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Editorial on the Research Topic
Nutraceuticals modulation for oxidative stress in disease and health

Oxygen is an essential component of life because it is used in aerobic respiration to
generate energy from glucose. Reactive oxygen species (ROS) are produced as by-products of
cellular respiration. The enzymatic and non-enzymatic antioxidants in the cells maintain the
ROS at low levels, whereby they play a physiological role in cellular signalling, differentiation,
autophagy and metabolic adaptation (Sena and Chandel, 2012). When the cellular
antioxidant capacity is overwhelmed by ROS, a phenomenon known as oxidative stress
occurs. The excess ROS could damage macromolecules important to sustain life, such as
lipids, nucleic acids and protein (Caliri et al., 2021). The accumulated damage can lead to
cellular senescence or dysfunction, causing organ damage and various degenerative diseases
and even cancers (Liguori et al., 2018). Oxidative stress can be triggered by many factors in
the modern environment, including pollutants, radiation, smoking, alcohol, psychosocial
stress, and unhealthy diets (Birch-Machin and Bowman, 2016; Kerahrodi andMichal, 2020).

Since complete avoidance of factors triggering oxidative stress is not feasible, enhancing the
cellular antioxidant system could be an alternative to tackle this problem. Consumption of natural
products such as fruits and vegetables has been associated with various health-beneficial effects
(Angelino et al., 2019; Wang et al., 2021). Natural products are rich in hydrophilic (such as
flavonoids, lignans, phenolic acids, and stilbenes) and lipophilic antioxidants (such as carotenoids
and tocochromanols) (Xu et al., 2017), which possess health-enhancing effects. These natural
antioxidants can scavenge free radicals, terminate the lipid peroxidation chain, and modulate the
cellular antioxidant response. They are also used in combination as in the case of traditional
Chinese and other folk medicines to enhance the health effects. Nutraceuticals, which are
substances derived from natural products used to prevent or manage chronic diseases, have been
receiving attention (Nasri et al., 2014).

In response to the increasing evidence of nutraceuticals in modulating oxidative stress in
health and diseases, this Research Topic gathers high-quality papers on the topic. The researchers
adopted several approaches to tackle the issue, i.e., using single bioactive compounds or crude
extract, traditional Chinese medicine formulation or reviews of previous literature.

Herbs used in traditional medicine are major sources of nutraceuticals, and a topic of active
investigation. Using menthol derived from peppermint, Matouk et al. reported attenuation of
histopathological and enzymatic changes in the liver caused by sepsis with treatment. These
beneficial effects were mediated by the anti-inflammatory, antioxidant and anti-apoptotic
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properties of menthol. Using the aqueous extract of Labisia Pumila
(Blume) Fern.-Vill. Var. Alata, Ibrahim et al. reported that the extract
promoted the healing of burn wounds. The effects of leaf extract were
more potent because it promoted better histomorphometric features
and hydroxyproline production in the wound. Nurul Akmal et al. found
that methanolic extract of Piper sarmentosum prevented lesions and the
increase of inflammation and oxidative stress of gastric mucosa in rats
subjected to water-immersion restrain stress. Mumtazah Razak et al.
compared the antioxidant potential of subcritical water extract of soil
and soilless-grown gingers. They found that soil-grown variety yielded
higher amounts of extract and antioxidant activities ex vivo. In rats,
subcritical water extract of soil-grown ginger suppressed inflammation
and the product of oxidative stress, while increasing the activity of
catalase. Fungi are a major source of bioactive compounds with
antioxidant activities. Tang et al. demonstrated that the extract of
Penicillium oxalicum isolated from Ligusticum chuanxiong Hort
protected Caenorhabditis elegans from thermal, UV and oxidative
stress by upregulating antioxidant enzyme and heat-shock protein
expression. The extract could also protect against DNA scission in
plasmid and lymphocytes.

Two studies demonstrated the antioxidant potential of traditional
Chinese medicine formulation in managing health. Lee et al. found that
the spleen-tonifying formula, KI Essence extract, promoted the survival
of neurons and neurite growth through antioxidant effects and ERK
phosphorylation in vitro. In animals, the formulation prevented
hypomyelination, oxidative stress and inflammation in the brain of
maternal immune activation offspring, probably throughmodulation of
gut microbiota. Sun et al. reported that topical application of Scutellaria
baicalensis Georgi (SBG) improved the skin condition, collagen
production and redox status. Through in vitro studies, they showed
that SBG antagonises REV-ERBα to upregulate BMAL1, thus achieving
protection against skin ageing.

The Research Topic also includes three reviews that summarise
the health effects of phytoestrogens, herbs and traditional Chinese
medicines with antioxidant effects. Jayusman et al. reviewed the
potential of phytoestrogens in preserving bone and periodontal
health derived from preclinical studies. Although the evidence on
periodontal bone loss is limited, they concluded that phytoestrogens
could effectively prevent bone resorption and enhance bone
formation, thus preventing osteoporosis and alveolar bone loss.
In a systematic review, Othman et al. reported that P.
sarmentosum exerted beneficial effects against diabetes and
hypertension from preclinical studies. Meta-analysis of the
hypertensive effects showed that P. sarmentosum extract induced

substantial reduction in systolic, diastolic and mean arterial pressure
in vivomodels. The review of Huang et al. summarized the effects of
several traditional Chinese medicine components and formulations
with antioxidant, anti-inflammatory, neuroprotective properties,
which could potentially be used to manage spinal cord injury
with an underlying oxidative stress pathology.

Overall, nutraceuticals hold great promise in preventing and
managing chronic diseases through their antioxidant properties.
They could complement lifestyle interventions to prevent the
progression of the diseases to the stage wherein standard
pharmaceuticals are required. However, to adopt them in a
clinical setting, more safety and efficacy data in properly planned
randomised controlled trials in humans would be required.
Standardising the extraction and formulation is also critical in
ensuring the effectiveness of the nutraceuticals.
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Mushrooms and Chinese traditional herbs have bioactive nutraceuticals with

multiple therapeutic functions, including antioxidant and antibacterial activities

and microbiome modulation properties. Mushroom-derived bioactive

compounds are used in medicines for the treatment of neurological

disorders with abnormal brain–gut–microbiome axis. This study examined

the effects of KI Essence extract, a spleen-tonifying formula, on neurite

growth, antioxidant activity, hypomyelination modulation, and the

microbiome profile in lipopolysaccharide (LPS)-induced maternal immune

activation (MIA) offspring. The KI Essence extract induced PC12 cell neurite

growth by increasing extracellular signal–regulated kinase (ERK)

phosphorylation, promoting 2,2′-diphenyl-1-picrylhydrazyl radical

scavenging activity, reducing the level of tert-butylhydroperoxide–induced

lipid peroxidation in brain homogenates, protecting PC12 cells from H2O2-

induced cell death (through the inhibition of ERK phosphorylation), alleviating

hypomyelination, and downregulating interleukin-1β through LPS-activated

microglia production; moreover, the numbers of Enterobacteriaceae,

Actinobacteria, Peptostreptococcaceae, Erysipelotrichaceae, and

Bifidobacterium bacteria in MIA offspring increased. In summary, the KI

Essence extract promotes neurite outgrowth, alleviates oxidative stress and

hypomyelination, and modulates microbiota dysbiosis in MIA offspring.
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Introduction

Neurodevelopmental diseases are characterized by an

abnormal brain–gut–microbiome axis. The

etiopathophysiology of mental disorders involve impaired

neurite outgrowth, altered myelination, oxidative stress, and

microbial dysbiosis (Graciarena et al., 2018; Nguyen et al.,

2018; Xu et al., 2019; Pangrazzi et al., 2020b). Clinical evidence

has demonstrated that patients with autism spectrum disorder

(ASD) exhibit oxidative stress–related responses, including

increases in reactive oxygen species (ROS) and lipid

peroxidation levels (Chauhan and Chauhan, 2006; Yui

et al., 2020). ROS-induced peroxidation products such as

malondialdehyde (MDA), a lipid peroxidation product, can

damage cellular components and exacerbate

neurodevelopmental disease status (Pangrazzi et al., 2020b;

Yui et al., 2020). Oxidative stress also leads to the

downregulation of myelin-related gene expression in human

oligodendrocytes and of myelin basic protein (MBP)

expression levels in the rat brain (Maas et al., 2017). Thus,

alleviating oxidative damage is a promising treatment strategy

for neurodevelopmental diseases.

Mushrooms and traditional Chinese herbal medicines are

considered nutraceuticals that can alleviate the symptoms of

neurodevelopmental diseases (Bang et al., 2017). Numerous

edible mushrooms, including Sarcodon scabrosus, Ganoderma

lucidum, Grifola frondosa, Hericium erinaceusm, and Pleurotus

giganteus, can promote neurite outgrowth in PC12 cells through

the extracellular signal–regulated kinase [ERK] signaling

pathway (Sabaratnam et al., 2013). The Tremella fuciformis

extract promotes neurite outgrowth in PC12h cells (Kim et al.,

2007). Edible mushrooms (e.g., Lentinula edodes, Flammulina

velutipes, and T. fuciformis) contain bioactive compounds and

polysaccharides and thus exhibits antioxidant activity (Li et al.,

2014; Yuan et al., 2019; Diallo et al., 2020). The traditional

Chinese herbal extract exhibits potent antioxidant activity

(Matkowski et al., 2013). In particular, Lycium barbarum,

Cassia obtusifolia, Euryale ferox, Ziziphus jujuba, and Prunus

mume extracts exhibit antioxidant activity (Lee et al., 2002; Pi

and Lee, 2017; Lu et al., 2019; Wu et al., 2019; Rajaei et al., 2021).

The Crataegus pinnatifida extract contains maslinic acid,

which has been noted to promote synaptogenesis and axon

growth through Akt/GSK-3β activation in a cerebral ischemia

model (Qian et al., 2015). The medicinal mushroom Poria cocos

is one of the most commonly used Chinese herbal medicines for

autism spectrum disorder (ASD) treatment; studies have verified

its anti-inflammatory activity and spleen-tonifying effects (Rios,

2011; Bang et al., 2017; Nie et al., 2020). However, further

research is warranted to clarify how the aforementioned

mushrooms and traditional Chinese herbal medicines regulate

the signaling pathways involved in neuritogenesis and

antioxidant responses.

Mitogen-activated protein kinase (MAPK) signaling

pathways are involved in the regulation of neuritogenesis and

oxidative responses. Specifically, nerve growth factor (NGF)

activates ERK 1/2 to promote neuritogenesis (Wang et al.,

2011). Oxidative stress also causes the activation of

intracellular signaling pathways, including ERK1/2 and

p38 MAPK pathways (Rezatabar et al., 2019). The inhibition

of these MAPK pathways can protect cells from oxidative

stress–induced apoptosis (Rezatabar et al., 2019). Thus,

targeting MAPK signaling can inhibit both neuritogenesis and

oxidative response–induced cell death.

An increasing number of studies have suggested that gut

microbial dysbiosis and oxidative stress play integral roles in

neurodevelopmental diseases (Nitschke et al., 2020; Svoboda,

2020). Gut microbiota regulates host physiology, nutrition, and

brain function (Vuong and Hsiao, 2017). Dysbiosis is associated

with altered integrity of the intestinal barrier and gut inflammation

in a maternal immune activation (MIA) model that is known to

have features of ASD (Hughes et al., 2018; Li et al., 2021).

Microbiota-derived metabolites are correlated with behavioral

abnormalities and neuropathology in ASD (Peralta-Marzal et al.,

2021), suggesting that gut dysbiosis is associated with ASD

pathophysiology.

In traditional Chinese medicine, neurological disorder

treatment mainly involves tonifying the spleen and invigorating

the brain (Greenwood, 2017). Mushrooms contain bioactive

ingredients that modulate gut microbiota and increase spleen Qi

(Greenwood, 2017;Ma et al., 2021; Vamanu et al., 2021). KI Essence

is a commercial product that contains mushrooms and traditional

Chinese herbal extracts; its ingredients have spleen-tonifying effects

and can modulate the gut microbiome (Xu et al., 2015; Xu et al.,

2021; Zou et al., 2021). MIA elicits oxidative and inflammatory

responses during pregnancy, which lead to the development of an

abnormal brain–gut–microbiota axis in offspring (Simoes et al.,

2018; Lee et al., 2021). In this study, we assessed the potential of the

KI Essence extract for neurite outgrowth promotion, oxidative stress

alleviation, and maternal infection–induced abnormal

brain–gut–microbiota profile modulation in a MIA animal model.

Materials and mehthods

KI Essence extract preparation

The KI Essence extract examined in this study was

obtained from Infinitus (Guangzhou, Guangdong, China).
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The raw materials of this extract, including fresh and dry

materials, were Lentinula edodes (Berk.) Pegler, Flammulina

velutipes (Curtis) Singer, Wolfiporia extensa (Peck) Ginns,

Tremella fuciformis Berk, Crataegus pinnatifida Bunge

[Rosaceae], Lycium barbarum L. [Solanaceae], Senna

obtusifolia (L.) [Fabaceae], Euryale ferox Salisb

[Nymphaeaceae], Ziziphus jujube Mill. [Rhamnaceae],

Prunus mume (Siebold) Siebold & Zucc. [Rosaceae], and

Ostreae gigas. The weight percentages of each raw material

used in the KI Essence extract preparation are presented in

Supplementary Table S1. In total, 100 g of raw materials were

extracted twice with 1.2 and 1 L of 95°C distilled water for

1.5 and 1 h, respectively. Next, the extract was concentrated in

vacuo to obtain a final yield of 24%.

High-performance liquid chromatography
fingerprint analysis

The KI Essence extract (10 mg) was dissolved in H2O to

obtain a high-performance liquid chromatography (HPLC)

sample solution (10 mg/ml). HPLC fingerprint analysis was

conducted using a Waters HPLC system (Milford, MA,

United States) comprising a Waters 600 pump system,

Waters 2996 Photodiode Array Detector, Waters 717 plus

Autosampler, and Sugai U-620 Column Oven (Wakayama

City, Japan). A Cosmosil 5C18-MS-II reversed-phase

column (5 μm, 4.6 mm × 250 mm; Nacalai Tesque, Japan)

equipped with a LiChrospher RP-18 end-capped guard

column (5 μm, 4.0 mm × 10 mm; Merck, Germany) was

used for the stationary phase. The gradient eluents

consisted of eluents A (H2O:KH2PO4:10% H3PO4 = 1,000 g:

2.72 g:1 ml), B (acetonitrile), and C (H2O), with the following

profile: 0–25 min, 80%–100% A and 0%–20% B; 25–45 min,

65%–80% A and 20%–35% B; 45–60 min, 0%–65% A, 35%–

80% B, and 0%–20% C; 60–65 min, 10%–80% B and 20%–90%

C; and 65–70 min, 0%–100% A, 0%–10% B, and 0%–90% C.

The applied flow rate was 1 ml/min, and the column

temperature was maintained at 35°C. The relevant data are

presented in Supplementary Figure S1. The following

components of the KI Essence extract were detected:

cytosine, cytidine, hypoxanthine, uridine, guanosine,

adenosine, and maslinic acid.

High-performance liquid chromatography
analysis of marker substances in KI
essence extract

We used a Hitachi HPLC system, consisting of a Chromaster

5110 pump system, Chromaster 5430 Photodiode Array

Detector, Chromaster 5210 plus Autosampler (Hitachi, Japan),

and Super CO-150 column oven. A LiChrospher RP-18 reversed-

phase column (5 μm, 4.6 mm × 250 mm;Merck) equipped with a

LiChrospher RP-18 end-capped guard column (5 μm, 4 mm ×

10 mm; Merck) was used as the stationary phase. The mobile

phase included 0.05% trifluoroacetic acid (CH3CN gradient

elution: 0 min, 95:5; 50 min, 0:100). The flow rate was 1 ml/

min, and the column temperature was maintained at 40°C. The

ultraviolet detection wavelength of maslinic acid was 215 nm.

Because of the poor water solubility of maslinic acid, 0.1 g of the

KI Essence extract was extracted using 10 ml of 50% methanol

through ultrasonic oscillation at 25°C for 20 min to obtain total

maslinic acid. The sample was subsequently filtered through a

0.45-μm syringe filter, and a 5-μl aliquot was directly injected

into the HPLC system. Maslinic acid standard (Sigma) was

used to identify the target peak and amounts of maslinic

acid in KI Essence extract. The concentration range of the

maslinic acid calibration curve was 10–500 μg/ml. Maslinic

acid content in the KI Essence extract was found to be 11.3 ±

0.7 mg/g.

Phenol–sulfuric acid method for
measuring total carbohydrates

We mixed 100 μl of 10 mg/ml KI Essence extract with

800 μL of 95% ethanol with thorough stirring. This mixture

was allowed to stand for 30 min and then centrifuged, and the

supernatant was discarded. The obtained pellet was washed

with 500 μl of 80% ethanol and centrifuged to remove the

solvent. The aforementioned steps were repeated three times.

Thereafter, the precipitate was dissolved uniformly in 2 ml of

2 M sulfuric acid. Subsequently, 200 μl of phenol and 100 μl of

sulfuric acid were added into an Eppendorf vial with the

dissolved precipitate. After the solution was reacted for

15 min in a 100°C water bath, glucose (0, 12.5, 25, 50, and

100 μg/ml) was used as a standard for preparing a calibration

curve, and optical density (OD) at 480 nm was interpolated to

calculate the content of condensed tannins relative to that of

glucose (Masuko et al., 2005). The KI Essence commercial

product used here contained 70 mg/g of carbohydrates

(including monosaccharides, disaccharides, oligosaccharides,

and polysaccharides).

Cell culture

PC12 cells, obtained from American Type Culture Collection

(USA; ATCC CRL-1721), were maintained in RPMI

1640 medium (Gibco-Life Technologies, United States)

supplemented with nutrient mixture F-12 (Gibco-Life

Technologies), 5% fetal bovine serum (FBS), 10% horse

serum, and penicillin–streptomycin. The cells were maintained

in an incubator at 37°C under atmospheric conditions (CO2:air =

5%:95%).
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PC12 cell viability and neurite outgrowth
assay

PC12 cells were seeded in six-well culture plates (Corning,

NY, United States) coated with 0.1 mg/ml poly-L-lysine at a

density of 0.7 × 106 cells per well in culture medium for 1 day.

The cultured PC12 cells were then transferred to low-serum

medium (containing 1% horse serum with 0.5% FBS) and

cultured for 24 h. Subsequently, these cells were stimulated

with 50 ng/ml NGF for 2 days in the low-serum medium with

various concentrations of the KI Essence extract. The viability

of differentiated PC12 cells was assessed through cell counting

kit-8 (CCK-8) assays (Dojindo, Japan). OD at 450 nm, which

was measured using a spectrophotometer (Thermo Fisher

Scientific, USA), was used to estimate cell viability. In the

experiments for counting the neurite-bearing PC12 cells, the

cells were photographed using a digital camera under a phase-

contrast microscope. The images of five randomly selected

fields were obtained for each dish, and a mean of

10–20 PC12 cells per field were observed. The percentage of

neurite-bearing cells per field was calculated using the

following equation: (number of neurite-bearing cells/total

number of cells) × 100. Finally, the results from all the

fields were tallied and divided by the total number of fields

(n = 5) to obtain the percentage of neurite-bearing cells per

condition (Wiatrak et al., 2020).

Viability of H2O2-induced differentiated
PC12 cell death assay

PC12 cells were seeded in 96-well culture plates (Corning,

United States) coated with 0.1 mg/ml poly-L-lysine at a density of

10,000 cells/well in a culture medium for 1 day. The cultured

PC12 cells were then transferred to low-serum medium

containing 50 ng/ml NGF and cultured for 2 days.

Subsequently, the differentiated PC12 cells were stimulated

with 200 µM H2O2 and various concentrations of the KI

Essence extract (0, 0.5, and 1 mg/ml) for 1 day, after which a

CCK-8 viability assay was performed (Dojindo).

Western blotting

We seeded 1 × 106 PC12 cells in 6-cm tissue culture dishes,

with overnight incubation. The cultured PC12 cells were then

transferred to low-serum medium (containing 1% horse serum

with 0.5% FBS) and cultured for 24 h. The PC12 cells were

stimulated with 50 ng/ml NGF and the KI Essence extract for 0,

0.5, or 1 h. In another set of experiments, 1 × 106 NGF–induced

differentiated PC12 cells were treated with 200 µMH2O2 and the

KI Essence extract for 0, 0.5, or 1 h. Subsequently, cell lysates

were prepared using a PRO-PREP protein extraction solution

(iNtRON Biotechnology, Korea) containing 2 mM Na3VO4. The

cell lysates were immunoblotted using primary antibodies against

p-ERK1/2, p-p38, and β-Actin (Cell Signaling Technology, USA)

and horseradish peroxidase–conjugated goat antirabbit or

antimouse immunoglobin G (GoalBio, Taiwan). All data were

acquired using a ChemiDoc Touch Imaging System (Bio-

Rad, USA).

2,2′-diphenyl-1-picrylhydrazyl scavenging
assay

We added a 100-µL aliquot of 500 µM 2,2′-diphenyl-1-
picrylhydrazyl (DPPH)–ethanol solution to each well of a 96-

well plate, followed by the addition of 100 μl of the KI Essence

extract at various concentrations. Butylated hydroxytoluene

was used as a standard antioxidant compound. The plates were

incubated for 30 min in the dark, and absorbance was

measured at 530 nm on an enzyme-linked immunosorbent

assay (ELISA) microplate reader (Thermo Fisher Scientific).

Moreover, 300-μl aliquots of ethanol were used as blanks,

and the following equation was used to calculate the DPPH

radical scavenging rate (%): [1 − (ST/EC)] × 100, where ST and

EC are the OD at 530 nm of the sample and control,

respectively.

Antiperoxidation effects of KI Essence
extract through malondialdehyde assay

Lipid peroxidation levels in brain homogenates were

determined by measuring MDA levels. In brief, brain

samples from C57BL/6 mice were first homogenized in ice-

cold phosphate-buffered saline (PBS) at a concentration of

25% (w/v). The protein levels in the homogenized tissues were

quantified using a protein assay dye (Bio-Rad). The brain

homogenates (200 μg/ml) were incubated with 50 mM tert-

butyl hydroperoxide (t-BHP; Sigma) and various

concentrations of the KI Essence extract for 1 h at 37°C.

The MDA levels in the sample were measured using an

MDA assay kit (Abcam, USA) according to the

manufacturer’s instructions.

Lipopolysaccharide-induced maternal
immune activation rat model and oral KI
Essence extract treatment

Eight-week-old female Wistar rats (BioLASCO, Taiwan)

were mated overnight with male rats; the presence of a vaginal

plug was used to confirm the success of mating. Each pregnant

rat was allowed to raise its own litter in an individual cage.

Subsequently, 500 μg/kg lipopolysaccharide (LPS; from
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Escherichia coli O127:B8; Sigma) or PBS was injected

intraperitoneally into the pregnant rats on gestation day

9.5. The 5-week-old male offspring of the rats were treated

orally with H2O or the KI Essence extract (40 mg/kg) for

2 weeks. Thereafter, their stool and brain were collected

for microbiota analysis and immunohistochemistry assay,

respectively. The experiments were conducted in

accordance with the guidelines of the International Council

for Laboratory Animal Science for the care and use

of laboratory animals in experiments. Moreover, all

animal procedures were approved by the Animal Care and

Use Committee of Taipei Medical University (LAC-2019-

0198).

16S rRNA gene and next-generation
sequencing

The detailed procedure for performing 16S rRNA gene

sequencing and next-generation sequencing has been

provided elsewhere (Lee et al., 2021). The rats were allowed

to defecate freely in clean cages, and DNA was extracted from

fresh stool samples by using the QIAamp Fast DNA Stool Mini

Kit (Qiagen, Germany). Library preparation was performed

using an Illumina MiSeq system in accordance with the

protocol for 16S rRNA gene amplicons. The universal

primers 341F and 805R were used to amplify the

V3–V4 region of bacterial 16S rRNA genes. Demultiplexed,

paired reads were removed using Cutadapt (version 1.12). The

filtered reads were processed using the DADA2 package

(version 1.14.1) in R (version 3.6.1) (Callahan et al., 2016a;

Callahan et al., 2016b); however, the rarefying procedure was

not performed. V3–V4 sequence variants in the samples were

inferred using the DADA2 package, and the frequency of each

sequence variant in each sample was obtained. Taxonomy

assignment was conducted using the SILVA database (version

138) (Quast et al., 2013), with a minimum bootstrap

confidence of 80. The multiple sequence alignment of

variants and the preparation of a phylogenetic tree were

performed using DECIPHER (version 2.14.0) and phangorn

(version 2.5.5), respectively (Schliep, 2011). The taxonomy

assignment, count table, and phylogenetic tree were applied in

a phyloseq object, and community analysis was conducted

using phyloseq (version 1.30.0) (Mcmurdie and Holmes,

2013). Alpha diversity indices were calculated to estimate

the richness function of the phyloseq package. Statistical

analyses were conducted using the

Wilcoxon–Mann–Whitney test (α = 0.05). UniFrac

distances were calculated using the GUniFrac package

(version 1.1) to assess community dissimilarity among the

groups examined in the present study (Chen et al., 2012).

Principal coordinate analysis ordination was applied for

UniFrac distances, and the adonis and betadisper functions

from the vegan package (version 2.4) for R were used to

analyze the dissimilarity of composition among the

examined groups and the homogeneity of their dispersion,

respectively.

Immunohistochemistry

The rats were anaesthetized with Zoletil (40 mg/kg) and

Xylazine (10 mg/kg), then transcardially perfused with PBS

and 4% paraformaldehyde. Their whole brains were fixed with

4% paraformaldehyde for 3 days, and 2-mm coronal slices were

embedded in paraffin blocks. These blocks were sliced into 5-µm-

thick sections, which were then deparaffinized, rehydrated, and

subjected to an antigen retrieval process. Subsequently, the

sections were stained with horseradish peroxidase–conjugated

MBP antibody (Abcam), followed by staining with 3,3′-
diaminobenzidine and hematoxylin, using a Chemicon IHC

Select system (Millipore, USA). The sections were observed

through microscopy (Olympus/Bx43, Japan), and the MBP-

positive area were calculated using the tissue analysis software

program HistoQuest (Tissue Gnostics, Austria).

Interleukin-1β production in
lipopolysaccharide-stimulated microglia
assay

Enriched glial cultures (microglia and astrocytes) were

prepared from the brains of newborn C57BL/6 mice

(National Laboratory Animal Center, Taiwan) that were

collected on postnatal day 1. In brief, cerebral cortical cells

were cultured in Dulbecco’s Modified Eagle Medium/Nutrient

Mixture F-12 containing 10% FBS and 1%

penicillin–streptomycin for 14 days to enable their

differentiation into glial cells. Microglia were detached by

shaking the culture flasks containing the cells at 160 rpm

for 5 h. The suspended microglia were collected and seeded

in 96-well culture plates coated with poly-D-lysine at 5 × 104

cells per well for 1 day. The purity of these isolated cells was

measured through staining with CD11b antibody (Biolegend,

USA), and these cells were analyzed through flow cytometry.

The obtained microglia were stimulated using 250 ng/ml LPS

in different concentrations of KI Essence extract for 24 h. The

interleukin (IL)-1β content of the culture supernatant was

analyzed using a ELISA MAX Deluxe Set Mouse IL-1β kit

(Biolegend).

Statistical analysis

For neurite-bearing cell, MDA content, western blot,

MBP+ area, IL-1β production data analyses, one-way
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ANOVA was performed using Prism (GraphPad, USA); in the

analysis results, error bars represent the standard errors of the

mean. The microbiota enrichment analysis of the groups was

conducted using the linear discriminant analysis (LDA) effect

size (LEfSe) method. Data were compared using the

Kruskal–Wallis and Wilcoxon tests; differences were

considered significant when p ≤ 0.05 and logarithmic LDA

score ≥ 2 (Segata et al., 2011).

Results

Effects of KI Essence extract on neurite
outgrowth in PC12 cells

Our phenol–sulfuric acid analysis revealed that the KI

Essence extract used in this present study contained 70 mg/g

carbohydrates (including monosaccharides, disaccharides,

oligosaccharides, and polysaccharides; data not shown). The

key components of the KI Essence extract include several

edible mushrooms, and nucleotides are major components of

many edible mushrooms (Ranogajec et al., 2010). As shown in

Supplementary Figure S1, several nucleotides were detected in

the KI Essence extract, which included cytosine, cytidine,

hypoxanthine, uridine, guanosine, and adenosine. Maslinic

acid was also detected using HPLC finger printing and HPLC

analyses (Supplementary Figures S1,S2).

We first used the CCK-8 assay to assess whether the KI

Essence extract affected PC12 cell viability. The results indicated

that treatment with the KI Essence extract at various

concentrations did not affect the OD at 450 nm, indicating

that this extract did not affect the differentiated PC12 cell

viability (Figure 1A). Subsequently, we examined whether the

KI Essence extract affected the neuritogenesis of PC12 cells. After

48 h of NGF stimulation, the percentage of neurite-bearing cells

increased significantly to 21.5% ± 1.8% in PC12 cells treated with

50 ng/ml NGF compared with the negative control (5% ± 0.5%;

Figure 1B). Furthermore, the KI Essence extract increased the

percentage of neurite-bearing cells in a dose-dependent manner

under NGF stimulation (Figure 1B and Supplementary Figure

FIGURE 1
PC12 cell neurite growth induction through extracellular signal–regulated kinase (ERK)1/2 phosphorylation after KI Essence extract treatment.
(A) KI Essence extract treatment did not affect the viability of PC12 cells. PC12 cells were pretreated with low-serummedium for 1 day and then with
various concentrations of the KI Essence extract and nerve growth factor (NGF; 50 ng/ml) for 48 h. PC12 cell viability was determined using cell
counting kit-8 (CCK-8) assay. (B) Phase-contrast images of cells on day 2 after treatment with NGF in presence or absence of the KI Essence
extract (0.25 mg/ml; scale bar: 50 µm). PC12 cells were cotreated with the KI Essence extract and NGF for 2 days, and percentages of neurite-
bearing cells on day 2 was assessed. The data are expressed as means ± standard errors of means (SEMs) for (n = 3; pp < 0.05). (C) PC12 cells treated
with 0.25 mg/ml KI Essence extract for various durations (0, 0.5, and 1 h). Phosphorylation levels of ERK (p-ERK) 1/2 and β-tubulin were analyzed
throughWestern blotting. Quantitation of p-ERK1/2 to β-tubulin is presented in the bar graph (n= 3; pp < 0.05). (D) PC12 cells were treatedwith the KI
Essence extract (0.25 mg/ml) and NGF for 2 days in the presence or absence of 10 µMU0126. Phase-contrast images of neurite-bearing cells on day
2 are shown (scale bar: 50 µm). The data are expressedmeans ± SEMs (n = 3). Quantitation of percentage of neurite-bearing cells is presented in the
bar graph pp < 0.05).
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S3). However, treatment with only the KI Essence extract did not

induce neurite outgrowth in PC12 cells. To assess whether KI

Essence extract treatment enhanced NGF-induced ERK signaling

pathways in PC12 cells, we examined the phosphorylation level

of ERK (i.e., p-ERK1/2 level) in PC12 cells. The results indicated

that the KI Essence extract enhanced p-ERK1/2 expression in

NGF-stimulated PC12 cells (Figure 1C). We next assessed

whether the KI Essence extract promoted neurite outgrowth

under NGF stimulation through MEK1 and MEK2 activation.

Our results indicated that U0126, which inhibits MEK1 and

MEK2, abolished the KI Essence extract–induced neurite

outgrowth effect in PC12 cells under NGF stimulation

(Figure 1D, column 4 vs. 5). Therefore, the KI Essence extract

enhanced neurite growth in PC12 cells through ERK1/

2 phosphorylation.

Characterization of radical scavenging
and anti-lipid peroxidation properties of KI
Essence extract

The radical scavenging property of the KI Essence extract

was determined using a DPPH chemical test. As illustrated in

Figure 2A, the DPPH radicals were inhibited by KI Essence

extract in a dose-dependent manner; it was found to be better

than butylated hydroxytoluene, a standard antioxidant

FIGURE 2
Characterization of KI Essence extract in radical scavenging and anti-lipid peroxidation properties. (A) 2,2′-diphenyl-1-picrylhydrazyl (DPPH)
scavenging property of the KI Essence extract and butylated hydroxytoluene. 500 µM DPPH were tested at various concentrations of the KI Essence
extract and butylated hydroxytoluene. (B) Effects of the KI Essence extract on tert-butyl hydroperoxide (t-BHP)-induced lipid peroxidation in brain
homogenates. Brain homogenates were incubatedwith various concentrations of the KI Essence extract (0, 0.0625, and 0.25 mg/ml) with (+) or
without (−) t-BHP stimulation for 1 h. Malondialdehyde (MDA) contents are presented in the bar graph. The results are presented asmeans ± standard
errors of means (n = 3; pp < 0.05).

FIGURE 3
Protective effect of KI Essence extract treatment on PC12 cells against H2O2-induced cell death through inhibition of ERK phosphorylation. (A)
PC12 cells were treated with 200 µMH2O2 and various concentrations of the KI Essence extract for 1 day. Viability of PC12 cells was measured using
CCK-8 assay. The results are presented as means ± standard errors of means (SEMs; n = 3; pp < 0.05). (B) PC12 cells treated with 1 mg/ml KI Essence
extract for various durations (0, 0.5, and 1 h) in the presence of 200 µM H2O2. Levels of p-ERK1/2, p-p38, and β-Actin were analyzed through
Western blotting. Quantitation of p-ERK1/2 and p-p38 to β-Actin is presented in the bar graph. The results are presented as means ± SEMs (n = 3;
pp < 0.05).
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compound (Olugbami et al., 2014). Because oxidative stress is

a key inducer of central nervous system developmental

diseases, we evaluated the effects of the KI Essence extract

on t-BHP-induced lipid peroxidation in mouse brain

homogenates. The KI Essence extract exerted a

considerable, dose-dependent inhibitory effect on MDA

production in the homogenates (Figure 2B).

Effects of KI Essence extract on H2O2-
induced cell death of differentiated
PC12 cells

The viability of H2O2-treated PC12 cells was considerably

(62.5%) lower than that of control cells (Figure 3A, column 1 vs.

2). The viability of KI Essence extract–treated cells was higher

than that of untreated cells, indicating that KI Essence extract

treatment reduced the toxic effect of H2O2 stimulation

(Figure 3A, column 2 vs. 4). We then assessed whether the KI

Essence extract affected H2O2-induced ERK1/2 and

p38 signaling pathways in differentiated PC12 cells. The

results revealed that H2O2 treatment significantly upregulated

ERK1/2 and p38 phosphorylation after 1 h of stimulation. By

contrast, KI Essence extract treatment ameliorated ERK1/2 and

p38 phosphorylation (Figure 3B). Therefore, the KI Essence

extract protected differentiated PC12 cells from H2O2-induced

oxidative stress and ameliorated H2O2-induced ERK1/2 and

p38 phosphorylation.

Effects of oral KI Essence extract
treatment on myelination in maternal
immune activation offspring

Maternal LPS stimulation causes oxidative stress and

hypomyelination in the prefrontal cortex and thalamus

nucleus of MIA offspring (Wischhof et al., 2015; Simoes et al.,

2018). In this study, to evaluate the effects of KI Essence extract

treatment on the in vivo modulation of myelination in the rat

brain, we examined myelination levels in MIA offspring brains

after oral KI Essence extract treatment. Immunohistochemical

staining revealed that theMBP+ area was smaller in the prefrontal

cortex and thalamic nucleus of the MIA offspring (H2O

treatment) than in the control rats; nevertheless, oral KI

Essence extract treatment alleviated the loss of the MBP+ area

in the MIA offspring (Figure 4). These results indicated that oral

FIGURE 4
Amelioration of hypomyelination in maternal immune activation (MIA) offspring after oral KI Essence extract treatment. Myelin basic protein
(MBP) expression levels in the prefrontal cortex and thalamic nucleus of control group, H2O-treated MIA offspring, and KI Essence extract–treated
MIA offspring were detected through immunohistochemical staining. Quantification of MBP+ area in the prefrontal cortex and thalamic nucleus is
presented in the bar graph pp < 0.05; n = 3 for each group). All data are presented as means ± standard errors of means (scale bar: 100 µm).

Frontiers in Pharmacology frontiersin.org08

Lee et al. 10.3389/fphar.2022.964255

14

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.964255


KI Essence extract treatment alleviated hypomyelination in MIA

offspring.

Effects of oral KI Essence extract
treatment on microbiome profile in
maternal immune activation offspring

Mushrooms contain bioactive ingredients that can modulate

gut microbiota (Ma et al., 2021; Vamanu et al., 2021). LPS-

induced MIA offspring exhibit a microbiome profile similar to

that of humans with ASD (Lee et al., 2021). Therefore, we

examined the effects of KI Essence extract treatment on the

modulation of the microbiome profile in the examined MIA

offspring. The alpha diversity of the fecal microbiota in the MIA

offspring was similar to that of the control offspring (Figure 5A,

left panel). Nonmetric multidimensional scaling (NMDS) was

performed using the Bray–Curtis distance method, and the

results indicated that the fecal microbiome profile of the MIA

offspring was significantly different from that of the control

offspring (Figure 5B, left panel). As presented in Figure 6A,

significant differences were found in the abundance of microbial

species between the control and MIA offspring. Compared with

the MIA offspring, the control offspring had significantly higher

LDA scores for Firmicutes, Proteobacteria, and Actinobacteriota

bacteria at the phylum level. NMDS with Bray–Curtis distance

analysis was subsequently performed, and the results indicated

that after 2 weeks of oral KI Essence extract treatment, the fecal

microbiome profile of the MIA offspring was significantly

different from that of the MIA offspring (Figure 5B, middle

panel); however, the differences in alpha diversity were

nonsignificant (Figure 5A, middle panel). By contrast, the oral

KI Essence extract–treated MIA offspring did not differ

significantly from the H2O-treated male MIA offspring in

terms of the beta diversity of their microbiota (Figure 5B,

right panel). At the phylum level, the LDA scores for

Firmicutes, Proteobacteria, and Actinobacteriota bacteria in

the MIA offspring were higher after oral KI Essence extract

treatment than before treatment (Figure 6B); these scores were

also higher than those of the H2O-treated MIA offspring

(Figure 6C). Similarly, at the family level, the LDA scores for

Peptostreptococcaceae, Enterobacteriaceae, Erysipelotrichaceae,

Lactobacillaceae, and Bifidobacteriaceae bacteria in the MIA

offspring were higher after oral KI Essence extract treatment

than before treatment (Figure 6B); these scores were also higher

than those of the H2O-MIA offspring (Figure 6C). In summary,

oral KI Essence extract treatment could modulate the dysbiotic

microbiome profile of the MIA offspring.

FIGURE 5
Modulation of fecal microbiome distribution in maternal immune activation (MIA) offspring after oral KI Essence extract treatment. Fecal
microbiome profiling of male MIA offspring was performed through high-throughput 16S rRNA gene sequencing. (A) Alpha diversity of fecal
microbiota and (B) principal coordinate analysis plots (as obtained through nonmetric multidimensional scaling with Bray–Curtis distance analysis)
for control and MIA rats before and after H2O and KI Essence extract treatment. Permutational multivariate analysis of variance (vegan::adonis,
1000 permutations) revealed a significant difference in beta diversity, which was quantified using a betadisper (vegan::betadisper,
1000 permutations). Adonis and betadisper indices yielded p values of <0.05 and >0.05, respectively. n= 5 for control andMIA group; n= 5 for before
treatment group; n = 3 for after treatment, H2O, and KI Essence extract treatment group.
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Effects of KI Essence extract treatment on
lipopolysaccharide-stimulated microglia

During the gestational stage, elevated IL-1β levels are

associated with hypomyelination in LPS-induced MIA

offspring (Rousset et al., 2006; Simoes et al., 2018; Chamera

et al., 2020). LPS stimulation prompts IL-1β production in

microglia (Kim et al., 2006). In this study, we observed that

KI Essence extract treatment inhibited IL-1β production in LPS-

activated microglia (Figure 7).

Discussion

In the present study, we observed that the extract of the

spleen-tonifying formula KI Essence promoted neuritogenesis

activity, alleviated hypomyelination, and modulated the

microbiome profile in MIA offspring. Supplementary Figure

S4 presents a schematic of the workflow for the present study.

Our results were as follows: 1) KI Essence extract treatment

enhanced p-ERK expression to promote NGF-induced

neuritogenesis and inhibited p-ERK expression to protect

differentiated PC12 cells from H2O2-induced cell death. 2)

The KI Essence extract demonstrated DPPH radical inhibition

and reduced the peroxidation response in rat brain homogenates.

3) Oral KI Essence extract treatment alleviated prenatal LPS-

induced hypomyelination in the prefrontal cortex and thalamic

nucleus of the MIA offspring and increased the abundance of

Peptostreptococcaceae, Enterobacteriaceae, Erysipelotrichaceae,

Bifidobacteriaceae, and Lactobacillales bacteria in the offspring.

This is the first study to demonstrate that treatment with a

spleen-tonifying formula can promote neurite growth, alleviate

oxidative stress, and alter the brain–gut–microbiota axis in MIA

offspring.

FIGURE 6
Modulation of microbiome profile in maternal immune activation (MIA) offspring after oral KI Essence extract treatment. Linear discriminant
analyses (LDAs) for comparing (A) gut microbiota effect sizes of control and MIA offspring, (B) gut microbiota effect sizes of MIA offspring before and
after KI Essence extract treatment, and (C) gut microbiota effect sizes of MIA offspring after H2O and KI Essence extract (KI) treatment. Significant
biomarkers are defined as taxa with LDA score (log10) ≥ 2. p and # indicated that abundance of bacterial species at the phylum and family levels
was significantly different, respectively. n = 5 for control and MIA group; n = 5 for before treatment group; n = 3 for after treatment, H2O, and KI
Essence extract treatment group.
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Mushroom and traditional Chinese herbal extracts contain

polysaccharides and nucleotides that can induce neuronal

differentiation and promote antioxidant activity (Sabaratnam

et al., 2013; Kozarski et al., 2015; Cor et al., 2018). Our three-

dimensional HPLC fingerprint analysis revealed the presence of

guanosine, uridine, and maslinic acid in the examined KI Essence

extract (Supplementary Figure S1). Guanosine exhibits antioxidant

activity and protects DNA from the oxidative damage induced by

ROS (Gudkov et al., 2006). Uridine has been noted to enhance

neurite outgrowth in NGF-differentiated PC12 cells (Pooler et al.,

2005). Maslinic acid promotes synaptogenesis and axon growth

(Qian et al., 2015). In the present study, the examined KI Essence

extract increased ERK1/2 phosphorylation to promote neurite

outgrowth in differentiated PC12 cells under NGF stimulation.

We also observed that KI Essence extract treatment ameliorated

the phosphorylation level of ERK1/2 in H2O2-treated PC12 cells.

These contrasting effects on ERK phosphorylation in PC12 cells are

attributable to the different components in KI Essence: maslinic acid

and uridine in KI Essence may promote neurite outgrowth by

upregulating ERK phosphorylation. Polysaccharides and guanosine

in KI Essence can ameliorate H2O2-induced oxidative stress and

thus inhibit H2O2-induced ERK phosphorylation. Our data

indicated that p-p38 expression slightly increased after 30-min

treatment with both KI Essence extract and H2O2, but it

decreased after 60 min of this treatment. This finding suggests

that KI Essence components enhance p-p38 expression after

30 min of KI Essence extract treatment in the presence of H2O2

stimulation. We also noted that although H2O2 stimulation caused

the p-p38 expression signal to peak after 1 h of treatment, the KI

Essence extract exhibited antioxidant activity to ameliorate the

effects of H2O2 stimulation on p-p38 expression. Thus, our

results demonstrate that KI Essence can promote neurite

outgrowth and antioxidant activity.

Prenatal LPS stimulation causes oxidative stress (including

ROS generation and peroxisomal dysfunction), inflammation,

and hypomyelination in MIA offspring (Arsenault et al., 2014;

Maas et al., 2017). (Yui et al., 2020) also reported that lipid

peroxidation levels are higher in patients with ASD than in

healthy controls. Oxidative stress inhibits oligodendrocyte

maturation by inhibiting differentiation-related gene

expression; thus, lipid peroxidation stress may affect the

maturation of oligodendrocytes (French et al., 2009; Chew

et al., 2020). LPS-activated microglia cause oligodendrocyte

progenitor cell death, reducing the number of mature

myelinating oligodendrocytes (Pang et al., 2010). The

elevated levels of the inflammatory cytokine IL-1β during

the gestational stage is associated with hypomyelination in

LPS-induced MIA offspring with ASD-like behavior (Rousset

et al., 2006; Simoes et al., 2018; Chamera et al., 2020). In the

present study, the examined KI Essence extract demonstrated

DPPH radical scavenging activity, ameliorated lipid

peroxidation in rat brain homogenates, and inhibited IL-1β
production in LPS-activated microglia. These findings suggest

that oral KI Essence extract treatment inhibits prenatal LPS-

induced oxidative stress and microglia activation in MIA

offspring, thereby alleviating hypomyelination in the

prefrontal cortex and thalamic nucleus of the offspring.

Microbial dysbiosis is correlated with behavioral abnormalities

and neuropathology (Vuong and Hsiao, 2017). Mushrooms are

functional foods containing various biologically active compounds

that can mitigate microbial dysbiosis (Cheung et al., 2020; Vamanu

et al., 2021). Gut microbiota transplantation (primarily with a

mixture of bifidobacteria, streptococci, and lactobacilli) is a

therapeutic method used to alter microbiome profiles and

improve neurobehavioral symptoms (Kang et al., 2017;

Fattorusso et al., 2019; Chen et al., 2020; Abuaish et al., 2021).

In this study, the low abundance of Enterobacteriaceae,

Actinobacteria, Peptostreptococcaceae, and Erysipelotrichaceae

that was observed in the LPS-induced MIA rat offspring is

consistent with the microbiome profile in humans with ASD

(Rosenfeld, 2015; Liu et al., 2019; Xu et al., 2019). Patients with

ASD exhibit a low abundance of Bifidobacteriaceae family bacteria

(phylum Actinobacteriota) (Finegold et al., 2010; Xu et al., 2019).

We observed that oral KI Essence extract treatment increased the

number of Enterobacteriaceae, Actinobacteria,

Peptostreptococcaceae, Erysipelotrichaceae, and Bifidobacterium

bacteria in the MIA offspring. Current psychopharmacological

treatments include psychotropic medications and dietary

supplements with antioxidant activity (Aishworiya et al., 2022).

The intake of supplements with antioxidant activity leads

to the reduction of ROS levels and the upregulation of

genes involved in detoxification and neuroprotection in

the central nervous system (Pangrazzi et al., 2020a). Our

results suggest that KI Essence has the potential to serve

as an ancillary treatment for alleviating oxidative stress and

dysbiosis.

FIGURE 7
Inhibitory effect of KI Essence treatment on interleukin (IL)-1β
production from lipopolysaccharide (LPS)-induced microglia
activation. (A) Percentage of CD11b+ cells in enriched microglia
cell culture. PI: propidium iodide. (B)Microglia treated with KI
Essence (0, 0.031, 0.062, 0.125 mg/ml) in the presence of 250 ng/
ml LPS for 24 h. Amount of IL-1β in culture supernatant was
determined through enzyme-linked immunosorbent assay (n = 3;
pp < 0.05).
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Conclusion

The KI Essence extract was noted to have dual effects in an

NGF-differentiated PC12 cell model: neurite outgrowth and

antioxidant properties promotion through ERK1/2 signaling

pathway activation and inhibition, respectively. Because of its

antioxidant and radical scavenging properties, this extract could

also alleviate MIA-induced oxidative stress and prevent myelin

loss in MIA offspring. Oral KI Essence extract treatment

increased the deficits in the microbial species, including those

from Enterobacteriaceae, Actinobacteria, Peptostreptococcaceae,

Erysipelotrichaceae, and Bifidobacterium; this result is similar to

that observed in patients with ASD.

This study highlights the relationship among the

microbiome, immune system, and central nervous system,

which is crucial in the etiopathophysiology of mental

disorders. Furthermore, KI Essence extract treatment can

alter abnormal brain–gut–microbiota axis phenotypes.

Nevertheless, three issues as limitations of this study

remain unresolved. First, DPPH is a chemical test and may

not accurately measure the radical scavenging effects of KI

Essence extracts. Second, the single dose study was used in the

study. Several doses should have been used to get a more

accurate conclusion. Third, whether KI Essence can alleviate

mental disorder symptoms, such as social behavior deficit, and

whether different oral doses of KI Essence have varied effects

on MIA offspring warrant further research.
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Hypertension and diabetes mellitus are among the most prevalent diseases

affecting people from all walks of life. Medicinal herbs have garnered interest as

potential agents for the prevention and treatment of diabetes mellitus and

hypertension due to their multiple beneficial effects. Piper sarmentosum Roxb.

(PS) is an edible medicinal plant that has been traditionally used in Asia for

treating hypertension and diabetes mellitus. This review is aimed to provide

comprehensive information from the literature on the effects of PS on

hypertension and diabetes mellitus. A computerized database search was

performed on Scopus, PubMed and Web of Science databases with the

following set of keywords: Piper sarmentosum AND diabetes mellitus OR

diabetic OR diabetes OR hyperglyc*emia OR blood glucose OR HbA1c OR

glycated h*emoglobin OR h*emoglobin A1c OR hyperten* OR blood pressure.

A total of 47 articles were screened and 14 articles published between the years

1998 until 2021 were included for data extraction, comprising of six articles on

antihypertensive and eight articles on antidiabetic effects of PS. These studies

consist of two in vitro studies and eleven in vivo animal studies. Meta-analysis of

three studies on hypertension showed that PS versus no treatment significantly

lowered the systolic blood pressure with mean difference (MD) −39.84 mmHg

(95% confidence interval (CI) −45.05, −34.62; p < 0.01), diastolic blood pressure

with MD −26.68 mmHg (95% CI −31.48, −21.88; p < 0.01), and mean arterial

pressure with MD −30.56 mmHg (95% CI −34.49, −26.63; p < 0.01). Most of the

studies revealed positive effects of PS against hypertension and diabetes

mellitus, suggesting the potential of PS as a natural source of antidiabetic

and antihypertensive agents.
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1 Introduction

Hypertension and diabetes mellitus are among the most

common non-communicable diseases and cardiovascular risk

factors worldwide. Diabetic patients have a two to three-fold rise

in hypertension prevalence compared to non-diabetics (Wan

et al., 2018). Hypertension coexists in about 40–60% of type

2 diabetic patients (Tatsumi and Ohkubo, 2017). Hypertension

may also precede the onset of diabetes, with more than 50% of

adults having both hypertension and diabetes at the time of

diagnosis (Nibouche and Biad, 2016). Diabetes mellitus and

hypertension often coexist and share common pathways

contributing to metabolic syndrome. Metabolic syndrome is

associated with a greater risk for cardiovascular diseases

(CVD) including heart attack and stroke (Isomaa et al., 2001;

Tune et al., 2017).

The development of hypertension in diabetic patients is

contributed by multiple factors such as insulin resistance,

hyperglycemia, oxidative stress, and inflammation. Insulin

resistance leads to the development of hyperinsulinemia. The

anti-natriuretic activity of insulin increases sodium and water

reabsorption from the renal tubules, leading to volume overload

and elevation of blood pressure. Moreover, the body’s

extracellular fluid volume rises because fluid move from the

tissues into the vasculature following hyperglycemia-induced

hyperosmolarity (Kawasoe et al., 2017). Hyperinsulinemia also

activates the sympathetic nervous system and renin-angiotensin

system (RAS), leading to an increase in blood pressure (Ohishi,

2018). Besides, hyperinsulinemia leads to vascular smooth

muscle cell proliferation and increased vascular stiffness that

predispose to hypertension (Shiny et al., 2016; Tsimihodimos

et al., 2018). Furthermore, hyperglycemia triggers oxidative stress

and inflammatory processes in the vascular wall that cause

endothelial dysfunction, impaired vasodilatation and

eventually hypertension (Wong et al., 2013; Oguntibeju, 2019;

Sun et al., 2020).

On the other hand, hypertensive patients also have an

increased risk of developing diabetes mellitus (Zhang et al.,

2020). Hypertension is characterized by endothelial

dysfunction, which might link hypertension with diabetes

(Emdin et al., 2015). Numerous studies have reported that

decreased endothelium-dependent vasodilatation in

hypertension leads to decreased capillary recruitment that

restricts insulin delivery to the metabolically active, insulin-

sensitive muscle tissues (Bonadonna et al., 1998; Serné et al.,

1999; Meigs et al., 2004). Besides, the altered endothelial

permeability impairs insulin delivery to the interstitial space

(Meigs et al., 2004). The interstitial insulin level is a rate-

limiting step for insulin effectiveness (Miles et al., 1995).

Hypertension and diabetes mellitus share not only common

pathophysiologic pathways but also common complications

involving the macro- and microvascular disorders.

Macrovascular complications include stroke, coronary artery

disease and peripheral vascular disease, while microvascular

complications include retinopathy, nephropathy and

neuropathy (Yamazaki et al., 2018). Since the development of

hypertension in patients with diabetes is marked by a significant

risk of macro- and microvascular complications, efforts should

bemade to delay or ideally prevent the increase in blood pressure.

Hence, a therapy that can help with glycemic and blood pressure

control will be of significant clinical value.

Piper sarmentosum Roxb. (PS) is a herbaceous plant that is

widely cultivated in Southeast Asia, Northeast India and China

(Mathew et al., 2004). It is a terrestrial creeping herb that belongs

to the family of Piperaceae, with an average height of 20 cm and

easily grows in shady areas (Mohd Zainudin et al., 2013). PS

leaves are light to dark green in colour (Chaveerach et al., 2006),

and the fruits are obovoid in shape and sweet to taste (Figure 1).

PS are also known as “Kaduk” or “Sirih duduk” in Malaysia; “Cha

plu” in Thailand; “Karuk”, “Mengkadak” or “Sirih tanah” in

Indonesia; “La lot” in Vietnam; “Phak i leut” in Laos and “Jia ju”,

“Xi ye qing wei teng” or “Qing ju” in China (Ismail et al., 2018).

Historically, PS has long been used as a culinary plant as well

as a traditional medicine to treat hypertension, joint aches

(Subramaniam et al., 2003), cough, pleurisy, fever (Farhana

Syed Ab Rahman 2016), and indigestion (Hussain et al.,

2012). Pharmacologically, PS possesses antiatherosclerosis

(Amran et al., 2010; Amran et al., 2011), anticarcinogenic

(Zainal Ariffin et al., 2009), anti-inflammatory (Ridtitid et al.,

2007; Zakaria et al., 2010), antiplatelet aggregation (Han, 1995),

antiangiogenic (Hussain et al., 2015) and antituberculosis

(Hussain et al., 2008) effects. PS also protects against

glucocorticoid-induced osteoporosis (Mohamad Asri et al.,

2016) and paracetamol-induced oxidative liver injury (Nur

Azlina et al., 2014). Several studies have reported that PS has

a high antioxidative activity (Subramaniam et al., 2003; Hafizah

et al., 2010; Ugusman et al., 2010; Mohd Zainudin et al., 2015).

Interestingly, PS also has antidiabetic (Peungvicha et al., 1998;

Azlina et al., 2009; Luangpirom et al., 2014) and antihypertensive

effects (Hussan et al., 2013; Alwi et al., 2018; Fauzy et al., 2019).

Previous studies demonstrated that different parts of PS

contain various phytochemical compounds. The methanolic

extract of PS leaves contains carotenes, tannin, vitamin C,

vitamin E, xanthophylls, and phenolics (Chanwitheesuk et al.,

2005), while the roots and stems of PS contain piplartine,

langkamide and 3,4,5-trimethoxycinnamic acid (Bokesch et al.,

2011). Besides, the aqueous extract of PS leaves contains

flavonoids, phenolic and ascorbic acids (Sumazian et al.,

2010). Meanwhile, three amides; 3-(3′,4′,5′-
trimethoxyphenylpropanoyl) pyrrolidine, 3-(4′-
methoxyphenylpropanoyl) pyrrole and N-(3-phenylpropanoyl)

pyrrole, and a sterol; β-sitosterol have been successfully isolated

from the hexane and ethyl acetate extracts of aerial parts of PS

(Atiax et al., 2011).

The aqueous extract of PS leaves up to 2000 mg/kg/day does

not cause subacute toxicity effects; hence it is safe for
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consumption (Mohd Zainudin et al., 2013). Recently, the

consumption of herbal products for complementary and

alternative medicine has been rapidly increasing. Previous

studies have suggested that antioxidants could be beneficial

for managing diabetes mellitus and hypertension (Sabadashka

et al., 2021; Tain and Hsu 2022). An earlier systematic review has

confirmed the antioxidative effect of PS (Ismail et al., 2018).

However, no systematic review and meta-analysis have been

conducted to explore the effect of PS on hypertension and

diabetes. Thus, we aimed to systemically review the available

literature on the effects of PS on diabetes mellitus and

hypertension to better understand the herb’s medicinal

potential to support its scientific use further.

2 Methodology

2.1 Search strategy

The review was reported according to the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) guideline. The relevant studies were identified from

three main databases: Scopus, PubMed and Web of Science

(WoS) from their respective inception dates to March 2022.

The last search was performed on 26th March 2022. The

following set of keywords was used: Piper sarmentosum AND

(diabetes mellitus OR diabetic OR diabetes OR hyperglyc*emia

OR blood glucose OR HbA1c OR glycated h*emoglobin OR

h*emoglobin A1c OR hyperten* OR blood pressure). Articles

that could be missing during the database search were searched

from the reference list of the review articles retrieved from the

initial search and added to the selected articles list (Thent and

Das, 2015). The protocol of this review was registered at the

International Platform of Registered Systematic Review and

Meta-analysis Protocols (INPLASY registration number:

202240020) (Othman et al., 2022).

2.2 Eligibility and exclusion criteria

Only full-length original research articles published in the

English language were included. Any clinical (randomized

controlled trial) and preclinical (in vitro, in vivo, and ex vivo)

studies that reported the effects of PS on hypertension and

diabetes models, regardless of the route of administration,

formulation, dose and duration of intervention were included.

However, any observational studies and studies using

combined preparation of PS with other herbs were

excluded. Review articles, news, book chapters, conference

proceedings, editorial letters, and case studies were also

excluded from this review.

2.3 Study selection and data extraction

The literature search and articles screening were performed

according to the population, interventions, compare, outcome

and study design (PICOS) framework, as follows:

1) Population (P): Adult patients with established hypertension

and/or diabetes and preclinical models of hypertension and

diabetes, regardless of animal species, were included.

2) Intervention (I): Studies that used PS as an intervention in the

experimental group were included.

3) Comparison (C): The comparator groups received either no

intervention or were treated with relevant conventional drug.

4) Outcome (O): Changes in blood pressure, blood glucose or

glycosylated hemoglobin (HbA1C).

FIGURE 1
Piper sarmentosum Roxb. Leaves (A) and fruit (B).
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5) Study design (S): Clinical (randomized controlled trial) and

preclinical (in vitro, in vivo, ex vivo) studies.

The articles were primarily screened through the articles’

type, language, title and abstracts related to the effect of PS on

hypertension and diabetes. Duplicates were removed from each

database. The secondary screening involved the removal of

articles based on the inclusion and exclusion criteria set for

this study. Any similar studies were removed to avoid selection

bias. The retrieved articles were reviewed independently by two

authors (NO. and AU). Any disagreements were resolved by

seeking a third reviewer’s opinion (NR).

Study characteristics including study design, animal model

used, plant source, the part of plant used, type of extraction and

phytochemical used were extracted. Primary outcomes such as

systolic blood pressure (SBP), diastolic blood pressure (DBP),

mean arterial pressure (MAP), and blood glucose level were

extracted. Other parameters such as nitric oxide (NO),

endothelial nitric oxide synthase (eNOS), asymmetric

dimethylarginine (ADMA), endothelin-1 (ET-1) and

malondialdehyde (MDA) levels, α-glucosidase and α-amylase

activities, insulin and urine glucose levels, body and organ

weights, and histological analysis of the target organs were

also extracted where available. For studies with more than one

interventional arms, data from only the relevant arms were

considered, e.g. hypertensive rats receiving PS versus

hypertensive rats receiving positive control or no treatment.

In case of missing or incomplete information, the respective

author was contacted by email and the missing data were

requested if necessary.

2.4 Risk of bias assessment

Two reviewers analyzed the risk of bias independently (NO

and AU). Any disagreement was resolved through discussion

with the third reviewer (NR). Cochrane risk of bias (RoB) tool

was used to assess the risk of bias in randomized clinical trials

(Higgins et al., 2019). Meanwhile, animal studies were assessed

using the Systematic Review Center for Laboratory Animal

Experimentation (SYRCLE) risk of bias tool. The main

components of this item were as follows: 1) Selection bias:

random sequence generation, baseline characteristics,

allocation concealment; 2) Detection bias: random housing,

blinding, random outcome assessment; 3) Attrition bias:

incomplete outcome data; 4) Reporting bias: selective

reporting; and 5) Other bias (Hooijmans et al., 2014). For

in vitro studies, a customized risk of bias tool based on the

Joanna Briggs Institute (JBI) checklist for non-randomized

experimental studies were used (JBI, 2020). The customized

RoB tool comprises of three domains as follows: 1) Reporting

quality: source of plant, amount of plant/extract/sample used; 2)

Performance bias: reliable tools and/or reagents used to measure

outcome; and 3) Detection bias: standard/appropriate control

used, multiple measurements of outcome performed. Each

domain was evaluated as being a high, moderate, low or

unclear risk of bias.

2.5 Statistical analysis

The meta-analysis was performed using the Review

Manager (RevMan) 5.4 software (The Cochrane

Collaboration, 2020). The mean difference (MD) together

with its 95% confidence intervals (CI) was used in reporting

the effect size of PS on blood pressure (BP). The heterogeneity

between studies was evaluated using 1) the Chi-squared test

with a p-value of less than 0.10 denoted statistical significance

and 2) the Higgin’s I2 statistic (Higgins et al., 2003). An I2 value

of less than 25% was regarded as low heterogeneity, 30%–50%

was regarded as moderate heterogeneity, and any value above

75% as high heterogeneity. Due to the small number of studies

available for meta-analysis, a fixed-effect (FE) model was used.

A p-value of less than 0.05 indicated statistical significance.

Sensitivity analysis was conducted by only including studies

using a similar PS dose (500 mg/kg) for evaluation of result’s

robustness. No subgroup analysis was performed due to the

limited number of studies available for meta-analysis. A funnel

plot was not reported as less than ten studies were included in

the meta-analysis.

3 Results

3.1 Studies selected

Initially, a total of 76 potential articles were identified in

Scopus (n = 37), PubMed (n = 12) andWeb of Science (n = 27).

An additional article was retrieved from the list of references

cited in the review articles (n = 1). Subsequently, 30 articles

were removed due to duplication. After reviewing the titles

and abstracts, 33 articles were excluded. The full text of the

remaining 27 articles were read thoroughly and 13 articles

were further excluded as they did not fulfil the inclusion

criteria. Finally, 14 studies published between the years

1998–2021 were selected for inclusion in this review,

comprising of six articles on antihypertensive and eight

articles on antidiabetic effects of PS. A flowchart of the

article selection process is shown in Figure 2.

3.2 Risk of bias

The risk of bias assessment for the animal studies included in

this review is presented in Figure 3. Selection risk and detection

of bias was low for all studies. Attrition bias was either low risk
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(n = 10) or unclear (n = 2) in the included studies. Selection

reporting risk of bias was unclear in two of the studies and the

remainder (n = 10) was low risk. Other bias was unclear in one of

the studies and low for the remainder (n = 11). The JBI critical

appraisal checklist summary for reporting in vitro studies is

shown in Figure 4. Reporting quality bias was low for all

studies. Performance and detection bias was either low risk

(n = 1) or unclear (n = 1).

3.3 Study design characteristics

The characteristics of the selected studies are described in

Tables 1, 2. All the included studies were preclinical studies,

with no clinical trial done previously. As for the preclinical

studies, 12 studies involved animal models (Peungvicha et al.,

1998; Thent et al., 2012a; Thent et al., 2012b; Hussan et al.,

2013; Luangpirom et al., 2014; Mohd Zainudin et al., 2015;

Thent and Das, 2015; Alwi et al., 2018; Mohd Zainudin et al.,

2019; Fauzy et al., 2019; Ugusman et al., 2020; Firdaus Azmi

et al., 2021) and the remaining two studies were in vitro

chemical assay studies (Wongsa et al., 2012; Sallehuddin

et al., 2020). For studies related to the effect of PS on

hypertension, the animal models of hypertension used were

spontaneous hypertensive rats (SHR) (Mohd Zainudin et al.,

2015; Fauzy et al., 2019; Mohd Zainudin et al., 2019),

dexamethasone-induced hypertensive rats (Ugusman et al.,

2020; Firdaus Azmi et al., 2021) and Nω-nitro-L-arginine

methyl ester hydrochloride (L-NAME)-induced

hypertensive rats (Alwi et al., 2018). Meanwhile, induction

of diabetes in all the studies were done through streptozotocin

(STZ) injection.

FIGURE 2
The selection process of the articles according to the Preferred Reporting Items for Systematic Reviews andMeta-Analyses (PRISMA) guideline.
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The quality control and chemical analysis of PS extracts in

the selected studies were summarized in Table 3. The origins

of PS were from two main countries: Malaysia (Thent et al.,

2012a; Thent et al., 2012b; Hussan et al., 2013; Mohd Zainudin

et al., 2015; Thent and Das, 2015; Alwi et al., 2018; Fauzy et al.,

2019; Mohd Zainudin et al., 2019; Sallehuddin et al., 2020;

Ugusman et al., 2020; Firdaus Azmi et al., 2021) and Thailand

(Peungvicha et al., 1998; Wongsa et al., 2012; Luangpirom

et al., 2014). Most of the studies used the leaves of PS (Thent

et al., 2012a, 2012b; Wongsa et al., 2012; Hussan et al., 2013;

Luangpirom et al., 2014; Mohd Zainudin et al., 2015; Alwi

et al., 2018; Fauzy et al., 2019; Mohd Zainudin et al., 2019;

Sallehuddin et al., 2020; Ugusman et al., 2020; Firdaus Azmi

et al., 2021) and only one study used all parts of PS

(Peungvicha et al., 1998). Different types of PS extract were

used, including ethanol extract (Thent and Das 2015;

Sallehuddin et al., 2020), aqueous extract (Peungvicha

et al., 1998; Thent et al., 2012a; Thent et al., 2012b;

Wongsa et al., 2012; Hussan et al., 2013; Luangpirom et al.,

2014; Mohd Zainudin et al., 2015; Alwi et al., 2018; Fauzy

et al., 2019; Mohd Zainudin et al., 2019; Ugusman et al., 2020;

Firdaus Azmi et al., 2021) and methanol-soluble and

-insoluble fractions of aqueous extract of PS (Peungvicha

et al., 1998). Among the active compounds found in the

phytochemical analyses of the PS extracts were rutin,

vitexin (Ugusman et al., 2020; Firdaus Azmi et al., 2021),

catechin, naringin (Sallehuddin et al., 2020), caffeic acid and

p-coumaric acid (Wongsa et al., 2012).

FIGURE 3
Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) risk of bias summary: review authors’ judgements about each risk of
bias item for each included study.
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3.4 Effect of Piper sarmentosum Roxb. on
hypertension

There were six in vivo animal studies that focused on the effect of

PS on hypertension (Mohd Zainudin et al., 2015; Alwi et al., 2018;

Fauzy et al., 2019; Mohd Zainudin et al., 2019; Ugusman et al., 2020;

Firdaus Azmi et al., 2021). Systolic blood pressure (SBP), diastolic

blood pressure (DBP), mean arterial pressure (MAP) and nitric oxide

(NO) levels were the most common parameters measured. All six

studies showed that treatment with PS caused a marked reduction in

the SBP,DBP andMAPof hypertensive ratmodels. A study by Fauzy

et al. (2019) demonstrated that PS increased NO and reduced ET-1

levels in the mesenteric artery of SHR. Mohd Zainudin et al. (2015)

showed that PS possessed an antihypertensive effect by reducing

MDA and increasing serum NO levels in SHR. These findings were

further supported by three other studies which demonstrated that the

BP-lowering effect of PS was associated with increased NO levels in

L-NAME-induced hypertensive rats (Alwi et al., 2018),

dexamethasone-induced hypertensive rats (Ugusman et al., 2020;

Firdaus Azmi et al., 2021) and SHR (Mohd Zainudin et al., 2019).

Ugusman et al. (2020) found that PS increased vascular NO

production by increasing eNOS mRNA expression, eNOS protein

and eNOS activity in dexamethasone-induced hypertensive rats.

Meanwhile, Mohd Zainudin et al. (2015) demonstrated that PS

significantly decreased plasma ADMA levels in SHR. However,

none of the studies investigated the effect of PS on target organ

damage in hypertension.

3.5 Effect of Piper sarmentosum Roxb. on
diabetes mellitus

Out of the 14 studies, eight studies assessed the effect of PS on

diabetes mellitus. The effects of PS on diabetes were evaluated in

two in vitro studies (Wongsa et al., 2012; Sallehuddin et al., 2020)

and six in vivo studies (Peungvicha et al., 1998; Thent et al.,

2012a; Thent et al., 2012b; Hussan et al., 2013; Luangpirom et al.,

2014; Thent and Das, 2015). The in vitro studies involved

screening of antidiabetic activity of PS using α-glucosidase
and α-amylase inhibition assays. Wongsa et al. (2012) showed

that PS had α-glucosidase but not α-amylase inhibitory activity.

In contrast, another in vitro study revealed that PS had no α-
glucosidase inhibitory activity (Sallehuddin et al., 2020). As for

in vivo study, it was first reported that administration of

0.125 g/kg PS for 7 days significantly decreased blood glucose

levels in both normal and diabetic rats (Peungvicha et al., 1998).

Subsequently, Thent et al. (2012b) showed that PS increased the

body weight and reduced fasting blood glucose and urine glucose

levels in STZ-induced diabetic rats. Meanwhile, Luangpirom

et al. (2014) found that diabetic rats treated with PS improved

pancreatic islet function and increased serum insulin, leading to

reduced fasting blood glucose.

3.5.1 Piper sarmentosum Roxb.’s effect on
diabetic complications/target organ and tissue
damage

PS were also beneficial in attenuating the degenerative changes

of the target organs in diabetes such as the heart, aorta, kidney, and

liver. Light microscopic observation showed that PS reduced the

degenerative changes in the myocardium and aortic tissues of

diabetic rats as evidenced by lack of connective tissue deposit in

the myocardium, reduced tunica media thickness, reduced tunica

intima to tunica media ratio and less disruption of elastic fibre in the

tunica media layer of the aorta (Thent et al., 2012a). Electron

microscopic analysis further supported the findings as PS

supplementation restored the ultrastructural integrity of the heart

and aorta of diabetic rats (Thent et al., 2012b). As for the liver, PS

increased the liver weight and reversed the diabetes-induced

degenerative changes in the liver tissues as evidenced by the

absence of nuclear deformation in the hepatocytes, less hyperemic

areas in the sinusoids and less necrosis and vacuolization in the liver

(Thent and Das, 2015). Interestingly, Hussan et al. (2013)

demonstrated that PS prevented further progression of diabetic

nephropathy in STZ-induced rats as evidenced by less contracted

glomeruli, mild inflammatory cells infiltration, reduced urinary space

size and absence of glomerular membrane thickening.

3.6 Meta-analysis

Only three studies were included in our meta-analysis, all of

which provided data for the pooling of effects of PS on blood

pressure parameters. No suitable data on glycemic parameters was

available from the included studies, hence no meta-analysis was

performed to explore the effects of PS on diabetes. The

corresponding author (Luangpirom et al., 2014) was contacted to

enquire for more details of the data, but no response was received.

FIGURE 4
The Joanna Briggs Institute (JBI) critical appraisal checklist
summary for reporting in vitro studies.
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TABLE 1 Characteristics of selected studies on the effects of Piper sarmentosum Roxb. on hypertension.

Study design Plant
source

Plant
part

Type of
extract

Phyto-
chemical(s)

Results Outcomes References

In vivo animal study. Thirty
male Sprague Dawley rats
(8 weeks old) were divided
into five groups (n = 6)
including control (normal
saline), PS (500 mg/kg/day
orally), dexamethasone
(20 μg/kg/day subcutaneously
to induce hypertension),
dexamethasone + PS and
dexamethasone + captopril
(40 mg/kg/day orally as
positive control). Treatments
were administered for 28 days.
The systolic blood pressure
(SBP), diastolic blood pressure
(DBP) and mean arterial
pressure (MAP) of the rats
were measured using tail-cuff
method.

Selangor
and Penang,
Malaysia

Leaf Aqueous Rutin Vitexin PS decreased SBP at day 14
(132.72 ± 3.07 mmHg vs.
109.28 ± 2.95 mmHg, p <
0.001) and day 28 (143.06 ±
3.65 mmHg vs. 105.22 ±
2.89 mmHg, p < 0.001), DBP
at day 14 (105.28 ±
2.58 mmHg vs. 86.56 ±
5.31 mmHg, p < 0.05) and
day 28 (104.61 ± 2.32 mmHg
vs. 82.83 ± 3.49 mmHg, p <
0.001), and MAP at day 14
(114.43 ± 2.3 mmHg vs.
94.13 ± 4.41 mmHg, p <
0.05) and day 28 (117.43 ±
2.06 mmHg vs. 90.30 ±
2.53 mmHg, p < 0.001) and
these effects were
comparable to captopril.

PS extract quantified to
rutin and vitexin has
antihypertensive effect.

Firdaus Azmi
et al. (2021)

In vivo animal study. Thirty
male Sprague Dawley rats
(8–12 weeks) were divided
into five groups (n = 6)
including control (normal
saline), PS (500 mg/kg/day
orally), dexamethasone
(20 μg/kg/day subcutaneously
to induce hypertension),
dexamethasone + PS and
dexamethasone + captopril
(40 mg/kg/day orally as
positive control). Treatments
were administered for 28 days.
The SBP, DBP andMAP of the
rats were measured using tail-
cuff method. The rat’s thoracic
aorta was analyzed for
endothelial nitric oxide
synthase (eNOS) mRNA
expression, protein and
activity while the serum was
analyzed for nitric oxide (NO)
level.

Penang,
Malaysia

Leaf Aqueous Rutin Vitexin - PS decreased SBP at day 14
(136 ± 2.0 mmHg vs. 111 ±
2.8 mmHg, p < 0.001) and
day 28 (146 ± 2.7 mmHg vs.
107 ± 2.9 mmHg, p < 0.001),
DBP at day 14 (105 ±
2.5 mmHg vs. 82 ±
5.1 mmHg, p < 0.01) and day
28 (104 ± 3.1 mmHg vs. 79 ±
1.7 mmHg, p < 0.01), and
MAP at day 14 (114.43 ±
2.2 mmHg vs. 92 ±
3.7 mmHg, p < 0.001) and
day 28 (118 ± 2.5 mmHg vs.
88 ± 1.4 mmHg, p < 0.001)
and these effects were
comparable to captopril.
- Treatment of
dexamethasone-induced
hypertensive rats with PS
increased the NO level
(31.0 ± 5.18 µM vs. 56.8 ±
6.22 µM, p < 0.05), eNOS
mRNA expression by
1.4 folds (p < 0.01), eNOS
protein (10.17 ± 1.54 pg/mg
protein vs. 40.17 ± 9.51 pg/
mg protein, p < 0.01), and
eNOS activity (1.1 ±
0.073 µM nitrite/min/mg
protein vs. 1.4 ± 0.109 µM
nitrite/min/mg protein,
p < 0.05).

PS demonstrates
antihypertensive effect by
enhancing eNOS activity
and production of NO.

Ugusman et al.
(2020)

In vivo animal study.
Twenty-four spontaneous
hypertensive rats (SHR) were
divided into four groups (n =
6) including hypertensive
control (distilled water), PS
(500 mg/kg/day), perindopril
(3 mg/kg/day), and combined
PS (500 mg/kg/day) +
perindopril (1.5 mg/kg/day).

Kuantan,
Pahang,
Malaysia

Leaf Aqueous - PS decreased SBP (p < 0.05)
and DBP (p < 0.05) of SHR.
The reduction in DBP was
greater than SBP (p < 0.05).
However, PS was not as
potent as perindopril in
reducing blood pressure.
- There was a reduction in
plasma ADMA level (p <
0.05) and an increase in

PS reduces blood pressure
by increasing the clearance
of ADMA and production
of NO.

Mohd Zainudin
et al. (2019)

(Continued on following page)
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TABLE 1 (Continued) Characteristics of selected studies on the effects of Piper sarmentosum Roxb. on hypertension.

Study design Plant
source

Plant
part

Type of
extract

Phyto-
chemical(s)

Results Outcomes References

All treatments were given
orally for 28 days. SBP and
DBP were measured using tail-
cuff method. Serum NO and
plasma asymmetric
dimethylarginine (ADMA)
levels were also determined.

serum NO level (p < 0.05) in
SHR following PS treatment.

In vivo animal study.
Twenty-four SHR (11 weeks)
were divided into four groups
(n = 6): hypertension control
(distilled water), PS
(500 mg/kg/day), perindopril
(3 mg/kg/day), and combined
PS (500 mg/kg/day) +
perindopril (1.5 mg/kg/day).
All treatments were given
orally for 28 days. SBP, DBP
and MAP were measured
using tail-cuff method. Rats
mesenteric arteries were
analyzed for NO and
endothelin-1 (ET-1) levels.

Kuantan,
Pahang,
Malaysia

Leaf Aqueous - SHR showed reductions in
SBP (p < 0.05), DBP (p <
0.05) and MAP (p < 0.05)
with PS treatment. However,
PS showed no superior effect
in reducing blood pressure
compared to perindopril.
- PS increased mesenteric
artery NO level (p < 0.05)
and reduced ET-1 level (p <
0.05) in SHR.

PS decreases blood pressure
by reducing ET-1 level and
increasing NO level in the
resistance artery.

Fauzy et al.
(2019)

In vivo animal study. Thirty-
six Wistar rats (6–8 weeks)
were divided into six groups
(n = 6): control (normal
saline), PS (500 mg/kg/day),
L-NAME (100 mg/L) to
induce hypertension) and
three groups of combined
L-NAME and different doses
of PS (125, 250 and
500 mg/kg/day). Treatments
were administered orally for
4 weeks. SBP, DBP and MAP
were measured using tail-cuff
method. Serum NO and
malondialdehyde (MDA)
levels were quantitated.

Selayang,
Selangor,
Malaysia

Leaf Aqueous - Treatment with three doses
of PS (125, 250 and
500 mg/kg/day) lowered the
SBP (172.3 ± 5.06 mmHg vs.
126.0 ± 5.2, 127.83 ±
3.79 and 129.67 ±
3.74 mmHg, p < 0.001), DBP
(127.5 ± 3.93 mmHg vs.
84.5 ± 4.38, 90.0 ± 2.44, and
86.3 ± 4.19 mmHg, p < 0.05),
and MAP (142.0 ±
4.49 mmHg vs. 97.0 ± 3.44,
101.2 ± 1.86 and 100.5 ±
2.71 mmHg, p < 0.05).
- There were decreased
serum MDA (65.59 ±
5.46 nmol/g protein vs.
22.70 ± 3.63, 16.57 ± 4.64,
and 25.15 ± 11.39 nmol/g
protein, p < 0.001) and
increased serum NO level
(4.5 ± 1.92 μM vs. 56.33 ±
9.15, 80.88 ± 8.55 μM, and
75.02 ± 8.46 μM, p < 0.001).

Antihypertensive effect of
PS is mediated by increased
NO and reduced oxidative
stress.

Alwi et al.
(2018)

In vivo animal study. Six
normotensive Wistar rats
served as negative control
group, while thirty-two SHR
(10 weeks) were divided into
four groups (n = 6 for positive
control, n = 8 for three
treatment groups):
hypertensive control, and SHR
treated with three different
doses of PS (0.5, 1, 2 mg/kg/
day) orally for 28 days. The
blood pressure, serum NO,
MDA and total cholesterol
levels were measured.

Kuantan,
Pahang,
Malaysia

Leaf Aqueous - PS reduced SBP (p < 0.05),
DBP (p < 0.05) and MAP
(p < 0.05).
- PS increased serum NO
(p < 0.05) and decreased
MDA (p < 0.05) levels.

PS attenuates hypertension
by increasing NO level and
decreasing oxidative stress.

Mohd Zainudin
et al. (2015)

ADMA, plasma asymmetric dimethylarginine; eNOS, endothelial nitric oxide synthase; ET, Endothelin-1; DBP, diastolic blood pressure; MAP, mean arterial pressure; L-NAME, Nω-nitro-

L-arginine methyl ester hydrochloride; MDA , malondialdehyde; NO, nitric oxide; PS, Piper sarmentosum Roxb.; SBP, systolic blood pressure; SHR, spontaneous hypertensive rats.
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TABLE 2 Characteristics of selected studies on the effects of Piper sarmentosum Roxb. on diabetes mellitus.

Study design Plant
source

Plant
parts

Type of
extract

Phyto-
chemical(s)

Results Outcomes References

In vitro study.
Antidiabetic activity was
measured using α-
glucosidase inhibitory
activity.

Selangor,
Malaysia

Leaf Ethanol Catechin.
Naringin

PS at 1,000 μg/ml did not
inhibit α-glucosidase
activity.

PS has no antidiabetic
activity.

Sallehuddin
et al. (2020)

In vitro study.
Antidiabetic activity was
evaluated by α-glucosidase
and α-amylase inhibitory
activity.

Chiangrai
province,
Thailand

Leaf Aqueous Caffeic acid
p-Coumaric
acid.

PS showed α-glucosidase
inhibitory activity but did
not show inhibition
against α -amylase
activity.

PS has antidiabetic effect
by inhibiting α-
glucosidase activity.

Wongsa et al.
(2012)

In vivo animal study.
Twenty-four male, Sprague
Dawley rats were divided
into four groups (n = 6)
including non-diabetic
control, non-diabetic treated
with PS (0.125 g/kg/day),
untreated diabetic (induced
with single intramuscular
injection of 50 mg/kg STZ)
and diabetic treated with PS
(0.125 g/kg/day). Treatment
with PS was started 4 weeks
after STZ injection, for a
total of 28 days via
intragastric tube. SBP was
measured using tail-cuff
method. The rat’s liver was
collected for morphological
analysis.

Negeri
Sembilan,
Malaysia

Leaf Aqueous -PS decreased the SBP of
streptozotocin-induced
diabetic rats (p < 0.05).
-Compared to untreated
diabetic rats, treatment
with PS increased the liver
weight (6.03 ± 0.39 g vs.
10.23 ± 0.27 g, p < 0.05)
and reversed the diabetes-
induced degenerative
changes in the liver tissues
as evidenced by absence of
nuclear deformation in
the of hepatocytes, less
hyperemic areas in the
sinusoids and less necrosis
and vacuolization in the
liver.

PS has a positive effect on
diabetes and its
complications.

Thent and Das
(2015)

In vivo animal study. Fifty
adult male mice (ICR strain,
8-week-old) were randomly
divided into five groups (n =
6 for References group and
n = 11 for diabetic groups)
including non-diabetic
control, untreated diabetic
(induced with
intraperitoneal injection of
6 mg/100 g BW STZ),
diabetic treated with
glibenclamide (1 mg/100 g
BW/day orally as positive
control), diabetic treated with
PS1 (60 mg/100 g BW/day
orally) and diabetic treated
with PS2 (100 mg/100 g BW).
Treatments were administered
for 21 days. Fasting blood
glucose (FBG) level was
measured by glucometer via
blood from the tail artery.
Plasma was analysed for
insulin levels. Pancreas was
also assessed histologically.

Khon Kaen
Province,
Thailand

Leaf Aqueous Compared with untreated
diabetic rats, diabetic rats
treated with PS had:
- Greater change in FBG
(+46.01% vs. -32.75%).
- Higher insulin level
(14.19 ± 2.95 IU/L vs.
21.36 ± 2.53 IU/L, p <
0.05).
- Increase in size and
decrease in number of
dead cells in the
pancreatic islets.
- PS was as potent as
glibenclamide in
increasing insulin level.

PS has hypoglycemic
activities by increasing
insulin secretion and
improving pancreatic islet
function.

Luangpirom
et al. (2014)

In vivo animal study.
Eighteen male Sprague
Dawley rats were randomly

Selangor,
Malaysia

Leaf Aqueous - PS did not have
significant effect on the
body weight, kidney

Antihyperglycemic
activity of PS prevents

Hussan et al.
(2013)

(Continued on following page)
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TABLE 2 (Continued) Characteristics of selected studies on the effects of Piper sarmentosum Roxb. on diabetes mellitus.

Study design Plant
source

Plant
parts

Type of
extract

Phyto-
chemical(s)

Results Outcomes References

divided into three groups
(n = 6) including
nondiabetic control,
untreated diabetic (induced
with single intramuscular
injection of 50 mg/kg STZ)
and diabetic treated with PS
(0.125 g/kg/day orally).
Treatment with PS was
started 10 days following
STZ induction and
continued for 28 days. Body
weight and kidney weight
index were recorded. FBG
was measured using
glucometer from the tail
vein. Kidneys were collected
for histomorphometric and
histological analysis.

weight index and FBG of
diabetic rats.
- PS attenuated the
histological changes in the
diabetic rat’s kidney as
evidenced by less
contracted glomeruli,
mild inflammatory cells
infiltration, reduced
urinary space size and
absence of glomerular
membrane thickening.

further progression of
diabetic nephropathy.

In vivo animal study.
Twenty-four male Sprague
Dawley rats were randomly
divided into four groups (n =
6) including nondiabetic
control (normal saline),
nondiabetic treated with PS
(0.125 g/kg/day orally),
untreated diabetic (induced
with single intramuscular
injection of 50 mg/kg STZ)
and diabetic treated with PS
(0.125 g/kg/day orally).
Treatments were
administered for 28 days.
The rat’s cardiac and aortic
tissues were collected for
histological analysis.

Negeri
Sembilan,
Malaysia

Leaf Aqueous Treatment of diabetic
mice with PS caused less
degenerative changes in
the myocardium and
aortic tissues as evidenced
by lack of connective
tissue deposit in the
myocardium, reduced
tunica media thickness,
reduced tunica intima to
tunica media ratio and less
disruption of elastic fibre
in the tunica media layer
of the aorta.

PS has beneficial effect on
diabetes by reducing
degenerative changes in
the myocardium and
aorta.

Thent et al.
(2012a)

In vivo animal study
Thirty-two male Sprague
Dawley rats were randomly
divided into four groups (n =
8) including nondiabetic
control (normal saline),
nondiabetic treated with PS
(0.125 g/kg/day orally),
untreated diabetic (induced
with single intramuscular
injection of 50 mg/kg STZ)
and diabetic treated with PS
(0.125 g/kg/day orally).
Treatments were started
28 days following diabetes
induction for 28 days
continuously. The body
weight was recorded. Urine
and blood glucose levels
were measured by Combur
test and glucometer,
respectively. The rat’s left
ventricular cardiac tissue
and proximal aorta were
analyzed under the electron
microscope.

Negeri
Sembilan,
Malaysia

Leaf Aqueous Compared to untreated
diabetic rats, PS
supplementation to
diabetic rats caused:
- Higher body weight
(178 ± 10.91 g vs. 231 ±
13.52 g, p < 0.05).
- Lower FBG level (31.9 ±
1.72 mmol/L vs. 23.2 ±
2.24 mmol/L, p < 0.05).
- Lower urine glucose
level.
- Less irregular arrays of
myofibrils within the
cardiac sarcomere.
- Less disrupted cardiac
muscle fibres.
- Intact cardiac
mitochondria with reduced
mitochondrial size and
cytoplasmic spaces.
- Less disruption of the
elastic lamina, decreased
proliferation of smooth
muscle cells and presence of
the endothelial cells in the
proximal aorta.

PS has antidiabetic effect
and restores
ultrastructural integrity of
the diabetic cardiovascular
tissues.

Thent et al.
(2012b)

(Continued on following page)
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TABLE 2 (Continued) Characteristics of selected studies on the effects of Piper sarmentosum Roxb. on diabetes mellitus.

Study design Plant
source

Plant
parts

Type of
extract

Phyto-
chemical(s)

Results Outcomes References

In vivo animal study. Male
Wistar rats (5 weeks old)
were divided into five groups
(n = 6–8) including
nondiabetic control,
untreated diabetic (induced
with single intraperitoneal
injection of 75 mg/kg STZ),
diabetic treated with
glibenclamide (5 mg/kg
orally), diabetic treated with
PS1 (0.125 g/kg orally) and
diabetic treated with PS2
(0.250 g/kg orally).
Treatments were
administered for 7 days.
Fasting plasma glucose level
and oral glucose tolerance
test (OGTT) were
determined.

Bangkok,
Thailand

Whole
plant

Aqueous,
methanol
soluble fraction
and methanol
insoluble
fraction of
aqueous extract.

- Single dose of PS did not
reduce the blood glucose
but repeated
administration of
0.125 g/kg PS for 7 days
produced significant
decrease in the plasma
glucose of diabetic rats.
- Hypoglycemic effect of
the methanol soluble
fraction of PS aqueous
extract was more potent
than the aqueous extract.

PS has hypoglycemic
effect.

Peungvicha
et al. (1998)

FBG, fasting blood glucose; OGTT, oral glucose tolerance test; PS, Piper sarmentosum Roxb.; SBP, systolic blood pressure; STZ, streptozotocin.

TABLE 3 Quality control and chemical analysis of Piper sarmentosum Roxb. extracts in the selected studies.

Study Source Concentration
(%)

Quality control reported?
(Yes/No)

Chemical analysis
reported?
(Yes/No)

Firdaus Azmi et al.
(2021)

Selangor and Penang,
Malaysia

10 Yes- Standardization based on active compounds Yes-UPLC

Ugusman et al. (2020) Penang, Malaysia 10 Yes-Standardization based on active compounds Yes-HPLC

Mohd Zainudin et al.
(2019)

Kuantan, Pahang,
Malaysia

10 Yes-FRAP and DPPH radical scavenging assays Yes-HPLC

Fauzy et al. (2019) Kuantan, Pahang,
Malaysia

10 No No

Alwi et al. (2018) Selayang, Selangor,
Malaysia

10 Yes-Protocol citation No

Mohd Zainudin et al.
(2015)

Kuantan, Pahang,
Malaysia

10 Yes- DPPH radical and superoxide scavenging assays No

Sallehuddin et al. (2020) Selangor, Malaysia 10 Yes- DPPH radical scavenging assay Yes-HPLC

Wongsa et al. (2012) Chiangrai province,
Thailand

5 Yes- TPC, DPPH radical scavenging and antioxidant
protection factor assays

Yes-HPLC

Thent and Das (2015) Negeri Sembilan,
Malaysia

5 Yes-Protocol citation No

Luangpirom et al.
(2014)

Khon Kaen Province,
Thailand

20 Yes-Protocol citation No

Hussan et al. (2013) Selangor, Malaysia 10 Yes-Protocol citation No

Thent et al. (2012a) Negeri Sembilan,
Malaysia

5 Yes-Protocol citation No

Thent et al. (2012b) Negeri Sembilan,
Malaysia

5 Yes-Protocol citation No

Peungvicha et al. (1998) Bangkok, Thailand 30 No No

DPPH, 2,2-diphenyl-1-picrylhydrazyl, FRAP, Ferric-reducing antioxidant power activity; HPLC, high performance liquid chromatography; UPLC, ultra performance liquid

chromatography; TPC, total phenolic content.
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3.6.1 Effects of Piper sarmentosum Roxb. versus
no treatment on hypertension

Meta-analysis of three studies (Alwi et al., 2018; Ugusman et al.,

2020; Firdaus Azmi et al., 2021) on the effect of PS versus no

treatment have shown a statistically significant reduction in SBP with

MD−39.84 mmHg (95%CI −45.05, −34.62; p < 0.01; Figure 5A) and

no heterogeneity was observed. Similarly, pooling of results from

three studies have shown that treatment with PS significantly reduced

DBP and MAP with MD values of −26.68 mmHg (95%

CI −31.48, −21.88; p < 0.01; Figure 5B), and -30.56 mmHg (95%

CI −34.49, − 26.63; p < 0.01; Figure 5C) respectively, albeit the

heterogeneity observed were substantial. A sensitivity analysis was

performed to assess the robustness of PS effect on BP parameters.

When limited to PS dose of 500 mg/kg, a comparable pooled effect

size, direction, magnitude and statistical significance were obtained

with MD −39.28 mmHg (95% CI −44.61, −33.95; p < 0.01;

Figure 6A), −26.84 mmHg (95% CI −31.63, −22.05; p < 0.01;

Figure 6B) and −29.74 mmHg (95% CI −33.82, −25.66; p < 0.01;

Figure 6C) for SBP, DBP, and MAP respectively.

3.6.2 Effects of Piper sarmentosum Roxb. versus
positive control on hypertension

Meta-analysis of three studies (Alwi et al., 2018; Ugusman et al.,

2020; Firdaus Azmi et al., 2021) on the effect of PS versus captopril, a

positive control, indicated no significant difference in SBP (MD =

2.20 mmHg, 95% CI −3.75, 8.15; p = 0.47; Figure 7A), DBP (MD =

FIGURE 5
Meta-analysis of the effects of Piper sarmentosum Roxb. versus control on blood pressure: (A) SBP, Systolic blood pressure; (B) DBP, diastolic
blood pressure, (C) MAP, mean arterial pressure.
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1.38 mmHg, 95% CI −7.43, 10.20; p = 0.76; Figure 7B) and MAP

(MD = 1.48 mmHg, 95% CI −5.74, 8.70; p = 0.69; Figure 7C). No

heterogeneity was observed.

4 Discussion

The present systematic review and meta-analysis suggests

that PS has beneficial effects on BP and glycemic control in

hypertensive and diabetic animal models.

4.1 Effects of Piper sarmentosum Roxb. on
hypertension

PS has demonstrated its antihypertensive effect in various

hypertensive animal models including SHR (Mohd Zainudin

et al., 2015; Fauzy et al., 2019; Mohd Zainudin et al., 2019),

dexamethasone-induced hypertensive rats (Ugusman et al., 2020;

Firdaus Azmi et al., 2021) and L-NAME-induced hypertensive

rats (Alwi et al., 2018). Our meta-analysis has shown that PS

supplementation resulted in significantly reduced SBP, DBP, and

FIGURE 6
Meta-analysis of the effects of Piper sarmentosum Roxb. versus positive control on blood pressure: (A) SBP, Systolic blood pressure; (B) DBP,
diastolic blood pressure, (C) MAP, mean arterial pressure.

Frontiers in Pharmacology frontiersin.org14

Othman et al. 10.3389/fphar.2022.976247

34

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.976247


MAP by 39.84, 26.688, and 30.56 mmHg, respectively, in

hypertensive rat models. The significant reduction is only

observed when the groups of hypertensive animals receiving

PS were compared to hypertensive rats that do not receive

any intervention. No significant difference was observed in BP

parameters when the groups of hypertensive animals receiving

PS were compared to the groups of animals receiving positive

control. A positive control is used in the included studies to

control for variability of the experiments as well as for unbiased

and objective observation of the effects of studied intervention on

BP (Torday and Baluška, 2019). Although the mechanism

involved may be different, the analysis has shown evidence

FIGURE 7
Sensitivity analysis of the effects of 500 mg/kg Piper sarmentosum Roxb. versus control on blood pressure: (A) SBP, Systolic blood pressure; (B)
DBP, diastolic blood pressure, (C) MAP, mean arterial pressure.
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that PS has similar effects, if not equal, to captopril in reducing

BP parameters.

SHR exhibits many features of human essential hypertension,

including increased blood pressure and total peripheral resistance.

These features are preceded by oxidative stress, which leads to

endothelial dysfunction (Fauzy et al., 2019). MDA, a lipid

peroxidation product, is a marker of oxidative stress damage. PS

administration to SHR caused a significant reduction in MDA level

(Mohd Zainudin et al., 2015), suggesting that the antihypertensive

effect of PS was attributed to its antioxidative activity. A previous

study also demonstrated that PS reduced oxidative stress by

decreasing MDA in endothelial cells (Hafizah et al., 2010).

Interestingly, another study showed that PS enhanced the

expression of the antioxidant enzymes; superoxide dismutase

(SOD), catalase (CAT) and glutathione peroxidase in hydrogen

peroxide-induced endothelial cells (Ugusman et al., 2011).

A healthy endothelium releases a plethora of vasoactive

factors that contribute to maintaining vascular homeostasis.

Endothelial vasoactive mediators such as NO and ET-1 can

either decrease or increase the vascular tone, respectively. The

imbalance between endothelium-derived vasodilators and

vasoconstrictors leads to endothelial dysfunction, which is a

precursor of hypertension (Rubanyi, 1993). Endothelial

dysfunction occurs when there is reduced NO synthesis,

decreased NO bioavailability, or NO antagonism by

endothelium-derived vasoconstrictors such as ET-1 (Mordi

et al., 2016). The majority of vascular NO is synthesized by

eNOS. Meanwhile, decreased bioavailability of NO can be

attributed to reactive oxygen species (ROS) that converts NO

to peroxynitrite (Mordi et al., 2016).

Dexamethasone-induced hypertensive rats showed reduced

eNOS mRNA expression, protein, activity, and serum NO level

(Ugusman et al., 2020). Several studies have reported that

dexamethasone results in overproduction of ROS that

decreases NO bioavailability, which in turn leads to

hypertension (de Gennaro Colonna et al., 2002; Rojas et al.,

2006; Dubey et al., 2017). Dexamethasone also increases the level

of angiotensin-converting enzyme, which is responsible for

increasing blood pressure (Fishel et al., 1995). Meanwhile,

chronic blockade of NO synthesis by L-NAME is a well-

known model of experimental hypertension. It is well

established that administration of L-NAME inhibits NO

synthesis, causes endothelial dysfunction and vasoconstriction,

and thus leads to hypertension (Alwi et al., 2018).

Supplementation of PS successfully reduced the blood pressure

of dexamethasone-induced and L-NAME-induced hypertensive

rats. This could be attributed to the positive effect of PS on NO

production (Alwi et al., 2018; Ugusman et al., 2020; Firdaus Azmi

et al., 2021). PS treatment in dexamethasone-induced hypertensive

rats increased the eNOS mRNA level, protein level and activity and

NO level (Ugusman et al., 2020). Upregulation of eNOS mRNA

expression causes more eNOS protein to be synthesized, leading to

increased eNOS activity and NO generation. These findings were

congruent with a previous study whereby PS increased NO

production in hydrogen peroxide-induced endothelial cells by

increasing eNOS mRNA expression, protein level and activity

(Ugusman et al., 2010). Owing to the antioxidative activity of PS,

PS may increase the bioavailability of NO (Mohd Zainudin et al.,

2019), as an antioxidant protects NO from the breakdown by ROS

(d’Unienville et al., 2021). In SHR, oral administration of a potent

antioxidant, lazaroid, improves NO bioavailability and reduces

blood pressure (Sorriento et al., 2018).

Competitive inhibitor of eNOS such as ADMA lowers NO

synthesis (Hsu and Tain, 2021). Decreased NO also gives rise to

unabated ET-1 actions that contribute to vasoconstriction,

thereby increasing blood pressure (Böger and Ron, 2005).

SHR showed increased ADMA level, which was attenuated by

PS supplementation (Mohd Zainudin et al., 2019). Decreased

ADMA level is associated with its effective degradation by

dimethylarginine dimethylaminohydrolase (DDAH). A

previous study reported that PS stimulated DDAH activity in

tumor necrosis factor-α-induced endothelial cells, which in turn

reduced ADMA level and enhanced NO production (Sundar

et al., 2019). Apart from stimulating NO production, PS also

reduced ET-1 level in the mesenteric artery of SHR (Fauzy et al.,

2019). This observation indicates that PS possesses an anti-

vasoconstrictor effect, which contributes to its

antihypertensive action.

Even though all the studies reviewed showed positive effects of

PS on hypertension, all the studies are animal studies with no clinical

trials performed on hypertensive patients. Besides, none of the

studies investigated the effect of PS on the renin-angiotensin

system, which is an important system that regulates blood

pressure. Only two studies on the effect of PS on hypertension

that identified the active compounds present in their PS extracts, in

which the extracts contain rutin and vitexin (Ugusman et al., 2020;

Firdaus Azmi et al., 2021). Oral administration of rutin lowers the

blood pressure of L-NAME-induced hypertensive rats (Ganga Raju

et al., 2019). Other studies involving phytochemical analysis of PS

showed that PS also contains piperine, myricetin and quercetin

(Firdaus Azmi et al., 2021). Piperine reduces the blood pressure of

L-NAME-induced hypertensive rats (Kumar et al., 2010). Myricetin

has also been reported to lower the blood pressure of

deoxycorticosterone acetate-salt-hypertensive rats (Borde et al.,

2011), whereas quercetin lowers the blood pressure of SHR

(Galindo et al., 2012).

4.2 Effects of Piper sarmentosum Roxb. on
diabetes mellitus

Hyperglycemia is the hallmark of diabetes secondary to

either insufficient insulin secretion, resistance to the action of

insulin, or both. Induction of diabetes in laboratory animals

using chemical ablation of pancreatic β-cells is the most common

experimental model. Alloxan and STZ are the most popular
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diabetogenic chemicals in diabetes research. However, STZ has

notable advantages over alloxan due to its rapid onset, the long

half-life, low toxicity and cost-effectiveness (Wszola et al., 2021).

STZ is a toxic glucose analogue that is preferentially accumulated

in the pancreatic β-cells via the GLUT2 glucose transporters in

the plasma membrane.

Following its uptake into beta-cells, STZ triggers oxidative stress,

eventually causing the pancreatic β-cells to undergo necrotic cell

death, resulting in hypoinsulinemia and hyperglycemia (Choudhari

et al., 2017). Additionally, GLUT2 transporters are not only expressed

in pancreatic β-cells, but also in the epithelial cells of the kidneys and
hepatocytes (Sędzikowska and Szablewski, 2021; Yang et al., 2022).

Thus, administration of STZ may result in nephro- and

hepatotoxicity along with its potential to damage pancreatic β-
cells (Wszola et al., 2021). All six animal studies that investigated

the effects of PS on diabetes used a single, high dose of STZ injection

(up to 75mg/kg) to induce pancreatic β-cells damage and diabetes in

rats, which mimics type 1 diabetes. None of the studies incorporates

the rodent models of type 2 diabetes with underlying insulin

resistance, obesity and pancreatic dysfunction, such as the Zucker

diabetic fatty rat and db/db mouse (Schwarzer, 2016).

PS supplementation reduced the fasting blood glucose levels

(Peungvicha et al., 1998) and urine glucose levels (Thent et al.,

2012b) of STZ-induced diabetic rats. One of the mechanisms of the

glucose-lowering effect of PS is through improved pancreatic islet

function and increased serum insulin (Luangpirom et al., 2014).

However, in one study, PS did not cause any significant reduction in

the diabetic rats’ fasting blood glucose levels (Hussan et al., 2013).

The authors only used fasting blood glucose to measure the rats’

glycemic status without other supporting tests such as the oral

glucose tolerance test and HbA1c, thus making the glycemic status

assessment less accurate (Bur et al., 2003). Besides, a reduction in

body weight was observed in rats following diabetes induction with

STZ (Thent et al., 2012b; Hussan et al., 2013). In response to

hypoinsulinemia, the body starts burning fat and muscle for

energy, causing a reduction in overall body weight (Eleazu et al.,

2013). However, the body weights of the diabetic rats were restored

with PS supplementation (Thent et al., 2012b). Since PS has been

shown to improve pancreatic islet function and increase serum

insulin (Thent et al., 2012b; Luangpirom et al., 2014), this might

contribute to the improved body weight of the diabetic rats.

PS also exhibits an α-glucosidase inhibitory effect, but not an
α-amylase inhibitory effect (Wongsa et al., 2012). In contrast,

another in vitro study showed that PS did not possess any α-
glucosidase inhibitory effect (Sallehuddin et al., 2020). Alpha-

glucosidase and α-amylase inhibitory effects are commonly used

to screen the antidiabetic action of natural products (Kittiwisut

et al., 2021). Alpha-glucosidase inhibitors act by inhibiting the

enzyme α-glucosidase, such as glucoamylase, sucrase, maltase,

and isomaltase at the brush border of the intestinal epithelium.

This action will block the absorption of carbohydrates in the

small intestine, hence reducing postprandial hyperglycemia

(Malunga et al., 2016). Meanwhile, α-amylase inhibitors

prevent the hydrolysis of α-(1–4)-d-glucosidic linkages in

starch, thus reducing carbohydrate digestion and absorption

in the gastrointestinal tract and lowering blood glucose (Gong

et al., 2020). Most plant-based natural products were effective

against either α-amylase or α-glucosidase, with just a few

exceptions being effective against both enzymes (Poovitha and

Parani, 2016). Besides, α-amylase or α-glucosidase inhibitory

assays serve as screening tools for the extract’s antidiabetic

activity, in which the results should be further supported by

in vivo study findings.

Among the target organs of diabetic complications are the

kidney, liver, heart and blood vessels (Wei et al., 2022). PS has

been proven to attenuate the damaging effects of diabetes in the

kidney, liver, heart and aorta (Thent et al., 2012a; Thent et al., 2012b;

Hussan et al., 2013; Thent and Das 2015). Significant alterations in

the liver weight, histology and oxidative stress markers are linked to

STZ-induced diabetes (Rodríguez et al., 2018; Yazdi et al., 2019).

Treatment with PS also increased the liver weight and reversed

diabetes-induced degenerative changes in the liver tissues; an effect

attributed to its antioxidative action (Thent and Das, 2015).

Inflammation in response to intermittent or chronic

hyperglycemia is involved in the initiation and progression of

diabetic nephropathy (Amorim et al., 2019; Donate-Correa et al.,

2021). Diabetic rats have increased kidney weight due to renal

hypertrophy, with histological changes of diabetic nephropathy such

as contracted glomeruli with widened urinary spaces, marked

inflammatory cell infiltration in the renal cortex and medulla,

and glomerular membrane thickening (Hussan et al., 2013). Even

though treatment with PS did not change the kidney weight, it

attenuated the histological changes in the diabetic rat’s kidney as

evidenced by less contracted glomeruli, mild inflammatory cells

infiltration, reduced urinary space size and absence of glomerular

membrane thickening. This could be due to the anti-inflammatory

effect of PS (Hussan et al., 2013). Furthermore, PS supplementation

reduced the degenerative changes and restored the ultrastructural

integrity of the heart and aorta of diabetic rats under light and

electron microscopic analyses (Thent et al., 2012a; Thent et al.,

2012b). Overall, PS attenuates the complications of diabetes in the

kidney, liver, heart and blood vessels through its antioxidative, anti-

inflammatory and glucose-lowering effects.

Even though most of the studies reviewed showed positive

effects of PS on diabetes, all studies are preclinical studies with no

clinical trials performed on diabetic patients. Besides, none of the

studies used type 2 diabetes model, which is more common in the

society. Only two studies on the effect of PS on diabetes that

identified the active compounds present in their PS extracts, in

which the extracts contain catechin, naringin (Sallehuddin et al.,

2020), caffeic acid and p-coumaric acid (Wongsa et al., 2012).

Treatment with catechin lowers blood glucose levels and

increases the activity of antioxidant enzymes such as SOD,

CAT and glutathione-S-transferase in diabetic rats (Gong

et al., 2020). In another study, naringin administration

decreased the plasma glucose of diabetic rats as measured

Frontiers in Pharmacology frontiersin.org17

Othman et al. 10.3389/fphar.2022.976247

37

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.976247


using OGTT (Ahmed et al., 2012). Caffeic acid reduces fasting

blood glucose when given to alloxan-induced diabetic rats

(Oršolić et al., 2021), whereas p-coumaric acid improves

glycemic status and increases plasma insulin level in STZ-

induced diabetic rats (Amalan and Vijayakumar, 2015).

4.3 Strength and limitation of the study

To the best of our knowledge, this is the first systematic

review and meta-analysis investigating the effects of PS on

hypertension and diabetes. The systematic literature search

ensures all relevant articles were identified whilst at the same

time minimizes selection bias. In addition, the meta-analyses

performed enables objective evaluation of the effect of PS on BP

parameters. However, the current review is not without its

limitation. The small number of included studies may have

influenced the effect estimates generated in our meta-analysis.

Therefore, interpretation of results should be made with caution.

Moreover, the various approach used in reporting the results did

not allow us to objectively report the effect of PS on glycemic

control. Nevertheless, most of the studies reported uniform

effects of PS on diabetes mellitus.

5 Conclusion

Overall, PS showed promising antihypertensive and

antidiabetic effects. However, all the studies reviewed are

preclinical studies with no randomized clinical trials conducted

to investigate the antihypertensive and antidiabetic effects of PS in

human subjects. Therefore, further clinical studies are

recommended to validate the antihypertensive and antidiabetic

activities of PS to prepare evidence-based formulations.
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The endophytic fungus
Penicillium oxalicum isolated
from Ligusticum chuanxiong
Hort possesses DNA
damage-protecting potential and
increases stress resistance
properties in Caenorhabditis
elegans
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The chemical composition and antioxidant activity of extracts (POE) of

Penicillium oxalate isolated from Ligusticum chuanxiong Hort have been

investigated. However, the biological activity of POE is limited, and its

antioxidant, stress resistance and DNA protection effects in vivo are unclear.

The current study aims to explore the beneficial effects of POE on DNA damage

protection in pBR322 plasmid and lymphocytes and stress resistance in

Caenorhabditis elegans. The results showed that POE increased the survival

rate of C. elegans under 35°C, UV and H2O2 stress, attenuated ROS and MDA

accumulation, and enhanced the activity of some important enzymes (SOD,

CTA, andGSH-PX). In addition, the POE-mediated stress resistance involved the

upregulation of the expression of the sod-3, sod-5, gst-4, ctl-1, ctl-2, daf-16,

hsp-16.1, hsp-16.2, and hsf-1 genes and acted dependently on daf-16 and hsf-1

rather than skn-1. Moreover, POE also reduced lipofuscin levels, but did not

prolong the lifespan or damage the growth, reproduction and locomotion of C.

elegans. Furthermore, POE showed a protective effect against DNA scission in

the pBR322 plasmid and lymphocytes. These results suggested that P. oxalate

extracts have significant anti-stress and DNA protection potential and could be
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potential drug candidates in the pharmaceutical field, thus greatly broadening

the understanding of the biological effects of the endophytic fungus P. oxalate.

KEYWORDS

endophytic fungi, Penicillium oxalicum, antioxidant, oxidative stress resistant,
Caenorhabditis elegans, DNA damage protection

1 Introduction

There is increasing evidence that reactive oxygen species

(ROS, e. g., O2− and OH) and free radical-meditated reactions

damage DNA, lipids and proteins (Dubois et al., 2018),

eventually leading to various diseases. For example, DNA

damage affects normal physiological metabolism and blocks

some metabolic pathways, leading to ageing, cancer,

atherosclerosis, coronary heart ailment, diabetes, Alzheimer’s

disease and other neurodegenerative disorders (Xu et al., 2005).

Currently, antioxidants have various degrees of anti-

inflammatory, antiatherosclerotic, antitumor, antimutagenic,

anticarcinogenic, antibacterial or antiviral effects (Aruoma,

1998) and are considered highly effective in treating ROS-

mediated pathologies. Many synthetic antioxidant

compounds, such as butylated hydroxyanisole and butyl

hydroxytoluene, are useful, but they are cytotoxic and are

suspected to be potential causes of health damage (Conning

and Phillips, 1986). Accordingly, finding efficient and safe

antioxidants from natural resources to prevent and reduce

the occurrence of related diseases is urgently warranted

(Denis et al., 2013).

Currently, endophytic fungi isolated from medicinal plants

have received greater attention due to their great potential to

produce bioactive compounds with a variety of biological

properties (Strobel, 2003; Strobel et al., 2004). Previous studies

have suggested that endophytic fungus extracts contain bioactive

substances with antibacterial, antioxidant and other bioactivities

(da Silva et al., 2020), such as Lasiodiplodia venezuelensis isolated

from Syzygium samarangense L (Budiono et al., 2019) and

Cercospora sp. PM018 was isolated from Lal-bisalyakarani

(Mookherjee et al., 2020), and could be a potential antioxidant

resource for the treatment of related diseases. Moreover, in vitro

fermentation culture of endophytic fungi has the advantages of

high yield, a short fermentation period, high production efficiency,

and sustainable production of target bioactive ingredients

(Ludwig-Müller, 2015). Hence, the efficacy and potential

usefulness of endophytic fungus extracts have led to a number

of studies with the aim of detecting their antioxidant activity.

However, there have been few studies on the oxidative stress

resistance of endophytic fungus extracts in vivo models (Tiwari

et al., 2014) and most studies have only confirmed the antioxidant

activity of endophytic fungal extracts in vitro (Huang et al., 2007; Li

et al., 2015). Fortunately, C. elegans, a powerful tool, is commonly

used to test various physiological processes, the mechanisms of

some diseases and the biological activity of natural products due to

its advantages of small body size, ease of handling and many

mutant strains (Wang et al., 2014). For instance, previous studies

frequently used C. elegans as a model to explore the antioxidant,

anti-stress and anti-ageing capacities of different plant extracts

(Duangjan et al., 2021). In addition, as far as we know, DNA

damage is associated with ROS imbalance, and excess free radicals

can damage DNA strands leading to the occurrence of various

diseases (Thanan et al., 2014). Nevertheless, an extensive survey of

the literature revealed very few reports corroborating the protective

potential against DNA damage of endophytic fungus extracts

(Kaur et al., 2020).

In previous studies by our group, an extract of Penicillium

oxalate (POE) isolated Ligusticum chuanxiongHort was reported to

have antioxidant capacity (Tang et al., 2021), but its antioxidant and

oxidative stress resistance properties in animal models and DNA

damage protection effects are lacking. Therefore, the purpose of this

study was to enrich the biological effects of the endophytic fungus

Penicillium oxalicum, such as anti-stress and DNA damage

protection properties. Our present findings could accelerate the

utilization of POE in the field of therapeutics by virtue of its DNA

damage protection, antioxidant activity and increased stress

resistance potential in C. elegans.

2 Materials and methods

2.1 Materials

The endophytic fungus P. oxalate was isolated from the roots

of L. chuanxiong Hort and stored in the “Fermentation

Engineering Laboratory” (College of Life Sciences, Sichuan

Agricultural University, Ya’an, China).

The activated endophytic fungus p. oxalate was inoculated in

PDAmedium and cultured on a shaker for approximately 1 week

at 28°C. Subsequently, vacuum-filtered fermentation broth was

extracted with ethyl acetate and concentrated with a rotary

evaporator to obtain the P. oxalate extract (POE).

2.2 Caenorhabditis elegans strains and
culture conditions

The strains N2 (wild type), CF1038 [daf-16 (mu86)I]

(WBStrain00004840), EU1 [skn-1 (zu67) IV/nT1 (IV; V)]

(WBStrain00007249), PS3551 [hsf-1 (sy441)I]

(WBStrain00030901) and Escherichia coli OP50 (E. coli OP50)
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were obtained from the Caenorhabditis Genetics Center

United States. Worms were cultured at 20°C in solid

nematode growth medium (NGM) and seeded with

inactivated E. coli OP50 as a food source. The worms were

age synchronized based on the bleaching method as follows:

eggs were obtained by bleaching adults using lysis solution 3.5 ml

ofM9 buffer, 0.5 ml of NaClO (5%) and 1 ml of NaOH (5 mol/L).

Unless otherwise stated, all eggs were incubated on NGM plates

containing E. coli OP50 and different concentrations of POE.

2.3 Acute toxicity assay

Toxicity tests in liquid medium were performed according to a

previous method with modifications (Moliner et al., 2018). In brief,

synchronized L4 worms were placed in M9 buffer in a 96-well

microplate with different concentrations (1–100 μg/ml) of POE at

20°C for 24 h. At least 100 worms per condition were evaluated per

treatment and M9 was used as a negative control. Subsequently, the

survival rate (%) was calculated after 24 h.

Survival rate% � (Number of alive worms× 100)/Total number of worms.

2.4 Stress resistance assay

Before exposure to the corresponding stressors, the age-

synchronized L1 larvae worms were treated or not treated

with POE (25, 50, 75 µg/ml) for 3 days at 20°C. Subsequently,

the late L4 larvae or young adult were washed twice with sterile

water and exposed to various stresses until all individuals died.

The worms were considered dead when they did not respond to

platinum wire stimulus. All trials were repeated three times.

Resveratrol (Res, 22.5 µg/ml) was used as a positive control

(Zhuang et al., 2016).

2.4.1 Ultraviolet-B stress assay
To evaluate resistance to UV irradiation, the POE-treated

worms were exposed to UV irradiation (120 mJ cm−2) for 4 h.

The number of surviving worms was counted every 24 h (Wang

et al., 2018).

2.4.2 H2O2-induced oxidative stress assay
This assay was performed as described previously (Saul et al.,

2008). Briefly, the POE-treated worms were transferred to fresh

NGM containing 2 mMH2O2 to determine the effects of POE on

oxidative stress. The survival rate of the worms was observed

every 30 min.

2.4.3 Heat shock assay
The heat shock assay using C. elegans was performed according

to Lin et al. (2019). The POE-treated worms were moved from a

comfortable cultivation environment (20°C) to a 35°C mediated

stress environment. Subsequently, the number of surviving worms

was monitored every hour to determine their heat stress resistance.

2.5 Intracellular malondialdehyde content,
and superoxide dismutase, catalase, and
glutathione peroxidase activities

The POE (25, 50, 75 µg/ml)-treated worms (L4 stage) were

treated with and without H2O2 (2 mM) for 1 h. Next, worm bodies

were lysed by ultrasound equipment and supernatant was obtained

after centrifugation. TheMDAand protein content, SOD, CAT, and

GSH-Px activity were determined according to the commercial

assay kits (Nanjing Jiancheng Biotechnology Institute, China). Final

results were normalized to protein levels (Xiao et al., 2014).

2.6 Reactive oxygen species accumulation
assay

Estimation of endogenous ROS levels was based on the method

described by Prasanth et al. (2019). Briefly, the worms were treated

with different concentrations of POE (25.50 and 75 μg/ml) for 3 days

and exposed to oxidative stress (2 mM H2O2) for 1 h. Then, the

worms were washed thoroughly with M9 buffer and incubated with

5 μg/ml 2′,7′-dichloro-fluorescein diacetate (DCFH-DA) for 20 min,

followed by another wash to remove the excess DCFH-DA.

Furthermore, the worms were transferred with a drop of sodium

azide (0.5%) onto a glass slide. Fluorescent imaging was performed

on 10 worms using an Olympus FV1200 confocal microscope

(Tianjin Leike Optical Instruments Co., Ltd.). The relative

fluorescence was measured and calculated using ImageJ software.

2.7 Lipofuscin accumulation and body
length assay

The lipofuscin level was measured after 5 days of POE

treatment. Then the worms were randomly selected and

washed with M9 buffer three times and then anesthetized

with 0.5% NaN3 as described in previous study (Onken and

Driscoll, 2010). At least 10 worms were selected for imaging using

a fluorescence microscope (CX23, Olympus, Tokyo, Japan) at

wavelength with excitation/emission (360/420 nm) filters. The

fluorescence intensity and the body size of the worms were

measured using ImageJ software.

2.8 Longevity assay

The N2 worms were used for lifespan analysis under normal

conditions as described in previous study (Duangjan et al.,
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2019a). In brief, synchronized L4 larval worms were placed on

NGM plates with POE. Then, live worms were counted and

transferred to fresh NGM plates containing POE every day until

all individuals died. The L4 worms were defined as a starting time

point (d 0) for lifespan assay. The assay was performed with

approximately 100 worms in each group and the results are

expressed as the survival rate%.

2.9 Fertility assay

The fertility assay was performed as described in a previous

study (Lin et al., 2020). In brief, reproductive capacity was

evaluated by three indexes: brood size, progeny number and

hatchability (the ratio of progeny number to brood size

number). The parents of the worms were transferred daily to

fresh NGM containing 50 μg/ml POE during the progeny

production period. Then, the eggs on the old NGM were

counted daily. Moreover, the old NGM was kept at 20°C for

24 h to detect viable eggs. The experiment was performed with

at least 10 worms per group.

2.10 Movement assays

The body movement assay was performed as described

previously (Herndon et al., 2002). The age-synchronized

L1 larvae worms were treated and the motility of worms was

evaluated on Days 3, 7, and 10. Then, worms were transferred to

fresh plates for 1-min of free movement. Subsequently, the

motility behaviour of worms was observed using a

stereomicroscope and was classified into classes A, B, and C:

the highly mobile worms, which we designated class A, moved

spontaneously and smoothly; members of class B did not move

unless prodded, and they left tracks that were nonsinusoidal; and

class C worms did not move forward or backwards, but oscillated

their nose or tails in response to touch.

2.11 Expression levels of gene assays

The worms were treated with or without 50 µg/ml POE for

72 h from eggs and then incubated with 2 mM H2O2 for 1 h.

Total RNA was extracted using the TRIzol Total RNA Extraction

Kit (Tiangen, Beijing, China) and synthesized into cDNA using

the FastKing RT Kit (TSINGKE Biotech Co., Ltd., Beijing,

China). Subsequently, quantitative reverse transcription

polymerase chain reaction (qRT‒PCR) was performed using

SuperReal PreMix Plus (SYBR Green) and a real-time PCR

detection system (Bio-Rad, Laboratories, Hercules, CA,

United States). The expression of mRNA was analysed using

the comparative 2−ΔΔCt method and act-1 was the internal control

gene. The primers used for qRT‒PCR in this study are listed in

Supplementary Table S1.

2.12 Determination of DNA damage
protective activity

2.12.1 DNA nicking assay for hydroxyl radical
scavenging activity

The potential of POE to protect the supercoiled

pBR322 plasmid from the destructive effect of free radicals

caused by the Fenton reagent was estimated using the DNA

nicking assay as described by Jeong et al.(2009). Five

microlitres of PBS (10 mM), 2 µl of plasmid DNA (0.5 µg),

POE (5 µl, 25, 50, and 75 μg/ml), 2 µl of FeSO4(1 mM) and

2 µl of H2O2(1 mM) were mixed. The reaction mixture was

incubated for 30 min at 37°C. After incubation, 2 µl of loading

buffer were added to stop the reaction and the DNA was

analysed with 1% agarose gel electrophoresis for 30 min

under 120 V. Subsequently, the different forms of DNA,

i.e., Supercoiled (SC) and open circular (OC) DNA were

visualized and semi-quantitative analysis to calculate the

double helix percentage under the gel documentation

system (Gel Doc XR, Bio-Rad, United States). The positive

control was 500 µM vitamin E (VE) (Liu et al., 2022).

Double helix rate (%) � A0/(A0 + A1) × 100%

where A0 is the grey value of the double helix conformation, and

A1 is the grey value of the open-loop conformation.

2.12.2 Cytochalasin blocked micronucleus assay
in lymphocytes

In this assay, lymphocytes were cultured by adding 500 µl

of whole blood with 9 ml of RPM11640, 10% foetal bovine

serum, penicillin (100 units/ml), streptomycin (100 µg/ml)

and phytohemagglutinin (5 µg/ml). Then, the cells were

exposed to H2O2 (250 µM) to induce DNA damage.

Simultaneously, POE at different concentrations (25

50 and 75 μg/ml) was added to the cultures for 72 h in 5%

CO2 at 37°C. At 44 h, cytochalasin-B (3 µg/ml) was added to

the cultures to block cytokinesis. At 72 h, the cultures were

collected and treated (Carvalho-Silva et al., 2016). Coded

slides were stained for 30 min with Giemsa and observed

under a microscope. MN and other nuclear abnormalities

were scored in 500 well spread cells of each culture (Fenech

et al., 1999).

2.13 Statistical analysis

Survival curves were drawn to determine significant

differences using log-rank (Mantel-Cox) tests (GraphPad
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Software, CA, United States) (*p < 0.05, **p < 0.01, and ***p <
0.001). Other statistical calculations used one-way ANOVA

followed by LSD and Duncan tests (SPSS software, version

20). All data are expressed as the mean ± SD (n = 3), and

different letters in columns indicate that the values are

significantly different (r < 0.05).

3 Results

3.1 Effect of P. oxalate extract on acute
toxicity in C. elegans

The acute toxicity of POE was initially assessed by

studying the effect of POE on the viability of C. elegans.

The results showed that, compared with the control group,

the viability of the worms was not affected after 24 h of POE

treatment at concentrations ranging from 10 to 100 µg/ml

(Table 1). Worms exposed to maximum dose extracts also

maintained a survival rate of 93% ± 4%, while the viability

rates of the control group were 92% ± 1% (Table 1). Thus,

POE did not produce acute toxicity to the model organism at

the tested concentrations.

3.2 Effect of P. oxalate extract on stress in
C. elegans

To comprehensively evaluate the stress resistance of POE, we

measured the lifespan of worms under conditions of ultraviolet

radiation, H2O2 and 35°C.

First, we found that the treatment in the presence of POE

(50 μg/ml) promoted right shift in the worm survival curve

under UV radiation when compared with the controls

(Figure 1A), and the mean lifespan of worms treated with

UV radiation was increased by 6.4%, 14.0%, and 6.9% in the

25, 50, and 75 μg/ml treatment groups, respectively,

compared with the control group (Supplementary Table

S2), although the difference was only significant in the

group treated with 50 µg/ml POE (Supplementary Table

S2; p < 0.05). Furthermore, there was no significant

difference in the maximum lifespan between the treatment

group (50 μg/ml) and the control group, but the mean and

median lifespans were increased significantly

(Supplementary Table S2; p < 0.05). Second, in the H2O2-

TABLE 1 Effects of POE on the viability of C. elegans: The results are
presented as mean of viability ± SEM%.

Concentration (µg/ml) Survival rate (%) p-value

Control 92 ± 1

100 93 ± 4 >0.05
80 94 ± 5 >0.05
60 95 ± 3 >0.05
40 93 ± 3 >0.05
20 91 ± 4 >0.05
10 93 ± 5 >0.05

Not significance differences between treatment and control groups found (p > 0.05).

FIGURE 1
The effect of POE on stress resistance inC. elegans. (A) Survival curve of worms under UV irradiation-induced stress. (B) Survival curve of worms
under H2O2-induced stress. (C) Survival curve of worms under 35°C-induced stress. Three independent biological replicates were performed.
Differences compared to control group were considered significant at p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***).
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induced oxidative stress assay, a similar protective effect was

observed in the 50 μg/ml POE treatment groups and was

comparable to that with resveratrol (Figure 1B). There was no

statistically significant difference in survival rate between the

treatment groups (25 and 75 μg/ml) and the control group

(Figure 1B). However, pretreatment with 50 μg/ml POE

significantly improved the mean lifespan, median lifespan

and maximum lifespan of worms under H2O2-induced

oxidative stress (Supplementary Table S2; p < 0.05). Last, a

similar result was also observed: the survival rate of POE

(50 μg/ml) pretreated worms was higher than that of the

control group under thermal stress conditions, although

the effect was not as good as that in the resveratrol

treatment group (Figure 1C; Supplementary Table S2). As

expected, the 50 μg/ml POE treatment group exhibited the

highest mean and maximum survival times, which were

11.2 ± 0.41 h and 20.50 ± 2.65 h, respectively

(Supplementary Table S2; p < 0.05).

FIGURE 2
The effect of POE on the antioxidant defense system in C. elegans under normal and H2O2-induced oxidative stress conditions. (A) The MDA
content. (B) The SOD activity. (C) The GSH-Px activity. (D) The CAT activity. Bars with no letters in common are significantly different (p < 0.05).
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These results indicated that supplementation with

POE has the potential to resist UV- and H2O2-mediated

oxidative stress and 35°C-mediated heat stress in the C.

elegans model.

3.3 Effect of P. oxalate extract on
malondialdehyde content and antioxidant
enzyme activity in C. elegans

To elucidate the antioxidant and oxidative resistance

properties of the POE in vivo, the MDA content and SOD

and GSH-Px activities of POE-treated C. elegans were

determined in H2O2-treated C. elegans, and the

corresponding indexes were also determined under normal

conditions. As shown in Figure 2A, the MDA content was

decreased under both conditions compared to the control,

indicating that POE was able to alleviate lipid peroxidation in

C. elegans under normal and pressure conditions.

Furthermore, since SOD and GSH-Px are the main ROS

scavenging enzymes in the antioxidant defence system of C.

elegans, we further measured the activities of antioxidant

enzymes. As expected, compared with the control group,

the SOD activity of C. elegans treated with POE was

significantly increased under H2O2-induced oxidative stress

conditions (Figure 2B; p < 0.05). A similar result was also

observed in the absence of stress (Figure 2B). For GSH-Px and

CAT activity, the enzyme activity in the POE treated group

was significantly increased with and without pressure,

compared with the control group (Figures 2C,D; p < 0.05).

It was obvious that POE showed an excellent in vivo

antioxidant capacity to activate the antioxidant defence

system of C. elegans.

3.4 Effect of P. oxalate extract on Reactive
oxygen species accumulation inC. elegans

To further delve into the antioxidant potential of POE,

the ROS levels of C. elegans were assessed under normal or

stressful conditions. As shown in Figures 3A,B, higher ROS

levels were found in worms with or without POE treatment

under oxidative stress than in the absence of oxidative stress,

indicating that H2O2 caused the accumulation of ROS in

worms. Furthermore, POE treatment resulted in a decrease in

ROS levels compared to the controls regardless of the

conditions (Figure 3), which was directly proportional to

the reduction in fluorescence. The ROS levels were

significantly decreased in the 50 and 75 μg/ml POE-treated

groups under oxidative stress and in the 50 μg/ml POE-

treated group under normal conditions compared to

controls (Figures 3A,B; p < 0.05). It was obvious that POE

showed a significant antioxidant capacity and could scavenge

intracellular ROS to a certain extent, which was consistent

with reducing MDA and enhancing the activities of SOD and

GSH-PX.

FIGURE 3
The effect of POE on intracellular levels of ROS inC. elegans. (A) Accumulation of ROS inC. elegans under normal conditions. (B) Accumulation
of ROS in C. elegans under H2O2-induced oxidative stress. (i): Relative fluorescence intensity of worms was quantified using ImageJ software. (ii):
Representative image of worms which was treated with POE in both conditions. Bars with no letters in common are significantly different (p < 0.05).
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3.5 Effects of P. oxalate extract on body
length and lipofuscin accumulation in C.
elegans

Lipofuscin, a marker of ageing, is commonly used

to assess the health status of C. elegans. The body length

and lipofuscin levels in C. elegans were also evaluated

and representative images are presented in Figure 4A. In

terms of body size (Figure 4B), there was no significant

change between the POE treatment groups and the

control group (p > 0.05), indicating that POE did not

affect the body size of the worms. Relative

fluorescence quantitative analysis showed that

50 and 75 µg/ml POE significantly reduced the

accumulation of lipofuscin by 13.63% and 13.61%,

respectively, in comparison with the control group

(Figure 4B; p < 0.05).

FIGURE 4
The effect of POE on lipofuscin accumulation and body size in C. elegans. (A) Representative images of fluorescence and bright field
micrographs are shown, the scale bar was 100 μm; (B) body length and lipofuscin was measured and quantitated by ImageJ. Bars with no letters in
common are significantly different (p < 0.05).

FIGURE 5
The effect of POE on lifespan ofC. elegans. Results of lifespan
experiments were analysed using the Kaplan-Meier survival model,
and for significance by means of a long rank pairwise comparison
test between the control and treatment groups. Differences
compared to control group were considered significant at p < 0.05
(*), p < 0.01 (**) and p < 0.001 (***).
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3.6 Effect of P. oxalate extract on the
lifespan of C. elegans

Next, we evaluated whether POE (50 µg/ml) could prolong

the lifespan of worms. This concentration was chosen as the

treatment dose because it was found to be more beneficial for

reducing lipofuscin accumulation and enhancing stress

tolerance. However, there was no significant difference in

survival curves between the treatment and control groups

(Figure 5; p > 0.05 by the log-rank test), indicating that

although POE can alleviate the accumulation of age pigments,

it is not sufficient to prolong the lifespan of worms.

3.7 Effect of P. oxalate extract on the
fertility and movement of C. elegans

Fertility and movement assays were performed to examine

whether POE had some side effects on the physiological function

of this dose (50 µg/ml). Analyses of fertility showed that the size

of the brood and progeny number from Day 4 were slightly

decreased after POE treatment, but there were no differences in

total brood size, total progeny number or total hatchability in

worms treated with POE when compared with the controls

(Figures 6A–C).

In addition, we found that, as the worms aged, their motility

gradually declined, and B-class and C-class locomotion began to

appear in the middle and middle-late stages of the life cycle

(Figure 6D). However, the movement assay did not show

significant differences in locomotion ability between the POE-

treated group and control group in the different stages of the life

cycle (Figure 6D).

Considered together, these results showed that POE had no

obvious effects on the reproductive and motor systems of C.

elegans.

3.8 P. oxalate extract enhanced stress
resistance in C. elegans by activating
oxidative stress-inducible genes that
might not be associated with skn-1 but
might be dependent on daf-16 and hsf-1

The antistress ability of POE has been proved, but the

underlying molecular mechanisms require further study. Since

POE can enhance antioxidant enzyme activity and reduce ROS

FIGURE 6
The effect of POE on reproduction and movement in C. elegans. (A) Brood size; (B) Progeny number; (C) Hatchability; (D) The three levels of
locomotivity were measured and the individuals were classified according to the movement: A-free movement, B-movement after prodding,
C-weak movement after prodding. Data were expressed as the mean ± SD (n = 3). Bars with different letters indicated statistical significance
(p < 0.05).
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accumulation, we further investigated the relative expression levels

of oxidative stress-inducible genes (sod-3, sod-5, gst-4, ctl-1, and ctl-

2) using RT‒qPCR. As indicated in Figure 7, the relative

expression levels of various oxidative stress-inducible genes of

in the POE-treated group were significantly higher than that of the

control group, especially ctl-2 (exhibiting a 25.2-fold increase).

Moreover, it was observed that the relative expression levels of daf-

16 (25.59-fold), hsf-1 (4.21-fold), hsp-16.1 (2.19-fold) and hsp-16.2

(1.82-fold) were upregulated significantly (p < 0.05) compared to

the control group. However, the relative expression levels of skn-1

were decreased 0.48 times. In addition, to further confirm the

underlying molecular mechanisms, the daf-16, skn-1, and hsf-1

mutants were used to evaluate the effects of POE on lifespan in C.

elegans mutants under H2O2-induced oxidative stress. We found

that the survival rate of POE-treated skn-1 mutants was

significantly increased compared to that of the control group

(Figure 7B, p < 0.05), confirming that POE might act

independently of skn-1. However, the daf-16 and hsf-1 mutants

did not show a protective effect of POE on worm lifespan (Figures

7C,D; p > 0.05), indicating that daf-16 and hsf-1might be necessary

for POE to improve stress resistance.

3.9 Effect of P. oxalate extract on DNA
damage protective activity

3.9.1 DNA nicking assay for hydroxyl radical
scavenging activity

The protective effect of POE on hydroxyl radical-induced

DNA oxidative damage is shown in Figure 8. The plasmid DNA

corresponding to the prominent faster moving band was the

supercoiled form (SC DNA) (Figure 8A, Lane 1). After the

addition of Fe2+ and H2O2, the supercoiled circular DNA

completely converted into the open circular or linear forms

(OC DNA) referred to as the slowest moving line (Figure 8A,

Lane 2) and the DNA double helix percentage was 13%

(Figure 8B), suggesting that the hydroxyl radicals generated by

the Fenton reaction damaged the original structure of DNA and

led to DNA nicking. However, when different concentrations of

POE were added, part of the OC DNA reverted to SC DNA

(Figure 8A, Lanes 3–5) and their DNA double helix percentages

were 44%, 55%, and 57%, respectively (Figure 8B), indicating that

POE can effectively relieve hydroxyl radical-induced DNA

damage.

FIGURE 7
The molecular mechanism of POE in the antioxidant stress. (A) The expression of stress-related genes in C. elegans under H2O2-induced
oxidative stress conditions. (B) The survival curve of skn-1mutant worms under H2O2-induced oxidative stress. (C) The survival curve of hsf-1mutant
worms under H2O2-induced oxidative stress. (D) The survival curve of daf-16 mutant worms under H2O2-induced oxidative stress. Data were
expressed as the mean ± SD (n = 3). Bars with different letters indicated statistical significance (p < 0.05). * Significant p-value <0.05 by the log-
rank test.
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3.9.2 Cytochalasin blocked micronucleus assay
in lymphocytes

The DNA damage protection of POE was also investigated

using the CBMN assay (Figure 9). As shown in Figure 9A, the

forms of DNA damage were MN, nuclear buds and

nucleoplasmic bridges and the mean frequency of DNA

damage in the 25, 50, and 75 µg/ml treatment groups was

15 ± 2, 14.3 ± 2 and 18 ± 2, respectively, exhibiting a

significant decrease in micronucleus frequency compared with

the controls (27.7 ± 2.5) (Figure 9B; p < 0.05). The current study

revealed that POE was able to improve the protection against

DNA damage in lymphocytes.

FIGURE 8
The DNA protective effect of POE against •OH generated by Fenton’s reagent. (A) Electrophoretogram. Lanes 1 and 2 were the normal DNA
treated with and without 1 mM FeSO4 and 1 mM H2O2, respectively. Lanes 3–6 were treated with various concentrations of POE (25, 50, and 75 μg/
ml) and VE (500 μM). (B) Double helix percentage. Bars with different letters indicated statistical significance (p < 0.05).

FIGURE 9
The effect of POE on DNA damage protection in lymphocyte. (A) Various forms of DNA damage seen as (a) MN, (b) nucleoplasmic ridge and (c)
nuclear bud on cells treated with H2O2, the scale bar was 5 μm. (B) The mean frequency of DNA damage in human lymphocytes exposed to H2O2

(250 µM), H2O2 (250 µM) + POE (25, 50, and 75 μg/ml). Data were expressed as the mean ± SD (n = 3). Bars with different letters indicated statistical
significance (p < 0.05).
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4 Discussion

Endophytic fungi can produce medicinal ingredients with the

same or similar functions as the host plant by long-term

mutualism with host plants (Aly et al., 2011). L. chuanxiong

Hort (Umbelliferae), a medicinal and edible plant, is commonly

used for the promotion of good body health, anti-inflammation,

antioxidation, neuron protection and blood vessel elasticity

(Yuan et al., 2020). It has also been reported that the

endophytic fungus L. chuanxiong can produce abundant

secondary metabolites that might be applied for various

purposes (Li et al., 2020; Cao et al., 2021). In our earlier

study, P. oxalate isolated from L. chuanxiong exhibited strong

antioxidant activity in chemical-based assays and P. oxalate

extracts (POE) contained rich polyphenols such as ferulic

acid, hesperidin and chlorogenic acid (Tang et al., 2021). In

the present study, the biological activities of POE were further

studied with regard to DNA damage protection effects and stress

resistance properties.

Oxidative stress is closely related to the pathogenesis of

various diseases such as cancer and neurological diseases (Xie

et al., 2013). According to our results, we first found that POE

could improve tolerance against oxidative stress (UV, 35°C and

H2O2-induced) in C. elegans and the protection was not given in

a concentration-dependent manner. In fact, only treatment with

POE at 50 μg/ml significantly improved the worm’s ability to

respond to various stressors, while 75 μg/ml POE showed no

effect.

The reason for this finding could be that POE has been

proven to contain complex chemical components, while some

compounds, such as caffeic acid, exhibit a hormetic response,

eventually producing a deleterious effect when its content

increases to greater than certain levels (Pietsch et al., 2011;

Gutierrez-Zetina et al., 2021). Therefore, we hypothesized that

POE concentrations of 50–75 μg/ml could represent the

inflection point from which the beneficial effects induced by

the POE in C. elegans would begin to decline. Furthermore, some

authors have also observed that the survival of oxidative stress-

induced C. elegans was significantly improved with increasing

extract concentrations within a certain level, but decreased at

higher concentrations (Dueñas et al., 2013; Duangjan et al.,

2019b), which is consistent with our results. Notably,

moderate-dose POE was found to enhance the mean lifespan

of C. elegans under H2O2-mediated oxidative stress (increased by

17.12%), comparable to resveratrol (positive control) and some

crude extracts such as polysaccharides (Lin et al., 2020).

Moreover, ferulic acid, hesperidin, chlorogenic acid and other

polyphenols with antioxidant activity have been reported

(Gülçin, 2012; Li and Schluesener, 2017), while their content

is very low in POE. However, some researchers have attributed

the biological effect of the extract to the synergic and additive

action among multiple chemicals (Vayndorf et al., 2013; Wang

et al., 2018). Therefore, we proposed that the outstanding stress

resistance activity of POE might be attributed to the interactions

among various compounds of endophytic fungi instead of single

secondary metabolites. However, it is inevitable that the study

also had some limitations, such as lack of studies on biological

effects of other single components of POE, requiringes further

study in the future.

It is widely believed that compounds exert their biological

effects not only because of their role as conventional antioxidants

but also because of their ability to modulate the expression of

related genes and act simultaneously on complex signalling

pathways (Mansuri et al., 2014). In C. elegans, the daf-16 gene

encodes the transcription factor DAF-16, which is considered to

be a crucial regulator in the insulin/IGF-1 signalling pathway and

regulates stress-related gene expression in cells (Sen et al., 2020).

Thus, extracts can increase the ability to prevent or repair stress

damage in C. elegans by activating the daf-16 transcription factor

and reducing IIS pathway activity (Ayuda-Durán et al., 2019).

Moreover, sod-3,4, ctl-1, ctl-2, and gst-4 are target genes of DAF-

16, which encode proteins responsible for antioxidant defences

(Murphy et al., 2003). In our study, the survival curve of the daf-

16 mutant showed no significant change after POE treatment,

suggesting that the observed overexpression of these genes

following treatment with POE could be related to the increase

in the expression of DAF-16 (Gutierrez-Zetina et al., 2021).

Therefore, POE improved the stress resistance of C. elegans by

activating the daf-16 transcription factor, further promoting the

expression of downstream target genes. Moreover, some

antioxidant enzymes can reduce or eliminate excess free

radicals in the body through biochemical reactions to

maintain body stability. For example, superoxide dismutase-3

(SOD-3) catalyses the conversion of superoxide radicals to

hydrogen peroxide and diatomic oxygen (Moreno-arriola

et al., 2014). Thus, the overexpression of these target genes in

C. elegans can also explain the decreased ROS level in the present

study. In addition to DAF-16 signalling, SKN-1 is also an

important regulator of oxidative stress resistance, mobilizing a

conservative phase 2 detoxification response and promoting the

activation of multiple genes in C. elegans (Tullet et al., 2008).

However, there was no significant change in the expression of the

skn-1 gene in worms treated with POE, and POE treatment

significantly increased the longevity of the skn-1 mutant,

indicating that it might not be conducive to POE-mediated

resistance. In addition, another important gene was hsf-1. This

gene encodes the thermal shock transcription factor HSF-1

which regulates the expression of various molecular

chaperones (HSP-16.1 and HSP-16.2) to defend against

thermal or oxidative stress (Hsu et al., 2003; Hsu et al., 2003;

Kumsta et al., 2017). In the present study, overexpression of hsf-1,

hsp-16.1, and hsp-16.2 and the lack of effect of POE on the

longevity of hsf-1 mutants provide evidence that the HSF-1

pathway might be necessary for the antistress properties of

POE. Accordingly, we hypothesized that the mechanism by

which POE improves the stress resistance of C. elegans is that

Frontiers in Pharmacology frontiersin.org12

Tang et al. 10.3389/fphar.2022.983716

53

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.983716


POE activates daf-16 to activate oxidative stress-inducible genes

(sod-3, sod-5, gst-4, ctl-1, and ctl-2) and hsf-1 to promote the

expression of downstream heat stress-inducible genes (hsp-16.1

and hsp-16.2), rather than skn-1 under stress conditions

(Figure 10).

In general, an increase in lifespan is often accompanied by an

increase in stress resistance in C. elegans (Murphy et al., 2003).

Lipofuscin is an autofluorescent compound that accumulates

gradually with the ageing of C. elegans (Clokey and Jacobson,

1986). However, our results showed that POE decreased

lipofuscin levels in worms, while it did not extend life,

indicating that POE showed some health benefits, but they

were not sufficient to prolong the lifespan of worms because

the lifespan is affected by multiple factors. Thus, the enhanced

antistress ability of worms treated with POE found in the present

study is not in line with lifespan extension, consistent with the

observations of Duangjan et al. (2021) working. Moreover,

lifespan analysis was used to evaluate the long-term toxicity of

extracts (Romero-Márquez et al., 2022). Thus, the results also

showed that POE has no long-term toxicity to worms. Ideally,

there should be no harm to health indicators while showing some

beneficial biological effects. However, some studies have

measured only one or two indicators to evaluate the side

effects of extracts on worms (Moliner et al., 2020; Duangjan

et al., 2021). Therefore, this study comprehensively evaluated

from four perspectives: long-term and short-term acute toxicity,

reproduction, locomotion and growth. It demonstrated that POE

has a beneficial effect on enhancing stress resistance without

adverse effects.

There is a considerable amount of evidence revealing a

correlation between DNA lesions and the occurrence of

chronic and degenerative illness (Thanan et al., 2014); for

example, DNA strand breaks caused by hydroxyl radical-

induced persistent oxidative damage are suspected to be a

major cause of carcinogenesis (Powell et al., 2005;

Chandrasekara and Shahidi, 2011). In our study, the DNA

damage protection capacity of POE was evaluated on

pBR322 plasmid DNA when treated with Fenton’s reagent.

The hydroxyl radical generated by the Fenton reactant can

attack DNA and cause a dramatic scission of the supercoiled

(SC) DNA strand to open circular (OC) strands (Qian et al.,

2008). Under such conditions, POE can may interfere with the

reaction of Fe2+with H2O2 or directly quench hydroxyl

radicals by providing an electron due to its high

antioxidant potential and further protect the supercoiled

plasmid DNA against hydroxyl radicals (Chandrasekara

and Shahidi, 2011). Moreover, a significant reduction in

CBMN was observed in H2O2 treated lymphocytes when

exposed to POE, which again demonstrated its antioxidant

and DNA damage protection effects. This result is in line with

previous studies in which Aspergillus fumigatus (Kaur et al.,

2021) and P. oxalicum (Kaur et al., 2020) extracts showed

DNA damage protection. Abundant phenolic compounds, viz;

hesperetin, ferulic acid, alternariol and apigenin have been

found in POE in our previous studies (Tang et al., 2021),

which might be responsible for its biological effects. For

example, hesperidin not only showed strong free radical

scavenging ability in vitro (Wilmsen et al., 2005), but it

also provided strong cellular antioxidant protection to

alleviate oxidative stress and DNA damage (Sahu et al.,

2013). Therefore, although the underlying mechanisms of

DNA damage protection are not fully understood, the

protective ability of POE could be related to the abundant

secondary metabolites of P. oxalate.

5 Conclusion

In this study, the antioxidant activity and stress resistance

of POE were investigated in C. elegans, and the protection

activity against DNA damage of POE was evaluated by the

pBR322 plasmid and lymphocytes. Our study revealed that

POE might effectively counteract UV, 35°C and H2O2-induced

oxidative stress without compromising the growth,

reproduction and locomotion of C. elegans. The partial

oxidative resistance properties of POE can be attributed to

diminished intracellular ROS, as well as elevated activity of

antioxidant enzymes (SOD CAT and GSH-PX). The possible

mechanism by which POE enhances stress resistance in C.

elegans is mediated by activating the DAF-16 and HSF-1

pathways and promoting the overexpression of stress

response genes. In addition, we found that POE had a

FIGURE 10
A possible model of the mechanism of action of POE-
mediated stress resistance in C. elegans. POE alleviates the
accumulation of ROS by activating the antioxidant defense system,
and ultimately improves the anti-stress ability of C. elegans.
The observed effects were mediated, at least in part, by the two
master regulators DAF-16 and HSF-1 signaling pathways rather
than SKN-1.
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protective effect against Fenton reaction produced DNA

nicking and H2O2-induced DNA damage in lymphocytes.

In summary, this study is the first to report the antistress

effects and DNA damage protection potential of endophytic

fungus P. oxalate extracts, which could be a potential resource

for treating oxidative stress and DNA damage diseases.

However, the underlying mechanisms of the biological

effects and more in vivo interventions with complex model

organisms are needed to support the therapeutic potential of

POE in the future.
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Liver dysfunction in sepsis is a major complication that amplifies multiple organ

failure and increases the risk of death. Inflammation and oxidative stress are the

mainmediators in the pathophysiology of sepsis. Therefore, we investigated the

role of menthol, a natural antioxidant, against sepsis-induced liver injury in

female Wistar rats. Sepsis was induced by cecal ligation and puncture (CLP).

Menthol (100 mg/kg) was given intragastric 2 h after CLP. Blood samples and

liver tissues were collected 24 h after surgery. Menthol significantly (p < 0.05)

attenuated the sepsis-induced elevation in serum liver enzymes and improved

the hepatic histopathological changes. Menthol treatment significantly (p <
0.05) decreased hepatic levels of tumor necrosis factor-alpha,

malondialdehyde, total nitrite, and cleaved caspase-3. It restored the hepatic

levels of superoxide dismutase and reduced glutathione. Additionally, menthol

significantly (p < 0.05) increased hepatic levels of B-cell lymphoma 2 (Bcl-2); an

anti-apoptotic factor, and proliferating cell nuclear antigen (PCNA), a biomarker

of regeneration and survival. Our results showed the therapeutic potential of

menthol against liver injury induced by sepsis.
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1 Introduction

Sepsis is a global health issue and a leading cause of death,

especially in patients with low immunity, including children,

the elderly, immunocompromised individuals, and intensive

care unit patients (Fleischmann et al., 2016; Rudd et al., 2017;

Dou et al., 2019a). Sepsis is a condition of life-threatening

organ dysfunction mainly due to the host’s immune response

to infections (Seymour et al., 2016). Sepsis induces damage to

many organs, including the lungs, heart, and liver. However,

the liver is more vulnerable and often affected earlier by sepsis

(Saini et al., 2022). Hepatic dysfunction during sepsis

incidence ranges from 34% to 46% and is considered a

powerful predictor of sepsis-related mortality. The risk of

death due to sepsis-induced hepatic failure is 54%–68%

(Strnad et al., 2017; Woznica et al., 2018), which is higher

than the death rate due to sepsis-induced lung dysfunction

(Yan and Li, 2014). The liver is a key component of the

primary defense line against infection. Early in sepsis,

Kupffer cells play an essential role in the removal of

bacteria and endotoxins through the release of

proinflammatory cytokines such as interleukin (IL)-1β, IL-
6, IL-18, and tumor necrosis factor-alpha (TNF-α) (Traeger
et al., 2010). Although these cytokines help eradicate the

pathogens, they also provoke liver damage and stimulate

the release of other inflammatory mediators in a process

known as a cytokine storm. This eventually leads to a

systemic inflammatory response and multiple organ

damage (Lelubre and Vincent, 2018; Woznica et al., 2018).

Sepsis leads to a profound reduction in hepatic functions,

including the dysregulation of carbohydrate, lipid, and

protein metabolism, decreased synthesis and release of bile

and coagulation factors, impaired defense against pathogens,

increased production of inflammatory mediators, and the

amplification of other organs’ failure (Srivastava and

Gimson, 2013; Yan and Li, 2014; Strnad et al., 2017).

Understanding the underlying mechanisms of hepatic

dysfunction in sepsis is still a challenge. The pathogenesis

of sepsis-induced liver injury involves many factors, including

bacterial toxins, septic shock induced-hypotension, hepatic

hypoperfusion (Spapen, 2008; Henrion, 2012), impairment of

the endothelial function of hepatic microvasculature (La Mura

et al., 2013), production of reactive oxygen species (ROS), and

proinflammatory cytokines (Strnad et al., 2017). Increased

ROS production and inflammation remain the hallmarks of

hepatic damage in sepsis. Thus, efforts to control sepsis-

induced liver injury focused on drugs with antioxidant and

anti-inflammatory effects to prevent multiple organ damage

and decrease mortality (Ahmed et al., 2020; Al-Kadi et al.,

2020).

Menthol, the main component of Mentha arvensis L.

(Lamiaceae) and Mentha piperita L. essential oil, is a naturally

occurring monoterpene widely employed in different

pharmaceutical formulations as a flavoring agent and an oral

care product. Menthol has multiple biological activities,

including antinociceptive (Pergolizzi et al., 2018),

antispasmodic (Amato et al., 2014), local anesthetic (Galeotti

et al., 2001), antibacterial, and antifungal effects (Sabzghabaee

et al., 2011). Accumulating evidence showed that menthol

modulates the production of TNF-α and interleukins,

decreases ROS generation, and enhances the antioxidant

enzyme activity in different animal models (Janbaz and

Gilani, 2002; Rozza et al., 2014; Bastaki et al., 2018; Rozza

et al., 2021). The anti-inflammatory and antioxidant effects of

menthol proved protective against paracetamol- and carbon

tetrachloride (CCl4)-induced hepatic toxicity (Janbaz and

Gilani, 2002), acetic acid-induced colitis (Bastaki et al., 2018),

gastric ulceration (Rozza et al., 2013; Rozza et al., 2014),

Parkinson’s disease (Du et al., 2020), skin wounds (Rozza

et al., 2021), and Freund adjuvant-induced peripheral

inflammation (Hilfiger et al., 2021). Menthol, a natural

product with minimal side effects, is available at low costs and

possesses hepatoprotective effects. However, whether or not

menthol can alleviate sepsis-induced liver injury has not yet

been studied. Hence, this study aimed to explore the therapeutic

potential and possible protective mechanisms of menthol against

sepsis-induced hepatic dysfunction.

2 Materials and methods

2.1 Animals and drugs

Female Wistar rats (8–10 weeks old) weighing (200–220 g)

were obtained from El-Nahda University Animal House (Beni-

Suef, Egypt) for this study. Rats were housed under specific

pathogen-free conditions on a 12-hrs light-dark cycle with free

access to regular rat chow (El-Nasr Company, Abou Zaabal,

Cairo, Egypt) and tap water. Rats were left for 1 week as an

acclimatization period prior to the experiment. All experimental

procedures were approved by The Commission on the Ethics of

Scientific Research, Faculty of Pharmacy, Minia University,

Egypt (ES02/2020). Menthol was purchased from (Sigma-

Aldrich Inc., United States).

2.2 Induction of sepsis

Cecal ligation and puncture (CLP), a precise and commonly

used sepsis model, was used to induce sepsis as previously

prescribed (Nemzek et al., 2008; Ahmed et al., 2020). Rats

were anesthetized with ketamine (50 mg/kg) and xylazine

(10 mg/kg). A longitudinal abdominal incision was made in

the lower left quadrant of the body to expose the cecum. 0.3-

mm silk surgical suture thread was used to ligate the cecum just

below the ileo-cecal valve, and the ligated part was punctured
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twice with an 18-gauge needle to ensure the same degree of

severity of sepsis in all groups. The percentage of the ligated

portion (75%) was kept constant in all groups. Finally, the cecum

was gently returned to its place in the abdominal cavity, and the

incision was sutured. All animals received normal saline [3 ml/

100 g, subcutaneous (S.C.)] to help for resuscitation after surgery.

After the surgical procedure, the rats exhibited symptoms of

illness, including piloerection, diarrhea, and malaise according to

Morton and Griffiths (Morton and Griffiths, 1985). In addition,

similar to our previous studies (Ibrahim et al., 2020a; Al-Kadi

et al., 2020; Al-Kadi et al., 2021), ischemia and inflammation in

the ligated cecum confirmed the induction of sepsis in CLP rats

(Supplementary Figure S1).

2.3 Survival study

Female Wistar rats (200–220 g) were randomly assigned to

four groups (n = 10, each): sham group, the rats were exposed

to all the surgical procedures for the induction of sepsis,

except for the ligation and puncture steps. They were given

vehicle (1 ml water/kg, I. G) 2 hours after surgery; sham-

menthol group, the rats of this group are sham rats that

received intragastric (I.G.) menthol (100 mg/kg) dissolved

in water (L ml/kg); sepsis group, the rats of this group were

exposed to CLP then received the vehicle (1 ml water/kg, I. G)

2 h after CLP surgery; and sepsis-menthol group, the rats of

this group were exposed to CLP then received menthol

(100 mg/kg, I. G) 2 h after the surgery. All rats were

monitored for 7 days to assess the mortality rate. The

sample size for the survival analysis was determined

according to previous studies in our lab (Ibrahim et al.,

2020a; Al-Kadi et al., 2021) and by others (Chen et al., 2021).

2.4 Experimental groups

Thirty female rats were randomly divided into four groups:

Group 1 (sham group, n = 6), Group 2 (sham-menthol, n = 6),

Group 3 (sepsis group, n = 12), and Group 4 (sepsis-menthol, n =

6). All animals received either vehicle (Group 1 and 3) or

menthol (100 mg/kg, I. G; Group 2 and 4) 2 h after surgery to

ensure the complete recovery from anesthesia and allow I.G.

administration. The time of the drug intervention was chosen

based on our preliminary study and previous reports (Aksoy

et al., 2014; Ibrahim et al., 2020a; Al-Kadi et al., 2020; Al-Kadi

et al., 2021). Our preliminary studies showed the best survival

results in the CLP septic rats that received 100 mg/kg menthol

(Supplementary Figure S2). Furthermore, this dose was in the

range previously reported to have anti-inflammatory,

antioxidant, and anti-apoptotic effects in other models (Janbaz

and Gilani, 2002; Ghasemi-Pirbaluti et al., 2017; Hilfiger et al.,

2021).

Rats of all groups were sacrificed 24 h after surgery and blood

samples were then collected by cardiac puncture. A segment of

the medial lobe from each animal’s liver was fixed in 10%

buffered formalin solution for 24 h, and prepared for

histopathological and immunohistochemical examination.

Other liver samples were flash-frozen in liquid nitrogen and

stored at -80°C for further assessments.

2.5 Assessment of hepatic function

For early detection of hepatic dysfunction, serum levels of

Glutamic–Pyruvic Transaminase (GPT; ALT) (EC2.6.1.2) and

Glutamic–Oxaloacetic Transaminase (GOT; AST) (EC2.6.1.1)

were determined by colorimetric assay kits (Diamond

Diagnostics, Cairo, Egypt) based on the method of Reitman

and Frankel as per the manufacturer’s instructions (Reitman

and Frankel, 1957). The measuring range of ALT and AST were

up to 94 and 89 U/L, respectively. For quantitation of AST, the

samples were diluted ten times, then the results were multiplied

by 10.

2.6 Assessment of hepatic
histopathological changes

Specimens from formalin-fixed liver tissues were processed

for routine paraffin embedding. Sections (5-μm-thickness) were

stained with haematoxylin and eosin (H&E). A CCD digital

camera adapted to BX51 microscope (Olympus, Japan) was used

to capture images at ×400 magnification. ImageJ software was

used for semi-quantitative analysis. The parameters used to

assess histopathological changes included dilated central veins,

sinusoidal congestion, hepatocyte necrosis, and hepatocyte fatty

changes (Jensen, 2008). All histopathological assessments were

done by a histopathologist blind to the treatment.

2.7 Assessment of hepatic oxidative stress
and antioxidant enzyme activity

To assess the liver’s oxidative stress, levels of

malondialdehyde (MDA), a product of lipid peroxidation and

an index of oxidative stress, were calorimetrically measured

based on the Buege method (Buege and Aust, 1978). Levels of

total nitrite were determined calorimetrically based on the Griess

assay method previously prescribed (Moorcroft et al., 2001). To

assess the antioxidant enzyme activity, hepatic reduced

glutathione (GSH) levels were determined by colorimetric

measurement of 5-thio-2-nitrobenzoic acid, which is produced

after the reduction of Ellman’s reagent (5,5-dithio-bis-2-

nitrobenzoic acid) by the sulfahydryl (–SH) group of GSH

(Beutler et al., 1963). Hepatic superoxide dismutase (SOD)
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levels were determined according to a previously described

method (Marklund and Marklund, 1974) by measuring the

amount of SOD enzyme that inhibits the autoxidation of

pyrogallol by 50%.

2.8 Immunohistochemical determination
of hepatic tumor necrosis factor-alpha,
cleaved caspase-3, B-cell lymphoma 2,
and proliferating cell nuclear antigen

Liver sections (5-μm-thick) were obtained from

representative formalin-fixed, paraffin-embedded blocks and

transferred to adhesive slides. After the deparaffinization and

dehydration of the sections, endogenous peroxidase activity was

blocked by incubation with hydrogen peroxide. Microwave

treatment in sodium citrate buffer, pH 6, was used for antigen

retrieval. Tissue sections were then incubated with rabbit anti-

cleaved caspase-3 (catalog number A19664, ABclonal, MA,

United States), mouse anti-proliferating cell nuclear antigen

(PCNA) (catalog number A9909, ABclonal, MA,

United States), rabbit anti-B-cell lymphoma 2 (Bcl-2) (catalog

number A19693, ABclonal, MA, United States), or rabbit anti-

TNF-α (catalog number A11534, ABclonal, MA, United States).

A negative control experiment was done using the same steps but

without the addition of the primary antibody to ensure the

reaction specificity. Sections were then incubated with a

biotinylated secondary antibody for 30 min at room

temperature. An avidin-biotin complex immunoperoxidase

system was used to visualize the reaction using 3,3′-
diaminobenzidine (DAB) as a chromogen. Sections were

counterstained using hematoxylin, then dehydrated, cleared,

and mounted with distyrene, plasticizer, and xylene (DPX).

The mean surface area fractions of anti-cleaved caspase-3,

PCNA, Bcl-2, and TNF-α immuno-positive cells were

measured using ImageJ software (version 1.51 k, Wayne

Rasband, National Institutes of Health, United States) by a

pathologist blind to the experimental groups.

2.9 Statistical analysis of data

All statistical analyses were performed using GraphPad

Prism (version 7.0; San Diego, CA, United States). Values

were expressed as mean ± S.E.M. Shapiro-Wilk normality test

was used to test the normality of the data. All data followed a

normal distribution. One-way analysis of variance (ANOVA) test

was used to test the significance of the results. Tukey’s post hoc

test was used for multiple comparisons. Survival analysis was

performed using the Log-rank (Mantel-Cox) test. The results

were considered statistically significant if the probability (p)-

values were <0.05. Correlation analysis was carried out by

calculating the Pearson correlation coefficient (r). If r <|0.3|,

the correlation is considered weak. If r is between |0.3| and |0.7|,

this indicates a moderate correlation. If r >|0.7|, this indicates a
strong correlation.

3 Results

3.1 Menthol improved survival in septic
rats

Sepsis induction by CLP resulted in 40%, 70%, and 90%

mortality by the end of the first, second-, and third-day post-

surgery, respectively. On the other hand, administration of

menthol (100 mg/kg, I. G) 2 h post CLP resulted in the

survival of 100% of rats after the first day, 70% after the

second day, and 50% after the third day. All rats in the sham

and sham-menthol groups survived the entire seven-day study

period. Survival analysis illustrated a significant difference (p <
0.05) between the sham group and the sepsis group, as well as

between the menthol-treated septic rats and the untreated septic

rats (Figure 1).

3.2 Menthol attenuated sepsis-induced
hepatic injury

The serum levels of the cytoplasmic liver enzymes, ALT

(Figure 2A) and AST (Figure 2B), were significantly (p ˂0.05)

elevated in the untreated sepsis group when compared with sham

group. Treating CLP rats with menthol significantly (p ˂0.05)

attenuated the sepsis-induced elevation in serum AST and ALT

levels. As shown in Figure 2, tissue sections from the sham group

FIGURE 1
Effect of menthol on CLP-induced mortality. Induction of
sepsis by CLP model resulted in 0% survival at the end of the 7th

day. Treatment with menthol (100 mg/kg, I. G) 2 h after CLP
improved the survival by 40% at the end of the 7th day. The
sham group and sham-menthol (100 mg/kg, I. G) group had no
mortality throughout the study. Data are presented as a
percentage of survival of rats (n = 10 per group). * significant
difference from the sham group at p ˂0.05. # significant difference
from the sepsis group at p ˂0.05.
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FIGURE 2
The effect of menthol (100 mg/kg, I.G) on serum levels of ALT (Figure 2A) and AST (Figure 2B) in CLP septic rats. Figure 2C: Photomicrographs
showing liver sections from all groups (n = 6, each) examined by H&E-stained (200x). The sham groups [sham and sham-menthol; (A) and (B)]
showed normal liver cells (arrow head) with normal central vein (arrow). The liver tissue from the sepsis group (C) showed disrupted hepatic cells
architecture (arrow head) with dilated central veins (arrow). Liver tissues from the menthol-treated septic rats (D) showed normal liver cells.
Figure 2D: Scoring the histopathological changes; 0: absent, 1: <25%, 2: >25% and <50%, 3: >50% and <75% and 4: >75% of the entire section showed
histopathological alterations. Data represented as amean score of each group for each observed histopathological alteration. * significant difference
from the sham group at p ˂0.05. # significant difference from the sepsis group at p ˂0.05.
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and the sham-menthol group exhibited normal histology.

However, the sepsis group showed a dilated and congested

central vein, surrounded by polygonal-shaped hepatocytes

which were separated by congested sinusoidal spaces.

Furthermore, perivascular focal necrosis, apoptotic bodies, and

moderate fatty changes of peripheral hepatocytes were observed

(Figure 2C). The sepsis-menthol group showed a mildly dilated

and congested central vein, as well as mild fatty changes in the

peripheral hepatocytes. Less inflammation and apoptosis were

observed in menthol-treated septic rats. Scores of dilation and

congestion of the central vein and sinusoids, as well as necrosis

and fatty changes of hepatocytes were significantly (p ˂0.05)

higher compared to the sham groups. Thus, indicating sepsis-

induced deterioration of liver tissues. These changes were

significantly (p ˂0.05) mitigated by menthol (Figure 2D).

3.3 Menthol decreased hepatic oxidative
stress in septic rats

Compared with sham-operated rats, liver samples

obtained from septic rats showed a significant (p < 0.05)

elevation in the level of MDA, a biomarker of oxidative

stress and lipid peroxidation, as well as the total nitrites

(Table 1). The untreated sepsis group showed a significant

(p < 0.05) reduction in the hepatic antioxidant defense

markers, SOD and GSH (Table 1), when compared with the

sham-operated rats. Treatment with menthol after CLP

surgery significantly (p < 0.05) decreased MDA and total

nitrite levels. Furthermore, menthol significantly (p < 0.05)

attenuated the sepsis-induced reduction in hepatic SOD and

GSH levels (Table 1).

TABLE 1 The effect of menthol (100 mg/kg, I.G.) treatment on hepatic oxidative stress and antioxidant enzyme levels in CLP sepsis model.

Groups Amount of MDA (nmol/g
tissue)

Amount of total
nitrite (nmol/g tissue)

SOD activity (U/mg tissue) GSH (nmol/g tissue)

Sham 0.29 ± 0.09 1.92 ± 0.44 1.64 ± 0.02 10.45 ± 1.03

Sham-Menthol 0.32 ± 0.08 1.87 ± 0.17 2.01 ± 0.70 10.98 ± 1.12

Sepsis 0.75 ± 0.12* 3.22 ± 0.92 * 0.25 ± 0.02* 4.49 ± 1.28*

Sepsis-Menthol 0.49 ± 0.15# 1.71 ± 0.41# 1.33 ± 0.22# 12.18 ± 1.05#

Data was analyzed by ANOVA test, followed by Tukey-Kramer for multiple comparison. Data represent the mean ± SEM of 6 observations; p significant difference from the sham group at

p ˂0.05. # significant difference from the sepsis group at p ˂0.05.

FIGURE 3
The effect of menthol (100 mg/kg, I.G) on hepatic TNF-α in CLP sepsis model; (A); Representative photomicrographs showing TNF-α
immunoreactivity in liver tissue, (B); Bar charts showing semi-quantitative analysis of data in A from sections of the sham, sham-menthol, sepsis, and
sepsis-menthol groups. * significant difference from the sham group at p ˂0.05. # significant difference from the sepsis group at p ˂0.05. Data
represented as mean ± S.E (n = 6).
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3.4 Menthol attenuated sepsis-induced
hepatic inflammation and apoptosis

Immunohistochemical data revealed a significant (p < 0.05)

increase in the hepatic expression of the inflammatory mediator

TNF-α in the untreated sepsis group (Figure 3). Additionally,

untreated septic rats exhibited a significant (p < 0.05) upregulation

of the apoptotic factor cleaved caspase-3, accompanied by a

significant (p < 0.05) reduction in the expression of the anti-

apoptotic factor Bcl-2 (Figure 4). In contrast, menthol treatment

significantly (p < 0.05) abrogated the sepsis-induced elevation in

hepatic TNF-α levels (Figure 3). Compared to the untreated sepsis

group, menthol exhibited remarkable anti-apoptotic activity

reflected by a significant (p < 0.05) decline in hepatic cleaved

caspase-3 expression (Figure 4B) and enhanced expression of Bcl-2

in treated septic rats (Figure 4D).

3.5 Menthol promoted hepatocellular
regeneration in septic rats

Hepatic levels of PCNA, an index of cell proliferation and

regeneration, were significantly (p < 0.05) decreased in the sepsis

group (Figure 5). This finding aligns with the observed elevation

in hepatic apoptosis in these animals (Figure 4). Menthol

administration significantly (p < 0.05) attenuated the sepsis-

induced decline in PCNA expression (Figure 5).

3.6 Analysis of correlation between
different parameters

A strong positive correlation was found between the liver

injury score and the inflammatory marker, TNF-α., and the

FIGURE 4
The effect of menthol (100 mg/kg, I.G) on hepatic cleaved caspase-3 and Bcl-2 levels in CLP sepsis model. (A); Representative
photomicrographs showing cleaved caspase-3 immunoreactivity in liver tissues. (B); Bar charts showing semi-quantitative analysis of data in A from
tissue sections of the sham, sham-menthol, sepsis, and sepsis-menthol groups. (C) Representative photomicrographs showing Bcl-2
immunoreactivity in liver tissues. (D) Bar charts showing semi-quantitative analysis of data in C from tissue sections of the sham, sham-menthol,
sepsis, and sepsis-menthol groups * significant difference from the sham group at p ˂0.05. # significant difference from the sepsis group at p ˂0.05.
Data represented as mean ± S.E (n = 6).
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FIGURE 5
The effect of menthol (100 mg/kg, I.G) on hepatic PCNA levels in CLP sepsis model (A); Representative photomicrographs showing PCNA
immunoreactivity in liver tissues. (B); Bar charts showing semi-quantitative analysis of the data from all groups. * significant difference from the sham
group at p ˂0.05. # significant difference from the sepsis group at p ˂0.05. Data represented as mean ± S.E (n = 6).

FIGURE 6
Correlation matrix for different parameters included in the study. Pearson correlation coefficient (r) was used to measure the correlation. If r is
between |0.3| and |0.7|, a moderate correlation is indicated. If r >|0.7|, a strong correlation is indicated. If r<|0.3|, a weak correlation is indicated.
Positive values indicate a positive correlation, while negative values indicate a negative correlation. The color of the scale bar to the right ranges from
violet to red, indicating r values from +1 to -1. The graph is colored according to the scale. TNF-α: tumor necrosis factor-alpha; PCNA:
proliferating cell nuclear antigen; Bcl-2: B-cell lymphoma 2.
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apoptotic marker, cleaved caspase-3 (Figure 6). In contrast, the

liver injury score was negatively correlated with the

hepatocellular regeneration marker, PCNA, and the anti-

apoptotic marker, Bcl-2. Furthermore, hepatic TNF-α and

cleaved caspase-3 were positively correlated with each other

and negatively correlated with the liver expression of Bcl-2

and PCNA.

4 Discussion

Sepsis is a life-threatening condition resulting from an

unregulated host response to an infection. Sepsis causes

damage and failure of many organs, including the heart,

kidney, and liver. Despite sepsis induced lung injury is highly

common than sepsis-induced hepatic injury, the latter is

associated with a higher mortality rate (Yan and Li, 2014;

Strnad et al., 2017; Woznica et al., 2018). Sepsis-induced

hepatic dysfunction directly contributes to the poor prognosis

and increased risk of death in septic patients (Yan and Li, 2014;

Strnad et al., 2017; Woznica et al., 2018). The pathophysiology of

sepsis-induced hepatic failure is extremely complex. However, a

systemic hyperinflammatory response associated with increased

oxidative stress contributes to the hepatic dysfunction (Liu et al.,

2017). Here, we investigated, for the first time, the

hepatoprotective effects of menthol, a powerful antioxidant

and natural anti-inflammatory agent, in the CLP-induced

sepsis model. Menthol (100 mg/kg, I. G) administration after

CLP surgery decreased hepatic oxidative stress, inflammation,

and apoptosis and enhanced hepatocellular regeneration.

In our current study, which is consistent with previous

studies (Ahmed et al., 2020; Al-Kadi et al., 2020), the

induction of sepsis by CLP resulted in severe hepatic injury

manifested as fatty changes, infiltration of inflammatory cells,

apoptotic and necrotic hepatocyte death, as well as the dilation

and congestion of the central vein. Damage to the liver tissues

was confirmed by the elevation in serum levels of hepatic

transaminases (ALT and AST). These cytoplasmic enzymes

are typically localized in the cytoplasm of hepatocytes, with

minimal presence in the serum; however, hepatic injury

increases their serum levels. Therefore, they are commonly

used as surrogates of hepatic function, indicating the

magnitude of hepatocellular injury (McGill, 2016). Their levels

were markedly elevated in the early phase of sepsis due to sepsis-

induced hypotension and hepatic hypoperfusion (Fuhrmann

et al., 2009; Fuhrmann et al., 2010; Dou et al., 2019b).

Treatment of CLP rats with menthol 2 h after surgery

prevented the elevation of serum hepatic transaminases, which

was supported by the preserved histopathology in this

group. Menthol abrogated the sepsis-induced dilation and

congestion of the central hepatic veins and decreased the

necrosis and fatty changes of hepatocytes, suggesting a

possible hepatoprotective effect against the CLP sepsis model.

Notably, the hepatoprotective effects of menthol were previously

reported against paracetamol- and CCl4-induced hepatic injury

(Janbaz and Gilani, 2002).

The increased oxidative stress significantly contributes to the

hepatic dysfunction induced by sepsis (Moradi et al., 2021).

There are many sources of ROS production during sepsis,

including the exaggerated release of inflammatory mediators,

neutrophil infiltration, and mitochondrial dysfunction (Zhang

et al., 2018). In this study, the sepsis group showed increased

hepatic MDA levels. Oxidation of polyunsaturated phospholipids

of the cell membrane under increased oxidative stress results in

the formation of MDA. Thus, it is used as a standard marker of

increased oxidative stress (Petronilho et al., 2015; Zhou et al.,

2020). The sepsis group also showed elevated total nitrite levels,

indicating high tissue levels of the vasodilator mediator, nitric

oxide (NO). Elevated NO mediates the sepsis-induced

hypotension, and when combined with ROS, contributes to

the formation of peroxynitrite, a potent oxidizing agent that

causes cellular damage (Iwakiri and Kim, 2015). The current

results align with the previous studies indicating that sepsis-

induced ROS production parallels a decrease in hepatic

antioxidant defense markers, such as GSH and SOD (Giustina

et al., 2019; Larrouyet-Sarto et al., 2020). It is worth mentioning,

that our study lacks the measurement of other important

antioxidative stress parameters such catalase and glutathione

peroxidase enzyme activities. However, results from our

previous work (Ahmed et al., 2020; Ibrahim et al., 2020a; Al-

Kadi et al., 2020; Al-Kadi et al., 2021; Senousy et al., 2022), in line

with others (Chen et al., 2012; Yang et al., 2018; Giustina et al.,

2019; Ibrahim et al., 2020b; Larrouyet-Sarto et al., 2020;

Aboyoussef et al., 2021), showed that either enzyme alone or

GSH is a good surrogate of the antioxidant capacity of the tissue,

while the levels of MDA directly reflect tissue oxidative damage.

Akin to its established antioxidant effects (Rozza et al., 2014;

Bastaki et al., 2018), menthol ameliorated the sepsis-induced

elevation in hepatic ROS and total nitrite levels, while preserving

the hepatic antioxidant GSH and SOD levels. These effects were

positively correlated with the observed menthol-induced

improvement in hepatic functions and histopathology.

Previous studies discussing menthol inhibition of neutrophil

infiltration (Rozza et al., 2014), and the subsequent

attenuation of ROS production, may explain the observed

antioxidant effects of menthol.

Evidence supports crosstalk between oxidative stress and the

initiation and progression of inflammation (Aziz et al., 2013;

Pandey et al., 2015). Our data, in line with previous reports

(Vandewalle et al., 2019; Ahmed et al., 2020; Al-Kadi et al., 2020),

showed elevated hepatic TNF-α in the untreated septic rats,

which positively correlated with increased hepatic oxidative

stress and decreased antioxidant capacity. TNF-α enhances the

expression of inducible nitric oxide synthase (iNOS) leading to a

massive release of NO (Ozaki et al., 2010), the stimulation of ROS

production, the expression of inflammatory cytokines such as IL-
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6, the activation of neutrophil infiltration, and ultimately hepatic

damage (Bozza et al., 2007; Vandewalle et al., 2019). Bacteremia

and subsequent endotoxemia directly stimulate the release of

inflammatory cytokines, including TNF-α, IL-1β, IL-6, IL-12,
and IL-18 in sepsis (Traeger et al., 2010). Our results showed

downregulated hepatic TNF-α and decreased oxidative stress in

the menthol-treated septic rats, supporting the

immunomodulatory and anti-inflammatory effects reported by

others (Rozza et al., 2014; Zaia et al., 2016). Accumulating

evidence shows that the activation of the transient receptor

potential melanin-8 (TRPM8) mediates the menthol-induced

cooling sensation and analgesic effects (Bautista et al., 2007;

Ordas et al., 2019). Interestingly, the activation of

TRPM8 reduced the release of TNF-α and increased the anti-

inflammatory cytokine IL-10 (Khalil et al., 2016; Wang et al.,

2017; Khalil et al., 2018; Ordas et al., 2019), which further

supports the anti-inflammatory effects observed with menthol

in this study. Unfortunately, the current results cannot determine

whether the activation of TRPM8 mediates the hepatoprotective

effects of menthol. Thus, it would be of interest to design future

studies to further explore the role of TRPM8 and its potential

significance in novel anti-sepsis modalities.

Sepsis induces hepatocellular apoptosis leading to organ

damage and dysfunction (Jaeschke et al., 2000; Gao et al.,

2018). As a result, attenuation of apoptosis would counteract

the sepsis-induced hepatocellular damage (Yoon and Gores,

2002). Tissue infiltration by neutrophils and macrophages

contributes to the proapoptotic signaling by elevating the

levels of cytokines (e.g., TNF-α), NO, and ROS (Zhang et al.,

2014). Cleaved caspase-3, a hallmark of apoptosis, is activated by

several cell death signals to execute the apoptotic changes

(Mazumder et al., 2008). Our results showed increased hepatic

expression of cleaved caspase-3, positively correlated with sepsis-

induced liver injury. To add to that, the liver of septic rats

revealed low expression of the anti-apoptotic marker, Bcl-2.

The increased hepatocellular apoptosis observed in septic rats

is coherent with previous studies (Wesche-Soldato et al., 2007; Su

et al., 2020). As reported by other studies (Rozza et al., 2014),

menthol exhibited remarkable anti-apoptotic effects; it nearly

eliminated the sepsis-induced elevation in hepatic cleaved

caspase-3 and upregulated the anti-apoptotic marker, Bcl-2.

The anti-apoptotic, anti-inflammatory, and antioxidant effects

of menthol support the observed protection against sepsis-

induced hepatotoxicity.

There is a correlation between hepatocellular regeneration

and the levels of PCNA, a nuclear factor involved in cell

proliferation and DNA replication (Hall et al., 1990;

Moldovan et al., 2007). Increased PCNA levels indicate

hepatocyte regeneration and recovery from hepatic damage

(Li et al., 2016). In addition, PCNA protects against apoptotic

cell death by binding to and inactivating procaspases (Witko-

Sarsat et al., 2010). In sepsis, increased hepatic inflammation and

apoptosis decrease the gene expressions of PCNA, as shown in

this study and other studies (Abcejo et al., 2011). The decreased

hepatic PCNA levels in septic rats correlated with liver injury,

inflammation, and apoptosis. Interestingly, menthol upregulated

the hepatic expression of PCNA in CLP septic rats. This effect

was positively correlated to the menthol-induced enhancement

of hepatic antioxidant activity and decreased apoptotic and

inflammatory effects, suggesting a potential role in the

enhancement of hepatocellular regeneration.

In conclusion, we investigated, for the first time, the

hepatoprotective effects of menthol in an experimental CLP

model of sepsis. The antioxidant, anti-inflammatory, and anti-

apoptotic effects of menthol contributed to its hepatoprotection.

In addition, menthol may induce the expression of PCNA, thus,

promoting compensatory liver regeneration. Together, these

effects suggest that menthol is a promising therapy that limits

liver injury in septic patients. Indeed, the lack of in vitro studies

that further explore the hepatoprotective effects of menthol in

sepsis, the need to investigate the possible involvement of the

menthol receptor (TRPM8) in preventing sepsis-associated

complications and the elucidation of the main signaling

pathways mediating the antioxidant effects of menthol are

considered limitations of the present study that should be

addressed in future studies.
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Scutellaria baicalensis Georgi
regulates REV-ERBα/BMAL1 to
protect against skin aging in mice

Guanghui Sun1†, Yongkang Dang2†, Yanke Lin2, Wanying Zeng2,
Zongjian Wu2, Xingwang Zhang1, Dong Dong3* and
Baojian Wu2*
1College of Pharmacy, Jinan University, Guangzhou, China, 2Institute of Molecular Rhythm and
Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China, 3School of Medicine,
Jinan University, Guangzhou, China

Scutellaria baicalensis Georgi (SBG) is a traditional Chinese medicine widely

used to treat disorders such as hypertension, dysentery and hemorrhaging.

Here, we aimed to assess the pharmacological effects of SBG on skin aging and

to investigate the underlying mechanisms. Mice with skin aging were

established by treatment with D-galactose and ultraviolet-B. SBG (topical

application) showed a protective effect on skin aging in mice, as evidenced

by less formation of skin wrinkles, higher levels of SOD (superoxide dismutase)

and HYP (hydroxyproline) as well as a lower level of MDA (malondialdehyde). In

the meantime, skin MMP-1 and p53 expression were lower, epidermis was

thinner and collagen amount was higher in SBG-treated mice. Anti-skin aging

effects of SBG were also confirmed in NIH3T3 and HaCaT cells, as well as in

mouse primary dermal fibroblasts and human primary epidermal keratinocytes.

Furthermore, we found that loss of Rev-erbα (a known repressor of Bmal1) up-

regulated skin BMAL1 (a clock component and a known anti-aging factor) and

ameliorated skin aging inmice. Moreover, SBG dose-dependently increased the

expression of BMAL1 in the skin of aged mice and in senescent NIT3H3 cells. In

addition, based on a combination of Gal4 chimeric, luciferase reporter and

expression assays, SBGwas identified as an antagonist of REV-ERBα and thus an

inducer of BMAL1 expression. In conclusion, SBG antagonizes REV-ERBα to up-

regulate BMAL1 and to protect against skin aging in mice.
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Introduction

Scutellaria baicalensis Georgi (SBG, also known as Huangqin

in Chinese), a traditional Chinese medicine, possesses various

pharmacological effects such as anti-inflammatory, antiviral,

anticancer, anti-oxidant and antibacterial activities. SBG is

widely used to treat diarrhea, hypertension, dysentery and

hemorrhaging (Liao et al., 2021). Many types of chemicals

are found in SBG, including flavones, phenylethanoids,

amino acids, sterols and essential oils (Zhao et al., 2016).

Of note, flavones (e.g., baicalin, baicalein, wogonin and

oroxylin A) are thought to be a major class of active

ingredients of SBG as they show the health-promoting

effects (such as anti-inflammation, antivirus, anticancer,

anti-oxidation and anti-bacteria) typically observed for SBG

(Brown, 1980; Li et al., 2004). It is interesting to note that SBG

has great potential to manage the skin diseases caused by

sunlight irradiation (Brown, 1980). The underlying

mechanisms may involve scavenging of free radicals and

attenuation of lipid oxidation (Gabrielska et al., 1997).

However, it remains unknown whether SBG can protect

against skin aging.

Skin aging is classified into intrinsic (chronological) and

extrinsic aging, and the latter is also referred to as premature

skin aging or photoaging (Bocheva et al., 2019). Intrinsic aging

is an unpreventable spontaneous process, whereas extrinsic

aging caused by exogenous factors (e.g., ultraviolet/UV light,

cigarette smoking and pollution) is preventable (Fisher et al.,

2002; Bernhard et al., 2007). UV radiation is a major cause of

photoaging, and can be divided into three bands [i.e., UVA

(315–400 nm), UVB (280–315 nm) and UVC (100–280 nm)].

Of note, UVB is the predominant form that causes injuries to

living organisms (Slominski et al., 2018a; Frommeyer et al.,

2022). UV radiation not only induces skin pathology, but also

exert systemic effects, including activation of hypothalamic-

pituitary-adrenal axis, opioidogenic effects, and

immunosuppression. Thus, UV radiation has therapeutic

applications in management of various diseases such as

addiction, autoimmune and mood disorders (Slominski

et al., 2018a). Although skin aging is regarded as a

cosmetic problem, it can result in disfigurement and skin

diseases (such as skin cancers) and has profound

psychological consequences (Watson et al., 2016;

Narayanan et al., 2010). There are two major classes of

agents for management of skin aging, namely, antioxidants

and cell regulators. However, these medications (e.g.,

retinoid) are concerned with the lack of effectiveness and/

or adverse effects (Krutmann et al., 2021; Mukherjee et al.,

2006). Therefore, it is of value to search for more effective and

safer therapeutic agents.

BMAL1 (Brain and muscle ARNT-like protein 1) is a

transcription factor and a core component of circadian

clock system, which generates and maintains circadian

rhythms in most aspects of physiology and behaviors

(Gekakis et al., 1998; Hogenesch et al., 1998; Bunger et al.,

2000). Bmal1 and other clock genes work cooperatively to

drive circadian gene expression using a negative feedback

mechanism (Chen et al., 2009; Duong et al., 2011).

BMAL1 forms a heterodimer with CLOCK (circadian

locomotor output cycles kaput) to activate the transcription

of Pers (periods) and Crys (cryptochromes) as well as many

other clock-controlled genes (CCGs) (Langmesser et al.,

2008). Once reaching a critical level, PER and CRY

proteins in turn inhibit the activity of the BMAL1/CLOCK

dimer, bringing down the levels of CCGs (Böger, 2014). As

PER and CRY proteins are reduced due to degradation, a new

cycle of BMAL1/CLOCK-driven transcription can begin

(Duong et al., 2011). In addition to regulating circadian

rhythms, BMAL1 plays a role in the development and

progression of many types of diseases such as cancers (Jung

et al., 2013), obesity (Hemmeryckx et al., 2011), and

neurodegenerative disorders (Vieira et al., 2020). Notably,

Bmal1 is also involved in aging (Khapre et al., 2011).

Bmal1-deficient mice have reduced lifespan and are prone

to premature aging (exemplified by sarcopenia, cataracts,

reduced subcutaneous fat, decreased organ size and

impaired hair growth) (Kondratov et al., 2006). Bmal1

regulates aging via modulation of the expression of major

antioxidant enzymes including SOD, peroxiredoxines and

glutathione peroxidase (Kondratov et al., 2009).

REV-ERBα (also known as NR1D1, nuclear receptor

subfamily one group D member 1) is a nuclear receptor

that participates in regulation of circadian rhythms via

inhibiting BMAL1 expression (Yin and Lazar, 2005). REV-

ERBα functions as a transcriptional repressor that inhibits the

transcription of target genes (e.g., Bmal1) by binding to a

response element (called RevRE) in the promoters and

recruiting the corepressors nuclear corepressor one and

histone deacetylase 3 (Liu et al., 2008; Yin et al., 2010).

REV-ERBα has been also implicated in regulation of a

variety of diseases including inflammatory diseases (e.g.,

fulminant hepatitis, pulmonary inflammation, and colitis)

(Wang et al., 2020), metabolic disorders (Delezie et al.,

2012) and cancers (Wang et al., 2015). SR8278 (a synthetic

compound) is identified as an antagonist of REV-ERBα and

widely used to probe the function of REV-ERBα (Kojetin et al.,

2011; Pardee et al., 2011). Notably, we recently found that

REV-ERBα restrains Propionibacterium acnes-induced skin

inflammation through inhibiting the NF-κB/NLRP3 axis to

protect against acne vulgaris (Li et al., 2022). However, it

remains elusive whether and how REV-ERBα regulates skin

aging.

In the present study, we aimed to assess the

pharmacological effects of SBG on skin aging and to

investigate the underlying mechanisms. Anti-skin aging

effects of SBG were evaluated using mouse and cell models
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of aging (induced by D-galactose and/or ultraviolet-B). Skin

aging was assessed by analyzing SOD, HYP, MDA, ROS and

MMP-1/p53 and by measuring epidermal thickness and

collagen content. The role of REV-ERBα/BMAL1 in

regulating skin aging was assessed using gene knockout

mice. Antagonism of REV-ERBα was determined using

Gal4 chimeric assay. We for the first time demonstrated

that SBG antagonizes REV-ERBα to up-regulate BMAL1 (a

skin aging-inhibiting factor) and to protect against skin aging

in mice.

Materials and methods

Materials

SBG was purchased from Biopurify Phytochemicals (Chengdu,

China). D-galactose (D-gal) was purchased fromAladdin (Shanghai,

China). Vitamin C was obtained from Yuanye Biotechnology

(Shanghai, China). Biochemical kits for SOD, MDA, ROS and

HYP were purchased from Jiancheng Bioengineering Institute

(Nanjing, Jiangsu, China). Staining kit for senescence-associated-

β-galactosidase (SA-β-gal) was obtained from Beyotime

Biotechnology (Shanghai, China). Antibodies against GAPDH,

MMP-1, p53, BMAL1, REV-ERBɑ, BHMT and NLRP3 were

purchased from Abcam (Cambridge, United Kingdom).

Preparation of SBG extract

SBGwas extracted for 90 min by refluxing in 80% ethanol (3:20,

w/v), and filtered with filter paper. The filtrate was concentrated and

freeze-dried. The dry residue (SBG extract) was stored at -20°C. The

extraction yield was 23.3%, and the main active ingredients of SBG

are shown in Supplementary Table S1. For animal experiments, SBG

extract was mixed with a homemade cream containing stearic acid,

triethanolamine, and propylene glycol.

Animals

C57BL/6 mice (10 weeks old) weighing 18–22 g were

obtained from HFK Bioscience (Beijing, China). Rev-erbɑ−/−

mice (on a C57BL/6 background) have been established and

validated in our laboratory (Wang et al., 2018). All mice were

maintained on a 12 h light/12 h dark cycle, with free access to

food and water. Mice were individually placed in the cages to

prevent offensive behaviors from other mice, that may cause

injuries to the skin. Mice from the same litter (with hair growth in

the anagen phase) were used for experiments. Note that we used

male mice to assess the therapeutic effect of SBG on skin aging,

without considering factors such as hormone-induced wrinkling

of skin. Protocols for animal experiments were approved by the

Institutional Animal Care and Use Committee of Guangzhou

University of Chinese Medicine (Appr. Date: 2021–05-17;

IACUC Issue No: ZYD-2021–112).

LC-MS/MS analysis

The main active constituents (i.e., wogonoside, baicalein,

baicalin and wogonin) in SBG extract were quantified using a

Shimadzu LCMS-8045 triple quadrupole liquid

chromatograph mass spectrometer (LC-MS) equipped with

Shimadzu-Nexera XR high-performance liquid

chromatography (HPLC). The mobile phases consisted of

acetonitrile (A) and water (B). Flow rate was set at 0.3 ml/

min. Gradient elution program was 40% B (0–1 min), 40–10%

B (1–3 min), 10% B (3–4 min) and 10–40% B (4–5 min). Mass

spectrometer was operated at positive ion scan mode. The

mass transition ion pairs and contents of main active

constituents are provided in Supplementary Table S1

Mouse model of skin aging and drug
treatment

To induce skin aging, mice were injected subcutaneously

with 250 mg/kg D-gal daily in the back neck and irradiated on the

back daily with 120 mJ/cm2 UVB for 6 weeks as previously

described (Zhang et al., 2020). The source of radiation was a

narrow band UVB bulb (Philips model PL-9 9W/01/2P) emitting

photons with wavelengths between 306 and 316 nm, with a peak at

312 nm. The distance from the UVB lamp (KN-4003BL, Kernel

Medical Equipment, Xuzhou, China) to the mouse back was 25 cm.

Control mice were injected subcutaneously with vehicle (saline). To

assess the effects of SBG on skin aging, SBG extract (25, 100 or

400 mg/kg), vitamin C (40 mg/kg) or vehicle was applied topically

(once daily after UVB exposure) on the skin of mouse models for

4 weeks from the third week. Mice were sacrificed to collect skin

samples, followed by qPCR, Western blotting and biochemical

analyses (SOD, MDA and HYP).

Isolation of mouse primary dermal
fibroblasts

Mouse primary dermal fibroblasts were isolated from newborn

mice as previously described (Terao et al., 2014). The newborn mice

were sacrificed by rapid cervical dislocation. Trunk skin was peeled off

and incubated with 4mg/ml dispase overnight at 4 °C. On the next

day, the dermis was separated from the epidermis using forceps, and

incubated with 0.25% trypsin for 10min. After filtration, cells were

centrifuged at 200 g for 10 min, resuspended in Dulbecco’s modified

Eagle’smedium (DMEM) supplemented with 10% fetal bovine serum

(FBS) and incubated at 37°C and 5% CO2.

Frontiers in Pharmacology frontiersin.org03

Sun et al. 10.3389/fphar.2022.991917

73

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.991917


Cell culture and treatment

NIH3T3, HaCaT and Primary adult human epidermal

keratinocytes (HEKa) cells were obtained from the

American Type Culture Collection (Rockville, MD).

NIH3T3, HaCaT and HEKa were maintained in DMEM

supplemented with 10% FBS, 100 U/ml penicillin and

100 mg/ml streptomycin. To induce NIH3T3 cell

senescence, 8 g/L D-gal was added to the culture medium

for 96 h. To induce cell senescence of HaCaT, mouse primary

dermal fibroblasts and HEKa, cells were subjected to UVB

irradiation (100 mJ/cm2) with a thin layer of PBS (phosphate-

buffered saline) using a UVB lamp (KN-4003BL, Kernel

Medical Equipment, Xuzhou, China). Cells were then

treated with SBG or vehicle. On next day, cells were

collected for qPCR and Western blotting.

TABLE 1 Primers used for qPCR assays.

Gene Forward (5–39) Reverse (5–39)

mp53 GTCACAGCACATGACGGAGG TCTTCCAGATGCTCGGGATAC

mMmp-1 CTTCTTCTTGTTGAGCTGGACTC CTGTGGAGGTCACTGTAGACT

mBhmt TTAGAACGCTTAAATGCCGGAG GATGAAGCTGACGAACTGCCT

mNlrp3 ATTACCCGCCCGAGAAAGG TCGCAGCAAAGATCCACACAG

mRev-erbɑ TTTTTCGCCGGAGCATCCAA ATCTCGGCAAGCATCCGTTG

mBmal1 CTCCAGGAGGCAAGAAGATTC ATAGTCCAGTGGAAGGAATG

mGapdh CAAGGAGTAAGAAACCCTGGA CGAGTTGGGATAGGGCCTCT

hp53 TTGGCTCTGACTGTACCACCAT CAGTGTGATGATGGTGAGGATG

hMMP-1 TCGGGGCTTTGATGTACCCT ACACGCTTTTGGGGTTTGTG

hGAPDH CATGAGAAGTATGACAACAGCCT TAGTCCTTCCACGATACCAAAGT

m, mouse; h, human.

FIGURE 1
Establishment of mice with skin aging. (A) Surface examination of dorsal skin derived from D-gal/UVB-treated and control mice. (B) Skin SOD
activity and HYP/MDA levels in D-gal/UVB-treated and control mice. Data are mean ± SD (n = 7). *p < 0.05 (t-test). (C)mRNA expression ofMmp-1
and p53 in the skin of D-gal/UVB-treated and control mice. Data are mean ± SD (n = 7). *p < 0.05 (t-test). (D) H&E staining (left panel) and epidermal
thickness (right panel) of skin derived from D-gal/UVB-treated and control mice. Scale bar = 100 μm.
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Gal4 co-transfection assay

Gal4 co-transfectionthe assay was performed as previously

described (Zhang et al., 2018). In brief, HEK293 cells were co-

transfected with pGal4-Rev-erbα-LBD plasmid (200 ng), pGL-4.35-

Luc reporter (100 ng, a Gal4-reponsive luciferase reporter) and pRL-

TK vector (10 ng) using jetPRIME (Polyplus Transfection, Illkirch,

France). On next day, cells were treated with SBG or SR8278 or vehicle.

24 h later, luciferase activities were measured using the Dual-Luciferase

Reporter Assay system and GloMax 20/20 luminometer (Promega

Madison, WI).

Luciferase reporter assays

Luciferase reporter assays were performed as previously

described (Chen et al., 2020). In brief, NIH3T3 cells were

cultured in DMEM medium (containing 10% FBS, 1%

FIGURE 2
SBG protects against skin aging induced by D-gal/UVB in mice. (A) Surface examination of dorsal skin derived from D-gal/UVB-treated and
control mice. (B) Skin SOD activity andHYP/MDA levels in D-gal/UVB-treated and controlmice. (C)mRNA expression ofMmp-1 and p53 in the skin of
D-gal/UVB-treated and control mice. (D) Protein expression (top panel) and quantification (bottom panel) of MMP-1/p53 in the skin of D-gal/UVB-
treated and control mice. In panels B–D, data are mean ± SD (n = 7). *p < 0.05 (one-way ANOVA and Bonferroni post hoc test). VC, vitamin.
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penicillin-streptomycin) and transfected with 250 ng of

Bmal1 luciferase reporter plasmid and 50 ng of pRL-TK

using jetPRIME (Polyplus Transfection, Illkirch, France).

On next day, SBG or SR8278 or vehicle was added to the

culture medium for 24 h. Cells were harvested and lysed with

passive lysis buffer. Luciferase activities were detected using

the Dual-Luciferase Reporter Assay system and GloMax 20/

20 luminometer (Promega, Madison, WI).

H&E and masson staining

Skin samples were fixed in 10% formalin, embedded in

paraffin, and cut to 4 μm-thick sections. The sections were

subjected to H&E (hematoxylin and eosin) and Masson

staining. The images were captured using an optical

microscope (Olympus, Tokyo, Japan).

Measurement of intracellular ROS

Cells were treated with 2′7′-dichlorodihydrofluorescein
diacetate (10 μM) at 37°C for 1 h. Fluorescence intensity was

determined at excitation (485 nm) and emission (530 nm)

wavelengths using a Synergy HT Multi-Mode Microplate Reader

(BioTek, Winooski, VT).

MTT assay

MTT assays were performed to determine cell viability

as previously described (Kumar et al., 2018). Briefly, cells

were incubated with MTT [3-(4,5-dimethylthiazol-2-yl)-

2,5 diphenyl tetrazolium bromide, 0.5 mg/ml] for 4 h, and

the formazan crystals were dissolved in 100 μl DMSO. The

absorbance was determined at 570 nm using a Synergy HT

Multi-Mode Microplate Reader (BioTek, Winooski, VT).

SA-β-gal assay

SA-β-gal activity was measured using a SA-β-gal staining kit

according to the manufacturer’s instructions (Beyotime, Shanghai,

China). Briefly, cells were fixed in a fixing solution for 15 min, washed

with PBS and incubated with senescence detection solution at 37°C.

On next day, the number of SA-β-gal-positive cells were determined

by counting blue-stained cells using an Eclipse ci-L microscope

(Nikon, Tokyo, Japan).

Real-time luminescence monitoring

Real-time luminescence monitoring was performed as previously

described (Hirota et al., 2008; du Pré et al., 2017). In brief,

FIGURE 3
Effects of SBG on epidermal thickness and collagen content in aging mice. (A) H&E staining (left panel) and epidermal thickness (right panel) of
skin derived from D-gal/UVB-treated and control mice. Scale bar = 100 μm. (B) Masson staining of the skin derived from D-gal/UVB-treated and
control mice. The right panel shows collagen content in the skin. Data are mean ± SD (n = 7). *p < 0.05 (one-way ANOVA and Bonferroni post hoc
test). Scale bar = 100 μm.
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FIGURE 4
SBG attenuates D-gal-induced senescence in NIH3T3 cells. (A) Effects of SBG on the viability of D-gal-treated NIH3T3 cells. (B) Effects of SBG
on ROS accumulation in D-gal-treated NIH3T3 cells. (C) Effects of SBG on Mmp-1 (left panel) and p53 (right panel) mRNA expression in D-gal-
treated NIH3T3 cells. (D) Effects of SBG on protein expression of MMP-1 and p53 in D-gal-treated NIH3T3 cells. (E) Representative images showing
SA-β-Gal activity in SBG-treated senescent NIH3T3 cells. In panels A–D, data aremean ± SD (n = 3). *p < 0.05 (one-way ANOVA and Bonferroni
post hoc test).

FIGURE 5
SBG attenuates UVB-induced senescence in HaCaT cells. (A) Effects of SBG on the viability of UVB-treated HaCaT cells. (B) Effects of SBG on
ROS accumulation in UVB-treated HaCaT cells. (C) Effects of SBG on the mRNA expression ofMmp-1 and p53 in UVB-treated HeCaT cells. Data are
mean ± SD (n = 3). *p < 0.05 (one-way ANOVA and Bonferroni post hoc test).
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NIH3T3 cells stably overexpressed with Bmal1-dLucwere seeded into

a 35mm dish and maintained in DMEM containing 10% FBS. On

next day, cells were incubated with a recording medium containing

1 μg/ml SBG or vehicle. Luminescence data (counts/s) were collected

by using Lumicycle 32 (Actimetrics, Wilmette, IL).

Western blotting

Protein samples were subjected to 10% sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE),

and transferred to PVDF membranes. The membranes

were blocked with 5% skim milk, and sequentially

incubated with primary and secondary antibodies.

Protein bands were visualized by using enhanced

chemiluminescence and Omega Lum G imaging system

(Aplegen, Pleasanton, CA), and quantified with

Fluorchem 5500 software (Fisher Scientific, Fair Lawn,

NJ). GAPDH was used as a loading control.

qPCR (quantitative polymerase chain
reaction)

RNA was extracted using RNAiso Plus reagent (Takara, Shiga,

Japan) and transcribed to cDNA using PrimeScript RT Master Mix

(Vazyme, Jiangsu, China). qPCR reactions were performed using the

SYBR Premix Ex Taq (Vazyme, Jiangsu, China). Amplification

procedures consisted of an initial denaturation at 95°C for 5 min,

40 cycles of denaturation at 95°C for 15 s, annealing at 60°C for 30 s,

and extension at 72°C for 30 s. MouseGapdhwas used as an internal

control. Gene expression was determined using the 2−ΔΔCT method.

Primers are provided in Table 1.

Statistical analysis

Data are presented as means ± SD (standard deviation).

Comparisons between two groups were analyzed using Student’s

t-test. One-way ANOVA followed by Bonferroni post hoc test

FIGURE 6
SBG attenuates UVB-induced senescence in mouse primary dermal fibroblasts and HEKa cells. (A) Effects of SBG on cell viability and ROS
accumulation for UVB-treated mouse primary dermal fibroblasts. (B) Effects of SBG on mRNA expression ofMmp-1 and p53 in UVB-treated mouse
primary dermal fibroblasts. (C) Effects of SBG on cell viability and ROS accumulation for UVB-treated HEKa cells. (D) Effects of SBG on mRNA
expression ofMmp-1 and p53 in UVB-treated HEKa cells. Data are mean ± SD (n = 3). *p < 0.05 (one-way ANOVA and Bonferroni post hoc test).
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was performed to compare means of more than two groups. The

level of significance was set at p < 0.05 (*).

RESULTS

SBG protects against skin aging induced
by D-gal/UVB in mice

Mice with skin aging were established by treatment with D-gal/

UVB as previously described (du Pré et al., 2017). As expected,

D-gal/UVB-treated mice showed skin aging-like symptoms such as

roughness, stiffness, and lack of elasticity (Figure 1A). These mice

had lower levels of SOD activity andHYP and a higher level ofMDA

in the skin as compared to normal mice (Figure 1B). We also

observedmarked increases in the expression ofMmp-1 and p53 (two

genes closely associated with skin aging) in the skin of D-gal/UVB-

treated mice (Figure 1C). In addition, the epidermis (D-gal/UVB-

exposed region) was thicker in aging mice than in control mice

according to H&E staining (Figure 1D). These data indicated

successful construction of mice with skin aging.

We next assessed the effects of SBG (topical application) on

skin aging in mice. Like vitamin C (a known anti-aging agent and

used as a positive control), SBG reduced the wrinkle formation in

the skin of D-gal/UVB-treated mice (Figure 2A). Further, SBG

dose-dependently increased the SOD activity and HYP level, and

decreased the MDA level in the skin of aging mice (Figure 2B).

Moreover, SBG reduced the mRNAs and proteins of both MMP-

1 and p53 in the skin of aging mice in a dose-dependent manner

(Figure 2C/D). In addition, compared to vehicle-treated aging

mice, SBG-treated mice had thinner D-gal/UVB-exposed

epidermis, and a higher amount of collagen (Figure 3A/B).

Taken together, these findings clearly indicated a protective

effect of SBG on skin aging in mice.

FIGURE 7
Loss of Rev-erbα up-regulates skin BMAL1 and ameliorates skin aging inmice. (A)mRNA expression ofRev-erbα in skin derived from Rev-erbα−/−

and wild-type (WT) mice. (B) mRNA (left panel) and protein (right panel) expression of BMAL1 in skin derived from Rev-erbα−/− and WT mice. (C)
Surface examination of dorsal skin derived from Rev-erbα−/− and WTmice treated with D-gal/UVB. (D) Skin SOD activity and HYP/MDA levels in skin
derived from Rev-erbα−/− and WT mice treated with D-gal/UVB. (E) mRNA expression of Mmp-1 and p53 in the skin derived from Rev-erbα−/−

andWTmice treatedwith D-gal/UVB. (F) Protein expression ofMMP-1/p53 in skin derived from Rev-erbα−/− andWTmice treatedwith D-gal/UVB. (G)
H&E and Masson staining showing epidermal thickness and collagen content in skin derived from Rev-erbα−/− and WTmice treated with D-gal/UVB.
In panels A–B, data are mean ± SD (n = 3). In panels C–G, data are mean ± SD (n = 7). *p < 0.05 (t-test).
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SBG attenuates D-gal- and UVB-induced
cell senescence

We next investigated whether SBG can affect cell senescence

using NIH3T3 and HaCaT cells. NIH3T3 cells were exposed to

8 g/L D-gal for 96 h to induce cell senescence as previously

described (Gao et al., 2014). As expected, D-gal treatment of

NIH3T3 cells resulted in senescence as evidenced by a decrease in

cell viability, and elevations in ROS level and MMP-1/

p53 expression, as well as an increase in senescence-associated

β-galactosidase (SA-β-gal, a senescence-specific marker) activity

(Figure 4). We found that SBG dose-dependently increased the

cell viability and decreased the ROS level in D-gal-treated

NIH3T3 cells (Figure 4A/B). Furthermore, SBG down-

regulated the mRNA levels of both Mmp-1 and p53 in a dose-

dependent fashion in D-gal-treated cells (Figure 4C). In line with

the mRNA changes, MMP-1 and p53 proteins were reduced by

SBG in the aged cells (Figure 4D). Moreover, SBG-treated

senescent cells had a lower activity of SA-β-gal (Figure 4E).
We additionally examined the effects of SBG on senescene of

HaCaT, mouse primary dermal fibroblasts and HEKa cells

induced by UVB. SBG increased the cell viability and

decreased the ROS level and MMP-1/p53 expression in the

senescent cells (Figures 5, 6). These similar effects were also

observed for vitamin C (Figures 5, 6). Altogether, these findings

supported that SBG had a protective effect on skin aging.

Loss of Rev-erbα up-regulates skin
BMAL1 and ameliorates skin aging in mice

Deficiency of Bmal1 has been previously shown to

promote premature aging in mice, identifying Bmal1 as a

key regulator of aging (Kondratov et al., 2006). Bmal1

regulates aging via modulation of the expression of

antioxidant enzymes including SOD, peroxiredoxines and

glutathione peroxidase (Kondratov et al., 2009). Bmal1 is a

target gene of REV-ERBα, which functions as a transcriptional
repressor (Crumbley and Burris, 2011). Loss of Rev-erbα leads

to up-regulation of BMAL1 (Burris, 2008). Thus, we

hypothesized that Rev-erbα may promote skin aging

considering that Bmal1 has a protective role. To test this

FIGURE 8
SBG up-regulates the clock gene Bmal1 in mouse and cell models of aging. (A) Effects of SBG on Bmal1mRNA in the skin of D-gal/UVB-treated
mice. (B) Effects of SBG on BMAL1 protein in the skin of D-gal/UVB-treated mice. (C) Effects of SBG on Bmal1mRNA in D-gal-treated NIH3T3 cells.
(D) Effects of SBG on BMAL1 protein in D-gal-treated NIH3T3 cells. Data are mean ± SD (n = 7). *p < 0.05 (one-way ANOVA and Bonferroni post hoc
test).
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hypothesis, we generated and tested a mouse line with deletion

of Rev-erbα gene (Rev-erbα−/− mice). Rev-erbα−/− mice were

validated by qPCR, and showed the absence of wild-type Rev-

erbα transcript in the skin (Figure 7A). As expected,

BMAL1 mRNA and protein were up-regulated in the skin

of Rev-erbα−/− mice (Figure 7B). Rev-erbα−/− and control mice

were subjected to induction of skin aging by D-gal/UVB. We

found that loss of Rev-erbα ameliorated skin aging as

evidenced by less formation of skin wrinkles, higher levels

of SOD and HYP as well as a lower level of MDA (Figure 7C/

D). In the meantime, skin MMP-1 and p53 expression were

lower, epidermis was thinner and collagen amount was higher

in Rev-erbα−/− mice (Figures 7E–G). Taken together, Rev-erbα

ablation up-regulated skin BMAL1 and ameliorated skin aging

in mice. Our findings supported a critical role of REV-ERBα/
BMAL1 in regulation of skin aging.

SBG up-regulates the clock gene Bmal1 in
mouse and cell models of aging

Because Bmal1 and its upstream regulator Rev-erbα are

involved in skin aging, we wondered whether Bmal1 has a role

in protection of skin aging by SBG. We found that SBG dose-

dependently increased the BMAL1 mRNA and protein in the

skin of D-gal/UVB-treated mice (Figure 8A/B). Likewise, SBG

led to increases in the mRNA and protein of BMAL1 in D-gal-

treated NIT3H3 cells (Figure 8C/D). Therefore, the protective

FIGURE 9
SBG antagonizes REV-ERBα to induce BMAL1 expression. (A)Dose-dependent effects of SBG on Gal4 luciferase activity. HEK293 cells were co-
transfected with pGal4-Rev-erbα-LBD and pGL4.35-Luc plasmids for 24 h, followed by treatment with SBG or vehicle for 24 h. (B) Effects of SBG on
Bmal1-Luc reporter activity. (C) Effects of SBG on the mRNA expression of Bmal1, Bhmt and Nlrp3 in NIH3T3 cells treated with SBG or vehicle. (D)
Effects of SBG on the protein expression of BMAL1, BHMT andNLRP3 in NIH3T3 cells treatedwith SBG or vehicle. (E) Bioluminescent recordings
of Bmal1-dLuc-overexpressed NIH3T3 cells after SBG treatment. In panels A–B, data are mean ± SD (n = 6). In panels C–D, data are mean ± SD (n =
3). *p < 0.05 (one-way ANOVA and Bonferroni post hoc test).
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effects of SBG on skin aging can be attributed to enhanced

BMAL1 expression.

SBG antagonizes REV-ERBα to induce
BMAL1 expression

Bmal1 expression is directly regulated by REV-ERBα, a

nuclear receptor whose activity can be modified by small

molecules (Kojetin and Burris, 2014). We next tested whether

SBG modulates Bmal1 expression via REV-ERBα. We first

assessed the activity of SBG in HEK293 cells expressing a

chimeric receptor (i.e., the DNA-binding domain of Gal4 is

fused to the LBD of Rev-erbα) and a Gal4-responsive

luciferase reporter (Figure 9A). SBG dose-dependently

inhibited the repressor activities of REV-ERBα in the

Gal4 chimeric assay (Figure 9A), suggesting SBG as a REV-

ERBα antagonist. Furthermore, like SR8278, SBG dose-

dependently enhanced the promoter activity of Bmal1 (−2000/

+100 bp) in a luciferase reporter assay (Figure 9B). Moreover,

SBG increased the mRNA and protein expression of BHMT and

NLRP3 (i.e., two known targets of REV-ERBα) in addition to

BMAL1 in NIH3T3 cells in a dose-dependent fashion (Figure 9C/

D). In addition, SBG increased the circadian amplitude of Bmal1

gene according to cell-based circadian assay with NIH3T3 cells

expressing Bmal1-dLuc reporter (Figure 9E). Taken together,

these findings indicated that SBG antagonized REV-ERBα to

induce BMAL1 expression.

DISCUSSION

In this study, we have identified SBG as a novel anti-skin

aging agent. Compared with synthetic agents such as retinoid

(Mukherjee et al., 2006), SBG is more advantageous in

practical applications because it is a herbal medicine

without safety concern. More importantly, we have

uncovered that SBG protects against skin aging in mice by

antagonizing REV-ERBα and increasing skin expression of

BMAL1, an aging-inhibiting factor (Figure 10). The evidence

for antagonism of REV-ERBα by SBG is strong. First, SBG

dose-dependently inhibited the repressor activities of REV-

ERBα in the Gal4 chimeric assay. Second, like SR8278 (a

known REV-ERBα antagonist), SBG dose-dependently

enhanced the promoter activity of Bmal1 in a luciferase

reporter assay. Third, SBG increased the expression of

BMAL1, BHMT and NLRP3 (three known targets of REV-

ERBα and repressed by REV-ERBα) in NIH3T3 cells. Fourth,

SBG increased the circadian amplitude of Bmal1 gene

according to circadian assays with NIH3T3 cells expressing

Bmal1-dLuc reporter (Figure 9). It is noteworthy that herbal

extract instead of purified active compounds was used in

current study. This will affect reproducibility because

different sources of SBG and slight changes in extraction

can lead to different composition of active compounds.

Our finding that REV-ERBα/BMAL1 (as core clock

components) regulate skin aging supports the notion that skin

pathophysiology is under the control of circadian clock. In fact,

FIGURE 10
Schematic diagram showing the proposed mechanism for anti-skin aging effect of SBG.
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circadian clock has been implicated in regulation of several other

types of skin diseases such as skin cancer, infections and sunburn

(Duan et al., 2021). Because among clock components

BMAL1 has a direct effect on skin aging, it likely acts to

connect this skin disorder to circadian clock. Supporting this,

Bmal1 was markedly down-regulated in the skin of aged mice

(Figure 8). We have identified REV-ERBα as a potential target for
prevention and treatment of skin aging. Compared with other

targets such as BMAL1, REV-ERBα is more advantageous

because it is a ligand-responsive receptor whose activity can

be modified by small molecules. We found that SBG is a novel

REV-ERBα antagonist. However, it remains unknown which

constituents in this herbal medicine are responsible for the

antagonistic action. We reasoned that baicalein (a known

active constituent) may have a contribution as it can induce

the expression of Bmal1, a direct target of REV-ERBα,
and shows a protective effect on skin damage (Nomura et al.,

2018).

This study has unraveled that SBG promotes

BMAL1 expression to protect against skin aging in mice.

BMAL1 functions as an anti-aging factor by up-regulating

major antioxidant enzymes such as SOD, peroxiredoxines and

glutathione peroxidase (Kondratov et al., 2009; Töbelmann

and Dittmar, 2021). It is noteworthy that there is a possibility that

other mechanisms are also involved in the protection of skin aging

by SBG considering that herbal medicines usually contain hundreds

of chemical constituents. The potential mechanisms include

inactivation of MAPK/AP-1 and NF-κB signaling pathways,

activation of TGF-β/Smad pathway, and modulation of

cyclooxygenase (COX), hypoxia-Inducible factor (HIF)-1 and

inducible nitric oxide synthase (iNOS) (Domaszewska-Szostek

et al., 2021; Chi and Kim, 2005; Gu et al., 2020). However,

whether these mechanisms have a contribution to the SBG effect

on skin aging awaits further investigations.

Mouse models of skin aging were established in current

study by treatment with D-gal/UVB as previously described

(Jiayi et al., 2019; Zhang et al., 2020; Cao et al., 2022). Chronic

injection of D-gal, a reducing sugar, results in oxidative stress

including reductions of antioxidant enzymes, inflammation

and apoptosis, mimicking a natural aging process (Shen et al.,

2002; Shan et al., 2009; Chen et al., 2018). UVB is the most

harmful constituent of UV radiation. Chronic UVB exposure

can cause excessive ROS production, abnormal elastin

deposition, and impairment of collagen fibers (Starcher

et al., 1999; Heck et al., 2003; Lee et al., 2021). D-gal and

UVB co-treatment induces a large-scale burst of free radicals,

leading to the oxidative damage in the skin and skin aging-like

symptoms such as wrinkling, sagging, dryness, and erythema

(Zhang et al., 2020). This animal model has been widely used

to elucidate cellular and molecular changes that may have

a causal role in skin aging, and to screen anti-aging

drugs (Jiayi et al., 2019; Zhang et al., 2020; Cao et al., 2022).

Anti-aging effects of SBG were assessed here by

measuring SOD activity, MDA/HYP levels, and MMP-1/

p53 expression. SOD is a major free radical scavenger in

the body, and functions to remove superoxide anions (Li

et al., 2020; Park et al., 2008). MDA is a final product of

oxidation, and its content can directly reflect the level of lipid

peroxidation (Gil et al., 2002; Zhang et al., 2014). SOD

activity and MDA level can be used as indicators of the

level of organism aging which is associated with oxidative

stress and ROS production (Yi et al., 2019). HYP is the most

abundant amino acid in collagen, and its level indirectly

reflects the total collagen content (Li and Wu, 2018; Li et al.,

2016). MMP-1 is a collagenase that plays an important role in

degradation of dermal collagen during skin aging (Sapna

et al., 2014). Thus, HYP and MMP-1 can be used as markers

of skin aging process. P53 is a tumor suppressor gene that

induces cell senescence by promoting the expression of

growth suppressive genes (Bond et al., 1996; Luo et al.,

2004), and is also regarded as a marker of skin aging. In

fact, measurements of SOD activity, MDA/HYP levels, and

MMP-1/p53 expression have been widely performed to

assess aging and to screen anti-aging agents (Jiayi et al.,

2019; Park et al., 2008; Hwang et al., 2012).

An important part of the skin response to stress is its ability for

melatonin synthesis and subsequent metabolism (Slominski et al.,

2017; Slominski et al., 2018b). Melatonin is indispensable for

physiological skin functions and has a protective role against

photoaging (Skobowiat, et al., 2018; Bocheva et al., 2022).

However, whether SBG affects skin melatonin remains unknown.

Like vitamin C, vitamin D exerts a variety of antiaging and

photoprotective effects on the skin (Bocheva et al., 2021; Slominski

et al., 2020). However, whether the anti-skin aging effect of SBG is

comparable to that of vitamin D was unaddressed. It is noteworthy

that UV radiation not only induces skin pathology, but also exert

systemic effects, including activation of hypothalamic-pituitary-

adrenal axis, opioidogenic effects, and immunosuppression. Thus,

UV radiation has therapeutic applications in management of various

diseases such as addiction, autoimmune and mood disorders

(Slominski et al., 2018a).

In summary, SBG displays a pharmacological effect on skin

aging based on mouse and cell models of aging. Mechanistically,

SBG protects against skin aging in mice by antagonizing REV-

ERBα and increasing skin expression of BMAL1, an aging-

inhibiting factor.
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Spinal cord injury (SCI) is a devastating central nervous system disease, caused

by physical traumas. With the characteristic of high disability rate, catastrophic

dysfunction, and enormous burden on the patient’s family, SCI has become a

tough neurological problem without efficient treatments. Contemporarily, the

pathophysiology of SCI comprises complicated and underlying mechanisms, in

which oxidative stress (OS)may play a critical role in contributing to a cascade of

secondary injuries. OS substantively leads to ion imbalance, lipid peroxidation,

inflammatory cell infiltration, mitochondrial disorder, and neuronal dysfunction.

Hence, seeking the therapeutic intervention of alleviating OS and appropriate

antioxidants is an essential clinical strategy. Previous studies have reported that

traditional Chinese medicine (TCM) has antioxidant, anti-inflammatory,

antiapoptotic and neuroprotective effects on alleviating SCI. Notably, the

antioxidant effects of some metabolites and compounds of TCM have

obtained numerous verifications, suggesting a potential therapeutic strategy

for SCI. This review aims at investigating the mechanisms of OS in SCI and

highlighting some TCM with antioxidant capacity used in the treatment of SCI.

KEYWORDS

spinal cord injury, traditional Chinese medicine, oxidative strees, natural medicine,
antioxidants

1 Introduction

Spinal cord injury (SCI) is a neurological injury disease caused by trauma or

intraspinal lesions, which often leads to partial or complete loss of sensory and motor

functions below the injury segment (Eckert and Martin, 2017). The damage to neuronal

structure and function has the irreversible property, leaving SCI patients usually presented

with a poor prognosis and a high rate of disability. The severe and long-term physical

injury will not only reduce the patients’ quality of life but also result in consequences of

serious economic burden on their families (Eli et al., 2021).

The spinal cord contains gray matter and white matter that include nerve cell bodies,

along with the ascending tracts and descending tracts. According to the classification of
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the external physical impact and internal impacts, SCI can be

divided into traumatic and non-traumatic spinal cord injury. The

former is induced by trauma, such as acute stretch, acute

distraction, compression, and axonal shearing (Eckert and

Martin, 2017), which is mainly discussed in this review. The

latter is often caused by compression of tumors and congenital

diseases (Gedde et al., 2019). Degrees of disability can vary from

slight sensory abnormality and motor dysfunction to severe

paralysis, based on various locations and the traumatic extent

of SCI.

The pathophysiological changes of SCI are very complex, so

the mechanism of SCI is not well defined. But previous studies

have found that oxidative stress (OS) caused by excessive reactive

oxygen species (ROS) could aggravate the damage of neurons.

Thus, our paper focused on the mechanisms of OS affecting SCI

and discussed the etiology of OS from the perspective of

traditional Chinese medicine (TCM) theory for SCI patients.

Additionally, we highlighted some metabolites and compounds

of TCM with antioxidant capacity used in the treatment of SCI,

providing the potential treatment therapy of SCI via using the

natural antioxidants derived from TCM.

2 Materials and methods

In this review, an electronic search of published articles

published between 2000 and 2021 was conducted from Web

of Science, PubMed, Science Direct, Google Scholar, and China

National Knowledge Infrastructure (CNKI), with the use of the

following keywords: “spinal cord injury, oxidative stress, and

traditional Chinese medicine or herbal medicine or Chinese

herbal medicine”.

Besides, to ensure the accurate scientific nomenclature for

plants in our paper, all names and information on the source

species were obtained and validated from Kewscience (http://

mpns.kew.org/mpns-portal/) and pharmacopeia of the People’s

Republic of China.

3 The pathophysiology of spinal cord
injury

The pathophysiology of SCI is complicated, which contains

acute phase, subacute phase and chronic phase (Supplementary

Figure S1). The primary occurrence of SCI results from the initial

trauma immediately, including acute stretch, acute distraction,

compression, and axonal shearing (Katoh et al., 2019). The

primary injury initiated by trauma will progressively cause the

secondary injury, and further leads to the lesion of adjacent,

uninjured tissue (Anjum et al., 2020). The pathophysiology of

secondary injury mainly includes damage to neuronal fiber,

blood-spinal cord barrier (BSCB) destruction, excessive free

radical production (von Leden et al., 2017), ion imbalances

(Garcia et al., 2018), inflammation (Zrzavy et al., 2021) neural

cell necrosis and apoptosis (Wang et al., 2019), demyelination

(Fan et al., 2018), Among the pathological processes of secondary

injury, oxidative stress plays an indispensable and critical role in

contributing to a poor microenvironment development, which is

considered a hallmark of the secondary injury of SCI (Savikj et al.,

2019).

3.1 The association between oxidative
stress and spinal cord injury

The essence of the OS reaction is the imbalance between

oxidative free radicals and antioxidants. Oxidative free radicals

include ROS and reactive nitrogen species (RNS) (Fatima et al.,

2015). ROS contains superoxide, singlet oxygen, hydroxyl

radical, and hydrogen peroxide, mainly generated by the

mitochondria and microglia. RNS are also involved in the

pathological mechanism of SCI, including nitric oxide (NO)

and peroxynitrite (PON). Excessive generation of NO can

induce neuronal apoptosis via cytotoxic effects (Cadenas,

2018) and PON are the key initiator of the lipids peroxidation

(LP), as well protein nitration in the SCI (Hall et al., 2016)

(Figure 1).

3.1.1 Oxidative stress causes the damage of
biological macromolecules in spinal cord injury

Notably, the spinal cord is very vulnerable to oxidative

damage because it contains overabundant polyunsaturated fatty

acids that are particularly susceptible to ROS peroxidation

(Anjum et al., 2020). Therefore, LP easily occurs after the

trauma, which progressively includes three chemical phases,

namely initiation, propagation, and termination (Hall et al.,

2016). To begin with, highly reactive oxygen radical with the

function of electron-snatching, such as -OH, -NO2, or -CO3,

has a reaction with the polyunsaturated fatty acid composition

of the membrane, such as arachidonic acid, eicosapentaenoic

acid, and linoleic acid, causing the damage of membrane

integrity. These types of radicals can be considered to have

the characteristic called “electrophilic,” which snatches the

electron from polyunsaturated fatty acid, leading to

quenching of the original radicals whereas the

polyunsaturated fatty acid (L), turns to a lipid radical (L•).
As for the stage of propagation, L• sets off a chain reaction of

constantly producing lipid peroxyl radicals (LOO•) and lipid

hydroperoxides (LOOH). When the peroxidizable substrate is

depleted or the reaction of lipid radical and another radical or

radical scavenger produces other end products, including three

carbon-containing malondialdehyde (MDA) and 4-

hydroxynonenal (4-HNE) (Hamann and Shi, 2009; Hall

et al., 2010), LP greets its termination (Hall et al., 2016). As

essential components of membranes, LP can lead to cellular

dysfunction, eventually resulting in cell death.

Frontiers in Pharmacology frontiersin.org02

Huang et al. 10.3389/fphar.2022.976757

88

http://mpns.kew.org/mpns-portal/
http://mpns.kew.org/mpns-portal/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.976757


In addition to lipids, proteins are also easy to be damaged by

OS, and the damaging effects of OS on proteins are also

fundamental factors of the continuous deterioration of SCI.

Protein oxidation mainly includes breakage of the polypeptide

chain, modification of amino-acid side chains, and protein

degradation, as well as the conversed derivatives from protein,

which are sensitive to proteolysis (Hawkins and Davies, 2019).

The products of LP, MDA, and 4-HNE can compromise the

structural and functional integrity of cellular proteins by

undergoing a carbonyl ammonia cross-linking reaction to

form covalent compounds (Wu et al., 2017). Besides, PON

can trigger an exacerbated overload of intracellular Ca2+

overload, activating the cysteine protease calpain, which

ultimately results in the damage of several cellular targets

(Xiong et al., 2007).

Finally, the destructive effects of OS on nucleic acid

substances are also not negligible factors. It is well

documented that guanine is the most oxidation prone-

nucleobase (Singh et al., 2019). When structured in the

G-quadruplex entity, guanine can respond particularly

towards OS (Singh et al., 2019), principally reflected in the

generation of 8-oxoguanine via the initiation of 8-oxoguanine

glycosylases (Every and Russu, 2013). Overproduced PON can

also react with guanine to form 8-nitroguanine (8-NO(2)-G),

resulting in the exchange of G and T bases to cause mutagenic

damage (Piao et al., 2011). The consequences of base

modification are mutations and genomic instability. Currently,

the expression of certain microRNAs has been proven to be

altered via OS. Excessive ROS generation can enhance the

expression of miR-200c by negatively regulating the

expression of Fas-associated phosphatase-1 (FAP-1), thereby

inducing apoptosis (Yu et al., 2015).

3.1.2 Oxidative stress and microglia polarization
in spinal cord injury

Microglia, polarized into two phenotypes: pro-inflammatory

(M1) phenotype and anti-inflammatory (M2) phenotype, have

great significance to the pathophysiological evolution of SCI (Fan

et al., 2018). During acute trauma, microglia in the spinal cord

tissue are primarily polarized to the M1 phenotype (Kroner et al.,

2014). The polarized M1 has close correlations with the release of

TNF-α, IL-6, IL-1β, ROS, NO, glutamate, and superoxide, which

can trigger inflammation and OS, further initiating cascades of

neurotoxic damage of SCI and contributing to apoptosis and

necrosis (Anwar et al., 2016; Tang and Le, 2016). On the contrary,

M2 phenotype plays critical role in antagonizing the pro-

inflammatory responses and promoting neurodegeneration,

accompanied by the release of several neurotrophic factors,

anti-inflammatory cytokines (IL-4, IL-10, IL-13), and

transforming growth factor beta (TGF-β) (Anwar et al., 2016;

Tang and Le, 2016). Meanwhile, M2 phenotype can generate

Arg1 that competes with iNOS for the arginine substrate and

FIGURE 1
The Association Between Oxidative Stress and SCI. Oxidative stress substantively leads to ion imbalance, lipid peroxidation, inflammatory cell
infiltration, mitochondrial disorder, and neuronal dysfunction.
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downregulate NO production, thereby reducing the collateral

damage of OS to neuronal tissues (Yang et al., 2016). The

homeostasis of the local microenvironment depends on the

balance between M1 and M2. Therefore, inhibiting M1 or

promoting the polarization of M2 may be an effective

therapeutic strategy to promote functional recovery after SCI.

3.1.3 Oxidative stress and ion imbalances in
spinal cord injury

The imbalance of Na+, K+, and Ca2+ ions caused by OS is a

vital mechanism for triggering necrotic cell death and

apoptosis. OS significantly aggravates the influx of Ca2+ and

Na+, as well as the decrease of intracellular K+ concentrations

via destroying cell membrane structure, which could disturb

ionic homeostasis and leads to necrotic cell death and apoptosis

(Vanzulli and Butt, 2015). As an indispensable participator of

synaptic transmission, Ca2+ plays a critical role in responding to

the injuries of the CNS. Ca2+-pump ATPase in plasma and

endoplasmic reticulum membrane is highly sensitive to OS. LP

caused by OS can interfere with the transportation of Ca2+ and

increase the intracellular Ca2+ concentrations via inhibiting the

activation of Ca2+-pump ATPase. At the same time, the

inhibition of Na+/K + -pump ATPase caused by OS can

increase the accumulation of Na+and further promote the

accumulation of Ca2+ in cells (Lowry et al., 2020). With the

influx of Na+ and the alterations of change of osmotic pressure,

cytotoxic cellular edema occurs, further promoting intracellular

phospholipase activity and intracellular acidosis (Piao et al.,

2011).

3.1.4 Oxidative stress and mitochondrial
dysfunctions in spinal cord injury

Mitochondrial dysfunction is an important section of the

cascade of traumatic cell death after SCI. Following the

exacerbation of injury, there is a loss of homeostasis of

mitochondria, together with the imbalance of synaptic

homeostasis. As energy reservoirs, mitochondria can

regulate cytosolic Ca2+ ion levels (Turtle et al., 2019). After

trauma, the mitochondrial damage is mediated by the elevated

Ca2+ levels in SCI. Elevated cytosolic Ca2+ levels can activate

NADH dehydrogenase, increase ATP generation and promote

ROS production. The surfeit of Ca2+ further disturbs the

proton gradient and results in cell swelling or death by

opening the mitochondrial permeability transition pores

(mPTPs) (Cao et al., 2013). Besides, three PON forms

(ONOO−, ONOOCO2, and ONOOH) can deplete stores of

mitochondrial antioxidants, leading to protein nitration

(Valdez et al., 2000). Excessive PON ulteriorly induced 4-

HNE, 3-nitrotyrosine (3-NT), and protein carbonyl content in

mitochondrial proteins, further aggravating mitochondrial

dysfunction (Sullivan et al., 2007). An extremely low

concentration of 4-HNE could significantly impair the

respiration function of mitochondria (Xiao et al., 2017).

Moreover, NO has been also shown to exist in

mitochondria stemming from a NO synthase isoform.

Because the neurons are particularly sensitive to energy,

preventing the lack of energy prone to cause

neurodegeneration is crucial. However, widespread damage

to mitochondria can finally and easily cause neuronal death

owing to the insufficient energy provided for cell survival

(Golpich et al., 2017). Hence, mitochondria are highly

regarded as the potential vital target for SCI

pharmacological treatment. During the first 6 h after SCI,

promoting mitochondrial fusion may even be used as a

potential method of improving spinal cord function (Cao

et al., 2013).

4Mechanism of oxidative stress in the
aetiology of traditional Chinese
medicine for spinal cord injury

Therefore, alleviating OS is a critical step in therapeutic

intervention in SCI. Seeking the appropriate antioxidant

therapy to prevent OS after the injury has become a top

priority. With its natural antioxidant capacity, TCM has

recently become a novel and promising supplementary

treatment. The TCM theory holds that the pathogenesis of

SCI is characterized by blood stasis and deficiency of qi. In

the theory of TCM, qi is regarded as a very delicate substance

with strong vitality. Constituting the human body and

maintaining human life activities, the concept of qi is

consistent with the adenosine triphosphate (ATP) that is

mainly produced in the mitochondrion (Wong and Ko, 2013;

Yong et al., 2020). Moreover, Some TCM with the “Qi-

invigorating” action has a close link to the safeguarding of

mitochondrial function (Kang et al., 2020; Tian et al., 2021).

Mitochondrial dysfunction induced by OS resembles the

deficiency of qi. The function of qi lies in the power to

promote blood flow. When the power of push is insufficient,

flowing blood will generate the pathological product, blood

stasis. The blockade of blood stasis obstructs the

transportation and absorption of nutrients in channels

and collaterals, leading to the body not being nurtured,

which is consistent with the neurodegeneration caused by

the lack of energy owing to the mitochondrial dysfunction

induced by OS. The equivalence between qi deficiency and

mitochondrial dysfunction provides a modern microbiology

perspective for TCM to understand the pathological

mechanism. Thus, TCM can treat SCI by supplementing

qi, activating blood circulation, and removing blood stasis.

Additionally, from the modern perspective, as natural

antioxidants, TCM intervenes in SCI by attenuating OS

and preventing mitochondrial dysfunction. The overlap of

the two theories makes the feasibility of auxiliary treatment

of SCI with TCM.
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5 Therapeutic intervention with
traditional Chinese medicine

Attracting a great quantity of attention, TCM has been

considered a promising supplementary treatment in recent

years. Active herbal extracts, metabolites (Tables 1, 2),

traditional botanical drugs (Table 3), and formulas (Table 4)

all have shown their effectiveness, playing vital roles in the

prevention and treatment of SCI, especially as natural

antioxidants.

5.1 Therapeutic intervention with active
herbal extracts and metabolites

5.1.1 Quercetin
Quercetin (C15H10O7), is abundant in a variety of plants,

fruits, and vegetables, such as onion annd broccoli, as well as

Bupleurum chinense DC [Apiaceae; Bupleuri Radix] and Morus

alba L. [Moraceae; Mori Folium], which is one of the major

flavonoids that are part of human diets. It plays a role in the

prevention of various diseases such as cancer and cardiovascular

diseases (Reyes-Farias and Carrasco-Pozo, 2019).

In recent years, it has been revealed that quercetin could

protect the injured spinal cord by decreasing oxidative. Aged rats

with quercetin (20 mg/kg/d intraperitoneally for 10 days) had a

decreased level of MDA and reversed the major degenerative

changes, restraining OS (Firgany and Sarhan, 2020). The

underlying mechanism may be related to the regulation of

p38 mitogen-activated protein kinase (MAPK) and activating

transcription factor 2 (ATF2) pathway, thus quercetin

antagonized OS. Even compared to the specific p38MAPK

inhibitor SB203580, quercetin has stronger effects on

enhancing SOD activity and inhibiting MDA in SCI rats.

Immunohistochemistry consequences revealed that after

quercetin administration (0.2 mg/kg/d intraperitoneally for

14 days), the postoperatively elevated rate of iNOS-positive

cells was significantly decreased (Song et al., 2013).

5.1.2 Gastrodin
Gastrodin (C13H18O7) is a phenolic glycoside compound

extracted from Gastrodia elata Blume [Orchidaceae;

Gastrodiae rhizome]. Studies have indicated that gastrodin has

various pharmacological effects, such as antihypertensive, lipid-

lowering, and anticoagulant, which also beneficial functions in

the protection of neurons, by inhibiting OS, regulating immune

inflammation, and regulating ion channels (Liu et al., 2018).

Recently, gastrodin has emerged as a potential treatment for

SCI. Administration of gastrodin (100 or 200 mg/kg/d

intraperitoneally for 5 days) could enhance expressions of

nuclear factor (erythroid-derived 2)-like 2 (Nrf2), modified

subunit of γ-glutamylcysteine ligase (GCLm), and catalytic

subunit of γ-glutamylcysteine ligase (GCLc), and

subsequently improve the OS and recovery of locomotor

function, as illustrated by the accumulation of Basso-Beattie-

Bresnahan (BBB) scores (Du et al., 2016). Similarly, the spinal

cord ischemia-reperfusion injury model by blocking the

abdominal aorta under the renal artery and intervening with

gastrodin showed an increase in SOD, glutathione peroxidase

(GSH-Px), and total antioxidant capacity (T-AOC), as well as

the decrease in ROS and MDA. Simultaneously, the reduction

of mitochondrial swelling (MSD) also confirmed the effects of

gastrodin (100 mg/kg/d intraperitoneally for 1 day) on

protecting spinal cord ischemia-reperfusion injury by

promoting the antioxidant capacity of spinal cord

mitochondria and inhibiting the inflammatory response to

the injury (Fang et al., 2016).

5.1.3 Asiatic acid
Asiatic acid (AA, C30H48O5) is a naturally occurring

pentacyclic triterpenoid, which is found mainly in the Centella

asiatica (L.) Urb. [Apiaceae; Centeliae herba]. It has been

reported that AA has broad-spectrum anticancer abilities.

Current research has shown that AA can be used to protect

damaged spinal cord by reducing OS. AA treatment (75 mg/kg/d

intraperitoneally for 1 day) significantly increased BBB scores

and inclined plane test scores that were reduced by acute SCI. In

addition, AA suppressed myeloperoxidase activity and reduced

the levels of pro-inflammatory cytokines, ROS, and MDA, while

increasing superoxide dismutase activity and glutathione

production (Gurcan et al., 2017). Additionally, intragastric

injection with AA (30 mg/kg or 75 mg/kg) was demonstrated

that could lead to the downregulation of ROS, MDA, and tumor

necrosis factor-alpha, while upregulating superoxide dismutase

activity and glutathione production, which may be related to the

inhibition of NLRP3 inflammasome pathway and the activation

of Nrf2 and HO-1 (Jiang et al., 2016).

5.1.4 Tetramethylpyrazine
Tetramethylpyrazine (TMP, C8H12N2), a natural alkaloid

which is isolated from the Chinese botanical drug Ligusticum

chuanxiong Hort. [Apiaceae; Chuanxiong Rhizoma], has been

found to have antioxidant and anti-inflammatory effects

(AlKreathy et al., 2020).

Previous study reported the TMP treatment (30 mg/kg,

intraperitoneally 30 min before occlusion) decreased the

expression level of proinflammatory cytokines TNF-α and IL-

1β, and inhibited the activation of NF-κB in spinal cord ischemia

rats (Fan et al., 2011). Recently, TMP and

monosialotetrahexosylganglioside (GM1) have been effectively

used in the treatment of SCI. It is well documented that Selenium

nanoparticles (SeNPs) have excellent antioxidant activity. As a

novel multi-functionalized SeNPs, SeNPs@GM1/TMP, being

loaded with TMP/GM1 and decorated with polysaccharide-

protein complex (PTW)/PG-6 peptide, showed a strong

protective effect against apoptosis after SCI. SeNPs@GM1/
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TABLE 1 Therapeutic intervention with active herbal extracts and metabolites.

Active herbal extracts and metabolites

Name Source Molecular
formula

Molecular structure Mechanisms Effects on
SCI

Quercetin Bupleurum chinense DC
[Apiaceae; Bupleuri Radix]
and Morus alba L. [Moraceae;
Mori Folium]

C15H10O7 Decreases MDA and iNOS-
positive cells, activates
ATF2 pathway and suppresses
NF-κB and STAT1 pathway

Decreases necroptosis,
antioxidant properties

Gastrodin Gastrodia elata Blume
[Orchidaceae; Gastrodiae
rhizome]

C13H18O7 Enhances expressions of Nrf2 and
modifies subunit of GCLm and
GCLc, decreases ROS and MDA

Recovery of locomotor
function and
antioxidant properties

Asiatic acid Centella asiatica (L.) Urb.
[Apiaceae; Centeliae herba]

C30H48O5 Suppresses myeloperoxidase
activity, reduces ROS and MDA
and blocks NF-kB/STAT3/ERK
pathway

Increases BBB scores
and inclined plane test
scores, antioxidant
effects

Tetramethylpyrazine Ligusticum chuanxiong Hort.
[Apiaceae; Chuanxiong
Rhizoma]

C8H12N2 Reduces ROS production and
inhibits p53/MAPK pathways

Prevents mitochondria
dysfunction,
antioxidant effects

Schisandrin B Schisandra chinensis (Turcz)
Baill. [Schisandraceae;
Schisandrae Chinensis
Fructus]

C23H28O7 Increases SOD expression and
decreases MDA expression

Improves the inclined
plate test scores,
antioxidant properties

Rosmarinic acid Perilla frutescens (L.) Britton.
[Lamiaceae; Perillae Fructus]

C18H16O8 Decreased ROS and activates
Nrf2 and HO-1 pathway

Mitigates cytotoxicity
and inflammatory
injury, antioxidant
properties

Allicin Allium sativum L.
[Amaryllidaceae; Allii Sativi
Bulbus]

C6H10OS2 Increases Nrf2 nuclear
translocation, inhibits ROS and
LP. Inhibit lipid peroxidation by
quenching free radicals

Accelerates recovery of
motor functions,
antioxidant properties

Resveratrol Polygonum cuspidatum Sieb. et
Zucc. [Polygonaceae; Polygoni
Cuspidati Rhizoma et Radix]

C14H12O3 Inhibits the iNOS/p38MAPK
pathway and activates Nrf2/HO-
1 pathway

Strong antioxidant
effects

Crocin Crocus sativus L. [Iridaceae;
Croci Stigma]

C44H64O24 Enhances the expression level of
neurotrophic factors in epidermal
neural crest stem cells

Promotes spinal cord
regeneration

Tetrandrine Stephania tetrandra S.Moore
[Menispermaceae; Stephaniae
Tetrandrae Radix]

CHNO Reduces the production of pro-
inflammatory factors and
regulates PI3K/AKT/NF-κB
pathway

Repairs the integrity of
the blood-spinal cord
barrier

(Continued on following page)
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TMP (0.3, 0.6 and 1.2 μM) attenuated ROS overproduction via

inhibiting p53 and MAPK in concentration dependent, thus

preventing mitochondria dysfunction (Rao et al., 2019).

5.1.5 Schisandrin B
Schisandrin B (Sch B, C23H28O7), a dibenzocyclooctadiene

lignan, is one of the most abundant active dibenzocyclooctadiene

derivatives found in the Schisandra chinensis (Turcz.) Baill.

[Schisandraceae; Schisandrae Chinensis Fructus]. Several

studies had shown that Sch B has anti-fibrosis effects

(Cuiqiong et al., 2020) and has a protective effect on

myocardial injury (Zhang et al., 2017).

Currently, Xin et al. (2017) found that Sch B (50 mg/kg/day

orally for 5 days) reduced the inflammatory response and

inhibited OS in SCI model rats. ELISA kits showed that Sch B

significantly increased SOD expression and decreased MDA

expression levels compared with the untreated SCI group,

which may be related to the inhibition of the P53 signaling

pathway. Besides, Sch B improved the maximum angle of

inclined plate test, behavioral examination scores, and

inhibited spinal cord water content in rats with SCI.

5.1.6 Rosmarinic acid
Rosmarinic acid (RA, C18H16O8) exists in Perilla frutescens

(L.) Britton. [Lamiaceae; Perillae Fructus]. RA was proved with

multiple biological activities, including, anti-inflammatory,

neuroprotective, and antiangiogenic abilities (Colica et al., 2018).

In the animal experiment conducted by Ma et al. (2020), they

found that RA notably upregulated the activities of CAT, SOD

and GSH-Px and downregulated the MDA levels, indicating the

attenuation of SCI-induced oxidative damage. Among the three

groups designed in their study, the highest content

administration of RA (40 mg/kg) showed significantly highest

levels of SOD, CAT and GSH-Px than groups with 20 mg/kg and

10 mg/kg RA (p < 0.05). Besides, Treatment with RA could

remarkably increase Nrf2 and HO-1 levels to ameliorate the

increase in oxidative injury and apoptosis induced by H2O2.

Meanwhile, the activation of the Nrf2/HO-1 pathway further

amplified the inhibition of the NF-κB pathway, mitigating LPS-

induced cytotoxicity and inflammatory injury.

5.1.7 Allicin
Allicin (C6H10OS2), a thioester of sulfenic acid, is a natural

antioxidant found in Allium sativum L. [Amaryllidaceae; Allii

Sativi Bulbus]. Studies have shown that allicin has a good effect

on a variety of diseases, such as bone diseases (Ding et al., 2016;

Yang et al., 2020; Li et al., 2021) and neurodegenerative diseases

(Zhang et al., 2018).

It is noteworthy that allicin played an important

therapeutic role in SCI by inhibiting OS. SCI rats

administrated with allicin showed better histological

outcomes and accelerating recovery of motor functions,

which may be related that allicin increased Nrf2 nuclear

translocation in SCI rats (Lv et al., 2015). Additionally, the

protective effects of allicin on antioxidation in SCI rats were

dependent on the elevated production of NADH and inhibited

levels of ROS (Wang and Ren, 2016). In the SCI model

induced by glutamate, allicin was also shown to attenuate

the release of lactate dehydrogenase (LDH), and inhibit OS by

the mediation of heat shock protein 70 (HSP70)/inducible

nitric oxide synthase (iNOS) pathway (Wang and Ren, 2016).

Collectively, allicin may serve as a new therapeutic strategy for

spinal cord injury (Liu et al., 2015).

5.1.8 Resveratrol
Resveratrol (C14H12O3) is a kind of natural non-flavonoid

polyphenol found in many vegetables and fruits, mainly in grapes

and Polygonum cuspidatum Sieb. et Zucc. [Polygonaceae;

Polygoni Cuspidati Rhizoma et Radix]. Numerous studies

have shown that resveratrol can serve as a good antioxidant,

improving overall health by inhibiting OS (Wang et al., 2013;

Chen et al., 2020; Recalde et al., 2020).

In the animal experiment conducted by Fu et al., resveratrol

(10 mg/kg intraperitoneally) functioned as a strong antioxidant

TABLE 1 (Continued) Therapeutic intervention with active herbal extracts and metabolites.

Active herbal extracts and metabolites

Name Source Molecular
formula

Molecular structure Mechanisms Effects on
SCI

Lycopene Tomatoes, watermelons, and
pink grapefruits

C40H56 Inhibits MDA and LP Strong antioxidant
effects

Curcumin Curcuma longa L.
[Zingiberaceae; Curcumae
Longae Rhizoma]

C21H20O6 Enhances ability of lymphocytes
to resist oxidative stress, increases
the SOD content and protects the
integrity of mitochondrial
membranes

Improves
mitochondrial
dysfunction and strong
antioxidant effects
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to protect the ischemia-damaged spinal cord by inhibiting the

iNOS/p38MAPK signaling (Fu et al., 2018). Moreover,

resveratrol (100 mg/kg intraperitoneally) was found that it had

a good preventive effect on secondary injury caused by SCI

(Çiftçi et al., 2016).

5.1.9 Crocin
Crocin (C44H64O24), belonging to apocarotenoid

glycosides, is the main colorant and bioactive ingredient in

Crocus sativus L. [Iridaceae; Croci Stigma]. Studies have

shown that crocin has attracted much attention in the field

TABLE 2 The specific data of references cited in Section 5.1

Active herbal
extracts and
monomers

Study
type

Experimental
subjects

Dose Duration Controls

Quercetin Preclinical
trial

40 male rats aged 18 months In vivo: 20 mg/g/d, i.p 10 days 1 ml distilled water both
intraperitoneally and subcutaneously

Preclinical
trial

240 adult male Sprague–Dawley
rats

In vivo: 0.2 mg/kg/d, i.p 14 days Methylprednisolone 30 mg/kg/d, i.p

Gastrodin Preclinical
trial

60 male Sprang-Dawley rats In vivo: 100 or 200 mg/kg/d, i.p 5 days Intraperitoneally treated with vehicle

Preclinical
trial

36 New Zealand white rabbits In vivo: 100 mg/kg/d 1 day Perfuse normal saline 100 mg/kg

Asiatic acid Preclinical
trial

32 adult male Sprague-Dawley
rats

In vivo: 75 mg/kg 1 day Vehicle

Preclinical
trial

150 Sprague-Dawley rats In vivo: 30 mg/kg/d or
30 mg/kg/d intragastric
injection

3 days Intragastric injection of vehicle 1 h
after SCI

Tetramethylpyrazine Preclinical
trial

Adrenal phaeochromocytoma
PC12 cells

In vitro: 0.3, 0.6, and 1.2 μM 10, 30, 60, and
120 min

Saline

Preclinical
trial

30 Sprague-Dawley rats In vivo: 30 mg/kg, i.p 30 min before
occlusion

Normal saline

Schisandrin B Preclinical
trial

40 adult male Sprague-Dawley
rats

In vivo: 50 mg/kg, orally 5 days Physiological saline (0.1 ml/100 g, i.p

Rosmarinic acid Preclinical
trial

60 adult female Sprague-Dawley
rats

In vivo: 10, 20, and
40 mg/kg, i.p

28 days Normal saline, i.p

Carnosic acid Preclinical
trial

Adult (8 weeks old) male CF-1
mice

In vivo: 0.3, 1.0, and
3.0 mg/kg, i.p

2 days Saline

Preclinical
trial

Adult (8 weeks old) male CF-1
mice

In vivo: 1.0 mg/kg, i.p 2 days Sulforaphane 5.0 mg/kg

Allicin Preclinical
trial

90 female Sprague-Dawley rats In vivo: 2, 10, and 50 mg/kg/
d, i.p

21 days 0.9% NaCl daily

Preclinical
trial

40 adult BALB/c mice In vivo: 1, 5, and 10 mg/kg/
d, i.p

7 days 2 ml sterile saline

Resveratrol Preclinical
trial

35 Male Sprague–Dawley rats In vivo: 10 mg/kg, i.p 36 h 1 ml of saline, i.p

Preclinical
trial

42 male Sprague-Dawley rats In vivo:100 mg/kg 48 h Quercetin 200 mg/kg i.p

Crocin Preclinical
trial

Epidermal neural crest stem cells In vitro: 12.5, 50, 100, 200, 500,
1,000, 1,500, 2,000, and
2,500 µM

72 h 1 mM valproic acid

Preclinical
trial

25 Female Wistar rats In vivo: 150 mg/kg/d, i.p 14 days Vehicle

Tetrandrine Preclinical
trial

Spinal cord astrocytes In vitro: 0.1, 1, 10, and 20 mM 24 h PI3K inhibitor LY294002 and NF-κB
inhibitor PDTC

Preclinical
trial

48 healthy adult male or female
New Zealand white rabbits

In vivo: 22.5 mg/kg, i.p Before Ischemia
reperfusion injury

Saline

Lycopene Preclinical
trial

30 adult male SD rats In vivo: 5,10,20 mg/kg/d, i.p 7 days Saline

Curcumin Preclinical
trial

40 male Wistar rats In vivo: 200 mg/kg, i.p Immediately after
the trauma

1 ml of rice bran oil and 30 mg/kg
methylprednisolone sodium succinate

Preclinical
trial

39 male Sprague-Dawley rats In vivo: 40 mg/kg/d, i.p 6 days Saline
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of food and cosmetics. It can be used to produce functional

products and as an anti-aging cosmetic agent for the skin

(Fagot et al., 2018). Despite being used in dermatology, the

results of Abdulkareem Aljumaily et al. (2021) verified that it

can be used as a heart-protective agent for patients with

cancers.

In recent years, crocin also has been found to have a

significant effect on SCI. A recent investigation demonstrated

that crocin may have therapeutic effects on SCI by enhancing

the expression level of neurotrophic factors in epidermal

neural crest stem cells (Baharvand et al., 2020). SCI rats

treated with crocin (150 mg/kg/d intraperitoneally for

2 weeks) presented a notably reduced level of calcitonin

gene-related peptide than the control group (Karami et al.,

2013). In a word, crocin can greatly promote spinal cord

regeneration and is an effective drug for treating SCI (Terraf

et al., 2017).

5.1.10 Tetrandrine
Tetrandrine (CHNO) is an alkaloid, which mainly exists

in the dry roots of Stephania tetrandra S. Moore

[Menispermaceae; Stephaniae Tetrandrae Radix]. In recent

years, studies have investigated that it can lessen lung

damage, having a potential role in the treatment of

asthma (Lin et al., 2019; Lin et al., 2020).

As for the aspect of tetrandrine treating SCI, scholars found

tetrandrine was capable to protect damaged spinal cord astrocytes

in rats and diminished the accumulation of IL-1β, IL-6, and TNF-
α, which may be related to PI3K/AKT/NF-κB signaling pathway

(Bao et al., 2016). After being intravenously injected with

tetrandrine (22.5 mg/kg), New Zealand white rabbits with

ischemia-reperfusion injury of the spinal cord showed a notable

repair of the integrity of the blood-spinal cord barrier, related to

that tetrandrine could change the BCL-2/Bax ratio and reduce the

production of pro-inflammatory factors (Pu et al., 2020).

TABLE 3 Therapeutic intervention with Chinese herbs.

Chinese herbs

Name Species and
source

Components Picture Effects in
TCM theory

Antioxidant
mechanisms

Salvia
miltiorrhiza
Bunge

Lamiaceae; Salviae
Miltiorrhizae Radix et
Rhizome

Hydrophilic depside derivatives
(e.g., danishes, salvianolic acids
A–C, E–G, caffeic acid, and ferulic
acid) and lipophilic diterpenoids
(e.g., tanshinones Ι, ΙΙA, andΙΙB,
tanshinoneA, and tanshindiols A
and B)

Promotes blood
circulation, removes
blood stasis, and
reduces pain

Improves SOD, decreases the
MDA, inhibits MAPK pathways,
and preserves CAT activities

Cistanche
deserticola Ma

Orobanchaceae;
Cistanches herba

Total glycosides (TGs,
phenylethanoid glycosides, and
other glycosides) and
oligosaccharides

Tonifies yang qi and
blood, and moistens
the intestines

Reduces p53, IL-6, and TNF-α,
decreases MDA, increases SOD,
GSH-Px, and CAT, facilitates Nrf-2
nuclear translocation

TABLE 4 Therapeutic intervention with traditional formulas.

Name Effects
in TCM theory

Mechanisms

JisuiKang Removes blood stasis and dredge meridians,
reconciles qi and blood

(1) Protects the microstructure of neurons, such as mitochondria, dendritic spine, and
endoplasmic reticulum

(2) Inhibits the expression of the Nogo receptor (NgR) in neurons and reduces the activation of
the NgR/RhoA/ROCK signal pathway

(3) Inhibits the expression of NOS and the content of NO and MDA while improving the
activity of SOD

Xuefuzhuyu
Decoction

Promotes blood circulation and dissolves stasis (1) Reduces the content of MDA in the spinal cord and promotes the relief of spinal cord edema

(2) Improve the content of SOD

Frontiers in Pharmacology frontiersin.org09

Huang et al. 10.3389/fphar.2022.976757

95

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.976757


5.1.11 Lycopene
Lycopene (C40H56), an open-chain unsaturated structure, is

the most important carotenoid in human plasma. Tomatoes,

watermelons and pink grapefruits, are all rich sources of lycopene

(Grabowska et al., 2019). As a functional pigment, lycopene has a

variety of biological effects, among which the antioxidant effect

has received extensive attention.

In recent years, numerous studies have found that

lycopene could inhibit the production of MDA, and

effectively resist ROS-mediated lipid peroxidation, thereby

reducing the secondary damage of free radicals to spinal blood

vessels and nerve cells. Animal experiments showed that

lycopene also had an antioxidant effect on mitochondrial

dysfunction in SCI rats. The experimental data showed that

the mtDNA content and function-related genes-cytochrome b

and mitochondrial organism’s function-Tfam of the SCI

group significantly decreased. However, these changes were

significantly hyperpolarized after intraperitoneally injecting

lycopene (Hu et al., 2017). In addition, the outstanding effects

of lycopene were directly proportional to the use time.

5.1.12 Curcumin
Curcumin (C21H20O6) is a natural polyphenol compound,

which is extracted from traditional Chinese medicine Curcuma

longa L. [Zingiberaceae; Curcumae Longae Rhizoma]. Studies

have found that curcumin’s properties of anti-inflammatory,

anti-glial cells, and antitumor activity (Vollono et al., 2019)

(Barua and Buragohain, 2021).

In recent years, research results inferred that curcuminmay play

a therapeutic effect in SCI. In an animal experiment (Cemil et al.,

2010), researchers applied curcumin (200 mg/kg/d intravenously

for 1 day) to treat aneurysm clamp SCI and detected enzyme

changes in the tissue. Their BBB score confirmed the recovery of

nerve function after administrating with curcumin. Lin and his

colleagues (Lin et al., 2011) established the spinal cord hemisection

injury model and observed that curcumin (40 mg/kg/d

intravenously for 6 days) could improve the motor function of

SCI rats. The mechanismmay be related to that curcumin increased

the SOD content in spinal cord tissue, thereby promoting the

production of GSH in astrocytes, improving mitochondrial

dysfunction and lipid peroxidation, along with protecting the

integrity of mitochondrial membranes.

5.2 Therapeutic intervention with Chinese
botanical drugs

5.2.1 Salvia miltiorrhiza Bunge
As one of the most famous Chinese botanical drugs, Danshen,

namely Salvia miltiorrhiza Bunge [Lamiaceae; Salviae Miltiorrhizae

Radix et Rhizome] has the effects of promoting blood circulation,

removing blood stasis, and reducing pain in TCM theory. Danshen

has plenty of components, majorly including hydrophilic depside

derivatives (e.g., danishes, salvianolic acids A–C, E–G, caffeic acid,

and ferulic acid) and lipophilic diterpenoids (e.g., tanshinones Ι, ΙΙA,
andΙΙB, tanshinoneA, and tanshindiols A and B).

Recently, studies found that many components of Danshen

could play a critical antioxidant role in improving SCI.

Dihydrotanshinone I (DI) could alleviate the pathological

damage to the spinal cord and promote neuronal functional

recovery by suppressing iNOS, and total oxidant status levels,

while improving the (total antioxidant status) TAS level.

Moreover, the experiment revealed that the HMGB1/TLR4/

NOX4 pathway may participate in the effects of DI on SCI (Yu

and Qian, 2020). Intraperitoneal administration with tanshinone

IIA (TIIA) inhibited OS by significantly rescuing the activity of

SOD and decreasing theMDA. Notably, TIIA had strong analgesic

actions via inhibitingMAPKs pathways to depress the activation of

microglial and immune responses (Cao et al., 2015). Salvianolic

acid B(SalB) In the SCI rat models, groups administered with SalB

markedly preserved the activities of SOD and CAT, playing an

antioxidant role. (Fu et al., 2014).

5.2.2 Cistanche deserticola ma
Cistanche deserticolaMa [Orobanchaceae; Cistanches herba]

is a commonly used drug for tonifying yang qi and blood, and

moistening the intestines in TCM theory. Modern medicine has

proved that Cistanche deserticola is effective for cardiovascular

and cerebrovascular diseases (Wang et al., 2020). A considerable

number of components of Cistanche deserticola were shown to be

antioxidants, including total glycosides (TGs, phenylethanoid

glycosides, and other glycosides) and oligosaccharides.

It was reported that oligosaccharides from Cistanche

deserticola significantly altered LP, GSH, superoxide dismutase,

acetylcholine esterase, catalase, nitric acid, acetylcholine esterase,

and ROS in the SCI rats. Extract supplementation of

oligosaccharides reduced mRNA expression levels of iNOS, p53,

IL-6, TNF-α and cyclooxygenase-2 more than 20%, showing

effective effects against inflammation, apoptosis, and OS (Zhang

et al., 2019). Moreover, according to the experimental results of

Wang et al. (2020) TGs could significantly decrease MDA levels,

while increasing antioxidant activities, such as SOD, GSH-Px, and

CAT, via remarkably facilitating Nrf-2 nuclear translocation.

Additionally, phenylethanoid glycosides, an extract of Cistanche

deserticola also had the ability to enhance SOD activity and

decreasing MDA content (Xuan and Liu, 2008).

5.3 Therapeutic intervention with
traditional formulas.

5.3.1 JisuiKang
JSK, a TCM formula derived from classic prescriptions

Buyang Huanwu Decoction, is composed of Plantago asiatica

L. [Plantaginaceae; Plantaginis Semen] 15 g, Paeonia lactiflora

Pall. [Paeoniaceae; Paeoniae Radix Rubra] 12 g, Ligusticum
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chuanxiongHort. [Apiaceae; Chuanxiong Rhizoma] 10 g, Rheum

palmatum L. [Polygonaceae; Rhei Radix et Rhizoma] 10 g,

Angelica sinensis (Oliv.) Diels [Apiaceae; Angelicae Sinensis

Radix] 12 g, Salvia miltiorrhiza Bunge [Lamiaceae; Salviae

Miltiorrhizae Radix et Rhizome] 20 g, Poria cocos (Schw.)

Wolf [Polyporaceae; Poria] 10 g, Magnolia officinalis Rehd. et

Wils. [Magnoliaceae; Magnoliae Officinalis Cortex] 10 g;

Astragalus mongholicus Bunge [Fabaceae; Astragali Radix]

30 g, Cistanche deserticola Ma [Orobanchaceae; Cistanches

herba] 10 g, Eupolyphaga sinensis Walker [Corydidae;

Eupolyphaga Steleophaga] 10 g, Scolopendra subspinipes

mutilans L. Koch [Scolopendridae; Scolopendra] 10 g,

Epimedium brevicornu Maxim. [Berberidaceae; Epimedii

Folium] 10 g, Alpinia oxyphylla Miq. [Zingiberaceae; Alipiniae

Oxyphyllae Fructus] 10 g, Alisma orientale (Sam.)

Juzep. [Alismataceae; Alismatis Rhizoma] 10 g, Citrus

aurantium L. [Rutaceae; Aurantii Fructus Immaturus] 10 g.

Many clinical tests on SCI patients have demonstrated that

JSK has satisfactory clinical efficacy (Guo et al., 2017). JSK

could improve the motor function of SCI rats by protecting

the microstructure of neurons, such as mitochondria, dendritic

spine, and endoplasmic reticulum. Moreover, JSK inhibited the

expression of the Nogo receptor (NgR) in neurons and reduced

the activation of the NgR/RhoA/ROCK signal pathway to

improve the motor function of SCI rats. These effects

indicated the clinical values of JSK as a potential nerve

regeneration agent (Wu et al., 2020).

As for the aspects of antioxidation, JSK could inhibit the

expression of NOS and decrease the content of NO and MDA,

while improving the activity of SOD. Thus, JSK directly inhibited

the process of LP after SCI, as well as weakened the secondary

degeneration and necrosis of the spinal cord caused by free

radicals. On the other hand, JSK could gradually enhance the

activity of endogenous antioxidants and enhance the scavenging

effects of free radicals (Zhou et al., 2009). Moreover, in the

clinical trial including 84 SCI patients, Wang et al. (2008)

demonstrated that JSK treatment had significantly beneficial

effects in improving kinetic score, grades of spinal injury and

effectiveness of the treatment (p < 0.05). Clinical trial including

68 SCI patients demonstrated that the effective rate of JSK

treatment was 94.3%, which may be related to the inhibited

expressions of GFAP and CSPG proteins (Shao, 2020).

5.3.2 Xuefuzhuyu decoction
Originated in Qing Dynasty, XFZYD is considered one of the

most significant decoctions for promoting blood circulation and

dissolving stasis to treat cardiovascular and cerebrovascular

diseases. The abundant meta-analysis, clinical trials, and

animal experiments showed that XFZYD had effects on

treating hyperlipidemia (Liao et al., 2014), coronary heart

disease (Liao et al., 2014), liver fibrosis (Zhou et al., 2014),

and so on. Composed of 11 kinds of traditional botanical

drugs, including Angelica sinensis (Oliv.) Diels [Apiaceae;

Angelicae Sinensis Radix] 9 g, Rehmannia glutinosa Libosch.

[Orobanchaceae; Rehmanniae Radix] 9 g, Prunus persica (L.)

Batsch [Rosaceae; Persicae Semen] 12 g, Citrus aurantium L.

[Rutaceae; Aurantii Fructus] 6 g, Paeonia lactiflora Pall.

[Paeoniaceae; Paeoniae Radix Rubra] 6 g, Carthamus

tinctorius L. [Asteraceae; Carthami Flos] 9 g, Ligusticum

chuanxiong Hort. [Apiaceae; Chuanxiong Rhizoma] 5 g,

Bupleurum chinense DC. [Apiaceae; Bupleuri Radix] 3 g,

Glycyrrhiza uralensis Fisch. [Fabaceae; Glycyrrhizae Radix et

Rhizoma] 6 g, Platycodon grandiflorum (Jacq.) A. DC.

[Campanulaceae; Platycodonis Radix] 5 g, Achyranthes

bidentata Blume [Amaranthaceae; Achyranthis Bidentatae

Radix] 9 g, XFZYD was found to be beneficial for the

treatment of SCI by attenuating OS.

XFZUD could promote the microcirculation reperfusion of

spinal cord stasis, reduce the content of MDA in the spinal cord

and promote the relief of spinal cord edema, so as to protect the

injured spinal cord (Liu et al., 2006). Meanwhile, a current study

showed that the content of SOD in XFZYD containing serum

group was significantly higher than that in the injury control

group and blank serum group (Liu et al., 2017). Besides, the level

of SOD in the XFZYD group was similar to that in the

neurotrophic factor protection (NFP) group, and this

similitude also existed in the cell survival rate of these two

groups (XFZYD group = 0.529 ± 0.010, NFP group = 0.548 ±

0.056) (Liu et al., 2017).

6 Conclusion

The complicated pathophysiologic mechanisms contained in

SCI lead to the existing circumstances that fully restorative

treatments of SCI do not exist. Among the various

pathophysiologic mechanisms, OS plays a vital role in

secondary injury, triggering a series of free-radical-mediated

damages, including damages to biological macromolecules, ion

imbalances, and mitochondrial dysfunctions. Thus, lessening OS

may become an effective therapeutic strategy for SCI.

From classical TCM theory, the mentioned active herbal

extracts, metabolites, traditional botanical drugs, and formulas

can treat SCI via invigorating Qi, activating blood circulation,

and removing blood stasis, which is in line with our above-

mentioned TCM treatment principles for SCI. On the other

hand, from the modern perspective, the mentioned TCM

intervene in SCI by suppressing M1, enhancing SOD activity,

decreasing MDA levels, promoting mitochondrial functions, and

other pathways to attenuate the impacts of OS on SCI. In the

treatment of SCI, traditional botanical drugs and formulas used

for thousands of years, have the advantages of synergistic effect

and multitarget action, which are more in line with the

medication law of TCM theory. However, “Drug-Drug

Interaction” (DDI) occurs in the traditional botanical drugs

and formulas owing to their numerous compounds, which
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may cause the complication of predicting and preventing adverse

reactions. On the contrary, active herbal extracts andmetabolites,

new concepts proposed in modern medicine compared to

traditional botanical drugs and formulas, have the superiority

of simple composition, direct targeting, high safety, and clear

effects, avoiding the problems of adverse reactions. Therefore,

active herbal extracts and metabolites with scavenging capacity

may be more suitable to be the supplementary treatment to

improve SCI, particularly resveratrol and quercetin.

However, the investigations on the application of TCM in

SCI are generally published in low-impact journals, suggesting

that this field of study is still in the initial stages. Additionally,

promising results have been widely verified in animal models,

instead of the implementation in human clinical applications,

which makes us more aware of the obstacles and limitations of

TCM in SCI. Therefore, in-depth studies in this study are

extremely necessary. Accordingly, we make the following three

recommendations and perspectives for subsequent research in

this area: 1) to comprehensively understand traditional botanical

drugs and formulas, more clinical investigations need to be done,

including underlying possible therapeutic mechanisms, the best

route of administration, dosage, and timing. 2) combine the

active herbal extracts and metabolites with emerging

nanotechnology or modern tissue scaffold therapies, improve

the effect of nerve function repair and reconstruction after SCI. 3)

in-depth research on the traditional theory of TCM and the

mechanism of antioxidants in TCM is needed to reveal the

modern mechanism of the traditional efficacy of benefiting qi

in TCM theory, thereby identifying appropriate treatments for

SCI within the TCM treatment protocol.
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Glossary

3- NT 3-nitrotyrosine

4- HNE 4-hydroxynonenal

AA asiatic acid

ATF2 activating transcription factor 2

ATP adenosine triphosphate

ATRA all-trans retinoic acid

BBB Basso-Beattie-Bresnahan

BSCB blood-spinal cord barrier

CA Carnosic acid

DDI Drug-Drug Interaction

EGb Ginkgo biloba extract

EGCG Epigallocatechin gallate

FAP-1 Fas-associated phosphatase-1

GSH-Px glutathione peroxidase

IRI ischemia-reperfusion injury

iROS intracellular reactive oxygen species

JSK JisuiKang

LP lipid peroxidation

MAPK mitogen-activated protein kinase

MDA malondialdehyde

NO nitric oxide

OS oxidative stress

PON peroxynitrite

Q- PCR Quantitative real-time polymerase chain reaction

RA Rosmarinic acid

RNS reactive nitrogen species

ROS reactive oxygen species

Sch B Schisandrin B

SCI Spinal cord injury

SeNPs Selenium nanoparticles

T- AOC total antioxidant capacity

TCM traditional Chinese medicine

TMP Tetramethylpyrazine

XFZYD Xuefuzhuyu Decoction
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Background: Burns are considered a critical care problem in emergency

medicine, resulting in physical, psychological, and chronic disabilities. Silver

sulfadiazine is the gold standard in topical burn treatment but was associated

with toxicity to keratinocytes and fibroblasts, which may delay wound healing.

In discovering potential alternative treatments for burn wound healing, this

study was performed to determine the effect of Labisia Pumila (Blume) Fern.-

Vill. Var. Alata (LPVa) extract on thermal-burn wounds in rats.

Methods: A total of 50 Sprague-Dawley male rats were categorized into five

groups. There were three control groups; normal control (left untreated),

negative control (given ointment base) and positive control (given silver

sulfadiazine). Meanwhile, the two intervention groups were given with 2%

LPVa leaf and root extracts, respectively. Burn wounds were inflicted on the

loin region of the rat by applying a heated steel rod at 80°C for 10 s. On days 3, 7,

14, and 21, wounds were measured macroscopically using a digital calliper and

one animals of each group were sacrificed, and the wounded skin were excised

for histomorphological assessments. The wounds were excised for

hydroxyproline content on Day 14 of treatment.
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Result: For wound contraction percentage, both the leaf and root extracts of

LPVa showed a significant reduction in burn wound size on Day 7 onwards,

when compared to other groups. For hydroxyproline content, only the leaf

extract of LPVa produced significantly higher content compared to both

negative and normal control groups. In terms of histological examination,

the leaf extract group demonstrated a superior healing effect than the root

extract group.

Conclusion: Both leaf and root extracts of LPVa could promote wound healing

in the thermal-burn wound rat model, with leaf extract being superior to root

extract.

KEYWORDS

labisia pumila, antioxidant, burn wound healing, hydroxyproline, histomorphology

Introduction

Burns are a critical care problem requiring specialised care

focusing on stabilising the patient, preventing infection, and

optimizing functional recovery (Rowan et al., 2015). Burns

can be defined as tissue lesions that occur as a result of

exposure to thermal origin such as flames, hot surface and

liquids, extreme cold, chemicals, radiation or friction (Tavares

Pereira et al., 2012). Burns are categorised according to the

severity of lesion into first, second and third-degree of burns.

For the first-degree burn, it is restricted to the epidermal layer

that results into redness and require simple first-aid procedures

with over-the-counter pain relievers. Second-degree burn or also

known as partial-thickness burns are subdivided into two

categories: superficial and deep. As for the superficial partial

thickness, the burn may reach the epidermis and superficial

dermis, causing hypersensitivity and pain. Deep partial-

thickness burn occurs when it reaches the deepest layer of the

dermis, resulting in reduced sensitivity with red and/or white

colouration of the tissue. Finally, the third-degree burn or also

known as full-thickness burn involves the subcutaneous layer,

without sensitivity and white in colour (Lanham et al., 2020).

Burn wound healing is a complex process that can be divided

into three overlapping phases: inflammatory, proliferative and

remodelling phases. During the inflammatory phase, neutrophils

andmonocytes arrive at the injury site via localized vasodilation and

fluid extravasation (Tiwari, 2012). The inflammation prevents

wound infection, degrades necrotic tissue and activate signals

required for wound repair (Reinke and Sorg, 2012). The next

overlapping phase is known as the proliferative phase, which is

characterized by activation of keratinocyte and fibroblast by

cytokines and growth factors (Werner et al., 2007). During this

phase, keratinocytes, the dominant cell types in epidermis layer will

migrate over the wound to aid in closure and restoration of a

vascular network that results into maturation of epidermis and scar.

The communication between stromal, endothelial and immune cells

may define the healing course of the wound such as closure and

revascularization (Pastar et al., 2014).

The healing of burn-wound lesions involves tissue

inflammation, oedema, and hypertrophic scars (Rowan et al.,

2015). Hence, the type of topical agent or coverage for treating

burns should be selected based on assessment of lesion

characteristics and evidence reported by specific literatures.

Topical agents used for treating burn wounds should have

properties such as antimicrobial activity, good compliance and

cheap. They should also be less toxic, produce less

hypersensitivity reactions and able to shorten the healing time

(Tavares Pereira et al., 2012).

Silver sulfadiazine is the gold standard for topical burn

treatment. It improves the survival of patients with major

burns and minimizes the incidence of burn wound sepsis, a

leading cause of mortality and morbidity in burn patients

(Church et al., 2006). It is composed of sodium sulfadiazine

and silver nitrate, whereby the silver ion attaches to the nucleic

acid of the microorganisms, releasing the sulfadiazine. The

sulfadiazine produced from the reaction will then disrupt the

metabolism of the microbe (Lansdown, 2002b). However, the

silver constituent in the silver sulfadiazine has been

demonstrated to interact with structural proteins and

preferentially bind to DNA nucleic acid bases to inhibit

replication of the cells in the skin (Lansdown, 2002a; 2002b).

Due to this reaction, silver is toxic to keratinocytes and

fibroblasts, which may cause delay in burn wound healing if

applied continuously to the healing tissue areas (Nešporová et al.,

2020). Thus, an alternative treatment that could promote burn

wound healing effectively but less toxic needs to be developed.

The treatment of burn wounds has evolved over several decades

through clinical and preclinical research. Significant

advancements have been made in treatment of burn wound,

including the testing of unique pharmacological interventions

such as herbal plant extracts.

Labisia pumila (Blume) Fern.-Vill. (Primulaceae) (LP) or

locally known as ‘Kacip Fatimah’ is one of the herbal plants

in theMyrsinaceae family, characterized by lanceolate leaves with

a creeping stem and long roots (Jamal et al., 2003). The plant is

commonly found in the South East Asian region, including
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Malaysia, Indonesia, Thailand, and China (Stone, 1989). LP is a

jungle species and difficult to cultivate ex situ, which requires

adaptation to the agricultural environment before it can survive

and grow optimally. Therefore, LP does not associate with

seasonal collection of the plants. In Malaysia, for instance, the

plant rawmaterials come directly from the jungle or are imported

from neighbouring countries. (Rosnani et al., 2019). LP is a well-

known and widely used herbal remedy by women for general

well-being and specifically to facilitate and expedite recovery

after childbirth. This includes expediting healing of childbirth

wounds. Its pharmacological effects on women’s health may be

related to its phytoestrogen properties, having similar chemical

structure to estrogen (Jamal et al., 2003). Phytoestrogens are

regarded as the naturally occurring selective estrogen receptor

modulators (SERMs) and possess potential effect in providing a

natural estrogen replacement especially to postmenopausal

women. Phytoestrogens demonstrated protection against

oxidative stress, an imbalanced condition between ROS and

antioxidant defence mechanism (Liu et al., 2020). There are

three known varieties of LP which are var. pumila, var. alata,

and var. lanceolata (Karimi et al., 2013). The var. alata and var.

pumila variants were more commonly used as medicinal plants

than var. lanceolata (Abdul Kadir et al., 2012). Several studies

have demonstrated that LP extracts possess medicinal properties

such as antifungal, anti-inflammatory, cytotoxicity (Karimi et al.,

2013), anticancer, antioxidant and anti-osteoporosis (Nadia

et al., 2012). However, there are limited studies on LP effects

on skin tissue. In a previous study by Choi et al. (2010), LP extract

demonstrated protection of skin against photoaging induced by

ultraviolet irradiation (Choi et al., 2010). Meanwhile, a study by

Ahmad et al. (2018) reported that LP extract promoted minor

wound healing in ovariectomized rat model (Ahmad et al., 2018).

However, the effects of LP on burn wound healing have not been

studied yet. To the best of our knowledge, this is the first study

aimed to determine the potential of LP var alata in promoting

burn wound healing.

Materials and methods

Preparation of Labisia Pumila extracts and
combination with ointment

Standardised methods were used to obtain aqueous extracts

of leaf and roots of Labisia pumila var. alata (Jamal et al., 2003).

Briefly, the extraction was performed with water by successive

maceration at room temperature for a week, followed by

filtration. The filtration process was repeated several times.

The filtrate obtained after filtration were concentrated by

evaporation using a rotary evaporator (Buchi Rotavapor R-

100, Switzerland) at temperatures of 35°C until dryness to

maximize the proportion of desired bioactive fractions

contained in each of the extract. The filtrate was then freeze-

dried to obtain the powdered form. The process of extraction,

filtration and concentration were repeated several times until

maximum yield of aqueous extracts has been reached.

The LP leaf and root aqueous extracts were combined with

cetomacrogol emulsifying ointment (Hovid Berhad, Malaysia),

which is a type of paraffin used as a vehicle in these topically-

applied preparations to the rats. This emulsifying ointment was

chosen as a vehicle as it is chemically inert and inactive to the skin

(Ahmad et al., 2021). A 2.0% dose concentration was chosen for

both the leaf and root extracts as previously established by

Ahmad et al. (2018) using LP extracts on minor wound

healing (Ahmad et al., 2018). The extracts were crushed using

a pestle and mortar to obtain fine powder which have faster

absorption rates and better uniformity when mixed with

emulsifying ointment. In brief, the emulsifying ointment and

extract powder were put together onto a clean glass plate and

mixed thoroughly with a spatula to ensure uniformity. The

extract appeared dissolved during the mixing process, which

confirmed its compatibility with the ointment.

Animals

Fifty male Sprague-Dawley rats aged 4–5 months and weighing

250 ± 50 g were obtained from the Universiti Kebangsaan Malaysia

Laboratory Animal Research Unit. All rats were housed in

individually ventilated cages at temperature-controlled (25 ± 1°C)

environment under natural day/night cycle. They were fed with

standard laboratory food pellets and given water ad libitum. All

animal experiments were approved by Universiti Kebangsaan

Malaysia Animal Ethical Committee (FAR/PP/2018/NAZRUN/

25-JULY/935-AUG-2018-MAR-2019).

Burn wound model and treatments

The rats were acclimatized to laboratory conditions for

1 week prior to the experiment. Initially, the rats were

anesthetized with intraperitoneal injection of Ketamine and

Xylazil at 1:1 ratio before inducing burn wound. The dorsal

regions of the rats were shaven with an electric shaver and

sterilized with 70% alcohol. Prior to burn-wound infliction,

the rats were injected intramuscularly with tramadol

(12.5 mg/kg body weight) for pain control. Burn infliction

techniques were performed accordingly to the methods by Cai

et al. (2014) with slight modification (Cai et al., 2014). Burn

wounds were created at dorsum of the rats using a 100 g

cylindrical stainless-steel rod (1 cm diameter), which was

heated to 80°C in boiling water. Temperature was monitored

using a thermocouple thermometer (Figure 1A). The area for

burn infliction was limited to the loin region of the rat. Four

points were marked for burn wound sites at the loin with 2 cm

apart side to side and 4 cm up and down. Then, the skin was
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pulled upwards, away from the underlying viscera, creating a flat

surface (Figure 1B). The rod was left rested on its own weight for

10 s at the four different sites on each rat. Treatments were given

topically to the rats, which were categorized into five groups, each

containing 10 rats. As for the control groups, the wounds were

left untreated for normal control (NM) group, treated with

emulsifying ointment for negative control (NG) group and

treated with silver sulfadiazine for positive control (PS)

group. For the two intervention groups, the wounds were

treated with LPVa leaf (LF) and root (RT) extracts,

respectively. Treatments were performed for 3 weeks on daily

basis.

Macroscopic evaluation of burn wounds

Following the burn infliction, macroscopic changes of burn

wounds were evaluated at day 0 post burn and subsequently at

days 3, 7, 14, and 21 post burn. Photographs were taken with

digital camera (SONY DSC-RX100M2, 15x) until complete

closure of wound. The images were scored blindly by

anatomical expert using a macroscopic scoring tool for burns

as described by Schlager et al. (2000)(Schlager et al., 2000)

(Table 1).

Measurement of wound area

Wounds were observed and measured at day 0, 3, 7, 14, and

21 by using a digital caliper (General Ultratech, New York, NY).

Woud contraction will be expressed as reduction in percentage of

the original wound size (Figure 2).

Determination of the hydroxyproline
content

On the 14th day, one rat from each group was euthanized

using ketamine and xylazil (overdose) to excise the wound

tissue for determination of hydroxyproline content. The

protein content of the wound tissue was estimated using

the techniques described by Neuman and Logan (1950)

(Neuman and Logan, 1950). Wound tissue were excised

and stored at −70°C until ready for processing. For the

procedure, 80–100 mg of tissues were weighed and minced

to small pieces and were put in test tubes. Tissues were

hydrolysed by adding 6 mol/L HCl to each test tubes and

placed in boiling water bath for 5 h. Then, the pH of the

FIGURE 1
(A) Configuration of thermocouple thermometer and boiling water. (B) Experimental burn wound infliction performed on a rat.

TABLE 1Macroscopic scoring system used for burns. Source: Schlager
et al. (2000).

Variable Scoring

0 1 2

Redness None Slightly red Completely red

Edema None Minimal edema Clearly distinctive
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hydrolysate was adjusted between 6.0 and 6.8 by testing with

pH indicator paper. Distilled water was added into each test

tubes to a final volume of 10 ml and they were mixed

thoroughly. Approximately 3–4 ml of diluted test solution

was taken and added with 20–30 mg of activated carbon. The

solution was mixed thoroughly and centrifuged at 3,500 rpm

for 10 min. For detection, 1 ml of the test solution was taken

and prepared according to the manual given in the test kit.

Blank and standard tubes were also prepared accordingly.

After mixing the solution thoroughly, the mixture was

incubated at 60°C in water bath for 15 min and

centrifuged at 3,500 rpm for 10 min. Supernatants were

taken and measured using ELISA plate reader at 550 nm

wavelength.

Histomorphological analysis

Three types of staining methods were used for

histomorphological analysis; 1) Hematoxylin & eosin

(H&E), 2) Masson’s Trichrome (TRI), and 3)

Immunohistochemistry (IHC). Wound bed biopsies were

excised at days 3, 7, 14 and 21 post-wounding. The tissue

samples were fixed in 10% buffered formalin, processed and

embedded in paraffin to prepare tissue blocks. Then, the

tissue blocks were sectioned for 5 µm (H&E, TRI) and 3 µm

(IHC). All sections were deparafinized and rehydrated

conventionally prior to staining. For H&E and Masson’s

trichome, the sections were stained with their respective

staining kits. For further investigation,

immunohistochemistry was performed to visualize

distribution and localization of specific antigen or cellular

components responsible for wound healing. In this study,

three antibodies were used: Collagen I, Collagen III, and

fibroblast. Following deparaffinization and dehydration

processes, the sections undergone antigen retrieval process

using citrate-based solution in microwave for 10 min and

blocking process in 0.3% H2O2 in methanol for 30 min.

Subsequently, the sections were incubated with normal

serum for 20 min and were incubated with primary

antibody diluted in buffer at 4°C. The sections were then

incubated for 1 hour with diluted biotinylated secondary

antibody and incubated for 30 min with Vectastain ABC

reagent. In between of each incubations, the sections were

washed in buffer for 5 min. Following the incubation with

Vectastain, the antibody binding sites were visualized by

incubation with DAB signal stain kit for 15 min and

counterstained with Haematoxylin for 2 min.

All the tissue sections were then subjected to clearing and

mounting processes. The slides were observed under microscope

(Olympus BX3-25ND6, Japan) and photomicrographs were

taken at ×20 magnification for two parts; dermis and

hypodermis. The stained tissue sections were scored blindly

by histological experts using the modified 0 to three

numerical scale as described by Abramov et al. (2007)

(Table 2) (Abramov et al., 2007). Any difference in scoring

was discussed to a consensus.

Data analysis

All the quantitative data were analysed using SPSS version

23. Data were presented as Mean ± Standard Error Mean

(SEM). Normality test was performed using Kolmogorov-

Smirnov test. One-way ANOVA was conducted followed by

Post Hoc Tukey’s test to determine statistical significance. p

values < 0.05 were considered significant. GraphPad Prism

software version 9.0 (GraphPad Software, San Diego,

California United States) was used to estimate the area

under the curve (AUC) with a 95% confidence interval. The

AUC was calculated from the wound contraction percentage

versus time profiles, which was determined by the area

normalized to the baseline for the 21-day period (Gagnon

and Peterson, 1998).

Results

Macroscopic view of wounds

Macroscopic changes over time for Day 0, 3, 7, 14, and

21 for superficial partial thickness of second-degree burn

wounds were shown in Figure 3. In general, immediately

after the burn induction, all wounds were non-uniformly

round and white in color. Macroscopically, no difference

was observed between all the groups following the burn

induction, which was reflected by the similar score (score 0)

for macroscopic evaluation at day 0 (Table 3). On Day 3, the

edemas were more prominent compared to the Day 0, with the

score 1 (minimal edema), and the wounds were slightly red

FIGURE 2
Formula for calculating reduction in percentage of the original wound size.
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with score 1 in all groups. On Day 7, the scabs on the wounds

gradually appeared drier and smaller in all the groups,

indicated by the score 2 (completely red) in the

macroscopic evaluation. While for edema, all groups showed

similar score of 2 (clearly distinctive). On Day 14, all control

groups demonstrated that the scabs were still present as dark

red in color and still attached to the wounds, which represented

by the score 2 (completely red) for macroscopic evaluation.

Meanwhile, for LF and RT groups, the scabs were mild red in

color, or the scabs had dropped off, which represented by the

score 0 (none) and 1 (slightly red). On Day 21, the wounds

appeared to have almost disappeared in LF and RT groups,

with whitish appearance (fibrous tissue) and represented by the

score 0 (no redness) in the macroscopic evaluation.

Meanwhile, for all control groups, the wounds were still

present with pinkish appearance, which indicated

granulation tissue and represented by the score 1 (slightly

red) for macroscopic examination.

TABLE 2 Scoring system for Hematoxylin & Eosin, Masson’s Trichome and immunohistochemistry staining. Source: (Abramov et al., 2007).

Variable Scoring

0 1 2 3

H&E Reepithelization None Partial Complete but immature or thin Complete and mature

Fibroblast proliferation None Scant Moderate Abundant

Inflammation cell infiltration None Scant Moderate Abundant

Neo- vascularization None <5 vessels/HPF 6–10 vessels/HPF >10 vessels/HPF

Granulation tissue formation Immature Mild maturation Moderate maturation Fully matured

Masson’s Trichome Collagen None Scant Moderate Abundant

Immunohistochemistry Collagen I None Scant Moderate Abundant

Collagen 111 None Scant Moderate Abundant

Fibroblast None Scant Moderate Abundant

FIGURE 3
Macroscopic view of five representative male rats from each group at day 0, 3, 7, 14 and 21. S: Scab; G: Granulation tissue; F: Fibrous tissue. NM:
normal control group, NG: negative control group, PS: positive control group, LF: LPVa leaf-treated group, RT: LPVa root-treated group.
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Wound contraction percentage

On Day 3, all the groups did not show any significant value and

demonstrated mildly negative percentage of wound contraction

(Figure 4). At Day 7 and 14 of the wound healing, leaf extract

group have shown significantly higher percentage of wound

contraction when compared to normal, negative and positive

control groups. On Day 7, root extract group have shown

significantly higher percentage of wound contraction when

compared to negative and positive control groups. Meanwhile,

on day 14, root extract group have shown significantly higher

percentage of wound contraction when compared to negative

and normal control groups. Additionally, on Day 14, positive

control group had shown significantly higher wound contraction

percentage compared to normal control group. For Day 21 of the

wound healing, leaf extract and root extract, as well as positive

control groups have shown significantly higher wound reduction

percentage when compared to normal control group. Most of the

wounds were almost healed on Day 21 with leaf and root extract

have the highest range of wound percentage (90%–95%).

TABLE 3 Scoring from macroscopic evaluation at Day 0, 3, 7, 14, and 21. Please refer Table 1 for the scoring system.

Groups Redness Edema

DO D3 D7 D14 D21 DO D3 D7 D14 D21

NM 0 1 2 2 1 0 1 2 2 0

NG 0 1 2 2 1 0 1 2 2 0

PS 0 1 2 2 1 0 1 2 2 0

LF 0 1 2 1 0 0 1 2 0 0

RT 0 1 2 1 0 0 1 2 1 0

FIGURE 4
The percentage of wound contraction. NM: normal control group, NG: negative control group, PS: positive control group, LF: LPVa leaf-treated
group, RT: LPVa root-treated group. Data were expressed as mean ± SD. Statistically significant results were indicated as (A) p ≤ 0.05 compared to
NM group, (B) p ≤ 0.05 between NG group, (C) p ≤ 0.05 compared to NM group, (D) p ≤ 0.05 compared to NG group, (E) p ≤ 0.05 compared to NM
group, (F) p ≤ 0.05 compared to NG group, *p ≤ 0.05 compared to LF and PS groups, #p ≤ 0.05 compared to RT and PS groups.
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Area under the curve

The LF group demonstrated the highest AUC among all the

groups and showed significant difference when compared to

normal (NM), negative (NG) and positive (PS) control groups.

The RT group showed significant difference when compared to

the NM group (Figure 5).

Hydroxyproline content

On day 14, the hydroxyproline content of LF group

demonstrated significant difference when compared to NM

and NG groups. For the PS and RT groups, the

hydroxyproline content were increased but did not reach

significant value (Figure 6).

FIGURE 5
Area under the curve (AUC). NM: normal control group, NG: negative control group, PS: positive control group, LF: LPVa leaf-treated group, RT:
LPVa root-treated group. Data were expressed as AUC±SEM. Statistically significant results were indicated as (A) p ≤ 0.05 compared to NM group, (B)
p ≤ 0.05 between NG group, (C) p ≤ 0.05 compared to PS group.

FIGURE 6
Hydroxyproline contents for wounds Statistically significant difference were indicated as *p ≤ 0.05 between NM group and #p ≤ 0.05 between
NG group. NM: normal control group, NG: negative control group, PS: positive control group, LF: LPVa leaf-treated group, RT: LPVa root-treated
group.
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Histomorphology assessments

Histopathological view of the burn wounds for all the five

groups stained with haematoxylin and Eosin (H&E) were shown

in Figure 7. At Day 3, all the groups demonstrated complete

destruction of epidermis layer and partial destruction of dermis

layer, which indicated superficial partial thickness of second-

degree burn. This was also reflected by the zero score for re-

epithelization in all groups, except for RT group (Table 4). At

Day 21, the re-epithelization in all the groups had improved to

score 3, except for RT group which scored 1. All the groups

showed scant amount of fibroblast proliferation initially at Day 3,

which progressed to abundant amount at Day 21, except for RT

group. At Day 7, both the NM and NG groups were still scored as

scant (score 1). In terms of inflammation cell infiltration, all the

groups demonstrated improvement fromDay 3 to Day 21, except

for the RT group. Similar patterns were observed for neo-

vascularization and granulation tissue formation.

Histopathological views of the burn wounds for all the five

groups stained with Masson’s trichome were shown in Figure 8.

Complete destruction of epidermis and partial destruction of dermis

were demonstrated at Day 3 post-wounding for all the groups,

confirming the success of burn induction in the rat model. In terms

of histological scoring, collagen deposition of all the groups for each

time points showed similar score of 3, denoting abundant collagen

deposition. Therefore, collagen types were differentiated by

immunohistochemistry staining (Figure 9). At Day 3, all the

groups demonstrated moderate amount of collagen I, except for

NM group, which denoted scant amount of collagen I (Table 5). The

LF and RT groups showedmoderate amount of collagen I fromDay

FIGURE 7
Histopathological view of the burn wounds at Day 3, 7, 14 and 21. Stained with H&E, at ×200 magnification. At day 3, a complete destruction of
epidermis layer and partial destruction of dermis layer were observed in all groups, withmoderate inflammatory cells and scant fibroblast cells. At Day
21, the re-epithelization in most groups were improved, with abundant fibroblast proliferation, neo-vascularization, and granulation tissue
infiltration. E: Epidermis; D: Dermis; I: Inflammatory cells; F: Fibroblast cells, G: Granulation tissue; N: Neovascularization. NM: normal control
group, NG: negative control group, PS: positive control group, LF: LPVa leaf-treated group, RT: LPVa root-treated group.
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TABLE 4 Scoring from histological observations (H&E) of the burn wounds at Day 3, 7, 14 and 21. Please refer Table 2 for the scoring system.

Groups Reepithelization Fibroblast
proliferation

Inflammation cell
infiltration

Neo-vascularization Granulation tissue
formation

D3 D7 D14 D21 D3 D7 D14 D21 D3 D7 D14 D21 D3 D7 D14 D21 D3 D7 D14 D21

NM 0 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 0 2 2 3

NG 0 0 2 3 1 1 2 3 1 1 2 3 0 1 2 3 0 0 2 3

PS 0 0 2 3 1 1 2 3 1 2 2 3 3 1 2 3 0 0 2 3

LF 0 1 2 3 1 2 2 3 2 3 2 3 3 1 2 3 0 1 3 3

RT 0 1 3 3 1 2 2 3 2 2 2 3 1 1 2 3 0 1 3 3

NM: normal control group, NG: negative control group, PS: positive control group, LF: LPVa, leaf-treated group, RT: LPVa, root-treated group.

FIGURE 8
Histopathological view of the burn wounds at Day 3, 7, 14 and 21. Stained with Masson’s trichome staining, at ×200 magnification. Collagen
fibers were stained blue, cytoplasm and erythrocyte were stained red, and nuclei were stained bluish brown. Collagen deposition of all groups were
abundant, from day 3 to day 21. E: epidermis; D: Dermis; CF: collagen fibers. NM: normal control group, NG: negative control group, PS: positive
control group, LF: LPVa leaf-treated group, RT: LPVa root-treated group.
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7 to Day 28. Meanwhile, for the other type of collagen, known as

collagen III, only the LF group showed moderate amount and RT

group scored zero at Day 3. For all the control groups (NM, NG and

PS), scant amount of collagen III was noted. However, for RT group,

moderate collagen III was noted at Day 14 and Day 21. While, LF

group showed scant amount of collagen III since Day 7.

Histopathological view of burn wounds using

immunohistochemistry staining was also performed for

fibroblast (Figure 9). As expected, fibroblasts for all the groups

were scant at Day 3 and were subsequently more abundant

except for RT root, which paralleled to the H&E staining

findings (Table 4).

FIGURE 9
Histopathological view of the burn wounds at Day 3, 7, 14 and 21. Immunohistochemistry staining for collagen I, collagen III and fibroblast,
at ×200 magnification. Light brown staining represents positive immunostaining. In most of the groups, collagen III was scant or moderate at day 3,
while collagen I were abudant at day 21. Fibroblast were scant at day 3 andwere improved tomoderate and abundant inmost of the groups at day 21.
E: epidermis; D: Dermis, Fib: Fibroblast; Col I: Collagen type I, Col III: Collagen type III. NM: normal control group, NG: negative control group,
PS: positive control group, LF: LPVa leaf-treated group, RT: LPVa root-treated group.
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Discussions

Oxidative stress plays an important role in burn wound

conversion, in which the zone of stasis cannot be rescued and

progresses to necrosis. Reduction in oxidative stress may halt or

arrest burn injury progression into deeper tissue (Wardhana and

Halim, 2020). Burn wound is also associated with release of

mediators such as reactive oxygen species (ROS) and reactive

nitrogen species (RNS) which ultimately contribute to local and

distant pathophysiological events observed in burn cases.

Treatments with antioxidant therapy could be useful to

minimize injury in burned patients (Parihar et al., 2008). Xi

et al. (2018) reported that LPVa leaves contained various

flavonoids such as catechins, rutin, naringin, and myricetin.

These compounds have been identified as natural antioxidants

that may reduce oxidative stress within the human body. These

flavonoids exhibited high 2,2-diphenyl-1-picrylhydrazyl (DPPH)

and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)

(ABTS) radical scavenging abilities (Xi et al., 2018). These

high radical scavenging abilities may contribute to the

antioxidant activity on burn injury and promote formation of

scabs and wound contraction, when treated with LPVa leaf

extracts. This is in parallel with our findings on wound

contraction percentage and the area under the curve, where

LPVa leaf extract demonstrated significantly higher value

compared to normal control, negative control and positive

control rat groups.

The LPVa root extract was as effective as the leaf extract in

terms of wound contraction percentage and area under the curve.

According to Karimi et al. (2013), the root extract of LPVa

contains saponin (Karimi et al., 2013), a bioactive compound that

possess beneficial properties related to wound healing including

anti-inflammatory, antimicrobial and antioxidant activities (Rao

and Gurfinkel, 2000). Similarly, curcumin, a natural

polyphenolic molecule extracted from the rhizome of

Curcuma longa, also possess anti-inflammatory, antibacterial

and antioxidant properties and it demonstrated wound

healing properties (Ibrahim and Wong, 2018; Alven and

Nqoro, 2020). Curcumin was involved in various stages of the

healing process including wound contractions, granulation tissue

formation, collagen deposition and tissue remodelling (Zhao

et al., 2019). Therefore, the wound contraction ability of LPVa

root extract might be due to the saponin content, exerting

beneficial effects on wound healing. Karimi et al. (2013)

reported that LPVa root also contained kaempferol and

myricetin, which are both flavonoids and strong antioxidants

(Karimi et al., 2011).

Both leaf and root extracts of LPVa were as effective as silver

sulfadiazine, which is the standard burn wound treatment and

positive control in this study. As expected, silver sulfadiazine had

shown significant wound contraction percentage when

compared to normal control at Day 14 and Day 21, but was

not significant at early phase of healing (day 7). The silver

component is effective in eliminating pathogens via direct

interactions with bacterial cell membranes, DNA, enzymes

and proteins (Zhu et al., 2014). This antimicrobial activity of

silver-containing formulation depends on the surrounding

environment that drives the release of Ag+ ions and other

formulations such as sorbents, biologically active compounds

and biomolecules (Nešporová et al., 2020). However, silver

sulfadiazine failed to produce significant wound contraction

percentage from Day 7, as demonstrated by both root and leaf

extracts, as well as normal and negative controls. This may have

shown that the silver sulfadiazine had delayed wound healing

during the early phase of healing process. This could be

attributed by a slow progression of silver sulfadiazine in re-

epithelization (Aziz et al., 2012), which lead to impaired wound

healing at the early stage. Re-epithelialization is an important

process to cover damaged epithelial surface as barrier breach

offers an entry for wound infection (Pastar et al., 2014).

Additionally, repeated usage of silver sulfadiazine has been

associated with the formation of pseudoeschar over the

affected area which may prevent adequate assessment of the

burn wound. In some cases, mechanical debridement is required

TABLE 5 Scoring for Masson’s trichome staining (collagen deposition) and immunohistochemistry staining (fibroblast, collagen I and III) of the burn
wounds at Day 3, 7, 14, and 21.

Groups Fibroblast Collagen I Collagen III Collagen deposition

Immunohistochemistry Immunohistochemistry Immunohistochemistry Masson’s trichom

D3 D7 D14 D21 D3 D7 D14 D21 D3 D7 D14 D21 D3 D7 D14 D21

NM 1 2 3 2 1 2 3 3 1 2 1 1 3 3 3 3

NG 1 2 2 2 2 2 2 3 1 1 1 0 3 3 3 3

PS 1 2 3 2 2 2 2 3 1 1 3 2 3 3 3 3

LF 1 2 2 2 2 2 3 2 2 1 1 1 3 3 3 3

RT 1 1 3 3 2 2 2 2 0 0 2 2 3 3 3 3

NM: normal control group, NG: negative control group, PS: positive control group, LF: LPVa, leaf-treated group, RT: LPVa, root-treated group.

Frontiers in Pharmacology frontiersin.org12

Ibrahim et al. 10.3389/fphar.2022.968664

114

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.968664


to remove the pseudoeschar, which is often painful (Lo et al.,

2008). Moreover, the insignificant wound contraction percentage

of silver sulfadiazine could have been attributed to silver

constituent that impair healing during the early phase. The

silver constituents have preference to bind to DNA nucleic

acid bases and may inhibit replication of the cells during

wound healing (Lansdown, 2002a; Lansdown, 2002b).

Contradictorily, it was found that LPVa extracts were non-

cytotoxic as observed in an in vitro cytotoxicity study on

L292 rat’s fibroblast cell. Moreover, a repeated dose of LPVa

extracts for 28-days in an in vivo dermal toxicity study had shown

a non-observed adverse effect level (NOAEL) of up to

1,000 mg/kg, indicating that the LPVa extract is safe for skin

application with appropriate concentration (Ali, 2014).

Additionally, LPVa had also demonstrated protection on

human skin keratinocytes from photoaging induced by

ultraviolet irradiation (Choi et al., 2010). Therefore, these

studies demonstrated that LPVa extracts were not toxic but

provide protective effects on skin. Macroscopically on Day 14,

burn wounds treated with SSD, LPVa leaf and root extracts

showed better healing compared to normal and negative

controls. As for the normal and negative controls, the crusts

were still attached to the wound on the day 14. After the crust has

fallen off, granulation tissue characterized by pinkish coloration

could be observed. The granulation tissue will slowly be replaced

by fibrous tissue, which appeared whitish on the wound. The

negative control group showed that at Day 21, the wounds were

still pinkish (indicating granulation tissue) compared to LPVa

leaf and root treatment groups that appeared more whitish

(indicating fibrous tissue).

Hydroxyproline which is a basic constituent of collagen is a

good marker for wound healing assessment. It is one of the most

abundant amino acids in collagen and its concentration indicates

the concentration of collagen. High concentration of

hydroxyproline symbolises faster rate of wound healing

(Dwivedi et al., 2016). In this study, positive control, LPVA

leaf and root groups have shown increased hydroxyproline

content that might reflect increased cellular proliferation and

increased collagen synthesis. Among these three groups, the

LPVa leaf group showed significantly higher hydroxyproline

concentration compared to normal and negative control

groups. This result was supported by Chua et al. (2011),

which reported that LPVa leaves contain various flavonoids

(quercetin, myricetin and kaempferol) and phenolic acids

(salicylic acid, vanillic acid, gallic acid, coumaric acid, caffeic

acid and chlorogenic acid) (Chua et al., 2011) that could promote

collagen synthesis (Chua et al., 2012). Collagen deposition is

important for wound strength, cell shape and differentiation

(Schultz GS and Moldawer, 2011). Additionally, Karimi et al.

(2011) reported that LPVa leaf extract has superior antimicrobial

effect (Karimi et al., 2011) which might contribute to the better

collagen content. In a previous study by Liang et al. (2019),

antibacterial hydrogel dressings applied on mouse full-thickness

wound model have improved the granulation tissue thickness

and collagen deposition, which also suggests that the antibacterial

effect could promote collagen content (Liang et al., 2019).

Histological analyses of all staining used in this study

revealed complete destruction of epidermis and partial

destruction of dermis for all the groups, observed at Day

3 after wound induction. These characteristics confirmed

second-degree or superficial partial thickness of burn wound

(Lanham et al., 2020). Involvement of superficial dermis

produces the red and wet appearance of wound with blisters.

The healing process typically lasted for 3 weeks with minimal

scarring (Tolles, 2018), which could be observed by the

histological analysis of H&E staining. All the groups received

the highest score of three for all the H&E histological scoring at

Day 21, indicating that the wounds have completely healed.

As for the scoring of Masson’s trichome staining, all the

groups received the highest score of 3, indicating the presence of

complete and mature collagen in the wounds of all the groups.

Most collagens found in the skin are type I and III, that plays an

important role of attracting fibroblast and keratinocytes to the

wound (Barbul et al., 2015). The dermis layer of skin could be

divided into two layers: papillary and reticular. Papillary is

superficial and is structured by flowing connective tissue

including reticular, elastic, and non-organized collagen

(mostly type III) fibers and capillaries. Meanwhile, reticular is

deep and represented by compact connective tissue, which has

crosslinked elastic and well-organized collagen fibers (type I and

III) and large blood vessels (Arda et al., 2014). In the recent study,

the collagen deposition observed in the Masson’s trichome were

further differentiated into collagen I and collagen III by

immunohistochemistry staining.

Collagen III is the type of collagen synthesized during the

early stages of wound healing and is progressively replaced by the

dominant skin collagen (collagen I) (Mathew-Steiner et al.,

2021). This condition was parallel to our study where at day

21, all three control groups (normal, negative and positive

controls) were scored at 3, indicating complete and mature

collagen I. However, for both treatment groups (LPVa leaf

and root), the scoring was 2, indicating complete but

immature or thin collagen I. Both LPVa leaf and root groups

have shown complete but immature or thin collagen A except for

Day 14 of LPVa leaf group. This might indicate that leaf extract

was better at promoting skin collagen synthesis. This was in

agreement with the findings by Choi et al. (2010), which reported

that LP extract was able to restore skin pro-collagen of human

dermal fibroblast cell line that has been destroyed by ultraviolet

radiation (Choi et al., 2010).

Fibroblast is the cell responsible for the production of extracellular

matrix and collagen, and therefore plays an important role during

tissue repair. The migration and proliferation of fibroblast to the

wounded area may initiate proliferative phase of repair which

subsequently promote effective wound healing and wound

contraction. Based on the H & E staining of this study, the LPVa
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leaf group demonstrated complete and mature fibroblasts at Day

21 compared to the LPVa root group. The superior effect of leaf

extract forfibroblast proliferationwas in parallel to the hydroxyproline

concentration measurements. In fact, fibroblasts in wound healing

areas may proliferate and are encircled by collagen fibrils. The new

growth-initiating factor for fibroblasts are present and may attach to

collagen fibrils at the wound healing site, generating peptides of

collagen including prolyl-hydroxyproline (Sato et al., 2020). The

prolyl-hydroxyproline which is the main food-derived collagen

peptides present in human blood plasma may contribute to

chemotactic action on fibroblasts, peripheral blood neutrophils,

and monocytes, which are responsible for wound healing and

inflammation (Shigemura et al., 2009; Asai et al., 2019). Therefore,

the superior effect of leaf extract for fibroblast proliferation may

subsequently contribute to the increased amount of hydroxyproline.

Conclusion

Both leaf and root extracts of LPVa could promote the

healing of thermal-burn wounds, with leaf extract being more

superior in terms of the hydroxyproline content and histological

analysis (Haematoxylin & Eosin and immunohistochemistry).

Further studies related with molecular aspects should be

performed to determine the mechanism of wound healing by

LPVa leaf.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author.

Ethics statement

The animal study was reviewed and approved by Universiti

Kebangsaan Malaysia Animal Ethical Committee.

Author contributions

NI performed the experiments and data analysis, designed,

and wrote the manuscript. EM performed the anatomical and

histological evaluation, NM reviewed the manuscript and

critically revised the manuscript. AS and IM conceptualized

the research, acquired the funding, and reviewed and critically

revised the manuscript. All authors read and approved the final

manuscript.

Funding

This research was funded by Universiti Kebangsaan Malaysia

(UKM), grant number MI-2017-005.

Acknowledgments

The authors would also like to thank the Pharmacology staffs

especially Madam Juliana Abdul Hamid and Fadhlullah Zuhair

Japar Sidik.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abdul Kadir, A., Nik Hussain, N. H., Wan Bebakar, W. M., Mohd, D. M., Wan
Mohammad, W. M. Z., Hassan, I. I., et al. (2012). The effect of
labisia pumila var. alata on postmenopausal women: A pilot study. Evid. Based.
Complement. Altern. Med. 2012, 216525. doi:10.1155/2012/216525

Abramov, Y., Golden, B., Sullivan, M., Botros, S. M., Miller, J. J., Alshahrour, A.,
et al. (2007). Histologic characterization of vaginal vs. abdominal surgical wound
healing in a rabbit model. Wound Repair Regen. 15 (1), 80–86. doi:10.1111/j.1524-
475X.2006.00188.x

Ahmad, S. U., Binti Aladdin, N. A., Jamal, J. A., Shuid, A. N., and Mohamed, I. N.
(2021). Evaluation of wound-healing and antioxidant effects of marantodes
pumilum (blume) kuntze in an excision wound model. Molecules 26 (1), 228.
doi:10.3390/molecules26010228

Ahmad, S. U., Shuid, A., and Mohamed, I. (2018). Labisia pumila improves
wound healing process in ovariectomized rat model. Bangladesh J. Pharmacol. 13,
106. doi:10.3329/bjp.v13i1.34473

Ali, N. (2014). “The dermatoxicological profile of labisia pumila extract for
cosmetic application,” (Malaysia: Universiti Teknologi Malaysia). Master of
Engineering (Bioprocess).

Alven, S., Nqoro, X., and Aderibigbe, B. A. (2020). Polymer-based materials
loaded with curcumin for wound healing applications. Polymers 12 (10), E2286.
doi:10.3390/polym12102286

Arda, O., Göksügür, N., and Tüzün, Y. (2014). Basic histological structure and
functions of facial skin. Clin. Dermatol. 32 (1), 3–13. doi:10.1016/j.clindermatol.
2013.05.021

Frontiers in Pharmacology frontiersin.org14

Ibrahim et al. 10.3389/fphar.2022.968664

116

https://doi.org/10.1155/2012/216525
https://doi.org/10.1111/j.1524-475X.2006.00188.x
https://doi.org/10.1111/j.1524-475X.2006.00188.x
https://doi.org/10.3390/molecules26010228
https://doi.org/10.3329/bjp.v13i1.34473
https://doi.org/10.3390/polym12102286
https://doi.org/10.1016/j.clindermatol.2013.05.021
https://doi.org/10.1016/j.clindermatol.2013.05.021
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.968664


Asai, T., Oikawa, Y., Inoue, N., and Sato, K. (2019). Food-derived collagen
peptides, prolyl-hydroxyproline (Pro-Hyp), and hydroxyprolyl-Glycine (Hyp-Gly)
enhance growth of primary cultured mouse skin fibroblast using fetal bovine serum
free from hydroxyprolyl peptide. Int. J. Mol. Sci. 21, 229. doi:10.3390/ijms21010229

Aziz, Z., Abu, S. F., and Chong, N. J. (2012). A systematic review of silver-
containing dressings and topical silver agents (used with dressings) for burn
wounds. Burns 38 (3), 307–318. doi:10.1016/j.burns.2011.09.020

Barbul, A., Efron, D. T., and Kavalukas, S. L. (2015). “Wound healing,” in
Schwartz’s Principles of Surgery, 10e. Editors F. C. Brunicardi, D. K. Andersen,
T. R. Billiar, D. L. Dunn, J. G. Hunter, J. B. Matthews, et al. (New York, NY:
McGraw-Hill Education).

Cai, E. Z., Ang, C. H., Raju, A., Tan, K. B., Hing, E. C. H., Loo, Y., et al. (2014).
Creation of consistent burn wounds: A rat model. Arch. Plast. Surg. 41 (4), 317–324.
doi:10.5999/aps.2014.41.4.317

Choi, H. K., Kim, D. H., Kim, J. W., Ngadiran, S., Sarmidi, M. R., and Park, C. S.
(2010). Labisia pumila extract protects skin cells from photoaging caused by UVB
irradiation. J. Biosci. Bioeng. 109 (3), 291–296. doi:10.1016/j.jbiosc.2009.08.478

Chua, L. S., Abdul latiff, N., Lee, S., Lee, C. T., Sarmidi, M., and Aziz, R. (2011).
Flavonoids and phenolic acids from labisia pumila (kacip fatimah). Food Chem. 127,
1186–1192. doi:10.1016/j.foodchem.2011.01.122

Chua, L. S., Lee, S. Y., Abdullah, N., and Sarmidi, M. R. (2012). Review on Labisia
pumila (Kacip Fatimah): Bioactive phytochemicals and skin collagen synthesis
promoting herb. Fitoterapia 83 (8), 1322–1335. doi:10.1016/j.fitote.2012.04.002

Church, D., Elsayed, S., Reid, O., Winston, B., and Lindsay, R. (2006). Burn
wound infections.Clin. Microbiol. Rev. 19 (2), 403–434. doi:10.1128/CMR.19.2.403-
434.2006

Dwivedi, D., Dwivedi, M., Malviya, S., and Singh, V. (2016). Evaluation of wound
healing, anti-microbial and antioxidant potential of Pongamia pinnata in wistar
rats. J. Tradit. Complement. Med. 7 (1), 79–85. doi:10.1016/j.jtcme.2015.12.002

Gagnon, R. C., and Peterson, J. J. (1998). Estimation of confidence intervals for
area under the curve from destructively obtained pharmacokinetic data.
J. Pharmacokinet. Biopharm. 26 (1), 87–102. doi:10.1023/a:1023228925137

Ibrahim, N., Wong, S. K., Mohamed, I. N., Mohamed, N., Chin, K. Y., Ima-
Nirwana, S., et al. (2018). Wound healing properties of selected natural products.
Int. J. Environ. Res. Public Health 15 (11), E2360. doi:10.3390/ijerph15112360

Jamal, J. A., Houghton, P. J., Milligan, S. R., and Jantan, I. (2003). The oestrogenis
and cytotoxic effects of the extracts of labisia pumila var. alata and labisia pumila
var. pumila in vitro. Sains Kesihat. 1, 53–60.

Karimi, E., Jaafar, H. Z., and Ahmad, S. (2011). Phytochemical analysis and
antimicrobial activities of methanolic extracts of leaf, stem and root from different
varieties of Labisa pumila Benth.Mol. (Basel, Switz. 16 (6), 4438–4450. doi:10.3390/
molecules16064438

Karimi, E., Jaafar, H. Z. E., and Ahmad, S. (2013). Antifungal, anti-inflammatory
and cytotoxicity activities of three varieties of labisia pumila benth: From
microwave obtained extracts. BMC Complement. Altern. Med. 13 (1), 20. doi:10.
1186/1472-6882-13-20

Lanham, J. S., Nelson, N. K., Hendren, B., and Jordan, T. S. (2020). Outpatient
burn care: Prevention and treatment. Am. Fam. Physician 101 (8), 463–470.

Lansdown, A. B. (2002a). Silver. 2: Toxicity in mammals and how its products aid
wound repair. J. Wound Care 11 (5), 173–177. doi:10.12968/jowc.2002.11.5.26398

Lansdown, A. B. (2002b). Silver. I: Its antibacterial properties and mechanism of
action. J. Wound Care 11 (4), 125–130. doi:10.12968/jowc.2002.11.4.26389

Liang, Y., Zhao, X., Hu, T., Chen, B., Yin, Z., Ma, P. X., et al. (2019). Adhesive
hemostatic conducting injectable composite hydrogels with sustained drug release
and photothermal antibacterial activity to promote full-thickness skin regeneration
during wound healing. Small 15 (12), 1900046. doi:10.1002/smll.201900046

Liu, T., Li, N., Yan, Y. Q., Liu, Y., Xiong, K., Liu, Y., et al. (2020). Recent advances
in the anti-aging effects of phytoestrogens on collagen, water content, and oxidative
stress. Phytother. Res. 34 (3), 435–447. doi:10.1002/ptr.6538

Lo, S. F., Hayter, M., Chang, C. J., Hu, W. Y., and Lee, L. L. (2008). A systematic
review of silver-releasing dressings in the management of infected chronic wounds.
J. Clin. Nurs. 17 (15), 1973–1985. doi:10.1111/j.1365-2702.2007.02264.x

Mathew-Steiner, S. S., Roy, S., and Sen, C. K. (2021). Collagen in wound healing.
Bioeng. (Basel) 8 (5), 63. doi:10.3390/bioengineering8050063

Nadia, M. E., Nazrun, A. S., Norazlina, M., Isa, N. M., Norliza, M., and Ima
Nirwana, S. (2012). The anti-inflammatory, phytoestrogenic, and antioxidative role

of labisia pumila in prevention of postmenopausal osteoporosis. Adv. Pharmacol.
Sci. 2012, 706905. doi:10.1155/2012/706905

Nešporová, K., Pavlík, V., Šafránková, B., Vágnerová, H., Odráška, P., Žídek, O.,
et al. (2020). Effects of wound dressings containing silver on skin and immune cells.
Sci. Rep. 10 (1), 15216. doi:10.1038/s41598-020-72249-3

Neuman, R. E., and Logan, M. A. (1950). The determination of hydroxyproline.
J. Biol. Chem. 184 (1), 299–306. doi:10.1016/s0021-9258(19)51149-8

Parihar, A., Parihar, M. S., Milner, S., and Bhat, S. (2008). Oxidative stress and
anti-oxidative mobilization in burn injury. Burns 34 (1), 6–17. doi:10.1016/j.burns.
2007.04.009

Pastar, I., Stojadinovic, O., Yin, N. C., Ramirez, H., Nusbaum, A. G., Sawaya, A.,
et al. (2014). Epithelialization in wound healing: A comprehensive review. Adv.
Wound Care 3 (7), 445–464. doi:10.1089/wound.2013.0473

Rao, A. V., and Gurfinkel, D. M. (2000). The bioactivity of saponins: Triterpenoid
and steroidal glycosides. Drug Metabol. Drug Interact. 17 (1-4), 211–235. doi:10.
1515/dmdi.2000.17.1-4.211

Reinke, J. M., and Sorg, H. (2012). Wound repair and regeneration. Eur. Surg. Res.
49 (1), 35–43. doi:10.1159/000339613

Rosnani, A. G., Zaki, W. M. W., Shukri, M. A. M., Razali, M., Herman, S. E., and
Fauzi, M. S. A. (2019). The effect of kacip fatimah (Marantodes pumilum) plant
density under semi-controlled environment for high production of biomass and
bioactive content. J. Trop. Agric. Fd. Sc. 47 (2), 55–64.

Rowan, M. P., Cancio, L. C., Elster, E. A., Burmeister, D. M., Rose, L. F., Natesan,
S., et al. (2015). Burn wound healing and treatment: Review and advancements. Crit.
Care 19, 243. doi:10.1186/s13054-015-0961-2

Sato, K., Asai, T. T., and Jimi, S. (2020). Collagen-derived di-peptide,
prolylhydroxyproline (Pro-Hyp): A new low molecular weight growth-initiating
factor for specific fibroblasts associated with wound healing. Front. Cell Dev. Biol. 8,
548975. doi:10.3389/fcell.2020.548975

Schlager, A., Kronberger, P., Petschke, F., and Ulmer, H. (2000). Low-power laser
light in the healing of burns: A comparison between two different wavelengths
(635 nm and 690 nm) and a placebo group. Lasers Surg. Med. 27 (1), 39–42. doi:10.
1002/1096-9101(2000)27:1<39:aid-lsm5>3.0.co;2-4
Schultz Gs, C. G., Moldawer, L., et al. (2011). “Principles of wound healing,” in

Mechanisms of vascular disease: A reference book for vascular specialists. Editors
R. Fitridge andM.Thompson (Adelaide (AU):University ofAdelaide Press), 23. Internet.

Shigemura, Y., Iwai, K., Morimatsu, F., Iwamoto, T., Mori, T., Oda, C., et al.
(2009). Effect of Prolyl-hydroxyproline (Pro-Hyp), a food-derived collagen peptide
in human blood, on growth of fibroblasts from mouse skin. J. Agric. Food Chem. 57
(2), 444–449. doi:10.1021/jf802785h

Stone, B. C. (1989). “New and noteworthy malesian Myrsinaceae, III. On the
genus Ardisia sw. in borneo,” in Proceedings of the academy of natural sciences of
philadelphia (Philadelphia, USA: Academy Of Natural Sciences), 263–306.

Tavares Pereira, D., Lima-Ribeiro, M. H. M., de Pontes-Filho, N. T., Carneiro-
Leão, A. M., and Correia, M. T. (2012). Development of animal model for studying
deep second-degree thermal burns. J. Biomed. Biotechnol. 2012, 460841. doi:10.
1155/2012/460841

Tiwari, V. K. (2012). Burn wound: How it differs from other wounds? Indian
J. Plast. Surg. 45 (2), 364–373. doi:10.4103/0970-0358.101319

Tolles, J. (2018). Emergency department management of patients with thermal
burns. Emerg. Med. Pract. 20 (2), 1–24.

Wardhana, A., and Halim, J. (2020). Antioxidants reduce tissue necrosis in the
zone of stasis: Review of burn wound conversion. J. Plast. Rekons. 7, 18–28. doi:10.
14228/jpr.v7i1.292

Werner, S., Krieg, T., and Smola, H. (2007). Keratinocyte-fibroblast
interactions in wound healing. J. Invest. Dermatol. 127 (5), 998–1008.
doi:10.1038/sj.jid.5700786

Xi, H. R., Wu, H., Lai, F. R., Ma, J. J., Liu, H. F., and Chen, W. B. (2018).
Composition and antioxidant activity of flavonoids from kacip fatimah.Mod. Food
Sci. Technol. 34, 52–56. doi:10.13982/j.mfst.1673-9078.2018.8.008

Zhao, Y., Dai, C.,Wang, Z., Chen,W., Liu, J., Zhuo, R., et al. (2019). A novel curcumin-
loaded composite dressing facilitates wound healing due to its natural antioxidant effect.
Drug Des. devel. Ther. 13, 3269–3280. doi:10.2147/DDDT.S219224

Zhu, X., Radovic-Moreno, A. F., Wu, J., Langer, R., and Shi, J. (2014).
Nanomedicine in the management of microbial infection - overview and
perspectives. Nano today 9 (4), 478–498. doi:10.1016/j.nantod.2014.06.003

Frontiers in Pharmacology frontiersin.org15

Ibrahim et al. 10.3389/fphar.2022.968664

117

https://doi.org/10.3390/ijms21010229
https://doi.org/10.1016/j.burns.2011.09.020
https://doi.org/10.5999/aps.2014.41.4.317
https://doi.org/10.1016/j.jbiosc.2009.08.478
https://doi.org/10.1016/j.foodchem.2011.01.122
https://doi.org/10.1016/j.fitote.2012.04.002
https://doi.org/10.1128/CMR.19.2.403-434.2006
https://doi.org/10.1128/CMR.19.2.403-434.2006
https://doi.org/10.1016/j.jtcme.2015.12.002
https://doi.org/10.1023/a:1023228925137
https://doi.org/10.3390/ijerph15112360
https://doi.org/10.3390/molecules16064438
https://doi.org/10.3390/molecules16064438
https://doi.org/10.1186/1472-6882-13-20
https://doi.org/10.1186/1472-6882-13-20
https://doi.org/10.12968/jowc.2002.11.5.26398
https://doi.org/10.12968/jowc.2002.11.4.26389
https://doi.org/10.1002/smll.201900046
https://doi.org/10.1002/ptr.6538
https://doi.org/10.1111/j.1365-2702.2007.02264.x
https://doi.org/10.3390/bioengineering8050063
https://doi.org/10.1155/2012/706905
https://doi.org/10.1038/s41598-020-72249-3
https://doi.org/10.1016/s0021-9258(19)51149-8
https://doi.org/10.1016/j.burns.2007.04.009
https://doi.org/10.1016/j.burns.2007.04.009
https://doi.org/10.1089/wound.2013.0473
https://doi.org/10.1515/dmdi.2000.17.1-4.211
https://doi.org/10.1515/dmdi.2000.17.1-4.211
https://doi.org/10.1159/000339613
https://doi.org/10.1186/s13054-015-0961-2
https://doi.org/10.3389/fcell.2020.548975
https://doi.org/10.1002/1096-9101(2000)27:1<39:aid-lsm5>3.0.co;2-4
https://doi.org/10.1002/1096-9101(2000)27:1<39:aid-lsm5>3.0.co;2-4
https://doi.org/10.1021/jf802785h
https://doi.org/10.1155/2012/460841
https://doi.org/10.1155/2012/460841
https://doi.org/10.4103/0970-0358.101319
https://doi.org/10.14228/jpr.v7i1.292
https://doi.org/10.14228/jpr.v7i1.292
https://doi.org/10.1038/sj.jid.5700786
https://doi.org/10.13982/j.mfst.1673-9078.2018.8.008
https://doi.org/10.2147/DDDT.S219224
https://doi.org/10.1016/j.nantod.2014.06.003
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.968664


Piper sarmentosum Roxb.
methanolic extract prevents
stress-induced gastric ulcer by
modulating oxidative stress and
inflammation
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This study investigated the gastroprotective effect of Piper sarmentosum (PS) on
stress-induced gastric ulcers in rats bymeasuring its effect on oxidative stress, gastric
mucosal nitric oxide (NO), and inflammatory biomarkers. Twenty-eight male Wistar
rats were randomly divided into four groups; two control groups (non-stress and
stress) and two treated groups supplemented with either methanolic PS extract
(500 mg/kg body weight) or omeprazole (OMZ; 20 mg/kg) orally. After 28 days of
treatment, the stress control, PS, and OMZ groups were subjected to water-
immersion restrain stress (WIRS) for 3.5 h. Gastric tissue malondialdehyde (MDA),
NO, superoxide dismutase (SOD), inducible NO synthase (iNOS), SOD mRNA, tumor
necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were measured. WIRS
significantly increased gastric MDA, NO, and pro-inflammatory cytokine levels
compared to the non-stressed control group. PS and omeprazole
supplementation significantly reduced WIRS-exposure-induced gastric ulcers and
MDA, iNOS, and IL-1β levels. However, only PS reduced NO, TNF-α, and IL-6 levels,
which were upregulated in this ulcer model. In conclusion, the gastroprotection
afforded by PS is possibly mediated by gastric mucosal NO normalization through
reduced iNOS expression and attenuation of inflammatory cytokines. PS showed a
greater protective effect than omeprazole in reducing gastric lesions and NO, TNF-α,
and IL-6 levels, and iNOS expression.
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1 Introduction

Upper gastrointestinal bleeding is associated with significant
morbidity and mortality. Bleeding peptic ulcers remain the most
common cause of acute non-variceal upper gastrointestinal
bleeding. This condition is often associated with non-steroidal anti-
inflammatory drug use (Atchison et al., 2013), Helicobacter pylori
infection (Wang et al., 2014), and stress (Nur Azlina et al., 2013;
Kudryavtsev et al., 2014). Stress ulcer syndrome can cause mucosal
erosions and superficial hemorrhages in critically ill patients or
individuals under extreme physiologic stress. The ulcers frequently
emerge due to major stressful events, including surgery, trauma,
shock, sepsis, and burns. This study used water-immersion
restraint stress (WIRS), an established method to induce gastric
lesions in rats (Konturek et al., 2008; Kwiecien et al., 2012; Raja
Kumar et al., 2019), to create a stress model that mimics stress ulcers in
human patients.

Stress is associated with increased oxidative stress due to increased
free radical formation. Kwiecien et al. (2012) found that WIRS causes
acute inflammatory responses, with interleukin (IL)-1 and tumor
necrosis factor-alpha (TNF-α) acting as the primary pro-
inflammatory cytokines induced by neutrophil infiltration into the
gastric mucosa. Neutrophils produce superoxide anions (O2

•-) that
react with cellular membrane lipids, resulting in lipid peroxidation.
Malondialdehyde (MDA) and 4-hydroxynonenal are examples of lipid
peroxidation end-products (Khoubnasabjafari et al., 2015). Stress will
also produce high nitric oxide (NO) levels. NO is catalyzed by
inducible NO synthase (iNOS) and acts as a potent cytotoxic
oxidant (Lanas, 2008; Nimse and Pal, 2015). Stress also decreases
superoxide dismutase (SOD) activity in gastric mucosa, impairing its
antioxidative defense mechanism (Kwiecień et al., 2002; Nur Azlina
et al., 2013; Patlevič et al., 2016).

Piper (P.) sarmentosum Roxb. belongs to the Piperaceae family. It
is an about 20 cm tall herb that grows wild in the forest and is
commonly found in Southeast Asia (e.g., Malaysia, Cambodia,
Philippines, Thailand, and Myanmar). P. sarmentosum is a
traditional medicinal plant whose leaves are usually eaten raw as
ulam. For centuries, it has been used to treat wind-cold cough, fever,
postpartum foot edema, stomachache, toothache, diabetes, and
traumatic injury (Sun et al., 2020). P. sarmentosum has anti-
inflammatory (Zakaria et al., 2010; Azlina et al., 2019; Salehi et al.,
2019) and anti-atherosclerotic (Amran et al., 2010) properties.
Methanolic P. sarmentosum extract has been shown to have
antioxidative activity due to the natural antioxidant superoxide
scavenger, naringenin (Subramaniam et al., 2003; Chanwitheesuk
et al., 2005). Therefore, this study investigated the protective effects
of methanolic P. sarmentosum extract against gastric mucosa injury as
an alternative to other antioxidants. We used omeprazole as a positive
control since it is one of the most widely prescribed drugs to treat
gastric ulcers (Hajrezaie et al., 2012; Ketuly et al., 2013).

2 Materials and methods

2.1 Plant materials

Fresh P. sarmentosum leaves were collected from the Forest
Research Institute Malaysia (FRIM) reserve forest at Kepong,
Selangor, Malaysia, and identified by FRIM’s Medicinal Plant

Division. A voucher specimen (FRI 45870) was deposited at
FRIM’s Medicinal Plant Division.

2.2 Preparation of methanolic P.
sarmentosum extract

The methanolic extraction procedure was performed at the FRIM
laboratory. The leaves were cleaned with tap water and dried at room
temperature before being finely chopped. Next, 250 g of leaves were
extracted in 2.5 L of methanol. This mixture was heated to 40°C–60°C
using a Soxhlet to evapourate the methanol (Sawangjaroen et al.,
2004). The paste material produced was kept at 4°C until required. The
percentage yield from the crude dried extract was around 10%. The
plant extract was analyzed using liquid chromatography-mass
spectrometry at the Universiti Kebangsaan Malaysia’s (UKM)
Research and Instrumentation Management Center. The active
chemical and purity results have been previously reported (Bactiar
and Fahami, 2019). Methanol P. sarmentosum leaf extracts yielded
fifteen compounds extracted and characterized by spectroscopic
methods, including didymin, naringenin, methyl piperate,
quercetin, beta asarone, brachyamide, amurensin, piperitol,
guineensine, hesperidin, rutin, malvidin, and difucol (Table 1). The
term P. sarmentosum in this study refers to P. sarmentosum
methanolic extract.

2.3 Experimental design

Twenty-eight male Sprague Dawley rats (obtained from the
Animal Unit, Faculty of Medicine, UKM) were divided into four
groups: non-stress control, stress control, P. sarmentosum-treated, and
omeprazole-treated. The non-stress and stress control groups were
administered vitamin E-free palm oil via oral gavage. Omeprazole and
P. sarmentosum were diluted in vitamin E-free palm oil as a vehicle.
Omeprazole (20 mg/kg body weight) and P. sarmentosum extract
(500 mg/kg body weight) were administered via oral gavage. This
P. sarmentosum dose was chosen based on our previous study showing
a protective P. sarmentosum methanolic extract effect on stress-
induced gastric lesions (Azlina et al., 2019). Throughout the
feeding period, all rats were habituated to handling to reduce their
stress-related disturbances. After 28 days, the rats in the stress control,
omeprazole-treated, and P. sarmentosum-treated groups were exposed
to WIRS for 3.5 h. The rats in the non-stress control group were not
subjected to any stress. The rats were restrained in a plastic restrainer
before being placed individually in a beaker containing room-
temperature tap water. The water level was adjusted to the rat’s
neck level (Azlina et al., 2015). Then, the rats were sacrificed, and
their stomach was isolated to measure gastric lesion index, gastric
MDA content, NO level, iNOS mRNA level, SOD activity, SOD
mRNA levels, TNF-α, IL-1β, and IL-6 levels. This study was
approved by the UKM Animal Ethics Committee (354/2011).

2.4 Parameters measurements

2.4.1 Gastric lesion
Gastric lesions were measured using an image analyzer

at ×3 magnification. The lesion length in mm was measured at the
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TABLE 1 Isolated compound from methanol P. sarmentosum leaf extracts.

No Name of compound Formula Molecular weight Molecular structure

1 Didymin C28H34O14 594.6

PubChem Identifier: CID 16760075
URL: https://pubchem.ncbi.nlm.nih.gov/compound/16760075#section=2D-Structure

2 Naringenin C15H12O5 272.25

PubChem Identifier: CID 932
URL: https://pubchem.ncbi.nlm.nih.gov/compound/932#section=2D-Structure

3 Methyl piperate C13H12O4 232.23

PubChem Identifier: CID 9921021
URL: https://pubchem.ncbi.nlm.nih.gov/compound/9921021#section=2D-Structure

(Continued on following page)
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TABLE 1 (Continued) Isolated compound from methanol P. sarmentosum leaf extracts.

No Name of compound Formula Molecular weight Molecular structure

4 Quercetin C15H10O7 302.23

PubChem Identifier: CID 5280343
URL: https://pubchem.ncbi.nlm.nih.gov/compound/5280343#section=2D-Structure

5 Beta-Asarone C12H16O3 208.25

PubChem Identifier: CID 5281758
URL: https://pubchem.ncbi.nlm.nih.gov/compound/5281758#section=2D-Structure

6 Brachyamide B C20H25NO3 327.4

PubChem Identifier: CID 14162526
URL: https://pubchem.ncbi.nlm.nih.gov/compound/14162526#section=2D-Structure

(Continued on following page)
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TABLE 1 (Continued) Isolated compound from methanol P. sarmentosum leaf extracts.

No Name of compound Formula Molecular weight Molecular structure

7 Amurensin C26H30O12 534.5

PubChem Identifier: CID 5318156
URL: https://pubchem.ncbi.nlm.nih.gov/compound/5318156#section=2D-Structure

8 Piperitol C20H20O6 356.4

PubChem Identifier: CID 10247670
URL: https://pubchem.ncbi.nlm.nih.gov/compound/10247670#section=2D-Structure

9 Guineensine C24H33NO3 383.5

PubChem Identifier: CID 6442405
URL: https://pubchem.ncbi.nlm.nih.gov/compound/6442405#section=2D-Structure

(Continued on following page)
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TABLE 1 (Continued) Isolated compound from methanol P. sarmentosum leaf extracts.

No Name of compound Formula Molecular weight Molecular structure

10 Hesperidin C28H34O15 610.6

PubChem Identifier: CID 10621
URL: https://pubchem.ncbi.nlm.nih.gov/compound/10621#section=2D-Structure

11 Rutin C27H30O16 610.5

PubChem Identifier: CID 5280805
URL: https://pubchem.ncbi.nlm.nih.gov/compound/5280805#section=2D-Structure

12 Malvidin C17H15O7
+ 331.30

PubChem Identifier: CID 159287
URL: https://pubchem.ncbi.nlm.nih.gov/compound/159287#section=2D-Structure

(Continued on following page)
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lesion’s greatest diameter. Each five petechial was equal to a 1 mm
lesion. Lesion length was expressed as the lesion index according to a
previously described method (Ibrahim et al., 2012).

2.4.2 Gastric MDA levels
Gastric MDA levels were measured using a previously described

method (Ledwoz et al., 1986). Briefly, 2.5 mL of a trichloroacetic acid
(1.22 mol/L) and hydrochloric acid (.6 mol/L) solution was added to
.5 mL of the sample and incubated at room temperature for 15 min.
Next, .05 mL of sodium hydroxide was added, and the sample was
incubated at 100°C for 30 min before being cooled to room
temperature. Then, 4 mL of n-butanol was added, and the sample
was vigorously vortex for 3 min. Finally, the sample was centrifuged at
3,000 rpm for 10 min, and the absorbance of the upper layer at 535 nm
was measured using a spectrophotometer.

2.4.3 Gastric SOD levels
SOD levels in gastric tissue were measured using Cayman’s SOD

Assay Kit (70600; Ann Arbor, MI, United States). This kit uses a
tetrazolium salt to detect O2

•- generated by xanthine oxidase.

2.4.4 NO levels
NO levels in gastric tissue were measured using the Quantichrome

NO Assay Kit (D2NO-100; BioAssay Systems; Hayward, CA,
United States). NO was oxidized to nitrate and nitrite. Total nitrate
and nitrites levels were quantified based on the absorbance at 540 nm
measured using an ELISA reader.

2.4.5 SOD and iNOS mRNA levels
SOD and iNOS mRNA levels were measured using the

QuantiGene Plex Assay Lit (Genospectra; Fremont, CA,
United States). Tissue lysate was added to a well containing a
gene-specific probe set and then hybridized overnight at 53°C.
Next, wells were washed twice with bDNA wash buffer before
being incubated at 46°C with an amplifier and then an alkaline
phosphatase-linked label probe, with a wash step in between.
Finally, streptavidin phycoerythrin was added, producing a

luminescent signal proportional to the target RNA amount that
was measured using a Luminex machine (Zhang et al., 2005).

2.4.6 TNF-α, IL-1β, and IL-6 protein quantification
assays

TNF-α, IL-1β, and IL-6 levels in gastric tissue were measured using
Panomics’ Procarta Cytokine Assay Kit (Affymetrix; Santa Clara, CA,
United States) and a Luminex 200 analyzer (Luminex Corporation;
Darmstadt, Germany). Procarta Protein Assays use xMAP technology
(multi-analyte profiling beads) to enable simultaneous quantitation of
multiple protein targets. The xMAP system combines a flow
cytometer, fluorescent-dyed microspheres (beads), lasers, and
digital signal processing to effectively multiplex up to 100 different
assays within a single sample.

2.5 Statistical analysis

Statistical analyses were performed using SPSS v.23 (SPSS Inc.,
Chicago, IL, United States). The normality of each variable’s
distribution was assessed using the Shapiro–Wilk test. All results
are expressed as the mean ± standard error of the mean (SEM).
The significance (p < .05) of differences between groups was assessed
with an analysis of variance followed by Tukey’s post hoc test.

3 Results

3.1 Gastric lesions

No lesions were observed in the stomachs of rats in the non-
stressed control group. Rats exposed to WIRS for 3.5 h developed
gastric lesions at the glandular part of the stomach (Figure 1).
Supplementation with P. sarmentosum or omeprazole significantly
lowered gastric lesion scores (p = .002 and p = .026, respectively;
Figure 2). Moreover, P. sarmentosum reduced stomach lesions
significantly more than omeprazole (p = .002; Figure 2).

TABLE 1 (Continued) Isolated compound from methanol P. sarmentosum leaf extracts.

No Name of compound Formula Molecular weight Molecular structure

13 Difucol C12H10O6 250.20

PubChem Identifier: CID 433697
URL: https://pubchem.ncbi.nlm.nih.gov/compound/433697#section=2D-Structure
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3.2 Antioxidant levels

Gastric MDA content was significantly higher in stress-exposed
rats than in non-stressed rats (p = .001; Table 2). P. sarmentosum and
omeprazole supplementation attenuated the stress-induced increase in
MDA levels, maintaining them at similar levels to non-stress rats. P.
sarmentosum and omeprazole showed comparable effects on WIRS-
induced gastric MDA levels. In addition, WIRS exposure significantly

reduced gastric SOD activity (p = .002). However, P. sarmentosum and
omeprazole supplementation did not attenuate the reduction in SOD
activity in stress-exposed rats.

SOD mRNA levels were significantly lower in non-stressed rats
than in stress-exposed rats. In addition, SOD mRNA levels were
significantly lower in stress-exposed rats treated with P.
sarmentosum or omeprazole than in untreated stress-exposed rats
(Figure 3).

3.3 NO and iNOS mRNA levels

NO levels were significantly higher in stress-exposed rats than in
non-stressed rats (p = .036). P. sarmentosum but not omeprazole
supplementation significantly attenuated the increase in NO levels
(p = .026; Table 2). In addition, iNOS mRNA levels were significantly
higher in stress-exposed rats than in non-stressed rats (Figure 4).
However, P. sarmentosum and omeprazole supplementation
significantly attenuated the stress-induced elevation in gastric
iNOS mRNA levels. Moreover, iNOS mRNA levels were
significantly lower with P. sarmentosum than with omeprazole
supplementation.

3.4 Cytokines

Gastric TNF-α levels were significantly higher (~2-fold) in stress-
exposed rats than in non-stressed rats (p = .001; Figure 5A). P.
sarmentosum supplementation significantly attenuated the increase

FIGURE 1
Macroscopic observation of gastric lesions in (A) normal rats (no lesions), (B) rats exposed toWIRS for 3.5 h (developed lesions), (C) omeprazole-treated,
and (D) P. sarmentosum-treated. Arrows indicate gastric lesions.

FIGURE 2
Effects of P. sarmentosum (500 mg/kg; PS) and omeprazole
(20 mg/kg; OMZ) on gastric lesion length (in mm) in rats exposed to
WIRS. Bars representmean ± SEM (n= 7). Key: +, p < .05 compared to the
non-stress (NS) control group; *, p < .05 compared to the stress (S)
control group; #, p < .05 compared to the OMZ-treated group.
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in TNF-α levels in stress-exposed rats (p = .026). However, omeprazole
supplementation did not affect TNF-α levels.

In addition, gastric IL-1β levels were significantly increased in
stress-exposed rats than in non-stressed rats (p = .004; Figure 5B).
However, P. sarmentosum (p = 1.0 × 10–4) and omeprazole (p = .043)
supplementation significantly attenuated the increase in IL1-β levels in
stress-exposed rats. Gastric IL-1β levels did not differ significantly

between stress-exposed rats given P. sarmentosum and omeprazole
supplements, suggesting they have comparable beneficial effects.

Gastric IL-6 levels were significantly increased in stress-exposed
rats than in non-stressed rats (p = .004; Figure 5C). P. sarmentosum

TABLE 2 The effect of P. sarmentosum and omeprazole on MDA and NO levels and SOD activity in rats exposed to WIRS for 3.5 h.

Treatment MDA content (mmol/tissue) SOD activity (U/mg) NO level (µM)

Non-stress control 1.725* .6371 10.944

Stress control 4.656 .1173+ 15.5+

Omeprazole 2.217* .213+ 14.207+

Piper sarmentosum 2.903* .0882+ 10.676*

+ vs. non-stress control (p < .05), * vs. stress control (p < .05), # vs. omeprazole (p < .05).

FIGURE 3
Effects of P. sarmentosum (500 mg/kg; PS) and omeprazole
(20 mg/kg; OMZ) on gastric SodmRNA levels in rats exposed toWIRS for
3.5 h. Bars represent mean ± SEM (n = 7). Key: +, p < .05 compared to the
non-stress (NS) control group; *, p < .05 compared to the stress (S)
control group; #, p < .05 compared to the omeprazole-treated group.

FIGURE 4
Effects of P. sarmentosum (500 mg/kg; PS) and omeprazole
(20 mg/kg; OMZ) on gastric iNOS mRNA levels in rats exposed to WIRS
for 3.5 h. Bars represent mean ± SEM (n = 7). Key: +, p < .05 compared to
the non-stress (NS) control group; *, p < .05 compared to the stress
(S) control group; #, p < .05 compared to the omeprazole-treated group.

FIGURE 5
Effects of P. sarmentosum (500 mg/kg; PS) and omeprazole
(20 mg/kg; OMZ) on gastric (A) TNF-α, (B) IL-1β, and (C) IL-6 protein
levels in rats exposed to WIRS for 3.5 h. Bars represent mean ± SEM (n =
7). Key: +, p < .05 compared to the non-stress (NS) control group; *,
p < .05 compared to the stress (S) control group; #, p < .05 compared to
the omeprazole-treated group.
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supplementation significantly attenuated the increase in gastric IL-6
levels in stress-exposed rats (p = .044). However, omeprazole
supplementation did not restore gastric tissue IL-6 levels to their
non-stressed values (p = .043).

4 Discussion

Our findings showed that rats exposed to WIRS for 3.5 h
developed gastric lesions at the glandular part of the stomach,
consistent with previous studies (Konturek et al., 2008; Kwiecien
et al., 2012; Azlina et al., 2017). This study showed that P.
sarmentosum could protect gastric mucosa against stress-
induced injury, supporting this plant’s use as a preventive
treatment against gastric mucosa injury. P. sarmentosum
supplementation provided better protection against stress-induced
gastric ulcers than omeprazole. Omeprazole is an established gastric
ulcer treatment used in numerous studies to provide gastroprotective
effects (Hajrezaie et al., 2012; Sidahmed et al., 2013). However, this study
showed that pretreatment with P. sarmentosum provided better
protection in reducing gastric mucosal lesions than omeprazole. Our
assessment of gastric lesions was based on measuring their greatest
diameter and averaging their total length.

Chan et al. (2019) described P. sarmentosum’s ability to inhibit
pro-inflammatory cytokines such IL-1β, TNF-α, and Il-6.
Omeprazole affects cytokines differently from P. sarmentosum,
decreasing IL-1β levels but increasing IL-6 and TNF-α levels
compared to the non-stress control group. While studies in H.
pylori-infected humans have shown omeprazole to positively affect
pro-inflammatory cytokines (Kountouras et al., 2000), our rat-
based study did not show similar effects. In addition, IL-1β
significantly increased intercellular adhesion molecule
1 expression (Watanabe et al., 2001) and leucocyte infiltration
in the scarred mucosa’s superficial region before ulcer recurrence
(Watanabe et al., 1997). They discovered that inhibiting gastric acid
sufficiently with omeprazole prevented both ulcer recurrence and
responses, indicating that acid may enhance gastric mucosal
inflammation in response to IL-1β stimulation, resulting in
gastric ulcers. Metabolic pathway analysis indicated that P.
sarmentosum exerts anti-inflammatory activity mainly by
affecting tryptophan metabolism (Wang et al., 2020). Its
metabolic product, melatonin, has anti-inflammatory properties
by inhibiting the activation of nuclear factor kappa-light-chain-
enhancer of activated B cells (Wang et al., 2020). These findings are
consistent with our results showing P. sarmentosum’s anti-
inflammatory activity on the inflammatory signaling pathway by
downregulating IL-1β, IL-6, and TNF-α.

The enhanced expression and release of IL-1β, IL-6, and TNF-
α could also contribute to increased reactive oxygen species
production in the gastric mucosa. Lipid peroxidation arises in
biological systems due to the oxidation of unsaturated, mostly
polyunsaturated, lipids, leading to the formation of free radicals
and lipid peroxides that are harmful to viable tissues. Lipid
peroxides quickly decompose to produce many compounds.
One common byproduct of that process is MDA. MDA is
present in serum, plasma, and tissues because of lipid
peroxidation. It is the most reported analyte for estimating
lipid peroxidation and oxidative stress (Del Rio et al., 2005;
Rappaport, 2006). Our results indicate that MDA levels are

significantly higher in stress-exposed rats. This study confirms
the involvement of free radicals in the pathogenesis of stress-
induced gastric injuries. This finding is consistent with other
studies showing the importance of lipid peroxidation in causing
injuries to the gastric mucosa (Kamisah et al., 2011; Nur Azlina
et al., 2013).

Antioxidants have been shown to protect against gastric mucosa
injury (Nur Azlina et al., 2009; Ibrahim et al., 2012; Azlina et al., 2015).
This study showed that P. sarmentosum significantly reduced MDA
levels compared to stress control rats, which probably reduced gastric
injury by retarding the lipid peroxidation process. P. sarmentosum has
higher antioxidant activity than other traditional plants
(Chanwitheesuk et al., 2005). This plant also contains a natural
antioxidant (naringenin, didymin, methyl piperate, quercetin, beta
asarone, brachyamide, amurensin, piperitol, guineensine, hesperidin,
rutin, malvidin, and difucol) (Subramaniam et al., 2003; Bactiar and
Fahami, 2019; Raja Kumar et al., 2019), which might contribute to P.
sarmentosum’s ability to reduce MDA. Our findings also showed no
differences between P. sarmentosum and omeprazole in reducing
gastric MDA levels, suggesting they have similar radical scavenging
abilities. Omeprazole was previously shown to confer dose-dependent
protection against ethanol (Sener et al., 2004) and stress-induced
(Azlina et al., 2015) acute gastric mucosal injury by inhibiting lipid
peroxidation.

Several reactive oxygen species scavenging systems, including
SOD, glutathione peroxidases, and catalases, prevent their
destructive action. SOD catalyzes the dismutation of O2-into less
noxious hydrogen peroxide, which is further degraded by catalases
or glutathione peroxidases. This study found that stress exposure led
to lipid peroxide production, indicated by increased gastric tissue
MDA levels and SOD mRNA levels. This effect could be due to the
normal physiological response upregulating SOD expression due to
impaired antioxidative enzymes. Dinu et al. (2009) found reduced
SOD activity in the gastric mucosa due to stress, increasing lipid
peroxidation. P. sarmentosum and omeprazole supplementation did
not increase SOD expression and enzyme activity, suggesting that they
do not affect SOD activity. Reduced MDA levels and lesion
occurrences in the P. sarmentosum-supplemented group indicate
that it acts as an antioxidant (Subramaniam et al., 2003),
potentially reflecting its naringenin content, a natural antioxidant
superoxide scavenger (Bactiar and Fahami, 2019; Raja Kumar et al.,
2019). Antioxidant agents have been shown to be effective in treating
gastric ulcers (Kudryavtsev et al., 2014).

NO exerts either protective or destructive effects depending on the
extent of its production. While NO produced by endothelial NO
synthase plays an important role in gastric ulcer formation and
healing, NO produced by iNOS only participates in ulcer
formation. This study has shown that iNOS mRNA levels were
significantly higher in stress-exposed rats than in non-stressed
control rats, with a concomitant increase in NO levels in the
stress-exposed rats. This change is mainly due to excessive iNOS
NO production in inflammatory cells, inducing oxidative tissue stress
and promoting mucosal damage (Cho, 2001; Mittal et al., 2014).
Nitrite levels were significantly elevated, potentially due to iNOS
stimulation, which reacts with superoxide to form peroxynitrite, a
potent cytotoxic oxidant causing gastric tissue damage (Lanas, 2008;
Azlina et al., 2015). P. sarmentosum supplementation significantly
reduced stress-induced increases in NO levels and iNOS expression. It
also reduced iNOS expression to a significantly greater extent than
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omeprazole. Therefore, its beneficial effects are likely due to its ability
to decrease gastric iNOS expression and NO levels, reducing gastric
mucosal damage.

5 Conclusion

Our findings provide evidence that oral P. sarmentosum
supplementation confers protection against stress-induced gastric
lesions, possibly via its antioxidant mechanism, reducing pro-
inflammatory cytokines, and its effects on NO through reduced
iNOS expression. P. sarmentosum extract showed a better
protective effect than omeprazole in reducing gastric lesions; TNF-
α, IL-6, NO levels; and iNOS expression. Therefore, it is a potential
therapeutic agent for gastric ulcers with similar pathologies.
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Introduction: Ginger (Zingiber officinale Roscoe) can scavenge free radicals,
which cause oxidative damage and inflamm-ageing. This study aimed to
evaluate the antioxidant and anti-inflammatory effects of soil ginger's sub-
critical water extracts (SWE) on different ages of Sprague Dawley (SD) rats.
The antioxidant properties and yield of SWE of soil- and soilless-grown ginger
(soil ginger and soilless ginger will be used throughout the passage) were
compared and evaluated.

Methods: Three (young), nine (adult), and twenty-one (old) months old SD rats
were subjected to oral gavage treatments with either distilled water or the SWE
of soil ginger at a concentration of 200 mg/kg body weight (BW) for three
months.

Results: Soil ginger was found to yield 46% more extract than soilless ginger. While
[6]-shogaol was more prevalent in soilless ginger, and [6]-gingerol concentration
was higher in soil ginger (p < 0.05). Interestingly, soil ginger exhibited higher
antioxidant activities than soilless ginger by using 2,2-diphenyl-1-(2,4,6-
trinitrophenyl) hydrazyl (DPPH) and ferric reducing antioxidant power (FRAP)
assay. With ginger treatment, a reduced levels of tumour necrosis factor-α (TNF-
α) and C-reactive protein (CRP) but not interleukin-6 (IL-6) were observed in young
rats. In all ages of SD rats, ginger treatment boosted catalase activity while lowering
malondialdehyde (MDA). Reduction of urine 15-isoprostane F2t in young rats,
creatine kinase-MM (CK-MM) in adult and old rats and lipid peroxidation (LPO) in
young and adult rats were also observed.

Discussion: The findings confirmed that the SWE of both soil and soilless grown
ginger possessed antioxidant activities. Soil ginger produced a higher yield of extracts
with a more prominent antioxidant activity. The SWE of soil ginger treatment on the
different ages of SD rats ameliorates oxidative stress and inflammation responses.
This could serve as the basis for developing a nutraceutical that can be used as a
therapeutic intervention for ageing-related diseases.
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1 Introduction

Ginger is a Zingiberaceae perennial plant. It has been harvested
for countless generations as a spice and use in herbal remedies
(Mohd et al., 2012). Ginger can be collected whether it is young
(between three and 4 months old) or mature (8–10 months)
(Marsh et al., 2021). Nutritional support for the growth of a
plant is provided by soil (Fussy and Papenbrock, 2022). The
conventional method of ginger cultivation is soil-bound, using a
shifting cultivation technique. This technique mainly produces
land corrosion in the highlands, and it takes 6 years to resolve
the issue of soil infertility before replanting can be done (Shuhaimi
et al., 2016). Consequently, a different approach to solving this
issue is to grow ginger using the soilless culture system. By growing
ginger without soil, soilborne ailments like Fusarium oxysporum,
Pseudomonas solanacearum that might infect the plant root, and
leaf spot illnesses, can be avoided. The availability of water and
nutrients for the plant may be significantly influenced by the
substrate, which may also impact on the metabolic processes
involved in synthesing the bioactive chemicals. This technique
uses substrates of rock wool, perlite, vermiculite and peat
(Mohd et al., 2015).

Several bioactive compounds are present in ginger. They
include terpenes (Halimin et al., 2022) and phenolic substances
such as gingerols, shogaols, and paradols. The combinations of [6]-
gingerol, [6]-shogaol, [10]-gingerol, gingerdiones, gingerdiols,
paradols, [6]-dehydrogingerols, [5]-acetoxy-6-gingerol, [3,5]-
diacetoxy-[6]-gingerdiol, and [12]-gingerol are responsible for
its recognised biological activity (Zammel et al., 2021; Arcusa
et al., 2022). The two most potent active ingredients are [6]-
shogaol and [6]-gingerol (Mao et al., 2019; Aghamohammadi
et al., 2020; Zammel et al., 2021). Studies on ginger rhizomes
have revealed that it exhibits a wide range of bioactivities
including neuroprotective (Sapkota et al., 2019),
hepatoprotective (Bekkouch et al., 2022), gastroprotective effects
(Ebrahimzadeh Attari et al., 2019), photoprotective effect (Nobile
et al., 2016), antimicrobial (Abdullahi et al., 2020), anti-obesity
(Seo et al., 2021), anticancer (Osman et al., 2021), anti-
inflammatory (Askari et al., 2020) and antioxidant properties
(Hur et al., 2020).

A state known as “oxidative stress”, which is defined as “an
imbalance between reactive species (RS), reactive oxygen species
(ROS), and antioxidant reserve”, is linked to ageing and chronic
disease (Mao et al., 2019). Alterations in DNA transcription and a
reduction in the ability to repair DNA could result from oxidative
damage to macromolecules such as lipids, proteins and DNA.
Oxidative stress and high concentration of polyunsaturated fatty
acids (PUFAs) in cellular or organelle membranes induce lipid
peroxidation which results in the release of α - and β-unsaturated
reactive aldehydes (Taso et al., 2019) such as malondialdehyde
(MDA), 4-hydroxy-2-noneal (HNE), and acrolein, which are the
most reactive (Mas-Bargues et al., 2021). When ROS oxidize

membrane phospholipids, lipid hydroperoxide (LPO)
molecules are produced within the cell membrane (Thimraj
et al., 2018). These aldehydes can bond covalently with
biological components. Besides, the oxidation of arachidonic
acid and docosahexaenoic acid (DHA) also produces lipid
peroxidation products such as isoprostanes (IsoPs) and
neuroprostanes (neuroPs) (Taso et al., 2019). They also cause
an increase in nitric oxide (NO) which subsequently leads to a
considerable drop in the blood levels of endogenous antioxidants
such as glutathione (GSH), superoxide dismutase (SOD) and
catalase (CAT) (Nandi et al., 2019).

The imbalance of the normal redox state exponentially
develops with age and is accompanied by a remarkable
decrease in the cell repair system. Inflammageing, a modest,
low-grade chronic inflammatory condition, has been reported to
contribute to ageing (Sanada et al., 2018) with an elevation of
proinflammatory cytokines, chemokines, and adipokines
interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumour necrosis
factor-α (TNF-α), and monocyte chemoattractant protein-1
chemokine (C-C motif ligand 2, CCL2) as the most important
characteristics (Jalali et al., 2020). In healthy individuals, initial
defence against pathogens and the injury-repair cycle depends
on inflammation (Petersen and Smith, 2016). These
inflammatory mediators may persist excessively for a long
time, leading to chronic inflammation. Chronic inflammatory
diseases can cause persistently high C-reactive protein (CRP)
values (Sproston and Ashworth, 2018). The aberrant release of
TNF-α causes psoriasis, psoriatic arthritis, and non-infectious
uveitis (NIU) (Zhou et al., 2020; Jang et al., 2021). As ageing is
the primary risk factor for most neurodegenerative diseases in
humans (Hou et al., 2019), age-related disorders may be delayed,
if not prevented, by therapies that use phytochemicals to target
the ageing process. Since the antioxidant properties of plants
could stem from their polyphenolic compounds, it is crucial to
assess the polyphenolic contents of these plants, which could be
extracted using various techniques.

Various extraction techniques which incorporated inorganic
solvents can be used in the plant extraction process (Dias et al.,
2021). The use of these solvents during the extraction and
downstream processing of medicinal herbs is constrained as
many organic solvents can be toxic to humans, depending on
the level of exposure. It is almost impossible to remove the
residual solvents completely from liquid and dried herbal
extracts (Truong et al., 2019). Subcritical-water extraction, an
eco-friendly process uses only water to extract phytochemical
components and can concentrate less-polar chemicals quickly
(Ko et al., 2020). Hence, this study aimed to evaluate the
antioxidant and anti-inflammatory effects of the sub-critical
water extracts of soil ginger on different ages of Sprague
Dawley (SD) rats. We also assessed and compared the
antioxidant properties and yield of SWE of soil- and soilless-
produced ginger.
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2 Materials and methods

2.1 Plant materials

Thirty kilograms of fresh rhizomes of young soil grown ginger
and 30 kg of fresh rhizomes of young soilless grown ginger aged
150 days were supplied by Millercle Resources Sdn. Bhd. The
soilless ginger grows in 100% cocopeat. The voucher specimens
were identified and deposited at the Universiti Kebangsaan
Malaysia’s Herbarium (UKMB), Bangi (ID016/2021).

2.2 Extraction

Unpeeled ginger rhizomes were washed and grinded to
increase the surface area by 1:3 solid-to-liquid ratio. The
extraction was performed in 70 L subcritical water extraction at
the optimum temperature and pressure of 120°C and 10 bar,
respectively. The processing time of 5, 10, 15 and 20 min were
used with a solvent-to-solid ratio of 28/2 mLmg−1. The subcritical
water extraction was performed by inserting the grounded ginger
(weight varied based on the solvent-to-solid ratio for each run)
into a sample holder placed in the extraction vessel and filled with
distilled water (2.5 L). A fitting cover was installed on top of the
extraction vessel to prevent pressure loss during the extraction
process. Nitrogen gas was used to purge the oxygen present in the
solution. The required pressure was maintained until the
experiment was completed. Finally, the extracts were streamed
into the cooling vessels to be collected for analysis and further
drying.

2.3 Chromatographic analysis

Two selected chemical markers for the extract, [6]-gingerol
and [6]-shogaol were identified and quantified using HPLC
(Waters Alliance 2,695, United States) equipped with a
PhotoDiode Array Detector (Waters 2,996, United States)
Table 1 and the Empower Chromatography Data System for
data processing. Analysis method were adapted from
Mohd Sahardi et al. (2021) and optimized to the following
parameters:

The extraction yield was calculated using the equation below:

Extraction yield %yield( ) � W1p100( )/W2

*W1 is the weight of the extract
*W2 is the weight of the plant powder

2.4 Preparation of controls for ferric reducing
antioxidant power (FRAP) and 2,2-diphenyl-1-
picrylhydrazyl (DPPH) assays

Tocotrienol-rich fraction (TRF) purchased from Sime Darby Sdn.
Bhd., Selangor, Malaysia (TRF Gold Tri E 50) and Vitamin C (L-ascorbic
acid 99%, Sigma,United States) were used as controls for theDPPHassay.
Each ginger extract and control were weighed and diluted with either
100% ethanol or 95% ethanol and ultrapure water based on its solubility
characteristics to create 10 mg/mL of the stock solutions.

2.5 DPPH free radical scavenging activity

The free radical scavenging activity of ginger extracts was measured
using DPPH. Briefly, 40 mL of acetate buffer and 60 mL of methanol
(both fromMerck, Germany) were combined tomake the stock solution
of 1,1-diphenyl-2-picryl-hydrazyl (Sigma, United States) (pH 5.5). The
appropriate diluents were used to dilute a series of final concentrations
of the ginger extracts and the controls to 0, 10, 20, 50, 100, 200, 500, and
1,000 μg/mL. Then, a vortex was used to combine .75 mL of the diluted
extract or control with 1.5 mL of .009 mgmL−1 DPPH in methanol.
Following the incubation, the mixture was let to stand at room
temperature for 10 min. The absorbance was determined at a
wavelength of 517 nm by EnSpire Multimode Plate Reader (Perkin
Elmer, Singapore). Methanol served as a standard (Ac). The inhibition
percentage was calculated using the formula below (Garcia et al., 2012):

Inhibition � Ac − As

Ac
x 100

2.6 FRAP assay

Two point 5 mL of TPTZ 2,4,6-tri (2-pyridyl-1,3,5-triazine)
(Sigma, United States), 2.5 mL of ferric chloride hexahydrate
(FeCl3.6H2O) solution (20 mM) (Merck, United States), and
2.5 mL of acetate buffer (300 mM; pH 3.6) (Merck, Germany) were
mixed in a ratio of 1:1:30 to create the FRAP reagent. Then, 1.2 mL of
the FRAP reagent were added to the ginger extract and control
solution to make a final concentration of 0, 10, 20, 50, 100, 200,
500, or 1,000 µgmL−1. The mixtures were incubated for 10 min and
absorbance were recorded at 593 nm by EnSpire Multimode Plate
Reader (Perkin Elmer, Singapore). The sample’s antioxidant capacity
was assessed using a standard curve of ferrous sulfate (FeSO47H2O)
(Sigma, United States).

2.7 Animal model

The Sprague Dawley (SD) rats were purchased from the Universiti
Kebangsaan Malaysia Laboratory Animal Resource Unit (LARU).
Throughout the study, the rats were housed in animal care

TABLE 1 HPLC parameters for chromatographic analysis.

HPLC
Parameters

Condition

Column C18 reversed-phase column

Mobile phase As the mobile phases A and B, respectively, we utilized water
and 100% acetonitrile (Merck, Germany). The active
components of ginger were separated as follows: the
volumetric ratio was 70:30 from 0 to 15 min; 5.0:95 from 15
to 16 min; 5.0:95 from 16 to 17 min; and 70:30 from 17 to
20 min.

Flow rate 0.4 mL/min

Detector Photodiode array (PDA) at 282 nm
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facilities with a 12-h light/dark cycle and a temperature of 24°C. Rats
also had unrestricted access to water and rat pellets (Gold Coin,
Malaysia). The rat pellet has an approximate nitrogen-free extract
content of 49%, aminimum crude protein content of 22%, amaximum
crude fiber content of 5%, a minimum crude fat content of 3.0%, a
maximum moisture content of 13%, and a minimum ash content of
8%. The bedding for the rats was Kenaff (Muhaaz Enterprise,
Terengganu, Malaysia) and was changed twice a week. Animals
were separated into three groups: 18 male young SD rats aged
3 months, 18 male adults aged 9 months, and 18 old males aged
21 months (Makpol et al., 2020). Each group was further divided into
two groups, with Group 1 receiving 1 mL of distilled water as the
control (n = 8) and Group 2 receiving 200 mg/kg/day of soil Z.
officinale Roscoe extract (n = 10) daily for 3 months. Prior to
receiving therapy, each rat was kept in a cage for a week in a
Sealsafe® Plus Rat IVC Green Line (TECHNIPLAST, Varese, Italy)

for acclimatization. For each test carried out, the animals were tested
according to their groupings, commencing with Group 1 and moving
on to Group 2. The Universiti Kebangsaan Malaysia Animal Ethics
Committee approved the experimental plan (UKMAEC Approval
Number: BIOK/PP/2018/SUZANA/14-MAY/924-JUNE-2018-MAY-
2020). Figure 1 shows the experimental design for this research. The
animal numbers were selected based on a previous study (Makpol
et al., 2020).

2.8 Urine collection

One milliliter of rat’s urine was collected via spontaneous
urination into a clear plastic bag on day 0 and day 90 of treatment
using a pipette tip. Prior to analysis, the urine was stored in a freezer
set at −80°C.

FIGURE 1
Diagram showing the experimental process and the study’s objectives.
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2.9 Blood collection

Blood was withdrawn from each rat through the orbital sinus
collection technique on day 0 and day 90 of treatment. After
centrifuging the collected blood in the EDTA tube at 3,000 rpm for
10 min at 4°C, the plasma was stored in a—80°C freezer until analysis.

2.10 Euthanisation of animals

KTX agents with a mixture of ketamine, xylazine, and zoletil-
50 (tiletamine and zolazepam) were used as anesthetics in this study
due to their effectiveness, speed, minimal discomfort, anxiety, and
distress. The KTX agents were injected intraperitoneally at a dose
of 0.1 mL/250 g of body weight (BW). They were sacrificed by
decapitation.

2.11 Collection of organs

On day 90, all rats were fasted overnight before being euthanized
for necropsy analysis. Gastrocnemius muscles were obtained from the
rats. The organs were cleaned in 90% normal saline to remove any
adhering tissue before weighing. The organ weight was measured as
soon as possible to prevent drying, and it’s relative to the animals’ body
weight (BW) was analyzed.

2.12 MDA analysis

Analysis of MDA in rat plasma was conducted in accordance with a
previous study (Hamezah et al., 2017). The reagent was prepared through
mixing of 5 mM DNPH (2,4-dinitrophenyl benzine) (Sigma Aldrich, St.
Louis, MO, United States), 2 M HCl (hydrochloric acid) (Sigma Aldrich,
St. Louis, MO, United States), 35% perchloric acid (HClO4) (Merck,
Germany), 1% sulfuric acid (H2SO4) and 1.3 M NaOH (natrium
hydroxide, Merck, Germany). 12.5 µL TEP (1,1,3,3-
tetraethoxypropane) (Sigma Aldrich, St. Louis, MO, United States) and
50 mL 1% sulfuric acid were combined and incubated overnight at 4 °C to
produce mega stock solution (1 mM stock solution). For working
standard (100 uM), 500 μL TEP (Mega stock) was added to 4.5 mL
mili Q water. 380 mL acetonitrile (HPLC Grade, Merck, Germany),
620 mL mili Q and 2 mL of acetic acid (Merck, Germany) were used
as the mobile phase. This mixture was filtered by a .45 µm filter
membrane using a vacuum pump and sonicated for 20 min to de-gas.
A series of standard concentrations (Table 2) was prepared. Briefly, 50 μL
standard/sample was added to 200 μL 1.3 M NaOH. This mixture was

incubated in a 60°C water bath for 1 h for alkaline hydrolysis of protein-
bound followed by 5 min of a cooling period in ice. Thirty-five percent
perchloric acid was added and further centrifuged at 10,000 g, 10 min, and
4°C to precipitate the protein. Three hundred microliter supernatant was
transferred and added with 12.5 μL, 5 mM DNPH. This mixture was
incubated at room temperature for 30 min. Standard/sample was filtered
(size .45 µm) and transferred into an insert in the vial.

Five microliter of sample was injected onto the UPLC system
(Waters Alliance 2,695, United States) equipped with PhotoDiode
Array Detector (Waters 2,996, United States). The reverse-phase
Acquity UPLC® BEH C18, 1.7 m, 2.1 mm 50mm column was part
of the UPLC system. Photodiode array detection was set at a wavelength
of 310 nm and a programmed solvent delivery systemwith a flow rate of
0.4 mL/min (Waters Corporation, Milford, MA, United States). By
contrasting the retention period of the sample with the established
standard, plasma MDA was determined. The sample’s MDA had a 2.6-
min retention period, which permitted an entire chromatographic run
every 5 minutes. The peak area of the external standards was used to
compute the MDA concentrations, and the results from the calibration
curves were expressed in nmol/mL. Each sample was analyzed
simultaneously.

2.13 Antioxidant enzyme activity

The activities of the antioxidant enzymes catalase (CAT) and
superoxide dismutase (SOD) in rat plasma were assessed using Catalase
Assay kit (Cayman, Ann Arbor, MI, United States) and Superoxide
Dismutase Assay Kit (Cayman, Ann Arbor, MI, United States), by
referring to the kits’ manuals. The absorbance was measured at
wavelengths of 540 nm for CAT and 440–460 nm for SOD by EnSpire
Multimode Plate Reader (Perkin Elmer, Singapore). The results were
presented as μmol/min/mL and U/mL for CAT and SOD activity,
respectively. A bsorbance was measured at wavelengths of 540 nm for
CAT and 440–460 nm for SOD. The results were presented as μmol/min/
mL for CAT activity. SOD activity was shown as U/mL.

2.14 Analysis of urinary oxidative stress

Urine samples from each rat were tested for 15-isoprostane F2t activity
using a urinary isoprostane ELISA kit (Oxford Biomedical Research, Oxford,
United States) according to the manufacturer’s instruction. The sample was
prepared by adding 100 L of urine to an anti-15-isoprostane F2t-coated well
plate following dilution with glucuronidase. The 15-isoprostane F2t
horseradish peroxidase (HRP) conjugate and tetramethylbenzidine (TMB)
substrate were then added to the mixture. An EnSpire Multimode Plate
Reader (Perkin Elmer, Singapore) quantified the produced colour as the
absorbance at 650 nm. Based on the data collected and the standard curve
produced using the given standard solution, the isoprostane concentration
(ng/mL) of each sample was calculated.

2.15 Analysis of creatine kinase-MM (CK-MM)

CK-MM activity was assessed using a Rat CK-MM ELISA Kit (Life
Diagnostics Inc., West Chester, PA, United States) in accordance with the
manufacturer’s instructions. The sample was prepared by diluting a total
of 25 L of plasma with a diluent before being transferred to microtiter

TABLE 2 Standard concentration for MDA analysis.

MDA (μM) Mili Q H20 (μL) Working standard

10 900 100

20 800 200

30 700 300

40 600 400

50 500 500
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plates that were coated with an anti-rat CK-MM antibody. Then, TMB
reagent was added to each well and lastly, enzyme conjugates. After
adding the stop solution to halt the reaction, the plates were gently shaken
so that their absorbance could be measured at 450 nm using an EnSpire
Multimode Plate Reader (Perkin Elmer, Singapore). Based on the results,
each sample’s CKMM concentration (ng/mL) was determined using the
standard curve that was plotted using the supplied standard solution.

2.16 Analysis of skeletal muscle oxidative
stress

Lipid peroxidation marker, and lipid hydroperoxides were analyzed
using Lipid Hydroperoxide (LPO) assay kit (Cayman Chemical, Ann
Harbor, MI, United States), in accordance with the manufacturer’s
instructions. To prevent batch-to-batch variability, all samples for each
lipid peroxidation marker were examined in the same batch. In summary,
100mg of gastrocnemius muscle was homogenized using PBS buffer
containing .5M BHT. After adding the R2 reagent, clear supernatant
homogenates were generated, which were then combined with the
diluted R1 reagent. Through redox interactions with ferrous ions and
thiocyanate as the chromogen, this kit directly assessed the lipid
hydroperoxide radicals. Three duplicates of each sample were plated. By
using an EnSpire Multimode Plate Reader (Perkin Elmer, Singapore) at
500 nm, the supernatant absorbance was measured. The data were
computed to determine the concentration of each sample using a
standard curve from the provided standard solution. By adjusting each
sample’s spectrophotometrically measured absorbance (500 nm) to μM
using a hydroperoxide concentration standard curve, the average lipid
hydroperoxide concentration for each sample was determined using this
calculation:

Hydroperoxide concentration in sample (µM):

Hydroperoxide values of the sample tubes HPST( )
Volume of extract usedfor the assay VE( ) X

1mL

Volume of the original sample usedfor extraction SV( )

2.17 Measurement of inflammatory
biomarkers

By using an ELISA kit from Elabscience Biotechnology
(United States), the levels of inflammatory biomarkers including
IL-6 (E-EL-R0015), TNF-α (E-EL-R0019), and CRP (E-EL-R3002)
were assessed in a 96-well plate. In order to get the plasma, the
blood was collected into heparin tubes and separated for 15 min at
1,000 g at 4°C. The 96-well plate was then filled with the plasma, which
was then incubated for 90 min at 37°C. Utilizing the EnSpire
Multimode Plate Reader (Perkin Elmer, Singapore), the absorbance
of IL-6, TNF-α, and CRP was measured at 450 nm and compared to
the standard curve.

2.18 Statistical analysis

The results of each experiment were recorded as mean ± standard
deviation, with each experiment carried out in triplicate. One-way or two-
wayANOVAwas used to analyze the significant differences, andmultiple
comparisons were performed using the Bonferroni or Tukey test post hoc
test. Levene’s test was used to test the homogeneity of the variances. Old

rats and young rats were compared using Student’s t-tests. P < .05 was
considered as a significant difference in the analysis, whichwas conducted
using SPSS software version 28.

3 Results

3.1 Determination of total yield of dry extract

Thirty kilograms of soilless ginger yielded 440 g (1.46%) of ginger
extract while 950 g (3.17%) of ginger extract was yielded from soil
ginger (Figures 2A, B).

3.2 Total amount of phenolic compounds, [6]-
Gingerol and [6]-Shogaol (µg/mL)

In comparison to soilless ginger, the total amount of [6]-gingerol was
significantly higher in soil ginger extract at 5, 10, 15, and 20 min of
extraction (p < .05) (Figure 3A). On the other hand, the total amount of
[6]-shogaol was higher in 5 min and 10 min of extraction time compared
to soilless ginger (p< .05). Contrarily, compared to soil ginger, the amount

FIGURE 2
Total yield of dried extracts of soil and soilless ginger in g (A) and
% (B).
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of [6]-shogaol in soilless ginger was significantly increased with increasing
extraction time (15 min and 20 min) (p < .05) (Figure 3B).

3.3 Total percentage of phenolic compounds,
[6]-Gingerol and [6]-Shogaol (%)

The total percentage of [6]-gingerol was significantly higher in soil
ginger extract at 5, 15 and 20 min of extraction time compared to soilless
ginger at respective extraction times. No significant difference in the
percentage of [6]-gingerol was observed at 10 min of extraction time
between soil and soilless ginger although the percentage of [6]-gingerol
increased significantly during this interval compared to 5 min of
extraction time (p < .05) (Figure 4A). In contrast, the percentage of
[6]-shogaol was significantly higher in soilless ginger at 5, 15 and 20 min
of extraction time (p < .05, Figure 4B) compared to soil ginger.

3.4 DPPH radical scavenging activity

By using DPPH assay, soil ginger at 5 min of extraction time (B5)
with a concentration of 1,000 μg/mL exhibited higher antioxidant

activities than soilless ginger at 5 min and 20 min of extraction times
(A5, A20) with similar concentrations (Table 3; Figure 5).

3.5 FRAP activities

Soil ginger with a concentration of 1,000 μg/mL at all
extraction times (B5, B10, B15 B20) exhibited higher
antioxidant activities than the soilless ginger at similar
concentrations and respective extraction times (A5, A10, A15,
A20) with the highest activity was by soil ginger at 20 min of
extraction time (B20) (Table 4; Figure 6).

3.6 Level of oxidative stress markers in the
tissue, plasma, and urine

When compared to the young control rats at month 0, the
plasma level of CKMMwas significantly higher in the older rats (p <
.05) (Figure 7A). At month 3, adult and elderly rats were shown to
have similar increases in plasma CKMM compared to their
respective control groups (p < .05). In comparison to the

FIGURE 3
Total amount of [6]-gingerol (A) and [6]-shogaol (B) (µg/mL) for both soil and soilless ginger. Data presented as mean ± SD (n = 6), *p < .05 indicates a
significant difference from the soil at the corresponding extraction time ap < .05 indicates a significant difference from the extraction time of 5 min;
bp<.05 indicates a significant difference from the extraction time of 10 min; And cp < .05 indicates a significant difference from the extraction time of 15 min
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untreated adult and old rats at month 0, ginger administration
significantly reduced plasma CKMM in both groups at month 3 (p <
.05). For LPO, when compared to young control rats, lipid
hydroxyperoxide was significantly higher in adult control rats
(p < .05). When compared to the untreated groups, ginger
treatment significantly decreased LPO levels in both young and
adult rats (p < .05). As opposed to their untreated aged group,
ginger therapy dramatically raises the LPO level in old rat groups.
(p < .05) (Figure 7B). We observed a stable MDA level in all control
rats. When compared to the untreated young and old rats at month
0, ginger treatment dramatically lowered the MDA levels in
both young and old rats at 3 months of treatment. (p < .05)
(Figure 7C). At month 0 compared to their controls, the
urine 15-isoprostane F2t levels were significantly higher in the
adult and old groups. Compared to the untreated groups at month
0, ginger treatment significantly reduced the concentration of 15-
isoprostane F2t in both young and old rat groups at month 3 (p <
.05, Figure 7D).

3.7 Level of antioxidant enzymes

When compared to young control rats, there was a substantial decline
in T-SOD activity (p < .05) in old rats. On the other hand, neither the
ginger intervention nor the control significantly changed the SOD activity
in young or adult rats (Figure 8A) after 3 months of treatment. In terms of
catalase activity, when compared to young control rats, the catalase
activity in old rats was significantly reduced (p < .05). Interestingly, rats of
all ages treated with ginger had significantly higher catalase activity than
the untreated rats (p < .05, Figure 8B).

3.8 Level of plasma pro-inflammatory
biomarkers

When compared to young control rats at 0 months, adult control
and baseline untreated adult rats had significantly higher plasma IL-6
concentrations (p < .05, Figure 9A). For the whole course of treatment,

FIGURE 4
Percentage of [6]-gingerol (A) and [6]-shogaol (B) in both soil and soilless ginger. Data presented as mean ± SD (n = 6), *p < .05 indicates a significant
difference from the soil at the indicated extraction time; ap < .05 indicates a significant difference from the extraction time of 5 min; b p < .05 indicates a
significant difference from the extraction time of 10 min; cp<.05 indicates a significant difference from the extraction time of 15 min.
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there were no significant changes in plasma IL-6 concentration
between young, adult and old rats. For TNF-α, when compared to
the young control at 0-month and 1.5-month intervals, the young
control’s plasma TNF-α level at 3 months was significantly decreased.

Although the ginger treatment did not significantly reduce TNF-α
concentration at months 0 and 3, it did significantly reduce TNF-α
concentration in young, treated rats at intervals of 1.5 months when
compared to the untreated group (p < .05, Figure 9B). On the other

TABLE 3 DPPH radical scavenging activity in both soil and soilless ginger. Data presented as mean ± SD (n = 3).

Concentration µg/mL % DPPH radical scavenging activity assay

0 10 20 50 100 200 500 1,000

Vit C .00 ± 0 43.35 ± 7.8 82.22 ± 9.8 87.86 ± 0.4 88.20 ± 1.0 88.12 ± 0.4 86.06 ± 1.0 85.76 ± 1.6

TRF .00 ± 0 33.75 ± 8.7 54.95 ± 25.8 82.95 ± 5.0 87.84 ± 4.0 90.51 ± 2.2 89.40 ± 2.0 89.68 ± 1.5

A5 .00 ± 0 .00 ± 3.6 3.86 ± 2.1 11.77 ± 2.4*# 20.48 ± 2.1 35.64 ± 1.0 57.79 ± 6.4 50.90 ± 4.1*#

A10 .00 ± 0 .00 ± 0.7 4.38 ± 3.8 8.92 ± 2.6 15.06 ± 4.0 26.70 ± 3.6 46.86 ± 9.3 67.19 ± 6.3

A15 .00 ± 0 .00 ± 0.7 .00 ± 3.4 6.69 ± 2.5 17.54 ± 2.5 26.18 ± 7.1 55.73 ± 4.8 61.18 ± 1.5

A20 0.00 ± 0 0.00 ± 4.45 3.67 ± 0.4 8.44 ± 3.36 13.29 ± 2.66 25.02 ± 2.45 52.66 ± 3.96 52.02 ± 1.75*#

B5 .00 ± 0 .00 ± 3.64 .00 ± 5.98 1.11 ± 0.91*#a 14.02 ± 12.45 25.96 ± 9.71 55.37 ± 2.18 71.46 ± 2.44*#ac

B10 0.00 ± 0 0.00 ± 22.3 0.00 ± 28.4 4.57 ± 1.96 6.71 ± 1.16 19.93 ± 3.67 47.15 ± 18.9 68.36 ± 10.4*#b

B15 .00 ± 0 .00 ± 0.37 .00 ± 2.58 6.31 ± 4.81 11.84 ± 5.87 26.68 ± 13.94 53.72 ± 5.06 69.98 ± 2.75

B20 .00 ± 0 .00 ± 1.76 4.28 ± 1.91 8.42 ± 2.46 19.86 ± 13.9 31.62 ± 12.4 54.90 ± 11.47 66.16 ± 12.9

A5, A10, A15 and A20 denote soilless ginger groups. B5, B10, B15, B20 denote soil ginger groups, *p < .05 significantly different compared to Vit C, #p < 005 significantly different compared to TRF,

ap<.05 significantly different compared to soilless ginger at similar concentration, bp<.05 significantly different compared to A5 at similar concentration, cp<.05 significantly different compared to A20 at

similar concentration.

FIGURE 5
DPPH radical scavenging activity in both soil and soilless ginger. Data presented asmean ± SD (n = 3). A5, A10, A15 and A20 denote soilless ginger groups.
B5, B10, B15, B20 denote soil ginger groups, *p < .05 significantly different from Vit C, #p < 005 significantly different from TRF, ap <.05 significantly different
from soil ginger at the same extraction time, bp <.05 significantly different from soilless ginger at the same extraction time, cp <.05 significantly different from
A5 at the same extraction time, and dp <0.05 significantly different from A20 at the same extraction time.

Frontiers in Pharmacology frontiersin.org09

Razak et al. 10.3389/fphar.2023.1006265

138

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1006265


TABLE 4 FRAP activities of soil and soilless ginger and controls. Data presented as mean ± SD (n = 6).

Mean FRAP value, µM

Concentration µg/mL 0 10 20 50 100 200 500 1000

TRF 0.00 ± 0 38.81 ± 7.23 152.52 ± 16.64 187.33 ± 19.28 364.37 ± 24.50 783.63 ± 16.97 1083.63 ±13.58 1311.04 ± 18.10

VIT C 0.00 ± 0 82.52 ± 9.32 208.81 ± 18.90 269.93 ± 16.86 364.37 ± 12.49 562.15 ± 19.13 941.41 ± 20.53 1386.59 ± 24.70

A5 0.00 ± 0 0.00 ± 8.7 36.08 ± 4.33abf 96.36 ± 11.68abfh 138.31 ± 12.29 159.42 ± 28.66 206.36 ± 13.57 345.53 ± 11.25

A10 0.00 ± 0 0.00 ± 17.29 45.25 ± 18.28 88.86 ± 6.99abf 136.64 ± 9.94 170.25 ± 3.63 236.08 ± 28.00 329.14 ± 4.59

A15 0.00 ± 0 0.00 ± 20.97 25.63 ± 17.01 66.00 ± 19.75 168.22 ± 15.40 209.33 ± 12.62 257.85 ± 7.06 309.70 ± 5.25

A20 0.00 ± 0 0.00 ± 7.56 12.67 ± 2.94 46.00 ± 4.44abd 118.96 ± 19.76 205.63 ± 10.26 259.70 ± 6.32 308.96 ± 8.63

B5 0.00 ± 0 0.00 ±14.82 45.81 ± 5.91 80.25 ± 6.82 238.86 ±14.35abcdef 436.36 ± 5.36abcdefij 548.86 ± 16.86abcdefhij 561.36 ± 8.22abcdefij

B10 0.00 ± 0 0.00 ± 2.55 28.31 ± 8.01 54.97 ±6.68 258.31 ± 17.17abcdefij 387.47 ± 12.54abcdefgij 488.31 ± 17.68abcdef 565.53 ± 19.41abcdef

B15 0.00 ± 0 0.00 ± 30.75 22.67 ± 3.33 61.56 ± 20.16 174.89 ± 15.03 269.89 ± 14.37abcdfgh 364.33 ±10.93abcefgh 647.67 ± 8.82abcdefg

B20 0.00 ± 0 0.00 ± 17.66 18.78 ± 5.09 72.11 ± 16.02 167.67 ± 9.28 247.11 ± 14.37abdgh 442.67 ± 18.56abcdefg 663.22 ± 2.55abcdefg

A5, A10, A15 and A20 denote soilless ginger groups. B5, B10, B15, B20 denote soil ginger groups.
ap<0.05 significantly different compared to TRF,
bp<0.05 significantly different compared to Vit C,
cp<0.05 significantly different compared to A5,
dp<0.05 significantly different compared to A10,
ep<0.05 significantly different compared to A15,
fp<0.05 significantly different compared to A20,
gp<0.05 significantly different compared to B5,
hp<0.05 significantly different compared to B10,
ip<0.05 significantly different compared to B15,
jp<0.05 significantly different compared to B20.
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FIGURE 7
Plasma Creatine Kinase MM (CK-MM) (A), lipid hydroxyperoxide (B), plasma malondialdehyde (MDA) (C) and urine 15-isoprostane F2t (D) concentrations in young,
adult, and old rats. The data were presented as mean ± SD, *p < .05 significantly different compared to young control rats at 0 month, **p < .05 significantly different
compared to adult control rats at 0 month. #p< .05 significantly different compared toold control rats at 0month, ap<.05 significantly different compared to youngginger
rats at 0 month, bp<.05 significantly different compared to adult ginger rats at 0-month, cp<.05 significantly different compared to old ginger rats on at 0 month.

FIGURE 6
FRAP activities in both soil and soilless ginger. The data is shown asmean SD (n= 6). A5, A10, A15 and A20 denote soilless ginger groups. B5, B10, B15, B20
denote soil ginger groups. ap<0.05 is significantly different from TRF, bp<0.05 is significantly different from Vit C, cp<0.05 is significantly different from A5,
dp<0.05 is significantly different from A10, ep<0.05 is significantly different from A15, fp<0.05 is significantly different from A20, and gp<0.05 is significantly
different from B5, hp<0.05 is significantly different from B10, ip<0.05 is significantly different from B15 and jp<0.05 is significantly different from B20.

Frontiers in Pharmacology frontiersin.org11

Razak et al. 10.3389/fphar.2023.1006265

140

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1006265


hand, young control groups’ plasma CRP levels remained constant at
all intervals during the entire course of treatment. However, compared
to the untreated group, the young rats treated with ginger extract for
3 months with ginger extract had lower plasma CRP levels (p < .05,
Figure 9C).

4 Discussion

The use of natural sources of bioactive chemicals as nutraceuticals to
support human health has drawn a lot of interest lately. The natural
source of phenolic component used in this study was Zingiber officinale
Roscoe. We used water for extraction since a number of scientific studies
revealed that extraction technologies that primarily use organic solvents
may leave an unwelcome hazardous residue in the finished product

(Soquetta et al., 2018; Chaves et al., 2020; Carpentieri et al., 2021). Organic
volatile solvents such as acetone, chloroform, ethyl ether, ethanol,
dichloromethane, ethyl acetate, hexane, benzene, and toluene are
highly toxic, human carcinogens, environmental hazards, non-
genotoxic animal carcinogens. Accumulation and metabolism of the
volatile solvent residue can generate highly toxic metabolites which bind
covalently to some macromolecules and produce toxic effects (Opuni
et al., 2021). Due to their high solubility in fat, the unmetabolized residual
solvents accumulate in fatty tissues such as those of the nervous system
which may cause neurotoxicity (Joshi and Adhikari, 2019).

Our results showed that soil ginger possessed a higher extraction
yield than soilless ginger. Similar to this, a prior study found that soil-
grown lettuce produced more and had leaves with a greater nitrate
content than soilless lettuce (Fussy and Papenbrock, 2022). Nitrates in
the soil are a primary source of nitrogen which is essential for plant

FIGURE 8
Age-related differences in T-SOD activity (A) and catalase activity of young, adult, and old rats (B). The data was presented as mean ± SD, *p <
.05 significantly different compared to young control rats, ap<.05 significantly different compared to untreated rats at respective months.
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growth. Fresh ginger typically contains between 85 and 95 percent
water, making them vulnerable to microbial deterioration and
chemical degradation (An et al., 2016). Volatile compounds make

up 97 percent of the Zingiber officinale rhizome’s constituents in
essential oils (Ghasemzadeh et al., 2018). The primary source for
ginger’s bioactivities came from its rhizomes which consist of non-

FIGURE 9
Plasma interleukin 6 (IL-6) levels in young, adult, and old rats (A), plasma levels of TNF-α (B) and CRP (C) in young rats. The data were presented asmean ±
SD. *p < 0.05 significantly different compared to young control rat at 0 month, **p < 0.05 significantly different compared to young control rat at 1.5 months,
ap<0.05 significantly different compared to untreated rats at respective months.
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volatile substances (oleoresins). A previous study reported the most
significant categories among these are gingerols, shogaols, and
paradols (Arcusa et al., 2022).

According to the outcomes of the ultrahigh-performance liquid
chromatography (UHPLC), the active components in our extract were
discovered to be [6]-gingerol and [6]-shogaol (0.6% w/w). The main
polyphenols in fresh ginger are [6]-gingerols, however with heat treatment
or prolonged storage, gingerols can change into their corresponding [6]-
shogaols (An et al., 2016). Among the factors influencing this
transformation are acidity, temperature, and the length of the
extraction (Ghasemzadeh et al., 2018). When [6]-gingerols are
converted into [6]-shogaols, it takes place in an acidic aquatic
environment (Ghasemzadeh et al., 2018). The acidic solutions facilitate
the dehydration of 6-gingerol to produce 6-shogaol. In aqueous solutions,
these acids form different anions which can catalyze the conversion of
gingerols to the corresponding shogaols. In line with this, we observed an
increased level of [6]-shogaols with increased of extraction time in soilless
ginger. A similar increase in other extracted phytochemicals was observed
using soilless culture compared to soil-based plants (Verdoliva et al.,
2021). Crop production and quality in soil and soilless systems depend on
how well the plant absorbs nutrients from the growing medium, which is
impacted by the number of nutrients present in the medium, the sources
of the nutrients, or interactions between the different nutrients (Sambo
et al., 2019). Active components in thematerial, whichmay disintegrate at
high temperatures, can be preserved by drying them at a low temperature.
However, it has been recommended that ginger be heated to increase its
curative properties (Jung et al., 2018).

An earlier investigation revealed that ginger’s total phenolic
content was linearly correlated with antioxidant activity
(Ghasemzadeh et al., 2018). Prior work found that providing
ginger to old animals successfully reduced DNA oxidative damage
(Makpol et al., 2020). We supported this observation with our DPPH
scavenging activity assays and FRAP activity assays. The organic
nitrogen free radical known as the DPPH free radical has a deep
purple colour which turned yellow during the test. Antioxidants
contained in the ginger extract donate hydrogen in order to
scavenge the DPPH free radical in the DPPH assay, which helped
to create the non-radical form of DPPH (Mohd Sahardi et al., 2021). In
FRAP assay, the identified antioxidant property changed the ferrous
ion (Fe2+) from the ferric ion (Fe3+), causing a blue complex (Fe2+/
TPTZ) to form (Spiegel et al., 2020). This is because antioxidants are
reducing agents, which means they can aid in the reduction process by
providing one electron or one hydrogen. In comparison to soilless
ginger, we observed an increase in FRAP and DPPH radical
scavenging activity with higher ginger extract concentrations and
longer extraction periods. This increased antioxidant power can be
due to the soil ginger’s higher yield of total [6]-gingerols and [6]-
shogaols, which resulted in a higher presence of total α, and β-
unsaturated ketones moieties than in soilless ginger. In comparison
to Moringa oleifera, Kelulut honey (Mohd Sahardi et al., 2021), and
other spices extracts (Abdul Qadir et al., 2017), ginger showed stronger
antioxidant activity.

ROS are continuously produced via cell metabolism in trace
amounts. However, excessive ROS production damages
macromolecules and harms cells. Biomembranes can be destroyed by
polyunsaturated fatty acids (PUFAs) that are esterified in membranes or
store lipids due to ROS-induced peroxidation. It is produced from the
peroxidation of arachidonic acid by free radicals without the aid of
cyclooxygenase enzymes (Soffler et al., 2010). Ginger might reduce

oxidative stress in ageing and diseased animal models. The increase in
lipid peroxidation (LPO) that we saw in aged animals was also observed
in pathological rat brains as reported by Sharma and Singh (2012). This
study proposed that ginger ameliorated the condition, with a higher level
of antioxidant enzyme activities including catalase observed, similar to
our findings (Sharma and Singh, 2012). Numerous age-related disorders
are linked to older individuals’ higher levels of lipid peroxide and
malondialdehyde (MDA) end products and lower levels of
antioxidants (Ali et al., 2022). LPO has been linked to the onset and
progression of atherosclerotic illnesses, heart failure, and other
cardiovascular disorders, according to several studies (Gianazza et al.,
2020; Miyazawa, 2021). Measuring urine F2t isoprostanes is one of the
most accurate indicators of oxidative stress in living organisms (Guerreiro
et al., 2015). Although they are stable, they have distinct half-lives in the
blood (minutes) and urine (hours) (Turnbull et al., 2017).

In practically all organs, including skeletal muscle, oxidative
damage increases with ageing. Aged rats have been demonstrated
to develop sarcopenia phenotype as a result of macromolecule
oxidative damage (Makpol et al., 2020). The signaling pathways
that control the protein synthesis and proteolysis in muscle have
been reported to be impacted by the imbalance of the redox state
(Di Filippo et al., 2016). Because of this, oxidative stress indicators
for ageing such as creatine kinase (CK) have been utilized.
Creatinine, a breakdown product of the muscle’s creatine
phosphate has been used as a measure of age-related decline in
muscle mass. There are three isoenzymes of creatine kinase (CK),
known as creatine phosphokinase: CK1, CK2, and CK3. Skeletal
muscle contains the isoenzyme CK3, which comprises MM
subunits (Mourad, 2021). The CK-MM released into the
bloodstream reflects the integrity, stability, and function of the
plasma membrane as well as the manifestation of mechanical and
metabolic abnormalities inside the sarcomere of skeletal muscle
(Kumar and Gill, 2018).

In this investigation, urine isoprostane F2t, LPO, andMDA levels were
significantly higher in untreated old rats. However, in both young and old
rats, CK-MM, LPO, andMDA levels were shown to be significantly lower
after ginger administration. The antioxidant qualities of ginger may
account for this finding. According to other in-vivo research, ginger’s
active ingredients can boost antioxidant defense mechanisms including
glutathione peroxidase and glutathione S-transferase, as well as lower the
levels of malondialdehyde (MDA) and hepatic steatosis (Rahimlou et al.,
2016). Through the activation of nuclear factor erythroid 2 (NFE2)-
related factor 2 (Nrf2) and the expression of various antioxidant enzymes,
ginger supplementation strengthens the antioxidant defense system and
may therefore balance the redox state manifested by decrease in lipid
peroxidation products.

We looked at the effects of ginger extract on the activity of
antioxidant enzymes such as superoxide dismutase (SOD) and
catalase to determine whether the Nrf2-inducing action of the
ginger extract is connected to its capacity to induce endogenous
antioxidant enzymes (CAT). SOD and CAT, a hemoprotein that
lowers H2O2 and protects tissue from highly reactive OH• radicals
catalyze the dismutation of superoxide radicals. They are regarded as
major enzymes because they directly eliminate reactive oxygen species
and guard cytosolic and membrane components from free radical
damage. In young, adult, and old ginger-treated rats, ginger increased
catalase’s catalytic activity, while we noticed decreased SOD activity in
the old rats. This was consistent with earlier research that reported
ginger extract has potent antioxidant activities and can serve a similar
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purpose as antioxidant enzymes including catalase (CAT), glutathione
peroxidase (GPx), and superoxide dismutase (SOD) (Rostamkhani
et al., 2022). Ginger’s anti-inflammatory characteristics benefited type
2 diabetics with insulin resistance by improving glucose tolerance and
uptake in the body, which led to a reduction in insulin resistance
(Pakan et al., 2021). Previous research had also suggested that [6]-
shogaol modified KEAP1, a redox sensor and prevented Nrf2 from
being degraded by proteasomes. Under dormant conditions, the
Nrf2 is associated with its Kelch-like ECH-associated protein 1
(KEAP1) by forming the Nrf2-KEAP1 complex. Different
alterations in KEAP1 structure induced by ROS lead to its
dissociation from this complex and activation of Nrf2. The
expression of Nrf2 target genes rises as a result of Nrf2 being
translocated into the nucleus. GSH and glutathione levels rise as a
result, and ROS levels drop (Mao et al., 2019). By altering proteins and
genes, the extra ROS created has the potential to start and advance
inflammatory disease pathways.

Immune cells produce a variety of cytokines and chemokines during
inflammation in order to draw additional immune cells to the area of
oxidative stress or infection (Chatterjee, 2016). In this work, we explored
the potential effects of ginger supplementation (200 mg/day) on reducing
proinflammatory biomarkers in rats. TNF-α, IL-6, and CRP were the
three plasma proinflammatory biomarkers that were chosen as
inflammatory state indicators. Interleukin-6 (IL-6) is known as the
cytokine of the gerontologist (Rea et al., 2018). Our findings
demonstrated that adult rats had levels of IL-6 that were noticeably
higher than those of young rats. In addition to being able to create
particular cellular and humoral immune responses, such as end-stage
B cell differentiation, immunoglobulin production, and T cell activation.
IL-6 also plays a significant role in the transition between acute and
chronic inflammation (Yousif et al., 2021). Through local leukocyte
recruitment, death, and migration, it stimulates an immunological
response that can quickly eradicate the harmful substance (Choy and
Rose-John, 2017). Age-related mild increases in circulating IL-6 levels are
known, and their excessive presence in blood serum is a risk factor and
potential biomarker for a variety of inflammatory disorders (Pogue et al.,
2017). The results of our study’s IL-6 measurements agreed with those of
Song et al. (2021). It demonstrated a general decrease in IL-6 levels
following ginger supplementation, though it was not statistically
significant (Song et al., 2021). It is likely that the ginger dosage and/or
supplementation period were not sufficient to significantly reduce the
inflammatory cytokines.

TNF-α and IL-6 may be in a connection that is susceptible to
negative feedback. These biomarkers have a direct correlation,
whereby an increase in one causes a decrease in the other and vice
versa, according to a study conducted on mice (Yimin and
Kohanawa, 2006). It is still unknown how exactly this
interaction works and how TNF-α and IL-6 play different roles.
In this study, treatment with ginger significantly lowered plasma
levels of TNF-α at 1.5 months and CRP at 3 months in young rats,
supporting this observation. A previous study reported lower
mRNA expression of TNF-α in the soleus muscle of physically
active mice following supplementation of black ginger extract for
4 weeks (Toda et al., 2016). It is possible that ginger’s anti-
inflammatory properties could improve a person’s health
acutely. This validates earlier research’s findings that ginger
supplementation may be able to prevent the COX-2
inflammatory pathway, which raises oxidative stress and
unfavorable cytokine inflammation (Fajrin et al., 2021). In

addition to decreasing NF-κB activity, [6]-gingerol also inhibits
the production of TNF-α, cyclooxygenase 2, and the by-products it
generates, such as PGE2. As a result, acute-phase proteins like CRP
are blocked in this process, which is consistent with the findings
reported previously (Mazidi et al., 2016). Randomized clinical
trials corroborated ginger’s action in TNF-α reduction
(Rahimlou et al., 2016). Our findings support the claims made
by other researchers that the consumption of ginger significantly
lowers serum of CRP and TNF-α but not IL-6 (Jalali et al., 2020;
Morvaridzadeh et al., 2020). Thus, we propose ginger as a
nutraceutical agent in controlling inflammatory disorders due to
its clinically substantial lowering CRP and TNF-α levels activities.

5 Conclusion

High biological activity in the soil and soilless ginger extracts is
possible with sub-critical water extraction without hazardous solvents.
Based on the current study’s findings, we confirmed that the SWE of
both soil and soilless ginger possessed comparable antioxidant
properties.

6 Recommendation

Further study is required to assess TNF-α and CRP levels in old
rats since we did not measure them in this study design. However, soil
ginger produced a higher yield of extracts with a more prominent
antioxidant activity. The SWE of soil ginger treatment on the different
ages of SD rats ameliorates oxidative stress and inflammation
responses. This could serve as the basis for developing a
nutraceutical agent that can be used as a therapeutic intervention
for ageing-related diseases while minimizing the dangers associated
with toxicological waste that will affect the environment in addition to
being safe for human health. More data will be required from future
research in order to establish clinical results, efficacy, and safety in a
clinical context, as well as to understand the pathway modification of
these polyphenols in reducing oxidative stress and their inflammatory
response.
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Osteoporosis and periodontitis are two major chronic diseases of
postmenopausal women. The association between these two diseases are
evident through systemic bone loss and alveolar bone loss. Both
postmenopausal osteoporosis and periodontitis impose a considerable
personal and socioeconomic burden. Biphosphonate and hormone
replacement therapy are effective in preventing bone loss in postmenopausal
osteoporosis and periodontitis, but they are coupled with severe adverse effects.
Phytoestrogens are plant-based estrogen-like compounds, which have been
used for the treatment of menopause-related symptoms. In the last decades,
numerous preclinical and clinical studies have been carried out to evaluate the
therapeutic effects of phytoestrogens including bone health. The aim of this
article is to give an overview of the bidirectional interrelationship between
postmenopausal osteoporosis and periodontitis, summarize the skeletal
effects of phytoestrogens and report the most studied phytoestrogens with
promising alveolar bone protective effect in postmenopausal osteoporosis
model, with and without experimental periodontitis. To date, there are
limited studies on the effects of phytoestrogens on alveolar bone in
postmenopausal osteoporosis. Phytoestrogens may have exerted their bone
protective effect by inhibiting bone resorption and enhancing bone formation.
With the reported findings on the protective effects of phytoestrogens on bone,
well-designed trials are needed to better investigate their therapeutic effects.
The compilation of outcomes presented in this review may provide an overview
of the recent research findings in this field and direct further in vivo and clinical
studies in the future.
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1 Introduction

• Osteoporosis is an age-related bone disease characterized by
low bone mass and deterioration of bone tissue micro-
architecture resulting in increased bone fragility and
susceptibility to fracture (Sözen et al., 2017). It is an
emerging geriatric condition in developing nations. It
affects men and women of all races, but the prevalence of
osteoporosis is higher among women compared to men
(Clynes et al., 2020). The global increase in life expectancy,
being 74 years for women has lead them to suffer from many
debilitating diseases such as osteoporosis (Manyonda et al.,
2020).

• The alveolar bone is the thick ridge of bone located on the jaw
bones. It contains the tooth sockets which hold the teeth.
Anatomically, these human bones are called the maxilla and
mandible. Alveolar bone loss is one of the hallmarks of
periodontitis. It causes weakening of the supporting
structures of the teeth and predisposes to tooth mobility
and loss. Postmenopausal osteoporosis is closely related to
the development of periodontitis (Contaldo et al., 2020).
Periodontitis, the sixth most prevalent disease worldwide, is
multifactorial inflammatory disease mediated by host
response and dysbiotic plaque biofilms, resulting in
periodontal tissue destruction, alveolar bone loss and
eventually tooth loss (Tonetti et al., 2017; Papapanou et al.,
2018).

• Both osteoporosis and periodontitis are prevalent
inflammation-associated bone disorders that have common
features of bone resorption, being silent and asymptomatic
(Mashalkar et al., 2018; Ayed et al., 2019). These diseases
remain a major public health problem particularly in the aging
population (Yu & Wang, 2022). It is projected that
osteoporosis and periodontitis cases will increase as the
population advances in age and is predicted to cause great
health challenges (Wang and McClauley, 2016). As
periodontitis leads to alveolar bone loss, tooth loss,
edentulism and masticatory dysfunction, it could indirectly
affect nutrition, impair quality of life and self-esteem of the
affected individuals (Chang et al., 2020). Postmenopausal
osteoporosis and periodontitis may impose huge
socioeconomic impacts and healthcare costs (Brandão et al.,
2012; Mohd-Dom et al., 2014; Mohd Dom et al., 2016). Both
diseases share a number of risk factors such as age, smoking,
alcohol consumption and diabetes, and common features of
bone resorption that might require mutual concomitant
management (Wang & McCauley, 2016).

• Anti-resorptive drugs such as biphosphonates are the
commonly used pharmacological agents for the treatment
of osteoporosis. Zoledronate is a long-acting
bisphosphonate and most potent anti-resorptive drug that
has been reported in the literature to have a positive effect on
bone density in patients with osteoporosis. Apart from that,
zoledronate could also improve periodontal disease and
prevent tooth loss (Taguchi et al., 2019). Postmenopausal
women on hormone replacement therapy (HRT) were
found to have better natural teeth retention than those not
receiving HRT (Han et al., 2016). However, the use of these

treatment modalities is associated with unwanted side effects.
Anti-resorptive agent biphosphonate may lead to renal
toxicity, acute-phase reactions, gastro-intestinal toxicity,
and osteonecrosis of the jaw (Ralston, 2015). The use of
HRT is also associated with side effects and risks, including
stroke, thromboembolism, vascular diseases and breast cancer.
It was reported that to avoid the HRT adverse effects, women
nowadays are shifting to herbal medicine, particularly for the
prevention and treatment of menopause related symptoms
(Gerbarg & Brown, 2016; Djapardy and Panay. 2022). The
search of natural substances with promising results for the
treatment of postmenopausal osteoporosis and periodontitis
therefore is highly desirable.

• In this regard, phytomedicine or plant-based medicine with
therapeutic and healing properties have gain scientific and
clinical interest. Phytoestrogens are naturally occurring non-
steroidal polyphenolic compounds that have structural and
biological similarity to 17-β-estradiol, the main female sex
hormone. Even though the affinity is lesser than that of
endogenous estrogens, phytoestrogens can bind to estrogen
receptors (ER) and exert anti-estrogenic or pro-estrogenic
effects (Rowe and Barber, 2021). Most of phytoestrogens
are also antioxidant and anti-inflammatory agents and
these properties contribute to their distinguished
therapeutic health effects Kładna et al., 2016. A growing
body of evidence supported their therapeutic potential in
preventing and treating several dysfunctions and diseases
related to aging including menopausal symptoms and
osteoporosis (Sirotkin & Harrath, 2014). In fact,
phytoestrogens are used as a dietary supplement and as an
alternative to HRT as they are believed to be safe and effective.
Such properties turn these substances into promising targets
for development as adjunctive preventive and therapeutic
strategies for postmenopausal osteoporosis and
periodontitis. In this review, we summarized the effects of
the most studied phytoestrogens on bone health and screened
phytoestrogens with the most promising alveolar bone
protective effect in postmenopausal osteoporosis model
with and without experimental periodontitis. This review
may provide important insights for further in vivo and
clinical studies of postmenopausal osteoporosis and
periodontitis.

2 Association between
postmenopausal osteoporosis and
periodontitis

The association between postmenopausal osteoporosis and
periodontitis has been reported extensively in epidemiologic and
experimental studies (Luo et al., 2014; Juluri et al., 2015; Ayed et al.,
2019). Though the mechanism of periodontitis in postmenopausal
women has not been fully elucidated, an explicit understanding on
the mechanistic link between the two diseases and their interplay is
important for the prevention and management of these disorders,
particularly in the elderly. The pathogenesis of postmenopausal
osteoporosis involved the activation of systemic inflammation
and dysregulation of immune response (Al-Daghri et al., 2017;
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Fang et al., 2022). Healthy bone continuously remodels through
osteoblast-mediated bone formation and osteoclast-mediated bone
resorption until the fourth to sixth decade of life when resorption
exceeded the formation, causing a continuous loss of bone mass and
a progressive decline in bone mineral density (BMD) (Kirk et al.,
2020; Munoz et al., 2020). The cessation of ovarian function at
menopause is one of the main causes of osteoporosis (Wu et al.,
2021). Withdrawal of the protective effect of estrogen and immune
cells alteration contribute to ongoing bone destruction in
postmenopausal osteoporosis (Fischer and Haffner-Luntzer,
2022). The crosstalk between the immune system and the bone
has been reported in the literature since the past decades
(Takayanagi et al., 2000). Various immune cells interact with
bone cells, the osteoblasts and osteoclasts, through cell-cell direct
contact or via paracrine mechanisms (Fischer and Haffner-Luntzer,
2022). Immune cells including subtypes of T lymphocytes, B
lymphocytes, macrophages, neutrophils and mast cells influence
bone cells via factors including inflammatory cytokines, the
interleukin (IL)-6 and tumor necrosis factor -α (TNF-α),
osteoprotegerin/receptor activator of nuclear factor kappa-β
ligand (OPG/RANKL) and other mediators, by increasing
osteoblast apoptosis and stimulating osteoclastogenesis, thereby
triggering bone loss during postmenopausal osteoporosis (Du
et al., 2018; Zhang et al., 2020; Fischer and Haffner-Luntzer, 2022).

Bacterial dental plaque or biofilm is the primary etiological
factor that dissociate periodontitis from osteoporosis. Though the
pathogenesis and progression of periodontitis is primarily
dependent on host interaction with the dysbiotic biofilm, the
subsequent exacerbation of inflammatory response and its
influence on bone homeostasis play crucial roles in both
osteoporosis and periodontitis (Yu & Wang, 2022). Inflammatory
response, the recruitment of polymorphonuclear neutrophils in
particular, is the first line of defense against the invading
periodontal pathogens in subgingival dental biofilm that is
intended to eliminate the initial cause of tissue injury. As
inflammation involve the activation of immune cells in the
innate and adaptive immunity, the interplay between microbes
and immune components initiate and propagate periodontal
inflammation (Hajishengallis, 2014). The activation of
lymphocyte and amplification of local inflammatory signaling
cascade could stimulate RANKL signal, promoting
osteoclastogenesis and inhibiting osteoblast lineage cells, thereby
causing an uncoupling of bone remodeling process (Kawai et al.,
2006; Pacios et al., 2015). These events are thought to be responsible
for bone resorptive lesion and periodontal bone loss in periodontitis.

As described above, it is known that osteoporosis and
periodontitis are closely related with inflammation and aging.
Apart from inflammation, oxidative stress, is another major
causative factor implicated in the pathogenesis and progression
of these diseases. During aging, the accumulation of intracellular
reactive oxygen species (ROS) and depletion of antioxidant enzymes
lead to the elevation of oxidative stress in skeletal system
(Manolagas, 2010). Excessive production of ROS, which is also
responsible for elevation of immune cytokines could trigger the
increase in osteoclastogenesis and osteoblast apoptosis as well as
decrease in osteoblastogenesis. A population-based study suggested
an interplay between oxidative stress and bone resorption that
possibly underlies the development of postmenopausal

osteoporosis (Cervellati et al., 2014). Menopause-related estrogen
withdrawal increase the risk of postmenopausal osteoporosis
basically by making the bone more vulnerable to oxidative injury.
The theory that oxidative stress affects BMD was also supported by
numerous clinical studies. Oxidant and antioxidant status imbalance
in postmenopausal osteoporosis could affect the osteoclastic and
osteoblastic activity. With regards to its involvement in
periodontitis, oxidative stress has been linked to periodontal
tissue destruction. ROS initially act as an antimicrobial defense
system by killing the invaded pathogenic microorganism triggered
by the infiltration of polymorphonuclear neutrophil (Wang, 2015).
The generation of ROS is also considered as a “double-edge” sword
as it helps to kill invading pathogen and it can be cytotoxic to host
cells when the inflammatory response is exaggerated.
Overproduction of ROS within the affected tissues leads to
oxidant-antioxidant imbalance which then results in oxidative
stress and pathological changes and consequently cause
destruction of host tissues (Sczepanik et al., 2020). Hence, ROS is
responsible for destruction of periodontal tissues and tooth loss in
periodontitis. Due to these facts, periodontitis is also referred to as
an inflammatory disease of oxidative stress.

The evolution of classification and diagnostic criteria for
osteoporosis and periodontitis have been described and reported
in the literature. Osteoporosis is determined by the measurement of
BMD, expressed in terms of the number of standard deviations (SD)
from the mean BMD of healthy individuals that matched to age and
sex (Z-score), and the number of SD from the mean BMD of healthy
young sex-matched individuals (T-score). According to WHO
criteria, osteoporosis is present when BMD lies 2.5 SD or more
below the BMD of young healthy women. Meanwhile, osteopenia or
low bone mass is defined as BMD levels between one SD and 2.5 SD
below the normal BMD (Lorentzon & Cummings, 2015). The most
widely recognized tools used to measure BMD is dual energy x-ray
absorptiometry (DXA). This technique is a standard non-invasive
diagnosis approach that is reliably used worldwide to identify
patients with low BMD due to its high precision and resolution
but low radiation and cost. Additionally, quantitative ultrasound
(QUS) methods have been used in the diagnosis and follow-up
treatment in osteoporosis. Advances in computed tomography (CT)
and magnetic resonance imaging (MRI) are promising in clinical
and research settings in terms of capturing bone microarchitecture
and also characterizing processes at the molecular level (Oei et al.,
2016).

The diagnosis of periodontitis is primarily based on clinical
evaluation whereby radiographs are used to confirm the clinical
manifestation. The patient is considered to have periodontitis when
there are at least four teeth with 4 mm probing depth in one or more
sites, clinical attachment loss (CAL) up to 3 mm at the same site and
presence of bleeding on probing (Ayed et al., 2019). The American
Academy of Periodontology and the European Federation of
Periodontology has modified the definition and classification
framework for periodontitis based on staging and grading system
(Tonetti et al., 2017). The staging refers to the severity and extent of
periodontitis at present while grading refers to the rate of its
progression. In clinical setting, the periodontal health can be
evaluated by the measurement of CAL using probing pocket
depths (PPD) and gingival recession but the reliability of this
method is limited in terms of probing force, angulation,
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placement and tip diameter (Trombelli et al., 2018). Radiographic
bone loss (RBL) should be used in cases if the CAL is unavailable
(Tonetti et al., 2017). Loss of alveolar crestal height (ACH), oral
hygiene simplified (OHI-S) and sites with bleeding on probing
(BOP) percentage are among other important clinical parameters
in the evaluation of periodontal status (Qi et al., 2021). Apart from
that, identification of cavities and periodontal lesions, maxillary
sinusitis and other lesions in the oral andmaxillofacial field as well as
osteoporosis can be done with the use of computer-aided diagnosis
(CAD) (Wang and McCauley. 2016).

Tooth loss, periodontal disease, ill-fitting or loose dentures and
severe bone loss around the teeth, are among the early indicators of
osteoporosis detected in the oral cavity (Ayed et al., 2019). In the
clinical setting, patients at risk can be identified by a dentist from
medical history, clinical examination and radiographic findings
while patient’s osteoporosis status can be obtained by further
determination of BMD together with the evaluation of dental
radiography. Knowledge on the relationship between
postmenopausal osteoporosis and periodontitis, as well as
sufficient clinical and radiographic information would enable
dentists to play their role in early diagnosis and screening of
osteoporosis in postmenopausal women. Regardless of gender,
patients with osteoporosis may have two-fold increase in the risk
of periodontitis. Though osteoporosis is not an etiologic factor in
periodontal disease, osteoporotic women presented a higher risk and
greater severity of periodontitis than men (Pepelassi et al., 2012;
Manjunath et al., 2019). This association suggested that patients
with osteoporosis should be evaluated for periodontal health and
vice versa. Efforts towards the prevention of periodontal disease in
patients at risk of osteoporosis particularly in postmenopausal
women would be enviable. Although the mechanisms underlying
this association has not been not fully elucidated, information
collected from the literature strongly explained the association.

3 Estrogen deficiency and
inflammatory response in alveolar bone
loss

Estrogen is a steroid hormone that is not only responsible for female
sexual characteristics development but also has other non-reproductive
physiological roles. It is one of the key regulators of bone metabolism
with significant influence on skeletal growth and homeostasis in both
women and men. Estrogens act directly on osteoblasts, osteocytes,
immune cells and other cells via the ER found on these bone cells
(Bord et al., 2001; Braidman et al., 2001; Crusodé-Souza et al., 2009). In
general, ER signaling pathway activation stimulated differentiation of
osteoblast and suppressed osteoclastic activity (Manolagas, 2000).
Estrogen also prevented apoptosis of osteocytes and its anti-apoptotic
effect is related to their autophagy regulation in osteocytes (Florencio-
Silva et al., 2018). Estrogen deficiency increased osteoclastogenesis,
prolonged osteoclast lifespan and increased the rate of bone turnover,
causing accelerated resorption than formation (Manolagas, 2000;
Manolagas et al., 2013). A recent study showed that estrogen
deficiency decreased autophagy and increased apoptosis in alveolar
process osteocytes, whereby estrogen replacement enhanced osteocyte
viability simply by inhibiting apoptosis and maintaining autophagy in
these cells (Florencio-Silva et al., 2018).

Apart from its direct effects on bone cells, research has revealed
estrogen regulated bone hemostasis through its influence on the
immune system and on oxidative stress. In essence, the
proinflammatory cytokines, IL-1, IL-6, TNF-α, granulocyte
macrophage colony-stimulating factor, macrophage colony-
stimulating factor (M-CSF), and prostaglandin-E2 (PGE2) played
a significant role in bone metabolism by increasing bone resorption
(Riggs, 2000). These proinflammatory cytokines particularly IL-1,
IL-6 and TNF-α were considered as osteoclastogenic bone
resorption-inducing cytokines (Scheidt-Nave et al., 2001).
Activation of inflammatory cascades due to estrogen deficiency
led to increased production of M-CSF and RANKL. The binding
of M-CSF to its receptor stimulated the proliferation of osteoclast
and the survival of its precursors as well as mature osteoclasts. The
binding of RANKL to RANK receptors stimulated differentiation
and activity of osteoclast and prevented their apoptosis (Feng et al.,
2019). In osteoporotic patients, the increased in systemic levels of IL-
6 could predict BMD change and fracture rate (Barbour et al., 2014).
A significant elevation in IL-6 as well as TNF-αwere also observed in
ovariectomized (OVX) animals compared to the SHAM group
(Eminov et al., 2018; Delgobo et al., 2019). Apart from the
increase in IL-6 expression, OVX rats also showed increased
RANKL and to a lesser extent, OPG expression. OVX rat is a
suitable model for studying postmenopausal bone loss as it
mimics the decline in endogenous estrogen production by the
ovaries during menopause (Johnston & Ward, 2015). This model
resembles deterioration of bone tissue in the hip and spine in
postmenopausal osteoporosis and hence it can also be used to
study mineral and structural changes in alveolar bone.

Alveolar bone loss due to periodontitis is a frequent
complication in postmenopausal women suffering from
osteoporosis due to estrogen deficiency (Tanaka et al., 2020). As
described earlier, changes in hormone level particularly estrogen
have impact on systemic bone homeostasis and inflammatory
response. Following menopause, estrogen levels in the circulation
fall drastically as the production by the ovaries cease. Estrogen
reduced osteoclast activity and prevented apoptosis of osteocytes,
and for that reason rapid decline in estrogen may lead to systemic
bone loss due to disruption of bone homeostasis (Grover et al.,
2014). Other than bones, estrogen receptors can also be found in the
oral mucosa, gingiva and salivary glands. ER-β is the predominant
ER present in the gingival epithelium (Valimaa et al., 2004).
Therefore, hormone fluctuations may also contribute to changes
in the oral cavity and acceleration of inflammatory response (Jafri
et al., 2015). Upregulation of immune cells and osteoclasts due to
estrogen deficiency eventually result in a greater production of bone-
resorbing cytokines. The increase in inflammatory cytokines and
other factors in the circulation may not only have impact on
systemic bone remodeling but also may locally compromise the
tissue response to periodontal disease (Golub et al., 2006).

Estrogen deficiency in postmenopausal women or in
experimental OVX rodents has been markedly linked to
alterations in trabecular and cortical bone including the alveolar
bone of mandible (Johnston & Ward, 2015; Jonasson et al., 2018).
Studies also showed that estrogen deficiency aggravates the severity
of experimental periodontitis (Anbinder et al., 2016). Clinically,
postmenopausal women with osteoporosis and concurrent
periodontitis have been found to exhibit an exaggerated response
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to dental plaque, higher periodontal attachment loss and a
significant reduction of alveolar bone compared to healthy
women (Singh et al., 2014). These changes are evident through
the assessment of periodontal health such as increased gingival
bleeding and periodontal pocket depth, decreased BMD of the
alveolar crestal and subcrestal bone, loss of dentoalveolar bone
height, or loss of clincial attachment and tooth (Marjanovic
et al., 2013; Jang et al., 2015; Juluri et al., 2015; Savić Pavičin
et al., 2017).

It was hypothesized that osteoporosis could accelerate alveolar
bone resorption and bone loss in periodontitis because the loss of
alveolar BMD allowed deeper bacterial penetration into the enlarged
periodontal space. In response to local inflammation, alveolar
resorption could be further amplified and accelerated as focal
infection of the periodontium may also release inflammatory
cytokines into the system (Barbato et al., 2015). Additionally,
overexpression of proinflammatory cytokines with osteoclastic
activity occured in both osteoporosis and periodontitis (Barbato
et al., 2015; Inchingolo et al., 2020). The impact of estrogen
deficiency and the association between postmenopausal
osteoporosis and periodontitis are shown in the schematic
diagram (Figure 1).

4 Therapeutic potential of
phytoestrogens

Phytoestrogens are generally divided into four major groups:
isoflavones, stilbenes, coumestans and lignans. Isoflavones are the
most widely used and studied phytoestrogens. They are found
primarily in soybeans and other legumes, which constitute the
major dietary source of phytoestrogens in Asian communities
(Rowe & Baber, 2021). Genistein and daidzein are the two well-

characterized isoflavones that have also been shown to have
estrogenic potential. Resveratrol is the most common and the
main dietary source of phytoestrogenic stilbenes. Its estrogenic
activity is dependent on the two isomers, cis and trans. Trans
has been reported to have higher estrogenic activity (Desmawati
& Sulastri, 2019). Coumestans are biosynthetically related to
isoflavones but only a small number of coumestans have shown
estrogenic activity (Poluzzi et al., 2014). Lignans, the major dietary
source in Western diets, are mostly derived from fruit, vegetables,
legumes and whole grains. Lignan dimers that are not estrogenic
themselves can be converted by gut microflora to mammalian
lignans, the enterodiol and enterolactone which are estrogenic
(Cornwell et al., 2004).

Phytoestrogens have been extensively studied for their potential
role to prevent and treat diseases related to aging such as
menopausal symptoms and skin aging, cardiovascular,
neurodegenerative, immune and metabolic diseases and cancer.
Recent systematic review and meta-analysis reported that
consumption of low doses of phytoestrogen (25 mg/d ≤
dose ≤100 mg/d) for a long-term duration were effective in
relieving depression symptoms in postmenopausal women (Li
et al., 2021). Some reported adverse effect associated to
phytoestrogens in menopausal women however are not yet clear
and required more supportive evidence from high-quality
randomized control trial (RCT) studies. Animal studies showed
that high-dose administration of phytoestrogens (equol and
puerarian mirica) modulated female reproductive system by
enhancing the levels of serum luteinizing hormone and reducing
urinary follicular stimulating hormone in ovariectomized rats and
cynomolgus monkeys respectively (Rachoń et al., 2007; Trisomboon
et al., 2007). Exogenous estrogen-like molecules could promote
reproductive function and it also could possibly destroy
reproductive processes (Sirotkin & Harrath, 2014). Nevertheless,

FIGURE 1
The impact of estrogen deficiency and the association between postmenopausal osteoporosis and periodontitis. Estrogen deficiency is responsible
for the increase in systemic bone resorption and remodeling imbalance that would also accelerate the increase in alveolar bone resorption. Loss of BMD
in postmenopausal osteoporosis may be responsible for increasing alveolar bone loss in periodontitis. Local inflammation in periodontitis may activate
systemic osteoclastogenic cytokines and further aggravates bone loss.
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no adverse effects of phytoestrogens on human reproduction has
been reported yet. In a RCT, supplemention of 100 mg isoflavones-
rich, concentrated soy extract daily to postmenopausal women for
6 months has improved their skin health by increasing epithelial
thickness, number of elastic and collagen fibres (Accorsi-Neto et al.,
2009).

Soy genistein has been proposed to have a promising therapeutic
effect for metabolism improvement and treatment of metabolic
disorder (Behloul & Wu, 2013). In an RCT, 250 mg per day of
genistein administered to non-alcoholic fatty liver patients for
2 months demonstrated reduction in insulin levels, indicating the
ability of phytoestrogen to modulate human endocrine system
(Amanat et al., 2018). Supplementation of soy protein with
66 mg isoflavones for 6 months has been found to significantly
improve cardiovascular disease risk markers in women during
the early menopause (Sathyapalan et al., 2018). A meta-analysis
of epidemiological studies has found that the intake of soy
isoflavones by pre- and post-menopausal women in Asian
countries could lower the risk of breast cancer (Chen et al.,
2014). Several other studies have shown the potential effect of
phytoestrogen consumption in reducing the risks of lung cancer
(Shimazu et al., 2011), stomach cancer (Ko et al., 2013), prostate
cancer (He et al. 2015; Hwang et al., 2009), endometrial and ovarian
cancer (Bandera et al., 2009; Qu et al., 2014).

The therapeutic potential described above indicated that
phytoestrogens possess beneficial effect on the health of various
organs and systems at different doses. Though the main
mechanism of action of phytoestrogens is due to ER binding,
their antioxidant, anti-inflammatory and other properties could
also contribute to their pro-health effects. For example, the
interaction of phytoestrogens with ER as well as their
antioxidant properties might contribute to its neuroprotective
effects (Gorzkiewicz et al., 2021). Several studies showed that
different forms of soybean including soy isoflavones have
antibacterial activity against oral microbes (Lee & Kim, 2006;
Wang et al., 2010; Laodheerasiri and Horana Pathirage, 2017;
Choo et al., 2020; How et al., 2020). Antimicrobial activity of
phytoestrogens may be useful for the treatment and prevention of
periodontal disease as periodontitis is known to have bacterial
cause. Dental plaque and polymicrobial infections play a pivotal
role in the initiation of periodontitis. For this reason, elimination
or controlling the bacteria could be a beneficial approach in
managing periodontal diseases.

5 Phytoestrogens and bone

In view of its role as the key regulator of bone metabolism, it has
been hypothesized that phytoestrogens exerted bone health effects
through their estrogenic potential, usually by binding to estrogen
receptors (Chiang and Pan. 2013). As described earlier, soy
isoflavones is one of the most widely studied phytoestrogens and
they have received considerable attention in the management of
postmenopausal bone loss. In the last decades, numerous clinical
studies have been conducted in a wide range of populations
including Western and Asian counterparts using different types
of isoflavones preparations. Observational studies showed that
women who consume higher amounts of soy foods have lower

risk of postmenopausal fracture (Setchell & Lydeking-Olsen, 2003;
Messina et al., 2004; McCarty, 2006) and as a consequent many
clinical trials have attempted to evaluate the protective role of soy
isoflavones on bone health (Lagari & Levis, 2013). Reported findings
on the skeletal effects of isoflavones from clinical trials however are
inconsistent due to the variation of study design and length of
intervention, study population, dose and types of isoflavones
preparation. The inconclusive results from human clinical trials
are generally contributed by their heterogeneity and poor quality
(Rowe & Baber, 2021).

A systematic review of RCT in 2016 compiled 23 eligible
studies that ranged from 7 weeks to 3 years of interventions,
which mainly assessed the effectiveness of phytoestrogens
intervention through the measurement of whole body or
regional BMD or bone mineral content, T-scores and bone
metabolism biomarkers during the menopause transition (Abdi
et al., 2016). Though there were controversial reports about
changes in BMD, different types of soy isoflavones extracts
(including genistein and daidzein), dietary products containing
different amounts of phytoestrogens and red clover extract may
have beneficial effects on bone health in postmenopausal women.
A recent meta-analysis and systemic review of RCT concluded that
isoflavones could be beneficial in preserving BMD and reducing
bone resorption in premenopausal and postmenopausal women
(Lambert et al., 2017). This could be linked to the effect of
phytoestrogens principally as antiresorptive agents rather than
their potential in bone formation. The use of isoflavones aglycones
with well-controlled, standardized and defined isoflavones
interventions revealed greater efficacy in treating BMD loss in
estrogen-deficient women compared to glycosides and less well-
defined isoflavones formulation. One year intake of novel red
clover extract rich in isoflavones aglycones and probiotics has
been found to potently attenuated BMD loss and improved bone
turnover in postmenopausal osteopenic women (Lambert et al.,
2017).

Although human clinical trials are inconsistent and some
reported negative findings, numerous in vitro and animal studies
on phytoestrogens revealed encouraging bone sparing effects.
Phytoestrogen could promote osteogenesis by specifically
targeting osteoblast and osteoclast. The administration of
phytoestrogens such as isoflavones and flavonoids promoted
bone formation, which stimulate the expression of osteogenic
markers such as Runx2, ALP, osteocalcin, type 1 collagen (COL-
1), osteopontin, and morphogenetic protein-2 (BMP-2) for
osteoblast differentiation and bone matrix mineralization
(Ramesh et al., 2021; Ortiz et al., 2022; Sekaran et al., 2022).
Additionally, by virtue of its similar structure to 17β-estradiol in
conformational binding to estrogen receptors, phytoestrogen has
capability to reciprocally affect osteogenic versus adipogenic
differentiation of mesenchymal stem cells (MSCs) in a dose
dependent manner. For instance, phytoestrogen stimulated
osteoblast differentiation from MSCs via the activation of
important signalling pathways such as Smad, Wnt/β-catenin and
Sirt1 pathways (Schilling et al., 2014; Gorabi et al., 2019; Khezri et al.,
2021; Wang et al., 2021). Concomitantly, there is evidence that
phytoestrogen suppressed the adipogenic differentiation signalling
pathway including PPAR and C/EBP pathways in a dose dependent
manner (Schilling et al., 2014; Ahmed 2014).
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In addition, the process of bone resorption and formation are
closely coupled through the RANKL/OPG system. The integrity
of the skeleton is maintained through bone formation followed
by a balanced cycle of bone resorption (Narducci et al., 2011;
Sharma et al., 2022). Intriguingly, phytoestrogen was able to
regulate the RANKL/OPG system, thereby playing an important
role in the pathogenesis of osteoporosis (Ni et al., 2023;
Hooshiar et al., 2022; Zakłos-Szyda et al., 2020). Furthermore,
phytoestrogen exerted antiresorptive activities by suppressing
the expression of osteoclast differentiation markers such as
matrix metalloproteinase 9 (MMP9), cathepsin-K and
tartrate-resistant acid phosphatase (TRAP) via
downregulating the activation of NF-κB and MAPK signaling
pathways (Xu et al., 2022; Tanaka et al., 2020). These findings
demonstrated that phytoestrogen treatments could inhibit
osteoclast activation and therefore have therapeutic potential
for osteoporosis.

The primary endpoints that generally measured following
hormone ablation in in vivo studies include, trabecular bone
and/or cortical bone mass, BMD and mechanical strength.
Changes in bone turnover markers and uterine weight were also
measured. Phytoestrogens significantly increased both trabecular
and/or cortical bone volume in OVX-induced bone loss with no
uterotrophic effect in animal models (Inchingolo et al., 2020; Long
et al., 2022). Phytoestrogen was also shown to significantly
decreased urinary excretion of deoxypyridinoline (DPD), which
is one of the bone resorption markers (Li et al., 2021; Song et al.,
2016). Furthermore, phytoestrogen exerted antioxidant effects as
shown by the increased expression of antioxidant enzymes such as
superoxide dismutase (SOD) and gluthathione (GSH), that serve to
scavenge the excess free radicals. This antioxidative effect of
phytoestrogens also inhibit osteoclast differentiation (Oršolić
et al., 2022). Overall, findings from in vivo studies are in line
with in vitro studies, which demonstrated the bone-conserving
effects of phytoestrogens in reducing bone loss due to estrogen
deficiency.

5.1 Effects of phytoestrogens on alveolar
bone loss

Being a systemic disease, the manifestation of bone loss in
osteoporosis is not only evident in vertebrae and appendicular
skeleton but also in alveolar bone (Muslita et al., 2012). For this
reason, osteoporosis is expected to accelerate alveolar bone
resorption caused by periodontitis (Guiglia et al., 2013).
Additionally, osteoporosis results in an increase in certain
inflammatory cytokines which are also affected in the
progression of periodontitis. Oxidative stress is also an
indicator of periodontitis development, which is evident by the
accumulation of ROS (Kanzaki et al., 2017). Studies on the
potential skeletal effects of phytoestrogens in postmenopausal
osteoporosis at the preclinical (in vitro and in animal models)
and clinical level have been substantially reported in the literature.
To the best of our knowledge, studies on the effect of
phytoestrogens on postmenopausal osteoporosis with
periodontal disease in human are still lacking. Nonetheless,
several animal studies have been carried out recently to evaluate
the protective effects of phytoestrogens against alveolar bone loss
in postmenopausal osteoporosis with or without experimental
periodontitis.

Table 1 summarizes the effect of phytoestrogens against
alveolar bone loss. In a recently published study, oral
administration of soy isoflavones was found to alleviate
experimental periodontitis in estrogen-deficient rats as revealed
by the increased expression of tight junction proteins in the
gingiva, reduced proinflammatory cytokines, IL-17 and ROS
levels (Liu et al., 2022). Attenuation of alveolar bone loss was
observed through micro-CT and histologic observation.
Experimental periodontitis in OVX rats was established by silk
ligature and inoculation with Porphyromonas gingivalis, a Gram-
negative anaerobe, which is one of the well-characterized
periodontal pathogens involved in periodontitis. P. gingivalis
possibly modulate the immune response through the

TABLE 1 Summary findings on the therapeutic potential of phytoestrogens against alveolar bone loss.

Phytoestrogen Summary findings Author

Soy Isoflavones Soy isoflavones increased the expression of tight junction proteins, and reduced IL-17 level and alveolar bone loss, alleviating
periodontitis in ovariectomised rats

Liu et al. (2022)

Diosgenin Diosgenin significantly reduced TNF-α and osteocalcin expression. Results from circRNA profile and the circRNA-miRNA-
mRNA network demonstrated that the potential mechanism of diosgenin to inhibit osteoclastogenesis by regulating the
expression of Wnt, PI3K, RANK/RANKL or osteoclastogenic cytokine pathways

Zhang et al. (2020)

Diosgenin Diosgenin significantly reduced the level of TRAP and increased the level of ALP. Diosgenin promoted the bone formation
process by increasing Smad4, Smad8, and beta-catenin/Tcf, osterix, ALP and OPN and inhibited two potent stimulators of
osteoclastogenesis TNF-α and IL-1 β and their receptors, IL-1R and TNF-R1. mRNA expression of TRAP in alveolar bone was
shown to be downregulated after a 12-week diosgenin treatment

Zhang et al. (2018)

Genistein Histological and µCT analyses demonstrated that genistein administration decreased distance between the CEJ and the apex of
the alveolar bones. Genistein significantly reduced the level of TRAP, COX-2 and ICAM expression in the inflamed region of
mice with periodontitis

Bhattarai et al. (2017)

Genistein Genistein administration prevented alveolar bone loss significantly induced by ligature placement (about 74%). Genistein
administration also increased microstructural parameters of trabecular bone, including Tb.Th, Tb.Sp, bone BMD and structure
model index

Choi et al., 2016

IL, interleukin; TNF-α, tumor necrosis factor; RANKL, receptor activator of nuclear factor kappa-ligand; OPN, osteopontin; ALP, alanine phosphatase; TRAP, tartrate-resistant acid

phosphatase; µCT, micro-computed tomography; COX-2, clyclooxygenase; ICAM, intercellular adhesion molecule; Tb.Th, trabecular thickness; Tb.Sp, trabecular separation; BMD, bone

mineral density; SMI, structure model index; BMD, bone mineral density.
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inactivation of certain cytokines (Baek et al., 2015). An in vitro P.
gingivalis infection model was also used to determine whether
grainyhead-like 2 (GRHL2), the epithelial transcription factor and
ER-binding partner (He et al., 2020) is required by soy isoflavones
to enhance the oral epithelial barrier. It was found that the
enhancement of oral gingival epithelial barrier function by soy
isoflavones treatment was partially dependent on GRHL2 (Liu
et al., 2022).

Earlier studies showed that genistein, a major subclass of
isoflavones found in soybean was protective against
periodontitis-induced alveolar bone loss (Choi et al., 2016;
Bhattarai et al., 2017). Genistein was found to significantly
attenuated Prevotella intermedia LPS-induced production of
inducible nitric oxide synthase (iNOS) and IL-6 coupled with
the decreased in their mRNA expression in RAW264.7 cells. In
experimental animal, alveolar bone height and bone volume
fraction were decreased and microstructural parameters of
trabecular bone were improved with administration of
genistein (Choi et al., 2016). These findings were in line with
a study by Bhattarai et al. (2017) that also showed a reduction in
LPS-induced alveolar bone loss with genistein administration.
Additionally, genistein significantly prevented osteoclast
differentiation by suppressing the expression of osteoclast-
specific molecules in NFκB ligand- or LPS-stimulated
macrophages. Apart from its inhibitory effect on osteoclast
activation, the protection against LPS-mediated stresses by
genistein was indicated by the reduction of mitochondrial
impairment and ROS accumulation, which lead to the
reduction of periodontal damage. The reported antioxidant
and anti-osteoclastic potential of phytoestrogen genistein
might be protective against alveolar bone loss in
postmenopausal osteoporosis condition.

A study done by Zhang et al. (2018) has found that 12-week oral
treatment with diosgenin, a natural steroidal saponin and a
phytoestrogen, suppressed alveolar bone loss in OVX rats by
promoting bone formation. Though the effects of estradiol
valerate on alveolar bone volume was greater than diosgenin,
both treatments showed reduced alveolar bone loss compared to
OVX rats as indicated by 3-D bone microstructure analysis and

histological observation. The protective role of diosgenin on bone
loss was also described earlier in the peripheral skeletal of OVX rats
(Zhang et al., 2014; Folwarczna et al., 2016). The bone protective
effect of diosgenin might be associated with the modulation of
RANKL/OPG ratio (Zhang et al., 2014). As with other
phytoestrogens, diosgenin may be one of the sparse compounds
that have the potential to increase bone formation and inhibit bone
resorption. In this study, lncRNA and mRNA profiles were
evaluated using a microarray to confirm the anti-osteoporotic
effects of diosgenin on alveolar bone. Diosgenin may have
exerted this effect by increasing the Wnt and BMPs pathways,
the two recognized signaling pathways that regulate the
osteogenic differentiation of mesenchymal stem cells or
preosteoblasts (Lin and Hankenson, 2011; Marcellini et al., 2012).
This finding was further supported by another study by Zhang et al.
(2020). The study revealed that anti-bone loss action of diosgenin on
alveolar bone was attributed by the regulation of important
molecules expression in the Wnt, P13K, RANK/RANKL or
osteoclastogenic cytokine pathways. The possible molecular
mechanisms underlying the protection against alveolar bone loss
by phytoestrogens are summarized in Figure 2.

6 Conclusion

Association between postmenopausal osteoporosis and
periodontitis has long been postulated though its causal
relationship is yet to be determined. In vitro and animal studies
have demonstrated phytoestrogens favorable effects on skeletal
health. Phytoestrogens may exert their bone protective effect by
inhibiting bone resorption and promoting bone formation.
Phytoestrogens mainly isoflavones, may offer protection against
alveolar bone loss in postmenopausal osteoporosis condition.
Well-designed clinical trials are needed to determine the
therapeutic potential of phytoestrogen on skeletal health
particularly in postmenopausal women. Phytoestrogens can be
potentially developed as adjunctive preventive and therapeutic
cost-effective strategies in the treatment and prevention of bone
loss in postmenopausal osteoporosis with periodontitis.

FIGURE 2
The possible molecular mechanism underlying the protection against alveolar bone loss by phytoestrogens.
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