy controls (Rusthen et al., 2019; Alam et al., 2020).
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TABLE 5 | Specific changes in the oral microbiome of RA patients.

References Enriched genus Decreased genus Enriched species Decreased species

Esberg et al.

(2021)

/ / Prevotella pleuritidis, Porphyromonas

endodontalis, Filifactor alocis and

Treponema denticola

Oribacterium sinus, Catonella morbi,

Veillonella rogosae and

Campylobacter concisus

Kroese et al.

(2021)

Veillonella, Prevotella / Prevotella salivae Neisseria flavescens, Streptococcus

dentisani, Porphyromonas pasteri

and Veillonella parvula

Cheng et al.

(2021)

Periodontally healthy site

Cardiobacterium,

Bifidobacterium, Porphyromonas,

Capnocytophaga, Neisseria

and Streptococcus

Diseased site Cardiobacterium,

Capnocytophaga, Neisseria

and Streptococcus

/ Periodontally healthy site:

Acinetobacter baumannii,

Acinetobacter johnsonii,

Acinetobacter lwoffii, Alistipes

putredinis, Cardiobacterium hominis,

Caulobacter segnis, Clostridium

phytofermentans, Enhydrobacter

aerosaccus, Enterococcus

casseliflavus, Methylobacterium

extorquens, Methylobacterium

nodulans, Methylobacterium populi,

Methylobacterium radiotolerans,

Pseudomonas stutzeri, Shewanella

sp. ANA-3, Sphingopyxis alaskensis,

Thiomonas intermedia, Xanthobacter

autotrophicus and

Xanthomonas campestris

Diseased site: Capnocytophaga

gingivalis, Cardiobacterium hominis,

Eikenella corrodens, Neisseria

gonorrhoeae, Neisseria mucosa,

Neisseria sicca, Neisseria subflava,

Streptococcus mitis, Streptococcus

oralis, Streptococcus pneumoniae,

Streptococcus sanguinis and

Streptococcus sp. M143

/

Lehenaff et al.

(2021)

/ / Actinomyces meyeri and

Streptococcus parasanguinis

Gemella morbillorum, Kingella

denitrificans, Prevotella

melaninogenica and Leptotrichia spp.

de Jesus et al.

(2021)

Streptococcus, Rothia and

Leptotrichia

Fusobacterium,

Porphyromonas,

Aggregatibacter and

Capnocytophaga

Streptococcus salivarius, Rothia

mucilaginosa, Prevotella spp.,

Leptotrichia spp. and Selenomonas

fueggei

Prevotella melaninogenica,

Fusobacterium periodonticum,

Granulicatella elegans and

Porphyromonas endodontalis

Tong et al.

(2019)

RA vs. HCs: Prevotella_6

and Selenomonas_3

RA vs. at-risk: Rothia

RA vs. HCs: Neisseria,

Haemophilus, and

Parvimonas

RA vs. at-risk: Filifactor

/ RA and at-risk vs. HCs:

Defluviitaleaceae UCG-011 and

Neisseria oralis

Corrêa et al.

(2019)

Prevotella Streptococcus, Haemophilus

and Actinomyces

Prevotella (P. melaninogenica, P.

denticola, P. histicola, P. nigrescens,

P. oulorum, and P. maculosa),

Selenomonas noxia, S. sputigena,

Anaeroglobus geminatus,

Aggregaticbacter

actinomycetemcomitans and

Parvimonas micra

Rothia aeria and Kingella oralis

Mikuls et al.

(2018)

RA vs. OA: Prevotella / / /

Lopez-Oliva

et al. (2018)

/ / Actinomyces spp., Cryptobacterium

spp., Dialister spp., Desulfovibrio

spp., Fretibacterium spp.,

Leptotrichia spp., Prevotella spp.,

Selenomonas spp., Treponema spp.

(119), Cryptobacterium curtum and

Veillonellaceae [G1]

Aggregatibacter spp., Gemella spp.,

Granulicatella spp., Hemophilus spp.,

Neisseria spp. and Streptoccoci spp.

(110)

(Continued)
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TABLE 5 | Continued

References Enriched genus Decreased genus Enriched species Decreased species

Chen et al.

(2018)

RA vs. OA: Neisseria,

Haemophilus, Prevotella,

Veillonella, Fusobacterium,

Aggregatibacter

and Actinobacillus

RA and OA vs. HCs: Prevotella,

Neisseria, Porphyromonas,

Veillonella, Haemophilus, Rothia,

Streptococcus, Actinomyces,

Granulicatella, Leptotrichia,

Lautropia and Fusobacterium

RA vs. OA: Streptococcus,

Actinomyces, Lautropia,

Rothia, Granulicatella,

Ruminococcus, Oribacterium

and Abiotrophia

RA vs. OA: Neisseria subflava,

Haemophilus parainfluenzae,

Veillonella dispar, Prevotella tannerae,

and Actinobacillus parahaemolyticus

RA and OA vs. HCs: Prevotella

melaninogenica, and Veillonella dispar

RA vs. OA: Rothia dentocariosa, and

Ruminococcus gnavus

Zhang et al.

(2015)

/ Haemophilus,

Aggregatibacter,

Cardiobacterium, Eikenella

and Kingella

Rothia mucilaginosa, Rothia

dentocariosa, Lactobacillus salivarius,

Atopobium spp. and

Cryptobacterium curtum

Rothia aeria, Porphyromonas

gingivalis, Lactococcus spp., and

Cardiobacterium hominis

Scher et al.

(2012)

NORA and CRA vs. HCs:

Anaeroglobus, Uncl.

Prevotellaceae and Phocaeiola

NORA and CRA vs. HCs:

Corynebacterium, Mitsuokella

and Streptococcus

NORA and CRA vs. HCs:

Anaeroglobus OTU99, Leptotrichia

OTU87, Prevotella OTU60,

Selenomonas OTU168, Phocaeiola

OTU92, Prevotella OTU31, Prevotella

OTU134, Neisseria OTU16, and

Porphyromonas OTU1

NORA and CRA vs. HCs:

Leptotrichia OTU12, Leptotrichia

OTU86, Leptotrichia OTU9,

Capnocytophaga OTU74,

Corynebacterium OTU4 and

Uncl.TM7 OTU58

RA, rheumatoid arthritis; OA, osteoarthritis; NORA, new-onset rheumatoid arthritis, disease duration of >6 weeks and absence of any treatment with disease-modifying anti-rheumatic

drug (DMARD) or steroids (ever); CRA, chronic RA with minimum disease duration of 6 months.

DISCUSSION

Currently, only symptomatic treatments are available for patients

with SAD because of the unknown etiology (Zampeli et al.,

2015; Fava and Petri, 2019; Ramos-Casals et al., 2020). In a

healthy state, a balance is sustained between the oral microbiome

and the host immune response, as well as inside the oral
microbial community (Lamont et al., 2018). Therefore, the oral
microbiome plays an important role in maintaining the health of
the host, as well as the immune system and metabolic stability.
Under the pathological conditions, the homeostasis is broken
and the oral dysbiosis occurs, which usually manifests as the
changes in composition and/or function of the oral microbiome
(Lamont et al., 2018). Elucidating the role of the oral microbiome
in the initiation and development of SADs may present new
possibilities for the treatment and prevention of these diseases.

In this systematic review, we reviewed 25 studies covering 137
patients with SLE, 760 patients with RA, and 189 patients with
SS with information on their oral microbiome. Oral microbial
dysbiosis has been identified in the SADs in this review by
comparing bacterial diversity and richness, as well as abundance
of genus or species between patients and healthy controls.
Significantly altered microbial diversity has been reported in
patients with SLE, RA, and SS, although the inconsistent results
exist, which could be due to the different sample sites of
the oral cavity. Bacterial diversity of saliva microbiome, which
consists mostly of gram-positive aerobes, was found elevated in
patients with RA compared with controls (Chen et al., 2018;
Esberg et al., 2021), while in the subgingival dental plaque
that colonized predominantly by the gram-negative anaerobes
or facultative anaerobes, decreased or similar diversity was

reported in patients with RA compared with controls (Scher
et al., 2012; Mikuls et al., 2018; Cheng et al., 2021). These
findings suggested that regular periodontal maintenance or
oral hygiene behavior may play an important role in the
prevention and treatment of SADs. Understanding the exact
association between oral microbial dysbiosis and SADs may
help to develop novel combined therapies for both physicians
and dentists.

Selenomonas and Veillonella were found significantly
increased in the SADs covered in this review. In addition to
the SADs, increased Selenomonas has also been identified to be
associated with other systemic diseases, for example, human
diabetes (Tsuzukibashi et al., 2017). Reduction of Streptococcus,
a health-associated genus, was observed in the SADs, indicating
that these SADs may disturb the oral microbiome, the
mechanisms of which still need further investigation.

At the species level, significant alterations in the abundance
of Rothia aeria, a gram-positive aerobe from the family
Micrococcaceae, had been discovered in the three SADs, which
could be explained by the abnormal immune status of those
patients and also by the effect of treatment of SADs. R. aeria
is a part of the normal human oral microbiome occasionally
related with periodontal and dental infections, but has also
been reported in osteomyelitis, endocarditis, and joint infections
(Graves et al., 2019).

In the studies included in this review, population
characteristics were not always considered, especially the
smoking status, periodontal status, and oral hygiene conditions,
which can explain the inconsistent results to some extent. In
fact, it is well-established that smoking (Al Bataineh et al.,
2020), oral hygiene (Radaic and Kapila, 2021), and periodontal
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TABLE 6 | Specific changes in the oral microbiome of SS patients.

References Enriched genus Decreased genus Enriched species Decreased species

Sharma et al. (2020) Bifidobacterium,

Lactobacillus and Dialister

Leptotrichia / /

Alam et al. (2020) / / SS with dryness vs. sicca: Veillonella

parvula, Lactobacillus salivarius,

Veillonella tobetsuensis, Lactobacillus

fermentum and Veillonella rodentium

SS vs. HCs: Prevotella

melaninogenica, Veillonella rogosae,

Streptococcus HQ748137,

Streptococcus HQ762034, Prevotella

histicola, Streptococcus parasanguinis,

Streptococcus 4P003152,

Streptococcus uc, Streptococcus

mutans, Haemophilus HQ807753,

Veillonella parvula, Prevotella

FM995711, Streptococcus sobrinus,

Prevotella salivae, Lactobacillus

salivarius, Veillonella rodentium,

Haemophilus haemolyticus,

Lactobacillus fermentum, Prevotella

4P003758 and

Streptococcus HQ757980

SS with dryness vs. sicca:

Haemophilus sputorum, Neisseria

AY005028, Neisseria uc,

Capnocytophaga gingivalis, Leptotrichia

wadei, Porphyromonas gingivalis,

Porphyromonas AM420091,

Lachnoanaerobaculum orale,

Lautropia mirabilis, Neisseria elongata,

Rothia aeria, Neisseria sicca group,

Neisseria mucosa, Neisseria subflava,

Streptococcus CP006776 and

Neisseria perflava

SS vs. HCs:

Eikenella corrodens

Rusthen et al. (2019) / SS and sicca vs. HCs:

Haemophilus and Neisseria

SS and sicca vs. HCs:

Porphyromonas endodontalis,

Prevotella nancensis, Tannerella spp.

and Treponema spp. (12)

SS vs. sicca (with hyposalivation):

Prevotella nanceiensis

SS and sicca vs. HCs: Actinomyces

lingnae, Fusobacterium nucleatum

subspvincentii, Lachnoanaerobaculum

orale and Megasphaera

micronuciformis, Oribacterium

asaccharolyticum, Prevotella

nanceiensis, Stomatobaculum longum

and Streptococcus intermedius

SS vs. sicca (with hyposalivation):

Capnocytophaga leadbetteri,

Granulicatella adiacens, Neisseria

flavescens, and

RuminococcaceaeG1spt

Sembler-Møller et al.

(2019)

No significant difference No significant difference No significant difference No significant difference

Zhou et al. (2018) Veillonella Actinomyces, Haemophilus,

Neisseria, Rothia,

Porphyromonas and

Peptostreptococcus

/ /

van der Meulen et al.

(2018a)

SS vs. HCs: Alloscardovia,

Bifidobacterium, Scardovia,

Atopobium, Lactobacillus,

Parvimonas,

Peptostreptococcaceae,

Anaeroglobus, and Dialister

SS vs. HCs: Alloprevotella,

Bergeyella, Abiotrophia,

Granulicatella,

Enterococcus,

Ruminococcaceae,

Lautropia, Neisseria and

Haemophilus

SS vs. sicca:

Bergeyella and

Granulicatella

/ /

de Paiva et al. (2016) Streptococcus Leptotrichia and

Fusobacterium

/ /

Siddiqui et al. (2016) Streptococcus and

Veillonella

/ Veillonella sp. Oral Taxon 917 /

Li et al. (2016) Leucobacter, Delftia,

Pseudochrobactrum,

Ralstonia and Mitsuaria

Haemophilus, Neisseria,

Comamona, Granulicatella

and Limnohabitans

/ /

SS, Sjögren’s syndrome; HCs, healthy controls.
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FIGURE 2 | Overlap analysis of the significantly increased (A) and decreased (B) genera in systemic autoimmune diseases. Numbers of the increased (A) and

decreased (B) genera were visualized for SLE, RA, and SS patients. SLE, systemic lupus erythematosus; RA, rheumatoid arthritis; SS, Sjögren’s syndrome.

FIGURE 3 | Overlap analysis of the significantly increased (A) and decreased (B) species in systemic autoimmune diseases. Numbers of the increased (A) and

decreased (B) species were visualized for SLE, RA, and SS patients. SLE, systemic lupus erythematosus; RA, rheumatoid arthritis; SS, Sjögren’s syndrome.

disease (Kumar et al., 2006) can influence the oral microbiome.
It would not be sensible to evaluate the oral microbiome
without considering the above factors. When the periodontal
status of the participants was unknown, the results would be
somewhat ambiguous as observations might have been due to
the influence of periodontal disease (Corrêa et al., 2017). There
were two studies performed in the periodontal examination of
the participants; thus they were able to analyze the samples from

periodontal healthy sites or individuals and confirm that the
observed alterations of the oral microbiome were related with
the SAD itself (Lopez-Oliva et al., 2018; Cheng et al., 2021).

Also, the effect of medications, especially the antibiotics,
should be taken into consideration. Individuals with a history
of antibiotics treatment in the last 2 weeks to 3 months
were excluded in most studies (14/25), while in some studies
the participants were undergoing treatment. Li et al. (2016)
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investigated the effect of prednisone on the oral microbiota in
SS and found that Lactobacillus and Streptococcus were more
affected by corticosteroids than the disease itself. RA therapy
with potential antibacterial properties, such as methotrexate
or hydroxychloroquine (Greenstein et al., 2007; Rolain et al.,
2007), may also influence the oral microbiome. Therefore, future
studies with treatment-naive individuals will be needed to clearly
determine the role of oral microbiome in SADs.

There are many other confounding variables that should be
considered. Decreased salivary secretion has a negative impact
on the quantity of oral microorganisms, which can be seen in
patients with SS. Thus, it is not clear whether the changed oral
microbiome was caused by SS disease itself or the decreased
salivary secretion. Interestingly, Siddiqui et al. (2016) have
evaluated the microbiome of saliva in patients with SS with
normal salivation and suggested that SS can lead to oral microbial
dysbiosis independently of oral dryness. van der Meulen et al.
(2018a) found that SS disease status and salivary secretion
rate contributed almost equally to the variation of bacterial
composition (3.8 vs. 4.3%). While another study observed that
the reduction of salivary secretion contributed more to the
changes in oral microbiome in patients with SS than the disease
itself (van der Meulen et al., 2018b).

From this review, we found that it was difficult to prove a
causal link between the oral microbial dysbiosis and disease by
investigating the established SADs patients. At-risk individuals
with RA development were included in some studies and
dysbiosis were identified in their oral microbiome, indicating
these perturbations may be related to the RA initiation (Tong
et al., 2019; Cheng et al., 2021; Kroese et al., 2021). Cheng
et al. found that a higher relative abundance of Porphyromonas
gingivalis preceded the onset of clinical arthritis, supporting
the hypothesis that oral microbial dysbiosis may be a cause of
RA initiation (Cheng et al., 2021). However, for SLE and SS
the current data was not sufficient to determine whether oral
microbial dysbiosis is the consequence or the cause of diseases.
Thus, the prospective cohorts of at-risk individuals should
be included in the future study to elucidate the mechanisms
underlying the potential link between the oral microbial dysbiosis
and SADs.

In this systematic review, 92% studies (23/25) relied on the
16S rRNA sequencing technology, which is cost-effective and
efficient to detect alterations in bacterial populations. However,
a major limitation of this method is that only a single region
of the bacterial genome can be analyzed and it is difficult to
distinguish the species when their 16S rRNA gene sequences
have high similarities (Větrovský and Baldrian, 2013). The
shotgunmetagenomics approach can provide information on the
taxonomic composition of the ecosystem but also on functional
genes in the sample, displaying several advantages over the
16S amplicon method, such as more confident identification of
bacterial species, increased detection of diversity, and prediction
of genes (Ranjan et al., 2016; Durazzi et al., 2021). However,
it has been employed only in the two studies to investigate
the oral microbiome of patients with RA (Zhang et al., 2015;

Cheng et al., 2021). The changes in functional capability in
the oral microbiome of patients with RA have been identified,
although the actual function gene expression could not be
determined by such a method. Besides the genomics, to the
best of our knowledge, there was one study conducted by
Konig et al. (2016) who analyzed the subgingival microbiome
of patients with periodontitis using proteomic techniques and
found that the citrullinome in periodontitis mirrored patterns of
hypercitrullination observed in the rheumatoid joint. Periodontal
pathogen Aggregatibacter actinomycetemcomitans has been
identified as a candidate bacterial trigger of autoimmunity
in RA. More proteomics, transcriptomics, and metabolomics
technologies should be used for future studies and may provide
a better understanding of the mechanisms underlying the
association between oral microbiome and SADs.

In addition to RA, SLE, and SS, there are also other SADs not
covered by this review, and few studies have investigated their
oral microbiome. To the best of our knowledge, there was one
study carried out by Zorba et al., who analyzed the smear samples
from oral lesions of patients with pemphigus vulgaris (PV) using
16S rRNA sequencing and found that Fusobacterium nucleatum
was the most dominant species (Zorba et al., 2021). In the future,
high-throughput analysis could be used more widely to study the
oral microbiome of other SADs.

CONCLUSION

In this article, we presented a systematic review of literature
that is focused on the big data analysis of oral microbiome
of SADs patients. Oral microbial dysbiosis has been identified
in all the SADs included in our review, by detecting the
alterations in microbial composition and populations, as well
as the function capabilities. Most dysbiosis features were
different between studies, which could be due to a lack of
standardized study methodology for each study, from the
inclusion criteria, sample type, sequencing platform, referred
database, to downstream analysis pipeline and cutoff. Besides
the genomics, transcriptomics, proteomics and metabolomics
technology should be used to investigate the oral microbiome
of SADs patients and also the at-risk individuals of disease
development, which may provide us with a better understanding
of the etiology of SADs and promote the development of the
novel therapies.
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Electronic vaccine certificates (EVC) for COVID-19 vaccination are likely to become

widespread. Blockchain (BC) is an electronic immutable distributed ledger and is one of

themore common proposed EVC platform options. However, the principles of blockchain

are not widely understood by public health and medical professionals. We attempt to

describe, in an accessible style, how BCworks and the potential benefits and drawbacks

in its use for EVCs. Our assessment is BC technology is not well suited to be used

for EVCs. Overall, blockchain technology is based on two key principles: the use of

cryptography, and a distributed immutable ledger in the format of blockchains. While the

use of cryptography can provide ease of sharing vaccination records while maintaining

privacy, EVCs require some amount of contribution from a centralized authority to confirm

vaccine status; this is partly because these authorities are responsible for the distribution

and often the administration of the vaccine. Having the data distributed makes the role

of a centralized authority less effective. We concluded there are alternative ways to use

cryptography outside of a BC that allow a centralized authority to better participate, which

seems necessary for an EVC platform to be of practical use.

Keywords: blockchain (BC), electronic vaccination record, electronic vaccine certificate, cryptography, COVID-19,

clinical informatics

INTRODUCTION

The Rise of COVID-19 Electronic Vaccine Certificates
The requirement of proof-of-vaccination to COVID-19 is gaining traction in government agencies
and the private sector, despite vocal opposition. The European Commission on December 21st,
2021 created regulations around the use of European Union Digital COVID Certificates (EUDCC)
(EU Digital COVID Certificate, 2022). These regulations apply to all nations (non-EU included)
that choose to adopt the EUDCC. Its primary use is to open travel between EU countries, but
some nations are using it domestically to control entry to public places such as restaurants or
sporting events. As of February 1st 2022, 42 countries are already connected to the EUDCC, and
many more are considering joining (EU Digital COVID Certificate, 2022). The EUDCC uses a
technology called distributed identity. The United States (US) federal government has taken a
more limited role in regulating and mandating proof-of-vaccination through EVC platforms. This
has left the responsibility to the private sector and state governments. Employers such as airlines,
hospitals, and restaurants are increasingly requiring proof-of-vaccination for their patrons and
employees (Eldred, 2021). Other non-EU countries are also evaluating EVC technology platforms
to use domestically.
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Blockchain Technology as a Solution
Blockchain has been a commonly proposed technology solution
for COVID EVC platforms (Mithani et al., 2021). Although
awareness of blockchain has increased because of the rise of
digital currency such as Bitcoin and Ethereum, the majority of
the public and decision makers have little understanding of the
technology, especially in non-currency-based uses. Moreover,
despite vocal opposition to proof-of-vaccination measures, it
seems likely some versions of them will stay and become more
widespread as COVID becomes more endemic, especially if
COVID remains a deadly disease in those unvaccinated.

Blockchain use in EVCs is commonly proposed but there is
a paucity of literature or real-world examples of its use for this
purpose. As pressure increases for decision makers to choose
amongst the various technology options, the authors of this paper
thought it was important to review this topic.

Ten Important Characteristics of an EVC
Technology Platform
As governments and the private sector are evaluating EVC
platforms for deployment there are multiple considerations.
Through discussion, our team identified 10 key considerations:
(1) data privacy and security (patient health information,
demographic data, location, etc), (2) data verifiability and

fidelity (data remains auditable and accurate over time), (3)
data retrievability (data can be queried and retrieved with
accuracy and within a timeframe that is useful for its application),
(4) technology accessibility (how easy it is for the public to
access it as users), (5) equitable (regardless of socioeconomic,
racial, or cultural differences), (6) interoperability with other
public health and healthcare system information technology,
(7) scalability (to be broadly available to the public within
a short time period) (8) cost effective to maintain and
operate (9) potential for public adoption (important factors
include understandability, trust, and public perception of
the technology), and (10) feasibility of development and
operationalization (e.g., prior examples of the technology
platform being successfully deployed in similar contexts).

BACKGROUND

Databases
Adata storage application like an EVC systemwould traditionally
use a database (generally what is called a relational database) to
store patient and vaccination data. A relational database can be
compared to a Microsoft Excel or Google Sheets document - data
is stored in tables with rows of entries similar to a spreadsheet,
and may contain multiple, possibly interlinked tables similar to
the tabs in an Excel or Sheets document. Data can be retrieved
from the database by writing queries in the appropriate query
language, similar to the functions that can be used with Excel
and Sheets. There are other types of databases that do not use
blockchain technology, and the main benefit of databases is
that they can also be optimized for specific use-cases, such as
minimizing the size of the data and increasing the speed of
updating or querying the database.

Theoretically, any kind of data can be represented in a
database in any way, with any kind of relationships between
different pieces of data. For example, for an EVC, there might be
one table where each row contains the full private data of a patient
and a vaccination they received. Alternatively, for a vaccine that
requires multiple shots, data that is duplicated between each
entry, such as a patient’s details, could be entered into its own
table which can then be linked to a second table that contains
only the data for each shot. This way, the amount of data stored
for each patient is reduced, and therefore so is the overall size
of the database. This can lead to various improvements to the
overall system, including the hard drive space required to store
the database.

Generally, the security of the data in a database depends on
the security of the systems it is connected to, unless the data
itself is encrypted (see glossary). For example, most applications
that use a database would have a user interface (UI) to make
it easier for users to view and update the data in the database.
Permission systems (such as usernames and passwords) can be
used to control who can do what with the database data - for
example, perhaps anyone with a login can read the data entries
that pertain to themselves, but only some people can add or
change data. The security of such an application then depends
on factors like who has permission to do what operations, and
how easy it is for a malicious entity to gain access to the database
(e.g., by hacking the system or stealing login information from
a user and using it to access the data via the user interface).
Cryptographic techniques are commonly used at various points
in an application in order to add layers of security.

WHAT IS BLOCKCHAIN TECHNOLOGY

Blockchain is a distributed ledger technology for storing
and transmitting information. Its main characteristics are
transparency, security, and decentralization (operating without
a centralized control body) of both data and authority (Cawrey,
2021). A common application is money transfers that can be
performed without the need for trusted third parties or banks.
This is how Bitcoin or Ethereum work: thanks to blockchain,
there is peer-to-peer (P2P) review that permits direct transfers
between individuals.

The blockchain can therefore be compared to a public,
anonymous and unforgeable accounting ledger. We can also
think of this technology as a way to securely store private
information such as vaccination records. In this section we
describe what’s known as a public blockchain, which is the
original design by Nakamoto (2008). There are other variations
of blockchain called “permissioned blockchains” that we will
describe in the next section.

The first step is to initiate the transfer.
Let’s say Mike wants to do a transaction with Santiago. If

we consider Bitcoin for example, Mike would like to transfer
money to Santiago; in that case we would have a record that
says: “Mike pays Santiago 2 Bitcoins (transaction signed by
Mike).” If we consider vaccination records, we could record
the vaccination similarly: “Mike vaccinates Santiago (transaction
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FIGURE 1 | Verification of Mike’s identity.

FIGURE 2 | Process of adding a transaction to the blockchain in 7 steps. The ## indicates the hash that was created for the block between steps 4 and 5.

signed by Mike),” with Mike being a vaccinator. A vaccinator
is anyone approved to administer the vaccine, often a licensed
healthcare provider or a public health official.

In step two, the transaction is sent to the network, composed
of all the people using the blockchain, for verification. The first
verification concerns the identity of the individuals involved in
the transaction: is it really Mike that wants to do the transaction
with Santiago?

How does this validation step work? Mike has to sign the
transaction with an electronic signature called a private key. Only
Mike has access to this key. The rest of the network has a public
key that can only be used to decode Mike’s private key. When the
transaction is sent by Mike, several people in the network will
verify that their public key decodes Mike’s private key (Figure 1).
If the public key doesn’t decode Mike’s private key, it means that
it is not really Mike that sent the transaction. The transaction is
thus canceled.

In the case of money transfers, the verification consists of
verifying the identity of Mike with his electronic signature, as
explained above, and verifying if Mike has enough money on his
account to send to Santiago. In the case of vaccination records,
one could envision a similar verification process using two keys
to verify the identity of the parties.

The transaction is approved only if more than half of the
people on the network accept it. This way, since there is a
vast number of users, it is very unlikely that a compromised
transaction will be approved.

Once the transaction is verified by the network, it is grouped
together with other transactions to form a block (Figure 2,
step 3).

On step four (Figure 2), a block is built for the group
of transactions.

In Bitcoin and other proof-of-work systems, the “validators”
of the chain, also called “miners,” must spend computational
work to find the solution to a mathematical problem, and
that solution links the block to the chain. In systems
using proof-of-stake or proof-of-authority, the miners only
need to produce a digital signature that authenticates it to
the network.

Once the block is validated, a timestamp is added to the block,
i.e., the approximate date and time when the block was found.

Step five (Figure 2) is called hashing. Each block has an
identifier, which is a unique cryptographic fingerprint, resulting
from the hash of the data that this block contains: the
transactions, the timestamp and the hash of the previous block.
If someone attempts to modify the information stored in a block,
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FIGURE 3 | Hashing.

FIGURE 4 | Schematic of a Blockchain.

the hash will change drastically, and the fraud will be detected
(see Figure 3).

The block is then broadcast to the network and is verified one
last time before being added to the chain. We call this technology
blockchain, because each block of transactions is linked to the
previous one through the hash, as shown in Figure 4.

PERMISSIONED BLOCKCHAINS

In the previous section we have described the general functioning
of blockchain technology. However, there are multiple variations,
which can change critical aspects of the technology.

In general, there are three types of blockchains: public,
consortium, and private (Zhang and Lin, 2018). Public
blockchains such as Bitcoin allow anyone to participate: there
are no restrictions on who can read or write to the blockchain.
Consortium blockchains are permissioned blockchains where a
consortium of entities are able to validate blocks. Access to the
blockchain may vary between public or restricted (e.g., via APIs).
Private blockchains are permissioned blockchains where a single
entity has complete authority over the network and that entity
fully controls both read and write permissions.

In the context of vaccination records, public blockchains
will likely not suffice since vaccination records in the chain
must be trustworthy (i.e., they should be added to the chain
by a trusted medical entity). This then naturally leads to a
private or consortium blockchain, where the ability to add to
the chain and validate blocks can be restricted to only trusted
entities, such as vaccinators (doctors and professionals in the
medical community). In this scenario, we can imagine a certain
trusted entity, such as the Health Ministry of one or several
countries, having control over who is allowed to add vaccination

records to the blockchain. A system like the European Union
Digital Covid Certificate allows any of several countries to add
vaccination records.

Proof-of-Work Validation
We have described how and when a block is validated. After this
occurs, it is then added to the blockchain (Step 4 on Figure 2).
However, there are many different consensus algorithms for
validating blocks. The most popular, due to its use in Bitcoin
and the way it incentivizes participation, is the proof-of-
work algorithm.

In proof-of-work blockchains, a block is validated by
performing a task that is computationally expensive, but easy to
confirm. For example, in Bitcoin this task is finding a sequence
when added to the block that will result in a hash that ends in
a certain number of zeroes. This requires miners to use trial-
and-error to find a sequence that will result in a certain hash.
However, once that sequence is found, it is very easy to confirm
that its hash has the required number of zeroes. Proof-of-work
systems often need to provide an incentive to the agent who
solved the problem. In currency-focused blockchains, this is
easily solved by rewarding that agent with a certain amount
of currency.

However, in an EVC system there isn’t a clear reward that
could be provided to the agent that validated the block. For
these reasons, a proof-of-work validation algorithm would not
be appropriate for this application, and other validation systems
would need to be used. An algorithm which relies on a majority
consensus between parties may be best, and especially, if used
in a permissioned blockchain system, where the various entities
are trusted.
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TABLE 1 | Differences between public and permissioned blockchains.

Property Public Permissioned

Access restrictions No restrictions inherent to the blockchain Ability to read and write data to the blockchain is

controlled

Trust Doesn’t require trust between agents in the network Requires trust, due to agents having different read, write

and validation permissions

Risk of takeover by majority of

authoritative nodes

Anyone can join the network and validate transactions Only some nodes are authoritative (can validate

transactions)

Security Malicious entities can easily gain access, and data is public Permissions control who can do what, including viewing

the data

Validation Anyone can validate blocks, but validation is computationally

expensive, so an incentive is generally needed

Trusted entities can be assigned the duty of validating

blocks which removes the need for an incentive

Consensus algorithm Can operate in an environment with low trust between entities,

and may need to handle faults and malicious entities

Trust allows the consensus algorithm to be simplified

In Table 1 we summarize the differences between a public
blockchain and a permissioned blockchain. An EVC system
would likely use a permissioned blockchain.

In some ways a permissioned blockchain is more similar to
a traditional database compared to a public blockchain. For
example, fewer authoritative entities means that an entity or
group of entities could theoretically gain authority more easily,
allowing them to block new transactions and rewrite their
past transactions. However, in a permissioned blockchain, like
in a traditional database, those entities need to be externally
permissioned, which increases security.

However, a blockchain-based application will generally have
more components than just the blockchain, such as user
management and other data storage. A permissioned blockchain
may allow for security trade-offs to be made elsewhere, such as
choosing a less secure but faster consensus algorithm.

Considerations for Cooperative
Applications
Decentralized authority may be an appealing solution when
multiple entities are collectively using a system and each one is
unwilling to let others have more authority over the system (such
as countries sharing a common vaccination record system). This
then could incentivize additional entities to join the blockchain.

However, a major hurdle for using blockchain technology
on such a large scale is agreeing on a common protocol for
the chain. These include the consensus mechanism, privacy
standards, incentives for maintaining the chain, and managing
write access to the chain. In addition, there has to be some level
of trust that the other entities are managing their write access to
the chain properly and those records can be trusted.

Some technical designs using consortium blockchains for EVC
have been described (Haque et al., 2021).

In the case where multiple countries share the same
blockchain, a consortium blockchain could theoretically be
employed. This would allow each country to control the
permissions to their respective medical institutions to write to the
chain. Since no one country would have complete authority over
the blockchain, the core benefit of decentralized authority would
be preserved.

With regards to suitable blockchain platforms, Bitcoin and
Ethereum are public, not consortium. Other platforms such as
Multichain, Hyperledger Fabric and Hyperledger Sawtooth are
likely more appropriate (Chowdhury et al., 2018; Chowdhury
et al., 2019).

DIFFERENCES BETWEEN DATA STORAGE
IN BLOCKCHAIN AND DATABASES

The biggest difference between blockchain and other types
of distributed ledger technologies is the use of cryptographic
techniques to add a layer of security to the data. While
cryptography is often used for secrecy, in the context of
blockchain the technology is used to make it significantly harder
to change the transaction history, as described above. This is
how cryptocurrency got its name. It is currency that is traded on
the blockchain, many of the advantages of which come from the
cryptographic techniques it utilizes.

As mentioned above, databases are based around storing data
in tables with various methods for optimizing a database. This
flexibility, especially combined with the various innovations in
database technology and other fields over the last few decades,
means there is very little to which databases are not suitable, with
the right configuration.

Blockchain technology, in comparison, is designed to store
individual data entries in a chronological manner. Innovations
such as Ethereum have greatly improved what kinds of data can
be stored on a blockchain, but the chronological nature of the
technology and the fact that each data entry is independent of
any other entry are core to blockchain.

With cryptocurrencies such as Bitcoin, people who use
the currency do not directly access the blockchain to make
transactions. Each user has a “wallet” which contains a
list of their private keys, usually combined with a software
interface with which users can manage keys and make
transactions (Frankenfield, 2022). The data within a wallet is
not stored on a blockchain. Instead, there are various data
storage methods that are used, and one common option is a
traditional database.
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TABLE 2 | Properties of blockchain and how they relate to the EVC use case.

Property Advantage Disadvantage Mitigation Counterfactual

Decentralized authority

(public blockchain)

Safe operations

of applications

Incentivize co-operation

of shared authority

Agreement on protocols,

etc.

Can’t control who has

access

Use private or consortium

permissioned blockchain

Standard databases can be

permissioned

Decentralized data

storage

Less risk of data loss with

redundancy of data

The dataset for each

authority can become

extremely large blockchain

Limit which entities require the

full blockchain

Limit on-chain data storage

Minimization of data loss risk in traditional

databases through backups or other

redundancy methods

Immutability, data

handling

Improved data security

thanks to limited data

operations (create, read)

No updates or deletion of

data

Overhead introduced to

create and read operations

Data can not be erroneous, or

policies must be created for

changing chain history

All operations allowed in databases and

can be controlled through permissions.

Possible performance optimization

Timeline verification Reliable verification of

timeline

N/A N/A Similar timeline verification functionality

with database encryption

methods

Resource usage

(energy and

computation)

Usage controlled by

blockchain

implementation choices,

e.g., consensus algorithm

Significant energy

consumption, particularly

of popular blockchain

properties

Architect blockchain to reduce

resource usage, e.g., choice of less

energy-intensive consensus

algorithm

Databases can be optimized to

minimize resource usage

Pseudonymous

identities

Tracking of transactions by

entities

IDs (usernames) can not be

linked to real-world

identities without integration

with external systems

Integrate with external identity

systems

Standard databases can use any identity

verification system and completely

control the creation of identities

Performance Validity of data and

ordering thereof ensured

Block validation speed

affects performance

Carefully select properties such as

block size limit

Standard databases are faster and more

optimized

Bold is for emphasis.

ANALYSIS OF BLOCKCHAIN
TECHNOLOGY FOR EVC USE

Pros and Cons of BC Compared to
Traditional Databases
Many blockchain platforms now exist, but most are designed
for specific use cases or are too early in development or
adoption for a use case as important as EVCs. The following
therefore generalizes blockchain systems, based mainly on
popular platforms Bitcoin and Ethereum. On Table 2 we provide
a summary of the characteristics of blockchain and how they
relate to the EVC use case.

Decentralized Data Storage
Decentralized data storage means that, theoretically, every node
would have a complete copy of the blockchain. However,
blockchain data can grow quickly to gigabytes or even terabytes
of data. For example, as of January 20th 2022, the blockchain size
of Bitcoin was 386 GB for its 704million transactions (Blockchain
Charts). The full Ethereum chain was 1178.68 GB (Ethereum
Chain Full Sync Data Size, 2022).

The full blockchain is required for authorities who validate
blocks, but usually not required just to create transactions. It is
also unrealistic that every entity would be willing to store the full
chain. Therefore, these blockchains can create light nodes, which
only store the data necessary to create transactions and rely on
full nodes for other data as well as validation (Wackerow, 2022).

The blockchain size scales with the number of transactions
and the data size of each transaction. Databases scale in a similar

way, but as a more mature technology are optimized to reduce
the impact. Data redundancy is another benefit of decentralized
data but can also be achieved with databases using backups.

For context for the EVC use case, the population of the USA
is 329.5 million with 551 million doses given. The population
of the European Union is 447 million with roughly 848 million
doses given (Daily COVID-19 vaccine doses administered, 2021;
Ritchie et al., 2022). These vaccinations have been done in the
last year, compared to Bitcoin’s transaction history which goes
back to 2009. This means that not only would vaccination records
quickly exceed the size of Bitcoin transaction history, it would
also present problems with record entry speeds.

Blockchain systems tend to limit how fast entries can be added
by controlling how long or how big blocks can get. For example,
Bitcoin is designed so a new block is mined every 6–10min. This
restriction on the systemmay be a significant problemwith EVCs,
whether they are set up at the beginning of vaccinations or, like
now, potentially having to catch up with a significant number of
past vaccinations.

Immutability, Data Handling and
Performance
Databases support operations to create, read, update and delete
(CRUD), and who performs each of these operations can be
managed with permissions. Blockchain only supports create and
read operations. As past transactions cannot be easily changed,
this theoretically creates an immutable record. Rewriting the
chain is technically possible, but extremely difficult. It would
require changing past transactions, propagating the changes
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through the chain, then getting majority acceptance from the
authoritative nodes. This would require recomputing blocks,
which may be costly and slow. The majority agreement may also
be difficult. Other options for changing the chain may be viable
but depend on the specific blockchain implementation.

Databases can be optimized for the most used operations.
Blockchain’s “create” and “read” operations are slower due to
the overhead of the validation and consensus mechanisms.
Bottlenecks can also happen, such as block validation delays
slowing transaction processing.

Databases are also designed to allow for any data to be queried
based on any relationship between the data points. For example,
an EVC database could likely be easily queried for “one patient’s
records,” or “everyone vaccinated with a specific vaccine lot.”
Blockchain data is not designed to be queried in this way, as
it is structured based on individual transactions and metadata
about the entities doing transactions. It is possible to replicate
such queries with blockchain technology, but due to it not being
designed for such purposes this requires additional effort to
implement and compute.

Whether immutability is beneficial for an application can
depend on the risk of human error. For instance, is the data
generated by a trusted program, or is it entered by humans who
may make mistakes? If reading data very soon after it is created is
important, databases may be preferable to blockchain.

Some existing blockchain applications try to get around some
of the limitations of blockchain by using a combination of
blockchain and databases. This requires careful implementation.
A recent incident with OpenSea, a blockchain application that
allows users to trade in images and other media, which used a
hybrid blockchain and database approach to avoid Ethereum’s
high transaction fees. A bug was found where the blockchain and
database got out of sync. This allowed an attacker to buy several
items at an older, lower price, then sell them at the more recent
price for a substantial profit (Cimpanu).

Timeline Verification
A major advantage of blockchain is that transaction validity
and order can be easily verified. This is due to it being
an immutable and chronological ledger. Databases can store
timestamps for entries, security techniques can be applied to
achieve immutability, and there are methods of encrypting
database information to provide similar functionality.

In the case of EVCs, the specific order of the records is not
critical. For example, it does not really matter whether Sue was
vaccinated before or after Mary.

Pseudonymous Identities
An EVC system will require integration with real-world
identification systems. A common example is using Social
Security Numbers in the US to link the blockchain records with
real-world people. This would apply to vaccinators, patients,
and anyone else involved. There must also be checks to ensure
individuals are not duplicated in the system.

Implementing these required checks in the blockchain
system may be difficult for the same reasons querying data is
difficult. Additionally, the existing identity systems are traditional

databases, and integration with a blockchain-based system would
add complexity and challenges.

Resource Usage
Blockchains can require a significant amount of computation and
energy. Different blockchain implementations require different
amounts due to factors like choice of consensus algorithm.
In proof-of-work verification, nodes race to complete the
computation of each block for a reward, but as a winner-takes-
all contest, energy used by the losing nodes is wasted. Other
consensus algorithms tend to use less energy (Chowdhury et al.,
2018), thereby lowering the energy cost of the entire system.

Another consideration is the resource usage of everyone
using the blockchain application. Because of its distributed
nature, all full nodes who are capable of validating transactions.
This requires each entity to have a computer storing the full
blockchain and capable of validating nodes, which most likely
must run continuously. This requirement may affect adoption
in the case of EVCs, as it is an added cost and burden on those
entities who would have authority to validate blocks. Light nodes
at least must only store part of the blockchain, and do not need
the computation ability to validate nodes. So careful organization
of who requires a full node and who can use a light node can
minimize this distributed cost.

Databases, in comparison, due to their centralized nature,
only use the energy required to run their servers (including
those used for backups) and external systems such as air
conditioning (Sedlmeir et al., 2020). Users of the application
would connect to it via the Internet, so no special machines or
systems are needed. This also allows for low-cost backups that
can be performed routinely but do not require to be constantly
connected and computing.

Hype and Public Opinion
Blockchain, with regards to its use in cryptocurrencies, NFTs,
and games, has been appearing in the news more often in
recent months and years. It is a technology that is drawing
a lot of attention and is often described as being “hyped”
(Litan, 2021), meaning that the amount of attention and public
expectations may surpass its actual delivery of progress. There
have been reports of publicly-traded companies adding the term
“blockchain” to their name and having their shares surge (What is
in a name UK stock surgers 394% on blockchain rebrand, 2017).
This points toward significant expectations associated with the
term, regardless of its actual feasibility.

However, as with any novel term, its valence in the public
opinion can quickly turn. For example, several companies in the
software and gaming industries announced blockchain-related
projects near the end of 2021, usually receiving mixed feedback
from the general public. For example, when the CEO of Discord,
a popular chat program, hinted at blockchain integration,
there were supporters but also many users who were publicly
against the move on Twitter, Reddit and Discord’s own forum,
and an unknown number canceled their paid subscriptions
in protest (Orland, 2021). Molly White’s timeline of problems
with “web3” (a catch-all term for blockchain-based innovations),
while focused on negative news, is a good indicator of what
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TABLE 3 | Comparison of blockchain and alternative technologies regarding EVC requirements.

EVC platform technology feature Optimal blockchain configuration compared to

alternative technology solutions

Comments

Data privacy and security Equivalent or uncertain based on current information Both blockchain and standard databases can use similar

cryptographic techniques [Transparent data encryption

(TDE), 2022].

Data verifiability and fidelity Superior Harder to forge records without leaving a trace of it in

blockchains

Data retrievability Inferior Blockchain’s data structure is not designed for flexible

data queries, databases are

Technology accessibility Equivalent or uncertain based on current information Depends on the front-end design and not much affected

by the underlying data storage technology

Equitable Equivalent or uncertain based on current information Same as above. Mainly depends on accessibility.

Interoperability Inferior Blockchain is a less mature technology, and by design

harder to modify? combining data registries or changing

data standards is much harder

Scalability Inferior Traditional databases can be more easily scaled in

transaction rate and storage

Cost effectiveness Inferior Blockchain’s distributed nature makes it more costly to

maintain. Traditional databases have been optimized for

efficiency.

Potential for public adoption Equivalent or uncertain based on current information As a novel technology, public perception of blockchain

can change quickly

Feasibility Inferior Blockchain is a less mature technology compared to

time-tested database solutions.

Bold is for emphasis.

is happening in the space, especially in terms of its effects
on the general public (White, 2022). It highlights that scams
and hack are abundant in the web3 sphere, and many people
are suffering losses, usually monetary, because of blockchain-
based applications.

A question then, regarding adopting blockchain for EVCs, is
“Will the public trust their data is safe on a blockchain-based
solution?” Blockchain is known for being difficult to understand,
not helped by the complexities around all the variations and
different use cases it can be used for. If public opinion of the
technology - informed or otherwise - becomes negative, will
people be willing to have their private medical data stored using
such a technology?

Assessment of Blockchain for EVC
In Table 3 we summarize our assessment of the comparison
between blockchain technology and traditional database
solutions regarding the 10 key considerations presented in the
introduction. As can be seen, blockchain only seems superior in
the Data verifiability and fidelity domain, with all other aspects
being either clearly inferior, equivalent, or uncertain.

CURRENT BLOCKCHAIN-BASED EVC
SOLUTIONS

Some existing EVC solutions do claim to be using blockchain
as part of their technology. A recent review by Mithani et al.
(2021) listed eight such applications, including IBM’s Digital
Health Pass. However, most of these solutions have not made

public the technical details of how blockchain is used. In fact, the
solutions proposed in this article published inMarch 2021 are not
operational today. Some of the webpages are not even functional.
Raising the question whether would the projects are still active?

For these solutions, the question remains of whether
blockchain is really a key part of the technology, or if the name is
being used for the “hype factor.” Given the lack of transparency
it is hard to estimate the number of truly functional blockchain
platforms in use for EVC, but from our teams estimate it appears
to be none.

DISCUSSION

In this paper we have described the conceptual framework of
blockchain technology as it could apply to storing electronic
vaccine certificates (EVC). We have also discussed some of the
advantages and drawbacks. Overall, blockchain technology seems
to have more cons than pros for this use case. In line with
our assessment, some widely-respected cyber-security companies
have also assessed that blockchain is not necessary for EVCs,
taking the example of the European COVID certificates system
(Schubert, 2021).

A recent review of blockchain applications for COVID-19 (Ng
et al., 2021) found that “vaccine passport monitoring” was one of
the most common applications described in blockchain papers.
However, most papers were limited to the technical description
or reports of technical performance. Several blockchain system
designs for vaccine supply management have also been described
(Peng et al., 2020; Yong et al., 2020; Antal et al., 2021).

Frontiers in Big Data | www.frontiersin.org 8 July 2022 | Volume 5 | Article 83319665

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Toubiana et al. Blockchain for Electronic Vaccine Certificates

There have been other attempts to use blockchain technology
for the storage and access to vaccination records using what
is known as “smart contracts” (Zhao and Ma, 2022). In these
approaches, the common idea is that the vaccination data
(including vaccine certificates) is stored publicly but in encrypted
form. The blockchain “smart contract” is then used to manage
access to the key that would allow to decrypt the public data or
a portion of it (Abubakar et al., 2021). This has been shown to
significantly increase speed and convenience of data retrievability
compared to scanning the blocks in the blockchain to find the
vaccination information (Abuhashim et al., 2021).

As mentioned earlier, some of the main principles that
inspired the creation of blockchain technology run counter to
the EVC use case. For example, one of the key principles is
decentralized authority. However, with vaccination records it
makes sense to have one, or a few, central authorities who certify
that an approved vaccine was administered. In a blockchain that
stores information about money, the agreement in the network
that a certain person has X amount can be enough to make that
judgment meaningful. However, vaccines must correlate with an
external event in the real world (the person’s immunity status
against a virus). That requires a central authority to determine, at
least, that what was administered was a vaccine. This centralized
assessment could be delegated to each “physician” agent in
the network.

The aspect of blockchain technology that makes the most
sense for the vaccination record use case, is the use of
cryptography, which is closely linked to privacy. However, as we
have discussed, a centralized or federated system to record and
store vaccinations using cryptography can be designed without
the use of blockchain, possibly using another distributed ledger
technology. For example, a very simple system could store hashed
records and make them publicly accessible. In the simplest
form, there would be one hash per vaccination record. In this
case the patient would go get their vaccine at a point of care
and would have privileged access to the public record. After
confirming the patient’s identity, they would put information
about the patient (e.g., patient full name and date of birth),
the vaccine administered (e.g., vaccine name, provider, and lot
number), and the date of administration, and create a hash with
that information. Because this cryptographic hash is a one-way
function that can’t be tracked back, the hash can be posted
publicly without loss of patient privacy. The provider would
then upload this information into a public repository maintained
by the authorized central agency (either the CDC or a similar

organization). Then, to verify the patient’s vaccination status, the
patient would only need to present the information that was used
to create the hash (which includes their identification), and the
verifier could run it by the hashing function and compare to the
public list of hashes posted in the trusted public repository. This
hashing and comparison step could be easily automated into a
phone app that would either read the patient’s information from
a printed vaccination card, or from a QR code that the patient
would carry. There is a similar idea to that described in recent
papers (Haque et al., 2021).

There are other questions that would need to be resolved
almost independently of the technology used to store the
vaccination records. There are several COVID vaccines available,
with varying degrees of effectiveness. Ideally, the technology
would store the information that is the most primary. In the
case of an EVC, that’s probably the record of which vaccine was
administered, and when. This way, the rules of what constitutes
a “fully vaccinated” patient can be flexible for different uses and
can even be adjusted as more information becomes available. For
example, if evidence becomes clear that vaccine efficacy wanes
significantly with time, some countries may choose to include
the time from the last dose in the definition of “fully vaccinated.”
However, even in this scenario, a central body still needs to decide
whether some vaccines are not considered effective enough to
even include in the record.

CONCLUSION

While blockchain has some useful applications, it does not
seem to have clear advantages for electronic vaccine certificates
(EVC) compared to more traditional database technologies.
There is significant hype associated with blockchain that could be
motivating its utilization for use cases in which it is not necessary.
The existing EVC solutions that claim to use blockchain do not
provide enough detail to assess whether blockchain is a core
component of the system.
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GLOSSARY

Cryptography is the study of techniques with which
communications can be secured such that only the sender
and intended recipient can understand the message. Encryption
is a technique that is part of cryptography, where data is
scrambled so that it is unintelligible, then sent to the recipient
who knows how to unscramble it.

Encryption is the process of codifying the data so that it
cannot be immediately read without an “decryption key”. The
data is scrambled (as with a hash) and can only be unscrambled
into an understandable form by using the decryption key. Data
that is encrypted is more secure because, even if a malicious agent
manages to access the data storage, they won’t be able to read the
data itself unless they also have access to the decryption key.

Hashing is a method of scrambling data that is often used
in encryption as it creates a fixed-length series of characters
which are usually shorter than the original data. It is possible
for different input data to produce the same hash, however
choosing the correct hashing algorithm will mean that chances
of that happening are considered too unlikely to be a risk.
In this way, it can be compared to a fingerprint. Hashing is
also a one-way function - given a hash, it is computationally
infeasible (i.e., near to impossible given current computing
technology) to calculate the original data, which gives us a
secure way to represent a piece of data without using the
data directly.

Public and private keys also come from cryptography, where
the public-private key pairs are used as described in the previous
section to scramble and unscramble data.
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1. Introduction

Supervised machine learning has become pervasive in the biomedical sciences

nowadays (Larrañaga et al., 2006; Tarca et al., 2007), and its validation has obtained a key

role in all these scientific fields. We therefore read with great interest the article byWalsh

et al. (2021), which reported a list of DOME recommendations to properly validate

results achieved with supervised machine learning, according to the authors. In the past,

several studies already listed common best practices and recommendations for the proper

usage of machine learning (Bhaskar et al., 2006; Domingos, 2012; Chicco, 2017; Cearns

et al., 2019; Stevens et al., 2020; Artrith et al., 2021; Cabitza and Campagner, 2021; Larson

et al., 2021; Whalen et al., 2021; Lee et al., 2022) and computational statistics (Benjamin

et al., 2018; Makin and de Xivry, 2019), but the comment by Walsh et al. (2021) has

the merit to highlight the importance of computational validation, which is a key step

perhaps even more important than the machine learning algorithm design itself.

Although interesting and complete, that article describes numerous of steps and

aspects in a way that we find complicated, especially for beginners. We believe that the

21 questions of the Box 1 of the DOME article (Walsh et al., 2021) can be adequate for a

data mining expert, but they might scare and discourage an inexperienced practitioner.

For example, the recommendations about the meta-predictions and about the hyper-

parameters’ optimization might not be understandable by a machine learning beginner

or by a wet lab biologist. And it should not be a problem: a robust machine learning

analysis can be performed, in fact, without using meta-predictions or hyper-parameters,

too. A beginner, in front of so many guidelines of that article, some of which being so

complex, might even decide to abandon the computational intelligence analysis, to avoid

making any mistake in their scientific project. Moreover, the DOME (Walsh et al., 2021)

authors present the 21 questions of the article Box 1 with the same level of importance.

In contrast, we think that three key aspects to keep in mind for computational validation

are pivotal and can be sufficient, if verified correctly. So we believe that a practitioner

would better focus all their attention and energy on accurately respecting these three

recommendations.
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FIGURE 1

ABC recommendations checklist. An overview of our ABC

recommendations, to keep in mind for any machine learning

study.

We therefore wrote this note to propose our own

recommendations for the computational validation of

supervised machine learning results in the biomedical sciences:

just three, explained easily and clearly, that alone can pave the

way for a successful machine learning validation phase. We

designed these simple quick tips from our experience gained on

tens of biomedical projects involving machine learning phases.

We call these recommendations ABC to highlight their essential

role in any computational validation (Figure 1).

2. The ABC recommendations

(A) Always divide the dataset carefully
into separate training set and test set

This rule must become your obsession: verify and double-

check that no data element is shared by both the training set and

the test set. They must be completely independent.

You then can do anything you want on the training set,

including the hyper-parameter optimization, but make sure you

do not touch the test set. Leave the test set alone until your

supervised machine learning model training has finished (and

its hyper-parameters are optimized, if any). If you have enough

data, consider also allocating a subset of it (such as 10% of data

elements, randomly selected) as a holdout set (Skocik et al.,

2016), to use as an alternative test set to confirm your findings

and to avoid over-validation (Wainberg et al., 2016).

This important separation will allow you to avoid data

snooping (White, 2000; Smith, 2021), that is a common mistake

inmultiple studies involving computational intelligence (Jensen,

2000; Sewell, 2021). Data snooping, also known as data dredging

and called “the dark side of data mining” (Jensen, 2000),

happens in fact when some data elements of the training set

are present in the test set, too, and therefore over-optimistically

improve the results obtained by the trained machine learning

model on the test set. Sometimes, this problem can happen

even when different data elements of the same patients (for

example, radiography images in digital pathology) are shared

between training set and test set, and is usually called data

leakage (Bussola et al., 2021). This mistake is dangerous for

every machine learning study, because it can give the illusion

of success to an unaware researcher. In this situation, you need

to keep in mind the famous quote by Richard Feynman: “The

first principle is that you must not fool yourself, and you are the

easiest person to fool” (Chicco, 2017).

Data snooping does exactly that: it makes you fool

yourself and makes you believe you obtained excellent results,

while actually machine learning performance was flawed.

Once you make sure the training set and the test set are

independent from each other, you can use traditional cross-

validation methods such as k-fold cross-validation, leave-one-

out cross-validation, and nested cross-validation (Yadav and

Shukla, 2016), or bootstrap validation (Efron, 1992; Efron and

Tibshirani, 1994), to mitigate over-fitting (Dietterich, 1995;

Chicco, 2017). Moreover, over-fitting can be tackled through

calibration methods such as calibration curves (Austin et al.,

2022) or calibration-in-the-large (Crowson et al., 2016), which

can also help measuring the robustness of model performance.

Moreover, it is important to notice that sometimes splitting

the dataset into two subsets (training set and test set) might not

be enough (Picard and Berk, 1990). Even for shallow machine

learning models, a correct splitting methodology should be

enforced: for instance, see the Data Analysis Protocol strategy

introduced by the MAQC/SEQC initiatives led by the US Food

and Drug Administration (FDA) (MAQC Consortium, 2010;

Zhang et al., 2015). And when there are hyper-parameters to

optimize (Feurer and Hutter, 2019), such as the number of

hidden layers and the number of hidden units in artificial neural

networks, it is advisable to split the dataset into three subsets:

training set, validation set, and test set (Chicco, 2017). In these

cases, sometimes in scientific literature the names validation

set and test set are used interchangeably; in this report, we

call validation set the part of the dataset employed to evaluate

the algorithm configuration with a particular hyper-parameter

value, and we call test set the portion of the dataset to keep

untouched and eventually use to verify the algorithm with the

optimal hyper-parameters’ configuration.

(B) Broadly use multiple rates to evaluate
your results

Evaluate your results with various rates, and definitely

include the Matthew’s correlation coefficient (MCC) (Matthews,

1975) for binary classifications (Chicco and Jurman,

2020; Chicco et al., 2021a) and the coefficient of
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TABLE 1 Recap of the suggested metrics for evaluating results of

binary classifications and regression analyses.

Analysis type Always include We suggest to include

TPR, TNR, PPV, NPV, accuracy,

Binary classification MCC F1 score, Cohen’s Kappa,

ROC AUC, and PR AUC

Regression analysis R2 SMAPE, MAPE, MAE, MSE, and RMSE

The formulas of the binary classification rates can be found in Chicco and Jurman (2020)

and Chicco et al. (2021a,c) and the formulas of the regression analysis rates can be found

in Chicco et al. (2021b).

determination (R2) (Wright, 1921) for regression

analyses (Chicco et al., 2021b). Moreover, make sure you include

at least accuracy, F1 score, sensitivity, specificity, precision,

negative predictive value, Cohen’s Kappa, and the area under

the curve (AUC) of the receiving operating characteristic

curve (ROC) and of the prediction-recall curve (PR) for

binary classifications. For regression analyses, make sure you

incorporate at least mean absolute error (MAE), mean absolute

percentage error (MAPE), mean square error (MSE), root mean

square error (RMSE), and symmetric mean absolute percentage

error (SMAPE), in addition to the already-mentioned R2. We

recap our suggestions in Table 1.

It is necessary to include all these scores because each of

them provides a singular, useful piece of information about

your supervised machine learning results. The more statistics

you include, the more chances you have to spot any possible

flaw in your predictions. All these rates work like dashboard

indicator lamps in a car: if something somewhere in your

machine (learning) did not work out the way it was supposed

to, a lamp (rate) will inform you about it.

The Matthew’s correlation coefficient, in particular, has

a fundamental role in binary classification evaluation: it has

a high score only if the classifier correctly predicted most

of the positive elements and of the negative elements, and

only if the classifier made mostly correct positive predictions

and mostly correct negative predictions (Chicco and Jurman,

2020, 2022; Chicco et al., 2021; Chicco et al., 2021a). That

means, a high MCC corresponds to a high score for all the

four basic rates of a 2 × 2 confusion matrix: sensitivity,

specificity, precision, and negative predictive value (Chicco

et al., 2021a). Because of its efficacy, the MCC has been

employed as the standard metric in several scientific projects.

For example, the USFDA agency used the MCC as the

main evaluation rate in the MicroArray II/Sequencing Quality

Control (MAQC/SEQC) projects (MAQC Consortium, 2010;

SEQC/MAQC-III Consortium, 2014).

Regarding regression analysis assessment, the coefficient of

determination R-squared (R2) is the only rate that generates

a high score only if the predictive algorithm was able

to correctly predict most of the elements of each data

class, considering their distribution (Chicco et al., 2021b).

Additionally, R2 allows the comparison of models applied

to datasets having different scales (Chicco et al., 2021b).

Because of its effectiveness, the coefficient of determination has

been employed as the standard evaluation metric for several

international scientific projects, such as the Overhead Geopose

DrivenData Challenge (DrivenData.org, 2022) and the Breast

Cancer Prognosis DREAM Education Challenge (Bionetworks,

2021).

(C) Confirm your findings with external
data, if possible

If you can, use data coming from a different data source

and made of a different data type from the main dataset

to verify your discoveries. Obtaining the same results you

achieved on the main original dataset on an external dataset

coming from another scientific research centre would be a

strong confirmation of your scientific findings. Moreover, if this

external data were in a data type different from the original data,

it would even increase the level of independence between the

two datasets, and even more strongly confirm your scientific

outcomes.

In a bioinformatics study, for example, Kustra and

Zagdanski (2008) employed a data fusion approach to cluster

microarray gene expression data and associate the derived

clusters to Gene Ontology annotations (Gene Ontology

Consortium, 2019). For validating their results, instead of using

a different microarray dataset, the authors decided to take

advantage of an external database made of a different data

type: a protein–protein database called General Repository for

Interaction Data Sets (GRID) (Breitkreutz et al., 2003). This

way, the authors were able to find in external data a strong

confirmation of the results they obtained on the original data,

and therefore were able to claim their study outcomes as robust

and reliable in their manuscript’s conclusions.

Moving from bioinformatics to health informatics, a call for

external data validation has recently been raised in machine

learning and computational statistics applied to heart failure

prediction as well (Shin et al., 2021).

That being said, we are aware that obtaining compatible

additional data and integrating them might be difficult for

some biomedical studies, but we still invite all the machine

learning practitioners to make an attempt and to try to collect

confirmatory data for their analyses anyway. In some cases, there

are plenty of public datasets available for free use that can be

downloaded and integrated easily.

Bioinformaticians working on gene expression analysis,

for example, can take advantage of the thousands of

different datasets available on the Gene Expression

Omnibus (GEO) (Edgar et al., 2002). Tens of compatible datasets

Frontiers in BigData 03 frontiersin.org

71

https://doi.org/10.3389/fdata.2022.979465
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Chicco and Jurman 10.3389/fdata.2022.979465

of a particular cancer type can be found by specifying the

microarray platform, for example, through the recently released

geoCancerPrognosticDatasetsRetriever (Alameer

and Chicco, 2022) bioinformatics tool. Researchers can take

advantage of these compatible datasets (for example, built on

the GPL570 Affymetrix platform) to verify their findings, after

applying some quality-control and preprocessing steps such as

batch correction (Chen et al., 2011) and data normalization, if

needed.

Moreover, public data repositories for biomedical domains,

such as ophthalmology images (Khan et al., 2021), cancer

images (Clark et al., 2013), or neuroblastoma electronic health

records (Chicco et al., in press), can provide additional datasets

that can be used as validation cohorts. Additional public datasets

can be found on the University of California Irvine Machine

Learning Repository (University of California Irvine, 1987), on

the DREAM Challenges platform (Kueffner et al., 2019; Sage

Bionetworks, 2022), or on Kaggle (Kaggle, 2022), for example.

When using external data, an aspect to keep in mind is

checking and correcting issues like dataset shift (Finlayson et al.,

2021) and model underspecification (D’Amour et al., 2020),

which might jeopardize the coherence of the learning pipeline

when moving from training and testing and validation.

3. Discussion

Computational intelligence makes computers able to

identify trends in data that otherwise would be difficult or

impossible to notice by humans. With the spread of new

technologies and electronic devices able to save and store

large amounts of data, data mining has become a ubiquitous

tool in numerous scientific studies, especially in biomedical

informatics. In these studies, the validation of the results

obtained through supervised machine learning has become a

crucial phase, especially because of the high risk of achieving

over-optimistic, inflated results, that can even lead to false

discoveries (Ioannidis, 2005).

In the past, several studies proposed rules and

guidelines to develop more effective and efficient predictive

models in medical informatics and computational

epidemiology (Steyerberg and Vergouwe, 2014, Riley et al.,

2016, 2021; Bonnett et al., 2019; Wolff et al., 2019; Navarro et al.,

2021; Van Calster et al., 2021). Most of them however, provided

complicated lists of steps and tips which might be hard to follow

by machine learning practitioners, especially by beginners.

In this context, the article of Walsh et al. (2021) plays its

part by describing thoroughly several DOME recommendations

and steps for validating supervised machine learning results,

but in our opinion it suffers from excessive complexity and

might be difficult to follow by beginners. In this note, we

propose our own simple, easy, essential ABC tips to keep

in mind when validating results obtained with data mining

methods.

We believe our ABC recommendations can be an effective

tool to follow for all the machine learning practitioners, both

by beginners and experienced ones, and can pave the way to

stronger, more robust, more reliable scientific results in all the

biomedical sciences.
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The machine learning (ML)-based classification models are widely utilized for

the automated detection of heart diseases (HDs) using various physiological

signals such as electrocardiogram (ECG), magnetocardiography (MCG), heart

sound (HS), and impedance cardiography (ICG) signals. However, ECG-based

HD identification is the most common one used by clinicians. In the current

investigation, the ECG records or subjects have been sampled and are used

as inputs to the classification model to distinguish between normal and

abnormal patients. The study has employed an imbalanced number of ECG

samples for training the various classificationmodels. FewMLmethods such as

support vector machine (SVM), logistic regression (LR), and adaptive boosting

(AdaBoost) which have been rarely used for HD detection have been selected.

The performance of the developed model has been evaluated in terms of

accuracy, F1-score, and area under curve (AUC) values using ECG signals

of subjects given in publicly available (PTB-ECG, MIT-BIH) datasets. Ranking

of the models has been assigned based on these performance metrics and

it is found that the AdaBoost and LR classifiers stand in first and second

positions. These two models have been ensembled based on the majority

voting principle and the performance measure of this ensemble model has

also been determined. It is, in general, observed that the proposed ensemble

model demonstrates the best HD detection performance of 0.946, 0.949, and

0.951 for the PTB-ECG dataset and 0.921, 0.926, and 0.950 for the MIT-BIH

dataset in terms of accuracy, F1-score, and AUC, respectively. The proposed

methodology can also be employed for the classification of HD using ICG,

MCG, and HS signals as inputs. Further, the proposed methodology can also

be applied to the detection of other diseases.

KEYWORDS

ensemble model-based HD detection, classification of HD using imbalanced ECG

records, SVM, AdaBoost, LR

Frontiers in BigData 01 frontiersin.org

75

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2022.1021518
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2022.1021518&domain=pdf&date_stamp=2022-10-10
mailto:ganapati.panda@gmail.com
https://doi.org/10.3389/fdata.2022.1021518
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2022.1021518/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Rath et al. 10.3389/fdata.2022.1021518

Introduction

Cardiovascular disease (CVD) is a generalized term that

includes diseases relating to the heart as well as blood vessels

(Anooj, 2012). The various types of CVDs are: coronary artery

disease (CAD), VHD, heart failure (HF), coronary heart disease

(CHD), peripheral artery disease, and angina (Anooj, 2012;

Dwivedi, 2018). These variants of CHDs are diagnosed either

by clinical test data, ECG, HS, echocardiography, ICG, or MCG

signal (Dwivedi, 2018; Kumar and Gandhi, 2018). It is observed

that the ECG is mostly used by physicians for detecting the

HD of a subject. The classification / detection of CVD mostly

employs soft computing, evolutionary computing, ML as well as

deep learning (DL)-based approaches. In this section, a detailed

review of the existing literature on CVD detection is presented.

In Anooj (2012), the authors have developed a clinical

decision support system for HD risk prediction from the clinical

test data using the fuzzy logic technique. The experimental

results using the University of California, Irvine (UCI)

repository show that the proposed method outperforms neural

network-based classifiers in terms of accuracy, sensitivity, and

specificity. In an interesting article (Dwivedi, 2018), the author

investigated HD prediction using different ML techniques. It

is reported that the LR classifier provides highest accuracy,

sensitivity, and specificity of 85, 89, and 81%, respectively.

A non-invasive internet of things (IoT) platform-based HD

detection scheme has been proposed in Kumar and Gandhi

(2018) by employing clinical data. The proposed scheme

involves a three-tier IoT architecture. The author has also made

a receiver operating characteristic (ROC) analysis to find the

significant clinical parameters responsible for detection. The

random forest (RF), as well as hidden Markov model (HMM)-

based HD classification models, have been suggested in Meng

et al. (2019) by employing activity tracker data. It is found that

the HMMmodel provides higher AUC of 0.79 compared to that

(0.76) provided by the RF model. For the prediction of HD,

a hybrid scheme (Mohan et al., 2019) using the linear model

(LM) and RF has been developed under the IoT platform. It is

shown that the proposed hybrid scheme yields an accuracy of

88.7%. For the diagnosis of CAD, the binary-real particle swarm

optimization (PSO)-based hybrid scheme using two different

feature selection methods has been employed in Zomorodi-

moghadam et al. (2021). It is observed that the selected

11 features outperform the classification results compared

to the 13 feature-based models. A novel approach to HD

prediction has been reported (Magesh and Swarnalatha, 2021)

by using the cluster-based decision tree (DT) and RF classifier

from UCI repository data. The suggested approach provides

higher classification accuracy of 89.3% compared to 76.70%

accuracy yielded by the same classifier without cluster-based DT

learning. In an interesting article (Li et al., 2020), five different

ML-based HD identification models have been reported. The

classifiers used in these methods are k-nearest neighbor (k-NN),

DT, LR, and artificial neural network (ANN). The authors

have introduced a fast conditional mutual information-based

feature selection approach (FCMIM). In addition, other feature

selection algorithms such as relief, least absolute shrinkage

selection operator (LASSO), minimal redundancy maximal

relevance (MRMR), and local learning-based methods have

been employed for comparing the performance measures.

It is reported that the proposed FCMIM-based support

vector machine (SVM) classifier produces highest accuracy of

classification. Using the clinical test data, a non-invasive CHD

detection method is proposed in Wang J. et al. (2020a). This

method employs base and meta-level stacking. It is reported

that the suggested scheme provides specificity, sensitivity, and

accuracy of 94.44, 95.84, and 95.43%, respectively. The ML

techniques such as k-NN, NB, and binary logistics have been

used to develop the individual as well as ensemble models

using the principle of bagging, boosting, and stacking for the

detection of CHD from clinical data (Shorewala, 2021). The

boosted models provide highest AUC score of 0.73. But the

stacked model is found to be the best with an accuracy of 75.1%.

In another work (Oresko et al., 2010), the authors have proposed

a real-time CVD detection method from the ECG sample. It

can be implemented in a smartphone-based platform. A long

short-termmemory (LSTM) network has been trained (Ganguly

et al., 2020) using ECG signal for the automatic classification of

arrhythmia. It is shown that a bi-directional LSTM (b-LSTM)

network outperforms another LSTM model. The CHD risk

detection using ECG samples has been achieved under a mobile

cloud computing environment (Venkatesan et al., 2018). The

proposed method has employed wavelet transform (WT) for the

detection of R-peaks. The adaptive neuro-fuzzy inference system

(ANFIS) approach has been followed to develop as a classifier.

A hybrid approach using WT and b-LSTM has been employed

for the classification of ECG signal (Yildirim, 2018). It is shown

that the proposed model provides a recognition performance

of 99.39%. A CVD classifier employing ECG signal has been

developed (Deng et al., 2018) following the dynamical neural

learning mechanism. The effectiveness of the proposed scheme

has been proved using (PTB-ECG datasets, (2004)). A modified

RF along with an improved LM for detecting HD on the internet

of medical things platform (IoMT) has been developed in Guo

et al. (2020). The proposed scheme provides 96.6, 96.8, and

96.7% of accuracy, stability ratio, and F1-score, respectively.

An automated convolutional neural network (CNN)-based

heartbeat classifier has been developed (Wang H. et al., 2020c)

using ECG records and its various performance measures

have been evaluated. It is reported that the suggested model

detects arrhythmia with an accuracy of 99.06%. In another

article (Hussain et al., 2020), the authors have developed a

model to detect HF. To achieve this, they have employed

SVM, DT, k-NN, and ensemble classification models and multi-

dimensional features. It is observed that the SVM classifier

provides a sensitivity of 96%, specificity of 89%, and accuracy
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of 93.1%. The HD has been diagnosed using deep learning

neural network (DLNN) and CNN-based models (Rath et al.,

2021a). It is found that the accuracy of classification, sensitivity,

and specificity varies between 89–99, 91–97.5, and 92.83–99.2%,

respectively. Most of theML and DLmodels provide satisfactory

CVD detection from balanced ECG samples. However, in Rath

et al. (2021c), the authors have suggested generative adversarial

network (GAN) and LSTM models to detect CHD from two

types of imbalanced datasets. It is shown that the GAN model

outperforms all other models but the GAN-LSTM ensemble

model provides the best CHD detection performance from the

imbalanced datasets. In another interesting article (Sengur and

Turkoglu, 2008), an artificial immune system-based fuzzy k-NN

classifier has been suggested to detect heart valve disorders using

Doppler HSs. It is reported that the proposed method yields

95.9 and 96% sensitivity and specificity rates, respectively. The

incremental self-organizing map (ISOM) as well as Kohonen’s

SOM have been used as classifiers of HS (Dokur and Ölmez,

2008). The WT has been employed for segmentation as well as

for the extraction of features. It is found that the ISOM model

satisfactorily classifies the HS in the noisy environment. A radial

wavelet neural network (RWNN) with an extended Kalman

filter (EKF)-based training scheme has been used (Guillermo

et al., 2015) as a classifier for detecting the heart murmur. The

results of this model have been compared with an ANN model

using Levenberg–Marquardt training. The authors in Liu et al.

(2019) have developed an extreme learning machine (ELM)

classifier for the identification of HF from the characteristics

of HS. They have used 11 features extracted from the HS. The

proposed method provides 96.32, 95.48, and 97.10% accuracy,

sensitivity, and specificity, respectively. The SVM classifier has

been used (Abduh et al., 2020) for classifying HS using mel-

frequency spectral coefficients. It is shown that the proposed

scheme offers a sensitivity of 0.8735 and specificity of 0.9666.

The detection of HD from the HS signal of children has been

obtained by employing an ANN classifier. The HS has been

segmented using discrete wavelet transform (DWT) as well as

the Hadamard product (Wang J. et al., 2020b). It is observed

that the detection accuracy, specificity, and sensitivity of 93, 91.7,

and 93.5%, respectively, have been achieved by the proposed

model. Very few works have been carried out on HD detection

employing MCG signal. In Tao et al. (2018), the authors have

employed the SVM-extreme gradient boost (XGBoost) hybrid

model providing the best performance metrics compared to

other methods. Three different classifiers (DT, RF, and SVM)

have been chosen to diagnose (Salah et al., 2020) the VHD

from the ICG signal. The authors have extracted the statistical,

morphological, and spectral features from the ICG samples.

Subsequently, principal component analysis (PCA) has been

used to reduce the number of features. It is observed that the

combination of these three features-based RF classifiers provides

highest accuracy of 96.34%. Many DL-based classifiers have

been employed for the detection of CVD from mammograms

(Wang J. et al., 2017). A 12-layer CNN has been trained to

identify breast arterial calcification (BAC). It is observed that

the proposed approach achieves a detection efficiency similar

to human experts. A critical review article (Rath et al., 2021b)

has been reported on the diagnosis of HD using various clinical

data, ECG, and HS samples. It also presents various types of

datasets, different feature extraction and reduction techniques,

and various ML and DL classifiers for HD detection.

The analysis of the literature review reveals that many

standardMLmethods have already been used for CVDdetection

from ECG signal of subjects. However, it is observed that many

ML methods such as AdaBoost (Wang J. et al., 2020a) and LR

(Dwivedi, 2018) have been employed as a classifier in a few

cases. Further, the validation task of the detection model has

been carried out using only one source of standard ECG samples

(Oresko et al., 2010; Ganguly et al., 2020). Third, in few articles,

the ensemble model has been suggested (Hussain et al., 2020;

Shorewala, 2021) using the ML models for achieving enhanced

detection performance. In most of the articles, the training and

validation operations of the ML and DL models have been

carried out using a balanced number of ECG signals of subjects.

These observations have encouraged developing of ML-based

detection models using LR and AdaBoost classifiers. Further,

to assess the consistent performance of the proposed models,

the standard MIT-BIH and PTB-ECG-based ECG datasets have

been chosen both during the training and validation phases.

The imbalanced data mean the number of normal and

abnormal patients is not equal. When the number of normal

and abnormal cases is not equal, the model is trained with a bias

toward higher number of the two classes. The model which is

developed under such conditions provides a lower accuracy of

detection. So, the challenge is to achieve improved training and

testing results under the imbalanced condition of the input data.

Many ML methods exhibit poor detection performance

when the training and testing datasets are imbalanced.

Therefore, in this article, imbalanced ECG samples have been

employed to examine the performance potentiality of the

classifier. With an objective to further improve the detection

accuracy, an ensemble model has been developed by choosing

the best of the three ML classifiers.

Based on the motivation and objectives of the proposed

work, the article has been organized in the following way.

Section “Materials and mehods” deals with the materials and

methodology required for CHD detection from imbalanced

ECG samples. It provides the details of the standard data

sources used as well as the training and testing schemes of

SVM, LR and AdaBoost and ensemble version of LR and

AdaBoost classifiers. Section “Simulation based experiments”

outlines the simulation-based experiments obtained using the

trained models of Section “Materials andmethods.” The analysis

and discussions on various results have also been made in

Section “Discussions.” It also presents the contribution of the

article. Finally, Section “Conclusion” provides the concluding
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remarks of the investigation and suggests the scopes of future

research work.

Materials and methods

This section presents the details of materials in terms of ECG

recordings of normal and abnormal subjects available from two

standard ECG datasets. The block diagram/flowchart of three

classifiers and the corresponding training and testing steps are

provided in this section.

Materials

The two datasets which are used for obtaining ECG samples

are MIT-BIH and PTB-ECG (Bousseljot et al., 1995; Goldberger

et al., 2000; George Moody and Mark Roger, 2001). The

details of these two datasets are available in MIT-BIH ECG

datasets, (2005) and PTB-ECG datasets, (2004). The details of

the numbers of normal and abnormal cases and numbers of

training (70%) and testing sets (30%) are shown in Table 1. As

evident from this table, the number of normal and abnormal

cases chosen is imbalanced.

Methodology

From each subject, 12 ECG recordings have been taken and

averaged to achieve a smooth ECG waveform. The average ECG

waveform of each subject has been sampled to produce 1,024

discrete samples. At a time, all the samples of a subject have

been fed to each classification model for training and validation

purposes. In this study, the 1,024 samples of each ECG signal

are considered. The 1,024-dimensional sample vectors for the

ECG signals are used for the training and testing of the classifiers

for HD detection. Four classification models such as logistic

regression (LR), SVM, AdaBoost, and LR-AdaBoost are used in

this work.

Logistic regression

It is a predictive classification algorithm that assigns a class

to the set of measurements or observations (Scott, 2002). It

employs a sigmoid function to limit the output between 0 and

1. The output of the LR equation is computed as

z = α0 + α1 (x ) (1)

sig (z) =
1

1+ e− z
(2)

f θ (x) = sig (z ) (3)

The cost function is given by (Scott, 2002).

J (θ) =
1

2

∑

K
k=1

(

fθ

(

x(k)
)

− y(k)
)2

(4)

For a two-class problem, y is equal to either 1 or 0. The cost

function is minimized with respect to θ , to obtain the update

equation (Scott, 2002).

θj = θj − α
(

fθ (x) − y
)

x (5)

The symbol α denotes the learning rate which lies between

0 and 1 and needs to be suitably adjusted during the training

phase. After the completion of the training, the performance

metrics of the model are evaluated.

Support vector machine

The principle of the SVM classifier is explained in steps.

Let X represents the samples of ECG recording of subjects

and Y represents the corresponding class vector (Cortes and

Vladimir, 1995). The key steps of SVM classifier during the

training phase are:

Step 1: Compute YTY and XXT

Step 2: Compute the matrix H = YTY .XTX

Step 3: Compute the Lagrangian Multipliers, α.

Step 4: Compute decision hyperplane normal vector,

W = (α.Y)T .X

Step 5: Compute bias, b = 1− wTx1

During the testing phase, the class of unknown ECG

samples, z is evaluated by computing sign(wTz + b). If it is

positive, then the test dataset belongs to class 1 (Cortes and

Vladimir, 1995).

AdaBoost

The AdaBoost algorithm is an ensemble method of ML

(Schapire, 2013). In this case, higher weights are assigned to

wrongly classify instances. The boosting is used to minimize

the bias and the variance for supervised learning. Excluding

the first one, each subsequent learner is developed from the

previous ones. The AdaBoost is based on the principle that weak

learners are transformed into strong ones. The block diagram

of the AdaBoost-based classifier is shown in Figure 3. The ECG

samples of subjects are fed to the first model (in this case DT). In

this case, the first model is built and the errors from this model

are noted. The ECG record which is incorrectly classified is fed to

the next model (Schapire, 2013). This process is continued until

a pre-specified condition ismade. In this case, the algorithm only
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TABLE 1 Materials used for training and testing the ML classification models.

Datasets No. of ECG

datasets

No. of abnormal

cases

No. of normal

cases

Training sets (70%) Testing sets (30%)

MIT-BIH 268 104 164 188

normal-115

abnormal-73

80

normal-49

abnormal-31

PTB-ECG 200 54 146 140

normal-104

abnormal-36

60

normal-42

abnormal-18

FIGURE 1

Block diagram of the logistic regression-based classification model.

FIGURE 2

Block diagram of SVM classification model.
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FIGURE 3

Block diagram of AdaBoost classification model.

FIGURE 4

Block diagram of LR-AdaBoost ensemble model.

makes a node with two leaves which is called a stump. The major

steps of building the classifier are

Step 1: To create the first base learner by taking the first

feature and the process is continued for all features. So, the

number of base learners or stumps is equal to the number

of features.

Step 2: To calculate the total error is E = 1/N, where N is

equal to the number of records.

Step 3: To compute the performance (P) of the stump

according to

P =
1

2
ln

(1− E)

E

where, ln denotes the natural log.
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FIGURE 5

Comparison of accuracy achieved during training and validation phases of LR, AdaBoost, SVM, and ensemble of AdaBoost and LR models

(PTB-ECG dataset). (A) Logistic regression. (B) AdaBoost. (C) Support vector machine (SVM). (D) AdaBoost – logistic regression based ensemble

model.

Step 4: To update the sample weights according to

NewWeight = Old weight × e−(Performance)

where, the initial weight= 1
N

Step 5: To create a new dataset by choosing incorrectly

classified records as well as a few correct ones.

Step 6: To create a set of new DTs (stump) and continue the

process until the last error is produced.

LR-AdaBoost ensemble model

So, in the present case, the ML techniques are primarily

used to develop prediction or classification tasks. Each of

the developed model provides the accuracy of classification

based on their potentiality. To further improve the accuracy

of performance, the ensemble model is developed using

each of the basic model. In this process, the outcome

of the overall ensemble model becomes better than the

individual model which is part of the combination model.

The challenging case of the ensemble model is to determine

the connecting weights of each individual model. Mostly

this is achieved by majority voting or bio-inspired-based

optimization techniques.

To improve the classification performance, the ensemble

model is developed by choosing the two best models (Polikar,

2006). In the present case, the LR and AdaBoost models are first

trained and these pre-trained models are connected in parallel

as shown in Figure 4. The input to the ensemble scheme is the

samples of each record of the standard ECG dataset. The output

of each of these models is fed to the majority voting scheme.

The final predicted class (normal/abnormal) refers to the output

of the majority voting scheme (Polikar, 2006). This principle
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FIGURE 6

Comparison of ROC plots and AUC values of LR, AdaBoost, SVM, and LR-AdaBoost ensemble models (PTB-ECG dataset).

classifies the input records in a superior way compared to each

individual model.

The various results obtained from the simulation study of

the three ML and one ensemble models have been obtained and

have been tabulated and plotted in the next section.

Simulation-based experiments

The LR, SVM, and AdaBoost classification models shown

in Figures 1, 2, 3 have been simulated following the training

principle of each of the model. Separate models have been

simulated for each imbalanced PTB-ECG andMIT-BIH datasets

as inputs. Similarly, the ensemble model shown in Figure 4

has been simulated using the same inputs. Each ECG record

provides 1,024 samples which are simultaneously fed to the

model both during the training and testing phases. In case of

LR, the sigmoid function is used to keep the output between 0

and 1. In the simulation study, the learning rate alpha has been

chosen to be 0.1. In case of AdaBoost, the decision tree has been

used as the base estimator. In the present case, 30 decision trees

have been used in the simulation study. In this case, the learning

rate has been taken as 0.05. In case of the SVM classifier, the

linear kernel has been used. For the PTB-ECG dataset, the plots

of variation in accuracy with change in epochs during training

and validation phases for LR, AdaBoost, SVM, and ensemble

model are shown in Figures 5A–D, respectively. Further, the

comparison of ROC plots obtained by LR, AdaBoost, SVM,

and LR-AdaBoost ensemble model for the PTB-ECG dataset is

shown in Figure 6. The same figure also provides the AUC values

of these models. During the validation phase, the accuracy,

F1-score, and AUC values of LR, SVM, AdaBoost, and ensemble

(LR-AdaBoost) model have been determined and listed in

Tables 2, 3 for PTB-ECG, and MIT-BIH datasets, respectively.

The various results shown in the Tables and plotted in the graphs

have been analyzed in the next section.

Discussions

This section presents the interpretation of the various results

presented in the previous sections. It is observed from the

plots of Figure 5 that as the number of epochs increases, the

accuracy value also increases and remains constant at the end

of the training phase. Further, it is found that for any given

epoch the training accuracy is higher than the corresponding

validation accuracy. The observation of ROC plots of Figure 6

(PTB-ECG) dataset reveals that the ensemble model provides

the highest AUC of 0.951. It is then followed by AdaBoost,

LR, and SVM classification models. It is interesting to observe
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TABLE 2 Comparison of three performance metrics of di�erent models using the PTB-ECG dataset.

Performance measures Logistic

regression

SVM AdaBoost Ensemble model

LR - AdaBoost

Accuracy 0.898

(III)

0.864

(IV)

0.927

(II)

0.946

(I)

F1 Score 0.902

(III)

0.852

(IV)

0.936

(II)

0.949

(I)

AUC 0.861

(III)

0.826

(IV)

0.906

(II)

0.951

(I)

TABLE 3 Comparison of three performance metrics of di�erent models using the MIT-BIH dataset.

Performance measures Logistic

regression

SVM AdaBoost Ensemble model

LR-AdaBoost

Accuracy 0.869

(III)

0.821

(IV)

0.894

(II)

0.921

(I)

F1 Score 0.884

(III)

0.782

(IV)

0.845

(II)

0.926

(I)

AUC 0.858

(III)

0.819

(IV)

0.910

(II)

0.950

(I)

that the order in terms of magnitude of AUC values of

different models is the same for both datasets as evident from

Tables 2, 3. The observation of three important performance

metrics (Accuracy, F1-score, AUC values) obtained from the

simulation study of LR, SVM, AdaBoost, and ensemble model

is shown in Table 2 (PTB-ECG dataset) and in Table 3 (MIT-

BIH dataset). The observation shows that the ensemble model

outperforms the individual three ML models. The bracketed

terms such as (I), (II), etc. in Tables 2, 3 indicate the rank of

respective classification models which are assigned based on the

performance metrics. This is also evidenced by the individual

and overall ranking assigned to these models in Tables 2, 3.

In general, it is found that based on the three-performance

metrics of all the four classification models and by employing

imbalanced ECG data samples from two standard datasets, the

rankings assigned are I, II, III, and IV for ensemble, AdaBoost,

LR, and SVMmodels, respectively.

Based on the above analysis, the major contributions of

investigation on HD detection are the following:

i. All the proposed classification models for HD detection

using two imbalanced ECG recordings as subjects exhibit

consistent performance following the imbalanced number

of inputs both during the training and testing phases.

ii. As expected, the ensemble model developed using

LR-AdaBoost has demonstrated the best performance

among all the four models yielding accuracy, F1-score,

and AUC values of 0.946, 0.949, and 0951 for the

PTB-ECG dataset and 0.921, 0.926, and 0.950 for

MIT-BIH dataset.

iii. These four models show similar performance for both

the datasets as well as the following imbalanced

number of ECG records as inputs to training and

validation phases.

Conclusion

This article has investigated the classification potentiality

of HD using three ML algorithms and one ensemble model.

The development of these models is based on imbalanced

training ECG records. The accuracy plots and three performance

measures reveal that the AdaBoost performs better than the

SVM, LR-based classification models. This observation is true

for both datasets. The LR-AdaBoost ensemble model based on

majority voting principle demonstrates the best performance

in terms of accuracy, F1-score, and AUC values compared

to individual models. The numerical performance results also

show that the order of the performance is consistent for both

datasets. The present methodology can also be applied for HD

detection using ICG, MCG, and HS signals. The HD detection

results obtained from these three types of signals as inputs can

be analyzed and compared with the results obtained from the

present study. There are different kinds of ensemble techniques

that can be employed for developing the ensemble model.

The results of these ensemble models can be compared based

on the performance and the best model can be chosen. The

proposed approaches can also be applied to the detection of

other diseases.
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Machine learning (ML) models are developed on a learning dataset covering

only a small part of the data of interest. If model predictions are accurate

for the learning dataset but fail for unseen data then generalization error is

considered high. This problem manifests itself within all major sub-fields of

ML but is especially relevant in medical applications. Clinical data structures,

patient cohorts, and clinical protocols may be highly biased among hospitals

such that sampling of representative learning datasets to learn ML models

remains a challenge. As ML models exhibit poor predictive performance

over data ranges sparsely or not covered by the learning dataset, in this

study, we propose a novel method to assess their generalization capability

among di�erent hospitals based on the convex hull (CH) overlap between

multivariate datasets. To reduce dimensionality e�ects, we used a two-step

approach. First, CH analysis was applied to find mean CH coverage between

each of the two datasets, resulting in an upper bound of the prediction

range. Second, 4 types of ML models were trained to classify the origin of

a dataset (i.e., from which hospital) and to estimate di�erences in datasets

with respect to underlying distributions. To demonstrate the applicability of
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our method, we used 4 critical-care patient datasets from di�erent hospitals

in Germany and USA. We estimated the similarity of these populations and

investigated whether ML models developed on one dataset can be reliably

applied to another one. We show that the strongest drop in performance was

associated with the poor intersection of convex hulls in the corresponding

hospitals’ datasets and with a high performance of ML methods for dataset

discrimination. Hence, we suggest the application of our pipeline as a first tool

to assess the transferability of trainedmodels.We emphasize that datasets from

di�erent hospitals represent heterogeneous data sources, and the transfer

from one database to another should be performed with utmost care to avoid

implications during real-world applications of the developed models. Further

research is needed to develop methods for the adaptation of ML models

to new hospitals. In addition, more work should be aimed at the creation

of gold-standard datasets that are large and diverse with data from varied

application sites.
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dataset-bias, data pooling, ARDS, convex hull (CH), generalization error

Introduction

Driven by giant leaps in compute performance, the

availability of huge datasets, and new algorithms for the training

of deep neural networks (DNN), Machine Learning (ML)

has seen a renaissance during the last 10 years. Today, ML

approaches help us discover patterns in large swaths of data,

predominantly on an automated or semi-automated basis. They

have revolutionized how we process images, video, and text.

The primary advantage of ML when compared to traditional

modeling approaches for the input-output behavior of complex

systems is the unbiased learning from data without a priori

knowledge about the system to be learned (black-box modeling

approach). Mathematically, ML algorithms are designed as

universal machines mapping a high dimensional input space

onto a low dimensional output space up to an order of

error without restrictions. The algorithms enable unrestricted

learning by a modeling strategy with a priori unrestricted

complexity of the model, e.g., expressed by the unrestricted

number of parameters to be adapted to the data. For large

classes of functions, ML algorithms, e.g., neural networks,

provide superior approximation performance compared to

all linear series expansions (Barron and Klusowski, 2018).

Recently, the equivalence of DNN learning with wavelet-based

approximations indicated the superior performance of DNN for

Abbreviations: ARDS, Acute respiratory distress syndrome; CH, Convex

hull; ICU, Intensive care unit; FiO2, Fraction of inspired oxygen;

MV, Mechanical ventilation; PaO2, Arterial partial pressure of oxygen;

PEEP, Positive end-expiratory pressure; ROC AUC, Area under receiver

operating characteristic curve.

applications with close association with image recognition and

time-series analysis (Mallat, 2016).

Data-driven models, such as ML methods, aim to represent

systems solely from available measurement data. Hence, a

critical conceptual issue of such models is their limited

performance in the case of extrapolation into data regions

sparsely covered by the data samples used for learning the

model. These models handle test data better if they come from

the same dataset used for training and generalize worse on the

data obtained from other sources (Torralba and Efros, 2011;

AlBadawy et al., 2018; Pooch et al., 2019). Model performance

drops if data used to train and test a model come from different

distributions. This difference is referred to as a domain shift

(Pooch et al., 2019). Unless strong assumptions are posed on

the learned function, data-driven models, not depending on the

output to be predicted, can only be valid in regions where they

have sufficiently dense coverage of training data points, which

is referred to as the validity domain (Courrieu, 1994). This can

be approximated by the convex hull spanned by the data, which

represents an upper bound of the validity domain for any ML

application. The convex hull (CH) of a set of data points is

defined as the smallest polytope with dimensionality equal to

the number of attributes containing the points in such a way

that every straight line connecting a pair of points lies inside

the polytope (Graham, 1972; Shesu et al., 2021). One approach

to estimate the ability of a model to generalize is to consider

the CH of the points used in a training set. Generalization

tends to fail with the increase in the distance of a new point

to the CH of the training set (Zhou and Shi, 2009). Therefore,

the coverage of the CH of a test set by the CH of a training

set represents an upper bound for the generalization ability of
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any ML-based model. In the case of learning from different

populations, the mutual coverage of the convex hulls can serve

as a measure for the sufficient similarity of heterogeneous

populations enabling the first estimate for the reliability of the

generalization of ML models. Hence, one possible approach to

examine different populations for homogeneity concerning the

predictive performance of ML models is to perform a convex

hull analysis of the available data to be used for training and

prediction, respectively (Ostrouchov and Samatova, 2005; Zhou

and Shi, 2009).

However, even if the convex hulls of training and test

sets intersect to a large extent, there might be differences in

the underlying distributions of some parameters. For instance,

when data of one dataset lay in a region which shows a low

density of samples in the other dataset. An extreme example

is a dataset consisting of two clusters of data apart from each

other; the convex hull envelopes all dataset values, including

the space between them. If the majority of samples of the

second dataset fall inside the gap area between the two clusters,

the generalization capacity of a model will be impaired, as

there is not enough training data in that region. Although the

intersection values are high, in this case, it does not allow us to

judge the generalization ability of the trained model. Therefore,

the CH analysis provides necessary, but not sufficient conditions

for a proper generalization of ML models.

Consequently, a second step in the analysis is needed to

investigate datasets for diverging underlying distributions. If

there are no such differences, two datasets form a homogeneous

population and are indistinguishable, otherwise, it would be

possible to differentiate the datasets. Therefore, if ML classifiers

can identify the origin of a drawn sample with high accuracy,

we postulate that there are diverging underlying distributions

of parameters forming different areas with a high density

of samples in two datasets. Thus, training an ML model in

one dataset and applying it in the other one would mean

interpolation into areas sparsely covered by training data

and could impair the generalization of respective models.

However, ML methods do not provide the direction of impaired

generalization (i.e., model trained on one dataset and applied in

the other one and vice versa).

In contrast, CH analysis provides a model-agnostic a priori

data assessment and more importantly direction of impaired

generalization. The CH of one dataset may completely cover

the CH of the other dataset, meaning no restrictions for

generalization from the CH perspective. However, in the

opposite case (the second dataset covering the first one) the CH

coverage may be modest suggesting generalization issues once

models developed in the second dataset will be applied to the first

dataset. Furthermore, the CH analysis proposed in this paper is

computationally inexpensive and is an order of magnitude faster

than ML methods. Therefore, we suggest an application of the

CH method for universal generalization assessment supported

by the application of ML methods to reveal the scope of

differences in underlying distributions. Combining the results

of these 2 methods, one receives a complete vision of potential

generalization issues.

In medicine, the application of ML promises to provide

solutions for unmet needs in clinical practice which have

partly been hampered by a missing mechanistic understanding

of the underlying processes. Medical applications, like an

early diagnosis of rare or complex diseases, optimization

of therapeutic strategies or the surveillance of patients, and

resource planning are expected to benefit from the advantages

of ML significantly (Komorowski et al., 2018; Miotto et al.,

2018; Shillan et al., 2019; Ghassemi et al., 2020). However,

despite promising results for image-analysis-based medical

applications or time-series monitoring (Arcadu et al., 2019;

Tomasev et al., 2019), the superiority of DNN when compared

to traditional approaches has not been proven yet (Chen et al.,

2019). Moreover, it has been demonstrated that the design and

integration of complex data analytics workflows play a key role

in the performance of ML algorithms in biomedical applications

(Schatzle et al., 2020). The realization of the promises of ML

in medicine requires further innovations in a huge variety of

challenges, ranging from data availability and learning strategies

up to the integration of a priori knowledge into ML setup

(Frohlich et al., 2018).

A highly crucial issue of ML application in medicine arises,

when a model developed and trained on high-quality data of

one hospital and showing good predictive performance, does

not deliver adequate performance when applied to data of other

hospitals. Hidden biases between hospitals could be caused by

different admission strategies, guidelines for treatment, patients’

baseline values, protocols on settings of medical support devices,

or definitions of cut-off values (Kelliny et al., 2008). As an

example, in 2019, Yan et al. built a simple data-driven model

from electronic health records of 485 patients infected with

SARS-CoV2 in the region of Wuhan, China (Yan et al., 2020).

The authors claimed that their model could predict the outcome

for patients with >90% accuracy using the values of three

laboratory parameters only. However, the model failed to deliver

the same high accuracy on patient datasets from hospitals in

France, the USA, and the Netherlands (Barish et al., 2021;

Dupuis et al., 2021; Quanjel et al., 2021).

In this work, we developed a pipeline for the comparison

of populations and assessment of an ML model’s generalization

ability. First, we applied our CH analysis to find CH coverage

values between datasets. Second, 4 types of ML models were

trained to classify from which hospital a patient’s sample

originated. The performance of these models was assessed to

judge, which datasets differ the most in terms of underlying

data distributions. We applied our pipeline to 4 critical-care

patient datasets of different origins: three datasets from German

hospitals generated within the SMITH project (Marx et al., 2021)

and the American “Medical Information Mart for Intensive

Care” III (later referred to as MIMIC) dataset (Johnson et al.,
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TABLE 1 Clinical characteristics of the analyzed patient cohorts in four hospitals under consideration.

Hosp A Hosp B Hosp C MIMIC

Total number of patients, n (%) 13,067 (100) 2,976 (100) 1,368 (100) 7,683 (100)

Age, years (mean± SD) 67.3± 14.5 67.3± 13.8 68.7± 13.0 64.1± 15.5

Male gender, n (%) 8,529 (65.3) 1,957 (65.8) 961 (70.2) 4,416 (57.5)

Length of stay ICU, days (mean± SD) 17.3± 19.4 21.2± 20.1 18.7± 18.1 13.5± 12.4

Mortality, n (%) 3,742 (28.6) 828 (27.8) 608 (44.4) 1,277 (16.6)

2016). First, the pipeline was applied to every pair of hospitals

to find mean CH coverages and performances of ML models

for classification for a data source. Second, we investigated

the applicability of the developed pipeline using the example

of acute respiratory distress syndrome (ARDS)—a potentially

life-threatening condition leading to respiratory insufficiency

with possible multi-organ failure and fatal outcomes (Cochi

et al., 2016; Raymondos et al., 2017). We showed that drops

in the performance of models developed for the classification

of ARDS on the first day in the Intensive Care Unit (ICU)

were attributed to the poor intersection of convex hulls and

to the large differences in underlying data distributions of

corresponding hospitals.

Methods

Data

Three German hospitals (later referred to as Hosp A, Hosp

B, and Hosp C) provided retrospective, fully anonymized data

of ICU patients within the context of the use case “Algorithmic

surveillance of ICU patients with acute respiratory distress

syndrome” (ASIC) (Marx et al., 2021) of the SMITH consortium

which is part of the German Medical Informatics Initiative.

The ASIC project was approved by the independent Ethics

Committee (EC) at the RWTH Aachen Faculty of Medicine

(local EC reference number: EK 102/19). Patient inclusion

criteria were age above 18 years and a cumulative duration of

mechanical ventilation for at least 24 h. In addition, MIMIC

was used as an independent dataset with different geographical

origins. To identify the duration of invasive mechanical

ventilation (MV) of patients from this dataset, a special MIMIC

view was used1 Each patient’s data included routinely charted

ICU parameters collected over the whole ICU stay. The full list

of parameters is given in Supplementary List S1. Data from all

4 sites were brought to the same units of measurement and

were checked for consistency. The final number of patients in

corresponding hospitals is given in Table 1.

1 https://github.com/MIT-LCP/mimic-code/blob/

62102b08040ac5db96af7922db8d7832ce30a813/etc/ventilation-

durations.sql

Data for further analysis were prepared in the following way:

first, the median values of routinely charted ICU parameters

collected over the first day of ICU stay were extracted as features

for the analysis. Features with values missing in more than 30%

of patients were omitted. We considered features, that were

present in all 4 hospitals after the data feature omission step. The

final list of features (21 features overall) used in the analysis can

be found in Supplementary List S2. Missing values of features

were filled with the hospital-wide median value for that feature.

Use case example: Classification for
ARDS on the first day of treatment in ICU

To demonstrate the applicability of the developed pipeline,

we considered the following typical use case of the application of

ML models in healthcare: classification for a critical condition

based on the first-day data. We used the presence of ARDS

on the first day in the ICU as an endpoint for classification.

The criteria for the diagnosis of an ARDS episode are defined

in the Berlin criteria (ARDS Definition Task Force et al.,

2012). However, in our use case scenario, only the criteria for

oxygenation were taken into account. To be able to assess these

criteria, only patients having parameters of MV [positive end-

expiratory pressure (PEEP), a fraction of inspiratory oxygen

(FiO2)] and blood gas analysis measurements [partial pressure

of oxygen (PaO2)] during the first 24 h were selected.

ARDS patients were chosen based on ICD-10 codes (J80),

where available. In the MIMIC database, ICD-9 coding system

was used, which does not contain a specific code for ARDS.

Therefore, the ARDS label was assigned to patients having

ICD-9 codes for pulmonary insufficiency or respiratory failure

(Reynolds et al., 1998): 5,185, 51,851, 51,852, 51,853, and 51,882.

ARDS onset time was defined as a time point when the Horowitz

index drops below 300 for the first time and stays below this

threshold for at least 24 h. To ensure that information on the

ARDS/non-ARDS status of patients is present in the data, only

first-day ARDS patients were chosen as a case group. The

Control group comprised all non-ARDS patients and patients

with ARDS onset later than on the first day. A total number

of day1-ARDS/non-ARDS patients in corresponding hospitals

is given in Table 2.
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TABLE 2 Number of day 1 non-ARDS/ARDS patients in hospitals.

Hospital Non-ARDS ARDS (%)

Hosp A 9,471 639 (6.3)

Hosp B 1,123 86 (7.1)

Hosp C 924 88 (8.7)

MIMIC 4,555 237 (4.9)

In this use case, we evaluated how a ML model trained in

one hospital behaves in terms of performance if it is applied in

another hospital. A Random Forest Classifier was trained in each

of the four hospitals separately to classify ARDS and non-ARDS

patients and tested in the other unseen hospitals. Performance

in all datasets was assessed with ROC AUC.

Convex hull analysis

CH coverage for a new dataset was defined as the ratio of

data points of a new dataset that lay inside of the CH of the

initial dataset in the pair. An example of CH intersections for

hospitals (Hosp B, Hosp C) and for the pair of features, arterial

oxygen saturation (SaO2) and arterial bicarbonate, is shown in

Figure 1. It should be noted that CH coverage is not a symmetric

measure, i.e., CH coverage of Hosp A by Hosp B can differ

from CH coverage of Hosp B by Hosp A. CH coverage for

each feature combination was assessed in 2 dimensions, i.e., for

each combination of pair of features the coverage of CH of one

hospital was calculated for all other hospitals. For instance, if

hospitals Hosp A and Hosp B were considered, for each pair of

features, CH coverage of Hosp A by Hosp B and CH coverage

of Hosp B by Hosp A were calculated. CH coverages were

assessed using bootstrapping of underlying data (100 times). The

equation for a CH coverage for a Hosp A by Hosp for a pair of

features (featurei , featurej), where i and j denote feature indeces,

is given by:

CHcov

(

featurei, featurej
)

=

∑

k∈HospA1

[(

featurei
k
, feature

j
k

)

∈ CHij
(

Hosp B
)

]

∑

k∈HospA1
(1)

where CHij(Hosp B) corresponds to the CH of the dataset of

Hosp B in 2 dimensions (featurei, featurej).

In higher dimensions intersections of CHs identified from

datasets of sizes, which are usually available in single hospitals,

tend to shrink even for datasets drawn from the same

distribution due to the curse of dimensionality. Hence, we tested

overlapping data by means of the overlaps of projections onto

subspaces spanned by all combinations of 2 features. In case

of overlapping CHs, the CHs of all projections will overlap as

well. The opposite holds only in the case of homogeneous data

distributions within the box in full data space spanned by the

intersection of all projections. We assume that this is the case for

real-world data available in healthcare and our approach delivers

an acceptable approximation for the estimation of translational

predictivity for practical use.

CH coverage for a feature was calculated as the median CH

coverage value of all feature pairs that contain this feature:

CHcov

(

featurej
)

= med
(

CHcov

(

featurei, featurej
)

, . . . ,

CHcov

(

featuren, featurej
))

. (2)

Next, the distribution of CH coverages for all features was

computed. Finally, mean CH coverages for each pair of hospitals

were calculated as the mean CH coverage among all features:

CHcov
(

HospA byHosp B
)

=

∑

i∈n CHcov
(

featurei
)

n
(3)

where n is the number of features. Additionally, we specified

the value of the first quartile minus 1.5∗interquartile range of

the distribution as a threshold for low-coverage features. A low-

coverage feature was defined as a feature with a CH coverage

value that lies below the threshold. Such features were identified

for each pair of datasets.

To eliminate the influence of noisy data on the CH analysis,

a density-based data clustering algorithmDBSCAN2 was applied

to the data. Before each run of the CH algorithm, outliers were

removed using the DBSCAN method.

Machine learning method for
classification of a dataset, including an
algorithm to derive important features to
di�erentiate two datasets

The prepared dataset was split into the train (80%) and

test (20%) sets. The classification task was to distinguish

patients between two hospitals. Four classifiers, namely Logistic

Regression (LR), Random Forest (RF), Support Vector Machine

(SVM), and AdaBoost (ADA) were used. Since the target label

(hospital source identifier) was imbalanced, the “class weight”

hyperparameter for LR, RF, and SVM was set to the “balanced”

option. An optimal set of model hyperparameters were found

using grid search with stratified 5-fold cross-validation on

the train set. A ROC AUC score was used to evaluate the

performance of the chosen model. Predictions on the test

set were evaluated with ROC AUC, precision, recall, and F1

score metrics.

2 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

DBSCAN.html
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FIGURE 1

Example of CH intersection for the pair of hospitals (Hosp A, Hosp B) and the pair of features: SaO2 and bicarbonate. Some data points are

filtered out by the DBSCAN method prior to the construction of the CH.

ML methods were trained twice. First, all features were

used to train ML models. Second, features with low CH

coverage were omitted from the analysis and ML models were

retrained. This allowed judging, whether the discriminating

ability of ML models was predominantly caused by different

CHs of underlying data or by differences in underlying data

distributions of corresponding hospitals.

Python 3 modules used in this study and
system requirements

In this study, the SciPy Python 3 spatial library with

the Quickhull algorithm and the Delaunay class (Virtanen

et al., 2020) was used for CH analysis. And the Scikit-

learn implementations of ML classification methods

(Pedregosa et al., 2011) were svm.SVC, linear_model.

LogisticRegression, ensemble.RandomForestClassifier and

ensemble.AdaBoostClassifier. CH and ML analysis was

performed on the computational cluster of the RWTH Aachen

University using 1 node with 40 cores, 2.66 GHz, 4 GB RAM.

The longest runtime for the CH analysis was 16min. The

runtime for the ML script comprised 24 h. Analysis was tested

as well on the 2018 quadcore laptop i7-8565U CPU @ 1.80 GHz

× 8. It could be run as it is on most modern CPUs with minimal

RAM usage. No GPU is required.

CH and ML methods used in this study are available as a

python package “chgen”. Example scripts on how to use this

package are available in the repository: https://git.rwth-aachen.

de/jrc-combine/chgen.

Results

Application of CH analysis to each pair of
hospitals

Figure 2 shows the mean CH coverage for each pair of

hospitals. For each German hospital, minimum coverage was

found when data of the corresponding hospital were covering
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the MIMIC dataset (last column in Figure 2). However, that was

not the case for the opposite situation. Maximum mean CH

coverage was found for cases when MIMIC data covers data

from German hospitals (last row in Figure 2).

Features with low CH coverage values were identified for

each pair of hospitals. These features are shown in Table 3.

The table is not symmetric since features with low coverage

values when the first hospital’s data cloud is covering the second

one may be different from features in the opposite coverage

situation. Results of the mean CH coverage are accompanied

by the number of features with low CH coverage in each

case of the datasets’ comparison. For each German hospital, a

maximum number of such features was found when data of

German hospitals were covering the MIMIC dataset (3 or 2

features correspondingly, last column in Table 3). CH coverages

for all features in the case of MIMIC coverage are given in

Supplementary Table S1.

Application of ML routines for
classification of the hospital

Results of the application of ML routines to classify

the hospital for every pair of hospitals are shown in

Supplementary Figure S1A. Results of the ADA method are

shown, as it gained the highest performance in terms of ROC

AUC in all cases. In each pair of hospitals, the hospital where

the patient samples were derived from could be almost perfectly

classified (ROC AUC ≥ 0.94). The best separation was obtained

between the MIMIC cohort and German hospitals. German

hospitals looked more alike to classifiers. The worst separation

was observed between Hosp B and Hosp C.

After the exclusion of the features with low CH coverage

values, and retraining with the best-performing ML classifiers,

the largest ROC AUCs were still observed between the MIMIC

cohort and German hospitals (see Supplementary Figure S1B).

Use case example: Classification for
ARDS on the first day of treatment in ICU

The results of the classification task are shown in Figure 3.

Diagonal cells represent the performance of a specialized

model which was trained and tested in the same hospital.

The performance of specialized models strongly differed among

hospitals under consideration, with the lowest ROC AUC of

0.79 in MIMIC and the highest of 0.94 in Hosp B. To test the

generalization ability of developed models, they were tested on

other unseen datasets, i.e., other hospitals (non-diagonal cells).

If the population of the new hospital is similar to or more

homogeneous than the one of the original hospitals concerning

the condition under consideration, the performance of the

model will stay on a similar level or can be even higher than

in the original hospital. However, if the population differs

from the original one, performance will be impaired. For each

specialized model trained in German hospitals the largest drop

in performance was observed when the respective model was

applied in the MIMIC dataset with the strongest drop of 0.26

for a model trained in Hosp B. Overall, models developed

in Germany, showed impaired performance compared to the

specialized MIMIC model. The opposite was not the case, as the

MIMICmodel showed similar performance in German hospitals

to the performance in the original cohort.

Discussion

“Internal” model performance on structurally similar,

previously unseen data, gathered from the same source used

for model training, can be contrasted with “external” model

performance on new, previously unseen data from other sources.

ML models perform worse in external cohorts due to several

reasons such as different protocols, confounding variables, or

heterogeneous populations (Cabitza et al., 2017; Zech et al.,

2018; Martensson et al., 2020; Goncalves et al., 2021). Moreover,

medical data can be biased by a variety of factors such

as admission policies, hospital treatment protocols, country-

specific guidelines, clinician discretion, healthcare economy, etc.

Furthermore, labeling or coding criteria of a certain disease or

syndrome and treatment guidelines evolve with time (Kunze

et al., 2020). Since ML models for healthcare are predominantly

developed on retrospective data, it remains unclear how the

performance of such models is affected by the temporal

separation of the target group even within one hospital.

Similarly, model reproducibility and model transportability

have distinct objectives (Justice et al., 1999). While

reproducibility focuses on the performance of the model in the

same target population, transportability refers to performance

in different but related source populations. Nevertheless, the

closeness of this relationship between populations must be

ascertained to achieve valid results of external validation. The

performance will be poor in a sample that is too different from

the data used for development. Conversely, a test sample that

is too similar will overestimate the predictive performance

showing reproducibility rather than transportability. To address

these different aspects, an elaborate validation approach as

described by Debray et al. seems necessary. They recommend

the examination of the validation datasets in the first step

to ensure adequate relatedness using a case-mix of a dataset

and subsequent evaluation of the model with respect to the

perceived relatedness (Debray et al., 2015).

In this study, we have introduced another method

for population comparison and assessment of a model’s

generalizability. First, it estimates the similarity of the

underlying populations in terms of mean CH coverage. Second,
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FIGURE 2

CH analysis results for data from four hospitals. Mean CH coverage over all features is shown. Rows-initial population, columns-population,

whose CH is covered by the CH of the initial population.

it estimates the differences in datasets in terms of underlying

data distributions. These two tasks are accomplished by the

application of 2 methods–first the CH analysis and followed by

the ML classifiers.

During the application of the pipeline on the datasets

obtained from 4 hospitals, we found that there were significant

differences in CH coverage among pairs of hospitals. The lowest

CH coverages for each of the German hospitals were observed

when the MIMIC dataset was covered by data obtained from

the corresponding hospital. However, in the opposite case i.e.,

Hosp A/Hosp B/Hosp C covered by MIMIC, the coverages were

large. This shows that Hosp B/Hosp C and to a lesser extent

Hosp A represented a part of the data space, spanned by data of

MIMIC. In other words, data fromGerman hospitals comprised,

in greater or lesser proportions, parts of the MIMIC data cloud.

All four datasets exhibited differences in underlying data

distributions. Once trained, ML classifiers were able to

distinguish data coming from different sources with ROC AUC

larger than 0.94, suggesting nearly perfect identification of the

hospital from where the patient data originated from. After the

omission of features with low CH coverages, the performance of

retrained models dropped. However, the performance of models

distinguishing MIMIC from German hospitals was still largely

supporting the finding, that the MIMIC dataset significantly

differed from German hospitals.

To demonstrate that our pipeline can be used to assess the

generalization ability of ML models, we considered a use case

of classification for the first day of ARDS data. A specialized

model was trained for each of the four hospitals’ data. Then

it was applied to unseen hospital data and the performance of
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TABLE 3 Lists of parameters with low CH intersections for all pairs of hospitals.

Hosp A Hosp B Hosp C MIMIC

Hosp A - Tidal volume, PEEP Tidal volume PaO2 , Tidal volume, PTT

Hosp B PaO2 , Respiratory rate - Bicarbonate arterial, Respiratory rate, PTT PaO2 , Bicarbonate arterial, PTT

Hosp C FiO2 , PEEP - - PaO2 , PEEP

MIMIC FiO2 , Lactate arterial Lactate arterial Lactate arterial -

Rows-initial population, columns-population, CH of which is covered by the CH of the initial population.

FIGURE 3

Random forest classifier classification results (cross-prediction matrix) for ARDS on the first day in ICU. RF trained in each of the four hospitals

(row name) and applied in each of the four hospitals (column name). Diagonal cells represent the performance of specialized models which

were trained and tested in the same hospital. Non-diagonal cells represent the performance of such models once they are applied in other

hospitals and reflect ability of a model to generalize to the unseen population of another hospital. Twenty-one features common for all four

hospitals were used to build corresponding RF models. Performance is depicted in terms of ROC AUC.

the model on the original data was compared to those of the

new data. We observed 2 clusters of datasets, namely German

hospitals and MIMIC. Models developed for German hospitals’

data exhibited the largest drop in performance once applied

to MIMIC. That was not the case in the opposite situation,

i.e., application of the MIMIC model to German hospitals

data, where almost no drops were observed. CH analysis fully

supported these findings. First, for each of the German hospitals,

the lowest CH coverages were observed when the MIMIC

dataset was covered by data from corresponding hospitals
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suggesting the impaired performance of models developed in

German hospitals and applied in MIMIC. Second, mean CH

coverages of German datasets by MIMIC data were found close

to 1, suggesting full CH coverage and thus, the absence of

limitations for generalization.

Moreover, smaller drops in performance were observed

when models developed on data from Hosp B or Hosp C were

applied to data from Hosp A. This is in line with corresponding

CH coverages (Hosp A by Hosp B/Hosp C), which are in the

medium range. Interestingly, when models, developed in Hosp

A or MIMIC were applied in Hosp B or Hosp C we did not

observe any drop in performance, but even a slight increase.

It could be the case if the population of the new hospital is

similar to or more homogeneous than the one of the original

hospitals concerning the condition under consideration. In our

case, it would mean, that fewer non-ARDS patients with low

Horowitz index are present in Hosp B/C compared to Hosp

A/MIMIC. On the other hand, the necessary condition for the

proper generalization, in this case, is satisfied by the fact, that

CH coverages of Hosp B/C by Hosp A/MIMIC are among the

largest in our study. Overall, the results of cross-prediction for

ARDS were found to be in accordance with the results of the CH

analysis of corresponding datasets.

Application of ML routines for classification for a hospital

also supported the finding, which suggests that the MIMIC

data significantly differed from German datasets, as the best

separation with ROC AUCs > 0.99 was obtained between

the MIMIC cohort and German hospitals. Nearly perfect

separation was still possible after the exclusion of features

with low CH coverage. This result indicated that the MIMIC

cohort is not only less covered by German data, but exhibits

diverging underlying data distributions once compared to

German hospitals. However, while ML methods indicated, that

there were significant differences in underlying distributions

and performance of a model could be impaired, they did not

point in the direction of proper or poor generalization, i.e.,

models trained in dataset A and applied in dataset B and vice

versa. This constitutes an advantage of the CH method, as

it is originally asymmetric and allows to assessment direction

of impaired generalization. Moreover, the CH assessment

is universal and does not depend on the particular ML

classification method.

However, there could be multiple other reasons for such

strong discrepancies in models’ performance. First, some of

the features with low CH coverage (PEEP, FiO2) belong to

parameters, which are set by physicians in the ICU, thus

suggesting different treatment strategies in underlying hospitals.

Second, diverging ARDS labeling criteria (ICD-10 in Germany

vs. ICD-9 in MIMIC) might contribute to label uncertainty in

ARDS classification. Finally, the timespans of data collection

overlap only partially. MIMIC data were collected between 2001

and 2012, Hosp A data between 2009 and 2019. Data from Hosp

B and Hosp C were collected after 2012. This is relevant since

in 2012 the American European Consensus Conference (AECC)

definition of ARDS changed to the currently accepted Berlin

definition (Kunze et al., 2020).

Nevertheless, the main observation is valid regardless of

particular ARDS labeling: MIMIC data do significantly differ

from all three other hospitals in this study. Given that this

database is considered nearly a gold standard of open ICU

databases, an external validation for models developed on this

database is absolutely necessary. In the best case, a special

pipeline for the assessment of the transferability of trained

models should be included in the data preparation step before

a model development, so that generated models might exhibit

significantly better performance.

Our study has other limitations that have to be considered.

It is known that CH analysis is very sensitive to noise

in the data (Worton, 1995). To eliminate the influence of

noisy data on the convex hull analysis, a density-based data

clustering algorithm DBSCAN (Schubert et al., 2017) was

applied to the data so that during each run of the CH

algorithm, outliers were removed using the DBSCAN method.

Additionally, to increase the robustness of the CH analysis

results, each CH analysis execution was averaged over 100 runs

with bootstrapped data. Another potential weakness of our

study design is that imputation was done without taking into

account multidimensional parameter distribution. However,

this could not significantly influence the main conclusions

on differentiating parameters in this study, as we specifically

have chosen patients with charted data of the main parameters

important in the ARDS state: PaO2, FiO2, and PEEP. Another

important question is how to define cutoff values between

good and bad performance for both CH and ML analysis.

We estimated CH coverages between train and test sets for

the same hospital (see Supplementary Table S2). These can

be used as benchmarks for CH intersections for reasonable

generalization. However, these also differed among hospitals, but

here a clear correlation with the sample size of the cohort was

observed. For instance, in Hosp C, a test set of 202 patients was

covered by a train set of 810 patients. Therefore, the estimates

for proper CH coverage should also depend on the sample

size under consideration. For large datasets (Hosp A/MIMIC),

where test set sizes were comparable to the sizes of smaller

datasets in the study (Hosp C) they comprise 0.987/0.972. For

ML routines, there is no rule of thumb to define minimum

ROC AUC to judge whether hospitals cannot be distinguished.

Usually, values of ROC AUC < 0.7 are considered poor

discrimination performance.

Additionally, sample size can potentially be a factor, while

considering convex hull intersections and machine learning

results. However, there are some pieces of evidence, that this

is at least not a dominant factor for generalization differences.

First, models developed in small cohorts of Hosp B/Hosp C for

ARDS classification deliver similar performance in Hosp A, as a

specialized model of that hospital. Second, the model developed
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in Hosp A has a high generalization error in MIMIC (0.13),

but a model developed in MIMIC shows the opposite behavior

in Hosp A having a small generalization error (0.01). Third,

a model developed in the smallest Hosp C does not exhibit

any generalization error in a dataset of completely different

Hosp B. Therefore, we are of the strong opinion, that different

sample sizes in underlying hospitals cannot explain such strong

discrepancies in models’ performance in different hospitals.

Another important remark is that as the dimension of a

dataset grows, then a trained ML model will almost always

lay in the extrapolation range once applied to unseen data

(Balestriero et al., 2021). This is a consequence of the curse of

dimensionality and has to be considered in all ML applications

and especially in deep learning where models are dealing with

hundreds or thousands of features. However, ML models that

utilize continuous time series data and are applied in real

healthcare settings usually require a degree of interpretability

and therefore contain a limited number of features (Chen et al.,

2019). This was also the case in our study, where the number of

features did not exceed 30.

Conclusions

Currently, with the ever-growing number of AI and ML

models in healthcare, there is a huge challenge in the translation

of such models into clinical practice. In healthcare, new data are

often different from those used in the training of the model.

To achieve a clinical implementation, a model must be able

to perform with sufficient accuracy on previously unseen data.

Hospitals may have different policies, guidelines, or protocols,

but even within one hospital, guidelines could change over time

causing altering patients’ responses.

Therefore, the validation of developed models before a

potential application at the bedside plays a key role in translation

research. With the pipeline introduced in this study, we

contribute to the solution of this issue. Given the training data

and a retrospective dataset from a hospital, where the model is

intended to be used, we can judge the generalization ability in

another hospital. On the use case of classification for the first

day ARDS, we showed that the strongest drop in performance

is associated with the poor intersection of convex hulls of

corresponding hospitals and with differences in underlying

data distributions. Therefore, we suggest the application of

our pipeline as a first tool to assess the transferability of

trained models.

Based on our analysis of four different hospital datasets,

we conclude that datasets from different hospitals represent

heterogeneous data sources and the transfer from one database

to another should be performed with care to avoid implications

during real-world applications of the developed models. Further

research is needed to develop methods for the adaptation of

ML models to new hospitals. In addition, more work should be

aimed at the creation of gold-standard datasets that are large and

diverse with data from varied application sites.
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SUPPLEMENTARY FIGURE S1

ROC AUC for classification for a hospital. (A): Performance of an ML

learning algorithm for classification for a hospital. (B): Performance of

an ML learning algorithm for classification for a hospital after removal of

features with low CH coverage values. Numbers in cells reflect the ROC

AUC of the classifier trained to separate between hospital 1 (row name)

and hospital 2 (column name).

SUPPLEMENTARY LIST S1

Diagnostic parameters used in this study. Overall, 54 diagnostic

parameters routinely assessed in the ICU were used in this study.

Additionally, 6 biometric parameters were used.

SUPPLEMENTARY LIST S2

List of parameters used for classification ARDS on the first day in ICU.

SUPPLEMENTARY TABLE S1

CH coverages for all features. MIMIC data covered by other hospitals.

SUPPLEMENTARY TABLE S2

CH coverage of the test set by the train set in the same hospital, where

ML models were developed.
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Speech phoneme and spectral
smearing based non-invasive
COVID-19 detection

Soumya Mishra*, Tusar Kanti Dash* and Ganapati Panda*

Department of Electronics and Communication Engineering, C. V. Raman Global University,

Bhubaneswar, India

COVID-19 is a deadly viral infection that mainly a�ects the nasopharyngeal

and oropharyngeal cavities before the lung in the human body. Early detection

followed by immediate treatment can potentially reduce lung invasion and

decrease fatality. Recently, several COVID-19 detections methods have been

proposed using cough and breath sounds. However, very little study has

been done on the use of phoneme analysis and the smearing of the

audio signal in COVID-19 detection. In this paper, this problem has been

addressed and the classification of speech samples has been carried out

in COVID-19-positive and healthy audio samples. Additionally, the grouping

of the phonemes based on reference classification accuracies have been

proposed for e�ectiveness and faster detection of the disease at a primary

stage. The Mel and Gammatone Cepstral coe�cients and their derivatives are

used as the features for five standard machine learning-based classifiers. It is

observed that the generalized additive model provides the highest accuracy

of 97.22% for the phoneme grouping “/t//r//n//g//l/.” This smearing-based

phoneme classification technique can also be used in the future to classify

other speech-related disease detections.

KEYWORDS

COVID-19 detection, machine learning, spectral smearing, phoneme analysis,

COVID-19

1. Introduction

COVID-19 was publicly avowed as an epidemic demanding leading nations with

medical prowess to develop faster and more accurate testing mechanisms. Flu, cough,

exhaustion, asthma, and pneumonia with fatality have been primarily the clinical

symptoms of the affected patients (Peng, 2020). To alleviate the dearth of RT-PCR testing

sets, medicos and testing centers had to discover alternate options such as Computed

Tomography scans (CT scans) for COVID-19 diagnosis of suspected patients. Some

improved COVID-19 detection schemes are used such as contrast limited adaptive

histogram equalization and local histogram equalization for extracting significant

information from raw chest X-ray images (Narlı, 2021; Narli and Altan, 2022). The

velcro-like lung sounds and lung ultrasound readings are also used for the successful

detection of COVID-19 (Kiamanesh et al., 2020; Pancaldi et al., 2022). Radiologists have

been found to be heavily engaged during the epidemic of COVID-19. They somehow

lacked the capacity to decipher a variety of CT scans in due time (Afshar et al., 2021).
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In addition, clinicians could not as well distinguish COVID-19

from CT scans in remote villages, such as rural regions, because

this disease is relatively recent. The importance of reducing the

dose of radiation in radiological studies, particularly concerning

CT, had become a point of apprehension based on its numerous

and dependable medical applications across the globe.

Corona Virus has been primarily hosted on the intra-nasal,

bronchial, and lung systems of the human body (Gallo, 2021),

and therefore, audio analysis of speech segments from infected

samples could potentially indicate respiratory, articulatory, and

breathing aberrations as compared with healthy speech samples.

Speech-based audio detection of COVID-19 would not only

be non-invasive and cost-friendly but can be performed with

huge flexibility and portability from any location, adhering to

social distancing norms. Speech-based disease recognition has

gained immense admiration in recent times predominantly in

diagnosing neurodegenerative diseases affecting regular speech

patterns. Audio features are explicitly extracted from the

concerned database samples, assigned markers for classification,

and fed into the system model for training followed by

validation and performing an accuracy check (Sharma G.

et al., 2020). Phoneme-based disease classification has showcased

progressive accuracy with minimum latency in diagnosing

several diseases such as stroke, amyotrophic lateral sclerosis

(ALS), Parkinson’s disease (PD), cleft lip and palate (CLP),

primary progressive aphasia, spasmodic dysphonia, Alzheimer’s

disease, and dementia.

The conventional speech features considered are high-

frequency local field potential, zero crossing rate, mean and

standard deviation, spikes in the audio signal, Mel-frequency

Cepstral coefficients (MFCC), Jitter, shimmer, and voice

breaks (Zhang and Wu, 2020). Perceptual linear prediction

(PLP), relative spectra (RASTA), and linear prediction

coefficients (LPC) have also been reported as instrumental

in classification (Moro-Velazquez et al., 2019). Prospective

artificial intelligence/machine learning and deep-learning

phoneme classification methodologies have been the topic

of interest in research advancements for decades (Lamba

et al., 2021). Phonemes in the process of articulation can

be distinctively segregated into six categories such as stop,

affricate, fricative, nasal, and lateral. Subsequently, they can be

sub-categorized to the next level of distinction based on modes

of sound articulation originating in the vocal tract forming

a tubal resonance effect while producing speech (Katamba,

1989). Phonemes, irrespective of dialects, spoken language,

or vocabulary adhered across diversities, can alone suffice to

be a powerful speech segment for processing speech-based

recognition applications. Researchers have actively formulated

words made up of relevant phonemes to trigger the appropriate

vocal parametric articulations for detecting speech disorders,

indicating anomalies (Wielgat, 2008).

1.1. Motivation

In previous research outcomes, it has been apparent that

variations in phoneme lengths and frequency, as well as changes

in phoneme-dependent tone and formant gradients, represent

the phonemic segment reliance on phonation and articulation

shifts with Parkinson’s severity. Yet, there has been a preliminary

study on speech-based COVID-19 detection focusing mainly

on cough, breath, and vowels (Han et al., 2021; Kumar and

Alphonse, 2021) and a generalized comparison of the COVID-

19 assessment of phoneme-vowel categories (Boothroyd et al.,

1996). Not every affected patient might show cough and

shortness of breath as potential symptoms. In this case,

phonemes may emerge as worthy indicators for early detection

of the disease. The best bet to utilize phonemes as an efficient

classification strategy is based on the fact that a speaker need

not necessarily generate his samples to train all words in

the vocabulary list but only the phonetic segments need to

be processed.

1.2. Research objective

An effort is initiated in this article to classify COVID-

19-affected positive and healthy candidates by disintegrating

the audio speech sentence spoken by the concerned specimen

into relevantly available English phonemes. The various

phonemes are then labeled as positive and healthy classes

as demarcated in the referred corpus. In an attempt to

enhance classification accuracy, the individual phoneme audio

wave has been smeared using low-pass filter noise. Most

importantly, the phonemes acquiring the highest classification

performance have been concatenated to propose a phoneme

group called “buzzword.” The so-called buzzword may be used

in the future to detect the disease, evading the dependency

on cough or breath samples. In this article, 16 distinct

English phonemes with three vowels have been utilized on

the available datasets, using 78 feature-sets comprising MFCC,

GTCC, and its variant features with five machine-learning

classification techniques. The findings of the investigation are

as follows:

• Selection of appropriate smearing bandwidth for

improving the classification accuracy for different

feature sets.

• Use of smearing signal for enhancing the classification

accuracy.

• Application of Phoneme-based Buzzwords to assist

clinicians and patients with more precise and focused

detection mechanism.
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TABLE 1 Phoneme database prepared for this study.

Sl. Phoneme Phoneme category No of speech samples (C-19 p +n)

1 /b/ Stop 112+104

2 /d/ Stop 108+110

3 /v/ Fricative 108+110

4 /m/ Nasal 108+108

5 /l/ Alveolar Lateral approximant 104+104

6 /f/ Fricative 112+110

7 /Oy/ Diphthong vowel 105+108

8 /r/ Post-alveolar fricative/voiced approximant liquid 108+110

9 /w/ Labio-velar approximant 110+110

10 /p/ Stop 112+112

11 /n/ Nasal 105+104

12 /s/ Fricative 110+110

13 /t/ Stop 112+112

14 /k/ Stop 108+110

15 /h/ Voiceless glottal fricative/Approximants 110+108

16 /g/ Stop 108+110

17 /a/ Vowel 100+100

18 /e/ Vowel 100+100

19 /o/ Vowel 100+100

*(C-19 p+n) denotes (COVID-19 Positive + Healthy).

2. Materials and methods

2.1. Dataset

The proposed non-invasive COVID-19 detection scheme

is trained and tested in a combined speech dataset, which is

prepared from speech samples collected from the Telephone

band speech dataset (Ritwik et al., 2020) and Coswara

dataset (Sharma N. et al., 2020). A total of 19 speakers’ voice has

been used in the Telephone band speech dataset, out of which

10 are COVID-19 positive and 9 are healthy. The original speech

samples are recorded with 44.1 kHz sampling frequency. But it

has been observed that most of the relevant speech components

are present within the frequency range of 300 Hz to 3.4 kHz (Jax

and Vary, 2004). In the next step, the filtered speech samples are

segmented into different phoneme categories using the Audacity

Toolkit1. There are a total of 432 speech samples in 16 phoneme

categories and the details are mentioned in Table 1. From the

Coswara dataset, three vowel sounds are taken and the samples

are down sampled to 8 kHz sampling frequency. The speech

samples are combined and labeled into 19 phoneme categories

belonging to vowels, diphthongs, stops, fricatives, glides, liquids,

approximants, and nasals. To deal with the insufficient speech

samples, the existing speech phoneme samples are processed by

1 http://www.audacityteam.org/

an audio data augmentation scheme (Salamon and Bello, 2017).

The details of the prepared dataset are listed in Table 1.

2.2. Proposed methodology

The proposedmethod is implemented in the following steps:

dataset preparation, spectral smearing, extraction of cepstral

features, and training and testing of the classification model. The

proposed COVID-19 detection scheme is shown in Figure 1.

2.3. Smearing of phonemes

It has been observed that various speech components

respond differently to spectral and temporal cues which can

be helpful in speech recognition (Xu et al., 2005). The

process of spectral smearing is obtained by multiplying the

signal with a low-pass filter noise. The approach is known

to replace the individual tone factor of the audio-spectrum

with a noise band whose center-frequency collides with the

particular tone. By this, the bandwidth of the modulated

tone is increased twice the tone factor. It has been reported

that the effect of smearing has enhanced phoneme detection

accuracy (Boothroyd et al., 1996). In Golestani et al. (2009),

the authors have conducted experiments on native-language

detection to emphasize that certain words can be more
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FIGURE 1

Block diagram of the proposed model.

conveniently detected at a particular noise configuration than

others. This has been accounted for the differential-phoneme-

recognition outcomes in a noisy environment. In this case, the

speech signals have been smeared using varying SNR levels

and it has been observed that this technique provides superior

performance as compared to the phonemes without smearing.

In yet another study (Shannon, 2005), speech detection has been

shown to be possible with highly distorted and degraded audio

signals. The spectral information can be modified by smearing

to a considerable level till it starts degrading the classification

outcome. A study by Goldsworthy (Goldsworthy et al., 2013)

has demonstrated evaluating psycho-acoustic phoneme-based

identification methods in normal hearing vs. cochlear-implant

subjects. The presence of fluctuating noise-makers has shown

better interpretation for normal hearing participants. By varying

the range of low pass cut-off frequencies, vowel, and consonant

recognition scores have shown marked differences illustrating

the relativity of spectral resolution (Xu et al., 2005).

In the present study, an attempt has been made to

apply spectral smearing to increase phoneme recognition

without affecting signal perception by the addition of noise.

In the first step, the smearing signal is generated by

combining a sinusoidal signal with varied center frequencies

and additive white Gaussian noise. This signal is passed

through low-pass filters having cut-off frequencies ranging

from 10 Hz to 10 kHz. The smearing signal is then

multiplied by the phoneme signal to generate the smeared

phoneme. The best values of these center frequencies and

cut-off frequencies of low-pass filters are calculated based

on the classification accuracies from the support vector

machine-based classifier. The corresponding values are listed in

Tables 2, 3.

2.4. Feature extraction

The objective of signifying an audio signal through its

features is primarily to represent a huge data set through a

compact form without compromising its vital information. The

cepstral features are one of the effective features that are widely

used in speech signal processing and mechanical engineering.

These features are specially designed by considering the

perceptual quality of the human hearing system (Dash et al.,

2021a). The following steps are usually performed in cepstral

feature extraction:

• Short-time Fourier transforms of windowed speech frames

of the input signals.

• Calculation of the short-time energy of speech frame.

• Application of auditory filter bank on the power spectrum.

• Calculation of logarithm and Discrete cosine transform.

• Extraction of specific cepstral features based on the

auditory filter bank used.

The third step is the crucial step that works on the

conversion between the linear frequency scale and to perceptual

frequency scale. Depending on the conversion, two cepstral

features such as Mel and Gammatone cepstral Features are used

in the proposed implementation scheme. The conversion scale
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TABLE 2 Values of center frequency of sinusoidal signal and cut-o� frequencies of low-pass filter for before and after tuning SVM.

Phonemes Cf/LPBW

pre-tuning

Accuracy

pre-tuning

Cf/LPBW

post tuning

Kernel function/ gamma/C Accuracy post tuning

STOPS /b/ 6.3/6.2 64.25 1.4/4.9 Quadratic /1/ 8.73 89.2

NASALS /m/ 4.2/7.9 76.85 1.1/4.3 Gaussian /3.63/238.6 84.2

DIPHTONGS /Oy/ 3.1/6 82.6 1.9/2 Gaussian /0.007 /635 84.3

GLIDES + /r/ 8.6/8.5 67.7 2.1/4.8 Gaussian/0.001/6523.4 89.9

FRICATIVES /s/ 5.6/4.4 67.7 9.9/2.9 Quadratic/1/0.1 85.3

Vowel a 9/7.1 63.6 8/6.6 linear/1/12.6013 79.4

*Cf and LPBW denote Cosine frequency Low Pass Bandwidth in kHz, GLIDES+ denotes the GLIDES, APPROXIMATES, and LIQUIDS.

of the Mel scale is mentioned in Equation (1)

fmel = 2595 × log10

(

1+
flin
700

)

flin = 700 ×






10

(
fmel

2595
)
− 1







(1)

Where, fland fmare the linear scale andmel scale frequencies,

respectively.

2.4.1. Mel-scale cepstral features

Studies have shown that short-time speech-based Mel-

Cepstral features have been noise evasive, and have significantly

detected the pathologies on the vocal tract and vocal folds in past

years. The MFCC feature considers human hearing by warping

the frequency onto the Mel scale (Milner, 2002). It computes the

cepstrum to separate the glottal source and vocal tract filtering

information (Quatieri, 2002). The MFCCs have been chosen for

this study because, in the presence of voice issues, these have the

inherent ability to reflect either irregular movements of the vocal

folds or a lack of closures produced by an increase in size or a

variation in the attributes of the tissue covering the vocal folds.

In this study, 13 feature-based MFCC coefficients, 13 MFCC

Delta coefficients, and 13 MFCC Delta-Delta coefficients have

been extracted. The delta values represent the first and second

derivatives that depict the dynamics of variation in MFCC

feature values.

2.4.2. Gammatone cepstral features

Gammatone Cepstral coefficients (GTCCs) are

physiologically inspired adaptations that use Gammatone

filters and have comparable rectangular bandwidth bands.

Several papers (Cheng et al., 2005; Lee et al., 2014)

have examined the benefits and use of the Gammatone

function in the modeling of the human auditory filter

response. The Gammatone filter impulse response is

calculated by multiplying a Gamma distribution function

by a pure sine wave tone. The delta and double delta

TABLE 3 Best values of the center frequency of the sinusoidal signal

and cut-o� frequencies of low-pass filter for the smearing of di�erent

phonemes.

Phonemes Center frequency

(kHz)

Low-pass filter cut-off

frequency (kHz)

/b/ 1.4 4.9

/d/ 3.2 1

/v/ 8.2 1.6

/m/ 1.1 4.3

/l/ 4.3 9.6

/f/ 6.3 2

/Oy/ 1.9 2

/r/ 2.1 4.8

/w/ 3.1 2.9

/p/ 3.7 9.9

/n/ 4.4 2

/s/ 9.9 2.9

/t/ 8.1 4.7

/k/ 8.4 9.6

/h/ 8.2 4.2

/g/ 0.3 6.8

Vowel /a/ 8 6.6

Vowel /e/ 9.1 4.5

GTCC variants (Cheng et al., 2005) are also taken

into consideration. In essence, 13 feature-based GTCC

coefficients, 13 GTCC Delta coefficients, and 13 GTCC

Delta-Delta Coefficients.

2.5. Classification

Machine learning-based (ML) classifiers working along

with time and frequency extracted features have made

substantial progress in this field. Even in noisy conditions, this

combination exhibited outstanding accuracies for discrete

sound categorization (Dash et al., 2021b). To initiate
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FIGURE 2

Selection of the values of C and gamma in the SVM classifier.

classification, all the above-mentioned 78 features were

extracted from the speech signal and were provided as inputs

to the following classifiers. The smeared phonemes were

Short-Time Fourier transformed (STFT) using the hamming

window of a length of 1,024, having a 30 ms analysis window

with a 20 ms overlap. As the noise level varies during the time of

recording of different speech samples, the speech enhancement

algorithms are widely used to reduce the interfering noise.

In the proposed implementation, one of the popular speech

enhancement algorithms called the multi-band spectral

subtraction method is used in the preprocessing stage before

feature extraction (Kamath and Loizou, 2002).

2.5.1. Support vector machines

The primary objective of a support vector machine (SVM)

classifier is to obtain the most feasible hyperplanes to assess a

proposed model for classification (Soumaya et al., 2021). SVMs

have been widely used in speech classification tasks and have

shown superior performance (Dash and Solanki, 2019). In this

study, bayesian optimization has been applied to select the best

SVMparameters. The best values of c and gamma are taken from

the comparative analyses between the values of c and gamma vs.

classification accuracy as plotted in Figure 2 for the “rbf” kernel.

2.5.2. Linear discriminant analysis

Linear discriminant analysis (LDA) has been employed

in multiple speech disease detection or health anomalies

through audio analysis (Fredouille et al., 2009; Akbari and

Arjmandi, 2014). Fisher’s approach is commonly used in

linear discriminant analysis. This approach is based on the

sample averages and covariance matrices generated from the

several groupings that comprise the training sample. Based

on the training sample, a discriminant rule is developed and

used to classify fresh occurrences into one of the categories.

Fisher’s linear discriminant analysis is a basic and widely used

discriminating approach (Croux et al., 2008).

2.5.3. Generalized additive model

For analyzing the data set and picturing the affiliation

of a dependent variable with an independent variable, the

generalized additive model (GAM) is used, which evolves from

a class of generalized linear models (GLM) (Liu, 2008). Previous

studies have shown that the GLM classifier has given appreciable

results in temporal feature integration based on music genre

classification (Meng et al., 2007). In this case, the boosted tree

is used as a shape function for each predictor to capture a

nonlinear relation between a predictor and the response variable.

2.5.4. Feed-forward fully connected neural
network

Neural network-based classifier models are widely used in

speech processing for improved performance (Lopez-Moreno

et al., 2016; Dash et al., 2020). In this case, feed-forward fully

connected neural network (FCNN) is used with the input

layer connected to a fully connected layer of 10 neurons, a

ReLU function, followed by a second fully connected layer, a

softmax function. A memory-limited device based loss function

minimization approach used here is the Broyden-Flecter-

Goldfarb-Shanno quasi-Newton algorithm (LBFGS) (Nocedal

andWright, 2006; Hui et al., 2019), where the cross-entropy loss

is reduced during the training phase.

2.5.5. K-nearest neighbor

K-nearest neighbor (KNN) is one of the effective

and popular classifiers that are used for speech-based

applications (Alsmadi and Kahya, 2008). The categorization

process is divided into two stages: the first is determining the

closest neighbors, and the second is determining the class based

on those neighbors. The K-nearest neighbors are selected using

the Grid search method that provides the best value of k as 5.

2.6. Validation

K-fold cross-validation is a commonly applied validation

approach (He et al., 2018). The entire set of voice samples is

randomly divided into k equal-sized subgroups. Each fold has

an equal proportion of two different types of class labels (glottal

and normal stop speech). One of the subsamples is engaged for

testing, while the remaining k-1 subsamples can be utilized for

training (Altan, 2021, 2022). The process is replayed k times

(the folds), for each of the k subsamples serving as testing data.
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TABLE 4 Performance comparison of classifiers on di�erent phoneme categories.

Smeared phoneme category Model Accuracy AUC Precision Recall F-2 Score

STOPS SVM 0.9± 0.0045 0.87 0.92± 0.0012 0.9± 0.004 0.75± 0.002

/b/,/d/, LDA 0.81±0.025 0.83 0.81± 0.007 0.86± 0.0063 0.70±0.0069

/g/,/k/, GAM 0.9± 0.02 0.96 0.9± 0.0033 0.9± 0.0047 0.75± 0.0033

/t/,/p/ FCNN 0.85±0.016 0.89 0.87± 0.0022 0.86± 0.0033 0.72± 0.0022

KNN 0.80± 0.023 0.79 0.86± 0.0067 0.77± 0.0031 0.65± 0.0071

FRICAT SVM 0.92± 0.01 0.8 0.97± 0.0032 0.92± 0.0058 0.69± 0.0041

IVES LDA 0.72±0.02 0.74 0.67± 0.0015 0.70± 0.0033 0.57± 0.0011

/f/,/s/,/v/ GAM 0.89± 0.2 0.94 0.89± 0.0073 0.92± 0.0064 0.76± 0.0022

FCNN 0.64±0.04 0.59 0.70± 0.0017 0.68± 0.001 0.57± 0.0046

KNN 0.82± 0.015 0.77 0.84± 0.0069 0.82± 0.0022 0.69± 0.004

NASALS SVM 0.87±0.02 0.88 0.87± 0.0033 0.87± 0.0071 0.73± 0.006

/m/,/n/ LDA 0.67± 0.06 0.68 0.70± 0.004 0.63± 0.0022 0.53± 0.0011

GAM 0.94± 0.01 0.98 0.95± 0.001 0.93± 0.0023 0.77± 0.0066

FCNN 0.87± 0.01 0.91 0.77± 0.0014 0.89± 0.008 0.72± 0.004

KNN 0.77±0.02 0.76 0.78± 0.0012 0.76± 0.0011 0.63± 0.0032

VOWELS SVM 0.78± 0.0012 0.77 0.78± 0.0046 0.78± 0.0010 0.70± 0.0067

/a/,/e/, /o/ LDA 0.63± 0.0071 0.68 0.59± 0.0012 0.73± 0.0012 0.58± 0.0033

GAM 0.84± 0.0045 0.91 0.79± 0.0033 0.85± 0.004 0.69± 0.0012

FCNN 0.85± 0.0023 0.90 0.89± 0.0047 0.83± 0.0033 0.69± 0.001

KNN 0.64± 0.0017 0.64 0.55± 0.0014 0.68± 0.004 0.54± 0.0064

GLIDES+, SVM 0.81± 0.006 0.81 0.81± 0.0035 0.81± 0.0010 0.73± 0.0022

/l/ /w/ LDA 0.80± 0.0011 0.74 0.75± 0.0044 0.86± 0.006 0.7± 0.004

/r/ /h/ GAM 0.96± 0.0014 0.98 0.95± 0.008 0.95± 0.0010 0.8± 0.0041

FCNN 0.57± 0.0079 0.66 0.55± 0.0011 0.57± 0.001 0.5± 0.007

KNN 0.82± 0.0015 0.83 0.85± 0.0066 0.79± 0.002 0.67± 0.006

DIPTHO SVM 0.79± 0.0028 0.76 0.78± 0.0044 0.78± 0.0035 0.75± 0.008

NGS LDA 0.63± 0.0067 0.54 0.68± 0.0033 0.54± 0.0022 0.47± 0.006

/Oy/ GAM 0.87± 0.0011 0.93 0.85± 0.0014 0.85± 0.001 0.71± 0.0022

FCNN 0.88± 0.0036 0.80 0.88± 0.0026 0.86± 0.006 0.72± 0.001

KNN 0.67± 0.0044 0.67 0.73± 0.007 0.57± 0.007 0.5± 0.0041

The classification accuracy is calculated for each operation. The

mean classification accuracies are calculated using 10 times in

10-fold cross-validation (Muthusamy et al., 2015) for this study.

The validation accuracy is computed from confusion metrics as

shown below

Classification Accuracy =

(

TP + TN

TP + TN + FP + FN

)

(2)

where TP stands for True-Positives, TN stands for True-

Negatives, FP for False-Positives, and FN for False-

Negatives. The Precision and Recall are calculated as

mentioned below.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(3)

The F-2 score is calculated as

F2−Measure =
(5 × Precision × Recall)

(4 × Precision + Recall)

=
TP

TP + 0.2FP + 0.8FN

(4)

The F-2 score is one of the important parameters in medical

diagnosis since it indicates the cases who are False Negative (who

have COVID-19 infection but have been incorrectly classified as

healthy by the model).

3. Results and discussions

After completing the experimental setup, the simulations

study has been performed on the MATLAB platform using a

Core i5, 12GB RAM processor. The results are analyzed in three
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FIGURE 3

Performance comparison of phonemes in non-smearing and smearing conditions.

TABLE 5 Comparison of GAM Classification performance for best phoneme categories and groupings.

Phoneme grouping Classification accuracy Precision Recall F-2 Score

/t/ 0.95± 0.01 0.95± 0.0021 0.93± 0.030 0.94± 0.014

/r/ 0.94± 0.01 0.94± 0.001 0.94± 0.021 0.94± 0.017

/n/ 0.94± 0.012 0.94± 0.0024 0.94± 0.003 0.94± 0.01

/g/ 0.93± 0.012 0.94± 0.013 0.94± 0.001 0.93± 0.008

/l/ 0.92± 0.016 0.93± 0.015 0.93± 0.0012 0.93± 0.006

/t//r//n/ 0.96± 0.0011 0.97± 0.001 0.96± 0.001 0.96± 0.004

/t//r//n//g//l/ 0.97± 0.0005 0.97± 0.001 0.97± 0.001 0.97± 0.0013

broad categories: the selection of the best classification model,

the effect of smearing, and the formation of the grouping of

phonemes.

3.1. Performance comparison of di�erent
classifiers on smeared phoneme
detection

For the selection of the best performing classifier for

COVID-19 detection using phoneme and smearing, the

performance of the five different classifiers (SVM, LDA, GAM,

FCNN, and k-NN) are compared. For this, the classification

accuracy, area under the curve (AUC), precision, recall, and F-2

score are used and the results are plotted in Table 4. The average

classification performances are listed for six broad categories of

phonemes including stops, fricatives, nasals, vowels, voiced, and

dipthongs.

In terms of classification accuracies, /t/, /a/, /f/, /k/, /l/, /m/,

/n/, /o/, and /r/ have obtained the best results under GAM

Classifier. Similarly, /b/, /e/, /g/, and /oy/ have achieved their

highest classification accuracies under FCNN Classifier. LDA

Classifier outperformed the rest for /p/, and /v/. SVM offered

the highest classification accuracies for both /w/, and /s/. Finally,

KNN achieved the best performance in the case of /h/ phoneme.

Conclusively, GAM delivers an overall best performance for all

phonemes as compared to other classifiers.

3.2. Comparison of classification
accuracy between non-smeared and
smeared phonemes

To detect the effect of smearing on the classification

performance, a comparative analysis is carried out between the

phonemes with and without smearing. For the classification

of the best performing model from the classification analysis,
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GAM is used. The same 78-dimensional feature vector sets

have been extracted from corresponding phoneme samples. The

simulation results are shown in Figure 3.

It is evident from the above figure that the smearing

of phonemes yields appreciably better classification

accuracies in the majority of the cases. The phoneme /t/

exhibits the highest classification accuracy of 95.92%, and

phoneme/a/ exhibits the lowest accuracy of 83.08% under the

smeared conditions.

FIGURE 4

ROC-AUC plot for the phoneme group /t//r//n//g//l/.

3.3. Phoneme groupings

After analyzing the classification performance of smearing

and individual phonemes, a phoneme grouping based approach

is adopted. Based on the individual classification accuracy

of phonemes, the 3-tuple and 5-tuple phoneme buzzwords

are created by combining the high-performing individual

phonemes (Moro-Velazquez et al., 2019). By taking the first

reference level of 95.67% classification accuracy, the first

phoneme group of “/t/-/r/-/n/” is used as a 3-tuple buzzword.

Then, the threshold is set at 94.07% classification accuracy

to form the second phoneme group of “/t/-/r/-/n/-/g/-/l/.”

The best performing five phonemes are then combined. In

these combinations, the phoneme classification accuracies are

taken in descending order where the /t/ is having the highest

classification accuracy and /l/ is having the lowest classification

accuracy among the group. Audacity software is used to combine

the individual phonemes to form 104 speech samples in both the

categories of COVID-19 positive and healthy for the phoneme

group of “/t/-/r/-/n/” and “/t/-/r/-/n/-/g/-/l/.” The same 78-

dimensional feature vectors are extracted and applied to the

GAM classifier and the results are listed in Table 5. The ROC-

AUC curve is plotted for the phoneme group /t//r//n//g//l/ in

Figure 4 and the comparison between spectrogram of COVID-

19 positive sample and healthy sample is plotted in Figure 5.

It is observed that the phoneme group with the buzzword

“/t//r//n//g//l/” performs better as compared to /t//r//n/. The

spectrograms of the buzzword “/t//r//n//g//l/” are plotted for

FIGURE 5

The plot of the Spectrogram of (A) COVID-19 positive sample and (B) a healthy sample.
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FIGURE 6

t-SNE plots of phoneme group buzzword “/t//r//n//g//l/” for

MFCC and GTCC features.

COVID-19 positive and healthy speech samples are plotted

in (Narlı, 2021).

A person affected by COVID-19 may lack in energy to

produce sound, thus disrupting the normal speech production

phenomena. In the stage of sound phonation, the sub-glottal

thrust must cross a certain threshold to set the vocal folds

in vibration. If the respiration stage of speech production is

interrupted, the phonation of the larynx will be accordingly

compromised (Asiaee et al., 2020). Therefore, the audio

waveform of the plosive /t/ in healthy candidate exhibits strong

energy compaction due to sufficient sub glottal pressure as

compared to the diseased case. The healthy vocal folds exhibit

glottal closures with a trail of strong impulses due to the

quick closure of vocal folds, whereas a disordered vocal fold

produces a weak impulse due to the incomplete closure of vocal

folds (Mandal and Rao, 2018). The ability to increase or decrease

vocal cord length and tension governs the frequency at which

the cord vibrates and, consequently, the pitch of the sound

produced. As the mass of the vocal cords increases, the vibrating

frequency and pitch decrease (Dettelbach et al., 1994). In the

above spectrograms, the healthy waveform depicts equivalent

variation for all phonemes, whereas, in the case of COVID-19

affected sample, certain phonemes are subdued as compared

to others. To further evaluate the effectiveness of the extracted

MFCC and GTCC features for phoneme group buzzword

“/t//r//n//g//l/,” the t-SNE plot is shown in Figure 6 (der Maaten

and Hinton, 2008). It is observed that in the input space, the

pattern of the extracted features is linearly separable which

improves the performance of the classification especially the

phoneme group buzzword “/t//r//n//g//l/.”

This approach to phoneme grouping has the advantage of

designing a low computational complexity based COVID-19

detection model as the individual phonemes are not recorded

and the group has a higher classification accuracy as compared

to individual phonemes.

4. Conclusion

In this study, a hybrid model is designed for the detection

of COVID-19 from speech signals by combining phoneme-

based signal analysis and spectral smearing. The performance

of the detection model is evaluated for 19 individual phonemes

and two phoneme groupings using five ML-based classifiers. It

is observed that the GAM model performs appreciably better

for most pathological phoneme detection. These methods are

expected to perform well among suspected COVID-19 patients

with minimal or no cough and shortness of breath. Due to

insufficient audio samples present in the corpus and to avoid

the issues of imbalanced data, the final dataset has been created

with the help of data augmentation prior to further processing.

In the future, a phone or a web application may be developed for

detection based on this buzzword. This proposed methodology

needs to be clinically validated in hospitals with large speech

datasets.
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